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University in 2007. Same year, he joined SUNY at Albany, as a postdoctoral researcher. Between 2009

and 2011, he was a research associate at the National Oceanic and Atmospheric Administration Center

of CUNY, USA. Until 2017, he took roles in interdisciplinary projects at universities, including the

University of Texas and Carnegie Mellon University. Until 2016, he was the chair of IEEE Pittsburgh

signal processing and control systems societies. Since 2017, he has been an Assistant Professor at the

electrical and electronic engineering department of the Antalya Bilim University. He is a member of

the editorial board of Entropy, inventor in two US patents, recipient of NATO research fellowship,

general chair of the first ECEA and one of the organizers of MaxEnt 2007. His research interests

include statistical signal processing, Bayesian inference, uncertainty modeling and causality.

vii





entropy

Editorial

Transfer Entropy

Deniz Gençağa ID
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Statistical relationships among the variables of a complex system reveal a lot about its physical
behavior. Therefore, identification of the relevant variables and characterization of their interactions
are crucial for a better understanding of a complex system. Correlation-based techniques have been
widely utilized to elucidate the linear statistical dependencies in many science and engineering
applications. However, for the analysis of nonlinear dependencies, information-theoretic quantities,
such as Mutual Information (MI) and the Transfer Entropy (TE), have been proven to be superior.
MI quantifies the amount of information obtained about one random variable, through the other
random variable, and it is symmetric. As an asymmetrical measure, TE quantifies the amount of
directed (time-asymmetric) transfer of information between random processes and therefore is related
to the measures of causality.

In the literature, the Granger causality has been addressed in many fields, such as biomedicine,
atmospheric sciences, fluid dynamics, finance, and neuroscience. Despite its success in the
identification of couplings between the interacting variables, the use of structural models restricts its
performance. Unlike Granger causality, TE is a quantity that is directly estimated from data and it
does not suffer from such constraints. In the specific case of Gaussian distributed random variables,
equivalence between TE and Granger causality has been proven.

The estimation of TE from data is a numerically challenging problem. Generally, this estimation
depends on accurate representations of the probability distributions of the relevant variables.
Histogram and kernel estimates are two common ways of estimating probability distributions from
data. TE can be expressed in terms of other information-theoretic quantities, such as Shannon entropy
and MI, which are functions of the probability distributions of the variables. Therefore, it is prone
to errors due to the approximations of probability distributions. Moreover, many TE estimation
techniques suffer from the bias effects arising from the algebraic sums of other information-theoretic
quantities. Thus, bias correction has been an active research area for better estimation performance.
Methods such as Symbolic TE and the Kraskov-Stögbauer-Grassberger (KSG) algorithm are among
the other techniques used to estimate TE from data. The efficient estimation of TE is still an active
research area.

Most of these techniques have been proposed to solve specific problems in diverse applications.
Hence, a method proposed for the solution of one application might not be the best for another. This
Special Issue has been organized to collect distinctive approaches in one publication, as a reference
tool for the theory and applications of TE.

The contributions are categorized into two sections: the methods and the applications.

Entropy 2018, 20, 288; doi:10.3390/e20040288 www.mdpi.com/journal/entropy1
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1. Methods and Theory

The first section begins with the presentation of a recipe to estimate the information flow in
dynamical systems [1]. In their work, Gencaga et al. propose a Bayesian approach to estimate TE and
apply a set of methods together as an accuracy cross-check to provide a reliable mathematical tool for
any given dataset. The work of Zhu et al. [2] proposes a k-Nearest Neighbor approach to estimate TE
and demonstrates its effectiveness as an extension of the KSG MI estimator.

The methodological section continues with the analytical derivations of the TE expressions for a
class of non-Gaussian distributions. Here, Jafari-Mamaghani and Tyrcha [3] provide the expressions of
TE in the cases of multivariate exponential, logistic, Pareto (Type I-IV), and Burr distributions. Next,
Nichols et al. elaborate on the linearized TE for continuous and coupled second-order systems and
they derive an analytical expression for time-delayed transfer entropy (TDTE) [4]. They conclude
with an alternative interpretation of TE, which can be viewed as a measure of the ability of a given
system component to predict the dynamics of another. Coupling between random processes is also
explored by Hahs and Pethel [5], where the TE is computed over multiple time lags for multivariate
Gaussian autoregressive processes. In two examples, they demonstrate the change in TE as a response
of variations in the correlation and coupling coefficient parameters. The case of coupling dynamics
with time-varying dependencies is investigated by Gómez-Herrero et al. [6] if access to an ensemble of
independent repetitions of time series is available. They estimate combinations of entropies and detect
time-varying information flow between dynamical systems using the ensemble members.

The relation between Granger causality and directed information theory is discussed next in the
review paper of Amblard and Michel [7], in which they focus on conditional independence and causal
influences between stochastic processes. In addition to the link between directed information and
hypothesis testing, instantaneous dependencies are emphasized to be different than dependencies on
past values.

The next two papers demonstrate two new interpretations of TE. First, motivated by the relativistic
effects on the observation of information dynamics, Lizier and Mahoney bring a new explanation of a
local framework for information dynamics [8]. Second, Prokopenko et al. present a thermodynamic
interpretation of TE near equilibrium and emphasize the nuance between TE and causality [9].
The methodological section ends with the comparisons of Papana et al. where they study direct
causality measures in multivariate time series by simulations. The authors compare measures such as
the conditional Granger causality index, partial Granger causality index, partial directed coherence,
partial TE, partial symbolic TE, and partial MI on mixed embedding. Simulations include stochastic
and chaotic dynamical systems with different embedding dimensions and time series lengths [10].

2. Applications

In this section, we present six contributions on the applications of TE. In the first paper, Faes
et al. introduce a tool for reliably estimating information transfer in physiological time series using
compensated TE [11]. This tool provides a set of solutions to the problems arising from the high
dimensionality and small sample size, which are frequently encountered in entropy estimations of
cardiovascular and neurological time series. Next, Materassi et al. elucidate a different normalized TE
and use it to detect the verse of energy flux transfer in a synthetic model of fluid turbulence, namely the
Gledzer-Ohkitana-Yamada shell model [12]. They emphasize the superior performance compared to
those of the traditional methods. Applications continue with a paper on network inference by Ai [13].
The author addresses a TE-based framework to quantify the relationships among topological measures
and provides a general approach to infer a drive-response structure in a complex network. This work
is followed by two financial applications. The first contribution is authored by Li et al., in which a
TE-based method is developed to determine the interbank exposure matrix between banks and the
stability of the Chinese banking system is evaluated by simulating the risk contagion process [14].
In the second application, Sandoval Jr. uses the stocks of the 197 largest companies in the world and
explores their relationships using TE [15]. This Special Issue ends with the presentation of the theory
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and applications of the Liang-Kleeman information flow [16]. Here, Liang points out the importance
of information flow as a potential measure of the cause and effect relation between dynamical events
and presents applications on the Baker transformation, Henon map, truncated Burgers-Hopf system,
and Langevin equation.

This Special Issue demonstrates the importance of information-theoretic quantities in the analysis
of the statistical dependencies between the variables of a complex system. Unlike correlation and MI,
TE is shown to be effective for the detection of directional interactions, which are closely related to cause
and effect relationships. The examples demonstrate the difficulties in estimating information-theoretic
quantities from data and present approaches to overcome these problems.

In this Special Issue, we have collected 16 outstanding papers by the experts in the field.
I would like to express our special thanks to each researcher and anonymous referee for their
invaluable contributions. I would also like to thank the Editor-in-Chief, Prof. Kevin H. Knuth,
for his encouragement during the organization of this Special Issue. My grateful thanks are also
extended to the members of the editorial board and the editorial assistants of the Entropy Journal for
their support. Last, but not least, I would like to thank MDPI Books for giving me the opportunity to
publish this Special Issue.

We are excited to present this Special Issue as a reference for the theory and applications of
transfer entropy and we hope that this publication contributes to novelties in all disciplines of research
and development.

Acknowledgments: We express our thanks to the authors of the above contributions, and to the journal Entropy
and MDPI for their support during this work.

Conflicts of Interest: The author declares no conflict of interest.
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Abstract: Information-theoretic quantities, such as entropy and mutual information (MI), can be
used to quantify the amount of information needed to describe a dataset or the information shared
between two datasets. In the case of a dynamical system, the behavior of the relevant variables
can be tightly coupled, such that information about one variable at a given instance in time may
provide information about other variables at later instances in time. This is often viewed as a
flow of information, and tracking such a flow can reveal relationships among the system variables.
Since the MI is a symmetric quantity; an asymmetric quantity, called Transfer Entropy (TE), has
been proposed to estimate the directionality of the coupling. However, accurate estimation of
entropy-based measures is notoriously difficult. Every method has its own free tuning parameter(s)
and there is no consensus on an optimal way of estimating the TE from a dataset. We propose a
new methodology to estimate TE and apply a set of methods together as an accuracy cross-check to
provide a reliable mathematical tool for any given data set. We demonstrate both the variability in TE
estimation across techniques as well as the benefits of the proposed methodology to reliably estimate
the directionality of coupling among variables.

Keywords: transfer entropy; information flow; statistical dependency; mutual information; Shannon
entropy; information-theoretical quantities; Lorenz equations

PACS: 89.70.Cf; 02.50.-r; 89.70.-a; 05.10.-a; 02.50.Cw

1. Introduction

Complex dynamical systems consisting of nonlinearly coupled subsystems can be found in many
application areas ranging from biomedicine [1] to engineering [2,3]. Teasing apart the subsystems
and identifying and characterizing their interactions from observations of the system’s behavior can
be extremely difficult depending on the magnitude and nature of the coupling and the number of
variables involved. In fact, the identification of a subsystem can be an ill-posed problem since the
definition of strong or weak coupling is necessarily subjective.

The direction of the coupling between two variables is often thought of in terms of one variable
driving another so that the values of one variable at a given time influence the future values of the other.
This is a simplistic view based in part on our predilection for linear or “intuitively understandable”
systems. In nonlinear systems, there may be mutual coupling across a range of temporal and spatial
scales so that it is impossible to describe one variable as driving another without specifying the
temporal and spatial scale to be considered.

Entropy 2015, 17, 438–470; doi:10.3390/e17010438 www.mdpi.com/journal/entropy5
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Even in situations where one can unambiguously describe one variable as driving another,
inferring the actual nature of the coupling between two variables from data can still be misleading
since co-varying variables could reflect either a situation involving coupling where one variable drives
another with a time delay or a situation where both variables are driven by an unknown third variable
each with different time delays. While co-relation (we use the term co-relation to describe the situation
where there is a relationship between the dynamics of the two variables; this is to be distinguished
from correlation, which technically refers only to a second-order statistical relationship) cannot imply
causality [4], one cannot have causality without co-relation. Thus co-relation can serve as a useful
index for a potential causal interaction.

However, if past values of one variable enable one to predict future values of another variable,
then this can be extremely useful despite the fact that the relationship may not be strictly causal.
The majority of tests to identify and quantify co-relation depend on statistical tests that quantify
the amount of information that one variable provides about another. The most common of these
are based on linear techniques, which rely exclusively on second-order statistics, such as correlation
analysis and Principal Component Analysis (PCA), which is called Empirical Orthogonal Functions
(EOFs) in geophysical studies [5]. However, these techniques are insensitive to higher-order nonlinear
interactions, which can dominate the behavior of a complex coupled dynamical system. In addition,
such linear methods are generally applied by normalizing the data, which implies that they do not
depend on scaling effects.

Information-theoretic techniques rely on directly estimating the amount of information contained
in a dataset and, as such, rely not only on second-order statistics, but also on statistics of higher
orders [6]. Perhaps most familiar is the Mutual Information (MI), which quantifies the amount of
information that one variable provides about another variable. Thus MI can quantify the degree
to which two variables co-relate. However, since it is a symmetric measure MI cannot distinguish
potential directionality, or causality, of the coupling between variables [7].

The problem of finding a measure that is sensitive to the directionality of the flow of information
has been widely explored. Granger Causality [8] was introduced to quantify directional coupling
between variables. However, it is based on second-order statistics, and as such, it focuses on
correlation, which constrains its relevance to linear systems. For this reason, generalizations to quantify
nonlinear interactions between bi-variate time-series have been studied [9]. Schreiber proposed an
information-theoretic measure called Transfer Entropy (TE) [7], which can be used to detect the
directionality of the flow of information. Transfer Entropy, along with other information-based
approaches, is included in the survey paper by Hlavackova-Schindler et al. [10] and differentiation
between the information transfer and causal effects are discussed by Lizier and Propenko [11]. Kleeman
presented both TE and time-lagged MI as applied to ensemble weather prediction [12]. In [13], Liang
explored the information flow in dynamical systems that can be modeled by equations obtained by the
underlying physical concepts. In such cases, the information flow has been analyzed by the evolution
of the joint probability distributions using the Liouville equations and by the Fokker-Planck equations,
in the cases of the deterministic and stochastic systems, respectively [13].

TE has been applied in many areas of science and engineering, such as neuroscience [1,14],
structural engineering [2,3], complex dynamical systems [15,16] and environmental engineering [17,18].
In each of these cases, different approaches were used to estimate TE from the respective datasets.
TE essentially quantifies the degree to which past information from one variable provides information
about future values of the other variable based solely on the data without assuming any model
regarding the dynamical relation of the variables or the subsystems. In this sense TE is a non-parametric
method. The dependency of the current sample of a time series on its past values is formulated by kth

and lth order Markov processes in Schreiber [7] to emphasize the fact that the current sample depends
only on its k past values and the other process’s past l values. There also exist parametric approaches
where the spatio-temporal evolution of the dynamical system is explicitly modeled [15,16]. However,
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in many applications it is precisely this model that we would like to infer from the data. For this
reason, we will focus on non-parametric methods.

Kaiser and Schreiber [19], Knuth et al. [20], and Ruddell and Kumar [17,18] have expressed the
TE as a sum of Shannon entropies [21]. In [17,18], individual entropy terms were estimated from
the data using histograms with bin numbers chosen using a graphical method. However, as we
discuss in Appendix A1, TE estimates are sensitive to the number of bins used to form the histogram.
Unfortunately, it is not clear how to optimally select the number of bins in order to optimize the
TE estimate.

In the literature, various techniques have been proposed to efficiently estimate
information-theoretic quantities, such as the entropy and MI. Knuth [22] proposed a Bayesian
approach, implemented in Matlab and Python and known as the Knuth method, to estimate the
probability distributions using a piecewise constant model incorporating the optimal bin-width
estimated from data. Wolpert and Wolf [23] provided a successful Bayesian approach to estimate the
mean and the variance of entropy from data. Nemenman et al. [24] utilized a mixture of Dirichlet
distributions-based prior in their Bayesian Nemenman, Shafee, and Bialek (NSB) entropy estimator.
In another study, Kaiser and Schreiber [19] give different expressions for TE as a summation and
subtraction of various (conditional/marginal/joint) Shannon entropies and MI terms. However,
it has been pointed out that summation and subtraction of information-theoretic quantities can result
in large biases [25,26]. Prichard and Theiler [25] discuss the “bias correction” formula proposed
by Grassberger [27] and conclude that it is better to estimate MI utilizing a “correlation integral”
method by performing a kernel density estimation (KDE) of the underlying probability density
functions (pdfs). KDE tends to produce a smoother pdf estimate from data points as compared to its
histogram counterpart. In this method, a preselected distribution of values around each data point
is averaged to obtain an overall, smoother pdf in the data range. This preselected distribution of
values within a certain range, which is known as a “kernel”, can be thought of as a window with
a bandwidth [28]. Commonly-used examples of kernels include “Epanechnikov”, “Rectangular”,
and “Gaussian” kernels. Prichard and Theiler showed that pdf models obtained by KDE can be
utilized to estimate entropy [25] and other information theoretic quantities, such as the generalized
entropy and the Time Lagged Mutual Information (TLMI), using the correlation integral and its
approximation through the correlation sums [7]. In [25], Prichard and Theiler demonstrated that
the utilization of correlation integrals corresponds to using a kernel that is far from optimal, also
known as the “naïve estimator” described in [28]. It is also shown that the relationship between the
correlation integral and information theoretic statistics allows defining “local” versions of many
information theoretical quantities. Based on these concepts, Prichard and Theiler demonstrated
the interactions among the components of a three-dimensional chaotic Lorenz model with a fractal
nature [25]. The predictability of the dynamical systems, including the same Lorenz model have been
explored by Kleeman in [29,30], where a practical approach for estimating entropy was developed for
dynamical systems with non-integral information dimension.

In the estimation of information-theoretical quantities, the KDE approach requires estimation of
an appropriate radius (aka bandwidth or rectangle kernel width) for the estimation of the correlation
integral. In general cases, this can be accomplished by the Garassberger-Procaccia algorithm,
as in [31,33]. In order to compute the TE from data using a KDE of the pdf, Sabesan and colleagues
proposed a methodology to explore an appropriate region of radius values to be utilized in the
estimation of the correlation sum [14].

The TE can be expressed as the difference between two relevant MI terms [19], which can
be computed by several efficient MI estimation techniques using variable bin-width histograms.
Fraser and Swinney [34] and Darbellay and Vajda [35] proposed adaptive partitioning of the
observation space to estimate histograms with variable bin-widths thereby increasing the accuracy of
MI estimation. However, problems can arise due to the subtraction of the two MI terms as described
in [19] and explained in [25,26].

7
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Another adaptive and more data efficient method was developed by Kraskov et al. [36] where MI
estimations are based on k-nearest neighbor distances. This technique utilizes the estimation of smooth
probability densities from the distances between each data sample point and its k-th nearest neighbor
and as well as bias correction to estimate MI. It has been demonstrated [36] that no fine tuning of
specific parameters is necessary unlike the case of the adaptive partitioning method of Darbellay and
Vajda [35] and the efficiency of the method has been shown for Gaussian and three other non-Gaussian
distributed data sets. Herrero et al. extended this technique to TE in [37] and this has been utilized in
many applications where TE is estimated [38,40] due to its advantages.

We note that a majority of the proposed approaches to estimate TE rely on its specific parameter(s)
that have to be selected prior to applying the procedure. However, there are no clear prescriptions
available for picking these ad hoc parameter values, which may differ according to the specific
application. Our main contribution is to synthesize three established techniques to be used together to
perform TE estimation. With this composite approach, if one of the techniques does not agree with
the others in terms of the direction of information flow between the variables, we can conclude that
method-specific parameter values have been poorly chosen. Here, we propose using three methods to
validate the conclusions drawn about the directions of the information flow between the variables,
as we generally do not possess a priori facts about any physical phenomenon we explore.

In this paper, we propose an approach that employs efficient use of histogram based methods,
adaptive partitioning technique of Darbellay and Vajda, and KDE based TE estimations, where fine
tuning of parameters is required. We propose a Bayesian approach to estimate the width of the bins in
a fixed bin-width histogram method to estimate the probability distributions from data.

In the rest of the paper, we focus on the demonstration of synthesizing three established techniques
to be used together to perform TE estimation. As the TE estimation based on the k-th nearest neighbor
approach of Kraskov et al. [36] is demonstrated to be robust to parameter settings, it does not require
fine tunings to select parameter values. Thus it has been left for future exploration, as our main goal is
to develop a strategy for the selection of parameters in the case of non-robust methods.

The paper is organized as follows. In Section 2, background material is presented on the three
TE methods utilized. In Section 3, the performance of each method is demonstrated by applying it to
both a linearly coupled autoregressive (AR) model and the Lorenz system equations [41] in both the
chaotic and sub-chaotic regimes. The latter represents a simplified model of atmospheric circulation in
a convection cell that exhibits attributes of non-linear coupling, including sensitive dependence on
model parameter values that can lead to either periodic or chaotic variations. Finally conclusions are
drawn in Section 4.

2. Estimation of Information-Theoretic Quantities from Data

The Shannon entropy:
H(X) = − ∑

x∈X
p(x) log p(x) (1)

can be used to quantify the amount of information needed to describe a dataset [21]. It can be thought
of as the average uncertainty for finding the system at a particular state “x” out of a possible set of
states “X”, where p(x) denotes the probability of that state.

Another fundamental information-theoretic quantity is the mutual information (MI), which is
used to quantify the information shared between two datasets. Given two datasets denoted by X and
Y, the MI can be written as:

MI(X, Y) = ∑
x∈X

∑
x∈Y

p(x, y) log
p(x, y)

p(x)p(y)
(2)
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This is a special case of a measure called the Kullback-Leibler divergence, which in a more general
form is given by:

Dp||q = ∑
x∈X

p(x) log
p(x)
q(x)

(3)

which is a non-symmetric measure of the difference between two different probability distributions
p(x) and q(x). We can see that in Equation (2), the MI represents the divergence between the joint
distribution p(x,y) of variables x and y and the product p(x)p(y) of the two marginal distributions.
The MI is a symmetric quantity and can be rewritten as a sum and difference of Shannon entropies by:

MI(X, Y) = H(X) + H(Y)− H(X, Y) (4)

where H(X,Y) is the joint Shannon entropy [21,42].
To define the transfer entropy (TE), we assume that there are two Markov processes such that

the future value of each process either depends only on its past samples or on both its past samples
and the past samples of the other process. Thus, the TE is defined as the ratio of the conditional
distribution of one variable depending on the past samples of both processes versus the conditional
distribution of that variable depending only on its own past values [7]. Thus the asymmetry of TE
results in a differentiation of the two directions of information flow. This is demonstrated by the
difference between Equation (5a), which defines the transfer entropy in the direction from X to Y and
Equation (5b), which defines the transfer entropy in the direction from Y to X:

TEXY = T
(

Yi+1

∣∣∣Y(k)
i , X

(l)
i

)
= ∑

yi+1,y(k)i ,x(l)i

p
(

yi+1, y
(k)
i , x

(l)
i

)
log2

p
(

yi+1|y(k)
i , x

(l)
i

)
p
(

yi+1|y(k)
i

) (5a)

TEYX = T
(

Xi+1

∣∣∣X(k)
i , Y

(l)
i

)
= ∑

xi+1,x(k)i ,y(l)i

p
(

xi+1, x
(k)
i , y

(l)
i

)
log2

p
(

xi+1|x(k)i , y
(l)
i

)
p
(

xi+1|x(k)i

) (5b)

where x
(k)
i = {xi, . . . , xi−k+1} and y

(l)
i = {yi, . . . , yi−l+1} are past states, and X and Y are kth and lth

order Markov processes, respectively, such that X depends on the k previous values and Y depends on
the l previous values. In the literature, k and l are also known as the embedding dimensions [33]. As an
example, Equation (5b) describes the degree to which information about Y allows one to predict future
values of X. Thus, the TE can be used as a measure to quantify the amount of information flow from
the subsystem Y to the subsystem X. TE, as a conditional mutual information, can detect synergies
between Y and X(k) in addition to removing redundancies [43,44]. In the following sections, we briefly
introduce three methods used in the literature to estimate the quantities in Equation (5a) from data.

2.1. Fixed Bin-Width Histogram Approaches

To estimate the quantities in Equation (5a), conditional distributions are generally expressed in
terms of their joint counterparts as in:

TEYX = T
(

Xi+1

∣∣∣X(k)
i , Y

(l)
i

)
= ∑

xi+1,x(k)i ,y(l)i

p
(

xi+1, x
(k)
i , y

(l)
i

)
log2

p
(

xi+1, x
(k)
i , y

(l)
i

)
p
(

x
(k)
i

)
p
(

xi+1, x
(k)
i

)
p
(

x
(k)
i , y

(l)
i

) (6)

In this sense, the TE estimation problem can be cast as a problem of density estimation from
data. One of the most straightforward approaches to density estimation is based on histogram
models [28,45]. However, histograms come with a free parameter—the number of bins. Unfortunately,
the estimation of entropy-based quantities varies dramatically as the number of bins is varied.
Numerous methods to identify the number of bins that optimally describes the density of a data set

9
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have been published [45,46]. However, most of these techniques assume that the underlying density is
Gaussian. In this paper, we rely on a generalization of a method introduced by Knuth [20,22], which we
refer to as the Generalized Knuth method. In this method, each of N observed data points is placed
into one of M fixed-width bins, where the number of bins is selected utilizing a Bayesian paradigm.
If the volume and the bin probabilities of each multivariate bin are denoted by V and πi for the ith bin,
respectively, then the likelihood of the data is given by the following multinomial distribution:

p(d|M, π) =

(
M
V

)N
π

n1
1 πn2

2 . . . π
nM
M (7)

where d = [d1,d2, . . . ,dN] denote the N observed data points, n1,n2, . . . ,nN denote the number of data
samples in each bin and π = [π1, π2, . . . , πM] denote the bin probabilities. Given M bins and the
normalization condition that the integral of the probability density equals unity, we are left with
M-1 bin probabilities, denoted by π1, π2, . . . , πM−1. The normalization condition requires that
πM = (1 − ∑M−1

i=1 πi) [22]. The non-informative prior [20] is chosen to represent the bin probabilities:

p(π|M) =
Γ
(

M
2

)
Γ
(

1
2

)M

[
π1, π2, . . . , πM−1,

(
1 −

M−1

∑
i=1

πi

)]−1
2

(8)

which is a Dirichlet prior conjugate to the multinomial likelihood function and Γ denotes the Gamma
function [56]. The non-informative uniform prior models a priori belief regarding the number of bins
where C denotes the maximum number of bins considered:

p(M) =

{
C−1, 1 ≤ M ≤ C

0, otherwise
(9)

The posterior distribution of the bin probabilities and the bin numbers are given by Bayes
theorem, which is written here as a proportionality where the Bayesian evidence, p(d) is the implicit
proportionality constant:

p(π, M|d) ∝ p(π|M)p(M)p(d|π, M) (10)

Since the goal is to obtain the optimal number of constant-width bins one can marginalize over
each of the bin probabilities resulting in the posterior of the bin number, which can be logarithmically
written as follows [22]:

log p(M|d) = N log M + log Γ
(

M
2

)
− M log Γ

(
1
2

)
− log Γ

(
N +

M
2

)
+

M

∑
i=1

log Γ
(

ni +
M
2

)
+ K (11)

where K is a constant. To find the optimal number of bins, the mode of the posterior distribution in
Equation (11) is estimated as follows:

M̂ = max
M

{log p(M|d)} (12)

In Appendix II, we present the performance of entropy estimation based on the selection of the
Dirichlet exponent, chosen as 0.5 in Equation (8). Below, we generalize this exponent of the Dirichlet
prior to relax the constraint as follows:

p(π|M) =
Γ(∑M

i=1 Mβ)

Γ(β)M

[
π1, π2, . . . , πM−1,

(
1 −

M−1

∑
i=1

πi

)]β−1

(13)

In the literature, the prior in Equation (13) has been utilized to estimate the discrete entropy given
by Equation (1), where the number of bins are assumed to be known, whereas here, we try to approximate
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a continuous pdf, thus the entropy, using a piecewise-constant model, where the number of bins is not
known. In these publications, the main concern is to estimate Equation (1) as efficiently as possible for
a small number of data samples. Different estimators have been named. For example, the assignment
of β = 0.5 results in the Krichevsky-Trofimov estimator and the assignment of β = 1

M results in
the Schurman-Grassberger estimator [23,24]. Here, we aim to approximate the continuous-valued
differential entropy of a variable shown by using finite-precision data:

h(X) = −
∫

p̂(x)log
[

p̂(x)
m(x)

]
dx (14)

Using the same prior for the number of bins in Equation (9) and the procedures given by
Equation (10) through Equation (12), the marginal posterior distribution of the bin numbers under the
general Dirichlet prior Equation (13) is given by:

log p(M|d) = N log M + log Γ(Mβ)− M log Γ(β)− log Γ(N + Mβ) +
M

∑
i=1

log Γ(ni + β) + K (15)

Again, the point estimate for the optimal bin number can be found by identifying the mode of the
above equation, that is, M̂ = max

M
{log p(M|d)} where p(M|d) is obtained from Equation (15).

After the estimation of the optimal number of bins, the most important step is the accurate
calculation of TE from the data. In [19], the TE is expressed as a summation of Shannon entropy terms:

TEYX = T
(

Xi+1

∣∣∣X(k)
i , Y

(l)
i

)
= H

(
X
(k)
i , Y

(l)
i

)
− H

(
X
(k+1)
i , Y

(l)
i

)
+ H

(
X
(k+1)
i

)
− H

(
X
(k)
i

)
(16)

where X
(k)
i = {Xi, Xi−1, . . . , Xi−k+1} denotes a matrix composed of k vectors [19] where i = max(k,l)+1.

In other words, the latter representation can be interpreted as a concatenation of k column vectors
in a matrix, where Xi = [xi, xi−1, . . . , xi−S]

T , Xi = [xi−1, xi−2, . . . , xi−S+1]
Tand S is the length of the

column vector, defined as S = max (length(X), length(Y)). Here, (·)T denotes transposition. Above,
H
(

X
(k)
i , Y

(l)
i

)
is short for H(Xi, Xi−1, . . . , Xi−k+1, Yi, Yi−1, . . . , Yi−l+1), where x denotes a particular

value of the variable X and boldface is utilized to represent vectors. If k = l = 1 is selected, Equation (16)
takes the following simplified form [20]:

TEYX = T(Xi+1|Xi, Yi) = H(Xi, Yi)− H(Xi+1, Xi, Yi) + H(Xi+1, Xi)− H(Xi) (17)

In the best scenario, the above TE estimation requires the three-dimensional joint Shannon entropy,
whereas its general expression in Equation (16) needs a k+l+1-dimensional entropy estimation.

According to our tests, if we use the prior in Equation (13), when β = 10−10, posterior pdf estimates
are biased significantly (see Appendix III), especially in high-dimensional problems. Thus, we aim to
overcome this problem by using the generalized prior in Equation (13) for the Dirichlet prior with β

values around 0.1. Using the generalized prior Equation (13), after selecting the number of bins by
Equation (15), the mean value of the posterior bin height probability can be estimated by [22]:

〈πi〉 = ni + β

N + Mβ
, k = 1, . . . , M. (18)

As the prior is Dirichlet and the likelihood function is multinomial-distributed, the posterior
distribution of bin heights is Dirichlet-distributed with the mean given in Equation (18) above [22,47].
This allows us to sample from the Dirichlet posterior distribution of the bin heights to estimate the
joint and marginal pdf’s in the TE equations and then estimate their Shannon entropies and their
uncertainties, too. The schematic in Figure 1 illustrates this procedure for estimating the entropies and
their associated uncertainties.
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Figure 1. This schematic illustrates the procedure for estimating entropy as well as the uncertainty
from data. First the number of bins is selected using the mode of the logarithm of the Dirichlet posterior
in Equation (15). The Dirichlet posterior is then sampled resulting in multiple estimates of the pdf.
The entropy of each pdf is estimated and the mean and standard deviation computed and reported.

As previously described, this method is known to produce biases, especially as higher dimensions
are considered. There are a couple of reasons for this. As the pdf is modeled by a uniform distribution
within a single bin, this corresponds to the maximum entropy for that bin. Additionally, Equation (18)
tells us that, even if there is no data sample in a specific bin, an artificial amount β is added to
the average bin probability. On the other hand, this addition mitigates the entropy underestimation
encountered in the case of many empty bins, which is prevalent in higher dimensions. Moreover, the TE
is estimated by the addition and subtraction of the marginal and joint Shannon entropies, as shown in
Equation (16). Prichard and Theiler describe the artifacts originating from this summation procedure
and advise using KDE methods instead [25]. However, before considering the KDE method, we discuss
an alternative histogram method that has been proposed to overcome some of the drawbacks of the
fixed-bin-width histogram approaches. In addition to the conjugate pairs of multinomial likelihood
and Dirichlet prior model, the research topic of exploring other models has always been interesting.
In addition to this conjugate pair, optimal binning in the case of other models, such as that of [24]
including a mixture of Dirichlets provides a challenging research for optimal binning of data with the
goal of efficient pdf estimation from the data.

2.2. Adaptive Bin-Width Histogram Approaches

The fixed bin-width histogram approaches are not very effective for estimating
information-theoretic quantities from data due to the inaccurate filling of the bins with zero
sampling frequency. Instead of generating a model based on bins with equal width, one can design
a model consisting of bins with varying widths, determined according to a statistical criterion.
Fraser and Swinney [34] and Darbellay and Vajda [35] proposed the adaptive partitioning of the
observation space into cells using the latter approach and estimated the mutual information (MI)
directly. Here, we will focus on the method proposed by Darbellay and Vajda. This approach relies
on iteratively partitioning the cells on the observation space, based on a chi-square statistical test
to ensure conditional independence of the proposed partitioned cells from the rest of the cells. We
explain the details of this method schematically on Figure 2. Here, observation space of (X, Y) is
shown by the largest rectangle. The partitioning of the observation space is done as follows:

1. Initially, we start with the largest rectangle containing all data samples.
2. Any cell containing less than two observations (data pairs) is not partitioned. The cell, which

is partitioned into smaller blocks, is known as the parent cell; whereas each smaller block after
partitioning is named as a child cell.
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3. Every cell containing at least two observations is partitioned by dividing each one of its edges
into two halves. It means four new cells are generated (according to the independence test, which
will be described below).

4. In order to test whether we need to partition the upper cell (parent cell) into more cells (child
cells), we rely on the Chi-Square test of independence, where the null hypothesis is phrased
as follows:

H0: Sample numbers N1, N2, N3, N4 in four child cells are similar (in other words, the sample
distribution in the parent cell was uniform)

The Chi-Square (χ2) test statistic for a 5% significance level with 3 degrees of freedom is given
as follows:

T =
4

∑
i=1

(
∑ Ni

4
− Ni

)2
≤ χ2

95%(3) = 7.81 (19)

If we happen to find that T > 7.81, we decide that the numbers of samples in each child cell are not
similar and therefore we continue partitioning. Otherwise, we conclude that the numbers are similar
and partitioning is stopped at this level. The data samples in this cell are used in the MI estimation.

(A) (B) 

Figure 2. Illustration of the Adaptive Partitioning algorithm of Darbellay and Vajda (A) The observation
space of two-dimensional data (X,Y) and its illustrative partitioning according to the independence
test; (B) The corresponding tree showing the partitioning of each cell.

In this method, the level of statistical significance can be chosen according to the design, thus
raising as a parameter to be tuned according to the application. After the partitioning is completed,
the MI is estimated as shown below:

M̂IN(X, Y) =
m

∑
i=1

Ni
N

log
Ni
N(

Nx,i
N

)(Ny,i
N

) (20)

where N denotes the total number of data samples with Ni showing the subset of these samples that
fall into the ith cell, Ci, after the partitioning process is completed. Above, Nx,i and Ny,i represent the
numbers of observations having the same x and y coordinates as observations in the cell Ci, respectively.
The partitioning process is illustrated below using a similar discussion to that in [35]. The observation
space is first divided into four child cells, namely C1, C2, C3, C4, to maintain equiprobable distributions
in each cell. This forms the first set of branches shown in Figure 2. Then, according to the independence
test, C1 is divided into four cells whereas C2, C3, C4 are retained to be included in the MI estimation
and they are not divided into more child cells, forming the second layer of the partitioning tree
shown in Figure 2. Finally, the third child cell of partition C3 is divided into four child cells, namely
C131, C132, C133 and C134. In the last step, each cell is utilized in the MI estimation formula given by
Equation (20). It should be noted that the partitioning is performed symbolically here for the sake of a
better explanation without showing the actual data samples on the observation space, as done in [35].
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As a result, finer resolution is used to describe larger MI regions and lower resolution is used for
smaller MI regions [35]. Having estimated the MI from the data efficiently, the TE can be calculated
using the expressions from [19] by:

TEYX = T
(

Xi+1

∣∣∣X(k)
i , Y

(l)
i

)
= MI

(
Xi+1,

[
X
(k)
i , Y

(l)
i

])
− MI

(
Xi+1, X

(k)
i

)
(21)

where MI
(

Xi+1,
[
X
(k)
i , Y

(l)
i

])
denotes the MI between Xi+1 and the joint process denoted by[

X
(k)
i , Y

(l)
i

]
[19].

Because the MI is estimated more efficiently by this method, the overall TE estimation becomes
less biased compared to the previous methods. However, the subtraction operation involved in
Equation (21) can still produce a significant bias in the TE calculations. To overcome problems related
to the addition and subtraction of information-theoretic quantities, KDE estimation methods have
been utilized in the literature to estimate MI and redundancies [25], and TE in [49].

2.3. Kernel Density Estimation Methods

Kernel Density Estimation (KDE) is utilized to produce a smoothed pdf estimation using the
data samples, which stands in contrast to the histogram model which has sharp edges resulting from
a uniform distribution within each bin. In this method, a preselected distribution of values around
each data sample is summed to obtain an overall, smoother pdf in the data range. This preselected
distribution of values within a certain range is known as a “kernel”. Some of the most commonly used
kernels are “Epanechnikov”, “Rectangular” and “Gaussian” [28]. Each kernel can be thought of as a
window with a bandwidth or radius. Prichard and Theiler [25] showed that KDE can also be utilized to
estimate entropy by the computation of the generalized correlation integral [7], which is approximated
by the correlation sum. Even if a rectangular kernel is used, the resulting entropy estimation is more
accurate compared to the histogram approach as discussed in [25]. In this method, entropies are
estimated by first calculating the correlation sums through the Grassberger-Procaccia (GP) algorithm
or some other effective procedure. Interested readers are referred to [31,33] for a detailed description
of the algorithm. Here, the joint probabilities in the TE expression Equation (6) can be estimated from
data by the following equation, which is known as the generalized correlation sum [7]:

pε

(
xi+1, x

(k)
i , y

(l)
i

) ∼= 1
N

N

∑
m

i �= m

Θ

⎛⎜⎜⎝ε −

��������
xi+1 − xm+1

x
(k)
i − x

(k)
m

y
(l)
i − y

(l)
m

��������
⎞⎟⎟⎠ = C

(
xi+1, x

(k)
i , y

(l)
i ; ε

)
(22)

where Θ(x > 0) = 1; Θ(x < 0) = 0 is the Heaviside function and ε is the radius around each data sample.
In Equation (22), we count the number of neighboring data samples which are within ε distance. As a
distance measure, the maximum norm, denoted ‖·‖, has been selected here, but the Euclidean norm
could also be utilized. On the right-hand side of Equation (22), C

(
xi+1, x

(k)
i , y

(l)
i ; ε

)
gives the mean

probability that the states at two different indices (i and m) are within ε distance of each other. Using
Equation (22), the TE can be expressed as [49,50]:

TEYX =

〈
log2

C
(

xi+1, x
(k)
i , y

(l)
i ; ε

)
C
(

x
(k)
i ; ε

)
C
(

xi+1, x
(k)
i ; ε

)
C
(

x
(k)
i , y

(l)
i ; ε

)〉 (23)

where 〈.〉 denotes the expectation [50].
The problem is that this method also has a free parameter, the radius value, ε, which

must be selected to estimate the neighborhoods. Choosing this radius is similar to choosing
the fixed bin width in a histogram. We utilize the Grassberger-Procaccia algorithm to plot log
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ε versuslog
(

C
(

xi+1, x
(k)
i , y

(l)
i ; ε

))
. The linear section along the resulting curve is used to select

the radius ε. However, picking a radius value from any part of the linear section of the log ε

versuslog
(

C
(

xi+1, x
(k)
i , y

(l)
i ; ε

))
curve appears to make the results sensitive over the broad range

of possible values. This is explored in the following section and the benefit of exploring an appropriate
radius range with the help of the embedding dimension selection is pointed out.

2.3.1. Selection of the Radius with the Embedding Dimensions in Kernel Density Estimation
(KDE) Method

Here we explain a method to select the radius based on the above discussion in concert with the
choice of the embedding dimensions k and l, based on the discussions in [14]. We demonstrate this
procedure on a system consisting of a pair of linearly-coupled, autoregressive signals [51]:

y(i + 1) = 0.5y(i) + n1(i)
x(i + 1) = 0.6x(i) + cy(i) + n2(i)

n1 ∼ N (0, 1)
n2 ∼ N (0, 1)
c ∈ [0.01, 1]

(24)

where N (μ, σ) denotes the normal distribution with mean μ and standard deviation σ and the constant
c denotes the coupling coefficient. First, we generate the log ε versus log

(
C
(

xi+1, x
(k)
i , y

(l)
i ; ε

))
curve.

The log ε versus log
(

C
(

xi+1, x
(k)
i , y

(l)
i ; ε

))
curve is displayed in Figure 3 for different k values and

c = 1.

Figure 3. Exploration of the optimal radius for the KDE of a pdf using the Grassberger-Procaccia
method. The figure illustrates the Correlation Sum, defined in Equation (22), estimated at different
radius values represented by ε for the coupled AR model.

Here, l = 1 is selected [14]. It is known that the optimal radius lies in the linear region of these
curves, where its logarithm is a point on the horizontal axis [14]. Above, we notice that the range
of the radius values corresponding to the linear section of each curve varies significantly. As the k
value increases, the linear region for each curve moves right, toward higher ε values [33]. With the
increasing embedding dimensions, the embedding vectors include data, which are sampled with a
lower frequency, i.e., undersampling, leading to an increase in ε to achieve the same correlation sum
obtained with a smaller radius. For example, a set of radius values within the range of −3≤ log ε ≤ 0
provides the linear section of the log C curve for k = 1, whereas these values are not within the range
of radius values used in forming the log C -log ε curve for an embedding dimension of k = 10. Thus,
selection of an embedding dimension k first and then a radius value from the corresponding linear
region on the curve can help us search for the radius in a more constrained and efficient way.
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As seen in Figure 3, we end up with different radius ranges to select, based on the determination
of the embedding dimension, k. Sabesan et al. [14] provide an approach to select the radius (ε) and
k together.

According to [14,52], the embedding dimension, k, can be selected by considering the first local
minimum of the Time-Lagged MI (TLMI) of the destination signal, followed by the determination
of a radius value. The radius is selected such that it falls into the linear region of the curve for the
corresponding k value, given in Figure 3. The k value, corresponding to the first local minima of MI(k),
provides us with the time-lag k, where the statistical dependency between the current sample xi and
its k past value xi-k is small. TLMI is defined by the following equation for the AR signal given in
Equation (24):

MI(k) = ∑
x

p(xi, xi−k) log
p(xi, xi−k)

p(xi)p(xi−k)
(25)

Below, we provide an estimate of the MI(k) of the AR signal, xi, for different time lags
k ∈ [1, . . . ,50]. The adaptive partitioning algorithm of Darbellay and Vajda [35] was utilized to estimate
the MI. As the MI is not bounded from above, we normalize its values between 0 and 1 as recommended
in the literature, using the following formula [53]:

λ =
√

1 − e−2MI (26)

In Figure 4, we show the normalized MI for different lags after taking an ensemble of 10 members
of the AR process x and utilizing an averaging to estimate MI.

Above, the first local minimum value of MI(k) is obtained at k = 10. Thus, we turn to Figure 3 to
select a radius value on the linear region of the curve with the embedding dimension k = 10. This region
can be described by the following values: 0.8 ≤ log ε ≤ 1.4. Thus, we can choose k = 10 and log ε = 0.85
along with l = 1. If k = l = 1 is selected, the corresponding linear region on Figure 3 changes and
a selection of log ε = −1 can be chosen, instead. Once the radius and the embedding dimensions
are determined, TE is estimated by Equation (23) using the correlation sums. These estimates are
illustrated in Figure 5 for k = l = 1 and k = l0, l = 1; respectively.

In the next section, we will elaborate on the performance of the three methods used in TE
estimation and emphasize the goal of our approach, which is to use all three methods together to fine
tune their specific parameters.

Figure 4. Ensemble averaged and normalized Time-lagged MI(k). As described in the text, the first
local minima of the MI leads to the condition k = 10.
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(A) 

(B) 

Figure 5. This figure illustrates TE estimation versus the coupling coefficient c in Equation (24) using the
KDE method. (A) Both TEYX (blue-solid) and TEXY (red-dash dot) are estimated using the KDE method
and illustrated along with the analytical solution (black-dotted) for k = l = 1. As there is no coupling
from X to Y, analytically TEXY = 0; (B) TEYX (blue-solid) and TEXY (red-dash dot) are estimated using
the KDE method for k = 10, l = 1.

3. Experiments

In the preceding section, we described three different methods for estimating the TE from data,
namely: the Generalized Knuth method, the adaptive bin-width histogram and the KDE method.
We emphasized that we can compute different TE values by these three different methods, as the
TE estimations depend on various factors, such as the value of the selected fixed bin-width, the bias
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resulting due to the subtraction and addition of various Shannon entropies, embedding dimensions and
the value of the chosen KDE radius value. Due to this uncertainty in the TE estimations, we propose
to use these three main techniques together to compute the TE values and to consistently identify
the direction of relative information flows between two variables. With this approach, if one of the
techniques does not agree with the others in terms of the direction of information flows between the
variables, we determine that we need to fine tune the relevant parameters until all three methods agree
with each other in the estimation of the NetTE direction between each pair of variables. The NetTE
between two variables X and Y is defined to be the difference between TEXY and TEYX, which is
defined as the difference of the TE magnitudes with opposite directions between X and Y:

NetTEXY = max(TEYX , TEXY)− min(TEYX , TEXY) (27)

The NetTE allows us to compare the relative values of information flow in both directions and
conclude which flow is larger than the other, giving a sense of main interaction direction between the
two variables X and Y.

In order to use three methods together, we demonstrate our procedure on a synthetic dataset
generated by a bivariate autoregressive model given by Equation (24). In Section 2.3.1, we have already
described the KDE method using this autoregressive model example and we have explored different
radius values in the KDE method by utilizing the Grassberger-Procaccia approach in conjunction
with different selections of k values. In Section 3.1, we continue demonstrating the results using the
same bivariate autoregressive model. We focus on the analysis of the adaptive partitioning and the
Generalized Knuth methods. First, we analyze the performance of the adaptive partitioning method at
a preferred statistical significance level. Then, we propose to investigate different β values to estimate
the optimal fixed bin-width using Equation (15) in the Generalized Knuth method.

If an information flow direction consensus is not reached among the three methods, we try
different values for the fine-tuning parameters until we get a consensus in the NetTE directions.

When each method has been fine-tuned to produce the same NetTE estimate, we conclude that
the information flow direction has been correctly identified.

In Section 3.2, we apply our procedure to explore the information flow among the variables of the
nonlinear dynamical system used by Lorenz to model an atmospheric convection cell.

3.1. Linearly-Coupled Bivariate Autoregressive Model

In this section, we apply the adaptive partitioning and the Generalized Knuth methods to estimate
the TE among the processes defined by the same bivariate linearly-coupled autoregressive model (with
variable coupling values) given by the equations in Equation (24). We demonstrate the performance
of each TE estimation method using an ensemble of 10 members to average. The length of the
synthetically generated processes is taken to be 1000 samples after eliminating the first 10,000 samples
as the transient. For each method, TE estimations versus the value of coupling coefficients are shown
in Figure 5—for both directions between processes X and Y. It should be noted that the process X is
coupled to Y through coefficient c. Thus, there is no information flow from X to Y for this example, i.e.,
TEXY = 0 analytically. The analytical values of TEYX have been obtained using the equations in [19] for
k = 1 and l = 1. The performance of the three methods have been compared for the case of k = 1 and
l = 1.

Below, TE is estimated for both directions using coupling values ranging from c = 0.01 to c = 1
in Equation (24). The information flows are consistently estimated to be in the same direction for all
three methods, i.e., TEYX≥TEXY. If we compare the magnitudes of these TE estimates, we observe that
the biases between the analytic solution and the TEYX of the adaptive partitioning method, KDE and
the Generalized Knuth method increase as the coefficient of the coupling in the autoregressive model
increases to c = 1.
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Above, we demonstrate the TE estimations using the KDE method with different embedding
dimensions and different radius values. In Figure 5, we observe that the directions of each TE can be
estimated correctly, i.e., TEYX≥TEXY. for the model given in Equation (24), demonstrating that we can
obtain the same information flow directions, but with different bias values.

Below, results in Figure 5 are compared with the other two techniques for k = l = 1.

Figure 6. This figure illustrates TE estimation versus the coupling coefficient c in Equation (24) using
the adaptive partitioning method. Both TEYX (blue-solid) and TEXY (red-dash dot) are estimated using
the adaptive partitioning method and illustrated along with the analytical solution (black-dotted).
As there is no coupling from X to Y, analytically TEXY = 0. A statistical significance level of 5% has
been utilized in the χ2 test Equation (19) for a decision of partitioning with k = l = 1.

 
Figure 7. This figure illustrates TE estimation versus the coupling coefficient c in Equation (24) using
the Generalized Knuth method. Both TEYX (blue solid) and TEXY (red-dash dot) are estimated for
β = 10−10 and illustrated along with the analytical solution (black dotted) where k = l = 1 is chosen.

When the magnitudes of the TEYX estimates are compared in Figure 5 and , we observe bias both
in TEYX and TEXY, whereas there is no bias in the TEXY estimate in the Generalized Knuth method
using β = 10−10. On the other hand, the adaptive partitioning method provides the least bias for TEYX
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whereas KDE seems to produce larger bias for low coupling values and lower bias for high coupling
values in Figure 5, compared to the Generalized Knuth method with β = 10−10 in Figure 7.

For example, for c = 1, we note from the three graphs that the estimated transfer entropies are
TEYX ∼= 0.52, TEYX ∼= 0.43, TEYX ∼= 0.2, for the adaptive partitioning, the KDE with k = l = 1 and the
Generalized Knuth method with β = 10−10, respectively. As the bias is the difference between the
analytical value (TEYX = 0.55 for k = 1 = 1) and the estimates, it obtains its largest value in the case of the
Generalized Knuth method with β = 10−10. On the other hand, we know that there is no information
flow from the variable X to variable Y, i.e., TEXY = 0. This fact is reflected in Figure 7, but not in Figure 5
and where TExy is estimated to be non-zero, implying bias. As the same computation is also utilized to
estimate TEYX (in the other direction), we choose to analyze the NetTE, which equals the difference
between TEYX and TEXY, which is defined in Equation (27). Before comparing the NetTE obtained by
each method, we present the performance of the proposed Generalized Knuth method for different
β values.

3.1.1. Fine-Tuning the Generalized Knuth Method

In this sub-section, we investigate the effect of β on the TE estimation bias in the case of
the Generalized Knuth method. The piecewise-constant model of the Generalized Knuth method
approaches a pure likelihood-dependent model, which has almost a constant value as β goes to zero
in Equation (18). In this case, the mean posterior bin heights approach their frequencies in a bin, i.e.,
〈πi〉 = ni

N . In this particular case, empty bins of the histogram cause large biases in entropy estimation,
especially in higher dimensions as the data becomes sparser. This approach can only become unbiased
asymptotically [54]. However, as shown in Equation (18), the Dirichlet prior with exponent β artificially
fills each bin by an amount, β, reducing the bias problem. In Appendix III, Figure A.3 illustrates the
effect of the free parameter β on the performance of the marginal and joint entropy estimates. We find
that the entropy estimates fall within one to two standard deviations for β ∼= 0.1. The performance
degrades for much smaller and much larger β values. Figure 8 and illustrate less bias in TEYX estimates
for β = 0.1 and β = 0.5 unlike the case in shown in Figure 7 where we use β = 10−10. However, the bias
increases for low coupling values in these two cases. To illustrate the net effect of the bias, we explore
NetTE estimates of Equation (27) for these cases in Section 3.1.2.

Figure 8. This figure illustrates TE estimation versus the coupling coefficient c in Equation (24) using
the Generalized Knuth method method for β = 0.1, k = l = 1. These are illustrated along with the
analytical solution.
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Figure 9. This figure illustrates TE estimation versus the coupling coefficient c in Equation (24) using
the generalized piecewise-constant method (Knuth method) for β = 0.5, k = l = 1. These are illustrated
along with the analytical solution.

3.1.2. Analysis of NetTE for the Bivariate AR Model

Since we are mainly interested in the direction of the information flow, we show that the estimation
of the NetTE values exhibit more quantitative similarity among the methods for the case where k = l = 1
(Figure 10).

Figure 10. This figure illustrates the NetTE difference, given by Equation (27) between each pair of
variables in Equation (24). Estimations are performed using all three methods and considering different
β values in the case of the Generalized Knuth method.

In the KDE (Figure 5), Adaptive partitioning (Figure 6) and the Generalized Knuth method with
β = 0.1 and β = 0.5, (Figures 8 and 9) a non-zero TEXY is observed. The NetTE between the variables
X and Y of the bivariate auroregressive model in Equation (24) still behaves similarly giving a net
information flow in the direction of the coupling from Y to X as expected. Thus, in this case we find
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that the NetTE behaves in the same way, even though the individual TE estimates of each method have
different biases. Above, we observe that the NetTE estimate of the adaptive partitioning outperforms
the Generalized Knuth method with β = 0.1 and β = 0.5 and KDE. The largest bias in NetTE is achieved
by the Generalized Knuth method with β = 10−10. However, all methods agree that the information
flow from Y to X is greater than that of X to Y, which is in agreement with the theoretical result
obtained from Equation (24) using the equations in [19]. In the literature, the bias in the estimation has
been obtained using surrogates of TE’s estimated by shuffling the data samples [38]. These approaches
will be explored in future work.

3.2. Lorenz System

In this section, the three methods of Section 2 are applied to a more challenging problem involving
the detection of the direction of information flow among the three components of the Lorenz system,
which is a simplified atmospheric circulation model that exhibits significant non-linear behavior.
The Lorenz system is defined by a set of three coupled first-order differential equations [41]:

dX
dt = σ(Y − X)
dY
dt = −XZ + RX − Y
dZ
dt = XY − bZ

(28)

where σ = 10,b = 8⁄3, R = 24 (sub − chaotic) or R = 28 (chaotic). These equations derive from a simple
model of an atmospheric convection cell, where the variables x, y, and z denote the convective velocity,
vertical temperature difference and the mean convective heat flow, respectively. These equations
are used to generate a synthetic time series, which is then used to test our TE estimation procedure.
In the literature, the estimation of the TE of two Lorenz systems with nonlinear couplings have found
applications in neuroscience [14,39,55]. Here, we explore the performance of our approach on a single
Lorenz system which is not coupled to another one. Our goal is to estimate the interactions among the
three variables of a single Lorenz system–not coupling from one system to another.

In our experiments, we tested the adaptive partitioning, KDE and Generalized Knuth methods
in the case where the Rayleigh number, R = 28, which is well-known to result in chaotic dynamics
and also for the sub-chaotic case where R = 24. For each variable, we generated 15,000 samples and
used the last 5000 samples after the transient using a Runge-Kutta-based differential equation solver in
MATLAB (ode45). Both in the chaotic and sub-chaotic cases, β = 0.1 was used at the Generalized Knuth
method and a 5% significance level was selected in the adaptive partitioning method. Embedding
dimensions of k = l = 1 have been selected in these two methods.

The embedding dimension values were implemented according to Section 2.3.2 at the KDE
method: The log ε versuslog

(
C
(

xi+1, x
(k)
i , y

(l)
i ; ε

))
curves have been estimated for the chaotic and

sub-chaotic cases.
In the chaotic case, the first minimum of TLMI was found to be at k = 17 and ε = e−1 occured in

the middle of the radii range of the linear part of the curve. The value of l = 1 was selected for both the
chaotic and sub-chaotic cases. The curves for different k values have been illustrated in Figure 11 for
the analysis of the interaction between X and Y. Similar curves have been observed for the analysis of
the interactions between the other pairs in the model.

In the sub-chaotic case, values around k = 15 have been observed to provide the first local
minimum of TLMI(k). However, the NetTE direction consistency cannot be obtained with the other
two techniques, namely, the adaptive partitioning and the Generalized Knuth method. Therefore,
as we propose in our method, k value has been fine-tuned along with the radius until we obtain
consistency of NetTE directions among the three methods. Selection of k = 3, l = 1, ε = e−2 has
provided this consistency, where the NetTE directions are illustrated in Figure 15. Figure 12 illustrates
log ε versuslog

(
C
(

xi+1, x
(k)
i , y

(l)
i ; ε

))
curves used in the selection of the appropriate region for ε, in the

sub-chaotic case.
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Figure 11. Exploration of the optimal radius for the KDE of a pdf using the Grassberger-Procaccia
method. The figure illustrates the Correlation Sum Equation (22) estimated at different radius values
represented by ε for the Lorenz model in the chaotic regime (R = 28).

Figure 12. Exploration of the optimal radius for the KDE of a pdf using the Grassberger-Procaccia
method. The figure illustrates the Correlation Sum Equation (22) estimated at different radius values
represented by ε for the Lorenz model in the sub-chaotic regime (R = 24).
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We estimated TE for both directions for each pair of variables (x,y), (x,z), and (y, z) using each of the
three methods described in Section 2. Similar to the MI normalization of Equation (26) recommended
in [53], we adapt the normalization for the NetTE as follows:

δXY =
√

1 − e−2(NetTEXY) (29)

where δXY denotes the normalized NetTE between variables X and Y, having values in the range of
[0,1]. In Figures 13 and 14 , we illustrate the information flow between each pair of the Lorenz equation
variables using both the un-normalized TE values obtained by the each of the three methods and the
normalized NetTE estimates showing the net information flow between any pair of variables.

 

Figure 13. The un-normalized TE estimates between the variables of the Lorenz equations defined in
Equation (28) for the chaotic case (R = 28) along with the normalized NetTE direction and magnitudes.
Estimations were obtained using (A) Kernel Density Estimate method with k = 17, l = 1, ε = e−1;
(B) Generalized Knuth method method with β = 0.1, k = l = 1; and (C) Adaptive Partitioning method
with 5% significance level and k = l = 1. Solid arrows denote the information flow (or TE) from X to Y
or Y to X. Dashed lines show the direction of the normalized NetTE estimates.

Above, the un-normalized TE values are denoted by solid lines between each pair of variables. Also,
the normalized NetTE estimates Equation (29) are illustrated with dashed lines. The direction of the
NetTE has the same direction as the maximum of two un-normalized TE estimates between each pair,
the magnitudes of which are shown in rectangles. For example, in the case of the adaptive partitioning
method, the un-normalized TE values are estimated to be TEYZ = −0.45 and TEZY = −0.50 between
variables Y and Z, due to the biases originating from the subtraction used in Equation (21). However,
the normalized NetTE is estimated to be δYZ =

√
1 − e(−2(NetTE) =

√
1 − e−2(−0.45−(−0.5)) = 0.31 and

shows a net information flow from variable Y to Z. Thus, we conclude that variable Y affects variable Z.
In Figure 14, we illustrate the estimates of TE’s between each variable of the Lorenz Equation (28)

in sub-chaotic regime with R = 24.
Above, we demonstrated the concept of our method: If the directions of information flows are not

consistent with the three methods, then we can explore new parameter values to provide consistency
in the directions. Above, for the selected parameters, the Generalized Knuth method and the adaptive
partitioning provided consistent NetTE directions between the pairs of variables in the chaotic case.
However, in the sub-chaotic case, we needed to explore a new parameter set for the KDE method as
the NetTE directions were different than the other two consistent methods.
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Based on the fact that the directions of the NetTE estimations obtained using each of the three
methods agree, we conclude that information flow direction between the pairs of the Lorenz equation
variables are as shown in Figure 15.

Figure 14. The un-normalized TE estimates between the variables of the Lorenz equations defined
in Equation (28) for the sub-chaotic case (R = 24) along with the normalized NetTE direction and
magnitudes. Estimations were obtained using: (A) Kernel Density Estimate method with k = 3, l = 1,
ε = e−2; (B) Generalized Knuth method where β = 0.1, k = l = 1; (C) Adaptive Partitioning method with
5% significance level and k = l = 1. Solid arrows denote the information flow (or TE) from X to Y or Y to
X. Dashed lines illustrate the direction of the normalized NetTE estimates.

 

Figure 15. Information flow directions among the variables of the Lorenz equations, where X, Y, Z
denote the velocity, temperature difference and the heat flow, respectively, in the case of the atmospheric
convection roll model. These are also the NetTE directions, showing the larger influence among the
bi-directional flows.

Note that these information flow directions are not only not obvious, but also not obviously
obtainable, given the Lorenz system equations in Equation (28) despite the fact that these equations
comprise a complete description of the system (sensitive dependence on initial conditions not
withstanding). However, given the fact that this system of equations is derived from a well-understood
physical system, one can evaluate these results based on the corresponding physics. In an atmospheric
convection roll, it is known that both the velocity (X) and the heat flow (Z) are driven by the temperature
difference (Y), and that it is the velocity (X) that mediates the heat flow (Z) in the system. This
demonstrates that complex nonlinear relationships between different subsystems can be revealed
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by a TE analysis of the time series of the system variables. Furthermore, such an analysis reveals
information about the system that is not readily accessible even with an analytic model, such as
Equation (28), in hand.

4. Conclusions

Complex systems, such as the Earth’s climate, the human brain, and a nation’s economy, possess
numerous subsystems, which not only interact in a highly nonlinear fashion, but also interact differently
at different scales due to multiple feedback mechanisms. Analyzing these complex relationships in an
attempt to better understand the physics underlying the observed behavior poses a serious challenge.
Traditional methods, such as correlation analysis or PCA are inadequate due to the fact that they are
designed for linear systems. TE has been demonstrated to be a potentially effective tool for complex
systems consisting of nonlinearly-interacting subsystems due to its ability to estimate asymmetric
information flow at different scales, which is indicative of cause and effect relationships. However,
there are serious numerical challenges that need to be overcome before TE can be considered to be a
dependable tool for identifying potential causal interactions. In response to this, we have developed
a practical approach that involves utilizing three reasonably reliable estimation methods together.
Instead of fine tuning the specific parameters of each method blindly, we find a working region where
all three methods give the same direction of the information flow. In the case of collective agreement,
we conclude that the individual tuning parameters for each method are near their optimal values.
This was demonstrated on a bivariate linearly-coupled AR process as well as on the Lorenz system
in both the chaotic and sub-chaotic regimes. Our success in deciphering the direction of information
flow in the Lorenz system verified—not by the Lorenz system of differential equations—but rather
by considering the known underlying physics suggests that this approach has significant promise in
investigating and understanding the relationships among different variables in complex systems, such
as the Earth’s climate.

Appendix 1

In this Appendix we illustrate, via numerical simulation, the sensitivity of TE estimates on the
number of bins used in a histogram model of a pdf. Consider the coupled autoregressive process:

y(i + 1) = 0.5y(i) + n1(i)
x(i + 1) = 0.6x(i) + cy(i) + n2(i)

(A.1.1)

where n1 and n2 are samples of zero mean and unit variance in Gaussian distributions, and c represents
the coupling coefficient that couples the two time series equations for x and y. Here, TEXY = 0,
as the coupling direction is from Y to X (due to the coupling coefficient c). It was demonstrated by
Kaiser and Schreiber ([19]) that the TE can be analytically solved for this system. By choosing the
coupling coefficient to be c = 0.5, one finds TEYX = 0.2. Numerical estimates of TE were performed by
considering 11 datasets with the number of data points ranging from 10 to 1000. Eleven histograms
were constructed for each dataset with the number of bins ranging from 2 to 100, and from these
histograms the relevant Shannon entropies were computed. Figure A.1 illustrates the normalized
TEYX values, which are computed using the Shannon entropies in Equation (17), for each combination
of N data points and M histogram bins considered. First, note that the estimated TE values range
from below 0.1 to above 0.5 where the correct TE value is known to be 0.2 demonstrating that the TE
estimates are highly dependent on both the number of data points and the number of bins. Second,
note that there is no plateau where TE estimates remain approximately constant—not to mention
correct—over a range of histogram bin numbers. For this reason, it is critical to select the correct
number of bins in the histogram model of the pdf. However, this is made even more difficult since
the entropy is a transform of the model of the pdf itself and therefore the number of bins required
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to produce the optimal model of the pdf will not be the same as the number of bins resulting in the
optimal entropy estimate. This is explored in Appendix 2.

Figure A.1. This figure illustrates the numerically-estimated normalized transfer entropy, TEYX, of the
autoregressive system given in (A.1.1) as a function of varying numbers of data points and histogram
bin numbers. To normalize TE, (29) was used as given in the text. Given that the correct value of the
transfer entropy is TEYX = 0.2, this figure illustrates that the estimation of TE is extremely sensitive to
the number of bins chosen for the histogram model of the pdf of the data. (k = l = 1).

Appendix 2

The differential entropy of a variable is estimated by Equation (14). However, due to the
finite-precision of numerical calculations in a digital computer, the integral in Equation (14) is
approximated by the following discrete summation:

h(X) ≈ H(x) =
M

∑
i=1

p̂(x)[log p̂(x)− log m(x)] (A.2.1)

where M denotes the total number of bins used in the histogram and p̂(x) is the estimate of the
continuous pdf of variable X. The Lebesgue measure, m(x), used above is chosen to be the volume V of
each bin. Equation (A.2.1) can easily be written for the joint entropies, where p̂(x) is replaced by its
joint pdf counterpart and the volume is estimated for a multi-dimensional bin. In the one-dimensional
case, the range of the variable x, is divided into M̂ bins, which is selected to be optimal in Equation (12),
and the volume is given by m(x) = V =

(
max(x)−min(x)

M̂

)
. We show that the entropy calculation by

(A.2.1) is biased.
The entropy of the standard Gaussian distribution N (0, 1) with zero mean and unit variance can be

analytically computed to be approximately 1.4189. We numerically generated 100 Gaussian-distributed
datasets, each with 1000 data points, by sampling from N (0, 1). Given these 100 datasets, we estimated
the 100 corresponding entropy values using the Generalized Knuth method with β = 0.5. We found
that 76% and 91% of the entropy estimates were within 1 or 2 standard deviations, respectively, of the
true entropy value of 1.4189. However, this means that not every attempt at entropy estimation in this
ensemble was successful.

We illustrate this with a specific data set that was found to lie outside of 76% percentile success
rate. In this case, the optimal number of bins was estimated to be Mopt = 11 using Equation (12).
In Figure A.2.1a,b, we illustrate the resulting histogram model of the pdf and the non-normalized log
posterior probability of the number of bins in the model given the data.

27



Entropy 2015, 17, 438–470

Figure A.2.1. (a) Histogram model of the pdf of the data set with error-bars on the bin heights;
(b) The non-normalized log posterior probability of the number of bins in the model given the data.

In Figure A.2.2, we illustrate the entropy estimates for this data set as a function of the number of
bins where the vertical bars denote one standard deviation from the mean.

Figure A.2.2. Entropy estimate of a data-set outside of 76% percentile success rate (for one of the
data-sets in the remaining 24% of 100 trials).

Figure A.2.2 shows that the true value of the entropy does not fall into the one standard deviation
interval of the mean estimate using Mopt = 11, implying that the required number of bins is different for
an optimal pdf model and an optimal entropy estimation. It is seen that M = 19 is the smallest number
of bins where the entropy estimate falls within this interval and has a very close log p(M|d) value
compared to that obtained for M = 11 in Figure A.2.1b.

Appendix 3

In Appendix 2, we estimated the entropy of a one-dimensional Gaussian variable using the
Generalized Knuth method with the prior shown in Equation (8) and Equation (9). We notice that, even
in the one-dimensional case, some of the entropy estimates lie outside the confidence intervals. If we
estimate the joint entropy of two variables or more, the quality of the estimation decreases further due
to empty bins. To overcome this problem, we proposed a different prior Equation (13) and computed
the percentages of the relevant entropy estimates falling into 1 and 2 standard deviations (sigma’s)
within a total of 100 data-sets sampled from the same two-dimensional Gaussian distribution given by
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N

([
0
0

]
,

[
1 0.5

0.5 1

])
versus β = [0.001, 0.01, 0.05, 0.1, 0.3, 0.5, 0.7, 1]. Figure A.3 illustrates these

percentages as a function of different β values. Approximately 50% of the time, the marginal entropy
estimate falls into the one-sigma interval for β = 0.05, and 80% of the time within the two-sigma interval
(compare the first and second columns of Figure A.3). As a comparison, the corresponding statistics are
approximately 10% for the marginal entropies falling into the one-sigma and 30% for marginal entropies
falling into the two-sigma confidence intervals when we use the Krichevsky-Trofinov Dirichlet prior
(β = 0.5), as in Equation (8) above. It is also observed that in both cases, the confidence interval statistics
are lower for the joint entropies, due to the increase of the dimensionality of the space. As a result of
this analysis, we observe the largest percentage of getting an entropy estimate within its one-sigma
and two-sigma intervals from the true values take place for β = 0.1.

Figure A.3. Percentage performance (one- and two-standard deviation confidence intervals) of marginal
and joint entropy estimates as a function of β.

Above, both joint and marginal Shannon entropies of 100 Gaussian-distributed data-sets are
estimated using the Generalized Knuth method for the illustrated β values. Subfigures denote the
percentage of estimates within one- and two- standard deviations from their analytical values.
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Abstract: This paper deals with the estimation of transfer entropy based on the k-nearest neighbors
(k-NN) method. To this end, we first investigate the estimation of Shannon entropy involving a
rectangular neighboring region, as suggested in already existing literature, and develop two kinds of
entropy estimators. Then, applying the widely-used error cancellation approach to these entropy
estimators, we propose two novel transfer entropy estimators, implying no extra computational cost
compared to existing similar k-NN algorithms. Experimental simulations allow the comparison of
the new estimators with the transfer entropy estimator available in free toolboxes, corresponding to
two different extensions to the transfer entropy estimation of the Kraskov–Stögbauer–Grassberger
(KSG) mutual information estimator and prove the effectiveness of these new estimators.

Keywords: entropy estimation; k nearest neighbors; transfer entropy; bias reduction

1. Introduction

Transfer entropy (TE) is an information-theoretic statistic measurement, which aims to measure an
amount of time-directed information between two dynamical systems. Given the past time evolution
of a dynamical system A, TE from another dynamical system B to the first system A is the amount of
Shannon uncertainty reduction in the future time evolution of A when including the knowledge of the
past evolution of B. After its introduction by Schreiber [1], TE obtained special attention in various
fields, such as neuroscience [2–8], physiology [9–11], climatology [12] and others, such as physical
systems [13–17].

More precisely, let us suppose that we observe the output Xi ∈ R, i ∈ Z, of some sensor
connected to A. If the sequence X is supposed to be an m-th order Markov process, i.e., if considering
subsequences X(k)

i = (Xi−k+1, Xi−k+2, · · · , Xi), k > 0, the probability measure PX (defined on
measurable subsets of real sequences) attached to X fulfills the m-th order Markov hypothesis:

∀i : ∀m′ > m : dP
Xi+1|X(m)

i

(
xi+1|x(m)

i

)
= dP

Xi+1|X(m′)
i

(
xi+1|x(m

′)
i

)
, xi+1 ∈ R, x(k)i ∈ Rk, (1)

then the past information X(m)
i (before time instant i + 1) is sufficient for a prediction of Xi+k, k ≥ 1,

and can be considered as an m-dimensional state vector at time i (note that, to know from X the hidden
dynamical evolution of A, we need a one-to-one relation between X(m)

i and the physical state of A
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at time i). For the sake of clarity, we introduce the following notation:
(

Xp
i , X−

i , Y−
i

)
, i = 1, 2, . . . , N,

is an independent and identically distributed (IID) random sequence, each term following the same
distribution as a random vector (Xp, X−, Y−) ∈ R1+m+n whatever i (in Xp, X−, Y−, the upper indices
“p” and “-” correspond to “predicted” and “past”, respectively). This notation will substitute for the
notation

(
Xi+1, X(m)

i , Y(n)
i

)
, i = 1, 2, . . . , N, and we will denote by SXp ,X− ,Y− , SXp ,X− , SX− ,Y− and SX−

the spaces in which (Xp, X−, Y−), (Xp, X−), (X−, Y−) and X− are respectively observed.
Now, let us suppose that a causal influence exists from B on A and that an auxiliary random

process Yi ∈ R, i ∈ Z, recorded from a sensor connected to B, is such that, at each time i and for some
n > 0, Y−

i � Y(n)
i is an image (not necessarily one-to-one) of the physical state of B. The negation of

this causal influence implies:

∀ (m > 0, n > 0) : ∀i : dP
Xp

i |X
(m)
i

(
xp

i |x(m)
i

)
= dP

Xp
i |X

(m)
i ,Y(n)

i

(
xp

i |x(m)
i , y(n)i

)
. (2)

If Equation (2) holds, it is said that there is an absence of information transfer from B to A.
Otherwise, the process X can be no longer considered strictly a Markov process. Let us suppose the
joint process (X, Y) is Markovian, i.e., there exist a given pair (m′, n′), a transition function f and

an independent random sequence ei, i ∈ Z, such that [Xi+1, Yi+1]
T = f

(
X(m′)

i , Y(n′)
i , ei+1

)
, where

the random variable ei+1 is independent of the past random sequence
(
Xj, Yj, ej

)
, j ≤ i, whatever i.

As Xi = g
(

X(m)
i , Y(n)

i

)
where g is clearly a non-injective function, the pair

{(
X(m)

i , Y(n)
i

)
, Xi

}
, i ∈ Z,

corresponds to a hidden Markov process, and it is well known that this observation process is not
generally Markovian.

The deviation from this assumption can be quantified using the Kullback pseudo-metric, leading
to the general definition of TE at time i:

TEY→X,i =
∫
Rm+n+1

log

⎡⎣dPXp
i |X−

i ,Y−
i

(
xp

i |x−i , y−i
)

dPXp
i |X−

i

(
xp

i |x−i
)

⎤⎦dPXp
i ,X−

i ,Y−
i

(
xp

i , x−i , y−i
)

, (3)

where the ratio in Equation (3) corresponds to the Radon–Nikodym derivative [18,19] (i.e., the
density) of the conditional measure dPXp

i |X−
i ,Y−

i

(·|x−i , y−i
)

with respect to the conditional measure

dPXp
i |X−

i

(·|x−i ). Considering “log” as the natural logarithm, information is measured in natural units
(nats). Now, given two observable scalar random time series X and Y with no a priori given model
(as is generally the case), if we are interested in defining some causal influence from Y to X through
TE analysis, we must specify the dimensions of the past information vectors X− and Y−, i.e., m and n.
Additionally, even if we impose them, it is not evident that all of the coordinates in X(m)

i and Y(n)
i will

be useful. To deal with this issue, variable selection procedures have been proposed in the literature,
such as uniform and non-uniform embedding algorithms [20,21].

If the joint probability measure PXp
i ,X−

i ,Y−
i

(
xp

i , x−i , y−i
)

is derivable with respect to the Lebesgue

measure μn+m+1 in R1+m+n (i.e., if PXp
i ,X−

i ,Y−
i

is absolutely continuous with respect to μn+m+1), then the

pdf (joint probability density function) pXp
i ,X−

i ,Y−
i

(
xp

i , x−i , y−i
)

and also the pdf for each subset of{
Xp

i , X−
i , Y−

i

}
exist, and TEY→X,i can then be written (see Appendix I):

TEY→X,i = −E
[
log

(
pX−

i ,Y−
i

(
X−

i , Y−
i
))]− E

[
log

(
pXp

i ,X−
i

(
Xp

i , X−
i

))]
+E

[
log

(
pXp

i ,X−
i ,Y−

i

(
Xp

i , X−
i , Y−

i

))]
+ E

[
log

(
pX−

i

(
X−

i
))] (4)

or:
TEY→X,i = H (

X−
i , Y−

i
)
+H

(
Xp

i , X−
i

)
−H

(
Xp

i , X−
i , Y−

i

)
−H (

X−
i
)

, (5)
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where H (U) denotes the Shannon differential entropy of a random vector U. Note that, if the processes
Y and X are assumed to be jointly stationary, for any real function g : Rm+n+1 → R, the expectation
E
[

g
(

Xi+1, X(m)
i , Y(n)

i

)]
does not depend on i. Consequently, TEY→X,i does not depend on i (and so

can be simply denoted by TEY→X), nor all of the quantities defined in Equations (3) to (5). In theory,
TE is never negative and is equal to zero if and only if Equation (2) holds.

According to Definition (3), TE is not symmetric, and it can be regarded as a conditional mutual
information (CMI) [3,22] (sometimes also named partial mutual information (PMI) in the literature
[23]). Recall that mutual information between two random vectors X and Y is defined by:

I (X; Y) = H(X) +H(Y)−H(X, Y), (6)

and TE can be also written as:
TEY→X = I (Xp, Y−|X−) . (7)

Considering the estimation ◊�TEY→X of TE, TEY→X , as a function defined on the set of observable
occurrences (xi, yi), i = 1, . . . , N, of a stationary sequence (Xi, Yi), i = 1, . . . , N, and Equation (5),
a standard structure for the estimator is given by (see Appendix B):

◊�TEY→X = ¤�H (X−, Y−) +¤�H (Xp, X−)− ¤�H (Xp, X−, Y−)− ◊�H (X−)

= − 1
N

N

∑
n=1

¤�log
(

pU1 (u1n)
)− 1

N

N

∑
n=1

¤�log
(

pU2 (u2n)
)
+

1
N

N

∑
n=1

¤�log
(

pU3 (u3n)
)

+
1
N

N

∑
n=1

¤�log
(

pU4 (u4n)
)
,

(8)

where U1, U2, U3 and U4 stand respectively for (X−, Y−), (Xp, X−), (Xp, X−, Y−) and X−. Here,

for each n, ¤�log (pU (un)) is an estimated value of log (pU (un)) computed as a function fn (u1, . . . , uN)

of the observed sequence un, n = 1, . . . , N. With the k-NN approach addressed in this study,
fn (u1, . . . , uN) depends explicitly only on un and on its k nearest neighbors. Therefore, the calculation

of ÷H(U) definitely depends on the chosen estimation functions fn. Note that if, for N fixed, these
functions correspond respectively to unbiased estimators of log (p (un)), then ◊�TEY→X is also unbiased;
otherwise, we can only expect that ◊�TEY→X is asymptotically unbiased (for N large). This is so if the
estimators of log (pU (un)) are asymptotically unbiased.

