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1. Introduction

Accurate building extraction from remotely sensed images is essential for topographic
mapping, urban planning, disaster management, navigation, and many other applica-
tions [1]. The easily available very-high resolution 2D/3D dataset and the rapid develop-
ment of image processing techniques, especially the convolutional neural networks (CNN)
and deep learning techniques have further boosted the research on building-extraction-
related topics. Especially in recent years, many research institutes and associations have
provided open-source datasets and annotated training data to meet the demand for ad-
vanced artificial intelligence models, which brings new opportunities to develop advanced
approaches for building extraction and monitoring. Hence, there are higher expectations
of the efficiency, accuracy, and robustness of building extraction approaches. They should
also meet the demand of processing large datasets at the city, national, and global levels.
Moreover, challenges remain on transform learning and dealing with imperfect training
data, as well as unexpected objects in urban scenes such as trees, clouds, and shadows.

As a follow-on Special Issue of “Remote Sensing based Building Extraction”, this
Special Issue “Remote Sensing based Building Extraction II” has further collected the
cutting-edge approaches for automatic building segmentation [1–4], vectorization [5,6], and
regularization [7], dense matching [8], 3D reconstruction [9–11], and road detection [12].
The proposed methods fall into two main categories depending on the use of the input
data sources: 2D building extraction and 3D reconstruction/segmentation.

2. 2D Building Extraction

Deep learning (DL) shows remarkable performance in extracting buildings from high-
resolution remote sensing images. How to improve the performance of DL methods,
especially the perception of spatial information, is worth further study. Paper [2] proposed
a building extraction network (B-FGC-Net) with a feature highlighting, global awareness,
and cross-level information fusion to achieve improved profitability of accurate extraction
and information integration for both small- and large-scale buildings. Focusing on the
promotion of the robustness of the interactive segmentation, Shu et al. [1] propose one
Progress Guidance Representation Net (PGR-Net) to utilize the distance of newly added
clicks to the boundary of the previous segmentation mask as an indication of the interactive
segmentation progress, and this information is employed with the previous segmentation
mask and positive and negative clicks to form a progress guidance map. This progress
guidance map is then fed into a CNN with the original RGB image. Furthermore, they
propose an iterative training strategy for the training of the network and adopt an adaptive
zoom-in technique during the inference stage for further performance promotion. Farmland

Remote Sens. 2023, 15, 998. https://doi.org/10.3390/rs15040998 https://www.mdpi.com/journal/remotesensing1
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constitutes an important resource for human survival and development. With complex
ground features and scattered distribution, building extraction from farmland remains
a challenging topic. To this end, Paper [3] proposes an attention-enhanced U-Net for
building extraction from farmland based on Google and WorldView-2 remote sensing
images. First, a Resnet unit is adopted as the infrastructure of the U-Net network encoding
part, then the spatial and channel attention mechanism module is introduced between
the Resnet unit and the maximum pool and the multi-scale fusion module is added to
improve the U-Net network. Second, the buildings are extracted from WorldView-2 and
Google images through farmland boundary constraints. Third, boundary optimization
and fusion processing are carried out to further refine the building extraction results. In
order to investigate the photovoltaic potential of urban buildings, Paper [4] proposed a
pseudo-label-guided self-supervised learning (PGSSL) semantic segmentation network
structure to extract building information from high-resolution remote sensing images. The
pseudo-label-guided learning method allows the feature results extracted by the pretext
task to be more applicable to the target task and ultimately improves segmentation accuracy.

To further close the gap between airborne images and vector representation, Van
den Broeck and Goedemé [5] propose a fully automated end-to-end workflow for large-
scale roof-part polygon extraction from UHR orthoimagery (0.03 m GSD). Their workflow
comprised three steps: (1) An multitask fully convolutional network (FCN) was utilized
for the semantic segmentation of roof-part objects and edges; (2) A bottom–up clustering
algorithm was used, given the predicted roof-part edges, to derive individual roof-part
clusters, where the predicted roof-part object area distinguish roof from non-roof; and
(3) The roof-part clusters were vectorized and simplified into polygons. The methodology
is trained and tested on a challenging dataset comprising of UHR aerial RGB orthoimagery
(0.03 m GSD) and LiDAR-derived digital elevation models (DEMs) (0.25 m GSD) of three
Belgian urban areas (including the famous touristic city of Bruges). Li et al. [6] explore
the idea of combining three deep learning models, each model performing specific tasks,
for automated extraction of building footprint polygons from very high-resolution aerial
imagery. Their approach uses the U-Net, Cascade R-CNN, and Cascade CNN models
to obtain building segmentation maps, building bounding boxes, and building corners,
respectively, thus allowing for the direct production of building maps in a vector format. A
polygon construction strategy based on Delaunay triangulation is designed to integrate
the outputs from the deep learning models effectively, as well as to generate high-quality
vector data. To solve the problem of edge discontinuity and incompleteness generated
by semantic edge detection, Xia et al. [7] propose a multitask learning Dense D-LinkNet
(DDLNet), which adopts full-scale skip connections and edge guidance module to ensure
the effective combination of low-level information and high-level information.

3. 3D Reconstruction/Segmentation

The use of 3D building models is essential and provides realistic data for spatial and
environmental analysis for various applications such as creating digital, generating simu-
lations to predict and prepare for future scenarios, and creating various urban analytical
processes, especially those that consider environmental impact, which is a growing global
concern. To obtain a precise 3D model with lower cost, dense stereo matching has been
studied persistently in the field of computer vision, remote sensing, and photogrammetry.
Along with the development of deep learning, the Guided Aggregation Network (GA-Net)
achieves state-of-the-art performance via the proposed Semi-Global Guided Aggregation
layers and reduces the use of costly 3D convolutional layers. To solve the problem of
GA-Net requiring large GPU memory consumption, Xia et al. [8] propose an efficient
end-to-end network GA-Net-Pyramid for dense matching a pyramid architecture to modify
the model. Starting from a downsampled stereo input, the disparity is estimated and
continuously refined through the pyramid levels. Thus, the disparity search is only applied
for a small size of stereo pair and then confined within a short residual range for minor
correction, leading to highly reduced memory usage and runtime. Manual modelling of
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urban buildings is very time-consuming and costly. Due to the complexity of the dense
urban regions, research oriented toward the automatic reconstruction of buildings is still
an open topic. In the manuscript titled “Parameter-Free Half-Spaces Based 3D Building
Reconstruction Using Ground and Segmented Building Points from Airborne LiDAR Data
with 2D Outlines” [9], the authors propose a new half-spaces based algorithm for building
reconstruction from airborne laser point clouds. In contrast to the related algorithms, which
divide 2D outlines of buildings into smaller parts and then process them while taking
only convex shapes into account, the proposed algorithm performs reconstruction without
division, while also considering concave parts of the rooftops. The method works in two
stages, where the input data is processed first to obtain the definition of the base model of
each building and the corresponding half-spaces. In the second stage, a building shape is
generated by performing 3D Boolean operations over the analysed half-spaces.

A major challenge of large-scale building reconstruction from airborne LiDAR point
clouds is the reconstruction of missing vertical walls. Paper [10] provided a fully automatic
building reconstruction approach to infer vertical walls based on the connection between
planar segments of both roofs and walls. The reconstruction model is obtained by using
an extended hypothesis-and-selection-based polygonal surface reconstruction framework.
Experimental results demonstrated that the proposed method is superior to the state-
of-the-art methods in terms of reconstruction accuracy and robustness. The study also
generated a new dataset consisting of the point clouds and 3D models of 20k real-world
buildings which can stimulate research in urban reconstruction and the use of 3D city
models in urban applications. To further refine the extracted building boundaries, Hui
et al. [11] propose a multi-constraints graph segmentation method for building extraction
from airborne LiDAR data and achieve satisfactory results. The graph structure is generated
using the three-dimensional spatial features of points. To reduce computational cost the
point-based building extraction is transformed into an object-based building extraction
and geometric morphological features are computed for each segmented object. Finally, a
multi-scale progressively growing optimisation method is employed to recover the omitted
building parts.

Besides buildings, digital maps of road networks are a vital part of digital cities
and intelligent transportation. This study [12] provided a comprehensive review of road
extraction based on various remote sensing data sources. It is divided into three parts.
Part 1 provides an overview of the existing data acquisition techniques for road extraction,
including data acquisition methods, typical sensors, application status, and prospects.
Part 2 underlines the main road extraction methods based on four data sources. Part 3
presents the combined application of multisource data for road extraction. It can provide a
comprehensive reference for research on existing road extraction technologies.

Acknowledgments: We want to thank the authors who contributed to this Special Issue on “Remote
Sensing Based Building Extraction II”, as well as the reviewers who provided the authors with
comments and very constructive feedback.

Conflicts of Interest: The authors declare no conflict of interest.
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Abstract: Building extraction is a basic task in the field of remote sensing, and it has also been a
popular research topic in the past decade. However, the shape of the semantic polygon generated
by semantic segmentation is irregular and does not match the actual building boundary. The
boundary of buildings generated by semantic edge detection has difficulty ensuring continuity
and integrity. Due to the aforementioned problems, we cannot directly apply the results in many
drawing tasks and engineering applications. In this paper, we propose a novel convolutional neural
network (CNN) model based on multitask learning, Dense D-LinkNet (DDLNet), which adopts
full-scale skip connections and edge guidance module to ensure the effective combination of low-
level information and high-level information. DDLNet has good adaptability to both semantic
segmentation tasks and edge detection tasks. Moreover, we propose a universal postprocessing
method that integrates semantic edges and semantic polygons. It can solve the aforementioned
problems and more accurately locate buildings, especially building boundaries. The experimental
results show that DDLNet achieves great improvements compared with other edge detection and
semantic segmentation networks. Our postprocessing method is effective and universal.

Keywords: building extraction; high-resolution remote-sensing image; semantic edge detection;
semantic segmentation

1. Introduction

The automatic extraction and analysis of buildings from high-resolution remote-
sensing images is an important research topic in the field of remote sensing [1–3]. The
results are widely used in urban and rural planning, sociology, change detection [4], natu-
ral disaster assessment and other fields and are also important for updating geographic
information databases [5]. Compared with natural images, high-resolution remote-sensing
images have richer spatial, spectral, and texture feature information. The rapid develop-
ment of deep learning and computer vision has provided strong technical support for the
analysis and use of high-resolution remote-sensing images [6]. Compared with artificial
remote-sensing interpretation and vectorization, the CNN model can automatically extract
buildings from remote-sensing images, which greatly reduces the consumption of human
and material resources. However, due to the complex characteristics and background of
geographic objects (geo-objects) [7], cases in which different geo-objects have the same
spectrum or the same geo-objects have different spectra are commonly encountered, which
makes accurate pixel-level classification a difficult problem. In addition, problems such as
cloud, tree and shadow occlusion [4,8], different imaging angles [9], difficulty in drawing
labels, and label omissions hinder the accurate estimation of buildings by CNN. Using the
characteristics of high-resolution remote-sensing images to perform tasks such as image
recognition and detection while avoiding the negative effects of redundant information
has become the most challenging frontier issue in the field of remote sensing.

Remote Sens. 2021, 13, 3083. https://doi.org/10.3390/rs13163083 https://www.mdpi.com/journal/remotesensing5
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In high-resolution remote-sensing images, buildings are geo-objects with artificial
features, rich in types and semantic information, which are great differences in scale,
architectural style, and form. It is difficult to ensure the accuracy of building location that
depending on high-level semantic features and the accuracy of building boundary that
depending on low-level edge features. Currently, most building extraction algorithms are
based on semantic segmentation and semantic edge detection.

With the development of deep learning, edge detection algorithm has developed
rapidly. HED [10] uses a fully convolutional network with deep supervision to automati-
cally learn multilevel representations and effectively solve the problem of edge ambiguity.
However, HED only considers the last convolutional layer information of each stage, while
RCF [11] makes full use of multiscale and multilevel information of all convolutional layers.
BDCN [12] introduced the scale enhancement module to use multiscale representations
to improve the edge detection capabilities. DFF [13] adaptively assigns appropriate fu-
sion weights strategy which helps to produce more accurate and clear edge predictions.
CaseNet [14] is an end-to-end semantic edge network based on ResNet [15] that proposes a
new skip layer in which the category edge activations of the top layer share and merge the
same group features.

The rapid development of deep learning edge detection algorithms provides strong
support for building edge detection in high-resolution remote-sensing images. Reda et al. [16]
proposed a faster edge region convolutional neural network (FER-CNN). FER-CNN uses
the parametric rectified linear unit (PReLu) [17] activation function, which adds only a
very small number of parameters to improve the edge detection of buildings. Lu et al. [2]
adopted a building edge detection model based on RCF [11], which obtains the edge
strength map through the RCF and then refines the edge strength map according to the
geometric analysis of the terrain surface. Semantic edge detection which aims at extracting
edges as well as semantic information can generate an edge strength map to describe
the confidence of the predicted building boundary, but complete edges are difficult to
guarantee, and incomplete edges are not sufficient to support the accurate extraction
of buildings.

Semantic segmentation is a joint task that requires the positioning and classification
of both spatial information and semantic information, paving the way for a complete
understanding of the scene. FCN [18] uses the concept of full convolution to perform end-
to-end semantic segmentation, and it creatively employs a skip connection that combines
high-level information with low-level information to improve segmentation. U-Net [19]
modified and expanded the FCN that adds an upsampling stage and a feature channel
fuse strategy that uses a connection operation to directly pass high-level information from
an encoder to the decoder of the same height. SegNet [20] performs forward evaluation
of the fully learned function to obtain smooth predictions and increases the depth of the
network so that the network can consider the larger context information. RefineNet [21] is a
multipath optimization network that refines low-resolution semantic features in a recursive
manner, and proposes a chain residual pool that can capture the context of the background.
PSPNet [22] expand the receptive field by dilated convolution to obtain feature maps that
can acquire the global scene. PSPNet perform pooling at different levels, and then fuse the
local information and global context information.

The powerful feature extraction and interpretation ability of semantic segmentation
provides a new method for the interpretation of high-resolution remote-sensing images,
which is helpful for the accurate extraction and positioning of buildings and reduces the
problems of false extraction and missing detection of buildings. Liu et al. [23] proposed
a spatial residual inception network (SRI-Net), in which an SRI module captures and ag-
gregates multiscale contexts for semantic understanding by successively fusing multilevel
features. SRI-Net is capable of accurately detecting large buildings while retaining global
morphological characteristics and local details. Delassus et al. [24] proposed a fusion
strategy based on U-Net [19], which combines the segmented output of the combined
model and multiple channels of the input image. Lin et al. [25] proposed an efficient
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separable factorized network (ESFNet), which uses separable residual blocks and dilated
convolution to maintain a small loss of accuracy as well as low computational cost and
memory consumption. At the same time, the high precision of semantic segmentation
is maintained. Yi et al. [7] proposed a ResUNet based on U-Net and Resnet. It uses a
deep residual learning method to promote training and alleviate the problem of model
training degradation. Shuang Wang [26] proposed a full convolutional network with dense
connections that designed top-down short connections to facilitate the fusion of high and
low feature information. However, there are usually irregular boundaries that are difficult
to completely match the boundaries of the actual building, and it is impossible to effectively
distinguish adjacent buildings [5].

Multitask learning is a learning mechanism inspired by human beings to acquire
knowledge of complex tasks by performing different shared subtasks simultaneously [27].
Its aim is to leverage useful information contained in related tasks to help improve the
generalization performance of all the tasks [28]. Multitask learning is currently a main-
stream direction of deep learning. At present, there are some methods that use multitask
learning to integrate edge information and semantic information in CNN to output se-
mantic polygons with precise edges. Even if deep learning methods are widely used in
high-resolution remote-sensing building extraction, it is still a challenging task to achieve
the precise extraction of building.

Inspired by the multitask learning and the aforementioned problems of semantic
edge detection and semantic segmentation in building extraction, we designed a novel
CNN model based on multitask learning to achieve accurate extraction of buildings, Dense
D-LinkNet (DDLNet), based on D-LinkNet [29] and DenseNet [30]. DDLNet has good
adaptability to both semantic segmentation tasks and semantic edge detection tasks. A
new universal postprocessing method focuses on the complementarity between edge
information and semantic information. The main contributions of this work are as follows.

1. We designed a CNN model named Dense D-LinkNet (DDLNet) to extract buildings
from high-resolution remote-sensing images. This model uses full-scale skip connec-
tions and edge guidance module to ensure the effective combination of low-level
information and high-level information. DDLNet can adapt to both semantic segmen-
tation tasks and edge detection tasks. DDLNet can effectively solve the problem of
boundary blur and the problem of edge disconnection.

2. We proposed an effective and universal postprocessing method that can effectively
combine edge information and semantic information to improve the final result. Se-
mantic polygon from the semantic segmentation to accurately locate and classify
buildings at the pixel level. semantic edges from semantic edge detection to extract
precise edges of buildings. This method uses semantic polygons to solve the prob-
lem of incompleteness of semantic edges and uses semantic edges to improve the
boundary of semantic polygons, realize the accurate extraction of buildings.

2. Materials and Methods

The main purpose of this article is to overcome the incompleteness of edges from
semantic edge detection and the problem of boundary blur from semantic segmentation
and realize the precise extraction of buildings from remote-sensing images.

In this paper, we designed a novel CNN model Dense D-LinkNet (DDLNet), which
can adapt to semantic segmentation tasks and semantic edge detection tasks. In addition,
we propose a new postprocessing method to effectively fuse edge and semantic information
and achieve the precise extraction of buildings from high-resolution remote-sensing images.
The process of extracting buildings can be divided into three stages, as shown in Figure 1.
First, the high-resolution remote-sensing images are labeled, and then the vector data are
gridded into line label and polygon label, respectively. Second, DDLNet are trained and
predicted to generate edge strength maps and semantic polygons, respectively. Then, in the
postprocessing stage, edge information is used to improve the boundary of the semantic
polygon to achieve more accurate boundary positioning, and the semantic polygon is
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used to repair discontinuous edges to ensure the continuity and integrity of the edge.
Supplemented by the application of the watershed algorithm, semantic information is used
as the seed point to select the result of the building to ensure the accuracy of the positioning
and topological structure of the building.

Figure 1. Overall architecture of our method. This architecture can be divided into three stages. The first stage is data
preprocessing, the second stage is deep learning training and prediction, which are used for DDLNet to generate edge
strength maps and semantic polygons. The last stage is postprocessing, which is used for fusing edge and semantic
information to obtain more accurate building results.
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2.1. Dense D-LinkNet

Dense D-LinkNet (DDLNet) keeps the D-LinkNet [29] core structure and adds a
full-scale skip connection, deep multiscale supervision, edge guidance module on this
basis. D-LinkNet is built with the LinkNet [30] for road extraction tasks and adds dilated
convolution layers in its center part. The encoder-decoder structure is the core of D-
LinkNet. The encoder with pooling layers increases the receptive field but loses low-level
details at the same time [5]. It is difficult to recover lost features with only the upsampling
operation of the decoder. D-LinkNet only directly maps the features from the encoder
to the corresponding decoder. Inspired by DenseNet [31] and U-Net3+ [32], we add the
full-scale skip connection which is used to combine all the underlying low-level details with
the decoder features to produce more accurate results. What’s more, the edge guidance
module and deep multiscale supervision are also used to produce more accurate results.
The structure of DDLNet is shown in Figure 2.

Figure 2. Dense D-LinkNet architecture. Each blue block represents a multichannel feature. Left is the encoder, and the
right is the decoder. The dotted curves represent full-scale skip connection. The purple curves represent edge guidance
module. Each convolution layer is activated by ReLU, except the last convolution layer, which uses sigmoid activation.

2.1.1. Full-Scale Skip Connections

D-LinkNet just uses the skip connection to combine the same-scale feature from
encoder to decoder at the same height. Our full-scale skip connections incorporate low-
level details with high-level semantics from feature maps at different scales. Each decoder
layer in DDLNet contains larger and same-scale feature maps from the encoder and smaller-
scale feature maps from the decoder, which capture fine-grained details and coarse-grained
semantics at full scales [32]. We mark the five encoding layers of the encoder as E1, E2, E3,
E4, E5 from top to bottom, and mark the five decoding layers of the decoder as D1, D2, D3,
D4, D5 from top to bottom, simultaneously. In Figure 2, we have made the corresponding
mark. Each decoding layer combines low-level edge features and high-level semantic
features through channel concatenate. Therefore, the D1 is the combination of E1, D2, D3,
D4, D5. D2 is the combination of E1, E2, D3, D4, D5. D3 is the combination of E1, E2, E3,
D4, D5. D4 is the combination of E1, E2, E3, E4, D5. D5 is the combination of E1, E2, E3, E4,
and the features of E5 after a series of dilated convolutions.

It is well known that low-level features have richer details, while high-level features
have richer semantic information. Therefore, the features after combination have both rich
semantic information and spatial details [33]. This means that the full-scale features from
the encoder can be used to improve the features in the decoder and the final result which
contains high-precision boundary and semantic information.
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2.1.2. Deep Multiscale Supervision

To learn hierarchical representations from multiscale feature, deep multiscale super-
vision is adopted in DDLNet. Multiscale objects are also a challenge for CNN. Currently,
the extraction of target feature is conducted on a certain scale because of receptive field
of convolution. Different levels have dissimilar high-level information and dissimilar
low-level information [4].The feature map from each decoder layer (D1, D2, D3, D4, D5)
should be predicted, and loss could be calculated with the groundtruth separately to realize
detection at different scales, which is conducive to achieving deep supervision of each layer
of the decoder and enhancing the learning ability [33]. Feature fusion is of great help to the
promotion of targets at different scales.

The final polygon output is fused with each layer, as shown in Equation (1),

Ŷf inal = ∑5
i=1 wiŶi (1)

Here, Ŷ is the predicted polygon result, subscript i is the number of each scale and
subscript final represents the final polygon output, and w is the weight to fuse the polygon
output of the layer. We choose w = 0.2 for each polygon output.

2.1.3. Edge Guidance Module

In this module, we aim to extract the precise edge features, then leverage the edge fea-
tures to guide the polygon features to perform better on both segmentation and boundary.
To obtain precise edge features, we decided to perform the edge supervise at the last layer
of the decoder. It is well known that low-level features have richer details. However, only
low-level information is not enough, while high-level semantic information also needed.
The last layer of the decoder (D1) that contains the low-level features from the correspond-
ing encoder and full-scale high-level features from the previous decoder is appropriate and
effective for edge detection.

After obtaining the edge feature and polygon features, we aim to leverage the edge
features to guide the polygon features. In our module, we propose the one-to-one guidance
method. The polygon features from different decoder layer (D2, D3, D4, D5) need to
be upsampled to the size of the edge feature and the combination of edge feature and
each polygon feature is realized by channel concatenation. By fusing the edge feature
into polygon features, the location of high-level predictions is more accurate, and more
importantly, the boundary details become better.

2.1.4. Loss

Semantic Edge Loss: In end-to-end training, the loss function is computed over all
pixels in a training image X and edge label Y. For a typical high-resolution remote-sensing
image, the distribution of edge/nonedge pixels is heavily biased: 90% of the groundtruth
is nonedged and 10% is edge [10]. HED introduces a class-balancing weight β to offset
this imbalance between edges and nonedges. HED defines the following class-balanced
cross-entropy (CBCE) loss function used in Equation (2):

Losscbce = −β ∑ log
(
Ŷj ∈ |Y−|

)
− (1 − β)∑ log

(
Ŷj ∈ |Y+|

)
(2)

where β = |Y+|/|Y| and 1 − β = |Y−|/|Y|. |Y+| and |Y−| denote the edge and nonedge,
respectively, |Y| = |Y+|+ |Y−| denote the number of pixels. Ŷ is the prediction map, and
subscript j ∈ [0, 1, . . . H × W].

Currently, most edge detection networks, such as RCF, BDCN, and DexiNed, use
the CBCE loss function to achieve edge detection for natural images. However, for high-
resolution remote-sensing images, the CBCE loss will produce fuzzy and rough edges that
cannot satisfy the requirement of drawing tasks and engineering applications. Therefore,
we use the class-balanced mean square error (CMSE) loss that add the class-balanced
parameter based on MSE loss. The CMSE loss can generate thin edge strength maps
that are plausible for human eyes. The CMSE loss represents the sum of squares of the
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differences between the predicted value and the target value and then averages them.
Equation (3) for CMSE loss is as follows: m = H × W, β = |Y+|/|Y|:

Losscmse =
1
m ∑(β((Ŷj ∈ |Y−|)− Yj)

2
+ (1 − β)((Ŷj ∈ |Y+|)− Yj)

2) (3)

Semantic Segmentation Loss: For semantic segmentation, we used binary cross-
entropy (BCE) and dice coefficient loss as the loss function. The formula of BCE loss
as show in Equation (4).

Lossbce = −∑ Yi × log
(
Ŷj

)
− ∑(1 − Yi)× log

(
1 − Ŷj

)
(4)

The dice coefficient is a set similarity measure function, which is usually used to
calculate the similarity of two samples, and the value range is [0, 1]. The formula of dice
loss is shown in Equation (5):

Lossdice = 1 − 2 × Ŷ ∩ Y
Ŷ + Y

(5)

Ŷ ∩ Y is the intersection between Ŷ and Y. Ŷ and Y sub tables represent the number
of elements of Ŷ and Y, where the molecular coefficient is 2. The total loss can use the
following Equation (6) to represent:

Losspolygon = Lossbce + Lossdice (6)

A major challenge in multitask learning comes from the optimization process itself.
In particular, we need to carefully balance the joint training process of all tasks to avoid
the situation that one or more tasks have a dominant influence in the network weights. In
extreme cases, when the loss of one task is very large and the loss of other tasks is very
small, the multitask is almost degenerated into single task goal learning, and the weight of
the network is almost completely updated according to the large loss task, gradually losing
the advantage of multitask learning. Therefore, we need the weight to balance semantic
edge loss and semantic segmentation loss. The formula of final weighted loss is shown in
Equation (7):

Lossall = weLosscmse + wpLosspolygon (7)

where we is the weight of semantic edge loss and wp is the weight of semantic segmentation
loss. We observed the final loss convergence of the DDLNet and determined that we = 100,
wp = 6 are suitable parameters.

2.2. Postprocessing

To fully fuse edge information and semantic information, complementary information
is used to obtain better prediction results and achieve the precise extraction of buildings.
We propose a new postprocessing method.

The semantic edge detection networks and semantic segmentation networks are
used to generate the edge strength maps and semantic polygon results, respectively. The
prediction image is a grayscale image with pixel values in the range of 0 to 255. The
choice of binarization threshold is crucial. Considering that our postprocessing method
can remove redundant pixels and more pixels are needed to ensure the results. Thus, we
choose the threshold of 100 instead of the threshold of 127 as usual. After binarization,
multipixel-width edges cannot represent the building edges. Therefore, we use a skeleton
extraction algorithm to refine the edges to a single-pixel width and delete some of the
broken lines that exist separately. Thus, we obtained a single-pixel edge map (as shown in
Figure 3a) and a binary semantic polygon (as shown in Figure 3b).
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Figure 3. Postprocessing flow chart. (a) is a single-pixel edge map, and (b) is a semantic polygon map. (c) is the result in
which Equation (8) is used to overlay edges on the semantic polygon. (d) is the result in which the watershed algorithm is
used to extract the boundaries. (e) is the result in which Equation (9) is used to add edges on the semantic polygon. (f) is a
complete semantic polygon. (g) is the final edge result, and (h) is the final semantic segmentation result. The most obvious
improvement is indicated by the circle. The blue line represents the effect of Equation (8) and the watershed algorithm, and
the yellow line represents the effect of Equation (9) and hole filling.

The problem of edge discontinuity can be solved by the integrity of the semantic
polygon. The problem of inaccurate boundaries of semantic polygons can be solved by
semantic edges. The improvement in the semantic polygon boundaries is mainly reflected
in the following two aspects of our method:

1. If the boundary of the semantic polygon is beyond the edge of a single pixel, it needs
to be deleted.

2. If the boundary of the semantic polygon is within the boundary of a single pixel, it
needs to be supplemented.

In the first case, we propose Equation (8) to overlay the accurate single-pixel edge to
the precise semantic polygon result. This formula can highlight the edge information in
the semantic polygon, where the edge will be set to 0. Therefore, we obtain a semantic
polygon limited by the edge (as shown in Figure 3c). Equation (8) is given below. The result
represents the result image, the edge represents the single-pixel edge image, the polygon
represents the semantic polygon image, and (x, y) represents the coordinate of the image.

Result(x, y) =
{

255, polygon(x, y) > edge(x, y)
0, polygon(x, y) ≤ edge(x, y)

(8)

we use the watershed algorithm [34] to delete the redundant semantic polygon and extract
the edges. According to the input seed points, the watershed algorithm delimits the region
ownership of each pixel, and the value of the boundary between regions is set to “−1”
to distinguish. Accurate semantic polygons are used to mark the seed points inside the
restricted semantic polygon. The seed points come from the erosion operation of semantic
polygons. To prevent the disappearance of seed points due to excessive erosion operations,
we choose to iterate five times to obtain seeds after many experiments. Then, the desired
correctly predicted polygon boundary is obtained (as shown in Figure 3d). Then, we use
the hole filling algorithm to fill boundaries into semantic polygons. At this time, we can
ensure that all the semantic polygons are within the single-pixel edge. The details of the
watershed algorithm are shown in Figure 4.
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Figure 4. Details of watershed algorithm. The single-pixel edge and semantic polygon use Equation (8) to generate
background. The semantic polygon is eroded to generate seeds for the watershed algorithm. The watershed algorithm uses
seeds to extract the correct edge (red line in watershed result) in the background.

In the second case, the semantic polygon object and single-pixel edge are fused by
Equation (9), which can highlight the edge information outside the semantic polygon. (as
shown in Figure 3e), after filling the holes, a complete semantic polygon (as shown in
Figure 3f) can be obtained. At this time, the boundary of the obtained semantic polygon
results becomes more regular and fits the real building boundary.

Result(x, y) = &
{

255, polygon(x, y) || edge(x, y) = 255
0, polygon(x, y) && edge(x, y) = 0

(9)

Finally, we solve the problem that adjacent buildings cannot be distinguished in
semantic segmentation. The eight-neighborhood algorithm is used to determine whether
the edge is the boundary of adjacent buildings and obtain the result of precise semantic
segmentation of buildings (as shown in Figure 3h). This operation overcomes the above
problems by fusing accurate edge information, and the accurate edge of the building (as
shown in Figure 3g) is obtained.

More importantly, through the series of operations mentioned above, the integrity
of the semantic polygon is used to repair the broken line in the single-pixel edge map,
and the details of repairing a broken line are shown in Figure 5. If the boundary of the
semantic polygon cannot realize the connection of the broken line, the broken line will be
removed, and the boundary of the semantic polygon will be retained. The final edge result
is guaranteed to be complete.

In the postprocessing stage, by fusing the accurate edge information with the accurate
semantic segmentation information, our method can make the positioning of high-level
prediction more accurate. More importantly, the edge and segmentation details become bet-
ter, especially the edge of buildings, which cannot be recognized by semantic segmentation,
and the problem of broken lines in edge detection.
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Figure 5. Details of repairing a broken line.

3. Results

3.1. Dataset

We choose two high-resolution remote-sensing image areas of representative buildings
as our experimental area to evaluate our method on different datasets. Moreover, one is
from Google images, and the other is aerial images.

(1) The first is Beijing, the capital of China. The Beijing scene represents a typical Chi-
nese urban landscape, including different types of buildings, which are difficult to
accurately discriminate and extract. We selected four districts in the center of Beijing.
The original Google images with a spatial resolution of 0.536 m are Chaoyang District,
Haidian District, Dongcheng District, and Xicheng District.

(2) The second is Zhonglu countryside, located in Weixi County, Diqing Prefecture,
Yunnan Province. As a typical representative of rural architecture, its buildings have
a relatively regular and uniform building shape. The original aerial images with a
spatial resolution of 0.075 m.

We select samples with typical architectural features and a certain number of negative
samples that do not contain buildings in the abovementioned study area, draw the precise
boundary of the building manually, generate corresponding line labels and polygon labels,
and randomize divide 80% of the samples are used as the training set, and 20% of the samples
are used as the test set. The Beijing area contains 320 training sets of 512 pixel × 512-pixel
images and 80 test sets of 512 pixel × 512-pixel images. The Zhonglu area contains 75 training
sets of 1024 pixel × 1024-pixel images and 23 test sets of 1024 pixel × 1024-pixel images. The
data set is shown in Figure 6.

3.2. Training Details

In our experiments, all deep learning network models are implemented using the
PyTorch framework. DDLNet and the comparative experiments are all trained on an
NVIDIA RTX TITAN (with 24 G memory) graphics card. We initialize the weights of
the DDLNet with the weights of a ResNet34 model pretrained via ImageNet [35]. Some
hyperparameters are set as follows: The batchsize on Beijing dataset and Zhonglu dataset
are 4 and 2, respectively. The initial learning rate of DDLNet is 2 × 10−4, and the learning
rate is updated for 1/4 of the total epochs. We trained 800 epochs on Beijing dataset and
400 epochs on Zhonglu dataset with DDLNet. Due to the insufficient amount of data, we
adopt a data enhancement operation including random cropping, rotation, translation, and
horizontal flipping operations after entering the network to expand the dataset and reduce
overfitting.

3.3. Evaluation Metrics

We use Intersection over Union (IoU) and F1 score to evaluate the performance of our
method. The IoU index represents the overlap ratio between the predicted area and the real
area of an image. The higher the overlap rate is, the higher the accuracy of the predicted
results. Equation (10) is as follows: A represents the prediction area, and B represents the
real label area:

Polygon IoU =
A ∩ B
A ∪ B

(10)
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However, IoU can only evaluate the prediction accuracy of the building polygon result
but cannot reflect the prediction accuracy of the building boundary. Therefore, we propose
the boundary IoU method to evaluate the accuracy between the predicted building edge
and the real building boundary. This method expands the edge by kernel size = 5 pixels and
then uses Equation (11) to calculate the accuracy. Exp represents expand and ks represents
kernel size:

Boundary IoU =
Exp(A, ks) ∩ Exp(B, ks)
Exp(A, ks) ∪ Exp(B, ks)

(11)

Polygon IoU can reflect the completeness of the edge, and boundary IoU can reflect
the accuracy of the polygon boundary.

Figure 6. Dataset display. Image represents high-resolution remote-sensing image, line label and
polygon label are ground truth of the image, the first two are Beijing dataset, the last two are
Zhonglu dataset.

The F1 score is an index used to measure the accuracy of a two-category model. To
calculate the F1 score, it is necessary to calculate the precision and recall. In the following
formulas, true positives (TP) represent the number of positive pixels belonging to buildings
that are correctly identified. True negatives (TN) represent the number of negative pixels
belonging to nonbuildings that are correctly identified. False positives (FP) represent
the number of negative pixels belonging to nonbuildings that are incorrectly identified
as positive pixels belonging to buildings. False negatives (FN) represent the number of
positive pixels belonging to buildings that are incorrectly identified as negative pixels
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belonging to nonbuildings. The explanation of the above TP, TN, FP, FN indicators is
shown in Figure 7.

Figure 7. Graphic representation of the TP, TN, FP, FN for the matched ground truth and predicted re-
sult.

Precision is the ratio of true positives in the identified positive pixels, and Equation (12)
is as follows.

Precision =
TP

TP + FP
(12)

Recall is the proportion of all positive pixels in the test set that are correctly identified
as positive pixels, and Equation (13) is as follows.

Recall =
TP

TP + FN
(13)

The F1 score is the harmonic mean value of the precision rate and recall rate, which
suggests that the precision rate and recall rate are equally important. The larger the value,
the stronger the model’s ability, and Equation (14) is as follows.

F1 score = 2 × Precision ∗ Recall
Precision + Recall

(14)

3.4. Results

To further demonstrate the effectiveness of our methods, we select some soft-of-the-art
models to compare with our model and the postprocessing method.

First, for semantic edge detection, to assess the quality of our DDLNet model, three
models, namely RCF, BDCN, and DexiNed, were selected for comparison with DDLNet on
the Beijing and Zhonglu datasets.

In the Beijing dataset, RCF, BDCN and DexiNed achieved boundary IoU of 0.2815,
0.4087 and 0.4503, respectively. DDLNet achieved a boundary IoU of 0.5116, which greatly
surpasses the accuracy of the other models. As shown in Table 1, RCF, BDCN, and DexiNed
achieved polygon IoU of 0.2751, 0.5110 and 0.1724, respectively. DDLNet achieved a
polygon IoU of 0.5295, which is 3.62% more than that of BDCN. The results of those
semantic edge detection models on the Beijing test dataset are summarized in Table 1, and
their performance are shown in Figure 8.

Table 1. The results of semantic edge detection on the Beijing dataset.

Study Area Methods Boundary IoU Polygon IoU F1 Score

Beijing

RCF 0.2815 0.2751 0.4300
BDCN 0.4087 0.5110 0.6341

DexiNed 0.4503 0.1724 0.6124
DDLNet 0.5116 0.5295 0.7049
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Figure 8. The edge results of RCF, BDCN, DexiNed, and DDLNet on the Beijing dataset.

In the Zhonglu dataset, RCF, BDCN, DexiNed, DDLNet achieved boundary IoU values
of 0.4378, 0.7050, 0.6326 and 0.7399 and achieved polygon IoU values of 0.5824, 0.7009,
0.6452 and 0.8719, respectively. The results of those semantic edge detection models on
the Zhonglu test dataset are summarized in Table 2, and their performances are shown in
Figure 9.

Table 2. The results of semantic edge detection on the Zhonglu dataset.

Study Area Methods Boundary IoU Polygon IoU F1 Score

Zhonglu

RCF 0.4378 0.5824 0.5677
BDCN 0.7050 0.7009 0.7182

DexiNed 0.6326 0.6452 0.6604
DDLNet 0.7399 0.8719 0.7582
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Figure 9. The edge results of RCF, BDCN, DexiNed, and DDLNet on the Zhonglu dataset.

The capability of DDLNet for semantic edge detection tasks is demonstrated on two
different data sets. RCF does not perform well on our dataset. BDCN can effectively extract
the building boundary and ensure the integrity of the boundary, but its edge is blurred and
insufficient in accuracy. DexiNed can produce more accurate and visual edges, but its edge
integrity is difficult to guarantee. DDLNet can achieve edge integrity beyond DexiNed and
BDCN and effectively extract the boundaries of buildings. It means that it is effective to
provide more high-level semantic features for low-level edge features to realize semantic
edge extraction.

Second, for semantic segmentation, we also selected three advanced models, namely
U-Net, U-Net3+, and D-LinkNet, for the experiment on the Beijing and Zhonglu datasets.
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In the Beijing dataset, U-Net, U-Net3+, and D-LinkNet achieved 0.6726, 0.7161, and
0.7212 in polygon IoU, respectively. DDLNet achieved the top performance of 0.7527 of the
polygon IoU, which was better than all other models, and even 4.36% more than D-LinkNet.
U-Net3+ and DDLNet use the full-scale skip connection to help network learning, and
they achieved boundary IoU of 0.4731 and 0.4746, respectively. This greatly surpassed
the accuracy of U-Net and D-LinkNet, which achieve boundary IoU of 0.4281 and 0.4438,
respectively. The results of those semantic segmentation models on the Beijing test dataset
are summarized in Table 3, and their performances are shown in Figure 10.

Table 3. The results of semantic segmentation on the Beijing dataset.

Study Area Methods Boundary IoU Polygon IoU F1 Score

Beijing

U-Net 0.4281 0.6726 0.8048
U-Net3+ 0.4731 0.7161 0.8352

D-LinkNet 0.4438 0.7212 0.8398
DDLNet 0.4746 0.7527 0.8607

Figure 10. The semantic polygon results of U-Net, U-Net3+, D-LinkNet, and DDLNet on the Bei-
jing dataset.
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In the Zhonglu dataset, U-Net, Unet3+, and D-LinkNet achieved 0.7067, 0.8855, and
0.9261 in polygon IoU, respectively. DDLNet achieved the best performance of 0.9364 of
the polygon IoU. U-Net3+ and DDLNet achieve boundary IoU of 0.5396 and 0.6905 which
greatly surpassed the accuracy of U-Net and D-LinkNet. The results of those semantic
segmentation models on the Zhonglu test dataset are summarized in Table 4, and their
performances are shown in Figure 11.

Table 4. The results of semantic segmentation on the Zhonglu dataset.

Study Area Methods Boundary IoU Polygon IoU F1 Score

Zhonglu

U-Net 0.4180 0.7067 0.9004
U-Net3+ 0.5396 0.8855 0.9122

D-LinkNet 0.6861 0.9261 0.9537
DDLNet 0.6905 0.9364 0.9584

Figure 11. The semantic polygon results of U-Net, U-Net3+, D-Linknet, and DDLNet on the Zhonglu
dataset.

20



Remote Sens. 2021, 13, 3083

The capability of DDLNet for semantic segmentation tasks is demonstrated on two
different data sets. U-Net3+ and DDLNet achieve boundary IoU greatly surpassed the
accuracy of U-Net and D-LinkNet that proves that the full-scale skip connection is effective
in improving the boundary of the polygon from semantic segmentation. The result of
DDLNet proves that making full use of low-level edge information proved to be helpful in
extracting buildings from high-resolution remote sense images.

Moreover, we evaluated the effectiveness of the postprocessing method. We choose
a variety of semantic edge models and semantic segmentation models to verify the effec-
tiveness of our postprocessing scheme. The criteria we chose were that the boundary IoU
of the semantic edge model was larger than that of the semantic segmentation model to
improve the edge accuracy of the semantic polygon, and the polygon IoU of the semantic
segmentation model was larger than that of the semantic edge model to improve the
integrity of the semantic edge.

Based on the criteria, in the Beijing test dataset, we choose DDLNet combined with
DDLNet, D-LinkNet, U-Net3+, and U-Net. DexiNed combined with D-LinkNet and U-Net.
Compared with Tables 1 and 3, the results of postprocessing improve the polygon IoU of
semantic edge detection and the boundary IoU of semantic segmentation. In addition, the
results are closer to manual vision. The combination and the results of the combination are
shown in Table 5 and Figure 12.

Table 5. The results of the postprocessing method on the Beijing dataset.

Study Area Methods Boundary IoU Polygon IoU

Beijing

DDLNet&DDLNet 0.5227 0.7531
DDLNet&D-LinkNet 0.5067 0.7297
DDLNet&U-Net3+ 0.5075 0.7217

DDLNet&U-Net 0.4909 0.7072
DexiNed&D-LinkNet 0.4775 0.7239

DexiNed&U-Net 0.4525 0.6784

Figure 12. The results of postprocessing method with DDLNet on the Beijing dataset. DDLNet (edge) represent the edge
result of DDLNet. In addition, DDLNet (polygon) represent the polygon result of DDLNet. DDLNet&DDLNet represent
the result of postprocessing method. The blue circle mark shows the improvement of semantic segmentation where the
boundary is closer to the real boundary of building, and the yellow circle mark shows the improvement of semantic edge
where the disconnection edge was repaired completely.

Based on the criteria, in the Zhonglu test dataset, we choose DDLNet combined with
DDLNet, D-LinkNet, U-Net3+, and U-Net. BDCN combined with DDLNet, D-LinkNet,
U-Net3+, U-Net. DexiNed combined with D-LinkNet and U-Net. RCF combined with
U-Net. Compared with Tables 2 and 4, the results of postprocessing improve the polygon
IoU of semantic edge detection and the boundary IoU of semantic segmentation. The
combination and the results of the combination are shown in Table 6 and Figure 13.
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Table 6. The results of the postprocessing method on the Zhonglu dataset.

Study Area Methods Boundary IoU Polygon IoU

Zhonglu

DDLNet&DDLNet 0.7428 0.9415
DDLNet&D-LinkNet 0.7368 0.9360
DDLNet&U-Net3+ 0.7265 0.9212

DDLNet&U-Net 0.7256 0.9225
DexiNed&U-Net3+ 0.7085 0.9124

DexiNed&U-Net 0.7134 0.9131
BDCN&DDLNet 0.7123 0.9371

BDCN&D-LinkNet 0.7068 0.9291
BDCN&U-Net3+ 0.6815 0.9038

BDCN&U-Net 0.6809 0.8906
RCF&U-Net 0.6270 0.8643

Figure 13. The results of postprocessing method with DDLNet on the Zhonglu dataset. DDLNet (edge) represent the edge
result of DDLNet. In addition, DDLNet (polygon) represent the polygon result of DDLNet. DDLNet&DDLNet represent
the result of postprocessing method. The blue circle mark shows the improvement of semantic segmentation where the
boundary is closer to the real boundary of building, and the yellow circle mark shows the improvement of semantic edge
where the disconnection edge was repaired completely.

In summary, we conducted comparative experiments on two different datasets with
other SOTA models to verify whether our methods could obtain high-quality results.
Experiments confirmed that our model DDLNet had better results than other SOTA models
in both semantic edge detection tasks and semantic segmentation tasks and all evaluation
metrics, which not only indicated that our models have a good performance in building
extraction but also indicates that the edge guidance module and full-scale skip connection
are conducive to the automatic extraction of buildings in a network. What’s more, our
postprocessing method is effective and further improved results of building extraction that
helps to improve the vectorization of the result.

4. Discussion

There are certain shortcomings of neural network-based deep learning methods. The
edge detection network usually adopts a multiscale fusion strategy to preserve more
detailed predictions, resulting in fuzzy and insufficient refinement of the final edge results,
as well as difficulty in solving edge disconnection problems. From the experiments and
results in the fourth section, DDLNet has better detection accuracy and visual effects than
the other edge detection models. The decoder combines the semantic information of the
previous layer and the edge information of this layer to improve the accuracy. Through the
especially designed CMSE loss, the problem of edge blur, roughness and disconnection is
reduced to a certain extent. However, the current loss function design still has problems,
and the final edge result still has a disconnection problem.
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For the semantic segmentation task, which focuses on the pixel-level classification
of targets, the previous semantic segmentation network structure focuses more on the
contextual and semantic information of the targets, ignoring the importance of edge
information, which leads to difficulty in matching the boundaries of the final semantic
polygons with the boundaries of real buildings. Compared with the current semantic
segmentation, DDLNet has been improved to a certain extent. From the boundary IoU
indicator, we find that the full-scale skip connection and edge guidance module are simple
and effective to improve the boundary of buildings.

Convolutional neural networks adopt downsampling pooling operations in encoder
and upsampling operations in decoder, and the use of downsampling to compress data
is irreversible, resulting in information loss and therefore causing translation invariance
and poor results [4]. The loss of information is irreversible, so we design a method to
fuse the edge information and semantic information from a postprocessing perspective
to achieve precise building extraction. The experimental results show the effectiveness
of our postprocessing method, and the final result shows both the edge precision of edge
detection and the semantic precision of semantic segmentation. After postprocessing, the
boundary IoU and polygon IoU of most final results have improved.

However, some results provide lower-boundary IoU compared with the initial single
edge detection in Table 5. As we consider, while the polygon cannot realize the supplement
of the disconnection line, we will remove the disconnection line and choose the polygon
boundary. Moreover, the polygon may lead to a false detection polygon in the final
result. Considering that the polygon boundary may be poor, the final result may have
a lower-boundary IoU. At the same time, the hyperparameter setting of the watershed
algorithm will also influence the result. This means that the postprocessing process can be
further improved.

5. Conclusions

This article focuses on solving the problem of edge discontinuity and incompleteness
generated by semantic edge detection, and the polygon shape generated by semantic
segmentation is irregular, which does not match the actual building boundary. We propose
a novel CNN model named Dense D-LinkNet (DDLNet). DDLNet uses full-scale skip
connection, deep multiscale supervision and edge guidance module to overcome the
aforementioned problem. The experimental results show that DDLNet is useful and has
a certain degree of improvement in the evaluation indicator boundary IoU and polygon
IoU in both semantic edge detection tasks and semantic segmentation tasks. Moreover, our
postprocessing method is effective and universal and can arbitrarily fuse semantic edge
information from edge detection with semantic polygons from semantic segmentation to
improve the quality of the final result of buildings.
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Abstract: Accurate building footprint polygons provide essential data for a wide range of urban
applications. While deep learning models have been proposed to extract pixel-based building areas
from remote sensing imagery, the direct vectorization of pixel-based building maps often leads to
building footprint polygons with irregular shapes that are inconsistent with real building boundaries,
making it difficult to use them in geospatial analysis. In this study, we proposed a novel deep
learning-based framework for automated extraction of building footprint polygons (DLEBFP) from
very high-resolution aerial imagery by combining deep learning models for different tasks. Our
approach uses the U-Net, Cascade R-CNN, and Cascade CNN deep learning models to obtain
building segmentation maps, building bounding boxes, and building corners, respectively, from
very high-resolution remote sensing images. We used Delaunay triangulation to construct building
footprint polygons based on the detected building corners with the constraints of building bounding
boxes and building segmentation maps. Experiments on the Wuhan University building dataset and
ISPRS Vaihingen dataset indicate that DLEBFP can perform well in extracting high-quality building
footprint polygons. Compared with the other semantic segmentation models and the vector map
generalization method, DLEBFP is able to achieve comparable mapping accuracies with semantic
segmentation models on a pixel basis and generate building footprint polygons with concise edges
and vertices with regular shapes that are close to the reference data. The promising performance
indicates that our method has the potential to extract accurate building footprint polygons from
remote sensing images for applications in geospatial analysis.

Keywords: building footprint; map vectorization; convolutional neural network; semantic
segmentation

1. Introduction

Information on the spatial distribution and changes of buildings has a wide range of
applications in urban studies, such as urban planning, disaster management, population
estimation, and map updating [1,2]. Local bureaus of urban planning and natural resource
management used to expend high levels of manpower and material resources to obtain
an accurate raster (i.e., map features described by a matrix of pixels, where each pixel
contains an associated value) and vector (i.e., map features delineated by discrete vertices
where each vertex defines the coordinates of the spatial objects) data of buildings [3]. The
spaceborne and airborne technology provides abundant remote sensing images that have
become increasingly important for extracting building information [4]. In early studies,
pixel mixture is one important factor that influences building extraction when only fine-
to coarse-resolution satellite images were available. Nowadays, advanced remote sensing
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technology offers very high-resolution images at sub-meter spatial resolution, making
them attractive to extract accurate building footprint polygons. In the very high-resolution
images, the influence of mixed pixels is minor, and the scene complexity becomes a new
challenge for building footprint extraction. Currently, many government departments
and industrial companies adopt manual methods to delineate the vector data of building
footprints from high-resolution remote sensing images so as to obtain the vector maps
that meet the accuracy requirements of surveying and mapping. As manual annota-
tion is time-consuming and requires expertise [5], there is a need to develop an efficient
and robust scheme for automated extraction of building footprint polygons from remote
sensing images.

Classifying high-resolution remote sensing images to obtain the raster data of build-
ings has been extensively studied for decades [6,7]. Traditional methods include dis-
covering and designing handcrafted features, such as spectral features, texture features,
morphological features, and boundary features, as empirical indicators to distinguish
buildings from other land surface objects in remote sensing images [8,9]. These meth-
ods often use empirical thresholds for classifying building objects and have drawbacks,
such as insufficient uses of spectrum or spatial information and a high sensitivity to the
choice of parameters or thresholds [10,11]. Machine learning models can overcome the
shortcomings of the empirical methods and have been successfully applied for classify-
ing buildings in remote sensing images [12]. Machine learning models, such as support
vector machine, random forests, and artificial neural networks, use computer algorithms
to establish the nonlinear relationships between inputs and targets through the training
and learning processes based on many known samples. Machine learning methods have a
high degree of automation and can efficiently reduce the confusion between buildings and
other man-made features, but the input features to the machine learning models are often
manually designed, such as low-level features or enhanced semantic features [13,14]. In
recent years, with the development of computer technology, deep learning methods can
automatically extract the features of different levels, such as low-level, middle-level, and
high-level features from images [15], and have been widely used in the fields of computer
vision and remote sensing image processing [16]. Earlier studies used patch-based con-
volutional neural networks (CNNs) to process image blocks to train and predict the class
of the center pixel, but CNNs have difficulties in providing full-resolution classification
maps [17,18]. Many studies on classifying buildings from remote sensing images now favor
fully convolutional networks (FCNs), which implement an encoder–decoder framework
and normally include convolution, down-sampling, and up-sampling layers for pixel-wise
prediction or sematic segmentation [19,20]. For example, Maggiori et al. [21] utilized a fully
convolutional architecture and designed a multiscale neuron module to produce dense
predictions of building maps by alleviating the trade-off between recognition and localiza-
tion. Ji et al. [22] proposed a Siamese U-Net that improves the classification performance of
buildings, particularly large buildings. Huang et al. [23] designed an end-to-end trainable
gated residual refinement network that has a competitive performance in extracting build-
ing raster data across urban and suburban scenes based on tests in a publicly available
dataset. The above studies provide feasible methods for generating the classification maps
of buildings using high-resolution remote sensing images. Some studies utilized the light
detection and ranging (LiDAR) point cloud data to carry out building reconstruction given
that the LiDAR data contain three-dimensional information related to buildings [24–26]. Gi-
lani et al. [27] defined three general steps, including feature preservation, surface growing,
and false plane elimination, to achieve automatic detection of building roof planes from
the LiDAR point cloud. Although the LiDAR data can provide supplemental geometry
features, the data acquisition of LiDAR is also more costly and complicated than those of
optical sensors [28].

Extracting the vector data of building footprints from high-resolution remote sensing
images is much more challenging than image classification. Traditional methods that
directly extract the vector data of building footprints often manually design features
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or indexes that allow for generating the vector data of building footprints, but these
methods are normally empirical and have difficulties for uses across images and scenes.
Wang et al. [29] proposed a method to automatically extract rectangular buildings of
different sizes and directions by combining image segmentation, scale-invariant feature
transformation, and adaptive window Hough transform. Qin et al. [30] adopted straight
line detection and graph loop searching to extract building boundaries with different
shapes, sizes, and densities. Recently, some researchers have attempted using the deep
learning methods to improve the extraction of building footprint polygons. Girard and
Tarabalka [31] developed a deep learning-based model that could directly generate the
vector maps, but the developed model has limitations in terms of extracting buildings with
different shapes.

An indirect method that extracts building footprint polygons is to first classify build-
ings in remote sensing images, and then convert the raster format of buildings into a
vector format. Buildings often have regular boundaries that consist of straight lines, while
the pixel-wise semantic segmentation methods are often ineffective in describing the de-
tails of building footprint boundaries even if the produced classification map is highly
accurate. It is, therefore, necessary to optimize the building footprint boundaries when
converting them from raster data to vector data. One optimization approach is to improve
the classification results of building boundaries in remote sensing images. Wu et al. [32]
proposed a boundary-regulated network that consists of a modified U-Net and a multi-
tasking framework to generate segmentation maps and building outlines by accounting
for boundary regulation. To resolve the problem of blurry object boundaries, Marma-
nis et al. [33] proposed a DCNN models for semantic segmentation of high-resolution aerial
images, which explicitly accounts for the boundaries of classes in the segmentation process.
Taking the contours into consideration, Liao et al. [34] proposed a boundary-preserved
building extraction approach. By embedding the contour information in the labels, the
proposed approach can enhance the representation of building boundaries and improve
the performance on boundaries of adjacent buildings. Another optimization approach is
to improve the building boundary vertices when converting data formats. Some classic
vector data processing algorithms, such as the Douglas–Peucker [35], Wang–Müller [36]
and Zhou–Jones [37] algorithms, have been widely used by researchers. Maggiori et al. [38]
proposed a new algorithm that uses a labeled triangular mesh to approximate the classifi-
cation maps. Although many methods can improve the generated vector data of buildings,
the obtained polygons generally do not match the building footprints well. One reason
is that it is difficult to distinguish between adjacent buildings and deal with misclassified
small patches during the map vectorization. Existing methods that extract building foot-
print polygons often have limitations; for example, they are only applicable for generating
polygons of individual buildings with regular shapes such as rectangles.

Compared with pixel classification or segmentation, polygon extraction is a different
and challenging task because it involves the transition of data representation. Specifically,
pixel classification or segmentation of images transforms raster data into raster data, while
the process that extract polygons from images transforms raster data into vector data. In
the task of pixel-wise classification, the deep learning model only needs to discriminate
the object pixels from the background pixels. In the task of polygon extraction, it needs to
obtain at least the positions, the belongings, and the connections of the key vertices. Only a
few studies have applied the deep learning models to detect the key points of geographical
objects from remote sensing images. There are two main difficulties when using deep
learning to directly detect a key point. First, compared to segmentation, the imbalance
between positive and negative samples is severe. The annotated key points are much fewer
than the background samples, and as a result, training and converging the deep learning
network is difficult if we treat this task as a classification problem. Second, the number
of key points that exist in an image is unknown. It is difficult to handle the outputs with
irregular length using a convolutional neural network directly. Song et al. [39] proposed an
FCN-based approach to detect building corners in aerial images. The corners are extracted
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by the contours of the predicted building footprints, which means that the performance
of the corner detector largely relies on the accuracy of semantic segmentation. A deep
learning-based model that treats the geolocation of building corners as direct objectives of
optimization is not yet available.

One main problem is that existing segmentation-based methods extract building
footprints with irregular outlines and blurred boundaries, which results in vectorized
polygons with irregular shapes and redundant vertices. Given that existing deep learning-
based studies mainly focus on improving the map classification or semantic segmentation
of buildings, we aim to explore the ability of deep learning methods to learn and extract the
vector data of buildings. The goal of this study is to develop a framework that synthesizes
deep learning models to extract building footprint polygons from the remote sensing
images and allow for the direct production of building maps in a vector format. In the
developed framework, we use three deep learning models to perform different image
processing tasks, including semantic segmentation, bounding box detection, and key point
detection. A polygon construction strategy based on Delaunay triangulation was also
designed to integrate these outputs effectively and thus generate high-quality building
polygon data. The proposed framework is able to achieve comparable mapping accuracies
with semantic segmentation models on a pixel basis and generate building footprint
polygons with concise edges and vertices with regular shapes that are close to the reference
data. Our method has the potential to extract accurate building footprint polygons from
remote sensing images for applications in geospatial analysis.

2. Methodology

2.1. Overview

Our goal is to detect and generate the building footprint polygons that accurately
describe the outline of individual buildings in a vector format from very high-resolution
remote sensing images. Compared with the pixel-based raster data, the vector data contains
not only the geometric information but also topological information, which provides
another efficient way to represent real-world features in a geographic information system.
Geometric information includes the positions of objects and their components in Euclidean
space. Topological information includes the number, relationship, connection, and types
of topological elements, such as vertices. Both geometric information and topological
information are needed to represent objects correctly. To construct an individual building
vector, we need both the accurate position of the vertices and the spatial relationship
among vertices, which are able to generate polylines and polygons for the maps. The vector
data use interconnected vertices to represent the object shapes, and each vertex describes
its position using geographic coordinates in a spatial reference frame. As mentioned
earlier, extracting building footprint polygons from aerial images involves tasks of different
purposes, so it is difficult to optimize an individual deep learning network for different
tasks. Hence, our approach is to split the main task of polygon extraction into several
sub-tasks and utilize an appropriate deep learning model for each subtask. By integrating
several methods in one framework, we are able to extract building footprint polygons
from aerial images automatically and efficiently. As the vertices of building footprint
polygons are often the corners of the building rooftop and the connections between building
footprint corners are often straight lines, our strategy is to extract building polygons from
remote sensing images by detecting the vertices of building footprint polygons first, and
then finding the correct connections among them. Figure 1a illustrates the schematic
workflow of the proposed building extraction method, which consists of four main steps:
corner detection, semantic segmentation, object detection, and polygon construction. The
framework takes very high-resolution aerial remote sensing images with RGB bands as
inputs and extracts key information related to the building footprints from them. It adopts
U-Net to produce the classification maps of buildings, Cascade R-CNN to detect building
objects in the images, and Cascade CNN to detect building footprint corners. The features
extracted using deep learning approaches from the remote sensing images are combined to
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produce building footprint polygons. The proposed deep learning-based framework for
automated extraction of building footprint polygons (DLEBFP) is described in detail in the
following sections.

Figure 1. The diagram (a) shows the workflow that extracts building footprint polygons from very high-resolution remote
sensing images using the deep learning models, where the subplots illustrate the architectures of (b) U-Net, (c) Cascade
R-CNN, and (d) Cascade CNN. In (b), the red arrows denote the operations of convolution and down-sampling, and the
green arrows denote the operations of convolution and up-sampling. In (c), FPN denotes feature pyramid network; RPN
denotes the region proposal network; H1, H2, and H3 denote the network of detection head at different stages; B0, B1, B2,
and B3 denote the results of the bounding boxes predicted at different stages; and C1, C2, and C3 denote the classification
results predicted at different stages. In (d), DCNN represents the deep convolutional neural network; FM denotes the feature
maps generated by DCNN; and HMt (t = 1, 2, . . . , 6) indicates the predicted heat maps at different stages, respectively.

2.2. Building Segmentation

U-Net, originally proposed for biomedical image processing and implemented in
Caffe [40] was found to be effective in the semantic segmentation of remote sensing
images [41,42]. U-Net used skip connections between the encoder and the decoder such
that the decoder can receive low-level features containing abundant spatial and geometric
information from the encoder, and thus it can generate precise classification maps. U-Net
is widely used to extract various natural and man-made objects from remote sensing
images. We use U-Net as a deep learning model for the semantic segmentation of the
buildings. Figure 1b illustrates that U-Net utilizes the encoder–decoder architecture to
make dense pixel-wise predictions. In the original implementation of U-Net, there are
five convolutional blocks in the encoder and four upsampling blocks in the decoder. A
convolutional block consists of two 3 × 3 unpadded convolutions, each followed by a
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rectified linear unit (ReLU). At the end of the block, a 2 × 2 max pooling operation with
stride of 2 is appended for downsampling. After the process of each convolutional block,
the number of feature channels doubled. In the decoder, the upsampling block consists of
an upsampling operation of the feature map followed by a 2 × 2 convolution, which halves
the number of channels. Two 3 × 3 convolutions followed by ReLU are used to process
the concatenation of low-level features and features from the previous block. For the last
layer in the decoder, a convolutional function followed by a sigmoid function is applied to
map the output. In total, the U-Net has 23 convolutional layers, including 9 convolutional
layers in the encoder and 14 in the decoder.

In this work, we modified the original U-Net. The modified U-Net shared similar
architecture with original U-Net, and we added several modules to improve the perfor-
mance of semantic segmentation. We adopted the encoder part based on ResNet34 [43]
and used a residual unit consisting of multiple combinations of convolution layers, batch
normalization (BN), and rectified linear unit (ReLU) activation. ResNet34 contains five
convolutional blocks but more convolutional layers in each block, and the total number of
convolutional layers was 34. Since many studies have suggested that a deeper network
would produce more discriminative features and achieve better performance, the use of
ResNet34 helps improve the segmentation results of UNet. Instead of directly passing
through the convolution layers, the residual units utilize a shortcut connection and element-
wise addition to transfer the input features directly to the output. It was found that the
identity and projection shortcuts in ResNet could address the degradation problem during
model training and also introduce neither extra parameter nor computation complexity [41].
The ReLU activation function is defined as f (x) = max(x, 0) which reduces the possibility
of vanishing gradient and accelerates the convergence of network during training [44,45].
BN performs the normalization for each training mini-batch and it allows for high learning
rates and addresses internal covariate shift [46]. During the training stage, the mean and
variance of features in a batch are first calculated and then used to normalize the features.
In addition, two learnable parameters γ and β control the rescaling and shifting of the
normalized values. As mini-batches are not used during inference, the moving average
of the training set mean and variance are computed and used to normalize the features
during the test procedure. For the decoder, compared to the blocks used in original U-Net,
the BN layer is also inserted between the convolutional layer and the ReLU activation,
such that we can accelerate the network convergence and improve the model performance.
It should be noted that the cropping operation was removed from our network because
the encoder used convolutional operation with the same padding rather than unpadded
convolutions utilized in original U-Net.

Since the number of nonbuilding pixels is much higher than the number of the building
pixels in most scenes, the effect of class imbalance could cause the learning process to
be trapped in a local minimal of the loss function, making the classifiers strongly biased
towards the background class [23,47]. To address the issue of class imbalance, we combined
DiceLoss with binary cross-entropy loss as the objective function. The total loss calculation
can be written as follows:

Lseg = LDice + LBCE (1)

LDice = 1 −
2 × ∑H

i=1 ∑W
j=1 yij × ŷij + ε

∑H
i=1 ∑W

j=1 yij + ∑H
i=1 ∑W

j=1 ŷij + ε
(2)

LBCE = − 1
H × W

H

∑
i=1

W

∑
j=1

[
yij × log ŷij +

(
1 − yij

)
× log

(
1 − ŷij

)]
(3)

where H is the height of the input image, W is the width of the input image, yij denotes the
binary label of the pixel in the image (0 represents nonbuilding and 1 represents building),
ŷij represents the predicted probability of pixel ranging from 0 to 1, and ε denotes a factor
used to smooth the loss and the gradient.
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2.3. Building Object Localization

We use Cascade R-CNN to identify building objects from the remote sensing images.
Note that many object detection models use intersection over union (IoU) to determine
positive or negative samples; the use of a prescribed IoU significantly influences the model
performance, because a low IoU easily leads to noisy detections and a higher IoU results in
low detection accuracy because of model overfitting and sample mismatching. Cascade
R-CNN can effectively address the abovementioned problems and improve object detection
by adopting a multistage strategy for model training with an increasing IoU [48]. At the
beginning of the model run, the results generated by the region proposal network are
heavily tilted towards low quality, and thus the model uses a low IoU. Following the first
stage of image classification and bounding box regression, the obtained bounding boxes are
resampled using a higher IoU to provide samples with a higher quality. These processes go
iteratively to improve the model performance for detecting objects from images.

Figure 1c illustrates the architecture of Cascade R-CNN model for building object
detection. We use the feature pyramid network [49], which can detect multiscale objects
by combining high-resolution low-level features and low-resolution high-level features to
extract the feature maps at different scales. Lin, Dollar, Girshick, He, Hariharan, Belongie,
and Ieee [49] demonstrated that using more than three stages in Cascade R-CNN would
lead to a decreased performance. Thus, we chose the number of stages to be three and
set the IoU thresholds of the detector in different stages as 0.5, 0.6, and 0.7, respectively.
We used the same loss function in the feature pyramid network and the detection head,
binary cross-entropy loss in the task of image classification, and smoothL1 loss in the task
of bounding box regression:

LSmoothL1 =

{
0.5 × (y − ŷ)2 i f |y − ŷ| < 1
|y − ŷ| − 0.5 otherwise

(4)

where y denotes the reference values, and ŷ denotes the predicted values obtained from
the models.

2.4. Corner Detection

Cascade CNN, initially proposed for multi-person pose estimation [50], is a key
point detection network. We used Cascade CNN to detect building footprint corners. We
removed the branch of part affinity field that was used to determine the overall relationship
in the models because our network only focuses on predicting building footprint corners.
Cascade CNN adopts a multistage strategy. In the first stage, the backbone network extracts
high-level features from the input image, and convolutional layers with different kernel
sizes are used to learn semantic information and produce a confidence map of the target
key point. The model structure in the second stage is similar to that in the first stage, but
the network concatenates the feature maps extracted by the backbone network and the
confidence map generated from the previous stage as model inputs. The processes in the
other stages are similar to those in the second stage.

Training a deep learning model to extract the geolocation of key points in an image is
prone to model overfitting when directly using the coordinates as ground truth. We used
heat maps as the ground truth for model developments, such that the network predicts the
confidence map instead of the direct geographic coordinates of key points. The heat map is
a two-dimensional map that represents the possibilities of the occurrence of the key points
at each pixel. In a heat map, the pixel value of the possibilities ranges from 0 to 1. If one
pixel is close to the annotated key point, the possibility value at the given pixel is close to 1.
If multiple key points occur within one pixel, there is a peak corresponding to each key
point. Using a heat map is advantageous, as it is possible to visualize the deep learning
processes, given that the outputs can be multimodal [51]. We generate the heat map S∗

k for
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each key point k by placing a Gaussian function with fixed variance at the ground truth
position of the building corners. The heat map S∗

k at location p is defined as follows:

S∗
k (p) = exp

(
−‖p − xk‖2

2
2σ2

)
(5)

where p denotes the pixel coordinate in the image, xk denotes the coordinate of the key
point, ‖p − xk‖2

2 is the squared Euclidean distance from the given pixel p to the key point
xk, and σ is a constant that controls the spread of the peak.