Now, the theoretical derivation and analysis of the most currently used estimators
÷H(U) (u1, . . . , uN) = − 1

N ∑N
n=1
¤�log (p(un)) for the estimation of H (U) generally suppose that

u1, . . . , uN are N independent occurrences of the random vector U, i.e., u1, . . . , uN is an occurrence
of an independent and identically distributed (IID) sequence U1, . . . , UN of random vectors
(∀i = 1, . . . , N : PUi = PU). Although the IID hypothesis does not apply to our initial problem
concerning the measure of TE on stationary random sequences (that are generally not IID), the new
methods presented in this contribution are extended from existing ones assuming this hypothesis,
without relaxing it. However, the experimental section will present results not only on IID observations,
but also on non-IID stationary autoregressive (AR) processes, as our goal was to verify if some
improvement can be nonetheless obtained for non-IID data, such as AR data.

If we come back to mutual information (MI) defined by Equation (6) and compare it with
Equations (5), it is obvious that estimating MI and TE shares similarities. Hence, similarly to

Equation (8) for TE, a basic estimation ÿ�I (X; Y) of I (X; Y) from a sequence (xi, yi), i = 1, . . . , N,
of N independent trials is:

ÿ�I (X; Y) = − 1
N

N

∑
n=1

¤�log (pX (xn))− 1
N

N

∑
n=1

¤�log (pY (yn)) +
1
N

N

∑
n=1

¤�log (pX,Y (xn, yn)). (9)
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In what follows, when explaining the links among the existing methods and the proposed ones,
we refer to Figure 1. In this diagram, a box identified by a number k in a circle is designed by box k©.

Improving performance (in terms of bias and variance) of TE and MI estimators (obtained by

choosing specific estimation functions⁄�log (p (·))) in Equations (8) and (9), respectively) remains an
issue when applied on short-length IID (or non-IID) sequences [3]. In this work, we particularly focused
on bias reduction. For MI, the most widely-used estimator is the Kraskov–Stögbauer–Grassberger
(KSG) estimator [24,31], which was later extended to estimate transfer entropy, resulting in the
k-NN TE estimator [25–27,32–35] (adopted in the widely-used TRENTOOL open source toolbox,
Version 3.0). Our contribution originated in the Kozachenko–Leonenko entropy estimator summarized

in [24] and proposed beforehand in the literature to get an estimation ÷H (X) of the entropy H(X)

of a continuously-distributed random vector X, from a finite sequence of independent outcomes
xi, i = 1, . . . , N. This estimator, as well as another entropy estimator proposed by Singh et al.
in [36] are briefly described in Section 2.1, before we introduce, in Section 4, our two new TE
estimators based on both of them. In Section 2.2, Kraskov MI and standard TE estimators derived in
literature from the Kozachenko–Leonenko entropy estimator are summarized, and the passage from a
square to rectangular neighboring region to derive new entropy estimation is detailed in Section 3.
Our methodology is depicted in Figure 1.

Figure 1. Concepts and methodology involved in k-nearest-neighbors transfer entropy (TE) estimation.
Standard k-nearest-neighbors methods using maximum norm for probability density and entropy
non-parametric estimation introduce, around each data point, a minimal (hyper-)cube (Box 1©),
which includes the first k-nearest neighbors, as is the case for two entropy estimators, namely the
well-known Kozachenko–Leonenko estimator (Box 3©) and the less commonly used Singh’s estimator
(Box 2©). The former was used in [24] to measure mutual information (MI) between two signals X and
Y by Kraskov et al., who propose an MI estimator (Kraskov–Stögbauer–Grassberger (KSG) MI Estimator
1, Box 11©) obtained by summing three entropy estimators (two estimators for the marginal entropies
and one for the joint entropy). The strategy was to constrain the three corresponding (hyper-)cubes,
including nearest neighbors, respectively in spaces SX , SY and SX,Y , to have an identical edge length
(the idea of projected distances, Box 14©) for a better cancellation of the three corresponding biases.
The same approach was used to derive the standard TE estimator [25–29] (Box 10©), which has been
implemented in the TRENTOOL toolbox, Version 3.0. In [24], Kraskov et al. also suggested, for MI
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estimation, to replace minimal (hyper-)cubes with smaller minimal (hyper-)rectangles equal to the
product of two minimal (hyper-)cubes built separately in subspaces SX and SY (KSG MI Estimator 2,
Box 12©) to exploit more efficiently the Kozachenko–Leonenko approach. An extended algorithm for TE
estimation based on minimal (hyper-)rectangles equal to products of (hyper-)cubes was then proposed
in [27] (extended TE estimator, Box 9©) and implemented in the JIDT toolbox [30]. Boxes 10© and 9©
are marked as “standard algorithm” and “extended algorithm”. The new idea extends the idea of the
product of cubes (Box 13©). It consists of proposing a different construction of the neighborhoods, which
are no longer minimal (hyper-)cubes, nor products of (hyper-)cubes, but minimal (hyper-)rectangles
(Box 4©), with possibly a different length for each dimension, to get two novel entropy estimators
(Boxes 5© and 6©), respectively derived from Singh’s entropy estimator and the Kozachenko–Leonenko
entropy estimator. These two new entropy estimators lead respectively to two new TE estimators
(Box 7© and Box 8©) to be compared with the standard and extended TE estimators.

2. Original k-Nearest-Neighbors Strategies

2.1. Kozachenko–Leonenko and Singh’s Entropy Estimators for a Continuously-Distributed Random Vector

2.1.1. Notations

Let us consider a sequence xi, i = 1, . . . , N in RdX (in our context, this sequence corresponds to
an outcome of an IID sequence X1, . . . , XN , such that the common probability distribution will be
equal to that of a given random vector X). The set of the k nearest neighbors of xi in this sequence
(except for xi) and the distance between xi and its k-th nearest neighbor are respectively denoted by χk

i

and dxi ,k. We denote Dxi

(
χk

i

)
⊂ RdX a neighborhood of xi in RdX , which is the image of

(
xi, χk

i

)
by

a set valued map. For a given norm ‖·‖ on RdX (Euclidean norm, maximum norm, etc.), a standard

construction
(

xi, χk
i

)
∈
(
RdX

)k+1 → Dxi

(
χk

i

)
⊂ RdX is the (hyper-)ball of radius equal to dxi ,k, i.e.,

Dxi

(
χk

i

)
=
{

x : ‖x − xi‖ ≤ dxi ,k
}

. The (hyper-)volume (i.e., the Lebesgue measure) of Dxi

(
χk

i

)
is

then vi =
∫
Dxi (χk

i )
dx (where dx � dμdX (x)).

2.1.2. Kozachenko–Leonenko Entropy Estimator

The Kozachenko–Leonenko entropy estimator is given by (Box 3© in Figure 1):

’H(X)KL = ψ(N) +
1
N

N

∑
i=1

log (vi)− ψ(k), (10)

where vi is the volume of Dxi

(
χk

i

)
=
{

x : ‖x − xi‖ ≤ dxi ,k
}

computed with the maximum norm and

ψ(k) = Γ′(k)
Γ(k) denotes the digamma function. Note that using Equation (10), entropy is measured in

natural units (nats).
To come up with a concise presentation of this estimator, we give hereafter a summary of the

different steps to get it starting from [24]. First, let us consider the distance dxi ,k between xi and its k-th
nearest neighbor (introduced above) as a realization of the random variable Dxi ,k, and let us denote by
qxi ,k (x), x ∈ R, the corresponding probability density function (conditioned by Xi = xi). Secondly, let
us consider the quantity hxi (ε) =

∫
‖u−xi‖≤ε/2 dPX (u). This is the probability mass of the (hyper-)ball

with radius equal to ε/2 and centered on xi. This probability mass is approximately equal to:

hxi (ε) � pX (xi)
∫
‖ξ‖≤ε/2

dμd (ξ) = pX (xi) cdεd, (11)

if the density function is approximately constant on the (hyper-)ball. The variable cd is the volume of
the unity radius d-dimensional (hyper-)ball in Rd (cd = 1 with maximum norm). Furthermore, it can
be established (see [24] for details) that the expectation E

[
log

(
hXi

(
DXi ,k

))]
, where hXi is the random
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variable associated with hxi , DXi ,k (which must not be confused with the notation Dxi

(
χk

i

)
introduced

previously) denotes the random distance between the k-th neighbor selected in the set of random
vectors {Xk, 1 ≤ k ≤ N, k �= i}, and the random point Xi is equal to ψ(k)− ψ(N) and does not depend
on pX (·). Equating it with E

[
log

(
pX (Xi) cdDXi ,k

)]
leads to:

ψ(k)− ψ(N) � E [log (pX (Xi))] + E
[
log

(
cdDd

Xi ,k

)]
= −H(Xi) + E [log (Vi)]

(12)

and:
H (Xi) � ψ(N)− ψ(k) + E

[
log

(
cdDd

Xi ,k

)]
. (13)

Finally, by using the law of large numbers, when N is large, we get:

H (Xi) � ψ(N)− ψ(k) +
1
N

N

∑
i=1

log (vi)

=÷H (X)KL,

(14)

where vi is the realization of the random (hyper-)volume Vi = cdDd
xi ,k

.
Moreover, as observed in [24], it is possible to make the number of neighbors k depend on i by

substituting the mean 1
N ∑N

i=1 ψ(ki) for the constant ψ(k) in Equation (14), so that ÷H (X)KL becomes:

÷H (X)KL = ψ(N) +
1
N

N

∑
i=1

(log (vi)− ψ(ki)). (15)

2.1.3. Singh’s Entropy Estimator

The question of k-NN entropy estimation is also discussed by Singh et al. in [36], where another

estimator, denoted by ’H(X)S hereafter, is proposed (Box 2© in Figure 1):

’H(X)S = log(N) +
1
N

N

∑
i=1

log (vi)− ψ(k). (16)

Using the approximation ψ(N) ≈ log(N) for large values of N, the estimator given by Equation
(16) is close to that defined by Equation (10). This estimator was derived by Singh et al. in [36] through
the four following steps:

(1) Introduce the classical entropy estimator structure:

’H(X) � − 1
N

N

∑
i=1

log◊�pX (Xi) =
1
N

N

∑
i=1

Ti, (17)

where:
÷pX(xi) �

k
Nvi

. (18)

(2) Assuming that the random variables Ti, i = 1, . . . , N are identically distributed, so that

E
[
’H(X)

]
= E (T1) (note that E (T1) depends on N, even if the notation does not make that

explicit), compute the asymptotic value of E (T1) (when N is large) by firstly computing its
asymptotic cumulative probability distribution function and the corresponding probability
density pT1 , and finally, compute the expectation E (T1) =

∫
R

tpT1(t)dt.

(3) It appears that E (T1) = E
[
’H(X)

]
= H(X) + B where B is a constant, which is identified with

the bias.
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(4) Subtract this bias from ’H(X) to get ’H(X)S = ’H(X)− B and the formula given in Equation (16).

Note that the cancellation of the asymptotic bias does not imply that the bias obtained with a
finite value of N is also exactly canceled. In Appendix C, we explain the origin of the bias for the
entropy estimator given in Equation (17).

Observe also that, as for the Kozachenko–Leonenko estimator, it is possible to adapt Equation (16)
if we want to consider a number of neighbors ki depending on i. Equation (16) must then be replaced by:

’H(X)S = log(N) +
1
N

N

∑
i=1

(log (vi)− ψ(ki)). (19)

2.2. Standard Transfer Entropy Estimator

Estimating entropies separately in Equations (8) and (9) leads to individual bias values. Now, it is
possible to cancel out (at least partially) the bias considering the algebraic sums (Equations (8) and (9)).
To help in this cancellation, on the basis of Kozachenko–Leonenko entropy estimator, Kraskov et al.
proposed to retain the same (hyper-)ball radius for each of the different spaces instead of using the
same number k for both joint space SX,Y and marginal spaces (SX and SY spaces) [24,37], leading to
the following MI estimator (Box 11© in Figure 1):

ÎK = ψ(k) + ψ(N)− 1
N

N

∑
i=1

[ψ(nX,i + 1) + ψ(nY,i + 1)], (20)

where nX,i and nY,i denote the number of points that strictly fall into the resulting distance in the
lower-dimensional spaces SX and SY, respectively.

Applying the same strategy to estimate TE, the number of neighbors in the joint space SXp ,X− ,Y−
is first fixed, then for each i, the resulting distance εi � d(xp

i ,x−i ,y−i ),k is projected into the other three
lower dimensional spaces, leading to the standard TE estimator [25,27,28] (implementation available
in the TRENTOOL toolbox, Version 3.0, Box 10© in Figure 1):

◊�TEY→XSA = ψ(k) +
1
N

N

∑
i=1

[
ψ(nX− ,i + 1)− ψ(n(X− ,Y−),i + 1)− ψ(n(Xp ,X−),i + 1)

]
, (21)

where nX− ,i, n(X− ,Y−),i and n(Xp ,X−),i denote the number of points that fall into the distance εi from

x−i ,
(

x−i , y−i
)

and
(

xp
i , x−i

)
in the lower dimensional spaces SX− , SX− ,Y− and SXp ,X− , respectively.

This estimator is marked as the “standard algorithm” in the experimental part.
Note that a generalization of Equation (21) was proposed in [28] to extend this formula to the

estimation of entropy combinations other than MI and TE.

3. From a Square to a Rectangular Neighboring Region for Entropy Estimation

In [24], to estimate MI, as illustrated in Figure 2, Kraskov et al. discussed two different techniques

to build the neighboring region to compute ÿ�I (X; Y): in the standard technique (square ABCD in
Figure 2a,b), the region determined by the first k nearest neighbors is a (hyper-)cube and leads to
Equation (20), and in the second technique (rectangle A′B′C′D′ in Figure 2a,b), the region determined
by the first k nearest neighbors is a (hyper-)rectangle. Note that the TE estimator mentioned in the
previous section (Equation (21)) is based on the first situation (square ABCD in Figure 2a or 2b).
The introduction of the second technique by Kraskov et al. was to circumvent the fact that Equation (15)
was not applied rigorously to obtain the terms ψ(nX,i + 1) or ψ(nY,i + 1) in Equation (20). As a matter
of fact, for one of these terms, no point xi (or yi) falls exactly on the border of the (hyper-)cube Dxi

(or Dyi ) obtained by the distance projection from the SX,Y space. As clearly illustrated in Figure 2
(rectangle A′B′C′D′ in Figure 2a,b), the second strategy prevents that issue, since the border of the
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(hyper-)cube (in this case, an interval of R) after projection from SX,Y space to SX space (or SY space)
contains one point. When the dimensions of SX and SY are larger than one, this strategy leads to
building an (hyper-)rectangle equal to the product of two (hyper-)cubes, one of them in SX and the
other one in SY. If the maximum distance of the k-th NN in SX,Y is obtained in one of the directions in
SX , this maximum distance, after multiplying by two, fixes the size of the (hyper-)cube in SX . To obtain
the size of the second (hyper-)cube (in SY), the k neighbors in SX,Y are first projected on SY, and then,
the largest of the distances calculated from these projections fixes the size of this second (hyper-)cube.

(a) (b)

Figure 2. In this two-dimensional example, k = 5. The origin of the Cartesian axis corresponds to
the current point xi. Only the five nearest neighbors of this point, i.e., the points in the set χk

i , are
represented. The fifth nearest neighbor is symbolized by a star. The neighboring regions ABCD,
obtained from the maximum norm around the center point, are squares, with equal edge lengths
εx = εy. Reducing one of the edge lengths, εx or εy, until one point falls onto the border (in the present
case, in the vertical direction), leads to the minimum size rectangle A′B′C′D′, where εx �= εy. Two cases
must be considered: (a) the fifth neighbor is not localized on a node, but between two nodes, contrary
to (b). This leads to obtaining either two points (respectively the star and the triangle in (a)) or only
one point (the star in(b)) on the border of A′B′C′D′. Clearly, it is theoretically possible to have more
than two points on the border of A′B′C′D′, but the probability of such an occurrence is equal to zero
when the probability distribution of the random points Xj is continuous.

In the remainder of this section, for an arbitrary dimension d, we propose to apply this strategy to
estimate the entropy of a single multidimensional variable X observed in Rd. This leads to introducing
a d-dimensional (hyper-)rectangle centered on xi having a minimal volume and including the set
χk

i of neighbors. Hence, the rectangular neighboring is built by adjusting its size separately in each
direction in the space SX. Using this strategy, we are sure that, in any of the d directions, there is
at least one point on one of the two borders (and only one with probability one). Therefore, in this
approach, the (hyper-)rectangle, denoted by Dε1,...,εd

xi , where the sizes ε1, . . . , εd in the respective d
directions are completely specified from the neighbors set χk

i , is substituted for the basic (hyper-)square

Dxi

(
χk

i

)
=

{
x : ‖x − xi‖ ≤ dxi ,k

}
. It should be mentioned that the central symmetry of the

(hyper-)rectangle around the center point allows for reducing the bias in the density estimation
[38] (cf. Equation (11) or (18)). Note that, when k < d, there must exist neighbors positioned on some
vertex or edges of the (hyper-)rectangle. With k < d, it is impossible that, for any direction, one point
falls exactly inside a face (i.e., not on its border). For example, with k = 1 and d > 1, the first neighbor
will be on a vertex, and the sizes of the edges of the reduced (hyper-)rectangle will be equal to twice
the absolute value of its coordinates, whatever the direction.
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Hereafter, we propose to extend the entropy estimators by Kozachenko–Leonenko and Singh using
the above strategy before deriving the corresponding TE estimators and comparing their performance.

3.1. Extension of the Kozachenko–Leonenko Method

As indicated before, in [24], Kraskov et al. extended the Kozachenko–Leonenko estimator
(Equations (10) and (15)) using the rectangular neighboring strategy to derive the MI estimator. Now,
focusing on entropy estimation, after some mathematical developments (see Appendix D), we obtain

another estimator of H(X), denoted by ’H(X)K (Box 6© in Figure 1),

’H(X)K = ψ(N) +
1
N

N

∑
i=1

log (vi)− ψ(k) +
d − 1

k
. (22)

Here, vi is the volume of the minimum volume (hyper-)rectangle around the point xi. Exploiting this
entropy estimator, after substitution in Equation (8), we can derive a new estimation of TE.

3.2. Extension of Singh’s Method

We propose in this section to extend Singh’s entropy estimator by using a (hyper-)rectangular
domain, as we did for the Kozachenko–Leonenko estimator extension introduced in the preceding
section. Considering a d-dimensional random vector X ∈ Rd continuously distributed according to a
probability density function pX , we aim at estimating the entropy H(X) from the observation of a pX
distributed IID random sequence Xi, i = 1, . . . , N. For any specific data point xi and a fixed number k
(1 ≤ k ≤ N), the minimum (hyper-)rectangle (rectangle A′B′C′D′ in Figure 2) is fixed, and we denote
this region by Dε1,...,εd

xi and its volume by vi. Let us denote ξi (1 ≤ ξi ≤ min(k, d)) the number of
points on the border of the (hyper-)rectangle that we consider as a realization of a random variable Ξi.
In the situation described in Figure 2a,b, ξi = 2 and ξi = 1, respectively. According to [39] (Chapter 6,
page 269), if Dxi

(
χk

i

)
corresponds to a ball (for a given norm) of volume vi, an unbiased estimator of

pX(xi) is given by:
÷pX(xi) =

k − 1
Nvi

, i = 1, 2, . . . , N. (23)

This implies that the classical estimator ÷pX(xi) =
k

Nvi
is biased and that presumably log

(
k

Nvi

)
is

also a biased estimation of log (pX(xi)) for N large, as shown in [39].
Now, in the case Dxi

(
χk

i

)
is the minimal (i.e., with minimal (hyper-)volume) (hyper-)rectangle

Dε1,...,εd
xi , including χk

i , more than one point can belong to the border, and a more general estimator

p̃X(xi) of pX(xi) can be a priori considered:

p̃X(xi) =
k̃i

Nvi
, (24)

where k̃i is some given function of k and ξi. The corresponding estimation of H(X) is then:

’H(X) = − 1
N

N

∑
i=1

˜log (pX(xi)) =
1
N

N

∑
i=1

ti, (25)

with:

ti = log
(

Nvi

k̃i

)
, i = 1, 2, . . . , N, (26)

ti being realizations of random variables Ti and k̃i being realizations of random variables K̃i. We have:

∀i = 1, . . . , N : E
[
’H(X)

]
= E (Ti) = E (T1) . (27)
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Our goal is to derive E
[
’H(X)

]
− H(X) = E (T1) − H(X) for N large to correct the

asymptotic bias of ’H(X), according to Steps (1) to (3), explained in Section 2.1.3. To this
end, we must consider an asymptotic approximation of the conditional probability distribution
P (T1 ≤ r|X1 = x1, Ξ1 = ξ1) before computing the asymptotic difference between the expectation
E [T1] = E [E [T1|X1 = x1, Ξ1 = ξ1]] and the true entropy H(X).

Let us consider the random Lebesgue measure V1 of the random minimal (hyper-)rectangle
Dε1,...,εd

x1 ((ε1, . . . , εd) denotes the random vector for which (ε1, . . . , εd) ∈ Rd is a realization) and the

relation T1 = log
(

NV1
K̃1

)
. For any r > 0, we have:

P (T1 > r|X1 = x1, Ξ1 = ξ1) = P
(

log
(

NV1

K̃1

)
> r|X1 = x1, Ξ1 = ξ1

)
= P (V1 > vr|X1 = x1, Ξ1 = ξ1) ,

(28)

where vr = er k̃1
N , since, conditionally to Ξ1 = ξ1, we have K̃1 = k̃1.

In Appendix E, we prove the following property.

Property 1. For N large,

P (T1 > r|X1 = x1, Ξ1 = ξ1) �
k−ξ1

∑
i=0

(
N − ξ1 − 1

i

)
(pX(x1)vr)

i(1 − pX(x1)vr)
N−ξ1−1−i. (29)

The Poisson approximation (when N → ∞ and vr → 0) of the binomial distribution summed in
Equation (29) leads to a parameter λ = (N − ξ1 − 1) pX(x1)vr. As N is large compared to ξ1 + 1, we
obtain from Equation (26):

λ � k̃1er pX(x1), (30)

and we get the approximation:

lim
N→∞

P (T1 > r|X1 = x1, Ξ1 = ξ1) �
k−ξ1

∑
i=0

[
k̃1er pX(x1)

]i

i!
e−k̃1er pX(x1). (31)

Since P(T1 ≤ r|X1 = x1, Ξ1 = ξ1) = 1 − P(T1 > r|X1 = x1, Ξ1 = ξ1), we can get the density
function of T1, noted gT1(r), by deriving P (T1 ≤ r|X1 = x1, Ξ1 = ξ1). After some mathematical
developments (see Appendix F), we obtain:

gT1(r) = P′(T1 ≤ r|X1 = x1, Ξ1 = ξ1)

= −P′(T1 > r|X1 = x1, Ξ1 = ξ1)

=

[
k̃1er pX(x1)

](k−ξ1+1)

(k − ξ1)!
e−k̃1er pX(x1)

, r ∈ R, (32)

and consequently (see Appendix G for details),

lim
N→∞

E [T1|X1 = x1, Ξ1 = ξ1] =
∫ ∞

−∞
r
[
k̃1er pX(x1)

](k−ξ1+1)

(k − ξ1)!
e−k̃1er pX(x1)dr

= ψ(k − ξ1 + 1)− log
(
k̃1
)− log (pX(x1)) .

(33)

Therefore, with the definition of differential entropy H(X1) = E[− log (pX(X1))], we have:

lim
N→∞

E [T1] = lim
N→∞

E [E [T1|X1, Ξ1]] = E
[
ψ(k − Ξ1 + 1)− log

(
K̃1

)]
+H(X1). (34)
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Thus, the estimator expressed by Equation (25) is asymptotically biased. Therefore, we

consider a modified version, denoted by ’H(X)NS, obtained by subtracting an estimation of the

bias E
[
ψ(k − Ξ1 + 1)− log

(
K̃1

)]
given by the empirical mean 1

N ∑N
i=1 ψ(k − ξi + 1) + 1

N ∑N
i=1 log

(
k̃i
)

(according to the large numbers law), and we obtain, finally (Box 5© in Figure 1):

’H(X)NS =
1
N

N

∑
i=1

ti − 1
N

N

∑
i=1

ψ(k − ξi + 1) +
1
N

N

∑
i=1

log
(
k̃i
)

=
1
N

N

∑
i=1

log
(

Nvi

k̃i

)
− 1

N

N

∑
i=1

ψ(k − ξi + 1) +
1
N

N

∑
i=1

log
(
k̃i
)

= log(N) +
1
N

N

∑
i=1

log (vi)− 1
N

N

∑
i=1

ψ(k − ξi + 1).

(35)

In comparison with the development of Equation (22), we followed here the same methodology,
except we take into account (through a conditioning technique) the influence of the number of points
on the border.

We observe that, after cancellation of the asymptotic bias, the choice of the function of k and ξi to
define k̃i in Equation (24) does not have any influence on the final result. In this way, we obtain an

expression for ’H(X)NS, which simply takes into account the values ξi that could a priori influence the
entropy estimation.

Note that, as for the original Kozachenko–Leonenko (Equation (10)) and Singh (Equation (16))
entropy estimators, both new estimation functions (Equations (22) and (35)) hold for any value of k,
such that k � N, and we do not have to choose a fixed k while estimating entropy in lower dimensional
spaces. Therefore, under the framework proposed in [24], we built two different TE estimators using
Equations (22) and (35), respectively.

3.3. Computation of the Border Points Number and of the (Hyper-)Rectangle Sizes

We explain more precisely hereafter how to determine the numbers of points ξi on the border.
Let us denote xj

i ∈ Rd, j = 1, . . . , k, the k nearest neighbors of xi ∈ Rd, and let us consider the d × k

array Di, such that for any (p, j) ∈ {1, . . . , d} × {1, . . . , k}, Di(p, j) =
∣∣∣xj

i(p)− xi(p)
∣∣∣ is the distance

(in R) between the p-th component xj
i(p) of xj

i and the p-th component xi(p) of xi. For each p, let us
introduce Ji(p) ∈ {1, . . . , k} defined by Di(p, Ji(p)) = max (Di(p, 1), . . . , Di(p, k)) and which is the
value of the column index of Di for which the distance Di(p, j) is maximum in the row number p.
Now, if there exists more than one index Ji(p) that fulfills this equality, we select arbitrarily the lowest
one, hence avoiding the max(·) function to be multi-valued. The MATLAB implementation of the max
function selects such a unique index value. Then, let us introduce the d × k Boolean array Bi defined
by Bi(p, j) = 1 if j = Ji(p) and Bi(p, j) = 0, otherwise. Then:

(1) The d sizes εp, p = 1, . . . , d of the (hyper-)rectangle Dε1,...,εd
xi are equal respectively to

εp = 2Di(p, Ji(p)), p = 1, . . . , d.
(2) We can define ξi as the number of non-null column vectors in Bi. For example, if the k-th nearest

neighbor xk
i is such that ∀j �= k, ∀p = 1, . . . , d :

∣∣∣xj
i(p)− xi(p)

∣∣∣ < ∣∣∣xk
i (p)− xi(p)

∣∣∣, i.e., when the
k-th nearest neighbor is systematically the farthest from the central point xi for each of the d
directions, then all of the entries in the last column of Bi are equal to one, while all other entries
are equal to zero: we have only one column including values different from zero and, so, only
one point on the border (ξi = 1), which generalizes the case depicted in Figure 2b for d = 2.

N.B.: this determination of ξi may be incorrect when there exists a direction p, such that the number
of indices j for which Di(p, j) reaches the maximal value is larger than one: the value of ξi obtained
with our procedure can then be underestimated. However, we can argue that, theoretically, this case
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occurs with a probability equal to zero (because the observations are continuously distributed in the
probability) and, so, it can be a priori discarded. Now, in practice, the measured quantification errors
and the round off errors are unavoidable, and this probability will differ from zero (although remaining
small when the aforesaid errors are small): theoretically distinct values Di(p, j) on the row p of Di may
be erroneously confounded after quantification and rounding. However, the max(·) function then
selects on row p only one value for Ji(p) and, so, acts as an error correcting procedure. The fact that the
maximum distance in the concerned p directions can then be allocated to the wrong neighbor index
has no consequence for the correct determination of ξi.

4. New Estimators of Transfer Entropy

From an observed realization
(

xp
i , x−i , y−i

)
∈ SXp ,X− ,Y− , i = 1, 2, . . . , N of the IID random

sequence
(

Xp
i , X−

i , Y−
i

)
, i = 1, 2, . . . , N and a number k of neighbors, the procedure could be

summarized as follows (distances are from the maximum norm):

(1) similarly to the MILCA [31] and TRENTOOL toolboxes [34], normalize, for each i, the vectors xp
i ,

x−i and y−i ;

(2) in joint space SXp ,X− ,Y− , for each point
(

xp
i , x−i , y−i

)
, calculate the distance d(xp

i ,x−i ,y−i ),k between(
xp

i , x−i , y−i
)

and its k-th neighbor, then construct the (hyper-)rectangle with sizes ε1, . . . , εd

(d is the dimension of the vectors
(

xp
i , x−i , y−i

)
), for which the (hyper-)volume is v(Xp ,X− ,Y−),i =

ε1 × . . . × εd and the border contains ξ(Xp ,X− ,Y−),i points;

(3) for each point (xp
i , x−i ) in subspace SXp ,X− , count the number k(Xp ,X−),i of points falling within

the distance d(xp
i ,x−i ,y−i ),k, then find the smallest (hyper-)rectangle that contains all of these points

and for which v(Xp ,X−),i and ξ(Xp ,X−),i are respectively the volume and the number of points on
the border; repeat the same procedure in subspaces SX− ,Y− and SX− .

From Equation (22) (modified to k not constant for SX− , SXp ,X− and SX− ,Y− ), the final TE estimator
can be written as (Box 8© in Figure 1):

◊�TEY→X p1 =
1
N

N

∑
i=1

log
v(Xp ,X−),i · v(X− ,Y−),i
v(Xp ,X− ,Y−),i · vX− ,i

+
1
N

N

∑
i=1

(
ψ(k) + ψ(kX− ,i)− ψ(k(Xp ,X−),i)− ψ(k(X− ,Y−),i)

+
dXp + dX− − 1

k(Xp ,X−),i
+

dX− + dY− − 1
k(X− ,Y−),i

− dXp + dX− + dY− − 1
k

− dX− − 1
kX− ,i

)
,

(36)

where dXp = dim (SXp) , dX− = dim (SX−) , dY− = dim (SY−), and with Equation (35), it yields to
(Box 7© in Figure 1):

◊�TEY→X p2 =
1
N

N

∑
i=1

log
v(Xp ,X−),i · v(X− ,Y−),i
v(Xp ,X− ,Y−),i · vX− ,i

+
1
N

N

∑
i=1

(
ψ(k − ξ(Xp ,X− ,Y−),i + 1) + ψ(kX− ,i − ξX− ,i + 1)− ψ(k(Xp ,X−),i

− ξ(Xp ,X−),i + 1)− ψ(k(X− ,Y−),i − ξ(X− ,Y−),i + 1)

)
.

(37)

In Equations (36) and (37), the volumes v(Xp ,X−),i, v(X− ,Y−),i, v(Xp ,X− ,Y−),i, vX− ,i are obtained by
computing, for each of them, the product of the edges lengths of the (hyper-)rectangle, i.e., the product
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of d edges lengths, d being respectively equal to dXp + dX− , dX− + dY− , dXp + dX− + dY− and dX− . In a
given subspace and for a given direction, the edge length is equal to twice the largest distance between
the corresponding coordinate of the reference point (at the center) and each of the corresponding
coordinates of the k nearest neighbors. Hence a generic formula is vU = ∏

dim(U )
j=1 εUj, where U is

one of the symbols (Xp, X−), (X−, Y−), (Xp, X−, Y−) and X− and the εUj are the edge lengths of the
(hyper-)rectangle.

The new TE estimator ◊�TEY→X p1 (Box 8© in Figure 1) can be compared with the extension of
◊�TEY→XSA, the TE estimator proposed in [27] (implemented in the JIDT toolbox [30]). This extension [27],
included in Figure 1 (Box 9©), is denoted here by ◊�TEY→X EA. The main difference with our ◊�TEY→X p1
estimator is that our algorithm uses a different length for each sub-dimension within a variable, rather
than one length for all sub-dimensions within the variable (which is the approach of the extended
algorithm). We introduced this approach to make the tightest possible (hyper-)rectangle around the k
nearest neighbors. ◊�TEY→X EA is expressed as follows:

◊�TEY→X EA =
1
N

N

∑
i=1

(ψ(k)− 2
k
+ ψ(lX− ,i)− ψ(l(Xp ,X−),i)

+
1

l(Xp ,X−),i
− ψ(l(X− ,Y−),i) +

1
l(X− ,Y−),i

).
(38)

In the experimental part, this estimator is marked as the “extended algorithm”. It differs from
Equation (36) in two ways. Firstly, the first summation on the right hand-side of Equation (36) does
not exist. Secondly, compared with Equation (36), the numbers of neighbors kX− ,i, k(Xp ,X−),i and
k(X− ,Y−),i included in the rectangular boxes, as explained in Section 3.1, are replaced respectively with
lX− ,i, l(Xp ,X−),i and l(X− ,Y−),i, which are obtained differently. More precisely, Step (2) in the above
algorithm becomes:

(2’) For each point (xp
i , x−i ) in subspace SXp ,X− , l(Xp ,X−),i is the number of points falling

within a (hyper-)rectangle equal to the Cartesian product of two (hyper-)cubes,
the first one in SXp and the second one in SX− , whose edge lengths are
equal, respectively, to dmax

xp
i

= 2 × max
{∥∥∥xp

k − xp
i

∥∥∥ : (xp, x−, y−)k ∈ χk
(xp ,x− ,y−)i

}
and dmax

x−i
= 2 × max

{∥∥x−k − x−i
∥∥ : (xp, x−, y−)k ∈ χk

(xp ,x− ,y−)i

}
, i.e., l(Xp ,X−),i =

card
{(

xp
j , x−i

)
: j ∈ {{1, . . . , N} − {i}} &

∥∥∥xp
j − xp

i

∥∥∥ ≤ dmax
xp

i
&

∥∥∥x−j − x−i
∥∥∥ ≤ dmax

x−i

}
. Denote

by v(Xp ,X−),i the volume of this (hyper-)rectangle. Repeat the same procedure in subspaces
SX− ,Y− and SX− .

Note that the important difference between the construction of the neighborhoods used in
◊�TEY→X EA and in ◊�TEY→X p1 is that, for the first case, the minimum neighborhood, including the k
neighbors, is constrained to be a Cartesian product of (hyper-)cubes and, in the second case, this
neighborhood is a (hyper-)rectangle whose edge lengths can be completely different.

5. Experimental Results

In the experiments, we tested both Gaussian IID and Gaussian AR models to compare and
validate the performance of the TE estimators proposed in the previous section. For a complete
comparison, beyond the theoretical value of TE, we also computed the Granger causality index as a
reference (as indicated previously, in the case of Gaussian signals TE and Granger causality index are
equivalent up to a factor of two; see Appendix H). In each following figure, GCi/2 corresponds to the
Granger causality index divided by two; TE estimated by the free TRENTOOL toolbox (corresponding
to Equation (21)) is marked as the standard algorithm; that estimated by JIDT (corresponding to
Equation (38)) is marked as the extended algorithm; TEp1 is the TE estimator given by Equation (36);

44



Entropy 2015, 17, 4173–4201

and TEp2 is the TE estimator given by Equation (37). For all of the following results, the statistical
means and the standard deviations of the different estimators have been estimated using an averaging
on 200 trials.

5.1. Gaussian IID Random Processes

The first model we tested, named Model 1, is formulated as follows:

Xt = aYt + bZt + Wt, Wt ∈ R, Y ∈ RdY , Z ∈ RdZ , (39)

where Yt ∼ N (0, CY), Zt ∼ N (0, CZ), Wt ∼ N (
0, σ2

W
)
, the three processes Y, Z, and W being

mutually independent. The triplet (Xt, Yt, Zt) corresponds to the triplet
(

Xp
i , X−

i , Y−
i

)
introduced

previously. CU is a Toeplitz matrix with the first line equal to [1, α, . . . , αdU−1]. For the matrix CY,
we chose α = 0.5, and for CZ, α = 0.2. The standard deviation σW was set to 0.5. The vectors a and
b were such that a = 0.1 ∗ [1, 2, . . . , dY] and b = 0.1 ∗ [dZ, dZ − 1, . . . , 1]. With this model, we aimed
at estimating H(X|Y) −H(X|Y, Z) to test if the knowledge of signals Y and Z could improve the
prediction of X compared to only the knowledge of Y.

(a) (b)

Figure 3. Information transfer from Z to X (Model 1) estimated for two different dimensions with k = 8.
The figure displays the mean values and the standard deviations: (a) dY = dZ = 3; (b) dY = dZ = 8.

Results are reported in Figure 3 where the dimensions dY and dZ are identical. We observe that,
for a low dimension and a sufficient number of neighbors (Figure 3a), all TE estimators tend all the
more to the theoretical value (around 0.26) that the length of the signals is large, the best estimation
being obtained by the two new estimators. Compared to Granger causality, these estimators display a
greater bias, but a lower variance. Due to the “curse of dimensionality”, with an increasing dimension
(see Figure 3b), it becomes much more difficult to obtain an accurate estimation of TE. For a high
dimension, all estimators reveal a non-negligible bias, even if the two new estimators still behave
better than the two reference ones (standard and extended algorithms).

5.2. Vectorial AR Models

In the second experiment, two AR models integrating either two or three signals have been tested.
The first vectorial AR model (named Model 2) we tested was as follows:{

xt = 0.45
√

2xt−1 − 0.9xt−2 − 0.6yt−2 + ex,t

yt = 0.6xt−2 − 0.175
√

2yt−1 + 0.55
√

2yt−2 + ey,t.
(40)
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The second vectorial AR model (named Model 3) was given by:⎧⎪⎪⎨⎪⎪⎩
xt = −0.25xt−2 − 0.35yt−2 + 0.35zt−2 + ex,t

yt = −0.5xt−1 + 0.25yt−1 − 0.5zt−3 + ey,t

zt = −0.6xt−2 − 0.7yt−2 − 0.2zt−2 + ez,t.

(41)

For both models, ex, ey and ez denote realizations of independent white Gaussian noises with zero
mean and a variance of 0.1. As previously, we display in the following figures not only the theoretical
value of TE, but also the Granger causality index for comparison. In this experiment, the prediction
orders m and n were equal to the corresponding regression orders of the AR models. For example,
when estimating TEY→X , we set m = 2, n = 2, and

(
Xp

i , X−
i , Y−

i

)
corresponds to

(
Xi+1, X(2)

i , Y(2)
i

)
.

For Figures 4 and 5, the number k of neighbors was fixed to eight, whereas, in Figure 6, this
number was set to four and three (respectively Figures 6a,b) to show the influence of this parameter.
Figures 4 and 6 are related to Model 2, and Figure 5 is related to Model 3.

(a) (b)

Figure 4. Information transfer (Model 2), mean values and standard deviations, k = 8. (a) From X to Y;
(b) from Y to X.

As previously, for large values of k (cf. Figures 4 and 5), we observe that the four TE estimators
converge towards the theoretical value. This result is all the more true when the signal length increases.
As expected in such linear models, Granger causality outperforms the TE estimators at the expense of
a slightly larger variance. Contrary to Granger causality, TE estimators are clearly more impacted by
the signal length, even if their standard deviations remain lower. Here, again, when comparing the
different TE estimators, it appears that the two new estimators achieve improved behavior compared
to the standard and extended algorithms for large k.

In the scope of k-NN algorithms, the choice of k must be a tradeoff between the estimation of
bias and variance. Globally, when the value of k decreases, the bias decreases for the standard and
extended algorithms and for the new estimator TEp1. Now, for the second proposed estimator TEp2, it
is much more sensitive to the number of neighbors (as can be seen when comparing Figures 4 and 6).
As shown in Figures 3 to 5, the results obtained using TEp2 and TEp1 are quite comparable when the
value of k is large (k = 8). Now, when the number of neighbors decreases, the second estimator we
proposed, TEp2, is much less reliable than all of the other ones (Figure 6). Concerning the variance, it
remains relatively stable when the number of neighbors falls from eight to three, and in this case, the
extended algorithm, which displays a slightly lower bias, may be preferred.
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(a) (b)

(c) (d)

(e) (f)

Figure 5. Information transfer (Model 3), mean values and standard deviations, k = 8. (a) From X to Y;
(b) from Y to X; (c) from X to Z; (d) from Z to X; (e) from Y to Z; (f) from Z to Y.

(a) (b)

Figure 6. Information transfer from X to Y (Model 2), mean values and standard deviations: (a) k = 4;
(b) k = 3.
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When using k = 8, a possible interpretation of getting a lower bias with our algorithms could be
that, once we are looking at a large enough number of k nearest neighbors, there is enough opportunity
for the use of different lengths on the sub-dimensions of the (hyper-)rectangle to make a difference to
the results, whereas with k = 3, there is less opportunity.

To investigate the impact on the dispersion (estimation error standard deviation) of (i) the
estimation method and (ii) the number of neighbors, we display in Figures 7a,b the boxplots of the
absolute values of the centered estimation errors (AVCE) corresponding to experiments reported
in Figures 4a and 6b for a 1024-point signal length. These results show that neither the value of
k, nor the tested TE estimator dramatically influence the dispersions. More precisely, we used a
hypothesis testing procedure (two-sample Kolmogorov–Smirnov goodness-of-fit hypothesis, KSTEST2
in MATLAB) to test if two samples (each with 200 trials) of AVCE are drawn from the same underlying
continuous population or not. The tested hypothesis corresponds to non-identical distributions and is
denoted H = 1, and H = 0 corresponds to the rejection of this hypothesis. The confidence level was
set to 0.05.

(1) Influence of the method:

(a) Test between the standard algorithm and TEp1 in Figure 7a: H = 0, p-value = 0.69 →
no influence

(b) Test between the extended algorithm and TEp1 in Figure 7a: H = 0, p-value = 0.91 →
no influence

(c) Test between the standard algorithm and TEp1 in Figure 7b: H = 0, p-value = 0.081 →
no influence

(d) Test between the extended algorithm and TEp1 in Figure 7b: H = 1, p-value = 0.018 →
influence exists.

(2) Influence of the neighbors’ number k:

(a) Test between k = 8 (Figure 7a) and k = 3 (Figure 7b) for the standard algorithm: H = 0,
p-value = 0.97 → no influence

(b) Test between k = 8 (Figure 7a) and k = 3 (Figure 7b) for TEp1: H = 0, p-value = 0.97 → no
influence.

For these six tested cases, the only case where a difference between distributions (and so, between
the dispersions) corresponds to a different distribution is when comparing the extended algorithm
and TEp1 in Figure 7b.

(a) (b)

Figure 7. Box plots of the centered errors obtained with the five methods for Model 2, X → Y: (a) k = 8
(corresponding to Figure 4a); (b) k = 3 (corresponding to Figure 6b).
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6. Discussion and Summary

In the computation of k-NN based estimators, the most time-consuming part is the procedure
of nearest neighbor searching. Compared to Equations (10) and (16), Equations (22) and (35) involve
supplementary information, such as the maximum distance of the first k-th nearest neighbor in
each dimension and the number of points on the border. However, most currently used neighbor
searching algorithms, such as k-d tree (k-dimensional tree) and ATRIA (A TRiangle Inequality based
Algorithm) [40], provide not only information on the k-th neighbor, but also on the first (k − 1) nearest
neighbors. Therefore, in terms of computation cost, there is no significant difference among the three
TE estimators (Boxes 7©, 8©, 9©, 10© in Figure 1).

In this contribution, we discussed TE estimation based on k-NN techniques. The estimation of TE
is always an important issue, especially in neuroscience, where getting large amounts of stationary
data is problematic. The widely-used k-NN technique has been proven to be a good choice for the
estimation of information theoretical measurement. In this work, we first investigated the estimation
of Shannon entropy based on the k-NN technique involving a rectangular neighboring region and
introduced two different k-NN entropy estimators. We derived mathematically these new entropy
estimators by extending the results and methodology developed in [24] and [36]. Given the new
entropy estimators, two novel TE estimators have been proposed, implying no extra computation cost
compared to existing similar k-NN algorithm. To validate the performance of these estimators, we
considered different simulated models and compared the new estimators with the two TE estimators
available in the free TRENTOOL and JIDT toolboxes, respectively, and which are extensions of
two Kraskov–Stögbauer–Grassberger (KSG) MI estimators, based respectively on (hyper-)cubic and
(hyper-)rectangular neighborhoods.

Under the Gaussian assumption, experimental results showed the effectiveness of the new
estimators under the IID assumption, as well as for time-correlated AR signals in comparison with the
standard KSG algorithm estimator. This conclusion still holds when comparing the new algorithms
with the extended KSG estimator. Globally, all TE estimators satisfactorily converge to the theoretical
TE value, i.e., to half the value of the Granger causality, while the newly proposed TE estimators
showed lower bias for k sufficiently large (in comparison with the reference TE estimators) with
comparable variances estimation errors.

As the variance remains relatively stable when the number of neighbors falls from eight to three,
in this case, the extended algorithm, which displays a slightly lower bias, may be preferred.

Now, one of the new TE estimators suffered from noticeable error when the number of neighbors
was small. Some experiments allowed us to verify that this issue already exists when estimating the
entropy of a random vector: when the number of neighbors k falls below the dimension d, then the
bias drastically increases. More details on this phenomenon are given in Appendix 6.

As expected, experiments with Model 1 showed that all three TE estimators under examination
suffered from the “curse of dimensionality”, which made it difficult to obtain accurate estimation of
TE with high dimension data. In this contribution, we do not present the preliminary results that we
obtained when simulating a nonlinear version of Model 1, for which the three variables Xt, Yt and
Zt were scalar and their joint law was non-Gaussian, because a random nonlinear transformation
was used to compute Xt from Yt, Zt. For this model, we computed the theoretical TE (numerically,
with good precision) and tuned the parameters to obtain a strong coupling between Xt and Zt. The
theoretical Granger causality index was equal to zero. We observed the same issue as that pointed
out in [41], i.e., a very slow convergence of the estimator when the number of observations increases,
and noticed that the four estimators ◊�TEY→XSA, ◊�TEY→X EA, ◊�TEY→X p1 and ◊�TEY→X p2, revealed very close
performance. In this difficult case, our two methods do not outperform the existing ones. Probably, for
this type of strong coupling, further improvement must be considered at the expense of an increasing
computational complexity, as that proposed in [41].

This work is a first step in a more general context of connectivity investigation for
neurophysiological activities obtained either from nonlinear physiological models or from clinical
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recordings. In this context, partial TE has also to be considered, and future work would address a
comparison of the techniques presented in this contribution in terms of bias and variance. Moreover,
considering the practical importance to know statistical distributions of the different TE estimators for
independent channels, this point should be also addressed.
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Appendix

A. Mathematical Expression of Transfer Entropy for Continuous Probability Distributions

Here, we consider that the joint probability measure PXp
i ,X−

i ,Y−
i

is absolutely continuous (with

respect to the Lebesgue measure in Rm+n+1 denoted by μm+n+1) with the corresponding density:

pXp
i ,X−

i ,Y−
i

(
xp

i , x−i , y−i
)
=

dPXp
i ,X−

i ,Y−
i

(
xp

i , x−i , y−i
)

dμn+m+1
(

xp
i , x−i , y−i

) . (42)

Then, we are sure that the two following conditional densities probability functions exist:

pXp
i |X−

i

(
xp

i |x−i
)
=

dPXp
i |X−

i

(
xp

i |x−i
)

dμ1
(

xp
i

)
pXp

i |X−
i ,Y−

i

(
xp

i |x−i , y−i
)
=

dPXp
i |X−

i ,Y−
i

(
xp

i |x−i , y−i
)

dμ1
(

xp
i

) .

(43)

and Equation (3) yields to:

TEY→X,i =
∫
Rm+n+1

pXp ,X−
i ,Y−

i

(
xp

i , x−i , y−i
)

log

⎡⎣ pXp |X−
i ,Y−

i

(
xp

i |x−i , y−i
)

pXp |X−
i

(
xp

i |x−i
)

⎤⎦dxp
i dx−i y−i

=
∫
Rm+n+1

pXp ,X−
i ,Y−

i

(
xp

i , x−i , y−i
)

log

⎡⎣ pXp ,X−
i ,Y−

i

(
xp

i , x−i , y−i
)

pX−
i

(
x−i
)

pX−
i ,Y−

i

(
x−i , y−i

)
pXp ,X−

i

(
xp

i , x−i
)
⎤⎦dxp

i dx−i y−i .

(44)

Equation (44) can be rewritten:

TEY→X,i = −E
[
log

(
pX−

i ,Y−
i

(
X−

i , Y−
i
))]− E

[
log

(
pXp

i ,X−
i

(
Xp

i , X−
i

))]
+ E

[
log

(
pXp

i ,X−
i ,Y−

i

(
Xp

i , X−
i , Y−

i

))]
+ E

[
log

(
pX−

i

(
X−

i
))]

.
(45)

B. Basic Structure of TE Estimators

From Equation (8), assuming that X and Y are jointly strongly ergodic leads to:

TEY→X = lim
N→∞

1
N ∑

i=1,...,N

[
− log

(
pX−

i ,Y−
i

(
X−

i , Y−
i
))− log

(
pXp

i ,X−
i

(
Xp

i , X−
i

))
+ log

(
pXp

i ,X−
i ,Y−

i

(
Xp

i , X−
i , Y−

i

))
+ log

(
pX−

i

(
X−

i
))]

,
(46)
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where the convergence holds with probability one. Hence, as a function of an observed occurrence
(xi, yi), i = 1, . . . , N, of (Xi, Yi), i = 1, . . . , N, a standard estimation ◊�TEY→X of TEY→X is given by:

◊�TEY→X = ¤�H (X−, Y−) +¤�H (Xp, X−)− ¤�H (Xp, X−, Y−)− ◊�H (X−)

= − 1
N

N

∑
n=1

¤�log
(

pU1 (u1n)
)− 1

N

N

∑
n=1

¤�log
(

pU2 (u2n)
)
+

1
N

N

∑
n=1

¤�log
(

pU3 (u3n)
)

+
1
N

N

∑
n=1

¤�log
(

pU4 (u4n)
)
,

(47)

where U1, U2, U3 and U4 stand respectively for (X−, Y−), (Xp, X−), (Xp, X−, Y−) and X−.

C. The Bias of Singh’s Estimator

Let us consider the equalities E (T1) = −E
[
log

(
̂pX (X1)

)]
= −E

[
log

(
k

NV1

)]
where V1 is the

random volume for which v1 is an outcome. Conditionally to X1 = x1, if we have k
NV1

pr−−−→
N→∞

pX (x1)

(convergence in probability), then E (T1/X1 = x1) −−−→
N→∞

− log (pX (x1)), and by deconditioning, we

obtain E (T1) −−−→
N→∞

−E (log (pX (X1))) = H(X). Therefore, if k
NV1

pr−−−→
N→∞

pX (x1), the estimation

of H(X) is asymptotically unbiased. Here, this convergence in probability does not hold, even if
we assume that E

(
k

NV1

)
−−−→
N→∞

pX (x1) (one order mean convergence), because we do not have

var
(

k
NV1

)
−−−→
N→∞

0. The ratio k
NV1

remains fluctuating when N → ∞, because the ratio
√

var(V1)
E(V1)

does

not tend to zero, even if V1 tends to be smaller: when N increases, the neighborhoods become smaller
and smaller, but continue to ‘fluctuate’. This explains informally (see [37] for a more detailed analysis)
why the naive estimator given by Equation (17) is not asymptotically unbiased. It is interesting to note
that the Kozachenko–Leonenko entropy estimator avoids this problem, and so it does not need any
bias subtraction.

D. Derivation of Equation (22)

As illustrated in Figure 2, for d = 2, there are two cases to be distinguished: (1) εx and εy are
determined by the same point; (2) εx and εy are determined by distinct points.

Considering the probability density qi,k
(
εx, εy

)
,
(
εx, εy

) ∈ R2 of the pair of random sizes(
εx, εy

)
(along x and y, respectively), we can extend it to the case d > 2. Hence, let us denote by

qd
xi ,k

(ε1, . . . , εd), (ε1, . . . , εd) ∈ Rd the probability density (conditional to Xi = xi) of the d-dimensional
random vector whose d components are respectively the d random sizes of the (hyper-)rectangle
built from the random k nearest neighbors, and denote by hxi (ε1, . . . , εd) =

∫
u∈Dε1,...,εd

xi
dPX (u) the

probability mass (conditional to Xi = xi) of the random (hyper-)rectangle Dε1,...,εd
xi . In [24], the equality

E
[
log

(
hxi

(
Dxi ,k

))]
= ψ(k)− ψ(N) obtained for an (hyper-)cube is extended for the case d > 2 to:

E [log (hxi (ε1, . . . , εd))] = ψ(k)− d − 1
k

− ψ(N). (48)

Therefore, if pX is approximately constant on Dε1,...,εd
xi , we have:

hxi (ε1, . . . , εd) � vi pX (xi) , (49)

where vi =
∫
Dε1,...,εd

xi
dμd(ξ) is the volume of the (hyper-)rectangle, and we obtain:

log pX(xi) ≈ ψ(k)− ψ(N)− d − 1
k

− log (vi) . (50)
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Finally, by taking the experimental mean of the right term in Equation (50), we obtain an estimation
of the expectation E [log pX(X)], i.e.,:

’H(X) = −ψ(k) + ψ(N) +
d − 1

k
+

1
N

N

∑
i=1

log (vi) . (51)

E. Proof of Property 1

Let us introduce the (hyper-)rectangle Dε′1,...,ε′d
x1 centered on x1 for which the random sizes along

the d directions are defined by
(
ε′1, . . . , ε′d

)
= (ε1, . . . , εd)×

(
vr

ε1×...×εd

)1/d
, so that Dε′1,...,ε′d

x1 and Dε1,...,εd
x1

are homothetic and Dε′1,...,ε′d
x1 has a (hyper-)volume constrained to the value vr. We have:

∫
x∈Dε1,...,εd

x1

dμd(x) > vr ⇔ Dε′1,...,ε′d
x1 ⊂ Dε1,...,εd

x1 ⇔ card
{

xj : xj ∈ Dε′1,...,ε′d
x1

}
≤ k − ξ1, (52)

where the first equivalence (the inclusion is a strict inclusion) is clearly implied by the construction of

Dε′1,...,ε′d
x1 and the second equivalence expresses the fact that the (hyper-)volume of Dε1,...,εd

x1 is larger than

vr if and only if the normalized domain Dε′1,...,ε′d
x1 does not contain more than (k − ξ1) points xj (as ξ1 of

them are on the border of Dε1,...,εd
x1 , which is necessarily not included in Dε′1,...,ε′d

x1 ). These equivalences
imply the equalities between conditional probability values:

P (T1 > r|X1 = x1, Ξ1 = ξ1) = P
(

log
(

NV1

K̃1

)
> r|X1 = x1, Ξ1 = ξ1

)
= P (V1 > vr|X1 = x1, Ξ1 = ξ1)

= P
(

card
{

Xj : Xj ∈ Dε′1,...,ε′d
x1

}
≤ k − ξ1

)
.

(53)

Only (N − 1 − ξ1) events
{

Xj : Xj ∈ Dε′1,...,ε′d
x1

}
are to be considered, because the variable X1 and

the ξ1 variable(s) on the border of Dε1,...,εd
x1 must be discarded. Moreover, these events are independent.

Hence, the probability value in (53) can be developed as follows:

P (T1 > r|X1 = x1, Ξ1 = ξ1) �
k−ξ1

∑
i=0

(
N − ξ1 − 1

i

)(
P
(

X ∈ Dε′1,...,ε′d
x1

))i

(
1 −P

(
X ∈ Dε′1,...,ε′d

x1

))N−ξ1−1−i
.

(54)

If pX(x1) is approximately constant on Dε′1,...,ε′d
x1 , we have P

(
X ∈ Dε′1,...,ε′d

x1

)
� pX(x1)vr (note that

the randomness of
(
ε′1, . . . , ε′d

)
does not influence this approximation as the (hyper-)volume of Dε′1,...,ε′d

x1

is imposed to be equal to vr). Finally, we can write:

P (T1 > r|X1 = x1, Ξ1 = ξ1) �
k−ξ1

∑
i=0

(
N − ξ1 − 1

i

)
(pX(x1)vr)

i(1 − pX(x1)vr)
N−ξ1−1−i. (55)
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F. Derivation of Equation (32)

With P(T1 ≤ r|X1 = x1, Ξ1 = ξ1) = 1 −P(T1 > r|X1 = x1, Ξ1 = ξ1), we take the derivative of
P(T1 ≤ r|X1 = x1, Ξ1 = ξ1) to get the conditional density function of T1:

P′(T1 ≤ r|X1 = x1, Ξ1 = ξ1)

= −P′(T1 > r|X1 = x1, Ξ1 = ξ1)

= −
[

k−ξ1

∑
i=0

[k̃1 pX(x1)er]
i

i!
e−k̃1 pX(x1)er

]′

= −
k−ξ1

∑
i=0

⎛⎝[ [k̃1 pX(x1)er]
i

i!

]′
e−k̃1 pX(x1)er

+
[k̃1 pX(x1)er]

i

i!

[
e−k̃1 pX(x1)er

]′⎞⎠
= −

k−ξ1

∑
i=0

(
i[k̃1 pX(x1)er]

i−1
(k̃1 pX(x1)er)

i!
e−k̃1 pX(x1)er

+
[k̃1 pX(x1)er]i

i!
e−k̃1 pX(x1)er

(−k̃1 pX(x1)er)

)

= −
k−ξ1

∑
i=0

e−k̃1 pX(x1)er

(
[k̃1 pX(x1)er]

i

(i − 1)!
− [k̃1 pX(x1)er]

i+1

i!

)
.

(56)
Defining:

a(i) =
[k̃1 pX(x1)er]i

(i − 1)!
and a(0) = 0, (57)

we have:

P′(T1 ≤ r) = −
k−ξ1

∑
i=0

e−k̃1 pX(x1)er
(a(i)− a(i + 1))

= −e−k̃1 pX(x1)er
(a(0)− a(k − ξ1 + 1))

= e−k̃1 pX(x1)er
a(k − ξ1 + 1)

=

[
k̃1 pX(x1)er](k−ξ1+1)

(k − ξ1)!
e−k̃1 pX(x1)er

.

(58)

G. Derivation of Equation (33)

lim
n→∞

E (T1|X1 = x1) =
∫ ∞

−∞
r
[k̃1 pX(x1)er]

(k−ξ1+1)

(k − ξ1)!
e−k̃1 pX(x1)er

dr

=
∫ ∞

0

[
log(z)− log

(
k̃1
)− log pX(x1)

] zk−ξ1

(k − ξ1)!
e−zdz

=
1

Γ(k − ξ1 + 1)

∫ ∞

0

[
log(z)zk−ξ1 e−z

]
dz − log

(
k̃1
)− log pX(x1)

=
1

Γ(k − ξ1 + 1)

∫ ∞

0

[
log(z)z(k−ξ1+1)−1e−z

]
dz − log

(
k̃1
)− log pX(x1)

=
Γ′(k − ξ1 + 1)
Γ(k − ξ1 + 1)

− log
(
k̃1
)− log pX(x1)

= ψ(k − ξ1 + 1)− log
(
k̃1
)− log pX(x1).

(59)

H. Transfer Entropy and Granger Causality

TE can be considered as a measurement of the degree to which the history Y− of the process
Y disambiguates the future Xp of X beyond the degree to how its history X− disambiguates this
future [22]. It is an information theoretic implementation of Wiener’s principle of observational
causality. Hence, TE reveals a natural relation to Granger causality. As is well known, Granger
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causality emphasizes the concept of reduction of the mean square error of the linear prediction of Xp
i

when adding Y−
i to X−

i by introducing the Granger causality index:

GCY→X = log

⎡⎣ var
(

lpeXp
i |X−

i

)
var

(
lpeXp

i |X−
i ,Y−

i

)
⎤⎦ , (60)

where lpeXp
i |U is the error when predicting linearly Xp

i from U. TE is framed in terms of the reduction
of the Shannon uncertainty (entropy) of the predictive probability distribution. When the probability
distribution of

(
Xp

i , X−
i , Y−

i

)
is assumed to be Gaussian, TE and Granger causality are entirely

equivalent, up to a factor of two [42]:

TEY→X =
1
2

GCY→X . (61)

Consequently, in the Gaussian case, TE can be easily computed from a statistical second order
characterization of

(
Xp

i , X−
i , Y−

i

)
. This Gaussian assumption obviously holds when the processes Y

and X are jointly normally distributed and, more particularly, when they correspond to a Gaussian
autoregressive (AR) bivariate process. In [42], Barnett et al. discussed the relation between these two
causality measures, and this work bridged information-theoretic methods and autoregressive ones.

I. Comparison between Entropy Estimators

Figure 8 displays the values of entropy for a Gaussian d-dimensional vector as a function of the
number of neighbors k, for d = 3 in Figure 8a and d = 8 in Figure 8b, obtained with different estimators.
The theoretical entropy value is compared with its estimation from the Kozachenko–Leonenko reference
estimator (Equation (10), red circles), its extension (Equation (22), black stars) and the extension of
Singh’s estimator (Equation (35), blue squares). It appears clearly that, for the extended Singh’s
estimator, the bias (true value minus estimated value) increases drastically when the number of
neighbors decreases under a threshold slightly lower than the dimension d of the vector. This allows
us to interpret some apparently surprising results obtained with this estimator in the estimation of
TE, as reported in Figure 6b. TE estimation is a sum of four separate vector entropy estimations,
◊�TEY→X = ¤�H (X−, Y−) +¤�H (Xp, X−)− ¤�H (Xp, X−, Y−)− ◊�H (X−). Here, the dimensions of the four
vectors are d (X−, Y−) = m + n = 4, d (Xp, X−) = 1 + m = 3, d (Xp, X−, Y−) = 1 + m + n = 5,
d (X−) = m = 2, respectively. Note that, if we denote by XM2 and YM2 the two components in
Model 2, the general notation (Xp, X−, Y−) corresponds to

(
Yp

M2, Y−
M2, X−

M2

)
, because in Figure 6b,

the analyzed direction is X → Y and not the reverse. We see that, when considering the estimation
of H (Xp, X−, Y−), we have d = 5 and k = 3, which is the imposed neighbors number in the global
space. Consequently, from the results shown in Figure 8, we can expect that in Model 2, the quantity

H (Xp, X−, Y−) will be drastically underestimated. For the other components ¤�H (X−, Y−), ¤�H (Xp, X−),
◊�H (X−), the numbers of neighbors to consider are generally larger than three (as a consequence of
Kraskov’s technique, which introduces projected distances) and d ≤ 5, so that we do not expect any
underestimation of these terms. Therefore, globally, when summing the four entropy estimations, the
resulting positive bias observed in Figure 6b is understandable.
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(a) (b)

Figure 8. Comparison between four entropy estimators: (a) d = 3; (b) d = 8. The covariance matrix
of the signals is a Toeplitz matrix with first line β[0:d−1], where β = 0.5. “Curve 1” stands for the
true value; “Curve 2”, “Curve 3” and “Curve 4” correspond to the values of entropy obtained using
respectively Equations (10), (22) and (35).
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Abstract: Transfer entropy is a frequently employed measure of conditional co-dependence in
non-parametric analysis of Granger causality. In this paper, we derive analytical expressions for
transfer entropy for the multivariate exponential, logistic, Pareto (type I − IV) and Burr distributions.
The latter two fall into the class of fat-tailed distributions with power law properties, used frequently
in biological, physical and actuarial sciences. We discover that the transfer entropy expressions for all
four distributions are identical and depend merely on the multivariate distribution parameter and
the number of distribution dimensions. Moreover, we find that in all four cases the transfer entropies
are given by the same decreasing function of distribution dimensionality.

Keywords: Granger causality; information theory; transfer entropy; multivariate distributions;
power-law distributions

1. Introduction

Granger causality is a well-known concept based on dynamic co-dependence [1]. In the framework
of Granger causality, the cause precedes and contains unique information about the effect. The concept
of Granger causality has been applied in a wide array of scientific disciplines from econometrics
to neurophysiology, from sociology to climate research (see [2,3] and references therein), and most
recently in cell biology [4].

Information theory has increasingly become a useful complement to the existing repertoire of
methodologies in mathematical statistics [5,6]. Particularly, in the area of Granger causality, transfer
entropy [7], an information theoretical measure of co-dependence based on Shannon entropy, has
been applied extensively in non-parametric analysis of time-resolved causal relationships. It has
been shown that (conditional) mutual information measured in nats and transfer entropy coincide in
definition [8–10]. Moreover, for Gaussian-distributed variables, there is a tractable equivalence by a
factor of two between transfer entropy and a linear test statistic for Granger causality [11]. Although
similar equivalences for non-Gaussian variables have been given in [8], it should be remarked that such
equivalences cannot be generalized to non-Gaussian distributions as the linear models underlying the
construction of linear test statistics for Granger causality are rendered invalid under assumptions of
non-Gaussianity.

The aim of this paper is to present closed-form expressions for transfer entropy for a number of
non-Gaussian, unimodal, skewed distributions used in the modeling of occurrence rates, rare events
and ‘fat-tailed’ phenomena in biological, physical and actuarial sciences [12]. More specifically, we will
derive expressions for transfer entropy for the multivariate exponential, logistic, Pareto (type I − IV)
and Burr distributions. As for real-world applications, the exponential distribution is the naturally

Entropy 2014, 16, 1743–1755; doi:10.3390/e16031743 www.mdpi.com/journal/entropy58
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occurring distribution for describing inter-arrival times in a homogeneous Poisson process. In a similar
manner, the exponential distribution can be used to model many other change of state scenarios in
continuous settings, e.g., time until the occurrence of an accident given certain specifications. The
logistic distribution is of great utility given its morphological similarity to the Gaussian distribution
and is frequently used to model Gaussian-like phenomena in the presence of thicker distribution tails.
The Pareto distribution (in either of its forms) is used in modeling of size related phenomena such as
size of incurred casualties in non-life insurance, size of meteorites, and size of trafficked files over the
Internet. The Burr distribution is another distribution used in non-life insurance to model incurred
casualties, as well as in econometrics where it is used to model income distribution.

The specific choice of these distributions is contingent upon the existence of unique expressions for
the corresponding probability density functions and Shannon entropy expressions. A counter-example
is given by the multivariate gamma distribution, which although derived in a number of tractable
formats under certain preconditions [12,13], lacks a unique and unequivocal multivariate density
function and hence a unique Shannon entropy expression.

Another remark shall be dedicated to stable distributions. Such distributions are limits of
appropriately scaled sums of independent and identically distributed variables. The general tractability
of distributions with this property lies in their “attractor” behavior and their ability to accommodate
skewness and heavy tails. Other than the Gaussian distribution (stable by the Central Limit Theorem),
the Cauchy-Lorentz distribution and the Lévy distribution are considered to be the only stable
distributions that can be expressed analytically. However, the latter lacks analytical expressions
for Shannon entropy in the multivariate case. Expressions for Shannon entropy and transfer entropy
for the multivariate Gaussian distribution have been derived in [14] and [11], respectively. Expressions
for Shannon entropy and transfer entropy for the multivariate Cauchy-Lorentz distribution can be
found in the Appendix.

As a brief methodological introduction, we will go through a conceptual sketch of Granger
causality, the formulation of the linear models underlying the above-mentioned test statistic, and the
definition of transfer entropy before deriving the expressions for our target distributions.

2. Methods

Employment of Granger causality is common practice within cause-effect analysis of dynamic
phenomena where the cause temporally precedes the effect and where the information embedded in
the cause about the effect is unique. Formulated using probability theory, under H0, given k lags and
the random variables A and B and the set of all other random variables C in any arbitrary system, B is
said to not Granger-cause A at observation index t, if

H0 : At ⊥⊥ {Bt−1, . . . , Bt−k}|{At−1, . . . , At−k, Ct−1, . . . , Ct−k} (1)

where ⊥⊥ denotes probabilistic independence. Henceforth, for the sake of convenience, we implement
the following substitutions: X = At, Y = {B}t−k

t−1 and Z = {A, C}t−k
t−1. It is understood that

all formulations in what follows are compatible with any multivariate setting. Thus, one can
parsimoniously reformulate the hypothesis in Equation (1) as:

H0 : X ⊥⊥ Y|Z (2)

The statement above can be tested by comparing the two conditional probability densities: fX|Z and
fX|YZ [15].
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2.1. Linear Test Statistics

In parametric analysis of Granger causality, techniques of linear regression have been the
dominant choice. Under fulfilled assumptions of ordinary least squares’ regression and stationarity,
the hypothesis in Equation (2), can be tested using the following models:

H0 : X = β1 + Zβ2 + ε (3)

H1 : X = γ1 + Zγ2 + Yγ3 + η (4)

where the β and γ terms are the regression coefficients, and the residuals ε and η are independent
and identically distributed following a centered Gaussian N(0, σ2). Traditionally, the F-distributed
Granger-Sargent test [1], equivalent to the structural Chow test [16], has been used to examine the
statistical significance of the reduction in residual sum of squares in the latter model compared to
the former. In this study however, we will focus on the statistic G(X, Y|Z) = ln

(
Varε/Varη

)
[11,17].

This statistic is χ2-distributed under the null hypothesis, and non-central χ2-distributed under the
alternate hypothesis. There are two types of multivariate generalizations of G(X, Y|Z); one by means
of total variance, using the trace of covariance matrices [18], and one by generalized variance, using the
determinant of covariance matrices [11,17]. For a thorough discussion on the advantages of either
measure we refer the reader to [18,19]. Choosing the latter extension, the test statistic in G(X, Y|Z) can
be reformulated as:

G(X, Y|Z) = ln
( |Σε|
|Ση |

)
= ln

( |ΣXZ| · |ΣYZ|
|ΣZ| · |ΣXYZ|

)
(5)

where the last equality follows the scheme presented in [11].

2.2. Transfer Entropy

Transfer entropy, a non-parametric measure of co-dependence is identical to (conditional) mutual
information measured in nats (using the natural logarithm). Mutual information is a basic concept,
based on the most fundamental measure in information theory, the Shannon entropy, or, more
specifically, the differential Shannon entropy in the case of continuous distributions. The differential
Shannon entropy of a random variable S with a continuous probability density fS with support on S is

H(S) ≡ −E[logb fS] = −
∫
S

fS logb fSds (6)

where b is the base of the logarithm determining the terms in which the entropy is measured; b = 2 for
bits and b = e for nats [14,20]. The transfer entropy for the hypothesis in Equation (2) is defined as [7]:

T(Y → X|Z) = H(X|Z)− H(X|Y, Z)

= H(X, Z)− H(Z) + H(Y, Z)− H(X, Y, Z) (7)

Interestingly, for Gaussian variables one can show that G(X, Y|Z) = 2 · T(Y → X|Z) [11]. Naturally,
such equivalences fail when using other types of distributions that do not meet the requirements of
linear models used to construct G(X, Y|Z).

In the following, we shall look at closed-form expressions for transfer entropy for the multivariate
exponential, logistic, Pareto (type I − IV) and Burr distributions. Before deriving the results, it should
be noted that all marginal densities of the multivariate density functions in this study are distributed
according to the same distribution; i.e., the marginal densities of a multivariate exponential density are
themselves exponential densities.
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3. Results

In this section we will derive the expression for transfer entropy for the multivariate exponential
distribution. The remaining derivations follow an identical scheme and are presented in the Appendix.
The differential Shannon entropy expressions employed in this study can be found in [21].

The multivariate exponential density function for a d-dimensional random vector S is:

fS =
d

∏
i=1

α + i − 1
θi

exp
(

si − λi
θi

)[ d

∑
i=1

exp
(

si − λi
θi

)
− d + 1

]−(α+d)

(8)

where S ∈ Rd, si > λi, θi > 0 for i = 1, ..., d and α > 0. For the multivariate exponential distribution
the differential Shannon entropy of S is:

H(S) = −
d

∑
i=1

log
(

α + i − 1
θi

)
+ (α + d)

d

∑
i=1

1
α + i − 1

− d
α

(9)

Thus, transfer entropy for a set of multivariate exponential variables can be formulated as:

T(Y → X|Z) =H(X, Z)− H(Z) + H(Y, Z)− H(X, Y, Z)

=−
dX

∑
i=1

log

(
α + i − 1

θ
(X)
i

)
−

dZ

∑
i=1

log

(
α + dX + i − 1

θ
(Z)
i

)

+ (α + dX + dZ)

(
dX

∑
i=1

1
α + i − 1

+
dZ

∑
i=1

1
α + dX + i − 1

)

− dX + dZ
α

+
dZ

∑
i=1

log

(
α + i − 1

θ
(Z)
i

)
− (α + dZ)

(
dZ

∑
i=1

1
α + i − 1

)

+
dZ
α

−
dZ

∑
i=1

log

(
α + i − 1

θ
(Z)
i

)
−

dY

∑
i=1

log

(
α + dZ + i − 1

θ
(Y)
i

)

+ (α + dZ + dY)

(
dZ

∑
i=1

1
α + i − 1

+
dY

∑
i=1

1
α + dZ + i − 1

)

− dZ + dY
α

+
dX

∑
i=1

log

(
α + i − 1

θ
(X)
i

)
+

dZ

∑
i=1

log

(
α + dX + i − 1

θ
(Z)
i

)

+
dY

∑
i=1

log

(
α + dX + dZ + i − 1

θ
(Y)
i

)
− (α + dX + dZ + dY)(

dX

∑
i=1

1
α + i − 1

+
dZ

∑
i=1

1
α + dX + i − 1

+
dY

∑
i=1

1
α + dX + dZ + i − 1

)

+
dX + dZ + dY

α
(10)

which, after simplifications, reduces to

T(Y → X|Z) =
dY

∑
i=1

log
(

1 +
dX

α + dZ + i − 1

)

− dY

[
dX

∑
i=1

1
α + i − 1

+
dZ

∑
i=1

(
1

α + dX + i − 1
− 1

α + i − 1

)]
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+ (α + dZ + dY)
dY

∑
i=1

1
α + dZ + i − 1

− (α + dX + dZ + dY)
dY

∑
i=1

1
α + dX + dZ + i − 1

(11)

where dX represents the number of dimensions in X, and where α is the multivariate distribution
parameter. As stated previously, the expression in Equation (11) holds for the multivariate logistic,
Pareto (type I − IV) and Burr distributions as proven in the Appendix. For the specific case of
dX = dY = dZ = 1, the transfer entropy expression reduces to:

T(Y → X|Z) = log
(

α + 2
α + 1

)
− 1

α + 2
(12)

In any regard, T(Y → X|Z) depends only on the number of involved dimensions and the
parameter α. The latter parameter, α, operates as a multivariate distribution feature and does not have
a univariate counterpart. This result indicates that the value assigned to the conditional transfer of
information from the cause to the effect decreases with increasing values of α. However, the impact of
the multivariate distribution parameter α in this decrease, shrinks rather rapidly as the numbers of
dimensions increase.

4. Conclusions

The distributions discussed in this paper are frequently subject to the modeling of natural
phenomena, and utilized frequently within biological, physical and actuarial engineering. Events
distributed according to any of the discussed distributions are not suitable for analysis using linear
models and require non-parametric models of analysis or transformations where feasible.

The focus of this paper has been on non-parametric modeling of Granger causality using transfer
entropy. Our results show that the expressions for transfer entropy for the multivariate exponential,
logistic, Pareto (type I − IV) and Burr distributions coincide in definition and are dependent on the
multivariate distribution parameter α, and the number of dimensions. In other words, the transfer
entropy expressions are independent of other parameters of the multivariate distributions.

As underlined by our result, the value of transfer entropy depends in a declining manner on the
multivariate distribution parameter α as the number of dimensions increase.
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A. Appendix

A.1. Multivariate Logistic Distribution

The multivariate logistic density function for a d-dimensional random vector S is:

fS =
d

∏
i=1

α + i − 1
θi

exp
(
− si − λi

θi

)[ d

∑
i=1

exp
(
− si − λi

θi

)
+ 1

]−(α+d)

(13)
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with S ∈ Rd, θi > 0 for i = 1, ..., d and α > 0. For the multivariate logistic distribution the differential
Shannon entropy of S is:

H(S) = −
d

∑
i=1

log
(

α + i − 1
θi

)
+ (α + d)Ψ(α + d)− αΨ(α)− dΨ(1) (14)

where Ψ(s) = d
ds ln Γ(s) is the digamma function. Thus, the transfer entropy for the multivariate

logistic distribution can be formulated as:

T(Y → X|Z) =H(XZ)− H(Z) + H(YZ)− H(XYZ)

=−
dX

∑
i=1

log

(
α + i − 1

θ
(X)
i

)
−

dZ

∑
i=1

log

(
α + dX + i − 1

θ
(Z)
i

)
+ (α + dX + dZ)Ψ(α + dX + dZ)− αΨ(α)− (dX + dZ)Ψ(1)

+
dZ

∑
i=1

log

(
α + i − 1

θ
(Z)
i

)
− (α + dZ)Ψ(α + dZ) + αΨ(α) + dZΨ(1)

−
dZ

∑
i=1

log

(
α + i − 1

θ
(Z)
i

)
−

dY

∑
i=1

log

(
α + dZ + i − 1

θ
(Y)
i

)
+ (α + dZ + dY)Ψ(α + dZ + dY)− αΨ(α)− (dZ + dY)Ψ(1)

+
dX

∑
i=1

log

(
α + i − 1

θ
(X)
i

)
+

dZ

∑
i=1

log

(
α + dX + i − 1

θ
(Z)
i

)

−
dY

∑
i=1

log

(
α + dX + dZ + i − 1

θ
(Y)
i

)
− (α + dX + dZ + dY)Ψ(α + dX + dZ + dY)

+ αΨ(α) + (dX + dZ + dY)Ψ(1) (15)

which, after simplifications, using the identity

Ψ(α + d) = Ψ(α) +
d

∑
i=1

1
α + i − 1

(16)

reduces to

T(Y → X|Z) =
dY

∑
i=1

log
(

1 +
dX

α + dZ + i − 1

)

− dY

[
dX

∑
i=1

1
α + i − 1

+
dZ

∑
i=1

(
1

α + dX + i − 1
− 1

α + i − 1

)]

+ (α + dZ + dY)
dY

∑
i=1

1
α + dZ + i − 1

− (α + dX + dZ + dY)
dY

∑
i=1

1
α + dX + dZ + i − 1

(17)
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A.2. Multivariate Pareto Distribution

The multivariate Pareto density function of type I − IV for a d-dimensional random vector S is:

fS =
d

∏
i=1

α + i − 1
γiθi

(
si − μi

θi

)(1/γi)−1
(

1 +
d

∑
i=1

(
si − μi

θi

)1/γi
)−(α+d)

(18)

with S ∈ Rd, si > μi, γi > 0 and θi > 0 for i = 1, ..., d and α > 0. Other types of the multivariate Pareto
density function are obtained as follows:

• Pareto III by setting α = 1 in Equation (18).
• Pareto II by setting γi = 1 in Equation (18).
• Pareto I by setting γi = 1 and μi = θi in Equation (18).

For the multivariate Pareto distribution in Equation (18) the differential entropy of S is:

H(S) = −
d

∑
i=1

log
(

α + i − 1
γiθi

)
+ (α + d)

[
Ψ(α + d)− Ψ(α)

]− [
Ψ(1)− Ψ(α)

] (
d −

d

∑
i=1

γi

)
(19)

Thus, the transfer entropy for the multivariate Pareto density function of type I − IV can be
formulated as:

T(Y → X|Z) =H(X, Z)− H(Z) + H(Y, Z)− H(X, Y, Z)

=−
dX

∑
i=1

log

(
α + i − 1

γ
(X)
i θ

(X)
i

)
−

dZ

∑
i=1

log

(
α + dX + i − 1

γ
(Z)
i θ

(Z)
i

)
+ (α + dX + dZ)

[
Ψ(α + dX + dZ)− Ψ(α)

]
− [

Ψ(1)− Ψ(α)
] (

dX + dZ −
dX

∑
i=1

γ
(X)
i −

dZ

∑
i=1

γ
(Z)
i

)

+
dZ

∑
i=1

log

(
α + i − 1

γ
(Z)
i θ

(Z)
i

)
− (α + dZ)

[
Ψ(α + dZ)− Ψ(α)

]
+
[
Ψ(1)− Ψ(α)

] (
dZ −

dZ

∑
i=1

γ
(Z)
i

)

−
dZ

∑
i=1

log

(
α + i − 1

γ
(Z)
i θ

(Z)
i

)
−

dY

∑
i=1

log

(
α + dY + i − 1

γ
(Y)
i θ

(Y)
i

)
+ (α + dZ + dY)

[
Ψ(α + dZ + dY)− Ψ(α)

]
− [

Ψ(1)− Ψ(α)
] (

dZ + dY −
dZ

∑
i=1

γ
(Z)
i −

dY

∑
i=1

γ
(Y)
i

)

+
dX

∑
i=1

log

(
α + i − 1

γ
(X)
i θ

(X)
i

)
+

dZ

∑
i=1

log

(
α + dX + i − 1

γ
(Z)
i θ

(Z)
i

)

+
dY

∑
i=1

log

(
α + dX + dZ + i − 1

γ
(Y)
i θ

(Y)
i

)
− (α + dX + dZ + dY)

[
Ψ(α + dX + dZ + dY)− Ψ(α)

]
+
[
Ψ(1)− Ψ(α)

] (
dX + dZ + dY −

dX

∑
i=1

γ
(X)
i −

dZ

∑
i=1

γ
(Z)
i −

dY

∑
i=1

γ
(Y)
i

)
(20)
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which, after simplifications, reduces to

T(Y → X|Z) =
dY

∑
i=1

log
(

1 +
dX

α + dZ + i − 1

)

− dY

[
dX

∑
i=1

1
α + i − 1

+
dZ

∑
i=1

(
1

α + dX + i − 1
− 1

α + i − 1

)]

+ (α + dZ + dY)
dY

∑
i=1

1
α + dZ + i − 1

− (α + dX + dZ + dY)
dY

∑
i=1

1
α + dX + dZ + i − 1

(21)

A.3. Multivariate Burr Distribution

The multivariate Burr density function for a d-dimensional random vector S is:

fS =
d

∏
i=1

(α + i − 1)picis
ci−1
i

(
1 +

d

∑
j=1

pjs
cj−1
j

)−(α+d)

(22)

with S ∈ Rd, si > 0, ci > 0, di > 0 for i = 1, ..., n and α > 0. For the multivariate Burr distribution the
differential entropy of S is:

H(S) =−
d

∑
i=1

log(α + i − 1) + (α + d)
[
Ψ(α + d)− Ψ(α)

]− d

∑
i=1

log (ci ci
√

pi)

+
[
Ψ(α)− Ψ(1)

] ( d

∑
i=1

ci − 1
ci

)
(23)

Thus, the transfer entropy for the multivariate Burr distribution can be formulated as:

T(Y → X|Z) =H(XZ)− H(Z) + H(YZ)− H(XYZ)

=−
dX

∑
i=1

log(α + i − 1)−
dZ

∑
i=1

log(α + dX + i − 1)

+ (α + dX + dZ)
[
Ψ(α + dX + dZ)− Ψ(α)

]
−

dX

∑
i=1

log
(

c(X)
i

c(X)
i

√
p(X)

i

)
−

dZ

∑
i=1

log
(

c(Z)
i

c(Z)
i

√
p(Z)

i

)

+
[
Ψ(α)− Ψ(1)

] ( dX

∑
i=1

c(X)
i − 1

c(X)
i

+
dZ

∑
i=1

c(Z)
i − 1

c(Z)
i

)

+
dZ

∑
i=1

log(α + i − 1)− (α + dZ)
[
Ψ(α + dZ)− Ψ(α)

]
+

dZ

∑
i=1

log
(

c(Z)
i

c(Z)
i

√
p(Z)

i

)
− [

Ψ(α)− Ψ(1)
] ( dZ

∑
i=1

c(Z)
i − 1

c(Z)
i

)

−
dZ

∑
i=1

log(α + i − 1)−
dY

∑
i=1

log(α + dZ + i − 1)

+ (α + dZ + dY)
[
Ψ(α + dZ + dY)− Ψ(α)

]
−

dZ

∑
i=1

log
(

c(Z)
i

c(Z)
i

√
p(Z)

i

)
−

dY

∑
i=1

log
(

c(Y)i
c(Y)i

√
p(Y)i

)
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+
[
Ψ(α)− Ψ(1)

] ( dZ

∑
i=1

c(Z)
i − 1

c(Z)
i

+
dY

∑
i=1

c(Y)i − 1

c(Y)i

)

+
dX

∑
i=1

log(α + i − 1) +
dZ

∑
i=1

log(α + dX + i − 1)

+
dY

∑
i=1

log(α + dX + dY + i − 1)

− (α + dX + dZ + dY)
[
Ψ(α + dX + dZ + dY)− Ψ(α)

]
+

dX

∑
i=1

log
(

c(X)
i

c(X)
i

√
p(X)

i

)
+

dZ

∑
i=1

log
(

c(Z)
i

c(Z)
i

√
p(Z)

i

)

+
dY

∑
i=1

log
(

c(Y)i
c(Y)i

√
p(Y)i

)

− [
Ψ(α)− Ψ(1)

] ( dX

∑
i=1

c(X)
i − 1

c(X)
i

+
dZ

∑
i=1

c(Z)
i − 1

c(Z)
i

+
dY

∑
i=1

c(Y)i − 1

c(Y)i

)
(24)

which, after simplifications, reduces to

T(Y → X|Z) =
dY

∑
i=1

log
(

1 +
dX

α + dZ + i − 1

)

− dY

[
dX

∑
i=1

1
α + i − 1

+
dZ

∑
i=1

(
1

α + dX + i − 1
− 1

α + i − 1

)]

+ (α + dZ + dY)
dY

∑
i=1

1
α + dZ + i − 1

− (α + dX + dZ + dY)
dY

∑
i=1

1
α + dX + dZ + i − 1

(25)

B. Appendix

B.1. Multivariate Cauchy-Lorentz Distribution

The multivariate Cauchy-Lorentz density function for a d-dimensional random vector S is:

fS =
Γ( 1+d

2 )√
π1+d

(
1 + s2

1 + s2
2 + ... + s2

d

)− 1+d
2 (26)

for S ∈ Rd. Interestingly, Equation (26) is equivalent to the multivariate t-distribution with one
degree of freedom, zero expectation, and an identity covariance matrix [21]. For the case of d = 1,
Equation (26) reduces to the univariate Cauchy-Lorentz density function [22]. The differential entropy
of S is:

H(S) = − log

⎛⎝Γ
(

1+d
2

)
√

π1+d

⎞⎠+
1 + d

2

[
Ψ
(

1 + d
2

)
− Ψ

(
1
2

)]
(27)

Thus, the transfer entropy T(Y → X|Z) for the multivariate Cauchy-Lorentz distribution can be
formulated as:
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T(Y → X|Z) =H(XZ)− H(Z) + H(YZ)− H(XYZ)

− log

⎛⎝Γ
(

1+dX+dZ
2

)
√

π1+dX+dZ

⎞⎠
+

1 + dX + dZ
2

[
Ψ
(

1 + dX + dZ
2

)
− Ψ

(
1
2

)]

+ log

⎛⎝Γ
(

1+dZ
2

)
√

π1+dZ

⎞⎠− 1 + dZ
2

[
Ψ
(

1 + dZ
2

)
− Ψ

(
1
2

)]

− log

⎛⎝Γ
(

1+dY+dZ
2

)
√

π1+dY+dZ

⎞⎠
+

1 + dY + dZ
2

[
Ψ
(

1 + dY + dZ
2

)
− Ψ

(
1
2

)]

+ log

⎛⎝Γ
(

1+dX+dY+dZ
2

)
√

π1+dX+dY+dZ

⎞⎠
− 1 + dX + dY + dZ

2

[
Ψ
(

1 + dX + dY + dZ
2

)
− Ψ

(
1
2

)]
(28)

which, after simplifications, using the identity in Equation (16), reduces to

T(Y → X|Z) = log

⎛⎝Γ
(

1+dZ
2

)
Γ
(

1+dX+dY+dZ
2

)
Γ
(

1+dX+dZ
2

)
Γ
(

1+dY+dZ
2

)
⎞⎠+

1 + dX + dZ
2

ξ

(
dX + dZ

2

)

− 1 + dZ
2

ξ

(
dZ
2

)
+

1 + dY + dZ
2

ξ

(
dY + dZ

2

)
− 1 + dX + dY + dZ

2
ξ

(
dX + dY + dZ

2

)
(29)

where

ξ(a) =
a

∑
i=1

1
i − 0.5

(30)

is obtained after a simplification of the digamma function.
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Abstract: The transfer entropy has proven a useful measure of coupling among components of a
dynamical system. This measure effectively captures the influence of one system component on
the transition probabilities (dynamics) of another. The original motivation for the measure was to
quantify such relationships among signals collected from a nonlinear system. However, we have
found the transfer entropy to also be a useful concept in describing linear coupling among system
components. In this work we derive the analytical transfer entropy for the response of coupled,
second order linear systems driven with a Gaussian random process. The resulting expression is a
function of the auto- and cross-correlation functions associated with the system response for different
degrees-of-freedom. We show clearly that the interpretation of the transfer entropy as a measure of
“information flow” is not always valid. In fact, in certain instances the “flow” can appear to switch
directions simply by altering the degree of linear coupling. A safer way to view the transfer entropy
is as a measure of the ability of a given system component to predict the dynamics of another.

Keywords: transfer entropy; joint entropy; coupling

1. Introduction

One of the biggest challenges in the modeling and analysis of dynamical systems is understanding
coupling mechanisms among different system components. Whether one is studying coupling
on a small scale (e.g., neurons in a biological system) or large scale (e.g. coupling among widely
separated geographical locations due to climate), understanding the functional form, strength, and/or
direction of the coupling between two or more system components is a non-trivial task. However,
this understanding is necessary if we are to build accurate models of the coupled system and make
predictions (our ultimate goal). Accurately assessing the functional form of the coupling is beyond the
scope of this work. To do so would require positing various models for a particular coupled system
and then testing the predictive power of those models against observed data. Rather, the focus here is
on understanding the strength and direction of the coupling among two system components. This task
can be accomplished by forming a general hypothesis about what it means for two system components
to be coupled, and then testing that hypothesis against observation. It is in this framework that the
transfer entropy is operates.

The transfer entropy (TE) is a scalar measure designed to capture both the magnitude and
direction of coupling among two components of a dynamical system. This measure was posed initially
for data described by discrete probability distributions [1] and was later extended to continuous
random variables [2]. By construction, this measure quantifies a general definition of coupling that
is appropriate for both linear and nonlinear systems. Moreover, TE is defined in such a way as to
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provide insight into the direction of the coupling (is component A driving component B or vice-versa?).
Since its introduction, the TE has been applied to a diverse set of systems, including biological [1,3],
chemical [4], economic [5], structural [6,7], and climate [8]. A number of papers in the Neurosciences
also have focused on the TE as a useful way to draw inference about coupling [9–11]. In each case
the TE provided information about the system that traditional linear measures of coupling (e.g.,
cross-correlation) could not.

The TE has also been linked to other concepts of coupling such as “Wiener-Granger Causality”.
in fact, for the class of systems studied in this work the TE can be shown to be entirely equivalent to
measures of Granger causality [12]. Linkages to other models and concepts of dynamical coupling
such as conditional mutual information [13] and Dynamic Causal Modeling (DCM) [14], are also
possible for certain special cases. The connectivity model assumed by DCM is fundamentally nonlinear
(specifically bilinear), however as the degree of nonlinearity decreases the form of the DCM model
approaches that of the model studied here.

Although the TE was designed as a way to gain insight into nonlinear system coupling, we have
found the TE to be quite useful in the study of linear systems as well. In this special case, analytical
expressions for the TE are possible and can be used to provide useful insight into the behavior of the
TE. Furthermore, unlike in the general case, the linearized TE can be easily estimated from observed
data. This work is therefore devoted to the understanding of TE as applied to coupled, driven linear
systems. Specifically, we consider coupling among components of a general, second order linear
structural system driven by a Gaussian random process. The particular model studied is used to
describe numerous phenomena, including structural dynamics, electrical circuits, heat transfer, etc.
[15]. As such, it presents an opportunity to better understand the properties of the TE for a broad
class of dynamical systems. Section 1 develops the general analytical expression for the TE in terms
of the covariance matrices associated with different combinations of system response data. Section 2
specifies the general model under study and derives the TE for the model response data. Sections 3
and 4 present results and concluding remarks.

2. Mathematical Development

In what follows we assume that we have observed the signals xi(tn), i = 1 · · · M as the output
of a dynamical system and that we have sampled these signals at times tn, n = 1 · · · N. The system
is assumed to be appropriately modeled as a mixture of deterministic and stochastic components,
hence we choose to model each sampled value xi(tn) as a random variable Xin. That is to say, for any
particular observation time tn we can define a function PXin(xi(tn)) that assigns a probability to the
event that Xin < xi(tn). We further assume that these are continuous random variables and that we
may also define the probability density function (PDF) pXin(x(tn)) = dPXin /dxn.

The vector of random variables Xi ≡ (Xi1, Xi2, · · · , XiN) defines a random process and will be
used to model the ith signal xi ≡ xi(tn), n = 1 · · · N. Using this notation,we can also define the
joint PDF pXi (xi) which specifies the probability of observing such a sequence. In this work we
further assume that the random processes are strictly stationary, that is to say the joint PDF obeys
pXi (xi(t1), xi(t2), · · · , xi(tN)) = pXi (xi(t1 + τ), xi(t2 + τ), · · · , xi(tN + τ)) i.e. the joint PDF is invariant
to a fixed temporal shift τ.

The joint probability density functions are models that predict the likelihood of observing a
particular sequence of values. These same models can be extended to include dynamical effects by
including conditional probability, pXin(xi(tn)|xi(tn−1)), which can be used to specify the probability of
observing the value xi(tn) given that we have already observed xi(tn−1). The idea that knowledge of
past observations changes the likelihood of future events is certainly common in dynamical systems.
A dynamical system whose output is a repeating sequence of 010101 · · · is equally likely to be in state
0 or state 1 (probability 0.5) if the system is observed at a randomly chosen time. However, if we know
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the value at t1 = 0 the value t2 = 1 is known with probability 1. This concept lies at the heart of the
P th order Markov model, which by definition obeys

pXi (xi(tn+1)|xi(tn),xi(tn−1), xi(tn−2), · · · , xi(tn−P )) =
pXi (xi(tn+1)|xi(tn), xi(tn−1), xi(tn−2), · · · , xi(tn−P ), xi(tn−P−1), · · · )
≡ pXi (xi(tn)

(1)|xi(tn)
(P)). (1)

That is to say, the probability of the random variable attaining the value xi(tn+1) is conditional on
the previous P values only. The shorthand notation used here specifies relative lags/advances as
a superscript.

Armed with this notation we consider the work of Kaiser and Schreiber [2] and define the
continuous transfer entropy between processes Xi and Xj as

TEj→i(tn) =
∫
RP+Q+1

pXi

(
xi(tn)

(1)|x(P)
i (tn), x

(Q)
j (tn)

)
× log2

⎛⎝ pXi (xi(tn)(1)|x(P)
i (tn), x

(Q)
j (tn))

pXi (xi(tn)(1)|x(P)
i )

⎞⎠ dxi(t
(1)
n )dxi(tn)

(P)dxj(tn)
(Q) (2)

where
∫
RN is used to denote the N-dimensional integral over the support of the random variables. By

definition, this measure quantifies the ability of the random process Xj to predict the dynamics of the
random process Xi. To see why, we can examine the argument of the logarithm. In the event that the
two random processes are not coupled, the dynamics will obey the Markov model in the denominator
of Equation (2). However, should Xj carry added information about the transition probabilities of Xi,
the numerator is a better model. The transfer entropy is effectively mapping the difference between
these hypotheses to the scalar TEj→i(tn). In short, the transfer entropy measures deviations from the
hypothesis that the dynamics of Xi can be described entirely by its own past history and that no new
information is gained by considering the dynamics of system Xj.

Two simplifications are possible which will aid in the evaluation of Equation (2). First, recall that
we assumed the processes were stationary such that the joint probability distributions are invariant to
the particular temporal location tn at which they are evaluated (only relative lags between observations
matter). Hence, in what follows we may drop this index from the notation, i.e., TEj→i(tn) → TEj→i.
Secondly, we may use the law of conditional probability and expand Equation (2) as

TEj→i =
∫
RP+Q+1

p
X(1)

i XiXj

(
x(1)i , x

(P)
i , x

(Q)
j

)
log2

(
p

X(1)
i XiXj

(x(1)i , x
(P)
i , x

(Q)
j )

)
× dx(1)i dx

(P)
i dx

(Q)
j

−
∫
RP+Q

pXiXj

(
x
(P)
i , x

(Q)
j

)
log2

(
pXiXj(x

(P)
i , x

(Q)
j )

)
dx

(P)
i dx

(Q)
j

−
∫
RP+1

p
X(1)

i Xi

(
x(1)i , x

(P)
i

)
log2

(
p

X(1)
i Xi

(x(1)i , x
(P)
i )

)
dx(1)i dx

(P)
i

+
∫
RP

pXi

(
x
(P)
i

)
log2

(
pXi (x

(P)
i )

)
dx

(P)
i

= −h
X(1)

i X
(P)
i X

(Q)
j

+ h
X
(P)
i X

(Q)
j

+ h
X(1)

i X
(P)
i

− h
X
(P)
i

(3)

where the terms hX = − ∫
RM pX(x) log2 (p(x)) dx are the joint differential entropies associated with the

M−dimensional random variable X. In the next section we evaluate Equation (3) among the outputs
of a second-order linear system driven with a jointly Gaussian random process.
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3. Transfer Entropy (TE) for Second Order Linear Systems

3.1. Time-Delayed TE

The only multivariate probability distribution that readily admits an analytical solution for the
differential entropies is the jointly Gaussian distribution. Consider the general case of the two data
vectors x ∈ RN and the y ∈ RM. The jointly Gaussian model for these data vectors is

pXY(x, y) =
1

(2π)(N+M)/2|CXY|1/2
e−

1
2 xTC−1

XYy (4)

where CXY is the N × M covariance matrix and | · | takes the determinant. Substituting Equation (4)
into the expression for the corresponding differential entropy yields

hXY = −
∫
RM×N

pXY(x, y) log2 (p(x, y)) dxdy

=
1
2

log2 (|CXY|) . (5)

Therefore, assuming that both random processes Xi and Xj are jointly Gaussian distributed, we may
substitute Equation (4) into Equation (3) for each of the differential entropies yielding

TEj→i =
1
2

log2

⎛⎝ |C
X
(P)
i X

(Q)
j

||C
X(1)

i X
(P)
i

|
|C

X(1)
i X

(P)
i X

(Q)
j

||CXi |

⎞⎠ . (6)

For P , Q large the needed determinants become difficult to compute. We therefore employ a
simplification to the model that retains the spirit of the transfer entropy, but that makes an analytical
solution more tractable. In our approach, we set P = Q = 1 i.e., both random processes are assumed to
follow a first order Markov model. However, we allow the time interval between the random processes
to vary, just as is typically done for the mutual information and/or linear cross-correlation functions
[6]. Specifically, we model Xi(t) as the first order Markov model pXi (xi(tn + Δt)|xi(tn)) and use the TE
to consider the alternative pXi (xi(tn + Δt)|xi(tn), xj(tn + τ)). Note that in anticipation of dealing with
measured data, sampled at constant time interval Δt, we have made the replacement tn+1 = tn + Δt.
Although we are only using first order Markov models, by varying the time delay τ we can explore
whether or not the random variable Xj(tn + τ) carries information about the transition probability
pXi (xi(tn + Δt)|xi(tn)). Should consideration of xj(tn + τ) provide no additional knowledge about the
dynamics of xi(tn) the transfer entropy will be zero, rising to some positive value should xj(tn + τ)

carry information not possessed in xj(tn).
In what follows we refer to this particular form of the TE as the time-delayed transfer entropy, or,

TDTE. In this simplified situation the needed covariance matrices are

CXi Xj (τ) =

[
E[(xi(tn)− x̄i)

2] E[(xi(tn)− x̄i)(xj(tn + τ)− x̄j)]

E[(xj(tn + τ)− x̄j)(xi(tn)− x̄i)] E[(xj(tn + τ)− x̄j)
2]

]

C
X(1)

i Xi Xj
(τ) =

⎡⎢⎣ E[(xi(tn + Δt)− x̄i)
2] E[(xi(tn + Δt)− x̄i)(xi(tn)− x̄i)]

E[(xi(tn)− x̄i)(xi(tn + Δt)− x̄i)] E[(xi(tn)− x̄i)
2]

E[(xj(tn + τ)− x̄j)(xi(tn + Δt)− x̄i)] E[(xj(tn + τ)− x̄j)(xi(tn)− x̄i)]

E[(xi(tn + Δt)− x̄i)(xj(tn + τ)− x̄j)]

E[(xi(tn)− x̄i)(xj(tn + τ)− x̄j)]

E[(xj(tn + τ)− x̄j)
2]

⎤⎥⎦
C

X(1)
i Xi

=

[
E[(xi(tn + Δt)− x̄i)

2] E[(xi(tn + Δt)− x̄i)(xi(tn)− x̄i)]

E[(xi(tn)− x̄i)(xi(tn + Δt)− x̄i)] E[(xi(tn)− x̄i)
2]

]
(7)
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and CXiXi = E[(xi(tn)− x̄i)
2] ≡ σ2

i is simply the variance of the random process Xi and x̄i its mean. The
assumption of stationarity also allows to write E[(xi(tn + Δt)− x̄i)

2] = σ2
i and E[(xj(tn + τ)− x̄j)

2] =

σ2
j . Making these substitutions into Equation (6) yields the expression

TEj→i(τ) =
1
2

log2

⎡⎣ (
1 − ρ2

ii(Δt)
) (

1 − ρ2
ij(τ)

)
1 − ρ2

ij(τ)− ρ2
ij(τ − Δt)− ρ2

ii(Δt) + 2ρii(Δt)ρij(τ)ρij(τ − Δt)

⎤⎦ (8)

where we have defined particular expectations in the covariance matrices using the shorthand ρij(τ) ≡
E[(xi(tn)− x̄i)(xj(tn + τ)− x̄j)]/σiσj. This particular quantity is referred to in the literature as the
cross-correlation function [16]. Note that the covariance matrices are positive-definite matrices and that
the determinant of a positive definite matrix is positive [17]. Thus the quantity inside the logarithm
will always be positive and the logarithm will exist.

Now, the hypothesis that the TE was designed to test is whether or not past values of the process
Xj carry information about the transition probabilities of the second process Xi. Thus, if we are to
keep with the original intent of the measure we would only consider τ < 0. However, this restriction
is only necessary if one implicitly assumes a non-zero TE means Xj is influencing the transition
pXi (xi(tn + Δt)|xi(tn)) as opposed to simply carrying additional information about the transition.
Again, this latter statement is a more accurate depiction of what the TE is really quantifying and we
have found it useful to consider both negative and positive delays τ in trying to understand coupling
among system components.

It is also interesting to note the bounds of this function. Certainly for constant signals
(i.e. xi(tn), xj(tn) are single-valued for all time) we have ρXiXi (Δt) = ρXiXj(τ) = 0 ∀ τ and the
transfer entropy is zero for any choice of time-scales τ defining the Markov processes. Knowledge
of Xj does not aid in forecasting Xi simply because the transition probability in going from xi(tn) to
xi(tn + Δt) is always unity. Likewise, if there is no coupling between system components we have

ρXiXj(τ) = 0 and the TDTE becomes TEj→i(τ) =
1
2 log2

[
1−ρ2

Xi Xi
(Δt)

1−ρ2
Xi Xi

(Δt)

]
= 0. At the other extreme, for

perfectly coupled systems i.e. Xi = Xj, consider τ → 0. In this case, we have ρ2
XiXj

(τ) → 1, and

ρXiXj(τ − Δt) → ρXiXi (−Δt) = ρXiXi (Δt) (in this last expression we have noted the symmetry of the
function ρXiXi (τ) with respect to the time-delay). The transfer entropy then becomes

TEj→i(0) =
1
2

log2

[
0
0

]
→ 0 (9)

and the random process Xj at τ = 0 is seen to carry no additional information about the dynamics
of Xi simply due to the fact that in this special case we have pXi (xi(tn + Δt)|xi(tn)) = pXi (xi(tn +

Δt)|xi(tn), xi(tn)). These extremes highlight the care that must be taken in interpreting the transfer
entropy. Because the TDTE is zero for both the perfectly coupled and uncoupled case we must not
interpret the measure to quantify the coupling strength between two random processes. Rather, the
TDTE measures the additional information provided by one random process about the dynamics of
another.

We should point out that the average mutual information function can resolve the ambiguity in the
TDTE as a measure of coupling strength. For two Gaussian random processes the time-delayed mutual
information is known to be IXiXj(τ) = − 1

2 log2

[
1 − ρ2

ij(τ)
]
. Hence, for perfect coupling IXiXj(0) → ∞

whereas for uncoupled systems IXiXj(0) → 0. Estimating both time-delayed mutual information and
transfer entropies can therefore permit stronger inference about dynamical coupling.
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3.2. Analytical Cross-Correlation Function

To fully define the TDTE, the auto- and cross-correlation functions ρii(T), ρij(T) are required.
They are derived here for a general class of linear system found frequently in the modeling and analysis
of physical processes. Consider the system

Mẍ(t) + Cẋ(t) + Kx(t) = f(t) (10)

where x(t) ≡ (x1(t), x2(t), · · · , xM(t))T is the system’s response to the forcing function(s) f(t) ≡
( f1(t), f2(t), · · · , fM(t))T and M, C, K are M × M constant coefficient matrices that capture the
system’s physical properties. Thus, we are considering a second-order, constant coefficient,
M−degree-of-freedom (DOF) linear system. It is assumed that we may measure the response of
this system at any of the DOFs and/or the forcing functions.

One physical embodiment of this system is shown schematically in Figure 1. Five masses are
coupled together via restoring elements ki (springs) and dissipative elements, ci (dash-pots). The first
mass is fixed to a boundary while the driving force is applied at the end mass. If the response data x(t)
are each modeled as a stationary random process we may use the analytical TDTE to answer questions
about shared information between any two masses. We can explore this relationship as a function of
coupling strength and also which particular mass response data we choose to analyze.

m1 m2 m3 m4 m5 

c5 c4 c3 c2 c1 

k5 k4 k3 k2 k1 

x1(t) x2(t) x3(t) x4(t) x5(t) 

f(t) 

Figure 1. Physical system modeled by Equation (10). Here, an M = 5 DOF structure is represented
by masses coupled together via both restoring and dissipative elements. Forcing is applied at the end
mass.

However, before proceeding we require a general expression for the cross-correlation between
any two DOFs, i, j ∈ [1, M]. In other words, we require the expectation E[xi(n)xj(n + T)] for
any combination of i, j. Such an expression can be obtained by first transforming coordinates. Let
x(t) = uη(t) where the matrix u contain the non-trivial solutions to the eigen-value problem |M−1K −
ω2

i I|ui = 0 as its columns [18]. Here the eigen-values are the natural frequencies of the system, denoted
ωi, i = 1 · · · M. Making the above coordinate transformation, substituting into Equation (10) and
then pre-multiplying both sides by uT allows the equations of motion to be uncoupled and written
separately as

η̈i(t) + 2ζiωiη̇i(t) + ω2
i ηi(t) = uT

i f(t) ≡ qi(t). (11)

where the eigenvectors have been normalized such that uTMu = I (the identity matrix). In the above
formulation we have also made the assumption that C = αK i.e., the dissipative coupling Cẋ(t) is of the
same form as the restoring term, albeit scaled by the constant α << 1 (i.e., a lightly damped system). To
obtain the form shown in Equation (11) we introduce the dimensionless damping coefficient ζi =

α
2 ωi.
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The general solution to these un-coupled, linear equations is well-known [18] and can be written
as the convolution

ηi(t) =
∫ ∞

0
hi(θ)qi(t − θ)dθ (12)

where h(θ) is the impulse response function

hi(θ) =
1

ωdi
e−ζiωiθ sin(ωdiθ) (13)

and ωdi ≡ ωi

√
1 − ζ2

i . In general terms, we therefore have

xi(t) =
M

∑
l=1

uilηl(t)

=
∫ ∞

0

M

∑
l=1

uilhl(θ)ql(t − θ)dθ (14)

If we further consider the excitation f(t) to be a zero-mean random process, so too will be ql(t). Using
this model, we may construct the covariance

E[xi(t)xj(t + τ)] =

E

[∫ ∞

0

∫ ∞

0

M

∑
l=1

M

∑
m=1

uilujmhl(θ1)hm(θ2)ql(t − θ1)qm(t + τ − θ2)dθ1dθ2

]

=
∫ ∞

0

∫ ∞

0

M

∑
l=1

M

∑
m=1

uilujmhl(θ1)hm(θ2)E[ql(t − θ1)qm(t + τ − θ2)]dθ1dθ2 (15)

which is a function of the eigen-vectors ui, the impulse response function h(·) and the covariance of
the modal forcing matrix. Knowledge of this covariance matrix can be obtained from knowledge of
the forcing covariance matrix RFl Fm(τ) ≡ E[ fl(t) fm(t + τ)]. Recalling that

ql(t) =
M

∑
p=1

ulp fp(t) (16)

we write

E[ql(t − θ1)qm(t + τ − θ2)] =
M

∑
p=1

M

∑
q=1

ulqumpE[ fq(t − θ1) fp(t + τ − θ2)] (17)

It is assumed that the random vibration inputs are uncorrelated, i.e. E[ fq(t) fp(t)] = 0 ∀ q �= p, with
variance σ2

Fp
= E[ fp(t) fp(t)]. Thus, the above can therefore be simplified as

E[ql(t − θ1)qm(t + τ − θ2)] =
M

∑
p=1

ulpumpE[ fp(t − θ1) fp(t + τ − θ2)] (18)
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The most common linear models assume the input is applied at a single DOF, i.e. fp(t) is non-zero
only for p = P. For a load applied at DOF P, the auto-covariance becomes

E[xi(t)xj(t + τ)] =
∫ ∞

0

∫ ∞

0

M

∑
l=1

M

∑
m=1

uilujmulPumPhl(θ1)hm(θ2)E[ fP(t − θ1) fP(t + τ − θ2)]dθ1dθ2

=
M

∑
l=1

M

∑
m=1

uilujmulPumP

∫ ∞

0
hl(θ1)

∫ ∞

0
hm(θ2)E[ fP(t − θ1) fP(t + τ − θ2)]dθ2dθ1. (19)

The inner integral can be further evaluated as∫ ∞

0
hm(θ2)E[ fP(t − θ1) fP(t + τ − θ2)]dθ2 =

∫ ∞

0
hm(θ2)

∫ ∞

−∞
SFF(ω)eiω(τ−θ2+θ1)dωdθ2. (20)

Note that we have re-written the forcing auto-covariance as the inverse Fourier transform of the
associated power spectral density function, denoted SFF(ω), via the well-known Wiener-Khinchine
relation [16]. We have already assumed the forcing is comprised of independent, identically distributed
values, in which case the forcing power spectral density SFF(ω) = const ∀ω. Denoting this constant
SFF(0), we note that the Fourier Transform of a constant is simply

∫ ∞
−∞ SFF(0)× eiωtdt = SFF(0)× δ(t),

hence our integral becomes∫ ∞

0
hm(θ2)E[ fP(t − θ1) fP(t + τ − θ2)]dθ2

=
∫ ∞

0
hm(θ2)SFF(0)δ(τ − θ2 + θ1)dθ2 = h(τ + θ1)SFF(0). (21)

Returning to Equation (19) we have

E[xi(t)xj(t + τ)] =
∫ t

0

M

∑
l=1

M

∑
m=1

ulPumPuilujmhl(θ1)hm(θ1 + τ)SFF(0)dθ1. (22)

At this point we can simplify the expression by carrying out the integral.
Substituting the expression for the impulse response in Equation (13), the needed expectation in

Equation (22) becomes [19,20]

RXiXj(τ) =
SFF(0)

4

M

∑
l=1

M

∑
m=1

ulPumPuilujm

[
Alme−ζmωmτ cos(ωdmτ) + Blme−ζmωmτ sin(ωdmτ)

]
(23)

where

Alm =
8 (ωlζl + ωmζm)

ω4
l + ω4

m + 4ω3
l ωmζlζm + 4ω3

mωlζlζm + 2ω2
mω2

l
(−1 + 2ζ2

l + 2ζ2
m
)

Blm =
4
(
ω2

l + 2ωlωmζlζm + ω2
m
(−1 + 2ζ2

m
))

ωdm
(
ω4

l + ω4
m + 4ω3

l ωmζlζm + 4ω3
mωlζlζm + 2ω2

mω2
l
(−1 + 2ζ2

l + 2ζ2
m
)) (24)

We can further normalize this function to give

ρij(τ) = Rij(τ)/
√

Rii(0)Rjj(0) (25)

for the normalized auto- and cross-correlation functions.
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It will also prove instructive to study the TDTE between the drive and response. This requires
RXi FP(τ) ≡ E[xi(t) fP(t + τ)]. Following the same procedure as above results in the expression

RXi FP(τ) =

{
SFF(0)∑M

m=1 uimumPhm(−τ) : τ ≤ 0
0 : τ > 0

(26)

Normalizing by the variance of the random process Xi and assuming σ2
FP

= 1 yields the needed
correlation function ρi f (τ). This expression may be substituted into the expression for the transfer
entropy to yield the TDTE between drive and response. At this point we have completely defined
the analytical TDTE for a broad class of second order linear systems. The behavior of this function is
described next. Before concluding this section we note that it also may be possible to derive expressions
for the TDTE for different types of forcing functions. Impulse excitation and also non-Gaussian inputs
where the marginal PDF can be described as a polynomial transformation of a Gaussian random
variable (see e.g., [21]) are two such possibilities.

4. Behavior of the TDTE

Before proceeding with an example, we first require a means of estimating TEj→i(τ) from
observed data. Assume we have recorded the signals xi(nΔt), xj(nΔt), n = 1 · · · N with a
fixed sampling interval Δt. In order to estimate the TDTE we require a means of estimating the
normalized correlation functions ρij(τ) which can be substituted into Equation (8). While different
estimators of correlation functions exist (see e.g., [16]), we use a frequency domain estimator. This
estimator relies on the assumption that the observed data are the output of an ergodic (therefore
stationary) random process. If we further assume that the correlation functions are absolute integrable,
e.g.,

∫ |Rij(τ)dτ| < ∞, the Wiener-Khinchin Theorem tells us that the cross-spectral density and
cross-covariance functions are related via Fourier transform as [16].

∫ ∞

−∞
E[xi(t)xj(t + τ)]e−i2π f τdτ = SXjXi ( f ) ≡ lim

T→∞
E
[X∗

i ( f )Xj( f )
2T

]
. (27)

where Xi( f ) denotes the Fourier transform of the signal xi(t). One approach is to therefore estimate the
spectral density ŜXjXi ( f ) and then inverse Fourier transform to give R̂XiXj(τ). We further rely on the
ergodic theorem of Birkhoff ([22]) which (when applied to probability) allows one to write expectations
defined over multiple realizations to be well-approximated temporally averaging over a finite number
of samples. More specifically, we divide the temporal sequences xi(n), xj(n), n = 1 · · · N into S
segments of length Ns (possibly) overlapping by L points. Taking the discrete Fourier transform of
each segment, e.g., Xis(k) = ∑Ns−1

n=0 xi(n + sNs − L)e−i2πkn/Ns , s = 0 · · · S − 1 and averaging gives the
estimator

ŜXjXi (k) =
Δt

NsS

S−1

∑
s=0

X̂∗
is(k)X̂js(k) (28)

at discrete frequency k. This quantity is then inverse discrete Fourier transformed to give

R̂XiXj(n) =
Ns−1

∑
k=0

ŜXjXi (k)e
i2πkn/S. (29)

Finally, we may normalize the estimate to give the cross-correlation coefficient

ρ̂XiXj(n) = R̂XiXj(n)/
√

R̂XiXi (0)R̂XjXj(0). (30)

This estimator is asymptotically consistent and unbiased and can therefore be substituted into
Equation (8) to produce very accurate estimates of the TE (see examples to follow). In the general
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(nonlinear) case, kernel density estimators are typically used but are known to be poor in many cases,
particularly when data are scarce (see e.g., [6,23]). We also point out that for this study stationarity
(and ergodicity) only up to second order (covariance) is required. In general the TDTE is a function of
all joint moments hence higher-order ergodicity must be assumed.

As an example, consider a five-DOF system governed by Equation (10), where:

M =

⎡⎢⎢⎢⎢⎢⎣
m1 0 0 0 0
0 m2 0 0 0
0 0 m3 0 0
0 0 0 m4 0
0 0 0 0 m5

⎤⎥⎥⎥⎥⎥⎦

C =

⎡⎢⎢⎢⎢⎢⎣
c1 + c2 −c2 0 0 0
−c2 c2 + c3 −c3 0 0

0 −c3 c3 + c4 −c4 0
0 0 −c4 c4 + c5 −c5

0 0 0 −c5 c5

⎤⎥⎥⎥⎥⎥⎦

K =

⎡⎢⎢⎢⎢⎢⎣
k1 + k2 −k2 0 0 0
−k2 k2 + k3 −k3 0 0

0 −k3 k3 + k4 −k4 0
0 0 −k4 k4 + k5 −k5

0 0 0 −k5 k5

⎤⎥⎥⎥⎥⎥⎦
(31)

are constant coefficient matrices commonly used to describe structural systems. In this case, these
particular matrices describe the motion of a cantilevered structure where we assume a joint normally
distributed random process applied at the end mass, i.e. f(t) = (0, 0, 0, 0,N (0, 1)). In this first example
we examine the TDTE between response data collected from two different points on the structure.
We fix mi = 0.01 kg, ci = 0.1 N · s/m, and ki = 10 N/m for each of the i = 1 · · · 5 degrees of freedom
(thus we are using α = 0.01 in the modal damping model C = αK). The system response data
xi(nΔt), n = 1 · · · 215 to the stochastic forcing is then generated via numerical integration. For
simulation purposes we used a time-step of Δt = 0.01 s which is sufficient to capture all five of the
system natural frequencies (the lowest of which is ω1 = 9.00 rad/s). Based on these parameters, we
generated the analytical expressions TE3→2(τ) and TE2→3(τ) and also TE5→1(τ) and TE1→5(τ) for
illustrative purposes. These are shown in Figure 2 along with the estimates formed using the Fourier
transform-based procedure. In forming the estimates we used L = 0, S = 23, Ns = 212, resulting in
low bias and variance, and providing curves that are in very close agreement with theory.

With Figure 2 in mind, first consider negative delays only where τ < 0. Clearly, the further the
random variable Xj(tn + τ) is from Xi(tn), the less information it carries about the probability of Xi
transitioning to a new state Δt seconds into the future. This is to be expected from a stochastically
driven system and accounts for the decay of the transfer entropy to zero for large |τ|. However, we
also see periodic returns to the point TEj→i(τ) = 0 for even small temporal separation. Clearly this
is a reflection of the periodicity observed in second order linear systems. In fact, for this system the
dominant period of oscillation is 2π/ω1 = 0.698 seconds. It can be seen that the argument of the
logarithm in Equation (8) periodically reaches a minimum value of unity at precisely half this period,
thus we observe zeros of the TDTE at times (i − 1)× π/ω1, i = 1 · · · . In this case the TDTE is going
to zero not because the random variables Xj(tn + τ), Xi(tn) are unrelated, but because knowledge of
one allows us to exactly predict the position of the other (no additional information is present). We
believe this is likely to be a feature of most systems possessing an underlying periodicity and is one
reason why using the TE as a measure of coupling must be done with care.
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Figure 2. Time delay transfer entropy between masses two and three (top row) and one and five
(bottom row) of a 5 DOF system driven at mass, P = 5.

One possible way to eliminate this feature is to condition the measure on more of the signal’s
past history. In fact, several papers (see e.g., [9,13]) mention the importance of conditioning on the full
state vector Xj(tn − τ1), Xj(tn − τ2), · · · , Xj(tn − τd) where d is the dimensionality (in a loose sense,
the number of dynamical degrees of freedom) of the random process Xj. Building in more past history
would almost certainly remove the oscillations as some of the past observations would always be
providing additional predictive power. However, building in more history significantly complicates
the ability to derive closed-form expressions. Moreover, for this simple linear system the basic envelope
of the TDTE curves would not likely be effected by altering the model in this way.

We also point out that values of the TDTE are non-zero for positive delays as well. Again, so
long as we interpret the TE as a measure of predictive power this makes sense. That is to say, future
values Xj can aid in predicting the current dynamics of Xi. Interestingly, the asymmetry in the TE
peaks near τ = 0 may provide the largest clue as to the location of the forcing signal. Consistently we
have found that the TE is larger for negative delays when mass closest the driven end plays the role of
Xj; conversely it is larger for positive delays when the mass furthest from the driven end plays this
role. So long as the coupling is bi-directional, results such as those shown in Figure 2 can be expected
in general.

However, the situation is quite different if we consider the case of uni-directional coupling. For
example, we may consider TEf→i(τ), i.e. the TDTE between the forcing signal and response variable i.
This is a particularly interesting case as, unlike in previous examples, there is no feedback from DOF i
to the driving signal. Figure 3 shows the TDTE between drive and response and clearly highlights
the directional nature of the coupling. Past values of the forcing function clearly help in predicting
the dynamics of the response. Conversely, future values of the forcing say nothing about transition
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probabilities for the mass response simply because the mass has not “seen” that information yet. Thus,
for uni-directional coupling, the TDTE can easily diagnose whether Xj is driving Xi or vice-versa. It can
also be noticed from these plots that the drive signal is not that much help in predicting the response
as the TDTE is much smaller in magnitude that when computed between masses. We interpret this to
mean that the response data are dominated by the physics of the structure (e.g., the structural modes),
which is information not carried in the drive signal. Hence, the drive signal offers little in the way of
additional predictive power. While the drive signal puts energy into the system, it is not very good at
predicting the response. It should also be pointed out that the kernel density estimation techniques are
not able to capture these small values of the TDTE. The error in such estimates is larger than these
subtle fluctuations. Only the “linearized” estimator is able to capture the fluctuations in the TDTE for
small (O(10−2)) values.
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Figure 3. Time delay transfer entropy between the forcing (denoted as DOF “0”) and mass three for
the 5 DOF system driven at mass, P = 5. The plot is consistent with the interpretation of information
moving from the forcing to mass three.

It has been suggested that the main utility of the TE is to, given a sequence of observations, assess
the direction of information flow in a coupled system. More specifically, one computes the difference
TEi→j − TEj→i with a positive difference suggesting information flow from i to j (negative differences
indicating the opposite) [2,4]. In the system modeled by Equation (10) one would heuristically
understand the information as flowing from the drive signal to the response. This is certainly reinforced
by Figure 3. However, by extension it might seem probable that information would similarly flow
from the mass closest the drive signal to the mass closest the boundary (e.g., DOF 5 to DOF 1).
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Figure 4. Difference in time delay transfer entropy between the driven mass five and each other DOF
as a function of k3. A positive difference indicates TEi→j > TEj→i and is commonly used to indicate
that information is moving from mass i to mass j. Based on this interpretation, negative values indicate
information moving from the driven end to the base; positive values indicate the opposite. Even for
this linear system, choosing different masses in the analysis can produce very different results. In fact,
TE2→5 − TE5→2 implies a different direction of information transfer, depending on the strength of the
coupling, k3

We test this hypothesis as a function of the coupling strength between masses. Fixing each
stiffness and damping coefficient to the previously used values, we vary k3 from 1 N/m to 40 N/m and
examine the quantity TEi→j − TEj→i evaluated at τ∗, taken as the delay at which the TDTE reaches its
maximum. Varying k3 slightly alters the dominant period of the response. By accounting for this shift
we eliminate the possibility of capturing the TE at one of its nulls (see Figure 2). For example, in Figure
2 we see that τ∗ = −0.15 in the plot of TE3→2(τ). Figure 4 shows the difference in TDTE as a function
of the coupling strength. The result is non-intuitive if one assumes information would move from
driven end toward the non-driven end of the system. For certain DOFs this interpretation holds, for
others, it does not. Herein lies the difficulty in interpreting the TE when bi-directional coupling exists.
This was also pointed out by Schreiber [1] who noted “Reducing the analysis to the identification of a
“drive" and a “response" may not be useful and could even be misleading”. The above results certainly
reinforce this statement.
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Figure 5. Difference in time-delayed transfer entropy (TDTE) among different combinations of masses.
By the traditional interpretation of TE, negative values indicate information moving from the driven
end to the base; positive values indicate the opposite.

Rather than being viewed as a measure of information flow, we find it more useful to interpret
the difference measure as simply one of predictive power. That is to say, does knowledge of system j
help predict system i more so than i helps predict j. This is a slightly different question. Our analysis
suggests that if Xi and Xj are both near the driven end but with DOF i the closer of the two , then
knowledge of Xj is of more use in predicting Xi than vice-versa. This interpretation also happens to be
consistent with the notion of information moving from the driven end toward the base. However as i
and j become de-coupled (physically separated) it appears the reverse is true. The random process
Xi is better at predicting Xj than Xj is in predicting Xi. Thus, for certain pairs of masses information
seems to be traveling from the base toward the drive. One possible explanation is that because the
mass Xi is further removed from the drive signal it is strongly influenced by the vibration of each of
the other masses. By contrast, a mass near the driven end is strongly influenced only by the drive
signal. Because the dynamics Xi are influenced heavily by the structure (as opposed to the drive), Xi
does a good job in helping to predict the dynamics everywhere. The main point of this analysis is that
the difference in TE is not at all an unambiguous measure of the direction of information flow.

To further explore this question, we have repeated this numerical experiment for all possible
combinations of masses. These results are displayed in Figure 5 where the same basic phenomenology
is observed. If both masses being analyzed are near the driven end, the mass closest the drive is a better
predictor of the one that is further away. However again, as i and j become decoupled the reverse is
true. Our interpretation is that the further the process is removed from the drive signal, the more it
is dominated by the other mass dynamics and the boundary conditions. Because such a process is
strongly influenced by the other DOFs, it can successfully predict the motion for these other DOFs.

It is also interesting to note how the strength, and even directionality (sign) of the difference
in TDTE changes with variations in a single stiffness element. Depending on the value of k3 we
see changes in which of the two masses is a better predictor. In some cases we even see zero TDTE
difference, implying that the dynamics of the constituent signals are equally useful in predicting one
another. Again, this does not support our intuitive notion of what it means for information to travel
through a structural system. Only in the case of uni-directional coupling can we unambiguously use
the TE to indicate directionality of information transport.
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One of the strengths of our analysis is that these conclusions are not influenced by estimation error.
In studying heart and breath rate interactions, for example, the ambiguity in information flow was
assigned to difficulties in the estimation process [2]. We have shown here that even when estimation
error is not a factor the ambiguity remains. We would imagine a similar result would hold for more
complex systems, however such systems are beyond our ability to develop analytical expressions.
The difference in TDTE is, however, a useful indicator of which system component carries the most
predictive power about the rest of the system dynamics.

In short, the TDTE can be a very useful descriptor of system dynamics and coupling among
system components. However any real understanding is only likely to be obtained in the context of a
particular system model, or class of models (e.g., linear). Absent physical insight into the process that
generates the observations, understanding results of a TDTE analysis can be challenging at best.

However, it is perhaps worth mentioning that the expressions derived here might permit inference
about the general form of the underlying “linearized” system model. Different linear system models
yield different expressions for ρij(τ), hence different expressions for the TDTE. One could then
conceivably use estimates of the TDTE as a means to select among this class of models given observed
data. Whether or not the TDTE is of use in the context of model selection remains to be seen.

5. Conclusions

In this work we have derived an analytical expression for the time-delayed transfer entropy
(TDTE) among components of a broad class of second order linear systems driven by a jointly Gaussian
input. This solution has proven particularly useful in understanding the behavior of the TDTE as a
measure of dynamical coupling. In particular, when the coupling is uni-directional, we have found the
TDTE to be an unambiguous indicator of the direction of information flow in a system. However, for
bi-directional coupling the situation is significantly more complicated, even for linear systems. We
have found that a heuristic understanding of information flow is not always accurate. For example,
one might expect information to travel from the driven end of a system toward the non-driven end.
In fact, we have shown precisely the opposite to be true. Simply varying a linear stiffness element
can cause the apparent direction of flow to change. It would seem a safer interpretation is that a
positive difference in the transfer entropy between two system components tells the practitioner which
component has the greater predictive power.
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Abstract: A method is shown for computing transfer entropy over multiple time lags for coupled
autoregressive processes using formulas for the differential entropy of multivariate Gaussian
processes. Two examples are provided: (1) a first-order filtered noise process whose state is measured
with additive noise, and (2) two first-order coupled processes each of which is driven by white process
noise. We found that, for the first example, increasing the first-order AR coefficient while keeping the
correlation coefficient between filtered and measured process fixed, transfer entropy increased since
the entropy of the measured process was itself increased. For the second example, the minimum
correlation coefficient occurs when the process noise variances match. It was seen that matching
of these variances results in minimum information flow, expressed as the sum of transfer entropies
in both directions. Without a match, the transfer entropy is larger in the direction away from the
process having the larger process noise. Fixing the process noise variances, transfer entropies in both
directions increase with the coupling strength. Finally, we note that the method can be generally
employed to compute other information theoretic quantities as well.

Keywords: transfer entropy; autoregressive process; Gaussian process; information transfer

1. Introduction

Transfer entropy [1] quantifies the information flow between two processes. Information is
defined to be flowing from system X to system Y whenever knowing the past states of X reduces the
uncertainty of one or more of the current states of Y above and beyond what uncertainty reduction is
achieved by only knowing the past Y states. Transfer entropy is the mutual information between the
current state of system Y and one or more past states of system X, conditioned on one or more past
states of system Y. We will employ the following notation. Assume that data from two systems X and
Y are simultaneously available at k timestamps: tn−k+2 : n+1 ≡ {tn−k+2, tn−k+2, ..., tn, tn+1}. Then we
express transfer entropies as:

TE(k)
x→y = I(yn+1; xn−k+2 : n|yn−k+2 : n) = H(yn+1|yn−k+2 : n)− H(yn+1|yn−k+2 : n, xn−k+2 : n) (1)

TE(k)
y→x = I(xn+1; yn−k+2 : n|xn−k+2 : n) = H(xn+1|xn−k+2 : n)− H(xn+1|xn−k+2 : n, yn−k+2 : n). (2)

Each of the two transfer entropy values TEx→y and TEy→x is nonnegative and both will be positive
(and not necessarily equal) when information flow is bi-directional. Because of these properties, transfer
entropy is useful for detecting causal relationships between systems generating measurement time
series. Indeed, transfer entropy has been shown to be equivalent, for Gaussian variables, to Granger
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causality [2]. Reasons for caution about making causal inferences in some situations using transfer
entropy, however, are discussed in [3–6]. A formula for normalized transfer entropy is provided in [7].

The contribution of this paper is to explicitly show how to compute transfer entropy over a
variable number of time lags for autoregressive (AR) processes driven by Gaussian noise and to gain
insight into the meaning of transfer entropy in such processes by way of two example systems: (1)
a first-order AR process X = {xn} with its noisy measurement process Y = {yn}, and (2) a set of two
mutually-coupled AR processes. Computation of transfer entropies for these systems is a worthwhile
demonstration since they are simple models that admit intuitive understanding. In what follows we
first show how to compute the covariance matrix for successive iterates of the example AR processes
and then use these matrices to compute transfer entropy quantities based on the differential entropy
expression for multivariate Gaussian random variables. Plots of transfer entropies versus various
system parameters are provided to illustrate various relationships of interest.

Note that Kaiser and Schreiber [8] have previously shown how to compute information transfer
metrics for continuous-time processes. In their paper they provide an explicit example, computing
transfer entropy for two linear stochastic processes where one of the processes is autonomous and
the other is coupled to it. To perform the calculation for the Gaussian processes the authors utilize
expressions for the differential entropy of multivariate Gaussian noise. In our work, we add to
this understanding by showing how to compute these quantities analytically for higher time lags.
We now provide a discussion of differential entropy, the formulation of entropy appropriate to
continuous-valued processes as we are considering.

2. Differential Entropy

The entropy of a continuous-valued process is given by its differential entropy. Recall that the
entropy of a discrete-valued random variable is given by the Shannon entropy H = −∑

i
pi logpi (we

shall always choose log base 2 so that entropy will be expressed in units of bits) where pi is the
probability of the ith outcome and the sum is over all possible outcomes.

Following [9] we derive the appropriate expression for differential entropies for conditioned and
unconditioned continuous-valued random variables. When a process X is continuous-valued we may
approximate it as a discrete-value process by identifying pi = fiΔx where fi is the value of the pdf at
the ith partition point and Δx is the refinement of the partition. We then obtain:

H(X) = −∑
i

pi logpi

= −∑
i

fiΔx log fiΔx

= −∑
i

fiΔx(log fi + log Δx)

= −∑
i

fi log fiΔx − ∑
i

log Δx fiΔx

= −∫ f log f dx − log Δx
∫

f dx
= h(X)− log Δx

(3)

Note that since the X process is continuous-valued, then, as Δx → 0, we have H(X) → + infinity.
Thus, for continuous-valued processes, the quantity h(X), when itself defined and finite, is used to
represent the entropy of the process. This quantity is known as the differential entropy of random
process X.

Closed-form expressions for the differential entropy of many distributions are known. For our
purposes, the key expression is the one for the (unconditional) multivariate normal distribution [10].
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Let the probability density function of the n-dimensional random vector x be denoted f(x), then the
relevant expressions are:

f (x) =
exp

[
− 1

2 (x−μ)TC−1(x−μ)
]

(2π)
n
2 [detC]

1
2

h(x) = −∫ f (x) log[ f (x)]dx

= 1
2 log

[
(2πe)ndetC

] (4)

where detC is the determinant of matrix C, the covariance of x. In what follows, this expression will
be used to compute differential entropy of unconditional and conditional normal probability density
functions. The case for conditional density functions warrants a little more discussion.

Recall that the relationships between the joint and conditional covariance matrices, CXY and
CY|X, respectively, of two random variables X and Y (having dimensions nx and ny, respectively) are
given by:

CXY = cov

([
X
Y

])
=

[
Σ11 Σ12

Σ21 Σ22

]

cov[Y|X = x] = CY|X = Σ22 − Σ21Σ−1
11 Σ12.

(5)

Here blocks Σ11 and Σ22 have dimensions nx by nx and ny by ny, respectively. Now, using
Leibniz’s formula, we have that:

detCXY = det

[
Σ11 Σ12

Σ21 Σ22

]
= detΣ11det

(
Σ22 − Σ21Σ−1

11 Σ12

)
= detCXdetCY|X . (6)

Hence the conditional differential entropy of Y, given X, may be conveniently computed using:

h(Y|X) = 1
2 log

[
(2πe)ny detCY|X

]
= 1

2 log
[
(2πe)ny detCXY

detCX

]
= 1

2 log
[
(2πe)nx+ny detCXY

]
− 1

2 log
[
(2πe)nx detCX

]
= h(X, Y)− h(X) .

(7)

This formulation is very handy as it allows us to compute many information-theoretic quantities
with ease. The strategy is as follows. We define C(k) to be the covariance of two random processes
sampled at k consecutive timestamps {tn−k+2, tn− k+1, . . . , tn, tn+1}. We then compute transfer entropies
for values of k up to k sufficiently large to ensure that their valuations do not change significantly if k
is further increased. For our examples, we have found k = 10 to be more than sufficient. A discussion
of the importance of considering this sufficiency is provided in [11].

3. Transfer Entropy Computation Using Variable Number of Timestamps

We wish to consider two example processes each of which conforms to one of the two model
systems having the general expressions:

(1)

⎧⎪⎨⎪⎩
xn+1 = a0xn + a1xn−1 + · · ·+ amxn−m + wn

yn+1 = c−1xn+1 + vn

vn ∼ N(0, R), wn ∼ N(0, Q)

(8)

and:

(2)

⎧⎪⎨⎪⎩
xn+1 = a0xn + a1xn−1 + · · ·+ amxn−m + b0yn + b1yn−1 + · · ·+ bjyn−j + wn

yn+1 = c0xn + c1xn−1 + · · ·+ cmxn−m + d0yn + d1yn−1 + · · ·+ djyn−j + vn

vn ∼ N(0, R), wn ∼ N(0, Q).
(9)
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Here, vn and wn are zero mean uncorrelated Gaussian noise processes having variances R and
Q, respectively. For system stability, we require the model poles to lie within the unit circle.The first
model is of a filtered process noise X one-way coupled to an instantaneous, but noisy measurement
process Y. The second model is a two-way coupled pair of processes, X and Y.

Transfer entropy (as defined by Schreiber [1]) considers the flow of information from past states
(i.e., state values having, timetags tn−k+2 : n ≡ {tn−k+2, tn−k+2, ..., tn}) of one process to the present
(tn+1) state of another process. However, note that in the first general model (measurement process)
there is an explicit flow of information from the present state of the X process; xn+1 determines the
present state of the Y process yn+1 (assuming c− 1 is not zero). To fully capture the information transfer
from the X process to the current state of the Y process we must identify the correct causal states [4].
For the measurement system, the causal states include the current (present) state. This state is not
included in the definition of transfer entropy, being a mutual information quantity conditioned on only
past states. Hence, for the purpose of this paper, we will temporarily define a quantity, “information
transfer,” similar to transfer entropy, except that the present of the driving process, xn+1, will be lumped
in with the past values of the X process: xn−k+2:xn. For the first general model there is no information
transferred from the Y to the X process. We define the (non-zero) information transfer from the X to
the Y process (based on data from k timetags) as:

IT(k)
x→y = I(yn+1; xn−k+2 : n+1|yn−k+2 : n) = H(yn+1|yn−k+2 : n)− H(yn+1|yn−k+2 : n, xn−k+2 : n+1) . (10)

The major contribution of this paper is to show how to analytically compute transfer entropy for
AR Gaussian processes using an iterative method for computing the required covariance matrices.
Computation of information transfer is additionally presented to elucidate the power of the method
when similar information quantities are of interest and to make the measurement example more
interesting. We now present a general method for computing the covariance matrices required to
compute information-theoretic quantities for the AR models above. Two numerical examples follow.

To compute transfer entropy over a variable number of multiple time lags for AR processes of
the general types shown above, we compute its block entropy components over multiple time lags.
By virtue of the fact that the processes are Gaussian we can avail ourselves of analytical entropy
expressions that depend only on the covariance of the processes. In this section we show how to
analytically obtain the required covariance expressions starting with the covariance for a single time
instance. Taking expectations, using the AR equations, we obtain the necessary statistics to characterize
the process. Representing these expectation results in general, the process covariance matrix C(1)(tn)
corresponding to a single timestamp, tn, is:

C(1)(tn) ≡ cov

([
xn

yn

])
=

[
E
[
x2

n
]

E[xnyn]

E[ynxn] E
[
y2

n
] ]

. (11)

To obtain an expanded covariance matrix, accounting for two time instances (tn and tn+1), we
compute the additional expectations required to fill in the matrix C (2)(tn):

C(2)(tn) ≡ cov

⎛⎜⎜⎜⎝
⎡⎢⎢⎢⎣

xn

yn

xn+1

yn+1

⎤⎥⎥⎥⎦
⎞⎟⎟⎟⎠ =

⎡⎢⎢⎢⎣
E
[
x2

n
]

E[xnyn] E[xnxn+1] E[xnyn+1]

E[xnyn] E
[
y2

n
]

E[xn+1yn] E[ynyn+1]

E[xnxn+1] E[xn+1yn] E
[
x2

n+1
]

E[xn+1yn+1]

E[xnyn+1] E[ynyn+1] E[xn+1yn+1] E
[
y2

n+1
]

⎤⎥⎥⎥⎦. (12)

Because the process is stationary, we may write:

C(2)(tn) = C(2) =

[
Σ11 Σ12

Σ21 Σ22

]
(13)
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where:

Σ11 ≡
[

E
[
x2

n
]

E[xnyn]

E[xnyn] E
[
y2

n
] ]

Σ12 ≡
[

E[xnxn+1] E[xnyn+1]

E[xn+1yn] E[ynyn+1]

]
Σ21 = ΣT

12
Σ22 = Σ11.

(14)

Thus we have found the covariance matrix C(2) required to compute block entropies based on
two timetags or, equivalently, one time lag. Using this matrix the single-lag transfer entropies may
be computed.

We now show how to compute the covariance matrices corresponding to any finite number of

time stamps. Define vector zn =

[
xn

yn

]
. Using the definitions above, write the matrix C(2) as a block

matrix and, using standard formulas, compute the conditional mean and covariance Cc of zn+1 given
zn:

C(2) = cov

([
zn

zn+1

])
= E

[([
zn

zn+1

][
zn zn+1

])]
=

[
Σ11 Σ12

Σ21 Σ22

]
E[zn+1|zn = z] = E[zn] + Σ21Σ−1

11 [z − E[zn]]

= μz + Σ21Σ−1
11 [z − μz]

Cc ≡ cov[zn+1|zn = z] = Σ22 − Σ21Σ−1
11 Σ12.

(15)

Note that the expected value of the conditional mean is zero since the mean of the zn process, μz,
is itself zero.

With these expressions in hand, we note that we may view propagation of the state zn to its value
zn+1 at the next timestamp as accomplished by the recursion:

zn+1 = μz + D(zn − μz) + Sun : un ∼ N(02, I2)

D ≡ Σ21Σ−1
11

Cc ≡ SST ≡ Σ22 − Σ21Σ−1
11 Σ12.

(16)

Here S is the principal square root of the matrix Cc. It is conveniently computed using the inbuilt
Matlab function sqrtm. To see analytically that the recursion works, note that using it we recover at
each timestamp a process having the correct mean and covariance:

E{zn+1|zn = z} = E{μz + D(zn − μz) + Sun|zn = z} = μz + D(z − μz) (17)

and:

zn+1 − E{zn+1|zn = z} = μz + D(zn − μz) + Sun − (μz + D(z − μz)) = Sun + D(zn − z)

cov(zn+1|zn = z) = E
{
[zn+1 − E{zn+1|zn = z}][zn+1 − E{zn+1|zn = z}]T

∣∣∣zn = z
}

= E
{
[Sun + D(zn − z)][Sun + D(zn − z)]T

∣∣∣zn = z
}

= E
{
[Sun][Sun]

T
}
= SE

{
unuT

n
}

ST = SST .

(18)

Thus, because the process is Gaussian and fully specified by its mean and covariance, we have
verified that the recursive representation yields consistent statistics for the stationary AR system. Using
the above insights, we may now recursively compute the covariance matrix C(k) for a variable number
(k) of timestamps. Note that C(k) has dimensions of 2k × 2k. We denote 2 × 2 blocks of C(k) as C(k)

ij
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for i, j = 1,2, ..., k , where C(k)
ij is the 2-by-2 block of C(k) consisting of the four elements of C(k) that are

individually located in row 2i − 1 or 2i and column 2j − 1 or 2j.
The above recursion is now used to compute the block elements of C(3). Then each of these block

elements is, in turn, expressed in terms of block elements of C(2). These calculations are shown in
detail below where we have also used the fact that the mean of the zn vector is zero:

C(3)
ij = C(2)

ij : i = 1, 2; j = 1, 2
zn+2 = Dzn+1 + Sun+1

= D[Dzn + Sun] + Sun+1 = D2zn + DSun + Sun+1

(19)

C(3)
13 = E

[
znzT

n+2
]
= E

[
zn
(

D2zn + DSun + Sun+1
)T
]
= Σ11

[
D2]T

C(3)
31 =

[
C(3)

13

]T (20)

C(3)
23 = E

[
zn+1zT

n+2
]
= E

[
(Dzn + Sun)

(
D2zn + DSun + Sun+1

)T
]

= DΣ11
[
D2]T

+ CcDT = DC(3)
13 + CcDT

C(3)
32 =

[
C(3)

23

]T
(21)

C(3)
33 = E

[
zn+2zT

n+2
]
= E

[(
D2zn + DSun + Sun+1

)(
D2zn + DSun + Sun+1

)T
]

= D2Σ11
[
D2]T

+ DCcDT + Cc = DC(3)
23 + Cc.

(22)

By continuation of this calculation to larger timestamp blocks (k > 3), we find the following
pattern that can be used to extend (augment) C(k−1) to yield C(k). The pattern consists of setting most
of the augmented matrix equal to that of the previous one, and then computing two additional rows
and columns for C(k), k > 2, to fill out the remaining elements. The general expressions are:

C(k)
m,n = C(k−1)

m,n : m, n = 1, 2, ..., k − 1

C(k)
1k = Σ11

[
Dk−1

]T

C(k)
ik = DC(k)

i−1,k + Cc

[
Dk−i

]T
: i = 2, 3, . . . k

C(k)
ki =

[
C(k)

ik

]T
: i = 1, 2, ..., k.

(23)

At this point in the development we have shown how to compute the covariance matrix:

C(k) = cov
(

z(k)
)
= cov

([
xn yn xn+1 yn+1 · · · xn+k−1 yn+k−1

]T
)

(24)

Since the system is linear and the process noise wn and measurement noise vn are white zero-mean
Gaussian noise processes, we may express the joint probability density function for the 2k variates as:

f
(

z(k)
)
= pd f

(
z(k)

)
= pd f

([
xn yn xn+1 yn+1 · · · xn+k−1 yn+k−1

])
=

exp
{
− 1

2

[
z(k)

]T[
C(k)

]−1[
z(k)

]}
(2π)

n
2
(
det

[
C(k)

]) 1
2

(25)

Note that the mean of all 2k variates is zero.
Finally, to obtain empirical confirmation of the equivalence of the covariance terms obtained

using the original AR system and its recursive representation, numerical simulations were conducted.
Using the example 1 system (below) 500 sequences were generated each of length one million. For
each sequence the C(3) covariance was computed. The error for all C(3) matrices was then averaged,
assuming that the C(3) matrix calculated using the method based on the recursive representation was
the true value. The result was that for each of the matrix elements, the error was less than 0.0071% of its
true value. We are now in position to compute transfer entropies for a couple of illustrative examples.
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4. Example 1: A One-Way Coupled System

For this example we consider the following system:

xn+1 = axn + wn : wn ∼ N(0, Q)

yn+1 = hcxn+1 + vn : vn ∼ N(0, R)
(26)

Parameter hc specifies the coupling strength of the Y process to the first-order AR process X, and
R and Q are their respective (wn and vn) zero-mean Gaussian process noise variances. For stability, we
require |a| <1. Comparing to the first general representation given above, we have m = 0, a0 = a,
and c−1 = hca. The system models filtered noise xn and a noisy measurement, yn, of xn. Thus the xn

sequence represents a hidden process (or model) which is observable by way of another sequence,
yn. We wish to examine the behavior of transfer entropy as a function of the correlation ρ between xn

and yn. One might expect that the correlation ρ between xn and yn to be proportional of the degree of
information flow; however, we will see that the relationship between transfer entropy and correlation
is not quite that simple.

Both the X and Y processes have zero mean. Computing the joint covariance matrix C(1) for xn

and yn and their correlation we obtain:

Var(xn) =
Q

1−a2

Var(yn) = h2
c Var(xn) + R

E(xnyn) = hcVar(xn)

ρ ≡ E(xnyn)√
Var(xn)Var(yn)

(27)

Hence the process covariance matrix C(1) corresponding to a single timestamp, tn is:

C(1) ≡ cov

([
xn

yn

])
=

[
Var(xn) hVar(xn)

hcVar(xn) h2
c Var(yn) + R

]
. (28)

In order to obtain an expanded covariance matrix, accounting for two time instances (tn and tn+1)
we compute the additional expectations required to fill in the matrix C(2):

C(2) ≡ cov

⎛⎜⎜⎜⎝
⎡⎢⎢⎢⎣

xn

yn

xn+1

yn+1

⎤⎥⎥⎥⎦
⎞⎟⎟⎟⎠ =

⎡⎢⎢⎢⎣
Var(xn) hcVar(xn) aVar(xn) hcaVar(xn)

hcVar(xn) h2
c Var(xn) + R hcaVar(xn) h2

c aVar(xn)

aVar(xn) hcaVar(xn) Var(xn) hcVar(xn)

hcaVar(xn) h2
c aVar(xn) hcVar(xn) h2

c Var(xn) + R

⎤⎥⎥⎥⎦ . (29)

Thus we have found the covariance matrix C(2) required to compute block entropies based on
a single time lag. Using this matrix the single-lag transfer entropies may be computed. Using the
recursive process described in the previous section we can compute C(1◦). We have found that using
higher lags does not change the entropy values significantly.

To aid the reader in understanding the calculations required to compute transfer entropies using
higher time lags, it is worthwhile to compute transfer entropy for a single lag. We first define transfer
entropy using general notation indicating the partitioning of the X and Y sequences in to past and
future

(←
x ,

→
x
)

and
(←

y ,
→
y
)

, respectively. We then compute transfer entropy as a sum of block entropies:

TEx−>y = I
(←

x ;
→
y
∣∣∣←y) = h

(←
x
∣∣∣←y)+ h

(→
y
∣∣∣←y)− h

(←
x ;

→
y
∣∣∣←y)

=
[

h
(←

x ,
←
y
)
− h

(←
y
)]

+
[

h
(←

y ,
→
y
)
− h

(←
y
)]

−
[

h
(←

x ,
←
y ,

→
y
)
− h

(←
y
)]

= h
(←

x ,
←
y
)
+ h

(←
y ,

→
y
)
− h

(←
y
)
− h

(←
x ,

←
y ,

→
y
)

.

(30)
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Similarly:

TEy−>x = I
(←

y ;
→
x
∣∣∣←x) = h

(←
x ,

←
y
)
+ h

(←
x ,

→
x
)
− h

(←
x
)
− h

(←
x ,

←
y ,

→
x
)

(31)

The Y states have no influence on the X sequence in this example. Hence TEy→x = 0. Since we are
here computing transfer entropy for a single lag (i.e., two time tags tn and tn+1) we have:

TE(2)
x−>y = I(xn; yn+1|yn) = h(xn, yn) + h(yn, yn+1)− h(yn)− h(xn, yn, yn+1) (32)

By substitution of the expression for the differential entropy of each block we obtain:

TE(2)
x−>y = 1

2 log
[
(2πe)2detC(2)

[1,2],[1,2]

]
+ 1

2 log
[
(2πe)2detC(2)

[2,4],[2,4]

]
−

1
2 log

[
(2πe)1detC(2)

[2],[2]

]
− 1

2 log
[
(2πe)3detC(2)

[1,2,4],[1:,2,4]

]
= 1

2 log

[
detC(2)

[1,2],[1,2]detC(2)
[2,4],[2,4]

detC(2)
[2],[2]detC(2)

[1,2,4],[1,2,4]

]
.

(33)

For this example, note from the equation for yn+1 that state xn+1 is a causal state of X influencing
the value of yn+1. In fact, it is the most important such state. To capture the full information that is
transferred from the X process to the Y process over the course of two time tags we need to include
state xn+1. Hence we compute the information transfer from x → y as:

IT(2)
x−>y = I(xn, xn+1; yn+1|yn) = h(xn, xn+1, yn) + h(yn, yn+1)− h(yn)− h(xn, xn+1, yn, yn+1) (34)

IT(2)
x−>y = 1

2 log
[
(2πe)3detC(2)

[1,2,3],[1,2,3]

]
+ 1

2 log
[
(2πe)2detC(2)

[2,4],[2,4]

]
−

1
2 log

[
(2πe)1detC(2)

[2],[2]

]
− 1

2 log
[
(2πe)4detC(2)

[1:4],[1:4]

]
= 1

2 log

[
detC(2)

[1:,2,3],[1,2,3]detC(2)
[2,4],[2,4]

detC(2)
[2],[2]detC(2)

[1:4],[1:4]

]
.

(35)

Here the notation detC(2)
[i],[i] indicates the determinant of the matrix composed of the rows and

columns of C(2) indicated by the list of indices i shown in the subscripted brackets. For example,
detC(2)

[1:4],[1:4] is the determinant of the matrix formed by extracting columns {1, 2, 3, 4} and rows {1, 2, 3,

4} from matrix C(2). In later calculations we will use slightly more complicated-looking notation. For
example, detC(10)

[2:2:20],[2:2:20] is the determinant of the matrix formed by extracting columns {2, 4 , . . . , 18,

20} and the same-numbered rows from matrix C(1◦). (Note C(k)
[i],[i] is not the same as C(k)

ii as used in
Section 3).

It is interesting to note that a simplification in the expression for information transfer can be
obtained by writing the expression for it in terms of conditional entropies:

IT(2)
x−>y = I(xn, xn+1; yn+1|yn) = h(yn+1|yn)− h(yn+1|xn, yn, xn+1) (36)

From the fact that yn+1 = xn+1 + vn+1 we see immediately that:

h(yn+1|xn, yn, xn+1) = h(vn+1) =
1
2

log(2πeR). (37)
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Hence we may write:

IT(2)
x−>y = h(yn+1|yn)− h(yn+1|xn, yn, xn+1)

= 1
2 log

[
2πedetC(2)

[2,4],[2,4]

detC(2)
[2],[2]

]
− 1

2 log[2πeR]

= 1
2 log

[
detC(2)

[2,4],[2,4]

RdetC(2)
[2],[2]

]
.