As there could be many key points in a single image, a max operator is used to
aggregate individual confidence maps of each corner and thus generate the complete
confidence map used for training the models. The operator is defined as follows:

S∗(p) = max
k

S∗
k (p) (6)

The architecture of Cascade CNN is shown in Figure 1d. We utilized VGG19 [52] as
the backbone network in the model. The size of the feature map is one eighth of the size of
the input image and the number of stages in Cascade CNN is 6. The loss function used in
both the intermediate layers and the output layers is a mean square error (MSE) loss, which
penalizes the squared pixel-wise differences between the predicted confidence map and
the synthesized heat map. The loss function of the predicted confidence map is defined
as follows:

Lcon f map =
1

H × W

H

∑
i=1

W

∑
j=1

(yij − ŷij)
2 (7)

where H denotes the height of image, W denotes the width of the image, yij is the value of
the pixel (i, j) in the ground reference map, ranging from 0–1, and ŷ is the value of the pixel
(i, j) in the predicted confidence map obtained from Cascade CNN.

Cascade CNN uses the inputs of the aerial images to generate confidence maps of
key points. We extracted the locations of the building footprint corners by performing a
nonmaximum suppression (NMS) on the heat maps [50,53]. Specifically, we used a max
filter with the size of 3 × 3 slides along the heat map to extract the local maximum pixels
as the pixels of key points. Note that we calculate the losses for the confidence maps in
each stage during the training processes and avoid the problems of vanishing gradient or
exploiting gradient when training the network.

2.5. Polygon Construction

To construct the structure of the building footprint polygons, we used two-dimensional
Delaunay triangulation to transform the detected key points into the candidate polygons.
Delaunay triangulation, as proposed by Boris Delaunay in 1934, has been widely used
in computer graphics and geographical studies [54,55]. Given a set of discrete points,
Delaunay triangulation generates a triangulated irregular network, where no points are
located inside the circumcircle of any triangle in the network and the minimum angle
of all triangles is the largest among all possible networks. We used the bounding boxes
obtained by Cascade R-CNN to constrain the key points and constructed a triangulated
irregular network for each individual building. Owing to the limitations in computational
resources, there is a need to crop large remote sensing images, resulting in buildings being
truncated at the borders of the cropped images. We defined the intersection points between
the segmentation mask and the border of the cropped image as virtual corners (VC) and
used them together with the key points detected by Cascade CNN for constructing a
triangulated irregular network. The use of VC when constructing building polygons based
on Delaunay triangulation could largely reduce erroneous triangles. For each triangle in
the triangulated irregular networks generated by Delaunay triangulation, we calculated
the ratio of the building areas obtained from the segmentation map generated using U-Net
to the triangle areas and applied an individual threshold to classify the triangles as either
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building or nonbuilding triangles. All building triangles were merged to produce the
building footprint polygons across the entire region.

3. Experiment Setup

3.1. Dataset

The performance of the deep learning model relies on a dataset with high-quality
samples. An aerial imagery dataset from the Wuhan University (WHU) building dataset
was used (http://gpcv.whu.edu.cn/data/ (accessed on 10 November 2020). This dataset
consists of more than 84,000 independent buildings labeled in the vector format and the
aerial images at a 0.075 m spatial resolution covering an area of 78 km2 in Christchurch,
New Zealand. This area contains buildings of various architectural types with varied
colors, sizes, shapes and usages, making it ideal to evaluate the deep learning models.
The original aerial images are open-source data provided by the Land Information New
Zealand (LINZ) Data Service (https://data.linz.govt.nz/layer/53451-christchurch-0075m-
urban-aerial-photos-2015-2016/ (accessed on 29 Aug 2021)). The photographs were taken
around 2015 and 2016, and the images were ortho-rectified digital orthophoto maps (DOMs)
with RGB channels in New Zealand Transverse Mercator (NZTM) map projection [22,56].
The spatial accuracy is 0.2 m with 90% confidence level. As shown in Figure 2, the area
was divided into three sub-regions for model training, validation, and testing. The main
reason for using the WHU dataset for model tests is that the vector data provided by
the land information service of New Zealand have been carefully checked and corrected
by cartography experts [22]. The high-quality vector data of building footprints can be
easily transformed into raster building maps, bounding boxes, and heat maps with vertex
coordinates for training and testing the deep learning models.

 
Figure 2. The aerial image (left) and the vector map of building footprint polygons (right) are shown for the study area in
Christchurch, New Zealand.

Additionally, we used the publicly available benchmark dataset, ISPRS Vaihingen se-
mantic labeling dataset (https://www2.isprs.org/commissions/comm2/wg4/benchmark/
2d-sem-label-vaihingen/ (accessed on 20 January 2021)), to test the robustness of the pro-
posed framework. The Vaihingen dataset consists of pairs of images and labels at the spatial
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resolution of 9 cm. The dataset contains 33 true orthophotos with near infrared (NIR), red
(R), and green (G) bands, which are beneficial for roof contour detection. These tiles have
different image sizes with an average size of 2494 × 2064 pixels. The pixel-based labels
have six categories, including impervious surfaces, buildings, low vegetation, trees, cars,
and clutter. We manually delineated building footprint polygons based on both images
and pixel-based labels for studies. We used six in the 33 tiles for testing and the others for
model training and validation.

3.2. Implementation Details

All the deep learning models and experiments were implemented on the Ubuntu
18.04 system equipped with a single NVIDIA RTX 2080Ti GPU with 11 GB of memory under
CUDA10.0 and cuDNN7.5. U-Net was implemented based on the open-source machine
learning library of PyTorch (https://pytorch.org/ (accessed on 10 November 2020)). The
encoder part in the network was initialized using a pretrained ResNet-34 model, and the
network was trained with a batch size of four. We only used the feature maps that were
generated from the first four stages to make predictions. An Adam optimizer was used
to optimize the parameters with a learning rate of 0.0001. Data augmentation, including
rotation, flipping, and random manipulation of brightness and contrast, was applied to
the images at the training stage. The network was trained for 40 epochs using the training
set, and the model that performed well in the validation set was stored. Cascade R-CNN
was implemented using MMDetection, an object detection and instance segmentation
code based on PyTorch. The backbone was initialized using a pretrained ResNeXt101
model. The basic module of the ResNeXt101 model was different from that of ResNet-
34. It used a bottleneck design to decrease the parameters in the network and make it
efficient. In ResNeXt101, group convolution was introduced to improve the model accuracy
without increasing complexity. Feature maps obtained at all stages were used in the feature
pyramid network to detect objects with different scales. The network was trained using the
stochastic gradient descent optimizer with a batch size of four, an initial learning rate of
0.02, a momentum of 0.9, and a weight decay of 0.0001. We used the learning rate warmup
with a ratio of 1/3 in the first 500 iterations. The total number of epochs was set to 100, and
the learning rate was reduced to one-tenth of the current learning rate every 30 epochs.
Cascade CNN was implemented based on PyTorch. When generating the heat maps, we
set σ in the Gaussian function as 12. Data augmentation was also applied to the training
data. The backbone was initialized using the pretrained VGG-19 model. Only the feature
maps in the third stage were used for prediction. The entire network was trained using
the stochastic gradient descent optimizer with a batch size of four, an initial learning rate
of 0.02, a momentum of 0.9, and a weight decay of 0.0001. The network was trained for
50 epochs. All the model configurations and hyper-parameters were chosen according to
parallel experiments.

Note that all model configurations and hyper-parameters were carefully designed
according to parallel experiments. Hundreds of experiments were conducted to test
the performances of possible configurations and hyper-parameters, and we chose the
one that outperformed any other settings, namely the architecture and specific values
presented above.

3.3. Comparative Methods

To understand the model performance, we compared DLEBFP with three different
deep learning models for the semantic segmentation results in the raster format and with a
popular approach for generating vector results on the WHU building dataset.

We applied the deep learning methods of U-Net, FCN, and SegNet [57] to produce
semantic segmentation maps for model comparisons. FCN alters the original CNN struc-
ture to enable dense prediction. FCN uses transposed convolution to upsample feature
maps to match the sizes of the images and exploit the skip layer strategy. FCN has proven
its performance in terms of model accuracy and computational efficiency across several
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benchmark datasets. SegNet has an encoder–decoder architecture and is often used for
evaluating the performance of semantic segmentation models. In SegNet, the pooling
indices computed in the max-pooling step in the encoder are reused in the corresponding
decoder to perform nonlinear upsampling. Normally, the memory required in SegNet is
much less than FCN for the same task of semantic segmentation.

Additionally, we vectorized the semantic segmentation maps produced by U-Net
and applied the Douglas–Peucker algorithm to generalize the vector maps. The Douglas–
Peucker algorithm is widely used for processing vector graphics and cartographic gen-
eralization [35,58]. Many building extraction researches also chose the Douglas–Peucker
algorithm for building vector simplification due to its simplicity and efficiency [59,60].
Additionally, its performance has been proven superior to other classic simplification
algorithms, such as the Reumann–Witkam algorithm and the Visvalingam–Whyatt algo-
rithm [58]. The Douglas–Peucker algorithm simplifies a curve that is composed of line
segments to a similar curve with fewer points by accounting for the maximum distance
between the original curve and the simplified curve. At each step, the Douglas–Peucker
algorithm attempts to find a point that is the farthest from the line segment with the first
and the last points as end points. If the distance between the farthest point and the line
segment is smaller than a prescribed threshold, it decimates all points between the first and
the last points; otherwise, it keeps the farthest point and recursively calls itself with the
first point and the farthest point and then with the last point and the farthest point. The
Douglas–Peucker algorithm can produce objective quality approximations [61]. We applied
different thresholds for the maximum distance in the Douglas–Peucker algorithm (i.e., 0.1,
0.5, and 1.0 m) to produce building footprint polygons based on the classification maps
derived from U-Net for five sub-regions and the entire study region. By comparing the
results simplified by different thresholds, we are able to analyze the performance variance
with thresholds. Moreover, the results of simplification by Douglas–Peucker are also used
to compared with the vector generated by our methods DLEBFP to verify the superiority
of our approach.

To test the robustness of the proposed method, we also conducted experiments in the
ISPRS Vaihingen dataset and compared the comparative methods with DLEBFP. Similar to
the experiments on the WHU dataset, we trained and analyzed the model performance on
the Vaihingen dataset.

3.4. Ablation Studies

Ablation studies aim on investigating how individual or combination of features affect
the model performance by gradually removing some features of the model. Ablation stud-
ies have been widely adopted in the field of remote sensing and computer science [62–64].
Here, we conduct experiments to investigate the ablated features of both the virtual corner
and bounding boxes. In DLEBFP, virtual corners generated from the semantic segmenta-
tion maps and bounding boxes detected by Cascade R-CNN are both used to improve the
model performance in producing the building vector data. We can still extract the building
footprint polygons by methods without these components.

To evaluate the uses of virtual corners and bounding boxes, we set four kinds of
experiments on the WHU dataset in the ablation studies, including a baseline method.
The baseline method (hereinafter referred to as Baseline) only uses two deep learning
models (i.e., Cascade CNN and U-Net) for feature extraction and Delaunay triangulation
for polygon construction. In Baseline, we constructed the triangulation network based on
the building corners detected by Cascade CNN and classified the constructed triangles
into building or nonbuilding triangles based on the segmentation map extracted by U-Net.
We merged all building triangles to produce building footprint polygons. In the other
three experiments, we tested the virtual corners and bounding boxes detected by Cascade
R-CNN and extracted the building footprint polygons by (1) the baseline method with
bounding boxes (hereinafter referred to as Baseline + BB), (2) the baseline method with
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virtual corners (hereinafter referred to as Baseline + VC), and (3) the baseline method with
both bounding boxes and virtual corners (hereinafter referred to as Baseline + BB + VC).

3.5. Evaluation Metrics

We evaluated the model performance based on the raster format and used the metrics,
including precision, recall, and IoU, which have been widely used in the assessment of
building extraction results [65,66]. For the raster map, precision is the ratio of the true
positive pixels to all detected building pixels, recall is the ratio of the true positive pixels
to the reference building pixels, and IoU is the ratio of the true positive pixels to the total
number of true positive, false positive, and false negative pixels. IoU is extensively used
in evaluating model performance for image classification, as it provides a measure that
penalizes false positive pixels. The abovementioned metrics are defined as follows:

Precision =
TP

TP + FP
(8)

Recall =
TP

TP + FN
(9)

IoU =
TP

TP + FP + FN
(10)

where true positive (TP) denotes the number of building pixels correctly classified as
buildings, false positive (FP) denotes the number of nonbuilding pixels misclassified
as buildings, and false negative (FN) denotes the number of building pixels that are
not detected.

In addition to assessments based on the pixel-wise metrics, we computed the vertex-
based F1-score (VertexF) as proposed by Chen, Wang, Waslander, and Liu [60] to evaluate
the performance of the generated building footprint polygons. To derive VertexF, the
extracted polygons and the reference polygons were interpreted as two different sets of
vertices. We set a buffer distance for every ground truth vertex and then classified all the
vertices of the extracted building polygon as true positive (TP), false positive (FP), and
false negative (FN). VertexF is calculated as:

VertexFs =
2TPs

2TPs + FNs + FPs
(11)

where the subscript s denotes the buffer distance, TPs is the number of true positive vertices,
FNs is number of false negative vertices, and FPs is the number of false positive vertices.
We tested the buffer distances at 0.5 m and 1.0 m, respectively.

Evaluating the mapping accuracies of vertices is particularly meaningful for the
vector data, because a simple and accurate representation is crucial to the map production.
Moreover, the mapping accuracies of vertices better reflect the required manual editing
workload when converting the extraction results to real map products [60].

4. Results

4.1. Results on WHU Dataset

Figure 3 shows the rasterized results of the extracted building footprints using different
methods in the test area. Visually, the four methods have their own pros and cons. DLEBFP
(Figure 3c) has fewer FPs than the three semantic segmentation models but contains more
FNs. One reason is that the object detection method used in our approach is functionally
similar to a filter that only screens pixels with high confidence of building footprints, such
that it would improve the precision but impair the recall of the model. Among the three
segmentation-based methods, FCN (Figure 3d) produces results similar to those of our
method. FPs produced by FCN are less than those derived from either SegNet (Figure 3e)
or U-Net (Figure 3f). Compared with the other methods, SegNet and U-Net generated
more misclassified building pixels and generally performed well in extracting relatively
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large buildings. U-Net occasionally misclassified water pixels as buildings, for example,
the pixels that are located in the river in the test area.

Figure 3. Comparisons of different methods for producing the raster classification maps on the WHU dataset are shown
for (a) the true-color composite image, (b) the binary ground reference image where the white color denotes building
areas and the black color denotes nonbuilding areas, (c) the building classification map derived from DLEBFP, (d) the
building classification map derived from FCN, (e) the building classification map derived from SegNet, and (f) the building
classification map derived from U-Net. In (c–f), the true positives (TPs), false positives (FPs), and false negatives (FNs) are
marked in green, red, and blue colors, respectively.

Figure 4 shows five scenes with the window size of 3000 × 3000 pixels, where the
extent and location of buildings are marked in red rectangles in Figure 3a, for intuitive com-
parisons of the mapping results. All methods were able to identify most of the buildings
correctly, demonstrating the power of deep learning approaches for the semantic segmen-
tation of remote sensing images. Compared with the semantic segmentation models, our
method generates fewer FPs. For example, in the first scene, three semantic–segmentation-
based methods misclassified the road pixels as the building pixels (Figure 4c–e), and our
method avoided misclassification because we used Cascade CNN to detect building foot-
print corners such that the falsely classified roads were screened out. In the second scene,
many pixels surrounding a large building are also classified as buildings by both SegNet
(Figure 4d) and U-Net (Figure 4e), whereas FCN (Figure 4c) produces a relatively lesser
misclassification of pixels in the surroundings of the same building. In the same scene, our
method distinguishes buildings from other objects and preserves the geometric details of
building footprint boundaries. Although DLEBFP can extract most buildings accurately,
there are some omission errors in buildings, resulting in higher FNs than the semantic
segmentation methods. In general, among the three semantic segmentation methods, FCN
did not extract the shape of buildings accurately and lost some details along the building
boundaries, and U-Net and SegNet had similar performance across five scenes.
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Figure 4. The true-color-composite images and the extracted classification maps of buildings using different approaches
for five close-up scenes in the WHU dataset are shown for (a) the true-color composite images, (b) the binary ground
reference images where the white color denotes building areas and the black color denotes nonbuilding areas, (c) the
building classification maps derived from FCN, (d) the building classification maps derived from SegNet, (e) the building
classification maps derived from U-Net, and (f) the building classification maps derived from DLEBFP. The true positives
(TPs), false positives (FPs), and false negatives (FNs) of buildings are marked in green, red, and blue colors, respectively.

Table 1 summarizes the quantitative evaluation results of our method and the three
deep learning models in the close-up scenes and the entire testing dataset at the pixel level.
The results of quantitative comparisons are in line with the visual examination results. Our
method achieved the best results in Scene 1, Scene 2, and Scene 3, with the IoU values of
0.932, 0.886, and 0.895, respectively. U-Net achieves the best performance in Scene 4 and
Scene 5 with the IoU values of 0.902 and 0.893, respectively, which are both 0.006 higher
than our method. SegNet only performs better than our method in Scene 4, with an IoU of
0.898. FCN performs worse than the other methods across all scenes. For the entire testing
data, DLEBFP outperforms FCN and SegNet and obtains a precision of 0.926, the recall of
0.914, and the IoU of 0.851. The IoU obtained by DLEBFP is lower than that obtained by
U-Net. The high IoU of U-Net is due to more correctly classified building pixels, while the
other methods omit these pixels, and thus U-Net has the highest recall values. DLEBFP
has the highest precision values among all methods, because it combines the results of
three deep learning models and effectively refines the building footprint detection on a
step-by-step basis.
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Table 1. The statistical results obtained by different models in the close-up scenes and the entire test dataset of the
WHU dataset.

Model
Scene 1 Scene 2 Scene 3 Scene 4 Scene 5 Test Dataset

Precision Recall IoU Precision Recall IoU Precision Recall IoU Precision Recall IoU Precision Recall IoU Precision Recall IoU

FCN 0.941 0.941 0.889 0.925 0.921 0.857 0.918 0.942 0.868 0.942 0.917 0.868 0.938 0.909 0.858 0.932 0.897 0.841
SegNet 0.941 0.959 0.905 0.887 0.957 0.853 0.898 0.957 0.864 0.951 0.941 0.898 0.922 0.940 0.870 0.911 0.925 0.848
U-Net 0.945 0.970 0.917 0.908 0.956 0.872 0.907 0.964 0.879 0.947 0.949 0.902 0.933 0.954 0.893 0.917 0.933 0.861
DLEBFP 0.959 0.970 0.932 0.943 0.939 0.886 0.935 0.954 0.895 0.950 0.941 0.896 0.932 0.949 0.887 0.926 0.914 0.851

Figure 5 displays the vector maps of individual building examples obtained using
different methods. Note that the building examples vary considerably in terms of colors,
shapes, and surroundings. All methods are able to capture building footprint boundaries
in general but with different accuracies. There are large differences among the methods
in terms of the vertex number of the constructed polygons. As shown in Figure 5c, if
we directly transform the semantic segmentation maps produced by U-Net into building
footprint polygons without further processing, dense vertices are located near the building
footprint boundaries, which are not useful for survey applications and not appropriate for
data storage and transmission. Map simplification using the Douglas–Peucker algorithm
with a 0.1 m threshold of the maximum distance (Figure 5d) results in fewer vertices
than before, but many redundant vertices still exist when compared with the reference
data. The number of vertices decreases as the threshold of the maximum distance in the
Douglas–Peucker algorithm increases (Figure 5e,f), but the details of the building footprint
boundaries are missing, resulting in inconsistency between the obtained building footprint
polygons and the reference data in terms of building shapes. Our method (Figure 5g)
performed the best among these methods in depicting the boundaries of buildings with
different shapes and sizes. Note that the proposed method uses concise vertices to generate
fine-grained building footprint boundaries and preserve geometric details as well as the
shapes and structures of buildings. As seen from the second and seventh buildings, our
method can accurately detect the buildings obstructed by trees. The multistage prediction
in Cascade CNN can infer invisible building corners using the locations of the other corners
and the extracted high-level features. In comparison, U-Net does not recover the buildings
obstructed by trees and underperforms in comparison to our method in terms of the
constructed building footprint polygons.

Table 2 lists the quantitative results obtained using different approaches. The vector
results of U-Net have an IoU value of 0.858, which is slightly lower than that of the
raster result. The results of our methods in the vector format have an IoU value of 0.850,
which is lower than that of U-Net. In terms of the number of extracted buildings, the
results of our method are closer to the reference data. DLEBFP generates 14,687 building
footprint polygons, only 988 (approximately 6.3%) less than the reference data. One
reason is that our method generates a few adjacent polygons that share building footprint
corners with the other polygons, and the adjacent polygons could be recognized as a
single polygon when conducting statistical analysis. The vector results of U-Net give
18,302 building polygons, 2627 (roughly 16.8%) more than the reference data, because
there are many fragmented patches in the results. As mentioned earlier, the number of
vertices is important for the management and application of the vector data. The vector
results of U-Net have nearly eight million vertices, much higher than those of the ground
reference. When generalizing the vector data using the Douglas–Peucker algorithm with
the maximum distance thresholds of 0.1 m, 0.5 m, and 1.0 m, the number of vertices
decreases to approximately 1 million, 278,541, and 250,132, respectively, and IoU decreases
to 0.858, 0.851, and 0.840, respectively. Our method generates building footprint polygons
with 135,623 vertices, only 1377 more than the reference data, and obtains an IoU value of
0.850. A vertex-based metric was calculated based on the extraction of different methods.
As displayed in Table 2, our method outperforms other methods with VertexF0.5 of 0.668
and VertexF1.0 of 0.744, which are much higher than those derived from the other methods.
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Figure 5. Examples of the true-color-composite images and extracted building footprint polygons using different methods
on the WHU dataset are shown for (a) the true-color composite images, (b) the ground reference images, (c) the polygons
derived from U-Net, (d–f) the polygons derived from U-Net and simplified by Douglas Peucker algorithms with 0.1, 0.5
and 1.0 m threshold, (g) the polygons derived from DLEBFP. The building footprint boundaries and vertices are marked by
yellow lines and blue dots, respectively.

Table 2. Statistical results obtained using different models after vectorization on the WHU dataset.

Method
IoU Based

on the
Raster Data

IoU Based
on the

Vector Data

Changing
Rate

Number of
Reference
Buildings

Number of
Extracted
Buildings

Number of
Reference
Vertices

Number of
Extracted
Vertices

VertexF0.5 VertexF1.0

DLEBFP 0.851 0.850 0.1% 15,675 14,687 134,246 135,623 0.668 0.744
U-Net 0.861 0.858 0.3% 15,675 18,302 134,246 7,990,152 0.022 0.025

U-Net + Douglas–Peucker
(d = 0.1 m) 0.861 0.858 0.3% 15,675 18,302 134,246 1,138,969 0.114 0.134

U-Net + Douglas–Peucker
(d = 0.5 m) 0.861 0.851 1.0% 15,675 18,302 134,246 278,541 0.229 0.309

U-Net + Douglas–Peucker
(d = 1.0 m) 0.861 0.840 2.1% 15,675 18,302 134,246 250,132 0.216 0.295
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4.2. Results on Vaihingen Dataset

In order to test the robustness of the proposed method, we conduct extra experiments
on the ISPRS Vaihingen dataset. Figure 6 displays the examples for the extraction results
using different methods. Our method can obtain more accurate building footprints with
distinctive boundaries and regular shapes. There are less FPs in the extraction results of
our proposed method. For example, in the first and third images, there are many FPs
located around the buildings in the results obtained using FCN, SegNet, and U-Net, and
our method can discriminate it accurately. As shown in the second scene, both FCN and
SegNet produce considerable FNs inside a large building, and both DLEBFP and U-Net
can extract the large building accurately.

 
Figure 6. Building extraction results of different models on the ISPRS Vaihingen dataset are shown
for (a) the false-color composite images (NIR-R-G), (b) the binary ground reference images where the
blue color denotes building areas and the white color denotes nonbuilding areas, (c) the building
classification map derived from FCN, (d) the building classification map derived from SegNet, (e) the
building classification map derived from U-Net, and (f) the building classification map derived from
DLEBFP. In c–f, the true positives (TPs), false positives (FPs), and false negatives (FNs) are marked in
green, red, and blue colors, respectively.

Table 3 lists the statistical results for model comparisons on the ISPRS Vaihingen
dataset. DLEBFP outperforms the other models in the metrics of precision, VertexF0.5,
and VertexF1.0. Among all the tested methods, FCN produced the worst results with
the IoU of 0.844. For the entire dataset, DLEBFP outperforms both FCN and SegNet
and achieves a precision of 0.947, a recall of 0.922, and an IoU of 0.876. The IoU of
DLEBFP is slightly lower than that of U-Net. The VertexF1.0 of polygons obtained by three
semantic segmentation models are less than 0.05, indicating that all these models are not
directly suitable for practical applications, and further manual editing is required. We
also compared the simplified results of U-Net with the results obtained by our proposed
method. Simplification using the Douglas–Peucker algorithm with a 0.1 m threshold of
maximum distance results in higher VertexF0.5 and VertexF1.0 than before, but the metric
is still less than one third of that obtained by DLEBFP. As the threshold of maximum
distance increases, the IoU of U-Net becomes lower than that of our method, but both
Vertex-F1.0 and Vertex-F0.5 were still lower than that of DLEBFP. Taking both pixel-based
and vertex-based evaluation results into consideration, DLEBFP can generate building
footprint polygons better than the comparative methods. Overall, the performance of
DLEBFP on the Vaihingen dataset are better than on the WHU dataset as indicated by both
the pixel-based and vertex-based metrics, probably because the ISPRS Vaihingen datasets
have high quality images and accurate image registrations.
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Table 3. Statistical results obtained by different models on ISPRS Vaihingen dataset.

Model Precision Recall IoU VertexF0.5 VertexF1.0

FCN 0.883 0.950 0.844 0.024 0.040
SegNet 0.910 0.932 0.854 0.023 0.030
U-Net 0.932 0.942 0.881 0.037 0.043

U-Net + DP0.1 0.932 0.941 0.879 0.198 0.245
U-Net + DP0.5 0.936 0.929 0.874 0.404 0.555
U-Net + DP1.0 0.938 0.917 0.865 0.417 0.562

DLEBFP 0.947 0.922 0.876 0.731 0.782

4.3. Ablation Studies

Figure 7 displays the results of the ablation experiments in the test area. The results of
Baseline (Figure 7d) and Baseline + BB (Figure 7e) are similar, and both have considerable
FNs and large omission errors in building detection. The extracted results using the
Baseline + VC approach are generally comparable to those of Baseline + BB + VC. Visual
comparisons suggest that both methods can extract most of the buildings correctly, but the
Baseline + BB + VC method produces more FNs.

 

Figure 7. Comparisons of different models with different improved strategy for producing the rasterized classification
maps on the WHU dataset are shown for (a) the true-color composite image, (b) the binary ground reference image where
the white color denotes building areas, and the black color denotes nonbuilding areas. In (c–f), the true positives (TPs), false
positives (FPs), and false negatives (FNs) are marked in green, red, and blue colors, respectively.

Figure 8 shows the results of the ablation experiments in the selected scenes of the
test areas as marked in red rectangles in Figure 7a. As shown in Figure 8c, the Baseline
method produces many FPs in the gaps among buildings and does not extract buildings
accurately. Because the Delaunay triangulation generates triangles of buildings that share
one or more corners with the other buildings, it could result in the adhesion of buildings.
By applying the constraint of bounding boxes, the results of Baseline + BB (Figure 8d)
show a reduced number of FPs among buildings but have many FNs because of missing
buildings at the edge of the cropped images in the deep learning models. Baseline +
VC (Figure 8e) achieves larger improvements over the Baseline method by reducing FNs
considerably and detecting most of the erroneously mapped buildings correctly, but still
results in considerable FPs among buildings. Baseline + BB + VC (Figure 8f), the complete
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method, integrates the advantages of the earlier two strategies and considerably reduces
both FPs and FNs of buildings.

Figure 8. Close-up images and classification results obtained by models with different strategy combinations across five
scenes are shown for (a) the true-color composite images, (b) the binary ground reference image where the white color
denotes building areas, and the black color denotes nonbuilding areas, (c) the building classification map derived from
Baseline, (d) the building classification map derived from Baseline + BB, (e) the building classification map derived from
Baseline + VC, and (f) the building classification map derived from Baseline + BB + VC. The true positives (TPs), false
positives (FPs), and false negatives (FNs) of buildings are marked in green, red, and blue colors, respectively.

Table 4 lists the quantitative results in the ablation experiments. For all five scenes,
Baseline + BB could achieve a higher precision but a lower recall than Baseline. Compared
with the Baseline method, the Baseline + BB method has a lower IoU in Scenes 3, 4, and
5, and a higher IoU in Scenes 1 and 2. Applying the constraint of bounding boxes did
not enhance the model performance effectively. Compared with Baseline, the Baseline +
VC method increases both recall and IoU and achieves the IoU values higher than 0.82 in
five scenes, indicating that adding virtual corners helps reduce omission caused by image
clipping. By integrating two improvement strategies, the Baseline + BB + VC method
achieves the best performance in five different scenes. Compared with the Baseline + VC
method, adding the constraints of bounding boxes could increase the values of precision,
recall, and IoU. The impact is different from that when only adding the constraints of
bounding boxes to Baseline, implying that the strategy of using bounding boxes only
improves the model accuracy when buildings can be extracted more accurately. The
performance of these methods is consistent in the entire test dataset with that on the five
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scenes. Compared with Baseline, Baseline + BB reduces IoU by 0.6% and Baseline + VC
increases IoU by 16.2%. The Baseline + BB + VC method outperforms the other methods
and achieves the best performance with a precision of 0.926, a recall of 0.914, and an IoU of
0.851. In comparison with Baseline, the precision, recall, and IoU of our method increased
by 4.4%, 17.8%, and 18.1%, respectively.

Table 4. Statistical results obtained in the ablation experiments.

Model
Scene 1 Scene 2 Scene 3 Scene 4 Scene 5 Test Dataset

Precision Recall IoU Precision Recall IoU Precision Recall IoU Precision Recall IoU Precision Recall IoU Precision Recall IoU

Baseline 0.885 0.776 0.705 0.891 0.771 0.704 0.875 0.792 0.712 0.869 0.702 0.635 0.906 0.817 0.753 0.882 0.736 0.670
Baseline + BB 0.958 0.737 0.714 0.943 0.743 0.711 0.926 0.736 0.694 0.941 0.653 0.627 0.927 0.790 0.743 0.918 0.706 0.664
Baseline + VC 0.914 0.954 0.877 0.911 0.890 0.820 0.909 0.954 0.871 0.896 0.931 0.840 0.925 0.946 0.879 0.905 0.911 0.832

Baseline + BB + VC 0.959 0.970 0.932 0.943 0.939 0.886 0.935 0.954 0.895 0.950 0.941 0.896 0.931 0.949 0.887 0.926 0.914 0.851

5. Discussion

By combining the deep learning models for different tasks, our method can accurately
extract building footprint polygons from very high-resolution aerial images. One advantage
of our method is that it can extract building footprints with sharp boundaries in a vector
format and use concise vertices to represent building footprint boundaries that are close
to the ground reference. Another advantage of our method is that it can be executed on a
regional scale instead of on an individual building. The reasons our method performs well
are as follows. First, we used a deep learning model to detect the building footprint corners,
which are used to guide the construction of building footprint polygons. Compared to the
key point detection methods in the traditional methods, such as Harris and scale-invariant
feature transform, the deep learning model can detect building footprint corners accurately.
The traditional methods likely detect erroneous key points belonging to other man-made
objects, such as roads. Second, our method integrates the multi-task results generated by
the deep learning models based on the Delaunay triangulation. The ensemble framework
enhances the model performance and makes it possible to automatically extract building
footprint polygons from remote sensing images on a regional scale.

The accuracy of the corner detection influences the performance of the entire frame-
work and Figure 9 exhibits the corner detection results on the two studied datasets. As
shown in the figure, most of the corners can be detected by Cascade CNN despite of
errors. First, our method cannot detect the corners that are severely obscured by trees.
Although Cascade CNN can infer the existence of corners sheltered by trees in some cases,
the predicted location of corners often deviates from their real locations. Second, a few
redundant points that did not exist in the ground truth data were detected because these
points have representation similar to building corners. The redundant detected points
have limited impacts on the overall performance of our results because such points are
normally removed when we classified the triangles based on the semantic segmentation
maps. In addition, our method performs weakly on the corners that are closely located.
It is difficult to accurately and completely distinguish adjacent corners. In this case, an
incomplete set of corners causes a loss of geometric details and decreases the accuracy
of the extracted building footprint polygons. When comparing with the results of corner
detections on the WHU dataset, Cascade CNN performs better in the Vaihingen dataset.
Visually, the results in the Vaihingen dataset have less omitted corners than in the WHU
dataset. The statistical results associated with vertex-based evaluation metrics illustrate
that the model performance in the Vaihingen dataset is better than in the WHU dataset. The
differences in the model performance are likely due to different standards of classification
labels and image quality. In the Vaihingen dataset, fewer buildings are obscured by trees
or the other objects, and the sheltered buildings are not annotated as the building pixels.
By comparison, the WHU dataset has more sheltered buildings that are still labeled as the
building pixels in the ground truth maps. It is, therefore, challenging to detect building
corners in the WHU dataset. DLEBFP achieves higher IoU in the Vaihingen dataset than in
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the WHU dataset because better corner detection results were obtained in the Vaihingen
dataset when using Cascade CNN.

Figure 9. Examples of corner detections using Cascade CNN and reference maps on both the WHU
dataset and the Vaihingen dataset. Ground truths are marked in yellow. The true positives (TPs),
false positives (FPs), and false negatives (FNs) of building corners are marked in green, red and blue
colors, respectively.

Our framework may extract inaccurate building footprint polygons and Figure 10
exhibits four typical types of inaccurate detections. In the first case (Figure 10a), one of
the corners obscured by the other objects could not be detected by our model and thus we
obtained an incomplete building polygon with FNs. The second error type, as shown in
Figure 10b, is mainly caused by the omission of the corner detection model, which results in
FNs. The third type, as demonstrated in Figure 10c, is also mainly caused by the occasional
omission of the corner detection model but leads to FPs instead of FNs. Figure 10d shows
the fourth type of errors, in which two separated buildings were merged into one building,
and there are FNs located in the gaps between the two buildings. Although we utilized the
bounding box detected by Cascade R-CNN to constrain the extent of polygon construction
processes, there are difficulties in a few cases when some buildings are very close to
one another.

Figure 10. Four examples of inaccurate building footprint polygons extracted by DLEBFP and the
corresponding reference polygons are shown in (a–d), which is caused by four typical causes.
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Model efficiency is also an important indicator when evaluating a method. As shown
in Table 5, we compare our method with the others in terms of the time cost of inferencing
deep learning models and post-processing, and the storage size of files in the shapefile
format. As for the inference time of the deep learning models, the computational cost
of our method is approximately four times that of the other methods because we use
three deep neural networks for different tasks. As for the post-processing time, the time
needed for directly converting the raster data to vector data is acceptable. For example,
converting the raster map produced by U-Net to the vector data of building footprints
needs 37.94 ms. When applying a vector generalization method of the Douglas–Peucker
algorithm, the post-processing time increases by approximately 100 ms. Our method costs
the processing time approximately three times more than the method that uses U-Net
with vector generalization. Note that the vector file obtained using our method only has a
storage size of 3.3 MB, which is less than one third the size of the files obtained using the
other methods. It is important to generate files with smaller sizes and maintain both high
pixel-based and vertex-based accuracies in the field of surveying and mapping. A large
file size indicates that the vector file likely contains redundant vertices and does not meet
the requirement of vector map production. In addition, practical applications including
data storage, management, transmission, and spatial analysis prefer accurate and concise
vector data. As the comparative methods tested here generated data with much redundant
information, it is worthwhile producing the vector data with a smaller file size.

Table 5. Comparisons of model efficiency and file sizes.

Model Inference Time (ms)
Post-Processing

Time (ms)
File Size (MB)

FCN 153.11 11.29 95.6
SegNet 131.43 21.22 129.7
U-Net 185.64 37.94 141.8

U-Net + DP0.1 185.64 141.37 26.4
U-Net + DP0.5 185.64 135.95 10.9
U-Net + DP1.0 185.64 135.05 9.9

DLEBFP 523.49 351.52 3.3

The calculation of both inference time and post-processing time is based on the average
of the test dataset including patches with the size of 1024 × 1024 pixels. The inference
time indicates the time cost of the inference of different deep learning models. The post-
processing time denotes the time cost of the vectorization process. File size denotes the
storage size of the output vector files in a shapefile format.

6. Conclusions

In this work, we proposed a novel framework that combines three deep learning
models for different tasks to directly extract building footprint polygons from very high-
resolution aerial images. The framework uses U-Net, Cascade R-CNN, and Cascade
CNN to provide semantic segmentation maps, bounding boxes, and corners of building,
respectively. Furthermore, a robust polygon construction strategy was devised to integrate
three types of results and then generate the building polygon with high accuracy. In
the strategy, Delaunay triangulation utilizes the detected building footprint corners to
generate the polygons of individual building footprints, which are further refined using
the maps of bounding boxes and semantic segmentation. The experiments on a very
high-resolution aerial image dataset covering 78 km2 and containing 84,000 buildings
suggest that our method can extract the building polygons accurately and completely.
Our method achieves a precision of 0.926, recall of 0.914, and the IoU of 0.851 in the
test dataset of the WHU building dataset. The proposed method was compared with
benchmark segmentation models and classic map generalization methods. Qualitative and
quantitative analyses indicate that our methods can generate a comparable accuracy with
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fewer redundant vertices and provide high-quality building footprint polygons. These
promising results suggest that the developed method could potentially be applied in the
mapping of buildings polygon across large areas.
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Abstract: Building extraction from airborne Light Detection and Ranging (LiDAR) point clouds
is a significant step in the process of digital urban construction. Although the existing building
extraction methods perform well in simple urban environments, when encountering complicated
city environments with irregular building shapes or varying building sizes, these methods cannot
achieve satisfactory building extraction results. To address these challenges, a building extraction
method from airborne LiDAR data based on multi-constraints graph segmentation was proposed in
this paper. The proposed method mainly converted point-based building extraction into object-based
building extraction through multi-constraints graph segmentation. The initial extracted building
points were derived according to the spatial geometric features of different object primitives. Finally, a
multi-scale progressive growth optimization method was proposed to recover some omitted building
points and improve the completeness of building extraction. The proposed method was tested and
validated using three datasets provided by the International Society for Photogrammetry and Remote
Sensing (ISPRS). Experimental results show that the proposed method can achieve the best building
extraction results. It was also found that no matter the average quality or the average F1 score, the
proposed method outperformed ten other investigated building extraction methods.

Keywords: airborne LiDAR; building extraction; graph segmentation; object primitive; geometric
feature

1. Introduction

A building is an essential component of urban construction. The extraction and
reconstruction of buildings has been a critical step for many applications, such as urban
planning, disaster assessment, cadastral management and so on [1,2]. Airborne LiDAR
is an active remote sensing technology which has developed very rapidly in the recent
years [3–6]. This technology has become an attractive choice for building extraction [7,8],
due to its high efficiency and measuring accuracy, less interference by external environment
and strong initiative [9,10].

1.1. Related Works

Currently, building extraction methods can be classified into two categories, including
the machine learning methods and the classic methods. In the machine learning methods,
the acquired raw data are first transformed into a multidimensional feature space. Then,
an optimal feature space is estimated by a learning classifier to map the features into
desired outputs [11]. Ni et al. [12] first proposed a stepwise point cloud segmentation
method to extract three kinds of segments, including planar, smooth and rough surfaces.
Random Forest (RF) was then employed to select features and classify the afore-mentioned
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segments. Finally, semantic rules were used to optimize the classification result. The
experimental results showed that this method was effective for small scale targets. Nahhas
et al. [13] proposed a deep learning method to detect buildings by fusing the LiDAR data
and orthophotos. In this method, features were first extracted by object-based analysis.
The low-level features were transformed into compressed features with a feature-level
fusion and an autoencoder-based dimensionality. After that, the compressed features were
transformed into the high-level features using a Convolutional Neural Network (CNN)
to classify the objects into buildings and background. Maltezos et al. [11] also adopted
a CNN model in their method. Firstly, a multi-dimensional feature vector was created
using the raw LiDAR data and seven additional features. Experimental results showed
that this algorithm could extract buildings with 85% completeness, and the correctness
reached 93%, at per-area level. Huang et al. [14] fused high-resolution aerial images
and LiDAR points for building extraction with an end-to-end trainable gated residual
refinement network. The modified residual learning network was applied as the encoder
part of network to learn multi-level features from the fusion data. A gated feature labeling
unit was introduced to reduce unnecessary feature transmission and refine classification
results. Zhang et al. [7] developed a hybrid attention-aware fusion network based on a
novel hybrid fusion architecture to extract the buildings from high-resolution imagery
and LiDAR data. Li et al. [15] first split the raw preprocessed LiDAR data into numerous
samples to fed into CNNs directly. Then, the graph geometric moments CNNs were
proposed to train and recognize building points. Finally, the test scenes were fed into the
framework to extract the building points. Wen et al. [6] first proposed a graph attention
convolution module. This module could examine spatial relationship among all points
and determine the convolution weights. Then, a global-local graph attention CNN was
designed to classify the airborne point clouds using multiscale features of the point clouds.
Yuan et al. [16] proposed a fully CNN based on the residual network. The training pattern
for multi-modal data was provided by combining the advantage of high-resolution aerial
images and LiDAR data. Obviously, for the CNN models, the precise labelled point clouds
are generally necessary. Zolanvari et al. [17] provided a publicly available annotated
benchmark dataset for training and testing. Moreover, they also tested three well-known
CNN models, including PointNet, PointNet++ and So-Net on the benchmark. In addition
to the geometric features built for the machine learning techniques, some researchers try to
calculate the statistical characteristics of the point cloud distribution to realize unsupervised
segmentation [18]. For instance, Crosilla et al. [19] proposed a filtering and classification
technique for LiDAR points by calculating the statistical features, including skewness and
kurtosis iteratively. Specifically, the skewness and kurtosis are third- and fourth-order
moments about the mean.

Although the machine learning methods can realize building extraction, these methods
unavoidably involve some limitations. For instance, high-quality training data are required,
and the differences in the data distribution between the training data and the experiment
scenes lead to low accuracy [20]. To avoid these problems, some authors work on the
classic methods. In terms of input data, methods can be further classified as two categories,
including building extraction based on LiDAR points and based on multi-source data
fusion [15]. In the first type of methods, LiDAR points are the only data source for building
extraction. In these methods, building points are extracted by relying mainly on their
geometric morphological features that are different from other objects. Dorninger et al. [21]
proposed a building extraction method based on plane segmentation detection. The
hierarchical clustering algorithm was used to obtain the initial candidate seed points. Then,
they extracted the buildings with the iterative region growing algorithm. Poullis et al. [22]
used the object-based region growing algorithm to detect the building points and refined
the boundary with a polygon Boolean operation to achieve better building extraction
results. In Sun et al. [23], point cloud data were divided into ground and non-ground
points with a graph cut-based method where a novel hierarchical Euclidean clustering
method was used to extract rooftop patches. Finally, a region growing-based segmentation
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method was presented to detect all building points with each rooftop patch. Awrangjeb
and Fraser [24] separated the raw LiDAR points into two groups and formed a “building
mask” with the group containing the ground points. The group that contains non-ground
points was segmented into individual building or tree objects using the building mask.
During the segmentation, the planar roof segments were extracted and refined based on
the rules, such as the coplanarity, locality and height difference of points. The experimental
results showed that this method offered a high successful rate for building detection and
roof plane extraction. Fan et al. [25] realized the building extraction based on the fact that
each roof can be composed of gabled roofs and single flats. The algorithm Random Sample
Consensus (RANSAC) was then used to detect roof ridges. Then, the points on the two
roof flats along a roof ridge were identified based on their connectivity and coplanarity.
Sampath et al. [26] first analyzed point characteristics to exclude the nonplanar points. The
authors used the fuzzy k-means algorithm to cluster the planar points. To extract complete
buildings, the clustered points were merged into the integrated rooftop according to the
breaklines. Zou et al. [27] proposed a strip strategy-based method to filter the building
points and extract the edge point set from LiDAR data. The point cloud was segmented
into several data strips. After that, building points were filtered from the data strips with
an adaptive-weight polynomial. Finally, building edges were extracted by a modified
scanline method. This method is usually suitable for urban areas where buildings were
densely distributed. Cai et al. [28] introduced a coarse-to-fine building detection method
that was based on semi-suppressed fuzzy C-means and restricted region growing. After a
minimum bounding rectangle was adopted to refine the detection results, the method could
offer an excellent performance for building detection with over 89.5% completeness and a
minimum 91% correctness. In Wang et al. [29], a semantic-based method was employed to
extract building points with contexts. A Markov random field optimization model was
constructed for postprocessing and segmentation results refinement.

Although the building extraction methods using only LiDAR data can achieve good
extraction results, these methods unavoidably have some practical limitations. For instance,
the laser pulses emitted by airborne LiDAR system often have a certain tilt angle, resulting
in the absence of points in some areas [30]. These data gaps will result in incomplete
building extraction. Although LiDAR data provide accurate three-dimensional coordinates,
they lack texture information that is very important for identifying buildings with special
shapes [31]. To overcome these enumerated limitations, some authors integrate multi-
source data to achieve high accuracy. Authors such as Awrangjeb et al. [32] proposed an
automatic three-dimensional roof extraction method by combining LiDAR data and multi-
spectral orthoimages. In their study, the Normalized Difference Vegetation Index (NDVI)
from multi-spectral orthoimages and the entropy images from grayscale orthoimage were
first used to generate a Digital Elevation Model (DEM). Afterwards, the DEM was used to
separate ground and non-ground points, while the NDVI and entropy images were used
to classify the structure lines extracted from grayscale images. Structural lines belonging
to the building class were then used to extract the plane and edge of the roof. Finally, the
roof planes and boundaries were extracted using the lines belonging to the building class.
They further added texture information from the orthoimage and used an iterative region
growing algorithm to extract the complete roof plane, which improved the completeness of
building extraction [33]. Qin et al. [34] combined the high-resolution remotely sensed
image and Digital Surface Model (DSM). The morphological index was first used to
detect shadows and correct the NDVI. Then, the NDVI was incorporated through the
reconstruction of the DEM using the top-hat algorithm to obtain the initial building mask.
Finally, the building segments with high probability were consolidated by a graph cut
optimization based on modified superpixel segmentation. The experimental results showed
that this algorithm could extract buildings efficiently with 94% completeness, and the
87% correctness indicating its potential for many practical applications. Gilani et al. [35]
developed a methodology using features from point cloud and orthoimage to extract and
regularize the buildings. Vegetation elimination, building detection and extraction of their

55



Remote Sens. 2021, 13, 3766

partially occluded parts were achieved by synthesizing the entropy, NDVI and elevation
difference. Results indicated that the per-area completeness achieved was between 83% to
93%, while the per-area correctness was above 95%. Siddiqui et al. [36] transformed the
LiDAR height information into intensity and then analyzed the gradient information in the
image. In addition, a local color matching approach was introduced as a post-processing
step to eliminate trees. Lai et al. [37] proposed a building extraction method by fusing the
point cloud and texture features. The texture features were acquired using an elevation
map. Chen et al. [38] also integrated high spatial resolution images and LiDAR point
cloud data. In their method, an adaptive iterative segmentation method was adopted to
effectively avoid over-segmentation or under-segmentation.

1.2. Motivation

Although more accurate building extraction results can be achieved by fusing multi-
source remote sensing data, pre-registration is generally required [39]. Registration errors
often exist during the fusion process, and how to provide registration accuracy remains
an unsolved problem [40]. Therefore, building extraction with only LiDAR points is still a
mainstream focus. Today, although the machine learning methods have been successfully
applied for building extraction, large numbers of sample labeling are generally a prereq-
uisite for the success of this kind of methods. Obviously, the sample labeling is always
cumbersome. Thus, how to realize building extraction by classic methods is still in the
focus of researchers. However, the classic building extraction methods based solely on
airborne LiDAR points still involve the following difficulties and challenges:

i. The point-based building extraction methods generally involve high computation
costs. Thus, it is difficult to process a large amount of LiDAR points.

ii. When encountering with different building environments, the performance of the
methods generally varies greatly. The robustness of the building extraction methods
is not good.

iii. The vegetation points adjacent to buildings are easily misclassified as building
points, which results in low correctness of building extraction.

To solve these enumerated problems, a building extraction method from airborne
LiDAR points based on multi-constraints graph segmentation was proposed in this pa-
per. In the proposed method, the graph structure was first constructed based on the
three-dimensional spatial features of points. Then, the graph segmentation was achieved
by setting constraint conditions. In doing so, the point-based building extraction was
transformed into the object-based building extraction to reduce the computation cost and
improve the efficiency of the method. Subsequently, the initial building points were ex-
tracted by calculating the geometric morphological features of each segmented object. To
improve the completeness of building extraction, this paper also proposed a multi-scale
progressive growing optimization method to recover the omitted building points. Three
publicly available datasets were adopted for testing the performance of the proposed
method. The experimental results showed that the proposed method can achieve very
good building extraction results.

2. Methodology

The flowchart of the proposed method is shown in Figure 1. In this paper, an im-
proved morphological filtering method based on kriging interpolation proposed by Hui
et al. [41] was first adopted to remove ground points. This filtering method can be seen
as a hybrid model, which combined the morphology-based and the interpolation-based
filtering methods. By removing objects and generating rough ground surface progressively,
the terrain details can be protected successfully. Subsequently, the multi-constraints graph
segmentation method was proposed to segment the non-ground points to obtain the ob-
ject primitives. Hereafter, the point-based building extraction was transformed into the
object-based building extraction, which reduced the computational cost and improved the
implementation efficiency of the proposed method. Here, the initial building points are
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acquired by calculating the spatial geometric features of each object primitive. To improve
the completeness of building extraction, this paper proposed a multi-scale progressive
growth optimization method. This method was used to extract complete buildings by
continuously recovering the omitted points that meet the setting rules. Detailed description
of the proposed method is described in the subsequent sections as follows: Section 2.1,
multi-constraints graph segmentation; Section 2.2, initial building points extraction based
on spatial geometric features; and Section 2.3, building points optimization based on
multi-scale progressive growing.

Figure 1. Flowchart of the proposed method. Filtering is first applied for removing the ground points. Then, the proposed
multi-constrains graph segmentation is adopted to achieve the segmentation results. According to the geometric features,
the initial building points can be obtained. Finally, an optimization step is applied to obtain the final building extraction
results.

2.1. Multi-Constraints Graph Segmentation

To reduce the computation costs and improve the efficiency of the proposed method,
this paper first transforms the point-based building extraction method into an object-
based building extraction method. In this paper, the transformation is realized based on
multi-constraints graph segmentation. Generally, the graph structure can be defined as
Equation (1) [42]:

G = (V, E) (1)

where G represents the graph, V is the set of nodes (vi) and E denotes the corresponding
edges (ei,j). In this paper, vi is made up of all points (pi, i = 1, 2, . . . , N) in the point cloud,
while the edge ei,j connects the pair of neighboring points (pi,pj).

Today, with the fast development of the LiDAR system, the density of the LiDAR
points can reach hundreds of points per square meter. For instance, the average point
density of the acquired aerial LiDAR datasets of Dublin city center is 348.43 points/m2 [17].
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As a result, a huge amount of LiDAR data generally needs to be processed. If the graph is
constructed using edges between every point, the built graph will be very complex and
cost lots of computer memory. Moreover, it will also not be conducive to subsequent graph
segmentation. To simplify the graph, this paper proposed several constraints for building
the graph. The first constraint is that the edge ei,j only exists among neighboring points.
This can be defined as Equation (2):

ei,j =

{
1 , i f pj ∈ Setpi

0 , otherwise
(2)

where Setpi is k nearest neighbors of point pi. In Equation (2), it can be deduced that only if
pj is an adjacent point to pi, there will be an edge connection between two points. k is a
constant which represents the number of neighboring points. If the number of points is
massive or the calculating capability of computer hardware is limited, k should not be set
too large. Otherwise, the computation costs will increase. In this paper, k is set to 10.

Aiming at achieving the accurate building object primitives, two other constraints
were set after the graph construction. On the one hand, the points within an identical
object primitive should own similar normal vectors. That is, the edge between pi and pj
can be reserved only if the angle between the normal vectors of the two points is less than
a threshold. This can be defined as Equation (3):

ei,j =

{
1 , i f θ

(
pi, pj

)
≤ ς

0 , otherwise
(3)

where θ
(

pi, pj
)

is the angle between the normal vectors of pi and pj. The normal vector
of a point can be estimated from the covariance matrix of its neighboring points using
Principal Component Analysis (PCA). The eigenvector corresponding to the minimum
eigenvalue of the covariance matrix is treated as the normal vector at the point. ς is the
angle threshold. In this paper, ς is set to 5◦ to maintain the similarity of points within the
same object primitives.

When the normal vector constraint is applied, the points located on the same plane
will be divided into the same object primitives, such as the building roofs, as shown
in Figure 2a. Conversely, some adjacent points that are not in the same plane will be
divided into multiple object primitives, such as vegetation. However, if only the normal
vector constraint is adopted, some vegetation points that are adjacent to buildings will be
misclassified as building points, as shown in Figure 2b,c. It is because the normal vectors
of these vegetation points may be similar to the ones of the building points, which may
lead to misjudgment. To solve this problem, the third constraint of graph segmentation
that is the longest edge constraint is defined as Equation (4):

ei,j =

{
1 , i f Dist

(
pi, pj

)
≤ mean

(
Dist

(
Setpi

))
+ std

(
Dist

(
Setpi

))
0 , otherwise

(4)

where Dist
(

pi, pj
)

is the Euclidean distance between pi and pj. mean
(

Dist
(
Setpi

))
repre-

sents the mean distance from point pi to all its neighbors. std
(

Dist
(
Setpi

))
is the standard

deviation of the distance from point pi to all its neighbors. This constraint will limit the
range of the longest edge and avoids the problem that some adjacent vegetation points can
be misclassified as building points.
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(a) (b) (c)

Figure 2. Graph segmentation based on multi-constraints. (a) The result of graph segmentation based on multi-constraints;
(b) enlarged version of the area I in (a); (c) enlarged version of the area II in (a). The colors are assigned randomly according
to different segmentation objects. Different colors represent different segmentation objects.

2.2. Initial Building Points Extraction Based on Spatial Geometric Features

As shown in Figure 2a, the point cloud is divided into multiple object primitives after
the multi-constraints graph segmentation. Since the angle of normal vectors and the longest
edge constraints were adopted in the multi-constraints graph segmentation, the building
roofs can be correctly divided into independent object primitives, as shown in Figure 2b,c.
However, some other objects without similar normal vectors, such as bushes, vegetation
and fences, are generally divided into multiple small object primitives, which will lead
to “over-segmentation”. According to this characteristic, the initial building points can
be extracted based on the spatial geometric features of the extracted object primitives. In
this paper, the roughness and size of object primitives were selected to extract the initial
building point cloud.

In this paper, the object primitive roughness (roughnessobji ) is defined as the mean
distance residual between the point and the best-fit plane of the points within the same
object primitive. This has been defined in Equation (5) as:⎧⎪⎨⎪⎩ roughnessobji =

n
∑

i=1
roughnesspi

n

roughnesspi =
|Axpi+Bypi+Czpi+D|√

A2+B2+C2

(5)

where roughnesspi is the roughness of pi in an object primitive obji. roughnesspi is defined
as the distance residual between the point to the fitting plane (Ax + By + Cz + D = 0).

Generally speaking, for a relatively flat roof, the object primitive roughness of a
building tends to be smaller than that of the pseudo plane generated by dense vegetation
points. Compared with the over-segmented object primitives, building object primitives
often contain more points. Meanwhile, the non-building object primitives are generally
divided into several small object primitives since the direction of their normal vectors are
not consistent. Therefore, the non-building object primitives can be removed by limiting
the size of object primitives to further improve the accuracy of the initial building points
extraction.

2.3. Building Points Optimization Based on Multi-Scale Progressive Growing

Although most of the building points can be correctly extracted based on the spatial
geometric features of the object primitives, there are still some omitted building points,
which will cause larger omission error. As shown in Figure 3, the omitted building points
are mainly located on the ridge and edge area of the roof. These points are easily divided
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into different object primitives after multi-constraints graph segmentation since their spatial
geometric features are generally quite different from their adjacent points. As a result,
these ridge or edge points are wrongly eliminated, which can result in low completeness of
building extraction.

Figure 3. Building points optimization.

To improve the completeness of the building points extraction, this paper proposed
a building points optimization method based on multi-scale progressive growing. The
pseudocode of the proposed method is presented in Algorithm 1.

Algorithm 1. Building points optimization based on multi-scale progressive growing.

Input:
Initial building points: Point_set =

{
pi|pi ∈ U ‖ pi ∈ �U

}
, i = 1, 2, · · · , N

pi is a random point, U is the building point set, �U is the complementary set, which
represents a non-building point set.
Scale sets: s = {s1, s2, · · · , sK}, s1 > s2 > · · · > sK

for iter = 1 to K
s = siter
for i = 1 to N

if pi ∈ U
Find the neighboring point set of pi under the scale of s:

Setpi =
{

pj

∣∣∣Dist‖pj, pi‖ ≤ s, j = 1, 2, · · · , M
}

for j = 1 to M
if pj ∈ Setpi &&pj ∈ �U

Calculate the distance (distpj ) between pj and the fitting plane of the object
primitives where pi is

Calculate the angle (θ
(

pj, pi

)
) between the normal vector of pj and pi

if distpj ≤ th1 || θ
(

pj, pi

)
≤ ξ

pj ∈ U
Update building point set U and non-building point set �U

end
Output: Building points set U

From Algorithm 1, it can be found that this paper mainly adopted a multi-scale
progressive strategy to gradually optimize the building points extraction results. Through
experimental analysis, three fixed scales are enough to acquire complete building points.
In doing so, not only the problem of overgrowth can be solved but also the implementation
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efficiency can be improved. In this paper, the scale sets are defined as s1 (2 m), s2 (1.5 m) and
s3 (0.5 m), respectively. In each step, the neighboring points set of each point is obtained
within the current scale. If pj is a non-building point in the neighboring points set (Setpi )
of pi, the distance residual (distpj ) between pj and the fitting plane of the object primitive
should be calculated. If pj is an omitted building point, the distance residual will be less
than the threshold th1, which is set to 0.3 m in this paper. In addition, building point clouds
often have consistent normal vectors. Thus, if pj is an omitted building point, the angle
between the normal vectors of pj and pi should be less than the angle threshold ξ which is
set to 10◦ in this paper.

3. Experimental Results and Analysis

3.1. Experimental Datasets

To evaluate the performance of the proposed method, three publicly available datasets
provided by ISPRS were tested [43]. The datasets were obtained by Leica ALS50 with a
45◦ field of view and a 500 m mean flight height above the ground. The obtained points’
accuracy is approximately 0.1 m in horizontal and vertical directions. The average strip
overlap is 30%, and the average point density is 4–7 points/m2. The three datasets are
located in Vaihingen and contain three areas (Area1, Area2, Area3). As shown in Figure 4,
the main objects in the three areas are powerline, low vegetation, impervious surfaces,
car, building, shrub, tree and fence and so on. The buildings in Area1 are with complex
shapes and different sizes as shown in Figure 4a. Thus, Area1 can be used to test the
extraction accuracy of the proposed method on complex buildings. Area2 is characterized
by buildings surrounding with dense vegetation (Figure 4b). Adjacent vegetation often
causes great interference on the building extraction. Therefore, Area2 can verify whether
the proposed method effectively eliminates the interference of adjacent vegetation or not.
In Area3, as shown in Figure 4c, low vegetation is the main challenge to the building
extraction. How to eliminate the pseudo planes formed by the low vegetation is still
an unresolved problem. Thus, it can be concluded that the three datasets are a good
representation for testing the effectiveness and robustness of the proposed method for
building extraction in different environments.

(a) (b) (c)

Figure 4. The tested three datasets provided by the ISPRS. (a) Area1; (b) Area2; (c) Area3.

3.2. Experimental Results and Analysis

Figure 5 shows the building extraction results using the proposed method. From
Figure 5, most of the buildings can be extracted correctly so as to achieve good building
extraction accuracy in the three experimental areas. As shown in Figure 5a,d, although
there are many buildings with complex shapes and different sizes in Area1, the proposed
method can extract them correctly. Thus, it can be concluded that the proposed method
is robust towards building with different shapes and sizes. However, there are still some
omitted building points in Area1 (the blue points in Figure 5a,d), which are mainly located
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at the edge of the building. It is because these buildings are generally with low elevation.
Due to the height difference, the low buildings cannot form a complete object primitive
along with the adjacent buildings but form an independent object primitive. Since the size
constraint of object primitives is adopted in the initial building extraction step, these small
object primitives will be wrongly removed. Although there is dense adjacent vegetation in
Area2, the proposed method effectively eliminates its interference on building extraction.
However, there are still some points that are wrongly classified as buildings, as shown by
the red points in Figure 5b,e. It is because the buildings in Area2 are stacked and the facades
of some buildings are connected with the roofs. As a result, they are easily misclassified as
roof points. The building extraction accuracy of the proposed method in Area3 is relatively
high due to the simple features of the buildings in it. Some omitted points are located
near the chimneys because of the spatial differences among the chimneys with the roof
(Figure 5c,f).

   

(a) (b) (c)  

 
(d) (e) (f)  

Figure 5. Building extraction results of the proposed method. (a) Extraction results for Area1; (b) extraction results for
Area2; (c) extraction results for Area3; (d) the extraction results of Area1 integrating with the corresponding orthophoto
image; (e) the extraction results of Area2 integrating with the corresponding orthophoto image; (f) the extraction results
of Area3 integrating with the corresponding orthophoto image. Yellow represents correctly extracted buildings (TP), red
represents wrongly extracted buildings (FP), and blue represents omitted buildings (FN).

For quantitative evaluation, four indicators proposed by Rutzinger et al. [44] were
adopted to evaluate the precision of the building detection results at both pixel-based and
object-based levels. They are completeness (Comp), correctness (Corr), quality (Quality)
and F1 score (F1).

Completeness represents the percentage of buildings in the reference that were de-
tected. Correctness indicates how well the detected buildings match the reference. Com-
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pleteness tends to evaluate the ability of building detection, while correctness evaluates
the correct detection ability of the proposed method. Quality and F1 score are another two
indicators, which can integrate completeness and correctness to reflect the effectiveness of
the method. The definitions of the above four indicators are defined in Equations (6)–(9):

Comp =
TP

TP + FN
(6)

Corr =
TP

TP + FP
(7)

Quality =
Comp × Corr

Comp + Corr − Comp × Corr
(8)

F1 =
2 × Comp × Corr

Comp + Corr
(9)

This paper evaluated the performance of the proposed method at pixel-based and
object-based levels, respectively. In the pixel-based evaluation, TP represents the number
of correctly extracted building points, FN is the number of omitted building points, FP
represents the number of wrongly detected building points. In the object-based evaluation,
the object can be accepted as TP if it has a 50% minimum overlap with the reference data.
FN represents the number of omitted building objects, FP is the number of objects whose
overlap ratio is less than 50% with the reference data [45].

To evaluate the performance of the proposed method objectively, this paper selected
other ten methods that have also used these public datasets provided by ISPRS for com-
parative analysis. Among the ten methods, the first three methods belong to the kind of
machine learning method, while the other seven methods belong to the kind of classic
methods. Maltezos et al. [11] first created a multi-dimensional feature vector using the
raw LiDAR data and the seven additional features. Then, a CNN was used to nonlinearly
transform the input data into abstract forms of representations. After that, a training set
was used to learn the parameters of the CNN model to perform the building extraction.
Doulamis et al. [46] developed a radial base function kernel Support Vector Machine (SVM)
classifier. The classifier adopted an efficient recursive weight estimation algorithm to make
the network response adaptive. Protopapadakis et al. [47] proposed a nonlinear scheme of
a typical feed-forward artificial neural network with a hidden layer. When the appropriate
features were fed to the detection model, the optimal parameters of the detector structure
were selected by an island genetic algorithm. Awrangjeb and Fraser [24] formed a “building
mask” using the ground points, and then extracted building and vegetation objects with
the co-planarity between adjacent points. After that, vegetation plane primitives were
removed by using the information of area and neighborhood characteristics to complete
the building extraction. Nguyen et al. [45] presented an unsupervised classification method
called super-resolution-based snake model to extract buildings by combining the spectral
features of images and LiDAR point cloud. Niemeyer et al. [48] established the classifica-
tion model with a conditional random field approach. This method utilized a nonlinear
decision surface to separate the object clusters in feature space reliably, and then extracted
buildings. Wei et al. [49] presented an integrated method to comprehensively evaluate
the feature relevance of point cloud and image data. Firstly, point cloud and image data
were co-registered. After that, all data points were grid-fitted to facilitate acquiring spatial
context information per pixel/point. Then, spatial-statistical and radiometric features
could be extracted using a cylindrical volume neighborhood of point. Finally, the AdaBoost
classifier combined with contribution ratio was used to label the points. Moussa and EI-
Sheimy [50] fused the aerial images data with single return LiDAR data to extract buildings
for an urban area. Then, they segmented the entire DSM data into objects based on height
variation. After that, the area, average height, and vegetation index of each object were
adopted to exactly classify the objects. Yang et al. [51] defined the Gibbs energy model
of building objects within the framework of reversible-jump Markov Chain Monte Carlo
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to describe the building points. Then, they found an optimal energy configuration using
simulated annealing. Finally, the detected building objects were refined to eliminate false
detection. Gerke and Xiao [52] introduced a new segmentation approach by making use
of geometric and spectral data. They quantified the point cloud into voxels according to
the geometric and textural features of optical images, and then, buildings are extracted
from voxels by using the supervised classification method based on random forest. Note
that the methods proposed by Maltezos et al. [11], Doulamis et al. [46] and Protopapadakis
et al. [47] only provide the completeness, correctness and quality at per-area level. The F1
score can be calculated according to Equation (9). Thus, in Tables 1–3, we only compared
their building performance at per-area level. It is the same with Figures 6 and 7, only the
average quality and F1 score of the three methods at per-area level were compared with
other methods.

Table 1. Accuracy comparison of building extraction in Area1. The experimental results of the ten methods are obtained
from the corresponding references. Bold font represents the highest value among the comparison results. “×” denotes that
the results are not provided by the reference. Note that the methods proposed by Maltezos et al. (2019), Doulamis et al.
(2003) and Protopapadakis et al. (2016) do not provide the completeness, correctness and quality at per-object level.

Methods
Per-Area (%) Per-Object (%)

Comp Corr Quality F1 Comp Corr Quality F1

Area1

Maltezos et al. (2019) 79.80 91.50 74.40 85.25 × × × ×
Doulamis et al. (2003) 68.80 94.00 65.90 79.45 × × × ×

Protopapadakis et al. (2016) 92.20 68.00 64.30 78.27 × × × ×
Awrangjeb and Fraser (2014) 92.70 88.70 82.90 90.66 83.80 96.90 81.61 89.88

Nguyen et al. (2020) 90.42 94.20 85.65 92.27 83.78 100.00 83.78 91.17
Niemeyer et al. (2012) 87.00 90.10 79.40 88.52 83.80 75.60 65.96 79.49

Wei et al. (2012) 89.80 92.20 83.46 90.98 89.20 97.10 86.89 92.98
Moussa and EI-Sheimy (2012) 89.10 94.70 84.87 91.81 83.80 100.00 83.80 91.19

Yang et al. (2013) 87.90 91.20 81.03 89.52 81.10 96.80 78.98 88.26
Gerke and Xiao (2014) 91.20 90.30 83.06 90.75 86.50 91.40 79.99 88.88
The proposed method 93.04 91.61 85.74 92.32 97.22 90.34 88.07 93.65

Table 2. Accuracy comparison of building extraction in Area2. The experimental results of the ten methods are obtained
from the corresponding references. Bold font represents the highest value among the comparison results. “×” denotes that
the results are not provided by the reference. Note that the methods proposed by Maltezos et al. (2019), Doulamis et al.
(2003) and Protopapadakis et al. (2016) do not provide the completeness, correctness and quality at per-object level.

Methods
Per-Area (%) Per-Object (%)

Comp Corr Quality F1 Comp Corr Quality F1

Area2

Maltezos et al. (2019) 87.70 96.00 84.60 91.66 × × × ×
Doulamis et al. (2003) 83.10 92.30 77.60 87.46 × × × ×

Protopapadakis et al. (2016) 90.80 90.50 82.90 90.65 × × × ×
Awrangjeb and Fraser (2014) 91.50 91.00 83.90 91.25 85.70 84.60 74.20 85.15

Nguyen et al. (2020) 93.47 94.75 88.87 94.11 78.57 100.00 78.57 88.00
Niemeyer et al. (2012) 93.80 91.40 86.19 92.58 78.60 52.40 45.86 62.88

Wei et al. (2012) 92.50 93.90 87.26 93.19 78.60 100.00 78.60 88.02
Moussa and EI-Sheimy (2012) 93.20 95.40 89.19 94.29 78.60 100.00 78.60 88.02

Yang et al. (2013) 88.80 94.00 84.04 91.33 78.60 100.00 78.60 88.02
Gerke and Xiao (2014) 94.00 89.00 84.22 91.43 78.60 42.30 37.93 55.00
The proposed method 96.86 92.93 90.21 94.85 93.33 96.55 90.32 94.91
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Table 3. Accuracy comparison of building extraction in Area3. The experimental results of the ten methods are obtained
from the corresponding references. Bold font represents the highest value among the comparison results. “×” denotes that
the results are not provided by the reference. Note that the methods proposed by Maltezos et al. (2019), Doulamis et al.
(2003) and Protopapadakis et al. (2016) do not provide the completeness, correctness and quality at per-object level.

Methods
Per-Area (%) Per-Object (%)

Comp Corr Quality F1 Comp Corr Quality F1

Area3

Maltezos et al. (2019) 88.20 93.70 83.20 90.87 × × × ×
Doulamis et al. (2003) 82.90 92.90 78.00 87.62 × × × ×

Protopapadakis et al. (2016) 96.70 84.50 82.20 90.19 × × × ×
Awrangjeb and Fraser (2014) 93.90 86.30 81.70 89.94 78.60 97.80 77.23 87.16

Nguyen et al. (2020) 91.00 93.02 85.18 92.00 83.93 97.92 82.46 90.39
Niemeyer et al. (2012) 93.80 93.70 88.24 93.75 82.10 90.20 75.38 85.96

Wei et al. (2012) 86.80 92.50 81.09 89.56 75.00 100.00 75.00 85.71
Moussa and EI-Sheimy (2012) 87.00 95.20 83.34 90.92 66.10 100.00 66.10 79.59

Yang et al. (2013) 85.20 89.50 77.46 87.30 73.20 97.60 71.91 83.66
Gerke and Xiao (2014) 89.10 92.50 83.10 90.77 75.00 78.20 62.30 76.57
The proposed method 91.54 97.59 89.52 94.46 92.16 94.09 87.12 93.12

 
(a) (b) 

Figure 6. Average quality comparison between the proposed method and ten other methods. (a) Per-area level; (b) per-object
level. The average qualities of the ten methods are obtained from the corresponding references. The methods proposed by
Maltezos et al. (2019), Doulamis et al. (2003) and Protopapadakis et al. (2016) do not provide the quality at per-object level.

65



Remote Sens. 2021, 13, 3766

(a) (b) 

Figure 7. Average F1 score comparison between the proposed method and ten other methods. (a) Per-area level; (b) per-
object level. The F1 score of the ten methods are obtained from the corresponding references. The methods proposed by
Maltezos et al. (2019), Doulamis et al. (2003) and Protopapadakis et al. (2016) do not provide the quality at per-object level.

Tables 1–3 show the accuracy comparison of the proposed method with the ten
methods described above in the three areas (Area1, Area2 and Area3) at per-area and
per-object levels. From the comparison, it can be found that the satisfying results in the
three areas are obtained by the proposed method. All the four indicators (completeness,
correctness, quality and F1 score) of the proposed method of the three testing areas are
higher than 85%, and most of them are higher than 90%. The results indicate that the
proposed method can obtain highly desirable accuracy in different environments and can
robustly extract buildings. In the three areas, the proposed method achieved the best on six
out of eight indicators with four indicators at per-area and per-object levels, respectively.
Therefore, compared with the other investigated methods, the proposed method has the
best building extraction performance. In Area1, the proposed method achieved the highest
completeness (Table 1) at both per-area and per-object levels, which demonstrates that
the proposed method has a strong capability of building detection. Compared with the
other two areas, the proposed method performed best in Area2, and all indicators were
higher than 90%, as shown in Table 2. Especially in the per-object evaluation, the quality
of the proposed method (90.32%) is significantly better than the other methods. This
indicates that the proposed method can effectively overcome the interference caused by
dense vegetation around buildings, and can achieve the correct extraction of buildings.
In Area3, the per-area correctness of the proposed method can reach 97.59% (Table 3). It
shows that the proposed method can detect buildings correctly. Overall, the completeness
and correctness of the proposed method are relatively balanced, which indicates that the
proposed method can extract as many buildings as possible while ensuring the correctness
of the extraction results.

Figures 6 and 7 show the comparison of average quality and average F1 score of
the proposed method with the other ten methods in the three study areas. In terms of
the average quality, the proposed method achieved the best results in both per-area and
per-object evaluations. Especially, at per-object level, the average quality of the proposed
method is obviously better than that of the other seven methods. In addition, the proposed
method also obtained the highest average F1 score. Both at per-area and per-object levels,
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the average F1 score of the proposed method is more than 90%. Consequently, the proposed
method performed well in the three kinds of building environments and thus can be
considered as relatively robust.

4. Discussion

In the multi-constraints graph segmentation, two parameters are involved, namely
the number of neighboring points k and the angle threshold ς. The number of neighboring
points determines the size of neighboring set (Equation (1)), while the angle threshold
(Equation (2)) directly affects segmentation results. These two parameters determine the
selection of edges directly and have a distinct influence on the results of graph construction.
Concretely, the larger the k value, the more edges will be accepted, thereby complicating the
graph, increasing the computational costs, and reducing the efficiency of the method. In the
last two decades, some techniques have been proposed to determine the k neighbors, such
as the lowest entropy or highest similarity [53]. In terms of the lowest entropy, the Shannon
entropy has to be calculated for every point. The optimal radius can be determined by
calculating the lowest entropy. In terms of the highest similarity, a similarity index is
defined as the ratio of neighbors whose dimensionality labelling is same with that of the
center point. The optimal radius can be obtained by finding the highest similarity index for
each point. Although these optimal radius selection techniques can help to determine the
k neighbors, it will involve too much calculation. Obviously, the computational burden
will increase greatly and the optimal radius selection process will be time consuming. To
facilitate the implementation of the proposed method, this paper set a fixed value for the
neighbors. Through experimental analysis, the graph complexity and the efficiency can be
balanced when the value of k is set to 10.

The angle threshold ς was set to divide the points on the same plane into the same
object primitives, while the points on different planes were split into multiple object
primitives. Figure 8a–c shows the results of multi-constraints graph segmentation results
with ς taken as 1◦, 10◦ and 15◦, respectively. Figure 8d shows the reference segmentation
results. Although vegetation points were divided into multiple object primitives, the same
building roof was also separated into several small object primitives when ς was set to
1◦, as the black rectangle shown in Figure 8a. This over-segmentation phenomenon is not
conducive to the subsequent extraction of initial building points which are based on the
size of object primitives. When ς was set to 10◦, some points on different roof planes of the
building failed to be separated into different object primitives, as shown in Figure 8b as blue
rectangle. When the value of ς continues to increase (ς = 15◦), a more under-segmented
roof planes were observed, as shown in Figure 8c. If the points from different roof planes
are segmented into same object primitives, there will be a large fitting error in calculating
the roughness of each object primitive. Consequently, it will be difficult to discriminate
buildings from other object primitives (such as dense vegetation). The experimental results
showed that the proper segmentation results can be achieved when the angle threshold ς is
set to 5◦, as shown in Figure 2a. In this case, not only the vegetation points can be divided
into multiple object primitives, but also the building points from the same plane can be
separated into the same object primitives.
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(a) (b) (c) (d) 

Figure 8. Graph segmentation results with different ς. (a) ς= 1◦; (b) ς= 10◦; (c) ς= 15◦; (d) the reference segmentation
results. Different object primitives are colored with different colors.

Another important parameter involved in this paper is the threshold for the object
primitive roughness, which was set in the step of initial building extraction. Figure 9a–c are
the initial building extraction results for Area3 with the roughness thresholds of 0.02, 0.04
and 0.06, respectively. In Figure 9a, it can be found that when the value of this threshold
was too small, many independent buildings were not successfully detected. It is because
that part of the points located at the boundary of buildings were omitted, resulting in
the low completeness of the initial building points. Figure 9b shows the initial buildings
extracted in this paper with the roughness threshold of 0.04. It illustrates that, with the
proper value of the threshold, more buildings could be detected, and the misclassification
of some non-building points can be avoided. When the threshold is set too large, it can
be found that mainly dense vegetation points are misclassified as buildings, as shown in
Figure 9c. Therefore, setting a too large roughness threshold will reduce the correctness of
the result.

    
(a) (b) (c)  

Figure 9. Initial building points extraction results with different roughness threshold. (a) The threshold is 0.02; (b) the
threshold is 0.04; (c) the threshold is 0.06. Yellow represents correctly extracted buildings (TP), red represents wrongly
extracted buildings (FP), and blue represents omitted buildings (FN).
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To validate the applicability of the proposed method, two other public datasets pro-
vided by OpenTopography were selected for further testing [54]. The datasets are located in
the north of Palmerston, New Zealand, with a point density of 22 points/m2. The ground
objects include buildings, impervious surface, low vegetation, trees and shrubs and so
on, as shown in Figure 10. Figure 10a is the true-color image of the first dataset named
as S1. It can be seen that the buildings in S1 are densely distributed with regular shapes,
surrounded by dense vegetation. Figure 10b is the point cloud data of this area. Figure 10c
is the true-color image of the second dataset named as S2, which contains many buildings
with complex shapes and large sizes. Figure 10d shows the corresponding point cloud data
of this area.

    
(a) (b) (c) (d) 

Figure 10. The study areas of OpenTopography datasets. (a) The true-color image of S1; (b) the point cloud data of S1,
which is colored according to different labels; (c) the true-color image of S2; (d) the point cloud data of S2, which is colored
according to different labels.

The building extraction results of the two areas mentioned above are shown in
Figure 11. Figure 11b,d are the reference building extraction results from the orthophoto
images of S1 and S2, respectively. It can be found that the proposed method can achieve
satisfying results in both areas (S1 and S2) because most of the building points were ac-
curately extracted. However, there still exist some points on the roof plane that were not
effectively detected as shown as blue points in the black rectangle of Figure 11a. It is
mainly because there are some small roof planes in S1, which makes the object primitives
formed by these blue points smaller so that they cannot be effectively identified in the
initial building extraction. As shown in Figure 11c, there are a few wrongly detected points
in S2, such as the red points in the black rectangle. It is caused by the overlapping of some
high vegetation and buildings. A small number of vegetation points around the edge of
buildings are divided into the same object primitives with their adjacent buildings, thereby
being misclassified. Table 4 shows the quantitative evaluation results of the two areas.
All the indicators are higher than 90%. Especially, the completeness and F1 score of the
proposed method are higher than 95%. Thus, it can be concluded that the proposed method
can effectively detect buildings with different sizes and shapes.
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(a) (b) 

  

 

(c) (d)  

Figure 11. Building extraction results of OpenTopography datasets. (a) The building extraction result
for S1; (b) the reference building extraction results of S1 from orthophoto image; (c) the building
extraction result for S2; (d) the reference building extraction results of S2 from orthophoto image.
Yellow represents correctly extracted buildings (TP), red represents wrongly extracted buildings
(FP), and blue represents omitted buildings (FN).

Table 4. Accuracy of building extraction in OpenTopography datasets.

Per-Area (%) Per-Object (%)

Comp Corr Quality F1 Comp Corr Quality F1

S1 96.54 99.28 95.87 97.89 98.25 98.61 96.90 98.43
S2 96.09 98.34 94.56 97.20 100.00 91.43 91.43 95.52

5. Conclusions

Building extraction from airborne LiDAR point clouds is a significant step in the appli-
cations of point cloud post-processing, such as urban three-dimensional model construction
and digital urban management. To solve the problems existing in the building extraction,
such as huge computational cost, poor adaptability to different building environments and
the interference of adjacent vegetation, this paper proposed a building extraction method
from airborne LiDAR data based on multi-constraints graph segmentation. In this paper,
the graph structure of the point cloud was first built. Afterwards, the object primitives were
obtained based on the multi-constraints graph segmentation. In doing so, the point-based
building extraction is transformed into the object-based building extraction to improve
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the efficiency of the method. After that, the initial building point cloud is extracted based
on the different spatial geometric features of each object primitive. To improve the com-
pleteness of building extraction, this paper proposed a multi-scale progressive growth
optimization method to recover some omitted building points located on the ridge and
edge areas. Three public datasets with different building environments provided by ISPRS
were adopted for the testing. The experimental results showed that the proposed method
can achieve good building extraction performance in all the three testing areas. Compared
with other ten famous building extraction methods, the proposed method also performed
the best. Two other publicly available datasets provided by the OpenTopography were
also used for further testing. The experimental results showed that the proposed method
has strong robustness and promising performance in building extraction. In addition, the
completeness and correctness achieved by this method were relatively high and balanced.
It reveals that the proposed method can detect more buildings while ensuring the accuracy
of the results. However, the implementation of the proposed method needs setting of
some parameters, such as the number of neighboring points k and the angle threshold
ς. To ease the implementation of the proposed method, this paper set fixed values for
the parameters. However, to obtain better building extraction results, it is necessary to
adjust the parameters according to the point clouds with different densities. In future work,
we will try to improve the automation of the proposed method to make the parameters
adjusting automatically according to the particularity of each point cloud.
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Abstract: High-resolution remote sensing images contain abundant building information and pro-
vide an important data source for extracting buildings, which is of great significance to farmland
preservation. However, the types of ground features in farmland are complex, the buildings are
scattered and may be obscured by clouds or vegetation, leading to problems such as a low extraction
accuracy in the existing methods. In response to the above problems, this paper proposes a method of
attention-enhanced U-Net for building extraction from farmland, based on Google and WorldView-2
remote sensing images. First, a Resnet unit is adopted as the infrastructure of the U-Net network
encoding part, then the spatial and channel attention mechanism module is introduced between
the Resnet unit and the maximum pool and the multi-scale fusion module is added to improve the
U-Net network. Second, the buildings found on WorldView-2 and Google images are extracted
through farmland boundary constraints. Third, boundary optimization and fusion processing are
carried out for the building extraction results on the WorldView-2 and Google images. Fourth, a case
experiment is performed. The method in this paper is compared with semantic segmentation models,
such as FCN8, U-Net, Attention_UNet, and DeepLabv3+. The experimental results indicate that this
method attains a higher accuracy and better effect in terms of building extraction within farmland;
the accuracy is 97.47%, the F1 score is 85.61%, the recall rate (Recall) is 93.02%, and the intersection
of union (IoU) value is 74.85%. Hence, buildings within farming areas can be effectively extracted,
which is conducive to the preservation of farmland.

Keywords: building extraction; farmland range; attention enhancement; U-Net network improve-
ment; multi-source remote sensing image

1. Introduction

Farmland constitutes an important resource for human survival and development.
Countries worldwide have each issued corresponding farmland protection policies or
measures [1–6]. Farmland protection represents the basic guarantee to maintain the red line
of 1.8 billion mu of farmland in China, but the phenomenon of illegal farmland occupation
to build houses in rural areas is serious [7,8]. According to statistics, since 1 January
2013, more than 7 million mu of farmland has been occupied for house construction in
China, which more than 600,000 mu has been occupied in the southwest region. Therefore,
building extraction in farmland is of great significance for farmland protection [9–12].

Traditional field surveys provide high accuracy and reliable results but require consid-
erable manpower, materials and financial resources. With the continuous development of
remote sensing technology, the obtained remote sensing images with higher spatial reso-
lution contain abundant building information. Extracting buildings from high-resolution
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remote sensing images has become a research hotspot [9,13–16]. Traditional building extrac-
tion methods, based on optical remote sensing images, mainly consider low-level semantic
features such as color, texture, and shape to extract buildings. Methods of this kind include
edge detection, region segmentation, corner detection, threshold segmentation, clustering,
etc. [17–21]. However, these methods are affected by lighting conditions, sensor types,
and building structures. Even if the high-resolution remote sensing images are rich in
details, the complex types of features, pixel mixing, shadows and other problems within
the farmland are serious, making the phenomenon of “same subject with different spectra”
or “different subject with same spectra” more common. These methods are limited when
solving the problem of building extraction under specific data conditions [14,22].

In recent years, deep-learning methods have continued to be developed, and various
neural network models have been widely used for intelligent building extraction [23–26].
With complex structural features, single-pixel segmentation may destroy the integrity
and structural features of the building. In response to this problem, scholars at home
and abroad have further improved various semantic segmentation models and created
networks for the extraction of buildings. Good results have been achieved [27–29]. For
example, Li et al. proposed a rural building segmentation method based on Mask R-CNN
and a histogram threshold, which achieved the high-performance semantic segmentation
of buildings via a small number of samples [30]. Zhang et al. combined a neural network
and edge detection to conduct building extraction experiments. After pixel classification
through the neural network, edge detection was used to complete an accurate segmentation
of building boundaries [31]. Wu et al. established a multi-constrained full convolutional
neural network architecture based on FCN, and used multiple constraints to optimize
the parameters of the middle layer in order to obtain more multi-scale features [32]; Lin
et al. combined residual block and expanded convolution to construct a deep network
architecture for building extraction, and improved computational efficiency through a
certain accuracy loss [33]; Xu et al. combined Resnet and U-net networks to extract
buildings from high-resolution remote sensing images, and integrated them using guided
filters to eliminate noise, improve accuracy and optimize the output result [34]. Bai
et al. proposed an improved faster R-CNN building extraction method, using dense
residual network and region of interest alignment methods to solve the problem of regional
mismatch, and further improve the effect of building detection [35]. Deng et al. used a new
feature extraction method to combine an object suggestion network (MS-OPN) and object
detection network (AODN) to construct multi-scale features for building extraction [36].
The above methods mainly focus on urban areas where buildings are dense. For these
places, the features on the image are mainly buildings, and the occlusion of buildings
is not considered. However, within the range of farmland, there are few buildings and
most of the areas comprise non-construction land use. These methods are not suitable for
effectively extracting small targets within the farmland, and attention needs to be paid to
small target buildings.

The attention mechanism imitates human brain–eye vision, which can more accurately
focus on and process the most important details, rather than establishing the whole visual
content. Therefore, it is widely used in deep learning to improve the accuracy of target
extraction [37,38]. Yang et al. combined a lightweight DenseNet and a spatial attention
fusion module to construct a dense attention network for building extraction from remote
sensing images [39]. Pan et al. combined spatial and channel attention mechanisms to
detect buildings using a U-Net network [40]. Jiang et al. input a global co-attention
mechanism, building an attention-guided Siamese network based on a pyramid feature
to detect urban building changes and achieved good results [41]. Guo et al. proposed
a building extraction structure based on attention and multiple losses, which further
improved the sensitivity of the model and the feature extraction ability [42]. However,
the building distribution within farmland is sparse, shielding effects such as clouds, rain,
fog, and vegetation may occur, and the boundary may be blurred. The above existing
methods encounter difficulties regarding the accurate extraction of building information
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in farmland. With the requirement of overcoming the problem of building occlusion, it is
necessary to fuse multi-source remote sensing images to extract farmland buildings and
fuse the extraction results.

Therefore, in response to the above problems, this paper proposes a method using an
attention-enhanced U-Net for building extraction from farmland. First, the Resnet unit
is introduced as the basic structure in the coding layer of the U-Net network, and the
spatial and channel attention modules are added to the convolutional layer of the U-Net
network to enhance the convolution process’s attention, given in dispersed small targets.
The buildings within farmland are better extracted and the U-Net network is improved.
Then, we integrated WorldView-2 and Google remote sensing images (WorldView-2 images
are provided by the Sichuan Provincial Bureau of Surveying and Mapping, and Google
images are freely downloaded from the Internet). Taking the farmland boundaries given
by the third national census dataset as the spatial semantic constraint, the buildings
within farmland can be extracted and the influence of interference factors can be reduced.
Finally, through morphological operations such as opening and closing operations, the
extracted building boundaries are optimized and merged to enhance the accuracy of
building extraction in farmland. The main chapters of this paper are arranged as follows:
the second part introduces the main technical methods of the paper, including U-Net
network improvement, intelligent building extraction from WorldView-2 and Google
remote sensing images under boundary constraints, and boundary optimization processing
operations. The third part mainly describes the source of the dataset, parameter settings,
experimental results and discussion. The fourth part introduces the research conclusions
and prospects for future work.

2. Methodology

2.1. Overall Framework

This paper proposes a method of attention enhanced U-Net for building extraction
from farmland. The overall research idea is shown in Figure 1. The main content can
be divided into two parts: (1) spatial-channel attention-enhanced building extraction:
using the Resnet unit as the basic structure, adding a spatial-channel attention mechanism
module and a multi-scale fusion module, the U-Net network is improved and the network’s
attention to small-building targets is enhanced; (2) building boundary optimization and
fusion processing: with remote sensing images from WorldView-2 and Google as the
input, the building extraction range is narrowed under farmland boundary constraints, an
improved U-Net network is employed to extract buildings for farmland, morphological
filtering methods are implemented, such as opening/closing operations to optimize the
extraction results, and the optimized building extraction results are fused to achieve
accurate building extraction results from the farmland.

Figure 1. Overall procedural framework.
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2.2. Improvement of the Attention-Enhanced U-Net Network

The U-Net network relies on skip connections to force the aggregation of same-scale
feature maps of the encoder and decoder sub-networks, and the network performance is
good. However, the types of features in the farmland are variable. These comprise not only
buildings but also roads, woodlands, etc. Moreover, the building distribution is sparse, and
various problems such as clouds, rain, fog, and vegetation shielding may ensue, resulting
in an inability to extract small targets from complex backgrounds, incomplete building area
extraction, and inaccurate boundaries. To overcome the limitations of existing methods
in the extraction of small building targets within the farmland range from a complex
background, this paper improves the U-Net network, as shown in Figure 2. The upper part
represents the encoding structure, and the lower part represents the decoding structure. In
the U-Net network coding stage, Resnet and attention models are added to enhance the
network’s attention to small target buildings. Since continuous up-sampling will cause the
loss of detail in the building information, this paper adds a multi-scale fusion module in
the boundary stage to ensure the local detail characteristics of the buildings are retained.

Figure 2. Improvement of the attention-enhanced U-Net network.

The encoding part adopts the Resnet unit as the basic structure, as shown in Figure 3.
Compared to a traditional convolution layer, the Resnet residual network achieves conver-
gence more easily and avoids the performance degradation issues caused by an increase in
network depth. To prevent overfitting, batch normalization (BN) and rectified linear unit
(ReLU) activation function layers are added, based on the residual network, to establish a
refined residual network. The nonlinear expression ability of the network model is thus
improved, and the features extracted from remote sensing images become richer.

Figure 3. Schematic diagram of the Resnet unit.
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Buildings are scattered throughout farmland. To enable the model to focus on scattered
buildings, in the coding stage, the small target buildings within the farmland are focused
upon, and the details of important targets are paid more attention to, according to the
patterns of human vision. Meanwhile, the attention-mechanism module is adopted between
each Resnet unit and the maximum pooling layer, which mainly includes two parts:
channel and spatial attention. Channel attention is based on the relationships among the
extracted features, and the channel weight is modeled to determine what the target object
is. Spatial attention uses the spatial relationship of features to remodel the weight of spatial
location pixels and determine which location represents the information. The local and
global information can be aggregated by the attention-mechanism module, the relationship
between buildings and the background can be captured, the feature weight of each channel
and spatial location can be adaptively adjusted, and the network feature-extraction capacity
with regard to small building targets and the ability to better grasp complex scenes can be
enhanced.

As shown in Figure 4, the attention-mechanism model designed in this paper can
be used to locate the area where small building targets are scattered in a given remote
sensing image and suppress useless information. First, channel attention is modeled for
input feature mapping, the global average pool and maximum pool layers are processed
to obtain an input feature map, and a multi-layer perceptron is constructed. The weight
of each channel is automatically obtained via self-learning and is then multiplied by the
input feature map to obtain a channel attention feature map. Second, spatial attention
modeling is conducted, and the above channel attention feature map is applied as an
input to perform the spatial convolution operation and obtain the corresponding attention
weights at different spatial positions on the feature map. Then, the feature map processed
by the spatial and channel mixed-attention mechanism is multiplied by the input feature
map, for adaptive feature refinement. In the process of training and prediction, the model
can better focus on the most important feature channels and spatial positions in remote
sensing images, which thus improves the model’s detection performance.

Figure 4. Attention mechanism model.

In the decoding structure, the feature map is reconstructed through the deconvolution
layer, the feature map after the deconvolution layer is skip-connected with the attention-
enhanced feature map included at the encoding stage, the depth of the feature map is
reduced relying on a conventional convolution layer, and the size of the feature map is
gradually expanded. Finally, to further improve the network performance, which entails
the perception ability of multi-scale buildings in the farmland, especially small buildings
and building edge information, and considering that shallow features have high resolution,
but rich details and deep features have low resolution but offer rich semantic information,
multi-scale feature fusion is carried out, to acquire both deep and shallow features after
up-sampling and nonlinear processing. This strategy can ensure that the network will not
ignore texture, edge, and other image details, while extracting global semantic information
to obtain building texture, shape and spatial context features and provide more precise
building segmentation results.
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2.3. Building Extraction from Multi-Source Remote Sensing Images under Boundary Constraints

Buildings within the farmland may be obscured, the building extraction range may
require narrowing, and the extraction accuracy may necessitate improvement. To resolve
the above problems, this paper fully employs the advantages of satellite images and
proposes an intelligent building extraction method from multi-source remote sensing
images under boundary constraints, considering different satellite remote sensing images
of the same area, as shown in Figure 5. WorldView-2, Google, and other image series can
be used to assess whether buildings are located within the boundary range, through the
boundary constraints of farmland. If buildings are not located within the range, they are
directly discarded. With regard to buildings within the boundary range, an improved U-Net
neural network model with an enhanced attention mechanism is adopted to intelligently
extract building contours and the relative position information.

Figure 5. Building extraction based on the boundary constraints of farmland range.

2.4. Building Boundary Optimization and Fusion Processing

There are certain problems in the extraction results obtained with neural network-
based models, such as very small spots, hollow areas, boundary sawtooth features and
misclassification issues. Moreover, the building extraction results based on multi-source
remote sensing images are varied. Therefore, this paper proposes a building boundary
optimization and fusion processing method that is based on morphological filtering, as
shown in Figure 6, to improve the accuracy of building extraction.

First, in terms of the neural network extraction results containing fine patches, a filter
based on geometric operations is applied to execute the opening operation. As expressed in
Equation (1), isolated points and burrs in tiny spots are removed in this manner. Regarding
the extraction results including hollow areas, the closing operation of a morphological
filtering operation is implemented, as expressed in Equation (2), to fill any cracks or hollow
areas in the extraction results:

I ◦ S = (I � S)⊕ S (1)

I • S = (I ⊕ S)� S (2)
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where I denotes the original image extracted by the network, and S denotes the structural
element of the filter.

Figure 6. Building boundary optimization and fusion processing.

Then, based on the results of the morphological filtering operation, refer to the method
proposed by Xie et al. to judge whether the number of building contour corners is smaller
than the set threshold. If the set conditions are met, the multi-source remote sensing
image extraction results are fused. Conversely, the building boundary should be optimized
until the corner number conditions are satisfied [43]. Finally, the extraction results of the
WorldView-2 and Google images after boundary optimization are compared pixel by pixel,
and the pixels representing the building at the current location are merged as the prediction
results, so as to realize the fusion processing of the extraction results of WorldView-2 and
Google remote sensing images and solve the problem of misclassification in the extraction
results. Gridlines are created, with the considered building outlines as boundaries. The
results are further assessed to establish whether the building outline boundary requires
further smoothing. If the conditions are met, the building extraction results for farmland
are output. Otherwise, the boundary should be smoothed until the smoothing conditions
are satisfied. The sawtooth effect in the extraction results is mitigated so that the extraction
results are more precise and accurate.

3. Case Experiment Analysis

3.1. Case Area and Dataset

To verify the proposed method, the considered experimental data included five
WorldView-2 satellite remote sensing image datasets, covering Qionglai city, Meishan
city, Dayi County and Pujiang County of Sichuan Province, and Google images of the same
areas, as shown in Figure 7. The image spatial resolution reached 0.5 × 0.5 m, with three
bands, i.e., red, green and blue bands. The building pixel value was 1, and the pixel values
of other features were set to 0. Due to the limited memory size of the adopted graphics
card, each image was cropped with a sliding window exhibiting a size of 512 × 512 pixels.

Considering that the buildings in the images are relatively small, meaningless back-
ground slices in the training set were eliminated. The 5 satellite remote sensing images
were randomly divided into a training set, validation set, and test set at a ratio of 6:2:2, and
the data augmentation method was applied to expand the training dataset and improve the
generalization ability of the model. Through comparative experiments, it was found that
the addition of Gaussian noise and color perturbation during image data processing did
not encourage model accuracy improvement. Therefore, the image processing procedure
only involved rotation and flip operations, so that more morphological building features
could be recognized, as shown in Figure 8. Finally, 6238 training sets, 2301 verification sets,
and 1637 test sets were obtained, and no overlap occurred between the training data and
test data.
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Figure 7. Case study experiment area. (a): Case area; (b): farmland area; (c): ground truth; (d): original images.

Figure 8. Image and label data.

3.2. Experimental Environment and Parameter Setting

All training and testing operations in this paper were performed on a Windows 10
system with an Intel (R) Core (TM) i9-10920x CPU @ 3.50 GHz processor, 64 GB of memory
and an NVIDIA GeForce RTX 3090 GPU graphics card. The initial learning rate during
model training was set at 0.001. By monitoring the loss value, the learning rate was reduced
to the original value of 0.5 when the performance did not improve after 10 epochs. The
experiment was trained using the built-in TensorFlow framework in Python version 3.6,
the training batch size was 4 and a total of 60 epochs were iterated with a duration of 12 h.
To verify the accuracy of the extraction results obtained using the method proposed in
this paper, this paper chosed the accuracy, F1, recall, and an intersection of union (IoU) to
evaluate the extraction results, where the accuracy is given by the proportion of correctly
predicted pixels among the total pixels, as expressed in Equation (3). F1 is a comprehensive
index to measure the model, as defined in Equation (4). Recall represents the proportion of
correctly predicted buildings among the total buildings, as expressed in Equation (5), and
the IoU represents the ratio of the intersection zone (the intersection between the predicted
and true values) to the union zone (the union between the predicted and true values), as
defined in Equation (6).

Accuracy =
TP + TN

TP + TN + FP + FN
(3)
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F1 =
2TP

2TP + FP + FN
(4)

Recall =
TP

TP + FN
(5)

IoU =
TP

TP + FP + FN
(6)

where the true positive (TP), false positive (FP), true negative (TN) and false negative
(FN) rates evaluate the pixel classification results through comparison of the extracted
building pixels to the available ground-truth points. TP denotes the number of correctly
extracted building pixels, FP denotes the number of erroneously detected building pixels,
TN denotes the number of correctly extracted non-building pixels, and FN denotes the
number of missed building pixels.

3.3. Experimental Results and Analysis

As shown in Figure 9, the results for the buildings extracted using the attention-
enhanced U-Net model proposed in this paper showed that our model can effectively
extract buildings within the scope of farmland. However, the buildings in the dataset are
scattered and staggered in the farmland, which leads to the problems of unclear edges and
holes at certain map locations, as shown in Figure 9c. With the application of boundary
optimization and data fusion methods, the building extraction results are optimized, as
shown in Figure 9d. Comparing the red boxes in Figure 9c,d, we can observe that the
building pattern in Figure 9d contains no small holes and that the boundary is smooth. In
particular, the optimization process can eliminate the very small spots previously found in
the extraction results and smooth the boundary, so as to obtain a more complete extracted
shape and clearer boundary, respectively.

Figure 9. Experimental results. (a): Original images; (b): ground truth; (c): ours model extraction results; (d): post
processing results.

To achieve the accurate extraction of building targets, boundary optimization and
fusion processing of the building patterns extracted with the network model are executed.
The experimental results are listed in Table 1. The IoU value after optimization reaches
74.85%, and the F1 score reaches 85.61%, which are 6.13% and 4.14% higher, respectively,
than the values without optimization, thus demonstrating that the post-processing op-
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timization method designed in this paper can effectively improve building extraction
accuracy.

Table 1. Quantitative comparative analysis of case experiment results.

Method Accuracy F1 Recall IoU

Our model 96.96% 81.47% 82.72% 68.72%
Post-processing 97.47% 85.61% 93.02% 74.85%

3.4. Discussion

To verify the accuracy and applicability of the proposed method, several groups of
comparative experiments were established to compare this method with FCN8, U-Net
and Attention_UNet, DeepLabv3 + [44] and other models qualitatively and quantitatively,
where Attention_UNet includes a convolutional block attention module (CBAM) module
based on the U-Net model [38].

3.4.1. Comparative Experiments of Building Extraction

Figure 10 shows the results obtained by the proposed method, FCN8, U-Net and
Attention_UNet, DeepLabv3+ and the other considered models based on WorldView-
2 images, where green indicates the positive extraction area, red indicates the missing
extraction area and blue indicates the false extraction area. As shown in Figure 10b,c,
the building boundaries extracted with the U-Net and FCN8 models are relatively fuzzy,
and the building omission phenomenon is obvious with the FCN8 model, while incorrect
extraction obviously occurs with the U-Net model. As shown in Figure 10d, the extraction
results obtained with the U-Net model containing the attention mechanism are notably
better than those obtained with the original U-Net and FCN8 models, but the extraction
results remain insufficiently fine. Furthermore, Figure 10e shows that there are many holes,
missing extraction and incorrect extraction results among the results obtained with the
DeepLabv3+ model. The black box in Figure 10 reveals that the building pixels extracted
with the network model designed in this paper are closer to the real image, and compared
to the other four network models, the positive extraction area accounts for the majority of
the image, which demonstrates that the proposed model can finely extract scattered small
buildings from farmland images.

To quantitatively analyze the building extraction results, we considered the building
labels drawn by manual visual interpretation as a reference, and the four evaluation
indicators of Accuracy, Recall, IoU, and F1 were adopted to evaluate the building extraction
results for farmland protection, as indicated in Table 2. Compared with U-Net, FCN8,
Attention_UNet, and DeepLabv3+, the model proposed in this paper achieves the highest
accuracy in building extraction from remote sensing images, with the IoU value reaching
68.72% and the F1 score reaching 81.47%. The IoU value obtained with our model is 33.73%,
25.84%, 14.71% and 5.33% higher, respectively, than that obtained with the other four
models. The F1 score is 29.63%, 13.29%, 11.33% and 3.87% higher, respectively. The results
indicate that the shape of the building block extracted with the model developed in this
paper is closer to the actual building block shape.

Table 2. Comparison of the building extraction results obtained with the different methods.

Method Accuracy F1 Recall IoU

U-Net 88.99% 51.84% 73.31% 34.99%
FCN8 95.70% 68.18% 57.02% 42.88%

Attention_UNet 94.42% 70.14% 81.07% 54.01%
DeepLabv3+ 96.60% 77.60% 72.78% 63.39%
Our model 96.96% 81.47% 82.72% 68.72%
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Figure 10. Model comparison results. (a): Original images; columns (b–e): represent extracted results by U-Net, FCN8,
Attention_UNet, DeepLabv3+; (f): represent our model extracted results.

3.4.2. Comparative Experiments of Boundary Optimization and Fusion

The results of building extraction using the method proposed in this paper, FCN8,
U-Net, Attention_UNet and DeepLabv3+ are shown in Figure 11. According to Figure 11a,
there are a large number of small spots showing wrong detection in the U-Net fusion result,
and the missed detection is serious. According to Figure 11b–d, the FCN8 fusion presents
obvious areas of missed detection. Meanwhile, the fusion results of Attention_UNet
and DeepLabv3+ demonstrate obvious false detection areas around the boundary of the
building’s block. According to Figure 11e, compared with the other four network models,
the fusion processing results of building patches extracted by this method account for the
most positive inspection areas, and the building patches are more complete; that is, the
fusion processing can eliminate the fine patches in the results and smooth the edges of the
patches.

As shown in Table 3, compared with the other four network models, the model pre-
sented in this paper offers the highest accuracy after fusion processing; the IoU score is
74.85% and the F1 score is 85.61%, 36.69% and 32.06% higher than U-Net, respectively.
Compared with FCN8, it is 5.33% and 7.55% higher, respectively. Compared with Atten-
tion_UNet, it is 17.71% and 13.55% higher, respectively. Compared with DeepLabv3+, it
is 7.06% and 5.04% higher, respectively. These results show that the fusion processing
of building blocks extracted by this model can greatly improve the accuracy of building
extraction.
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Figure 11. Boundary optimization and fusion comparison results. Columns (a–d) represent extracted results by U-Net,
FCN8, Attention_UNet, DeepLabv3+; (e) represent extracted results by our method.

Table 3. Quantitative comparative analysis of fusion results.

Method Accuracy F1 Recall IoU

U-Net 89.56% 53.55% 87.22% 38.16%
FCN8 96.88% 80.28% 84.27% 67.30%

Attention_UNet 94.40% 72.06% 89.78% 57.14%
DeepLabv3+ 96.88% 80.57% 86.94% 67.79%
Our model 97.47% 85.61% 93.02% 74.85%

4. Conclusions and Future Work

Considering the problems of low extraction accuracy and unclear building boundaries
when using existing methods for farmland, a method of attention enhanced U-Net for
building extraction from farmland based on Google and WorldView-2 remote sensing
images is proposed. The selected farmland range under test covers Qionglai city, Meishan
city, Dayi County and Pujiang County of Sichuan Province, and case experiments were
performed. The experimental results reveal the following: the accuracy is 97.47%, the
F1 score is 85.61%, the recall rate is 93.02%, and the IoU value is 74.85%. All accuracy
evaluation indicators are better than those obtained with U-Net, FCN8, Attention_UNet,
DeepLabv3+ and other models, which verifies that the method proposed in this paper
can effectively extract buildings on farmland. The main contributions of this paper are
as follows: first, Resnet is adopted as the U-Net infrastructure, and a spatial and channel
attention mechanism module, as well as a multi-scale fusion module, are added to improve
the U-Net network and enhance the focus of attention on small building targets in the
farmland. Secondly, the method developed uses WorldView-2 and Google remote sensing
images to limit farmland boundaries, narrowing the extraction range of buildings and
improving extraction accuracy. Finally, a building boundary optimization method based
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on morphological filtering is proposed, the extraction results are judged pixel by pixel,
and the extraction results of the two images are merged. The method in this paper can
effectively solve the problems offered by low accuracy of building extraction results,
blurred boundaries, and so on, which can be attributed to the complex types of features,
the sparse distribution of buildings, and building occlusion within farmland. Meanwhile,
the method provides scientific and technical support for the investigation of buildings
within the subject of farmland preservation, which is of great significance to maintaining
farmland.

Despite the above achievements, the method presented in this paper also has certain
limitations. For example, the buildings in mountainous areas are mostly low-rise bun-
galows and are relatively old, the boundary between the building and the surrounding
ground objects is more blurred, and the method is adversely affected by clouds, rain, fog,
and vegetation all the year round. Thus, it is difficult to accurately extract data regard-
ing the buildings in these places. Meanwhile, if several buildings are adjacent and the
boundaries are fuzzy, the method outlined in this paper finds it difficult to accurately
determine the adjacent relationship of the buildings, and the method is likely to identify
them as a single building. The boundary between adjacent buildings is not fully considered,
resulting in several adjacent buildings being regarded as one complete building. The fur-
ther development of remote sensing and interferometric synthetic aperture radar (InSAR)
technology could overcome the influence of cloudy and rainy weather conditions and yield
higher-resolution remote sensing images. Therefore, in future research, we will continue to
integrate additional and higher-resolution remote sensing images, further develop general-
ization and complex-building abstraction methods, and study the processing methods for
neighboring relationships between buildings, to improve building extraction accuracy in
farmland.

Author Contributions: Conceptualization, C.L. and L.F.; methodology, C.L.; software, L.F.; valida-
tion, C.L., Y.X. and Y.G. (Yukun Guo); formal analysis, C.L. and L.F.; investigation, Y.G. (Yuhang
Gong); resources, Z.F.; data curation, Y.X.; writing—original draft preparation, C.L. and L.F.; writing—
review and editing, Q.Z.; visualization, C.L. and L.F.; supervision, Q.Z. and J.Z.; project administra-
tion, L.F.; funding acquisition, J.Z. All authors have read and agreed to the published version of the
manuscript.

Funding: This research was funded by Project of Department of Natural Resources of Sichuan
Province (grant number KJ-2020-4), Sichuan Science and Technology Program (grant 2020JDTD0003,
2020YFG0083).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Chen, Y.M.; Yao, M.R.; Zhao, Q.Q.; Chen, Z.J.; Jiang, P.H.; Li, M.C.; Chen, D. Delineation of a basic farmland protection zone
based on spatial connectivity and comprehensive quality evaluation: A case study of Changsha City, China. Land Use Policy 2021,
101, 105145. [CrossRef]

2. Connell, D.J. The Quality of Farmland Protection in Canada: An Evaluation of the Strength of Provincial Legislative Frameworks.
Can. Plan. Policy Aménage. Polit. Can. 2021, 1, 109–130.

3. Perrin, C.; Clément, C.; Melot, R.; Nougarèdes, B. Preserving farmland on the urban fringe: A literature review on land policies in
developed countries. Land 2020, 9, 223. [CrossRef]

4. Perrin, C.; Nougarèdes, B.; Sini, L.; Branduini, P.; Salvati, L. Governance changes in peri-urban farmland protection following
decentralisation: A comparison between Montpellier (France) and Rome (Italy). Land Use Policy 2018, 70, 535–546. [CrossRef]

5. Epp, S.; Caldwell, W.; Bryant, C. Farmland preservation and rural development in Canada. In Agrourbanism; Gottero, E., Ed.;
GeoJournal Library; Springer: Cham, Switzerland, 2019; Volume 124, pp. 11–25.

6. Wu, Y.Z.; Shan, L.P.; Guo, Z.; Peng, L. Cultivated land protection policies in China facing 2030: Dynamic balance system versus
basic farmland zoning. Habitat Int. 2017, 69, 126–138. [CrossRef]

87



Remote Sens. 2021, 13, 4411

7. Shao, Z.F.; Li, C.M.; Li, D.R.; Altan, O.; Zhang, L.; Ding, L. An accurate matching method for projecting vector data into
surveillance video to monitor and protect cultivated land. ISPRS Int. J. Geo-Inf. 2020, 9, 448. [CrossRef]

8. Li, C.X.; Gao, X.; Xi, Z.L. Characteristics, hazards, and control of illegal villa (houses): Evidence from the Northern Piedmont of
Qinling Mountains, Shaanxi Province, China. Environ. Sci. Pollut. Res. 2019, 26, 21059–21064. [CrossRef] [PubMed]

9. Shao, Z.F.; Tang, P.H.; Wang, Z.Y.; Saleem, N.; Yam, S. BRRNet: A fully convolutional neural network for automatic building
extraction from high-resolution remote sensing images. Remote Sens. 2020, 12, 1050. [CrossRef]

10. Xie, J.L. Research on Key Technologies of Rural Building Information Extraction Based on High Resolution Remote Sensing Images;
Southwest Jiaotong University: Chengdu, China, 2019.

11. Ji, S.P.; Wei, S.Q.; Lu, M. Fully convolutional networks for multisource building extraction from an open aerial and satellite
imagery data set. IEEE Trans. Geosci. Remote Sens. 2018, 57, 574–586. [CrossRef]

12. You, Y.F.; Wang, S.Y.; Ma, Y.X.; Chen, G.S.; Wang, B. Building detection from VHR remote sensing imagery based on the
morphological building index. Remote Sens. 2018, 10, 1287. [CrossRef]

13. Guo, H.N.; Shi, Q.; Du, B.; Zhang, L.P.; Wang, D.Z.; Ding, H.X. Scene-Driven Multitask Parallel Attention Network for Building
Extraction in High-Resolution Remote Sensing Images. IEEE Trans. Geosci. Remote Sens. 2021, 59, 4287–4306. [CrossRef]

14. Liao, C.; Hu, H.; Li, H.F.; Ge, X.M.; Chen, M.; Li, C.N. Joint Learning of Contour and Structure for Boundary-Preserved Building
Extraction. Remote Sens. 2021, 13, 1049. [CrossRef]

15. Yang, L.; Wang, H.; Yan, K.; Yu, X.Z. Building extraction of multi-source data based on deep learning. In Proceedings of the 2019
IEEE 4th International Conference on Image, Vision and Computing (ICIVC), Xiamen, China, 5–7 July 2019; pp. 296–300.

16. Sun, G.Y.; Huang, H.; Zhang, A.Z.; Li, F.; Zhao, H.M. Fusion of multiscale convolutional neural networks for building extraction
in very high-resolution images. Remote Sens. 2019, 11, 227. [CrossRef]

17. Cheng, G.; Han, J.W. A survey on object detection in optical remote sensing images. ISPRS J. Photogramm. Remote Sens. 2016, 117,
11–28. [CrossRef]

18. Liasis, G.; Stavrou, S. Building extraction in satellite images using active contours and colour features. Int. J. Remote Sens. 2016,
37, 1127–1153. [CrossRef]

19. Ghaffarian, S.; Ghaffarian, S. Automatic building detection based on Purposive FastICA (PFICA) algorithm using monocular
high resolution Google Earth images. ISPRS J. Photogramm. Remote Sens. 2014, 97, 152–159. [CrossRef]

20. Liu, Z.J.; Wang, J.; Liu, W.P. Building extraction from high resolution imagery based on multi-scale object oriented classification
and probabilistic Hough transform. In Proceedings of the 2005 International Geoscience and Remote Sensing Symposium
(IGARSS’05), Seoul, Korea, 29 July 2005; pp. 2250–2253.

21. Lin, C.G.; Nevatia, R. Building detection and description from a single intensity image. Comput. Vis. Image Underst. 1998, 72,
101–121. [CrossRef]

22. Zhang, H.; Zhao, H.; Zhang, X. High-resolution Image Building Extraction Using U-net Neural Network. Remote Sens. Inf. 2020,
35, 3547. [CrossRef]

23. Badrinarayanan, V.; Kendall, A.; Cipolla, R. SegNet: A deep convolutional encoder-decoder architecture for image segmentation.
IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 2481–2495. [CrossRef] [PubMed]

24. Noh, H.; Hong, S.; Han, B. Learning deconvolution network for semantic Segmentation. In Proceedings of the 2015 IEEE
International Conference on Computer Vision (ICCV), Santiago, Chile, 7–13 December 2015; pp. 1520–1528.

25. Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional networks for biomedical image segmentation. In Proceedings of the
International Conference on Medical Image Computing and Computer-Assisted Intervention; Munich, Germany, 5–9 October 2015,
Springer: Cham, Switzerland, 2015; pp. 234–241.

26. Long, J.; Shelhamer, E.; Darrell, T. Fully convolutional networks for semantic segmentation. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 3431–3440.

27. Yi, Y.N.; Zhang, Z.J.; Zhang, W.C.; Zhang, C.R.; Li, W.D. Semantic segmentation of urban buildings from VHR remote sensing
imagery using a deep convolutional neural network. Remote Sens. 2019, 11, 1774. [CrossRef]

28. Ren, S.Q.; He, K.M.; Girshick, R.; Sun, J. Faster R-CNN: Towards real-time object detection with region proposal networks. IEEE
Trans. Pattern Anal. Mach. Intell. 2017, 39, 1137–1149. [CrossRef] [PubMed]

29. He, K.M.; Gkioxari, G.; Dollár, P.; Girshick, R. Mask R-CNN. In Proceedings of the IEEE International Conference on Computer
Vision, Venice, Italy, 22–29 October 2017; pp. 2961–2969.

30. Li, Y.; Xu, W.P.; Chen, H.H.; Jiang, J.H.; Li, X. A Novel Framework Based on Mask R-CNN and Histogram Thresholding for
Scalable Segmentation of New and Old Rural Buildings. Remote Sens. 2021, 13, 1070. [CrossRef]

31. Zhang, L.L.; Wu, J.S.; Fan, Y.; Gao, H.M.; Shao, Y.H. An efficient building extraction method from high spatial resolution remote
sensing images based on improved mask R-CNN. Sensors 2020, 20, 1465. [CrossRef] [PubMed]

32. Wu, G.; Shao, X.; Guo, Z.; Chen, Q.; Yuan, W.; Shi, X.; Xu, Y.W.; Shibasaki, R. Automatic building segmentation of aerial imagery
using multi-constraint fully convolutional networks. Remote Sens. 2018, 10, 407. [CrossRef]

33. Lin, J.; Jing, W.; Song, H.; Chen, G. ESFNet: Efficient Network for Building Extraction from High-Resolution Aerial Images. IEEE
Access 2019, 7, 54285–54294. [CrossRef]

34. Xu, Y.; Wu, L.; Xie, Z.; Chen, Z. Building extraction in very high resolution remote sensing imagery using deep learning and
guided filters. Remote Sens. 2018, 10, 144. [CrossRef]

88



Remote Sens. 2021, 13, 4411

35. Bai, T.; Pang, Y.; Wang, J.C.; Han, K.N.; Luo, J.S.; Wang, H.Q.; Lin, J.Z.; Wu, J.; Zhang, H. An Optimized faster R-CNN method
based on DRNet and RoI align for building detection in remote sensing images. Remote Sens. 2020, 12, 762. [CrossRef]

36. Deng, Z.; Sun, H.; Zhou, S.; Zhao, J.; Lei, L.; Zou, H. Multi-scale object detection in remote sensing imagery with convolutional
neural networks. ISPRS J. Photogramm. Remote Sens. 2018, 145, 3–22. [CrossRef]

37. Ghaffarian, S.; Valente, J.; Voort, M.V.D.; Tekinerdogan, B. Effect of Attention Mechanism in Deep Learning-Based Remote Sensing
Image Processing: A Systematic Literature Review. Remote Sens. 2021, 13, 2965. [CrossRef]

38. Woo, S.; Park, J.; Lee, J.Y.; Kweon, I.S. CBAM: Convolutional Block Attention Module. In Proceedings of the European Conference on
Computer Vision; Munich, Germany, 8–14 September 2018, Springer: Cham, Switzerland, 2018; pp. 3–19.

39. Yang, H.; Wu, P.; Yao, X.; Wu, Y.; Wang, B.; Xu, Y. Building Extraction in Very High Resolution Imagery by Dense-Attention
Networks. Remote Sens. 2018, 10, 1768. [CrossRef]

40. Pan, X.; Yang, F.; Gao, L.; Chen, Z.; Zhang, B.; Fan, H.; Ren, J. Building extraction from high-resolution aerial imagery using a
generative adversarial network with spatial and channel attention mechanisms. Remote Sens. 2019, 11, 917. [CrossRef]

41. Jiang, H.W.; Hu, X.Y.; Li, K.; Zhang, J.M.; Gong, J.Q.; Zhang, M. PGA-SiamNet: Pyramid Feature-Based Attention-Guided Siamese
Network for Remote Sensing Orthoimagery Building Change Detection. Remote Sens. 2020, 12, 484. [CrossRef]

42. Guo, M.Q.; Liu, H.; Xu, Y.Y.; Huang, Y. Building extraction based on U-Net with an attention block and multiple losses. Remote
Sens. 2020, 12, 1400. [CrossRef]

43. Xie, Y.K.; Zhu, J.; Cao, Y.G.; Feng, D.J.; Hu, M.J.; Li, W.L.; Zhang, Y.H.; Fu, L. Refined Extraction of Building Outlines From
High-Resolution Remote Sensing Imagery Based on a Multifeature Convolutional Neural Network and Morphological Filtering.
IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 1852–1855. [CrossRef]

44. Chen, L.C.; Zhu, Y.K.; Papandreou, G.; Schroff, F.; Adam, H. Encoder-decoder with atrous separable convolution for semantic
image segmentation. In Proceedings of the European Conference on Computer Vision; Munich, Germany, 8–14 September 2018,
Springer: Cham, Switzerland, 2018; pp. 833–851.

89





remote sensing 

Article

Parameter-Free Half-Spaces Based 3D Building Reconstruction
Using Ground and Segmented Building Points from Airborne
LiDAR Data with 2D Outlines

Marko Bizjak *, Borut Žalik and Niko Lukač
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Abstract: This paper aims to automatically reconstruct 3D building models on a large scale using a
new approach on the basis of half-spaces, while making no assumptions about the building layout
and keeping the number of input parameters to a minimum. The proposed algorithm is performed
in two stages. First, the airborne LiDAR data and buildings’ outlines are preprocessed to generate
buildings’ base models and the corresponding half-spaces. In the second stage, the half-spaces
are analysed and used for shaping the final 3D building model using 3D Boolean operations. In
experiments, the proposed algorithm was applied on a large scale, and its’ performance was inspected
on a city level and on a single building level. Accurate reconstruction of buildings with various
layouts were demonstrated and limitations were identified for large-scale applications. Finally, the
proposed algorithm was validated on an ISPRS benchmark dataset, where a RMSE of 1.31 m and
completeness of 98.9% were obtained.

Keywords: building model; reconstruction; half-space; LiDAR data; urban scale

1. Introduction

As a part of the digitalisation of cities, 3D building models are essential and provide
more accurate spatial and environmental analysis for various applications [1–3]. The avail-
ability of building models on a large scale is usually very limited, as for most buildings the
corresponding 3D models do not exist due to their age, or are not in the public domain.
Manual modelling of existing buildings is not practical on a large scale as it is very time
consuming and costly. Hence, research is oriented towards solutions that reconstruct
buildings automatically [4]. The common approach to automatic building reconstruction is
by using point clouds [5], which can be obtained by various remote sensing technologies
(e.g., stereo imaging, laser scanning). One of the more widely used technologies for this
purpose is LiDAR (Light Detection and Ranging), which is the technology of active remote
sensing, where laser light is used to acquire the geometry of the observed surface. It is
usually mounted on an aircraft to scan large geographic areas. The quality of the point
cloud obtained during such acquisition affects the accuracy of the reconstructed building
models and other spatial analyses directly [6]. With the fast development of remote sensing
technologies and, consequently, larger availability of the resulting data, the reconstruc-
tion of 3D building models from point clouds gained popularity in recent years [5,7,8].
In general, the building reconstruction algorithms from point clouds can be data-driven,
model-driven, or hybrid-driven [5]. An additional type of algorithms that employ the
machine learning approach to building reconstruction [9–11] is becoming popular, which
is accelerated by the availability of training datasets for this purpose, such as the dataset
presented by Wichmann et al. [12].

Data-driven algorithms are bottom-up based, where basic geometric shapes (i.e.,
planes, cylinders, cones ...) are detected in point clouds first. The final building’s shape
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is then obtained with establishing a topological structure by analysing the dependence of
adjacent basic geometric shapes. Data-driven algorithms can be further divided by the type
of faces that are considered. Most algorithms consider flat faces only [13–18], while some
maintain curved faces as well [19,20]. There are various approaches to the analysis of basic
geometric shapes, such as by the adjacency matrix [16], region growing [17], adjacency
graph [21], or by direct processing of planar faces and their neighbours for estimating the
common edges [14]. Data-driven algorithms are sensitive to under- or over-segmentation,
which can cause problems for the analysis of basic geometric shapes. When the extracted
basic geometric shapes are incomplete or noisy, which is a common occurrence for low-
quality input data in complex scenes, the reconstructed building model can be of bad
quality. Vosselman and Dijkman [22] used building outlines and LiDAR data for building
reconstruction, where building outlines are partitioned into segments, while considering
intersection and height jump lines. Segments are later merged back together until each
face corresponds to one segment to obtain the 3D model. Li et al. [23] presented a new
framework based on TIN (Triangulated Irregular Network) and label maps to automatically
create building models from LiDAR data. TIN-based roof primitives detection supports
varying point density and label maps are processed by a graph-cut to provide a good
representation of roof faces. Wang et al. [24] developed a new methodology for building
reconstruction based on structural and closed constraints. A surface optimisation scheme is
adopted to enforce consistency between polygonal surfaces of the building and geometric
structures. Zhang et al. [25] perform reconstruction of building models using unclassified
LiDAR data, where the points are classified in the first two steps. In the final third step
the building models are generated on the basis of the 2D topology of roof facets and
estimated dominant directions. Shan et al. [26] introduced a framework for building
model reconstruction where point cloud segmentation and building reconstruction are
described as a minimisation problem of the corresponding energy functions. The initial
segmentation is optimised by a global energy function that takes distances of LiDAR points
to planes, spatial smoothness and the number of planes into account. After segmentation
the reconstruction is performed by partitioning the building into volumetric cells, which is
followed by determination of building surfaces and their topology. Building models are
obtained with a global energy function, which is minimised using the min-cut theorem.
Tarsha Kurdi et al. [27] developed a methodology that is performed in two steps. In the
first step 2D building outlines are generated automatically on the basis of a neighbourhood
matrix, while detecting inner roof plane boundaries as well. In the second step the 3D
building models are generated, where, after fitting and refining of roof planes, the roof plane
boundaries are transformed to 3D by the analysis of relationships between neighbouring
planes. Later, they [28] improved the building outline modelling by filtering the point
cloud with the bias of a Z-coordinate histogram.

A reverse, top-down based approach is typical for model-driven algorithms, where the
building shapes are estimated by parametric fitting of shape candidates to the input point
cloud. The result of fitting is a building model with a roof that is defined by parameters for
the roof shape of the candidate that is best-fitted to the point cloud. This type of algorithms
are usually faster than data-based, are easier to implement and can be used for datasets
with a low point cloud density (1.2 pts/m2 [29]). However, the main restriction of such
approach is the limited collection of possible candidates that do not cover all possible
roof shapes. In case a building’s roof shape is in part or entirely different from every
existing candidate in the library, the reconstruction will either fail, or generate a model
with large errors. Model-driven algorithms differ mainly regarding the manner in which
candidates are fitted to the point cloud. Poullis et al. [30] fitted geometric shapes while
considering constraints found in architecture, Huang et al. [31] used statistical analysis,
and Henn et al. [29] employed a modified RANSAC algorithm for this purpose.

The components of both approaches are combined in hybrid-driven algorithms in
order to reduce the weaknesses of both. There are two main types of such reconstruction [5].
The first is by dividing buildings into smaller parts, based on the edges of the buildings’
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outlines, jump edges and roof ridges. Smaller parts can be fitted to the candidates of roof
shapes with a higher success rate [5]. Building parts are then combined to obtain a whole
building by 3D Boolean operations as a part of CSG (Constructive Solid Geometry) [32–34].
Kada and Wichmann [34] estimate building shapes with half-spaces, where the model
is divided into smaller convex parts, which are then combined. The concave shape can
be obtained through a correct division, which is only considered for a limited number
of building layouts. The second type of reconstruction is by the RTG (Roof Topology
Graph), which is established over basic geometric shapes and can contain additional
information about edges. Verma et al. [35] establish RTG over segmented planar roof
faces. They determine building’s geometry by searching for subgraphs within RTG, that
exist in the roof candidate database. More advanced RTG approaches were introduced by
Xiaong et al. [36,37], where it was demonstrated, that it is possible to present the topology
of any roof using a graph with minimal cycles in addition to nodes and edges [36]. Later,
they improved the algorithm with a graph edit dictionary, which was used to reduce typical
errors in RTG [37].

A new half-spaces based algorithm for building reconstruction from point clouds is
introduced in this paper. In contrast to the related algorithms, which divide buildings’
2D outlines into smaller parts and then process them while taking only convex shapes
into account, the proposed algorithm performs reconstruction without division, while also
considering concave parts of the building’s roof. Additionally, no assumptions about the
building layout are made, which allows processing of buildings on a large-scale. This is
achieved in two stages, where the input data is processed first to obtain the definition of
each building’s base model and the corresponding half-spaces. The second stage generates
a building shape by performing 3D Boolean operations over the analysed half-spaces.

The remainder of the paper is divided into three Sections. The next Section describes
both stages of the proposed algorithm in detail. The third Section presents the results over a
large geographic area with the complementary discussion, and the final Section concludes
this work.

2. Methodology

The proposed algorithm for building reconstruction is performed in two stages as
shown in Figure 1. In the first stage, the input data is preprocessed, where the buildings’
2D outlines and the classified airborne LiDAR point cloud are used to obtain base building
models and the corresponding definitions of half-spaces through segmentation. These
serve as the input to the second stage, where the half-spaces are classified and processed by
3D Boolean operations to obtain the final building shape, where convex and concave parts
of the final shape are considered. The model of each building is bounded by floor, exterior
wall and roof faces. Only roofs without height jumps are considered. A height jump can be
described as an edge of a roof’s face, which height is different from a neighbouring roof’s
face. The following subsections describe both stages in detail.

2.1. Data Preprocessing

The input data to the proposed algorithm represent 2D building outlines and the
airborne LiDAR point cloud. Both types of data are considered to be georeferenced using
the same coordinate system and, therefore, aligned. The points of the LiDAR data that
are classified as ground or building are considered in this work. In case the input LiDAR
point cloud classification is missing or is of bad quality, there are various methods for
classification available (for an overview, see [38]). As there are many possible classes of
LiDAR points, a method that focuses on ground and building points [39] should be used
for this purpose. Only building points that are located within the 2D building outline are
considered for reconstructing the roof of the corresponding building model.
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Figure 1. Workflow of the proposed algorithm.

2.1.1. Generating Base Models

The base model of each building is used in the second stage for estimating its final roof
shape. It is bounded by the floor face, top bounding face and exterior wall faces that are
obtained from the 2D building outline. Floor face g is determined by placing the polygon
of the corresponding 2D building outline to the height of the lowest LiDAR ground point
in the direct proximity of the building. The top bounding face g′ is determined in the same
way as g, only it is placed above the highest LiDAR building point, so it does not limit the
final building model. Each exterior wall face si is defined by the points that lie on sides g
and g′ as shown in Figure 2. The base model M is given as a watertight model, bounded
by a set of faces: {g, g′, s1, s2, ...sn}, where n is the number of sides of the building outline.
An example of a generated base model from a 2D building outline is illustrated in Figure 2.

(a)

Figure 2. Cont.
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(b)

Figure 2. For a building outline (a) a base model is generated (b), where visible faces and points are
marked.

2.1.2. Half-Spaces’ Definition

A half-space is a core element for shaping the roof in this work. It is obtained from the
LiDAR point cloud, which is first segmented into sets of LiDAR points that describe each
individual planar roof face. For the segmentation of planar faces various segmentation
methods are applicable. Considering the type of input LiDAR point cloud, segmentation
methods that take the LiDAR point cloud density into account [40–43] are more suitable for
this purpose. The reason for this is variable density of the input point cloud, which occurs
due to different laser scanner technology and height of the aerial vehicle that performs
point cloud acquisition. Segmentation that takes variable point cloud density into account
should, therefore, be used for the best results. The overview of segmentation methods is
out of the scope of this paper, for more information see [44]. An example segmentation of a
LiDAR point cloud that belongs to the same building as the base model from Figure 2 is
shown in Figure 3.

The roof of each building will be shaped by a set of half-spaces H = {Hi}. Half-space
Hi is defined by the corresponding set of LiDAR points Si and a plane Pi that is calculated
from Si. Hi is given as xPi.a + yPi.b + zPi.c + d > 0. The definition of each half-space is
obtained from the segmented LiDAR point cloud, where sets of segmented LiDAR points
Si that describe individual roof faces are taken. The plane Pi that is best-fitted to the
corresponding set of LiDAR points is determined as Pi = [a, b, c, d] = LSqFit(Si), where
Pi.c > 0 and LSqFit is a function that fits a plane to a set of LiDAR points by least-square
fitting [45].

(a)

Figure 3. Cont.
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(b)

Figure 3. A segmentation of a LiDAR point cloud, where the LiDAR points on top (a) are coloured
by their height and the LiDAR points on the bottom (b) in regard to which roof face they correspond
to. The point cloud belongs to the same building as the base model from Figure 2.

2.2. Shaping 3D Building Models by 3D Boolean Operations

During this stage, base models are shaped by 3D Boolean operations based on half-
spaces to obtain the final 3D building models. The half-spaces of the previous stage are
classified as obstructed or unobstructed for further analysis and shaping by slicing the
base models.

Classification of Half-Spaces

Each half-space Hi, of which the corresponding set of LiDAR points Si is partly
contained within the base model M, is classified as unobstructed or obstructed in this step.
A half-space is unobstructed, if it does not contain any LiDAR points of other half-spaces:

Hi ∈
{

HO, ∃p ∈ Sj : p ∈ Hi, j �= i
HU , else

, (1)

where HO ⊂ H is a set of obstructed half-spaces and HU ⊂ H a set of unobstructed half-
spaces. As only planar roof faces are considered, small variations in faces’ shapes can be
neglected, and in Equation (1) the number of LiDAR points are reduced from Sj to Cj ⊂ Sj.
The set Cj only contains points that are located on the convex hull of perpendicularly
projected LiDAR points from Sj to the plane Pj. In case Hi contains a point from another
half-space, it is classified as obstructed, which means that Hi is obstructed by a different
half-space on a concave part of the roof. As a result, it cannot be used directly for shaping
the building roof and needs to be analysed further.

2.3. Performing 3D Boolean Operations with Half-Spaces

Unobstructed half-spaces describe the convex shape of the building’s roof as they are
not obstructed by any other half-spaces. Therefore, they can be used directly for shaping
the building model. This is performed by subtracting all corresponding open half-spaces
from the building’s base model M:

∀Hi ∈ HU : M = M \ Hi (2)

Figure 4 shows an example of shaping the model with unobstructed half-spaces.
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(a)

(b)

Figure 4. Illustration of shaping the building model with unobstructed half-spaces, where on the
top (a) unobstructed half-spaces are shown, which are then subtracted from the base model (b) from
Figure 2b.

Each obstructed half-space may not be directly useful for shaping the model. As an
example, a pair of half-spaces’ corresponding planes might be parallel at different heights
or oriented in such a way that they intersect outside of the building model. Therefore,
obstructed half-spaces are processed by determining the smallest slice sk, if it exists, for each
half-space Hk ∈ HO. A slice sk is determined by the intersection between Hk and all half-
spaces Hl ∈ HO, k �= l, that are visible from Hk. Half-spaces Hk and Hl are visible, if a line
between a point from Ck and a point from Cl exists that does not intersect with any other
roof face, and if ∃p ∈ Ck ∧ ∃p′ ∈ Cl , such that:

(�p′ −�p) · P̂k.n > 0 and (�p − �p′) · P̂l .n > 0, (3)

where P̂k.n and P̂l .n are normalised normal vectors of the corresponding planes. A slice is
valid if half-spaces that determine the slice intersect within the model. In case a slice is not
valid, it is processed as empty. The final model M is obtained by subtracting all slices:

∀Hk ∈ HO : M = M \ sk (4)

Figure 5 illustrates shaping the building with obstructed half-spaces for the model
from Figure 4b. The final building model is shown in Figure 5e.
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(a) (b)

(c) (d)

(e)

Figure 5. Illustration of shaping the model with obstructed half-spaces, where (a) shows the input
model from the previous step, and (b) illustrates a slice that will be subtracted from the model.
The slice is determined by three obstructed half-spaces that determine the smallest possible slice for
one of the half-spaces. The result of the subtraction of the first slice is shown in (c). This is followed
by the next slice (d), after which the final building model is obtained (e).

3. Results

To analyse the proposed algorithm’s large-scale performance, it was applied on the
basis of airborne LiDAR data and 2D buildings’ outlines. The input data cover a 6.153 km2

large geographic area of the city of Maribor, Slovenia (bounding box: 46◦33′8.54301′′N
15◦37′29.23113′′E, 46◦34′13.15573′′N 15◦39′52.97941′′E). The provided LiDAR data’s average
density is 11.3 pts/m2 and the considered 14,227,123 building points and 31,420,386 ground
points are shown in Figure 6. Buildings’ outlines were obtained from a public spatial
database maintained by The Surveying and Mapping Authority of the Republic of Slovenia.
There were 5254 buildings’ outlines contained entirely within the bounding box of the area.

98



Remote Sens. 2021, 13, 4430

Figure 6. Input LiDAR point cloud.