(38)

To compute transfer entropy using nine lags (ten timestamps) assume that we have
already computed C(10) as defined above. We partition the sequence

{
zT

n+i
}9

i=0 =

{xn, yn, xn+1, yn+1, xn+2, yn+2, xn+3, yn+3, xn+4, yn+4, xn+5, yn+5, xn+6, yn+6, xn+7, yn+7, xn+8, yn+8, xn+9, yn+9} into
three subsets: ←

x ≡ {xn, xn+1, . . . , xn+8}←
y ≡ {yn, yn+1, , . . . , yn+8}→
y ≡ {yn+9}.

(39)

Now, using these definitions, and substituting in expressions for differential block entropies
we obtain:

TE(10)
x−>y = I

(←
x ;

→
y
∣∣∣←y) = h

(←
x ,

←
y
)
+ h

(←
y ,

→
y
)
− h

(←
y
)
− h

(←
x ,

←
y ,

→
y
)

= 1
2 log

[
(2πe)18detC(10)

[1:18],[1:18]

]
+ 1

2 log
[
(2πe)10detC(10)

[2:2:20],[2:2:20]

]
−

1
2 log

[
(2πe)9detC(10)

[2:2:18],[2:2:18]

]
− 1

2 log
[
(2πe)19detC(10)

[1:18,20],[1:18,20]

]
= 1

2 log

[
detC(10)

[1:18],[1:18]detC(10)
[2:2:20],[2:2:20]

detC(10)
[2:2:18],[2:2:18]detC(10)

[1:18,20],[1:18,20]

]
.

(40)

Similarly:

IT(10)
x−>y = h

(←
y
∣∣∣←y)− h

(→
y
∣∣∣←y ,

←
x , xn+1

)
=

1
2

log

⎡⎣ detC(10)
[2:2:20],[2:2:20]

RdetC(10)
[2:2:18],[2:2:18]

⎤⎦. (41)

As a numerical example we set hc = 1, Q = 1, and for three different values of a (0.5, 0.7 and 0.9)
we vary R so as to scan the correlation ρ between the x and y processes between the values of 0 and 1.

In Figure 1 it is seen that for each value of parameter a there is a peak in the transfer entropy
TE(k)

x→y. As the correlation ρ between xn and yn increases from a low value the transfer entropy
increases since the amount of information shared between yn+1 and xn is increasing. At a critical value
of ρ transfer entropy peaks and then starts to decrease. This decrease is due to the fact that at high
values of ρ the measurement noise variance R is small. Hence yn becomes very close to equaling xn so
that the amount of information gained (about yn+1) by learning xn, given yn, becomes small. Hence
h(yn+1 | yn) - h(yn+1 | yn, xn) is small. This difference is TE(2)

x→y.
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Figure 1. Example 1: Transfer entropy TE(k)
x→y versus correlation coefficient ρ for three values of

parameter a (see legend). Solid trace: k = 10, dotted trace: k = 2.

The relationship between ρ and R is shown in Figure 2. Note that when parameter a is increased,
a larger value of R is required to maintain ρ at a fixed value. Also, in Figure 1 we see the effect of
including more timetags in the analysis. When k is increased from 2 to 10 transfer entropy values fall,
particularly for the largest value of parameter a. It is known that entropies decline when conditioned
on additional variables. Here, transfer entropy is acting similarly. In general, however, transfer entropy,
being a mutual information quantity, has the property that conditioning could make it increase as
well [12].

Figure 2. Example 1: Logarithm of R versus ρ for three values of parameter a (see legend).

The observation that the transfer entropy decrease is greatest for the largest value of parameter a
is perhaps due to the fact that the entropy of the X process is itself greatest for the largest a value and
therefore has more sensitivity to an increase in X data availability (Figure 3).
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From Figure 1 it is seen that as the value of parameter a is increased, transfer entropy is increased
for a fixed value of ρ. The reason for this increase may be gleaned from Figure 3 where it is clear that
the amount of information contained in the x process, HX, is greater for larger values of a. Hence more
information is available to be transferred at the fixed value of ρ when a is larger. In the lower half of
Figure 3 we see that as ρ increases the entropy of the Y process, HY, approaches the value of HX. This
result is due to the fact that the mechanism being used to increase ρ is to decrease R. Hence as R drops
close to zero yn looks increasingly identical to xn (since hc = 1).

Figure 3. Example 1: Process entropies HX and HY versus correlation coefficient ρ for three values of
parameter a (see legend).

Figure 4 shows information transfer IT(k)
x→y plotted versus correlation coefficient ρ. Now note

that the trend is for information transfer to increase as ρ is increased over its full range of values. ◦

Figure 4. Example 1: Information transfer IT(k)
x→y versus correlation coefficient ρ for three different

values of parameter a (see legend) for k = 10 (solid trace) and k = 2 (dotted trace).
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This result is obtained since as ρ is increased yn+1 becomes increasingly correlated with xn+1. Also,
for a fixed ρ, the lowest information transfer occurs for the largest value of parameter a. We obtain
this result since at the higher a values xn and xn+1 are more correlated. Thus the benefit of learning
the value of yn+1 through knowledge of xn+1 is relatively reduced, given that yn (itself correlated
with xn) is presumed known. Finally, we have IT(10)

x→y < IT(2)
x→y since conditioning the entropy

quantities comprising the expression for information transfer with more state data acts to reduce their
difference. Also, by comparison of Figures 2 and 4, it is seen that information transfer is much greater
than transfer entropy. This relationship is expected since information transfer as defined herein (for
k = 2) is the amount of information that is gained about yn+1 from learning xn+1 and xn, given that
yn is already known. Whereas transfer entropy (for k = 2) is the information gained about yn+1 from
learning only xn, given that yn is known. Since the state yn+1 in fact equals xn+1, plus noise, learning
xn+1 is highly informative, especially when the noise variance is small (corresponding to high values
of ρ). The difference between transfer entropy and information transfer therefore quantifies the benefit
of learning xn+1, given that xn and yn are known (when the goal is to determine yn+1).

Figure 5 shows how information transfer varies with measurement noise variance R. As R
increases the information transfer decreases since measurement noise makes determination of the
value of yn+1 from knowledge of xn and xn+1 less accurate. Now, for a fixed R, the greatest value for
information transfer occurs for the greatest value of parameter a. This is the opposite of what we
obtained for a fixed value of ρ as shown in Figure 4. The way to see the rationale for this is to note
that, for a fixed value of information transfer, R is highest for the largest value of parameter a. This
result is obtained since larger values of a yield the most correlation between states xn and xn+1. Hence,
even though the measurement yn+1 of xn+1 is more corrupted by noise (due to higher R), the same
information transfer is achieved nevertheless, because xn provides a good estimate of xn+1 and, thus,
of yn+1.

Figure 5. Example 1: Information transfer IT(10)
x→y versus measurement error variance R for three

different values of parameter a (see legend).

5. Example 2: Information-theoretic Analysis of Two Coupled AR Processes.

In example 1 the information flow was unidirectional. We now consider a bidirectional example
achieved by coupling two AR processes. One question we may ask in such a system is how transfer
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entropies change with variations in correlation and coupling coefficient parameters. It might be
anticipated that increasing either of these quantities will have the effect of increasing information flow
and thus transfer entropies will increase.

The system is defined by the equations:

xn+1 = axn + byn + wn : wn ∼ N(0, Q)

yn+1 = cxn + dyn + vn : vn ∼ N(0, R) .
(42)

For stability, we require that the eigenvalues of the constant matrix

[
a b
c d

]
lie in the unit circle.

The means of processes X and Y are zero. The terms wn and vn are the X and Y processes noise terms
respectively. Using the following definitions:

λ0 ≡ 1 + ad − bc
λ1 ≡ 1 − ad − bc
ψa ≡ (1 − ad)

(
1 − a2)− bc

(
1 + a2)

ψd ≡ (1 − ad)
(
1 − d2)− bc

(
1 + d2)

τ ≡ ψaψd − b2c2λ2
0

ηx1 ≡ λ1ψd/τ

ηx2 ≡ b2λ0λ1/τ

ηy1 ≡ c2λ0λ1/τ

ηy2 ≡ λ1ψa/τ

(43)

we may solve for the correlation coefficient ρ between xn and yn to obtain:[
Var(xn)

Var(yn)

]
=

[
ηx1 ηx2

ηy1 ηy2

][
Q
R

]
. (44)

C[xy] ≡ cov

([
xn

yn

])
=

[
Var(xn) ξ

ξ Var(yn)

]
ξ ≡ E[xnyn] =

b(dψa+abcλ0)R+c(aψd+bcdλ0)Q
ψaψd−b2c2λ2

0

ρ = ξ√
Var(xn)Var(yn)

.

(45)

Now, as we did previously in example 1 above, compute the covariance C(2) of the variates
obtained at two consecutive timestamps to yield:

C(2) ≡ cov

⎛⎜⎜⎜⎜⎝
⎡⎢⎢⎢⎢⎣

xn

yn

xn+1

yn+1

⎤⎥⎥⎥⎥⎦
⎞⎟⎟⎟⎟⎠ =

⎡⎢⎢⎢⎢⎣
Var(xn) ξ aVar(xn) + bξ cVar(xn) + dξ

ξ Var(yn) bVar(yn) + aξ dVar(yn) + cξ

aVar(xn) + bξ bVar(yn) + aξ Var(xn) ξ

cVar(xn) + dξ dVar(yn) + cξ ξ Var(yn)

⎤⎥⎥⎥⎥⎦ . (46)

At this point the difficult part is done and the same calculations can be made as in example 1 to
obtain C(k); k = 3,4, . . . , 10 and transfer entropies. For illustration purposes, we define the parameters
of the system as shown below, yielding a symmetrically coupled pair of processes. To generate a family
of curves for each transfer entropy we choose a fixed coupling term ε from a set of four values. We
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set Q = 1000 and vary R so that ρ varies from about 0 to 1. For each ρ value we compute the transfer
entropies. The relevant system equations and parameters are:

xn+1 =
(

1
2 − ε

)
xn + εyn + wn : wn ∼ N(0, Q)

yn+1 = εxn +
(

1
2 − ε

)
yn + vn : wn ∼ N(0, R)

ε ∈ {0.1, 0.2, 0.3, 0.4}
Q = 1000.

(47)

Hence, we make the following substitutions to compute C(2):

a =
(

1
2 − ε

)
b = ε

c = ε

d =
(

1
2 − ε

)
.

(48)

For each parameter set {ε, Q, R} there is a maximum possible ρ, ρ∞ obtained by taking the limit as
R→ ∞ of the expression for ρ given above. Doing so, we obtain:

ρ∞ =
φ1φ2 + φ3√
φ1(φ1μ1 + 1)

(49)

where:
φ1 ≡ 2ab2d+b2λ1

(1−a2−b2μ1)λ1−2ab(ac+bdμ1)

φ2 ≡ ac+bdμ1
λ1

φ2 ≡ bd
λ1

(50)

λ1 ≡ 1 − ad − bc

μ1 ≡ c2λ1+2ac2d
(1−d2)λ1−2bcd2 .

(51)

There is a minimum value of ρ also. The corresponding value for R, Rmin, was found by means
of the inbuilt Matlab program fminbnd. This program is designed to find the minimum of a function
in this case ρ(a, b, c, d, R, Q)) with respect to one parameter (in this case R) starting from an initial
guess (here, R = 500). The program returns the minimum functional value (ρmin) and the value of the
parameter at which the minimum is achieved (Rmin). After identifying Rmin a set of R values were
computed so that the corresponding set of ρ values spanned from ρmin to the maximum ρ∞ in fixed
increments of Δρ (here equal to 0.002). This set of R values was generated using the iteration:

Rnew = Rold + ΔR = Rold +

(
∂ρ

∂R

)−1
∣∣∣∣∣
R=Rold

Δρ (52)

For the four selections of parameter ε we obtain the functional relationships shown in Figure 6.
From Figure 6 we see that for a fixed ε, increasing R increases (or decreases) ρ depending on

whether R is less than (or greater than) Q (Q = 1000). Note that large increases in R > Q are required to
marginally increase ρ when ρ nears its maximum value. The reason that the minimum ρ value occurs
when Q equals R is because whenever they are unequal one of the processes dominates the other,
leading to increased correlation. Also, note that if R << Q, then increasing ε will cause ρ to decrease
since increasing the coupling will cause the variance of the y process Var(yn), a term appearing in
the denominator of the expression for ρ, to increase. If Q << R, a similar result is obtained when ε

is increased.
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Figure 6. Example 2: Process noise variance R versus correlation coefficient ρ for a set of ε parameter
values (see figure legend).

Transfer entropies in both directions are shown in Figure 7. Fixing ε, we note that as R is increased
from a low value both ρ and TEx− >y initially decrease while TEy− >x increases. Then for further
increases of R, ρ reaches a minimum value then begins to increase, while TEx→y continues to decrease
and TEy→x continues to increase.

Figure 7. Example 2: Transfer entropy values versus correlation ρ for a set of ε parameter values (see
figure legend). Arrows indicate direction of increasing R values.
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Figure 8. Example 2: Transfer entropies difference (TEx− >y – TEy − > x) and sum (TEx− > y + TEy− > x)
versus correlation ρ for a set of ε parameter values (see figure legend). Arrow indicates direction of
increasing R values.

By plotting the difference TEx→y – TEy→x in Figure 8 we see the symmetry that arises as R
increases from a low value to a high value. What is happening is that when R is low, the X process
dominates the Y process so that TEx→y > TEy→x. As R increases, the two entropies equilibrate. Then,
as R rises above Q, the Y process dominates giving TEx→y < TEy→x. The sum of the transfer entropies
shown in Figure 8 reveal that the total information transfer is minimal at the minimum value of ρ and
increases monotonically with ρ. The minimum value for ρ in this example occurs when the process
noise variances Q and R are equal (matched). Figure 9 shows the changes in the transfer entropy values
explicitly as a function of R. Clearly, when R is small (as compared to Q = 1000), TEx→y > TEy→x. Also
it is clear that at every fixed value of R, both transfer entropies are higher at the larger values for the
coupling term ε.

Figure 9. Example 2: Transfer entropies TEx→y and TEy→x versus process noise variance R for a set of ε
parameter values (see figure legend).

Another informative view is obtained by plotting one transfer entropy value versus the other as
shown in Figure 10.
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Figure 10. Example 2: Transfer entropy TEx− > y plotted versus TEy− > x for a set of ε parameter values
(see figure legend). The black diagonal line indicates locations where equality obtains. Arrow indicates
direction of increasing R values.

Here it is evident how TEy→x increases from a value less than TEx→y to a value greater than
TEx→y as R increases. Note that for higher coupling values ε this relative increase is more abrupt.

Finally, we consider the sensitivity of the transfer entropies to the coupling term ε. We reprise
example system 2 where now ε is varied in the interval (0, 1

2 ) and three values of R (somewhat
arbitrarily selected to provide visually appealing figures to follow) are considered:

xn+1 =
(

1
2 − εx

)
xn + εxyn + wn : wn ∼ N(0, Q)

yn+1 = εyxn +
(

1
2 − εy

)
yn + vn : wn ∼ N(0, R)

R ∈ {
100, 103, 104}

Q = 103.

(53)

Figure 11 shows the relationship between ρ and ε, where εx = εy = ε for the three R values. Note
that for the case R = Q the relationship is symmetric around ε = 1

4 . As R departs from equality more
correlation between xn and yn is obtained.

Figure 11. Example 2: Correlation coefficient ρ vs coupling coefficient ε for a set of R values (see
figure legend).
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The reason for this increase is that when the noise driving one process is greater in amplitude
than the amplitude of the noise driving the other process, the first process becomes dominant over
the other. This domination increases as the disparity between the process noise variances increases (R
versus Q). Note also that as the disparity increases, the maximum correlation occurs at increasingly
lower values of the coupling term ε. As the disparity increases at fixed ε = 1

4 the correlation coefficient
ρ increases. However, the variance in the denominator of ρ can be made smaller and thus ρ larger, if
the variance of either of the two processes can be reduced. This can be accomplished by reducing ε.

The sensitivities of the transfer entropies to changes in coupling term ε are shown in Figure 12.
Consistent with intuition, all entropies increase with increasing ε. Also, when R < Q (blue trace) we
have TEx->y > TEy->x and the reverse for R > Q. (red). For R = Q, TEx->y = TEy->x (green).

Figure 12. Example 2: Transfer entropies TEx→y (solid lines) vs TEy→x (dashed lines) vs coupling
coefficient ε for a set of R values (see figure legend).

Finally, it is interesting to note that whenever we define three cases by fixing Q and varying the
setting for R ( one of R1, R2 and R3 for each case) such that R1 < Q, R2 = Q and R3 = Q2/R1 (so that Ri+1

= QRi/R1 for i = 1 and i = 2) we then obtain the symmetric relationships TEx - >y(R1) = TEy - >x(R3) and
TEx - >y(R3) = TEy - >x(R1) for all ε in the interval (1, 1

2 ). For these cases we also obtain ρ(R1) = ρ(R3) on
the same ε interval.

6. Conclusions

It has been shown how to compute transfer entropy values for Gaussian autoregressive processes
for multiple timetags. The approach is based on the iterative computation of covariance matrices.
Two examples were investigated: (1) a first-order filtered noise process whose state is measured with
additive noise, and (2) two first-order symmetrically coupled processes each of which is driven by
independent process noise. We found that, for the first example, increasing the first-order AR coefficient
at a fixed correlation coefficient, transfer entropy increased since the entropy of the measured process
was itself increased.

For the second example, it was discovered that the relationships between the coupling and
correlation coefficients and the transfer entropies is more complicated. The minimum correlation
coefficient occurs when the process noise variances match. It was seen that matching of these variances
results in minimum information flow, expressed as the sum of both transfer entropies. Without a
match, the transfer entropy is larger in the direction away from the process having the larger process
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noise. Fixing the process noise variances, transfer entropies in both directions increase with coupling
strength ε.

Finally, it is worth noting that the method for computing covariance matrices for a variable
number of timetags as presented here facilitates the calculation of many other information-theoretic
quantities of interest. To this purpose, the authors have computed such quantities as crypticity [13]
and normalized transfer entropy using the reported approach.
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Abstract: Finding interdependency relations between time series provides valuable knowledge about
the processes that generated the signals. Information theory sets a natural framework for important
classes of statistical dependencies. However, a reliable estimation from information-theoretic
functionals is hampered when the dependency to be assessed is brief or evolves in time. Here,
we show that these limitations can be partly alleviated when we have access to an ensemble
of independent repetitions of the time series. In particular, we gear a data-efficient estimator of
probability densities to make use of the full structure of trial-based measures. By doing so, we can
obtain time-resolved estimates for a family of entropy combinations (including mutual information,
transfer entropy and their conditional counterparts), which are more accurate than the simple average
of individual estimates over trials. We show with simulated and real data generated by coupled
electronic circuits that the proposed approach allows one to recover the time-resolved dynamics of
the coupling between different subsystems.

Keywords: entropy; transfer entropy; estimator; ensemble; trial; time series

1. Introduction

An important problem is that of detecting interdependency relations between simultaneously
measured time series. Finding an interdependency is the first step in elucidating how the subsystems
underlying the time series interact. Fruitful applications of this approach abound in different fields,
including neuroscience [1], ecology [2] or econometrics [3]. In these examples, the discovery of certain
statistical interdependency is usually taken as an indicator that some interrelation exists between
subsystems, such as different brain regions [4], animal populations or economical indexes.

Classical measures to unveil an interdependency include linear techniques, such as
cross-correlation, coherence or Granger causality [6]. These measures quantify the strength of different
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linear relations and, thus, belong to the larger class of parametric measures, which assume a specific
form for the interdependency between two or more processes. In particular, parametric techniques are
often data-efficient, generalizable to multivariate settings and easy to interpret.

In general, statistical relationships between processes are more naturally and generally formulated
within the probabilistic framework, which relaxes the need to assume explicit models on how variables
relate to each other. For this reason, when a model of the underlying dynamics and of the assumed
interaction is not available, a sound non-parametric approach can be stated in terms of information
theory [7]. For example, mutual information is widely used to quantify the information statically
shared between two random variables. Growing interest in interdependency measures that capture
information flow rather than information sharing lead to the definition of transfer entropy [9]. In
particular, transfer entropy quantifies how much the present and past of a random variable condition
the future transitions of another. Thus, transfer entropy embodies an operational principle of causality
first championed by Norbert Wiener [8], which was explicitly formulated for linear models by Clive
Granger [5]. However, it is important to note that transfer entropy should not be understood as a
quantifier of interaction strength nor interventional causality. See [10–12] for a detailed discussion on
the relation between transfer entropy and different notions of causality and information transfer. See
also [13] for a detailed account of how spatially- and temporally-local versions of information theoretic
functionals, including transfer entropy, can be used to study the dynamics of computation in complex
systems.

A practical pitfall is that without simplifying assumptions, a robust estimation of information
theoretic functionals might require a large number of data samples. This requisite directly confronts
situations in which the dependency to be analyzed evolves in time or is subjected to fast transients.
When the non-stationarity is only due to a slow change of a parameter, over-embedding techniques can
partially solve the problem by capturing the slow dynamics of the parameter as an additional variable
[14]. It is also habitual to de-trend the time series or divide them into small windows within which the
signals can be considered as approximately stationary. However, the above-mentioned procedures
become unpractical when the relevant interactions change in a fast time scale. This is the common
situation in brain responses and other complex systems where external stimuli elicit a rapid functional
reorganization of information-processing pathways.

Fortunately, in several disciplines, the experiments leading to the multivariate time series can
be systematically repeated. Thus, a typical experimental paradigm might render an ensemble of
presumably independent repetitions or trials per experimental condition. In other cases, the processes
under study display a natural cyclic variation and, thus, also render an ensemble of almost independent
cycles or repetitions. This is often the case of seasonal time series that are common in economical and
ecological studies and, more generally, of any cyclo-stationary process.

Here, we show how this multi-trial nature can be efficiently exploited to produce time-resolved
estimates for a family of information-theoretic measures that we call entropy combinations. This family
includes well-known functionals, such as mutual information, transfer entropy and their conditional
counterparts: partial mutual information (PMI) [15,16] and partial transfer entropy (PTE) [17,18].
Heuristically, our approach can be motivated using the ergodic theorem. In other words, the time
average of a measure converges to the space or ensemble average for an ergodic process. We
can associate the conventional computation of entropies with a time average of log probabilities.
Crucially, these should converge to the ensemble averages of the equivalent log probabilities, which we
exploit with our (ensemble averaging) approach. In our case, the ensemble is constituted by multiple
realizations of repeated trials. We use both simulations and experimental data to demonstrate that the
proposed ensemble estimators of entropy combinations are more accurate than simple averaging of
individual trial estimates.
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2. Entropy Combinations

We consider three simultaneously measured time series generated from stochastic processes X, Y
and Z, which can be approximated as stationary Markov processes [19] of finite order. The state space
of X can then be reconstructed using the delay embedded vectors x(n) = (x(n), ..., x(n − dx + 1)) for
n = 1, . . . , N, where n is a discrete time index and dx is the corresponding Markov order. Similarly,
we could construct y(n) and z(n) for processes Y and Z, respectively. Let V = (V1, ..., Vm) denote
a random m-dimensional vector and H(V) its Shannon entropy. Then, an entropy combination is
defined by:

C(VL1 , ..., VLp) =
p

∑
i=1

si H(VLi )− H(V) (1)

where ∀i ∈ [1, p] : Li ⊂ [1, m] and si ∈ {−1, 1}, such that ∑
p
i=1 siχLi = χ[1,m], where χS is the indicator

function of a set S (having the value one for elements in the set S and zero for elements not in S).
In particular, MI, TE, PMI and PTE all belong to the class of entropy combinations, since:

IX↔Y ≡ −HXY + HX + HY

TX←Y ≡ −HWXY + HWX + HXY − HX

IX↔Y|Z ≡ −HXZY + HXZ + HZY − HZ

TX←Y|Z ≡ −HWXZY + HWXZ + HXZY − HXZ

where random variable W ≡ X+ ≡ x(n + 1), so that HWX is the differential entropy of p(x(n + 1),
x(n)). The latter denotes the joint probability of finding X at states x(n + 1), x(n), ..., x(n − dx + 1)
during time instants n + 1, n, n − 1, ..., n − dx + 1. Notice that, due to stationarity, p(x(n + 1), x(n)) is
invariant under variations of the time index n.

3. Ensemble Estimators for Entropy Combinations

A straightforward approach to the estimation of entropy combinations would be to add separate
estimates of each of the multi-dimensional entropies appearing in combination. Popular estimators of
differential entropy include plug-in estimators, as well as fixed and adaptive histogram or partition
methods. However, other non-parametric techniques, such as kernel and nearest-neighbor estimators,
have been shown to be extremely more data efficient [20,21]. An asymptotically unbiased estimator
based on nearest-neighbor statistics is due to Kozachenko and Leonenko (KL) [22]. For N realizations
x[1], x[2], ..., x[N] of a d-dimensional random vector X, the KL estimator takes the form:

ĤX = −ψ(k) + ψ(N) + log(vd) +
d
N

N

∑
i=1

log(ε(i)) (2)

where ψ is the digamma function, vd is the volume of the d-dimensional unit ball and ε(i) is the
distance from x[i] to its k-th nearest neighbor in the set {x[j]}∀j �=i. The KL estimator is based on the
assumption that the density of the distribution of random vectors is constant within an ε-ball. The bias
of the final entropy estimate depends on the validity of this assumption and, thus, on the values of
ε(n). Since the size of the ε-balls depends directly on the dimensionality of the random vector, the
biases of estimates for the differential entropies in Equation (1) will, in general, not cancel, leading
to a poor estimator of the entropy combination. This problem can be partially overcome by noticing
that Equation (2) holds for any value of k, so that we do not need to have a fixed k. Therefore, we
can vary the value of k in each data point, so that the radius of the corresponding ε-balls would be
approximately the same for the joint and the marginal spaces. This idea was originally proposed in [23]
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for estimating mutual information and was used in [16] to estimate PMI, and we generalize it here to
the following estimator of entropy combinations:

Ĉ(VL1 , ..., VLp) = F(k)−
p

∑
i=1

si 〈F (ki(n))〉n (3)

where F(k) = ψ(k)− ψ(N) and 〈· · · 〉n = 1
N ∑N

n=1(· · · ) denotes averaging with respect to the time
index. The term ki(n) accounts for the number of neighbors of the n-th realization of the marginal
vector VLi located at a distance strictly less than ε(n), where ε(n) denotes the radius of the ε-ball in the
joint space. Note that the point itself is included in the counting neighbors in marginal spaces (ki(n)),
but not when selecting ε(n) from the k-th nearest neighbor in the full join space. Furthermore, note
that estimator Equation (3) corresponds to extending “Algorithm 1” in [23] to entropy combinations.
Extensions to conditional mutual information and conditional transfer entropy using “Algorithm 2”
in [23] have been discussed recently [12].

A fundamental limitation of estimator Equation (3) is the assumption that the involved
multidimensional distributions are stationary. However, this is hardly the case in many real
applications, and time-adaptation becomes crucial in order to obtain meaningful estimates. A trivial
solution is to use the following time-varying estimator of entropy combinations:

Ĉ({VL1 , ..., VLp}, n) = F(k)−
p

∑
i=1

siF (ki(n)) (4)

This naive time-adaptive estimator is not useful in practice, due to its large variance, which stems
from the fact that a single data point is used for producing the estimate at each time instant. More
importantly, the neighbor searches in the former estimator run across the full time series and, thus,
ignore possible non-stationary changes.

However, let us consider the case of an ensemble of r′ repeated measurements (trials) from
the dynamics of V. Let us also denote by

{
v(r)[n]

}
r

the measured dynamics for those trials (r =

1, 2, ...r′). Similarly, we denote by {v(r)
i [n]}r the measured dynamics for the marginal vector VLi . A

straightforward approach for integrating the information from different trials is to average together
estimates obtained from individual trials:

Ĉavg({VL1 , ..., VLp}, n) =
1
r′

r′

∑
r=1

Ĉ(r)({VL1 , ..., VLp}, n) (5)

where Ĉ(r)({VL1 , ..., VLp}, n) is the estimate obtained from the r-th trial. However, this approach makes
poor use of the available data and will typically produce useless estimates, as will be shown in the
experimental section of this text.

A more effective procedure takes into account the multi-trial nature of our data by searching
for neighbors across ensemble members, rather than from within each individual trial. This nearest
ensemble neighbors [24] approach is illustrated in Figure 1 and leads to the following ensemble
estimator of entropy combinations:
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Figure 1. Nearest neighbor statistics across trials. (a): For each time instant n = n∗ and trial r = r∗, we
compute the (maximum norm) distance ε(r

∗)(n∗) from v(r∗)[n∗] to its k-th nearest neighbor among all

trials. Here, the procedure is illustrated for k = 5. (b): k(r
∗)

i [n∗] counts how many neighbors of v(r∗)
i [n∗]

are within a radius εr∗ (n∗). The point itself (i.e., v(r∗)
i [n∗]) is also included in this count. These neighbor

counts are obtained for all i = 1, ...p marginal trajectories.

Ĉen({VL1 , ..., VLp}, n) = F(k)− 1
r′

r′

∑
r=1

p

∑
i=1

siF
(

k(r)i (n)
)

(6)

where the counts of marginal neighbors {k(r)i (n)}∀r=1,...,r′
∀i=1,...p are computed using overlapping time

windows of size 2σ, as shown in Figure 1. For rapidly changing dynamics, small values of σ might be
needed to increase the temporal resolution, thus, being able to track more volatile non-stationarities.
On the other hand, larger values of σ will lead to lower estimator variance and are useful when
non-stationarities develop over slow temporal scales.

4. Tests on Simulated and Experimental Data

To demonstrate that Ĉen can be used to characterize dynamic coupling patterns, we apply the
ensemble estimator of PTE to multivariate time series from coupled processes.

In particular, we simulated three non-linearly-coupled autoregressive processes with a
time-varying coupling factor:

xr[n] = 0.4xr[n − 1] + ηx ,
yr[n] = 0.5yr[n − 1] + κyx[n] sin

(
xr[n − τyx]

)
+ ηy ,

zr[n] = 0.5zr[n − 1] + κzy[n] sin
(
yr[n − τzy]

)
+ ηz .

during 1,500 time steps and repeated R = 50 trials with new initial conditions. The terms ηx, ηy and
ηz represent normally-distributed noise processes, which are mutually independent across trials and
time instants. The coupling delays amount to τyx = 10, τzy = 15, while the dynamics of the coupling
follows a sinusoidal variation:

kyx[n] =

{
sin

( 2πn
500

)
for 250 ≤ n < 750

0 otherwise

kzy[n] =

{
cos

( 2πn
500

)
for 750 ≤ n < 1250

0 otherwise.

Before PTE estimation, each time series was mapped via a delay embedding to its approximate
state space. The dimension of the embedding was set using the Cao criterion [25], while the embedding
delay time was set as the autocorrelation decay time. Other criteria to obtain embedding parameters,
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such as described in [19], provide similar results. Furthermore, each time series was time-delayed, so
that they had maximal mutual information with the destination of the flow. That is, before computing
some Ta←b|c(n), the time series b and c were delayed, so that they shared maximum information with
the time series a, as suggested in [16]. For a rigorous and formal way to investigate the lag in the
information flow between systems, we refer to [26,27].

To assess the statistical significance of the PTE values (at each time instant) we applied a
permutation test with surrogate data generated by randomly shuffling trials [28]. Figure 2 shows the
time-varying PTEs obtained for these data with the ensemble estimator of entropy combinations given
in Equation (6). Indeed, the PTE analysis accurately describes the underlying interaction dynamics. In
particular, it captures both the onset/offset and the oscillatory profile of the effective coupling across
the three processes. On the other hand, the naive average estimator Equation (5) did not reveal any
significant flow of information between the three time series.
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Figure 2. Partial transfer entropy between three non-linearly coupled Gaussian processes. The upper
panel displays the partial transfer entropy (PTE) in directions compatible with the structural coupling of
Gaussian processes (X to Y to Z). The lower panel displays the PTE values in directions non-compatible
with the structural coupling. The solid lines represent PTE values, while the color-matched dashed
lines denote corresponding p = 0.05 significance levels. k = 20. The time window for the search of
neighbors is 2σ = 10. The temporal variance of the PTE estimates was reduced with a post-processing
moving average filter of order 20.

To evaluate the robustness and performance of the entropy combination estimator to real levels of
noise and measurements variability, we also present a second example derived from experimental data
on electronic circuits. The system consists of two nonlinear Mackey–Glass circuits unidirectionally
coupled through their voltage variables. The master circuit is subject to a feedback loop responsible for
generating high dimensional chaotic dynamics. A time-varying effective coupling is then induced by
periodically modulating the strength of the coupling between circuits as controlled by an external CPU.
Thus, the voltage variables of Circuits 1 and 2 are assumed to follow a stochastic dynamics of the type:

dx1

dt
= β1

x1δ

1 + x1δ
n − γ1x1 + η1 ,

dx2

dt
= β2

(1/2 + 1/4 sin (ωt)) x1τ

1 + x1τ
n − γ2x2 + η2 , (7)
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where xδ represents the value of the variable x at time t − δ, γ, β and n are positive numbers and η

represent noise sources. The feedback loop of the first circuit and time-varying coupling between the
two circuits are represented by the first terms of each equation, respectively. We note that the former
set of equations was not used to sample data. Instead, time series were directly obtained from the
voltage variables of the electronic circuits. The equations above just serve to illustrate in mathematical
terms the type of dynamics expected from the electronic circuits.

Thus, we applied transfer entropy between the voltage signals directly generated from the
two electric circuits for 180 trials, each 1,000 sampling times long. Delay embedding and statistical
significance analysis proceeded as in the previous example. Figure 3 shows the TE ensemble estimates
between the master and slave circuit obtained with Equation (6) versus the temporal lag introduced
between the two voltage signals (intended to scan the unknown coupling delay τ). Clearly, there is
a directional flow of information time-locked at lag τ = 20 samples, which is significant for all time
instants (p < 0.01).

100 200 300 400 500 600 700 800 900 1000
0.18

0.2

0.22

Time (samples)

T
E

 (
n

at
s)

L
ag

 (
sa

m
p

le
s)

 

 

10

15

20

25

30

0

0.05

0.1

0.15

0.2

Figure 3. Transfer entropy from the first electronic circuit towards the second. The upper figure shows
time-varying TE versus the lag introduced in the temporal activation of the first circuit. The lower
figure shows that the temporal pattern of information flow for τ = 20, i.e., T2←1(n, τ = 20), which
resembles a sinusoid with a period of roughly 100 data samples.

The results show that the TE ensemble estimates accurately capture the dynamics of the effect
exerted by the master circuit on the slave circuit. On the other hand, the flow of information in
the opposite direction was much smaller (T1←2 < 0.0795 nats ∀(t, τ)) and only reached significance
(p < 0.01) for about 1% of the tuples (n, τ) Figure 4. Both the period of the coupling dynamics
(100 samples) and the coupling delay (20 samples) can be accurately recovered from Figure 3.

Finally, we also performed numerical simulations to study the behavior of the bias and variance
of the ensemble estimator with respect to the number of neighbors chosen and the sample size.
In particular, we simulated two unidirectionally-coupled Gaussian linear autoregressive processes
(Y → X) for which the analytical values of TE can be known [29], so that we could compare the
numerical and expected values. Then, we systematically varied the level of nominal TE (which was
controlled by the chosen level of correlation coefficient between X(t + 1) and X(t)), the number
of neighbors chosen and the sample size and compute measures of bias and variance. Figure 5
and 6 display in a color-coded manner the quantities −20 × log10(bias) and −20 × log10(var), so
large values of these quantities correspond to small bias and variances, respectively. In particular,
Figure 5 shows the bias and variance of the estimator as a function of the number of samples and

110



Entropy 2015, 17, 1958–1970

cross-correlation coefficient. As observed in the plot, the smaller the value of the underlying TE
(smaller cross-correlation), the better its estimation (smaller bias and variance). For a given value of
TE, the estimation improves as more samples are included, as is expected. Regarding the number of
neighbors (Figure 6), we obtain that beyond a minimum number of samples, the accuracy obtained
increased by either increasing the sample size or the number of neighbors.

Figure 4. Transfer entropy from the second electronic circuit towards the first. The upper figure shows
time-varying TE versus the lag introduced in the temporal activation of the first circuit. The lower
figure shows that the temporal pattern of information flow for τ = 20, i.e., T1←2(n, τ = 20).

20

20

50

40
30

20

10
0

20

20

50

40
30

20

10
00

10

20

30
40

50

20

20

sample size (samples)

cr
os

s−
co

rr
el

at
io

n 
co

ef
f.

 

 

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

dB

0

5

10

15

20

25

30

35

40

45

50

5

25

50

45
40

35
30

25

20

5

25

50

45
40

35
30

25

2020

25

30
35

40
45

50

25

5

sample size (samples)

cr
os

s−
co

rr
el

at
io

n 
co

ef
f.

 

 

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

dB

20

25

30

35

40

45

50

55

(a) (b)

Figure 5. (a): −20 × log10(bias) of ensemble estimator TE(Y → X) as a function of the number of
samples and cross-correlation coefficient for X (which controls the nominal TE value for (Y → X)). (b):
−20 × log10(variance) as a function of the number of samples and cross-correlation coefficient for X
(which controls the nominal TE value for (Y → X)).
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Figure 6. (a): −20 × log10(bias) of ensemble estimator TE(Y → X) as a function of the number of
samples and the number of nearest neighbors used in the estimator. (b): −20 × log10(variance) as a
function of the number of samples and the number of nearest neighbors used in the estimator.

5. Conclusions

In conclusion, we have introduced an ensemble estimator of entropy combinations that is able
to detect time-varying information flow between dynamical systems, provided that an ensemble of
repeated measurements is available for each system. The proposed approach allows one to construct
time-adaptive estimators of MI, PMI, TE and PTE, which are the most common information-theoretic
measures for dynamical coupling analyses. Using simulations and real physical measurements from
electronic circuits, we showed that these new estimators can accurately describe multivariate coupling
dynamics. However, strict causal interpretations of the transfer entropy analyses are discouraged [10].

It is also important to mention that intrinsic to our approach is the assumption that the evolution
of the interdependencies to be detected are to some degree “locked” to the trial onset. In the setting of
electrophysiology and the analysis of event-related potentials, the dispersion of the dynamics with
respect to their onset is clearly an acute issue. Indeed, the key distinction between evoked and induced
responses rests upon time-locking to a stimulus onset. In principle, one could apply the ensemble
average entropic measures to induced responses as measured in terms of the power of the signals,
even when they are not phase-locked to a stimulus. In general, the degree of locking determines the
maximum temporal resolution achievable by the method (which is controlled via σ). Nevertheless, it
is possible to use some alignment techniques [30] to reduce the possible jitter across trials and, thus,
increase the resolution.

The methods presented here are general, but we anticipate that a potential application might be
the analysis of the mechanisms underlying the generation of event-related brain responses and the
seasonal variations of geophysical, ecological or economic variables. Efficient implementations of the
ensemble estimators for several information-theoretic methods can be found in [31,32].
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Abstract: This report reviews the conceptual and theoretical links between Granger causality and
directed information theory. We begin with a short historical tour of Granger causality, concentrating
on its closeness to information theory. The definitions of Granger causality based on prediction are
recalled, and the importance of the observation set is discussed. We present the definitions based on
conditional independence. The notion of instantaneous coupling is included in the definitions. The
concept of Granger causality graphs is discussed. We present directed information theory from the
perspective of studies of causal influences between stochastic processes. Causal conditioning appears
to be the cornerstone for the relation between information theory and Granger causality. In the
bivariate case, the fundamental measure is the directed information, which decomposes as the sum
of the transfer entropies and a term quantifying instantaneous coupling. We show the decomposition
of the mutual information into the sums of the transfer entropies and the instantaneous coupling
measure, a relation known for the linear Gaussian case. We study the multivariate case, showing
that the useful decomposition is blurred by instantaneous coupling. The links are further developed
by studying how measures based on directed information theory naturally emerge from Granger
causality inference frameworks as hypothesis testing.

Keywords: granger causality; transfer entropy; information theory; causal conditioning; conditional
independence

1. Introduction

This review deals with the analysis of influences that one system, be it physical, economical,
biological or social, for example, can exert over another. In several scientific fields, the finding of the
influence network between different systems is crucial. As examples, we can think of gene influence
networks [1,2], relations between economical variables [3,4], communication between neurons or
the flow of information between different brain regions [5], or the human influence on the Earth
climate [6,7], and many others.

The context studied in this report is illustrated in Figure 1. For a given system, we have at disposal
a number of different measurements. In neuroscience, these can be local field potentials recorded in
the brain of an animal. In solar physics, these can be solar indices measured by sensors onboard some
satellite. In the study of turbulent fluids, these can be the velocity measured at different scales in the
fluid (or can be as in Figure 1, the wavelet analysis of the velocity at different scales). For these different
examples, the aim is to find dependencies between the different measurements, and if possible, to give
a direction to the dependence. In neuroscience, this will allow to understand how information flows
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between different areas of the brain. In solar physics, this will allow to understand the links between
indices and their influence on the total solar irradiance received on Earth. In the study of turbulence,
this can confirm the directional cascade of energy from large down to small scales.

Figure 1. Illustration of the problem of information flow in networks of stochastic processes. Each
node of the network is associated to a signal. Edges between nodes stand for dependence (shared
information) between the signals. The dependence can be directed or not. This framework can be
applied to different situations such as solar physics, neuroscience or the study of turbulence in fluids,
as illustrated by the three examples depicted here.

In a graphical modeling approach, each signal is associated to a particular node of a graph, and
dependencies are represented by edges, directed if a directional dependence exists. The questions
addressed in this paper concern the assessment of directional dependence between signals, and thus
concern the inference problem of estimating the edge set in the graph of signals considered.

Climatology and neuroscience were already given as examples by Norbert Wiener in 1956 [8], a
paper which inspired econometrist Clive Granger to develop what is now termed Granger causality
[9]. Wiener proposed in this paper that a signal x causes another time series y, if the past of x has a
strictly positive influence on the quality of prediction of y. Let us quote Wiener [8]:

“As an application of this, let us consider the case where f1(α) represents the temperature
at 9 A.M. in Boston and f2(α) represents the temperature at the same time in Albany. We
generally suppose that weather moves from west to east with the rotation of the earth; the
two quantities 1−C and its correlate in the other direction will enable us to make a precise
statement containing some if this content and then verify whether this statement is true or
not. Or again, in the study of brain waves we may be able to obtain electroencephalograms
more or less corresponding to electrical activity in different part of the brain. Here the
study of coefficients of causality running both ways and of their analogues for sets of more
than two functions f may be useful in determining what part of the brain is driving what
other part of the brain in its normal activity."

In a wide sense, Granger causality can be summed up as a theoretical framework based on
conditional independence to assess directional dependencies between time series. It is interesting
to note that Norbert Wiener influenced Granger causality, as well as another field dedicated to the
analysis of dependencies: information theory. Information theory has led to the definition of quantities
that measure the uncertainty of variables using probabilistic concepts. Furthermore, this has led to the
definition of measures of dependence based on the decrease in uncertainty relating to one variable
after observing another one. Usual information theory is, however, symmetrical. For example, the
well-known mutual information rate between two stationary time series is symmetrical under an
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exchange of the two signals: the mutual information assesses the undirectional dependence. Directional
dependence analysis viewed as an information-theoretic problem requires the breaking of the usual
symmetry of information theory. This was realized in the 1960s and early 1970s by Hans Marko,
a German professor of communication. He developed the bidirectional information theory in the
Markov case [10]. This theory was later generalized by James Massey and Gerhard Kramer, to what
we may now call directed information theory [11,12].

It is the aim of this report to review the conceptual and theoretical links between Granger causality and
directed information theory.

Many information-theoretic tools have been designed for the practical implementation of Granger
causality ideas. We will not show all of the different measures proposed, because they are almost
always particular cases of the measures issued from directed information theory. Furthermore, some
measures might have been proposed in different fields (and/or at different periods of time) and have
received different names. We will only consider the well-accepted names. This is the case, for example,
of “transfer entropy”, as coined by Schreiber in 2000 [13], but which appeared earlier under different
names, in different fields, and might be considered under slightly different hypotheses. Prior to
developing a unified view of the links between Granger causality and information theory, we will
provide a survey of the literature, concentrating on studies where information theory and Granger
causality are jointly presented.

Furthermore, we will not review any practical aspects, nor any detailed applications. In this spirit,
this report is different from [14], which concentrated on the estimation of information quantities, and
where the review is restricted to transfer entropy. For reviews on the analysis of dependencies between
systems and for applications of Granger causality in neuroscience, we refer to [15,16]. We will mention
however some important practical points in our conclusions, where we will also discuss some current
and future directions of research in the field.

1.1. What Is, and What Is Not, Granger Causality

We will not debate the meaning of causality or causation. We instead refer to [17]. However, we
must emphasize that Granger causality actually measures a statistical dependence between the past of
a process and the present of another. In this respect, the word causality in Granger causality takes on
the usual meaning that a cause occurs prior to its effect. However, nothing in the definitions that we
will recall precludes that signal x can simultaneously be Granger caused by y and be a cause of y! This
lies in the very close connection between Granger causality and the feedback between times series.

Granger causality is based on the usual concept of conditioning in probability theory, whereas
approaches developed for example in [17,18] relied on causal calculus and the concept of intervention.
In this spirit, intervention is closer to experimental sciences, where we imagine that we can really, for
example, freeze some system and measure the influence of this action on another process. It is now
well-known that causality in the sense of between random variables can be inferred unambiguously
only in restricted cases, such as directed acyclic graph models [17–20]. In the Granger causality context,
there is no such ambiguity and restriction.

1.2. A Historical Viewpoint

In his Nobel Prize lecture in 2003, Clive W. Granger mentioned that in 1959, Denis Gabor pointed
out the work of Wiener to him, as a hint to solve some of the difficulties he met in his work. Norbert
Wiener’s paper is about the theory of prediction [8]. At the end of his paper, Wiener proposed that
prediction theory could be used to define causality between time series. Granger further developed
this idea, and came up with a definition of causality and testing procedures [3,21].

In these studies, the essential stones were laid. Granger’s causality states that a cause must occur
before the effect, and that causality is relative to the knowledge that is available. This last statement
deserves some comment. When testing for causality of one variable on another, it is assumed that
the cause has information about the effect that is unique to it; i.e., this information is unknown to any
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other variable. Obviously, this cannot be verified for variables that are not known. Therefore, the
conclusion drawn in a causal testing procedure is relative to the set of measurements that are available.
A conclusion reached based on a set of measurements can be altered if new measurements are taken
into account.

Mention of information theory is also present in the studies of Granger. In the restricted case of
two Gaussian signals, Granger already noted the link between what he called the “causality indices”
and the mutual information (Equation 5.4 in [21]). Furthermore, he already foresaw the generalization
to the multivariate case, as he wrote in the same paper:

“In the case of q variables, similar equations exist if coherence is replaced by partial
coherence, and a new concept of ‘partial information’ is introduced.”

Granger’s paper in 1969 does not contain much new information [3], but rather, it gives a refined
presentation of the concepts.

During the 1970’s, some studies, e.g., [4,22,23], appeared that generalized along some of the
directions Granger’s work, and related some of the applications to economics. In the early 1980’s,
several studies were published that established the now accepted definitions of Granger causality [24–
27]. These are natural extensions of the ideas built upon prediction, and they rely on conditional
independence. Finally, the recent studies of Dalhaus and Eichler allowed the definitions of Granger
causality graphs [28–30]. These studies provide a counterpart of graphical models of multivariate
random variables to multivariable stochastic processes.

In two studies published in 1982 and 1984 [31,32], Geweke, another econometrician, set up a
full treatment of Granger causality, which included the idea of feedback and instantaneous coupling.
In [31], the study was restricted to the link between two time series (possibly multidimensional). In
this study, Geweke defined an index of causality from x to y; It is the logarithm of the ratio of the
asymptotic mean square error when predicting y from its past only, to the asymptotic mean square
error when predicting y from its past and from the past of x. Geweke also defined the same kind of
index for instantaneous coupling. When the innovation sequence is Gaussian, the mutual information
rate between x and y decomposes as the sum of the indices of causality from x to y and from y to x
with the index of instantaneous coupling. This decomposition was shown in the Gaussian case, and
it remains valid in any case when the indices of causality are replaced by transfer entropy rates, and
the instantaneous coupling index is replaced by an instantaneous information exchange rate. This
link between Granger causality and directed information theory was further supported by [33–35]
(without mention of instantaneous coupling in [34,35]), and the generalization to the non-Gaussian case
by [36] (see also [37] for related results). However, prior to these recent studies, the generalization
of Geweke’s idea to some general setting was reported in 1987, in econometry by Gouriéroux
et al. [38], and in engineering by Rissannen&Wax [39]. Gouriéroux and his co-workers considered
a joint Markovian representation of the signals, and worked in a decision-theoretic framework.
They defined a sequence of nested hypotheses, whether causality was true or not, and whether
instantaneous coupling was present or not. They then worked out the decision statistics using
the Kullback approach to decision theory [40], in which discrepancies between hypotheses are
measured according to the Kullback divergence between the probability measures under the
hypotheses involved. In this setting, the decomposition obtained by Geweke in the Gaussian
case was evidently generalised. In [39], the approach taken was closer to Geweke’s study, and
it relied on system identification, in which the complexity of the model was taken into account.
The probability measures were parameterized, and an information measure that jointly assessed
the estimation procedure and the complexity of the model was used when predicting a signal.
This allowed Geweke’s result to be extended to nonlinear modeling (and hence the non-Gaussian
case), and provided an information-theoretic interpretation of the tests. Once again, the same kind
of decomposition of dependence was obtained by these authors. We will see in Section 3 that
the decomposition holds due to Kramers causal conditioning. These studies were limited to the
bivariate case [38,39].
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In the late 1990s, some studies began to develop in the physics community on influences between
dynamical systems. A first route was taken that followed the ideas of dynamic system studies for
the prediction of chaotic systems. To determine if one signal influenced another, the idea was to
consider each of the signals as measured states of two different dynamic systems, and then to study
the master-slave relationships between these two systems (for examples, see [41–43]). The dynamics of
the systems was built using phase space reconstruction [44]. The influence of one system on another
was then defined by making a prediction of the dynamics in the reconstructed phase space of one
of the processes. To our knowledge, the setting was restricted to the bivariate case. A second route,
which was also restricted to the bivariate case, was taken and relied on information-theoretic tools.
The main contributions were from Paluš and Schreiber [13,45], with further developments appearing
some years later [46–49]. In these studies, the influence of one process on the other was measured by
the discrepancy between the probability measures under the hypotheses of influence or no influence.
Naturally, the measures defined very much resembled the measures proposed by Gouriéroux et. al
[38], and used the concept of conditional mutual information. The measure to assess whether one
signal influences the other was termed transfer entropy by Schreiber. Its definition was proposed under
a Markovian assumption, as was exactly done in [38]. The presentation by Paluš [45] was more direct
and was not based on a decision-theoretic idea. The measure defined is, however, equivalent to the
transfer entropy. Interestingly, Paluš noted in this 2001 paper the closeness of the approach to Granger
causality, as per the quotation:

“the latter measure can also be understood as an information theoretic formulation of the
Granger causality concept.”

Note that most of these studies considered bivariate analysis, with the notable exception of [46], in
which the presence of side information (other measured time series) was explicitely considered.

In parallel with these studies, many others were dedicated to the implementation of Granger
causality testing in fields as diverse as climatology (with applications to the controversial questions of
global warming) and neuroscience; see [6,7,15,30,50–54], to cite but a few.

In a very different field, information theory, the problem of feedback has lead to many questions
since the 1950s. We will not review or cite anything on the problem created by feedback in information
theory as this is not within the scope of the present study, but some information can be found in [55].
Instead, we will concentrate on studies that are directly related to the subject of this review. A major
breakthrough was achieved by James Massey in 1990 in a short conference paper [12]. Following the
ideas of Marko on bidirectional information theory that were developed in the Markovian case [10],
Massey re-examined the usual definition of what is called a discrete memoryless channel in information
theory, and he showed that the usual definition based on some probabilistic assumptions prohibited the
use of feedback. He then clarified the definition of memory and feedback in a communication channel.
As a consequence, he showed that in a general channel used with feedback, the usual definition of
capacity that relies on mutual information was not adequate. Instead, the right measure was shown to
be directed information, an asymmetrical measure of the flow of information. These ideas were further
examined by Kramer, who introduced the concept of causal conditioning, and who developed the
first applications of directed information theory to communication in networks [11]. After some years,
the importance of causal conditioning for the analysis of communication in systems with feedback
was realized. Many studies were then dedicated to the analysis of the capacity of channels with
feedback and the dual problem of rate-distortion theory [56–59]. Due to the rapid development in the
study of networks (e.g., social networks, neural networks) and of the afferent connectivity problem,
more recently many authors made connections between information theory and Granger causality
[33,34,36,37,60–62]. Some of these studies were restricted to the Gaussian case, and to the bivariate
case. Most of these studies did not tackle the problem of instantaneous coupling. Furthermore, several
authors realized the importance of directed information theory to assess the circulation of information
in networks [1,2,63,64].
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1.3. Outline

Tools from directed information theory appear as natural measures to assess Granger causality.
Although Granger causality can be considered as a powerful theoretical framework to study influences
between signals mathematically, directed information theory provides the measures to test theoretical
assertions practically. As already mentioned, these measures are transfer entropy (and its conditional
versions), which assesses the dynamical part of Granger causality, and instantaneous information
exchange (and its conditional versions), which assesses instantaneous coupling.

This review is structured here as follows. We will first give an overview of the definitions
of Granger causality. These are presented in a multivariate setting. We go gradually from weak
definitions based on prediction, to strong definitions based on conditional independence. The problem
of instantaneous coupling is then discussed, and we show that there are two possible definitions for
it. Causality graphs (after Eichler [28]) provide particular reasons to prefer one of these definitions.
Section 3 introduces an analysis of Granger causality from an information-theoretic perspective. We
insist on the concept of causal conditioning, which is at the root of the relationship studied. Section 4
then highlights the links. Here, we first restate the definitions of Granger causality using concepts from
directed information theory. Then from a different point of view, we show how conceptual inference
approaches lead to the measures defined in directed information theory. The review then closes with
a discussion of some of the aspects that we do not present here intentionally, and on some lines for
further research.

1.4. Notations

All of the random variables, vectors and signals considered here are defined in a common
probability space (Ω,B, P). They take values either in R or Rd, d being some strictly positive integer,
or they can even take discrete values. As we concentrate on conceptual aspects rather than technical
aspects, we assume that the variables considered are “well behaved”. In particular, we assume
finiteness of moments of sufficient order. We assume that continuously valued variables have a
measure that is absolutely continuous with respect to the Lebesgue measure of the space considered.
Hence, the existence of probability density functions is assumed. Limits are supposed to exist when
needed. All of the processes considered in this report are assumed to be stationary.

We work with discrete time. A signal will generically be denoted as x(k). This notation stands also
for the value of the signal at time k. The collection of successive samples of the signal, xk, xk+1, . . . , xk+n
will be denoted as xk+n

k . Often, an initial time will be assumed. This can be 0, 1, or −∞. In any case, if
we collect all of the sample of the signals from the initial time up to time n, we will suppress the lower
index and write this collection as xn.

When dealing with multivariate signals, we use a graph-theoretic notation. This will simplify some
connections with graphical modeling. Let V be an index set of finite cardinality ∣V∣. xV = {xV(k), k ∈ Z}
is a d-dimensional discrete time stationary multivariate process for the probability space considered.
For a ∈ V, xa is the corresponding component of xV . Likewise, for any subset A ⊂ V, xA is the
corresponding multivariate process (xa1 , . . . , x∣A∣). We say that subsets A, B, C form a partition of V
if they are disjoint and if A ∪ B ∪ C = V. The information obtained by observing xA up to time k is
given by the filtration generated by {xA(l),∀l ≤ k}. This is denoted as xk

A. Furthermore, we will often
identify xA with A in the discussion.

The probability density functions (p.d.f.) or probability mass functions (p.m.f) will be denoted by
the same notation as p(xn

A). The conditional p.d.f. and p.m.f. are written as p(xn
A∣xm

B ). The expected
value is denoted as E[.], Ex[.] or Ep[.] if we want to specify which variable is averaged, or under which
probability measure the expected value is evaluated.

Independence between random variables and vectors x and y will be denoted as x 	 y, while
conditional independence given z will be written as x 	 y ∣ z.
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2. Granger’s Causality

The early definitions followed the ideas of Wiener: A signal x causes a signal y if the past of x
helps in the prediction of y. Implementing this idea requires the performing of the prediction and the
quantification of its quality. This leads to a weak, but operational, form of the definitions of Granger
causality. The idea of improving a prediction is generalized by encoding it into conditional dependence
or independence.

2.1. From Prediction-Based Definitions. . .

Consider a cost function g ∶ Rk �→ R (k is some appropriate dimension), and the associated
risk E[g(e)], where e stands for an error term. Let a predictor of xB(n) be defined formally as
x̂B(n + 1) = f (xn

A), where A and B are subsets of V, and f is a function between appropriate spaces,
chosen to minimize the risk with e(n) ∶= xB(n + 1) − x̂B(n + 1). Solvability may be granted if f is
restricted to an element of a given class of functions, such as the set of linear functions. Let F be such a
function class. Define:

RF(B(n + 1)∣An) = inf
f ∈F

E[g(xB(n + 1) − f (xn
A))] (1)

RF(B(n + 1)∣An) is therefore the optimal risk when making a one-step-ahead prediction of the
multivariate signal xB from the past samples of the multivariate signal xA. We are now ready to
measure the influence of the past of a process on the prediction of another. To be relatively general and
to prepare comments on the structure of the graph, this can be done for subsets of V. We thus choose
A and B to be two disjoint subsets of V, and we define C ∶= V/(A∪ B) (we use / to mean subtraction of
a set). We study causality from xA to xB by measuring the decrease in the quality of the prediction of
xB(n) when excluding the past of xA.

Let RF(B(n + 1)∣Vn) be the optimal risk obtained for the prediction of xB from the past of all of
the signals grouped in xV . This risk is compared with RF(B(n + 1)∣(V/A)n), where the past of xA is
omitted. Then, for the usual costs functions, we have necessarily:

RF(B(n + 1)∣Vn) ≤ RF(B(n + 1)∣(V/A)n) (2)

A natural first definition for Granger causality is:

Definition 1. xA Granger does not cause xB relative to V if and only if RF(B(n + 1)∣Vn) =
RF(B(n + 1)∣(V/A)n)
This definition of Granger causality depends on the cost g chosen as well as on the class F of the
functions considered. Usually, a quadratic cost function is chosen, for its simplicity and for its evident
physical interpretation (a measure of the power of the error). The choice of the class of functions
F is crucial. The result of the causality test in definition 1 can change when the class is changed.
Consider the very simple example of xn+1 = αxn + βy2

n + εn+1, where yn and εn are zero-mean Gaussian
independent and identically distributed (i.i.d.) sequences that are independent of each other. The
covariance between xn+1 and yn is zero, and using the quadratic loss and the class of linear functions,
we conclude that y does not Granger cause x, because using a linear function of xn, yn to predict x
would lead to the same minimal risk as using a linear function of xn only. However, yn obviously
causes xn, but in a nonlinear setting.

The definition is given using the negative of the proposition. If by using the positive way, i.e.,
RF(B(n + 1)∣Vn) < RF(B(n + 1)∣(V/A)n), Granger proposes to say that xA is a prima facie cause of
xB relative to V, prima facie can be translated as “at a first glance”. This is used to insist that if V is
enlarged by including other measurements, then the conclusion might be changed. This can be seen
as redundant with the mention of the relativity to the observation set V, and we therefore do not use
this terminology. However, a mention of the relativity to V must be used, as modification of this set
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can alter the conclusion. A very simple example of this situation is the chain xn → yn → zn, where,
for example, xn is an i.i.d. sequence, yn+1 = xn + εn+1, zn+1 = yn + ηn+1, εn, ηn being independent i.i.d.
sequences. Relative to V = {x, z}, x causes z if we use the quadratic loss and linear functions of the
past samples of x (note here that the predictor zn+1 must be a function of not only xn, but also of xn−1).
However, if we include the past samples of y and V = {x, y, z}, then the quality of the prediction of
z does not deteriorate if we do not use past samples of x. Therefore, x does not cause z relative to
V = {x, y, z}.

The advantage of the prediction-based definition is that it leads to operational tests. If the
quadratic loss is chosen, working in a parameterized class of functions, such as linear filters or Volterra
filters, or even working in reproducing kernel Hilbert spaces, allows the implementation of the
definition [65–67]. In such cases, the test can be evaluated efficiently from the data. From a theoretical
point of view, the quadratic loss can be used to find the optimal function in a much wider class of
functions: the measurable functions. In this class, the optimal function for the quadratic loss is widely
known to be the conditional expectation [68]. When predicting xB from the whole observation set V, the
optimal predictor is written as x̂B(n+ 1) = E[xB(n+ 1)∣xn

V]. Likewise, elimination of A from V to study
its influence on B leads to the predictor x̂B(n + 1) = E[xB(n + 1)∣xn

B, xn
C], where V = C ∪ A ∪ B. These

estimators are of little use, because they are too difficult, or even impossible, to compute. However,
they highlight the importance of conditional distributions p(xB(n + 1)∣xn

V) and p(xB(n + 1)∣xn
B, xn

C) in
the problem of testing whether xA Granger causes xB relative to V or not.

2.2. . . . To a Probabilistic Definition

The optimal predictors studied above are equal if the conditional probability distributions
p(xB(n + 1)∣xn

V) and p(xB(n + 1)∣xn
B, xn

C) are equal. These distributions are identical if and only if
xB(n + 1) and xn

A are independent conditionally to xn
B, xn

C. A natural extension of definition 1 relies on
the use of conditional independence. Once again, let A ∪ B ∪C be a partition of V.

Definition 2. xA does not Granger cause xB relative to V if and only if xB(n+ 1) 	 xn
A ∣ xn

B, xn
C, ∀n ∈ Z

This definition means that conditionally to the past of xC, the past of xA does not bring more
information about xB(n + 1) than is contained in the past of xB.

Definition 2 is far more general than definition 1. If xA does not Granger cause xB relatively to
V in the sense of definition 1, it also does not in the sense of definition 2. Then, definition 2 does
not rely on any function class and on any cost function. However, it lacks an inherent operational
character: the tools to evaluate conditional independence remain to be defined. The assessment of
conditional independence can be achieved using measures of conditional independence, and some of
these measures will be the cornerstone to link directed information theory and Granger causality.

Note also that the concept of causality in this definition is again a relative concept, and that adding
or deleting data from the observation set V might modify the conclusions.

2.3. Instantaneous Coupling

The definitions given so far concern the influence of the past of one process on the present of
another. This is one reason that justifies the use of the term “causality”, when the definitions are
actually based on statistical dependence. For an extensive discussion on the differences between
causality and statistical dependence, we refer to [17].

There is another influence between the processes that is not taken into account by definitions 1
and 2. This influence is referred to as “instantaneous causality” [21,27]. However, we will prefer the
term “instantaneous coupling”, specifically to insist that it is not equivalent to a causal link per se, but
actually a statistical dependence relationship. The term “contemporaneous conditional independence”
that is used in [28] could also be chosen.

Instantaneous coupling measures the common information between xA(n + 1) and xB(n + 1) that
is not shared with their past. A definition of instantaneous coupling might then be that xA(n + 1) and
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xB(n + 1) are not instantaneously coupled if xA(n + 1) 	 xB(n + 1) ∣ xn
A, xn

B, ∀n. This definition makes
perfect sense if the observation set is reduced to A and B, a situation we refer to as the bivariate case.
However, in general, there is also side information C, and the definition must include this knowledge.
However, this presence of side information then leads to two possible definitions of instantaneous
coupling.

Definition 3. xA and xB are not conditionally instantaneously coupled relative to V if and only if
xA(n + 1) 	 xB(n + 1) ∣ xn

A, xn
B, xn+1

C , ∀n ∈ Z, where A ∪ B ∪C is a partition of V.

The second possibility is the following:

Definition 4. xA and xB are not instantaneously coupled relative to V if and only if xA(n + 1) 	
xB(n + 1) ∣ xn

A, xn
B, xn

C, ∀n ∈ Z
Note that definitions 3 and 4 are symmetrical in A and B (the application of Bayes theorem). The
difference between definitions 3 and 4 resides in the conditioning on xn+1

C instead of xn
C. If the side

information up to time n is considered only as in definition 4, the instantaneous dependence or
independence is not conditional on the presence of the remaining nodes in C. Thus, this coupling
is a bivariate instantaneous coupling: it does measure instantaneous dependence (or independence
between A and B) without considering the possible instantaneous coupling between either A and C or
B and C. Thus, instantaneous coupling found with definition 4 between A and B does not preclude
the possibility that the coupling is actually due to couplings between A and C and/or B and C.

Inclusion of all of the information up to time n + 1 in the conditioning variables allows the
dependence or independence to be tested between xA(n + 1) and xB(n + 1) conditionally to xC(n + 1).

We end up here with the same differences as those between correlation and partial correlation,
or dependence and conditional independence for random variables. In graphical modeling, the
usual graphs are based on conditional independence between variables [19,20]. These conditional
independence graphs are preferred to independence graphs because of their geometrical properties
( e.g., d-separation [17]), which match the Markov properties possibly present in the multivariate
distribution they represent. From a physical point of view, conditional independence might be
preferable, specifically to eliminate “false” coupling due to third parties. In this respect, conditional
independence is not the panacea, as independent variables can be conditionally dependent. The
well-known example is the conditional coupling of independent x and y by their addition. Indeed,
even if independent, x and y are conditionally dependent to z = x + y.

2.4. More on Graphs

Granger causality graphs were defined and studied in [28]. A causality graph is a mixed graph
(V, Ed, Eu) that encodes Granger causality relationships between the components of xV . The vertex set
V stores the indices of the components of xV . Ed is a set of directed edges between vertices. A directed
edge from a to b is equivalent to “xa Granger causes xb relatively to V”. Eu is a set of undirected edges.
An undirected edge between xa and xb is equivalent to “xa and xb are (conditionally if def.4 adopted)
instantaneously coupled”. Interestingly, a Granger causality graph may have Markov properties (as in
usual graphical models) reflecting a particular (spatial) structure of the joint probability distribution
of the whole process {xt

V} [28]. A taxonomy of Markov properties (local, global, block recursive) is
studied in [28], and equivalence between these properties is put forward. More interestingly, these
properties are linked with topological properties of the graph. Therefore, structural properties of the
graphs are equivalent to a particular factorization of the joint probability of the multivariate process.
We will not continue on this subject here, but this must be known since it paves the way to more
efficient inference methods for Granger graphical modeling of multivariate processes (see first steps in
this direction in [69,70]).
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3. Directed Information Theory and Directional Dependence

Directed information theory is a recent extension of information theory, even if its roots go
back to the 1960s and 1970s and the studies of Marko [10]. The developments began in the late
1990s, after the impetus given by James Massey in 1990 [12]. The basic theory was then extended
by Gerhard Kramer [11], and then further developed by many authors [56–59,71] to cite a few. We
provide here a short review of the essentials of directed information theory. We will, moreover, adopt
a presentation close to the spirit of Granger causality to highlight the links between Granger causality
and information theory. We begin by recalling some basics from information theory. Then, we describe
the information-theoretic approach to study directional dependence between stochastic processes, first
in the bivariate case, and then, from Section 3.5, for networks, i.e., the multivariate case.

3.1. Notation and Basics

Let H(xn
A) = −E[log p(xn

A)] be the entropy of a random vector xn
A, the density of which is p. Let

the conditional entropy be defined as H(xn
A∣xn

B) = −E[log p(xn
A∣xn

B)]. The mutual information I(xn
A; yn

B)
between xn

A and xn
B is defined as [55]:

I(xn
A; xn

B) = H(xn
B) − H(xn

B∣xn
A)

= DKL (p(xn
A, xn

B)∥p(xn
A)p(xn

B)) (3)

where DKL(p∣∣q) = Ep[log p(x)/q(x)] is the Kulback–Leibler divergence. DKL(p∣∣q) is 0 if and only if
p = q, and it is positive otherwise. The mutual information effectively measures independence since
it is 0 if and only if xn

A and xn
B are independent random vectors. As I(xn

A; xn
B) = I(xn

B; xn
A), mutual

information cannot handle directional dependence.
Let xn

C be a third time series. It might be a multivariate process that accounts for side information
(all of the available observations, but xn

A and xn
B). To account for xn

C, the conditional mutual information
is introduced:

I(xn
A; xn

B∣xn
C) = E[DKL(p(xn

A, xn
B∣xn

C)∣∣p(xn
A∣xn

C)p(xm
B ∣xn

C))] (4)

= DKL(p(xn
A, xn

B, xn
C)∣∣p(xn

A∣xn
C)p(xn

B∣xn
C)p(xn

C)) (5)

I(xn
A; xn

B∣xn
C) is zero if and only if xn

A and xn
B are independent conditionally to xn

C. Stated differently,
conditional mutual information measures the divergence between the actual observations and those
that would be observed under the Markov assumption (x → z → y). Arrows can be misleading here,
as by reversibility of Markov chains, the equality above holds also for (y → z → x). This emphasizes
how mutual information cannot provide answers to the information flow directivity problem.

3.2. Directional Dependence between Stochastic Processes; Causal Conditioning

The dependence between the components of the stochastic process xV is encoded in the full
generality by the joint probability distributions p(xn

V). If V is partitioned into subsets A, B, C, studying
dependencies between A and B then requires that p(xn

V) is factorized into terms where xA and
xB appear. For example, as p(xn

V) = p(xn
A, xn

B, xn
C), we can factorize the probability distribution

as p(xn
B∣xn

A, xn
C)p(xn

A, xn
C), which appears to emphasize a link from A to B. Two problems appear,

however: first, the presence of C perturbs the analysis (more than this, A and C have a symmetrical
role here); secondly, the factorization does not take into account the arrow of time, as the conditioning
is considered over the whole observations up to time n.

Marginalizing xC out makes it possible to work directly on p(xn
A, xn

B). However, this eliminates
all of the dependence between A and B that might exist via C, and therefore this might lead to an
incorrect assessment of the dependence. As for Granger causality, this means that dependence analysis
is relative to the observation set. Restricting the study to A and B is what we referred to as the bivariate
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case, and this allows the basic ideas to be studied. We will therefore present directed information first
in the bivariate case, and then turn to the full multivariate case.

The second problem is at the root of the measure of directional dependence between stochastic
processes. Assuming that xA(n) and xB(n) are linked by some physical (e.g., biological, economical)
system, it is natural to postulate that their dependence is constrained by causality: if A → B, then an
event occurring at some time in A will influence B later on. Let us come back to the simple factorization
above for the bivariate case. We have p(xn

A, xn
B) = p(xn

B∣xn
A)p(xn

A), and furthermore (We implicitly
choose 1 here as the initial time):

p(xn
B∣xn

A) = n∏
i=1

p(xB(i)∣xi−1
B , xn

A) (6)

where for i = 1, the first term is p(xB(1)∣xA(1)). The conditional distribution quantifies a directional
dependence from A to B, but it lacks the causality property mentioned above, as p(xB(i)∣xi−1

B , xn
A)

quantifies the influence of the whole observation xn
A (past and future of i) on the present xB(i) knowing

its past xi−1
B . The causality principle would require the restriction of the prior time i to the past of

A only. Kramer defined “causal conditioning” precisely in this sense [11]. Modifying Equation (6)
accordingly, we end up with the definition of the causal conditional probability distribution:

p(xn
B∥xn

A) ∶= n∏
i=1

p(xB(i)∣xi−1
B , xi

A) (7)

Remarkably this provides an alternative factorization of the joint probability. As noted by Massey [12],
p(xn

A, yn
B) can then be factorized as (xn−1

B stands for the delayed collections of samples of xB. If the time
origin is finite, 0 or 1, the first element of the list xn−1

B should be understood as a wild card ∅, which
does not influence the conditioning.):

p(xn
A, xn

B) = p(xn
B∥xn

A)p(xn
A∥xn−1

B ) (8)

Assuming that xA is the input of a system that creates xB, p(xn
A∥xn−1

B ) = ∏i p(xA(i)∣xi−1
A , xi−1

B )
characterizes the feedback in the system: each of the factors controls the probability of the input
xA at time i conditionally to its past and to the past values of the output xB. Likewise, the term
p(xn

B∥xn
A) = ∏i p(xB(i)∣xi−1

B , xi
A) characterizes the direct (or feedforward) link in the system.

Several interesting simple cases occur:

• In the absence of feedback in the link from A to B, there is the following:

p(xA(i)∣xi−1
A , xi−1

B ) = p(xA(i)∣xi−1
A ), ∀i ≥ 2 (9)

or equivalently, in terms of entropies,

H(xA(i)∣xi−1
A , xi−1

B ) = H(xA(i)∣xi−1
A ), ∀i ≥ 2 (10)

and as a consequence:

p(xn
A∥xn−1

B ) = p(xn
A) (11)

• Likewise, if there is only a feedback term, then p(xB(i)∣xi−1
B , xi

A) = p(xB(i)∣xi−1
B ) and then:

p(xn
B∥xn

A) = p(xn
B) (12)

• If the link is memoryless, i.e., the output xB does not depend on the past, then:

p(xB(i)∣xi
A, yi−1

B ) = p(xB(i)∣xA(i)) ∀i ≥ 1 (13)
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These results allow the question of whether xA influences xB to be addressed. If it does, then
the joint distribution has the factorization of Equation (8). However, if xA does not influence
xB, then p(xn

B∥xn
A) = p(xn

B), and the factorization of the joint probability distribution simplifies to
p(xn

A∥xn−1
B )p(xn

B). Kullback divergence between the probability distributions for each case generalizes
the definition of mutual information to the directional mutual information:

I(xn
A → xn

B) = DKL (p(xn
A, xn

B)∥p(xn
A∥xn−1

B )p(xn
B)) (14)

This quantity measures the loss of information when it is incorrectly assumed that xA does not influence
xB. This was called directed information by Massey [12]. Expanding the Kullback divergence allows
different forms for the directed information to be obtained:

I(xn
A → xn

B) = n∑
i=1

I(xi
A; xB(i)∣xi−1

B ) (15)

= H(xn
B) − H(xn

B∥xn
A) (16)

where we define the “causal conditional entropy”:

H(xn
B∥xn

A) = −E[ log p(xn
B∥xn

A)] (17)

= n∑
i=1

H(xB(i)∣xi−1
B , xi

A) (18)

Note that causal conditioning might involve more than one process. This leads to define the causal
conditional directed information as:

I(xn
A → xn

B∥xn
C) ∶= H(xn

B∥xn
C) − H(xn

B∥xn
A, xn

C)
= n∑

i=1
I(xi

A; xB(i)∣xi−1
B , xi

C) (19)

The basic properties of the directed information were studied by Massey and Kramer [11,12,72],
and some are recalled below. As a Kullback divergence, the directed information is always positive or
zero. Then, simple algebraic manipulation allows the decomposition to be obtained:

I(xn
A → xn

B) + I(xn−1
B → xn

A) = I(xn
A; xn

B) (20)

Equation (20) is fundamental, as it shows how mutual information splits into the sum of a feedforward
information flow I(xn

A → xn
B) and a feedback information flow I(xn−1

B → xn
A). In the absence of

feedback, p(xn
A∥xn−1

B ) = p(xn
A) and I(xn

A; xn
B) = I(xn

A → xn
B). Equation (20) allows the conclusion that

the mutual information is always greater than the directed information, as I(xn−1
B → xn

A) is always
positive or zero (as directed information). It is zero if and only if:

I(xA(i); xi−1
B ∣xi−1

A ) = 0 ∀i = 2, . . . , n (21)

or equivalently:

H(xA(i)∣xi−1
A , xi−1

B ) = H(xA(i)∣xi−1
A ) ∀i = 2, . . . , n (22)

This situation corresponds to the absence of feedback in the link A → B, whence the fundamental
result that the directed information and the mutual information are equal if the channel is free
of feedback. This result implies that mutual information over-estimates the directed information
between two processes in the presence of feedback. This was thoroughly studied in [11,57–59], in a
communication-theoretic framework.
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The decomposition of Equation (20) is surprising, as it shows that the mutual information is not
the sum of the directed information flowing in both directions. Instead, the following decomposition
holds:

I(xn
A → xn

B) + I(xn
B → xn

A) = I(xn
A; xn

B) + I(xn
A → xn

B∥xn−1
A ) (23)

where:

I(xn
A → xn

B∣∣xn−1
A ) = ∑

i
I(xi

A; xB(i)∣xi−1
B , xi−1

A )
= ∑

i
I(xA(i); xB(i)∣xi−1

B , xi−1
A ) (24)

This demonstrates that I(xn
A → xn

B) + I(xn
B → xn

A) is symmetrical, but is in general not equal to the
mutual information, except if and only if I(xA(i); xB(i)∣xi−1

B , xi−1
A ) = 0,∀i = 1, . . . , n. As the term in the

sum is the mutual information between the present samples of the two processes conditioned on their
joint past values, this measure is a measure of instantaneous dependence. It is indeed symmetrical in A
and B. The term I(xn

A → xn
B∣∣xn−1

A ) = I(xn
B → xn

A∣∣xn−1
B ) will thus be named the instantaneous information

exchange between xA and xB, and will hereafter be denoted as I(xn
A ↔ xn

B). Like directed information,
conditional forms of the instantaneous information exchange can be defined, as for example:

I(xn
A ↔ xn

B∥xn
C) ∶= I(xn

A → xn
B∣∣xn−1

A , xn
C) (25)

which quantifies an instantaneous information exchange between A and B causally conditionally to C.