First, the building points for each corresponding building’s outline were segmented.
For this, a graph-based segmentation [41] that takes point cloud density and local curvature
of faces into account was selected, as roofs of buildings are not always completely flat.
The segmentation establishes the initial topology over the point cloud as an undirected
graph by the k-nearest neighbour approach, and is controlled by the local curvature tθ

and distance td thresholds. The building points from the input LiDAR point cloud for
each corresponding building’s outline were segmented using the settings given in Table 1.
A minimum of 50 points were required for each segment (tCC = 50), which was set to avoid
too small roof faces. The resulting segmentation of building points from Figure 6 is shown
in Figure 7.

Table 1. Parameters used for segmentation of the point cloud.

Parameter Value

k 20

tθ 2.0

tCC 50

td [m] 2

The building models were generated next. A building model is deemed geometrically
valid, if the building’s floor face remains intact which, as such, does not necessarily imply an
accurately reconstructed model. In some cases, especially with height jumps, the obtained
building models were invalid. To achieve a higher validity rate the number of obstructed
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half-spaces was limited to 10 for cases with height jumps. In such cases, only unobstructed
half-spaces were considered for shaping the model. An example of handling these cases is
shown in Figure 8.

Figure 7. Segmented building points from Figure 6.

(a) (b)

(c)

Figure 8. Illustration of shaping a large building with height jumps and too many obstructed
half-spaces where from (a) the input point cloud segments of points (b) were obtained and only
unobstructed half-spaces were considered for the reconstruction of the building (c).
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The reconstruction produced a geometrically valid model for 4817 building outlines
in 92% of cases. The resulting buildings’ reconstruction is shown in Figure 9.

Figure 9. Reconstructed building models for the input point cloud from Figure 6.

In practice, many buildings’ roofs contain height jumps and, as they are not considered
by the proposed method, several geometrically invalid models are to be expected.

Next, we examined various cases of buildings from the reconstructed city model with
roofs of different types without height jumps, which are shown in Figure 10.

Figure 10a shows a relatively simple case that is described by eight half-spaces of
a single building, of which five are obstructed. The next case from Figure 10b shows
an example of two terraced buildings, where the same roof faces are shared between
buildings. In such cases, where there are no geometrical features available to determine the
border between two buildings, it is crucial to have buildings’ outlines already available.
The building shown in Figure 10c has a roof with four ridges at different heights or
orientations, and a horizontal part of the roof, which were incorporated into the model
correctly from 17 half-spaces. The following case, shown in Figure 10d, has a flat face
at the highest point of the building model. The building is described by 17 segments of
points, where gaps can be observed in the shape of some of them. The gaps occur due
to small objects located at the roof that are either too small or curved. The final case,
Figure 10e, illustrates the reconstruction of a building with a complex roof that is described
by 30 half-spaces, of which only one (top horizontal half-space) is unobstructed. There
were at least 14 slices performed to obtain the correct shape, including slices determined
by four half-spaces. The presented cases from Figure 10 demonstrate the ability of the
proposed algorithm for the reconstruction of buildings of various layouts.
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Orthophoto Segmented PC Final model

(a)

(b)

(c)

(d)

(e)

Figure 10. Illustrations of shaping several cases of buildings of various layouts with roofs without height jumps, where
for the buildings (left) segments of points (middle) were obtained from the input point cloud for the reconstruction of
buildings (right).

Validation

The proposed methodology was validated with the International Society for Pho-
togrammetry and Remote Sensing (ISPRS) benchmark dataset, specifically the third area of
the data captured over Vaihingen, Germany [46,47]. Building outlines and LiDAR data,
where building points were classified manually and the density is 4 pts/m2, were used from
the benchmark as input data. The output building models of the proposed algorithm were
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compared by height difference with the ground truth data from the benchmark, as shown
in Figure 11. Ground truth data is presented as building roof faces, given as 3D polylines.
The height difference was estimated over a regular grid with 10 cm resolution. Statistics for
the comparison is given in Table 2, where RMSE (Root Mean Square Error) was estimated
over height differences, completeness specifies the proportion of the building area covered
by geometrically valid building models, and e0.5 designates the proportion of the building
area, where the height difference is lower than 0.5 m.

Table 2. Validation of the obtained results from the comparison with ISPRS benchmark data.

Metric Value

RMSE [m] 1.31

Completeness [%] 98.9

e0.5 [%] 79.4

The majority of the difference manifested over areas, where height jumps are present.
Some difference can be observed over parts of roofs with small elements (e.g., chimneys or
small dormers) or parts of the dataset, where the point cloud is too sparse.

Figure 11. Height difference comparison of the output of the proposed algorithm with the ground
truth data of the ISPRS benchmark.
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4. Discussion

The main challenges of applying the proposed algorithm to large-scale datasets include
the presence of building roofs with height jumps and the availability and quality of the
input data. Building roofs with height jumps are a common occurrence on a large scale and,
as the proposed method does not consider them, had to be taken into account to obtain
as complete city model as possible. For cases with height jumps, shaping the building
model with obstructed half-spaces caused many building models to become invalid, as the
subtraction of some slices affected the floor face of the building model. This was particularly
apparent for buildings with many small obstructed half-spaces, where half-spaces may be
oriented towards a part of a roof, where only unobstructed half-spaces are present. In such
case a slice can cut through a part of a building model that would otherwise remain intact.
For this reason the number of obstructed half-spaces was limited to keep a validity rate
over 90%.

The availability of the input data represents an important drawback that should be
taken into account. Building outlines could be, to an extent, generated from the LiDAR
data [28], however some drop in accuracy can not be avoided. On the other hand, LiDAR
data is essential and may not be available at a selected location. In such cases, the point
cloud data could be obtained using an aerial or UAV (Unmanned Aerial Vehicle) pho-
togrammetric survey. Even though the proposed algorithm was developed with aerial
LiDAR data in mind, it could be applied to any 3D point cloud. Another aspect of the
input data to consider is quality. It includes density and accuracy of the point cloud data,
which largely depend on the laser scanner quality. The publicly available LiDAR data
is often of low density, which means that smaller roof faces are much harder to detect.
The required density for the correct reconstruction depends on the minimum size of roof
faces that are desired to be included in the generated building models. In theory, there
need to be at least 3 segmented points on a roof face to determine the corresponding plane.
However, due to variations in measurement accuracy that affect plane orientation and the
fact that as the shape of the roof face is important for further analysis as well, a higher
point count is beneficial. In our experience, the minimal point cloud density, using the
selected segmentation algorithm for faces larger than 10 m2, was 1.5 pts/m2. Building
outline datasets are often acquired manually, which means that human error can be present
as well. Another option is to use cartographic outline datasets from public databases,
as was done in this work. However, it should be noted that existing outline datasets can
be misaligned, inconsistent, or out of date. Some buildings might have been demolished,
changed or replaced, and outlines of new buildings could be missing. Any discrepancies
in the input data are presented directly in building models.

The comparison with the Vaihingen dataset has shown that, apart from the acknowl-
edged lack of height jump processing, the proposed algorithm demonstrated satisfactory
performance. This is confirmed by a large proportion of the building area, where the height
error was under 0.5 m. When comparing the results with related work [47] in terms of
RMSE, the proposed method yields higher value, which is largely attributed to height
jumps, where every error accumulates substantially over a large surface. In addition,
as completeness was reported higher than in related work at nearly 100%, which comes as
a result of a reliable building reconstruction and using building outlines as input, the RMSE
for the proposed algorithm accumulates extensively over a sparse part of the dataset.
Building outlines provided additional completeness over sparse part of the dataset. In such
cases, related work, in contrast to the presented algorithm, did not generate the building
model over the entire building outline due to lack of data.

Moreover, as shown in Figure 10, it can be observed how a LiDAR point cloud can
contain relatively large empty spaces between scan lines in practice. It is important to keep
this in mind when choosing the segmentation method and the appropriate parameters.
Apart from the segmentation of point clouds, no additional parameters are required
for controlling the reconstruction. This simplifies the use of the proposed algorithm

104



Remote Sens. 2021, 13, 4430

significantly, especially as the segmented point cloud could also be provided as an input to
the algorithm.

5. Conclusions

This work presents a novel algorithm, based on half-spaces, for 3D building recon-
struction that processes airborne LiDAR data and buildings’ outlines to generate building
models. It performs in two stages, where the input data is preprocessed first to obtain
buildings’ base models and the corresponding half-spaces. In the final stage, 3D building
models are finalised by shaping their roof using 3D Boolean operations over the anal-
ysed half-spaces.

In experiments, the presented method has shown promising reconstruction perfor-
mance for the considered type of buildings. As in practice, on a large scale, there are
many building roofs with height jumps, some constraints were required to obtain a more
complete 3D city model. For a more accurate reconstruction, the height jumps should
be considered and incorporated in future work, which could be explored by splitting the
buildings’ outlines. Another possible improvement could be the integration of curved faces
support, where special attention should be given to classification and limiting the reach of
a curved face when using 3D Boolean operations to shape the building model. Moreover,
as the segmentation performance greatly affects the algorithm’s output, the impact of
various segmentation algorithms with different parameter settings could be investigated
as well.

The proposed algorithm’s large-scale applicability is highly beneficial for urban sim-
ulations, or as a component of various urban analytical processes, especially those that
consider environmental impact, which is a growing global concern. Apart from the segmen-
tation part, for which any appropriate segmentation algorithm can be used, the proposed
algorithm is parameter-free, which simplifies its use strongly and enhances adoption potential.
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Abstract: Accurate building extraction from remotely sensed images is essential for topographic
mapping, cadastral surveying and many other applications. Fully automatic segmentation methods
still remain a great challenge due to the poor generalization ability and the inaccurate segmentation
results. In this work, we are committed to robust click-based interactive building extraction in remote
sensing imagery. We argue that stability is vital to an interactive segmentation system, and we
observe that the distance of the newly added click to the boundaries of the previous segmentation
mask contains progress guidance information of the interactive segmentation process. To promote
the robustness of the interactive segmentation, we exploit this information with the previous seg-
mentation mask, positive and negative clicks to form a progress guidance map, and feed it to a
convolutional neural network (CNN) with the original RGB image, we name the network as PGR-Net.
In addition, an adaptive zoom-in strategy and an iterative training scheme are proposed to further
promote the stability of PGR-Net. Compared with the latest methods FCA and f-BRS, the proposed
PGR-Net basically requires 1–2 fewer clicks to achieve the same segmentation results. Comprehensive
experiments have demonstrated that the PGR-Net outperforms related state-of-the-art methods on
five natural image datasets and three building datasets of remote sensing images.

Keywords: building extraction; interactive segmentation network; deep learning; iterative training;
remote sensing images

1. Introduction

The extraction of buildings from remotely sensed images is essential for topographic
mapping and urban planning. Although automatic building extraction methods have been
investigated for decades, they are still difficult to achieve sufficient performance to meet the
requirements for fully automated use. Conventional methods mainly exploit empirically
designed features to recognize buildings, such as color, texture, and shadow, etc. Due to
the limitation of hand-crafted features, these methods usually produce frustrating results
in complex scenes. In recent years, with the development of deep learning techniques,
building segmentation performance has been lifted a lot by various deep convolutional
neural networks (DCNNs), such as U-Net [1], SegNet [2], DeepLabV3+ [3]. These networks
take RGB images as input and directly output the probability map of buildings in the image.
By learning from massive amounts of training samples, they can achieve performance far
beyond conventional methods. However, these CNN-based automatic building extraction
algorithms are suffering from poor generalization ability, which means a well-trained
network can only make good predictions on images with a similar distribution of the
training data. Furthermore, the acquirement of pixel-wised annotated data itself is time-
consuming and expensive, and the accuracy of the segmentation results is also far from the
requirement of actual use.

Under these circumstances, the study of interactive building extraction is of great
value and importance. Fully-automatic extraction methods are characterized by the prior
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constraints, such as shape and appearance of the buildings, and the output results are
automatically generated and presented in front of the users before further processing. The
main difference between fully-automatic and semi-automatic building extraction methods
is that the latter can accept human supervision as additional input to ensure the quality of
the output results. A good interactive segmentation method is always aimed at reducing
the user effort. Actually, there was a significant amount of research before the advent of
deep learning techniques. An earlier well-known method is intelligent scissors [4], which
focuses on the boundary property for object extraction. Afterward, a graph model-based
interactive image segmentation algorithm was studied a significant amount. Boykov
and Jolly [5] utilize scribbles to estimate the probability of the foreground/background
of the target object. The task is formulated as a graph partition problem and solved by
a min-cut/max-flow algorithm [6]. Veksler [7] integrates a star-convexity shape into a
graph-cut segmentation, and Gulshan et al. [8] further improve the results with multiple
stars and geodesics distances. Rother et al. [9] take the bounding box as input and utilize a
Gaussian mixture model for foreground and background prediction. Yu et al. [10] use a
Markov Random Field (MRF) to segment objects with loosely bounded boxes. In addition,
Grady [11] uses the label of the seed firstly reached by a random walker to mark unlabeled
pixels. Limited by the capacity of these hand-crafted features, the amount of user inputs
are still required in complex scenarios, such as low contrast and poor illumination.

Recently, deep learning techniques have also been applied to interactive object extrac-
tion and achieved great success in the field of computer vision. Xu et al. [12] first propose
a CNN-based model for interactive segmentation and devise a click simulation strategy
for the training of the network. They transform the user-provided clicks into Euclidean
distance maps and concatenate them with RGB images as the input to the network. This
work is then extended and improved by many other works in different aspects. For exam-
ple, Mahadevan et al. [13] introduce an iterative way to improve the heuristic sampling
strategy during the training stage. Li et al. [14] select the optimal result among multiple
diverse solutions to reduce the user efforts. Majumder and Yao [15] combine superpixels
and class-independent object proposals with user-provided clicks to generate more infor-
mative guidance maps for the performance promotion of interactive segmentation systems.
Jang and Kim [16] propose a backpropagating refinement scheme (BRS) to guarantee the
correct prediction in user-annotated positions. Sofiiuk et al. [17] further propose a feature
backpropagating refinement scheme (f-BRS) to alleviate the computational burden of the
forward and backward pass. Lin et al. [18] consider that the first click contains location
guidance of the main body of the target object and put forward a first click attention module
to make better use of the first click.

Generally speaking, user inputs are typically given as clicks [12–19], scribbles [5]
and bounding boxes [9,10]. Compared with the other two modes of interactions, the
click-based way is relatively simple and can reduce the burden of the annotators. In
this work, we focus on the study of click-based interactive extraction of buildings. In
this setting, users sequentially provide positive points on the foreground or negative
points on the background to interact with the model until the segmented results are
satisfied. To feed the interaction information to the CNN-based interactive segmentation
model, an important issue is how to encode the user-provided clicks. Most of the existing
methods follow [12] to simulate positive and negative clicks and transform them into a
two-channel guidance map by Euclidean distance [12,14,16,17,19] or gaussian masks [18],
and we utilize a satellite image in CrowdAI [20] dataset to demonstrate this in Figure 1.
These two encoding methods are simple and straightforward representations of user-
provided click points, which are convenient for the simulation of the training samples
and the batch training of the network. In addition, they are also flexible in dealing with
objects of multi-parts or weird shapes in natural scenes. However, such two-channel
representations lack enough information to make an interactive segmentation network
maintain good stability. In Figure 2, we present an image segmentation example of a
baseline network in a natural scene that only utilizes guidance maps transformed from the
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user-provided clicks by Euclidean distance. We can see that the building is almost perfectly
segmented after the first click. However, after the second click is added for further mask
refinement, the segmentation result is severely degraded. It is because the predictions are
independent at each step both in the training and inference stages. The guidance map
treats all clicks independently, the network basically predicts the mask of the target object
by the distribution of the positive and negative click points. Furthermore, the Gaussian
masks of clicks or Euclidean distance maps are a kind of “weak” guidance, which is not
conducive to the stability of mask refinement.

(a) (b) (c) (d)

Figure 1. (a) Original image and corresponding positive and negative clicks. (b) The gt mask,
(c) guidance maps transformed by Euclidean distance transform. (d) guidance maps transformed
by Gaussians.

(a) 1 click (b) 2 clicks (c) gt mask

Figure 2. A failure case of existing methods that utilize guidance maps transformed from the
user-provided clicks by Euclidean distance.

In our opinion, an interactive segmentation process is a coarse-to-fine process, which
is carried out with two objectives, the fast estimation of the scale of the target object
and the continuous refinement of the predicted masks. These two objectives conflict
in the extent of the change to the previous segmentation mask. The former focuses on
flexibility, and the latter emphasizes stability. A robust interactive segmentation system
should progressively improve the segmentation mask with as little oscillation as possible
because a false prediction will require additional clicks to revise. We argue that existing
guidance maps are flexible representations for dealing with complex objects in natural
scenes. However, compared with objects (multi-parts, elongated) in natural scenarios,
buildings in overhead remote sensing images tend to have relatively regular shapes. For
these “easy” buildings, the stability of the interactive segmentation process is critical to
the improvement of performance. Motivated by the above circumstances, in this work,
we focus on developing a robust interactive building extraction method based on CNN.
To promote the stability of the interactive segmentation network, we firstly combine the
previous segmentation map, which is considered as a kind of “strong” guidance, with
existing distance-based guidance maps. In addition, we observe that annotators often
tend to click around the center of the largest misclassified region. Thus, in most cases,
the distance of the newly added click to the boundary of the previous segmentation mask
can provide instructive progress information of the interactive segmentation process. This
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distance can be easily obtained during the inference stage, and we call this distance the
indication distance. We make use of this distance and transform it into another guidance
map to increase the stability of the interactive segmentation model. Moreover, we propose
an adaptive zoom-in strategy and an iterative training strategy for further performance
promotion of the algorithm. Comprehensive experiments show that our method is effective
in both natural scenes and remote sensing images. Especially, compared with the latest
state-of-the-art methods, FCA [18] and f-BRS [17], our approach basically requires 1–2 fewer
clicks to achieve the same segmentation results on three building datasets of remote sensing
images, which significantly reduces the workload of users. Furthermore, we propose an
additional metric for the further evaluation of the robustness of the proposed interactive
segmentation network, and the experimental results demonstrate that our approach yields
better stability over other methods.

Our contributions can be summarized as follows:

• We analyze the benefits of a segmentation mask to improve the stability of network
prediction, and we combine it with existing distance-based guidance maps to promote
the performance of the interactive segmentation system.

• We also propose an adaptive zoom-in scheme during the inference phase, and we
propose an iterative training strategy for the training of an interactive segmenta-
tion network.

• We achieve state-of-the-art performance on five widely used natural image datasets
and three building datasets. In particular, our approach significantly reduces the user
interactions in the interactive extraction of buildings. Comprehensive experiments
demonstrate the good robustness of our algorithm.

The remainder of this article is arranged as follows: Section 2 describes details of
the proposed method; the corresponding experimental assessment and discussion of
the obtained results are shown in Sections 3 and 4, respectively; Section 5 presents our
concluding remarks.

2. Materials and Methods

In this section, we provide the details of the proposed algorithm for the interactive
extraction of buildings in remote sensing images. Firstly, we introduce the datasets utilized
in our study in Section 2.1. Then, we describe the detail of the proposed PGR-Net in
Section 2.2. Finally, the implementation detail is presented in Section 2.3.

2.1. Datasets

A CNN-based interactive segmentation network is characterized by class-agnostic
object extraction, which requires a dataset with diversity for the training to ensure the
performance and generalization ability. In this study, in order to train the proposed PGR-
Net, we follow [14,16,17] to adopt Semantic Boundaries Dataset (SBD [21]) as the training
data and evaluate on five natural image datasets. Moreover, to verify the effectiveness
of the proposed PGR-Net on buildings, we select three building datasets for detailed
evaluation. The details of these datasets are described as follows.

2.1.1. Natural Image Dataset

We use Semantic Boundaries Dataset (SBD) to train our model, and test on five datasets
to evaluate the performance of our algorithm, the details of utilized datasets are described
as follows:

• SBD [21]: The dataset contains 8498 training images and 2820 test images. Follow-
ing [16,17], we use the training set of this dataset to train our network, and the test set,
which contains 6671 instances, is utilized for the evaluation of our algorithm.

• GrabCut [9]: The dataset consists of 50 images with a single object mask provided
for each image. It is used as a common benchmark for most interactive segmentation
algorithms.
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• Berkeley [22]: The dataset contains 200 training images and 100 test images. It
contains some challenging segmentation scenarios such as low contrast between the
foreground and the background. We use 100 object masks on 96 test images as in [16]
for the evaluation.

• DAVIS [23]: This is a benchmark dataset for video segmentation. It contains 50 videos
with high-quality annotated masks. We sample the same 10% frames as [17,18] for
the evaluation.

• MSCOCO [24]: This dataset is a large instance segmentation dataset, which contains
80 object categories. We sample 10 images per category to compose a test set of
800 images as in [17].

2.1.2. Building Dataset

We utilize three building segmentation datasets to validate the effectiveness of our
algorithm; two of them are publicly available (AIRS [25], CrowdAI [20]) and the other is
annotated by our team, named EVLabBuilding. The details of these datasets are as follows:

• AIRS [25]: This is a large-scale aerial imagery dataset for roof segmentation. It pro-
vides high-quality roof annotations for 7.5 cm resolution images. We crop the provided
training images into 480 × 480 image patches and select 3398 images for testing.

• CrowdAI [20]: This is a large dataset for the extraction of building footprints in satel-
lite images. The dataset annotates buildings at the instance level, and each individual
building is annotated in a polygon format according to MS COCO standards. All the
images are 300 × 300 pixels with a resolution of 0.3 m. We use the provided small
subset of the validation set, which contains 1820 images, for testing.

• EVLabBuilding: It is a mixture dataset of aerial images of Guangzhou and Zhengzhou,
China. It contains 40 images with resolutions ranging from 0.15 to 0.3 m. The buildings
are annotated at the instance level by Earth Vision Lab, Wuhan University. We crop
the images into 512 × 512 pixels and finally produce 3669 patches for testing.

In Figure 3, we present some example images of each dataset. As it can be seen,
images in the AIRS dataset are of high quality. The CrowdAI dataset contains many small
buildings and the images are also blurry. The scenes in the EVLabBuilding dataset are
usually very messy, which is very challenging for the extraction of buildings. It is noted
that for each image, we randomly choose one building instance from it for evaluation.
For a fair comparison, we determined these instances in advance and used them for the
evaluation of all algorithms.

(a) AIRS (b) CrowdAI (c) EVLabBuilding

Figure 3. Example images in AIRS, CrowdAI and EVLabBuilding datasets.
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Furthermore, achieving the same IoU score is often more difficult for small objects. In
order to facilitate a more detailed analysis of the algorithm, we further divide the test set
into three subcategories according to the size of the buildings. Specifically, we classify the
buildings into Small Buildings (α ≤ 202), Medium Buildings (202 ≤ α ≤ 602) and Large
Buildings (α > 602); here α denotes the area of the building (number of pixels). The details
of the divided subcategories of each dataset are listed in Table 1.

Table 1. Details of divided subcategories of AIRS, CrowdAI and EVLabBuilding datasets.

Dataset Small Medium Large All

AIRS 222 672 2504 3398
CrowdAI 388 966 466 1820

EVLabBuilding 348 1064 2257 3669

2.2. Methods

In this section, we first introduce the preparatory concept indication distance of the
proposed PGR-Net in Section 2.2.1. Afterward, we present the input and the structure
of the PGR-Net in Section 2.2.2. In Section 2.2.3, we show how to simulate the training
samples for the training of the PGR-Net. Finally, the adaptive zoom-in technique and the
iterative training strategy are described in Sections 2.2.4 and 2.2.5, respectively.

2.2.1. Indication Distance

Our approach is based on the assumption that annotators are always accustomed to
clicking around the center of the main misclassified regions for the segmentation mask
refinement. Under this circumstance, we notice that the minimal distance of the newly
added click to the boundary of the previous mask has a good indication of the segmentation
progress, and here we refer to this distance as the indication distance. In Figure 4, we show
an example to illustrate our point. We can easily infer that the indication distance is large
when the previous segmentation mask is far from the ground truth, otherwise this distance
is relatively small.

Figure 4. Illustration of indication distance. For poorly segmented results, the indication distance of
the newly added click is large; otherwise, it is relatively small.

In some special cases, as shown in Figure 5, for objects with holes, multi-parts or
elongated parts, indication distance sometimes may provide misleading guidance. Fortu-
nately, the impact of these issues is negligible with a large amount of data training. These
scenarios can be covered in the training set by data simulation and iterative training, which
will be discussed in Sections 2.2.3 and 2.2.5, respectively. In addition, to further reduce the
impact of these circumstances, we force the indication distance to keep decreasing during
the inference phase. Specifically, at each step, the current indication distance is determined
by curdist = min(lastdist, curdist), where lastdist denotes the indication distance of the
previous step.
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Figure 5. Some special cases of indication distance, such as objects with holes or multi-parts.

2.2.2. Guidance Representation and Network Structure

With humans in the loop, the interactive segmentation can be viewed as a sequential
decision problem, which contains abundant information, such as previous segmentation
results, history clicks, and newly added clicks, etc. There are various ways to encode the
user input. Most of the existing methods follow [12] to simulate positive and negative clicks
and transform them into guidance maps by Euclidean distance [14,16,17,19] or Gaussian
masks [18]. Such representation treats all clicks indiscriminately. Furthermore, we argue
that the click maps or their corresponding transformed distance-based maps are “weak”
guidances, which is not conducive to the stability of the network prediction. Considering
that the previous segmentation mask can provide “strong” guidance of the existence of
target objects, we experimentally combine it with the newly added click map to feed into
an interactive segmentation network and found out that the output tends to be consistent
in the final detail refinement stage. We consider it is because this guidance representation
lacks information of history clicks.

Therefore, we combine all the information mentioned above to form a new guidance
representation and feed them to the interactive segmentation network. Figure 6 shows an
overview of our method. Our guidance map consists of four parts, positive and negative
click maps, newly added click map and the previous segmentation map. We utilize the
same transform strategy for all click-related map generation. Given a set of click points
pij ∈ A, where (i, j) is the point location, then for any point pmn in the 2D matrix with the
same sized input image, its corresponding value V(pmnA) is computed as follows:

V(pmnA) = min
∀pij∈A

√
(i − m)2 + (j − n)2 (1)

The 2D matrix is normalized into [0, 1] as the final guidance map.

V′(pmnA) = 1 − min(V(pmnA), d)
d

(2)

For positive and negative click maps, we chose d as 10. Notably, we set d to 30 for the
first click, which means there is only one positive click and no other negative clicks. The
newly added click map is a single channel, d is set equal to its corresponding indication
distance, and we set the matrix negative if the newly added click falls into the background.
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Figure 6. Overview of our method. The input to the network consists of the RGB image, the previous
segmentation mask, the newly added click map (single channel), and the positive and negative
click maps.

In this paper, we do not focus on the network architecture design. In Figure 7, we
present the network structure of the PGR-Net. We follow [26] and utilize a modified
ResNet [27] architecture as our backbone, in which the stride of the last two layers are
reduced to one and dilation convolution is employed, which helps to increase the resolution
of the output feature and maintain the receptive field of the network at the same time. In
Appendix A, we present the detailed structure of the backbone network. Afterward, we
add skip-connections in the encoder to aggregate both the low-level and high-level features.
Specifically, the features “conv1”, “res1”, “res2” and “res4” of the backbone network are
converted into a 128-d feature by a 3 × 3 convolutional layer, respectively. Subsequently,
we upsample these features to the same resolution as “conv1” and concatenate these 128-d
features to obtain a 512-d feature. Finally, we employ a PSP module [28] to obtain the
prediction mask.

Figure 7. Architecture of our network.

2.2.3. Simulating User Input

To simulate the previous segmentation mask, we follow [29] to generate perturbed
segmentations with various shapes. Specifically, we subsample the contour of the ground-
truth mask, and then perform multiple random dilation and erosion operations. After the
simulation of the previous segmentation mask, we set the center point of the largest error
region as the newly added click for corresponding guidance map generation.

For the simulation of positive and negative clicks, we adopt the sampling strategy
proposed in [12]. The numbers of positive and negative clicks are determined randomly
within [1, 10] and [0, 10], respectively. The click points are generated in sequence, and for
the positive clicks, the new point is sampled in the foreground with at least d1

p pixels from
the object boundary and d2

p pixels from existing points. For negative clicks, the new point
is sampled in the background with d1

n ∼ d2
n pixels away from the object boundaries and d3

n
pixels away from existing click points. We set d1

p = 5, d2
p = 10, d1

n = 5, d2
n = 40, and d3

n is
set to 10.
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Notably, the training samples are generated based on object instances, each object in
the image is individually selected for training sample simulation. For each object, multiple
training samples can be obtained by simulating different clicks and masks. In Figure 8, we
present two examples of simulated training samples.

Figure 8. Two examples of simulated training samples.

2.2.4. Adaptive Zoom-In

Different from fully automatic image segmentation, in the interactive setting, objects
are gradually refined and extracted in an iterative and interactive manner. Thus, cropping is
a simple and effective manner for the detail refinement of the segmentation mask, especially
for the small objects. Sofiiuk et al. [17] call this technique zoom-in and firstly introduce it
to the interactive segmentation system.

The premise of applying zoom-in is that the network has predicted an approximate
mask of the ground truth, inappropriate use may lead to degradation of the network
output. Therefore, the evaluation of the quality of the current segmentation mask is of great
importance. Sofiiuk et al. [17] notice that the first three clicks are sufficient for the network
to obtain a rough mask of the target object. They empirically crop the image according to
the bounding box of the predicted mask after the third click. Such a heuristic method is not
applicable to all situations. In our work, the indication distance can accurately reflect the
quality of the segmentation mask, and we exploit it to apply zoom-in prediction adaptively.
Specifically, when the indication distance is smaller than a certain threshold T , we crop
an image according to the bounding box of the predicted object mask to obtain a zoom-in
region, which will be resized to a target size S and fed into the network for the next
prediction. For the bounding box, we extend C pixels along the longest side direction to
preserve the context, and the shortest side will be extended adaptively to form a square box.
Notably, we only apply zoom-in for small objects, which means the size of the extended
bounding box should be smaller than S , and the bounding box will be adjusted if a user
provides a click outside the box.

By our adaptive zoom-in technique, the network is able to handle objects of different
scales in a more flexible manner, which is helpful to promote the stability of the network
and reduce the user interactions. We will further discuss the superiority of our adaptive
zoom-in technique over the empirical way in Section 4.2.

2.2.5. Iterative Training Strategy

To facilitate the batch training of deep learning networks, most click-based interactive
segmentation methods adopt a random sampling strategy for generating clicks. Such a
sample generation strategy does not consider the sequential relationship of user-provided
clicks during the inference stage. Thus, the iterative training strategy, where new clicks
are added based on the prediction errors of the network during training, is often utilized
to boost the performance, and this strategy is widely used and proved to be effective for
interactive segmentation algorithms.

In our algorithm, there is always a gap between the simulated perturbed segmen-
tations and the network predictions. Furthermore, our positive and negative clicks are
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also randomly generated. For the above considerations, we propose an iterative training
strategy for the training of our model. Specifically, we incorporate the adaptive zoom-in
technique into the standard iterative training procedure proposed by [13], and an exam-
ple of the corresponding iterative training process is shown in Figure 9. The simulated
guidance maps are fed into the network to obtain a prediction. Based on the misclassified
region, we use the same clicking strategy as the inference stage to provide a new click. If
the indication distance of the newly added click is smaller than T , then we crop and resize
the patch of the object to form new training data, and the related guidance maps will be
transformed accordingly. In this way, we align the network training to the actual usage.
This can also be regarded as a kind of data augmentation, which is helpful for improving
the performance of the algorithm.

Figure 9. An example of training data generation by using the adaptive zoom-in technique during
the iterative training process.

2.3. Implementation Details

We formulate the interactive segmentation problem as a binary segmentation task
and use binary cross entropy loss for the network training. We use zero initialization for
the extra channels of the first convolutional layer. We utilize Semantic Boundaries Dataset
(SBD [21]) to train our model. The input images are randomly cropped into 384 × 384
pixels, and the dataset is augmented by a horizontal flip. We take ResNet-101 pre-trained
on ImageNet [30] as the backbone. The batch size is 4. We set an initial learning rate of
3 × 10−5 for ResNet and 3 × 10−4 for other parts. We use the Adam [31] optimizer to train
our network for 32 epochs. The learning rate decreases by a factor of 10 after every 10
epochs. The network is implemented in the PyTorch framework and trained on a single
NVIDIA GeForce RTX 2080Ti GPU.

For the automatic evaluation of our algorithm, we use the same clicking strategy as the
previous works [16–18] to simulate user interaction. At each step, we obtain a segmentation
mask predicted by the network, and then the new click will be added at the center of the
largest misclassified region. The first click is added in the same way, with the network
prediction being regarded as zero. For the zoom-in prediction, we choose the indication
distance threshold T as 20 pixels, and the extended size C is 30, the target size S is set
to 480.

For the evaluation of related algorithms, the mask intersection over union (mask IoU)
is adopted as a basic metric in our experiments. First, we follow [16,18] to utilize two
performance measures to compare our algorithm with other state-of-the-art methods. One
is the NoC metric, which indicates the average number of clicks to reach a certain IoU
threshold on each sample of a dataset. We set the maximum number of clicks to 20 for
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each sample. The other is the plot of the mean IoU score according to the number of clicks.
We also compute the area under curve (AuC) for each method, with each area normalized
into [0, 1].

3. Experimental Results

Segmentation performance and generalization ability are two important indexes for
the evaluation of an interactive segmentation method. To assess the effectiveness of the
proposed PGR-Net, we devise two groups of experiments on natural scene images and
high-resolution remote sensing datasets, respectively. We first follow References [14,16,17]
to evaluate our algorithm on five widely used natural image datasets to demonstrate the
generalization ability of PGR-Net. Afterward, to facilitate the detailed analysis of our
method on the interactive extraction of buildings, we analyze and compare our algorithm
with the latest state-of-the-art methods FCA [18] and f-BRS [17] on three building datasets
of remote sensing images. In addition, we conduct detailed ablation experiments to verify
the effectiveness of each component, and analyze the stability of our algorithm.

3.1. Evaluation on Natural Image Dataset

We compare our approach with other existing methods, including GrabCut (GC) [5],
geodesic matting (GM) [32], random walk (RW) [11], Euclidean star convexity (ESC) [8],
geodesic star convexity (GSC) [8], Growcut (GRC), deep object selection (DOS) [12], regional
image segmentation (RIS) [19], latent diversity based segmentation (LD) [14], backprop-
agating refinement scheme (BRS) [16], content aware multi-level guidance (CMG) [15],
feature backpropagating refinement scheme (f-BRS) [17], and first click attention network
(FCA) [18].

Figure 10 illustrates the IoU scores of each method on the different number of clicks. In
general, deep-learning-based methods (solid lines) have better performance than traditional
interactive segmentation algorithms (dashed lines) in all datasets. The curve of our method
is smooth, and we achieve the highest AuC scores across all five datasets, which means our
algorithm has a better performance. Specifically, the curves of our method have obvious
advantages on SBD and COCO datasets, and for the DAVIS, due to its difficulty, the
curves of each algorithm are relatively close. In Table 2, we report the NoC results on five
datasets. We achieve the best performance on four of them. As it can be seen, our algorithm
requires fewer number of clicks to reach the same IoU score. Note that we do not utilize
complicated architecture design. However, the improvement of performance is significant,
which demonstrates the effectiveness of our algorithm.

Table 2. Comparison of the number of clicks (NoC) required to reach IoU 0.85 (NoC@85) and 0.9 (NoC@90) on GrabCut,
Berkeley, DAVIS, SBD and COCO datasets. The best and the second-best results are boldfaced and underlined, respectively.

Method
GrabCut Berkeley DAVIS SBD COCO

NoC@85 NoC@90 NoC@90 NoC@90 NoC@85 NoC@90 NoC@85 NoC@90

GC [5] 7.98 10.00 14.22 17.41 13.6 15.96 15.23 17.61
GM [32] 13.32 14.57 15.96 19.50 15.36 17.60 16.91 19.63
RW [11] 11.36 13.77 14.02 18.31 12.22 15.04 13.62 16.74
ESC [8] 7.24 9.20 12.11 17.70 12.21 14.86 14.04 16.98
GSC [8] 7.10 9.12 12.57 17.52 12.69 15.31 14.39 16.89

DOS [12] 5.08 6.08 8.65 12.58 9.22 12.80 9.07 13.55
RIS [19] - 5.00 6.03 - - - - -
LD [14] 3.20 4.79 - 9.57 7.41 10.78 7.86 12.45
BRS [16] 2.60 3.60 5.08 8.24 6.59 9.78 - -
CMG [15] - 3.58 5.60 - - - 5.92 -
FCA [18] 1.82 2.08 3.92 7.57 - - 3.64 5.31
f-BRS [17] 2.30 2.72 4.57 7.41 4.81 7.73 4.11 5.91

Ours 1.99 2.26 3.66 7.05 3.70 5.67 3.25 4.26
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(a) GrabCut (b) Berkeley (c) DAVIS

(d) SBD (e) COCO

Figure 10. Comparison of the average IoU scores according to the number of clicks (NoC) on GrabCut, Berkeley, SBD,
DAVIS and COCO datasets. The legend contains AuC scores for each algorithm.

3.2. Evaluation on Remote Sensing Dataset

In Section 3.1, we conduct a detailed comparison and analysis of related interactive
segmentation algorithms, including traditional and deep-learning-based. In this section, we
select the most recent state-of-the-art methods (FCA [18] and f-BRS [17]) for the comparison.

In Figure 11, we present the IoU scores of each algorithm under a different number
of clicks on the three datasets. Compared with the other two methods, our algorithm
achieves the highest AuC scores in all the three datasets. Concretely, the advantages of
our method on AIRS and EVLabBuilding datasets are huge and significant, and on the
CrowdAI dataset, the performance of the algorithms are close and worse; we consider
that this is because there are many small buildings on the CrowdAI dataset. Basically, it
only takes 3–4 clicks for our algorithm to achieve good results. In Tables 3–5, we report
the quantitative NoC results of each algorithm on AIRS, CrowdAI and EVLabBuilding
datasets, respectively. In fact, NoC results of small buildings (20 × 20) do not make much
sense because it is always difficult for such small objects to reach 0.9 IoU. Nevertheless,
our algorithm still performs significantly better than other methods in the NoC metric. For
medium and large buildings, our algorithm basically only requires 1–2 fewer NoC than
other methods to achieve the same IoU results, in some cases, it can reach 4–5 or more.
Compared with the results of Table 2 in natural scenes, our results on buildings have more
obvious advantages. We consider it is due to the better stability of our algorithm, and this
advantage will be more prominent in “easy” buildings, of which we will make a further
analysis in Section 3.4. In Figure 12, we also present some visualized comparisons of each
algorithm on the three datasets.
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Table 3. Comparison of the number of clicks (NoC) required to reach IoU 0.85 (NoC@85) and 0.9 (NoC@90) on the
AIRS dataset.

Method
Small Median Large All

NoC@85 NoC@90 NoC@85 NoC@90 NoC@85 NoC@90 NoC@85 NoC@90

f-BRS [17] 13.17 16.52 5.69 9.38 4.88 7.22 5.58 8.25
FCA [18] 16.62 18.83 5.05 8.51 3.26 4.80 4.48 6.45
Ours 15.94 17.45 4.27 7.05 2.57 3.33 3.78 4.99

Table 4. Comparison of the number of clicks (NoC) required to reach IoU 0.85 (NoC@85) and 0.9 (NoC@90) on the
CrowdAI dataset.

Method
Small Median Large All

NoC@85 NoC@90 NoC@85 NoC@90 NoC@85 NoC@90 NoC@85 NoC@90

f-BRS [17] 13.54 16.97 9.20 13.93 9.02 13.54 10.08 14.48
FCA [18] 14.48 17.98 6.34 10.26 5.50 8.76 7.86 11.52
Ours 13.61 16.39 5.16 8.33 4.47 6.63 6.78 9.61

Table 5. Comparison of the number of clicks (NoC) required to reach IoU 0.85 (NoC@85) and 0.9 (NoC@90) on the
EVLabBuilding dataset.

Method
Small Median Large All

NoC@85 NoC@90 NoC@85 NoC@90 NoC@85 NoC@90 NoC@85 NoC@90

f-BRS [17] 14.82 17.80 5.88 9.67 5.98 8.37 6.79 9.64
FCA [18] 18.22 19.72 6.19 11.06 4.53 6.55 6.31 9.11
Ours 10.98 13.64 3.67 5.25 3.73 4.65 4.40 5.68

(a) AIRS (b) CrowdAI (c) EVLabBuilding

Figure 11. Comparison of the average IoU scores according to the number of clicks (NoC) on AIRS, CrowdAI and
EVLabBuilding datasets. The legend contains AuC scores for each algorithm.
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(a) image (b) gt (c) f-BRS (d) FCA (e) Ours

Figure 12. Visualized comparison of different methods on EVLabBuilding, AIRS and datasets. Red for positive clicks and
blue for negative clicks.
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3.3. Ablation Study

To further evaluate the efficacy of each component in our algorithm, we conduct an
ablation study on Berkeley, COCO and EVLabBuilding datasets. We take the network that
only uses the positive and negative clicks as input as the baseline, and we gradually add
each component proposed in this paper for validation. In Table 6, we report the mean
number of click (NoC) results of different settings. Overall, the iterative training (No.3) and
segmentation guidance map (No.4) have brought significant performance improvement.
By utilizing iterative training, the performance on the COCO dataset is improved with
0.94 and 1.48 alleviating of NoC; and for the EVLabBuilding dataset, the NoC value has
been significantly reduced by 2.21 and 2.68. However, the improvement effect on the
Berkeley dataset is very slight. We infer that it is because the iterative training and the data
augmentation in it help the network to deal with some small or easy objects. However, for
objects with complex shapes in the Berkeley dataset, the effect of improvement is limited.
On the other hand, we consider that the previous segmentation mask can promote the
stability of the mask refinement, which has more advantages in the detail refinement
of complex objects. Thus, by adding the previous segmentation mask, the NoC on the
Berkeley dataset is reduced from 4.51 to 3.66. We will compare the stability of No.3 and
No.4 settings in Section 3.4 to further verify this point.

Table 6. Ablation study of the proposed method on Berkeley, COCO and EVLabBuilding datasets.
BS: baseline; AZI: adaptive zoom-in technique; Iter: iterative training strategy; Seg: previous segmen-
tation mask and the newly added click map.

Settings
Berkeley COCO EVLabBuilding

NoC@90 NoC@85 NoC@90 NoC@85 NoC@90

#1: BS 5.26 5.03 7.10 7.85 10.85
#2: BS + AZI 4.60 4.54 6.31 7.13 9.50
#3: BS + AZI + Iter 4.51 3.60 4.83 4.92 6.82
#4: BS + AZI + Iter +
Seg 3.66 3.25 4.26 4.40 5.68

3.4. Stability Analysis

For the evaluation of the stability of interactive image segmentation algorithms, we
use the frequency of “bad” clicks and the average IoU reduction caused by these “bad”
clicks as a metric. The “bad” clicks here refer to clicks that cause the segmentation IoU to
fall after being added to the network. Specifically, when calculating the NoC metric, we
also count the frequency of “bad” clicks before the segmentation result reaches a certain
IoU to evaluate the robustness of the interactive segmentation system. We compare our
algorithm with f-BRS and FCA on the AIRS dataset. From the curves in Figures 10 and 11,
we can see that the IoU is basically saturated after reaching 90% for all methods. Thus,
here we set the target IoU to 90% for a more reasonable evaluation, and the comparison
results are shown in Table 7. Our algorithm yields the lowest ratio of “bad” clicks, which
means our algorithm is less prone to produce degraded results. Furthermore, the average
IoU reduction of our method is 3.13%, and we consider it as a normal fluctuation during
the final refinement stage of the segmentation masks. “Ours−” denotes the No.3 setting
in Table 6, and from this, we can see the importance of the previous segmentation mask
and the newly added click map for improving the stability of the network. The stability of
FCA-Net is better than that of the f-BRS, which is because the first click attention module is
helpful to promote the stability of the network prediction. Furthermore, we notice that the
average IoU drop of f-BRS is 11.83%, which means that each “bad” click will cause a drop
in IoU of 0.12. From this, we can infer that the results of f-BRS fluctuate sharply.
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Table 7. Comparison of the ratio of “bad” clicks and its corresponding average IoU reduction on the
AIRS dataset. #ACs: number of all clicks; #BCs: number of bad clicks.

Method #ACs #BCs Ratio IoU Drop (avg.)

f-BRS [17] 28034 6132 21.87% 11.83%
FCA [18] 21925 3720 16.97% 7.46%
Ours− 21646 4386 20.26% 11.65%
Ours 16952 1499 8.84% 3.13%

In Figure 13, we present a visualized interactive segmentation process of f-BRS, FCA
and our algorithm on a test case of the AIRS dataset to further demonstrate the stability of
our algorithm. We show the segmentation mask of each algorithm after each click is added
before the IoU reaches 0.9. It only takes 4 clicks for our method to reach 0.9 IoU. In addition,
our algorithm can continuously improve the segmentation results, while the segmentation
masks of f-BRS (7th click) and FCA-Net (7th and 11th click) are easily degraded, which is
harmful to the interactive segmentation system.

Figure 13. Visualized comparison of the segmentation process of f-BRS, FCA-Net and our algorithm on a test case of AIRS
dataset. Red for positive clicks and blue for negative clicks.

4. Discussion

4.1. Building Extraction Analysis

From the results in Tables 2–5, we can see that our method surpasses FCA [18] and
f-BRS [17] on both building and natural image datasets. Specifically, the advantage of our
method is more obvious in dealing with buildings. We attribute this to the good stability
of PGR-Net, which is essential for the interactive extraction of buildings. If an interactive
segmentation algorithm is not stable, it will take a significant amount of clicks to extract
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even a very simple object. From the last row of Figure 12, we can see that for an easy
building, f-BRS [17] takes 5 clicks to reach 0.9 IoU. This is because in the process of object
extraction, the algorithm has been correcting the wrong prediction given by itself. We have
provided an example in Figure 13 to demonstrate this point, and this is in line with our
analysis in Section 1.

4.2. Adaptive Zoom-In

To demonstrate the superiority of our proposed adaptive zoom-in technique, we
compare it with heuristic zoom-in strategies on Berkeley, DAVIS and EVLabBuilding
datasets. We consider that the images in these datasets have different size, which is very
suitable for such validation. Here we follow [17] to apply zoom-in prediction after 1, 3
and 5 clicks, and these three settings are denoted as “#1”, “#3” and “#5”, respectively. We
compute and compare the NoC required for each setting to reach 0.9 IoU (NoC@90), and
the results are reported in Table 8. For the empirical zoom-in strategies, we can see that “#1”
is the best on Berkeley and EVLabBuilding datasets. However, on the DAVIS dataset, “#3”
performs best. This indicates a single empirical setting does not always achieve optimal
performance in the face of different scenarios. On the contrary, our adaptive zoom-in
strategy can always achieve good performance on all of the datasets.

Table 8. Comparison of the different zoom-in settings on Berkeley, DAVIS and EVLabBuild-
ing datasets.

Setting #1 #3 #5 Adaptive

Berkeley(NoC@90) 3.93 4.02 4.18 3.66

DAVIS(NoC@90) 7.29 7.18 7.22 7.05

EVLabBuilding(NoC@90) 5.64 5.79 6.11 5.68

4.3. Clicking Strategy

To analyze the impact of the clicking strategy to our algorithm, we analyze the IoU
score according to the number of clicks on the Berkeley dataset with three different clicking
strategies, and the related results are shown in Figure 14. In strategy 1, we use the center of
the largest error region (point p) as the new click. In clicking strategy 2, we first compute the
minimum distance of point p to the boundary, denoted as d, and then we randomly select
clicks from the error region within 0.5d from point p. In strategy 3, we randomly select
clicks in the largest error region. We can see that strategy 2 has a similar performance to
strategy 1. However, when we randomly select clicks by using strategy 3, the performance
of the network is degraded to some degree. It is because the indication distance will
provide misleading guidance in this situation. To sum up, our algorithm can perform well
when users provide clicks around the center of the misclassified region. However, when
users click near the boundary of the mislabeled region, the performance will decrease to a
certain extent. Overall, by referring to the results of other similar methods [13], we believe
such performance degradation is normal and acceptable. In Section 4.4, we will further
verify our algorithm by human study.
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Figure 14. IoU scores according to the number of clicks of different clicking strategies.

4.4. Interaction with Human Annotators

Our algorithm is based on the assumption that the annotators are accustomed to click
around the center of the largest error region. Notably, we just utilize this information
roughly to obtain the progress information of the interactive segmentation process, and
we do not require the annotators to follow this strategy strictly. To further validate the
robustness of the proposed algorithm, we conduct a small experiment with real human
annotators in the loop. Based on the proposed interactive segmentation model, we develop
a tiny annotation tool for the evaluation. Taking into account the workload of the annotators,
we asked two human subjects to annotate the objects in the GrabCut dataset (50 images).
Notably, we only explained how to use this tool, and the annotators do not know the
details of the algorithm behind it. For each object, the corresponding ground-truth image
is presented, and the annotators can provide clicks according to their preferences. Once
the IoU score reaches 0.9, the tool will give a prompt, which also means the annotators
have completed the annotation of this object. In Table 9, we compare the NoC results of
different annotators with an automatic clicking strategy. NoC@85 and NoC@90 denote
the NoC required to reach IoU 0.85 and 0.90, respectively. In general, the results are very
close. An interesting finding is that the NoC@85 results of human annotators are generally
better than the results of the automatic clicking strategy, while for NoC@90, the situation is
the opposite. This is because in the automatic clicking strategy, clicks are determined by
calculating the maximum distance of the misclassified area, and sometimes these clicks are
not the “real” center of the object, which can degrade the performance of the segmentation
results; thus, it takes more clicks to achieve IoU 0.85 (NoC@85). As for NoC@90, the reason
is that for small objects, it is sometimes difficult for human annotators to provide further
clicks because the result is already pretty good, it just does not reach 0.9 IoU.

Table 9. Real human experiments on the GrabCut dataset.

NoC@85 NoC@90

Automatic 1.99 2.26
Annotator#1 1.78 2.52
Annotator#2 1.80 2.56

5. Conclusions

In this work, we analyze the difference of objects in natural scenes and buildings in
remote sensing images and realize that the stability is critical to an interactive segmentation
system, especially for “easy” buildings. Focusing on the promotion of the robustness of the
interactive segmentation, we utilize the distance of newly added clicks to the boundary of
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the previous segmentation mask as an indication of the interactive segmentation progress,
and this information is employed with the previous segmentation mask and positive
and negative clicks to form a progress guidance map. This progress guidance map is
then fed into a CNN with the original RGB image. Furthermore, we propose an iterative
training strategy for the training of the network. Moreover, we adopt an adaptive zoom-
in technique during the inference stage for further performance promotion. Abundant
experimental results show that our algorithm has good robustness and superiority. In
particular, compared with the latest state-of-the-art methods, FCA [18] and f-BRS [17], the
proposed PGR-Net basically requires 1-2 fewer clicks to achieve the same segmentation
results on the three building datasets. Currently, our method is utilized for the extraction of
building instances. In future research, we will try to improve our method for the interactive
extraction of region objects.
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Appendix A

The detail of the structure of the backbone network utilized in this study is depicted
in Table A1.

Table A1. The detailed structure of the backbone network utilized in our work.

Block Group Output Size Channel Parameters Convolution Layout

input 384 × 384 7 - -

conv1 192 × 192 64 stride 2, dilation 1 7 × 7

3 × 3 max pool, stride 2

res1 96 × 96 256 stride 1, dilation 1

⎡⎣ 1 × 1, 64
3 × 3, 64
1 × 1, 256

⎤⎦× 3

res2 48 × 48 512 stride 2, dilation 1

⎡⎣1 × 1, 128
3 × 3, 128
1 × 1, 512

⎤⎦× 4

res3 48 × 48 1024 stride 1, dilation 2

⎡⎣ 1 × 1, 256
3 × 3, 256

1 × 1, 1024

⎤⎦× 23

res4 48 × 48 2048 stride 1, dilation 4

⎡⎣ 1 × 1, 512
3 × 3, 512

1 × 1, 2048

⎤⎦× 3
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Abstract: Deep learning (DL) shows remarkable performance in extracting buildings from high
resolution remote sensing images. However, how to improve the performance of DL based methods,
especially the perception of spatial information, is worth further study. For this purpose, we proposed
a building extraction network with feature highlighting, global awareness, and cross level information
fusion (B-FGC-Net). The residual learning and spatial attention unit are introduced in the encoder of
the B-FGC-Net, which simplifies the training of deep convolutional neural networks and highlights
the spatial information representation of features. The global feature information awareness module
is added to capture multiscale contextual information and integrate the global semantic information.
The cross level feature recalibration module is used to bridge the semantic gap between low and
high level features to complete the effective fusion of cross level information. The performance of the
proposed method was tested on two public building datasets and compared with classical methods,
such as UNet, LinkNet, and SegNet. Experimental results demonstrate that B-FGC-Net exhibits
improved profitability of accurate extraction and information integration for both small and large
scale buildings. The IoU scores of B-FGC-Net on WHU and INRIA Building datasets are 90.04% and
79.31%, respectively. B-FGC-Net is an effective and recommended method for extracting buildings
from high resolution remote sensing images.

Keywords: deep learning; building extraction; spatial attention; global information awareness; cross
level information fusion

1. Introduction

Building extraction from high resolution remote sensing images plays a critical role in
natural disaster emergency and management [1], land resource utilization and analysis [2],
and intelligent city construction and planning [3], etc. With the ongoing development
of earth observation technology, automatically extracting buildings from high resolution
remote sensing imagery has gradually become one of the most vital research topics [4].
Despite the wealth of spectral information provided by high resolution remote sensing
imagery [5], the spectral discrepancy among the various buildings coupled with complex
background noise poses a significant challenge to automatic building extraction [6]. There-
fore, a high precision and high performance extraction method for building extraction
automation is urgently needed.

According to the different classification scales, there are two leading conventional
approaches for the extraction of buildings from high resolution remote sensing imagery:
pixel based and object based [7]. Pixel based thought regards a single pixel or its neighbour-
ing pixels as a whole, which can extract building information by the spectral similarities
principle [8]. Commonly used pixel based methods include maximum likelihood classifica-
tion [9,10], decision tree, random forest, and support vector machine [11]. However, these
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methods may result in extremely serious salt and pepper noise [12] because of the charac-
teristics of the same spectrum foreign matter and the same object heterogenic spectrum in
remote sensing imagery. An object based approach normally takes the homogeneous pixels
obtained by image segmentation [13] as basic units and classifies these homogeneous pixels
on the basis of the variability of spectral, shadow, geometric, and other characteristics [14].
Although this method exploits the spatial information of buildings and effectively avoids
the phenomenon of salt and pepper noise, the method is applicable only to the extraction
of buildings with small areas and simple types; it is rather difficult to extract buildings
with large ranges and high complexity because of the vulnerability to human factors [5].
The conventional methods may seem to have difficulty meeting the requirements of high
precision, high performance, and automatic building extraction.

Recently, with the rapid advancement of artificial intelligence technology such as deep
learning (DL), significant progress has been made in the extraction of various ground objects
using convolutional neural networks (CNNs) [6]. CNNs have the potentiality to automati-
cally learn the correlation features among ground objects from the input remote sensing
imagery, avoiding the influence of human factors in conventional methods. Therefore,
CNNs are widely applied in some files of feasibility prediction, classification extraction,
and the automatic identification of ground objects [15], such as automatic mapping of cone
karst [16], landslide susceptibility mapping [17] and automatic road extraction [18]. CNNs,
which consist of multiple interconnected layers, including convolution layers, pooling
layers, and activation functions [19], obtain hierarchical features of buildings by automati-
cally encoding remote sensing imagery with the merits of local perception and parameter
sharing [20]. CNNs have emerged as a building extraction method with high accuracy,
great performance, and excellent automation capability. Simultaneously, the large amount
of high resolution remote sensing imagery data provides sufficient training samples [21].
The performance of CNN based approaches is promoted in the data driven model, which
dramatically enhances the generalization of building extraction. Notably, some studies
showed that adding attention modules to CNNs can help the network pay more attention
to and perceive contextual information and global features [22–25].

U-Net [26], as representative of CNN based approaches, has powerful feature ex-
traction capability and superior recognition performance in the field of medical image
segmentation. However, it is still extremely challenging to directly use U-Net to extract
buildings from high resolution remote sensing images due to the spectral discrepancy,
background, and complex noise interference of different buildings. Possible issues are
as follows: (1) The difficulty of model training. U-Net acquires robust local information
using continuous convolution; nevertheless, deep stacked convolutions tend to hinder
model training and cause the degradation of the model performance [27,28]. (2) The lack
of capacity for low level features (obtained by the U-Net encoder) representation. Due to
the variety and complexity of buildings, the low level features acquired by the encoder
convey less spatial detail information about the building features with much redundant
information. Previous studies have shown that low level features may fail to convey the
spatial detail information of ground objects in the face of high complexity ground ob-
jects [29,30]. (3) The insufficient integration of global information. U-Net aggregates the
feature information extracted by the convolution layer through four max pooling steps,
which not only reduces the computational complexity but increases the receptive fields of
the feature maps. However, the standard convolution operation could capture only local
neighborhood information and not effectively perceive global semantic information, for
feature maps with large receptive fields [31]. (4) The inadequate cross level aggregation.
Although U-Net employs skip connections to enhance the utilization of low level features,
this method, with a simple concatenation operation, ignores the influence of redundant
information and the semantic gap between low and high level features, which in turn limits
the building extraction performance [6,21,32].

To solve the issues mentioned, a building extraction network (B-FGC-Net) based
on residual learning, aggregated spatial attention (SA) units, global feature information
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awareness (GFIA) modules, and cross level feature recalibration (CLFR) modules is pro-
posed in this work. The residual learning and SA unit is introduced in the encoder, which
accelerates the convergence rate of gradient descent and highlights the features of spatial
detail information of the buildings. The GFIA module captures the contextual information
and improves the global awareness capability. The CLFR module, thoroughly considering
the semantic gap between low and high level features, completes the effective fusion of
cross level feature information from the channel dimension, suppresses the redundant
information of low level features, and improves the building extraction performance of
the model. Compared with the conventional building extraction methods, the B-FGC-Net,
integrating residual learning, SA, GFIA, and CLFR, outperforms the capacity of feature
highlighting, global awareness, and cross level information fusion, achieving superior
performance in the building extraction from high resolution remote sensing imagery.

2. Related Work

Since fully convolutional neural network (FCN) [33] was proposed, the end to end
deep convolutional neural network (DCNN) has received great attention. To solve the
problem that spatially detailed information is difficult to recover in image segmentation,
the low level features are mapped gradually by skip connection [26,34–36] and decoded
in the decoder part. The methods based on skip connection allow the direct utilization of
detailed low level features to restore the spatial resolution without additional parameters.
However, using too much and stacked convolution in the encoder while obtaining more
effective and sufficient low level features poses a risk of hindering the convergence speed
and decreasing the prediction performance of the model. On this basis, residual learning
was introduced into the end to end DCNN to alleviate the degradation problem due to
multiple convolutional layers [31,37,38]. This scheme not only speeds up the training of
the model but also effectively facilitates the utilization of low level features [39].

The DCNN with residual learning obtains rich low level features (e.g., semantic
information) but the semantic information is less strong with significant redundant infor-
mation [29]. The simple convolution operator, with the characteristic of focusing only on
local regions, in addition to the difficulty of obtaining the spatial location relationship of
each feature point, may fail to effectively capture detail rich spatial location information
in low level features [40]. Therefore, it is urgent to design a new scheme in the encoder to
capture the spatial relationship of feature points and highlight the expression of building
features at the spatial level. The self attention mechanism [41], for example, was applied in
the encoder of the GCB-Net [30] and the NL-LinkNet [42], which filtered the interference of
noisy information and constructed the long range dependencies among each pixel. Fur-
thermore, due to the semantic gap between low and high level features in the end to end
DCNN, a simple cross level fusion method, such as channel concatenation in U-Net [26]
and pixel addition in LinkNet [37], may cause the model to ignore the usefulness of all
features and limit the propagation of spatial information between the encoder and decoder.
For instance, LANet proposed an attention embedding module to bridge the gap in spatial
distribution between high and low level features [43].

The encoder part of the end to end DCNN generates a feature map with small spatial
resolution and large receptive fields. Actually, the standard convolution is weak in global
information awareness for this feature map. A possible way to remedy the issues is to
apply multiparallel dilated convolution or other submodules, which could capture the
multiscale contextual and global semantic information, and enlarge the receptive fields to
improve global information awareness. For instance, the pyramid pooling module (PPM)
of PSPNet [44] captures multiscale information; DeepLabV3+ [45] constructs the atrous
spatial pyramid pooling (ASPP) module based on dilated convolution to obtain contextual
information; D-LinkNet [31] designs a specific cascaded operation of the dilated convo-
lution unit (DCU) according to the spatial resolution of feature maps, which effectively
obtains a larger range of feature information; HsgNet [46] proposes the high order spatial
information global perception module to adaptively aggregate the long range relationships
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of feature points. However, the above methods have low extraction accuracy, excessive
memory consumption, or computational complexity, which make it difficult to promote
their application.

3. Methodology

In this section, we will describe the proposed method in detail. Firstly, the overall
architecture of the model is described. Then, the spatial attention units, global feature
information awareness modules, and cross level feature recalibration modules, and loss
functions are elaborated.

3.1. Model Overview

The B-FGC-Net, consisting of the encoder, GFIA module, and decoder, is a standard
end to end DCNN model, as shown in Figure 1. First, the method takes remote sensing
images of buildings as the input to the encoder, which uses the residual learning block
(Res-Block) and SA unit to obtain the feature information of the buildings automatically.
Continuously, GFIA modules aggregate the contextual information by the self attention
unit and the dilated convolution. Finally, the decoder uses multiple effective decoder blocks
and CLFR modules to restore feature maps to the final building segmentation maps.

 
Figure 1. Overall of the proposed framework. (a) Structure of the B-FGC-Net, in which 1©, 2©,
and 3© denote the encoder, the GFIA module, and the decoder, respectively, Down sample denotes
downsampling, Up-layer denotes upsampling; (b) Res-Block; (c) Decoder-Block, where C denotes
the number of channels of the feature map, and p is the probability of an element being zeroed. The
addition and ReLU represent the pixel addition and the Rectified Linear Unit, respectively. The 1 × 1
and 3 × 3 denote the convolution kernel size.
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The encoder takes ResNet-34 as the backbone network to extract low level features
and removes the 7 × 7 convolution and max-pooling of the initial layer and the global
average pooling and fully connected layer of the final layer. The input data is processed by
four repeated groups of convolution layers, each of which contains multiple Res-Blocks
(see Table 1) to generate different hierarchical low level features. At the end of each
group of convolution layers, those low level features are delivered into the SA unit in
four groups to further highlight potential information such as space, shape, and edge
features of the building and to suppress backgrounds such as roads, trees, and farmland.
A detailed description of the SA unit is provided in Section 3.2. Additionally, the stride
of the convolution of downsampling is set to 2, achieving the goal of reducing the spatial
resolution of feature maps by 1

4 and doubling the number of channels. Although the
receptive fields of feature maps are increased due to several downsampling operations,
some rich spatial information is lost. It is rather difficult to recover the detailed and global
semantic information by using only upsampling and standard convolution operations. In
this work, we fuse the low level features generated in stages 1, 2 and 3 with high level
features, expecting to recover the spatial information of feature maps. The GFIA module
utilizes the low level features generated in stage 4 with the large receptive fields, which is
helpful to obtain the semantic information of building features and improve the sensing
ability of the global information. The encoder structure and the dimension variation of low
level features are shown in Table 1.

Table 1. The encoder structure and the dimension variation of low level features. SA_1, SA_2, SA_3, and
SA_4 denote the SA units of stages 1, 2, 3, and 4, respectively. Here, 3 × 256 × 256 represents the number
of channels, height, and width, respectively. In addition, 3× Res-Block denotes three Res-Blocks.

Stage Template Size

Input - 3 × 256 × 256

1
1 × 1 Conv + BN + ReLU

64 × 256 × 2563 × Res-Block
SA_1

2
4 × Res-Block

128 × 128 × 128SA_2

3
6 × Res-Block

256 × 64 × 64SA_3

4
3 × Res-Block

512 × 32 × 32SA_4

The GFIA module perceives a larger range of feature maps to capture the effective con-
textual information of the buildings by dilated convolution. Meanwhile, the self attention
mechanism focuses on the spatial relationship of each feature point. The combination of
the above two methods enables the high level features to enter the decoder to complete the
decoding operation. The decoder perceives the global information and restores the spatial
detail information of the features. Section 3.3 presents the GFIA module.

Bilinear interpolation and 1 × 1 convolution were adopted to recover the resolution of
feature maps in the decoder. To overcome the semantic gap between low and high level
features, we use the CLFR module described in Section 3.4 to focus on the complementary
relationship between them, to diminish the interference of noise information and to improve
the utilization of useful low level feature information. Thereafter, the decoder block decodes
the fused feature maps through two convolution operations to output the final building
extraction result. To prevent overfitting, dropout [47] and batch normalization (BN) [48] are
introduced after each convolution operation of the decoder block to simplify the decoding
structure and improve the training speed, respectively.
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3.2. Spatial Attention

For the natural properties of buildings and the complexity of the background, such as
roofs of various colors and shape features, the standard convolution operation focuses on
neighborhood pixels and may fail to accurately obtain the distribution of each pixel and
explore the spatial relationships on the overall space. Based on this observation, our study
proposed an SA unit inspired by the convolutional block attention module (CBAM) [49], as
shown in Figure 2. The SA unit aims to explore the spatial distribution regularity of pixels,
highlight the building feature expression, and suppress the interference of background.

The SA consists of three major components: pooling, convolution, and excitation.
Through three key steps, the SA automatically learns the feature expressions in spatial
dimensions and adaptively acquires the spatial weights of each feature.

(1) Pooling: the feature map x ∈ RC×H×W is compressed in the channel dimension by
the global average pooling and the global max pooling to optimize the spatial distribution
information of each feature point. The pooling can be defined by Equation (1).

z = fC( fGAP(x), fGMP(x)) (1)

where fC(·) represents the channel concatenate operation, fGAP(·) and fGMP(·) represent
the global average pooling and global max pooling, respectively, and W and H are the width
and height of the feature map, respectively.

(2) Convolution: 7 × 7 convolution and sigmoid activation function can autonomously
learn the spatial distribution relationship of features and optimally assign weights to each
feature point. The spatial attentional feature map s ∈ R1×W×H is obtained by Equation (2).

s = fconv2d(z) = σs(w(z)) (2)

where fconv2d(·) is a two-dimensional convolution operation, w denotes the convolution
kernel parameters, and σs represents the sigmoid activation function.

(3) Excitation: the spatial attentional feature map s highly expresses the spatial distri-
bution of feature points. Then, it performs point multiplication with the input feature map
x. In this manner, the model focuses on learning building features and highlighting the
spatial information expression during the training. The calculation process is as follows:

y = fm(x, s) + x (3)

where fm(·) denotes the point multiplication. In summary, the SA successively completes
the adaptive acquisition of spatial weights for each feature point by pooling, convolution
and matrix dot product operations, which highlights the expression of building features in
the spatial dimension and suppresses noise information interference.

Figure 2. The structure of the spatial attention unit.

3.3. Global Feature Information Awareness

To capture multiscale contextual information and aggregate global information, we
proposed the GFIA module, as illustrated in Figure 3, consisting of a dilated convolution
(DC) unit and a self attention (also called nonlocal) unit. As shown in (b), compared with
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the standard convolution operation, the DC perceives a larger range of feature information
by expanding the interval of convolution kernels. The DC unit uses five convolutions with
different dilation rates to efficiently integrate the neighborhood information of the building
features, which is calculated as follows:

F = ∑i σr(wi(Li−1)) (4)

where F ∈ RC×W×H denotes the output of the DC unit, i = {0, 1, 2, 3, 4} is the index of
the values of the dilation rate, σr is the ReLU activation function, wi is the parameters of
the DC kernel and Li−1 ∈ RC×W×H represents the output of the previous DC. Specifically,
Li−1 represents the input feature map x of the GFIA module when i = 0. In this work,
the dilation rate was set to dilation = {1, 2, 3, 4, 8}, and the corresponding receptive fields
of their convolutions were 3 × 3, 7 × 7, 11 × 11, 15 × 15, and 31 × 31, respectively. On
the one hand, the DC with the continuous dilation rate avoids the omission extraction
of feature information and effectively obtains multiscale contextual information. On the
other hand, the convolution with a dilation rate of 8 can perceive a 31 × 31 feature area,
which is basically able to cover the whole range of feature maps and complete the effective
acquisition of global semantic information. In addition, depthwise separable convolution is
introduced in the DC unit to reduce the complexity of the convolution operation. The non-
local unit constructs three feature maps, B ∈ RC×H×W , C ∈ RC×H×W and D ∈ RC×H×W ,
with global information to capture the long range dependence between each feature point.
The calculation process of the nonlocal unit is shown as Equations (5) and (6).