3.3. Directed Information Rates

Entropy and mutual information in general increase linearly with the length n of the recorded
time series. Shannon’s information rate for stochastic processes compensates for the linear growth
by considering A∞(x) = limn→+∞ A(xn)/n ( if the limit exists), where A(xn) denotes any information
measure on the sample xn of length n. For the important class of stationary processes (see e.g., [55]),
the entropy rate turns out to be the limit of the conditional entropy:

lim
n→+∞

1
n

H(xn
A) = lim

n→+∞
H(xA(n)∣xn−1

A ) (26)

Kramer generalized this result for causal conditional entropies [11], thus defining the directed
information rate for stationary processes as:

I∞(xA → xB) = lim
n→+∞

1
n

n∑
i=1

I(xi
A; xB(i)∣xi−1

B )
= lim

n→+∞
I(xn

A; xB(n)∣xn−1
B ) (27)

This result holds also for the instantaneous information exchange rate. Note that the proof of the result
relies on the positivity of the entropy for discrete valued stochastic processes. For continuously valued
processes, for which the entropy can be negative, the proof is more involved and requires the methods
developed in [73–75], and see also [58].

3.4. Transfer Entropy and Instantaneous Information Exchange

As introduced by Schreiber in [13,47], transfer entropy evaluates the deviation of the observed data
from a model, assuming the following joint Markov property:

p(xB(n)∣x n−1
B n−k+1, x n−1

A n−l+1) = p(xB(n)∣x n−1
B n−k+1) (28)
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This leads to the following definition:

T(x n−1
A n−l+1 → x n

B n−k+1) = E
⎡⎢⎢⎢⎣log

p(xB(n)∣x n−1
B n−k+1, x n−1

A n−l+1)
p(xB(n)∣x n−1

B n−k+1)
⎤⎥⎥⎥⎦ (29)

Then T(x n−1
A n−l+1 → x n

B n−k+1) = 0 if and only if Equation (28) is satisfied. Although in the original
definition, the past of x in the conditioning might begin at a different time m /= n, for practical reasons
m = n is considered. Actually, no a priori information is available about possible delays, and setting
m = n allows the transfer entropy to be compared with the directed information.

By expressing the transfer entropy as a difference of conditional entropies, we get:

T(x n−1
A n−l+1 → x n

B n−k+1) = H(xB(n)∣x n−1
B n−k+1) − H(xB(n)∣x n−1

B n−k+1, x n−1
A n−l+1)

= I(x n−1
A n−l+1; xB(n)∣x n−1

B n−k+1) (30)

For l = n = k and choosing 1 as the time origin, the identity I(x, y; z∣w) = I(x; z∣w) + I(y; z∣x, w) leads to:

I(xn
A; xB(n)∣xn−1

B ) = I(xn−1
A ; xB(n)∣xn−1

B ) + I(xA(n); xB(n)∣xn−1
A , xn−1

B )
= T(xn−1

A → xn
B) + I(xA(n); xB(n)∣xn−1

A , xn−1
B ) (31)

For stationary processes, letting n →∞ and provided the limits exist, for the rates, we obtain:

I∞(xA → xB) = T∞(xA → xB) + I∞(xA ↔ xB) (32)

Transfer entropy is the part of the directed information that measures the influence of the past of xA on
the present of xB. However it does not take into account the possible instantaneous dependence of one
time series on another, which is handled by directed information.

Moreover, as defined by Schreiber in [13,47], only I(xi−1
A ; xB(i)∣xi−1

B ) is considered in T, instead
of its sum over i in the directed information. Thus stationarity is implicitly assumed and the transfer
entropy has the same meaning as a rate. A sum over delays was considered by Paluš as a means of
reducing errors when estimating the measure [48]. Summing over n in Equation (31), the following
decomposition of the directed information is obtained:

I(xn
A → xn

B) = I(xn−1
A → xn

B) + I(xn
A ↔ xn

B) (33)

Equation (33) establishes that the influence of one process on another can be decomposed into two
terms that account for the past and for the instantaneous contributions. Moreover, this explains the
presence of the term I(xn

A ↔ xn
B) in the r.h.s. of Equation (23): Instantaneous information exchange is

counted twice in the l.h.s. terms I(xn
A → xn

B) + I(xn
B → xn

A), but only once in the mutual information
I(xn

A; xn
B). This allows Equation (23) to be written in a slightly different form, as:

I(xn−1
A → xn

B) + I(xn−1
B → xn

A) + I(xn
A ↔ xn

B) = I(xn
A; xn

B) (34)

which is very appealing, as it shows how dependence as measured by mutual information decomposes
as the sum of the measures of directional dependences and the measure of instantaneous coupling.

3.5. Accounting for Side Information

The preceding developments aimed at the proposing of definitions of the information flow
between xA and xB; however, whenever A and B are connected to other parts of the network, the flow
of information between A and B might be mediated by other members of the network. Time series
observed on nodes other than A and B are hereafter referred to as side information. The available side
information at time n is denoted as xn

C, with A, B, C forming a partition of V. Then, depending on

128



Entropy 2013, 15, 113–143

the type of conditioning (usual or causal) two approaches are possible. Usual conditioning considers
directed information from A to B that is conditioned on the whole observation xn

C. However, this leads
to the consideration of causal flows from A to B that possibly include a flow that goes from A to B
via C in the future! Thus, an alternate definition for conditioning is required. This is given by the
definition of Equation (19) of the causal conditional directed information:

I(xn
A → xn

B∥xn
C) ∶= H(xn

B∥xn
C) − H(xn

B∥xn
A, xn

C)
= n∑

i=1
I(xi

A; xB(i)∣xi−1
B , xi

C) (35)

Does the causal conditional directed information decompose as the sum of a causal conditional
transfer entropy and a causal conditional instantaneous information exchange, as it does in the bivariate
case? Applying twice the chain rule for conditional mutual information, we obtain:

I(xn
A → xn

B∥xn
C) = I(xn−1

A → xn
B∥xn−1

C ) + I(xn
A ↔ xn

B∥xn
C) +ΔI(xn

C ↔ xn
B) (36)

In this equation, I(xn−1
A → xn

B∥xn−1
C ) is termed the “causal conditional transfer entropy”. This measures

the flow of information from A to B by taking into account a possible route via C. If the flow of
information from A to B is entirely relayed by C, the “causal conditional transfer entropy” is zero. In
this situation, the usual transfer entropy is not zero, indicating the existence of a flow from A to B.
Conditioning on C allows the examination of whether the route goes through C. The term:

I(xn
A ↔ xn

B∥xn
C) ∶= I(xn

A → xn
B∥xn−1

A , xn
C) (37)

= n∑
i=1

I(xA(i); xB(i)∣xi−1
B , xi−1

A , xi
C) (38)

is the “causal conditional information exchange”. It measures the conditional instantaneous coupling
between A and B. The term ΔI(xn

C ↔ xn
B) emphasizes the difference between the bivariate and the

multivariate cases. This extra term measures an instantaneous coupling and is defined by:

ΔI(xn
C ↔ xn

B) = I(xn
C ↔ xn

B∥xn−1
A ) − I(xn

C ↔ xn
B) (39)

An alternate decomposition to Equation (36) is:

I(xn
A → xn

B∥xn
C) = I(xn−1

A → xn
B∥xn

C) + I(xn
A ↔ xn

B∥xn
C) (40)

which emphasizes that the extra term comes from:

I(xn−1
A → xn

B∥xn
C) = I(xn−1

A → xn
B∥xn−1

C ) +ΔI(xn
C ↔ xn

B) (41)

This demonstrates that the definition of the conditional transfer entropy requires conditioning on
the past of C. If not, the extra term appears and accounts for instantaneous information exchanges
between C and B, due to the addition of the term xC(i) in the conditioning. This extra term highlights
the difference between the two different natures of instantaneous coupling. The first term,

I(xn
C ↔ xn

B∥xn−1
A ) = ∑

i
I(xC(i); xB(i)∣xi−1

A , xi−1
B , xi−1

C ) (42)

describes the intrinsic coupling in the sense that it does not depend on parties other than C and B. The
second coupling term,

I(xn
C ↔ xn

B) = ∑
i

I(xC(i); xB(i)∣xi−1
B , xi−1

C )
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is relative to the extrinsic coupling, as it measures the instantaneous coupling at time i that is created
by variables other than B and C.

As discussed in Section 2.3, the second definition for instantaneous coupling considers
conditioning on the past of the side information only. Causally conditioning on xn−1

C does not modify
the results of the bivariate case. In particular, we still get the elegant decomposition:

I(xn
A → xn

B∥xn−1
C ) = I(xn−1

A → xn
B∥xn−1

C ) + I(xn
A ↔ xn

B∥xn−1
C ) (43)

and therefore, the decomposition of Equation (34) is generalized to:

I(xn−1
A → xn

B∥xn−1
C ) + I(xn−1

B → xn
A∥xn−1

C ) + I(xn
A ↔ xn

B∥xn−1
C ) = I(xn

A; xn
B∥xn−1

C ) (44)

where:

I(xn
A; xn

B∥xn−1
C ) = ∑

i
I(xn

A; xB(i)∣xi−1
B , xi−1

C ) (45)

is the causally conditioned mutual information.
Finally, let us consider that for jointly stationary time series, the causal directed information rate

is defined similarly to the bivariate case as:

I∞(xA → xB∥xC) = lim
n→+∞

1
n

n∑
i=1

I(xi
A; xB(i)∣xi−1

B , xi
C) (46)

= lim
n→+∞

I(xn
A; xB(n)∣xn−1

B , xn
C) (47)

In this section we have emphasized on Kramer’s causal conditioning, both for the definition of
directed information and for taking into account side information. We have also shown that Schreiber’s
transfer entropy is the part of the directed information that is dedicated to the strict sense of causal
information flow (not accounting for simultaneous coupling). The next section more explicitly revisits
the links between Granger causality and directed information theory.

4. Inferring Granger Causality and Instantaneous Coupling

Granger causality in its probabilistic form is not operational. In practical situations, for assessing
Granger causality between time series, we cannot use the definition directly. We have to define
dedicated tools to assess the conditional independence. We use this inference framework to show
the links between information theory and Granger causality. We begin by re-expressing Granger
causality definitions in terms of some measures that arise from directed information theory. Therefore,
in an inference problem, these measures can be used as tools for inference. However, we show in
the following sections that these measures naturally emerge from the more usual statistical inference
strategies. In the following, and as above, we use the same partitioning of V into the union of disjoint
subsets of A, B and C.

4.1. Information-theoretic Measures and Granger Causality

As anticipated in the presentation of directed information, there are profound links
between Granger causality and directed information measures. Granger causality relies on
conditional independence, and it can also be defined using measures of conditional independence.
Information-theoretic measures appear as natural candidates. Recall that two random elements are
independent if and only if their mutual information is zero. Moreover, two random elements are
independent conditionally to a third one if and only if the conditional mutual information is zero. We
can reconsider definitions 2, 3 and 4 and recast them in terms of information-theoretic measures.
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Definition 2 stated that xA does not Granger cause xB relative to V if and only if xB(n + 1) 	 xn
A ∣

xn
B, xn

C, ∀n ≥ 1. This can be alternatively rephrased into:

Definition 5. xA does not Granger cause xB relative to V if and only if I(xn−1
A → xn

B∥xn−1
C ) = 0 ∀n ≥ 1

since xB(i) 	 xi
A ∣ xi−1

A , xi−1
C , ∀1 ≤ i ≤ n is equivalent to I(xB(i); xi

A ∣ xi−1
A , xi−1

C ) = 0 ∀1 ≤ i ≤ n.
Otherwise stated, the transfer entropy from A to B causally conditioned on C is zero if and only if

A does not Granger cause B relative to V. This shows that causal conditional transfer entropy can be
used to assess Granger causality.

Likewise, we can give alternative definitions of instantaneous coupling.

Definition 6. xA and xB are not conditionally instantaneously coupled relative to V if and only if
I(xn

A ↔ xn
B∥xn

C)∀n ≥ 1,

or if and only if the instantaneous information exchange causally conditioned on C is zero. The second
possible definition of instantaneous coupling is equivalent to:

Definition 7. xA and xB are not instantaneously coupled relative to V if and only if
I(xn

A ↔ xn
B∥xn−1

C )∀n ≥ 1,

or if and only if the instantaneous information exchange causally conditioned on the past of C is zero.
Note that in the bivariate case only (when C is not taken into account), the directed information

I(xn
A → xn

B) summarizes both the Granger causality and the coupling, as it decomposes as the sum of
the transfer entropy I(xn−1

A → xn
B) and the instantaneous information exchange I(xn−1

A ↔ xn
B).

4.2. Granger Causality Inference

We consider the practical problem of inferring the graph of dependence between the components
of a multivariate process. Let us assume that we have measured a multivariate process xV(n) for
n ≤ T. We want to study the dependence between each pair of components (Granger causality and
instantaneous coupling between any pair of components relative to V).

We can use the result of the preceding section to evaluate the directed information measures on
the data. When studying the influence from any subset A to any subset B, if the measures are zero,
then there is no causality (or no coupling); if they are strictly positive, then A Granger causes B relative
to V (or A and B are coupled relative to V). This point of view has been adopted in many of the studies
that we have already referred to (e.g., [14,16,37,47,76]), and it relies on estimating the measures from
the data. We will not review the estimation problem here.

However, it is interesting to examine more traditional frameworks for testing Granger causality,
and to examine how directed information theory naturally emerges from these frameworks. To begin
with, we show how the measures defined emerge from a binary hypothesis-testing view of Granger
causality inference. We then turn to prediction and model-based approaches. We will review how
Geweke’s measures of Granger causality in the Gaussian case are equivalent to directed information
measures. We will then present a more general case adopted by [37–39,77–79] and based on a model of
the data.

4.2.1. Directed Information Emerges from a Hypotheses-testing Framework

In the inference problem, we want to determine whether or not xA Granger causes (is coupled
with) xB relative to V. This can be formulated as a binary hypothesis testing problem. For inferring
dependencies between A and B relative to V, we can state the problem as follows.

Assume we observe xV(n),∀n ≤ T. Then, we want to test: “xA does not Granger cause xB”, against
“xA causes xB”; and “xA and xB are instantaneously coupled” against “xA are xB not instantaneously
coupled”. We will refer to the first test as the Granger causality test, and to the second one, as the
instantaneous coupling test.
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In the bivariate case, for which the Granger causality test indicates:

{ H0 ∶ p0(xB(i) ∣ xi−1
A , xi−1

B ) = p(xB(i) ∣ xi−1
B ),∀i ≤ T

H1 ∶ p1(xB(i) ∣ xi−1
A , xi−1

B ) = p(xB(i) ∣ xi−1
A , xi−1

B ),∀i ≤ T
(48)

this leads to the testing of different functional forms of the conditional densities of xB(i)
given the past of xA. The likelihood of the observation under H1 is the full joint probability
p(xT

A, xT
B) = p(xT

A∥xT
B)p(xT

B∥xT−1
A ). Under H0 we have p(xT

B∥xT−1
A ) = p(xT

B) and the likelihood reduces
to p(xT

A∥xT
B)p(xT

B∥xT−1
A ) = p(xT

A∥xT
B)p(xT

B). The log likelihood ratio for the test is:

l(xT
A, xT

B) ∶= log
p(xT

A, xT
B ∣ H1)

p(xT
A, xT

B ∣ H0) = log
p(xT

B∥xT−1
A )

p(xT
B) (49)

= T∑
i=1

log
p(xB(i) ∣ xi−1

A , xi−1
B )

p(xB(i) ∣ xi−1
B ) (50)

For example, in the case where the multivariate process is a positive Harris recurrent Markov chain
[80], the law of large numbers applies and we have under hypothesis H1:

1
T

l(xT
A, xT

B) T→+∞����→ T∞(xA → xB) a.s. (51)

where T∞(xA → xB) is the transfer entropy rate. Thus from a practical point of view,
as the amount of data increases, we expect the log likelihood ratio to be close to the
transfer entropy rate (under H1). Turning the point of view, this can justify the use of an
estimated transfer entropy to assess Granger causality. Under H0, 1

T l(xT
A, xT

B) converges to
limT→+∞(1/T)DKL(p(xT

A∥xT
B)p(xT

B)∥p(xT
A∥xT

B)p(xT
B∥xT−1

A )), which can be termed “the Lautum transfer
entropy rate” that extends the “Lautum directed information” defined in [71]. Directed information
can be viewed as a measure of the loss of information when assuming xA does not causally influence
xB when it actually does. Likewise, “Lautum directed information” measures the loss of information
when assuming xA does causally influence xB, when actually it does not.

For testing instantaneous coupling, we will use the following:

{ H0 ∶ p0(xA(i), xB(i) ∣ xi−1
A , xi−1

B ) = p(xA(i) ∣ xi−1
A , xi−1

B )p(xB(i) ∣ xi−1
A , xi−1

B ),∀i ≤ T
H1 ∶ p1(xA(i), xB(i) ∣ xi−1

A , xi−1
B ) = p(xA(i), xB(i) ∣ xi−1

A , xi−1
B ),∀i ≤ T

(52)

where under H0, there is no coupling. Then, under H1 and some hypothesis on the data, the likelihood
ratio converges almost surely to the information exchange rate I∞(xA ↔ xB).

A related encouraging result due to [71] is the emergence of the directed information in the
false-alarm probability error rate. Merging the two tests Equations (48) and (52), i.e., testing both for
causality and coupling, or neither, the test is written as:

{ H0 ∶ p0(xB(i) ∣ xi
A, xi−1

B ) = p(xB(i) ∣ xi−1
B ),∀i ≤ T

H1 ∶ p1(xB(i) ∣ xi
A, xi−1

B ) = p(xB(i) ∣ xi
A, xi−1

B ),∀i ≤ T
(53)

Among the tests with a probability of miss PM that is lower than some positive value ε > 0, the best
probability of false alarm PFA follows exp ( − TI(xA → xB)) when T is large. For the case studied here,
this is the so-called Stein lemma [55]. In the multivariate case, there is no such result in the literature.
An extension is proposed here. However, this is restricted to the case of instantaneously uncoupled time
series. Thus, we assume for the end of this subsection that:

p(xA(i), xB(i), xC(i) ∣ xi−1
A , xi−1

B , xi−1
C ) = ∏

α=A,B,C
p(xα(i) ∣ xi−1

A , xi−1
B , xi−1

C ), ∀i ≤ T (54)
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which means that there is no instantaneous exchange of information between the three subsets that
form a partition of V. This assumption has held in most of the recent studies that have applied Granger
causality tests. It is, however, unrealistic in applications where the dynamics of the processes involved
are faster than the sampling period adopted (see [27] for a discussion in econometry). Consider now
the problem of testing Granger causality of A on B relative to V. The binary hypothesis test is given by:

{ H0 ∶ p0(xB(i) ∣ xi−1
A , xi−1

B , xi−1
C ) = p(xB(i) ∣ xi−1

B , xi−1
C ),∀i ≤ T

H1 ∶ p1(xB(i) ∣ xi−1
A , xi−1

B , xi−1
C ) = p(xB(i) ∣ xi−1

A , xi−1
B , xi−1

C ),∀i ≤ T
(55)

The log likelihood ratio reads as:

l(xT
A, xT

B , xT
C) = T∑

i=1
log

p(xB(i) ∣ xi−1
A , xi−1

B , xi−1
C )

p(xB(i) ∣ xi−1
B , xi−1

C ) (56)

Again, by assuming that the law of large numbers applies, we can conclude that under H1

1
T

l(xT
A, xT

B , xT
C) T→+∞����→ T∞(xA → xB∥xC) a.s. (57)

This means that the causal conditional transfer entropy rate is the limit of the log likelihood ratio as the
amount of data increases.

4.2.2. Linear Prediction based Approach and the Gaussian Case

Following definition 1 and focusing on linear models and the quadratic risk R(e) = E[e2], Geweke
introduced the following indices for the study of stationary processes [31,32]:

FxA↔xB = lim
n→+∞

R(xB(n)∣xn−1
B , xn−1

A )
R(xB(n)∣xn−1

B , xn
A) (58)

FxA↔xB∥xC
= lim

n→+∞

R(xB(n)∣xn−1
B , xn−1

A , xn
C)

R(xB(n)∣xn−1
B , xn−1

A , xn
C) (59)

FxA→xB = lim
n→+∞

R(xB(n)∣xn−1
B )

R(xB(n)∣xn−1
B , xn−1

A ) (60)

FxA→xB∥xC
= lim

n→+∞

R(xB(n)∣xn−1
B , xn−1

C )
R(xB(n)∣xn−1

B , xn−1
A , xn−1

C ) (61)

Geweke demonstrated the efficiency of these indices for testing Granger causality and instantaneous
coupling (bivariate and multivariate cases). In the particular Gaussian and bivariate case, he gave
explicit results for the statistics of the tests, and furthermore he showed that:

FxA→xB + FxB→xA + FxA↔xB = I∞(xA; xB) (62)

where I∞(xA; xB) is the mutual information rate. This relationship, which was already sketched
out in [21], is nothing but Equation (34). Indeed, in the Gaussian case, FxA↔xB = I∞(xA ↔ xB) and
FxA→xB = I∞(xA → xB) stem from the knowledge that the entropy rate of a Gaussian stationary process
is the logarithm of the asymptotic power of the one-step-ahead prediction [55]. Likewise, we can show
that FxA↔xB∥xC

= I∞(xA ↔ xB∥xC) and FxA→xB∥xC
= I∞(xA → xB∥xC) holds.

In the multivariate case, conditioning on the past of the side information, i.e., xn−1
C , in the

definition of FxA↔xB∥xC
, a decomposition analogous to Equation (62) holds and is exactly that given by

Equation (44).

133



Entropy 2013, 15, 113–143

4.2.3. The Model-based Approach

In a more general framework, we examine how a model-based approach can be used to test for
Granger causality, and how directed information comes into play.

Let us consider a rather general model in which xV(t) is a multivariate Markovian process
that statisfies:

xV(t) = fθ(x t−1
Vt−k ) +wV(t) (63)

where fθ ∶ Rk∣V∣ �→ R∣V∣ is a function belonging to some functional class F , and where wV is a
multivariate i.i.d. sequence, the components of which are not necessarily mutually independent.
Function fθ might (or might not) depend on θ, a multidimensional parameter. This general model
considers each signal as an AR model (linear or not) with exogeneous inputs; fθ can also stand for
a function belonging to some reproducing kernel Hilbert space, which can be estimated from the
data [66,67,81]. Using the partition A, B, C, this model can be written equivalently as:

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
xA(t) = fA,θA

(x t−1
At−k , x t−1

Bt−k , x t−1
Ct−k ) +wA(t)

xB(t) = fB,θB(x t−1
At−k , x t−1

Bt−k , x t−1
Ct−k ) +wB(t)

xC(t) = fC,θC
(x t−1

At−k , x t−1
Bt−k , x t−1

Ct−k ) +wC(t)
(64)

where the functions f.,θ. are the corresponding components of fθ . This relation can be used for inference
in a parametric setting: the functional form is assumed to be known and the determination of the
function is replaced by the estimation of the parameters θA,B,C. This can also be used in a nonparametric
setting, in which case the function f is searched for in an appropriate functional space, such as an rkHs
associated to a kernel [81].

In any case, for studying the influence of xA to xB relative to V, two models are required for xB:
one in which xB explicitly depends on xA, and the other one in which xB does not depend on xA. In
the parametric setting, the two models can be merged into a single model, in such a way that some
components of the parameter θB are, or not, zero, which depends on whether A causes B or not. The
procedure then consists of testing nullity (or not) of these components. In the linear Gaussian case,
this leads to the Geweke indices discussed above. In the nonlinear (non-Gaussian) case, the Geweke
indices can be used to evaluate the prediction in some classes of nonlinear models (in the minimum
mean square error sense). In this latter case, the decomposition of the mutual information, Equation
(62), has no reason to remain valid.

Another approach base relies on directly modeling the probability measures. This approach has
been used recently to model spiking neurons and to infer Granger causality between several neurons
working in the class of generalized linear models [37,79]. Interestingly, the approach has been used
either to estimate the directed information [37,77] or to design a likelihood ratio test [38,79]. Suppose
we wish to test whether “xA Granger causes xB relative to V” as a binary hypothesis problem (as
in Section 4.2.1). Forgetting the problem of instantaneous coupling, the problem is then to choose
between the hypotheses:

{ H0 ∶ p0(xB(i) ∣ xi−1
V ) = p(xB(i) ∣ xi−1

V ; θ0),∀i ≤ T
H1 ∶ p1(xB(i) ∣ xi−1

V ) = p(xB(i) ∣ xi−1
V ; θ1),∀i ≤ T

(65)

where the existence of causality is entirely reflected into the parameter θ. To be more precise, θ0 should
be seen as a restriction of θ1 when its components linked to xA are set to zero. As a simple example
using the model approach discussed above, consider the simple linear Gaussian model

xB(t) = ∑
i>0

θA(i)xA(t − i) +∑
i>0

θB(i)xB(t − i) +∑
i>0

θC(i)xC(t − i) +wB(t) (66)
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where wB(t) is an i.i.d. Gaussian sequence, and θA, θB, θC are multivariate impulse responses of
appropriate dimensions. Define θ1 = (θA, θB, θC) and θ0 = (0, θB, θC). Testing for Granger causality
is then equivalent to testing θ = θ1; furthermore, the likelihood ratio can be implemented due to the
Gaussian assumption. The example developed in [37,79] assumes that the probability that neuron
b (b ∪ A ∪ C = V) sends a message at time t (xb(t) = 1) to its connected neighbors is given by the
conditional probability

Pr(xb(t) = 1∣xt
V ; θ) = U(∑

i>0
θA(i)xA(t − i) +∑

i>0
θb(i)xb(t − i) +∑

i>0
θEb(i)xEb(t − i) +wb(t))

where U is some decision function, the output of which belongs to [0; 1], A represents the subset of
neurons that can send information to b, and Eb represents external inputs to b. Defining this probability
for all b ∈ V completely specifies the behavior of the neural network V.

The problem is a composite hypothesis testing problem, in which parameters defining the
likelihoods have to be estimated. It is known that there is no definitive answer to this problem
[82]. An approach that relies on an estimation of the parameters using maximum likelihood can be
used. Letting Ω be the space where parameter θ is searched for and Ω0 the subspace where θ0 lives,
then the generalized log likelihood ratio test reads:

l(xT
A, xT

B) ∶= log
supθ∈Ω p(xT

V ; θ)
supθ∈Ω0

p(xT
V ; θ) = log

p(xT
V ; θ̂T

1 )
p(xT

V ; θ̂T
0 )

(67)

where θ̂T
i denotes the maximum likelihood estimator of θ under hypothesis i. In the linear Gaussian

case, we will recover exactly the measures developed by Geweke. In a more general case, and as
illustrated in Section 4.2.1, as the maximum likelihood estimates are efficient, we can conjecture that
the generalized log likelihood ratio will converge to the causal conditional transfer entropy rate if
sufficiently relevant conditions are imposed on the models (e.g., Markov processes with recurrent
properties). This approach was described in [38] in the bivariate case.

5. Discussion and Extensions

Granger causality was developed originally in econometrics, and it is now transdisciplinary, with
the literature on the subject being widely dispersed. We have tried here to sum up the profound links
that exist between Granger causality and directed information theory. The key ingredients to build
these links are conditional independence and the recently introduced causal conditioning.

We have eluded the important question of the practical use of the definitions and measures
presented here. Some of the measures can be used and implemented easily, especially in the linear
Gaussian case. In a more general case, different approaches can be taken. The information-theoretic
measures can be estimated, or the prediction can be explicitly carried out and the residuals used to
assess causality.

Many studies have been carried out over the last 20 years on the problem of estimation of
information-theoretic measures. We refer to [83–87] for information on the different ways to estimate
information measures. Recent studies into the estimation of entropy and/or information measures
are [88–90]. The recent report by [76] extensively details and applies transfer entropy in neuroscience
using k-nearest neighbors type of estimators. Concerning the applications, important reviews
include [14,16], where some of the ideas discussed here are also mentioned, and where practicalities
such as the use of surrogate data, for example, are extensively discussed. Applications for neuroscience
are discussed in [15,30,50,51,79].

Information-theoretic measures of conditional independence based on Kullback divergence were
chosen here to illustrate the links between Granger causality and (usual) directed information theory.
Other type of divergence could have been chosen (see e.g., [91,92]); metrics in probability space
could also be useful in the assessing of conditional independence. As an illustration, we refer to
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the study of Fukumizu and co-workers [93], where conditional independence was evaluated using
the Hilbert–Schmidt norm of an operator between reproducing kernel Hilbert spaces. The operator
generalizes the partial covariance between two random vectors given a third one, and is called the
conditional covariance operator. Furthermore, the Hilbert–Schmidt norm of conditional covariance
operator can be efficiently estimated from data. A related approach is also detailed in [94].

Many important directions can be followed. An issue is in the time horizon over which the
side information is considered in definition 2. As done for instantaneous coupling, we could have
chosen to condition by xn+1

C instead of xn
C. This proposition made recently in [35,95] allows in certain

circumstances to eliminate the effect of common inputs to A, B and C. It is denoted as partial Granger
causality. As noted in [35] this is particularly useful when the common inputs are very powerful
and distributed equally likely among all the nodes. If this definition is adopted, then according to
Equation (40), the directed information I(xn

A → xn
B∥xn

C) decomposes as the sum of instantaneous
information exchange I(xn

A ↔ xn
B∥xn

C) with the adequate formulation of the transfer entropy for this
definition I(xn−1

A → xn
B∥xn

C). Despite this nice result, a definitive interpretation remains unclear within
the probabilistic description presented here. Even in the usual linear setting as developed in [32] this
definition leads to some difficulties. Indeed, Geweke’s analysis relies on the possibility to invert the
Wold decomposition of the time series, representing the times series as a possibly infinite autoregression
with the innovation sequence as input. All the existing dynamical structure (finite order autoregression
and moving average input representing exogeneous inputs) is then captured by Geweke’s approach.
The analysis in [35,95] assumes that residuals may not be white, and identifiability issues may then
arise in this case. Other important issues are the following. Causality between nonstationary processes
has rarely been considered (see however [76] for an ad-hoc approach in neuroscience). A very promising
methodology is to adopt a graphical modeling way of thinking. The result of [28] on the structural
properties of Markov–Granger causality graphs can be used to identify such graphs from real datasets.
First steps in this direction were proposed by [69,70]. Assuming that the network under study is
a network of sparsely connected nodes and that some Markov properties hold, efficient estimation
procedures can be designed, as is the case in usual graphical modeling.
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Abstract: We present a new interpretation of a local framework for information dynamics, including
the transfer entropy, by defining a moving frame of reference for the observer of dynamics in lattice
systems. This formulation is inspired by the idea of investigating “relativistic” effects on observing
the dynamics of information—in particular, we investigate a Galilean transformation of the lattice
system data. In applying this interpretation to elementary cellular automata, we demonstrate that
using a moving frame of reference certainly alters the observed spatiotemporal measurements of
information dynamics, yet still returns meaningful results in this context. We find that, as expected, an
observer will report coherent spatiotemporal structures that are moving in their frame as information
transfer, and structures that are stationary in their frame as information storage. Crucially, the extent
to which the shifted frame of reference alters the results depends on whether the shift of frame retains,
adds or removes relevant information regarding the source-destination interaction.
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information dynamics; cellular automata; complex systems
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1. Introduction

Einstein’s theory of relativity postulates that the laws of physics are the same for observers in all
moving frames of reference (no frame is preferred) and that the speed of light is the same in all frames [1].
These postulates can be used to quantitatively describe the differences in measurements of the same
events made by observers in different frames of reference.

Information-theoretic measures are always computed with reference to some observer. They are
highly dependent on how the observer measures the data, the subtleties of how an observer asks a
question of the data, how the observer attempts to interpret information from the data, and what the
observer already knows [2,3]. We aim to take inspiration from the theory of relativity to explore the
effect of a moving observer on information-theoretic measures here. To make such an investigation
however, we need not only an observer for the information measures but specifically:

(1) a space-time interpretation for the relevant variables in the system; and

Entropy 2013, 15, 177–197; doi:10.3390/e15010177 www.mdpi.com/journal/entropy140



Entropy 2013, 15, 177–197

(2) some frame of reference for the observer, which can be moving in space-time in the system while
the measures are computed.

A candidate for such investigations is a recently introduced framework for information
dynamics [4–8], which measures information storage, transfer and modification at each local point in a
spatiotemporal system. This framework has had success in various domains, particularly in application
to cellular automata (CAs), a simple but theoretically important class of discrete dynamical system that
is set on a regular space-time lattice. In application to CAs, the framework has provided quantitative
evidence for long-held conjectures that the moving coherent structures known as particles are the
dominant information transfer entities and that collisions between them are information modification
events. In considering the dynamics of information, the framework examines the state updates of each
variable in the system with respect to the past state of that variable. For example, in examining the
information transfer into a destination variable using the transfer entropy [9], we consider how much
information was contributed from some source, in the context of the past state of that destination. This
past state can be seen as akin to a stationary frame of reference for the measurement. As such, we have
the possibility to use this framework to explore “relativistic” effects on information; i.e., as applied to a
spatiotemporal system such as a CA, with a spatiotemporally moving frame of reference. We begin
our paper by introducing CAs in Section 2, basic information-theoretic quantities in Section 3, and the
measures for information dynamics in Section 4.

Our primary concern in this paper then lies in exploring a new interpretation of this framework
for information dynamics by defining and incorporating a moving frame of reference for the observer
(Section 5). The type of relativity presented for application to these lattice systems is akin to an ether
relativity, where there is a preferred stationary frame in which information transfer is limited by the
speed of light. (We note the existence of a discretized special relativity for certain CAs by Smith [10].
For special relativity to be applicable, the CA laws must obey the same rules in all frames of reference.
Smith notes the difficulty to find any non-trivial CA rules that meet this requirement, and indeed uses
only a simple diffusion process as an example. While in principle we could apply our measures within
moving frames of reference in that particular discretization, and intend to do so in future work, we
examine only an ether-type of relativity in this study, as this is more naturally applicable to lattice
systems.) We also mathematically investigate the shift of frame to demonstrate the invariance of certain
information properties. That is, while the total information required to predict a given variable’s
value remains the same, shifting the frame of reference redistributes that information amongst the
measurements of information storage and transfer by the observer. The nature of that redistribution
will depend on whether the shift of frame retains, adds or removes relevant information regarding the
source-destination interactions.

We perform experiments on elementary cellular automata (ECAs) using the new perspective on
information dynamics with shifted frames of reference in Section 6, comparing the results to those
found in the stationary frame. We find that, as expected, the use of a moving frame of reference has
a dramatic effect on the measurements of information storage and transfer, though the results are
well-interpretable in the context of the shifted frame. In particular, particles only appear as information
transfer in frames in which they are moving, otherwise they appear as information storage.

2. Dynamics of Computation in Cellular Automata

Cellular automata (CAs) have been a particular focus for experimentation with the framework for
the information dynamics measures that we use here. This is because CAs have been used to model a
wide variety of real-world phenomena (see [11]), and have attracted much discussion regarding the
nature of computation in their dynamics.

CAs are discrete dynamical systems consisting of an array of cells that each synchronously update
their state as a function of the states of a fixed number of spatially neighboring cells using a uniform
rule. We focus on Elementary CAs, or ECAs, a simple variety of 1D CAs using binary states, deterministic
rules and one neighbor on either side (i.e., cell range r = 1). An example evolution of an ECA may
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be seen in Figure 1(a). For more complete definitions, including that of the Wolfram rule number
convention for describing update rules (used here), see [12].

Studies of information dynamics in CAs have focused on their emergent structure: particles, gliders,
blinkers and domains. A domain is a set of background configurations in a CA, any of which will update
to another configuration in the set in the absence of any disturbance. Domains are formally defined
by computational mechanics as spatial process languages in the CA [13]. Particles are considered
to be dynamic elements of coherent spatiotemporal structure, as disturbances or in contrast to the
background domain. Gliders are regular particles, and blinkers are stationary gliders. Formally,
particles are defined by computational mechanics as a boundary between two domains [13]; as such,
they can be referred to as domain walls, though this term is usually reserved for irregular particles.
Several techniques exist to filter particles from background domains (e.g., [5–7,13–20]). As a visual
example, see Figure 1(a) and Figure 1(b) – the horizontally moving gliders in Figure 1(a) are filtered
using negative values of the measure in Figure 1(b) (which will be introduced in Section 4.1), while the
domains (in the background) and the blinkers (the stationary large triangular structures) in Figure 1(a)
are filtered using positive values of the measure in Figure 1(b).

These emergent structures have been quite important to studies of computation in CAs, for
example in the design or identification of universal computation in CAs (see [11]), and in the analyses
of the dynamics of intrinsic or other specific computation ([13,21,22]). This is because these studies
typically discuss the computation in terms of the three primitive functions of computation and their
apparent analogues in CA dynamics [11,21]:

• blinkers as the basis of information storage, since they periodically repeat at a fixed location;
• particles as the basis of information transfer, since they communicate information about the

dynamics of one spatial part of the CA to another part; and
• collisions between these structures as information modification, since collision events combine

and modify the local dynamical structures.

Previous to recent work however [4–7] (as discussed in Section 4), these analogies remained
conjecture only.
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Figure 1. Measures of information dynamics applied to ECA Rule 54 with a stationary frame
of reference (all units in (b)–(d) are in bits). Time increases down the page for all plots.
(a) Raw CA; (b) Local active information storage a(i, n, k = 16); (c) Local apparent transfer entropy
t(i, j = −1, n, k = 16); (d) Local complete transfer entropy tc(i, j = −1, n, k = 16).

3. Information-theoretic Quantities

To quantify these dynamic functions of computation, we look to information theory (e.g., see [2,3])
which has proven to be a useful framework for the design and analysis of complex self-organized
systems, e.g., [23–27]. In this section, we give a brief overview of the fundamental quantities which
will be built on in the following sections.

The Shannon entropy represents the uncertainty associated with any measurement x of a random
variable X (logarithms are in base 2, giving units in bits): H(X) = −∑x p(x) log p(x). The joint
entropy of two random variables X and Y is a generalization to quantify the uncertainty of their
joint distribution: H(X, Y) = −∑x,y p(x, y) log p(x, y). The conditional entropy of X given Y is the
average uncertainty that remains about x when y is known: H(X|Y) = −∑x,y p(x, y) log p(x|y). The
mutual information between X and Y measures the average reduction in uncertainty about x that
results from learning the value of y, or vice versa: I(X; Y) = H(X)− H(X|Y). The conditional mutual
information between X and Y given Z is the mutual information between X and Y when Z is known:
I(X; Y|Z) = H(X|Z)− H(X|Y, Z).

Moving to dynamic measures of information in time-series processes X, the entropy rate is the
limiting value of the average entropy of the next realizations xn+1 of X conditioned on the realizations
x(k)n = {xn−k+1, . . . , xn−1, xn} of the previous k values X(k) of X (up to and including time step n):

HμX = lim
k→∞

H
[

X|X(k)
]
= lim

k→∞
HμX(k) (1)

Finally, the effective measure complexity [28] or excess entropy [23] quantifies the total amount of structure
or memory in a system, and is computed in terms of the slowness of the approach of the entropy
rate estimates to their limiting value (see [23]). For our purposes, it is best formulated as the mutual
information between the semi-infinite past and semi-infinite future of the process:

EX = lim
k→∞

I
[

X(k); X(k+)
]

(2)

where X(k+) refers to the next k states with realizations x(k
+) = {xn+1, xn+2, . . . , xn+k}. This

interpretation is known as the predictive information [29], as it highlights that the excess entropy
captures the information in a system’s past that can also be found in its future.
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4. Framework for Information Dynamics

A local framework for information dynamics has recently been introduced in [4–8]. This
framework examines the information composition of the next value xn+1 of a destination variable, in
terms of how much of that information came from the past state of that variable (information storage),
how much came from respective source variables (information transfer), and how those information
sources were combined (information modification). The measures of the framework provide information
profiles quantifying each element of computation at each spatiotemporal point in a complex system.

In this section, we describe the information storage and transfer components of the framework
(the information modification component is not studied here; it may be seen in [6]). We also review
example profiles of these information dynamics in ECA rule 54 (see raw states in Figure 1(a)). ECA
rule 54 is considered a class IV complex rule, contains simple glider structures and collisions, and is
therefore quite useful in illustrating the concepts around information dynamics.

4.1. Information Storage

We define information storage as the amount of information from the past of a process that is
relevant to or will be used at some point in its future. The statistical complexity [30] measures the
amount of information in the past of a process that is relevant to the prediction of its future states. It
is known that the statistical complexity CμX provides an upper bound to the excess entropy [31]; i.e.,
EX ≤ CμX . This can be interpreted in that the statistical complexity measures all information stored by
the system that may be used in the future, whereas the excess entropy only measures the information
that is used by the system at some point in the future. Of course, this means that the excess entropy
measures information storage that will possibly but not necessarily be used at the next time step n + 1.
When focusing on the dynamics of information processing, we are particularly interested in how much
of the stored information is actually in use at the next time step, so as to be examined in conjunction
with information transfer.

As such, the active information storage AX was introduced [7] to explicitly measure how much of
the information from the past of the process is observed to be in use in computing its next state. The
active information storage is the average mutual information between realizations x(k)n of the past state
X(k) (as k → ∞) and the corresponding realizations xn+1 of the next value X′ of a given time series X:

AX = lim
k→∞

AX(k) (3)

AX(k) = I
[

X(k); X′
]

(4)

We note that the limit k → ∞ is required in general, unless the next value xn+1 is conditionally
independent of the far past values x(∞)

n−k given x(k)n .
We can then extract the local active information storage aX(n + 1) [7] as the amount of information

storage attributed to the specific configuration or realization (x(k)n , xn+1) at time step n + 1; i.e., the
amount of information storage in use by the process at the particular time-step n + 1: (Descriptions
of the manner in which local information-theoretical measures are obtained from averaged measures
may be found in [5,31].)

AX = 〈aX(n + 1)〉n (5)

aX(n + 1) = lim
k→∞

aX(n + 1, k) (6)

AX(k) = 〈aX(n + 1, k)〉n (7)

aX(n + 1, k) = log2
p(x(k)n , xn+1)

p(x(k)n )p(xn+1)
(8)

= i(x(k)n ; xn+1) (9)
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By convention, we use lower case labels for the local values of information-theoretic quantities. Note
that AX(k) and a(i, n + 1, k) represent finite k estimates.

Where the process of interest exists for cells on a lattice structure, we include the index i to identify
the variable of interest. This gives the following notation for local active information storage a(i, n + 1)
in a spatiotemporal system:

a(i, n + 1) = lim
k→∞

a(i, n + 1, k) (10)

a(i, n + 1, k) = log2

p(x(k)i,n , xi,n+1)

p(x(k)i,n )p(xi,n+1)
(11)

We note that the local active information storage is defined for every spatiotemporal point (i, n) in
the lattice system. We have A(i, k) = 〈a(i, n, k)〉n as the average for variable i. For stationary systems
of homogeneous variables where the probability distribution functions are estimated over all variables,
it is appropriate to average over all variables also, giving:

A(k) = 〈a(i, n, k)〉i,n (12)

Figure 2(a) shows the local active information as this mutual information between the destination
cell and its past history. Importantly, a(i, n, k) may be positive or negative, meaning the past history
of the cell can either positively inform us or actually misinform us about its next state. An observer
is misinformed where, conditioned on the past history, the observed outcome was relatively unlikely
as compared with the unconditioned probability of that outcome (i.e., p(xn+1|x(k)n ) < p(xn+1)). In
deterministic systems (e.g., CAs), negative local active information storage means that there must be
strong information transfer from other causal sources.

Figure 2. Local information dynamics for a lattice system with speed of light c = 1 unit per time
step: (a) (left) with stationary frame of reference ( f = 0); (b) (right) with moving frame of reference
f = 1 (i.e., at one cell to the right per unit time step). Red double-headed arrow represents active
information storage a(i, n + 1, f ) from the frame of reference; the blue single-headed arrow represent
transfer entropy t(i, j, n + 1, f ) from each source orthogonal to the frame of reference. Note that the
frame of reference in the figures is the path of the moving observer through space-time.

As reported in [7], and shown in the sample application to rule 54 in Figure 1(b), when applied
to CAs the local active information storage identifies strong positive values in the domain and in
blinkers (vertical gliders). For each of these entities, the next state is effectively predictable from the
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destination’s past. This was the first direct quantitative evidence that blinkers and domains were the
dominant information storage entities in CAs. Interestingly for rule 54, the amount of predictability
from the past (i.e., the active information storage) is roughly the same for both the blinkers and
the background domain (see further discussion in [7]). Furthermore, negative values are typically
measured at (the leading edge of) traveling gliders, because the past of the destination (being in the
regular domain) would predict domain continuation, which is misinformative when the glider is
encountered.

4.2. Information Transfer

Information transfer is defined as the amount of information that a source provides about a
destination’s next state that was not contained in the destination’s past. This definition pertains to
Schreiber’s transfer entropy measure [9] (which we will call the apparent transfer entropy, as discussed
later). The transfer entropy captures the average mutual information from realizations y(l)n of the state
Y(l) of a source Y to the corresponding realizations xn+1 of the next value X′ of the destination X,
conditioned on realizations x(k)n of the previous state X(k):

TY→X(k, l) = I
[
Y(l); X′ | X(k)

]
(13)

Schreiber emphasized that, unlike the (unconditioned) time-differenced mutual information, the
transfer entropy was a properly directed, dynamic measure of information transfer rather than shared
information.

In general, one should take the limit as k → ∞ in order to properly represent the previous state
X(k) as relevant to the relationship between the next value X′ and the source Y [5]. Note that k can
be limited here where the next value xn+1 is conditionally independent of the far past values x(∞)

n−k

given (x(k)n , yn). One than then interpret the transfer entropy as properly representing information
transfer [5,32]. Empirically of course one is restricted to finite-k estimates TY→X(k, l). Furthermore,
where only the previous value yn of Y is a direct causal contributor to xn+1, it is appropriate to use
l = 1 [5,32]. So for our purposes, we write:

TY→X = lim
k→∞

TY→X(k) (14)

TY→X(k) = I
[
Y; X′ | X(k)

]
(15)

We can then extract the local transfer entropy tY→X(n + 1) [5] as the amount of information transfer
attributed to the specific configuration or realization (xn+1, x(k)n , yn) at time step n + 1; i.e., the amount
of information transfered from Y to X at time step n + 1:

TY→X = 〈tY→X(n + 1)〉 (16)

tY→X(n + 1) = lim
k→∞

tY→X(n + 1, k) (17)

TY→X(k) = 〈tY→X(n + 1, k)〉 (18)

tY→X(n + 1, k) = log2
p(xn+1 | x(k)n , yn)

p(xn+1 | x(k)n )
(19)

= i(yn; xn+1 | x(k)n ) (20)
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Again, where the processes Y and X exist on cells on a lattice system, we denote i as the index of
the destination variable Xi and i − j as the source variable Xi−j, such that we consider the local transfer
entropy across j cells in:

t(i, j, n + 1) = lim
k→∞

t(i, j, n + 1, k) (21)

t(i, j, n + 1, k) = log
p(xi,n+1|x(k)i,n , xi−j,n)

p(xi,n+1|x(k)i,n )
(22)

The local transfer entropy is defined for every channel j for the given destination i, but for proper
interpretation as information transfer j is constrained among causal information contributors to the
destination [32] (i.e., within the past light cone [33]). For CAs for example we have |j| ≤ r, being |j| ≤ 1
for ECAs as shown in Figure 2(a).

We have T(i, j, k) = 〈t(i, j, n, k)〉n as the average transfer from variable i − j to variable i. For
systems of homogeneous variables where the probability distribution functions for transfer across j
cells are estimated over all variables, it is appropriate to average over all variables also, giving:

T(j, k) = 〈t(i, j, n, k)〉i,n (23)

Importantly, the information conditioned on by the transfer entropy (i.e., that contained in the
destination’s past about its next state) is that provided by the local active information storage. (Note
however that a conditional mutual information may be either larger or smaller than the corresponding
unconditioned mutual information [3]; the conditioning removes information redundantly held by
the source and the conditioned variable, but also includes synergistic information that can only be
decoded with knowledge of both the source and conditioned variable [34].)

Also, the local transfer entropy may also be positive or negative. As reported in [5], when applied
to CAs it is typically strongly positive when measured at a glider in the same direction j as the
macroscopic motion of the glider (see the sample application to rule 54 in Figure 1(c)). Negative values
imply that the source misinforms an observer about the next state of the destination in the context
of the destination’s past. Negative values are typically only found at gliders for measurements in
the orthogonal direction to macroscopic glider motion (see the right moving gliders in Figure 1(c));
at these points, the source (still part of the domain) would suggest that the domain pattern in the
destination’s past would continue, which is misinformative. Small positive non-zero values are also
often measured in the domain and in the orthogonal direction to glider motion (see Figure 1(c)). These
correctly indicate non-trivial information transfer in these regions (e.g., indicating the absence of a
glider), though they are dominated by the positive transfer in the direction of glider motion. These
results for local transfer entropy provided the first quantitative evidence for the long-held conjecture
that particles are the information transfer agents in CAs.

We note that the transfer entropy can also be conditioned on other possible causal contributors Z
in order to account for their effects on the destination. We introduced the conditional transfer entropy
for this purpose [5,6]:

TY→X|Z = lim
k→∞

TY→X|Z(k) (24)

TY→X|Z(k) = I
[
Y; X′ | X(k), Z

]
(25)

TY→X|Z(k) =
〈

tY→X|Z(n + 1, k)
〉

(26)

tY→X|Z(n + 1, k) = log2
p(xn+1 | x(k)n , yn, zn)

p(xn+1 | x(k)n , zn)
(27)

= i(yn; xn+1 | x(k)n , zn) (28)
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This extra conditioning can exclude the (redundant) influence of a common drive Z from being
attributed to Y, and can also include the synergistic contribution when the source Y acts in conjunction
with another source Z (e.g., where X is the outcome of an XOR operation on Y and Z).

We specifically refer to the conditional transfer entropy as the complete transfer entropy (with
notation Tc

Y→X(k) and tc
Y→X(n + 1, k) for example) when it conditions on all other causal sources Z to

the destination X [5]. For CAs, this means conditioning on the only other causal contributor to the
destination. For example, for the j = 1 channel, we can write

tc(i, j = 1, n + 1) = lim
k→∞

tc(i, j = 1, n + 1, k) (29)

tc(i, j = 1, n + 1, k) = log
p(xi,n+1|x(k)i,n , xi−1,n, xi+1,n)

p(xi,n+1|x(k)i,n , xi+1,n)
(30)

with Tc(j, k) for the spatiotemporal average in homogeneous, stationary systems. To differentiate the
conditional and complete transfer entropies from the original measure, we often refer to TY→X simply
as the apparent transfer entropy [5]—this nomenclature conveys that the result is the information
transfer that is apparent without accounting for other sources.

In application to CAs, we note that the results for tc(i, j, n + 1, k) are largely the same as for
t(i, j, n + 1, k) (e.g., compare Figure 1(d) with Figure 1(c) for rule 54), with some subtle differences.
These results are discussed in detail in [5]. First, in deterministic systems such as CAs, tc(i, j, n + 1, k)
cannot be negative since by accounting for all causal sources (and without noise) there is no way that
our source can misinform us about the next state of the destination. Also, the strong transfer measured
in gliders moving in the macroscopic direction of the measured channel j is slightly stronger with
tc(i, j, n + 1, k). This is because, by accounting for the other causal source, we can be sure that there is
no other incoming glider to disturb this one, and thus attribute more influence to the source of the
ongoing glider here. Other scenarios regarding synergistic interactions in other rules are discussed
in [5].

5. Information Dynamics for a Moving Observer

In this section, we consider how these measures of information dynamics would change for a
moving observer. First, we consider the meaning of the past state x(k)n in these measures, and how it can
be interpreted as a frame of reference. We then provide a formulation to interpret these measures for an
observer with a moving frame of reference. We consider what aspects of the dynamics would remain
invariant, and finally consider what differences we may expect to see from measures of information
dynamics by moving observers.

5.1. Meaning of the Use of the Past State

Realizations x(k)n of the past state X(k) of the destination variable X play a very important role in
the measures of information dynamics presented above. We see that the active information storage
directly considers the amount of information contained in x(k)n about the next value xn+1 of X, while
the transfer entropy considers how much information the source variable adds to this next value
conditioned on x(k)n .

The role of the past state x(k)n can be understood from three complementary perspectives here:

(1) To separate information storage and transfer. As described above, we know that x(k)n provides
information storage for use in computation of the next value xn+1. The conditioning on the
past state in the transfer entropy ensures that none of that information storage is counted as
information transfer (where the source and past hold some information redundantly) [5,6].

(2) To capture the state transition of the destination variable. We note that Schreiber’s original
description of the transfer entropy [9] can be rephrased as the information provided by the
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source about the state transition in the destination. That x(k)n → xn+1 (or including redundant
information x(k)n → x(k)n+1) is a state transition is underlined in that the x(k)n are embedding vectors
[35], which capture the underlying state of the process.

(3) To examine the information composition of the next value xn+1 of the destination in the context
of the past state x(k)n of the destination. With regard to the transfer entropy, we often describe
the conditional mutual information as “conditioning out” the information contained in x(k)n , but
this nomenclature can be slightly misleading. This is because, as pointed out in Section 4.2, a
conditional mutual information can be larger or smaller than the corresponding unconditioned
form, since the conditioning both removes information redundantly held by the source variable
and the conditioned variable (e.g., if the source is a copy of the conditioned variable) and adds
information synergistically provided by the source and conditioned variables together (e.g., if
the destination is an XOR-operation of these variables). As such, it is perhaps more useful to
describe the conditioned variable as providing context to the measure, rather than “conditioning
out” information. Here then, we can consider the past state x(k)n as providing context to our
analysis of the information composition of the next value xn+1.

Note that we need k → ∞ to properly capture each perspective here (see discussion in Section 4.1
and Section 4.2 regarding conditions where finite-k is satisfactory).

Importantly, we note that the final perspective of x(k)n as providing context to our analysis of
the information composition of the computation of the next state can also be viewed as a “frame of
reference” for the analysis.

5.2. Information Dynamics with a Moving Frame of Reference

Having established the perspective of x(k)n as providing a frame of reference for our analysis,
we now examine how the measures of our framework are altered if we consider a moving frame of
reference for our observer in lattice systems.

It is relatively straightforward to define a frame of reference for an observer moving at f cells per
unit time towards the destination cell xi,n+1. Our measures consider the set of k cells backwards in
time from xi,n+1 at − f cells per time step:

x(k, f )
i− f ,n = {xi−(q+1) f ,n−q|0 ≤ q < k} (31)

= {xi−k f ,n−k+1, ..., xi−2 f ,n−1, xi− f ,n} (32)

Notice that x(k)i,n = x(k,0)
i−0,n with f = 0, as it should.

We can then define measures for each of the information dynamics in this new frame of reference
f . As shown with the double headed arrow in Figure 2(b), the local active information in this frame
becomes the local mutual information between the observer’s frame of reference x(k, f )

i− f ,n and the next
state of the destination cell xi,n+1; mathematically this is represented by:

a(i, n + 1, f ) = lim
k→∞

a(i, n + 1, k, f ) (33)

a(i, n + 1, k, f ) = log
p(x(k, f )

i− f ,n, xi,n+1)

p(x(k, f )
i− f ,n)p(xi,n+1)

(34)

Crucially, a(i, n + 1, k, f ) is still a measure of local information storage for the moving observer: it measures
how much information is contained in the past of their frame of reference about the next state
that appears in their frame. The observer, as well as the shifted measure itself, is oblivious to the
fact that these observations are in fact taken over different variables. Finally, we write A(k, f ) =
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〈a(i, n + 1, k, f )〉i,n as the average of finite-k estimates over all space-time points (i, n) in the lattice, for
stationary homogeneous systems.

As shown by directed arrows in Figure 2(b), the local transfer entropy becomes the local
conditional mutual information between the source cell xi−j,n and the destination xi,n+1, conditioned

on the moving frame of reference x(k, f )
i− f ,n:

t(i, j, n + 1, f ) = lim
k→∞

t(i, j, n + 1, k, f ) (35)

t(i, j, n + 1, k, f ) = log
p(xi,n+1|x(k, f )

i− f ,n, xi−j,n)

p(xi,n+1|x(k, f )
i− f ,n)

(36)

The set of sensible values to use for j remains those within the light-cone (i.e., those that represent
causal information sources to the destination variable); otherwise we only measure correlations rather
than information transfer. That said, we also do not consider the transfer entropy for the channel j = f
here, since this source is accounted for by the local active information. Of course, we can now also
consider j = 0 for moving frames f �= 0. Writing the local complete transfer entropy tc(i, j, n + 1, k, f )
for the moving frame trivially involves adding conditioning on the remaining causal source (that
which is not the source xi−j,n itself, nor the source xi− f ,n in the frame) to Equation (36).

Again, t(i, j, n + 1, f ) is still interpretable as a measure of local information transfer for the moving
observer: it measures how much information was provided by the source cell about the state transition
of the observer’s frame of reference. The observer is oblivious to the fact that the states in its frame of
reference are composed of observations taken over different variables.

Also, note that while t(i, j, n + 1, f ) describes the transfer across j cells in a stationary frame as
observed in a frame moving at speed f , we could equally express it as the transfer observed across
j − f cells in the frame f .

Finally, we write T(j, k, f ) = 〈t(i, j, n + 1, k, f )〉i,n as the average of finite-k estimates over all
space-time points (i, n) in the lattice, for stationary homogeneous systems.

In the next two subsections, we describe what aspects of the information dynamics remain
invariant, and how we can expect the measures to change, with a moving frame of reference.

5.3. Invariance

This formulation suggests the question of why we consider the same set of information sources j
in the moving and stationary frames (i.e., those within the light-cone), rather than say a symmetric
set of sources around the frame of reference (as per a stationary frame). To examine this, consider the
local (single-site) entropy h(i, n + 1) = log p(xi,n+1) as a sum of incrementally conditioned mutual
information terms as presented in [6]. For ECAs (a deterministic system), in the stationary frame of
reference, this sum is written as:

h(i, n + 1) =i(x(k)i,n ; xi,n+1) + i(xi−j,n; xi,n+1|x(k)i,n )

+ i(xi+j,n; xi,n+1|x(k)i,n , xi−j,n) (37)

h(i, n + 1) =a(i, n + 1, k) + t(i, j, n + 1, k)

+ tc(i,−j, n + 1, k) (38)

with either j = 1 or j = −1. Since h(i, n + 1) represents the information required to predict the state at
site (i, n + 1), Equation (37) shows that one can obtain this by considering the information contained
in the past of the destination, then the information contributed through channel j that was not in this
past, then that contributed through channel −j which was not in this past or the channel j. The first
term here is the active information storage, the first local conditional mutual information term here is a
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transfer entropy, the second is a complete transfer entropy. Considering any sources in addition to or
instead of these will only return correlations to the information provided by these entities.

Note that there is no need to take the limit k → ∞ for the correctness of Equation (37) (unless
one wishes to properly interpret the terms as information storage and transfer). In fact, the sum of
incrementally conditional mutual information terms in Equation (37) is invariant as long as all terms
use the same context. We can also consider a moving frame of reference as this context and so construct
this sum for a moving frame of reference f . Note that the choice of f determines which values to use
for j, so we write an example with f = 1:

h(i, n + 1) = a(i, n + 1, k, f = 1) + t(i, j = 0, n + 1, k, f = 1)

+ tc(i, j = −1, n + 1, k, f = 1) (39)

Obviously this is true because the set of causal information contributors is invariant, and we are
merely considering the same causal sources but in a different context. Equation (39) demonstrates that
prediction of the next state for a given cell in a moving frame of reference depends on the same causal
information contributors. Considering the local transfer entropy from sources outside the light cone
instead may be insufficient to predict the next state [32].

Choosing the frame of reference here merely sets the context for the information measures,
and redistributes the attribution of the invariant amount of information in the next value xi,n+1
between the various storage and transfer sources. This could be understood in terms of the different
context redistributing the information atoms in a partial information diagram (see [34]) of the sources to
the destination.

Note that we examine a type of ether relativity for local information dynamics. That is to say, there
is a preferred stationary frame of reference f = 0 in which the velocity for information is bounded
by the speed of light c. The stationary frame of reference is preferred because it is the only frame that
has an even distribution of causal information sources on either side, while other frames observe
an asymmetric distribution of causal information sources. It is also the only frame of reference that
truly represents the information storage in the causal variables. As pointed out in Section 1, we do
not consider a type of relativity where the rules of physics (i.e., CA rules) are invariant, remaining
observationally symmetric around the frame of reference.

5.4. Hypotheses and Expectations

In general, we expect the measures a(i, n, k, f ) and t(i, j, n, k, f ) to be different from the
corresponding measurements in a stationary frame of reference. Obviously, this is because the frames
of reference x(k, f )

i− f ,n provide in general different contexts for the measurements. As exceptional cases
however, the measurements would not change if:

• The two contexts or frames of reference in fact provide the same information redundantly about
the next state (and in conjunction with the sources for transfer entropy measurements).

• Neither context provides any relevant information about the next state at all.

Despite such differences to the standard measurements, as described in Section 5.2 the
measurements in a moving frame of reference are still interpretable as information storage and
transfer for the moving observer, and still provide relevant insights into the dynamics of the system.

In the next section, we will examine spatiotemporal information profiles of CAs, as measured by
a moving observer. We hypothesize that in a moving frame of reference f , we shall observe:

• Regular background domains appearing as information storage regardless of movement of the
frame of reference, since their spatiotemporal structure renders them predictable in both moving
and stationary frames. In this case, both the stationary and moving frames would retain the same
information redundantly regarding how their spatiotemporal pattern evolves to give the next
value of the destination in the domain;
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• Gliders moving at the speed of the frame appearing as information storage in the frame, since
the observer will find a large amount of information in their past observations that predict the
next state observed. In this case, the shift of frame incorporates different information into the new
frame of reference, making that added information appear as information storage;

• Gliders that were stationary in the stationary frame appearing as information transfer in the
channel j = 0 when viewed in moving frames, since the j = 0 source will add a large amount of
information for the observer regarding the next state they observe. In this case, the shift of frame
of reference removes relevant information from the new frame of reference, allowing scope for the
j = 0 source to add information about the next observed state.

6. Results and Discussion

To investigate the local information dynamics in a moving frame of reference, we study ECA
rule 54 here with a frame of reference moving at f = 1 (i.e., one step to the right per unit time). Our
experiments used 10,000 cells initialized in random states, with 600 time steps captured for estimation
of the probability distribution functions (similar settings used in introducing the local information
dynamics in [5–7]). We fixed k = 16 for our measures (since the periodic background domain for
ECA rule 54 has a period of 4, this captures an adequate amount of history to properly separate
information storage and transfer as discussed in [5]). We measure the local information dynamics
measures in both the stationary frame of reference (Figure 1) and the moving frame of reference f = 1
(Figure 3). The results were produced using the “Java Information Dynamics Toolkit” [36], and can be
reproduced using the Matlab/Octave script movingFrame.m in the demos/octave/CellularAutomata
example distributed with this toolkit.

We first observe that the background domain is captured as a strong information storage process
irrespective of whether the frame of reference is moving (with a(i, n, k = 16, f = 1), Figure 3(b))
or stationary (with a(i, n, k = 16, f = 0), Figure 1(b)). That is to say that the frame of reference is
strongly predictive of the next state in the domain, regardless of whether the observer is stationary
or moving. This is as expected, because the background domain is not only temporally periodic,
but spatiotemporally periodic, and the moving frame provides much redundant information with the
stationary frame about the next observed state.

While it is not clear from the local profiles however, the average active information storage is
significantly lower for the moving frame than the stationary frame (A(i, n, k = 16, f = 1) = 0.468 bits
versus A(i, n, k = 16, f = 0) = 0.721 bits). At first glance, this seems strange since the background
domain is dominated by information storage, and the observer in both frames should be able to
adequately detect the periodic domain process. On closer inspection though, we can see that the
storage process in the domain is significantly more disturbed by glider incidence in the moving frame,
with a larger number and magnitude of negative local values encountered, and more time for the
local values to recover to their usual levels in the domain. This suggests that the information in the
moving frame is not fully redundant with the stationary frame, which could be explained in that
the stationary frame (being centred in the light cone) is better able to retain information about the
surrounding dynamics that could influence the next state. The moving frame (moving at the speed of
light itself) is not able to contain any information regarding incoming dynamics from neighboring cells.
Thus, in the moving frame, more of the (invariant) information in the next observed state is distributed
amongst the transfer sources.

As expected also, we note that gliders that are moving at the same speed as the frame of
reference f = 1 are now considered as information storage in that frame. That is, the right moving
gliders previously visible as misinformative storage in Figure 1(b) now blend in with the background
information storage process in the moving frame in Figure 3(b). As previously discussed, this is
because the moving frame brings new information for the observer about these gliders into the frame
of reference.

Figure 3(b) also shows that it is only gliders moving in orthogonal directions to the frame f = 1
(including blinkers, which were formerly considered stationary) that contain negative local active
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information storage, and are therefore information transfer processes in this frame. Again, this is as
expected, since these gliders contribute new information about the observed state in the context of
the frame of reference. For gliders that now become moving in the moving frame of reference, this is
because the information about those gliders is no longer in the observer’s frame of reference but can
now be contributed to the observer by the neighboring sources. To understand these processes in more
detail however, we consider the various sources of that transfer via the transfer entropy measurements
in Figure 3(c)–Figure 3(f).

First, we focus on the vertical gliders that were stationary in the stationary frame of reference (i.e.,
the blinkers): we had expected that these entities would be captured as information transfer processes
in the j = 0 (vertical) channel in the j = 1 moving frame. This expectation is upheld, but the dynamics
are more complicated than the foreseen in our hypothesis. Here, we see that the apparent transfer
entropy from the j = 0 source alone does not dominate the dynamics for this vertical glider (Figure 3(c)).
Instead, the information transfer required to explain the vertical gliders is generally a combination of
both apparent and complete transfer entropy measures, requiring the j = −1 source for interpretation
as well. The full information may be accounted for by either taking Figure 3(c) plus Figure 3(f) or
Figure 3(e) plus Figure 3(d) (as per the two different orders of considering sources to sum the invariant
information in Equation (38)). Further, we note that some of the points within the glider are even
considered as strong information storage processes - note how there are positive storage points amongst
the negative points (skewed by the moving frame) for this glider in Figure 3(b). These vertical gliders
are thus observed in this frame of reference to be a complex structure consisting of some information
storage, as well as information transfer requiring both other sources for interpretation. This is a perfectly
valid result, demonstrating that switching frames of reference does not lead to the simple one-to-one
correspondence between individual information dynamics that one may naively expect.
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Figure 3. Cont.
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Figure 3. Measures of local information dynamics applied to ECA rule 54, computed in frame of
reference f = 1, i.e., moving 1 cell to the right per unit time (all units in (b)–(f) are in bits). Note that raw
states are the same as in Figure 1. (a) Raw CA; (b) Local active information storage a(i, n, k = 16, f = 1);
(c) Local apparent transfer entropy t(i, j = 0, n, k = 16, f = 1); (d) Local complete transfer entropy
tc(i, j = 0, n, k = 16, f = 1); (e) Local apparent transfer entropy t(i, j = −1, n, k = 16, f = 1); (f) Local
complete transfer entropy tc(i, j = −1, n, k = 16, f = 1).

We note a similar result for the left-moving gliders in the j = −1 channel, which are considering
moving both in the stationary and j = 1 frames of reference: here we see that the complete transfer
entropy from the j = 0 source (Figure 3(d)) is required to completely explain some of these gliders.
What is interesting is that the (extra) complete transfer entropy from the j = 0 source orthogonal to
the glider is a greater proportion here than for orthogonal sources in the stationary frame (see the
complete transfer entropy for the right moving gliders in Figure 1(d)). This suggests that there was
less information pertinent to these gliders in the moving frame of reference than there was in the
stationary frame. Clearly, a change of frame of reference can lead to complicated interplays between
the information dynamics in each frame, with changes in both the magnitude and source attribution of
the information.

Finally, note that while one can easily write down the differences between the measures in each
frame (e.g., subtracting Equation (11) from Equation (34)), there do not appear to be any clear general
principals regarding how the information will be redistributed between storage and transfers for an
observer, since this depends on the common information between each frame of reference.

7. Conclusions

In this paper, we have presented a new interpretation of a framework for local information
dynamics (including transfer entropy), which incorporates a moving frame of reference for the observer.
This interpretation was inspired by the idea of investigating relativistic effects on information dynamics,
and indeed contributes some interesting perspectives to this field.

We reported the results from investigations to explore this perspective applied to cellular automata,
showing that moving elements of coherent spatiotemporal structure (particles or gliders) are identified
as information transfer in frames in which they are moving and as information storage in frames where
they are stationary, as expected. Crucially, the extent to which the shifted frame of reference alters the
results depends on whether the shift of frame retains, adds or removes relevant information regarding
the source-destination interaction. We showed examples illustrating each of these scenarios, and it
is important to note that we showed all three to occur at different local points in the same coupled
system (i.e., these differences are not mutually exclusive).
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Future work may include exploring mathematically formalizing transformation laws between
individual information dynamics under shifts of frames of reference, as well as time-reversibility, and
the use of different frames of reference as a classification tool.
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Abstract: We propose a thermodynamic interpretation of transfer entropy near equilibrium, using a
specialised Boltzmann’s principle. The approach relates conditional probabilities to the probabilities
of the corresponding state transitions. This in turn characterises transfer entropy as a difference of two
entropy rates: the rate for a resultant transition and another rate for a possibly irreversible transition
within the system affected by an additional source. We then show that this difference, the local
transfer entropy, is proportional to the external entropy production, possibly due to irreversibility.
Near equilibrium, transfer entropy is also interpreted as the difference in equilibrium stabilities
with respect to two scenarios: a default case and the case with an additional source. Finally, we
demonstrated that such a thermodynamic treatment is not applicable to information flow, a measure
of causal effect.

Keywords: transfer entropy; information transfer; entropy production; irreversibility;
Kullback–Leibler divergence; thermodynamic equilibrium; Boltzmann’s principle; causal effect

1. Introduction

Transfer entropy has been introduced as an information-theoretic measure that quantifies the
statistical coherence between systems evolving in time [1]. Moreover, it was designed to detect
asymmetry in the interaction of subsystems by distinguishing between “driving” and “responding”
elements. In constructing the measure, Schreiber considered several candidates as measures of
directional information transfer, including symmetric mutual information, time-delayed mutual
information, as well as asymmetric conditional information. All these alternatives were argued to
be inadequate for determining the direction of information transfer between two, possibly coupled,
processes.

In particular, defining information transfer simply as the dependence of the next state of the
receiver on the previous state of the source [2] is incomplete according to Schreiber’s criteria requiring
the definition to be both directional and dynamic. Instead, the (predictive) information transfer is defined
as the average information contained in the source about the next state of the destination in the context
of what was already contained in the destination’s past.

Following the seminal work of Schreiber [1] numerous applications of transfer entropy have
been successfully developed, by capturing information transfer within complex systems, e.g.,
the stock market [3], food webs [4], EEG signals [5], biochemicals [6], cellular automata and
distributed computation in general [7–10], modular robotics [11], random and small-world Boolean
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networks [12,13], inter-regional interactions within a brain [14], swarm dynamics [15], cascading
failures in power grids [16], etc. Also, several studies further capitalised on transition probabilities
used in the measure, highlighting fundamental connections of the measure to entropy rate and
Kullback–Leibler divergence noted by Kaiser and Schreiber [17], as well as causal flows [18]. At
the same time there are several recent studies investigating ties between information theory and
thermodynamics [19–23]. This is primarily through Landauer’s principle [24], which states that
irreversible destruction of one bit of information results in dissipation of at least kT ln 2 J of energy
(T is the absolute temperature and k is Boltzmann’s constant.) into the environment (i.e., an entropy
increase in the environment by this amount). (Maroney [25] argues that while a logically irreversible
transformation of information does generate this amount of heat, it can in fact be accomplished by a
thermodynamically reversible mechanism.)

Nevertheless, transfer entropy per se has not been precisely interpreted thermodynamically.
Of course, as a measure of directed information transfer, it does not need to have an explicit
thermodynamic meaning. Yet, one may still put forward several questions attempting to cast the
measure in terms more familiar to a physicist rather than an information theorist or a computer
scientist: Is transfer entropy a measure of some entropy transferred between subsystems or coupled
processes? Is it instead an entropy of some transfer happening within the system under consideration
(and what is then the nature of such transfer)? If it is simply a difference between some entropy rates,
as can be seen from the definition itself, one may still inquire about the thermodynamic nature of the
underlying processes.

Obviously, once the subject relating entropy definitions from information theory and
thermodynamics is touched, one may expect vigorous debates that have been ongoing since Shannon
introduced the term entropy itself. While this paper will attempt to produce a thermodynamic
interpretation of transfer entropy, it is out of scope to comment here on rich connections between
Boltzmann entropy and Shannon entropy, or provide a review of quite involved discussions on the
topic. It suffices to point out prominent works of Jaynes [26,27] who convincingly demonstrated that
information theory can be applied to the problem of justification of statistical mechanics, producing
predictions of equilibrium thermodynamic properties. The statistical definition of entropy is widely
considered more general and fundamental than the original thermodynamic definition, sometimes
allowing for extensions to the situations where the system is not in thermal equilibrium [23,28]. In this
study, however, we treat the problem of finding a thermodynamic interpretation of transfer entropy
somewhat separately from the body of work relating Boltzmann and Shannon entropies—and the
reason for this is mainly that, even staying within Jaynes’ framework, one still needs to provide a
possible thermodynamic treatment for transfer entropy per se. As will become clear, this task is not
trivial, and needs to be approached carefully.

Another contribution of this paper is a clarification that similar thermodynamic treatment is not
applicable to information flow—a measure introduced by Ay and Polani [18] in order to capture causal
effect. That correlation is not causation is well-understood. Yet while authors increasingly consider
the notions of information transfer and information flow and how they fit with our understanding
of correlation and causality [1,18,29–34], several questions nag. Is information transfer, captured by
transfer entropy, akin to causal effect? If not, what is the distinction between them? When examining
the “effect” of one variable on another (e.g., between brain regions), should one seek to measure
information transfer or causal effect?

Unfortunately, these concepts have become somewhat tangled in discussions of information
transfer. Measures for both predictive transfer [1] and causal effect [18] have been inferred to capture
information transfer in general, and measures of predictive transfer have been used to infer causality
[33,35–37] with the two sometimes (problematically) directly equated (e.g., [29,32,34,38–40]). The study
of Lizier and Prokopenko [41] clarified the relationship between these concepts and described the
manner in which they should be considered separately. Here, in addition, we demonstrate that a
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thermodynamic interpretation of transfer entropy is not applicable to causal effect (information flow),
and clarify the reasons behind this.

This paper is organised as follows. We begin with Section 2 that introduces relevant
information-theoretic measures both in average and local terms. Section 3 defines the system and
the range of applicability of our approach. In providing a thermodynamic interpretation for transfer
entropy in Section 4 we relate conditional probabilities to the probabilities of the corresponding
state transitions, and use a specialised Boltzmann’s principle. This allows us to define components
of transfer entropy with the entropy rate of (i) the resultant transition and (ii) the internal entropy
production. Sub-section 4.3 presents an interpretation of transfer entropy near equilibrium. The
following Section 5 discusses the challenges for supplying a similar interpretation to causal effect
(information flow). A brief discussion in Section 6 concludes the paper.

2. Definitions

In the following sections we describe relevant background on transfer entropy and causal effect
(information flow), along some technical preliminaries.

2.1. Transfer Entropy

Mutual information IY;X has been something of a de facto measure for information transfer
between Y and X in complex systems science in the past (e.g., [42–44]). A major problem however is
that mutual information contains no inherent directionality. Attempts to address this include using the
previous state of the “source” variable Y and the next state of the “destination” variable X′ (known
as time-lagged mutual information IY;X′ ). However, Schreiber [1] points out that this ignores the more
fundamental problem that mutual information measures the statically shared information between the
two elements. (The same criticism applies to equivalent non-information-theoretic definitions such as
that in [2].)

To address these inadequacies Schreiber introduced transfer entropy [1] (TE), the deviation from
independence (in bits) of the state transition (from the previous state to the next state) of an information
destination X from the previous state of an information source Y:

TY→X(k, l) = ∑
xn+1,x(k)n ,y(l)

p(xn+1, x(k)n , y(l)n ) log2
p(xn+1 | x(k)n , y(l)n )

p(xn+1 | x(k)n )
(1)

Here n is a time index, x(k)n and y(l)n represent past states of X and Y (i.e., the k and l past values of
X and Y up to and including time n). Schreiber points out that this formulation is a truly directional,
dynamic measure of information transfer, and is a generalisation of the entropy rate to more than one
element to form a mutual information rate. That is, transfer entropy may be seen as the difference
between two entropy rates:

TY→X(k, l) = hX − hX,Y (2)

where hX is the entropy rate:

hX = −∑ p(xn+1, x(k)n ) log2 p(xn+1 | x(k)n ) (3)

and hX,Y is a generalised entropy rate conditioning on the source state as well:

hX,Y = −∑ p(xn+1, x(k)n , y(l)n ) log2 p(xn+1 | x(k)n , y(l)n ) (4)

The entropy rate hX accounts for the average number of bits needed to encode one additional state of
the system if all previous states are known [1], while the entropy rate hX,Y is the entropy rate capturing
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the average number of bits required to represent the value of the next destination’s state if source states
are included in addition. Since one can always write

hX = −∑ p(xn+1, x(k)n ) log2 p(xn+1 | x(k)n ) = −∑ p(xn+1, x(k)n , y(l)n ) log2 p(xn+1 | x(k)n ) (5)

it is easy to see that the entropy rate hX is equivalent to the rate hX,Y when the next state of destination
is independent of the source [1]:

p(xn+1 | x(k)n ) = p(xn+1 | x(k)n , y(l)n ) (6)

Thus, in this case the transfer entropy reduces to zero.
Similarly, the TE can be viewed as a conditional mutual information I(Y(l); X′ | X(k)) [17], that is

as the average information contained in the source about the next state X′ of the destination that was
not already contained in the destination’s past X(k):

TY→X(k, l) = IY(l) ;X′ |X(k) = HX′ |X(k) − HX′ |X(k) ,Y(l) (7)

This could be interpreted (following [44,45]) as the diversity of state transitions in the destination
minus assortative noise between those state transitions and the state of the source.

Furthermore, we note that Schreiber’s original description can be rephrased as the information
provided by the source about the state transition in the destination. That x(k)n → xn+1 (or including
redundant information x(k)n → x(k)n+1) is a state transition is underlined in that the x(k)n are embedding
vectors [46], which capture the underlying state of the process. Indeed, since all of the above
mathematics for the transfer entropy is equivalent if we consider the next source state x(k)n+1 instead of
the next source value xn+1, we shall adjust our notation from here onwards to consider the next source
state x(k)n+1, so that we are always speaking about interactions between source states yn and destination
state transitions xn → xn+1 (with embedding lengths l and k implied).

Importantly, the TE remains a measure of observed (conditional) correlation rather than direct
effect. In fact, the TE is a non-linear extension of a concept known as the “Granger causality” [47], the
nomenclature for which may have added to the confusion associating information transfer and causal
effect. Importantly, as an information-theoretic measure based on observational probabilities, the TE is
applicable to both deterministic and stochastic systems.

2.2. Local Transfer Entropy

Information-theoretic variables are generally defined and used as an average uncertainty or
information. We are interested in considering local information-theoretic values, i.e., the uncertainty or
information associated with a particular observation of the variables rather than the average over all
observations. Local information-theoretic measures are sometimes called point-wise measures [48,49].
Local measures within a global average are known to provide important insights into the dynamics of
non-linear systems [50].

Using the technique originally described in [7], we observe that the TE is an average (or expectation
value) of a local transfer entropy at each observation n, i.e.,:

TY→X = 〈tY→X(n + 1)〉 (8)

tY→X(n + 1) = log2
p(xn+1 | xn, yn)

p(xn+1 | xn)
(9)

with embedding lengths l and k implied as described above. The local transfer entropy quantifies
the information contained in the source state yn about the next state of the destination xn+1 at time
step n + 1, in the context of what was already contained in the past state of the destination xn. The
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measure is local in that it is defined at each time n for each destination X in the system and each causal
information source Y of the destination.

The local TE may also be expressed as a local conditional mutual information, or a difference
between local conditional entropies:

tY→X(n + 1) = i(yn; xn+1 | xn) = h(xn+1 | xn)− h(xn+1 | xn, yn) (10)

where local conditional mutual information is given by

i(yn; xn+1 | xn) = log2
p(xn+1 | xn, yn)

p(xn+1 | xn)
(11)

and local conditional entropies are defined analogously:

h(xn+1 | xn) = − log2 p(xn+1 | xn) (12)

h(xn+1 | xn, yn) = − log2 p(xn+1 | xn, yn) (13)

The average transfer entropy TY→X(k) is always positive but is bounded above by the information
capacity of a single observation of the destination. For a discrete system with b possible observations
this is log2 b bits. As a conditional mutual information, it can be either larger or smaller than the
corresponding mutual information [51]. The local TE however is not constrained so long as it averages
into this range: it can be greater than log2 b for a large local information transfer, and can also in fact
be measured to be negative. Local transfer entropy is negative where (in the context of the history of
the destination) the probability of observing the actual next state of the destination given the source
state p(xn+1 | xn, yn), is lower than that of observing that actual next state independently of the
source p(xn+1 | xn). In this case, the source variable is actually misinformative or misleading about the
state transition of the destination. It is possible for the source to be misleading where other causal
information sources influence the destination, or in a stochastic system. Full examples are described by
Lizier et al. [7].

2.3. Causal Effect as Information Flow

As noted earlier, predictive information transfer refers to the amount of information that a source
variable adds to the next state of a destination variable; i.e., “if I know the state of the source, how much
does that help to predict the state of the destination?”. Causal effect, on the contrary, refers to the extent
to which the source variable has a direct influence or drive on the next state of a destination variable,
i.e., “if I change the state of the source, to what extent does that alter the state of the destination?”.
Information from causal effect can be seen to flow through the system, like injecting dye into a river [18].

It is well-recognised that measurement of causal effect necessitates some type of perturbation or
intervention of the source so as to detect the effect of the intervention on the destination (e.g., see [52]).
Attempting to infer causality without doing so leaves one measuring correlations of observations,
regardless of how directional they may be [18]. In this section, we adopt the measure information flow
for this purpose, and describe a method introduced by Lizier and Prokopenko [41] for applying it on a
local scale.

Following Pearl’s probabilistic formulation of causal Bayesian networks [52], Ay and Polani [18]
consider how to measure causal information flow via interventional conditional probability distribution
functions. For instance, an interventional conditional PDF p(y | ŝ) considers the distribution of y
resulting from imposing the value of ŝ. Imposing means intervening in the system to set the value
of the imposed variable, and is at the essence of the definition of causal information flow. As an
illustration of the difference between interventional and standard conditional PDFs, consider two
correlated variables S and Y: their correlation alters p(y | s) in general from p(y). If both variables
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are solely caused by another variable G however, then even where they remain correlated we have
p(y | ŝ) = p(y) because imposing a value ŝ has no effect on the value of y.

In a similar fashion to the definition of transfer entropy as the deviation of a destination from
stochastic independence on the source in the content of the destination’s past, Ay and Polani propose
the measure information flow as the deviation of the destination X from causal independence on the
source Y imposing another set of nodes S. Mathematically, this is written as:

Ip(Y → X | Ŝ) = ∑
s

p(s)∑
y

p(y | ŝ)∑
x

p(x | ŷ, ŝ) log2
p(x | ŷ, ŝ)

∑y′ p(y′ | ŝ)p(x | ŷ′, ŝ)
(14)

The value of the measure is dependent on the choice of the set of nodes S. It is possible to
obtain a measure of apparent causal information flow Ip(Y → X) from Y to X without any S (i.e.,
S = �), yet this can be misleading. In particular, it ignores causal information flow arising from
interactions of the source with another source variable. For example, if x = y XOR s and p(y, s) = 0.25
for each combination of binary y and s, then Ip(Y → X) = 0 despite the clear causal effect of Y, while
Ip(Y → X | Ŝ) = 1 bit. Also, we may have Ip(Y → X) > 0 only because Y effects S which in turn
effects X; where we are interested in direct causal information flow from Y to X only Ip(Y → X | Ŝ)

validly infers no direct causal effect.
Here we are interested in measuring the direct causal information flow from Y to X, so we must

either include all possible other sources in S or at least include enough sources to “block” (A set of
nodes U blocks a path of causal links where there is a node v on the path such that either:

• v ∈ U and the causal links through v on the path are not both into v, or
• the causal links through v on the path are both into v, and v and all its causal descendants are not

in U.)

all non-immediate directed paths from Y to X [18]. The minimum to satisfy this is the set of all direct
causal sources of X excluding Y, including any past states of X that are direct causal sources. That is,
in alignment with transfer entropy S would include X(k).

The major task in computing Ip(Y → X | Ŝ) is the determination of the underlying interventional
conditional PDFs in Equation (14). By definition these may be gleaned by observing the results of
intervening in the system, however this is not possible in many cases.

One alternative is to use detailed knowledge of the dynamics, in particular the structure of the
causal links and possibly the underlying rules of the causal interactions. This also is often not available
in many cases, and indeed is often the very goal for which one turned to such analysis in the first place.
Regardless, where such knowledge is available it may allow one to make direct inferences.

Under certain constrained circumstances, one can construct these values from observational
probabilities only [18], e.g., with the “back-door adjustment” [52]. A particularly important constraint
on using the back-door adjustment here is that all {s, y} combinations must be observed.

2.4. Local Information Flow

A local information flow can be defined following the argument that was used to define local
information transfer:

f (y → x | ŝ) = log2
p(x | ŷ, ŝ)

∑y′ p(y′ | ŝ)p(x | ŷ′, ŝ)
(15)

The meaning of the local information flow is slightly different however. Certainly, it is an attribution
of local causal effect of y on x were ŝ imposed at the given observation (y, x, s). However, one must
be aware that Ip(Y → X | Ŝ) is not the average of the local values f (y → x | ŝ) in exactly the same
manner as the local values derived for information transfer. Unlike standard information-theoretical
measures, the information flow is averaged over a product of interventional conditional probabilities
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(p(s)p(y | ŝ)p(x | ŷ, ŝ), see Equation (14) which in general does not reduce down to the probability of
the given observation p(s, y, x) = p(s)p(y | s)p(x | y, s). For instance, it is possible that not all of the
tuples {y, x, s} will actually be observed, so averaging over observations would ignore the important
contribution that any unobserved tuples provide to the determination of information flow. Again, the
local information flow is specifically tied not to the given observation at time step n but to the general
configuration (y, x, s), and only attributed to the associated observation of this configuration at time n.

3. Preliminaries

3.1. System Definition

Let us consider the non-equilibrium thermodynamics of a physical system close to equilibrium.
At any given moment in time, n, the thermodynamic state of the physical system X is given by a vector
x ∈ Rd, comprising d variables, for instance the (local) pressure, temperature, chemical concentrations
and so on. A state vector completely describes the physical macrostate as far as predictions of the
outcomes of all possible measurements performed on the system are concerned [53]. The state space of
the system is the set of all possible states of the system.

The thermodynamic state is generally considered as a fluctuating entity so that transition
probabilities like p (xn+1|xn) are clearly defined and can be related to a sampling procedure.
Each macrostate can be realised by a number of different microstates consistent with the given
thermodynamic variables. Importantly, in the theory of non-equilibrium thermodynamics close to
equilibrium, the microstates belonging to one macrostate x are equally probable.

3.2. Entropy Definitions

The thermodynamic entropy was originally defined by Clausius as a state function S that satisfies

SB − SA =
∫ B

A
dqrev/T (16)

where qrev is the heat transferred to an equilibrium thermodynamic system during a reversible process
from state A to state B. Note that this path integral is the same for all reversible paths between the past
and next states.

It was shown by Jaynes that thermodynamic entropy could be interpreted, from the perspective
of statistical mechanics, as a measure of the amount of information about the microstate of a system
that an observer lacks if they know only the macrostate of the system [53].

This is encapsulated in the famous Boltzmann’s equation S = k log W, where k is Boltzmann’s
constant and W is the number of microstates corresponding to a given macrostate (an integer greater
than or equal to one). While it is not a mathematical probability between zero and one, it is sometimes
called “thermodynamic probability”, noting that W can be normalized to a probability p = W/N,
where N is the number of possible microstates for all macrostates.

The Shannon entropy that corresponds to the Boltzmann entropy S = k log W is the uncertainty
in the microstate that has produced the given macrostate. That is, given the number W of microscopic
configurations that correspond to the given macrostate, we have pi = 1/W for each equiprobable
microstate i. As such, we can compute the local entropy for each of these W microstates as
− log2 1/W = log2 W bits. Note that the average entropy across all of these equiprobable microstates
is log2 W bits also. This is equivalent to the Boltzmann entropy up to Boltzmann’s constant k and the
base of the logarithms (see [54,55] for more details).
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3.3. Transition Probabilities

A specialisation of Boltzmann’s principle by Einstein [56], for two states with entropies S and
S0 and “relative probability” Wr (the ratio of numbers W and W0 that account for the numbers of
microstates in the macrostates with S and S0 respectively), is given by:

S − S0 = k log Wr (17)

The expression in these relative terms is important, as pointed out by Norton [57], because the
probability Wr is the probability of the transition between the two states under the system’s normal time
evolution.

In the example considered by Einstein [56,57], S0 is the entropy of an (equilibrium) state, e.g., “a
volume V0 of space containing n non-interacting, moving points, whose dynamics are such as to favor
no portion of the space over any other”, while S is the entropy of the (non-equilibrium) state with the
“same system of points, but now confined to a sub-volume V of V0”. Specifically, Einstein defined the
transition probability Wr = (V/V0)

n, yielding

S − S0 = kn log(V/V0) (18)

Since dynamics favour no portion of the space over any other, all the microstates are equiprobable.

3.4. Entropy Production

In general, the variation of entropy of a system ΔS is equal to the sum of the internal entropy
production σ inside the system and the entropy change due to the interactions with the surroundings
ΔSext:

ΔS = σ + ΔSext (19)

In the case of a closed system, ΔSext is given by the expression

ΔSext =
∫

dq/T (20)

where q represents the heat flow received by the system from the exterior and T is the temperature of
the system. This expression is often written as

σ = ΔS − ΔSext = (S − S0)− ΔSext (21)

so that when the transition from the initial state S0 to the final state S is irreversible, the entropy
production σ > 0, while for reversible processes σ = 0, that is

S − S0 =
∫

dqrev/T (22)

We shall consider another state vector, y, describing a state of a part Y of the exterior possibly coupled
to the system represented by X. In other words, X and Y may or may not be dependent. In general,
we shall say that σy is the internal entropy production in the context of some source Y, while ΔSext is
the entropy production attributed to Y.

Alternatively, one may consider two scenarios for such a general physical system. In the first
scenario, the entropy changes only due to reversible transitions, amounting to S − S0. In the second
scenario, the entropy changes partly irreversibly due to the interactions with the external environment
affected by y, but still achieves the same total change S − S0.
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3.5. Range of Applicability

In an attempt to provide a thermodynamic interpretation of transfer entropy we make two
important assumptions, defining the range of applicability for such an interpretation. The first
one relates the transition probability Wr1 of the system’s reversible state change to the conditional
probability p(xn+1 | xn), obtained by sampling the process X:

p(xn+1 | xn) =
1

Z1
Wr1 (23)

where Z1 is a normalisation factor that depends on xn. According to the expression for transition
probability (17), under this assumption the conditional probability of the system’s transition from state
xn to state xn+1 corresponds to some number Wr1 , such that S(xn+1)− S(xn) = k log Wr1 , and hence

p(xn+1 | xn) =
1

Z1
e(S(xn+1)−S(xn))/k (24)

The second assumption relates the transition probability Wr2 of the system’s possibly irreversible
internal state change, due to the interactions with the external surroundings represented in the state
vector y, to the conditional probability p(xn+1 | xn, yn), obtained by sampling the systems X and Y:

p(xn+1 | xn, yn) =
1

Z2
Wr2 (25)

Under this assumption the conditional probability of the system’s (irreversible) transition from state
xn to state xn+1 in the context of yn, corresponds to some number Wr2 , such that σy = k log Wr2 , where
σy is the system’s internal entropy production in the context of y, and thus

p(xn+1 | xn, yn) =
1

Z2
eσy/k (26)

where Z2 is a normalisation factor that depends on xn.

3.6. An Example: Random Fluctuation Near Equilibrium

Let us consider the above-defined stochastic process X for a small random fluctuation
around equilibrium:

xn+1 = Λxn + ξ (27)

where ξ is a multi-variate Gaussian noise process, with covariance matrix Σξ , uncorrelated in time.
Starting at time n with state xn having entropy S (xn), the state develops into xn+1, with entropy
S (xn+1).

From the probability distribution function of the above multi-variate Gaussian process, we obtain

p (xn+1|xn) =
1
Z

e−
1
2 (xn+1−Λxn)

TΣ−1
ξ (xn+1−Λxn) (28)

We now demonstrate that this expression concurs with the corresponding expression obtained
under assumption (24). To do so we expand the entropies around x = 0 with entropy S(0):

S (xn) = S(0)− k
1
2

xn
TΣ−1

x xn (29)

where Σx is the covariance matrix of the process X.
Then, according to the assumption (24)

p(xn+1 | xn) =
1

Z1
e(S(xn+1)−S(xn))/k =

1
Z1

e−
1
2 (xn+1

TΣ−1
x xn+1−xn

TΣ−1
x xn) =

1
Z̃1

e−
1
2 xn+1

TΣ−1
x xn+1 (30)
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where the term e
1
2 xn

TΣ−1xn is absorbed into the normalisation factor being only dependent on xn. In
general [58,59], we have

Σx =
∞

∑
j=0

Λj Σξ ΛjT
(31)

Given the quasistationarity of the relaxation process, assumed near an equilibrium, Λ → 0, and hence
Σx → Σξ . Then the Equation (30) reduces to

p(xn+1 | xn) =
1

Z̃1
e−

1
2

(
xn+1

TΣ−1
ξ xn+1

)
(32)

The last expression concurs with Equation (28) when Λ → 0.

4. Transfer Entropy: Thermodynamic Interpretation

4.1. Transitions Near Equilibrium

Supported by this background, we proceed to interpret transfer entropy via transitions between
states. In doing so, we shall operate with local information theoretic measures (such as the local
transfer entropy (9)), as we are dealing with (transitions between) specific states yn, xn, xn+1, etc. and
not with all possible state-spaces X, Y, etc. containing all realizations of specific states.

Transfer entropy is a difference not between entropies, but rather between entropy rates or
conditional entropies, specified on average by Equations (2) or (7), or for local values by Equation (10):

tY→X(n + 1) = h(xn+1 | xn)− h(xn+1 | xn, yn) (33)

As mentioned above, the first assumption (23), taken to define the range of applicability for our
interpretation, entails (24). It then follows that the first component of Equation (33), h(xn+1 | xn),
accounts for S(xn+1)− S(xn):

h(xn+1 | xn) = − log2 p(xn+1 | xn) = − log2
1

Z1
e(S(xn+1)−S(xn))/k (34)

= log2 Z1 − 1
k log 2

(S(xn+1)− S(xn)) (35)

That is, the local conditional entropy h(xn+1 | xn) corresponds to resultant entropy change of the
transition from the past state xn to the next state xn+1.

Now we need to interpret the second component of Equation (33): the local conditional entropy
h(xn+1 | xn, yn) in presence of some other factor or extra source, yn. Importantly, we must keep both
the past state xn and the next state xn+1 the same—only then we can characterise the internal entropy
change, offset by some contribution of the source yn.

Our second constraint on the system (25) entails (26), and so

h(xn+1 | xn, yn) = − log2 p(xn+1 | xn, yn) = − log2
1

Z2
eσy/k = log2 Z2 − 1

k log 2
(
σy
)

(36)

4.2. Transfer Entropy as Entropy Production

At this stage we can bring two right-hand side components of transfer entropy (33), represented
by Equations (35) and (36), together:

tY→X(n + 1) = log2
Z1

Z2
+

1
k log 2

(− (S(xn+1)− S(xn)) + σy
)

(37)
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When one considers a small fluctuation near an equilibrium, Z1 ≈ Z2, as the number of microstates
does not change much in the relevant macrostates. This removes the additive constant. Then, using
the expression for entropy production (21), we obtain

tY→X(n + 1) = − ΔSext

k log 2
(38)

If Z1 �= Z2, the relationship includes some additive constant log2
Z1
Z2

.
That is, the transfer entropy is proportional to the external entropy production, brought about by

the source of irreversibility Y. It captures the difference between the entropy rates that correspond
to two scenarios: the reversible process and the irreversible process affected by another source Y. It
is neither a transfer of entropy, nor an entropy of some transfer—it is formally a difference between
two entropy rates. The opposite sign reflects the different direction of entropy production attributed
to the source Y: when ΔSext > 0, i.e., the entropy increased during the transition in X more than the
entropy produced internally, then the local transfer entropy is negative, and the source misinforms
about the macroscopic state transition. When, on the other hand, ΔSext < 0, i.e., some of the internal
entropy produced during the transition in X dissipated to the exterior, then the local transfer entropy
is positive, and better predictions can be made about the macroscopic state transitions in X if source Y
is measured.

As mentioned earlier, while transfer entropy is non-negative on average, some local transfer
entropies can be negative when (in the context of the history of the destination) the source variable is
misinformative or misleading about the state transition. This, obviously, concurs with the fact that,
while a statistical ensemble average of time averages of the entropy change is always non-negative,
at certain times entropy change can be negative. This follows from the fluctuation theorem [60], the
Second law inequality [61], and can be illustrated with other examples of backward transformations
and local violations of the second law [62,63].

Another observation follows from our assumptions (24) and (26) and the representation (37) when
Z1 ≈ Z2. If the local conditional entropy h(xn+1 | xn), corresponding to the resultant entropy change
of the transition, is different from the local conditional entropy h(xn+1 | xn, yn) capturing the internal
entropy production in context of the external source Y, then X and Y are dependent. Conversely,
whenever these two conditional entropies are equal to each other, X and Y are independent.

4.3. Transfer Entropy as a Measure of Equilibrium’s Stability

There is another possible interpretation that considers a fluctuation near the equilibrium. Using
Kullback–Leibler divergence between discrete probability distributions p and q:

DKL(p‖q) = ∑
i

p(i) log
p(i)
q(i)

(39)

and its local counterpart:

dKL(p‖q) = log
p(i)
q(i)

(40)

we may also express the local conditional entropy as follows:

h(xn+1 | xn) = h(xn+1, xn)− h(xn) = dKL (p(xn+1, xn)‖p(xn)) (41)

It is known in macroscopic thermodynamics that stability of an equilibrium can be measured with
Kullback–Leibler divergence between the initial (past) state, e.g., xn, and the state brought about by
some fluctuation (a new observation), e.g., xn+1 [64]. That is, we can also interpret the local conditional
entropy h(xn+1 | xn) as the entropy change (or entropy rate) of the fluctuation near the equilibrium.
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Analogously, the entropy change in another scenario, where an additional source y contributes to
the fluctuation around the equilibrium, corresponds now to Kullback–Leibler divergence

h(xn+1 | xn, yn) = h(xn+1, xn, yn)− h(xn, yn) = dKL (p(xn+1, xn, yn)‖p(xn, yn)) (42)

and can be seen as a measure of stability with respect to the fluctuation that is now affected by the
extra source y.

Contrasting both these fluctuations around the same equilibrium, we obtain in terms of
Kullback–Leibler divergences:

tY→X(n + 1) = dKL (p(xn+1, xn)‖p(xn))− dKL (p(xn+1, xn, yn)‖p(xn, yn)) (43)

In these terms, transfer entropy contrasts stability of the equilibrium between two scenarios: the first
one corresponds to the original system, and the second one disturbs the system by the source Y. If, for
instance, the source Y is such that the system X is independent of it, then there is no difference in the
extents of disturbances to the equilibrium, and the transfer entropy is zero.

4.4. Heat Transfer

It is possible to provide a similar thermodynamic interpretation relating directly to the Clausius
definition of entropy. However, in this case we need to make assumptions stronger than Equations (23)
and (25). Specifically, we assume Equations (24) and (26) which do not necessarily entail Equations (23)
and (25) respectively. For example, setting the conditional probability p(xn+1 | xn) =

1
Z1

e(S−S0)/k does

not mean that W1 = e(S−S0)/k is the transition probability.
Under the new stronger assumptions, the conditional entropies can be related to the heat

transferred in the transition, per temperature. Specifically, assumption (24) entails

h(xn+1 | xn) = log2 Z1 − 1
k log 2

(S(xn+1)− S(xn)) = log2 Z1 − 1
k log 2

∫ xn+1

xn

dqrev/T (44)

where the last step used the definition of Clausius entropy (16). As per (16), this quantity is the
same for all reversible paths between the past and next states. An example illustrating the transition
(xn → xn+1) can be given by a simple thermal system xn that is connected to a heat bath—that is, to
a system in contact with a source of energy at temperature T. When the system X reaches a (new)
equilibrium, e.g., the state xn+1, due to its connection to the heat bath, the local conditional entropy
h(xn+1 | xn) of the transition undergone by system X represents the heat transferred in the transition,
per temperature.

Similarly, assumption (26) leads to

h(xn+1 | xn, yn) = log2 Z2 − 1
k log 2

(
σy
)
= log2 Z2 − 1

k log 2

∫
xn

yn−→xn+1

dq/T (45)

where xn
yn−→xn+1 is the new path between xn and xn+1 brought about by yn, and the entropy produced

along this path is σy. That is, the first and the last points of the path over which we integrate heat
transfers per temperature are unchanged but the path is affected by the source y. This can be illustrated
by a modified thermal system, still at temperature T but with heat flowing through some thermal
resistance Y, while the system X repeats its transition from xn to xn+1.

Transfer entropy captures the difference between expressions (44) and (45), i.e., between the
relevant amounts of heat transferred to the system X, per temperature.

tY→X(n + 1) = log2
Z1

Z2
+

1
k log 2

(∫
xn

yn−→xn+1

dq/T −
∫ xn+1

xn

dqrev/T
)

(46)
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Assuming that Z1 ≈ Z2 is realistic, e.g., for quasistatic processes, then the additive constant disappears
as well.

It is clear that if the new path is still reversible (e.g., when the thermal resistance is zero) then the
source y has not affected the resultant entropy change and we must have∫ xn+1

xn

dqrev/T =
∫

xn
yn−→xn+1

dq/T (47)

and tY→X(n + 1) = 0. This obviously occurs if and only if the source Y satisfies the independence
condition (6), making the transfer entropy (46) equal to zero. In other words, we may again observe
that if the local conditional entropy h(xn+1 | xn) corresponds to the resultant entropy change of
the transition, then X and Y are dependent only when the external source Y, captured in the local
conditional entropy h(xn+1 | xn, yn), brings about an irreversible internal change. If, however, the
source Y changed the path in such a way that the process became irreversible, then tY→X(n + 1) �= 0.

Finally, according to Equations (19) and (20), the difference between the relevant heats transferred
is
∫

dq/T, where q represents the heat flow received by the system from the exterior via the source Y,
and hence

tY→X(n + 1) = log2
Z1

Z2
− 1

k log 2

∫
dq/T (48)

In other words, local transfer entropy is proportional to the heat received or dissipated by the system
from/to the exterior.

5. Causal Effect: Thermodynamic Interpretation?

In this section we shall demonstrate that a similar treatment is not possible in general for causal
effect. Again, we begin by considering local causal effect (15) of the source yn on destination xn+1,
while selecting s as the destination’s past state xn:

f (yn → xn+1 | x̂n) = log2
p(xn+1 | ŷn, x̂n)

∑y′
n

p(y′
n | x̂n)p(xn+1 | ŷ′

n, x̂n)
(49)

Let us first consider conditions under which this representation reduces to the local transfer
entropy. As pointed out by Lizier and Prokopenko [41], there are several conditions for such a
reduction.

Firstly, yn and xn must be the only causal contributors to xn+1. In a thermodynamic setting, this
means that there are no other sources affecting the transition from xn to xn+1, apart from yn.

Whenever this condition is met, and in addition, the combination (yn, xn) is observed, it follows
that

p(xn+1 | ŷn, x̂n) = p(xn+1 | yn, xn) (50)

simplifying the numerator of Equation (49).
Furthermore, there is another condition:

p(yn | x̂n) ≡ p(yn | xn) (51)

For example, it is met when the source yn is both causally and conditionally independent of the
destination’s past xn. Specifically, causal independence means p(yn) ≡ p(yn | x̂n), while conditional
independence is simply p(yn) ≡ p(yn | xn). Intuitively, the situation of causal and conditional
independence means that inner workings of the system X under consideration do not interfere with
the source Y. Alternatively, if X is the only causal influence on Y, the condition (51) also holds,
as Y is perfectly “explained” by X, whether X is observed or imposed on. In general, though, the
condition (51) means that the probability of yn if we impose a value x̂n is the same as if we had simply
observed the value xn = x̂n without imposing in the system X.
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Under the conditions (50) and (51), the denominator of Equation (49) reduces to p(xn+1 | xn),
yielding the equivalence between local causal effect and local transfer entropy

f (yn → xn+1 | x̂n) = tY→X(n + 1) (52)

In this case, the thermodynamic interpretation of transfer entropy would be applicable to causal effect
as well.

Whenever one of these conditions is not met, however, the reduction fails. Consider, for instance,
the case when the condition (51) is satisfied, but the condition (50) is violated. For example, we may
assume that there is some hidden source affecting the transition to xn+1. In this case, the denominator
of Equation (49) does not simplify much, and the component that may have corresponded to the
entropy rate of the transition between xn and xn+1 becomes

log2 ∑
y′

n

p(y′
n | xn)p(xn+1 | ŷ′

n, x̂n) (53)

The interpretation of this irreducible component is important: the presence of the imposed term ŷ′
n

means that one should estimate individual contributions of all possible states y of the source Y, while
varying (i.e., imposing on) the state xn. This procedure becomes necessary because, in order to estimate
the causal effect of source y, in presence of some other hidden source, one needs to check all possible
impositions on the source state y. The terms of the sum under the logarithm in Equation (53) inevitably
vary in their specific contribution, and so the sum cannot be analytically expressed as a single product
under the logarithm. This means that we cannot construct a direct thermodynamic interpretation of
causal effect in the same way that we did for the transfer entropy.

6. Discussion and Conclusions

In this paper we proposed a thermodynamic interpretation of transfer entropy: an
information-theoretic measure introduced by Schreiber [1] as the average information contained
in the source about the next state of the destination in the context of what was already contained in the
destination’s past. In doing so we used a specialised Boltzmann’s principle. This in turn produced
a representation of transfer entropy tY→X(n + 1) as a difference of two entropy rates: one rate for
a resultant transition within the system of interest X and another rate for a possibly irreversible
transition within the system affected by an addition source Y. This difference was further shown to be
proportional to the external entropy production, Δext, attributed to the source of irreversibility Y.

At this stage we would like to point out a difference between our main result,
tY→X(n + 1) ∝ −Δext, and a representation for entropy production discussed by Parrondo
et al. [22]. The latter work characterised the entropy production in the total device,
in terms of relative entropy, the Kullback–Leibler divergence between the probability
density ρ in phase space of some forward process and the probability density ρ̃ of
the corresponding and suitably defined time-reversed process. The consideration of
Parrondo et al. [22] does not involve any additional sources Y, and so transfer entropy is outside of
the scope of their study. Their main result characterised entropy production as k dKL (ρ‖ρ̃), which is
equal to the total entropy change in the total device. In contrast, in our study we consider the system
of interest X specifically, and characterise various entropy rates of X, but in doing so compare how
these entropy rates are affected by some source of irreversibility Y. In short, transfer entropy is shown
to concur with the entropy produced/dissipated by the system attributed to the external source Y.

We also briefly considered a case of fluctuations in the system X near an equilibrium, relating
transfer entropy to the difference in stabilities of the equilibrium, with respect to two scenarios:
a default case and the case with an additional source Y. This comparison was carried out with
Kullback–Leibler divergences of the corresponding transition probabilities.
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Finally, we demonstrated that such a thermodynamic treatment is not applicable to information
flow, a measure introduced by Ay and Polani [18] in order to capture a causal effect. We argue that the
main reason is the interventional approach adopted in the definition of causal effect. We identified
several conditions ensuring certain dependencies between the involved variables, and showed that the
causal effect may also be interpreted thermodynamically—but in this case it reduces to transfer entropy
anyway. The highlighted difference once more shows a fundamental difference between transfer
entropy and causal effect: the former has a thermodynamic interpretation relating to the source of
irreversibility Y, while the latter is a construct that in general assumes an observer intervening in the
system in a particular way.

We hope that the proposed interpretation will further advance studies relating information theory
and thermodynamics, both in equilibrium and non-equilibrium settings, reversible and irreversible
scenarios, average and local scopes, etc.

Acknowledgments: The Authors are thankful to Ralf Der (Max Planck Institute for Mathematics in the Sciences,
Leipzig) who suggested and co-developed the example in subsection 3.6, and anonymous reviewers whose
suggestions significantly improved the paper.
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Abstract: Measures of the direction and strength of the interdependence among time series from
multivariate systems are evaluated based on their statistical significance and discrimination ability.
The best-known measures estimating direct causal effects, both linear and nonlinear, are considered,
i.e., conditional Granger causality index (CGCI), partial Granger causality index (PGCI), partial
directed coherence (PDC), partial transfer entropy (PTE), partial symbolic transfer entropy (PSTE)
and partial mutual information on mixed embedding (PMIME). The performance of the multivariate
coupling measures is assessed on stochastic and chaotic simulated uncoupled and coupled dynamical
systems for different settings of embedding dimension and time series length. The CGCI, PGCI and
PDC seem to outperform the other causality measures in the case of the linearly coupled systems,
while the PGCI is the most effective one when latent and exogenous variables are present. The
PMIME outweighs all others in the case of nonlinear simulation systems.

Keywords: direct Granger causality; multivariate time series; information measures

PACS: 05.45.Tp; 05.45.-a; 02.70.-c

1. Introduction

The quantification of the causal effects among simultaneously observed systems from the
analysis of time series recordings is essential in many scientific fields, ranging from economics to
neurophysiology. Estimating the inter-dependence among the observed variables provides valuable
knowledge about the processes that generate the time series. Granger causality has been the leading
concept for the identification of directional interactions among variables from their time series, and it
has been widely used in economics [1]. However, the last few years, it has become popular also in
many different fields, e.g., for the analysis of electroencephalograms.

The mathematical formulation of linear Granger causality is based on linear regression modeling
of stochastic processes. Many modifications and extensions of the Granger causality test have been
developed; see e.g., [2–7]. Most of the non-causality tests, built on the Granger causality concept and
applied in economics, are therefore based on the modeling of the multivariate time series. Despite
the success of these strategies, the model-based methods may suffer from the shortcomings of model
mis-specification.
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The majority of the measures determining the interrelationships among variables that have
been developed so far are for bivariate data, e.g., state-space based techniques [8,9], information
measures [10–12] and techniques based on the concept of synchronization [13,14].

Bivariate causality tests may erroneously detect couplings when two variables are conditionally
independent. To address this, techniques accounting for the effect of the confounding variables have
been introduced, termed direct causality measures, which are more appropriate when dealing with
multivariate time series [15–17]. Direct causality methods emerged as extensions of bivariate Granger
causality. For example, the Granger causality index (GCI), implementing the initial idea for two
variables in the time domain, has been extended to the conditional and partial Granger causality index
(CGCI and PGCI) [2,18]. Directed coherence (DC) was introduced in the frequency domain, and being
a bivariate measure, it cannot discriminate between direct and indirect coupling. The direct transfer
function (DTF) is similarly defined as DC [19]. The partial directed coherence (PDC) is an extension of
DC to multivariate time series measuring only the direct influences among the variables [20]. Similarly,
direct Directed Transfer Function (dDTF) modified DTF to detect only direct information transfer [21].

Information theory sets a natural framework for non-parametric methodologies of several classes
of statistical dependencies. Several techniques from information theory have been used in the last
few years for the identification of causal relationships in multivariate systems, and the best known is
transfer entropy (TE) [11]. Test for causality using the TE has also been suggested [22]. However, the
TE is, again, bivariate and its natural extension to account for the presence of confounding variables
has been recently introduced, namely, the partial TE (PTE), under different estimating schemes, using
bins [23], correlation sums [24] and nearest neighbors [25]. The TE and PTE are actually expressions
of conditional mutual information, and with this respect, an improved version of TE making use
of a properly restricted non-uniform state space reconstruction was recently developed, termed
mutual information on mixed embedding (MIME) [26]. Later, a similar approach to TE/PTE was
implemented, which takes into consideration the conditional entropy [27]. Recently MIME was
extended for multivariate time series to the partial MIME (PMIME) [28]. Other coupling methods have
also been suggested, such as Renyi’s information transfer [29]. In a different approach, the TE has
been defined on rank vectors instead of sample vectors, called the symbolic transfer entropy (STE) [30],
and, respectively, to the multivariate case termed partial STE (PSTE) (for a correction of STE and PSTE,
see, respectively, [31,32]).

Most comparative works on the effectiveness of causality measures concentrate on bivariate tests,
e.g., [33–36], while some works evaluating multivariate methodologies include only model-based tests,
see, e.g., [37–39], or compare direct and indirect causality measures, e.g., [36,40].

In this work, we compare model-based methods, both in the time and frequency domain, and
information theoretic multivariate causality measures that are able to distinguish between direct and
indirect causal effects. We include in the study most of the known direct causality measures of these
classes, i.e., CGCI and PGCI (linear in time domain), PDC (linear in frequency domain), PTE, PSTE
and PMIME (from information theory). The statistical significance of the test statistics is assessed with
resampling methods, bootstraps or randomization tests using appropriate surrogates, whenever it is
not theoretically known.

The structure of the paper is as follows. The multivariate causality measures considered in this
study are presented in Section 2. The statistical significance of the coupling measures is assessed on
simulated systems. The simulation systems and the setup of the simulation study are presented in
Section 3, while the results of this study and the performance of the causality measures are discussed
in Section 4. Finally, the conclusions are drawn in Section 5.

2. Direct Causality Measures

Let {x1,t, . . . , xK,t}, t = 1, . . . , n, denote a K-variate time series, consisting of K
simultaneously observed variables, X1, . . . , XK, belonging to a dynamical system or representing
respective subsystems of a global system. The reconstructed vectors of each Xi are formed as
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xi,t = (xi,t, xi,t−τi , . . . , xi,t−(mi−1)τi
)′, where t = 1, . . . , n′, n′ = n − maxi{(mi − 1)τi}, and mi and τi

are, respectively, the reconstruction parameters of embedding dimension and time delay for Xi. The
notation, X2 → X1, denotes the Granger causality from X2 to X1, while X2 → X1|Z denotes the direct
Granger causality from X2 to X1, accounting for the presence of the other (confounding) variables, i.e.,
Z = {X3, . . . , XK}. The notation of Granger causality for other pairs of variables is analogous.

Almost all of the causality measures require the time series be stationary, i.e., their mean and
variance do not change over time. If the time series are non-stationary, then the data should be
pre-processed, e.g., for time series that are non-stationary in mean, one can apply the measures on the
first or higher order differences. Different transformations are needed in case of non-stationary data in
variance or co-integrated time series.

2.1. Conditional Granger Causality Index

Granger causality is based on the concept that if the value of a time series, X1, to be predicted is
improved by using the values of X2, then we say that X2 is driving X1. A vector autoregressive model
(VAR) in two variables and of order P, fitted to the time series, {x1,t}, is:

x1,t+1 =
P−1

∑
j=0

a1,jx1,t−j +
P−1

∑
j=0

b1,jx2,t−j + ε1,t+1 (1)

where a1,j, b1,j are the coefficients of the model and ε1 the residuals from fitting the model with variance
s2

1U . The model in Equation (1) is referred to as the unrestricted model, while the restricted model is
obtained by omitting the terms regarding the driving variable [the second sum in Equation (1)] and
has residual variance, s2

1R. According to the concept of Granger causality, the variable, X2, Granger
causes X1 if s2

1R > s2
1U [1]. The magnitude of the effect of X2 on X1 is given by the Granger Causality

Index (GCI), defined as:

GCIX2→X1 = ln(s2
1R/s2

1U) (2)

Considering all K variables, the unrestricted model for X1 is a VAR model in K variables and
involves the P lags of all K variables [K sum terms instead of two in Equation (1)]; the restricted model
will have all but the P lags of the driving variable, X2. Likewise, the conditional Granger causality
index (CGCI) is:

CGCIX2→X1|Z = ln(s2
1R/s2

1U) (3)

where s2
1U and s2

1R are the residual variances for the unrestricted and restricted model defined for all
K variables.

A parametric significance test for GCI and CGCI can be conducted for the null hypothesis that
variable X2 is not driving X1, making use of the F-significance test for all P coefficients, b1,j [41]. When
we want to assess collectively the causal effects among all pairs of the K variables, a correction for
multiple testing should be performed, e.g., by means of the false discovery rate [42].

The order, P, of the VAR model is usually chosen using an information criterion, such as the
Akaike Information Criterion (AIC) [43] and the Bayesian Information Criterion (BIC) [44]. The
estimation of the coefficients of the VAR models and the residual variances of the models are described
analytically in [45].

2.2. Partial Granger Causality Index

The partial Granger causality index (PGCI) is associated with the concept of Granger causality
and partial correlation [18]. The PGCI addresses the problem of exogenous inputs and latent variables.
The intuition is that the influence of exogenous and/or latent variables on a system will be reflected by
correlations among the residuals of a VAR model of the measured variables. Thus, in the PGCI, one
makes use of the residual covariance matrix of the VAR unrestricted and restricted model, denoted
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Σ and ρ, respectively, and not only of the residual variance of the response variable, X1, s2
1U and s2

1R,
subsequently. For example, for X2 → X1|X3, denoting the components of Σ as Σij, i, j = 1, 2, 3 and the
components of ρ as ρij, i, j = 1, 2, the PGCI is given as:

PGCIX2→X1|X3
= ln

ρ11 − ρ12ρ−1
22 ρ21

Σ11 − Σ13Σ−1
33 Σ31

(4)

Note that Σ11 = s2
1U and ρ11 = s2

1R. The PGCI constitutes an improved estimation of the direct
Granger causality as compared to the CGCI when the residuals of the VAR models are correlated;
otherwise, it is identical to the CGCI. The estimation procedure for the PGCI is described analytically
in [18].

2.3. Partial Directed Coherence

The partial directed coherence (PDC) is related to the same VAR model as the CGCI, but is defined
in the frequency domain [20]. Denoting the K × K matrix of the Fourier transform of the coefficients of
the VAR model in K variables and order P by A( f ), the PDC from X2 to X1 at a frequency f is given by
[20]:

PDCX2→X1|Z( f ) =
|A1,2( f )|√

∑K
k=1 |Ak,2( f )|2

(5)

where Ai,j( f ) is the component at the position, (i, j), in the matrix, A( f ). PDCX2→X1|Z( f ) provides a
measure for the directed linear influence of X2 on X1 at frequency, f , conditioned on the other K − 2
variables in Z and takes values in the interval, [0, 1]. The PDCX2→X1( f ) is computed at each frequency,
f , within an appropriate range of frequencies. Parametric inference and significance tests for PDC
have been studied in [46,47].

2.4. Partial Transfer Entropy

The transfer entropy (TE) is a nonlinear measure that quantifies the amount of information
explained in X1 at h steps ahead from the state of X2, accounting for the concurrent state of X1 [11].
The TE is given here in terms of entropies. For a discrete variable, X (scalar or vector), the Shannon
entropy is H(X) = −∑ p(xi) ln p(xi), where p(xi) is the probability mass function of variable, X, at
the value, xi. Further, the TE is expressed as:

TEX2→X1 = I(x1,t+h; x2,t|x1,t) = H(x1,t+h|x1,t)− H(x1,t+h|x2,t, x1,t) (6)

= H(x2,t, x1,t)− H(x1,t+h, x2,t, x1,t) + H(x1,t+h, x1,t)− H(x1,t)

The first equality is inserted to show that the TE is equivalent to the conditional mutual information
(CMI), where I(X, Y) = H(X) + H(Y)− H(X, Y) is the mutual information (MI) of two variables, X
and Y. The time horizon, h, is introduced here instead of the single time step, originally used in the
definition of TE.

The partial transfer entropy (PTE) is the extension of the TE designed for the direct causality of
X2 to X1 conditioning on the remaining variables in Z

PTEX2→X1|Z = H(x1,t+h|x1,t, zt)− H(x1,t+h|x2,t, x1,t, zt) (7)

The entropy terms of PTE are estimated here using the k-nearest neighbors method [48].

2.5. Symbolic Transfer Entropy

The symbolic transfer entropy (STE) is the continuation of the TE estimated on rank-points formed
by the reconstructed vectors of the variables [30]. For each vector, x2,t, the ranks of its components
assign a rank-point, x̂2,t = [r1, r2, . . . , rm2 ], where rj ∈ {1, 2, . . . , m2} for j = 1, . . . , m2. Following this
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sample-point to rank-point conversion, the sample, x1,t+h, in Equation (7) is taken as the rank point at
time, t + h, x̂1,t+h, and STE is defined as:

STEX2→X1 = H(x̂1,t+h|x̂1,t)− H(x̂1,t+h|x̂2,t, x̂1,t) (8)

where the entropies are computed based on the rank-points.
In complete analogy to the derivation of the PTE from the TE, the partial symbolic transfer entropy

(PSTE) extends the STE for multivariate time series and is expressed as:

PSTEX2→X1|Z = H(x̂1,t+h|x̂1,t, ẑt)− H(x̂1,t+h|x̂2,t, x̂1,t, ẑt) (9)

where the rank vector, ẑt, is the concatenation of the rank vectors for each of the embedding vectors of
the variables in Z.

2.6. Partial Mutual Information on Mixed Embedding

The mutual information on mixed embedding (MIME) is derived directly from a mixed
embedding scheme based on the conditional mutual information (CMI) criterion [26]. In the bivariate
case and for the driving of X2 on X1, the scheme gives a mixed embedding of varying delays from
the variables, X1 and X2, that explains best the future of X1, defined as xh

1,t = [x1,t+1, . . . , x1,t+h]. The

mixed embedding vector, wt, may contain lagged components of X1, forming the subset, w
X1
t , and of

X2, forming wX2
t , where wt = [wX1

t , wX2
t ]. The MIME is then estimated as:

MIMEX2→X1 =
I(xh

1,t; wX2
t |wX1

t )

I(xh
1,t; wt)

(10)

The numerator in Equation (10) is the CMI as for the TE in Equation (7), but for non-uniform
embedding vectors of X1 and X2. Therefore, the MIME can be considered as a normalized version of
the TE for optimized non-uniform embedding of X1 and X2 [26].

For multivariate time series, the partial mutual information on mixed embedding (PMIME) has
been developed in analogy to the MIME [28]. The mixed embedding vector that best describes the
future of X1, xh

1,t, is now formed potentially by all K lagged variables, i.e., X1, X2 and the other K − 2

variables in Z, and it can be decomposed to the three respective subsets as wt = (wX1
t , wX2

t , wZ
t ). The

PMIME is then estimated as:

PMIMEX2→X1|Z =
I(xh

1,t; wX2
t |wX1

t , wZ
t )

I(xh
1,t; wt)

(11)

Similarly to the MIME, the PMIME can be considered as a normalized version of the PTE for
optimized non-uniform embedding of all K variables. Thus, the PMIME takes values between zero
and one, where zero indicates the absence of components of X2 in the mixed embedding vector and,
consequently, no direct Granger causality from X2 to X1.

A maximum lag to search for components in the mixed embedding vector is set for each variable,
here being the same maximum lag, Lmax, for all variables. Lmax can be set equal to a sufficiently large
number without affecting the performance of the measure; however, the larger it is, the higher the
computational cost is. For the estimation of the MI and the CMI, the k-nearest neighbors method is
used [48].

3. Simulation Study

The multivariate causality measures are evaluated in a simulation study. All the considered direct
coupling measures are computed on 100 realizations of multivariate uncoupled and coupled systems,
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for increasing coupling strengths and for all directions. The simulation systems that have been used in
this study are the following.

• System 1: A vector autoregressive process of order one [VAR(1)] in three variables with X1 → X2

and X2 → X3

x1,t = θt

x2,t = x1,t−1 + ηt

x3,t = 0.5x3,t−1 + x2,t−1 + εt

where θt, ηt and εt are independent to each other Gaussian white noise processes, with standard
deviations one, 0.2 and 0.3, respectively.

• System 2: A VAR(5) process in four variables with X1 → X3, X2 → X1, X2 → X3 and X4 → X2

(Equation 12 in [49])

x1,t = 0.8x1,t−1 + 0.65x2,t−4 + ε1,t

x2,t = 0.6x2,t−1 + 0.6x4,t−5 + ε2,t

x3,t = 0.5x3,t−3 − 0.6x1,t−1 + 0.4x2,t−4 + ε3,t

x4,t = 1.2x4,t−1 − 0.7x4,t−2 + ε4,t

where εi,t, i = 1, . . . , 4 are independent to each other Gaussian white noise processes with unit
standard deviation.

• System 3: A VAR(4) process in five variables with X1 → X2, X1 → X4, X2 → X4, X4 → X5,
X5 → X1, X5 → X2 and X5 → X3 [46]

x1,t = 0.4x1,t−1 − 0.5x1,t−2 + 0.4x5,t−1 + ε1,t

x2,t = 0.4x2,t−1 − 0.3x1,t−4 + 0.4x5,t−2 + ε2,t

x3,t = 0.5x3,t−1 − 0.7x3,t−2 − 0.3x5,t−3 + ε3,t

x4,t = 0.8x4,t−3 + 0.4x1,t−2 + 0.3x2,t−3 + ε4,t

x5,t = 0.7x5,t−1 − 0.5x5,t−2 − 0.4x4,t−1 + ε5,t

and εi,t, i = 1, . . . , 5, as above.
• System 4: A coupled system of three variables with linear (X2 → X3) and nonlinear causal effects

(X1 → X2 and X1 → X3) (Model 7 in [50])

x1,t = 3.4x1,t−1(1 − x1,t−1)
2 exp (−x2

1,t−1) + 0.4ε1,t

x2,t = 3.4x2,t−1(1 − x2,t−1)
2 exp (−x2

2,t−1) + 0.5x1,t−1x2,t−1 + 0.4ε2,t

x3,t = 3.4x3,t−1(1 − x3,t−1)
2 exp (−x2

3,t−1) + 0.3x2,t−1 + 0.5x2
1,t−1 + 0.4ε3,t

and εi,t, i = 1, . . . , 3, as above.
• System 5: Three coupled Hénon maps with nonlinear couplings, X1 → X2 and X2 → X3

x1,t = 1.4 − x2
1,t−1 + 0.3x1,t−2

x2,t = 1.4 − cx1,t−1x2,t−1 − (1 − c)x2
2,t−1 + 0.3x2,t−2

x3,t = 1.4 − cx2,t−1x3,t−1 − (1 − c)x2
3,t−1 + 0.3x3,t−2

with equal coupling strengths, c, and c = 0, 0.05, 0.3, 0.5.

The time series of this system become completely synchronized for coupling strengths, c ≥ 0.7.
In order to investigate the effect of noise on the causality measures, we also consider the case of
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addition of Gaussian white noise to each variable of System 5, with standard deviation 0.2 times
their standard deviation.

• System 6: Three coupled Lorenz systems with nonlinear couplings, X1 → X2 and X2 → X3

ẋ1 = 10(y1 − x1)

ẏ1 = 28x1 − y1 − x1z1

ż1 = x1y1 − 8/3z1

,
ẋ2 = 10(y2 − x2) + c(x1 − x2)

ẏ2 = 28x2 − y2 − x2z2

ż2 = x2y2 − 8/3z2

,
ẋ3 = 10(y3 − x3) + c(x2 − x3)

ẏ3 = 28x3 − y3 − x3z3

ż3 = x3y3 − 8/3z3

The first variables of the three interacting systems are observed at a sampling time of 0.05 units.
The couplings, X1 → X2 and X2 → X3, have the same strength, c, and c = 0, 1, 3, 5. The time
series of the system become completely synchronized for coupling strengths, c ≥ 8. For a more
detailed description of the synchronization of the coupled Systems 5 and 6, see [51].

• System 7: A linear coupled system in five variables with X1 → X2, X1 → X3, X1 → X4, X4 ↔ X5

with latent end exogenous variables [18]

x1,t = 0.95
√

2x1,t−1 − 0.9025x1,t−2 + ε1,t + a1ε6,t + b1ε7,t−1 + c1ε7,t−2

x2,t = 0.5x1,t−2 + ε2,t + a2ε6,t + b2ε7,t−1 + c2ε7,t−2

x3,t = −0.4x1,t−3 + ε3,t + a3ε6,t + b3ε7,t−1 + c3ε7,t−2

x4,t = −0.5x1,t−2 + 0.25
√

2x4,t−1 + 0.25
√

2x5,t−1 + ε4,t + a4ε6,t + b4ε7,t−1 + c4ε7,t−2

x5,t = −0.25
√

2x4,t−1 + 0.25
√

2x5,t−1 + ε5,t + a5ε6,t + b5ε7,t−1 + c5ε7,t−2

where εi,t are zero mean uncorrelated processes with variances 0.8, 0.6, 1, 1.2, 1, 0.9, 1,
respectively, a1 = 5, a2 = a3 = a4 = a5 = 1 and bi = 2, ci = 5, i = 1, . . . , 5.

The time series lengths considered in the simulation study are n = 512 and n = 2048. Regarding
the CGCI, the PGCI and the PDC, the order, P, of the VAR model is selected by combining the Akaike
Information Criterion (AIC), the Bayesian Information Criterion (BIC), as well as our knowledge for
the degrees of freedom of each coupled system, as follows. The range of model orders, for which the
AIC and the BIC are calculated, is selected to be at the level of the ‘true’ model order based on the
equations of each system. Specifically, for Systems 1, 4, 5, 6 and 7, we considered the range of model
orders, [1, 5], for the calculation of AIC and BIC, and for Systems 2 and 3, we considered the range,
[1, 10]. Further, we estimate the PDC for a range of frequencies determined by the power spectrum
of the variables of each system. We specify this range by selecting those frequencies that display the
highest values in the auto-spectra of the variables [52]. The p-values from a non-parametric test for the
PDC are estimated for the selected range of frequencies (using bootstraps [53]), and in order to decide
whether a coupling is significant, at least 80% of the p-values from this range of frequencies should be
significant.

The embedding dimension, m, for the PTE and the PSTE and the maximum lag, Lmax, for the
PMIME are set equal to P and τ = 1 for the PTE and the PSTE. Note that this choice of Lmax may
be very restrictive, and the PMIME may not be optimal; but, we adopt it here to make the choice
for VAR order and embedding uniform. The time step ahead, h, for the estimation of the PTE, PSTE
and PMIME is set to one for the first five systems and System 7 (the common choice for discrete-time
systems), while for the continuous-time system (System 6), h is set to be equal to m. The number
of nearest neighbors for the estimation of the PTE and the PMIME is set to k = 10. We note that
the k-nearest neighbors methods for the estimation of the measures is found to be stable and not
significantly affected by the choice of k [48]. The threshold for the stopping criterion for the mixed
embedding scheme for the PMIME is set to A = 0.95 (for details, see [26]).
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3.1. Statistical Significance of the Causality Measures

In the simulation study, we assess the statistical significance of the causality measures by means of
parametric tests, when applicable, and nonparametric (resampling) tests, otherwise, in the way these
have been suggested in the literature for each measure. The correction for multiple testing regarding
the significance of a measure on all possible variable pairs is not considered here, as the interest is in
comparing the performance of the different direct causality measures rather than providing rigorous
statistical evidence for the significance of each coupling.

Starting with the CGCI, it bears a parametric significance test, and this is the F-test for the null
hypothesis that the coefficients of the lagged driving variables in the unrestricted VAR model are all
zero [41]. If P1 and P2 are the numbers of variables in the restricted and the unrestricted autoregressive
model, respectively, (P2 > P1), and n is the length of the time series, then the test statistic is
F = ((RSS1 − RSS2)/(P1 − P2))/(RSS2/(n − P2)), where RSSi is the residual sum of squares of
model, i. Under the null hypothesis that the unrestricted model does not provide a significantly
better fit than the restricted model, the F-statistic follows the Fisher-Snedecor, or F, distribution with
(P2 − P1, n − P2) degrees of freedom. The null hypothesis is rejected if the F-statistic calculated on the
data is greater than the critical value of the F-distribution for some desired false-rejection probability
(here α = 0.05).

The statistical significance of the PGCI is assessed by means of confidence intervals formed by
bootstrapping [53], since the null distribution is unknown. The empirical distribution of any statistic
using bootstrapping is formed from the values of the statistic computed on a number of new samples
obtained by random sampling with replacement from the observed data. In the context of vector
autoregressive models, this can be realized by subdividing the data matrix (of the predictor and
response jointly) into a number of windows, which are repeatedly sampled with replacement to
generate bootstrap data matrices. By this procedure, the causal relationships within each window are
not affected. The PGCI is computed for each bootstrapped data matrix. The confidence interval of the
PGCI is formed by the lower and upper empirical quantiles of the bootstrap distribution of the PGCI
for the significance level, α = 0.05. The bootstrap confidence interval for the PGCI can be considered
as a significance test, where the test decision depends on whether zero is included in the confidence
interval. The details for the estimation of the bootstrap confidence intervals of the PGCI can be found
in [18].

The statistical significance of the PDC can be determined using both parametric testing [46,47],
and randomization (surrogate) testing [54]. Here, we choose the parametric approach. The statistical
significance of a nonzero value, PDCX2→X1( f ), is investigated by means of a critical value, cPDC. Under
the null hypothesis that there is no Granger causality, X2 → X1, it holds |A12( f )| = 0, and cPDC can be
derived from theoretical considerations for each frequency, f , at a given α-significance level by:

cPDC( f ) = ((Ĉij( f )χ2
1,1−a)/(N ∑

k
|Âkj( f )|2))1/2

The term, χ2
1,1−a, denotes the (1 − α)-quantile of the χ2 distribution with one degree of freedom, and

Ĉij( f ) is an estimate of the expression:

Cij( f ) = Σii(
P

∑
k,l=1

Σ−1
jj [cos(k f ) cos(l f ) + sin(k f ) sin(l f )])

where Σ−1
jj denotes the entries of the inverse of the covariance matrix, Σ, of the VAR process [47].

The statistical significance of the PTE and the PSTE is evaluated assuming a randomization test
with appropriate surrogate time series, as their null distribution is not known (for the PSTE, in [32],
analytic approximations were built, but found to be inferior to approximations using surrogates). We
create M surrogate time series consistent with the non-causality null hypotheses, H0, i.e., X2 does
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not Granger causes X1. To destroy any causal effect of X2 on X1 without changing the dynamics in
each time series, we randomly choose a number, d, less than the time series length, n, and the d-first
values of the time series of X2 are moved to the end, while the other series remain unchanged. The
random number, d, for the time-shifted surrogates is an integer within the range, [0.05n, 0.95n], where
n is the time series length. This scheme for generating surrogate time series is termed time-shifted
surrogates [55]. We estimate the causality measure (PTE or PSTE) from the original multivariate time
series, let us denote it q0, and for each of the M multivariate surrogate time series, let us denote them
q1, q2, . . . , qM. If q0 is at the tail of the empirical null distribution formed by q1, q2, . . . , qM, then H0 is
rejected. For the two-sided test, if r0 is the rank of q0 in the ordered list of q0, q1, . . . , qM, the p-value for
the test is 2(r0 − 0.326)/(M + 1 + 0.348) if r0 < (M + 1)/2 and 2[1 − (r0 − 0.326)/(M + 1 + 0.348)] if
r0 ≥ (M + 1)/2, by applying the correction for the empirical cumulative density function in [56].

Finally, PMIME does not rely on any significance test, as it gives zero values in the uncoupled
case and positive values, otherwise. This was confirmed using time-shifted surrogates also for the
PMIME in the simulation study, and the PMIME values of the surrogate time series were all zero.

For the estimation of CGCI and PGCI and their statistical significance, we used the ’Causal
Connectivity Analysis’ toolbox [57]. The programs for the computations of the remaining causality
measures have been implemented in Matlab.

4. Evaluation of Causality Measures

In order to evaluate the multivariate causality measures, the percentage of rejection of the null
hypothesis of no causal effects (H0) in 100 realizations of the system is calculated for each possible
pair of variables and for different time series lengths and free parameters of the measures. The focus
when presenting the results is on the sensitivity of the measure or, respectively, the power of the
significance test (the percentage of rejection at the significance level 5% or α = 0.05 when there is true
direct causality), as well as the specificity of the measure or size of the test (the percentage of rejection
at α = 0.05 when there is no direct causality) and how these properties depend on the time series
length and the measure-specific parameter.

4.1. Results for System 1

For the estimation of the linear measures, the order of the model, P, is set to one, as indicated
from the Bayesian Information Criterion (BIC) and the Akaike Information Criterion (AIC), while for
the estimation of PTE, m is also set to one. The PDC is estimated for the range of frequencies [0, 0.5],
since the auto-spectra of the variables do not suggest a narrower range. Indeed, the p-values of PDC
are all significant in [0, 0.5], when there is direct causality, and not significant, when there is no direct
causality. The CGCI, PGCI, PDC and PTE correctly detect the direct causal effect for both time series
lengths, n = 512 and 2048. All the aforementioned measures indicate 100% rejection of H0 for the true
couplings, X1 → X2 and X2 → X3, and low percentages for all other couplings. Their performance is
not affected by the time series length, for the time series lengths considered. The estimated percentages
are displayed for both n in Table 1.

Table 1. Percentage of statistically significant values of the causality measures for System 1, P = m =
Lmax = 1 [m = 2 for partial symbolic transfer entropy (PSTE)]. The directions of direct causal effects
are pointed out in bold. When the same percentage has been found for both n, a single number is
displayed in the cell.

n = 512/2048 CGCI PGCI PDC PTE PSTE PMIME

X1 → X2 100 100 100 100 100 1 / 0
X2 → X1 4 / 3 2 / 1 2 / 3 8 / 5 58 / 100 2 / 7
X2 → X3 100 100 100 100 100 100
X3 → X2 7 / 6 8 / 1 3 3 / 5 7 / 25 0
X1 → X3 3 / 5 0 / 2 2 / 3 5 / 7 93 / 100 0
X3 → X1 2 / 7 0 3 3 / 2 14 / 43 7 / 7
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The PSTE can only be estimated for m ≥ 2, and therefore, results are obtained for m = 2. The
PSTE correctly detects the direct causalities for m = 2; however, it also indicates the indirect effect,
X1 → X3, and the spurious causal effect, X2 → X1.

Only for this system, the PMIME with the threshold of A = 0.95 failed to detect the true direct
effects, and the randomization test gave partial improvement (detection of one of the two true direct
effects, X2 → X3). This is merely a problem of using the fixed threshold, A = 0.95, in this system, and
following the adapted threshold proposed in [28], the two true direct effects could be detected for all
realizations with n = 512 and n = 2048 with the largest rate of false rejection being 8%.

4.2. Results for System 2

For the second simulation system, the model order is set to P = 5, as indicated both by BIC and
AIC. The embedding dimension, m, and Lmax are also set to five. The PDC is estimated for the range of
frequencies, [0, 0.4], since the auto-spectra of all the variables are higher in the range, [0, 0.2], while
variable, X3, exhibits a peak in the range, [0.2, 0.4]. Indicatively, the p-values from one realization of
the system for the range of frequencies, [0, 0.5], is displayed in Figure 1a.

Figure 1. Graph summarizing the causal influences for one realization of System 2 (rows → columns)
in (a) and System 3 in (b). The p-values from the partial directed coherence (PDC) are displayed for the
range of frequencies, [0, 0.5], while the dotted vertical lines indicate the frequency, 0.4. The horizontal
cyan lines indicate the 5%-significance level. The auto-spectra are shown on the diagonal.
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The CGCI, PGCI, PDC and PMIME correctly detect the direct couplings (X2 → X1, X1 → X3,
X2 → X3, X4 → X2), as shown in Table 2. The performance of the CGCI and PDC is not affected by
the time series length. The PGCI is also not affected by n, except for the causal effect, X2 → X4, where
the PGCI falsely indicates causality for n = 2048 (20%). The PMIME indicates lower power of the test
compared to the linear measures only for X2 → X3 and n = 512.

Table 2. Percentage of statistically significant values of the causality measures for System 2, P = m =

Lmax = 5. The directions of direct causal effects are displayed in bold face. CGCI, conditional Granger
causality index; PGCI, partial Granger causality index; PDC, partial directed coherence; PTE, partial
transfer entropy; PSTE, partial symbolic transfer entropy; PMIME, partial mutual information on mixed
embedding.

n = 512/2048 CGCI PGCI PDC PTE PSTE PMIME

X1 → X2 6 / 2 1 0 6 / 11 7 / 20 0
X2 → X1 100 100 100 100 5 / 11 100
X1 → X3 100 100 100 100 7 / 15 100
X3 → X1 5 / 3 0 0 6 / 14 6 / 9 0
X1 → X4 6 / 7 0 0 7 / 50 2 / 24 3 / 0
X4 → X1 3 / 2 0 0 2 / 5 5 0
X2 → X3 100 98 / 100 94 / 100 14 / 39 9 / 18 64 / 99
X3 → X2 8 / 5 0 0 4 / 16 5 / 3 1 / 0
X2 → X4 7 / 6 3 / 20 0 5 / 8 1 / 20 2 / 0
X4 → X2 100 100 100 100 7 / 2 100
X3 → X4 4 / 3 0 / 2 0 8 / 29 2 / 8 3 / 0
X4 → X3 4 / 5 0 0 7 5 / 6 0

Table 3. Mean PTE values from 100 realizations of System 2, for P = 5 and n = 512, 2048. The values
of the true direct couplings are highlighted.

mean X1 → X2 X2 → X1 X1 → X3 X3 → X1 X1 → X4 X4 → X1

n = 512 0.0042 0.0920 0.0772 0.0034 0.0067 0.0043
n = 2048 0.0029 0.1221 0.0965 0.0016 0.0034 0.0020

X2 → X3 X3 → X2 X2 → X4 X4 → X2 X3 → X4 X4 → X3
n = 512 0.0060 0.0052 0.0095 0.0998 0.0071 0.0033

n = 2048 0.0059 0.0032 0.0061 0.1355 0.0042 0.0013

The PTE detects the direct causal relationships, apart from the coupling, X2 → X3, although the
percentage of rejection in this direction increases with n (from 14% for n = 512 to 39% for n = 2048).
Further, the erroneous relationships, X1 → X4 (50%) and X3 → X4 (29%), are observed for n = 2048.
Focusing on the PTE values, it can be observed that they are much higher for the directions of direct
couplings than for the remaining directions. Moreover, the percentages of significant PTE values
increase with n for the directions with direct couplings and decrease with n for all other couplings (see
Table 3).

We note that the standard deviation of the estimated PTE values from the 100 realizations are
low (on the order of 10−2). Thus, the result of having falsely statistically significant PTE values for
X1 → X4 and X3 → X4 is likely due to insufficiency of the randomization test.

PSTE fails to detect the causal effects for the second coupled system for both time series lengths,
giving rejections at a rate between 1% and 24% for all directions. The failure of PSTE may be due to
the the high dimensionality of the rank vectors (the joint rank vector has dimension 21).
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4.3. Results for System 3

The CGCI, PGCI, PDC, PTE and PMIME correctly detect all direct causal effects (X1 → X2,
X1 → X4, X5 → X1, X2 → X4, X5 → X2, X5 → X3, X4 → X5) for P = m = Lmax = 4 (based on BIC
and AIC), as shown in Table 4.

Table 4. Percentages of statistically significant values of causality measures for System 3, for P = m =
Lmax = 4.

n = 512/2048 CGCI PGCI PDC PTE PSTE PMIME

X1 → X2 100 86 / 100 92 / 100 81 / 100 8 / 7 100
X2 → X1 7 / 3 2 / 0 0 7 / 2 3 / 8 18 / 0
X1 → X3 6 / 5 2 / 0 0 3 / 4 4 / 10 2 / 0
X3 → X1 1 / 2 0 0 5 / 4 2 / 4 14 / 0
X1 → X4 100 100 100 52 / 100 2 / 9 100
X4 → X1 7 / 4 1 / 0 0 6 / 4 4 / 10 12 / 0
X1 → X5 5 2 0 6 / 10 7 / 12 16 / 0
X5 → X1 100 98 / 100 99 / 100 100 2 / 16 100
X2 → X3 4 2 / 0 0 4 / 6 9 / 5 2 / 0
X3 → X2 6 / 2 1 / 0 0 4 / 2 5 / 4 9 / 1
X2 → X4 100 99 / 100 96 / 100 18 / 77 7 94 / 100
X4 → X2 5 / 9 0 0 5 / 4 2 / 4 9 / 0
X2 → X5 6 / 4 2 / 3 0 5 / 4 4 / 6 22 / 0
X5 → X2 100 96 / 100 99 / 100 99 / 100 3 / 8 100
X3 → X4 3 / 7 1 / 0 0 3 / 4 5 / 8 0
X4 → X3 4 1 / 0 0 3 / 6 4 / 5 4 / 0
X3 → X5 4 / 3 1 0 7 / 4 6 14 / 0
X5 → X3 100 87 / 100 84 / 100 49 / 97 3 / 15 100
X4 → X5 100 100 100 100 6 / 4 100
X5 → X4 5 / 2 0 0 17 / 37 6 / 14 1 / 0

The PDC is again estimated in the range of frequencies, [0, 0.4], (see in Figure 1b the auto-spectra
of the variables and the p-values from the parametric test of PDC from one realization of the system).
The CGCI, PGCI and PDC perform similarly for the two time series lengths. The PTE indicates 100%
significant values for n = 2048 when direct causality exists. However, the PTE also indicates the
spurious causality, X5 → X4, for n = 2048 (37%). The specificity of the PMIME is improved by the
increase of n, and the percentage of positive PMIME values in case of no direct causal effects varies
from 0% to 22% for n = 512, while for n = 2048, it varies from 0% to 1%. The PSTE again fails to detect
the causal effects, giving very low percentage of rejection at all directions (2% to 16%).

Since the linear causality measures CGCI, PGCI and PDC have been developed for the detection
of direct causality in linear coupled systems, it was expected that these methods would be successfully
applied to all linear systems. The nonlinear measures PMIME and PTE also seem to be able to capture
the direct linear couplings in most cases, with PMIME following close the linear measures both in
specificity and sensitivity.

In the following systems, we investigate the ability of the causality measures to correctly detect
direct causal effects when nonlinearities are present.

4.4. Results for System 4

For the fourth coupled system, the BIC and AIC suggest to set P = 1, 2 and 3. The performance of
the linear measures does not seem to be affected by the choice of P. The PDC is estimated for frequencies
in [0.1, 0.4]. The auto-spectra of the three variables do not display any peaks or any upward/downward
trends. No significant differences in the results are observed if a wider or narrower range of frequencies
is considered. The linear measures, CGCI, PGCI and PDC, capture only the linear direct causal effect,
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X2 → X3, while they fail to detect the nonlinear relationships, X1 → X2 and X1 → X3, for both time
series lengths.

The PTE and the PMIME correctly detect all the direct couplings for the fourth coupled system for
m = Lmax = 1, 2 and 3. The percentage of significant values of the causality measures are displayed
in Table 5. The PTE gives equivalent results for m = 1 and m = 2. The PTE correctly detects the
causalities for m = 3, but at a smaller power of the significance test for n = 512 (63% for X1 → X2,
46% for X2 → X3 and 43% for X1 → X3). The percentage of significant PMIME values is 100% for the
directions of direct couplings, and falls between 0% and 6% for all other couplings, and this holds for
any Lmax = 1, 2 or 3 and for both n.

Table 5. Percentage of statistically significant values of the causality measures for System 4, P = m =

Lmax = 2.

n = 512/2048 CGCI PGCI PDC PTE PSTE PMIME

X1 → X2 12 / 7 1 2 97 / 100 10 / 69 100
X2 → X1 2 / 7 0 / 1 1 / 0 8 / 9 4 / 8 3 / 0
X2 → X3 100 73 / 100 100 76 / 100 69 / 100 100
X3 → X2 7 / 4 3 / 1 1 4 3 / 9 4 / 0
X1 → X3 7 1 / 0 0 / 1 86 / 100 1 / 7 100
X3 → X1 4 / 5 0 0 4 / 6 8 / 21 0

The PSTE indicates the link X2 → X3 for both time series lengths, while X1 → X2 is detected
only for n = 2048. The PSTE fails to point out the causality, X1 → X3. The results for m = 2 and 3
are equivalent. In order to investigate whether the failure of PSTE to show X1 → X3 is due to finite
sample data, we estimate the PSTE also for n = 4096. For m = 2, it indicates the same results as for
n = 2048. For m = 3, the PSTE detects all the direct causal effects, X1 → X2 (99%), X2 → X3 (100%),
X1 → X3 (86%), but X3 → X1 (62%) is also erroneously detected.

4.5. Results for System 5

For the fifth coupled simulation system, we set the model order, P = 2, based on the complexity of
the system, and P = 3, 4 and 5 using the AIC and BIC. The auto-spectra of the variables display peaks
in [0.1, 0.2] and [0.4, 0.5]. The PDC is estimated for different ranges of frequencies to check its sensitivity
with respect to the selection of the frequency range. When small frequencies are considered, the
PDC seems to indicate larger percentages of spurious couplings; however, also, the percentages of
significant PDC values at the directions of true causal effects are smaller. The results are presented for
System 5 considering the range of frequencies, [0.4, 0.5].

The CGCI seems to be sensitive to the selection of the model order P, indicating some spurious
couplings for the different P. The best performance for CGCI is achieved for P = 3; therefore, only
results for P = 3 are shown. On the other hand, the PGCI turns out to be less dependent on P, giving
similar results for P = 2, 3, 4 and 5. The PTE is not substantially affected by the selection of the
embedding dimension, m (at least for the examined coupling strengths); therefore, only results for
m = 2 are discussed. The PSTE is sensitive to the selection of m, performing best for m = 2 and 3,
while for m = 4 and 5, it indicates spurious and indirect causal effects. The PMIME does not seem
to depend on Lmax. Results are displayed for Lmax = 5. The percentage of significant values for each
measure are displayed in Figure 2, for all directions, for increasing coupling strength and for both n.
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Figure 2. Percentage of significant (a) CGCI (P = 3); (b) PGCI (P = 3); (c) PDC (P = 3); (d) PTE
(m = 2); (e) PSTE (m = 2); and (f) PMIME (Lmax = 5) values, for System 5, for increasing coupling
strengths, c, at all directions and for both n (for n = 512, solid lines, for n = 2048, dotted lines).

Most of the measures show good specificity, and the percentage of rejection for all pairs of the
variables of the uncoupled system (c = 0) is at the significance level, α = 0.05, with only CGCI scoring
a somehow larger percentage of rejection up to 17%.

For the weak coupling strengths, c = 0.05 and 0.1, the causality measures cannot effectively
detect the causal relationships or have a low sensitivity. The CGCI and the PTE seem to have the best
performance, while the PMIME seems to be effective only for n = 2048 and c = 0.1.

As the coupling strength increases, the sensitivity of the causality measures is improved. For
c = 0.2, the CGCI, PTE and PMIME correctly indicate the true couplings for both n, while the PGCI
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and the PSTE do this only for n = 2048. The PDC has low power, even for n = 2048. For c = 0.3, nearly
all measures correctly point out the direct causal effects (see Table 6). The best results are obtained
with the PMIME, while the CGCI and PTE display similar performance. The PGCI and the PSTE
are sensitive to the time series length and have a high power only for n = 2048. The PDC performs
poorly, giving low percentage of significant PDC values, even for n = 2048. All measures have good
specificity, with CGCI and PTE giving rejections well above the nominal level for some non-existing
couplings.

Considering larger coupling strengths, the causality measures correctly indicate the true couplings,
but also some spurious ones. The PMIME outperforms the other measures giving 100% positive values
for both n for X1 → X2 and X2 → X3 and 0% at the remaining directions for c ≥ 0.2. Indicative results
for all measures are displayed for the strong coupling strength c = 0.5 in Table 7.

In order to investigate the effect of noise on each measure, we consider the coupled Hénon map
(System 5) with the addition of Gaussian white noise with standard deviation 0.2 times the standard
deviation of the original time series. Each measure is estimated again from 100 realizations from the
noisy system for the same free parameters as considered in the noise-free case.

The CGCI is not significantly affected by the addition of noise, giving equivalent results for P = 3
as for the noise-free system. The CGCI detects the true causal effects even for weak coupling strength
(c ≥ 0.05). For different P values (P = 2, 4 or 5), some spurious and/or indirect causal effects are
observed for c > 0.3.