B = σr(wb(x)), C = σr(wc(x)), D = σr(wd(x)) (5)

N = fm(D, fm(C, B)) (6)

where wb, wc and wd denote the parameters of the convolution kernel, and N ∈ RC×H×W

is the output of the nonlocal unit. As the model is continuously trained, the nonlocal unit
automatically learns the correlation between arbitrary features and reweighs each feature
to promote the concern of the model for the global information of the features.

Figure 3. Overview of the GFIA module. (a) The structure of the GFIA module, (b) the comparison
of standard convolution and dilated convolution, (c) the structure of the nonlocal units.

3.4. Cross Level Feature Recalibration

The direct feature fusion of low and high level features in the form of concatenated
channels or pixel addition may cause the model to fail to learn effective complementary
information among cross level features, and even inherent noise, as well as redundant
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information, which could affect the extraction performance of the model. Therefore, we
were inspired by efficient channel attention (ECA) [50] and designed the CLFR module,
as shown in Figure 4, to fuse low and high level features, which not only removes a large
amount of redundant information but also eliminates the semantic gap between the pieces
of redundant information.

Figure 4. The structure of the CLFR module.

The CLFR module first compresses the high level features Dk ∈ RC×H×W in spatial
dimensions by global average pooling to generate one-dimensional vectors and obtains
the global semantic information of the channel dimension. Thereafter, a one-dimensional
convolution is applied to obtain the weight parameters of feature points automatically.
Then, the sigmoid activation function is used to highlight the correlation between the
weights. In this manner, the building features in low level feature Ek ∈ RCk×Hk×Wk are
highlighted, and the semantic gap between Dk and Ek is eliminated. Finally, the fused
feature map is fed into the decoder block for the decoding operation. The CLFR module is
defined by Equations (7) and (8).

yk = fm(Ek, σs(wk( fGAP(Dk)))) (7)

outCLFR = [yk, Dk] (8)

in which yk ∈ RC×H×W denotes the low level feature after channel recalibration, wk is
the parameter of the one-dimensional convolution, and [·] is the channel concatenate
operation. The CLFR module adaptively acquires the channel weight parameters of the
high level feature Dk and eliminates the large amount of redundant information in the
channel dimension of the low level feature Ek by a dot product operation. Meanwhile, it
also re-evaluates the degree of the contribution of each feature point, which makes the
model learn the complementary information between Dk and Ek and overcome the semantic
gap between them to maximize the effective information utilization of cross level features.

3.5. Loss Function

The binary cross entropy (BCE) loss, the boundary error (BE) loss [21], and the auxiliary
loss were utilized to train the model, as shown in Figure 5.

BCE loss: given a couple of labels, ylab, and prediction results, ypro, the loss, lbce,
among them is calculated by Equation (9).

lbce = − 1
HW ∑H

i ∑W
j

(
ylab log ypro + (1 − ylab) log(1 − ypro

))
(9)

BE loss: while the BCE loss enables the model to focus on the correct classification
of each pixel in the prediction results, there are still challenges in building boundary
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refinement. Thus, we use the BE loss to force the model to pay more attention to the
boundary information of buildings. The boundary loss lbe is defined by Equation (10).

lbe = − 1
HW ∑H

i ∑W
j

(
N

P + N
zlab log zpro +

P
P + N

(1 − zlab) log(1 − zpro)

)
(10)

where zlab and zpro denote the label and the prediction result after processing by the
Laplacian operator, respectively, and P and N denote the number of positive and negative
pixels in the label, respectively.

Auxiliary loss: To facilitate model training, the output of ResNet34 in stage 3 is
upsampled to the same size as the label, and then the auxiliary loss, laux, between the label
and prediction result is calculated by the BCE loss.

Thus, the final total loss of our network is:

l = λ1 × lbce + λ2 × lbe + λ3 × laux (11)

in which λ1 = λ2 = 1 and λ3 = 0.4.

Figure 5. Flow chart of the loss function. The 3 × 3 matrix represents the Laplacian operator.

4. Experiments and Results

4.1. Datasets

In this work, the WHU building dataset and the INRIA aerial image labeling dataset
were used to train and evaluate our proposed method.

The WHU building dataset, open source shared by Ji et al. [51], has become a very
popular dataset in the field of remote sensing building extraction due to its wide coverage,
high spatial resolution, and volume of data. This dataset covers 450 km2 in Christchurch,
New Zealand, with a spatial resolution of 7.5 cm and contains about 22,000 independent
buildings with high image quality. The WHU building dataset consists of 4736, 1036 and
2416 images for training, validation and testing, respectively. Considering the limitation
of computer graphics memory, we resized the original images and the ground truth from
512 × 512 pixels to 256 × 256 pixels. Figure 6 shows the processed training set, validation
set, and test set data.

The INRIA aerial image labeling dataset [52] provides 360 remote sensing images with
a size of 5000 × 5000 pixels and a spatial resolution of 0.3 m. The dataset contains various
building types, such as dense residential areas in ten cities around the world. This dataset
only provides ground truth in the training set but not in the testing set. Therefore, we
selected the first five images of five cities in the training set for the testing set according
to suggestions by the data organizers and [3]. Due to the large size of images and the
limitation of the computer GPU memory, we cropped them into 500 × 500 pixels and
resized them to 256 × 256 pixels to meet the input dimension requirements of the model.
The original INRIA images and the preprocessed images are shown in Figure 7.
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Figure 6. Examples of the original images and the ground truth of the WHU building dataset.
(a–c) are training, validation, and testing samples, respectively.

 
Figure 7. Examples of the images and the ground truth of the INRIA aerial image labeling dataset.
(a,b) are the original dataset and the preprocessed image examples, respectively.

4.2. Experimental Settings

As shown in Table 2, the proposed B-FGC-Net was implemented based on Python-3.7
and PyTorch-1.7 in the CentOS 7 environment. We adopted an Adam optimizer [53] with
an initial learning rate of 0.0001, which decayed at a rate of 0.85 after every five epochs.
Additionally, we accelerated the training with two NVIDIA RTX 2080Ti GPUs. To avoid
the risk of overfitting, data augmentation approaches were used during training, including
random horizontal–vertical flipping and random rotation.

Table 2. Experimental environment and parameter settings.

Hardware Configuration Parameter Settings

Operating system CentOS 7 Epoch 100
DL framework Pytorch 1.7 Batch size 16

Language Python 3.7 Optimizer Adam
GPU 24G Initial learning rate 1 × 10−4

4.3. Evaluation Metrics

To objectively evaluate the performance of the proposed method, on the basis of [3,4,54,55],
we use five evaluation metrics, including overall accuracy (OA), precision (P), recall (R), F1
score (F1), and intersection over union (IOU), to comprehensively evaluate the building
extraction performance.

4.4. Result
4.4.1. Experiment Using the WHU Building Dataset

Figure 8 shows several extraction results of B-FGC-Net on the WHU building dataset.
We randomly selected six typical images for testing, including both small scale buildings
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and large scale buildings, to verify the extraction performance of the proposed method.
For the small scale buildings displayed in Columns 1 to 3 in Figure 7, the B-FGC-Net
with SA introduced can accurately locate the spatial position of buildings and effectively
identify the background as nonbuildings. Additionally, for the large scale buildings dis-
played in Columns 4 to 6 in Figure 7, B-FGC-Net with GFIA can extract the buildings
quite completely and avoid building omission as much as possible. Comprehensively
observing the labels and extraction results, although there are very few cases of building
omission and error extraction, the B-FGC-Net proposed in this work can effectively and ac-
curately extract most of the building information in both cases and shows superior building
extraction performance.

Figure 8. Building extraction results of the B-FGC-Net on the WHU building dataset. The first to
third rows are the original images, labels, and results, respectively. The numbers 1–6 represent the
index in which the image is located.

Figure 9 quantitatively evaluates the building extraction results of B-FGC-Net in
Figure 8. According to Figure 9, the OA of B-FGC-Net is above 98.1% in both cases,
indicating that B-FGC-Net can correctly distinguish between buildings and background.
Extracting small scale buildings is still challenging because of their few building pixels.
Nevertheless, the method proposed in this work achieves remarkable performance, with
an F1 score above 96.7% and an IOU score above 93.6%. In addition, the F1 score and IOU
of 97.6% and 95.4%, respectively, further demonstrate the high accuracy of the method for
large scale building extraction. In short, B-FGC-Net possesses high accuracy for both small
scale and large scale building extraction.

4.4.2. Experiment Using the INRIA Aerial Image Labeling Dataset

The building extraction results of randomly selected images from the INRIA aerial im-
age labeling dataset are shown in Figure 10. From the results of Columns 1–3, B-FGC-Net is
seen to show excellent recognition performance for small scale buildings and can accurately
detect spatial location information. Similar results are observed in Figure 10 for large scale
buildings, in which the proposed method can extract most of the buildings completely
and avoid the phenomenon of missing extraction or incorrect extraction. In the extraction
results of Column 4, B-FGC-Net exhibits excellent building extraction capability and avoids
interference from noise information such as building shadows and trees. Particularly, in the
case of complex urban building scenes (see Column 5), the B-FGC-Net model accurately
extracts the vast majority of building information by fusing multiscale feature information.
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Figure 9. Evaluation results on the WHU building dataset.

Figure 10. The extraction results of B-FGC-Net on the INRIA aerial image labeling dataset. The first
to third rows are the test images, labels, and results, respectively. Numbers 1–5 represent Austin,
Chicago, Kitsap County, West Tyrol, and Vienna, respectively.

Figure 11 presents the accuracy evaluation results of B-FGC-Net for five cities on the
INRIA aerial image labeling. As shown in Figure 11, the OA score of B-FGC-Net exceeds
94% in all five cities, which indicates that the method proposed in this work can correctly
distinguish between buildings and background. Since there are nonbuilding pixels of
97.89% and fewer building pixels of 2.11% in Kitsap County, this extreme imbalance among
positive and negative sample numbers results in an OA of 99.19%, but is imprecise. In
contrast, the F1 score of 80.44% and IOU of 67.28% in Kitsap County indicate that the
method still achieves excellent extraction accuracy in this case. Observing the F1 score
(90.5%) and IOU (82.65%) of Vienna thoroughly shows that the method performs well for
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buildings with high complexity. In sum, B-FGC-Net scored over 80.4% F1 on the five cities,
with high extraction accuracy on small scale, large scale, and high complexity buildings.

Figure 11. Evaluation results on the Inria Aerial Image Labeling dataset.

5. Discussion

5.1. Comparison of Different Classical Methods

To further examine the performance and accuracy of the proposed method, we used
several different classical methods for semantic segmentation to compare and analyze, such
as U-Net, LinkNet, SegNet, and DeepLabV3. These methods were trained at the same learn-
ing rate and optimized on two public building datasets. We also comprehensively analyzed
the extraction accuracy of each method, and the experimental results were as follows.

5.1.1. On the WHU Building Dataset

Figure 12 exhibits the building extraction results of different methods on the WHU
building dataset, including U-Net, Res-UNet, LinkNet, LinkNet*, and B-FGC-Net, where
the encoder of Res-UNet is ResNet18 and LinkNet* removes the initial convolutional layer
and max pooling in LinkNet.

As displayed in Figure 12, B-FGC-Net obtains superior visual results for building
extraction compared with classical building extraction methods. Although UNet, Res-
UNet, LinkNet, and LinkNet* can reasonably extract some building information, there is
still a considerable number of results about building incorrect extraction and background
error recognition. U-Net ignores the interference of building shadows in the fifth row
in Figure 11 (see the blue rectangular box) and identifies the majority of building pixels.
However, U-Net has a poor performance in locating small scale buildings and integrating
large scale buildings, as shown in the red rectangular box in Figure 11. The extraction
result of Res-UNet in the fourth row seems to be slightly better than the extraction result
of UNet, but the majority of the buildings are misclassified as background, reflecting the
poor extraction performance of Res-UNet. LinkNet, as a lightweight image segmentation
network, greatly reduces the training time by reducing the image spatial resolution in
the initial layer. From the extraction results, LinkNet identifies several building pixels
in the fourth row, but too many holes occur. Therefore, we removed the LinkNet initial
layer 7 × 7 convolution and max-pooling, called LinkNet*, to verify whether the excessive
downsampling causes poor extraction performance and to reflect the rationality of the
initial layer design of the B-FGC-Net. As displayed in Figure 12g, LinkNet* shows better
integration ability for large scale buildings than the previous three methods but poorer
capability for identifying small scale buildings and overcoming building shadows.
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B-FGC-Net, with the merit of the SA, GFIA, and CLFR modules, effectively overcomes
the interference of building shadows and performs favorably in extracting small scale and
large scale buildings. From the yellow box, we find that the proposed method, with the
support of SA, distinguishes the background and buildings properly and recognizes small
scale buildings easily. Furthermore, almost all large scale building pixels are correctly
and completely detected by B-FGC-Net, mainly because the CLFR module enhances the
ability of global perception. Especially in the extraction results of the fourth row, compared
with [4], B-FGC-Net extracts most of the buildings more completely. In the blue box, the
proposed method can handle the interference of building shadows better, which makes the
extraction results precise.

 
Figure 12. Extraction results of different models on the WHU Building Dataset. (a) Original image,
(b) label, (c) U-Net, (d) Res-UNet, (e) LinkNet, (f) LinkNet*, (g) B-FGC-Net.

Table 3 quantifies the building extraction accuracy of several methods in the WHU
building dataset. In contrast to other methods, B-FGC-Net achieved excellent accuracy in
all evaluation metrics. In terms of OA score, the proposed method obtains 98.90%, which
performs favorably against other methods and acquires the optimum extraction accuracy
in distinguishing building and background. Compared with U-Net, the F1 score and IOU
of B-FGC-Net were improved by 1.7% and 3.02%, respectively, indicating that the SA,
GFIA, and CLFR can effectively improve the model precision. In particular, the result of
the second best method (i.e., LinkNet*) proves that excessive downsampling can decrease
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the precision of the DL model and reflects the reasonableness of the B-FGC-Net design.
Compared with LinkNet*, B-FGC-Net exhibited the best extraction performance on the
test set with an increase in F1 score and IOU of 0.82% and 1.47%, respectively. Compared
with recent work such as PISANet [56] and Chen’s method [4], the evaluation results of
this method are still optimal.

Table 3. Accuracy evaluation results of different methods on the WHU building dataset. PISANet
and Chen’s model are implemented by [56] and [4] respectively. ‘-’ denotes that the paper did not
provide relevant data.

Methods OA (%) P (%) R (%) F1 (%) IOU (%)

U-Net 98.54 93.42 92.71 93.06 87.02
Res-UNet 98.49 91.44 94.00 92.70 86.40
LinkNet 97.99 92.16 89.09 90.60 82.82
LinkNet* 98.72 94.88 93.02 93.94 88.57
SegNet 97.15 85.90 86.78 86.33 75.95

DeeplabV3 97.82 88.93 90.16 89.54 81.06
PISANet 96.15 94.20 92.94 93.55 87.97
Chen’s - 93.25 95.56 94.40 89.39

B-FGC-Net 98.90 95.03 94.49 94.76 90.04

5.1.2. On the INRIA Aerial Image Labeling Dataset

Figure 13 exhibits the extraction results of B-FGC-Net and five other methods on
the INRIA aerial image labeling dataset. From the results, we find that UNet, Res-UNet,
LinkNet, SegNet, and DeepLabV3 identify most of the background, such as trees and
roads, but suffer from error extraction and missing extraction compared with B-FGC-Net.
Building extraction presents a great difficulty and challenge for classical methods due to
the similar spectral features between buildings and backgrounds in the red rectangular
box of Rows 1–3. Conversely, the proposed method extracts large scale buildings more
completely and overcomes the interference of similar spectral features excellently. The
extraction results of the classical methods can be seen in the red rectangular boxes in
Row 4–5 of Figure 13, which are still unsatisfactory in terms of small and large scale
buildings and serious building error extraction phenomena remain. However, B-FGC-Net
almost perfectly eliminates the “sticking phenomenon” of small scale building extraction
results by highlighting the building features in spatial and channel dimensions through
the SA unit and the CLFR module. In other challenging building scenes, such as building
shadows (the sixth row of Figure 13), tree shading (the seventh row of Figure 13) and
complex urban architecture (the eighth row of Figure 13), the other five classical methods
all present the disadvantages of incomplete extraction results and inaccurate location of
the outer boundary of the building. Fortunately, B-FGC-Net achieved satisfactory visual
performance through the SA unit, the GFLA module, and the CLFR module, to suppress
the representation of noise information, to integrate multiscale contextual information, and
to complete the effective fusion of cross level information.

The accurate results on the INRIA aerial image labeling dataset are shown in Table 4.
We clearly found that the OA, F1 score, and IOU of all methods were above 95%, 83%, and
71%, respectively, further demonstrating the good performance of the end to end DCNN
in the field of building extraction. Compared with other methods, the proposed method
achieves the best performance in all metrics and obtains the highest OA, F1, and IOU, of
96.7%, 88.46%, and 79.31%, respectively. Furthermore, the IOU and F1 score of LinkNet*
was increased by 5.65% and 3.67%, respectively, on this dataset compared to LinkNet, again
showing that excessive downsampling in the initial layer may affect the extraction accuracy
of the model and reflecting the rationality of removing downsampling in the initial layer
in the proposed method. The F1 score and IOU of B-FGC-Net improved by 0.58% and
0.93%, respectively, over LinkNet*. In detail, when compared with U-Net, B-FGC-Net
achieves a large increase in IOU and F1 scores, of 3.51% and 2.22%, indicating that the
attention mechanism and dilated convolution are effective. As described in Section 4.4.2,
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the excessive sample imbalance makes the OA of AMUNet [32] slightly better than our
method, but it is not accurate. In terms of IOU score, B-FGC-Net is 2.35% and 2.11% higher
than AMUNet and He’s model [3], respectively. These improvements demonstrate that the
B-FGC-Net is robust enough to handle sample imbalances and complex buildings.

Figure 13. The extraction results of different methods on the INRIA aerial image labeling dataset.
(a) Original images, (b) labels, (c) U-Net, (d) Res-UNet, (e) LinkNet, (f) SegNet, (g) DeepLabV3,
(h) B-FGC-Net.
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Table 4. Accuracy evaluation results of different methods on the INRIA aerial image labeling dataset.
AMUNet and He’s model are implemented by [32] and [3] respectively. Here, ‘-’ denotes the unknown
results that were not given by the authors.

Model OA (%) P (%) R (%) F1 (%) IOU (%)

U-Net 96.10 84.76 87.76 86.24 75.80
Res-UNet 95.95 83.94 87.49 85.68 74.95
LinkNet 95.48 83.61 84.82 84.21 72.73
LinkNet* 96.55 86.85 88.93 87.88 78.38
SegNet 95.46 80.72 86.89 83.69 71.96

DeepLabV3 95.80 84.58 86.04 85.30 74.37
AMUNet 96.73 - - - 76.96

He’s - 83.50 91.10 87.10 77.20
B-FGC-Net 96.70 87.82 89.12 88.46 79.31

According to the visual results and the accuracy analysis above, we can conclude that
B-FGC-Net highlights building features in the spatial dimension, aggregates multiscale
contextual information and global semantic information, and effectively removes redun-
dant information through SA, GFIA, and CLFR. Thus, B-FGC-Net achieved better visual
extraction results in two datasets, especially in small scale, large scale, and complicated
buildings, and overcame the noise information interference from building shadows and
tree occlusions.

5.2. Effectiveness Comparison of Different Levels of Spatial Attention

To represent the effectiveness of different levels of spatial attention, we explored the
mechanism and effects of spatial attention through contribution experiments and feature
visualization operations on the WHU building dataset.

The evaluation results of different levels of SA units on the WHU Building Dataset
are listed in Table 5. Compared with the No. 1 model, the No. 5 model (i.e., B-FGC-
Net) achieved the best performance, with IOU and F1 score improving by 0.64% and
0.34%, respectively, indicating that the SA can increase the classification accuracy of the
model. Comparing models No. 1–5 with each other, their IOU variations are 0.32%, 0.03%,
0.07% and 0.32%, respectively, demonstrating that the SA unit in layers 4 and 1 brings the
most significant improvement but the importance of spatial attention in layers 2–3 cannot
be neglected because Experiments 1–5 were performed gradually as the SA was added
at different levels. As the SA unit is added gradually to the encoder, the F1 score and
IOU gradually increase, further indicating that SA can highlight the relevant features of
buildings in the spatial dimension and ignore the interference of other information.

Table 5. Evaluation results of different levels of SA units on the WHU building dataset. Note: the No.
1 model has no SA unit, and the No. 5 model is the B-FGC-Net.

No. SA_4 SA_3 SA_2 SA_1 F1 (%) IOU (%)

1 94.38 89.30
2 � 94.52 89.62
3 � � 94.54 89.65
4 � � � 94.58 89.72
5 � � � � 94.76 90.04

Figure 14 displays the feature visualization comparison of the B-FGC-Net model,
where different brightnesses indicate different levels of attention to building features by
the model. According to Figure 14, after adding the SA unit, the feature maps all appear
to have different degrees of variation in brightness. The brightness of the building area is
significantly increased after adding the SA unit, as shown in Figure 14b,c, suggesting that
the SA unit in the first layer effectively ameliorates the overseeking of building boundary
information, forcing the model to focus on building features and ignore other backgrounds.
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Especially in the fourth row of visualization results, the SA highlights the representation
of building features in the spatial dimension, more importantly, attenuates the brightness
of building shadows, and effectively suppresses the interference of background. With the
addition of the SA unit, the spatial semantic information of building features is gradually
abstracted. However, the SA unit can easily be seen to increase the brightness contrast be-
tween buildings and nonbuildings, and make B-FGC-Net concentrate on learning building
features. From the feature maps in Columns (h)–(j), we find that the features in the fourth
layer are the most abstract, and the SA identifies buildings as red color, which enhances the
ability of the B-FGC-Net to perceive the spatial information of the building features.

 

Figure 14. Visualization results of different levels of SA: (a) original images, (b,c) before and after
SA_1, (d,e) before and after SA_2, (f,g) before and after SA_3, (h,i) before and after SA_4.

5.3. Comparison of Different Global Feature Information Awareness Schemes

To verify the performance of the proposed GFIA module, we compared it with several
well verified global feature information awareness schemes, i.e., the PPM in PSPNet, the
ASPP in DeepLabV3+, and the DCU in D-LinkNet. The giga floating-point operations per
second (GFLOPs), parameters, and the speed (i.e., the image throughput per second) [57]
are also reported, to analyze their computational complexity. According to Table 6, the GFIA
module, although slightly slower than PPM, outperforms other global feature information
awareness schemes in terms of GFLOPs, parameters, F1 scores and IOU. While PPM and
ASPP can effectively improve the accuracy of the model in maintaining lower GFLOPs
and parameters, the accuracy increments seem far from adequate compared to GFIA.
Despite DCU aggregating the global information by dilated convolution, its GFLOPs and
parameters are much larger and speed is much slower, which brings a greater computational
complexity and reduces inference speed. On the basis of DCU, GFIA adds the depthwise
separable convolution, greatly reducing GFLOPs and parameters and alleviating the model
training complexity, despite the reduced inference speed. In addition, GFIA uses the
nonlocal unit to enhance the spatial relationships between global semantic information and
effectively aggregates building features. In comparison, GFIA obtained the best accuracy
while maintaining a lower complexity, demonstrating that the GFIA module captures the
multiscale contextual information of building features by dilated convolution and nonlocal
units and accomplishes the effective aggregation of global semantic information.
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Table 6. Evaluation results of different global feature information awareness schemes on the WHU
Building Dataset. Note: GFLOPs and parameters are computed from a tensor with a size of
1 × 512 × 32 × 32. The speed is tested with a batch size of 2, full precision (fp32), input resolu-
tion of 3 × 256 × 256, and measured in examples/second.

No. Methods GFLOPs Parameters (M) Speed F1 (%) IOU (%)

1 PPM 0.5417 0.7895 18.90 94.32 89.24
2 ASPP 4.0969 4.1318 17.19 94.39 89.37
3 DCU 12.082 11.799 16.93 94.60 89.75
4 GFIA 0.3036 0.2939 18.61 94.76 90.04

5.4. Comparison of Different Cross Level Feature Fusion Schemes

Figure 15 displays the comparison of different cross level feature fusion schemes based
on B-FGC-Net, including the concatenate channel, pixel addition, CLFR-SE module, and
proposed CLFR module. The CLFR-SE module replaces channel attention in the CLFR
proposed in this paper with the squeeze and excitation (SE) module [58]. According to the
results, the F1 and IOU of the concatenated channel and pixel addition are significantly
lower than the F1 and IOU of the CLFR-SE and CLFR modules, mainly because of the
large semantic gap between low and high level features and the extensive redundant noise
information contained in the low level features. Considering the semantic gaps of low
level features and the redundancy characteristics, our study designed a cross level feature
recalibration scheme. The CLFR module can automatically pick up the complementary
information from channel dimensions, completing the effective utilization of low level
features and significantly enhancing the model performance. To choose superior channel
attention in the CLFR module, we compared the learning ability of SE and ECA. The
experimental results show that the latter achieves significant performance gains with only a
few additional parameters. The comprehensive comparison of the four different cross level
feature fusion schemes demonstrates that the ECA based CLFR completes the recalibration
of the channel information of low level features and aggregates the cross level feature
information by learning the channel semantic information of high level features.

Figure 15. F1 scores and IOU of different cross level feature fusion schemes on the WHU building dataset.

5.5. Ablation Study

Ablation experiments were performed to verify the rationality and validity of each
component of the B-FGC-Net on the WHU Building Dataset. U-Net with ResNet-34 was
chosen as the baseline model, and the F1 score and IOU were adopted to quantitatively
assess the effectiveness. The detailed results are shown in Table 7. The F1 and IOU are
improved by 0.96% and 1.69% after ResNet34 was introduced in U-Net, demonstrating
the robust feature extraction capability of ResNet34 as the encoder. The addition of the SA
unit improves the baseline from 94.02% and 88.71% to 94.44% and 89.46% in terms of F1
and IOU, respectively, implying that the SA unit concentrates on building features in the
spatial dimension and ignores other irrelevant backgrounds, such as building shadows.
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After inserting the GFIA module with the DC and nonlocal units, the F1 score and IOU
are improved by 0.54% and 0.97% compared with the baseline, indicating that larger scale
building features are effectively captured and that global features are usefully integrated. By
adding the CLFR module, the F1 score and IOU are improved by 0.74% and 1.33% compared
with the basic model, meaning that the CLFR module eliminates the semantic gap between
low and high level features and makes full use of the detailed spatial information of low
level features. In summary, the SA, the GFIA, and the CLFR are proven to be able to
effectively improve the performance through the ablation experiments of each module.
Most importantly, to obtain the best building extraction results, each component of the
proposed method is required.

Table 7. Ablation study with different component combinations on the WHU Building Dataset.

No. Baseline SA GFIA CLFR F1 (%) IOU (%)

1 � 94.02 88.71
2 � � 94.44 89.46
3 � � � 94.56 89.68
4 � � � � 94.76 90.04

5.6. Limitations and Future Research Work

Although the proposed method has achieved excellent extraction performance with
superior extraction capability for small and large scale buildings on WHU and INRIA
building datasets, there are still some difficulties in data dependence and the characteristics
of the same spectrum foreign matter that should not be ignored.

Figure 16 displays examples of error extraction for U-Net and B-FGC-Net. According
to the results, both methods suffer from partial building misidentification, which may
be attributed to two main reasons: (1) Some nonbuildings (e.g., light gray concrete plots,
containers, etc.) are similar to buildings in terms of spectral features and geometric features.
End to end DCNN methods have extreme difficulty learning the potential difference in fea-
tures between them from limited RGB image data, which is prone to misclassification. Thus,
future work should use auxiliary information such as digital surface models (DSMs) [59]
or multispectral images for building extraction to improve the extraction precision. (2)
Some of the labels are mistaken, making it rather difficult for the model to learn all the
information about buildings, resulting in the possible underfitting of the model. For this
reason, semisupervised or unsupervised learning methods are suggested for future research
to reduce the reliance on labeled data.

Figure 16. Examples of error extraction. (a) Original images, (b) labels, (c) U-Net, (d) B-FGC-Net.
The green and red indicate the correct and incorrect, respectively.

The comparison of the GFLOPs, parameters of several methods, and inference speed
is illustrated in Figure 17. The B-FGC-Net model has larger GFLOPs (98.75) and model
parameters (24M) and lower inference speed (18.61). Therefore, DL based DCNN models
need to make a good trade off between computational complexity and precision in future
work. For instance, smaller models can be used to extract buildings quickly in the deploy-
ment stage of various intelligent terminals (e.g., UAV identification terminals, handheld
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information collection terminals); larger models can be used to extract buildings accurately
in the field of precision mapping. Furthermore, further work can pay more attention to the
knowledge distillation scheme [60] that reduces the parameters of the model with good
accuracy and high computational complexity and facilitates the deployment of the model.

Figure 17. Comparison of GFLOPs and parameters for different methods. GFLOPs and parameters
are computed from a tensor of dimension 1 × 3 × 256 × 256. The speed is tested with a batch size of
2, full precision (fp32), input resolution of 3 × 256 × 256, and measured in examples/second.

6. Conclusions

This study proposed a building extraction network (B-FGC-Net) for high resolution
remote sensing imagery. The encoder combined the SA unit to highlight the spatial level of
building feature representation, the GFIA module was applied to capture the multiscale
contextual information and global semantic information, and the decoder used the CLFR
module to achieve the effective fusion of cross level information. The proposed method
was implemented and evaluated on two public datasets. The experimental results indicate
that: (1) B-FGC-Net is a building extraction model with an outstanding extraction effect and
high accuracy, especially in small and large scale buildings, and overcomes the influence of
building shadows and tree shading. (2) Comparison from different perspectives reveals
that the SA, GFIA, and CLFR can highlight building features, perceive global semantic
information and recalibrate cross layer channel information, respectively. SA is able to
autonomously learn the spatial distribution relationship of feature points, significantly
improving the attention on building features in the form of weight assignment and weak-
ening the representation of background noise such as building shadows; GFIA perceives
a wider range of feature information with superior contextual information aggregation
capability and brings greater accuracy gain through dilated convolution and self attention
mechanisms; CLFR eliminates the semantic gap in low level features through adaptively
acquiring channel information contributions from high level features and achieves signifi-
cant performance gains by the effective fusion of different hierarchical features. (3) Future
research should pay more attention to auxiliary information and semi supervised learning
methods to improve extraction accuracy and reduce the dependence on labeled data.
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Abstract: Dense matching plays a crucial role in computer vision and remote sensing, to rapidly
provide stereo products using inexpensive hardware. Along with the development of deep learning,
the Guided Aggregation Network (GA-Net) achieves state-of-the-art performance via the proposed
Semi-Global Guided Aggregation layers and reduces the use of costly 3D convolutional layers. To
solve the problem of GA-Net requiring large GPU memory consumption, we design a pyramid
architecture to modify the model. Starting from a downsampled stereo input, the disparity is
estimated and continuously refined through the pyramid levels. Thus, the disparity search is only
applied for a small size of stereo pair and then confined within a short residual range for minor
correction, leading to highly reduced memory usage and runtime. Tests on close-range, aerial, and
satellite data demonstrate that the proposed algorithm achieves significantly higher efficiency (around
eight times faster consuming only 20–40% GPU memory) and comparable results with GA-Net on
remote sensing data. Thanks to this coarse-to-fine estimation, we successfully process remote sensing
datasets with very large disparity ranges, which could not be processed with GA-Net due to GPU
memory limitations.

Keywords: dense matching; deep learning; convolutional neural networks; end-to-end;
pyramid architecture

1. Introduction

Over the years, dense stereo matching has been studied persistently in the field of
computer vision, remote sensing, and photogrammetry, as the corresponding applications
keep promoting the development of self-driving, urban digitization, topographic survey,
forest management, etc. [1–4]. Given a pair of images with the camera parameters and the
relative distance (baseline) in between, the object depth is computed which extends 2D im-
age information to 3D knowledge of the scene [5]. In stereo matching, the depth is obtained
in the form of disparity which presents the (horizontal) displacement of two corresponding
pixels from each of the (rectified) stereo pair, respectively. A disparity map allows each pixel
to be triangulated to its location in the 3D space. Stereo vision methods define two terms
for locating correspondences, the data term and smoothness term. The former searches
pixels with similar intensity as potential matches, while the latter requires close disparity
predictions between neighboring points for spatial smoothness. Semi-Global Matching
(SGM) is a representative method in stereo matching [6]. The algorithm acquires dense
correspondences via a simple pixel-wise cost comparison under a disparity searching range,
and guarantees the (piece-wise) smoothness of the reconstructed surface simultaneously.
For each target pixel, the previous point along a certain path is also considered to avoid
neighboring disparity inconsistency. By repeatedly applying the strategy through multiple
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(normally 8 or 16) symmetric paths, 2D regularization is performed while keeping the
algorithm computationally feasible.

As more high-quality, high-resolution data become available, the computational cost
of dense matching rises exponentially, especially in the field of remote sensing. To limit
the memory usage and runtime, Rothermel [7] proposed tSGM. Images are firstly down-
sampled to several scales constituting a pyramid structure, in which the dense matching is
applied from the lowest resolution to the highest, level by level. On the pyramid top, the
disparity range is downscaled accordingly together with the image size, leading to reduced
workload. The matching result is then passed to the next higher resolution level as an initial
prediction, from which a small disparity buffer is set as a new search range to locally refine
the estimation. The coarse-to-fine scheme thus greatly reduces the demand for memory
and runtime. Moreover, the influence of ambiguous disparity candidates is limited. Addi-
tionally, this strategy enables the use of deep learning-based algorithms, which typically
only support small search ranges due to memory limits on datasets with large disparity
ranges of sometime several thousand pixels, as typically occurring in extreme mountainous
regions, such as the Himalayas.

Recently, Zhang et al. [8] introduced their GA-Net, which approximates SGM as a
differentiable Semi-Global Guided Aggregation (SGA) layer, to construct an end-to-end
neural network for stereo matching. All the user-defined parameters in SGM can be learned;
thus, the smoothness requirement is satisfied in a smarter way depending on the specific
scene situation. With SGA and only a few 3D convolutional layers to regularize the cost
volume, GA-Net is more efficient than other networks, e.g., GC-Net [9], PSMNet [10], etc.,
and achieves state-of-the-art performance. For processing high-resolution remote sensing
data, however, the training and prediction are still memory- and time-consuming (days
are needed for training on patches of 384 × 576, with [0, 192] as the disparity search range,
consuming around 15 GB GPU memory for each batch).

Inspired by tSGM and some corresponding pyramid networks [11–13], we adjust GA-
Net to a pyramid architecture, and propose our GA-Net-Pyramid. The disparity is initially
estimated for the full depth range at the coarsest resolution, then refined through the
pyramid. Thus, we enhance the efficiency of the algorithm significantly, with moderately
decreased accuracy especially for remote sensing data. To summarize our contributions:

• Firstly, we propose a hierarchical strategy for GA-Net stereo matching to estimate
the depth from coarse to fine, for which two pyramid models are introduced with
explicit or implicit image downsampling, respectively. A trainable Spatial Propagation
Network (SPN) [14] is tested as a post-processing step to sharpen the depth boundaries.
It is shown that the effect from SPN varies depending on the target data domain.

• Secondly, the proposed methods are tested on cross-domain datasets, from close-range
benchmarks, Scene Flow [15] and KITTI-2012 [16], to large-scale aerial/satellite stereo
data. We prove that our algorithm is robust and consistently more efficient in all
cases. We also build a stereo dataset, consisting of simultaneously acquired 30-cm
satellite and 6-cm aerial imagery which are co-registered to sub-pixel precision. This
is particularly important for remote sensing scenarios, considering that the currently
published data, such as [17], cannot provide reliable ground truth disparity maps, due
to different sensing modalities or scene changes caused by temporal inconsistency.

• At last, we successfully solve a satellite stereo task on stereo pairs with very large
disparity ranges, which cannot be handled by the baseline model GA-Net.

The rest of the paper is organized as follows: In Section 2, traditional stereo methods,
SGM and its variants are recapped, which enlighten the main idea of GA-Net and our
GA-Net-Pyramid. We also describe representative learning-based algorithms, from hybrid
approaches replacing certain traditional components with deep learning-based ones, to full
end-to-end stereo networks. Afterwards, we state the principle of our method, GA-Net-
Pyramid, with a review of its prototype GA-Net in Section 3. In Section 4, we present a
detailed comparison between GA-Net and our GA-Net-Pyramid on various datasets. At
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last, we discuss the strengths and limitations of the method in Section 5, and conclude the
paper in Section 6.

2. Related Work

2.1. Traditional Stereo Methods

Conventional stereo matching algorithms define two terms to find dense correspon-
dences from a stereo pair, data term and smoothness term [5]. The data term measures
the photo consistency between potentially matched pixels through a pre-defined dispar-
ity range. The smoothness term guarantees a smooth reconstructed surface by limiting
neighboring points’ disparity differences. SGM well balanced the two terms via a scanline
optimization strategy, which was widely applied thanks to the good compromise between
accuracy and efficiency [6,18,19]. The strategy was further improved with a dynamic
searching range for correspondences through a pyramid structure, leading to tSGM which
consumed less memory and runtime [7]. As More Global Matching (MGM) was proposed,
the support from neighboring pixels was increased without extra overhead, by additionally
considering the previous scanline visited already [19,20]. Compared with other traditional
stereo methods [21–25], which may solely rely on the cost function and winner-takes-all
(WTA) strategy resulting in limited accuracy, or struggle to find the minimum global en-
ergy under certain runtime or memory budget, the SGM variants achieve robust stereo
estimation consuming reasonable computational resource.

2.2. Learning-Assisted Stereo Methods
2.2.1. Integration of Conventional Stereo Methods and Machine Learning

Recent advances in machine/deep learning and convolutional neural networks (CNNs)
enable the learning of data representation [26], and promote the development of stereo
matching with a series of state-of-the-art algorithms. Deep learning could be exploited to
extract features from images, in order to better measure the similarity for matching cost
calculation. Zbontar and LeCun [27] used a Siamese network [28] to extract features from
two patches symmetrically, after which a cost volume was constructed and regularized by
SGM. The idea was adjusted by Luo et al. [29] based on multi-class classification, achieving
faster estimation. Regarding the cost aggregation and disparity computation, Seki and
Pollefeys [30] proposed their SGM-Net to learn the penalty terms for conflicting disparity
predictions from neighboring points. Michael et al. [31] considered a specific weight for
each scanline in SGM to achieve a weighted 2D scanline optimization, since varying perfor-
mance could be obtained via each scanline depending on the scene structure. Poggi and
Mattoccia [32] constructed a feature vector for each pixel according to the disparity estima-
tion via a single scanline. The feature represented the statistical dispersion of surrounding
disparities, which could be analyzed by a random forest to predict a confidence measure of
the scanline for a weighted scanline summation. Similar work was accomplished in [33,34].
The disparity predicted by each scanline and the corresponding costs were fed to a random
forest, so that the better performed scanlines were adaptively selected. The corresponding
disparity estimation could serve as a reference to guide the further stereo prediction.

2.2.2. End-to-End Stereo Networks

The above methods mainly integrated deep learning with traditional stereo matching
techniques for better performance, which were then followed by encoder-decoder struc-
tures for depth prediction as an end-to-end system. Dosovitskiy et al. [35] firstly presented
a network, FlowNet, to estimate optical flow directly from a stereo pair. They used a correla-
tion layer to measure the similarity between corresponding patches. Mayer et al. [15] then
designed a large synthetic dataset, Scene Flow, allowing an initial training of deep neural
networks before adjusting to specific scenarios. They also proposed DispNet and DispNet-
Corr, as one of the first end-to-end stereo matching networks. Kendall et al. [9] proposed
GC-Net, which applied 3D convolutions to regularize the cost volume, with both geometry
and context information incorporated. Chang and Chen [10] introduced a pyramid pooling
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module in their PSMNet to aggregate multi-scale features. Thus, the global context and
local details were simultaneously contained within the cost volume. Guo et al. [36] im-
proved PSMNet by proposing the group-wise correlation stereo network (GwcNet). They
constructed a group-wise correlation-based cost volume which required less parameters for
the cost aggregation, achieving similar performance as PSMNet. Zhu et al. [37] proposed a
multi-scale pyramid aggregation module to handle the cost volume, leading to MPANet
with significantly better disparity estimation for foreground objects. Xu and Zhang [38]
proposed AAnet, utilizing intra- and cross-scale cost aggregation, which delivered better
results for depth discontinuities and large textureless area. Wang et al. [39] applied a
recurrent unit to iteratively refine the stereo estimation, and designed a pyramid voting
module to produce a semi-dense disparity map for self-supervision. Confident disparity
prediction was achieved via seeking consistent estimation across scales. Inspired by SGM,
Zhang et al. [8] proposed the GA-Net using so-called SGA layer for cost aggregation,
to replace 3D convolution which was computationally expensive. They achieved great
performance on multiple benchmark datasets, which coincided with the idea from [40]
that classical stereo matching methods could serve as a robust guideline to develop deep
learning-based algorithms, rather than designing a pure learning architecture. Semantic
information could also be involved for stereo matching problems [41,42] as the object
boundaries mostly corresponded to the depth discontinuities. The two tasks supported
each other leading to a win-win situation. Other works included cost distribution study,
disparity refinement, cross-domain prediction, stereo neural architecture search, etc., which
boosted the state-of-the-art constantly [40,43–47].

Recently, the pyramid architecture was tested in a learning-based stereo framework,
since the efficiency could be largely enhanced via a coarse-to-fine estimation [11–13,48,49].
Regarding the architecture in [11–13] as a baseline model, the stereo correspondences were
firstly located on the pyramid top using downsampled features. Then, the disparity was
iteratively refined through the network towards the pyramid bottom in full resolution,
which considerably reduced the computational effort and GPU memory consumption.
Chang et al. [48] benefited from the architecture to achieve real-time performance, with an
attention-aware feature aggregation module for better representative ability of the feature.
Compared with these methods, our contributions are different. At first, we additionally test
our model on airborne and spaceborne images. We fill the application gap of the previous
research, considering the very limited test cases applying newly proposed computer vision
algorithms in the field of remote sensing. The proposed model is proven effective to process
stereo imagery with large disparity range (thousand pixels) over mountain areas. It should
be noted that our model acquires no supervision in training phase on stereo data with large
baselines, with no need to normalize/denormalize the disparity measurement in test phase
as [50]. This is, to the best of our knowledge, a novel showcase of adapting well-performed
computer vision models to deliver high-quality geographical products in extreme regions.
In addition, our baseline is the up-to-date model GA-Net-deep from [8], rather than the
shallower and less accurate version GA-Net-11 used in [49].

3. Methodology

In this section, we recap GA-Net by presenting the proposed SGA and LGA (Local
Guided Aggregation) layers, which approximate SGM for cost regularization and protect
thin structures, respectively. SGM applies the scanline optimization strategy to efficiently
locate stereo correspondences and avoids the streaking problem. For a detailed description
of SGM, we encourage readers to follow the papers [6,51]. Afterwards, we describe our
pyramidal extension of GA-Net, GA-Net-Pyramid. Two architectures are proposed. The
first model explicitly downsamples the input stereo pair according to the pyramid level,
and simply applies GA-Net on each level to regress disparity. The second model applies
a different feature extraction strategy via a U-Net [52] structure to generate multi-scale
features implicitly.
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3.1. GA-Net

In traditional SGM, the scanline optimization technique [53] is applied to satisfy the
spatial smoothness, by limiting the depth difference between neighboring pixels. To avoid
the streaking problem, a pixel is accessed through multiple scanlines simultaneously along
several canonical directions, typically 8 or 16, to consider the disparity estimation from its
neighbor. Along a certain scanline traversing in direction r, the cost for a pixel located at
the image position p assuming d as the disparity, is calculated as:

Lr(p, d) = C(p, d) + min( Lr(p − r, d), Lr(p − r, d − 1) + P1,
Lr(p − r, d + 1) + P1, mini Lr(p − r, i) + P2 ).

(1)

In the above equation, the photo inconsistency is measured by C(p, d), while P1 and
P2 are defined for penalizing the prediction when the previous neighboring point p − r
prefers a different disparity value. In practice, however, two problems exist. Firstly, the
users need expertise to determine appropriate P1 and P2 to punish neighboring disparity
inconsistency. Tuning of P1 and P2 additionally depends on scene structure and the used
similarity measure. Moreover, the values of P1 and P2 are fixed throughout the stereo
processing or simply adapted according to, e.g., pixel gradients, which are not optimal for
all the pixels within the image, especially under a varied scene structure, e.g., from plains
to mountains.

GA-Net addresses these issues by introducing the SGA layer, a differentiable approxi-
mation of Equation (1) that is suitable for an end-to-end trainable network. Specifically, the
master epipolar image provides guiding information through a sub-network to better pe-
nalize depth discontinuity, and enable a self-adaptive parameter setting. Thus, the penalty
terms for conflicting neighboring disparities are determined according to the pixel location
and scanline direction, which is more reasonable for smoothness regularization. Via the
guidance sub-network, a weight is supplied for each term in Equation (1) to simulate the
scanline optimization in SGM, leading to the following equation:

Lr(p, d) = C(p, d) + sum( w1(p, r) · Lr(p − r, d),
w2(p, r) · Lr(p − r, d − 1), w3(p, r) · Lr(p − r, d + 1),

w4(p, r) · maxi Lr(p − r, i) ).
(2)

Compared with Equation (1), the punishment from P1 and P2 is replaced by the relative
importance (weight) wi of each term, which is predicted separately for each pixel along a
directed scanline. Moreover, there are two differences with SGM, one of which is that the
first/external minimum operation is substituted by a weighted sum. This can be regarded
as a replacement from a max-pooling layer to a convolution with strides, which is proven
effective without accuracy loss [54]. In addition, the second/internal minimum search is
changed to a maximum, which embodies the learning target to maximize the probability
at the ground truth disparity rather than minimizing the cost. To avoid the exploding
accumulation of Lr(p, d) along the scanline, C(p, d) is also included within the weighted
summation, with the sum of all the weights equal to 1. Thus, SGA is finally formulated as:

Lr(p, d) = sum( w0(p, r) · C(p, d), w1(p, r) · Lr(p − r, d),
w2(p, r) · Lr(p − r, d − 1), w3(p, r) · Lr(p − r, d + 1),

w4(p, r) · maxi Lr(p − r, i) ,

∑i=0,1,2,3,4 wi(p, r) = 1.

(3)

In SGM, the cost Lr(p, d) from each scanline is simply summed up to approximate
2D smoothness, which was demonstrated to be not reasonable for incurring inferior
scanlines [33,34]. Accordingly, GA-Net takes the maximum as L(p, d) = maxr Lr(p, d)
to keep the best information.
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The guidance sub-network also provides weights for another layer, LGA, to further
filter the cost volume as below:

L∗(p, d) = sum
(

∑q∈Np w0(p, q) · L(q, d),

∑q∈Np w1(p, q) · L(q, d − 1),

∑q∈Np w2(p, q) · L(q, d + 1)
)

,

∑q∈Np w0(p, q) + w1(p, q) + w2(p, q) = 1,

(4)

from which a 3D neighborhood (in both spatial and disparity dimensions) centered around
each pixel within the cost volume is utilized for a weighted average to protect thin structures.
Afterwards as suggested by [9], a softmax operation σ(·) is applied to the filtered cost
volume in order to acquire a normalized probability for each disparity candidate (from
[0, Dmax]) and regress the final disparity value d̂ as:

d̂ =
Dmax

∑
d=0

d × σ(−L∗d). (5)

3.2. GA-Net-Pyramid with Explicit Downsampling

GA-Net adapts the scanline optimization scheme to an end-to-end stereo matching
system. Inspired by SGM, the disparity of each pixel can be estimated with the support
from all the previous neighbors along multiple paths, instead of a pure convolution-based
encoder-decoder to regularize the cost volume. Furthermore, the proposed SGA and LGA
layers are computationally more efficient than 3D convolutions, which are used by most
state-of-the-art methods [9,10]. However it can still take days to train a well performing
model, when the computational power is limited. In our case, for example, the training
on the Scene Flow dataset (patch size 384 × 576), which is normally used by most stereo
matching networks for the initial learning phase, takes around 12 days to finish 8 epochs
on two Quadro P6000 GPU cards. Hence, the employment of the network is hampered. In
the field of remote sensing, it can be imagined that GA-Net would struggle to process high-
resolution aerial or satellite stereo data, especially for wide baseline stereo pairs requiring
larger disparity search ranges.

Rothermel [7] proposed an improved SGM, tSGM, which constructed a pyramid
architecture to search correspondences between the stereo pair from coarse to fine. Based
on this strategy, comparable quality was achieved with far less memory and runtime
consumed. This inspires us to restructure GA-Net with a pyramid architecture as well,
to regress the depth from coarse to fine. Figure 1 presents the schematic overview of
our GA-Net-Pyramid. Three pyramid levels are depicted which could be extended. We
use the same stacked hourglass module (a double U-Net structure) as GA-Net, which
is essentially a Siamese network [28] for symmetric feature extraction from the left and
right image, respectively. The input of the feature extraction module, however, is a stereo
pair downsampled in accordance with the pyramid level. Afterwards, the cost volume is
generated and then processed by SGA and LGA for disparity regression, in order to guide
the subsequent level for the disparity refinement until the original resolution is recovered.

3.2.1. Pyramid Top

We start from the pyramid top with the original image downscaled by a factor of
4 along both row and column directions in our implementation (termed as ‘Scale 1/4’ in
Figure 1). Then, the feature is extracted to construct a 4D cost volume by concatenat-
ing the left and right feature maps along the channel dimension, with a horizontal shift
indicated by a disparity candidate within the search range. Assuming the cost volume
on the original full-resolution image is of size H × W × Dmax × 2C, for the image height,
width, the maximum disparity, and twice the channel number of the generated feature
maps, respectively, our cost volume on the pyramid top reaches a highly reduced dimen-
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sion as H/4 × W/4 × Dmax/4 × 2C. Thus, the memory consumption and computational
complexity are decreased by a factor of 1/64.
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Figure 1. GA-Net-Pyramid with explicit downsampling. The input stereo pair is downsampled
explicitly according to the resolution required by each pyramid level. At the pyramid top, the stereo
correspondences are located within an absolute disparity range in low resolution. The following
pyramid levels perform disparity refinement within a pre-defined residual disparity range until
the original resolution is recovered at the pyramid bottom. SPN indicates the Spatial Propagation
Network which is an optional module for depth boundary enhancement, as described in Section 3.3.

Afterwards, the cost volume enters the cost aggregation block containing SGA and
LGA layers, for which the guiding information is obtained from the downscaled master
epipolar image. At last, the filtered cost is used for the following disparity regression as
GA-Net. Thus, a disparity map of the downsampled image ‘Scale 1/4’ is obtained for the
pyramid top. From here, the depth of the scene is already roughly estimated and the large-
scale context is perceived, which provides a good guidance for the following processing.

3.2.2. The Other Pyramid Levels

Based on the prediction of the pyramid top, the other levels thus only need to locally
refine the disparity values. Therefore, the disparity map from ‘Scale 1/4’ level is upsampled
by a factor of 2 via bilinear interpolation, to match the resolution of ‘Scale 1/2’ level as an
initial estimation dini. Feature maps are computed for the left and right image of ‘Scale 1/2’
level as Fl and Fr, respectively. Assuming dini is accurate enough, we can warp Fr according
to dini which would perfectly match Fl . However, considering the details lost through
downsampling on the pyramid top and the corresponding matching error, a small shift
would exist between the left and the warped right feature, which is named disparity
residual and should be additionally considered for a perfect match. Accordingly, a cost
volume CV is built in size of H/2×W/2× (2disp_resi + 1)× 2C for ‘Scale 1/2’ level. Here,
disp_resi is a pre-defined threshold, leading to a range [dini − disp_resi, dini + disp_resi]
around the initial disparity estimation dini for refinement. The cost volume is thus formed
by concatenation of Fl and Fr as:

CV(x, y, d) = Fl(x, y)⊕ Fr(x + (dini(x, y) + d), y), d ∈ [−disp_resi,+disp_resi]. (6)
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In Equation (6), x and y are the indices of a pixel along the width and height dimension.
⊕ represents the concatenation. Then, the cost volume is regularized by SGA and LGA,
and a residual disparity map dresi is calculated via multiplying each residual candidate
to the corresponding probability and summing them up. The disparity estimation for the
current level is obtained by adding the residual and the previously upscaled disparity map
as: dresi + dini.

The stereo pair on ‘Scale 1/2’ level is twice larger in height and width; however,
the search for correspondences is restricted within a narrow range. Hence, only a small
overhead is accumulated. We apply the same procedure for the remaining pyramid level,
to continuously improve the disparity estimation until the original resolution is reached.

Each pyramid level only requires the input epipolar imagery at its level and the
disparity image of the previous level. For an efficient and memory saving implementation
during disparity estimation, computation of the levels could be decoupled to significantly
lower the memory footprint while allowing large input image sizes. Compared to GA-Net,
it is thus feasible to significantly increase both image size and disparity range, as only the
pyramid top needs to process the full disparity search range, for example, processing of
images with a four times larger width, height, and disparity range is possible without
additional GPU memory requirements in this case. Note that the evaluation in Section 4 is
recorded without adding these optimizations.

3.2.3. Loss

We train the model using the same smooth L1 loss function as GA-Net in [8]. However,
our pyramid architecture predicts more than one disparity map, which should all be
considered to allow for intermediate supervision. Hence, a weight is assigned to each
pyramid level for a weighted loss summation as:

L =
N

∑
i=1

l(|d̂i − d̄|) · ωi, (7)

in which d̂i denotes the disparity predicted by the pyramid level i (starting from 1 at the
pyramid top), and d̄ is the corresponding ground truth. l computes the smooth L1 loss from
the disparity difference. A weight ωi is assigned to the level i for a weighted summation
through all N pyramid levels. The disparity map from each level is upscaled to the original
full resolution before computing the loss. As the estimation is improved from the pyramid
top to the bottom, the corresponding weight is also increased (details for parameter setting
are in Section 4).

3.3. GA-Net-Pyramid with Implicit Downsampling

The paper focuses on presenting a more efficient model based on the structure of
GA-Net, in order to achieve robust estimation on datasets from multiple domains. Thus, we
design different feature extractors and observe the corresponding performance, so that an
appropriate model could be used to handle specific data types. The architecture in Figure 1
simply applies GA-Net in a pyramidal manner, which takes the linearly downsampled
stereo pair as input to extract features for further processing. Therefore, we propose another
architecture to implicitly learn the downsampled feature, as displayed Figure 2, such that
both explicit and implicit image downsampling strategies are tested.

Instead of downsampling the input stereo pair level by level, we only use the stacked
hourglass once to extract the feature from the original (full-resolution) images for feeding
all the pyramid levels. The input images are firstly downsampled via convolutions with
stride two, and then deconvolved to gradually recover the resolution, in which a skip
connection is exerted between corresponding feature maps of the encoder and decoder at
the same resolution. Before reaching the original size, we directly extract the intermediate
feature maps from the decoder to feed each level, as long as the expected resolution is
acquired. To differentiate the GA-Net-Pyramid with explicit and implicit downsampling,
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in the following sections we name the two variants as GA-Net-PyramidED and GA-Net-
PyramidID, respectively.
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Figure 2. GA-Net-Pyramid with implicit downsampling. The feature extractor is applied on the
stereo pair in original resolution, with the intermediate feature maps from its decoder to feed each
pyramid level according to the expected resolution. SPN indicates the Spatial Propagation Network
which is an optional module for depth boundary enhancement, as described in Section 3.3.

As the disparity is estimated and refined through the pyramid, we add a Spatial
Propagation Network (SPN) as a post-processing step to explore its influence on the
matching results. SPN is capable of sharpening the object boundaries, by learning from
the source image (in our case, the master epipolar image) in a data-driven mode, which
is appropriate as a further refinement in our pyramid architecture, especially for close-
range data with rich details. Hence, four models are finally proposed including GA-Net-
PyramidED and GA-Net-PyramidID, respectively, with or without SPN added at the end
of the pyramid bottom.

4. Experiments

In this section, we compare our GA-Net-Pyramid with GA-Net through a series of
experiments on close-range, including Scene Flow and KITTI-2012, aerial, and satellite
stereo datasets. For a fair comparison, the implementation details are rigidly controlled
between the two algorithms. Regarding the training, we use the same patch size with a
pre-defined disparity search range, to train the networks for certain epochs, based on Adam
optimization strategy [55]. Each stereo pair is normalized, according to the mean and
standard deviation of the pixel values from each channel, before feeding to the network.
SGA is applied along four directions (horizontally and vertically) for both GA-Net-Pyramid
and GA-Net.

For GA-Net-Pyramid specifically, the number of pyramid levels is 3 and the search
range for the disparity residual after the pyramid top is set as [−6, +6] to refine the matching
results. Details about the pyramid setting are discussed in Section 4.2.3. We apply 3 SGA
and 2 LGA layers to regularize the cost volume on our pyramid top, which is the same as
GA-Net. With regard to the other pyramid levels, only 1 SGA layer (with 2 LGA layers)
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is utilized due to the small disparity search range. The weight is set as 0.25, 0.5, and 1,
to the pyramid level 1 (top), 2 and 3 (bottom), respectively, to calculate the final loss in
Equation (7). The implementation of the methods is based on Python and Pytorch.

4.1. Experiments on Close-Range Stereo Data

We firstly test the networks on Scene Flow and KITTI-2012 datasets, in which the scene
structure is relatively complicated with rich details. Referring to most learning-based dense
matching algorithms, we train the models on Scene Flow data from scratch, and utilize real
data, KITTI-2012 in our case, for finetuning. Both the pre-trained and finetuned models are
tested on the corresponding dataset. Regarding the former, the whole Scene Flow training
dataset is used for training (8 epochs), while only 1000 stereo pairs from its validation set
are selected for test to save time. On the other hand, 170 images from KITTI-2012’s training
data are exploited to finetune the models for 800 epochs, with the remaining 24 images for
test. All the data selection is random, so that a fair evaluation is achieved. In training, we
use the same patch size (384 × 576) with the maximum disparity set to 192. The networks
are trained with a batch size of two on two Quadro P6000 GPU cards.

4.1.1. Close-Range Stereo Data

Scene Flow is a synthetic dataset via randomly combining human-made objects with
backgrounds from real images, which is used by most stereo networks for initial training.
Afterwards, only a small dataset from a specific field is sufficient to adjust the model into
practical scenarios. The dataset contains three subsets, namely FlyingThings3D, Monkaa
and Driving, including around 35,000 images for training and 4370 images for validation.
KITTI-2012 is a stereo dataset with a focus on outdoor street views, which is normally
applied in the field of autonomous driving. The dataset includes 194 training and 195 test
stereo pairs, with ground truth disparity maps based on LiDAR measurements provided
or withheld.

4.1.2. Visualization and Evaluation on Close-Range Stereo Data

The pre-trained networks are firstly tested on the Scene Flow dataset. The quantitative
and visual comparison between our pyramid models and GA-Net is shown in Table 1 and
Figure 3. As indicated by the table, we calculate the percentage of pixels, for which the
estimation error is smaller than 1, 2, and 3 pixels, respectively, and the end point error
(EPE) for accuracy evaluation. Regarding the efficiency, the runtime and GPU memory
consumption are reported. For all the experiments in this paper, the runtime in the test
period is counted for processing the whole test dataset. Specifically, we generate a binary
file to save the disparity value of each correspondence, and a png (Portable Network
Graphics) file to visualize the result. In the tables, M denotes megabytes for the GPU
memory consumed by each network, while the time spent in training and test is expressed
in hours (h) or seconds (s). Better performance is highlighted in bold.

Table 1. Accuracy and efficiency comparison between GA-Net-Pyramid, including GA-Net-
PyramidED and GA-Net-PyramidID, and GA-Net on Scene Flow data.

Accuracy Training Efficiency Test Efficiency

1 pix 2 pix 3 pix EPE Memory Runtime Memory Runtime

GA-Net-PyramidED 81.77% 88.59% 91.42% 1.61 7052 M 38.25h 2761 M 0.39 h
GA-Net-PyramidED+SPN 83.04% 89.97% 92.67% 1.44 7140 M 40.62 h 2761 M 0.39 h

GA-Net-PyramidID 81.26% 89.10% 92.05% 1.49 7264 M 30.07 h 3501 M 0.40 h
GA-Net-PyramidID+SPN 84.27% 91.09% 93.64% 1.23 7422 M 31.69 h 3501 M 0.39 h

GA-Net 91.41% 95.35% 96.60% 0.86 30,464 M 280.53 h 6983 M 2.10 h

Bold font means the best accuracy/efficiency in each group.

From the results, it is found that GA-Net outperforms the two pyramid models in
accuracy; however, the latter consume much less memory and runtime in both training
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and test periods. In case of the close-range data, the objects are captured under an ideal
viewing condition, thus very high resolution is achieved with plenty of details and tex-
ture information contained. Moreover, as Scene Flow is a synthetic dataset, the random
arrangement of man-made objects makes the scene non-natural, non-logical, and highly
complicated with many occlusions. Hence, our GA-Net-Pyramid is surpassed by GA-Net,
considering the information loss due to a sequence of downsampling-upsampling through
the pyramid levels. On the other hand, our hierarchical strategy highly simplifies the
problem complexity, consuming far less computational source but at a much higher speed.
Between the two pyramid models, GA-Net-PyramidED and GA-Net-PyramidID, similar
accuracy is obtained. Regarding the SPN processing, a positive effect is achieved for both
pyramid structures, while GA-Net-PyramidID could be improved by a larger extent. The
experiments of this paper are implemented on a server open to multiple users; therefore, the
runtime of each model could be slightly influenced by unknown processes. We recommend
referring to the training time to evaluate the speed of the algorithms, especially for each
pyramid model with similar efficiency, considering the relatively long training process com-
pared with the test period. GA-Net-PyramidID is faster than GA-Net-PyramidED, since
the feature extraction in the former case is applied only once on the full-resolution stereo
pair, rather than repeatedly learning from the corresponding downsampled images level
by level. In case of the GPU memory consumption, GA-Net-PyramidED performs better.
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Figure 3. Visual comparison on Scene Flow data. Two test cases are displayed in subfigure (a,b). In
each subfigure, the disparity maps from the ground truth, GA-Net-PyramidID+SPN and GA-Net are
displayed from left to right in the first row. The second row provides the master epipolar image and
the corresponding error map of each model. Regions where the proposed algorithm outperforms
GA-Net are marked with red arrows.

As for the figures in the paper, only the best performed pyramid model is visually
compared with GA-Net, e.g., GA-Net-PyramidID+SPN on Scene Flow dataset. Accordingly,
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we display the master epipolar image, where the guidance information is acquired for SGA
and LGA, the ground truth, and the corresponding results from each algorithm. The color
bar at the end shows the disparity and error changes. In Figure 3, it is found that GA-Net
obtains a generally better disparity result than GA-Net-PyramidID+SPN, with clear edges
and more details included. However, our pyramid model still produces a disparity map in
good quality, even including superior depth results in certain regions. We discover that
GA-Net-PyramidID+SPN is capable of better reconstructing hollow-shaped objects, e.g.,
the barrel and the shelf as indicated by the red arrows. The finding is also supported by the
following experiments on the KITTI dataset.

The pre-trained networks are finetuned on part of KITTI-2012’s training data and tested
on the remaining stereo pairs. In Table 2 and Figure 4, the corresponding quantitative
and qualitative results are provided. Regarding the training efficiency, only the time spent
for finetuning is recorded. Similar to the previous experiment, GA-Net acquires the best
accuracy, however, the pyramid models are faster and more memory friendly. SPN still
improves the results of all the pyramid models, among which GA-Net-PyramidID+SPN
achieves the highest accuracy. It should be noted that our GA-Net-Pyramid performs better
for real data, leading to a further reduced accuracy gap compared with GA-Net. From the
visual inspection, the depth result of each algorithm is barely distinguishable. Moreover as
mentioned before, we obtain a better depth prediction for hollow-shaped structures (see
the regions indicated by the red arrows). KITTI-2012 does not provide ground truth for the
whole scene; nevertheless, according to the image content, it is obvious that our pyramid
architecture gives a clean and more reasonable depth estimation.

Table 2. Accuracy and efficiency comparison between GA-Net-Pyramid, including GA-Net-
PyramidED and GA-Net-PyramidID, and GA-Net on KITTI-2012 data.

Accuracy Training Efficiency Test Efficiency

1 pix 2 pix 3 pix EPE Memory Runtime Memory Runtime

GA-Net-PyramidED 86.54% 93.57% 95.76% 0.89 7140 M 17.81 h 2641 M 28.07 s
GA-Net-PyramidED+SPN 86.56% 93.53% 95.66% 0.88 7242 M 18.49 h 2641 M 29.29 s

GA-Net-PyramidID 83.20% 92.68% 95.12% 1.10 7546 M 13.77 h 3379 M 27.02 s
GA-Net-PyramidID+SPN 86.88% 94.13% 96.18% 0.83 7680 M 15.02 h 3379 M 29.89 s

GA-Net 91.55% 96.64% 97.65% 0.60 30,514 M 135.47h 6565 M 165.72 s

Bold font means the best accuracy/efficiency in each group.

4.2. Experiments on Aerial Stereo Data

In this section, the networks are tested using our aerial data. The airborne and satellite
(discussed in the following section) stereo processing is the target domain of this research,
since the corresponding data are usually large in size and own a much wider stereo baseline,
which presents a higher demand on the algorithm’s efficiency. The networks are trained
on synthetic remote sensing data (854 stereo pairs) from scratch for 200 epochs, then
finetuned on a subset (200 stereo pairs) of our aerial data for 100 epochs (data details are
in Section 4.2.1). We randomly select another 20 aerial stereo pairs, possessing no overlap
with the finetuning data, to test the trained models. Image patches in size of 384 × 576
are randomly cropped for training, and the test images are 1152 × 1152. The data may
contain negative or very large disparity values; hence, we exclude the stereo pairs with
large baselines in order to keep the disparity range processible by both GA-Net-Pyramid
and GA-Net. Accordingly, the disparity range is also set as [0, 192]. The models are trained
with a batch size of two on two Quadro P6000 GPU cards.

In addition, SGM is utilized as a baseline model in our aerial and satellite experiments,
since the algorithm is widely used in the field of remote sensing for dense reconstruction.
We exploit Census [56] to calculate the matching cost with a 7 × 7 window. The penalty
terms P1 and P2 (see Equation (1)) are set to 19 and 33, respectively. The cost from 8 sym-
metric scanlines along horizontal, vertical, and diagonal directions are accumulated to
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compute the disparity based on the WTA strategy, which is then further refined using a
left-right consistency check.
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Figure 4. Visual comparison on KITTI-2012 data. Two test cases are displayed in subfigure (a,b). In
each subfigure, the disparity maps from the ground truth, GA-Net-PyramidID+SPN and GA-Net are
displayed from left to right in the first row. The second row provides the master epipolar image and
the corresponding error map of each model. Regions where the proposed algorithm outperforms
GA-Net are marked with red arrows.

4.2.1. Aerial Stereo Data

Nowadays, most state-of-the-art dense matching algorithms are data-driven deep
neural networks [8–10,12,41–43]. The high performance usually originates from a thorough
training, for which a synthetic dataset is preferred for an initial learning phase, to avoid
time-consuming data collection and annotation. In the field of remote sensing, neverthe-
less, a well-annotated stereo dataset is scarce. For example, the aerial image matching
benchmark [57,58] provides reference data using LiDAR measurement. However, each
algorithm is finally evaluated by the median of the DSM estimation from all the evaluated
approaches, due to the limited accuracy of the reference data. Therefore, we propose a
synthetic dataset, which is designed specifically for airborne and satellite stereo tasks. The
dataset focuses on urban regions via referring to six city models provided by the software
CityEngine: Paris, Venice, New York, Philadelphia, and two small development scenes.
The models were exported and processed in Blender to preserve the textures and relevant
information. Afterwards, we used BlenderProc [59] to render the dataset according to the
geometry of the model which included RGB images and the corresponding disparity maps.
Considering both aerial and satellite platforms, the simulated camera for rendering was
located at 200 m and 500 km above the cities, respectively. A total of 854 stereo pairs in size
of 1024 × 1024 pixels were generated, with the ground sampling distance (GSD) ranging
from 5 cm to 50 cm.