Table 6. Percentage of statistically significant values of the causality measures for System 5 for c = 0.3,
where P = 3, m = 2 and Lmax = 5.

n = 512/2048 CGCI PGCI PDC PTE PSTE PMIME

X1 → X2 100 36 / 100 20 / 94 100 19 / 88 100
X2 → X1 10 / 13 0 / 1 0 / 2 7 / 24 7 / 6 0
X2 → X3 94 / 100 16 / 75 12 / 19 100 18 / 98 100
X3 → X2 16 / 17 2 / 0 12 / 4 9 8 0
X1 → X3 5 / 8 0 0 / 1 8 / 17 4 / 7 0
X3 → X1 5 / 7 0 2 / 0 3 / 7 5 / 4 0

Table 7. Percentages of statistically significant values of the causality measures for System 5 for c = 0.5,
where P = 3, m = 2 and Lmax = 5.

n = 512/2048 CGCI PGCI PDC PTE PSTE PMIME

X1 → X2 100 84 / 100 11 / 99 100 67 / 100 100
X2 → X1 1 / 5 0 0 / 1 9 / 18 16 / 31 0
X2 → X3 100 60 / 100 7 / 13 100 79 / 100 100
X3 → X2 2 / 17 0 / 2 2 / 8 8 7 / 31 0
X1 → X3 12 / 52 0 / 3 1 / 11 16 / 92 3 / 7 0
X3 → X1 6 / 5 0 2 / 0 8 / 5 7 / 0 0

The PGCI is also not considerably affected by the addition of noise. The causal effects are detected
only for coupling strengths, c ≥ 0.3, for n = 512, and for c ≥ 0.2, for n = 2048, while the power of the
test increases with c and with n (see Figure 3a).

The PDC fails in the case of the noisy coupled Hénon maps, detecting only the coupling X1 → X2,
for coupling strengths, c ≥ 0.2 and n = 2048 (see Figure 3b).

The PTE seems to be significantly affected by the addition of noise, falsely detecting the coupling,
X2 → X1, X3 → X2, and the indirect coupling, X1 → X3, for strong coupling strengths. The
performance of PTE is not significantly influenced by the choice of m. Indicative results are presented
in Table 8 for m = 2.

Noise addition does not seem to affect the performance of PSTE. Results for m = 2 are equivalent
to the results obtained for the noise-free case. The power of the significance test increases with c and n.
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The PSTE is sensitive to the selection of m; as m increases, the percentage of significant PSTE values in
the directions of no causal effects also increases.

The PMIME outperforms the other measures also for the noisy coupled Hénon maps, detecting
the true couplings for c ≥ 0.2 for n = 512 (100%) and for c ≥ 0.1 for n = 2048 (for coupling strength
c = 0.1 the percentages are 22% and 23% for X1 → X2, X2 → X3, respectively, and for c ≥ 0.2, the
percentages are 100%, for both couplings).

Figure 3. Percentage of significant (a) PGCI (P = 3) and (b) PDC (P = 3) values, for System 5 with
addition of noise (solid lines for n = 512, dotted lines for for n = 2048).

Table 8. Percentages of statistically significant PTE (m = 2) values for System 5 with the addition of
noise.

n = 512/2048 X1 → X2 X2 → X1 X2 → X3 X3 → X2 X1 → X3 X3 → X1

c = 0 2 / 5 5 / 6 4 5 / 7 10 / 1 7 / 6
c = 0.05 6 / 17 3 5 / 20 4 / 5 3 / 6 7 / 1
c = 0.1 22 / 98 6 / 2 22 / 98 3 / 7 4 / 5 5 / 8
c = 0.2 100 6 / 11 99 / 100 4 / 7 1 / 5 4 / 2
c = 0.3 100 10 / 52 100 8 / 22 12 / 27 4 / 8
c = 0.4 100 9 / 79 100 6 / 50 24 / 97 7 / 10
c = 0.5 100 23 / 95 100 7 / 48 39 / 100 8 / 13

4.6. Results for System 6

For System 6, we set P = 3 based on the complexity of the system and P = 5 regarding the
AIC and BIC. The PTE, PSTE and PMIME are estimated for four different combinations of the free
parameters, h and m (Lmax for PMIME), i.e., for h = 1 and m = 3, for h = 3 and m = 3, for h = 1 and
m = 5 and for h = 5 and m = 5. The PDC is computed for the range of frequencies, [0, 0.2], based on
the auto-spectra of the variables. As this system is a nonlinear flow, the detection of causal effects is
more challenging compared to stochastic systems and nonlinear coupled maps. Indicative results for
all causality measures are displayed for increasing coupling strengths in Figure 4.
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Figure 4. Percentage of significant (a) CGCI (P = 5); (b) PGCI (P = 5); (c) PDC (P = 5); (d) PTE (h = 1,
m = 5); (e) PSTE (h = 3, m = 3); and (f) PMIME (h = 1, Lmax = 5) values, for System 6, for increasing
coupling strengths, c, at all directions and for both n (solid lines for n = 512, dotted lines for n = 2048).

The CGCI has poor performance, indicating many spurious causalities. The PGCI improves the
specificity of the CGCI, but still, the percentages of statistically significant PGCI values increase with c
for non-existing direct couplings (less for larger n). Similar results are obtained for P = 3 and 5. On the
other hand, the PDC is sensitive to the selection of P, indicating spurious causal effects for all P. As
P increases, the percentage of significant PDC values at the directions of no causal effects is reduced.
However, the power of the test is also reduced.

The PTE is sensitive to the embedding dimension m and the number of steps ahead h, performing
best for h = 1 and m = 5. It fails to detect the causal effects for small c; however, for c > 1, it effectively
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indicates the true couplings. The size of the test increases with c (up to 36% for c = 5 and n = 2048),
while the power of the test increases with n.

The PSTE is also affected by its free parameters, performing best for h = 3 and m = 3. It is unable
to detect the true causal effects for weak coupling strengths (c ≤ 1) and for small time series lengths.
The PSTE is effective only for c > 2 and n = 2048. Spurious couplings are observed for strong coupling
strengths c and n = 2048.

The PMIME is also influenced by the choice of h and Lmax, indicating low sensitivity when setting
h = 1, but no spurious couplings, while for h = Lmax, the percentage of significant PMIME values for
X1 → X2 and X2 → X3 is higher, but the indirect coupling X1 → X3 is detected for strong coupling
strengths. The PMIME has a poor performance for weak coupling strength (c < 2).

As c increases, the percentages of significant values of almost all the causality measures increase,
but not only at the true directions, X1 → X2 and X2 → X3. Indicative results are presented in Table 9
for strongly coupled systems (c = 5). The CGCI gives high percentages of rejection of H0 for all
couplings (very low specificity). This also holds for the PGCI, but at a lower significance level. The
PTE correctly detects the two true direct causal effects for h = 1 and m = 5, but at some significant
degree, also the indirect coupling, X1 → X3, and the non-existing coupling, X3 → X2. The PSTE does
not detect the direct couplings for n = 512, but it does when n = 2048 (97% for X1 → X2 and 80%
for X2 → X3), but then it detects also spurious couplings, most notably X3 → X2 (35%). The PMIME
points out only the direct causal effects, giving, however, a lower percentage than the other measures
for h = 1, Lmax = 5. Its performance seems to be affected by the selection of h and Lmax. The nonlinear
measures turn out to be more sensitive to their free parameters.

Table 9. Percentage of statistically significant values of the causality measures for System 6 with c = 5,
where P = 5, h = 1 and m = 5 for PTE, h = 3 and m = 3 for PSTE and h = 1 and Lmax = 5 for PMIME.

n = 512/2048 CGCI PGCI PDC PTE PSTE PMIME

X1 → X2 99 / 100 38 / 86 26 / 95 96 / 100 18 / 97 39 / 41
X2 → X1 55 / 94 20 / 26 4 / 6 8 / 6 8 / 18 0
X2 → X3 89 / 100 47 / 61 36 / 56 70 / 100 12 / 80 35 / 51
X3 → X2 59 / 84 12 / 21 29 / 16 19 / 24 5 / 35 0
X1 → X3 54 / 80 11 / 6 7 / 7 28 / 36 6 / 15 0
X3 → X1 19 / 20 9 / 8 13 / 1 9 / 5 4 / 5 0

4.7. Results for System 7

For the last coupled simulation system, we set the model order P = 2, 3, 4 based on AIC and BIC,
while the PDC is estimated in the range of frequencies, [0.1, 0.2]. The embedding dimension, m, for the
estimation of PTE and PSTE, as well as Lmax for the estimation of PMIME, are set equal to P. Results
for all causality measures are displayed in Table 10.

The CGCI (for P = 5) correctly indicates the causal effects for n = 512, giving 100% percentage
of significant values at the direction X1 → X2 and X1 → X4, but lower percentage at the directions
X1 → X3 (63%), X4 → X5 (37%) and X5 → X4 (42%). The power of the test increases with n, but
spurious couplings are also detected for n = 2048. For P = 2, 3 and 4, the CGCI indicates more
spurious couplings than for P = 5.
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Table 10. Percentage of statistically significant values of the causality measures for System 7, where
P = m = Lmax = 3.

n = 512/2048 CGCI PGCI PDC PTE PSTE PMIME

X1 → X2 100 100 47 / 100 100 47 / 31 100
X2 → X1 8 / 26 0 7 / 23 6 / 9 86 / 100 0
X1 → X3 63 / 100 100 57 / 100 36 / 91 100 100
X3 → X1 6 / 8 1 / 8 1 / 2 98 / 100 32 / 26 100
X1 → X4 100 100 73 / 100 100 31 / 84 100
X4 → X1 6 0 2 / 0 54 / 96 73 / 100 87 / 23
X1 → X5 13 / 75 3 / 8 2 / 11 0 / 1 100 20 / 9
X5 → X1 9 / 5 0 1 / 2 5 / 16 100 1 / 0
X2 → X3 14 / 36 0 7 / 30 49 / 75 40 / 24 3 / 41
X3 → X2 9 / 12 0 4 / 3 40 / 66 100 1 / 0
X2 → X4 11 / 38 3 / 0 7 / 29 36 / 81 91 / 92 0
X4 → X2 7 / 10 18 / 22 2 / 1 0 / 2 100 0
X2 → X5 10 / 37 0 5 / 29 47 / 69 100 86 / 94
X5 → X2 5 / 7 0 1 / 3 20 / 49 72 / 96 1 / 0
X3 → X4 12 0 5 / 3 88 / 100 100 0
X4 → X3 5 / 10 0 2 / 2 14 / 59 98 / 100 15 / 0
X3 → X5 8 / 13 0 4 / 1 1 / 2 100 0
X5 → X3 7 / 11 0 1 / 3 14 / 43 100 5 / 0
X4 → X5 37 / 94 83 / 100 23 / 88 6 / 7 94 / 100 100
X5 → X4 42 / 100 6 / 4 20 / 76 100 78 / 75 100

System 7 favors the PGCI, as it has been specifically defined for systems with latent and exogenous
variables. The PGCI denotes the couplings, X1 → X2, X1 → X3, X1 → X4 and X4 → X5, even for
n = 512 with a high percentage; however, it fails to detect the coupling, X5 → X4, for both n.

The PDC detects the true couplings at low percentage for n = 512. The percentage increases
with n = 2048 at the directions of the true couplings. However, there are also false indications of
directed couplings.

The PTE does not seem to be effective in this setting for any of the considered m values, since it
indicates many spurious causal effects, while it fails to detect X4 → X5. The PSTE completely fails in
this case, suggesting significant couplings at all directions. The true causal effects are indicated by the
PMIME, but here, as well, many spurious causal effects are also observed.

5. Discussion

In this paper, we have presented six multivariate causality measures that are able to detect the
direct causal effects among simultaneously measured time series. The multivariate direct coupling
measures are tested on simulated data from coupled and uncoupled systems of different complexity,
linear and nonlinear, maps and flows. The linear causality measures and the PMIME can be used in
complex systems with a large number of observed variables, but the PTE and the PSTE fail, because
they involve estimation of probability distributions of high dimensional variables.

The simulation results suggest that for real world data, it is crucial to investigate the presence
of nonlinearities and confirm the existence of causal effects by estimating more than one causality
measure, sensitive to linear, as well as nonlinear causalities. Concerning the specificity of the coupling
measures (in absence of direct causality), the PMIME outperforms the other measures, but for weak
coupling, it is generally less sensitive than the PTE. In general, the PMIME indicated fewer spurious
causal effects. Here, we considered only systems of a few variables, and for larger systems, the PMIME
was found to outperform the PTE and, also, the CGCI [28].

Regarding the three first linear coupled systems in the simulation study, the CGCI, PGCI and
PDC are superior to the nonlinear causality measures, both in sensitivity and specificity. The PMIME
correctly indicates the coupling among the variables, but tends to have smaller sensitivity than the
linear tests. The PTE cannot detect the true direct causality in all the examined linear systems and gives
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also some spurious results. The PSTE was the less effective one. For the last simulation system with
the exogenous and latent variables (System 7), all but PGCI measures had low specificity, indicating
only the true direct causal effects.

Concerning the nonlinear coupled system, the PTE and the PMIME outperform the other methods.
The linear measures (CGCI, PGCI and PDC) fail to consistently detect the true direct causal effects
(low sensitivity). The failure of the linear measures may not only be due to the fact that the system
is nonlinear, but also due to the small time series lengths and the low model order. For example, the
PDC correctly indicated the causal effects on simulated data from the coupled Rössler system for
n = 50, 000 and model order, P = 200 (see [49]). The PSTE requires large data sets to have a good
power, while it gives spurious couplings at many cases. Though the PSTE performed overall worst in
the simulation study, there are other settings in which it can be useful, e.g., in the presence of outliers
or non-stationarity in mean, as slow drifts do not have a direct effect on the ranks. The addition of
noise does not seem to affect the causality measures, CGCI, PGCI, PSTE and PMIME.

The free parameters were not optimized separately for each measure. For all systems, the
parameters of model order, P, embedding dimension, m, and maximum lag, Lmax, were treated as one
free parameter, the values of which were selected according to the complexity of each system and the
standard criteria of AIC and BIC. The linear measures tend to be less sensitive to changes on this free
parameter than the nonlinear ones. The PTE gave more consistent results than the PSTE for varying m,
whereas the PMIME was not dependent on Lmax. For the nonlinear measures and the continuous-time
system (three coupled Lorenz systems), we considered also the causalities at more than one step ahead,
and the PTE, PSTE and PMIME were found to be sensitive to the selection of the steps ahead.

A point of concern regarding all direct causality measures, but the PMIME, is that the size of
the significance test was high in many settings. This was observed for both types of spurious direct
causal effect, i.e., when there is indirect coupling or when there is no causal effect. In many cases
of non-existing direct causalities, although the observed test size was large, the estimated values of
the measure were low compared to those in the presence of direct causalities. This raises also the
question of the validity of the significance tests. The randomization test used time-shifted surrogates.
Although it is simple and straightforward to implement, it may not always be sufficient, and further
investigation for other randomization techniques is due for future work.

In conclusion, we considered six of the best-known measures of direct causality and studied their
performance for different systems, time series lengths and free parameters. The worst performance
was observed for the PSTE, since it completely failed in the case of the linear coupled systems, while
for nonlinear systems, it required large data sets. The other measures scored differently in terms
of sensitivity and specificity in the different settings. The CGCI, PGCI and PDC outperformed the
nonlinear ones in the case of the linear coupled simulation systems, while in the presence of exogenous
and latent variables, the PGCI seems to be the most effective one. The PMIME seems to have the best
performance for nonlinear and noisy systems, while always obtaining the highest specificity, indicating
no spurious effects. It is the intention of the authors to pursue the comparative study on selected real
applications.
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Abstract: We present a framework for the estimation of transfer entropy (TE) under the conditions
typical of physiological system analysis, featuring short multivariate time series and the presence of
instantaneous causality (IC). The framework is based on recognizing that TE can be interpreted as the
difference between two conditional entropy (CE) terms, and builds on an efficient CE estimator that
compensates for the bias occurring for high dimensional conditioning vectors and follows a sequential
embedding procedure whereby the conditioning vectors are formed progressively according to a
criterion for CE minimization. The issue of IC is faced accounting for zero-lag interactions according
to two alternative empirical strategies: if IC is deemed as physiologically meaningful, zero-lag
effects are assimilated to lagged effects to make them causally relevant; if not, zero-lag effects are
incorporated in both CE terms to obtain a compensation. The resulting compensated TE (cTE)
estimator is tested on simulated time series, showing that its utilization improves sensitivity (from
61% to 96%) and specificity (from 5/6 to 0/6 false positives) in the detection of information transfer
respectively when instantaneous effect are causally meaningful and non-meaningful. Then, it is
evaluated on examples of cardiovascular and neurological time series, supporting the feasibility of
the proposed framework for the investigation of physiological mechanisms.

Keywords: cardiovascular variability; conditional entropy; instantaneous causality;
magnetoencephalography; time delay embedding

PACS: 05.45.Tp; 02.50.Sk; 87.19.lo; 87.19.le; 87.19.Hh

1. Introduction

Since its first introduction by Schreiber [1], transfer entropy (TE) has been recognized as a powerful
tool for detecting the transfer of information between joint processes. The most appealing features of
TE are that it has a solid foundation in information theory, and it naturally incorporates directional
and dynamical information as it is inherently asymmetric (i.e., different when computed over the two
causal directions) and based on transition probabilities (i.e., on the conditional probabilities associated
with the transition of the observed system from its past states to its present state). Moreover, the
formulation of TE does not assume any particular model as underlying the interaction between the
considered processes, thus making it sensitive to all types of dynamical interaction. The popularity of
this tool has grown even more with the recent elucidation of its close connection with the ubiquitous
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concept of Granger causality [2], which has led to formally bridge information-theoretic and predictive
approaches to the evaluation of directional interactions between processes. Given all these advantages,
the TE has been increasingly used to assess the transfer of information in physiological systems with
typical applications in neurophysiology [3–6] and in cardiovascular physiology [7–9]. Nevertheless, in
front of this widespread utilization of TE and other Granger causality measures, it should be remarked
that these measures quantify “causality” from a statistical perspective which is quite distinct from
the interventionist perspective that has to be followed to infer effectively the existence of real causal
effects [10–12]. Accordingly in this study, when speaking of the transfer of information measured by
TE we refer to the “predictive information transfer” intended as the amount of information added by
the past states of a source process to the next state of a destination process, rather than to the causal
information flow measured via interventional conditional probabilities [12].

The estimation of TE from the time series data taken as realizations of the investigated
physiological processes is complicated by a number of practical issues. One major challenge is the
estimation of the probability density functions involved in TE computation from datasets the length
of which is limited by experimental constraints and/or by the need for stationarity [13,14]. Another
critical point is that, to exploit the dynamical information contained in the transition probabilities,
one should cover reasonably well the past history of the observed processes; since this corresponds
to work with long conditioning vectors represented into high-dimensional spaces, TE estimation
from short time series is further hampered, especially in the presence of multiple processes and long
memory effects [15]. Moreover, an open issue in practical time series analysis is how to deal with
instantaneous effects, which are effects occurring between two time series within the same time lag [16].
These effects may reflect fast (within sample) physiologically meaningful interactions, or be void of
physiological meaning (e.g., may be due to unobserved confounders). In either case, instantaneous
effects have an impact on the computation of any causality measure [17,18]. In particular, the presence
of unmeasured exogenous inputs or latent variables which cannot be included in the observed data
set (e.g., because they are not accessible) is a critical issue when investigating Granger causality in
experimental data, as it may easily lead to the detection of spurious causalities [19–21]. Since an
instantaneous correlation arises between two observed variables which are affected by latent variables
with the same time delay, in the context of model-based analysis attempts have been made to counteract
this problem by accounting for residual correlations which reflect zero-lag effects. Indeed, recent
studies have proposed to incorporate terms from the covariance matrix of the model residuals into
the so-called partial Granger causality measures [21,22], or to express the residual correlation in terms
of model coefficients and exploit the resulting new model structure for defining extended Granger
causality measures [17,18]. However, as similar approaches cannot be followed in the model-free
context of TE analysis, instantaneous effects are usually not considered in the computation of TE on
experimental data.

In the present study we describe an approach for the estimation of TE from short realizations
of multivariate processes which is able to deal with the issues presented above. We develop an
estimation framework that combines conditional entropy (CE) estimation, non-uniform embedding,
and consideration of instantaneous causality. The framework is based on recognizing that TE can be
interpreted as CE difference, and builds on an efficient CE estimator that compensates for the bias
occurring for high dimensional conditioning vectors and follows a sequential embedding procedure
whereby the conditioning vectors are formed progressively according to a criterion for CE minimization.
This procedure realizes an approach for partial conditioning that follows the ideas first proposed in [15].
The novel contribution of the paper consists in the integration of the framework with a procedure for
the inclusion of instantaneous effects. This is a crucial point in TE analysis because, even though it
is now well recognized that instantaneous causality plays a key role in Granger causality analysis,
instantaneous effects are commonly disregarded in the computation of TE on experimental data. While
recent studies have started to unravel the issue of instantaneous causality in the linear parametric
framework of multivariate autoregressive models [17,18,23,24], there is a paucity of works addressing
the consequences of excluding instantaneous effects from the computation of model-free causality
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measures. In this paper, the issue of instantaneous causality is faced allowing for the possibility of
zero-lag effects in TE computation, according to two alternative empirical procedures: if instantaneous
effects are deemed as causally meaningful, the zero-lag term is assimilated to the lagged terms to
make it causally relevant; if not, the zero-lag term is incorporated in both CE computations to obtain
a compensation of its confounding effects. The resulting TE estimator, denoted as compensated
TE (cTE), is first validated on simulations of linear stochastic and nonlinear deterministic systems.
Then, the estimator is evaluated on representative examples of physiological time series which entail
utilization of different strategies for compensating instantaneous causality and different procedures for
significance assessment, i.e. cardiovascular variability series and multi-trial magnetoencephalography
signals. The direct comparison between the proposed cTE and the traditional TE allows to make
explicit the problem of disregarding instantaneous causality in the computation of the predictive
information transfer in multivariate time series.

2. Methods

2.1. Transfer Entropy

Let us consider a composite physical system described by a set of M interacting dynamical (sub)
systems and suppose that, within the composite system, we are interested in evaluating the information
flow from the source system X to the destination system Y, collecting the remaining systems in the
vector Z = {Z(k)}k = 1,...,M-2. We develop our framework under the assumption of stationarity, which
allows to perform estimations replacing ensemble averages with time averages (for non-stationary
formulations see, e.g., [10] and references therein). Accordingly, we denote x, y and z as the stationary
stochastic processes describing the state visited by the systems X, Y and Z over time, and xn, yn and zn

as the stochastic variables obtained sampling the processes at the time n. Moreover, let xt:n represent
the vector variable describing all the states visited by X from time t up to time n (assuming n as the
present time and setting the origin of time at t = 1, x1:n-1 represents the whole past history of the process
x). Then, the transfer entropy (TE) from X to Y conditioned to Z is defined as:

TEX→Y|Z = ∑ p(y1:n, x1:n−1, z1:n−1)log
p(yn|x1:n−1, y1:n−1, z1:n−1)

p(yn|y1:n−1, z1:n−1)
(1)

where the sum extends over all states visited by the composite system, p(a) is the probability associated
with the vector variable a, and p(b|a) = p(a,b)/p(a) is the probability of the scalar variable b conditioned
to a. The conditional probabilities used in (1) can be interpreted as transition probabilities, in the sense
that they describe the dynamics of the transition of the destination system from its past states to its
present state, accounting for the past of the other processes. Utilization of the transition probabilities
as defined in (1) makes the resulting measure able to quantify the extent to which the transition of the
destination system Y into its present state is affected by the past states visited by the source system X.
Specifically, the TE quantifies the information provided by the past states of X about the present state
of Y that is not already provided by the past of Y or any other system included in Z. The formulation
presented in (1) is an extension of the original TE measure proposed for bivariate systems [1] to the
case of multiple interacting processes. The multivariate (conditional) TE formulation, also denoted
as partial TE [25], rules out the information shared between X and Y that could be possibly triggered
by their common interaction with Z. As such, this formulation fulfills for multivariate systems the
correspondence between TE and the concept of Granger causality [19], that refers to the exclusive
consideration of direct effects between two processes after resolving the conditional effects of the
other observed processes. Note that the conditional formulation has been shown essential for taking
under control the effects of common confounders in experimental contexts such as cardiovascular
variability analysis [24] or neural signal analysis [26]. In the following, we will indicate Granger causal
effects from the system X to the system Y with the notation X→Y (or x1:n-1→yn if we refer to the
corresponding processes).
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Equivalently, the TE defined in (1) can be expressed in terms of mutual information (MI), as the
conditional MI between the present state of the destination and the past states of the source given the
past states of all systems except the source:

TEX→Y|Z = I(yn, x1:n−1|y1:n−1, z1:n−1 ) (2)

or in terms of conditional entropy (CE), as the difference between the CE of the present state of the
destination given the past states of all systems except the source and the CE of the present state of the
destination given the past states of all systems including the source:

TEX→Y|Z = H(yn|y1:n−1, z1:n−1 )− H(yn|x1:n−1, y1:n−1, z1:n−1 ) (3)

These alternative compact formulations also favor the estimation of TE, as efficient estimators
exist for both MI [27] and CE [28]. In Section 2.3 we propose an approach for the estimation of CE
based on sequential non-uniform conditioning combined with bias compensation, which is exploited
for estimating TE in short and noisy physiological time series. The CE, which constitutes the backbone
of the presented approach for TE estimation, can be functionally defined as the difference between
two Shannon entropies, e.g., according to (3), H(yn|y1:n-1,z1:n-1) = H(y1:n,z1:n-1) − H(y1:n-1,z1:n-1) and
H(yn|x1:n-1,y1:n-1,z1:n-1) = H(x1:n-1,y1:n,z1:n-1) − H(x1:n-1,y1:n-1,z1:n-1), where the entropy of any vector
variable a is defined as H(a) = −∑ p(a)·log p(a) and is usually measured in bits when the base of the
logarithm is 2 or in nats when the base is e (as in the present study).

2.2. Compensated Transfer Entropy

An open issue in TE analysis is how to deal with instantaneous effects, which are effects occurring
between two processes within the same time lag (e.g., with the notation above, xn→yn). Instantaneous
effects are the practical evidence of the concept of instantaneous causality, which is a known issue in
causal analysis [16,19]. In practice, instantaneous causality between two time series may either have a
proper causal meaning, when the time resolution of the measurements is lower than the time scale of
the lagged causal influences between the underlying processes, or be void of such causal meaning, in
the case of common driving effects occurring when an unmeasured process simultaneously affects
the two processes under analysis [17]. In either case, instantaneous causality has an impact on the
estimation of the TE: if it is causally meaningful, the analysis misses the zero-lag effect xn→yn, if
not, the analysis includes potential spurious effects taking the form x1:n-1→xn→yn; these misleading
detections may impair respectively the sensitivity and the specificity of TE estimation.

To counteract this problem from a practical perspective, we introduce a so-called compensated
TE (cTE), which realizes a compensation for instantaneous causality in the computation of TE. This
compensation exploits the representation of TE as CE difference and allows for the possibility of
zero-lag interactions according to two alternative strategies. If instantaneous effects are deemed as
causally meaningful, the zero-lag term of the source process, xn, is incorporated in the second CE term
used for TE computation:

cTE′
X→Y|Z = H(yn|y1:n−1, z1:n )− H(yn|x1:n, y1:n−1, z1:n ) (4)

in this case, the zero-lag term is assimilated with the past states (xn plays a similar role as x1:n-1), so
that the present state of the source system is taken as causally relevant to account for instantaneous
causality in TE computation. If, on the contrary, instantaneous effects are deemed as non causally
meaningful, the zero-lag term is incorporated both in the first and in the second CE terms used for TE
computation:

cTE′′
X→Y|Z = H(yn|xn, y1:n−1, z1:n )− H(yn|x1:n, y1:n−1, z1:n ) (5)

in this second case, the zero-lag term is considered as a conditioning factor (xn plays a similar role as
y1:n-1 and z1:n), so that the present state of the source system is compensated to remove instantaneous
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causality from TE computation. The compensation performed in (5) is alternative to the test of
time-shifted data recently proposed to detect instantaneous mixing between coupled processes [4].
Note that in both compensations in (4) and (5) instantaneous effects possibly occurring from any scalar
element of Z towards Y are conditioned out considering the present term zn, in addition to the past
terms z1:n-1, in the two CE computations; this is done to avoid that indirect effects x1:n-1→zn→yn were
misinterpreted as the presence of predictive information transfer from the system X to the system
Y. Note that, in the absence of instantaneous causality among the observed processes, the two cTE
measures defined in (4) and (5) reduce to the traditional TE.

2.3. Estimation Approach

The practical estimation of TE and cTE from finite length realizations of multiple processes faces
the issue of reconstructing the state space of the observed multivariate dynamical system and then
estimating probabilities within this multidimensional state space. In the context of TE/cTE estimation,
state space reconstruction corresponds to identifying the multidimensional vector which more suitably
represents the trajectory of the states visited by the composite system {X,Y,Z}. The most commonly
followed approach is to perform uniform time delay embedding, whereby each scalar process is
mapped into trajectories described by delayed coordinates uniformly spaced in time [29]. In this way
the past history of the source process, x1:n-1, is approximated with the d-dimensional delay vector
[xn-u-(d-1)τ, ..., xn-u-τ, xn-u], with τ and u representing the so-called embedding time and prediction time.
This procedure suffers from many disadvantages: first, univariate embedding whereby coordinate
selection is performed separately for each process does not guarantee optimality of the reconstruction
for the multivariate state space [30]; second, selection of the embedding parameters d, τ and u is not
straightforward, as many competing criteria exist which are all heuristic and somewhat mutually
exclusive [31]; third, the inclusion of irrelevant coordinates consequent to the use of an uniform
embedding exposes the reconstruction procedure to the so called “curse of dimensionality”, a concept
related to the sparsity of the available data within state spaces of increasing volume [32]. All these
problems become more cumbersome when the available realizations are of short length, as commonly
happens in physiological time series analysis due to lack of data or stationarity requirements. To
counteract these problems, we describe in the following a TE/cTE estimation strategy based on the
utilization of a non-uniform embedding procedure combined with a corrected CE estimator [15].

The basic idea underlying our estimation approach is to optimize the time-delay embedding
to the estimation of CE, according to a sequential procedure which updates the embedding vector
progressively, taking all relevant processes into consideration at each step and selecting the components
that better describe the destination process. Specifically, a set of candidate terms is first defined
including the past states (and, when relevant, also the present state) of all systems relevant to the
estimation of the considered CE term; for instance, considering the terms in (4), the candidate set for
the estimation of H(yn|y1:n-1,z1:n) will be the set Ω1 = {yn-1,...,yn-L,zn,zn-1,...,zn-L}, and the candidate
set for the estimation of H(yn|x1:n, y1:n-1,z1:n) in (4) will be the set Ω2 = {Ω1,xn,xn-1,...,xn-L} (L is the
number of time lagged terms to be tested for each scalar process). Given the generic candidate set
Ω, the procedure for estimating the CE H(yn|Ω) starts with an empty embedding vector V0 = [·],
and proceeds as follows: (i) at each step k ≥ 1, form the candidate vector [s,Vk-1], where s is an
element of Ω not already included in Vk-1, and compute the CE of the destination process Y given the
considered candidate vector, H(yn|[s,Vk-1]); (ii) repeat step (i) for all possible candidates, and then
retain the candidate for which the estimated CE is minimum, i.e., set Vk = [s′,Vk-1] where s′ = arg mins

H(yn|[s,Vk-1]); (iii) terminate the procedure when irrelevant terms begin to be selected, i.e. when the
decrease of CE is no longer significant; according to the estimation procedure detailed below, this
corresponds to stop the iterations at the step k′ such that H(yn|Vk′ ) ≥ H(yn|Vk′ -1), and set VK = Vk′ -1
as embedding vector. With this procedure, only the components that effectively contribute to resolving
the uncertainty of the target process (in terms of CE reduction) are included into the embedding
vector, while the irrelevant components are left out. This feature, together with the termination
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criterion which prevents the selection of new terms when they do not bring further resolution of
uncertainty for the destination process, help escaping the curse of dimensionality for multivariate CE
estimation. Moreover the procedure avoids the nontrivial task of setting the embedding parameters
(the only parameter is the number L of candidates to be tested for each process, which can be as high
as allowed by the affordable computational times). It is worth noting that the proposed sequential
procedure for candidate selection takes into account one term at a time, somehow disregarding joint
effects that more candidates may have on CE reduction. As a consequence, the sequential instead
of exhaustive strategy does not guarantee convergence to the absolute minimum of CE, and thus
does not assure a semipositive value for the TE/cTE measures estimated according to (3), (4) and (5).
However a sequential approach is often necessary in practical analysis, since exhaustive exploration of
all possible combinations of candidate terms would become computationally intractable still at low
embedding dimensions.

The application of the procedure described above relies on an efficient estimation of the CE. The
problem amounts to estimating, at the k-th step of the procedure, the entropy of the scalar variable
yn conditioned to the vector variable Vk, seen as the difference of two Shannon entropies: H(yn|Vk)
= H(yn,Vk) − H(Vk). A major problem in estimating CE is the bias towards zero which affects the
estimates as the dimension of the reconstructed state space grows higher [33,34]. Since the bias
increases progressively with the embedding dimension, its occurrence also prevents from being able
to reveal the inclusion of irrelevant terms into the embedding vector by looking at the estimated CE;
in other words, since the estimated CE decreases progressively as a result of the bias rather than of
the inclusion of relevant terms, the iterations of the sequential procedure for nonuniform embedding
cannot be properly stopped. To deal with this important problem, we propose to compensate the
CE bias adding a corrective term as proposed by Porta et al. [28,34], in order to achieve a minimum
in the estimated CE which serves as stopping criterion for the embedding procedure. The idea is
based on the consideration that, for time series of limited length, the CE estimation bias is due to the
isolation of the points in the k-dimensional state space identified by the vectors Vk; such an isolation
becomes more and more severe as the dimension k increases. Since isolated points tend to give the
same contribution to the two entropy terms forming CE (i.e., p(Vk) ≈ p(yn,Vk) if Vk is an isolated point),
their contribution to the CE estimate will be null; therefore, the CE estimate decreases progressively
towards zero at increasing the embedding dimension [i.e., when k is high compared to the series length,
H(Vk) ≈ H(yn,Vk) and thus H(yn|Vk) ≈ 0], even for completely unpredictable processes for which
conditioning should not decrease the information carried. This misleading indication of predictability
in the analysis of short time series is counteracted introducing a corrective term for the CE. The
correction is meant at quantifying the fraction of isolated points Vk in the k-dimensional state space,
denoted as n(Vk), and on substituting their null contribution with the maximal information amount
carried by a white noise with the same marginal distribution of the observed process yn [i.e., with
H(yn)]. The resulting final estimate is obtained adding the corrective term n(Vk)H(yn) to the estimated
CE H(yn|Vk). In the present study, practical implementation of the correction is performed in the
context of entropy estimation through uniform quantization [15,28,34]. Briefly, each time series is
coarse grained spreading its dynamics over Q quantization levels, so that the state space containing
the vectors Vk is partitioned in Qk disjoint hypercubes. As all points falling within the same hypercube
are considered indistinguishable to each other, the Shannon entropy is estimated approximating the
probabilities with the frequency of visitation of the hypercubes. Partitioning in disjoint hypercubes
helps also in quantifying the fraction of isolated points n(Vk), which is taken simply as the fraction of
points found only once inside the hypercubes.

3. Validation

In this section we test the compensation for instantaneous causality in TE computation proposed
in Section 2.2, as well as the approach for CE estimation described in Section 2.3, on numerical
simulations reproducing different conditions of interaction between multivariate processes. The
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proposed simulations were devised, in terms of imposed dynamics, interaction conditions and series
length, to mimic the conditions typical of the two applicative contexts which are then considered
in Section 4, i.e., short-term cardiovascular variability and magnetoencephalography. The reader is
referred to [15,28,34] for more extensive validations which investigate the dependence of CE measures
on a variety of dynamics, series length, noise conditions, and parameter settings. Here, we consider
short realizations of linear stochastic and nonlinear deterministic coupled systems with and without
instantaneous effects, and compare TE and cTE as regards their ability to detect the absence or presence
of information transfer between pairs of systems. All TE and cTE computations were performed
following the described procedure for nonuniform embedding, including in the initial set of candidates
L = 10 past terms for each process (plus the zero-lag term when relevant); this choice was based on the
necessity to cover the whole range of expected time lagged interactions, while at the same time keeping
reasonably low the computational times. The number of quantization levels used for coarse-graining
the dynamics of each process was set at Q = 6, in accordance with previous validation studies [15,28,34];
whereas in theory high values of Q would lead to finer state space partitions and more accurate TE
estimates, in practice Q should remain as low as QK ≈ N for series of length N (with K the embedding
dimension) [15,28,34].

3.1. Physiologically Meaningful Instantaneous Causality

In the first simulation we considered the case in which instantaneous effects are causally
meaningful, i.e., correspond to real causal effects between pairs of processes. While zero-lag causal
effects are unattainable in physical systems because interactions take time to occur, in practical analysis
instantaneous causality becomes meaningfully relevant when the time resolution of the measurements
is lower than the time scale of the lagged effects occurring between the processes, or when the time
series are built in a way that entails the existence of zero-lag effects. Situations like these are commonly
modeled in the framework of Bayesian networks or structural vector autoregression models [18,23,35].
Within this context, we consider a simulation scheme with M = 3 linear stochastic processes X, Y, and
Z which interact according to the equations:

xn = a1xn−1 + a2xn−2 + un

yn = b1yn−1 + b2yn−2 + cxn − cxn−1 + vn

zn = cyn + cxn−1 + wn

(6)

where un, vn and wn are independent white noises with zero mean and variance σ2
u = 5, σ2

v

= 1, and σ2
w = 1. According to (6), the processes X and Y are represented as second order

autoregressive processes described by two complex-conjugate poles with modulus ρx,y and phases
ϕx,y = ±2πfx,y; setting modulus and central frequency of the poles as ρx = 0.95, ρy = 0.92, fx = 0.3,
fy = 0.1, the parameters quantifying the dependence of xn and yn on their own past in (6) are
a1 = 2ρxcosϕx = 0.5871, a2 = −ρ2

x = −0.9025, b1 = 2ρycosϕy = 1.4886, a2 = −ρ2
y = −0.8464. The other

parameters, all set with a magnitude c = 0.5, identify causal effects between pairs of processes;
the imposed effects are mixed instantaneous and lagged from X to Y, exclusively instantaneous from Y
to Z, and exclusively lagged from X to Z. With this setting, self-dependencies and causal effects are
consistent with rhythms and interactions commonly observed in cardiovascular and cardiorespiratory
variability, showing an autonomous oscillation at the frequency of the Maier waves (fy ~0.1 Hz) for Y,
which is transmitted to Z mimicking feedback effects from arterial pressure to heart period, and an
oscillation at a typical respiratory frequency (fx ~0.3 Hz) for X, which is transmitted to both Y and Z
mimicking respiratory-related effects on arterial pressure and heart period (a realization of the three
processes is shown in Figure 1a).

The analysis was performed on 100 realizations of (6), each lasting N = 300 points. For each
realization, we computed the TE according to (3) and the cTE according to (4). The statistical
significance of each estimated information transfer was assessed by using surrogate time series.
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Specifically, the TE or cTE of the original time series was compared with the distribution of its values
obtained for a set of S = 40 realizations of time-shifted surrogates, obtained by shifting the source time
series of a randomly selected lag (>20 points); then, the null hypothesis of absence of information
transfer was rejected if the original TE or cTE took the first or second position in the descending
ordered sequence of original and surrogate values (this corresponds to a type-I error probability of
0.0405 [36]).

An example of the analysis is depicted in Figure 1. Each panel reports the corrected CE estimated
for the destination process after conditioning to all processes except the source process (black) and
after conditioning to all processes including the source process (red), together with the term selected at
each step of the conditioning procedure. Note that the two estimated CE profiles overlap whenever no
terms from the source process are selected even if considered as possible candidates, so that the two CE
minima are the same and the estimated TE or cTE is zero. For instance, considering the estimation of
TE or cTE from Y to X conditioned to Z (lower left panel in Figure 1b,c) we see that the first repetition
of the embedding procedure –which starts from the initial set of candidate terms Ω1 = {xn-1,...,xn-10,
zn-1,...,zn-10} − selects progressively the past terms of X with lags 5, 2, and 3, terminating at the
third step with the embedding vector V3 = [xn-5, xn-2, xn-3]. The second repetition of the procedure,
although starting with the enlarged set of candidates Ω2 = {Ω1,yn-1,...,yn-10,} which includes also past
terms from the source system Y, selects exactly the same candidates leading again to the embedding
vector V3 = [xn-5, xn-2, xn-3] and yielding no reduction in the estimated CE minimum, so that we have
TEY→X|Z = cTE′

Y→X|Z = 0.

Figure 1. Example of transfer entropy analysis performed for the first simulation. (a) realization of
the three processes generated according to (6). (b) TE estimation between pairs of processes based
on nonuniform embedding; each panel depicts the CE estimated for the destination process through
application of the non-uniform embedding procedure without considering the source process (black
circles), or considering the source process (red triangles), in the definition of the set of candidates;
the terms selected at each step k of the sequential embedding are indicated within the plots, while
filled symbols denote each detected CE minimum. (c) Same of (b) for estimation of the compensated
TE (cTE′).
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On the contrary, the selection of one or more terms from the input process during the second
repetition of the procedure leads to a decrease in the CE minimum, and thus to the detection of a
positive information transfer. For instance, considering the estimation of TE from Y to Z conditioned
to X (upper right panel in Figure 1b) the vector resulting from the first embedding is [xn-1, zn-5, xn-3],
while the second embedding selects at the second and third steps some past terms from the source
process Y (i.e., the terms yn-5 and yn-1), so that the selected embedding vector changes to [xn-1, yn-5,
yn-1] and this results in a reduction of the CE minimum with respect to the first embedding and in the
detection of a nonzero information transfer (TEY→Z|X > 0).

The difference between TE and cTE is in the fact that in cTE computation the zero-lag term of
the source process is a possible candidate in the second repetition of the embedding procedure, so
that when selected to enter the embedding vector, it may reduce the information carried by the target
process and thus lead to detecting information transfer. In the example of Figure 1, this is the case of
the analysis performed from X to Y: the traditional TE misses detection of the existing information
transfer because the procedure selects at both repetitions the embedding vector [yn-5, yn-4, zn-2], failing
to include any term from the source system X and thus returning TEX→Y|Z = 0 (Figure 1b, upper left
panel); on the contrary the compensated TE captures the information transfer thanks to the fact that
the zero-lag term xn is in the set of candidates for the second embedding, and is selected determining a
reduction in the estimated CE that ultimately leads to cTE′

X→X|Z > 0 [Figure 1c, upper left panel].
Figure 2 reports the results of the analysis extended to all realizations. As seen in Figure 2a, the

distributions of both TE and cTE′ are close to zero when computed over the directions for which no
information transfer was imposed (i.e., Y→X, Z→X and Z→Y), and cover a range of larger positive
values over the directions with imposed coupling (X→Y, X→Z and Y→Z). cTE′ shows higher values
than TE when computed over the coupled directions, while the two distributions substantially overlap
when evaluated over the uncoupled directions. Note that markedly higher values are obtained for
cTE′ compared to TE even for the direction X→Z even though X does not contribute to Z in an
instantaneously causal way; this is likely due to the fact that Y causes Z instantaneously, an effect that
cannot be detected in the traditional analysis and ultimately leads to underestimation of the TE.

Figure 2. Results of transfer entropy analysis for the first simulation. (a) Distribution over 100
realizations of (6) (expressed as 5th percentile, median and 95th percentile) of the information transfer
estimated between each pair of processes using the traditional TE (white) and the compensated TE
(black). (b) Percentage of realizations for which the information transfer estimated using TE (white)
and compensated TE (black) was detected as statistically significant according to the test based on
time-shifted surrogates.
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The results of Figure 2a are further supported by the percentage of significant information
transfer of Figure 2b. Indeed, while over the uncoupled directions the number of detected significant
causal couplings is low and comparable for TE and cTE′ (the overall specificity is 87% for the TE
and 90% for the cTE), over the coupled directions the number of detected significant couplings is
substantially higher for cTE′ than for TE (the overall sensitivity is 61% for the TE and 96% for the cTE).
Thus, in this situation with causally meaningful instantaneous interactions, utilization of the cTE in
place of the traditional TE yields a better sensitivity in the detection of information transfer between
coupled processes.

3.2. Non-Physiological Instantaneous Causality

In the second simulation we considered the case in which instantaneous effects are not
physiologically meaningful, reproducing a situation of cross-talk between two nonlinear processes
which is typical in the analysis of neurophysiological settings where data acquired at the scalp level
are the result of the instantaneous mixing of unmeasured cortical sources. Specifically, we considered
the simulated systems X′ and Y′ described by two unidirectionally coupled logistic processes x′ and y′:

x′n = R1x′n−1
(
1 − x′n−1

)
y′n = Cx′n−1 + (1 − C)

[
R2y′n−1

(
1 − y′n−1

)] (7)

which were then instantaneously mixed to obtain the processes x and y as:

xn = (1 − ε)x′n + εy′n + un

yn = εx′n + (1 − ε)y′n + wn
(8)

where u and w are independent additive noise processes with zero mean and variance set to get a
signal-to-noise ratio of 20 dB. In (7), we set R1 = 3.86 and R2 = 4 to obtain a chaotic behavior for the two
logistic maps describing the autonomous dynamics of X and Y; the parameters C and ε in (7) and (8)
set respectively the strength of coupling from X to Y and the amount of instantaneous mixing between
the two processes.

The analysis was performed at varying the coupling strength from C = 0 (absence of coupling) to
C = 1 (full coupling, intended as absence of self-dependencies in Y with maximal dependence on X) in
the absence of signal mixing (ε = 0), and at varying the mixing parameter from ε = 0 to ε = 0.4 either in
the absence of coupling (C = 0) or with fixed coupling (C = 0.2). For each combination of the parameters,
50 realizations of (7-8) were generated, each lasting 100 points, and the TE and cTE were computed
according to (3), (4) and (5), respectively. Since in this simulation the data were interpreted as having a
trial structure, as typically happens in neurophysiological studies, the statistical significance of each
estimated information transfer was assessed by means of a permutation test. The test consisted in
performing repeatedly (S = 100 times in this study) a random shuffling of the relative ordering of
the trials for the two processes to get S datasets with uncoupled trials; then, the null hypothesis of
absence of information transfer was rejected if the median TE (or cTE′ ′) computed for the original trials
was outside the 95-th percentile of the distribution of the median TE (or cTE′ ′) computed over the S
datasets with shuffled trials (this corresponds to set a type-I error probability of 0.05).

Examples of the analysis performed with significant coupling but absence of signal cross-talk (C =
0.2, ε = 0) and significant cross-talk but absence of coupling (C = 0, ε = 0.2) are depicted in Figure 3a,b,
respectively. In the first case, both TE and cTE seem able to detect correctly the imposed unidirectional
coupling. Indeed, in the computation of TEX→Y and cTE′ ′

X→Y the second repetition of the conditioning
procedure (red) selects a term from the input process (i.e., xn-1) determining a decrease in the estimated
CE minimum and thus the detection of a positive information transfer; on the contrary, the analysis
performed from Y to X does not select any term from the source process in the second repetition of
the conditioning procedure, thus leading to unvaried CE and hence to null values of the information
transfer (TEY→X = cTE′ ′

Y→X = 0). The identical behavior of TE and cTE is explained by noting that,
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in this case with absence of instantaneous signal mixing, zero-lag effects are not present, and indeed
the zero-lag term is not selected (although tested) during the embedding procedures for cTE. On the
contrary, in the case of Figure 3b where the instantaneous mixing is not trivial, the two repetitions of
the embedding procedure for cTE both select the zero lag-term (xn in the analysis from X to Y and yn

in the analysis from Y to X); as a consequence, the cTE correctly reveals the absence of information
transfer from X to Y and from Y to X, while the TE seems to indicate a false positive detection of
information transfer over both directions because of the CE reduction determined by inclusion of a
term from the input process during the second conditioning.

Figure 3. Example of transfer entropy analysis performed for the second simulation. (a) Presence of
coupling and absence of instantaneous mixing (C = 0.2, ε = 0) (b) Absence of coupling and presence
of instantaneous mixing (C = 0, ε = 0.2). Panels depict a realization of the two processes X and Y
generated according to (7) and (8), together with the estimation of TE and cTE′ ′ over the two directions
of interaction based on nonuniform embedding and conditional entropy (CE, see caption of Figure 1
for details).

Figure 4 reports the results of the overall analysis. As shown in Figure 4a, the traditional and
compensated TE perform similarly in the absence of signal cross-talk, as the median values of TE
and cTE′ ′ are statistically significant, according to the permutation test, for all values of C > 0 when
computed from X to Y, and are never statistically significant when computed from Y to X. On the
contrary, the presence of instantaneous mixing may induce the traditional TE to yield a misleading
indication of information transfer for uncoupled processes. This erroneous indication occurs in
Figure 4b where both TEX→Y and TEY→X are statistically significant with ε>0 even though X and Y
are uncoupled over both the directions of interaction, and in Figure 4c where TEY→X is statistically
significant with ε = 0.2 even though no coupling was imposed from Y to X (in total, false positive
detections using the TE were five out of six negative cases with presence of instantaneous mixing).
Unlike the traditional TE, the cTE does not take false positive values in the presence of signal cross-talk,
as the detected information transfer is not statistically significant over both directions in the case of
uncoupled systems of Figure 4b, and is statistically significant from X to Y but not from Y to X in the
case of unidirectionally coupled systems of Figure 4c. Thus, in this simulation where instantaneous
causality is due to common driving effects, utilization of cTE′ ′ in place of the traditional TE measure
yields a better specificity in the detection of predictive information transfer.
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Figure 4. Results of transfer entropy analysis for the second simulation, showing the median values
over 50 realizations of (7) and (8) of the TE (first panel row) and the compensated TE (second panel row)
computed along the two directions of interactions (X→Y, circles; Y→X, triangles) (a) at varying the
parameter C with parameter ε = 0; (b) at varying ε with C = 0 (b); and (c) varying ε with C = 0.2. Filled
symbols denote statistically significant values of TE or cTE′ ′ assessed by means of the permutation test.

4. Application Examples

This section describes the evaluation of the proposed TE/cTE estimation approach in physiological
systems where commonly only short realizations of the studied processes (few hundred points)
are available due to stationarity constraints. The considered applications are taken as examples of
commonly performed time series analyses of physiological systems, i.e., the study of short-term
cardiovascular and cardiorespiratory interactions during a paced breathing protocol [7], and the study
of neural interactions from magnetoencephalographic data during an experiment of visuo-motor
integration [37].

4.1. Cardiovascular and Cardiorespiratory Variability

In the first application we studied cardiovascular and cardiorespiratory time series measured
during an experiment of paced breathing [7]. The considered dynamical systems are the respiratory
system, the vascular system, and the cardiac system, from which we take the respiratory flow, the
systolic arterial pressure and the heart period as representative processes, respectively denoted
as processes x, y and z. Realizations of these processes were obtained measuring in a healthy
subject the beat-to beat time series of heart period, zn, systolic pressure, yn,, and respiratory flow,
xn, respectively as the sequences of the temporal distances between consecutive heartbeats detected
from the electrocardiogram, the local maxima of the arterial pressure signal (acquired through the
Finapres device) measured inside each detected heart period, and the values of the airflow signal
(acquired from the nose through a differential pressure transducer) sampled at the onset of each
detected heart period. The measurement convention is illustrated in Figure 5. The experimental
protocol consisted in signal acquisition, after subject stabilization in the resting supine position, for 15
min with spontaneous breathing, followed by further 15 min with the subject inhaling and exhaling
in time with a metronome acting at 15 cycles/min (paced breathing at 0.25 Hz). Two artifact-free
windows of N = 300 samples, measured synchronously for the M = 3 series during spontaneous
breathing and during paced breathing, were considered for the analysis. Weak stationarity of each
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series was checked by means of a test checking the stability of the mean and variance over the analysis
window [38]. The analyzed series are shown in Figure 6.

Figure 5. Measurement of heart period (series z), systolic arterial pressure (series y) and respiratory flow
(series x) variability series from the electrocardiogram, arterial blood pressure and nasal flow signals.

In this application, instantaneous effects between the measured time series were considered as
physiologically meaningful, since from the above described measurement convention we can infer
that the occurrence of the present respiration value, xn, precedes in time the occurrence of the present
systolic pressure value, yn, which in turn precedes in time the end of the present heart period, zn (see
Figure 5). Therefore, cTE analysis was performed for this application using the compensation proposed
in (4). The statistical significance of each estimated TE and cTE′ was assessed using time shifted
surrogates. The results of the analysis for the spontaneous breathing and paced breathing conditions
are depicted in Figure 6a,b, respectively. Utilization of the traditional TE led to detect as statistically
significant the information transfer measured from respiration to heart period during spontaneous
breathing (TEX→Z in Figure 6a, and from respiration to systolic pressure during paced breathing
(TEX→Y in Figure 6b. The same analysis performed accounting for instantaneous causality effects
led to detect a higher number of statistically significant interactions, specifically from respiration to
heart period and from systolic pressure to heart period during both conditions (cTE′

X→Z and cTE′
Y→Z

in Figure 6a,b), and also from respiration to systolic pressure during paced breathing (cTE′
X→Y in

Figure 6b).
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Figure 6. Transfer entropy analysis in cardiovascular and cardiorespiratory variability performed.
(a) during spontaneous breathing and (b) during paced breathing. Plots depict the analyzed time series
of respiratory flow (xn, system X), systolic arterial pressure (yn, system Y) and heart period (zn, system
Z) together with the corresponding TE (circles) and compensated TE (triangles) estimated between each
pair of series. The gray symbols indicate the values of TE/cTE obtained over 40 pairs of time-shifted
surrogates; filled symbols denote statistically significant TE or cTE′.

Though not conclusive as they are drawn on a single subject, these results suggest a higher
sensitivity of the cTE, compared with the traditional TE, in the detection of information transfers that
can be associated to known cardiovascular and cardiorespiratory mechanisms. These mechanisms,
also recently investigated using tools based on transfer entropy [7], are the baroreflex modulation of
heart rate, manifested through coupling from systolic pressure to heart period variability [39], and
the effects of respiration on heart period (describing the so-called respiratory sinus arrhythmia [40])
and on arterial pressure (describing the mechanical perturbations of arterial pressure originating from
respiration-related movements [41]). In particular, the higher sensitivity of cTE to the information
transferred from systolic pressure to heart period, denoted in this example by the significant values
observed for cTE′

Y→Z but not for TEY→Z in both conditions, could suggest a major role played by fast
vagal effects −whereby the systolic pressure affects heart period within the same heartbeat—in the
functioning of the baroreflex mechanism.

4.2. Magnetoencephalography

The second application is about quantification of the information transfer between different
cerebral areas from the analysis of magnetoencephalographic (MEG) data. The analyzed MEG signals
were taken from a database of neurobiological recordings acquired during a visuo-tactile cognitive
experiment [42]. Briefly, a healthy volunteer underwent a recording session in which simultaneous
visual and tactile stimuli were repeatedly presented (60 trials). At each trial, geometric patterns
resembling letters of the Braille code were both shown on a monitor and embossed on a tablet, and
the subject had to perceive whether the pattern seen on the screen was the same of that touched
on the tablet. The MEG signals (VSM whole head system) were recorded with 293 Hz sampling

209



Entropy 2013, 15, 198–216

frequency during two consecutive time frames of 1 s, before (rest window) and after (task window)
the presentation of the combined stimuli.

The two dynamical systems considered for this application were the somatosensory cortex (system
X) and the visual cortex (system Y). At each experimental trial, we considered two MEG sensors as
representative of the two areas, and considered the signals measured from these sensors as realizations
of the processes x and y. Sensor selection was performed trial by trial through a suitable event-related
field analysis looking for the scalp locations, situated within the visual cortex and the somatosensory
cortex, at which the signal magnitude was maximized in response to pure-visual or pure-tactile
stimulation [42]. The considered signals were preprocessed applying a band-pass filter (FFT filter,
2–45 Hz); moreover, the event-related field was removed from each task window by subtraction of the
average response over the 60 trials. An example of the analyzed signals is shown in Figure 7a,7b.

Figure 7. Transfer entropy analysis in magnetoencephalography performed before (left) and during
(right) presentation of the combined visuo-tactile stimuli. (a) Representative MEG signals acquired
from the somatosensory cortex (xn, system X) and the visual cortex (yn, system Y) for one of the
experiment trials (n ranges from 1 to 293 samples before and during simulation). (b) Median over the
60 trials of TE (circles) and compensated TE (triangles) estimated for the two directions of interaction
between X and Y before and during stimulation; gray symbols indicate the values of TE/cTE′ ′ obtained
over 100 trial permutations; filled symbols denote statistically significant TE or cTE′ ′.

In this application, instantaneous effects were considered as non-physiological, because in
large part they are the result by artifacts of volume conduction, i.e., of the instantaneous mixing
of unmeasured cortical sources which are simultaneously mapped onto the different MEG sensors [43].
Therefore, cTE analysis was performed using the compensation for signal cross-talk proposed in (5).
The statistical significance of each estimated TE and cTE′ ′ value was assessed using a permutation test
applied to the 60 trials.

The results shown in Figure 7b indicate that the TE is statistically significant from the
somatosensory area towards the visual area before stimulus presentation, and from the visual area to
the somatosensory area during stimulation. On the other hand, the cTE was not statistically significant
along any direction before task, and was significant from the visual area to the somatosensory area
during task. Therefore, utilization of cTE′ ′ seems to indicate in this exemplary application the
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emergence of causality X→Y with stimulus presentation, with a significant information transfer
detected only during execution of the task. This result is compatible with the activation of mechanisms
of sensory-motor integration moving from rest to task, with the posterior visual cortex driving the
coherent activation of the somatosensory cortex during the combined visuo-tactile stimulation [44].
Moreover, the significant information transfer detected by the traditional TE over the opposite direction
in the absence of stimulation, which is more difficult to interpret according to the paradigm proposed
by this experiment, could be interpreted as a false positive detection of information transfer, thus
confirming the lower specificity of non-compensated TE analysis evidenced by the simulation results.
While the results reported here are certainly not conclusive, we believe that utilization of a nonlinear,
model-free tool like TE, in conjunction with the compensation for instantaneous mixing realized by cTE,
may deepen the interpretation of the mechanisms of multisensory integration involved in visuo-tactile
experiments given by more standard tools, e.g., based on spectral analysis [37,42].

5. Discussion

Our results suggest that the framework proposed in this study for the practical estimation of
multivariate TE can successfully deal with the issues arising in the conditions typical of physiological
time series analysis. First, to counteract the problems related to high dimensionality and small sample
size, we exploited a data-efficient estimation approach which combines a strategy for optimizing the
embedding of multiple time series with a method for correcting the bias that affect conditional entropy
estimates progressively at increasing the embedding dimension [15]. The reported simulation results
indicate that using this approach together with appropriate statistical tests (i.e., time-shifted surrogates
or, when the dataset has a trial structure, permutation tests), detection of significant information
transfer is possible even when the analyzed realizations are very short (a few hundred data points).
Moreover, we devised a compensation strategy aimed at properly taking into account the concept
of instantaneous causality in the computation of TE. In the presented simulated datasets utilization
of this strategy led to an improvement in sensitivity of about 35% when instantaneous effects were
physiologically meaningful, and to an improvement in specificity of about 85% when instantaneous
effects were non physiological (i.e., due to common driving from unobserved sources). These two
kinds of improvement were suggested also by the reported representative applications to physiological
time series. In cardiovascular and cardiorespiratory variability, where the construction of the time
series suggests the existence of physiological causal effects occurring at lag zero, the compensated
TE evidenced better than the traditional TE the presence of expected interaction mechanisms (e.g.,
the baroreflex). In magnetoencephalography, where instantaneous effects are likely the result of the
simultaneous mapping of single sources of brain activity onto several recording sensors, utilization
of the proposed compensation suggested the activation of multisensory integration mechanisms in
response to a specific stimulation paradigm. Nevertheless, we emphasize that practical analysis was
limited in the present study to preliminary investigations aimed at supporting the feasibility of the
proposed approach in different fields of application, and that systematic tests performed on extensive
databases need to be carried out to corroborate the validity of our experimental results.

While with the present study we have proposed feasible approaches to deal with the detrimental
effects of instantaneous causality in the practical estimation of TE, it is important to remark that the
proposed compensations constitute an empirical rather than a principle solution to the problem. In fact,
from a theoretical perspective the compensation achieved in (4) through the index cTE′ could not yield
a better sensitivity than the traditional TE measure (3), because an instantaneous causal effect from X to
Y can be detected by cTE′ reflecting a direct effect xn→yn, but by TE as well reflecting an indirect effect
x1:n-1→xn→yn, (provided that X has an internal memory structure). Therefore, the higher sensitivity
observed for the cTE in this case should be explained in practical terms (i.e., as an easier estimation of a
direct than an indirect effect). Moreover, when instantaneous effects are causally meaningful, including
them in TE computation as done in (4) might yield to a detection of information transfer not only over
the direction of the actual causal effects, but also over the opposite direction. On the other hand, when
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instantaneous effects are not causally meaningful the full removal of zero-lag effects performed by (5)
may be conservative when real causal effects taking place within the same sample are present besides
the spurious effects to be removed. Another point regarding theoretical values of the index cTE′ ′ is
that conditioning to the zero-lag term as done in (5) may cause, in particular circumstances involving
unobserved variables (e.g., due to latent confounders or resulting from inappropriate sampling),
spurious detections of predictive information transfer reflecting an effect known as “selection bias” or
“conditioning on a collider” [45]. Nevertheless it is likely that, in most practical situations in which real
short data sequences are considered and significance tests are applied, the null hypothesis of absence
of information transfer cannot be rejected solely as a consequence of spurious effects deriving from
selection bias. Further studies should be aimed at assessing the real capability of these spurious effects
to produce detectable predictive information transfer in practical estimation contexts.

As to the practical utilization of the cTE estimation framework developed in this study, we stress
that the proposed compensation for instantaneous causality relies on prior knowledge about the
nature of the zero-lag interactions among the observed physiological processes. Indeed, we have
shown that the proposed compensation strategies work properly only when one can reasonably
assume that instantaneous effects are the result of an improper sampling of actual physiological causal
interactions, or of a simultaneous mapping of unobserved processes. In fact, using the index cTE′

when instantaneous effects are not causally meaningful may exacerbate the false positive detection of
information transfer, while using cTE′ ′ in the presence of meaningful instantaneous effects does not
improve the detection rate. Therefore, future studies should aim at integrating within our framework
recently proposed approaches for the inference of the direction of instantaneous causality based on
data structure rather than on prior assumptions [17,23]. Another interesting development would be
to combine together the approach for partial conditioning recently proposed in [46], which selects
the most informative subset of processes for describing the source process, with our nonuniform
embedding procedure, which selects the most informative subset of lagged variables for describing
the target process. Such an integrated approach for dimensionality reduction would further favor the
development of a fully multivariate efficient TE estimator. Finally we remark that, whereas in this study
we have followed a uniform quantization approach for estimating entropies, other approaches such as
those using kernel density and nearest neighbor estimators have been proven more accurate [4,13,14].
Accordingly, future investigations will be directed towards the implementation of correction strategies
realizing for these alternative estimators the compensation of the CE bias obtained here in the context
of uniform quantization.
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Abstract: The use of transfer entropy has proven to be helpful in detecting which is the verse of
dynamical driving in the interaction of two processes, X and Y. In this paper, we present a different
normalization for the transfer entropy, which is capable of better detecting the information transfer
direction. This new normalized transfer entropy is applied to the detection of the verse of energy
flux transfer in a synthetic model of fluid turbulence, namely the Gledzer–Ohkitana–Yamada shell
model. Indeed, this is a fully well-known model able to model the fully developed turbulence
in the Fourier space, which is characterized by an energy cascade towards the small scales (large
wavenumbers k), so that the application of the information-theory analysis to its outcome tests the
reliability of the analysis tool rather than exploring the model physics. As a result, the presence of a
direct cascade along the scales in the shell model and the locality of the interactions in the space of
wavenumbers come out as expected, indicating the validity of this data analysis tool. In this context,
the use of a normalized version of transfer entropy, able to account for the difference of the intrinsic
randomness of the interacting processes, appears to perform better, being able to discriminate the
wrong conclusions to which the “traditional” transfer entropy would drive.

Keywords: transfer entropy; dynamical systems; turbulence; cascades; shell models

1. Introduction

This paper is about the use of quantities, referred to as information dynamical quantities
(IDQ), derived from the Shannon information [1] to determine cross-predictability relationships
in the study of a dynamical system. We will refer to as “cross-predictability” the possibility
of predicting the (near) future behavior of a process, X, by observing the present behavior
of a process, Y, likely to be interacting with X. Observing X given Y is of course
better than observing only X, as far as predicting X is concerned: it will be rather
interesting to compare how the predictability of X is increased given Y with the increase of
predictability of Y given X. To our understanding, this cross-predictability analysis (CPA) gives
an idea of the verse of dynamical driving between Y and X. In particular, the data analysis technique
presented here is tested on a synthetic system completely known by construction. The system at
hand is the Gledzer–Ohkitana–Yamada (GOY) shell model, describing the evolution of turbulence in a
viscous incompressible fluid. In this model, the Fourier component interaction takes place locally in
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the space of wavenumbers, and due to dissipation growing with k, a net flux of energy flows from the
larger to the smaller scales (direct cascade). A dynamical “driving” of the large on the small scales is
then expected, which is verified here through simulations: mutual information and transfer entropy
analysis are applied to the synthetic time series of the Fourier amplitudes that are interacting.

The purpose of applying a certain data analysis technique to a completely known model is to
investigate the potentiality of the analysis tool in retrieving the expected information, preparing it for
future applications to real systems. The choice of the GOY model as a test-bed for the IDQ-based CPA
is due both to its high complexity, rendering the test rather solid with respect to the possible intricacies
expected in natural systems, and to its popularity in the scientific community, due to how faithfully it
simulates real features of turbulence.

In order to focus on how IDQ-based CPA tools are applied in the study of coupled dynamical
processes, let us consider two processes, X and Y, whose proxies are two physical variables, x and
y, evolving with time, and let us assume that the only thing one measures are the values, x (t) and
y (t), as time series. In general, one may suppose the existence of a stochastic dynamical system (SDS)
governing the interaction between X and Y, expressed mathematically as:⎧⎪⎨⎪⎩

ẋ = f (x, y, t)

ẏ = g (x, y, t)
(1)

where the terms, f and g, contain stochastic forces rendering the dynamics of x and y probabilistic [2].
Actually, the GOY model studied here is defined as deterministic, but the procedures discussed are
perfectly applicable, in principle, to any closed system in the form of (1). The sense of applying
probabilistic techniques to deterministic processes is that such processes may be so complicated and
rich, that a probabilistic picture is often preferable, not to mention the school of thought according
to which physical chaos is stochastic, even if formally deterministic [3,4]. Indeed, since real-world
measurements always have finite precision and most of the real-world systems are highly unstable
(according to the definition of Prigogine and his co-workers), deterministic trajectories turn out to be
unrealistic, hence an unuseful tool to describe reality.

Through the study of the IDQs obtained from x (t) and y (t), one may, for example, hope to
deduce whether the dependence of ẋ on y is “stronger” than the dependence of ẏ on x, hence how Y is
driving X.

The IDQs discussed here have been introduced and developed over some decades. After
Shannon’s work [1], where the information content of a random process was defined, Kullback
used it to make comparisons between different probability distributions [5], which soon led to the
definition of mutual information (MI) as a way to quantify how much the two processes deviate from
statistical independence. The application of MI to time series analysis appears natural: Kantz and
Schreiber defined and implemented a set of tools to deduce dynamic properties from observed time
series (see [6] and the references therein), including time-delayed mutual information.

The tools of Kantz and Schreiber were augmented in [7] with the introduction of the so-called
transfer entropy (TE): information was no longer describing the underdetermination of the system
observed, but rather, the interaction between two processes studied in terms of how much information
is gained on the one process observing the other, i.e., in terms of information transfer. An early review
about the aforementioned IDQs can be found in [8].

TE was soon adopted as a time series analysis tool in many complex system fields, such as
space physics [9,10] and industrial chemistry [11], even if Kaiser and Schreiber developed a criticism
and presented many caveats to the extension of the TE to continuous variables [12]. Since then,
however, many authors have been using TE to detect causality, for example, in stock markets [13],
symbolic dynamics [14], biology and genetics [15] and meteorology [16,17]. In the field of neuroscience,
TE has been applied broadly, due to the intrinsic intricacy of the matter [18], and recently extended to
multi-variate processes [19].
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A very important issue is, namely, the physical meaning of the IDQs described before. Indeed,
while the concept of Shannon entropy is rather clear and has been related to the thermodynamical
entropy in classical works, such as [20], mutual information and transfer entropy have not been
clearly given yet a significance relevant for statistical mechanics. The relationship between TE and the
mathematical structure of the system (1) has been investigated in [16], while a more exhaustive study
on the application of these information theoretical tools to systems with local dynamics is presented
in [21] and the references therein. This “physical sense” of the IDQs will be the subject of our future
studies.

The paper is organized as follows.
A short review of the IDQs is done in Section 2. Then, the use of MI and TE to discriminate

the “driver” and the “driven” process is criticized, and new normalized quantities are introduced,
more suitable for analyzing the cross-predictability in dynamical interactions of different “intrinsic”
randomness (normalizing the information theoretical quantities, modifying them with respect to
their initial definitions, is not a new thing: in [22], the transfer entropy is modified, so as to include
some basic null hypothesis in its own definition; in [23], the role of information compression in the
definitions of IDQs is stressed, which will turn out to emerge in the present paper, as well).

The innovative feature of the IDQs described here is the introduction of a variable delay, τ: the
IDQs peak in the correspondence of some τ̃ estimating the characteristic time scale(s) of the interaction,
which may be a very important point in predictability matters [24]. The problem of inferring interaction
delays via transfer entropy has also been given a rigorous treatment in [25], where ideas explored in
[24] are discussed with mathematical rigor.

In Section 3, the transfer entropy analysis (TEA) is applied to synthetic time series obtained from
the GOY model of turbulence, both in the form already described, e.g., in [10,24], and in the new
normalized version, defined in Section 2. The advantages of using the new normalized IDQs are
discussed, and conclusions are drawn in Section 4.

2. Normalized Mutual Information and Transfer Entropy

In all our reasoning, we will use four time series: those representing two processes, x (t) and
y (t), and those series themselves time-shifted forward by a certain amount of time, τ. The convenient
notation adopted reads:

x := x (t) , y := y (t) , xτ := x (t + τ) , yτ := y (t + τ) (2)

(in Equation (2) and everywhere, “:=” means “equal by definition”). The quantity, pt (x, y), is the joint
probability of having a certain value of x and y at time t; regarding notation, the convention:

pt (x, y) := p (x (t) , y (t)) (3)

is understood.
Shannon entropy is defined for a stochastic process, A, represented by the variable, a,

It (A) := −∑
a

pt (a) log2 pt (a) (4)

quantifying the uncertainty on A before measuring a at time t. Since, in practice, discretized continuous
variables are often dealt with, all the distributions, pt (a), as in Equation (4), are then probability mass
functions (pmfs) rather than probability density functions (pdfs).

For two interacting processes, X and Y, it is worth defining the conditional Shannon information
entropy of X given Y:

It (X|Y) := −∑
x,y

pt (x, y) log2 pt (x|y) (5)
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The instantaneous MI shared by X and Y is defined as:

Mt (X, Y) := It (X)− It (X|Y) =

= ∑
x,y

pt (x, y) log2

[
pt(x,y)

pt(x)pt(y)

]
:

(6)

positive Mt (X, Y) indicates that X and Y interact. The factorization of probabilities and non-interaction
has an important dynamical explanation in stochastic system theory: when the dynamics in Equation (1)
is reinterpreted in terms of probabilistic path integrals [26], then the factorization of probabilities
expresses the absence of interaction terms in stochastic Lagrangians. Indeed, (stochastic) Lagrangians
appear in the exponent of transition probabilities, and their non-separable addenda, representing
interactions among sub-systems, are those terms preventing probabilities from being factorizable.

About Mt (X, Y), one should finally mention that it is symmetric: Mt (X, Y) = Mt (Y, X).
There may be reasons to choose to use the MI instead of, say, cross-correlation between X and Y:

the commonly used cross-correlation encodes only information about the second order momentum,
while MI uses all information defined in the probability distributions. Hence, it is more suitable for
studying non-linear dependencies [27,28], expected to show up at higher order momenta.

In the context of information theory (IT), we state that a process, Y, drives a process, X, between t
and t + τ (with τ > 0) if observing y at the time, t; we are less ignorant of what x at the time, t + τ,
is going to be like, than how much we are on y at the time t + τ observing x at the time t. The delayed
mutual information (DMI):

MY→X (τ; t) := It (Xτ)− It (Xτ |Y) =

= ∑
xτ ,y

pt (xτ , y) log2

[
pt(xτ ,y)

pt(xτ)pt(y)

] (7)

turns out to be very useful for this purpose. DMI is clearly a quantity with which cross-predictability
is investigated.

In [9], a generalization of DMI is presented and referred to as transfer entropy (TE), by adapting
the quantity originally introduced by Schreiber in [7] to dynamical systems, such as Equation (1), and
to time delays τ that may be varied, in order to test the interaction at different time scales:

TY→X (τ; t) := It (Xτ |X)− It (Xτ |X, Y) =

= ∑
xτ ,x,y

pt (xτ , x, y) log2

[
pt(xτ ,x,y)pt(x)
pt(xτ ,x)pt(x,y)

] (8)

In practice, the TE provides the amount of knowledge added to X at time t + τ, knowing x (t), by
the observation of y (t).

The easiest way to compare the two verses of cross-predictability is of course that of taking the
difference between the two:

ΔMY→X (τ; t) = MY→X (τ; t)− MX→Y (τ; t)

ΔTY→X (τ; t) = TY→X (τ; t)− TX→Y (τ; t)
(9)

as done in [9,10,24]. The verse of prevailing cross-predictability is stated to be that of information
transfer. Some comments on quantities in Equation (9) are necessary.

Consider taking the difference between TY→X (τ; t) and TX→Y (τ; t) in order to understand which
is the prevalent verse of information transfer: if one of the two processes were inherently more noisy
than the other, then the comparison between X and Y via such differences would be uneven, somehow.
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Since cross-predictability via information transfer is about the efficiency of driving, then the quantities,
MY→X (τ; t) and TY→X (τ; t), must be compared to the uncertainty induced on the “investigated
system” by all the other things working on it and rendering its motion unpredictable, in particular the
noises of its own dynamics (here, we are not referring only to the noisy forces on it, but also/mainly to
the internal instabilities resulting in randomness). When working with MY→X (τ; t), this “uncertainty”
is quantified by I (Xτ), while when working with TY→X (τ; t), the “uncertainty-of-reference” must be
It (Xτ |X). One can then define a normalized delayed mutual information (NDMI):

RY→X (τ; t) :=
MY→X (τ; t)

It (Xτ)
(10)

and a normalized transfer entropy (NTE):

KY→X (τ; t) :=
TY→X (τ; t)
It (Xτ |X)

(11)

or equally:
RY→X (τ; t) = 1 − It(Xτ |Y)

It(Xτ)

KY→X (τ; t) = 1 − It(Xτ |X,Y)
It(Xτ |X)

(12)

These new quantities, RY→X (τ; t) and KY→X (τ; t), will give a measure of how much the presence
of an interaction augments the predictability of the evolution, i.e., will quantify cross-predictability.

The positivity of ΔRY→X (τ; t) or ΔKY→X (τ; t) is a better criterion than the positivity of
ΔMY→X (τ; t) or ΔTY→X (τ; t) for discerning the driving direction, since the quantities involved in
RY→X (τ; t) and KY→X (τ; t) factorize the intrinsic randomness of a process and try to remove it with
the normalization, It (Xτ) and It (Xτ |X), respectively. Despite this, ΔMY→X (τ; t) and ΔTY→X (τ; t)
can still be used for that analysis in the case that the degree of stochasticity of X and Y are comparable.
Consider for instance that at t + τ, the Shannon entropy of X and Y are equal both to a quantity, I0,
and the conditioned ones equal both to J0; clearly, one has:

ΔRY→X (τ; t) = ΔMY→X(τ;t)
I0

, ΔKY→X (τ; t) = ΔTY→X(τ;t)
J0

and the quantity, ΔRY→X (τ; t), is proportional to ΔMY→X (τ; t) through a number I−1
0 , so they encode

the same knowledge. The same should be stated for ΔKY→X (τ; t) and ΔTY→X (τ; t). This is why we
claim that the diagnoses in [9,10,24] were essentially correct, even if we will try to show here that the
new normalized quantities work better in general.

Before applying the calculation of the quantities, ΔTY→X (τ; t) and ΔKY→X (τ; t), to the turbulence
model considered in Section 3, it is worth underlining again the dependence of all these IDQs on the
delay, τ: the peaks of the IDQs on the τ axis indicate those delays after which the process, X, shares
more information with the process, Y, i.e., the characteristic time scales of their cross-predictability,
due to their interaction.

3. Turbulent Cascades and Information Theory

This section considers an example in which we know what must be expected, and apply our
analysis tools to it to check and refine them. In this case, the application of the normalized quantities
instead of the traditional ones revised in Section 2 is investigated in some detail. In the chosen example,
the IDQs are used to recognize the existence of cascades in a synthetic model of fluid turbulence [29,30].