Regarding our real aerial data, we use the 4K sensor system mounted on a heli-
copter for the data collection [60]. Three off-the-shelf Canon EOS cameras (one 1D-C and
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two 1D-X) constitute the imaging unit. The data contain geo-referenced images with a
size of 17.9 megapixels, acquired over Gilching in the southwest of Munich, Germany.
Equipped with 50-mm lenses looking in varying view directions, a field of view (FOV) up
to 104◦ is reached. The flight height was 500 m above ground, enabling 6.9-cm nadir GSD.
A multi-view stereo matching based on SGM was applied, in which the calculated heights
(depths) from multiple highly overlapped images were fused to achieve a high-quality
digital surface model (DSM). The DSM was used to compute disparity maps for each stereo
pair, which were utilized as reference data for finetuning and evaluation.

4.2.2. Visualization and Evaluation on Aerial Stereo Data

In Table 3, the performance of each algorithm is recorded. We firstly find that all
the GA-Net models outperform the baseline SGM by a certain margin. Moreover, our
pyramidal revision leads to a very small accuracy decrease compared with the original
structure, but highly improves the efficiency. Our GA-Net-PyramidED (without SPN
added) is the best performing pyramid model, which is only around 1% worse than
GA-Net in accuracy. Nevertheless, the pyramid models are about 8 and 7 times faster
than GA-Net, by only expending around 25% and 40% memory usage for training and
prediction, respectively. It should be noted that for airborne data, SPN cannot improve
the performance for either of the pyramid models, which is different from the close-range
experiments. A visual comparison among the methods is provided in Figure 5.

Table 3. Accuracy and efficiency comparison between GA-Net-Pyramid, including GA-Net-
PyramidED and GA-Net-PyramidID, and GA-Net on aerial data (baseline model: SGM).

Accuracy Training Efficiency Test Efficiency

1 pix 2 pix 3 pix Memory Runtime Memory Runtime

GA-Net-PyramidED 77.28% 86.19% 89.70% 7124 M 25.18 h 5623 M 83.60 s
GA-Net-PyramidED+SPN 74.06% 86.08% 89.69% 7238 M 26.19 h 5623 M 89.08 s

GA-Net-PyramidID 76.35% 85.46% 89.14% 7544 M 20.59 h 6979 M 84.02 s
GA-Net-PyramidID+SPN 76.14% 84.82% 88.21% 7676 M 21.54 h 6979 M 86.19 s

GA-Net 78.75% 86.99% 90.13% 30,512 M 187.59 h 15,685 M 616.74 s
SGM 72.14% 75.89% 77.15% — — — —

Bold font means the best accuracy/efficiency in each group.

We select two regions, one vegetation and one building area from the test data for
the visualization. It is shown that GA-Net-PyramidED archives good performance in
airborne stereo matching. When the scene is relatively simple, containing fewer depth
discontinuities and a smooth depth change, the hierarchical estimation and refinement of
disparity is capable of highly enhancing the efficiency, without a noteworthy sacrifice of
the result’s quality.

4.2.3. Pyramid Setting

To further understand our GA-Net-Pyramid when applied in the field of remote
sensing, we explore the impact of different pyramid architectures using our aerial data.
Regarding the pyramid structure, two variants are the most important factors, the num-
ber of pyramid levels and the residual search range for disparity refinement. The main
difference between GA-Net-PyramidED and GA-Net-PyramidID is the strategy to extract
features, which is not directly related to the above two factors. In addition, our two pyramid
models achieve similar accuracy. Therefore, we select GA-Net-PyramidED without SPN
for post-processing to study the pyramid setting, since it is the more intuitive pyramidal
modification of GA-Net. As for the number of pyramid levels, we start from 2, since a
1-level GA-Net-Pyramid will degenerate to GA-Net, to 4 levels, with a fixed residual range
[−6, +6]. The model is trained on our synthetic dataset from scratch and evaluated on the
same test data. We use the same hyperparameter setting as before, except that the size of
the training patches changes to 384 × 768 to facilitate the downsampling when more levels
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are applied. We train the model on one GPU card due to the less memory requirement of
GA-Net-Pyramid. The results are in Table 4.

According to the table, it is found that the architecture with 4 pyramid levels acquires
the best efficiency. However, with slightly increased memory and runtime, the model
with 3 pyramid levels achieves better results. Along with GA-Net-PyramidED regresses
towards GA-Net (from 3 to 2 levels), the efficiency drastically deteriorates as expected,
nevertheless, without a noticeable improvement of the accuracy. Therefore, we determine
to use the number of pyramid levels as 3. Then, we adjust the residual search range to
[−3, +3], [−6, +6] and [−12, +12], respectively. The model is also trained from scratch on
our synthetic dataset using one GPU card, and tested on the same 20 aerial images. We
keep the training setting unchanged, except that the patch size is set back to 384 × 576. In
Table 5, the performance for different residual search ranges is recorded.
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Figure 5. Visual comparison on aerial data. Two test cases regarding vegetation and building area
are displayed in subfigure (a,b), respectively. In each subfigure, the reference disparity map and the
stereo results from GA-Net-PyramidED, GA-Net and SGM are displayed from left to right in the
first row. The second row provides the master epipolar image and the corresponding error map of
each model.
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Table 4. Accuracy and efficiency comparison for GA-Net-PyramidED with different pyramid levels.

Accuracy Training Efficiency Test Efficiency

Pyramid Levels 1 pix 2 pix 3 pix Memory Runtime Memory Runtime

2 72.38% 80.89% 85.14% 11521 M 70.25 h 5813 M 120.28 s
3 72.17% 81.22% 85.69% 8121 M 29.13 h 5623 M 82.11 s
4 72.08% 81.19% 85.57% 7647 M 27.80 h 5589 M 63.92 s

Bold font means the best accuracy/efficiency in each group.

Table 5. Accuracy and efficiency comparison for GA-Net-PyramidED with different residual
search ranges.

Accuracy Training Efficiency Test Efficiency

Residual Range 1 pix 2 pix 3 pix Memory Runtime Memory Runtime

[−3, +3] 73.38% 81.95% 86.04% 5941 M 23.49 h 5467 M 55.23 s
[−6, +6] 73.76% 82.21% 86.40% 6283 M 26.35 h 5623 M 84.50 s

[−12, +12] 73.38% 82.11% 86.37% 7033 M 34.96 h 6489 M 123.09 s

Bold font means the best accuracy/efficiency in each group.

Table 5 indicates that as the residual range becomes larger, the efficiency naturally
decreases. Moreover, when the residual buffer expands over [−6, +6], the accuracy cannot
be further enhanced. Hence, the structure of our pyramid is determined as 3 levels, with the
maximum/minimum residual set as 6/−6. To keep the experiments consistent, the pyramid
structure is used for both GA-Net-PyramidED and GA-Net-PyramidID in this paper.

4.3. Experiments on Satellite Stereo Data

The flight campaign regarding our aerial 4K images was performed during a
WorldView-3 stereo acquisition of the same area [61]. Due to the minimal time difference
of less than 1 hour of each aerial image from the satellite images, the higher resolution
airborne data are well suited as reference data for the satellite stereo matching to finetune
the models and evaluate the results. This is a notable improvement over other satellite
stereo datasets [17,62], which do not provide sub-pixel disparity accuracy due to different
sensing modalities and scene changes due to time difference between the image and ground
truth acquisition. In contrast, the data used in this article allow reliable evaluation for 1-
and 2-pixel accuracy metrics. This is especially import for photogrammetry and remote
sensing, as many applications require highly precise elevation measurements.

Similar to Section 4.2, the networks are pre-trained on our synthetic remote sensing
data for 200 epochs, and finetuned on the generated satellite training data for 150 epochs.
The training conditions stay the same, including the patch size (384 × 576), disparity
range ([0, 192]), batch size (2), GPU usage (2 Quadro P6000 cards), etc. SGM is also tested
for reference.

4.3.1. Satellite Stereo Data

WorldView-3 is a very-high-resolution imaging satellite currently offering the most
detailed publicly available spaceborne imagery, at a resolution of 30 cm. After bundle-
adjustment of the data with the 4K aerial imagery and DSM as reference, we generated
an epipolar rectified stereo pair using the algorithm implemented by the CARS stereo
pipeline [63]. Similar to the aerial imagery, a reference disparity map was calculated by
projecting each point of the 4K DSM into the epipolar satellite stereo pair. The stereo pair
has a dimension of 20,815 × 28,264 pixels, which was cut into 98 tiles (in size of 1152 × 1152)
owning an overlap larger than 25% with the 4K data coverage. From them, 78 tiles were
randomly selected for finetuning the pre-trained GA-Net models, with the other 20 image
pairs as the test data.

As the airborne data were geo-referenced in two separate blocks using differential
GPS and only few ground control points (GCPs), a slight height offset was found between
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the aerial and satellite data, yielding disparity differences between the aerial reference and
the satellite stereo pair in the pixel range, but rising up to 4 pixels at the corner of one aerial
block. Since these systematic differences strongly affected training and evaluation of the
networks, a second-order offset surface was fitted to the difference of the airborne reference
disparity map and the satellite disparity map estimated by SGM, on each of the 98 tiles.
The offset was added to the reference disparity map to alleviate the systematic bias which
was reduced from 0.97 to 0.51 pixels.

4.3.2. Visualization and Evaluation on Satellite Stereo Data

In Table 6, we record the performance of GA-Net-Pyramid, GA-Net and SGM. Similar
to the results of airborne data, GA-Net achieves the highest accuracy, after which GA-Net-
PyramidED still acquires the best performance among all the other models. The 1-pixel
accuracy of our GA-Net-PyramidED, without SPN added for post-processing, is only
surpassed by GA-Net by 0.08%. However, the former is around 8 and 13 times faster than
the latter, consuming only 23% and 36% GPU memory in training and test, respectively. In
addition, GA-Net-PyramidED performs better than GA-Net_PyrmaidID, with less GPU
memory consumption but longer training time. SPN also impairs the performance of
the pyramid models which is consistent with our experiments on aerial data. The visual
comparison is in Figure 6, including a vegetation and a building area as well. It is found that
both networks predict a smoother disparity map than SGM, with less erroneous estimation.
Moreover, similar results are obtained between our GA-Net-PyramidED and GA-Net,
considering the reconstruction density and quality.

Table 6. Accuracy and efficiency comparison between GA-Net-Pyramid, including GA-Net-
PyramidED and GA-Net-PyramidID, and GA-Net on satellite data (baseline model: SGM).

Accuracy Training Efficiency Test Efficiency

1 pix 2 pix 3 pix Memory Runtime Memory Runtime

GA-Net-PyramidED 83.76% 90.70% 93.00% 7144 M 23.77 h 5623 M 31.53 s
GA-Net-PyramidED+SPN 82.99% 91.05% 93.34% 7250 M 24.56 h 5623 M 35.93 s

GA-Net-PyramidID 81.45% 89.58% 92.40% 7558 M 19.11 h 6979 M 33.11 s
GA-Net-PyramidID+SPN 80.66% 89.10% 92.00% 7700 M 20.27 h 6979 M 32.87 s

GA-Net 83.84% 91.42% 93.74% 30,514 M 179.19 h 15,685 M 401.91 s
SGM 79.98% 82.74% 83.32% — — — —

Bold font means the best accuracy/efficiency in each group.

4.3.3. Stereo Processing over Mountain Area

In this section, we apply our pyramid network on a stereo pair with a large disparity
range, in order to indicate the model’s ability to process large-scale remote sensing data.
The imagery is from WorldView-2 [64] at a resolution of 50 cm, covering the Matterhorn
mountain, Switzerland. We select a stereo pair with 14◦ conversion angle for which the
disparity varies in range of thousand pixels, due to the very large ground height difference
from 1800 m to 4478 m. The best performing model finetuned in our previous satellite
experiments, GA-Net-PyramidED, is directly used for disparity prediction in this test.
Regarding the evaluation, we follow our processing chain in Section 4.3.1, using an aerial
dataset with good stereo geometry to the same area to generate reference data. The test
region, the reference disparity map, and our stereo results are displayed in Figure 7.

The mountain peak is located at the center of the image with a disparity up to around
1250 pixels; thus, we set the disparity range as [0, 1248]. Note that the model we use
receives no supervision and knowledge regarding the mountain area with that large
disparity difference. However, we achieve a 3-pixel accuracy of 87.34%. There are temporal
inconsistencies between the satellite and reference data, leading to varying snow cover.
Therefore, we use 3-pixel as the threshold. The visual comparison shows very similar results
between our disparity prediction and the reference, considering the reconstruction density,
smoothness, etc. Disparity holes are found from certain regions in our results. According
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to the image content, the regions are in shadow with limited texture information, where
the network suffers from collecting enough information to locate the correspondences.

In the test period, the patch in size of 768 × 6912 is fed to the network for disparity
prediction. Considering the disparity range [0, 1248], GA-Net will theoretically need more
than 200 GB GPU memory to process the same data. Our GA-Net-PyramidED, however,
consumes only around 20 GB.
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Figure 6. Visual comparison on satellite data. Two test cases regarding vegetation and building area
are displayed in subfigure (a,b), respectively. In each subfigure, the reference disparity map and the
stereo results from GA-Net-PyramidED, GA-Net and SGM are displayed from left to right in the
first row. The second row provides the master epipolar image and the corresponding error map of
each model.
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0 1248
Figure 7. A showcase to indicate the ability of our pyramid network in processing remote sensing
stereo pair with large baseline. The test image and the corresponding stereo reconstruction from
the reference disparity map (lower left) and our pyramid model (lower right) are shown. The
reconstructed region is highlighted by the green rectangle with a size of 19,791 × 15,639 pixels. Test
region: Matterhorn mountain, Switzerland. Test model: GA-Net-PyramidED.

5. Discussion

Based on a pyramid architecture, our GA-Net-Pyramid is able to roughly estimate
the depth from a downsampled feature, and then refine the prediction level by level until
the original resolution is recovered. Thus, the efficiency is significantly enhanced with the
accuracy maintained to be comparable with GA-Net on remote sensing datasets. Some
technical details are found below.

We firstly propose GA-Net-PyramidED which applies the GA-Net model hierarchi-
cally. In our experiments on airborne and satellite data, it is demonstrated that GA-Net-
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PyramidED is able to achieve similar results as GA-Net, nevertheless, consuming much
less GPU memory and runtime for both training and prediction. Considering that only the
pyramid top exploits the absolute disparity range in low resolution to locate the stereo corre-
spondence, GA-Net-PyramidED is capable of processing stereo pairs with wider baselines
if the same GPU memory for GA-Net is available. This is particularly suitable to process
large stereo pairs with high-disparity search ranges in the field of remote sensing, which
usually triggers the bottleneck of most memory-hungry deep neural networks. On the
other hand, the aerial/satellite images mainly focus on large-scale landscapes such as city
areas, for which the local object heights/depths are generally smoother and regular with
fewer occlusions, depth discontinuities, fine structures, etc., compared with the close-range
datasets. Thus, the results from the previous pyramid level can better guide the disparity
estimation on the current level. When a large height variance exists within the scene, e.g., in
mountain areas, a rough depth prediction from lower resolution pyramid level is effective
to limit the search range and avoid influence from ambiguous disparity candidates for
higher resolution level.

Another architecture is designed as GA-Net-PyramidID, which implicitly downsam-
ples the input stereo pair via a U-Net feature extractor to feed each pyramid level using
the intermediate feature map of its decoder. Concerning the close-range datasets, espe-
cially for Scene Flow that contains very complex and non-logical scene structures, both
GA-Net-PyramidED and GA-Net-PyramidID are not competitive with GA-Net (GA-Net-
PyramidID+SPN performs the best among all the pyramid models). The accuracy could be
influenced when details are possibly omitted by the low-resolution level. Moreover, the
residual search range may not support refinement for regions with rapid depth changes
and discontinuities. Although GA-Net outperforms the proposed pyramid approaches on
both close-range datasets, Scene Flow and KITTI, the performance difference is smaller for
the real-world KITTI 2012 data.

SPN is applied on image segmentation to refine the object boundaries. In our experi-
ments on close-range data, better depth estimation is achieved by our pyramid networks
with SPN added, especially for GA-Net-PyramidID. However, it is found that negative
influence from SPN occurs on airborne and satellite data, for both GA-Net-PyramidED and
GA-Net-PyramidID. The reason is that the resolution of aerial/satellite data is relatively
low, with fewer details and depth discontinuities included; thus, the strength of SPN is
not embodied. More importantly, the training of SPN cannot be well supervised, consid-
ering that the number of valid training patches from airborne (987 millions) and satellite
(934 millions) datasets is far less than the close-range datasets (18 billions). The condition to
collect reference data is not as ideal as close-range scenarios using precise LiDAR scanning,
structured light or synthetic labeling. In addition, SPN essentially refers to the input to
improve the output, which are the master epipolar image and the disparity result in our
case, respectively. The natural land texture and shadows, which are not necessarily related
to ground height variation, may confuse SPN to locate the correct depth borders. The
slightly changing and rolling ground height, e.g., in natural regions, could confuse the
disparity post-processing as indicated by the lower 1-pixel accuracy.

6. Conclusions

Nowadays, the rapid development of deep learning and CNNs has made the technique
dominate in the field of dense matching, leading to a sequence of high-rank algorithms in
different close-range benchmarks. Compared to conventional approaches, the depth esti-
mation for ill-posed areas, e.g., textureless regions, occlusions, etc., is better accomplished
resulting in a considerable improvement. However, a large amount of well-annotated
data and a time-consuming training are usually required before a network reaches high
performance. In the field of remote sensing, a huge amount of high-definition data is
supplied by unmanned aerial vehicles, helicopters, airplanes or satellites at all times. The
data cover large areas with varying stereo baselines and image sizes of up to multiple
gigapixels. Hence, a well-performed deep network from the field of computer vision would
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struggle to process the remote sensing data, under a certain time and memory budget.
Since that stereo datasets with reliable ground truth are not available in remote sensing,
we build a dataset consisting of simultaneously acquired 30-cm satellite and 6-cm aerial
imagery which are co-registered to sub-pixel disparity precision. The experimental results
demonstrate that our proposed model can largely enhance the efficiency in training and
test, while maintaining a comparable accuracy. The test on a satellite stereo pair over Mat-
terhorn specifically highlights the significance of our method for processing large baseline
stereo data.

We suggest to use GA-Net-PyramidED for remote sensing stereo processing. With
slightly increased runtime, GA-Net-PyramidED produces better depth results than GA-Net-
PyramidID, while consuming less GPU memory. As for the close-range dataset, GA-Net-
PyramidID with an SPN module to enhance the depth borders is preferred. Regarding the
effect of SPN, it is demonstrated that a minor improvement is obtained on close-range data;
nevertheless, the depth estimation could be impaired using SPN in case of remote sensing
data, especially when the reference data own limited quantity or quality for training.

In future research, more reference data should be collected for urban, rural and moun-
tainous scenarios for remote sensing, in order to better supervise a learning-based model
in stereo prediction. Thus, we can better handle the ill-posed regions in shadows, depth
boundaries, etc., and obtain high-quality geographical measurements for earth observation.

Author Contributions: Conceptualization, Y.X.; data curation, Y.X., P.d. and M.F.R.; funding acquisi-
tion, J.T. and P.R.; investigation, Y.X., P.d., F.F., J.T., M.F.R. and P.R.; methodology, Y.X.; supervision,
P.d., F.F., J.T. and P.R.; validation, Y.X.; visualization, Y.X.; writing—original draft, Y.X.; writing—
review and editing, P.d., F.F., J.T., M.F.R. and P.R. All authors have read and agreed to the published
version of the manuscript.

Funding: This research was funded by “ForDroughtDet” project (FKZ: 22WB410602), from the Wald-
klimafonds, under joint leadership of Bundeslandwirtschafts (BMEL) and Bundesumweltministerium
(BMU). Yuanxin Xia is funded by a DLR-DAAD Research Fellowship (No. 57265855).

Data Availability Statement: The Scene Flow dataset can be accessed in https://lmb.informatik.
uni-freiburg.de/resources/datasets/SceneFlowDatasets.en.html/. The KITTI-2012 dataset can be
accessed in http://www.cvlibs.net/datasets/kitti/eval_stereo_flow.php?benchmark=stereo/.

Acknowledgments: We are indebted to University of Freiburg, Karlsruhe Institute of Technology,
and Toyota Technological Institute at Chicago for providing the close-range benchmark datasets. We
would like to thank Franz Kurz from the German Aerospace Center (DLR) for providing the aerial
data, and DigitalGlobe and European Space Imaging (EUSI) for providing the satellite data used in
the research.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

The following abbreviations are used in this manuscript:

GA-Net Guided Aggregation Network
GA-Net-Pyramid GA-Net based on a pyramid architecture
GA-Net-PyramidED GA-Net-Pyramid with Explicit Downsampling
GA-Net-PyramidID GA-Net-Pyramid with Implicit Downsampling
SGM Semi-Global Matching
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Abstract: We present a fully automatic approach for reconstructing compact 3D building models from
large-scale airborne point clouds. A major challenge of urban reconstruction from airborne LiDAR
point clouds lies in that the vertical walls are typically missing. Based on the observation that urban
buildings typically consist of planar roofs connected with vertical walls to the ground, we propose an
approach to infer the vertical walls directly from the data. With the planar segments of both roofs and
walls, we hypothesize the faces of the building surface, and the final model is obtained by using an
extended hypothesis-and-selection-based polygonal surface reconstruction framework. Specifically,
we introduce a new energy term to encourage roof preferences and two additional hard constraints
into the optimization step to ensure correct topology and enhance detail recovery. Experiments on
various large-scale airborne LiDAR point clouds have demonstrated that the method is superior to
the state-of-the-art methods in terms of reconstruction accuracy and robustness. In addition, we
have generated a new dataset with our method consisting of the point clouds and 3D models of 20k
real-world buildings. We believe this dataset can stimulate research in urban reconstruction from
airborne LiDAR point clouds and the use of 3D city models in urban applications.

Keywords: building reconstruction; LiDAR; point clouds; integer programming

1. Introduction

Digitizing urban scenes is an important research problem in computer vision, com-
puter graphics, and photogrammetry communities. Three-dimensional models of urban
buildings have become the infrastructure for a variety of real-world applications such
as visualization [1], simulation [2–4], navigation [5], and entertainment [6]. These appli-
cations typically require high-accuracy and compact 3D building models of large-scale
urban environments.

Existing urban building reconstruction methods strive to bring in a great level of detail
and automate the process for large-scale urban environments. Interactive reconstruction
techniques are successful in reconstructing accurate 3D building models with great de-
tail [7,8], but they require either high-quality laser scans as input or considerable amounts
of user interaction. These methods can thus hardly be applied to large-scale urban scenes.
To facilitate practical applications that require large-scale 3D building models, researchers
have attempted to address the reconstruction challenge using various data sources [9–16].
Existing methods based on aerial images [10,12,13] and dense triangle meshes [11] typically
require good coverage of the buildings, which imposes challenges in data acquisition [17].
Approaches based on airborne LiDAR point clouds alleviate data acquisition issues. How-
ever, the accuracy and geometric details are usually compromised [9,14–16]. Following
previous works using widely available airborne LiDAR point clouds, we strive to recover
desired geometric details of real-world buildings while ensuring topological correctness,
reconstruction accuracy, and good efficiency.
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The challenges for large-scale urban reconstruction from airborne LiDAR point
clouds include:

• Building instance segmentation. Urban scenes are populated with diverse objects, such
as buildings, trees, city furniture, and dynamic objects (e.g., vehicles and pedestrians).
The cluttered nature of urban scenes poses a severe challenge to the identification and
separation of individual buildings from the massive point clouds. This has drawn
considerable attention in recent years [18,19].

• Incomplete data. Some important structures (e.g., vertical walls) of buildings are
typically not captured in airborne LiDAR point clouds due to the restricted positioning
and moving trajectories of airborne scanners.

• Complex structures. Real-world buildings demonstrate complex structures with
varying styles. However, limited cues about structure can be extracted from the
sparse and noisy point clouds, which further introduces ambiguities in obtaining
topologically correct surface models.

In this work, we address the above challenges with the following strategies. Firstly, we
address the building instance segmentation challenge by separating individual buildings
using increasingly-available vectorized building footprint data. Secondly, we exploit prior
knowledge about the structures of buildings to infer their vertical planes. Based on the
fact that vertical planes in airborne LiDAR point clouds are typically walls connecting
the piecewise planar roofs to the ground, we propose an algorithm to infer the vertical
planes from incomplete point clouds. Our method has the option to extrude outer walls
directly from the given building footprint. Finally, we approach surface reconstruction
by introducing the inferred vertical planes as constraints into an existing hypothesis-and-
selection-based polygonal surface reconstruction framework [20], which favors good fitting
to the input point cloud, encourages compactness, and enforces manifoldness of the final
model (see Figure 1 for an example of the reconstruction results). The main contributions
of this work include:

• A robust framework for fully automatic reconstruction of large-scale urban buildings
from airborne LiDAR point clouds.

• An extension of an existing hypothesis-and-selection-based surface reconstruction
method for buildings, which is achieved by introducing a new energy term to encour-
age roof preferences and two additional hard constraints to ensure correct topology
and enhance detail recovery.

• A novel approach for inferring vertical planes of buildings from airborne LiDAR point
clouds, for which we introduce an optimal-transport method to extract polylines from
2D bounding contours.

• A new dataset consisting of the point clouds and reconstructed surface models of 20 k
real-world buildings.

(a) Input airborne LiDAR point cloud.
Figure 1. Cont.
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(b) Our reconstruction result
Figure 1. The automatic reconstruction result of all the buildings in a large scene from the AHN3
dataset [21].

2. Related Work

A large volume of methods for urban building reconstruction has been proposed.
In this section, we mainly review the techniques relevant to the key components of our
method. Since our method relies on footprint data for extracting building instances from
the massive point clouds of large scenes, and it can also be used for footprint extraction, we
also discuss related techniques in footprint extraction.

Roof primitive extraction. The commonly used method for extracting basic primitives
(e.g., planes and cylinders) from point clouds is random sample consensus (RANSAC) [22]
and its variants [23,24], which are robust against noise and outliers. Another group of
widely used methods is based on region growing [25–27], which assumes roofs are piece-
wise planar and iteratively propagates planar regions by advancing the boundaries. The
main difference between existing region growing methods lies in the generation of seed
points and the criteria for region expansion. In this paper, we utilize an existing region
growing method to extract roof primitives given its simplicity and robustness, which is
detailed in Rabbani et al. [25].

Footprint extraction. Footprints are 2D outlines of buildings, capturing the geometry
of outer walls projected onto the ground plane. Methods for footprint extraction commonly
project the points to a 2D grid and analyze their distributions [28]. Chen et al. [27] detect
rooftop boundaries and cluster them by taking into account topological consistency between
the contours. To obtain simplified footprints, polyline simplification methods such as
the Douglas-Peucker algorithm [29] are commonly used to reduce the complexity of the
extracted contours [12,30,31]. To favor structural regularities, Zhou and Neumann [32]
compute the principal directions of a building and regularize the roof boundary polylines
along with these directions. Following these works, we infer the vertical planes of a
building by detecting its contours from a heightmap generated from a 2D projection of the
input points. The contour polylines are then regularized by orientation-based clustering
followed by an adjustment step.

Building surface reconstruction. This type of methods aims at obtaining a simplified
surface representation of buildings by exploiting geometric cues, e.g., planar primitives
and their boundaries [15,32–36]. Zhou and Neumann [37] approached this by simplifying
the 2.5D TIN (triangulated irregular network) of buildings, which may result in artifacts in
building contours due to its limited capability in capturing complex topology. To address
this issue, the authors proposed an extended 2.5D contouring method with improved
topology control [38]. To cope with missing walls, Chauve et al. [39] also incorporated
additional primitives inferred from the point clouds. Another group of building surface
reconstruction methods involves predefined building parts, commonly known as model-
driven approaches [40,41]. These methods rely on templates of known roof structures and
deform-to-fit the templates to the input points. Therefore, the results are usually limited
to the predefined shape templates, regardless of the diverse and complex nature of roof
structures or high intraclass variations. Given the fact that buildings demonstrate mainly

181



Remote Sens. 2022, 14, 2254

piecewise planar regions, methods have also been proposed to obtain an arrangement of
extracted planar primitives to represent the building geometry [20,42–44]. These methods
first detect a set of planar primitives from the input point clouds and then hypothesize a set
of polyhedral cells or polygonal faces using the supporting planes of the extracted planar
primitives. Finally, a compact polygonal mesh is extracted from the hypothesized cells or
faces. These methods focus on the assembly of planar primitives, for which obtaining a
complete set of planar primitives from airborne LiDAR point clouds is still a challenge.

In this work, we extend an existing hypothesis-and-selection-based general polygonal
surface reconstruction method [20] to reconstruct buildings that consist of piecewise planar
roofs connected to the ground by vertical walls. We approach this by introducing a novel
energy term and a few hard constraints specially designed for buildings to ensure correct
topology and decent details.

3. Methodology

3.1. Overview

The proposed approach takes as input a raw airborne LiDAR point cloud of a large
urban scene and the corresponding building footprints, and it outputs 2-manifold and
watertight 3D polygonal models of the buildings in the scene. Figure 2 shows the pipeline of
the proposed method. It first extracts the point clouds of individual buildings by projecting
all points onto the ground plane and collecting the points lying inside the footprint polygon
of each building. Then, we reconstruct a compact polygonal model from the point cloud of
each building.

Figure 2. The pipeline of the proposed method (only one building is selected to illustrate the
workflow). (a) Input point cloud and corresponding footprint data. (b) A building extracted from the
input point cloud using its footprint polygon. (c) Planar segments extracted from the point cloud.
(d) The heightmap (right) generated from the TIN (left, colored as a height field). (e) The polylines
extracted from the heightmap. (f) The vertical planes obtained by extruding the inferred polylines.
(g) The hypothesized building faces generated using both the extracted planes and inferred vertical
planes. (h) The final model obtained through optimization.

Our reconstruction of a single building is based on the hypothesis-and-selection-based
framework of PolyFit [20], which is for reconstructing general piecewise-planar objects
from a set of planar segments extracted from the point cloud. Our method exploits not only
the planar segments directly extracted from the point cloud but also the vertical planes
inferred from the point cloud. From these two types of planar primitives, we hypothesize
the faces of the building. The final model is then obtained by choosing the optimal subset
of the faces through optimization.

The differences between our method and PolyFit are: (1) our method is dedicated to
reconstructing urban buildings, and it makes use of vertical planes as hard constraints, for
which we propose a novel algorithm for inferring the vertical planes of buildings that are
commonly missing in airborne LiDAR point clouds. (2) We introduce a new roof preference
energy term and two additional hard constraints into the optimization to ensure correct
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topology and enhance detail recovery. In the following sections, we detail the key steps of
our method with an emphasis on the processes that differ from PolyFit [20].

3.2. Inferring Vertical Planes

With airborne LiDAR point clouds, important structures like vertical walls of a build-
ing are commonly missed due to the restricted positioning and moving trajectories of the
scanner. In contrast, the roof surfaces are usually well captured. This inspired us to infer the
missing walls from the available points containing the roof surfaces. We infer the vertical
planes representing not only the outer walls but also the vertical walls within the footprint
of a building. We achieve this by generating a 2D rasterized height map from its 3D points
and looking for the contours that demonstrate considerable variations in the height values.
To this end, an optimal-transport method is proposed to extract closed polylines from the
contours. The polylines are then extruded to obtain the vertical walls. The process for
inferring the vertical planes is outlined in Figure 2d–f.

Specifically, after obtaining the point cloud of a building, we project the points onto
the ground plane, from which we create a height map. To cope with the non-uniform
distribution of the points (e.g., some regions have holes while others may have repeating
points), we construct a Triangulated Irregular Network (TIN) model using 2D Delaunay
triangulation. The TIN model is a continuous surface and naturally completes the missing
regions. Then, a height map is generated by rasterizing the TIN model with a specified
resolution r. The issue of small holes in the height maps (due to uneven distribution of roof
points) is further alleviated by image morphological operators while preserving the shape
and size of the building [45]. After that, a set of contours are extracted from the height
map using the Canny detector [46], which serves as the initial estimation of the vertical
planes. We propose an optimal-transport method to extract polylines from the initial set
of contours.

Optimal-transport method for polyline extraction. The initial set of contours are
discrete pixels, denoted as S, from which we would like to extract simplified polylines that
best describe the 2D geometry of S. Our optimal-transport method for extracting polylines
from S works as follows. First, a 2D Delaunay triangulation T0 is constructed from the
discrete points in S. Then, the initial triangulation T0 is simplified through iterative edge
collapse and vertex removal operations. In each iteration, the most suitable vertex to be
removed is determined in a way such that the following conditions are met:

• The maximum Hausdorff distance from the simplified mesh T0 to S is less than a
distance threshold εd.

• The increase of the total transport cost [47] between S and T0 is kept at a minimum.

In each iteration, a vertex satisfying the above conditions is removed from T0 by edge
collapse, and the overall transportation cost is updated.

As the iterative simplification process continues, the overall transportation cost will
increase. The edge collapse operation stops until no vertex can be further removed, or the
overall transportation cost has increased above a user-specified tolerance εc. After that, we
apply an edge filtering step [47] to eliminate small groups of undesirable edges caused by
noise and outliers. Finally, the polylines are derived from the remaining vertices and edges
of the simplified triangulation using the procedure described in [47]. Compared to [47],
our method not only minimizes the total transport cost but also provides control over local
geometry, ensuring that the distance between every vertex in the final polylines and the
initial contours is smaller than the specified distance threshold εd.

Regularity enhancement. Due to noise and uneven point density in the point cloud,
the polylines generated by the optimal-transport algorithm are unavoidably inaccurate
and irregular (see Figure 3a), which often leads to artifacts in the final reconstruction. We
alleviate these artifacts by enforcing structure regularities that commonly dominate urban
buildings. We consider the structure regularities, namely parallelism, collinearity, and
orthogonality, defined by [48]. Please note that since all the lines will be extruded vertically
to obtain the vertical planes, the verticality regularity will inherently be satisfied. We
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propose a clustering-based method to identify the groups of line segments that potentially
satisfy these regularities. Our method achieves structure regularization in two steps:
clustering and adjustment.

(a) Before (28 segments) (b) After (22 segments)
Figure 3. The effect of the clustering-based regularity enhancement on the polylines inferring the
vertical walls. (a) Before regularity enhancement. (b) After regularity enhancement.

Clustering. In this work, we cluster the line segments of the polylines generated by the
optimal-transport algorithm based on their orientation and pairwise Euclidean distance [49].
The pairwise Euclidean distance is measured by the minimum distance between a line
segment and the supporting line of the other line segment.

Adjustment. For each cluster that contains multiple line segments, we compute its
average direction. Then each line segment in the cluster is adjusted to align with the
average direction. In case the building footprint is provided, the structure regularity
can be further improved by aligning the segments with the edges in the footprint. After
average adjustment, the near-collinear and near-orthogonal line segments are adjusted to
be perfectly collinear and orthogonal, respectively (we use an angle threshold of 20°).

After regularity enhancement, the vertical planes of the building can be obtained by
vertical extrusion of the regularized polylines. The effect of the regularity enhancement is
demonstrated in Figure 3, from which we can see that it significantly improves structure
regularity and reduces the complexity of the building outlines.

3.3. Reconstruction

Our surface reconstruction involves two types of planar primitives, i.e., vertical planes
inferred in the previous step (see Section 3.2) and roof planes directly extracted from the
point cloud. Unlike PolyFit [20] that hypothesizes faces by computing pairwise intersections
using all planar primitives, we compute pairwise intersections using only the roof planes,
and then the resulted faces are cropped with the outer vertical planes (see Figure 2g). This
process ensures that the roof boundaries of the reconstructed building can be precisely
connected with the inferred vertical walls. Additionally, since the object to be reconstructed
is a real-world building, we introduce a roof preference energy term and a set of new hard
constraints specially designed for buildings into the original formulation. Specifically, our
objective for obtaining the model faces F∗ can be written as

F∗ = arg min
X

λdEd + λcEc + λrEr, (1)

where X = {xi|xi ∈ {0, 1}} denotes the binary variables for the faces (1 for selected and 0
otherwise). Ed is the data fitting term that encourages selecting faces supported by more
points, and Ec is the model complexity term that favors simple planar structures. For
more details about the data fitting term and the model complexity term, please refer to the
original paper of PolyFit [20]. In the following part, we elaborate on the new energy term
and hard constraints.
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New energy term: roof preference. We have observed in rare cases that a building in
aerial point clouds may demonstrate more than one layer of roofs, e.g., semi-transparent or
overhung roofs. In such a case, we assume a higher roof face is always preferable to the
ones underneath. We formulate this preference as an additional energy term called roof
preference, which is defined as

Er =
1
|F|

|F|
∑
i=1

xi ·
zmax − zi

zmax − zmin
(2)

where zi denotes the Z coordinate of the centroid of a hypothsized face fi. zmax and zmin
are, respectively, the highest and lowest Z coordinates of the building points. |F| denotes
the total number of hypothesized faces.

New hard constraints. We impose two hard constraints to enhance the topological
correctness of the final reconstruction.

• Single-layer roof. This constraint ensures that the reconstructed 3D model of a real-
world building has a single layer of roofs, which can be written as,

∑
k∈V( fi)

xk = 1,(1 ≤ i ≤ |F|)

where V( fi) denotes the set of hypothesized faces that have overlap with face fi ∈ F
in the vertical direction.

• Face prior. This constraint enforces that for all the derived faces from the same planar
segment, the one with the highest confidence value is always selected as a prior. Here,
the confidence of a face is measured by the number of its supporting points. This
constraint can be simply written as

xl = 1,

where xl is the variable whose value denotes the status of the most confident face fl of
a planar segment. This constraint resolves ambiguities if two hypothesized faces are
near coplanar and close to each other, which preserves finer geometric details. The
effect of this constraint is demonstrated in Figure 4.
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Figure 4. The effect of the face prior constraint. The insets illustrate the assembly of the hypothesized
faces in the corresponding marked regions (each line segment denotes a hypothesized face, and line
segments of the same color represent faces derived from the same planar primitive). (a) Reconstruction
without the face prior constraint. (b) Reconstruction with the face prior constraint, for which faces 1
and 4 both satisfy the face prior constraint. The numbers 1–7 denote the 7 candidate faces.
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The final surface model of the building can be obtained by solving the optimization
problem given in Equation (A4), subject to the single-layer roof and face prior hard constraints.

4. Results and Evaluation

Our method is implemented in C++ using CGAL [50]. All experiments were conducted
on a desktop PC with a 3.5 GHz AMD Ryzen Threadripper 1920X and 64 GB RAM.

4.1. Test Datasets

We have tested our method on three datasets of large-scale urban point clouds includ-
ing more than 20 k buildings.

• AHN3 [21]. An openly available country-wide airborne LiDAR point cloud dataset
covering the entire Netherlands, with an average point density of 8 points/m2. The
corresponding footprints of the buildings are obtained from the Register of Buildings
and Addresses (BAG) [51]. The geometry of footprint is acquired from aerial photos
and terrestrial measurements with an accuracy of 0.3 m. The polygons in the BAG
represent the outlines of buildings as their outer walls seen from above, which are
slightly different from footprints. We still use ‘footprint’ in this paper.

• DALES [52]. A large-scale aerial point cloud dataset consisting of forty scenes span-
ning an area of 10 km2, with instance labels of 6 k buildings. The data was collected
using a Riegl Q1560 dual-channel system with a flight altitude of 1300 m above ground
and a speed of 72 m/s. Each area was collected by a minimum of 5 laser pulses per me-
ter in four directions. The LiDAR swaths were calibrated using the BayesStripAlign 2.0
software and registered, taking both relative and absolute errors into account and cor-
recting for altitude and positional errors. The average point density is 50 points/m2.
No footprint data is available in this dataset.

• Vaihingen [53]. An airborne LiDAR point cloud dataset published by ISPRS, which
has been widely used in semantic segmentation and reconstruction of urban scenes.
The data were obtained using a Leica ALS50 system with 45° field of view and a
mean flying height above ground of 500 m. The average strip overlap is 30% and
multiple pulses were recorded. The point cloud was pre-processed to compensate for
systematic offsets between the strips. We use in our experiments a training set that
contains footprint information and covers an area of 399 m × 421 m with 753 k points.
The average point density is 4 points/m2.

4.2. Reconstruction Results

Visual results. We have used our method to reconstruct more than 20 k buildings
from the aforementioned three datasets. For the AHN3 [21] and Vaihingen [53] datasets,
the provided footprints were used for both building instance segmentation and extrusion
of the outer walls. Our inferred vertical planes were used to complete the missed inner
walls. For the DALES [52] dataset, we used the provided instance labels to extract building
instances, and we used our inferred vertical walls for the reconstruction.

Figures 1 and 5 show the 3D reconstruction of all buildings in two large scenes from
the AHN3 dataset [21]. For the buildings reconstructed in Figure 1, their models are
simplified polygonal meshes with an average face count of 34. To better reveal the quality
of our reconstructed building models, we demonstrate in Figure 6 a set of individual
buildings reconstructed from the three test datasets. From these visual results, we can
see that although the buildings have diverse structures of different styles, and the input
point clouds have varying densities and different levels of noise, outliers, and missing
data, our method succeeded in obtaining visually plausible reconstruction results. These
experiments also indicate that our approach is successful in inferring the vertical planes of
buildings from airborne LiDAR point clouds and it is effective to include these planes in
the 3D reconstruction of urban buildings.
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Figure 5. Reconstruction of a large scene from the AHN3 dataset [21].

Figure 6. The reconstruction results of a set of buildings from various dataset. (1–14) are from
the AHN3 dataset [21], (15–22) are from the DALES dataset [52], (23–28) are from the Vaihingen
dataset [53].

Quantitative results. We have also evaluated the reconstruction results quantitatively.
Since ground-truth reconstruction is not available for all buildings in the three datasets, we

187



Remote Sens. 2022, 14, 2254

chose to use the commonly used accuracy measure, Root Mean Square Error (RMSE), to
quantify the quality of each reconstructed model. In the context of surface reconstruction,
RMSE is defined as the square root of the average of squared Euclidean distances from the
points to the reconstructed model. In Table 1, we report the statistics of our quantitative
results on the buildings shown in Figure 6. We can see that our method has obtained good
reconstruction accuracy, i.e., the RMSE for all buildings is between 0.04 m to 0.26 m, which
is quite promising for 3D reconstruction of real-world buildings from noisy and sparse
airborne LiDAR point clouds. As observed from the number of faces column of Table 1, our
results are simplified polygonal models and are more compact than those obtained from
commonly used approaches such as the Poisson surface reconstruction method [54] (that
produces dense triangles). Table 1 also shows that the running times for most buildings are
less than 30 s. The reconstruction of the large complex building shown in Figure 6 (12) took
42 min. This long reconstruction time is due to that our method computes the pairwise
intersection of the detected planar primitives and inferred vertical planes, and it generates
a large number of candidate faces and results in a large optimization problem [20] (see also
Section 4.7). The running time with respect to the number of detected planar segments for
the reconstruction of more buildings is reported in Figure 7.

Table 1. Statistics on the reconstructed buildings shown in Figure 6. For each building, the number of
points in the input, number of faces in the reconstructed model, fitting error (i.e., RMSE in meters),
and running time (in seconds) are reported.

Dataset Model #Points #Faces
RMSE

(m)
Time

(s)

AHN3

(1) 732 23 0.07 3

(2) 532 42 0.12 4

(3) 1165 31 0.04 3

(4) 20,365 127 0.15 62

(5) 1371 48 0.04 5

(6) 1611 45 0.06 4

(7) 3636 68 0.21 18

(8) 2545 52 0.04 8

(9) 15,022 63 0.11 28

(10) 23,654 262 0.26 115

(11) 13,269 102 0.11 34

(12) 155,360 1520 0.09 2520

(13) 24,027 176 0.24 141

(14) 28,522 227 0.15 78

DALES

(15) 8662 39 0.04 11

(16) 11,830 73 0.1 8

(17) 10,673 47 0.07 7

(18) 7594 33 0.07 14

(19) 13,060 278 0.05 145

(20) 11,114 55 0.06 24

(21) 8589 51 0.06 15

(22) 18,909 282 0.08 86
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Table 1. Cont.

Dataset Model #Points #Faces
RMSE

(m)
Time

(s)

Vaihingen

(23) 7701 51 0.24 25

(24) 6845 99 0.12 8

(25) 1007 24 0.11 2

(26) 11,591 206 0.17 10

(27) 4026 42 0.26 6

(28) 5059 61 0.22 9

Figure 7. The running time of our method with respect to the number of the detected planar segments.
These statistics are obtained by testing on the AHN3 dataset.

New dataset. Our method has been applied to city-scale building reconstruction. The
results are released as a new dataset consisting of 20 k buildings (including the reconstructed
3D models and the corresponding airborne LiDAR point clouds). We believe this dataset
can stimulate research in urban reconstruction from airborne LiDAR point clouds and the
use of 3D city models in urban applications.

4.3. Parameters

Our method involves a few parameters that are empirically set to fixed values for
all experiments, i.e., the distance threshold εd = 0.25 and the tolerance for overall trans-
portation cost εc = 2.0. The resolution r for the rasterization of the TIN model to generate
heightmaps is dataset dependent due to the difference in point density. It is set to 0.20 m
from AHN3, 0.15 m for DALES, and 0.25 m for Vaihingen. The weight of the roof preference
energy term λr = 0.04 (while the weights for the data fitting and model complexity terms
are set to λd = 0.34 and λc = 0.62, respectively).

4.4. Comparisons

We have compared our method with two successful open-source methods, i.e., 2.5D
Dual Contouring (dedicated for urban buildings) [37] and PolyFit (for general piecewise-
planar objects) [20], on the AHN3 [21], DALES [52], and Vaihingen [53] datasets. The city
block from the AHN3 dataset [21] is sparse and contains only 80,447 points for 160 buildings
(i.e., on average 503 points per building). The city region from DALES is denser and contains
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214,601 points for 41 buildings (i.e., on average 5234 points per building). The city area from
the Vaihingen dataset contains 69,254 points for 57 buildings (i.e., on average 1215 points
per building). The walls of all the point clouds are severely occluded. Figure 8 shows the
visual comparison of one of the buildings. PolyFit assumes a complete set of input planar
primitives, which is not the case for airborne LiDAR point clouds because the vertical walls
are often missing. For PolyFit to be effective, we added our inferred vertical planes to its
initial set of planar primitives. From the result, we can observe that both PolyFit and our
method can generate compact building models, and the number of faces in the result is
an order of magnitude less than that of the 2.5D Dual Contouring method. It is worth
noting that even with the additional planes, PolyFit still failed to reconstruct some walls
and performed poorly in recovering geometric details. In contrast, our method produces
the most plausible 3D models. By inferring missing vertical planes, our method can recover
inner walls, which further split the roof planes and bring in more geometric details into the
final reconstruction. Table 2 reports the statistics of the comparison, from which we can
see that the reconstructed building models from our method have the highest accuracy. In
terms of running time, our method is slower than the other two, but it is still acceptable in
practical applications (on average 4.9 s per building).

(a) Input point cloud (b) 2.5DC (296 faces) (c) PolyFit (58 faces) (d) Ours (86 faces)
Figure 8. Comparison with 2.5D Dual Contouring (2.5DC) [37] and PolyFit [20] on a single building
from the AHN3 dataset [21].

Table 2. Statistics on the comparison of 2.5D Dual Contouring [37], PolyFit [20], and our method on
the reconstruction from the AHN3 [21], DALES [52], and Vaihingen [53] datasets. Total face numbers,
running times, and average errors are reported.

Dataset Method #Faces RMSE (m) Time (s)

AHN3

2.5D DC [37] 12,781 0.213 13

PolyFit [20] 1848 0.242 160

Ours 2453 0.128 380

DALES

2.5D DC [37] 2297 0.204 10

PolyFit [20] 444 0.287 230

Ours 583 0.184 670

Vaihingen

2.5D DC [37] 2695 0.168 6

PolyFit [20] 647 0.275 102

Ours 798 0.157 212

We also performed an extensive quantitative comparison with the 3D building models
from the BAG3D [55], which is a public 3D city platform that provides 3D models of urban
buildings at the LoD2 level. For this comparison, we picked four different regions consisting
of 1113 buildings in total from the BAG3D. In Figure 9, we demonstrate a visual comparison,
from which we can see that our models demonstrate more regularity. The quantitive result
is reported in Table 3, from which we can see that our results have higher accuracy.
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(a) Result from BAG3D

(b) Ours result
Figure 9. A visual comparison with BAG3D [55]. A building from Table 3 (b) is shown.

Table 3. Quantitative comparison with the BAG3D [55] on four urban scenes (a)–(d). Both BAG3D
and our method used the point clouds from the AHN3 dataset [21] as input. The bold font indicates
smaller RMSE values.

Region #Points #Building
RMSE (m)

BAG3D
RMSE (m)

Ours

(a) 1,694,247 198 0.088 0.079

(b) 329,593 387 0.139 0.138

(c) 224,970 368 0.140 0.132

(d) 80,447 160 0.146 0.128

4.5. With vs. Without Footprint

Our method can infer the vertical planes of a building from its roof points, and then
the outer walls are completed using the vertical planes. It also has the option to directly
use given footprint data for reconstruction. With a given footprint, vertically planes are
firstly obtained by extruding the footprint polygons. Then these planes and those extracted
from the point clouds are intersected to hypothesize the model faces, followed by the
optimization step to obtain the final reconstruction. Figure 10 shows such a comparison on
two buildings.

4.6. Reconstruction Using Point Clouds with Vertical Planes

The methodology presented in our paper only focuses on airborne LiDAR point clouds,
in which vertical walls of buildings are typically missing. In practice, our method can be
easily adapted to work with other types of point clouds that contain points of vertical walls,
e.g., point clouds reconstructed from drone images. For such point clouds, our method can
still be effective by replacing the inferred vertical planes with those directly detected from
the point clouds. Figure 11 shows two such examples.
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Figure 10. Comparison between the reconstruction with (b) and without (c) footprint data on two
buildings (a) from the AHN3 dataset [21]. The number below each model denotes the root mean
square error (RMSE). Using the inferred vertical planes slightly increases reconstruction errors.

Figure 11. Reconstruction from aerial point clouds. In these point clouds, the vertical walls can
be extracted from the point clouds and directly used in reconstruction, and thus the vertical plane
inference step was skipped. The dataset is obtained from Can et al. [56].

4.7. Limitations

Our method can infer the missing vertical planes of buildings, from which the outer
vertical planes serve as outer walls in the reconstruction. Since the vertical planes are
inferred from the 3D points of rooftops, the walls in the final models may not perfectly
align with the ground-truth footprints (see the figure below). Thus, we recommend the
use of high-quality footprint data whenever it is available. Besides, our method extends
the hypothesis-and-selection-based surface reconstruction framework of PolyFit [20] by
introducing new energy terms and hard constraints. It naturally inherits the limitation
of PolyFit, i.e., it may encounter computation bottlenecks for buildings with complex
structures (e.g., buildings with more than 100 planar regions). An example has already
been shown in Figure 6 (12).
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5. Conclusions and Future Work

We have presented a fully automatic approach for large-scale 3D reconstruction of
urban buildings from airborne LiDAR point clouds. We propose to infer the vertical planes
of buildings that are commonly missing from airborne LiDAR point clouds. The inferred
vertical planes play two different roles during the reconstruction. The outer vertical planes
directly become part of the exterior walls of the building, and the inner vertical planes
enrich building details by splitting the roof planes at proper locations and forming the
necessary inner walls in final models. Our method can also incorporate given building
footprints for reconstruction. In case footprints are used, they are extruded to serve the
exterior walls of the models, and the inferred inner planes enrich building details. Extensive
experiments on different datasets have demonstrated that inferring vertical planes is an
effective strategy for building reconstruction from airborne LiDAR point clouds, and the
proposed roof preference energy term and the novel hard constraints ensure topologically
correct and accurate reconstruction.

Our current framework uses only planar primitives and it is sufficient for reconstruct-
ing most urban buildings. In the real world, there still exist buildings with curved surfaces,
which our current implementation could not handle. However, our hypothesize-and-
selection strategy is general and can be extended to process different types of primitives.
As a future work direction, our method can be extended to incorporate other geometric
primitives, such as spheres, cylinders, or even parametric surfaces. With such an extension,
buildings with curved surfaces can also be reconstructed.
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TIN Triangular Irregular Network
RMSE Root Mean Square Error

Appendix A. The Complete Formulation

Our reconstruction is obtained by finding the optimal subset of the hypothesized faces.
We formulate this as an optimization problem, with an objective function consisting of
three energy terms: data fitting, model complexity, and roof preference. The first two terms are
the same as in [20]. In the following, we briefly introduce all these terms and provide the
final complete formulation.

• Data fitting. It is defined to measure how well the final model (i.e., the assembly of
the chosen faces) fits to the input point cloud,

Ed = 1 − 1
|P|

|F|
∑
i=1

xi · support( fi), (A1)
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where |P| is the number of points in the point cloud. support( fi) measures the num-
ber of points that are ε-close to a face fi ∈ F, and xi ∈ {0, 1} denotes the binary
status of the face fi (1 for selected and 0 otherwise). |F| denotes the total number of
hypothesized faces.

• Model complexity. To avoid defects introduced by noise and outliers, this term is
introduced to encourage large planar structures,

Ec =
1
|E|

|E|
∑
i=1

corner(ei), (A2)

where |E| denotes the total number of pairwise intersections in the hypothesized face
set. corner(ei) is an indicator function denoting if choosing two faces connected by an
edge ei results in a sharp edge in the final model (1 for sharp and 0 otherwise).

• Roof preference. We have observed in rare cases that a building in aerial point clouds
may demonstrate more than one layer of roofs, e.g., semi-transparent or overhung
roofs. In such a case, we assume a higher roof face is preferable to the ones underneath.
We formulate this preference as an additional roof preference energy term,

Er =
1
|F|

|F|
∑
i=1

xi ·
zmax − zi

zmax − zmin
(A3)

where zi denotes the Z coordinate of the centroid of a face fi. zmax and zmin are,
respectively, the highest and lowest Z coordinates of the building points.

With all the constraints, the complete optimization problem is written as

min
X

λdEd + λcEc + λrEr

s.t.

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∑
k∈V( fi)

xk = 1, (1 ≤ i ≤ |F|)

∑
j∈N(ei)

xj = 0 or 2, (1 ≤ j ≤ |E|)

xl = 1,
xi ∈ {0, 1}, ∀i ∈ N

(A4)

where the first constraint is call single roof, which ensures that the reconstructed building
model has a single layer of roofs. The second constraint enforces that in the final model an
edge is associated with two adjacent faces, ensuring the final model to be watertight and
manifold. The third constraint is call face prior, which ensures that, for the faces derived
from the same planar segment, the one with the highest confidence value is selected as
a prior.

By solving the above optimization problem, the set of selected faces { fi|xi = 1} forms
the final surface model of a building.
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Abstract: The roofscape plays a vital role in the support of sustainable urban planning and devel-
opment. However, availability of detailed and up-to-date information on the level of individual
roof-part topology remains a bottleneck for reliable assessment of its present status and future
potential. Motivated by the need for automation, the current state-of-the-art focuses on applying
deep learning techniques for roof-plane segmentation from light-detection-and-ranging (LiDAR)
point clouds, but fails to deliver on criteria such as scalability, spatial predictive continuity, and
vectorization for use in geographic information systems (GISs). Therefore, this paper proposes a
fully automated end-to-end workflow capable of extracting large-scale continuous polygon maps
of roof-part instances from ultra-high-resolution (UHR) aerial imagery. In summary, the workflow
consists of three main steps: (1) use a multitask fully convolutional network (FCN) to infer semantic
roof-part edges and objects, (2) extract distinct closed shapes given the edges and objects, and (3) vec-
torize to obtain roof-part polygons. The methodology is trained and tested on a challenging dataset
comprising of UHR aerial RGB orthoimagery (0.03 m GSD) and LiDAR-derived digital elevation
models (DEMs) (0.25 m GSD) of three Belgian urban areas (including the famous touristic city of
Bruges). We argue that UHR optical imagery may provide a competing alternative for this task
over classically used LiDAR data, and investigate the added value of combining these two data
sources. Further, we conduct an ablation study to optimize various components of the workflow,
reaching a final panoptic quality of 54.8% (segmentation quality = 87.7%, recognition quality = 62.6%).
In combination with human validation, our methodology can provide automated support for the
efficient and detailed mapping of roofscapes.

Keywords: airborne Earth observation; ultrahigh spatial resolution; semantic segmentation; instance
segmentation; fully convolutional neural networks; roofscape

1. Introduction

As buildings cover a considerable area of the urban environment, the roofscape plays
a vital role in supporting sustainable urban development [1]. Roofs hold a myriad of
potential uses, including civic spaces, urban farms, rainwater harvesting, and solar power.
Strategic design choices of the roofscape, such as material type and coverage, are therefore
instrumental in regulating the urban energy budget, storm water management, and local
food systems. For instance, popular incentives include installing solar panels to aid in
achieving a net-zero energy consumption, thermal insulation to reduce building energy
use and thus their carbon footprint, and green roofs to contribute to reducing traffic noise,
improving air quality and urban biodiversity, and mitigating the urban heat island effect.

To assess the current status and future potential of the sustainable roofscape, accu-
rate and up-to-date information on the spatial distribution and topology of rooftops is
needed. Simple building contour maps can often be found from open-source databases
(e.g., OpenStreetMap or local governments). However, more detailed maps of individual
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roofparts are lacking. We define a roof part here as a semantic instance within a larger roof
complex, distinguishable from other roof parts by a difference in inclination, height, roof
material, or any other kind of roof-part edge. Following this definition, we consider a
roof part to be different from a roofplane, as a roofplane may, for instance, be constituted
of different roof parts, e.g., neighboring houses in ribbon development may share the
same roofplane that comprises different roof parts separated by gutters. Such more refined
maps are needed to facilitate the construction of geographic information systems (GISs)
linking attributes to the roof parts, including the surface area, inclination, position, roof
material, thermal insulation, degradation state, and mounted objects (e.g., solar panels, air
conditioners, satellite dishes), and would allow for better estimates of the solar photovoltaic
and green potential of a roofscape. Since mapping roof parts for large areas is a tedious and
time-consuming task, automated methodologies are necessary. However, to the best of our
knowledge, no end-to-end methodology has yet been proposed for the efficient automated
extraction of roof-part maps on a large scale.

Undeniably, deep learning has become the tool of choice for the automated supervised
image analysis of airborne and spaceborne Earth observation (EO) imagery, be it for
object detection, semantic segmentation, or instance segmentation [2]. Largely driven
by data availability, the majority of research concerned with applying deep learning for
rooftop mapping focuses on either (1) building footprint extraction from RGB (ortho-
)images [3], sometimes combined with LiDAR-derived 2D height maps [4,5], or (2) roof-
plane segmentation from LiDAR point clouds [6–10]. Research on the first application
is predominantly propelled by well-known open-source datasets such as Vaihingen [11],
the Inria Aerial Image Labelling Dataset [12] or the more recent SemCity Toulouse [13].
The scope of these studies is solely to segment complete rooftop instances and not individual
roof parts that constitute the rooftops. The smaller body of research focusing on the second
application uses smaller datasets, as LiDAR is more costly and complex to acquire than
optical imagery. Arguably, this render LiDAR a suboptimal choice for large-scale high-
resolution problem settings. Therefore, in this paper we compare using only LiDAR-derived
height data (i.e., a digital elevation model (DEM)) with using only RGB orthoimagery,
and show that, for our case, the latter outperformed the former. Additionally, we investigate
the added value of combining these two data sources (RGB + DEM).

Furthermore, an increasing number of rooftop or roofplane extraction methodologies
are recognizing the importance of having polygon maps as the workflow output as opposed
to only providing the identified rooftops as pixel-based areas (i.e., a raster map) [14,15].
The difficulty with raster maps is that they require considerable storage memory, and are
inconvenient for further processing and usage in a GIS. Hence, this paper also advocates
that automated mapping approaches should target polygon maps as the workflow out-
put rather than raster maps. This goes in hand with two crucial considerations. First,
although segmentation algorithms are becoming increasingly accurate, they often cannot
ensure closed object shapes, hence hampering the vectorization of the raster object [16].
Second, due to the patchwise processing of large EO imagery because of computational
constraints, predictive spatial continuity is not always ensured. More specifically, it is
obvious that methodologies that assume either a single object instance per image patch
(e.g., a single building) or only a limited number of scattered instances are not applicable
for large-scale roof-part extraction. As such, there is a need for paradigms that take these
consideration into account.

Having identified some key requirements for large-scale roof-part polygon extraction,
this paper proposes a workflow based on three steps: (1) use a deep neural network to
predict roof-part objects and edges, (2) use a bottom–up clustering algorithm given the
predicted edges to derive distinct closed shapes, and (3) vectorize and simplify the roof-part
shapes. For Step 1, we opted for a semantic segmentation approach using a fully convolu-
tional network (FCN). We did not use a detection-based instance segmentation method (i.e.,
using bounding boxes), such as the famous mask R-CNN [17], because they have difficulty
with highly clustered instances, which is evidently the case for urban roofscapes. Therefore,
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the emphasis of the workflow lies on finding roof-part edges rather than roof-part objects.
To this end, we briefly review the related work focusing on using FCNs for rooftop edge
segmentation. The overall objective of these studies is to optimize semantic object and edge
predictions by designing specific FCN architectures or training loss functions that explicitly
account for both targets. For example, Marmanis et al. (2018) integrated a separate edge
detector (holistically nested edge detection (HED)) into their semantic segmentation model
to build in semantic boundary awareness [18]. Wu et al. (2018) proposed a boundary
regulated network (BR-Net) to simultaneously perform building segmentation and outline
extraction on the basis of a shared feature representation and a multilabel optimization
approach [19]. Diakogiannis et al. (2020) also built on the idea of multitask inference and
created ResUnet-a, a FCN that simultaneously outputs a semantic object mask, edge mask,
object center distance map, and an HSV colored reconstruction of the input [20]. To promote
edge connectivity and clear object boundaries, Xia et al. (2021) designed specific edge guid-
ance modules and applied multiscale supervision for training their network (DDLNet) [16].
Additionally, they used a multilabel target approach concatenating the edge prediction
as a feature map for predicting the semantic objects. Next, a number of studies proposed
custom loss functions to improve edge and object-boundary predictions, of which most are
weighted flavors of the Dice loss, cross-entropy loss, or combinations of the latter [14,21].
Here, the chief consideration is to cope with class imbalance, as the number of edge pixels
is typically a number of magnitudes lower than the number of non-edge pixels. Further,
some works address the problem of building instance segmentation from a different angle
by combining FCNs with other deep-learning paradigms to predict building corners as key
points, which can more easily be processed into regular polygons [22,23]. Lastly, an alterna-
tive direction is to train directly on extracting polygon coordinates. For example, Chen et al.
(2020) proposed a modeling framework for vectorized building outline extraction using a
combination of FCN-based segmentation and a modified PointNet to learn shape priors
and predict polygon vertex deformation [24].

However, the aforementioned studies focused on complete roof extraction and not
on individual roof-part extraction. Moreover, no existing framework could be readily
applied to our application as they failed to fulfil at least one of our identified criteria,
i.e., (i) scalable to large areas, (ii) predictive spatial continuity, and (iii) polygon-oriented.
Therefore, the novelty of this paper is manifold: (i) we propose a fully automated workflow
for the extraction of individual roof parts on a large scale; (ii) we suggest a multiclass
FCN approach for combined semantic edge and object prediction, as opposed to the more
common multilabel approach; (iii) spatial predictive continuity is taken into account by
saving intermediate output mosaics; and (iv) the methodology is polygon-oriented, i.e., the
FCN ground truth is generated on the fly on the basis of polygon annotations, the workflow
output is a polygon map, and the quality assessment is polygon-based. The methodology
was trained and tested on a new challenging dataset comprising of UHR aerial RGB
orthoimagery (0.03 m GSD) and LiDAR-derived DEMs (0.25 m GSD) of three Belgian urban
areas (including the famous touristic city of Bruges). We conducted an ablation study to
optimize various components of the workflow, reaching a final panoptic quality of 54.8%
(segmentation quality of 87.7% and recognition quality of 62.6%). Lastly, we highlight some
current shortcomings, potential improvements, and future opportunities.

2. Materials and Methods

2.1. Study Area and Dataset

The study area under consideration is the region of Flanders, i.e., the northern part
of Belgium (Figure 1). Geographically, Flanders is an agriculturally fertile and densely
populated region with little to no relief. The landscape is predominantly characterized by
cropland (ca. 31%), agricultural grassland (ca. 20%), residential areas (ca. 13%), and tree
cover or forests (ca. 10%). Another ca. 15% is covered by human infrastructure for transport,
services, built-op areas, industry, agriculture, and airports [25]. The cities and villages are
mainly organized as dense smaller city centers with little to no high-rise buildings and
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surrounding ribbon development. The building architecture and structure, and hence the
rooftop appearance, are highly diverse.

Figure 1. Geographic location and visual overview of the training (Brugge), validation (Jabbeke), and
test (Lokeren) sets. Colored dots delineate the considered regions within the municipality borders
(dotted lines). The magnification at the bottom right shows an example of the complexity of the
rooftop structure and its overlying polygon labels.

To develop and test our methodology, we selected three municipalities within Flanders
to serve as training, validation, and test regions: Brugge, Jabbeke, and Lokeren, respectively
(Figure 1). For each of the three towns, the following data were available: (1) an aerial
RGB orthophoto with ultrahigh resolution of 0.03 m GSD stored as an ERDAS JPEG2000
uint8 compressed file. To give a notion of the magnitude, the Lokeren orthophoto, covering
3.65 km2, has an image resolution of 320,716 × 297,190 pixels. The used coordinate reference
system (CRS) was the Belgian Lambert 72 (EPSG:31370). (2) A digital elevation model
(DEM) of 0.25 m GSD stored as float32 GeoTIFF. (3) Polygon labels delineating all distinct
roof parts within the three considered regions, stored as GeoJSON files. The labels were
generated by (nonexpert) human annotators on the basis of the visual interpretation of the
RGB orthophotos. Inevitably, the latter gives rise to some degree of interpretive variability
and erroneous labels. Nonetheless, visual inspection confirmed that the annotations were
of sufficient quality for training and evaluating our methodology.

Table 1 provides a quantitative overview of the dataset. Figures 2 and 3 further show
the distribution of roof-part types and roof-part sizes for the three partitions, respectively.
The latter reflect that Brugge (training set) has a highly compact, complex, and densely
clustered rooftop structure, i.e., approximately half of the total area (0.72 km2) is covered by
roofs (0.34 km2), with strongly right-skewed roof-part size distribution and a median roof
size of only 7.1 m2. This feature of many different examples on a small area is advantageous,
as it allows for faster model training (see Section 2.3.3). In contrast, Lokeren (test set) is
more characterized by a combination of densely clustered roofs, isolated houses, and some
very large roofs. Further, Lokeren has approximately the same number of roof parts as
Brugge (ca. 27 × 103), but spread out over a region almost five times as large. As such,
this allows for evaluating the model on unseen scenery and areas without roofs, rendering
our test set truly honest and challenging. Lastly, Jabbeke (validation set) is a smaller
town with suburban appearance. It was used for the validation of the performance and
generalizability of the models during training.
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Table 1. Dataset overview.

Partition Location
Total Area

[km2]
Roof Parts

Roof-Part Area
[km2]

Training Brugge 0.72 26,984 0.34
Validation Jabbeke 0.18 1629 0.04

Test Lokeren 3.65 27,303 0.68

Figure 2. Roof type class frequencies.

Figure 3. Roof size distribution.

2.2. Workflow Overview

Here, we elaborate on our proposed workflow for large-scale roof-part polygon gen-
eration given UHR orthoimagery (Figure 4). In general, the workflow consisted of three
main steps: (1) A trained FCN was used to infer semantic roof-part edges and objects.
(2) Distinct closed shapes were extracted given the edges and objects. (3) The closed shapes
were vectorized to obtain roof-part polygons. As depicted in Figure 4, each step was
computationally constrained by a certain patch size (PS), i.e., the maximal image resolution
that could be algorithmically processed in terms of time and/or memory. However, in con-
trast to natural imagery, EO imagery is spatially continuous. Therefore, it is important to
ensure the continuity of the overall output despite patchwise processing. As a larger PS
corresponds to a smoother overall output, saving intermediate results allows for setting the
PSs to a different optimal value for each step. Usually, PSFCN < PSCSE < PSVEC, where
PSFCN is the input patch size of the FCN model, PSCSE of the closed shape extraction step,
and PSVEC of the vectorizing step. Each of the three steps is described in more detail in the
subsequent sections.
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Figure 4. Schematic workflow overview for large scale roof-part polygon extraction from optical
(RGB) and height/depth (D) orthoimagery. The workflow consists of three main steps: (1) a fully
convolutional neural network (FCN) model is used to predict semantic roof edges and objects.
(2) Distinct closed shapes are extracted given the roof edges and objects. (3) The closed shapes are
vectorized to obtain roof-part polygons. Each step is computationally constrained by a certain patch
size (PS), where usually PSFCN < PSCSE < PSVEC. As a larger PS corresponds to a smoother global
prediction, intermediate results can be saved to allow for the three PSs to be different.

2.3. Semantic Edge and Object Segmentation

As a first step, we used an FCN to learn a function Ŷ = f (X, θ) with parameters θ to
map an input image X ∈ R

Ci×H×W
[0,1] to predicted semantic probability maps Ŷ ∈ R

Co×H×W
[0,1] ,

with Ci being the number of input channels, Co the number of output channels, H the
image height, and W the image width. Each pixel in the output Ŷ represents the confidence
with which the corresponding pixel in the input X belongs to a certain semantic class,
such as, in our case, roof vs. non-roof and/or roof edge vs. non-roof edge. We compared
three paradigms for deriving roof-object and roof-edge probability maps (Figure 5): (i) two
independent FCNs with binary output; (ii) a single FCN with multilabel output, i.e., each
pixel could belong to multiple classes; and (iii) a single FCN with multiclass output, i.e., each
pixel could belong to only one class. Below, we briefly describe the FCN architecture, and
the training and validation procedure.

2.3.1. FCN Architectures

The used FCN is the well-known UNet architecture [26]. To date, it remains the
standard for semantic segmentation of EO imagery [2]. More specifically, we use a UNet
with an EfficientNet-B5 [27] 5-stage encoder (H = W = 2x → 2x/5) pretrained on Ima-
genet [28], and a decoder with batch normalization and spatial and channel squeeze &
excitation (scSE) attention modules after every decoder stage [29], as implemented in the
pytorch-segmentation-models Python package [30]. The input of the FCN is a 1-channel DEM
(Ci = 1), 3-channel RGB (Ci = 3) or 4-channel RGB + DEM (Ci = 4) image patch. The used
PSFCN is H = W = 1024 pix, corresponding to a ground resolution of ∼30 ×30 m2. This
is the largest PS that could fit into GPU memory during FCN training. The output of
the FCN is different for each of the three approaches (Figure 5). For the double binary
case, the output is twice a single channel (Co = 1: roof object; Co = 1: roof edge) with
pixelwise sigmoid activation to obtain the probability maps. For the single multilabel
case, the output is two-channeled (Co = 2: roof object, roof edge) with sigmoid activation.
For the multiclass case, the output is three-channeled (Co = 3: roof object, roof edge, and
neither) with softmax activation over the channels to ensure mutual exclusiveness. To save
memory, the predicted probability patches can simply be saved into the complete output
mosaic as integer maps: Xuint8 = �X f loat × 255�.
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Figure 5. Comparison of modelling approaches using a fully convolutional network (FCN). All
approaches take an RGB and/or DEM image patch as input and return a roof-part object and edge
probability map. (a) Separate models for roof and roof-part edge segmentation. (b) Single multilabel
model. (c) Single multiclass model.

2.3.2. Data Preprocessing

The models are trained by feeding them batches of image patches and the correspond-
ing ground truth. The ground truth is generated on the fly by rasterizing the polygons
occurring within the input patches to binary maps Y ∈ B

Co×H×W . To obtain a roof-object
target, the full polygon surface is rasterized, while to obtain a roof-edge target, the poly-
gons are first converted into their line-string format and subsequently dilated by a certain
number of pixels (in the vector space), again resulting in a polygon that is then rasterized.
For the multiclass model, the roof-edge channel is subtracted from the roof-object channel,
and the background channel is obtained as the logical negation of the roof object and
edge channels.

To match input dimensions, the DEM is bilinearly upsampled to the resolution of the
RGB. Further, DEM values are transformed by clipping all values to the range of 0–30 m and
subsequently rescaling them to the 0–1 domain: XDEM,[0,1] = max(0, min(30, XDEM))/30.
This range was arbitrarily chosen, as most buildings in the considered study area are
smaller than 30 m, and height values cannot be negative.

Image augmentation techniques were used for the training set, including random
flipping, minor (HSV) color variations, jitter (random small translation of the considered
patch), and an overlap of 128 pix between adjacent patches. Moreover, to balance and limit
the training and validation sets, only patches with occurrence of roofs were included. In
the test set, patches without roofs were also included. This resulted in 982 training patches
(759 in the case of no overlap), 187 validation patches, and 3865 test patches.

2.3.3. FCN Training

All FCN models were trained for 30 epochs using the Adam optimizer, a fixed learning
rate of 2 × 10−4, and a batch size of 3. The used hardware was an NVIDIA Tesla V100 GPU
with 32 GB memory (CUDA 11.0). The model architectures, and training and validation
loops were implemented in Python using the Pytorch framework [31]. The FCN parameters
were optimized by minimizing the weighted categorical cross-entropy (CCE) loss between
the prediction and ground truth:

LCCE = − 1
N

N

∑
n=1

Co

∑
c=1

wc yc,n log ŷc,n (1)

where yc,n ∈ {0, 1} is the ground-truth value of the n-th pixel belonging to output channel
c; ŷc,n ∈ [0, 1] is the predicted value for that pixel; wc is the loss weight for output channel
c; and N = H × W × BS is the total number of pixels for each channel, with BS being
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the batch size. For a binary model output (Co = 1), the CCE loss reduces to the binary
cross-entropy (BCE) loss:

LBCE = − 1
N

N

∑
n=1

w+ yn log ŷn + w− (1 − yn) log (1 − ŷn) (2)

with w+ and w− being the weights for the target class and background, respectively.
The loss for the multilabel (ML) model is calculated as the average of the binary cross-
entropy loss for each target:

LML = ∑
Co

λcLBCE,c (3)

where λc are potential scaling factors to give more or less importance to certain channels.
We simply set λc =

1
Co

.
The class weights in Equations (1) and (2) were calculated inversely proportionally

to the probability of class occurrence pc, i.e., wc ∼ 1/pc. If it is further assumed that the
expected probability for all classes is uniform, i.e., E[pc] = 1/Co, then wc is calculated as
follows:

wc =
1

pc/E[pc]
=

1
pc Co

(4)

In words, classes that occur less frequently than in a class balanced case are upweighted in
the loss function (pc < 1/C0 → wc > 1), while classes that occur more are down-weighted
(pc > 1/C0 → wc < 1). The class probabilities pc are estimated as the relative class
frequencies, i.e., pc = fc/ ∑C fc.

2.3.4. Validation

The best model during training was selected on the basis of the intersection over union
(IoU) on the validation set:

IoU =
TP

TP + FP + FN
(5)

where TP = true positive, FP = false positive, and FN = false negative. To calculate the latter,
a threshold of 0.5 was used as the decision boundary for the predictions in the case of the
double binary model and single multilabel model, and the maximal confidence was used
in the case of the multiclass model. In the case of multichannel output (Co > 1), the mean
IoU over the channels was used: mIoU = 1

Co
∑Co IoUc. The IoU was calculated every 200

batches during training.

2.4. Closed Shape Extraction

Given the predicted roof-part edge and roof-part object confidence maps, the next
step is to use these to extract closed roof-part shapes. The aim is to obtain a single channel
patch of the same dimensions where every pixel is assigned to a unique roof-part cluster,
i.e., fCSE : Ŷ → R̂ ∈ {1, 2, ..., M}1×H×W , with M being the number of roof-part clusters.
Figure 6 provides a schematic overview of the closed-shape extraction workflow. The ratio-
nale is to apply a bottom–up clustering algorithm starting from markers within the areas
delineated by the roof-part edges. To find these markers, the roof-part edge probability map
was first thresholded and subsequently eroded to find pixels that had a high probability
of not being a roof-part edge. These pixels could then be grouped together into a number
of connected components that could be used as the markers. On the basis of some related
studies [16,32], the watershed clustering algorithm was chosen, which owes its name to
the fact that it mimics the flooding of basins where, in this case, the height of the basin is
the edge probability. The result is distinct clusters with a one-pixel wide line separating
the clusters.
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Next, the roof-part object prediction was used to filter out the non-roof clusters. Two
options were considered: (1) The predicted roof-part area is used as watershed mask (WM),
i.e., the watershed clustering was only performed within this mask. The drawback is that
the quality of the resulting clusters strongly depends on the quality of the roof-part object
prediction. The advantage is that this reduces the computational need and, if an accurate
building or rooftop map of the area under consideration is already available, it can be
incorporated into the pipeline as a WM. (2) The predicted roof-part area is used as area
threshold (AT), i.e., only clusters are retained where a minimal percentage of the cluster is
predicted as a roof. This approach is more dependent on the quality of the roof-part edge
prediction. Note, The connected components themselves could already be considered to
be a prediction of the roof-part clusters when used in combination with filtering out the
background clusters. However, because Chen et al. (2021) found that additionally using
the watershed algorithm consistently improved the results, we do not report results on the
latter [32].

The following configurations are used in this study: a marker threshold of 0.2, erosion
with a single pass of a 3 × 3 kernel, connected components detection with 8-connectivity,
the watershed algorithm as implemented in the scikit-image library (v.0.17.2) [33], and an
area threshold of 0.5. Optionally, the cluster output can be saved as a binary patch into
the full output mosaic to ensure a spatially continues predicted roof-part cluster map.
For most experiments, PSCSE is set to 1024 pix to allow for direct CSE postprocessing after
FCN inference.

Figure 6. (a) Closed shape extraction workflow to convert roof-part object and roof-part edge
probability maps to roof-part clusters. (b) Vectorization step to convert roof-part clusters into distinct
simplified polygons.

2.5. Vectorization

As a final step, the predicted roof-part clusters R̂ are converted into distinct polygons
P̂ : {(x1, y1), (x2, y2), ..., (xn, yn)}M with M being the number of polygons. The polygons
are derived by simply running vectorization on the connected components of the binary
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image resulting from CSE (Figure 6b). Subsequently, the polygons are simplified using the
Douglas–Peucker algorithm to reduce the number of vertices (xi, yi) and hence the required
storage memory. The Douglas–Peucker algorithm was selected because of its simplicity
and efficiency [34]. The degree of simplification was controlled with a tolerance parameter
determining the maximal deviation of the simplified geometry from the original. On the
basis of a visual inspection, the tolerance was set to 0.1 m. Further, polygons with an area
smaller than 0.8 m2 were discarded.

The vectorization step can be performed with a much larger PS than that in the two
prior steps, and is only constrained by the memory requirement as the overall execution
time remains constant. A larger PS leads to less half-vectorized clusters at the patch
edges. Therefore we set PSVEC = 10,240, i.e., ten times as high as PSFCN . Alternatively,
to prevent from these cut edge-clusters, vectorization can also be performed patchwise
with overlap. In this case, clusters at the patch edge were not vectorized as they were
incomplete, and duplicate polygons had to be removed for clusters that occurred in the
overlapping patch regions as they were vectorized twice.

2.6. Evaluation

The final predictions were evaluated by comparing the predicted and ground-truth
polygons. The used evaluation metric is the panoptic quality (PQ ∈ [0, 1]), as introduced by
the COCO panoptic segmentation challenge [35]. The PQ is calculated as the product of the
recognition quality (RQ) and the segmentation quality (SQ):

PQ =
∑(p,p̂)∈TP IoU(p, p̂)

|TP|︸ ︷︷ ︸
segmentation quality (SQ)

× |TP|
|TP|+ 1

2 |FP|+ 1
2 |FN|︸ ︷︷ ︸

recognition quality (RQ)

(6)

where p and p̂ are the ground-truth and predicted polygons, respectively. The RQ ∈ [0, 1]
is the widely used F1 score for quality estimation in detection settings. The SQ ∈ [0, 1] is
simply the average IoU of matching polygons. To calculate this metric, the IoU for each
pair of polygons (p, p̂) was first computed as (p ∩ p̂)/(p ∪ p̂). The set of TP then comprises
all uniquely matching pairs for which IoU(p, p̂) > 0.5, the set of FP comprises all predicted
polygons that did not belong to any pair in TP, and the set of FN comprises all target
polygons that did not belong to any pair in TP.

In contrast to the training phase, the inference pipeline was run on a laptop with a
12-core Intel i7-8750H (2.20 GHz) processor, 32 GiB RAM, and a 6 GiB NVIDIA GeForce
RTX 2060 GPU. When using the settings PSFCN = 1024, PSCSE = 1024 and PSVEC =
10,240, running the workflow for the entire test set (9.5 × 1010 pix2) takes around 1 h,
i.e., ∼40 min for FCN inference (for a single model), ∼10 min for the CSE step, and ∼7 min
for vectorization.

3. Experiments and Results

To gain insight on the effect of some of the hyperparameters along our workflow, we
conducted an ablation study on different levels. First, the influence of the ground-truth
generation and loss weighting on the edge prediction was studied. Second, the influence of
the patch size and roof-object prediction usage on the CSE step was evaluated in terms of
computational effort and prediction quality. Third, the effect of the modelling approach and
input sources was investigated. Lastly, multiple common FCN architectures were compared
to investigate their suitability for multiclass object and edge segmentation. Visual results
are shown for the best found configuration.

3.1. Influence of Ground Truth and Loss Weighting

The generated edge ground truth was varied by choosing different values of edge
dilation, i.e., the pixel width of the roof edge, and whether to apply Gaussian smoothing
(Table 2). A wider edge corresponds with more pixel examples for the model to train, but
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may also lead to less well-defined and accurate edge-prediction. In particular, dilations of 5
and 11 pixels were compared corresponding to approximately 0.15 and 0.30 m, respectively.
The rationale of smoothing the ground truth is to try to force the model to predict edge
probabilities as a Gaussian curve: high in the middle of the edge and gradually lower when
moving away from the edge. A Gaussian kernel of size 5 and standard deviation of 1 was
used. Further, the idea of varying the weight in the loss function given to the edge is similar
to varying the dilation: a higher weight leads to thicker edge predictions. In particular,
weights, as calculated in Equation (4) with E[proof-edge] =

1
Co

= 0.5 (indicated as ‘++’) were
compared with weights calculated by setting E[proof-edge] = 0.2 (indicated as ‘+’), which
attributed less weight to the edge pixels. The above experiments were conducted using the
separate model approach, the roof-object prediction as watershed mask, and the standard
settings as previously described. Note, as this ‘intermediate’ ground truth is variable, we
evaluated these influences on the final polygon predictions.

Table 2 shows that the larger dilation of 11 consistently led to a higher IoU on the
validation set (calculated on the FCN output). This seems logical, as the fraction of edge
pixels on which to train was higher, and it is easier to have a larger relative overlap
between prediction and ground truth – and thus a larger IoU – for a wider than for a
thinner ground truth. In addition, a smaller loss weight for the edge is associated with
a higher IoUval . In contrast, smoothing the ground truth seemed to have no pronounced
effect. However, none of the above appeared to largely influence the final PQ. Hence, it
seemed preferable to first prioritize optimizing other parts of the workflow. Especially
the RQ seemed to be a bottleneck to obtaining a higher PQ. Nonetheless, the proceeding
experiments were conducted using the configuration yielding the highest PQ, i.e., a wider
dilation, no smoothing, and a tempered loss weight.

Table 2. Influence of edge ground truth (either with (�) or without (-) Gaussian smoothing) and
loss weighting (either strong (++) or limited (+) focus on edge pixels) on panoptic quality (PQ),
segmentation quality (SQ), and recognition quality (RQ).

Dilation
[pix]

Smoothing Loss
Weight

Edge IoUval
[%]

PQ
[%]

SQ
[%]

RQ
[%]

5 - + 24.87 34.67 83.89 41.33
5 � + 24.72 36.19 84.26 42.95
5 - ++ 17.88 37.27 84.26 44.23
5 � ++ 18.02 37.20 84.48 44.04

11 - + 39.80 37.84 84.55 44.75
11 � + 39.64 37.84 84.55 44.75
11 - ++ 32.01 37.84 84.54 44.75
11 � ++ 31.22 36.93 83.98 43.97

3.2. Influence of Patch Size and Object Mask Usage

Keeping the settings from above, we now vary the PSCSE while using the roof-object
prediction a first time as watershed mask and a second time as area threshold. Figure 7
plots the PQ and execution time in function of the PSCSE ∈ {512, 1024, 2048, 4096}. Remark,
the shown time is the time necessary for the patchwise processing of the complete image
and not the processing time for a single patch. Using the roof-object prediction as area
threshold consistently outperformed using it as a watershed mask. This means that the
roof-edge prediction is more accurate for delineating roofs than the roof-object prediction.
On the downside, when opting for using it as the area threshold, the watershed algorithm
has to consider the complete patch instead of only the identified rooftops, increasing the
computation time. Moreover, the time increases exponentially with an increasing patch
size. Similarly, the PQ also increases with a larger PSCSE, as a larger PS leads to fewer
poorly defined clusters at the patch-boundary, but rather logarithmically. As such, there is
a quality vs. time trade-off for using a larger PSCSE. Using the area threshold option and a
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PSCSE = 4096 can increase the PQ on the test set to 52.5%. However, for time consideration,
in the subsequent experiments we continued using PSCSE = 1024.

Figure 7. Influence of patch size and roof mask usage in the closed shape extraction step on computa-
tion time and final quality.

3.3. Influence of the Modelling Approach and Input Sources

Table 3 summarizes the experiments comparing the three modelling approaches as
described in Section 2.3. For each approach, the IoU on the FCN output for the test set and
the final PQ was computed when using different sources of input information, i.e., only
LiDAR-derived height information (DEM = D), only optical spectral information (RGB),
or a combination (RGB + D).

Looking at the results of the double binary model, it is clear that the baseline of only
using elevation data corresponds with the worst result. Especially the edge prediction
seems to suffer from the the lower resolution of the DEM. Using just UHR RGB data led to
more than double the PQ (47.1% vs. 22.2%). Interestingly, using RGB + D input did not
yield a better PQ than that using just RGB input (46.6% vs. 47.1%) despite an increment
in IoUtest of around 3% for both roof-object (71.9% vs. 68.3%) and roof-edge (34.4% vs.
31.7%) predictions. This also emphasizes the importance of evaluating the performance at
the very end of the workflow, i.e., on the final polygon predictions. Further, as concluded
before, using the roof-object prediction as AT was the choice of preference, consistently
outperforming the usage as WM.

One advantage of the two-model approach is that the roof-object model can be trained
on a much larger dataset. Datasets for rooftop or building segmentation are much more
prevalent and available than datasets for individual roof-part segmentation are. To explore
this possibility, an FCN for rooftop segmentation was trained on the same type of RGB im-
agery but now for 17 municipalities, and using the building-class in the large-scale reference
database (LRD) of Flanders [36], a GIS serving as a topographical reference for Flanders,
as ground truth polygons. A version of the LRD up-to-date with the RGB orthoimages was
used. The outcome was a high-performance rooftop segmentation model (IoUtest = 83.5%).
However, this did not result in a higher final PQ when used in combination with AT (45.8%
vs. 47.1%). On the other hand, it significantly raised the PQ when the predictions were
used as WM (44.3% vs. 37.8%), even almost to the level of AT.

Focusing on multitask approaches shows that, for RGB input, the multilabel model
corresponds with a lower PQ (43.3%) and the multiclass with a very similar PQ (47.0%)
compared to the two-model approach. The multilabel model especially seemed to under-
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perform for edge prediction (IoUtest = 23.5%). Potential improvement may be achieved by
tuning the importance of the channels in the loss function (Equation (3)).

For the multiclass approach, using additional DEM information on top of RGB resulted
in an increase in PQ, even reaching the highest PQ (50.0%). Hence, employing a single
multiclass model (trained for 30 epochs) could outperform the two single-task models
(both trained for 30 epochs). A major advantage is that the former only requires to train
and deploy a single model, reducing computation time in half.

As an additional experiment, remark that the roof-object output of the multiclass
model (see Figure 5) is already in a format that can be readily vectorized into roof-part
polygons. Calculating the PQ on the basis of this direct vectorization (DV) shows that
an acceptable quality could be attained (40.3%), but that using the watershed clustering
remains advantageous, with it having a quality gain of roughly 6.5%. However, considering
that this approach eliminates the need for a clustering postprocessing step, it may be a
research direction worth exploring and optimizing.

Table 3. Influence of the model type and input sources on panoptic quality (PQ).

Model Type
Input IoUtest [%] Roof Mask

Usage
PQ [%]

Object Edge Object Edge

double

D 1 D 49.4 16.2 WM 3 10.6
AT 4 22.2

RGB RGB 68.3 31.7 WM 37.8
AT 47.1

RGB-LRD 2 RGB 83.5 31.7 WM 44.3
AT 45.8

RGB + D RGB + D 71.9 34.4 WM 35.6
AT 46.6

Single
multilabel

RGB 67.2 23.5 AT 43.3

RGB + D 74.0 25.4 AT 46.6

Single
multiclass

RGB 67.2 31.0 DV 5 40.3
AT 47.0

RGB + D 70.4 31.3 DV 42.4
AT 50.0

1 D = DEM; 2 LRD = Large-Scale Reference Database Flanders; 3 WM = watershed mask; 4 AT = area threshold;
5 DV = direct vectorization.

3.4. Influence of the FCN Architecture

As a final experiment, we examined the applicability of different common FCN ar-
chitectures for the case of roof-part object and edge prediction. The optimal settings
inferred in the previous section were used, i.e., a multiclass approach with RGB + D in-
put. The considered networks were DeepLabV3+ [37], FPN [38], MAnet [39], PAN [40],
Pyramid Scene Parsing Network (PSPNet) [41], and UNet++ [42]. All models had the same
imagenet-pretrained EfficientNet-B5 backbone (28.34 × 106 parameters) and the default
settings from the segmentation-models-pytorch package (v.0.2.0) [30]. For UNet++, scSE at-
tention modules were added. All models were trained using the settings as described in
Section 2.3.3 except for UNet++, which was trained with a batch size of 2 due to its larger
memory requirement.

Results are reported in Table 4. The best scoring network was UNet, closely followed
by MAnet and UNet++. The lowest ranking network was PSPNet, followed by PAN, both
which consecutively have the lowest number of parameters. A UNet type FCN model thus
appears to be an acceptable choice for the task presented in this study.
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Table 4. Influence of various model architectures on panoptic quality (PQ).

Model Decoder Parameters PQ [%]

DeepLabV3+ 1.2 × 106 46.7
FPN 1.8 × 106 47.9
MAnet 9.9 × 106 49.7
PAN 1.4 × 105 45.2
PSPNet 8.5 × 104 32.4
UNet 3.0 × 106 50.0

UNet++ 3.7 × 106 49.3

3.5. Visual Examples of the Optimized Workflow

On the basis of the above experiments, the best identified configuration was a UNet
with RGB + DEM input, multiclass output, and watershed clustering postprocessing
using the predicted roof area as decision threshold. A final roof-part polygon prediction
was performed for the test set using the latter approach and setting: PSFCN = 2048,
PSCSE = 4096 and PSVEC = 30,000. Setting PSFCN = 2048 during inference while the
model was trained on patches of size 1024 slightly increased the PQ, presumably because it
widens the patch context and decreases the number of patch boundary pixels, while the
FCN is rather robust to a limited scale increase. This final prediction reached a quality of
PQ = 54.8% (RQ = 62.6%, SQ = 87.7%).

Visual results are shown in Figures 8 and 9. Figure 8 displays the predicted roof-part
polygons for the entire test region divided into true positives (green), false positives (red),
and false negatives (blue). Our proposed approach correctly identified rooftops in the
larger landscape. Moreover, it could distinguish individual roof parts within the roofs to
a degree in which it is useful for automated support of GIS database construction, albeit
in combination with human interaction. Erroneous predictions are also often reasonable.
For instance, the red border of false positives in Figure 8a was caused by running patch-
based prediction, making the region of roof-part predictions exceed the region of ground-
truth polygons. Further, as seen in Figure 8d,e, false positives and false negatives are often
related. For example, in the lower left of the patch the predicted polygon covers a roof
part that was interpreted as multiple smaller roof parts in the ground truth. However,
the pipeline had trouble with scenery on which the FCN was not trained, such as railroads,
large industrial sites, and sport and recreational areas. Although this was to be expected, it
stresses the need for a diverse training set when upscaling the methodology.

Figure 9 provides some more examples. The example on Row 2 illustrates the potential
problem of disconnected line predictions (see red circles), causing the watershed algorithm
to flood both adjacent roof parts. The example on Row 3 exemplifies the confusion of
the FCN model when confronted with unseen scenery (i.e., not occurring in the training
set), such as a tennis court. Moreover, it shows that the FCN did not seem to have fully
learned to incorporate the absolute height information to distinguish roof from non-roof.
The examples on Rows 1 and 5 are more comparable to the training set (many small
clustered rooftops), and as such show more adequate predictions. Lastly, the example
on Row 4 demonstrates the diversity in roof-part structure with which the workflow has
to cope.
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Figure 8. (a) Extracted polygon predictions for the whole test region. The black rectangle indicates
the zoomed region in (b–e). (b) Roof-part polygon predictions. (c) True positives. (d) False positives.
(e) False negatives.

Figure 9. Illustrative results from the test set. Patches were 50 by 50 m (1667 × 1667 pixels). (a) RGB
image. (b) DEM image. (c) Predicted roof-part objects. (d) Predicted roof-part edges. (e) Predicted
roof-part polygons. (f) Ground truth.
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4. Discussion

We here further discuss our results and suggest avenues for future research. First,
the FCN model coped well with the complexity of the roof parts as caused by, among others,
the diverse rooftop topology, roof structures (chimneys, solar panels, etc.), and shaded
surfaces. However, difficulty was experienced with predicting large roof parts, i.e., roof
parts with a larger height or width than the PS. One solution may be to sacrifice some
order of spatial resolution in favor of spatial range. For example, upsampling patches with
PS = 1024 pix from 0.03 to 0.12 m GSD would correspond with a spatial range increase
from 31 to 123 m. Investigating this influence of the spatial resolution may be interesting
future research. Additionally, the model produced errors on unseen landscape elements
such railroads and recreational areas. To combat this, more diverse scenery and a fraction
of the area not including the target could be included in the training set.

Furthermore, a pivotal component of the methodology is obtaining connected roof-
part edges. If the predicted edges have disconnections, the watershed clustering is not
able to distinguish between individual roof parts. Optimizing the hyper-parameters of
the watershed algorithm or examining other clustering algorithms may enhance the CSE.
Moreover, since this study only considered commonly used FCNs in the context of natural
image segmentation, a gain in edge prediction quality may be achieved by employing more
specialized FCNs, tailored for promoting edge connectivity. Further improvements may
also be found by experimenting with various flavors of the loss function or by choosing a
more suited validation metric than the IoU to evaluate edge segmentation quality.

Concerning the workflow input, using only RGB imagery produced significantly better
results than using only height information, even though the majority of research on the
automated extraction of roof parts is focused on the latter. Moreover, using RGB combined
with height information did not necessarily lead to an improved final polygon map quality
for all modelling approaches. Reasons may be the lower resolution of the DEM and the
difficulty of generalizing absolute elevation. Of course, the DEM was simply concatenated
as an additional input channel, while extensive fusion paradigms exist. Also, the FCN was
initialized from Imagenet (i.e., natural RGB images)-pretrained weights, which may have
led to an initialization bias towards RGB features. Investigating the optimal usage or fusion
of the DEM data may, therefore, further improve performance.

Concerning the workflow output, considerable attention was paid to ensuring spatial
continuity of the output by allowing for different patch sizes along the workflow and
saving the intermediate results. However, additional quality improvement could likely
be attained by running patchwise processing in each of the three workflow steps with
some patch overlap, such that each pixel is seen from multiple perspectives. Furthermore,
the predicted polygon map can be simplified using alternative algorithms. For instance,
joint polygon simplification ensuring that adjacent polygons have shared vertices may
improve the practicality of the map in a GIS.

Comparing a two single-task FCN model with a single multitask FCN model approach
confirmed the benefits of the latter, in line with the existing literature [20]. More specifically,
the multiclass model outperformed the multilabel approach, which may be explained by the
idea that defining target classes as mutually exclusive constrains the problem complexity.
However, the multitask behavior could be further exploited. For example, the object-center
distance map could be added as an additional target channel to promote closed object
shapes and a smooth conical object’s probability surface. Roof corners could also be added
as a semantic target, which could then be used in a Delaunay triangulation postprocessing
step to extract more connected and regularly shaped polygons. Lastly, the multiclass FCN
can be easily extended to a panoptic segmentation problem, i.e., roof materials could be
incorporated as additional target classes by considering them as additional output channels
and accordingly adapting the weighted loss function.
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5. Conclusions

This paper proposed a fully automated workflow for large-scale roof-part polygon
extraction from UHR orthoimagery (0.03 m GSD). The workflow comprised three steps:
(1) An FCN was utilized for the semantic segmentation of roof-part objects and edges. (2) A
bottom–up clustering algorithm was used, given the predicted roof-part edges, to derive
individual roof-part clusters, where the predicted roof-part object area distinguish roof
from non-roof. (3) The roof-part clusters were vectorized and simplified into polygons.
By conducting an ablation study, various components of the workflow were optimized,
leading to the conclusion that a single multiclass UNet with RGB + DEM input coupled with
a clustering algorithm, and using the predicted roof area as decision threshold corresponded
with the best quality among all experiments. The workflow was trained on the touristic
medieval city of Brugge and tested on the more distant city of Lokeren (Belgium), which
is an honest and challenging setup. Our final best prediction reached a panoptic quality
of PQ = 54.8% (RQ = 62.6%, SQ = 87.7%). Notwithstanding the opportunity for further
optimization, when trained, the pipeline can produce continuous and up-to-date vector
maps of individual roof parts at UHR for entire municipalities within a matter of hours.
Roof-part attributes such as inclination, orientation, area, and roof material may relatively
be easily linked to polygon instances. Hence, combined with human validation, it can
readily serve as a tool for (semi)automated geographic database construction, instrumental
for urban monitoring, capacity assessment, and policy making.
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EO Earth observation
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Abstract: With the rapid development of the energy industry and the growth of the global energy
demand in recent years, the development of the photovoltaic industry has become increasingly
significant. However, the development of the PV industry is constrained by high land costs, and
land in central cities and industrial areas is often very expensive and unsuitable for the installation
of PV equipment in large areas. With this background knowledge, the key to evaluating the PV
potential is by counting the rooftop information of buildings, and an ideal solution for extracting
building rooftop information is from remote sensing satellite images using the deep learning method;
however, the deep learning method often requires large-scale labeled samples, and the labeling of
remote sensing images is often time-consuming and expensive. To reduce the burden of data labeling,
models trained on large datasets can be used as pre-trained models (e.g., ImageNet) to provide
prior knowledge for training. However, most of the existing pre-trained model parameters are not
suitable for direct transfer to remote sensing tasks. In this paper, we design a pseudo-label-guided
self-supervised learning (PGSSL) semantic segmentation network structure based on high-resolution
remote sensing images to extract building information. The pseudo-label-guided learning method
allows the feature results extracted by the pretext task to be more applicable to the target task and
ultimately improves segmentation accuracy. Our proposed method achieves better results than
current contrastive learning methods in most experiments and uses only about 20–50% of the labeled
data to achieve comparable performance with random initialization. In addition, a more accurate
statistical method for building density distribution is designed based on the semantic segmentation
results. This method addresses the last step of the extraction results oriented to the PV potential
assessment, and this paper is validated in Beijing, China, to demonstrate the effectiveness of the
proposed method.

Keywords: remote sensing building extraction; building photovoltaic; self-supervised learning;
semantic segmentation

1. Introduction

With developments in society in recent years, global energy demand is gradually
increasing every day and most consumption still relies on fossil fuels [1]. The use of fossil
energy on a global scale has caused a series of problems such as melting glaciers and
global warming. It is very important to change the energy structure and gradually replace
current fossil energy with renewable energy [2]. It is also important to vigorously develop
renewable energy for promoting green and low-carbon development and accelerating the
construction of the ecological civilization. Among the many renewable energy sources,
solar power generation is one of the most effective [3]. Solar power generation has the
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advantages of being inexhaustible, environmentally friendly, and not limited by geographi-
cal conditions [2]. The International Energy Agency predicts that solar photovoltaic (PV)
power generation will become the main energy source and will account for 20–50% of
global power generation by 2050 [4].

Solar power generation is mainly realized through crystalline silicon photovoltaic pan-
els, which is also called photovoltaic power generation. Because it can be closely integrated
with buildings and close to where electricity is used, it can reduce the transmission pressure
on the power grid. However, in our investigation, we found that solar power generation de-
pends on the intensity of sunlight and is greatly affected by extreme weather, which results
in instability in both the power generation and supply time. This situation makes it very
hard to transmit power to the grid. Therefore, it is necessary to evaluate the potential of PV
system distribution and realize the unified dispatch of PV power and deploy PV equipment
in areas with high electricity consumption to achieve the effect of “self-generation and
self-consumption”. However, in areas with high power consumption, the deployment of
PV systems is often accompanied by huge land costs. Distributed PV systems, which are
necessary, are mainly installed on the roof of a building and are connected directly to a
low-voltage distribution network. On the one hand, they have the advantages of proximity
to the customer side, on-site consumption, and reduced transportation costs [5]. The roof of
the building should have a strong load-bearing capacity and the generated electricity can be
used directly in the building, reducing the costs of equipment and transportation dispatch.
On the other hand, the building should have a long service life and PV equipment installed
on the roof of a building can facilitate the recovery of installation costs; in addition, the roof
of a building is the best platform to carry PV equipment [5]. Therefore, effective access to
information about a building’s roof is the key to assessing the PV potential of buildings [6].

Conventional building information acquisition methods mainly rely on land surveys,
which are difficult to acquire and have poor timeliness. Remote sensing satellite technology,
which provides extensive access to ground information, has become a popular way to assess
a building’s rooftop PV potential. In 2014, Flavio Borfecchia et al. used LiDAR technology
and gis modeling tools to estimate urban roof levels under the three-dimensional view
angle; this method was expensive but achieved significant evaluation results [7]. In 2016,
Wong, MS et al. used remote sensing technology and geographic information system
(GIS) technology to estimate the potential of photovoltaic power generation for the city
of Hong Kong [8]. In 2018, Xiaoyang Song et al. conducted an assessment of building
rooftop potential based on Google Images and global DEM data and calculated the annual
rooftop photovoltaic power generation of buildings in Chaoyang District, Beijing, China.
Specifically, they classified buildings into five types and further considered the tilt angle
of PV panel installations for the PV potential assessment analysis, which had quite good
inspirational and applied implications [9]. In 2019, Arti Tiwari et al. used orthophoto and
LiDAR data with an object-oriented method to realize the evaluation of the solar energy
yield in terms of solar irradiance in pixels in a specific period [10]. In 2020, Blazquez, J and
Vittorio, M. used nighttime satellite imagery to assess the residential solar rooftop potential
in Saudi Arabia [11]. In 2022, Huang, Xiaoxun et al. estimated the rooftop solar power
generation potential in western Aichi Prefecture, Japan, based on the use of LiDAR data
and AW3D technology [12]. It can be seen that a large number of researchers have chosen
to use LiDAR data or high-resolution remote sensing data to extract building rooftop data.
LiDAR data provides the possibility to obtain the building height and slope information
for a fine-grained assessment of the PV potential. However, the cost of using LiDAR data is
too high considering the large-scale statistical analysis. In contrast, using high-resolution
remote sensing data is a cost-effective solution. However, when faced with a large amount
of high-resolution remote sensing image data, it is time-consuming and laborious to use
manual extraction of building information, and the value of remote sensing images is not
fully exploited.

In recent years, the rapid development of deep learning algorithms has allowed for
the extraction of spatial and spectral features at the same time so they are also widely used
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for the extraction of building data. Based on the adversarial neural network, Li Xiang et al.
jointly trained a deep convolutional neural network (generator) and an adversarial dis-
criminant network for the robust segmentation of building rooftops in remote sensing
images and successfully solved the spatial inconsistency problem in classification [13].
Tian,Tian proposed an urban area target detection algorithm based on DCNNs, which
still achieved good extraction results while maintaining the detection speed. Specifically,
it used visual words based on DCNNs to extract feature information, thus realizing the
extraction of data on urban areas without labeling samples; however, it was not accurate for
specific buildings and its practical application accuracy was not good [14]. Zeng, Yifu et al.
conducted experiments based on GF2 data and successfully realized the rapid extraction of
building information. Specifically, their proposed BR-Net model used multi-task learning
for segmentation and contour extraction to overcome limitations such as the unavailabil-
ity of edge information [15]. Its effectiveness also illustrated the potential of multi-task
learning. Based on the multi-task learning algorithm, Hui and Jian conducted building
extraction experiments on the Massachusetts dataset and achieved good experimental
results. The highlight of their article was the merging of distance representation into a
multi-tasking framework as an auxiliary task, forcing the shared encoder to implicitly
capture the features of the building structure [16]. However, the above methods were all
supervised classification, and the effectiveness of the methods depended largely on the
huge training samples. When the building information is extracted in a large area, due
to the limitation of the samples, the extraction effect and accuracy of the model will be
greatly affected. In recent years, many famous datasets have been proposed in remote
sensing building information extraction, such as WHU [17], DOTA [18], Massachusetts [19],
etc. These have largely advanced the rapid development of remote sensing information
extraction technology. However, the applicability of the models obtained from the training
of labeled data is often unsatisfactory due to the differences in spatial resolution, acquisition
date, image location, and other elements.

Self-supervised learning methods, which have developed rapidly in recent years,
have been evolving by automating the task of learning features to achieve the effective
utilization of unlabeled samples. The latest comparative learning methods have achieved
good results in some tasks and are very suitable for applications in building information
extraction. Studying the application of self-supervised methods in remote sensing images
is expected to provide a use for the huge amount of data that cannot be used in remote
sensing, thus improving the generalization performance of deep learning models in the
field of remote sensing information extraction. Among the many self-supervised learning
methods, there are two main methods commonly used to train visual representations;
one is a self-supervised learning method based on a reconstructed loss function and is
often called the representational learning method [20,21], and the other is a self-supervised
learning method that measures the contrastive loss of images and is often called the
contrastive learning method. Among them, contrastive learning is the most state-of-the-art
learning method in most cases [22–25]. Because of the good generalization of contrastive
learning, it can also be developed more rapidly compared to representational learning
methods. However, good representational learning tasks are more closely related to the
target task so many breakthroughs in self-supervised learning have resulted from the
discovery of representational learning tasks, although some researchers tend to use pretext
tasks to extract features. In order to learn good representations, people have explored
a variety of pretext tasks. A pretext task is meant to be a network task that provides
pre-trained parameters, which can generally generate samples automatically without
human intervention. Examples include colorization [26], contextual autoencoders [27],
inpainting [21], spatial puzzles [28], and discriminative orientation [29]. Today, these
self-supervised learning methods are collectively known as representational learning (as
distinguished from contrast learning) methods and they can achieve very good results
under specific tasks. With the development of self-supervised algorithms, the application
of self-supervised learning in remote sensing image information extraction is also gradually
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emerging. Guo and Qing proposed a method for the automatic extraction of road centerlines
from high-resolution remote sensing images based on a self-supervised learning framework.
Good extraction results were achieved without the manual selection of training samples or
optimization steps such as removing non-road areas [30]. Dong, Huihui et al. proposed
a new self-supervised approach representing a time-based learning approach to predict
remote sensing image change detection. The main idea of the algorithm was to convert two
satellite images into a more consistent feature representation through the self-supervision
mechanism without any additional computation of semantic supervision [31], thus reducing
the propagation error of the final detection results. Li, Wenyuan et al. [32] designed three
different pretext tasks to learn a multi-layer network structure simultaneously. The network
was trained with a large amount of unlabeled data, fine-tuned with a small number of
labeled segmentation datasets, and only used 10–50% of the labeled samples to achieve
the original segmentation effect. In summary, it can be seen that self-supervised learning
techniques have developed rapidly in recent years and have achieved excellent results in
various tasks through the use of unlabeled data. Their success can be attributed to two
aspects: the efficient use of unsupervised samples and the proper selection of the pretext
task. Its essence involves the fusion of low-level features with high-level features of the
image, and numerous experiments have shown that the fusion of these features can achieve
even better segmentation results.

However, compared to general natural images (images taken by cameras, mobile
cameras, surveillance cameras, and other ground equipment), satellite-derived remote
sensing images have random views, more complex backgrounds, richer spectral features,
and texture details. In addition, the above self-supervised methods designed for natural
images (photos taken by cameras, mobile cameras, surveillance cameras, and other ground
equipment) do not fully consider the characteristics of remote sensing images. This mi-
gration of features obtained through pretext task learning of remote sensing targets may
not have the expected effect. In addition, the evaluation of building rooftop PV power
potential involves a large amount of building information extraction, and traditional deep
learning methods require a large number of building samples to ensure that the model can
have good generalization ability. The extraction structures between deep learning tasks can
be used mutually so that the self-supervised model can use pre-training to obtain a priori
information and its extraction effect will be better than random initialization. However,
existing self-supervised learning methods have a gap between the pretext task and the
target task, which is usually more generalized for the pretext task and more aggregated
for the features required by the target task; by using practical self-supervised methods for
pre-training, it is often difficult to obtain good experimental results [33].

To address the above issues, we propose a pseudo-label-guided self-supervised learn-
ing method (called the PGSSL method), which utilizes pseudo-label learning to guide the
pretext tasks. In detail, feature layer sharing is used to achieve the mutual utilization of the
feature extraction part for the task interaction between different tasks and the utilization of
unlabeled data. The effectiveness of our proposed structure is demonstrated by comparison
experiments with different sample proportions and ablation experiments with different
structures. The main contributions of this paper are as follows:

• In this paper, a self-supervised learning framework for semantic segmentation is
proposed considering the characteristics of remote sensing images, and it is demon-
strated that a large number of unlabeled remote sensing images can be effectively
used to train the network. For the self-supervised learning task, this paper designs a
self-supervised structural method for multi-task learning called the PGSSL method.
It improves the performance of the semantic segmentation task by guiding feature
extraction with a pseudo-labeling task.

• The proposed method is validated on a public dataset (EA Dataset) and an inde-
pendently constructed Beijing dataset (BJ Dataset), comparing the performance of
algorithms under different sample conditions and verifying the good performance of
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the self-supervised learning method with a limited sample size. Finally, our method
achieves better results than the ImageNet pre-training in the experiments.

• In this paper, we further analyze the distribution of buildings based on the semantic
segmentation of the buildings to obtain a more accurate picture of the suitability of
building rooftops for the installation of PV equipment.

The full text is organized as follows. Section 2 introduces the self-supervised learning
strategy based on pseudo-label guidance and the method of using the semantic segmenta-
tion results for the PV potential assessment. Among them, the self-supervised approach
is introduced and includes three modules: a pseudo-label learning module, an image
inpainting module, and a comparative learning module. Section 3 presents the datasets
used for the experiments and the formulas used for the accuracy assessment. The dataset
section presents detailed information on the Beijing dataset and the public dataset. It in-
cludes the study area, data sources, and the method of obtaining unlabeled data. Section 4
presents three comparative experiments of the proposed method in this paper, including the
overall algorithm effect comparison, the sample proportion experiment, and the ablation
experiment. Section 5 summarizes and discusses the paper, discusses and analyzes the
phenomena that were observed during the experiments, and provides an outlook on some
directions that can be pursued.

2. Methods

In this paper, we design a multi-task learning model based on pseudo-label learning.
This paper designs contrastive learning and image inpainting tasks to extract features from
unlabeled data, where the image restoration task helps the network to learn low-level
features and the contrastive learning task enables the network to learn high-level image
features. In addition, this paper designs pseudo-label learning to ensure that the learned
features can be adapted to the final target task extraction. The relevant code can be found at
https://github.com/Chendeyue/pytorch-ssl-building_extract, accessed on 7 August 2022.

The overall structure of the work is shown in Figure 1. It can be seen that the main
body consists of three parts: pseudo-label training, image inpainting, and contrastive
learning, which share a common feature extraction layer. In the two parts of the pseudo-
label training and image restoration, the UNet network is chosen as the structure of the
intermediate implementation, and the skip-connection structure of the UNet framework is
used to achieve the full utilization of the features. In the final classification layer, pseudo-
label learning classifies the targets into two classes corresponding to the probabilities of
buildings and non-buildings, whereas the image inpainting task outputs three classes
corresponding to the three bands of the newly generated images. The decoding parts of
both are independently constructed networks that do not share network parameters. The
contrastive learning task part mainly adopts the idea proposed in BYOL to design a twin
network structure with a momentum update. For a set of input data-enhanced images, two
feature vectors are generated after passing through the twin network separately. The two
vectors generated by the twin network are cross-compared separately and a similarity
loss function is constructed, as shown in Figure 1, to achieve comparative learning of the
network features. Finally, the three unsupervised task loss functions are combined to form a
multi-task learning structure to accomplish a self-supervised learning task. Its loss function
is shown in Equation (1).

L f inal = λ1 ∗ Lpseudo + λ2 ∗ Lcontrast + λ3 ∗ Linpainting (1)

where λ is a hyperparameter used to balance the magnitude difference between three types
of loss and λ1 = λ2 = λ3 = 1

3 . Lpseudo, Lcontrast, and Linpainting denote the loss of several
parts; details can be found in Equations (4), (6), and (8). Since the three loss functions
have a similar status and approximate value range, we take the mean value to balance the
three tasks.
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Figure 1. Overview of the proposed pseudo-label-guided self-supervised learning method.

2.1. Weighted Training on Pseudo-Labeled Data

Pseudo-label learning is a semi-supervised learning method that has emerged in recent
years. The core idea is to build a model using existing knowledge and use it to predict
unlabeled samples to obtain the pseudo label. The pseudo label is trained using prior
knowledge to learn information from unlabeled data. Finally, the results with relatively
high confidence in prediction are used as labels to ensure the accuracy of the labels.

In this paper, the pre-training trained network is called the teacher network and the
pseudo-label learning channel to be trained is called the student network. These networks
are structurally similar but are independent network models and their parameters are not
shared. Both the teacher network and the student network have unlabeled augmented
images as input, where the teacher network is the trained model and the student network
relies on the labeled training generated by the teacher network. In addition, the parameters
of the teacher network are not updated when training the student network. The training
process is as follows: first, we train a teacher network using the enhanced labeled dataset,
then, the teacher network predicts the input image as the pseudo-label, named qj, and
finally, the result with high confidence in qj is compared with the result q̂j of our student
network to be trained. This completes the learning of the pseudo-label part, which is
done in parallel with the other two tasks, and with the guidance of pseudo-label learning,
the extracted feature layer parameters can be more suitable for migration to the target task.
The final loss function is shown in Equation (4):

H(q̂j, qj) = −
C

∑
b=1

q̂j(b) log qj(b) (2)

Lx =
1
N

N

∑
j=1

(L(max(qj) ≥ τ) ∗ H(q̂j, qj) (3)

Lpseudo =
1
2
(Lx1 + Lx2) (4)

Here, qj = Pt(y|xj) and q̂j = argmax(Ps(y|xj)), which denote the prediction results
of the output of the teacher network that has been fitted and the student network that
is being trained, respectively, where τ is the threshold hyperparameter used to filter
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unsupervised samples. We keep the corresponding pseudo labels only when the maximum
predicted probability is higher than the threshold, which is usually taken as 0.5. C is the
number of categories, N is the number of samples, and H is the entropy value function.
L(max(qj) ≥ τ) represents the probability that the prediction threshold exceeds a certain
value, usually equal to 1 or 0. The loss function, called Lx, is calculated as the result of
inputting image x into the teacher network and the student network, respectively, whereas
Lx1 and Lx2 denote the loss obtained by two different data enhancement methods.

2.2. Contrastive Learning Task

The contrastive learning task achieves the convergence of the network by comparing
the similarity of images. The operation is as follows: first, the images are transformed
with data augmentation and then, the similarity between the transformed image results is
compared to construct a loss function. Theoretically, the higher the similarity of the features
in an image, the smaller the loss. This allows all similar objects to be located in adjacent
positions in the feature space, whereas dissimilar objects are located in non-adjacent regions.

In recent years, researchers have proposed effective comparative learning methods
such as SimCLR [24], MOCO [22], MOCOv2 [34], BYOL [25], etc. In most comparative
methods, we must compare each sample to many other negative samples. However, it
makes training very unstable and increases the systematic bias of the dataset. The proposal
of the BYOL method [25] provides a proper solution to this problem. The BYOL method
does not rely on negative samples but only uses similar sample representation types to
construct a loss function. The final loss function is shown in Equation (6):

CosineSimilarity(p, z) = ∑B
i=1 pizi√

∑B
i=1 pi ∑B

j=1 zj

(5)

Lcontrast = CosineSimilarity(p1, z2) + CosineSimilarity(p2, z1) (6)

Here, Lcontrast represents the contrastive loss function and B is the dimension of the
vector. CosineSimilarity represents the cosine similarity between two vectors. The outputs
of pi and zi are shown in Figure 1, representing the outputs of the online network and target
network, respectively, whereas p1 and p2 represent the global feature vectors inputted by
two different data augmentation methods and p1 and z2 and p2 and z1. This alternate
combination method for the similarity verification brings greater flexibility to the model,
and the main feature extraction network used in the comparative learning process is shared
with the other two tasks to ensure that the extracted features are closer to the direction of
the target task.

2.3. Inpainting Task

The image inpainting pretext task itself is used to restore the missing parts of an
image based on the existing information in the image. However, in the process of image
inpainting, because the conventional loss function is generally adjusted globally for the
image, this will make the inpainting task only supplement the image information that
is similar to the global image and ignore the use of local texture information. To solve
this problem, this paper adopts SSIM [35] (structural similarity index) to construct the
inpainting loss function, but the global variance of the image fluctuates greatly in the actual
operation so the SSIM value is only calculated in one window and then the mean value is
taken globally. The specific form is shown in Equation (8):

SSIM(x, y) =
(2μxμy + C1)(2σxy + C2)

(μ2
x + μ2

y + C1)(σ2
x + σ2

y + C2)
(7)

Linpainting = MSSIM(x, y) =
1
N

N

∑
j=1

SSIM(xj, yj) (8)
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Here, μx and μy represent the mean values of the input image and the output image;
σxy,σx, and σy represent the covariance and variance of the two images; and C1 and C2
are constants. x and y represent the images before and after restoration, respectively,
and MSSIM is a better final loss function for the image inpainting task.

2.4. Analysis of Photovoltaic Potential Area Based on Building Semantic Segmentation

The rooftop area of a building is the most important influencing factor for the PV po-
tential assessment, and accurate rooftop extraction results are the basis for the PV potential
analysis. However, in practice, the supporting facilities for PV equipment installation, as
well as its scale, can also be a constraint to the building’s potential. Even if an area has
a large building area but the rooftop area of each building is small and the buildings are
scattered, the high cost of the supporting facilities would mean that the buildings in the
area would not be considered a distributed PV installation area. The semantic segmenta-
tion results can only evaluate the installed area of the building and not the distribution.
As shown in Figure 2, for the semantic segmentation of the connected domain analysis
results, where there is a relatively large degree of separation between buildings, such as in
region A and region C, the suitability of PV installation on buildings can be better assessed;
however, in the case of the buildings in region B, the actual installation for the patches of
private houses is more complex, but it may be identified as an area with better PV potential
due to its larger area.

Figure 2. Overview of Regional PV Potential Analysis.

Therefore, in practical applications, when using the semantic segmentation results
to evaluate the distribution of buildings, it is necessary to further segment the connected
buildings and remove some noise blocks. In this paper, the morphological opening oper-
ation is used to exclude some noise spots from the extraction results and the confidence
characteristics of the deep learning prediction are used to separate the connected building
patches. The specific operation is shown in Figure 3. First, starting from the original image,
by controlling the confidence level of the prediction of the original image, the conven-
tional confidence level results for building area extraction are more accurate and the high
confidence level results for the separation degree between buildings are obtained.

Then, we perform a morphological opening operation on the conventional results to
obtain the building distribution results with the noise patches removed, directly extract the
center point of the patch for the high-confidence results, and perform the superposition
analysis of the extracted center point results and the opening operation results. After remov-
ing the center point of a small part of the noise, a relatively accurate building distribution
is obtained.
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Figure 3. This group of images represents the process diagram for post-processing of building
semantic segmentation for photovoltaic potential assessment.

3. Dataset and Evaluation Metrics

3.1. Dataset

In order to fully illustrate the generalization performance of the proposed method
in experiments in various regions, this paper independently produced urban and rural
datasets in Beijing for the experiments called the BJ Dataset (Beijing Buildings Segmentation
Dataset). The remote sensing data used in the experiments include Google data and SV-1
data. Located in Haidian District, Xiangshan District, and Yajishan District of Pinggu
District, Beijing, the average resolution was about 1 m. The locations of the training
areas and the basic conditions of the images are shown in Figure 4A–D. After using
ArcGIS to label all the buildings in the target area, the training area images were cut into
a 384 × 384 size and divided into the training set and test set, according to a ratio of 4:1,
and finally, 797 training sets and 202 validation sets were obtained.

Figure 4. The locations of the Beijing buildings training dataset and test dataset. (A–F) represents the
training and testing area used in the construction of BJ dataset.

This paper also collected some regional data in Beijing and Tianjin for experimental
testing. The data used were all Google receipts and their locations and images are shown
in Figure 4E,F. After the images were manually annotated, they were also cropped to a
384 × 384 size, resulting in 16 slice results in the test area in Beijing and 34 slice results in
the test area in Tianjin. The schematic diagram of one of the slice results in the Tianjin area
used for verification is shown in Figure 5.
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Figure 5. The slice results of Tianjin validation set.

The construction of the dataset also included the acquisition of unlabeled samples
because in a whole remote sensing image, if the specific features of buildings are very
small when using all the tiles of the region for training, the construction of unsupervised
samples of buildings needs to further eliminate the tile images that do not contain buildings.
Therefore, this paper first collected the Beijing area 1 m-resolution Google images and
cropped them to 384 × 384-size tiles to obtain a total of 21,417 unlabeled building images.
Subsequently, a building extraction model was trained to predict the collected image
tiles using the above-labeled samples and the tiles without buildings in the prediction
results were excluded. Finally, we excluded a few images with relatively poor quality by
manual inspection.

In addition, in order to fully verify the actual effect of this model, a public dataset
was used for the experiments, which came from Wuhan University [17] (http://study.
rsgis.whu.edu.cn/pages/download/building_dataset.html, building Dataset, accessed
on 9 September 2022) and is referred to here as the EA (East Asia) dataset. The EA
dataset consisted of 6 adjacent satellite images covering 860 square kilometers of East
Asia with a ground resolution of 0.45 m. The architectural styles were quite different,
and the generalization ability of the deep learning methods on the different data sources
was fully evaluated and developed. The vector building map was also drawn manually
by ArcGIS software and contained 34,085 buildings. The entire image was seamlessly
cropped into 17,388 blocks of 512 × 512 as a result. Excluding the dicing results that did
not contain buildings, the remaining training set contained 25,749 buildings (3135 slice
results) and the test set contained 8358 buildings (903 slice results). For the convenience
of the experimental comparison, the training set was randomly divided into 2508 training
sets and 627 validation sets according to a ratio of 4:1, and the result of one slice is shown
in Figure 6.

Figure 6. An example image of the EA dataset.

Among them, the unlabeled data used for the self-supervised training for the inde-
pendently produced the Beijing area sample set were from Google data for the whole of
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the Beijing area. For the EA dataset, the unlabeled data were from the results obtained by
merging all data. A brief introduction to the two datasets is shown in Table 1.

Table 1. The basic information of the datasets

DataSet Unlabeled Split: Train/Val/Test Location Resolution

BJ Dataset 21,417 797/202/34(16) Beijing, China 1 m
EA DataSet 4038 2508/903/627 East Asia 0.45 m

3.2. Evaluation

In this article, we used the F1-score to evaluate the results. In order to evaluate the
effectiveness of the image pixel-level prediction task, we compared the prediction results
with the corresponding ground truth and divided each pixel into true positive (TP), false
positive (FP), false negative (FN), and true negative (TN). The evaluation metrics used to
measure the effectiveness of our method were calculated based on these four indicators.
The F1 score is the reconciled average value of the recall rate and accuracy rate according
to specific formulas, as shown in Equations (9)–(12):

Precision =
TP

TP + FP
(9)

Recall =
TP

TP + FN
(10)

IOU =
TP

TP + FP + FN
(11)

F1_score =
2 × Precision × Recall

Precision + Recall
(12)

where TP denotes true positive, FP denotes false positive, and FN denotes false nega-
tive. These indicators were calculated using each tiled pixel-based confusion matrix or
cumulative confusion matrix and are explained in the following section.

4. Results and Discussion

4.1. Experimental Setup

To validate the effectiveness of the proposed method for building information ex-
traction, we conducted experiments on two datasets and compared our model with state-
of-the-art methods. For semantic segmentation methods with conventional supervised
learning, this paper compared three semantic segmentation frameworks, Unet, PSPNet,
and Deeplabv3+. Secondly, based on the Unet structure, we validated the basic experi-
mental results of several popular comparative learning methods and the proposed PGSSL
method in this paper on two datasets, as well as the extraction effects under different pro-
portional sample inputs. Finally, this paper conducted ablation experiments on the PGSSL
structure under two datasets to verify the effectiveness of each link design. The parameters
used for each part of the network are shown in Table 2.

For the selection of the underlying network structure and data augmentation, to ensure
the consistency of the experimental process, the experiments in this paper all used ResNet34
as the basic network feature architecture. Firstly, a 7 × 7 convolutional kernel with pooling
was used to expand the feature dimension to 64 and the image size was downsampled
to 1/4 of the original size. Subsequently, after several convolutional poolings, the final
feature map size became 1/32 of the original size and the feature channel was expanded
to 512 dimensions. To make full use of the sample features, we randomly augmented
the data before training and the data augmentation methods we used included random
color transformation, random flip, random rotation, random crop, and resampling in five
steps, the specific parameters of which are shown in Table 2 Data Augmentation. Data
augmentation was not applied in any of the data testing.
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The network training parameters of this paper included two parts, the pretext task
network training and the semantic segmentation network training. For the training part
of the pretext task network, the input image batch was 8, the total number of iterations
was 80,000, the learning rate was set to 3 × 10−4, and after every 10,000 iterations, it was
reduced to 95% of the original, and it took about 11 hours to complete the pretext task
network. For the semantic segmentation part of the training, the loss function used the
cross-entropy function, the input image batch was also set to 8, and the initial learning rate
was set to 0.005. We calculated the accuracy of the validation set every 150 iterations and
saved the model with the highest accuracy and stopped training after 80,000 iterations.

Table 2. Network parameter adjustment diagram.

Hyperparameters Setting Details

Basic Backbone Encoder
(ResNet34[Default])

7 × 7, conv, stride = (2, 2), padding = (3, 3), 64, 3 × 3, maxpool
[[3 × 3conv, 64] × 2], concat, 1 × 1 conv, 64] × 3,

3 × 3conv, stride = (2, 2), 128, 3 × 3 conv, 128
[[3 × 3 conv, 128] × 2], concat, 1 × 1 conv, 128] × 3

3 × 3 conv, stride = (2, 2), 256, 3 × 3 conv, 256
[[3 × 3 conv, 256] × 2], concat, 1 × 1 conv, 256] × 5

3 × 3 conv, stride = (2, 2), 512, 3 × 3 conv, 512
[[3 × 3 conv, 512] × 2], concat, 1 × 1 conv, 512] × 3

contrastive Learning

Q-encoder, Basic Backbone
K-encoder, Basic Backbone

Q-mlp, [1 × 1, avgpool, flatten, Liner(512, 128)]
K-mlp, [1 × 1, avgpool, flatten, Liner(512, 128)]

projector, [Liner(128, 512), BatchNorm(512), Liner(512, 128)]

Data Augmentation

RandomHSV(20, 20, 20), Flip(0.5), Rotate(20), Scale(1),
Clip(350, Rescale(384)[BJ Dataset]

RandomHSV(20, 20, 20), Flip(0.5), Rotate(20), Scale(1), Clip(500),
Rescale(512)[EA Dataset]

ColorJitter(0.4, 0.4, 0.4, 0.1), Flip(0.5), Rotate(20), Scale(1),
RandomClip(256), Rescale(224)[Contrastive learning]

Loss Function Adjustment CrossEntropLoss[Default]
CosineSimilarity[Contrastive]

Other Hyperparameters
Batchsize, 4
iter, 80,000

Base Learning Rate, 3 × 10−4

Data Augmentation: Data augmentation is slightly different in comparative learning. It is necessary to perform
data augmentation on the original image twice, and then, respectively, use them as input.

4.2. Comparison of Different Methods

Following the above methods and parameter settings, this paper first conducted
experiments using complete training samples on two datasets. For conventional semantic
segmentation methods, such as PSPnet [36], Deeplabv3+ [37], and UNet [38], the labeled
samples were directly used for training. We kept the best-trained model in the validation set
obtained during the training process and finally calculated the accuracy obtained by testing
on the test set, as shown in Table 3. The main experiments were divided into two main
parts, basic framework training and self-supervised learning training. All experiments
in this paper were repeated three times and the best results were used to explore the
upper limit of the model approach. In the supervised learning task, the basic network
modules were initialized with the ImageNet parameters, except for the special annotation
of UNet(Random). After comparison, the Unet structure maintained the best test results
among the three traditional semantic segmentation networks.

For the self-supervised methods, such as SimCLR [24], BYOL [25], and PGSSL, in this
paper, we first trained the network in unlabeled samples, then trained the network un-
der the self-supervised framework until the loss was minimized, and finally, transferred
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the parameters of the feature extraction layer to the UNet network framework. In the
subsequent training, only the parameters of this part were fine-tuned and the learning
rate was set to 0.1 of the regular learning rate. After collecting the best models on the
ensemble, the accuracy obtained by testing on the test set was used as the final prediction
accuracy. The training of PGSSL consisted of three steps due to pseudo-label learning.
First, it provided a basic model for regular training for pseudo-label training and then
self-supervised learning training was performed on top of that. This process generated
pseudo-label channel prediction results with prediction accuracies as shown in Table 3
PGSSL, and finally, the basic feature structure generated by the above model was used
for initial learning and training to obtain the final model test results, as shown in Table 3
PGSSL∗. For the BJ Dataset, this paper mainly tested the final results of the model on areas
E and F in Figure 4. To illustrate the generalization of the model, the F1-score of the test for
the E area was 83.3% and the F1-score for the F area was 77.0%. The accuracy comparison of
the subsequent methods was based on the test results of the F area. The overall differences
between the methods are shown in Table 3.

Table 3. Overall experimental effect comparison of all methods.

Dataset
BJ Dataset EA Dataset

Precision Recall F1-Score Precision Recall F1-Score IOU

PSPNet 0.811 0.598 0.688 0.708 0.854 0.774 0.642
DeepLabv3+ 0.842 0.550 0.665 0.798 0.839 0.818 0.692

UNet(Random) 0.578 0.836 0.684 0.682 0.850 0.757 0.610
UNet(ImageNet) 0.632 0.839 0.720 0.794 0.852 0.822 0.698

SimCLR 0.706 0.798 0.749 0.805 0.846 0.825 0.702
BYOL 0.823 0.682 0.746 0.790 0.858 0.822 0.704

PGSSL 0.871 0.666 0.755 0.818 0.816 0.817 0.690
PGSSL* 0.853 0.702 0.770 0.796 0.856 0.825 0.706

PGSSL: Test accuracy of the output in the pseudo-label channel. PGSSL* represents the final effect of the PGSSL
method after pre-training.

From the comparison in Table 3, it can be seen that the underlying results showed
that the Unet structure had the highest accuracy among several semantic segmentation
frameworks on both building datasets. Second, initializing the network structure using Im-
ageNet significantly improved the model testing accuracy relative to random initialization,
with a 3.6% increase in the F1-score in the BJ dataset and a 6.5% increase in the F1-score in
the public data. Finally, self-supervised learning significantly improved the model results,
which was even more significant in the BJ dataset, where the F1-scores of the commonly
used SimCLR and BYOL methods improved the accuracy by 2.6–2.9% over the original
ImageNet, and the final PGSSL method improved it by 5%. The segmentation effects in
the two datasets are shown in Figure 3. The effects on the images are shown in Figure 7,
where Figure 7a–e show the prediction results for the BJ dataset and Figure 7f–j show the
prediction results for the EA dataset.

However, it can also be seen in Table 3 that the improvement effect of the relevant
self-supervised methods on the public dataset was much lower than that on the BJ Dataset.
After analysis, we believe that this was mainly related to the number of labeled samples
and the quality of unlabeled data in the self-supervision. Relatively speaking, the public
dataset was relatively rich in labeled data when the learning no longer relied on the prior
knowledge provided by the pre-training network and only needed to provide the basic
pre-training structure to achieve better segmentation results. In addition, the public data
did not additionally collect local unlabeled data. The images used in the self-supervised
learning process were from the images needed for the subsequent semantic segmentation
and the additional prior knowledge that was provided was relatively limited.
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(a) Origin (b) Prediction (c) Label (d) Connected (e) Density

(f) Origin (g) Prediction (h) Label (i) Connected (j) Density

Figure 7. The overall building information extraction effect in both datasets.

4.3. Experiments with Different Sample Ratios

In order to illustrate the effectiveness of the self-supervised method, this paper con-
ducted experiments on the optimization effect of self-supervised learning with a small
number of samples. We randomly selected a certain percentage of samples from the
training part of the two datasets for the experiments, including 1%, 5%, 10%, 20%, 50%,
80%, and 100%. In this paper, we compared the experimental results of two datasets
with different methods at different sample proportions. Among all the methods, the PSP-
Net, Deeplabv3+, and UNet networks were trained using ImageNet pre-training network
initialization, whereas the other self-supervised learning methods were trained on the
corresponding structures and migrated to Unet structures. In this paper, we compared
our approach with two state-of-the-art self-supervised representation learning methods
following the experimental setup in Section 4.1, firstly for the BJ dataset, where PGSSL
represented the model output in the pseudo-label channel and PGSSL* represented the
further pre-training results; all the experimental results are shown in Table 4.

Table 4. Experimental effects of various methods on BJ dataset with different proportions.

1% 5% 10% 20% 50% 80% 100%

PSPNet 0.221 0.570 0.588 0.611 0.650 0.702 0.688
Deeplabv3+ 0.509 0.548 0.573 0.620 0.723 0.704 0.665

UNet 0.636 0.621 0.598 0.656 0.700 0.703 0.720

SimCLR 0.649 0.624 0.490 0.610 0.754 0.723 0.749
BYOL 0.530 0.572 0.622 0.554 0.714 0.700 0.746

PGSSL 0.050 0.616 0.602 0.575 0.658 0.746 0.755
PGSSL∗ 0.498 0.500 0.634 0.671 0.719 0.744 0.770

PGSSL: Test accuracy of the output in the pseudo-label channel. PGSSL*: Represents the final effect of the PGSSL
method after pre-training.

In the BJ dataset experiments, the accuracy showed a significant upward trend with
the increase in the sample proportion. Secondly, when the sample proportion was small,
the basic UNet semantic segmentation network structure showed better stability at this
time. At 1% of the samples, only about eight images were randomly selected from the
original training data center for training and achieved a 63.6% segmentation accuracy,
which was second only to the results initialized with SimCLR. The overall change can be
seen in Figure 8a. In the EA dataset experiments, the method proposed in our paper always
maintained the leading accuracy. However, as the sample size increased, the improvement
in accuracy was no longer significant. In the BJ dataset, the training sample size did not
reach the limit of potential for this method. As predicted by the current results, it is worth
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exploring the effect of further supplemental samples to experiment with self-supervised
learning. The changing trend is shown in Figure 8b.

(a) (b)

Figure 8. The effect diagram of the accuracy changes of various methods under different proportions
of training data. (a) Effects on the BJ dataset. (b) Effects on the EA dataset.

Comparing the UNet network structure with the final segmentation results of PGSSL
in this paper, it can be seen that when the sample size was greater than 10%, PGSSL
outperformed the former and other self-supervised learning methods. However, when
the sample size was very small (the proportion was less than 10%), the results showed
a significant decrease. We think this is because pseudo-label learning was used in the
structural design to guide the process of self-supervised learning, and when the labeled
samples were too small, the actual generalization ability of the model used for guidance was
poor, thus providing incorrect guidance to the whole model. Furthermore, it can be seen
that the SimCLR self-supervised learning method surpassed the results using all samples
by using only 50% of the samples. This was a special case among all the experiments in this
paper, but it also shows that the self-supervised learning method has a high upper limit
and the prior knowledge from pre-training provides better possibilities for the model.

However, there are some differences between the experiments on the EA dataset and
the experimental results of the previous paper. As shown in Table 5, the self-supervised
learning method performed better when the sample size was less than 20%, especially when
the sample size was 1%; the method proposed in this paper resulted in a 3.2% accuracy
optimization, and the other self-supervised learning methods and the output of the pseudo-
label channel also improved in this process. After the sample size was increased, it can
be seen that the accuracy of the self-supervised learning method was almost the same as
the results of conventional ImageNet pre-training. This paper suggests that this reflects
a boundary effect that network pre-training can have. When the sample size reaches a
certain level, the effect of prior knowledge provided by the pre-training of self-supervised
learning decreases.

Table 5. Experimental effects of various methods on EA dataset with different proportions.

1% 5% 10% 20% 50% 80% 100%

PSPNet 0.640 0.729 0.737 0.726 0.780 0.777 0.774
Deeplabv3+ 0.712 0.776 0.796 0.803 0.811 0.815 0.818

Unet 0.719 0.782 0.800 0.811 0.813 0.822 0.823

SimCLR 0.728 0.776 0.800 0.809 0.822 0.822 0.825
BYOL 0.725 0.780 0.800 0.812 0.818 0.824 0.822

PGSSL 0.736 0.792 0.808 0.812 0.818 0.821 0.817
PGSSL∗ 0.751 0.787 0.806 0.817 0.822 0.826 0.825

PGSSL: Test accuracy of the output in the pseudo-label channel. PGSSL*: Represents the final effect of the PGSSL
method after pre-training.
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4.4. Ablation Experiment

Finally, in order to verify the effectiveness of the proposed structure, this paper also
conducted ablation experiments on several selected proxy tasks to compare the effects of
these different proxy tasks on building information extraction. Considering that the method
proposed in this paper requires a pre-training structure to provide prior knowledge, this
paper selected 100% of the samples on the BJ dataset and 1% of the samples on the EA
dataset for the ablation experiments. The final experimental effects are shown in Table 6.

Table 6. Ablation experiment.

Pseudo-Sample
Learning

Contrastive
Learning

Image
Inpainting

EA DataSet
[1%]

BJ DataSet
[100%]

� � � 0.720 0.720
� � � 0.740 0.732
� � � 0.725 0.746
� � � 0.731 0.730
� � � 0.748 0.746
� � � 0.751 0.770

It can be seen that when the three methods of pseudo-label training, contrastive
learning (BYOL), and image inpainting were used alone, the experimental results were
better than those of the basic UNet network on both datasets. The experimental results
showed that the contrastive learning pre-training had the greatest accuracy in extraction
from the BJ dataset, whereas the EA data showed that the pseudo-label learning had a better
accuracy improvement. In the experiment, the EA dataset improved by 0.8%, whereas there
was almost no improvement in the BJ dataset. In this paper, we suggest that this is related
to the data used in the self-supervised learning process. Since the data in the EA dataset
were more similar in style and the amount of data for self-supervised learning training was
smaller, pseudo-labeling achieved better results. In contrast, the unlabeled data in the BJ
dataset were more extensive and pseudo-labeling played a limited role as a guide. Finally,
it can be seen that after adding the proxy task of image inpainting, both of the methods
had further improved effects, and restraining the spatial information provided by image
inpainting was of great significance for the segmentation tasks.

4.5. Regional Photovoltaic Potential Assessment

Large-scale building rooftop information extraction provides important data support
for PV potential analysis. Remote sensing satellites are always observing the ground to
generate remote sensing data and unlabeled data are simple to obtain. Self-supervised
learning can effectively utilize the unlabeled data and reduce the number of labeled samples
to be prepared when extracting building information on a large scale. In this paper, we
used Google data slicing of the whole Beijing territory for the self-supervised learning
pre-training to obtain better building extraction results at the current sample labeling level,
which supports the evaluation of the building PV potential on a large scale. Finally, this
paper considered the limitations of the semantic segmentation results in the analysis of
the PV suitability method and further designed the building density statistics method to
obtain the results of the building area and building density distribution within Beijing.
The calculation results for the building area are shown in Figure 9.

This paper extracted the building area and center point using the method in Section 2.4
and finally obtained a total building area of 588.24 km2, with 1.746 million buildings in
Beijing. Next, the kernel density analysis of the building distribution results was performed.
The circle radius was set to 0.5 km, and the results of the analysis are shown in Figure 10,
which shows the number of buildings per square kilometer. Some aggregation centers in
urban areas and towns in Beijing are objectively reflected in the figure, which can provide a
reference for the construction of distribution facilities related to distributed PV rooftops,
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as well as provide accurate data support for the assessment of the potential of building
PV rooftops.

Figure 9. Building area of each district in Beijing.

In addition, this paper compared the building area presented herein with the available
literature in a cross-sectional comparison [9,39–41]. In ref. [39], the authors calculated the
area based on the NDBI index method using the number of image elements and obtained
560.33 km2 in 2004. In the statistical yearbook, the built-up area of buildings in Beijing in
2006 was 1254.23 km2 [40], whereas the built-up area of buildings in Beijing in 2019 was
1469.05 km2 [41]. In [9], the authors calculated the building rooftop area to be 809.837 m2

based on Google data in 2018 for a study area of 5 km2 within Chaoyang District, whereas
the total area of Chaoyang District was 470.8 km2. This paper estimated Chaoyang District
according to these proportions. The total building rooftop area was calculated to be about
76.25 km2, but the actual building area according to the literature is denser and the actual
proportions should be smaller. In comparison, our article calculated that the building area
of Chaoyang District is 47.13 km2 based on Google data in 2020, which should be similar to
reality, whereas the total building area of Beijing was 588.24 km2. According to the ratio
of the urban built-up area to the building rooftop area, the results of this paper should be
close to those mentioned in the literature, and it can be seen that the building extraction
method in this paper has a good reference value.
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Figure 10. The results of the analysis of the core density of buildings in Beijing.

5. Conclusions

In recent years, the energy industry has developed rapidly and awareness of sustain-
able development has intensified. The assessment of the potential of distributed PV systems
is of great importance for solar energy policy planning and industrial development. It has
prompted more attention to be focused on the potential distribution of the PV industry
in China. In this paper, a self-supervised learning method for remote sensing building
rooftop extraction called the PGSSL method is proposed, which alleviates the problem of
the high dependence on samples for deep learning methods and provides the possibility of
large-scale building rooftop information extraction. The method uses contrastive learning
and image restoration as the base methods to extract the global and local features of build-
ings and proposes pseudo-label learning to guide these features and drive them to focus
on our target. In this paper, experiments are conducted on two datasets independently,
and the advantages of the proposed method are demonstrated by comparing it with other
deep learning methods. Moreover, in this paper, we conduct comparative experiments
on sample size by setting different sample ratios to demonstrate the excellent effect of the
method when the labeled samples are few. In addition, this paper also conducts ablation
experiments on the proposed method, which proves the rationality and effectiveness of the
method design in this paper.

Finally, this paper also proposes a post-processing scheme for the semantic segmen-
tation results in the photovoltaic potential analysis. Based on the Google data of 1 m
resolution in 2020, this paper extracts the rooftop area of buildings in Beijing (588.24 km2 in
total) and further analyzes the density of buildings in Beijing based on the results, which
can provide a positive reference value for the layout of the distribution network and the
scale suitability of building rooftop photovoltaic systems. The application results show
that the method proposed in this paper can extract building information in a wide range
based on high-resolution remote sensing Images, which provides a very effective method
for large-scale building photovoltaic potential assessments and solar energy utilization.
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Abstract: Digital maps of road networks are a vital part of digital cities and intelligent transportation.
In this paper, we provide a comprehensive review on road extraction based on various remote
sensing data sources, including high-resolution images, hyperspectral images, synthetic aperture
radar images, and light detection and ranging. This review is divided into three parts. Part 1 provides
an overview of the existing data acquisition techniques for road extraction, including data acquisition
methods, typical sensors, application status, and prospects. Part 2 underlines the main road extraction
methods based on four data sources. In this section, road extraction methods based on different data
sources are described and analysed in detail. Part 3 presents the combined application of multisource
data for road extraction. Evidently, different data acquisition techniques have unique advantages,
and the combination of multiple sources can improve the accuracy of road extraction. The main
aim of this review is to provide a comprehensive reference for research on existing road extraction
technologies.

Keywords: road extraction; high-resolution image; hyperspectral image; synthetic aperture radar
(SAR); light detection and ranging (LiDAR)

1. Introduction

Digital mapping of road networks is necessary for various industrial applications
such as land use and land cover mapping [1], geographic information system updates [2,3]
and natural disaster warning [4]. Moreover, it is a critical requirement for digital cities and
intelligent transportation [5]. Traditional cartographic techniques are time-consuming and
labour-intensive [6,7]. In comparison, remote sensing techniques changed the mapping
community fundamentally without relying entirely on surveyed ground measurements [6].
Remote sensing data used for road extraction include ground moving target indicator
(GMTI) tracking, smart phones global positioning system (GPS) data, street view images,
synthetic aperture radar (SAR) images, light detection and ranging (LiDAR) data, high-
resolution images, and hyperspectral images. GMIT radar has been used for extracting
road map information due to the advantages of all-weather, real-time capabilities, and
wide-area [8,9]. Smart phone GPS data were used for extracting road centrelines and
monitoring road and traffic conditions [10,11]. Street view images obtained by Google of
USA and Baidu of China companies have been used to detect, classify, and map traffic
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signs and road crack information extraction [12,13]. In this paper, based on the different
data sources, the existing road extraction technology can be roughly divided into four
methods: high-resolution imaging-based, hyperspectral imaging-based, SAR imaging-
based and LiDAR-based methods. SAR and LiDAR are active information acquisition
methods. In contrast, high-resolution and hyperspectral imaging are passive optical
imaging approaches. Each road extraction method, based on a different data source,
has unique characteristics. For instance, the high-resolution imaging technology can be
used to obtain images with centimetre-level accuracy and detailed target information [14];
hyperspectral remote sensing images are used for conventional road extraction; they also
demonstrate excellent potential for road condition detection owing to a large number
of bands (generally more than 100 bands) and continuous spectrum coverage [15]; SAR
and LiDAR datasets are not easily affected by environmental factors such as changes in
environmental illumination conditions or weather [16].

Road extraction is a popular research topic and has attracted the interest of numerous
researchers. More than 2,770,000 results can be found in Google Scholar using the keyword
‘road extraction’, including some state-of-the-art reviews published in recent years. Wang
et al. [17] summarised the main road extraction methods from 1984 to 2014 based on
high-resolution images. In this study, road information extraction methods were divided
into knowledge-based [18,19], classification-based [20–26], active contour-based [27–29],
mathematical morphology-based [30,31], and dynamic programming-based grouping
methods [32,33]. However, these methods were chiefly heuristic, and deep learning-based
approaches were not presented [34]. This scenario has undergone a drastic change in
recent years with the rapid development of patch-based convolutional neural networks
(CNNs) [35–40], full convolutional network (FCN)-based [41–46], deconvolutional net-
based [47–64], generative adversarial network (GAN)-based [41,65,66], and graph-based
deep learning methods [67–70] for road extraction. Road extraction methods based on
deep learning are collectively referred to as data-driven approaches in [34,71]. Abdollahi
et al. [34] and Lian et al. [71] presented and compared the deep learning-based state-of-
the-art road extraction methods using publicly available high-resolution image datasets.
Sun et al. [72] reviewed the SAR image-based road extraction method. This review initially
introduces the road characteristics and basic strategies and then presents a summary of the
main road extraction techniques based on SAR images. Similarly, Sun et al. [73] analysed
and summarised the SAR image-based road segmentation methods. They introduced
the traditional edge detection and deep learning-based road segmentation methods and
predicted that new segmentation methods of deep neural networks based on the self-
attention mechanism and capsule paradigm as the future development trends. Wang and
Weng [74] summarised the road extraction techniques based on LiDAR. In this report, road
clusters were defined using the classification framework and algorithms for LiDAR point
data-based road identification. Furthermore, techniques for generating road networks,
including road classification refinement and centreline extraction, were summarised as well.
Several other similar reviews [75–77] that provide scientific references for road extraction
have been reported in recent years.

To the best of our understanding, the existing reviews on road extraction methods are
commonly based on only a single data source; hence, they fail to provide a comprehensive
view that can be derived using different data sources. However, a comprehensive road
extraction review based on high-resolution imaging, hyperspectral imaging, SAR imaging,
and LiDAR technologies is crucial to bridge the gap between potential applications and
available technologies of road extraction. Thus, the aim of this study was to achieve this
goal by combining the road extraction techniques based on diverse data sources, including
high-resolution images, hyperspectral images, SAR images, and LiDAR data. In Section 2,
we provide an overview of the four techniques and summarise the typically used sensors.
In Section 3, we introduce and analyse the main road extraction methods using various
data sources as well as summarise the road extraction status and prospects for different
data sources. Finally, different combinations of the road extraction techniques are presented
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in Section 4. To the best of our knowledge, in this paper, we present the first comprehensive
review of road extraction, including high-resolution images, hyperspectral images, SAR
images and LiDAR data sources.

2. Overview of the Existing Data Acquisition Techniques for Road Extraction

2.1. High-Resolution Imaging Technology

In this review, high-resolution images refer to high-spatial-resolution images (resolu-
tion of less than 10 m) that were mainly acquired using airborne or spaceborne sensors. The
spatial resolution of the images refers to the size of a single pixel. High-resolution images
are usually divided into two categories: panchromatic and multispectral images [78].

2.1.1. Data Acquisition Methods and Characteristics

High-resolution images are primarily recorded using spaceborne and airborne sensors.
Spaceborne high-resolution imaging techniques have a broad area coverage and stable
revisit periods; however, the cost of the satellite is high, and the images are easily affected
by the atmosphere [79]. Compared to the spaceborne high-resolution images, the airborne
high-resolution images possess higher resolutions and are less affected by the atmosphere.
However, the working efficiency of airborne cameras is lower than that of the spaceborne
instruments because of the lower flight altitude and smaller coverage [80]. Airborne high-
resolution images can be obtained using manned aircrafts and unmanned aerial vehicles
(UAVs). In recent years, several imaging systems with high-resolution cameras mounted
on UAVs have been rapidly developed; these systems can achieve centimetre-level spatial
resolution [81].

2.1.2. Typical Sensors

Spaceborne high-resolution imaging is still the main technical approach for earth
observation. As shown in Table 1, an increasing number of high-resolution satellites have
been developed; some of these satellites have been developed in series and are constantly
being upgraded [82–86]. It can be seen from Table 1 that most high-resolution satellites
were developed and launched by the USA, while the number of high-resolution satellites
in China has increased in recent years. With the development of related technologies,
the performance of spaceborne cameras continues to improve, and images with a spatial
resolution better than 1 m can now be obtained.

Table 1. Main parameters of typical high-resolution satellites.

Satellite Launch (Year) Swath (km) PAN (m) R (m) G (m) B (m) NIR (m)

Gaofen 1 (CN) 2013 [87]
70

2 8 8 8 8
Gaofen 2 (CN) 2014 [88] 0.8 3.2 3.2 3.2 3.2
Gaofen 6 (CN) 2015 [89] 2 8 8 8 8

SuperView (CN) 2016 [90] 12 0.5 2 2 2 2
GeoEye 1 (US) 2008 [91] 15.2 0.41 1.65 1.65 1.65 1.65
IKONOS (US) 1999 [85] 11.3 1 4 4 4 4

PlanetScope (US) 2018 [92] 24.6 / 3 3 3 3
QuickBirds (US) 2001 [93] 16.5 0.6 2.4 2.4 2.4 2.4

WorldView 1 (US) 2007 [94] 17 0.5 / / / /
WorldView 2 (US) 2009 [91] 17 0.5 2 2 2 2
WorldView 3 (US) 2014 [95] 13.1 0.31 1.24 1.24 1.24 1.24
WorldView 4 (US) 2016 [96] 13.1 0.31 1.24 1.24 1.24 1.24

OrbView 3 (US) 2003 [97] 8 1 4 4 4 4
RapidEye (DE) 2008 [98] 77 / 6.5 6.5 6.5 6.5

KOMPSAT 2 (KR) 2006 [99] 15 1 4 4 4 4
KOMPSAT 3 (KR) 2012 [100] 16 0.7 2.8 2.8 2.8 2.8

KOMPSAT 3A (KR) 2015 [101] 12 0.55 2.2 2.2 2.2 2.2
Pléiades 1A (FR) 2011 [102] 20 0.7 2.8 2.8 2.8 2.8
Pléiades 1B (FR) 2012 [103] 20 0.7 2.8 2.8 2.8 2.8

SPOT 6 (FR) 2012 [104] 60 1.5 6 6 6 6
SPOT 7 (FR) 2014 [105] 60 1.5 6 6 6 6

DubaiSat 1 (AE) 2009 [106] 12 2.5 5 5 5 5
DubaiSat 2 (AE) 2013 [107] 12 1 4 4 4 4

PAN: panchromatic. R: red. G: green. B: blue. NIR: near-infrared. WorldView 2 [91] and WorldView 3 [95] have four other multispectral
bands (red edge, coastal, yellow and NIR), and RapidEye has another multispectral band (red edge) [98].
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2.1.3. Application Status and Prospects

High-resolution images usually contain feature-rich information such as spectral
characteristics, geometric features, and texture features, and hence, a significant amount
of useful information can be extracted from such images. High-resolution imaging has
been widely used in forest management [108], urban mapping [109], farmland manage-
ment [110], disaster and security mapping, public information service and environmental
monitoring. Numerous high-resolution satellites have been developed and launched in
recent years. These satellites can form satellite networks to obtain image data with a
wide coverage. However, the huge amounts of data also bring new challenges to data
transmission and processing [80]. Such high-resolution images have been extensively used
for road extraction [34,71]. Moreover, several commercial products such as Google Maps
based on high-resolution images have been successfully developed and applied in many
fields in recent years.

2.2. Hyperspectral Imaging Technology

Hyperspectral imaging technology is another commonly used technique for obtaining
the spectra of a target [111,112]. The hyperspectral image containing two-dimensional (2D)
spatial and 1D spectral information comprises a 3D data cube [113]. Notably, different
objects exhibit different spectra, which can be used for the identification and detection
of such objects. In the 1980s, Goetz et al. [114] began a revolution in remote sensing
by developing an airborne visible infrared imaging spectrometer (AVIRIS) [113], which
initiated the development of hyperspectral imagers. The number of bands in a multispectral
image is usually less than five, while that in a hyperspectral image is more than 100;
moreover, continuous spectral information is obtained from a hyperspectral image.

2.2.1. Data Acquisition Methods and Characteristics

Hyperspectral images are obtained by an imaging spectrometer, which is a complex
and sophisticated optical system that includes several subsystems and components. The
main components of the sensor are a scan mirror, fore-optics, spectrometers, detectors,
onboard calibrators and electronic units. The fore-optics of the system receive light, which
is dispersed by a spectrometer and converted from photons to electrons by the detector to
yield an electronic signal. This electronic signal is then amplified, digitised and recorded
by the electronic unit. The instrument performance and preprocessing data results are
the main factors that aid in acquiring high-accuracy surface reflectance data. Such an
instrument is characterised by its field-of-view (FOV), spectral range, spatial and spectral
resolution and sensitivity. Data preprocessing includes geometric rectification, calibration
and atmospheric correction [80].

2.2.2. Typical Sensors

According to the installed platforms, hyperspectral sensors can be divided into space-
borne, airborne, UAV [115–117], car-borne [118], and ground-based [119] imaging systems.
Airborne hyperspectral imaging systems were the first hyperspectral imagers to be de-
veloped and used for verifying the design of later spaceborne instruments. Jia et al. [80]
presented a comprehensive review of airborne hyperspectral imagers, including key de-
sign technologies, preprocessing and new applications. Based on this review, we added
spaceborne sensors in this paper and summarised the typical hyperspectral imagers in
Table 2. Evidently, most hyperspectral sensors, especially the spaceborne hyperspectral
imagers, were developed in the USA. In addition, there are more airborne hyperspectral
imagers are than spaceborne hyperspectral imagers due to the hardware investment. The
future spaceborne program includes the HyspIRI hyperspectral satellite of America [120]
and the ENMAP hyperspectral satellite of Germany [121]. Most hyperspectral imagers
can acquire data in the visible to near-infrared spectral range owing to the availability of
silicon detectors with wide spectral detection ranges. Additionally, shortwave infrared and
longwave infrared hyperspectral imagers have emerged in recent years [80].
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Table 2. Typical airborne and spaceborne hyperspectral sensors.

Name References Platform
Wavelength
Range (μm)

Channel
Spectral

Resolution
(nm)

IFOV
(mrad)

FOV/Swath

AISA-FENIX 1K [122], 2018 Airborne 0.38–0.97,
0.97–2.5

348,
246

≤4.5,
≤12 0.68 40◦

APEX [123], 2015 Airborne 0.372–1.015
0.94–2.54

114,
198

0.45–0.75,
5–10 0.489 28.1◦

AVIRIS-NG [124,125],
2016, 2017 Airborne 0.38–2.52 430 5 1 34◦

CASI-1500
SASI-1000A
TASI-600A

[126], 2014 Airborne
0.38–1.05,
0.95–2.45,

8–11.5

288,
100,32

2.3,
15,
110

0.49, 1.22, 1.19 40◦

AMMIS [127,128],
2019, 2020 Airborne

0.4–0.95,
0.95–2.5,
8–12.5

256,
512,
128

2.34,
3,
32

0.25,
0.5,
1

40◦

SYSIPHE [129], 2016 Airborne

0.4–1,
0.95–2.5,

3–5.4,
8.1–11.8

560 (total)

5,
6.1,

11 cm−1,
5 cm−1

0.25 15◦

HSI [130], 1996 LEWIS
Satellite

0.4–1,
1–2.5

128,
256

5,
5.8 0.057 7.68 km

Hyperion [131], 2003 EO-1
Satellite

0.4–1,
0.9–2.5 242 (total) 10 0.043 7.7 km

CHRIS [132], 2004 PROBA-1
Satellite 0.4–1.05 18/62 1.25–11 0.03 18.6 km

CRISM [133], 2007 MRO
Satellite

0.362–1.053,
1.002–3.92 544 (total) 6.55 0.061 >7.5 km

AHSI [134], 2019 Gaofen-5
Satellite 0.39–2.51 330 (total) 5,

10 0.043 60 km

IFOV: instantaneous field of view.

2.2.3. Application Status and Prospects

Hyperspectral imaging—a quantitative remote sensing approach—has been widely
applied in environmental monitoring, vegetation analysis, geologic mapping, atmospheric
characterisation, biological detection, camouflage detection and disaster assessment [135–141].
However, the application requirements for hyperspectral sensors underwent significant
variations with the development of advanced sensors. First, a wide spectrum covering
range is required to enhance the monitoring and detection capabilities of this system in
various applications. This can be achieved by combining multiple sensors with different
wavelength detection ranges [142] or by using an integrated system with a wide spec-
tral range [80]. Second, the system sensitivity and preprocessing accuracies are equally
important along with the spatial and spectral resolutions. For example, the AVIRIS next
generation system [143] has been applied to detect methane, owing to its high signal-to-
noise ratio and high data preprocessing accuracy. Finally, this technology facilitates the
advantages of characterisation and quantification of targets; for example, hyperspectral
imagers have been used for road network extraction.

2.3. SAR Imaging Technology
2.3.1. Data Acquisition Methods and Characteristics

SAR is an active remote sensing technology that uses microwaves with wavelengths
of few centimetres as opposed to LiDAR, which functions using optical wavelengths
(ultraviolet, visible, near-infrared or shortwave infrared light). Both these sensors measure
the distance between the instrument and the target using the time delay of the echoes.

One of the main benefits of SAR is the acquisition of fine and detailed images through
the clouds; moreover, this sensor can even work at night. In SAR, initially, short-pulsed
microwave radiation is emitted and backscattered by the target; this backscattered signal
from the illuminated area is then recorded. A SAR system with a long virtual antenna
can generate fine spatial resolution. Among the currently available SAR systems, the
spaceborne SAR sensors can provide sub-metre spatial resolutions. Notably, the long
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antenna aperture is realised in the cross-range direction and that the range resolution is
given by the pulse width (in general, the bandwidth of the signal). Another particularity of
the SAR compared with optical sensors is the low correlation between range and spatial
resolution.

SAR uses a side-looking imaging geometry to generate 2D image data of the target
area. In target areas with uneven topography, the side-looking imaging geometry distorts
the SAR images because of various factors such as foreshortening, layover and radar
shadows [144]. These distortions are challenging for mapping applications, especially in
urban areas with high-rise buildings.

SAR sensors collect data in a complex domain, and the acquired data can be converted
into intensity and phase information. SAR data are usually presented as 2D intensity images
that provide information on the amount of backscattered signal. Since the backscattered
signal is a combination of signals from multiple scatterers, the images have granular noise
called speckle. Sensors transmit and receive horizontally and vertically polarised signals
and provide either single, dual or quad polarisation data [145–147]. Phase information
is used in SAR polarimetry and interferometry. Interferometric coherence, that is, the
complex correlation coefficient between two SAR images, can provide information on the
changes in the target changes and can be used in target classification as well [148–151].

2.3.2. Typical Sensors

A list of typical SAR satellite systems was recently presented in [152]. With the
spotlight imaging mode, less than 1 m spatial resolutions can be achieved (e.g., RCM,
Cosmo-Skymed, Terrasar-X, ICEYE). However, the area covered by the image is limited.
In general, the swath width varies from 5 to 500 km, and for a wide swath, the resolution
is of the order of tens of meters. Spaceborne systems use the X-, C-, S-, L- or P-band
sensors. X-band sensors provide the highest resolution; however, their penetration into the
vegetation canopy is limited [153]. Furthermore, the polarimetric capabilities of satellites
vary significantly; for example, Alos-2, Radarsat-2 and Terrasar-X are fully polarimetric,
providing HH, VV, VH and HV data (where HH is horizontal transmit, horizontal receive;
VV is vertical transmit, vertical receive; VH is vertical transmit, horizontal receive and
HV is horizontal transmit, vertical receive); Cosmo-Skymed and Sentinel-1 provide dual
polarimetric HH and VV data and ICEYE provides single polarisation (VV) data. The
incidence angle in most satellites can be adjusted between 10◦ and 60◦.

The data recorded by Sentinel-1 of the European Copernicus system are openly and
freely accessible. The Sentinel-1 data is similar to those of the previous European Envisat
SAR; however, the data availability has increased because of the use of multiple satellites.

When satellites fly in a constellation, short revisit times are possible. Cosmo-Skymed
(four satellites) and SAR-Lupe (five satellites) constellations were designed to provide
intelligence information. New commercial microsatellite constellations such as ICEYE
(10/18 satellites launched), Spacety (18/56 launched) and Capella XSAR (18/36 launched),
can provide good temporal coverage. A particular constellation is also formed by TerraSAR-
X and Tandem-X, allowing single-pass interferometry. Based on the data collected by these
satellite constellations, a global digital elevation model (DEM) has been developed [154].

Airborne SAR systems that enable data acquisition at different wavelengths, higher
resolutions and single-pass interferometry are more versatile than the spaceborne systems.
Most of these airborne systems are used for research purposes; for instance, the German
Aerospace Centre (DLR) has an F-SAR [155] system operating on a Dornier 228 aircraft,
providing fully polarimetric data in the X-, C-, S-, L- and P-bands (maximum four bands
simultaneously); this system enables single-pass interferometry in the X- and S-bands. In
addition, several UAV SAR sensors are also available in the market; for example, SAR Aero
offers 1.8 kg SAR sensors in the X-or L-band with 0.3 to 3 m for a range of up to 10 km.
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2.3.3. Application Status and Prospects

The principal benefit of SAR is its all-day and all-weather imaging capability, enabling
rapid mapping [156]. Therefore, the main application areas are related to emergency and
security-related services, where the timeliness and availability of data are critical; for
example, SAR data are operationally used in sea-ice mapping, which cannot be easily
extracted using other remote sensing techniques, especially in cloudy winters. In addition,
considerable scientific research has been conducted on agricultural monitoring, forest
mapping and topographic mapping. Continuous environmental monitoring is possible
using spaceborne SAR datasets. Moreover, some previously reported studies utilised SAR
images for road extraction [72,157,158].

2.4. Airborne Laser Scanning (ALS)
2.4.1. Data Acquisition Methods and Characteristics

In airborne laser scanning (ALS), a LiDAR sensor is mounted on an aircraft, along with
an inertial measurement unit and a global navigation satellite system (GNSS) receiver. The
LiDAR sensor transmits narrow laser pulses towards the ground and generates a scanning
pattern over the target area. ALS systems, typically based on an oscillating mirror and
scanning patterns, receive the return signal, measure the time of signal travel and associate
each return pulse with the GNSS time and scan angle at which the pulse was transmitted.
The travel time can be converted to distance and then to height. The ALS technique can
produce georeferenced 3D point clouds in the target area [75,159,160].

The operational ALS systems are mostly based on single-wavelength single-pulse
linear-mode LiDAR. The new emerging multispectral ALS systems use a combination of
LiDARs at different wavelengths. These sensors provide intensity data that can be used to
derive colour images, such as optical imagery. The chief advantage of this technique is that
the acquired data are independent of illumination conditions and are without shadows.
Therefore, multispectral ALS systems have great potential for increasing the automation
level in mapping. Geiger-mode LiDAR and single-photon LiDAR (SPL) are new ALS
techniques that are sensitive to a single photon and can provide dense point clouds from
higher flight altitudes, owing to their higher system sensitivity.

2.4.2. Typical Sensors

The biggest ALS manufacturers include Leica Geosystems (Switzerland), Teledyne
Optech (Canada) and RIEGL (Austria). Examples of the current system are listed in Table 3.
It can be seen from Table 3 that ALS can collect one to several million points per second,
which secure the usability of the collected data for most surveyed and mapping cases.
Meanwhile, the lidar systems can be used both the low-altitude platforms (UAV and
helicopter) and high-altitude ones (fixed-wing aircraft). In addition, most ALSs do not
operate in eye-safety wavelength: typical operating wavelengths for ALS systems are
532 (green), 1064 (near-infrared) and 1550 nm (shortwave infrared). The point density
and accuracy depend on the flying height, reaching a maximum of 60 points/m2. In
addition, its accuracy depends on the range measurement accuracy combining with attitude
measurement accuracy. In addition, small sensors are available for UAVs.
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Table 3. Examples of currently available commercial ALS systems.

Special
Characteristics

WaveLength
Horizontal and

Elevation Accuracy
Altitude

Pulse
Repetition
Frequency

Point Density

Leica
Hyperion2+ [161],

2021

Multiple pulses in
the air measured 1064 nm <13 cm,

<5 cm 300–5500 m −2000 kHz 2 pts/m2/4000 m,
40 pts/m2/600 m

Leica SPL [162], 2021 Single photon 532 nm <15 cm,
<10 cm

2000–4500
m 20–60 kHz

6 million points
per second,
20 pts/m2

(4000 m AGL)

Optech
Galaxy Prime

[163], 2020

Wide-area
mapping 1064 nm 1/10,000 × altitude,

<0.03–0.25 m 150–6000 m 10–1000 kHz

1 million point
per s, 60 pts/m2

(500 m AGL),
2 pts/m2 (3000 m)

Optech Titan [164],
2015 3 wavelength 1550 nm, 1064 nm,

532 nm
1/7500 × altitude,

<5–10 cm 300–2000 m 3 × 50–300 kHz 45 pts/m2 (400
AGL)

Riegl VQ-1560i-DW
[165], 2019

Dual-wavelength,
multiple pulses in
the air measured.

532 nm,
1064 nm / 900–2500 m 2 × 700–1000 kHz

2 × 666,000 pts/s,
20 pts/m2

(1000 m AGL)
Riegl

Vux-240 [166], 2021 UAV 1550 nm <0.05 m
<0.1 m 250–1400 m 150–1800 kHz 60 pts/m2 (300 m)

2.4.3. Application Status and Prospects

ALS produces accurate 3D models of the target areas. The main application areas
of ALS are in topographic mapping, particularly DEM production, city modelling and
forestry. Even though the area covered by the ALS in a single scan is limited compared
to that covered by the spaceborne sensors, nationwide datasets are available, especially
for the Nordic countries. In addition, ALS is currently used to detect human activity in
archaeology [167].

3. Road Extraction Based on Different Data Sources

High-resolution images, hyperspectral images, SAR images and LiDAR data are
primarily used for road extraction. To date, various road extraction methods have been
presented in previously reported studies, and the observed differences are due to the use
of different data sources. In this section, we summarise the methods, application status
and prospects of road extraction based on four data sources.

3.1. Road Extraction Based on High-Spatial Resolution Images

Extracting road information from high-resolution images requires clarification of the
road features, including the radiation features, geometric features, topological features and
texture features [71]. First, information on the various elements such as features, textures
and edges are extracted from the image by analysing the road information. Then, the
extracted image information is comprehensively analysed, selected and reorganised and
combined with the road features. Finally, it is fused with the structural relationship, model
and road-related rules of the road elements to identify the road.

3.1.1. Main Methods

Numerous road extraction algorithms based on high-resolution images have been
developed over the past few decades, making it difficult to classify them. Traditional
methods include automatic and semiautomatic extraction. Some methods based on deep
learning have emerged and attracted considerable attention, owing to their high precision,
in recent years. In this paper, we summarised the heuristic and data-driven road extraction
methods based on two state-of-the-art reviews [34,71]. A comparison between the different
data-driven methods applied on the Massachusetts road dataset is shown in Table 4. It can
be seen from Table 4 that most data-driven methods can obtain a high precision (better
than 0.8). Meanwhile, different methods have advantages and disadvantages.

244



Remote Sens. 2021, 13, 4235

Table 4. Comparison of different data-driven methods on Massachusetts road dataset.

Method Advantages Disadvantages References Precision

Patch-based DCNN Weight sharing, less parameter Inefficiency, large-scale training
samples

[168], 2016
[38], 2017

0.905
0.917

FCN-based Arbitrary image size, end to end
training

Low fitness, low position accuracy,
lack of spatial consistency [36], 2016 0.710

DeconvNet-based Arbitrary image size, end to end
training, better fitness

High cost of computing and
storage

[49], 2017
[51], 2018

0.858
0.919

GAN-based More consistent
Non-convergence,

gradient vanishing, and model
collapse

[65], 2017
[66], 2017

0.841
0.883

Graph-based High connectivity Complex graph reconstruction and
optimisation

[169], 2018
[170], 2020

0.835
0.823

The heuristic extraction methods can be subdivided into automatic and semiautomatic
methods according to the degree of automation facilitated by the method. The semiauto-
matic extraction algorithms require initial seeds, and the user needs to check the results
frequently. In these methods, the seeds and directions should be provided manually, and
the algorithms can recognise and roll back the previous results. Several classic semiauto-
matic methods exist, such as the active contour model, dynamic programming, geodesic
path and template matching. The active contour model, proposed by Kass et al. [171] and
also known as the balloon snakes or ribbon snakes model, can extract road information
through contour deformations from the labelled lines or points. The geodesic path method
can produce a road-probability map through the extracted road edges. The dynamic pro-
gramming method requires road parameters and mainly focuses on solving optimisation
problems [172]. The template matching method can extract the road features through
constructed windows and then matching the extracted points. All these semiautomatic
methods include automatic processes.

Automatic road extraction uses information such as road topology and context features
to extract and recognise roads through methods such as pattern recognition, computer
vision, artificial intelligence, and image understanding [173–177]. Even though there
are no fully automatic algorithms for all types of high-resolution images, several meth-
ods [71] such as segmentation-based, edge analysis, map-based, swarm intelligence-based,
object-based and multispectral segmentation methods are much more efficient than the
semiautomatic methods. Methods based on segmentation can identify regions through nu-
merous algorithms [71] such as support vector machines (SVMs), artificial neural networks,
Bayesian classifiers, mean shifts, watershed algorithms, super pixel segmentation, Gaussian
mixture models, graph-based segmentation and conditional random field (CRF) models,
which are usually used in combination to improve the classification accuracy. The edge
analysis method is realised via edge detection, which is suitable for extracting the main
roads. The map-based methods, especially OpenStreetMap, focus on urban roads. Swarm
intelligence-based methods such as ant colony optimisation, artificial bee colony and firefly
algorithms use discretisation and networking to simulate real biological behaviours [178].
Object-based methods are used to classify objects through object segmentation and fea-
ture characterisation. Multispectral segmentation methods usually require the support of
multispectral or hyperspectral images [2].

With the application of deep learning techniques in road extraction, many data-
driven methods such as patch-based CNN models, FCNs, deconvolution networks, GAN
models and graph-based methods have been proposed for road extraction [34,71]. The
patch-based CNN method can exploit a large image and predict a small patch of labels
through the CNN models based on structured and refined CNNs; however, this method is
time-consuming and computationally inefficient [34]. The FCN method predicts images
by replacing connected layers with output labels and classifies images at the pixel level
using the FCN-32 and U-shaped FCN models, thereby improving the road extraction
accuracy [44,45]. A variant of FCN—DenseNets—including SegNet, DeepLab, RCFs, Y-net
and U-Net decoder [49,51,52,54] can extract hierarchical features from images, especially
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high-resolution images. The GAN method includes a generator and discriminator to
segment images and distinguishes between forged and real images, respectively [179]. The
graph-based method realises the vector representation of road maps through iterative road
tracking and polygon detection strategies.

3.1.2. Status and Prospects

Each algorithm has its advantages and disadvantages. For example, Lian et al. [71]
compared the heuristic and data-driven road extraction methods based on four public
datasets. Their results indicated that data-driven methods could achieve more than 10%
accuracy compared to that achieved using heuristic methods. Similar conclusions were
reported in [34]. However, data-driven methods have limitations such as the requirement of
large training samples, long processing time and high-speed computing (most algorithms
require graphics processing units). In addition, the training parameters used in one dataset
may not be able to achieve high accuracy when used in another dataset. In contrast, some
heuristic methods require less time and can meet real-time demands in some applications.

Road extraction using the currently available high-spatial-resolution images has some
challenges. The key step in road extraction from high-resolution images is to describe
the road features. Describing the linear or narrow bright band of a road, which provides
good detection results, is the main focus of most existing methods. However, with the im-
provement in image resolution, we can obtain more noise interference (shadows, buildings
and road obstructions) and more detailed road features; therefore, the road objects can
also be described more precisely in this case [34,173]. Furthermore, road objects include
many complex phenomena such as occlusion or shadows, discontinuities, sharp bends
and near-parallel boundaries with constant widths. Incorporating all these factors and
modelling them into a single model is almost impossible. Therefore, it is essential to
establish a multimode approach to extract roads from images with high spatial resolutions.

3.2. Road Extraction Based on Hyperspectral Images

Multispectral remote sensing images have been used in road extraction because of their
high spatial resolution and multiple spectral features. The commonly used data sources
are the satellite multispectral images including QuickBird, IKONOS [180,181], Worldview
2 satellite [182], Landsat satellites [183] and Gaofen 1 and Gaofen 2 satellites. In addition,
because of the large number of bands (generally more than 100 bands) and continuous
spectrum bands, hyperspectral images are used for conventional road extraction as well
as show great potential for road condition detection, road material identification, road
pothole detection and crack detection.

3.2.1. Main Methods

Most road extraction methods using multispectral images are based on high-spatial-
resolution images, and these methods can also be divided into heuristic and data-driven
methods. Similar to the road extraction from high-resolution images, the heuristic methods
in this case can also be divided into semiautomatic and automatic categories; some appli-
cations of these heuristic methods are reported in [184–189]. However, few data-driven
methods are exclusively used for road extraction based on multispectral images, owing to
the lack of public datasets. There are fewer road extraction methods based on hyperspectral
images than on high-resolution images, and some of them are included in hyperspectral
classifications. In this paper, we introduce road extraction methods using hyperspectral
images based on different platforms.

The spaceborne hyperspectral imagers can realise a larger swath and provide a better
stability platform than do the airborne instruments; hence, the spaceborne hyperspectral
imagers are suitable for large-area work. However, they are mainly used to identify and
extract arterial roads such as highways because of their low spatial resolution. The Hyper-
ion hyperspectral imager of the US—EO-1 satellite—is the currently available spaceborne
hyperspectral sensor for road extraction. Sun [190] used Hyperion hyperspectral data to
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complete the road network extraction from an image using three steps: road searching,
road tracking and road connecting. In road searching, the spectral information in the image
is used to find road features, and several different road feature extraction methods are
qualitatively compared; however, no quantitative extraction accuracy results are provided
in Sun’s report.

Airborne hyperspectral imagers can achieve higher spatial and spectral resolutions
than do the spaceborne platforms; however, their operating efficiency is lower than that
of the spaceborne instruments. They are mainly used for the extraction of urban roads
and detection of road conditions. Airborne hyperspectral instruments currently used
for road extraction mainly include AVIRIS, CASI, HyMap, HYDICE and AsiaFenix [122].
In 2001, Gardner et al. [191] used the hyperspectral dataset of AVIRIS in Santa Barbara,
USA, to map the different types of typical urban surface features through multiterminal
spectral analysis. Then, the Q-tree filter was used to distinguish between the roofs and
the roads constructed using the same materials and exhibiting similar spectra. The visible
results showed that the main roads in the image can be preliminarily extracted; however,
several shortcomings were observed in the extraction of roads blocked by vegetation
and connectivity of the road network. Noronha et al. [192] used the urban hyperspectral
dataset of AVIRIS and a spectral database, based on the surface materials of the main urban
features collected in the field, to extract the road centreline and observe the road surface
conditions. Furthermore, the optimal parameters for designing a multispectral instrument
to extract urban land-use types was proposed based on these reported results. The overall
classification accuracy and kappa coefficient were 73.5% and 72.5%, respectively [192].
Based on the airborne hyperspectral image data of HYDICE and HyMap, Huang and
Zhang [193] used an adaptive mean-shift method to accurately classify six major urban
features in the image, including roads, houses, and grass. The overall classification accuracy
was above 97%, and the road classification accuracy was above 95%. Resende et al. [194]
used CASI-1500 airborne hyperspectral data to study the extraction of asphalt roads in
cities. The results based on ISODATA unsupervised classification and maximum likelihood
supervised classification methods qualitatively showed that the hyperspectral image could
be used to extract the main asphalt roads in the city; however, they did not report the
extraction accuracy. In 2012, Mohammadi [195] used HyMap airborne hyperspectral image
data to study the classification of materials used in urban roads and the state of asphalt road
conditions. He mainly distinguished asphalt roads, cement roads, and gravel roads, and
based on this result, reported three road conditions: good, medium and poor asphalt roads.
However, the experimental results were limited by the spatial resolution of the dataset, and
a large number of unclassified pixels were not analysed by the method. Therefore, further
studies are required to improve the methods used for reducing the number of unclassified
pixels.

Currently, some publicly available airborne hyperspectral datasets such as Pavia Cen-
tre and University area hyperspectral datasets and Indian Pine hyperspectral
datasets [196,197] are also used for road classification and recognition. In 2012, Liao
et al. [196] proposed a directional morphology and semi supervised feature extraction to
classify three hyperspectral datasets. The classification accuracy of the roads was the high-
est, reaching more than 97%; however, this classification accuracy was closely related to the
number of training samples and extracted features. Miao et al. [197] studied the extraction
of road centrelines from high-resolution images based on shape features and multiple adap-
tive regression splines. This method combined the shape features and spectral information
to extract road segments from high-resolution images and then used multivariate adaptive
regression spline functions to extract the road centrelines. The method was applied to
the Pavia Centre hyperspectral dataset, and an extraction accuracy of 99% was obtained
for the road centreline extraction. This method was based on uniform surface properties;
hence, it was suitable only for high-resolution images and not for low-resolution images.
In addition, the main limitation of this method was that the threshold in the method must
be determined manually.
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In addition to spaceborne and airborne hyperspectral imagers, UAV hyperspectral
imaging systems that have gradually emerged in recent years have garnered increasing
attention owing to their low cost and high spatial resolutions. These systems are mainly
used for road condition detection and road material identification in specific areas [15,198].
However, their operating efficiency is lower than that of the spaceborne and airborne
platforms, because of their low flight altitude. A summary of road extraction using hyper-
spectral images is shown in Table 5, which indicates that hyperspectral imaging systems of
different platforms have different characteristics for road extraction due to spatial resolu-
tion. Spaceborne hyperspectral imagers are primarily used to extract main roads, while
airborne hyperspectral imagers can be used for road quality assessment and road condition
monitoring.

Table 5. Summary of road extraction using hyperspectral images.

Method Platform Characteristic References

Traditional process
includes the spectral

information
Spaceborne Extract the main roads [190], 2003

Spectral mixture and
Q-tree filter Airborne Assess road quality [191], 2001

Pixel
to pixel classification Airborne Extract asphalted urban roads [194], 2008

Spectral angle mapper Airborne Road classification and condition
determination [196], 2012

Computing the angle from
spectral response UAV Detect pavement roads [198], 2019

3.2.2. Status and Prospects

Only a few reports on extracting road information from spaceborne hyperspectral
images are available. This is because the spatial resolution is insufficient to extract road
information accurately (e.g., the spatial resolution of Hyperion and Gaofen-5 hyperspectral
imagers is 30 m), especially for urban roads and narrow roads. In addition, spaceborne
hyperspectral images are difficult to acquire, and public datasets for road extraction are
not available. Airborne hyperspectral images are still the main data source for the study of
road extraction, because of their higher spatial resolutions and lower costs compared to
those of the spaceborne data.

Hyperspectral images have shown considerable potential for road condition detec-
tion, road material identification, road pothole detection and crack detection. However,
the preprocessing accuracy of the hyperspectral images should be improved to promote
their applications. Hyperspectral data with geometric correction and relative radiometric
calibration can meet this requirement for qualitative applications such as road detection.
However, for quantitative applications such as pavement material recognition, more steps
are required, such as high-precision absolute radiometric calibration, spectral calibration
and atmospheric correction.

3.3. Road Extraction Based on SAR Images
3.3.1. Main Methods

In general, roads in SAR images appear as dark linear features. However, the differen-
tial orientation of roads and antennas influences the ability of SAR to identify roads. In
traditional heuristic methods, road segments are often extracted using an edge/line detec-
tor. Then, a graph is generated from the segments and optimised, and the segments are
connected to develop a coherent road network. Recently, data-driven deep learning-based
semantic segmentation methods have been reported. Moreover, road junctions and bridges
are important parts of road networks and have been the topic of some previous studies.

Road network extraction from SAR images has been reported in various
studies [199–201]. In [200], two local line detectors were used, and the results were fused to
find candidates for road segments. The road segments were connected using a Markov ran-
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dom field, and an active contour model (snake) was used for the postprocessing. In [200],
this method was applied on dense urban areas, and very-high-resolution data and different
flight directions were combined to improve the results. In [201], constant false alarm rate
detection, morphological filtering, segmentation and Hough transformation were inte-
grated to recognise roads in high-resolution polarimetric airborne SAR images. The strong
backscattering from fences was used to detect bridges, and then the roads were recognised
using a Hough transformation

The fusion of different SAR datasets and algorithms in early studies improved road
extraction accuracy. In [202], different preprocessing algorithms, road extractors and
different images of the same area were fused, and a multiscale approach was used for road
extraction. For SAR, a combination of different view angles is also proposed. Lisini [203]
extracted road networks by combining the line extractor results with two classification
results. Hedman [204] detected rural and urban areas and then fused a road extractor for
rural areas to develop an extractor designed for urban areas.

The latest reported studies used new high-resolution data, usually from the TerraSAR-
X or GaoFen-3 satellites. In [205], multiscale geometric analysis was performed on vec-
torised detector responses for road network grouping using two TerraSAR-X datasets.
In [206], a method suitable for analysing SAR images of different resolutions was proposed.
A weighted ratio line detector was developed to extract the road ratio and direction infor-
mation. The road network was constructed using a region-growing method and tested
using four SAR datasets obtained from different study areas. Saati [207] extracted road net-
works based on a network snake model and three TerraSAR-X images. Xu [208] introduced
an algorithm in which road segment extraction and network optimisation were performed
simultaneously using a Bayesian framework, multiscale feature extractor and CRF; for this
analysis, Xu used the TerraSAR-X and airborne SAR data. Xiong [209] proposed a method
based on vector Radon transformation, and promising results were presented for six SAR
images of different resolutions, bands and polarisations; these images were obtained from
airborne SAR, GaoFen-3 and TerraSAR-X. In general, for road extraction from new very-
high-spatial-resolution (VHR) data, completeness of 74–93% and correctness of 70–94%
have been reported, depending mostly on the study site.

Interferometric information has been used in road extraction by Jiang et al. [210],
and the best results were obtained by the fusion of intensity and coherence information.
Roads were considered as distributed scatterers and were separated from permanent and
temporally variable scatterers. A constant false-alarm-rate line detector based on Wilks’
test statistics has been proposed by Jin et al. [211] for polarimetric SAR images.

Deep learning-based methods have been the topic of a few recent studies; they can
be used to extract initial road information with good quality for network construction.
Zhang [158] compared U-Net (FCN) and CNN to machine learning methods using dual-
polarisation Sentinel-1 data; he reported that VV polarisation was better than VH, and
dual-polarisation data was better than the single-polarisation data for road extraction. F1
score of 94% was achieved (the same area for training and testing but different shuffled
samples were used) using the U-Net and dual-polarisation data. This F1 score was better
than that of the best machine learning method (random forest) by 5%. Henry [46] enhanced
the fully CNN (FCNN) sensitivity for thin objects and compared the FCN-8s, U-Net and
Deeplabv3+ methods for road segmentation. The sensitivity was increased by addressing
class imbalance in training and using spatial tolerance rules. A summary of road extraction
using SAR images is shown in Table 6. It can be seen that the precision in diverse situations
is quite different. Appropriate methods or a combination of multiple methods should be
considered according to the scene’s characteristics.
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Table 6. Summary of road extraction using SAR images.

Method Category Characteristic References Precision

Multiple Detectors Heuristic Fusion of different pre-processing
algorithms, road extractors [202], 2003 0.580

correctness
Line based on vector Radon transform Heuristic Suitable for different platform SAR images [209], 2019 0.700–0.940 correctness
Multitemporal InSAR covariance and

information fusion Heuristic Use interferometric information [210], 2017 0.816
correctness

FCN-based Data-driven Automatic road extraction [158], 2019 0.921
FCN-8s Data-driven Lack efficiency [46], 2018 0.717

3.3.2. Status and Prospects

Automatic road extraction from SAR imagery remains solely experimental to date.
For operational tasks, semiautomatic methods [172] with human intervention or manual
postprocessing are required. Large-scale tests have not been conducted, and for the
reported methods, remarkable variations in the results between different test sites have
been observed. The studied road types include forest roads, city streets, highways, desert
roads, gravel roads, paved roads, icy roads and bridges. However, different or mixed
road classes have been evaluated in only a few studies. Different methods are required for
different road types and study areas. In general, the developed methods are complex and
involve many steps.

Owing to the side-looking sensor [212], SAR produces many linear features, causing
many false alarms in road extraction. In addition, road detection varies with the looking
direction, especially in urban areas (radar shadows). The speckle and speckle filters also
affect the road extraction accuracy. In addition, the roads may appear bright because of the
surrounding structures, instead of appearing as dark lines. Therefore, the road appearance
differs depending on the SAR image resolution. A highly complex image is obtained with
high-resolution data, showing strong geometric effects in urban areas. Therefore, the use of
multiple datasets is often required. Conversely, road detection from SAR is independent
of road surface material; this feature is less pronounced in the optical detection method.
Thus, the fusion of SAR and optical signals can be beneficial.

3.4. Road Extraction Based on LiDAR Data
3.4.1. Main Methods

Ground points and nonground points can be easily distinguished based on pulse
and elevation information in airborne LiDAR data. To classify ground and road/nonroad
areas, intensity information is needed. Roads, such as water surfaces, have low intensity.
In addition to the surface reflectance, the intensity values are affected by atmospheric
attenuation, transmitted power, detection range and incidence angle. Therefore, calibration
is required to apply the methods over large areas. Road detection using intensity is usually
based on the surface homogeneity and consistency of roads. The LiDAR-based methods
for road extraction either use point cloud processing and classification or are based on a
digital surface model (DSM), digital terrain model (DTM) and intensity raster produced
from the point clouds. In some reported studies, the main focus was on data classification,
while in others, a complete road network was extracted.

Point cloud-based automatic road extraction using LiDAR height and intensity was
first proposed by Clode [213]; in this study, a hierarchical classification method was used
to classify point clouds progressively into roads and nonroads. Individual points were
selected based on the height difference to generate a DTM, and the intensity value was
obtained via filtering based on point density and morphological filtering of a binary image.
The method was enhanced in [214], where a phase-coded disk algorithm was introduced to
vectorise the binary road network image. Hu [215] proposed a method for road centreline
extraction using the salient linear features observed in the images of complex urban areas;
in this method, tensor voting was used to eliminate the nonroad areas.

Intensity variations in the road network were considered in [216], where road points
were selected from ground points based on a local intensity distribution histogram and
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filtered by roughness and area. Hui [217] extracted road centrelines using three steps; a
skewness-balancing algorithm was proposed to obtain the intensity threshold. A rotating
neighbourhood algorithm was proposed to extract the main roads (by removing the narrow
roads), and a hierarchical fusion and optimisation algorithm was proposed to extract the
road network. For the three test sites, correctness values of 43–92% and completeness of
36–91% were obtained.

A raster-based road extraction method for grid-structured urban areas was proposed
by Zhao [218]; in this study, the ground objects were classified, road centrelines were
extracted using a total least square line fitting approach, and a voting-based road direction
was used to evaluate each road segment’s reliability by removing areas such as parking
lots from the road segments. For a complete road network extraction, different parts of
the road network such as junctions and bridges need to be considered as well. Chen [219]
proposed an automatic method to detect and delineate road junctions from rasterised ALS
intensity and normalised DSM in three steps: roughness-enhanced Gabor filters for key
point extraction, a higher-order tensor voting algorithm to find the junction candidates,
and a geometric template matching to identify the road junction positions and road branch
directions. A bridge detection algorithm was proposed by Sithole [220]; in this method,
DTM cross-sections, that is, profiles, were used to identify bridges. Moreover, forest road
detection is possible using detailed ALS DSMs.

Road details and complex structures can be extracted from very dense point clouds
as well and modelled. In [221], road points were accurately labelled from a dense point
cloud of an urban area, using an approximate 2D road network map as the input. They
combined both large-scale (snake smoothness) and small-scale (curb detector) cues to
extract roads. The method worked on all types of roads, including tunnels, bridges and
multilevel intersections. In [222], UAV data was used to perform fine-scale road mapping.
Soilan [223] studied the automatic extraction of road features (sidewalks, pavement areas
and road markings) from high-density ALS point clouds.

3D modelling is required for the most complex parts of the road network such as
overpasses and multilevel intersections. The use of LiDAR point clouds to derive 3D
city models was reviewed in [77]. Cheng [160] studied the detailed 3D reconstruction of
multilayer interchange bridges, and satisfactory results were obtained for very complex
bridges.

In several studies, road detection has been carried out as a part of land cover mapping.
Urban land cover mapping by integrating rasterised LiDAR height and intensity data at
the object level was proposed by Zhou [224]; for this method, an accuracy similar to that
of multispectral optical imagery accompanied by ALS DSM was obtained. Matkan [225]
classified the point cloud into five land cover classes using SVM; during the postprocess-
ing, gaps in the road network were located and filled using a method based on Radon
transformation and spline interpolation.

Land cover classification using multispectral ALS (MS-ALS) has been the topic of
several recently reported studies. Even though a complete road network was not extracted,
the road classification results were promising [164,226]. In [226], the point-based classifica-
tion completeness for roads was 86% and 92%. In the raster-based classification, accuracies
of 92% and 86% were obtained. Karila [227] used rasterised MS-ALS data for a typical
road surface (that is, asphalt and gravel) and classified the road types from highways
to cycle ways. Due to the lack of shadows, more complete roads (80.5%) were retrieved
using this method than using the optical aerial images (71.6%). Ekhtari [228] classified
multispectral point clouds into 10 land cover classes using an SVM. Three types of asphalt
and concrete classes were included. In general, slightly better results were obtained when
the classification was carried out in the point cloud domain; however, the computational
costs increased significantly.

Deep learning methods for MS-ALS have been explored in a few recent studies.
Pan [229] used deep learning-based high-level feature presentation (deep Boltzmann
machine) and machine learning methods for land cover classification. Pan [230] proposed
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a CNN-based classification approach for MS-ALS data. The classification accuracy and
computational performance of the constructed CNN model were superior to those of
the classical CNN models. Yu [231] proposed a hybrid capsule network using MS-ALS
data. The data were rasterised based on the elevation, the number of returns and intensity
of the three channels, and an accuracy of 94% was obtained for the road classification.
Dense point clouds from SPL were used for land cover classification in [232]. Due to the
rough appearance of the intensity images created from the SPL data, small features such
as narrow roads were often difficult to distinguish in the intensity images. A summary of
road extraction using LiDAR data is shown in Table 7. Notably, ML-ALC has become the
main approach for road extraction in recent years.

Table 7. Summary of road extraction using LiDAR data.

Method Category Characteristic References Correctness

Hierarchical fusion and optimisation ALS Extract road centreline [217], 2015 0.914
Point-based classification
Raster-based classification MS-ALS Land cover classification [226], 2017 0.920

0.860

Object-based image analysis and random forest MS-ALS road detection and road
surface classification [227], 2017 0.805

Support vector machine MS-ALS Three types of asphalt and a
concrete class [228], 2018 0.947

(Overall accuracy)

Hybrid capsule network MS-ALS Land cover classification [231], 2020 0.979
(Overall accuracy)

3.4.2. Status and Prospects

Airborne LiDAR data are used in the 3D modelling of city road networks [77]. ALS
provides direct 3D information for road extraction and is less affected by occlusions and
shadows than do optical data. In addition, ALS provides 3D road information with ele-
vation; this is especially useful in complex interchange areas. However, the area covered
during the flight considerably limits the automatic road extraction process using ALS.
Extensive investigations are still required to address the underlying issues, i.e., the de-
velopment of fully automatic algorithms suitable for various landscape and road types,
application of intensity data over large areas, reducing the number of false positives (car
parks, squares, playgrounds, etc.) and identifying as well as connecting road segments
shadowed by occlusions (e.g., trees and vehicles). Road markings must be taken into con-
sideration in VHR. The national ALS datasets provide a good basis for mapping; however,
these datasets are seldom updated. LiDAR sensors mounted on mobile mapping systems,
UAVs or VHR satellite imaging instrument can be used for map updating. In addition,
the new MS-ALS data [227,228] and new dense point clouds created by collecting single
photons enable the automatic detection of roads with higher accuracy.

4. Combination of Multisource Data for Road Extraction

4.1. Combination of High-Resolution Images with Other Data for Road Extraction

High-resolution images reveal very fine details of the earth’s surface and geometry;
however, high-resolution imaging also increases the geometric noise and only provides
spectral and spatial information on the surface. LiDAR data, as a special data source, can
provide 3D information about objects. Tiwari et al. [233] proposed automatic road extrac-
tion methods through an integrated approach involving ALS altimetry and high-resolution
imaging. The method was used to extract road information without background objects,
and showed an increased road extraction accuracy of 90% when applied to Amsterdam
data. Hu et al. [234] proposed a grid-structured urban road network extraction method
using LiDAR data and high-resolution imagery. A significant improvement in the road
extraction accuracy was obtained using this method than using high-resolution imagery or
LiDAR data. Zhang et al. [235] proposed a method to improve the accuracy of road centre-
line extraction using high-resolution images and LiDAR data. The method adopted the
minimum area bounding rectangle-based interference-filling approach, multistep approach
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and Harris corner detection. The experimental results based on the datasets of Vaihingen,
New York, and Guangzhou showed that the proposed method was efficient in identifying
complex scenes.

4.2. Combination of Hyperspectral Images with Other Data for Road Extraction

Feng et al. [236] fused hyperspectral images and LiDAR data to map urban land
use using a state-of-the-art CNN. To improve the speed of the network design, the same
structure was used in both the hyperspectral and LiDAR branches. Each branch used a
residual block to extract multiscale, parallel, and hierarchical features. The experimental
results underlined the efficient road extraction performance of the proposed method. When
only hyperspectral images and LiDAR data were used, the highway classification accuracies
were found to be 65.35% and 42.08%, respectively. However, this highway classification
accuracy increased to 80.89% when fused data was used. Elaksher et al. [237] combined
the LiDAR-based hyperspectral images obtained from the AVIRIS and DEM. First, a vector
layer of polygons was constructed using the DEM data. Second, the buildings in the
hyperspectral images were removed, and then the road and water were classified using a
supervised classifier. The experimental results demonstrated that the performance of this
classification process could be improved by using LiDAR data to remove the buildings
from the hyperspectral image before the classification. The detection rate of the road was
91.3%, and the false alarm rate was 0. Two examples of multiple remote sensing data fusion
are presented in [238]. One is the fusion of hyperspectral images with SAR images; this
fused data can improve the detection accuracy of the target. The other is the fusion of
hyperspectral images with high-resolution images. The spatial–spectral information of
the target was fully analysed using the two combined data sources, and the identification
accuracy was improved considerably.

4.3. Combination of SAR Images with Other Data for Road Extraction

Several studies have been published on the fusion of optical imagery and SAR
data. Cao [239] proposed road extraction via the fusion of infrared and SAR images.
Lin et al. [240] compared multiple remote sensing datasets (Spot5, IKONOS, QuickBird,
DMC and airborne SAR datasets) and algorithms. Road trackers were designed for five
different road types: national highways, interstate highways, railroads, avenues and lanes.
Evidently, fused multiple remote sensing data were more efficient than a single data source.
Perciano et al. [241] fused TerraSAR-X and QuickBird data for road network extraction at
two test sites, and the road extraction accuracy for the fused data was 10–30% higher than
those obtained for individual datasets. Multitemporal SAR image stacks (TSX and CSK)
were also studied. Bartsch et al. [242] studied the arctic settlements using Sentinel-2 optical
and Sentinel-1 SAR satellite images. Pixel-based classification using a gradient boosting
machine and a deep learning approach based on windowed semantic segmentation using
U-Net architecture were compared. Asphalt roads were easily detected than gravel roads,
and for arctic mapping, both methods and sensors were recommended. Liu et al. [243] stud-
ied urban area mapping using Sentinel-1 SAR and Sentinel-2 optical data and proposed the
integration of object-based postclassification refinement and CNNs for land cover mapping.
Notably, for road mapping, SAR backscattering provided different physical information on
roads (low backscatters) than that provided by optical remote sensing; moreover, the roads
were identified with higher accuracy by combining the optical data with that of the SAR.
Lin et al. [244] extracted impervious surfaces using optical, SAR and LiDAR DSM data. The
non-shadow and shadow classes were trained using the combined optical–SAR–LiDAR
data. As a result, the shadow effects in the classification results were reduced.

4.4. Combination of LiDAR with Other Data for Road Extraction

Aerial imaging cameras are often accompanied by LiDAR sensors in airborne mapping
systems. Thus, it is common to fuse LiDAR point clouds and optical aerial imagery. In
addition, optical satellite data are used as well. In particular, additional colour information
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is useful for single-channel LiDAR. Segmentation of the input imagery is often performed
to enable object-based fusion of the datasets.

Kim [245] proposed a method to improve the classification of urban areas by fusing
high-resolution satellite images (WorldView-2) and ALS data. Special attention was paid to
the elevated roads, which were first detected in LiDAR ground points. Then, buildings
were detected, and supervised SVM classification was performed on areas without elevated
roads or buildings. Liu [246] proposed a road extraction framework based on the fusion of
ALS point clouds and aerial imagery; in this framework, pseudo scan lines were created
from the fused data, and a rule-based edge-clustering algorithm was used to extract the road
segments. Mendes classified road regions using an ANN by integrating aerial RGB (where
R is red, G is green and B is blue) images, laser intensity and height images. Compared
to the use of optical data alone, incorporating the laser intensity data helped to overcome
the road obstructions caused by shadows and trees, and the height information helped
in separating the aboveground objects from the ground objects. Zhang [235] proposed
an object-based method for road centreline extraction from aerial images and ALS DSMs;
using this method, a completeness and correctness of over 90% was obtained for two of
the test data sets, and a completeness and correctness of over 80% was obtained for a third
large site. Further developments were proposed for curved roads.

4.5. Some Scopes of Future Research in Road Extraction

A summary of road extraction based on different data sources is presented in Table 8.
Some prospects can be derived based on the status of current road extraction from high-
resolution images. First, data-driven road extraction methods exhibit excellent performance
and high extraction accuracy [34]. Therefore, more robust data-driven methods should
be developed and verified using different datasets. In addition, it is difficult to obtain
high detection accuracy using only one algorithm in some cases; therefore, a combination
of multiple road extraction methods must be studied [247]. Finally, the combination of
data sources (e.g., hyperspectral, SAR and LiDAR) should be evaluated further. Spatial
resolution is one of the most important factors affecting the performance of road extraction
methods. High-spatial-resolution images can describe fine objects in detail. However, this
increases the spectral variability within the class [248]. Wang et al. [249] demonstrated that
images with a spatial resolution of 0.5 m had higher accuracy than those with a spatial
resolution of 0.1 m. Data-driven methods show higher road extraction accuracy with
improved spatial resolution than do the traditional heuristic methods [34,71].

Table 8. Summary of road extraction based on different data sources.

Data
Resolution/

Mapping Unit
Extent Advantages Roads Extracted Mostly by

High spatial resolution
[71], 2020 0.5–10 m Local/regional/global Most tools available,

“basic” software Colour, texture

Hyperspectral [198], 2019 0.25–30 m/
(>100 channels) Local/regional Spectral information Colour, texture and spectral

features

SAR [72], 2014 1–10 m Local/regional/global See through clouds, rapid
mapping Linear features/edge

ALS [75], 2017 0.25–2 m Local (nationwide) Height information 3D geometry
(intensity)

It is necessary to continue to study road extraction from airborne hyperspectral
images [80]. In addition, new road extraction methods based on hyperspectral images
should be developed. In particular, the advantages of a large number of bands and
continuous spectrum coverage of hyperspectral images should be further exploited, and
new data-driven methods should be proposed [250]. Finally, hyperspectral image datasets
with a wide coverage area and road labels should be produced to promote the road
extraction application of hyperspectral data.
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Recently, the open-access global SAR satellite datasets (Sentinel-1) have enabled the
mapping and monitoring of large areas. However, the resolution of this method is limited.
Microsatellite constellations can acquire large amounts of very-high-resolution data with
higher frequency; however, this aspect has not been studied in detail. For ALS, deep
learning methods [251] for image classification are rapidly emerging, followed by methods
for earth observation. Publicly available open training datasets acquired by the earth
observation satellite are being used for road extraction. The highest accuracies for road
classification have been reported using deep neural network algorithms. However, these
studies cover limited areas where they perform relatively well, but no large-scale tests have
been conducted yet.

5. Conclusions

High-resolution and hyperspectral images have been widely used in digital road
network extraction. More satellites with high spatial resolution and short revisit periods
are being developed and launched, promoting the development of heuristic and data-
driven road extraction methods. However, few of these hyperspectral satellite data can be
used for road extraction. Therefore, airborne systems are still the main approach for the
acquisition of hyperspectral data [80,252]. Data-driven methods have high accuracy and
show significant potential; however, transfer learning needs to be improved. In addition,
the combination of high-resolution image data with other data sources such as LiDAR is
one feasible approach to solve some challenging issues such as occlusion or shadows.

Large areas can be rapidly mapped using weather-independent spaceborne SAR im-
ages; for example, images acquired after sudden changes in the target area. In addition,
global datasets enable global mapping. However, the roads are challenging to interpret
because of the interaction of the signal with the surrounding areas. ALS provides excellent
data for the generation of topographic databases and detailed mapping of limited areas.
Multispectral ALS may be the best remote sensing data source for road mapping; how-
ever, only small areas are covered at a time in this case. Further studies are required for
developing sensors for various landscapes and road types; moreover, fully automated road
detection is still in its infancy.

High-resolution imaging, hyperspectral imaging, SAR imaging, and LiDAR are cur-
rently the primary techniques for road extraction. As shown in Table 8, different data
sources have unique characteristics. For example, high-resolution images have high spatial
resolution and contain rich textures, shapes, structures, and neighbourhood relations of
ground objects. Hyperspectral images have multiple data dimensions and rich spectral
features. In addition, SAR imaging and LiDAR are less affected by external environmental
factors such as clouds, fog, and light and can operate in all weather conditions. Combining
different remote sensing data to use their respective advantages is a notable approach for
developing advanced road extraction methods in the future.
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