Some theoretical considerations are worth being done in advance. The quantities described
above are defined using instantaneous pmfs, i.e., pmfs that exist at time t. As a result, the quantities
may vary with time. Unfortunately, it is difficult to recover the statistics associated with such PMFs,
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except in artificial cases, when running ensemble simulations on a computer. When examining
real-world systems, for example in geophysics, then this luxury is not available. Hence, in many cases,
one can only calculate time statistics rather than ensemble statistics; since any analysis in terms of time
statistics is only valid when the underlying system is sufficiently ergodic, what one can do is to restrict
the analysis to locally ergodic cases, picking up data segments in which ergodicity apparently holds.
In the following experiment, pmfs are calculated by collecting histograms from the time series, with
appropriate choices of bin-width, e.g., see [31].

The system at hand is described in [30,32] and the references therein and is referred to as the
Gledzer–Ohkitana–Yamada shell model (the GOY model, for short): this is a dynamic system model,
which can be essentially considered as a discretization of the fluid motion problem, governed by the
Navier–Stokes equation, in the Fourier space. The GOY model was one of the first available shell
models for turbulence. Indeed, other, more advanced models exist (see e.g., [30]). However, we will
limit our discussion to the GOY model, because all the other refined ones mainly do not substantially
differ in the energy cascading mechanism in the inertial domain.

The physical variable that evolves is the velocity of the fluid, which is assigned as a value, Vh,
at the h-th site of a 1D lattice; each of these Vh evolves with time as Vh = Vh (t). The dependence upon
the index, h, in Vh is the space-dependence of the velocity field. With respect to this space dependence,
a Fourier transform can be performed: out of the real functions, Vh (t), a set of complex functions
un = un (t) will be constructed, where un is the n-th Fourier amplitude of the velocity fluctuation field
at the n-th shell characterized by a wavenumber, kn. The n-th wavenumber kn is given by:

kn = k0qn (13)

k0 being the fundamental, lowest wavenumber and q a magnifying coefficient relating the n-th to the
(n + 1)-th wavenumber as kn+1 = qkn. In the case examined, the coefficient, q, is two, approximately
meaning that the cascade takes place, halving the size of eddies from un to un+1.

Each Fourier mode, un (t), is a physical process in its own right, and all these physical processes
interact. The velocity field, Vh, is supposed to be governed by the usual Navier–Stokes equation,
whose non-linearities yield a coupling between different modes [29]. The system is not isolated, but an
external force stirs the medium. The force is assigned by giving its Fourier modes, and here, it is
supposed to have only the n = 4 mode different from zero. The complex Fourier amplitude, fn, of the
stirring external force is hence given by fn = δ4,n (1 + i) f , f being a constant. The system of ordinary
differential equations governing the uns according to the GOY model turns out to be written as:⎧⎪⎨⎪⎩

u̇n = i
(

knun+1un+2 − 1
2 kn−1un+1un−1 − 1

2 kn−2un−1un−2

)∗ − νk2
nun + fn

fn = δ4,n (1 + i) f

(14)

where n = 1, 2, ... and z∗ is the complex conjugate of z. Each mode, un, is coupled to un+1, un+2, un−1

and un−2 in a non-linear way, and in addition, it possesses a linear coupling to itself via the dissipative
term, −νk2

nun. There is also a coupling to the environment through fn, which actually takes place
only for the fourth mode. In the present simulations, the values of f = 5 ∗ 10−3(1 + i) and ν = 10−7

were used. The integration procedure is the one due to Adam and Bashfort, described in [32], with an
integration step of 10−4.

Even if the lattice is 1D, the equations in (14) show coefficients suitably adapted, so that the
spectral and statistical properties of turbulence here are those of a real 3D fluid dynamics, so that we
are really studying 3D turbulence.

The stirring force pumps energy and momentum into the fluid, injecting them at the fourth scale,
and the energy and momentum are transferred from u4 to all the other modes via the non-linear
couplings. There is a scale for each kn and eddy turnover time τn. At each kn, a τn = 2π

kn |un | corresponds.
The characteristic times of the system will be naturally assigned in terms of the zeroth mode eddy
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turnover time, τ0, or of other τns. After a certain transitory regime, the system reaches an “equilibrium”
from the time-average point of view, in which the Fourier spectrum appears for the classical energy
cascade of turbulence, as predicted by Kolmogorov [29] (see Figure 1).
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Figure 1. The time-average instantaneous power spectral density (PSD) of the velocity field of the
Gledzer–Ohkitana–Yamada (GOY) model after a certain transitory regime. The modes chosen for the
transfer entropy analysis (TEA) are indicated explicitly, together with the n = 4 scale at which the
external force, f , is acting. The quantity on the ordinate is PSD(kn), as defined in Equation (15) below.

The quantity represented along the ordinate axis of Figure 1 is the average power spectral density
(PSD), defined as follows:

PSD(kn) :=
1

t2 − t1

∫ t2

t1

|un|2
kn

dt (15)

where [t1, t2] is a time-interval taken after a sufficiently long time, such that the system (14) has already
reached its stationary regime (i.e., after some initial transient regime with heterogeneous fluctuations
in which the turbulence is not fully developed yet). The evaluation of the duration of the transient

regime is made “glancing at” the development of the plot of |un |2
kn

versus kn as the simulation time runs
and picking the moment after which this plot does not change any more. In terms of the quantities
involved in Equation (15), this means t1 is “many times” the largest eddy turnover time.

The energetic, and informatic, behavior of the GOY system is critically influenced by the form of
the dissipative term, −νk2

nun, in Equation (14): the presence of the factor, k2
n, implies that the energy

loss is more and more important for higher and higher |kn|, i.e., smaller and smaller scales. The energy
flows from any mode, un, both towards the smaller and the higher scales, since un is coupled both
with the smaller scales and larger scales. Energy is dissipated at all the scales, but the dissipation
efficiency grows with k2

n, so that almost no net energy can really reflow back from the small scales
to the large ones. In terms of cross-predictability, a pass of information in both verses is expected,
but the direct cascade (i.e., from small to large |kn|s) should be prevalent. Not only this: since the
ordinary differential equations Equation (14) indicate a k-local interaction (up to the second-adjacent n,
i.e., n ± 1 and n ± 2 coupling with n), one also expects the coupling between um and un�m or un�m to
be almost vanishing and the characteristic interaction times to be shorter for closer values of m and n.
Our program is to check all these expectations by calculating the transfer entropy and its normalized
version for the synthetic data obtained running the GOY model (14). In particular, we would like to
detect the verse of information transfer along the inertial domain between shells not directly coupled
in the evolution Equation (14).
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To get the above target, and to investigate the application of TEA to the GOY model and illustrate
the advantages of using the new normalized quantities discussed in Section 2, we selected three
non-consecutive shells. In particular, the choice:

#1 ↔ n = 9, #2 ↔ n = 13, #3 ↔ n = 17

is made. The real parts of u9, u13 and u17 are reported in Figure 2 as functions of time for a short
time interval of 15 τ4. For each of the selected shells, we considered very long time series of the
corresponding energy en = |un|2. The typical length of the considered time series is of many (� 1, 000)
eddy turnover times of the injection scale.

-0.10

-0.05

0.00

0.05

0.10

14121086420

T/τ4

-0.04

-0.02

0.00

0.02

0.04

R
e 

[u
n]

-0.02

-0.01

0.00

0.01

0.02

n = 9

n = 13

n = 17

Figure 2. Time series ploTts showing the real part of the processes, u9 (t), u13 (t) and u17 (t). The time
is given in units of the eddy turnover time, τ4, of the scale forced.

The quantities, ΔT1→2 and ΔT1→3, and ΔK1→2 and ΔK1→3, can be calculated as functions of the
delay, τ. The difference ΔTi→j or ΔKi→j are calculated as prescribed in Section 2 using the time series,
ei (t) and ej (t), in the place of y (t) and x (t), respectively. The calculations of the quantities, T1→2,
T2→1, T1→3, T3→1 and the corresponding quantities normalized, i.e., K1→2, K2→1, K1→3 and K3→1, give
the results portrayed in Figure 3, where all these quantities are reported synoptically as a function of τ

in units of the eddy turnover time, τ#1, that pertains to the #1 mode (with n = 9).
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Figure 3. The quantities, T1→2, T2→1, T1→3, T3→1, K1→2, K2→1, K1→3 and K3→1 (see Section 2)
calculated for the three modes of the GOY model chosen. In the case of the quantities Ka→b, the inset
shows the normalization factor. All the quantities are expressed as functions of the delay in units of
the eddy turnover time τ#1 = τ9. Note that transfer entropy is always positive, indicating one always
learns something from observing another mode; transfer entropy decreases as τ increases, since the
distant past is not very helpful for predicting the immediate future (about the positiveness of these
quantities, it should be mentioned that this has been tested against surrogate data series, as described
in Figure 4 below).

The use of non-adjacent shells to calculate the transfer of information is a choice: the interaction
between nearby shells is obvious from Equation (14), while checking the existence of an information
transfer cascade down from the large to the small scales requires checking it non-locally in the k-space.

All the plots show clearly that there is a direct cascade for short delays. The first noticeable
difference between the transfer entropies and the normalized transfer entropies is that in the #1 ↔ #3
coupling, a non-understandable inverse regime appears after about 4τ#1, when the “traditional” transfer
entropy is used. Instead, the use of the normalized quantities suggests decoupling after long times (after
about 6τ#1). A comparison between the #1 ↔ #2 and #1 ↔ #3 interactions is also interesting: the
maximum of the “direct cascade” coupling is reached at less than 0.5τ#1 for both the interactions if the
TEs are used. However in the plot of K1→2, K2→1, K1→3 and K3→1, some time differences appear; this is
clarified when difference quantities are plotted, as in Figure 4.
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Figure 4. Comparison between TEA via the “traditional” transfer entropies (TEs) (left) and the new
renormalized quantities (right), in the case of the modes selected in the GOY model. The significance
limit appearing in the plot on the right was obtained by a surrogate data test, through N = 104

surrogate data realizations, as described in the text.

Both the analyses diagnose a prevalence of the smaller-onto-larger wavenumber drive for
sufficiently small delays: the ΔT1→2 indicates a driving of u9 onto u13 (Mode #1 onto Mode #2)
for τ � 5τ#1, while ΔT1→3 indicates a driving of u9 onto u17 (Mode #1 onto Mode #3) for τ � 3.5τ#1.
This is expected, due to how the system (14) is constructed. What is less understandable is the
fact that for large values of τ, the quantities ΔT1→2 (τ) and, even more, ΔT1→3 (τ) become negative.
This would suggest that after a long time a (weaker) “inverse cascade” prevails; however, this is not
contained in the system (14) in any way and, hence, is either evidence of chaos-driven unpredictability
or is an erroneous interpretation. For this reason, it is instructive to examine the plots of Δ1→2K (τ)

and Δ1→3K (τ): after roughly 6.5τ#1, the modes appear to become decoupled, since Δ1→2K � 0 and
Δ1→3K � 0, albeit with significant noise. The lack of evidence of an inverse cascade in these plots
suggests that the interpretation of an inverse cascade as descending from the old TEA was wrong.

The misleading response of the ΔT analysis may be well explained looking at the insets in
the lower plots of Figure 3, where the quantities reported as functions of τ are the normalization
coefficients, It (Xτ |X), indicating the levels of inherent unpredictability of the two en (t) compared.
In the case of the 1 → 2 comparison, the levels of inherent unpredictability of the two time series, e9 (t)
and e13 (t), become rather similar for large τ, while the asymptotic levels of inherent unpredictability
are very different for e9 (t) and e17 (t) (indeed, one should expect that the more different is m from
n, the more different level of inherent unpredictability will be shown by em and en). This means that
ΔT1→2 (τ) and Δ1→2K (τ) are expected to give a rather similar diagnosis, while the calculation of
Δ1→3K (τ) will probably fix any misleading indication of ΔT1→3 (τ).

Another observation that deserves to be made is about the maxima of ΔT1→2 (τ), ΔT1→3 (τ),
Δ1→2K (τ) and Δ1→3K (τ) with respect to τ: this should detect the characteristic interaction time for
the interaction, (e9, e13), and for the interaction, (e9, e17). In the plots of ΔT1→2 (τ) and ΔT1→3 (τ),
one observes a maximum for ΔT1→2 at τ � 0.6τ#1 and a maximum for ΔT1→3 just slightly before this.
It appears that the characteristic time of interaction of e9 with e13 is slightly larger than of e9 with e17:
this is a little bit contradictory, because of the k-local hypothesis after which the energy is transferred
from e9 to e13 and then to e17.

What happens in the plots of Δ1→2K (τ) and Δ1→3K (τ) is different and more consistent with what
we know about the GOY model. First of all, the maximum for Δ1→3K is not unique: there is a sharp
maximum at about 0.5τ#1, which comes a little bit before the maximum of Δ1→2K, exactly as in the case
of the ΔTs. However, now, the big maxima of Δ1→3K are occurring between 1.5 and 3 times τ#1, so that
maybe different processes in the interaction, (e9, e17), are emerging. Actually, distant wavenumbers
may interact through several channels, and more indirect channels enter the play as the wavenumbers
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become more distant. This might explain the existence de facto of two different characteristic times for
the interaction, (e9, e17), as indicated by the plot of ΔK1→3 (τ): a very early one at about 0.5τ#1; and a
later one within the interval (1.5τ#1, 3.5τ#1).

The differences between the TEAs performed with ΔT and ΔK appear to be better understandable
considering that through the normalization in ΔK, one takes into account the self information entropy
of each process (i.e., the degree of unpredictability of each process). The motivation is essentially
identical to the preference of relative error over absolute error in many applications.

As far as the surrogate data test used to produce the level of confidence in Figure 4, we use
the method described in [33]. In this case, a set of more than 104 surrogate data copies have been
realized, by randomizing the Fourier phases. In each of these surrogate datasets, the delayed transfer
entropy was calculated. Than, a statistical analysis, with a confidence threshold of five percent, was
performed. A similar level of confidence was obtained also for the results in Figure 3, but it is not
reported explicitly on the plot for clarity.

4. Conclusions

Mutual information and transfer entropy are increasingly used to discern whether relationships
exist between variables describing interacting processes, and if so, what is the dominant direction
of dynamical influence in those relationships? In this paper, these IDQs are normalized in order to
account for potential differences in the intrinsic stochasticity of the coupled processes.

A process, Y, is considered to influence a process, X, if their interaction reduces the
unpredictability of X: this is why one chooses to normalize the IDQs with respect to the Shannon
entropy of X, taken as a measure of its unpredictability.

The normalized transfer entropy is particularly promising, as has been illustrated for a synthetic
model of fluid turbulence, namely the GOY model. The results obtained here about the transfer entropy
and its normalized version for the interactions between Fourier modes of this model point towards the
following conclusions.

The fundamental characteristics of the GOY model non-linear interactions, expected by
construction, are essentially re-discovered via the TEA of its Fourier components, both using the
unnormalized IDQs and the normalized ones: the prevalence of the large-to-small scale cascade;
the locality of the interactions in the k-space; the asymptotic decoupling after a suitably long delay.
The determination of the correct verse of dynamical enslaving is better visible using KY→X and
ΔKY→X, in which the intrinsic randomness of the two processes is taken into account (in particular,
the inspection of ΔTY→X indicated the appearance of an unreasonable inverse cascade for large τ,
which was ruled out by looking at ΔKY→X).

An indication is then obtained that for the irregular non-linear dynamics at hand, the use of the
TEA via ΔKY→X (τ; t) is promising in order to single out relationships of cross-predictability (transfer
of information) between processes.

The systematic application of the TEA via ΔKY→X to models and natural systems is going to be
done in the authors’ forthcoming works.
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Abstract: Topological measures are crucial to describe, classify and understand complex networks.
Lots of measures are proposed to characterize specific features of specific networks, but the
relationships among these measures remain unclear. Taking into account that pulling networks
from different domains together for statistical analysis might provide incorrect conclusions, we
conduct our investigation with data observed from the same network in the form of simultaneously
measured time series. We synthesize a transfer entropy-based framework to quantify the relationships
among topological measures, and then to provide a holistic scenario of these measures by inferring
a drive-response network. Techniques from Symbolic Transfer Entropy, Effective Transfer Entropy,
and Partial Transfer Entropy are synthesized to deal with challenges such as time series being
non-stationary, finite sample effects and indirect effects. We resort to kernel density estimation
to assess significance of the results based on surrogate data. The framework is applied to study
20 measures across 2779 records in the Technology Exchange Network, and the results are consistent
with some existing knowledge. With the drive-response network, we evaluate the influence of
each measure by calculating its strength, and cluster them into three classes, i.e., driving measures,
responding measures and standalone measures, according to the network communities.

Keywords: network inference; topological measures; transfer entropy

PACS: 05.45.Tp; 05.90.+m

1. Introduction

1.1. Problem Statement

The last decade has witnessed a flourishing progress of network science in many interdisciplinary
fields [1,3]. It is proved both theoretical and practically that topological measures are essential
to complex network investigations, including representation, characterization, classification and
modeling [4,8]. Over the years, scientists have constantly introduced new measures in order to
characterize specific features of specific networks [9,13]. Each measure alone is of practical importance
and can capture some meaningful properties of the network under study, but when so many measures
are put together we will find that they are obviously not “Mutually Exclusive and Collectively
Exhaustive”, namely, some measures fully or partly capture the same information provided by others
while there are still properties that cannot be captured by any of the existing measures. Having an
overwhelming number of measures complicates attempts to determine a definite measure-set that
would form the basis for analyzing any network topology [14,15]. With the increasing popularity
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of network analyses, the question which topological measures offer complementary or redundant
information has become more important [13]. Although it might be impossible to develop a “Mutually
Exclusive and Collectively Exhaustive” version of measure-set at present, there is no doubt that efforts
to reveal the relationships among these measures could give valuable guidance for a more effective
selection and utilization of the measures for complex network investigations.

1.2. Related Works

The relationship of topological measures has been a research topic for several years [4,14,28],
and there mainly exist two paradigms, i.e., analytical modeling and data-driven modeling. For a
few topological measures of model networks, i.e., networks generated with certain algorithm, some
analytical interrelationships are found. For example, the clustering coefficient C of generalized random
graphs are functions of the first two moments of the degree distribution [16], and for the small world
model, the clustering coefficient C could be related to the mean degree and rewiring probability [17].
The relationship between the average path length and its size in a star-shaped network can be derived
as: Lstar=2−2/N [18], while for a Barabási-Albert scale-free network, the relationship between them is:
L~ln N/ln ln N [19]. The advantage of the analytical modeling is that the resulting relationships are
of rigorous mathematical proofs, but this paradigm imposes limitations in that only a small part of
the relationships can be derived analytically, and it is not sure whether these conclusions still hold
true for real-life networks. If enough is known about the measures and the way in which they interact,
a fruitful approach is to construct mechanism models and compare such models to experimental data.
If less is known, a data-driven approach is often needed where their interactions are estimated from
data [20]. In other words, when the intrinsic mechanism of real-life network is not clear, the situation
we will be concerned with here, the data-driven paradigm might be more suitable. Some of the relevant
papers following the data-driven paradigm are reviewed as follows.

Jamakovic et al. [14] collected data from 20 real-life networks from technological, social, biological
and linguistic systems, and calculated the correlation coefficients between 14 topological measures.
It was observed that subsets of measures were highly correlated, and Principal Component Analysis
(PCA) showed that only three dimensions were enough to retain most of the original variability in
the data, capturing more than 99% of the total data set variance. Li et al. [21] investigated the linear
correlation coefficients between nine widely studied topological measures in three classical complex
network models, namely, Erdős-Rényi random graphs, Barabási-Albert graphs, and Watts-Strogatz
small-world graphs. They drew a similar conclusion, namely that the measure correlation pattern
illustrated the strong correlations and interdependences between measures, and argued that the both
these three types of networks could be characterized by a small set of three or four measures instead
of by the nine measures studied. Costa et al. [4] summarized dozens of topological measures in their
review paper and conducted correlations analysis between some of the most traditional measures
for Barabási-Albert (BA) network, Erdős-Rényi (ER), and Geographical Networks (GN). They found
that particularly high absolute values of correlations had been obtained for the BA model, with low
absolute values observed for the ER and GN cases. Further, they found that the correlations obtained
for specific network models not necessarily agreed with that obtained when the three models were
considered together. Roy et al. [22] studied 11 measures across 32 data sets in biological networks,
and created a heat map based on paired measures correlations. They concluded that the correlations
were not very strong overall. Filkov et al. [23] also used a heat map and multiple measure correlations
to compare networks of various topologies. They correlated 15 measures across 113 real data sets
which represented systems from social, technical, and biological domains. They also found that the
15 measures were not coupled strongly. Garcia-Robledo et al. presented an experimental study on
the correlation between several topological measures of the Internet. By drawing bar plot of the
average correlation for each measure, they recognized the average neighbor connectivity as the most
correlated measure; with the correlation heat map, they concluded that distance measures were highly
correlated [24]. Bounova and de Weck proposed an overview of network topology measures and a
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computational approach to analyze graph topology via multiple-metric analysis on graph ensembles,
and they found that density-related measures and graph distance-based measures were orthogonal to
each other [25].

More recently, Li et al. explored the linear correlation between the centrality measures using
numerical simulations in both Erdős-Rényi networks and scale-free networks as well as in real-world
networks. Their results indicated that strong linear correlations did exist between centrality measures
in both ER and SF networks, and that network size had little influence on the correlations [26].
Sun and Wandelt performed regression analysis in order to detect the functional dependencies among
the network measures, and used the coefficient of determination to explain how well the measures
depended on each other. They built a graph for the network measures: each measure was a node and a
link existed if there was a functional dependency between two measures. By setting a threshold, they
got a functional network of the measures with six connected components [27]. Lin and Ban focused
on the evolution of the US airline system from a complex network perspective. By plotting scatter
diagrams and calculating linear correlations, they found that there was a high correlation between
“strength” and “degree”, while “betweenness” did not always keep consistent with “degree” [28].

The abovementioned researches all follow the data-driven paradigm, and provide convincing
arguments in favor of using the statistical approach to correlate the measures. The correlations between
topological measures strongly depend on the graph under study [14], and results from these studies
differ greatly. Some of them argue that most of the measures are strongly correlated and thus can
be redundant, while others argue that these correlations are not strong overall. Even the resulting
correlation patterns of the same measures in different networks are not consistent. Just as Bounova
and de Weck pointed out that pulling networks from different domains together for statistical analysis
might provide incorrect conclusions, because there often exists considerable diversity among graphs
that share any given topology measures, patterns vary depending on the underlying graph construction
model, and many real data sets are not actual statistical ensembles [25].

1.3. Primary Contribution of This Work

To address the issue mentioned above, we resort to two research strategies:

1. On the one hand, our investigation will be based on data observed from the same network,
instead of data pieced together from different networks in several fields. More specially, we will
record the trajectories of the measures of the same system, and try to infer their relationships
from simultaneously measured time series of these measures.

2. On the other hand, our investigation will adopt another data-driven method, i.e., transfer entropy.
Since our data is in the form of time series, transfer entropy, instead of correlation coefficients
or other model-based methods, might be a better choice for our purpose. There are at least two
reasons. For one thing, the correlation measure is designed for static data analysis and when
applying to time series data, all dynamical properties of the series are discarded [29]. For another,
correlations, linear or nonlinear, only indicate the extent to which two variables behave similarly.
They cannot establish relationships of influence, since the interactions between the measures are
not necessarily symmetric. Neither can they indicate if two measures are similar not because they
interact with each other, but because they are both driven by a third [30]. We need a novel tool
not only to detect synchronized states, but also to identify drive-response relationships. These
issues can be addressed by measures of information transfer. One such measure is Schreiber’s
Transfer Entropy [31], which is with minimum of the assumption of the dynamic of the system
and the nature of their coupling.

This paper will follow the data-driven paradigm and employ transfer entropy as a quantitative
description of interactions among topological measures. Transfer entropy has been proposed to
distinguish effectively driving and responding elements and to detect asymmetry in the interaction
of subsystems. It is it widely applicable because it is model-free and sensitive to nonlinear signal
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properties [32]. Thus the transfer entropy is able to measure the influences that one measure can exert
over another. On the basis of these pair-wise relationships, we will construct a so-called drive-response
network with the measures as its nodes and the pair-wise relationships as its edges. The resulting
network will enable us to gain a deeper insight into patterns and implications of relationships among
network topological measures. In this paper, we mainly consider the following fundamental questions:

1. Whether or not there exist drive-response relationships between topological measures?
For example, will the network diameter influence the average path length? If that is the case, how
to measure the strength of this relationship?

2. What does the overall picture look like when measures are put together? What is the structure of
the measure-set? Can the measures be grouped into different communities?

3. Are all the measures equally important? If not so, how to identify the pivotal ones?

In order to conduct our investigation, high-quality data is necessary. It is usually difficult to
obtain the evolutional record of complex network [33]. Thanks to the advanced information systems
in Beijing Technology Market Management Office (or BTMMO, for short), we are able to collect a
complete data set which describe the evolution of the Technology Exchange Network day by day.
Our proposed method will take the Technology Exchange Network as an empirical application, which
allowing us to study several measures across as many as 2779 datasets.

The remainder of this paper is organized as follows: the next section will synthesize a transfer
entropy-based framework to infer and analyze the drive-response network. The emphasis is on how to
quantify the relationships among time series which are continuous, non-stationary, and of finite sample
effect and indirect effect. Section 3 will apply the proposed framework to an empirical investigation on
the Technology Exchange Network. Some concluding remarks are made in Section 4.

2. Methodology

2.1. Main Principle

The proposed method is to mine the overall pattern of the relationships among network
topological measures from their time series, which is shown in Figure 1.

Figure 1. Entropy-based framework to infer drive-response network of topological measures from
their time series.
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The relationships here refer in particular to drive-response relationships. A convenient way to
represent drive-response relations between two variables is to connect these two with a directed edge,
and correspondingly the overall relation pattern can be illustrated in the form of a network. The tool
for network inference is the transfer entropy, which is proposed by several researchers for revealing
networks from dynamics [34,35].

It is worth noting that what is to be constructed here is the network of measures, which should
not be confused with the original network of units. As shown in the upper half of Figure 1, we will
trace the original network at successive time points, acquiring time series for each topological measure.
And we will quantify the relationships between measures based on these time series with transfer
entropy, and then construct a drive-response network which stands for the relation pattern among
these topological measures, as shown in the lower half of Figure 1.

The process of inferring the drive-response network is as follows: The network can be presented
by a set V of nodes and a set E of edges, connected together as a directed graph denoted G = (V, E).
The nodes here are the measures, and the edges are the drive-response couplings between any two
measures. In our study, the couplings are detected by transfer entropy. Namely, connectivity is based
on the estimation of the influence one measure v exerts on another measure u. If there exists significant
coupling, there will be a directed edge from v to u. The resulting network is also a weighted one, with
the transfer entropy value as the weight of each edge.

Once the drive-response network is constructed, we may gain in-depth understanding of the
relationships among the measures by analyzing the network. For example, we can calculate the
prestige of each node to reveal which measures are more influential, and we can cluster the measures
into different groups by detecting the communities in the network.

The main steps of the proposed method are as follows:

Step 1: Time Series Observation on Topological Measures. Record the graph-level topological
trajectories in form of simultaneously measured time series

Step 2: Drive-response Network Inference. Calculate the transfer entropy between each pair of
measures based on their time series, assess the statistical significance and construct the
drive-response network.

Step 3: Drive-response Network Analysis. Calculate the prestige of each node and detect community
to gain a deep understanding.

The process will be explained step by step in more details in the following section.

2.2. Main Steps

2.2.1. Time Series Observation on Topological Measures

In our study, the data is collected from observation of the same system. We will track the
topological measures of an evolving network at successive points in time spaced at uniform time
intervals, resulting in sequences of observations on topological measures which are ordered in time.
The topological measures to be investigated in our study are discussed as follows.

Topological measures can be divided in two groups, i.e., measures at global network level and
measures at local node level [27,36], corresponding to the measurable element. Local topological
measures characterize individual network components while global measures describe the whole
network [37]. Since the observed object in our study is the network as a whole, only those graph-level
measures will be selected. In other words, node-level such as the degree of a certain node will not be
taken into account.

Due to the fact that the number of proposed measures is overwhelming and new measures are
introduced every day, there is no consensus on a definitive set of measures that provides a “complete”
characterization of real-world complex networks [24] and no classifications of these measures are
universally accepted. On the basis of several important and influential works such as [4,9,25], we will
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classify these measures into four categories, i.e., Category I, Distance Relevant Measures; Category
II, Centralization Measures; Category III, Connection Measures; Category IV, Entropy and other
Complexity Measures. We will select a few measures from each of the four categories and conduct our
investigation on these selected measures.

Measures selected from Category I: M01, Average Path Length; M02, Diameter; M03, Eccentricity;
M04, Integration; M05, Variation. All of them are based on distance. For example, the average path
length is defined as the average number of steps along the shortest paths for all possible pairs of
network nodes. Diameter is the greatest distance between any pair of vertices. The eccentricity in the
local node level is defined as the greatest distance between v and any other vertex, and eccentricity
in the global network level is the sum of all the vertices eccentricities. Graph integration is based on
vertex centrality while variation is based on vertex distance deviation.

Measures selected from Category II: M06, Centralization; M07, Degree Centralization; M08,
Closeness Centralization; M09, Betweenness Centralization; M10, Eigenvector Centralization. In local
node level, centrality is to quantify the importance of a node. Historically first and conceptually
simplest is degree centrality, which is defined as the number of links incident upon a node.
The closeness of a node is defined as the inverse of the farness, which is the sum of its distances
to all other nodes. Betweenness centrality quantifies the number of times a node acts as a bridge along
the shortest path between two other nodes. The corresponding concept of centrality at the global
network level is centralization. In our study, we will employ Freeman’s formula [38] to calculate
graph-level centralization scores based on node-level centrality.

Measures selected from Category III: M11, Vertex Connectivity; M12, Edge Connectivity; M13,
Connectedness; M14, Global Clustering Coefficient; M15, Assortativity Coefficient. These measures
refer to connection. For example, the vertex connectivity is defined as the minimum number of nodes
whose deletion from a network disconnects it. Similarly, the edge connectivity is defined as the
minimum number of edges whose deletion from a network disconnects it. Connectedness is defined
as the ratio of the number of edges and the number of possible edges. It measures how close the
network is to complete. Global Clustering coefficient is to quantify the overall probability for the
network to have adjacent nodes interconnected. It is also called second order extended connectivity,
which can be calculated by counting the edges between the second neighbors of vertex, and again
comparing that count to the number of edges in the complete graph that could be formed by all second
neighbors. Assortativity is defined as the Pearson correlation coefficient of the degrees at both ends of
the edges. This measure reveals whether highly connected nodes tend to be connected with other high
degree nodes.

Measures selected from Category IV: M16, Radial Centric Information Index; M17, Compactness
Measure Based on Distance Degrees; M18, Complexity Index B. All these measures refer to entropy,
information and other complexity in the network. Radial Centric Information Index and Compactness
Measure Based on Distance Degrees are both information-theoretic measures to determine the
structural information content of a network, and both of them are based on Shannon’s entropy.
Complexity Index B is a more recently developed measure due to Bonchev [39]. The complexity index
bv is the ratio of the vertex degree and its distance degree. The sum over all bv indices is the convenient
measure of network complexity, i.e., the complexity index B.

A systematic discussion about the topological measures in complex networks is out of the scope
of this paper. Detailed description of these measures can be found in [4,18,40,41].

232



Entropy 2014, 16, 5753–5772

Table 1. Commonly used topological measures for undirected and un-weighted graph G=(N(G),E(G)).
N(G) and E(G) are called vertex and edge set respectively.

ID Name Definition Ref.

I. Distance Relevant Measures

M01 Average Path
Length

L := 2
N(N−1) ∑

u,v∈N(G)
d(u, v), here N denotes the number of the nodes, and

d(u,v) denotes the steps along the shortest path between nodes u and v
[18]

M02 Diameter D := max
u,v

d(u, v) [18]

M03 Eccentricity
e(G) := ∑

v∈N(G)
maxu∈N(G) d(u, v), here, d(u,v) stands for the distances

between u,v ∈ N (G)
[40]

M04 Integration
D(G) := 1

2 ∑
v∈N(G)

D(v), here, D(v) is the vertex centrality which is defined as

D(v) := ∑
v∈N(G)

d(v, u)
[40]

M05 Variation var(G) := maxu∈N(G) ΔD∗(v), here, ΔD*(v) is the distance vertex deviation
ΔD* (v):= D(v)−D*(G) [40]

II. Centralization Measures

M06 Centralization
ΔG∗ := ∑

v∈N(G)
ΔD∗(v), here ΔD* (v) is the distance vertex deviation which is

defined as ΔD* (v):= D(v)−D*(G)
[40]

M07 Degree
Centralization *

CD(G) := ∑
v∈N(G)

(
maxu∈N(G) CD(u)− CD(v)

)
, here CD(v) is the degree

centrality of vertex v, CD(v) := kv
N−1 , and kv is the vertex degree

[41]

M08 Closeness
Centralization *

CC(G) := ∑
v∈N(G)

(
maxu∈N(G) CC(u)− CC(v)

)
, here CC(v) is the closeness

centrality of vertex v, CC(v) :=

[
1

N−1 ∑
w∈N(G)

d(w, v)

]−1 [41]

M09 Betweenness
Centralization *

CB(G) := ∑
v∈N(G)

(
maxu∈N(G) CB(u)− CB(v)

)
, here CB(v) is the closeness

centrality of vertex v, which is defined as CB(v) := 2
(n−1)(n−2) ∑

u,w∈N(G)

gu,w(v)
gu,w

,

and gu,w is the number of paths connecting u and w, gu,w (v) is the number of
paths that v is on

[41]

M10 Eigenvector
Centralization*

CE(G) := ∑
v∈N(G)

(
maxu∈N(G) CE(u)− CE(v)

)
, here CE(v) is the centrality of

vertex v, which can be calculated by the formula CE(v) = 1
λ ∑

u∈N(G)
av,uCE(u),

and the vector of the centralities of vertices is the eigenvector of adjacency
matrix A=(aij)

[41]

III. Connection Measures

M11 Vertex
Connectivity

κ(G):= min {κ(u,v)| unordered pair u, v ∈ N (G)}, here, κ(u, v) is defined as the
least number of vertices, chosen from N (G)−{u, v}, whose deletion from G
would destroy every path between u and v

[41]

M12 Edge
Connectivity

λ (G):= min{λ (u,v)| unordered pair u, v ∈ N (G)}, here, λ(u,v) is the least
number of edges whose deletion from G would destroy every path between
u and v

[41]

M13 Connectedness
EN(G) := A(G)

N2 , here A(G) is the index of total adjacency A(G) := 1
2

N
∑

i=1

N
∑

j=1
aij

and aij is the entry lies in row i and column j in the adjacent matrix A=(aij)
[40]

M14
Global
Clustering
Coefficient

C(G) := 1
N ∑

v∈N(G)

2EN(v)

VN(v)∗(VN(v)−1)
, where, (VN(v), EN(v)) is the sub-graph of G

that contains all neighborhood vertices and their edges
[18]

M15 Assortativity
Coefficient

r =
1
M ∑j>i kikj aij−[ 1

M ∑j>i
1
2 (ki+kj)aij]

2

1
M ∑j>i

1
2

(
k2

i +k2
j

)
aij−[ 1

M ∑j>i
1
2 (ki+kj)aij]

2 , here, M is the total number of edges,

and aij is the entry lies in row i and column j in the adjacent matrix A=(aij)
[4]
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Table 1. Cont.

ID Name Definition Ref.

IV. Entropy and Other Complexity Measures

M16
Radial Centric
Information
Index

IC,R(G) :=
k
∑

i=1

|Ne
i |

N log
( |Ne

i |
N

)
, here,

∣∣Ne
i
∣∣ is the number of vertices having the

same eccentricity
[40]

M17

Compactness
Measure Based
on Distance
Degrees

IC,δD (G) := 2W log(2W)− ∑
k

qk log qk here, W is the Wiener Index

W = 1
2 ∑

u,v∈N(G)
d(u, v) and qk is the sum of the distance degrees of all vertices

located at a topological distance of k from the center of the graph

[40]

M18 Complexity
Index B

B(G) := ∑
v∈N(G)

bv = ∑
v∈N(G)

kv
μ(v) . Here, bi is the ratio of the vertex degree kv

and its distance degree μ(v) := ∑
u∈N(G)

d(v, u)
[40]

* In our study some of the centralization measures are normalized by dividing by the maximum theoretical score for
a graph with the same number of vertices. For degree, closeness and betweenness the most centralized structure is
an undirected star. For eigenvector centrality the most centralized structure is the graph with a single edge.

Besides the 18 topological measures mentioned above, we also track two performance measures,
i.e. “P01: Technological Volume” and “P02: Contract Turnover”, which will be described in
Section 2.3.2.

2.2.2. Drive-response Network Inference

The drive-response network to be constructed can be denoted as G=(V,E), here, V={V1,V2, . . . ,Vn}
is the set of vertices/nodes, i.e., the measures, and E is the set of edges, i.e., pair-wise relations between
any two measures. The adjacency matrix A of the drive-response network is defined as follows:

aij =

{
EPSTE∗

vi→vj
,
(
vi, vj

) ∈ E
0,

(
vi, vj

)
/∈ E

(1)

Here EPSTE∗
vi→vj

is the effective partial symbolic transfer entropy from measure vi to measure
vj that is of statistical significance. The calculation of EPSTE∗

vi→vj
is the most complicated step in the

proposed method, and we will depict it in details as follows.
The Transfer Entropy from a time series Y to a times series X as the average information contained

in the source Y about the next state of the destination X that was not already contained in the
destination’s past [31,35]:

TEY→X = ∑
xt+1,xt ,yt

p(xt+1, xt, yt) log
p(xt+1|xt, yt)

p(xt+1|xt)
(2)

Here, t+1 indicates a given point in time, t indicates the previous point, xt is element t of the time
series of variable X and yt is element t of the time series of variable Y. p(A,B) and p(A|B) are the joint
and conditional distribution respectively, and p(A|B)=p(A,B)/p(B). In order to calculate p(xt+1,xt) we
have to count how many times a particular combination of symbols, (a,b) appears in the joint columns
Xt+1 and Xt, then divide by the total number of occurrences of all possible combinations. For example,
if there are two possible combinations, (a,b) and (a′,b′) appear 21 and seven times, respectively, then
p(a,b)=21/(21+7)=0.75 and p(a′,b′)=7/(21+7)=0.25. p(xt+1,xt,yt) can be calculated in the same way.

Though the analytic form of transfer entropy is relatively simple, but its application to
investigation on time series of topological measures is not so easy. There are five major
practical challenges:

(1) Time series being non-stationary: The probabilities are estimated from observations of a single
instance over a long time series. It is very important therefore that the time series is statistically
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stationary over the period of interest, which can be a practical problem with transfer entropy
calculations [42]. In most cases the time series of topological measures are non-stationary.

(2) Time series being continuous: It is problematic to calculate the transfer entropy on
continuous-valued time series such as we have here. Kaiser and Schreiber developed a criticism
and presented many caveats to the extension of the transfer entropy to continuous variables [43].
Here we will resort to another solution.

(3) Finite sample effects: A finite time series will result in fewer examples of each combination
of states from which to calculate the conditional probabilities. When used to analyze finite
experimental time series data, there is a strong risk of overestimating the influence, a problem
that is known from the literatures [44,45].

(4) Indirect effects: When evaluating the influence between two time series from a multivariate data
set, the case in our study, it is necessary to take the effects of the remaining variables into account,
and distinguish between direct and indirect effects [46].

(5) Statistical significance: A small value of transfer entropy suggests no relation while a large value
does. Two irrelevant series can have non-zero transfer entropy due to finite sample size of the
time series [47], thus it is not a good choice to simply select a threshold value to judge whether
there exists drive-response relationship between two measures.

In the last few years, several improved transfer entropy algorithms have been proposed to deal
with some of these challenges. For example, Symbolic Transfer Entropy [48] is a solution for (1) and
(2), Effective Transfer Entropy [44] is for (3), while Partial Transfer Entropy [49] is for (4). In order to
deal with these practical challenges all at once, techniques from Symbolic Transfer Entropy, Effective
Transfer Entropy, and Partial Transfer Entropy should be synthesized, resulting an effective, partial,
symbolic version of Transfer Entropy as follows:

Let us consider {v1,t}, {v2,t}, t=1,2,· · · k as the denotations for the time series of measures v1 and v2

respectively. The embedding parameters in order to form the reconstructed vector of the time series of
v1 are the embedding dimension m1 and the time delay τ1. The reconstructed vector of v1 is defined as:

v1,t =
(

v1,t, v1,t−τ1 , · · · , v1,t−(m1−1)τ1

)′
(3)

where t=1,· · · ,k′ and k′ = k − max{(m1 − 1)τ1, (m2 − 1)τ2}.
The reconstructed vector for v2 is defined accordingly, with parameters m2 and τ2. For each

vector v1,t, the ranks of its components assign a rank-point v̂1,t = [r1,t, r2,t, · · · , rm1,t] where rj,t ∈
{1, 2, · · · , m1} for j=1,· · · ,m1, and v̂2,t is defined accordingly.

The symbolic transfer entropy is defined as [48]:

STEv2→v1 = ∑ p(v̂1,t+1, v̂1,t, v̂2,t) log
p(v̂1,t+1|v̂1,t, v̂2,t)

p(v̂1,t+1|v̂1,t)
(4)

Here, symbolic transfer entropy uses a convenient rank transform to find an estimate of the
transfer entropy on continuous data without the need for kernel density estimation. Since slow drifts
do not have a direct effect on the ranks, it still works well for non-stationary time series.

The partial symbolic transfer entropy is defined conditioning on the set of the remaining time
series z={v3,v4,· · · ,vN}.

PSTEv2→v1 = ∑ p(v̂1,t+1, v̂1,t, v̂2,t, ẑt) log
p(v̂1,t+1|v̂1,t, v̂2,t, ẑt)

p(v̂1,t+1|v̂1,t, ẑt)
(5)

where the rank vector ẑt is defined as the concatenation of the rank vectors for each of the embedding
vectors of the time series in z. The partial symbolic transfer entropy is the pure or direct information
flow between them, information transmitted indirectly by the environment (the other measures) is
eliminated.
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Finally, we will define effective partial symbolic transfer entropy as follows:

EPSTEv2→v1 = PSTEv2→v1 −
1
M∑ PSTEshu f f led

v2→v1 (6)

where M is the times to shuffle the series (we set M=200 in our study) of v̂2 and

PSTEshu f f led
v2→v1 = ∑ p

(
v̂1,t+1, v̂1,t, v̂shu f f led

2,t , ẑt

)
log

p
(

v̂1,t+1

∣∣∣v̂1,t, v̂shu f f led
2,t , ẑt

)
p(v̂1,t+1|v̂1,t, ẑt)

(7)

Here, the elements of v̂2 is randomly shuffled, which implies that all statistical dependencies
between the two series have been destroyed. PSTEshu f f led

v2→v1 consequently converges to zero with

increasing sample size and any nonzero value of PSTEshu f f led
v2→v1 is due to small sample effects

representing the bias in the standard entropy measure.
By now, we have coped with the practical challenges (1), (2), (3) and (4) with effective partial

symbolic transfer entropy. For challenge (5), i.e., statistical significance, it may be evaluated by using
bootstrapping strategies, surrogate data or random permutations [50,51]. Under the surrogate-based
testing scheme, we will assess the significance with kernel density estimation.

By shuffling the time series v̂2 for M times, we now get M different PSTEshu f f led
v2→v1 values and we

will denote them as p1, p2, . . . ,pM, and we denote PSTEv2→v1 as p0. We build with M+1 values a
probability distribution function using a kernel approach, known as Parzen-Rosenblat method [52,53],
which can be expressed as:

f̂h(x) =
1

(M + 1)h

M

∑
i=0

K
(

pi − x
h

)
(8)

Here, K(•) is the kernel function and h is the bandwidth. We will employ the most widely used
Gaussian kernel K(x) = 1√

2π
e− 1

2 x2
here, and the bandwidth will be selected using pilot estimation of

derivatives [54].
The existence of a drive-response link between two measures is then determined using this

probability and a pre-defined significant level. The final EPSTE∗
v2→v1

, a21, is defined as:

a21 = EPSTE∗
v2→v1

=

{
EPSTEv2→v1 , p ≤ pthreshold

0, p > pthreshold
(9)

Here, p =
∫ ∞

p0
f̂h(x)dx (one-side test is adopted here and obviously p0 is expected to be bigger than

other pi and lies in the right side) and we set pthreshold=0.01 in our study.
Other entries aij in the adjacency matrix A can be calculated in the same way.

2.2.3. Drive-response Network Analysis

The resulting network can be analyzed from a two-fold perspective:
At the local node level, we are going to calculate the in-strength and out-strength [55] of each

node to assess how influential and comprehensive it is:

Sin(i) =
N

∑
j=1

aji (10)

Sout(i) =
N

∑
j=1

aij (11)

Here, aij is the entry of the adjacency matrix of drive-response network as described in the previous
section.
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In the context of drive-response relationships, the specific implications of the in-strength and
out-strength are: the out-strength is the sum of information flowing from the measure to others, which
stands for its prestige and reveals its influence to others. The in-strength is the sum of information
flowing from others to the measure. The greater the in-strength a measure has, the more comprehensive
the measure is, since there are more information flows to it from other measures.

On the global network level, we are going to cluster the measures into different groups by
detecting communities in the resulting network. Measures in the same community are clustered into
one group. If the resulting network is complicated, tools for detecting communities in the network
science can be employed.

2.3. Further Remarks

2.3.1. Choice of Coupling Measure

In fact, the choice of coupling measure between pairs of time series permits many alternatives,
ranging from correlation and partial correlation to mutual information and causality measures [56],
with the cross correlation [57] and Granger causality [58] being the famous ones. Some of these popular
tools are non-directional, e.g. correlation or partial correlation, and mutual information measures,
thus these measures cannot provide satisfactory results for our study since the interactions between
the measures are not necessarily symmetric. Granger causality has acquired preeminent status in the
study of interactions and is able to detect asymmetry in the interaction. However, its limitation is
that the model should be appropriately matched to the underlying dynamics of the examined system,
otherwise model misspecification may lead to spurious causalities [46]. Given a complex system with a
priori unknown dynamics, the first choice might be Transfer Entropy [59]. Its advantages are obvious:
(1) it makes minimal assumptions about the dynamics of the time series and does not suffer from
model misspecification bias; (2) it can captures both linear and nonlinear effects; (3) it is numerically
stable even for reasonably small sample sizes [60].

2.3.2. Validation of the Proposed Method

The proposed method is an integration of techniques from Symbolic Transfer Entropy, Effective
Transfer Entropy, and Partial Transfer Entropy. All these relevant techniques have been proved
theoretically and practically by numerical simulation and empirical investigations, respectively
in [44,48,49], and these techniques are compatible, which means they can be synthesized to provide
more comprehensive solutions. In fact, there already exist some synthesized methods such as Partial
Symbolic Transfer Entropy [46], Corrected Symbolic Transfer Entropy with surrogate series to make the
results more effective [61], and Effective Transfer Entropy based on symbolic encoding techniques [62].
To our best knowledge, research taking into account of all these five practical issues mentioned above
and synthesizing all these techniques all at once still lacks.

Since our investigation is applied here to purely observational data, we have no way to validate
the proposed framework with simulated signals or outside intervention. To valid the feasibility of the
proposed method, we will resort to another strategy which is based on experiential evidence:

Suppose that the relationship between the topological measures here and some other measures are
experientially approved. We then embed these extra measures into our data, deduce the drive-response
relationship between these extra measures and the topological measures, and test if the results of our
proposed method are consistent with the existing knowledge. Obviously the consistence will give us
more confidence on the feasibility of our method.

Here, the extra measures are two performance indices of technology exchange, i.e., P01:
Technological Volume and P02: Contract Turnover, which have been adopted by BTMMO for several
years [63]. In the context of System Theory, it is generally believed that system structure determines
its function/the performance. Thus, what is expected is that these two embedded measures will be
responding ones while some of the topological measures will drive them.
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3. Empirical Application and Results

3.1. Time Series of Topological Measures in Technology Exchange Network

Technology exchange holds a great potential for promoting innovation and competitiveness
at regional and national levels [64]. In order to expedite scientific and technological progress and
innovation, it is stipulated in the Regulation of Beijing Municipality on Technology Market that the first
party of the contract can get tax relief if the contract is identified as a technique-exchanging one and
registered by BTMMO. Because of the preferential taxes, most of the technology exchange activities are
recorded by BTMMO, in the form of technology contracts. Thus it offers the chance for us to obtain
high-quality technology exchange records from BTMMO. We are able to capture the total evolutional
scenario of the Technology Exchange Network.

Networks serve as a powerful tool for modeling the structure of complex systems, and there is no
exception for technology exchange. Intuitively we can model technology exchange as a network with
the contracting parties as the nodes and contracts as the edges which linking the two contracting parties
together. However, in the complex network literature, it is often assumed that no self-connections or
multiple connections exist [4]. In other words, we will model the technology exchange as a simple
graph as follows: we take the contracting parties as the nodes, and if contractual relationship between
any two parties exists, regardless of how many contracts they signed, there will be (only) one edge
linking them together. Here, the resulting technology exchange network is treated as an undirected
and un-weighted one.

We observed the 18 topological and two performance measures of the Technology Exchange
Network in Beijing day by day from 24 May 2006 to 31 December 2013, obtaining 2779 records in total.
This is the most fine-grained data that we can get, because technology exchange activities can only be
accurate at the day level, rather than to hours or seconds as in stock exchanges. The complete dataset
is provided as a supplementary.

Since the technology exchange network is not a connected one, all the measures are calculated on
the giant component of these networks. The measures M01, M02, M07, M08, M09, M10, M11, M12,
M13, M14, M15 are calculated with the igraph packages [41], while measures M03, M04, M05, M06,
M16, M17, M18 are calculated by the QuACN package [40]. All these algorithms are implemented in
the R language [65], and we visualize our results mainly with the ggplot2 package [66]. The time series
of all these measures are shown in Figure 2.

3.2. Drive-Response Network Inference and Analysis

Calculating the time series depicted in Section 3.1 with the method proposed in Section 2.2.2, we
get the adjacent matrix, which is shown in Figure 3 (Since the EPSTE values are rather small, all the
entries are multiplied by 10,000 for ease of plotting).

In Figure 3, the diagonal entries are marked with “X” because we will not study the
self-correlations and these entries are omitted. Red-filled entries are not only greater than zero but also
statistically significant, thus each red-filled entry stands for a drive-response relationship. The darker
the color, the more significant the relationship is. It can be seen that the darkest entries are all located
in row M07, M10, M15, and M16, which means the strong drive-response relationships share these four
common drives. We will further analyze these rows after constructing the drive-response network.
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Figure 2. Time series of topological and performance measures of Technology Exchange Network in
Beijing ranging from 24 May 2006 to 31 December 2013.

239



Entropy 2014, 16, 5753–5772

Figure 3. The adjacent matrix of drive-response network of topological and performance measures in
Technology Exchange Network.

Finish the steps proposed in Section 2.2.3, and we can draw the drive-response network, which
is shown in Figure 4. In Figure 4, each measure is mapped as a node, and each arrow stands for a
drive-response relationship, and we associate each edge with a weight value, i.e., the effective partial
symbolic transfer value, which is mapped as the width of the lines.

Some basic features of the resulting network can be mentioned: there are 20 nodes and 43 edges
in the network. The connectedness is 0.1131579, with the average vertex degree 4.3. It can been
seen that the resulting network is not a connected one, with three isolated measures which are
relatively independent.
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Figure 4. The drive-response network of topological and performance measures in Technology
Exchange Network.

Although most of the vertices are connected, it is certainly not a dense graph. The diameter of
giant component of the resulting is 3, and the average path length is 1.34375. Thus, the information
flowing on this network is relatively simple. Further investigation on the drive-response network
is two-fold. On the one hand, we will calculate the out-strength and in-strength of each measure to
uncover how influential and comprehensive it is. On the other hand, we will cluster the measures into
different groups. The out-strength and in-strength values of each measure is shown in Table 2.

It can be seen from Table 2 that the most influential measures are Eigenvalue Centralization,
Assortativity Coefficient, Radial Centric Information and Degree Centralization. Among these
measures, two of them are centralization measures, one is connection measure and the remaining
other is entropy measure. There is no distance relevant measure to be influential ones. In other words,
distance relevant measures are usually driven by others. Graph integration, variation, eccentricity and
average path length are influenced by the graph assortativity and eigenvalue centralization.

It can also be seen from Table 2 that measure M14: Global Clustering Coefficient is the most
comprehensive one since it takes up the most information from others. Another popular measure
M01: Average Path Length, also has a relatively great in-strength value. These two measures are often
employed to characterize and class networks [1,4]. Except the three isolated measures, the in-strength
values of all the other measures are greater than zero, which implies that most measures are influenced
by others.
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Table 2. The out-strength and in-strength values of each measure.

ID Measure Out-strength In-strength

M01 Average Path Length 0.00 0.0005448487(#03)
M02 Diameter 0.00 0.00
M03 Eccentricity 0.00 0.0001440922(#15)
M04 Integration 0.00 0.0002026297(#14)
M05 Variation 0.00 0.0002431556(#12)
M06 Centralization 0.00 0.0003962536(#08)
M07 Degree Centralization 0.0003152017(#04) 0.0004322766(#06)
M08 Closeness Centralization 0.00 0.0002431556(#13)
M09 Betweenness Centralization 0.00 0.0005538545(#02)
M10 Eigenvector Centralization 0.0023685158(#01) 0.0003917507(#09)
M11 Vertex Connectivity 0.00 0.00
M12 Edge Connectivity 0.00 0.00
M13 Connectedness 0.00 0.0002521614(#11)
M14 Global Clustering Coefficient 0.00 0.0006168948(#01)
M15 Assortativity Coefficient 0.0023324927(#02) 0.0002746758(#10)
M16 Radial Centric Information Index 0.0015264769(#03) 0.0005043228(#04)
M17 Compactness Measure Based on Distance Degrees 0.00 0.0004232709(#07)
M18 Complexity Index B 0.00 0.0004367795(#05)

According to the network structure, we can cluster the 18 measures into three groups:

Driving measures:

• M07, Degree Centralization;
• M10, Eigenvalue Centralization;
• M15, Assortativity Coefficient;
• M16, Radial Centric Information.

Responding measures:

• M01, Average Path Length;
• M03, Eccentricity;
• M04, Integration;
• M05, Variation;
• M06, Centralization;
• M08, Closeness Centralization;
• M09, Betweenness Centralization;
• M13, Connectedness;
• M14, Global Clustering Coefficient;
• M17, Compactness;
• M18: Complexity Index B.

Standalone measures:

• M02, Diameter;
• M11, Vertex Connectivity;
• M12, Edge Connectivity.

The isolation implies that these measures have no information flow with other measures. It doesn’t
mean that these measures are trivial ones; rather, they should be treated as non-redundant ones because
they contain special information that is not include by other measures, indicating that some of them
may reveal different topological aspects of real-world networks.
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Now, we will tend to the two embedding measures: “P01, Technological Volume” and “P02,
Contract Turnover”. In our resulting network, both the two are identified as responding measures,
which is consistent with the principle of System Theory that “The structure of the system determines
its function”. Further, the in-strength value of “P01, Technological Volume” (0.0005268372) is greater
than that of “P02, Contract Turnover” (0.0003557277). This result is also consistent with our experience
that what we are investigating on is the technology exchange network, it stands to reason that the
technological volume gains more information from its own structure. Both these two results can serve
as evidence for the feasibility of our proposed method.

4. Conclusions and Discussions

Taking into account that pulling networks from different domains and topologies together for
statistical analysis might provide incorrect conclusions [25], we conduct our investigation with
the data observed from the same network in the form of simultaneously measured time series.
In order to reveal the relationships among topological measures from their time series, we synthesize
a practical framework comprising techniques from Symbolic Transfer Entropy, Effective Transfer
Entropy, and Partial Transfer Entropy, which is able to deal with the challenges such as time series
being non-stationary, time series being continuous, finite sample effects and indirect effects. Using a
surrogate-based testing scheme, we assess the statistical significance of the resulting drive-response
relationships with kernel density estimation. Thus, the synthesized framework can serve as a complete
solution for the application of transfer entropy in complicated issues. Furthermore, the framework
doesn’t stop at the pair-wise relationships, but makes further efforts to provide a holistic scenario
in the form of a drive-response network. The transfer entropy-based framework not only quantifies
the pair-wise influence one measures exerts on another, but also reveals the overall structure of
the measures.

We select 18 topological measures and apply the proposed method to the empirical investigation
on Technology Exchange Network. After calculating the drive-response relationships and inferring
the network of these measures, we identify the most influential and most comprehensive measures
according to their in-strength and out-strength values. We also cluster these measures into three
groups, i.e., driving measures, responding measures, and standalone measures. By embedding
two performance measures, i.e., technological volume and contract turnover and calculating the
relationships between topological and performance measures, we find that our results are consistent
with the principle of System Theory and some existing knowledge, which validates the feasibility of
our proposed method.

Our conclusion is based on the purely observational data from Technology Exchange Network in
Beijing, thus the resulting drive-response network should not be simply generalized. In other words,
the drive-response network may not hold true for other networks. However, the proposed method
is applicable to other types of network, in case that the time series of topological measures in that
network can be observed.

It is to be mentioned that although we can divide the measures into driving and responding ones,
it is not to say that the driving measures can determine the responding measures. The drive-response
relationships are not equal to deterministic relationships. In general, approaches based on observational
quantities alone are not able to disclose a deterministic picture of the system, and interventional
techniques will ultimately be needed. Nevertheless, the proposed method can serve as a heuristic tool
in detecting directed information transfer, and the detected drive-response relationships can be viewed
as a justifiable inferential statistic for true relationships, which give us more evidence and confidence
to reveal intrinsic relationship among the topological measures.
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Abstract: What is the impact of a bank failure on the whole banking industry? To resolve this
issue, the paper develops a transfer entropy-based method to determine the interbank exposure
matrix between banks. This method constructs the interbank market structure by calculating the
transfer entropy matrix using bank stock price sequences. This paper also evaluates the stability
of Chinese banking system by simulating the risk contagion process. This paper contributes to the
literature on interbank contagion mainly in two ways: it establishes a convincing connection between
interbank market and transfer entropy, and exploits the market information (stock price) rather than
presumptions to determine the interbank exposure matrix. Second, the empirical analysis provides
an in depth understanding of the stability of the current Chinese banking system.

Keywords: interbank exposure matrix; risk contagion; transfer entropy

1. Introduction

The Basel III Accord published in 2009 proposed for the first time an additional capital requirement
for inter-financial sector exposures, indicating that regulators have been aware of the necessity to
prevent the occurrence of risk contagion among banks. As a matter of fact, the 2008 subprime mortgage
crisis has triggered a global financial crisis through the contagion among banks. Hoggarth et al. [1]
studied 47 banking crisis over the 1977–1998 period in both developing and developed countries and
find that the resulting cumulative output loss reached as much as 15%–20% of annual GDP. These
cases show that such banking crises can have substantial impacts on the economy.

Traditional micro-prudential regulation focuses on the risk management of a specific bank, which
has been proved insufficient from a systemic perspective. In extreme circumstances, a single bank
failure can lead to massive bank failures because the initial shock can spread to other banks through the
interbank market. Considering the possibility that bank interdependencies magnify the risk, regulators
are trying to push bank supervision more towards a system-wide framework. Banks are also required
to not only look at the risk of individual exposures, but also account for correlations of the exposures
when assessing their investment portfolios [2].

2. Literature Review

Quite a few research papers on risk contagion among banks regard the banking system as a
network, and the contagion process is simulated using network dynamics. For example, Nier et al. [3]
constructed a banking system whose structure is described by parameters including the level
of capitalization, the degree to which banks are connected, the size of interbank exposures and
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concentration degree of the system, and then they analyzed the resilience of the system to an initial
bank failure by varying the structural parameters, and identified a negative and non-linear relationship
between contagion and capital.

Insightful studies by Allen and Gale [4] and Freixas et al. [5] illustrate that the possibility of
contagion largely depends on the structure of the interbank market. Allen and Gale consider a
simplified banking system consisted of 4 banks, and initialize the system with different market
structures, their results indicate that for the same shock, a complete structure is more robust than
incomplete structure. Freixas et al. discuss three scenarios of interbank exposures through credit lines:
a credit chain, diversified lending and a money center case, and they conclude that contagious failures
occur more easily in the credit chain case than in the diversified lending case; as for the money center
case, the probability of contagion is determined by the values of model parameters. Both researches
uncover critical issues concerning how interbank market structure affects risk contagion among banks,
yet the models still have room for improvement given the complexity of the real interbank market.

Recently, a series of papers have revealed the latest progress in banking network studies.
Berman et al. [6] formalized a model for propagation of an idiosyncratic shock on the banking network,
and constructed the stability index, which can be used to indicate the stability of the banking network.
Haldane and May [7] draw analogies with the dynamics of ecological food webs and with networks
within which infectious diseases spread. Minoiu and Reyes [8] investigated the properties of global
banking networks with bank lending data for 184 countries, and find that the 2008–2009 crisis perturbed
the network significantly. DasGupta and Kaligounder [9] investigated the global stability of financial
networks that arise in the OTC derivatives market.

Subsequently, a considerable amount of simulations and empirical researches on interbank
contagion were performed, as surveyed by Upper [10]. Examples include Sheldon and Maurer [11]
for the Swiss banking system, Blåvarg and Nimander [12] for Sweden, Furfine [13] for the US Federal
Funds market, Upper and Worms [14] for Germany, Elsinger et al. [15] for Austria, Van Lelyveld and
Liedorp [16] and Mistrulli [17] for Italy. These papers follow a similar routine: first estimate the actual
interbank exposure matrix (a N × N square matrix reflecting the credit exposure of N banks to each
other in the system), then simulate the impact of a single bank failure or multiple bank failures on the
system. The key step of this routine is the estimation of the interbank exposure matrix, because the
matrix depicts the structure of the interbank market, and will eventually determine the possibility of
contagion in the banking system.

Owing to the limitations of data sources, interbank exposure matrices can only be estimated
indirectly. Currently, the maximum entropy estimation with balance sheet data is the most widely
used method in determining the interbank exposure matrix. In this method, the aggregated interbank
assets and liabilities disclosed in balance sheets are the only input information, and the matrix can
be derived by maximizing its entropy. Some authors claim that this method is the least biased given
that only limited information of the interbank market structure, namely the aggregated interbank
assets and liabilities are available. However, considering the fact that there may be other available
data concerning the interbank market structure and the maximization of the matrix entropy probably
deviates from reality, the assumption of the method can be problematic. Mistrulli [18] shows that for
the Italian banking system the use of maximum entropy techniques underestimates contagion risk
relative to an approach that uses information on actual bilateral exposures.

Transfer entropy is a relatively new concept introduced by Schreiber in 2000 [19], and it measures
the information transfer between two time series. Compared with other cross-correlation statistics,
transfer entropy is an asymmetric measure and takes into account only statistical dependencies truly
originating in the “source” series, but not those deriving from a shared history, like in the case of a
common external driver. These characteristics of transfer entropy make it a superior tool to analyze the
casual interactions among variables of a complex system. In the last decade, transfer entropy has been
applied to studies within the context of financial markets. Marschinski and Matassini [20] designed
a procedure to apply transfer entropy to the detection of casual effect between two financial time
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series. Kwon and Yang [21] calculated the transfer entropy between 135 NYSE stocks and identified
the leading companies by the directionality of the information transfer. In a separate paper [22], they
analyzed the information flow between 25 stock markets worldwide, their results show that America
is the biggest source of information flow.

This paper aims to establish a new method to determine the interbank exposure matrix, within
a transfer entropy context. Furthermore, the stability of Chinese banking industry is investigated.
The remainder of this paper is organized as follows: in Section 2, a detailed description of the method
is given. Section 3 presents the empirical study and results. Section 4 concludes the presentation.

3. Method

3.1. Definition of Transfer Entropy

When considering the interactions between two systems evolving in time, the linear correlation
coefficient, Kendall rank correlation coefficient, and mutual information [23] are the most commonly
used statistics. However, they are incapable of distinguishing information that is actually exchanged
from shared information due to common history and input signals. Schreiber proposed transfer
entropy to exclude these influences by appropriate conditioning of the transition probabilities.

Consider two processes I and J, the transfer entropy is defined as:

1

1

transfer entropy from J to I
information about future observation I t gained from past observations of I and J

information about future observation I t gained from past observations of I only (1)

Equation (1) measures how much additional information does J provide for the prediction of I(t+1)
apart from the historical information provided by I itself. A mathematical expression of Equation (1) is:
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Here, it represents the state of I at time t, and i(k)t is a k dimensional vector representing the most

recent k states of I before it+1, j(l)t is a l dimensional vector representing the most recent l states of J
before jt+1. Additionally, it, jt ∈ D = { d1, d2, d3, ......dN−1, dN}. The transfer entropy from I to J can be
derived by exchanging i and j in Equation (2).

3.2. Numerical Solution for Transfer Entropy

Though the analytic form of transfer entropy is relatively simple, there is still a distance between
numerical and practical application. In most cases, we need to obtain I and J by coarse graining a
continuous system at resolution ε. Usually, when ε→0, we will get a more accurate transfer entropy,
but the computational cost will grow rapidly as well. For this consideration, an appropriate resolution
should be determined to balance the accuracy and computational cost. In this paper, we set the
resolution according to the length of dataset, for a dataset of N samples, the continuous interval of the
sample is discretized into (N/4)1/3 parts, which balances the accuracy and efficiency.

Another difficulty lies in that the conditional probabilities in Equation (2) can’t be estimated
directly given I and J. To solve this problem, we propose a transformation on Equation (2). According

to the definition of conditional probability, p
(

it+1|i(k)t , j(l)t

)
and p

(
it+1|i(k)t

)
can be rewritten as:
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Substituting Equation (3) into Equation (2), we have:
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, , log
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p i i j p i
T p i i j

p i j p i j
 

(4)

This new expression contains only joint probability, and thus simplifies the calculation of transfer
entropy. Generally speaking, the parameter k and l should be as large as possible so that the information
introduced by the history of process I itself can be excluded to the most extent. However, as the amount
of data required grows like N(k+l) [24], the finite sample effects would be quite significant if k and l is
excessively large, so reasonable values of both k and l is of crucial importance in practice. In this paper,
since we have limited sample, both k and l are set to be 1.

3.3. Determine the Interbank Exposure Matrix with Transfer Entropy

As mentioned in the Introduction section, the widely used maximum entropy estimation of
interbank exposure matrix suffers from biased assumptions and can significantly deviate from practice.
In this paper, we determine the interbank market structure by calculating the transfer entropy matrix
of the banking industry with daily stock closing price, and then an adjustment on the transfer entropy
matrix is made by using the RSA algorithm [17] as well as the aggregated interbank assets and liabilities,
after which we derive the interbank exposure matrix. The interbank market may be represented by the
following N × N matrix:

11 1 1

1

1

j N

i ij iN

N Nj NN

x x x

X x x x

x x x

 

Here, xij represents the amount of money bank i lends to bank j. Since a bank can’t lend to itself,
we have N diagonal elements equal to 0. But to identify the matrix, other N2 − N elements have to
be estimated.

Previous studies on the movement of stock prices such as Levine and Zeros [25], Chiarella and
Gao [26] and Hooker [27] have proved that stock markets’ return are affected by macroeconomic
indicators such as GDP, productivity, employment and interest rates. In terms of the correlation
between two stocks, especially when they belong to the same sector, we can see two types of
mechanisms to generate significant correlation between them [28]:

• External effect (e.g. economic, political news, etc.) that influences both stock prices simultaneously.
In this case the change for both prices appears at the same time.

• One of the companies has an influence on the other (e.g. one of the company’s operations depends
on the other). In this case the price change of the influenced stock appears later in time because it
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needs some time to react on the price change of the first stock, in other words one of the stocks
pulls the other.

According to the definition of transfer entropy, it measures the information flow between two
time series. The transfer entropy from stock price of bank I to stock price of bank J measures the
information flow from I to J, which depicts how much influence does the stock price of bank I has on
the stock price of bank J.For the two types of correlation mechanisms for stocks, the external effect that
influences two stock prices of banks at the same time generates no information flow between bank
I and bank J, thus such effect does not contribute to TI→J, where TI→J measures the second type of
correlation between two stock prices.

Since stock price reflects investors’ expectation of a company’s future earnings [29,30], we infer
that TI→J measures the influence of earning condition of bank I to bank J, that is to say, such influence is
realized mainly through interbank lending and borrowing between I and J, so TI→J depicts the lending
and borrowing activity between I and J, and can be used to estimate the interbank exposure.

We use a transfer entropy matrix to depict the structure of interbank exposure matrix. Define→
si = {si1, si2, si3, ......siT} as time series of the stock price for bank. The transfer entropy from

→
si to

→
sj is:

1

1

, ,
, , log

, ,

k l k
t t t tk l

I J t t t k l k l
t t t t

p j j i p j
T p j j i

p j i p j i
(5)

The structure of resulting transfer entropy matrix T = {TI→J} serves as an approximation of
interbank exposure matrix structure. To determine the interbank exposure matrix, we need to adjust
the transfer entropy matrix so that the resulted matrix meets the following constraints:

1 1

,
N N

ij i ij j
j i

x a x l
(6)

where, ai represents the amount of money bank i lends to other banks and lj represents the amount of
money bank j raised from other banks.

The adjustment can be described by the following optimization problem:

1 1

1

1

min ln

. .

0

N N
ij

ij
i j ij

N

ij i
j

N

ij j
i

ij

x
x

T

s t x a

x l

x

 

(7)

where xij represent the interbank exposure matrix.
This problem can be solved numerically using RAS algorithm, the process is summarized as the

following iterations:

Step 1: (row adjustment): Tu
ij → Tu

ij ρ
u
i , where ρu

i = ai
∑

∀j|Tu
ij>0

Tu
ij

Step 2: (column adjustment): Tu
ji → Tu

ji σ
u
j , where σu

j =
lj

∑
∀i|Tu

ij>0
Tu

ij
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Step 3: return to step 1

3.4. The Contagion Process Modeling

According to the literature review of risk contagion among banking systems by Upper, the most
widely used mechanism of the contagion process is the fictitious default algorithm developed by
Eisenberg and Noe [31] and the sequential default algorithm developed by Furfine [13]. We will
describe both models in this section, which will be used in the contagion process simulation in
Section 4.4.

3.4.1. Eisenberg-Noe’s Mechanism

Eisenberg and Noe [31] developed a clearing mechanism that solves the interbank payment
vectors of all banks in the system simultaneously. The interbank market structure is represented by
(L,e), where L is a n × n nominal interbank liabilities matrix, and e is the exogenous operating cash

flow vector. Let pi represent total nominal liability of bank i to all other banks, that is pi =
n
∑

j=1
Lij. Let:

if 0

0 otherwise

ij
i

ij i

L
p

p

(8)

be the relative liabilities matrix.
The mechanism sets three criteria in the clearing process, namely: (1) Limited liability, a bank

could pay no more than its available cash flow; (2) The priority of debt, stock holders of a bank receive
no value until it pays off its outstanding liabilities; (3) Proportionality, if default occurs, creditors are
paid in proportion to the size of their nominal claim on the defaulted bank’s assets. Eisenberg and Noe
demonstrate that there exists a unique clearing payment vector under the three criteria and the regular
financial system assumption. For a payment vector p∗ ∈ [0, p], it is a clearing payment vector if and

only if the following condition holds: p∗i = min[ei +
n
∑

j=1
ΠT

ij p∗j , pi].

The number of banks defaulted can be obtained by comparing the clearing payment vector with
nominal liability vector. A fictitious default algorithm is implemented to calculate the clearing payment
vector, which can be summarized by the following steps:

• Initialize pi = pi, and calculate the net value of bank i, Vi =
n
∑

j=1
ΠT

ij pj + ei − pi. If ∀i, Vi ≥ 0,

it means no bank defaults and the clearing payment vector is pi = pi, the algorithm terminates;
otherwise go to step 2.

• Find banks with net value Vi < 0, these banks can only pay part of the liabilities to other banks,

and the ratio is θi = (
n
∑

j=1
ΠT

ij pj + ei)/pi, we denote these banks by U. Under the assumption that

only banks in U default, we replace Lij by θ * Lij so that the limited liability criterion is met, and
thus get new Lij, ∏ij, Pi and Vi. Repeat step 2 while U is not empty.

The procedure gives us the clearing payment vector for the banking system which satisfies

p∗i = min[ei +
n
∑

j=1
ΠT

ij p∗j , pi]. By tracing the fictitious default process, we obtain the sequence of

defaults (keep in mind that the process is fictitious, and in reality both the clearing process and defaults
are simultaneous) and can distinguish between defaults caused by bad economic situation (defaults in
the first round)-and defaults caused by the defaults of other banks (defaults after the first round).
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3.4.2. Furfine’s Sequential Default Algorithm

Another contagion process model is developed by Furfine [13], we refer to it as the sequential
default algorithm. He regards the contagion as a sequential process. For example, the initial failure
of bank i will result in capital loss of its creditors, which is calculated by multiplying the loss rate
of a given default by the exposure of its creditors. If the loss is large enough, its creditors will go
bankrupt, and this may trigger another round of bank failures. We denote the loss rate given default as
α, the equity capital of bank i as Ci, external loss resulting from non-interbank market is assume to be
proportional to Ci and the ratio is set to be a constant β ,the contagion mechanism can be summarized
as below [13]:

Round 1: bank i fails because of an external shock;
Round 2: bank j suffers a total capital loss of αXji (Xji is the exposure bank j to bank i), and αXji > (1-β)Cj,
which leads to the failure of bank j;
Round 3: the failures of bank i and j results in a total capital loss of α(Xki+Xkj) > (1-β)Ck for bank k and
eventually leads to the failure of bank k.
Round 4: similar to round 3, and the contagion process will continue until all surviving banks can
absorb the capital loss with their equity capital, which means no banks go bankruptcy.

We illustrate the procedure of the method in Figure 1.

Figure 1. Procedure of the method.

4. Empirical Research and Results

In this section, we investigate the possibility of contagion in Chinese banking industry based on
the transfer entropy method. As illustrated in Section 3, stock price, aggregated interbank assets and
liabilities are essential in the determination of interbank exposure matrix. Generally speaking, the
information is only available for listed banks. According to a survey conducted by China Banking
Regulatory Commission in 2012, the Chinese banking system consisted of more than 300 banks,
among which 16 are listed banks. The 16 listed banks are the largest banks in China, with total assets
amounting to 65% of the total banking industry assets in 2012. The remaining unlisted banks are much
smaller scale, thus can be merged into a single bank, which we call it edian bank. That is to say, we
have 17 banks in Chinese banking system.
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4.1. Data Description

The data used in this study stems from two sources. Daily stock closing prices of the 16 listed
banks are drawn from the Wind database, a leading integrated service provider of financial data in
China. The time interval for each stock sequence is from the first trading day to 31 December 2012.
Aggregated interbank assets and liabilities are drawn from the annual reports of the 16 listed banks.
Instead of publishing aggregated interbank assets and liabilities directly, the annual reports give us
their sub-items, namely deposits in other banks, due from banks, financial assets purchased under
resale, deposits from other banks, interbank borrowing, and repurchase agreements. The annual
reports also provide us with the equity capital of banks. The 16 listed banks are listed in Table 1:

Table 1. The 16 Chinese listed banks

Names of the banks

ChinaMinsheng Bank (CMBC) Bank of Beijing (BCCB)
Spd Bank (SPDB) Bank of Ningbo (BONB)
Industrial Bank (IB) China Construction Bank (CCB)
China Merchants Bank (CMB) ChinaEverbright Bank (CEB)
Bank of Communications (BOCOM) Bank of Nanjing (BONJ)
Agricultural Bank of China (ABC) Bank of China (BOC)
Huaxia Bank (HXB) ChinaCitic Bank (CITIC)
Industrial And Commercial Bank of China (ICBC) Pingan Bank (PAB)

4.2. Data Preprocessing

The transfer entropy matrix calculation requires the stock price of each bank to have the same
time interval, which is not the case in the original samples. To unify the time interval, starting points
of all listed banks are changed to be the same as Pingan Bank, who was the latest to go public among
the 16 listed banks. The new stock price sequences cover the period 2011/1/4–2012/12/31, with
487 records.

Exploiting the information extracted from annual reports, we obtain the aggregated interbank
assets by summing up deposits in other banks, due from banks, and financial assets purchased under
resale. The interbank liabilities are derived by summing up deposit from other banks, interbank
borrowing, and repurchase agreements.

As for the median bank, its stock price is supposed to be the weighted average of the other
16 listed bank, total assets of each bank is chosen as the weighting coefficient. Its aggregated assets and
liabilities are obtained by subtracting the total aggregated assets and liabilities of the banking system
from the sum of the 16 listed banks.

4.3. Transfer Entropy Matrix & Interbank Exposure Matrix Calculation

The stock price sequence is divided into two separate parts, the first part is from 2011/1/4 to
2011/12/30, and the second part is from 2012/1/4 to 2012/12/31. By applying the procedure we
have described above, we obtain the interbank exposure matrix of 2011 and 2012. The matrices are
presented as Figures 2 and 3, in the form of heat maps.
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Figure 2. Heat map of interbank exposure matrix in 2011.

Figure 3. Heat map of interbank exposure matrix in 2012.

The heat map is consisted of 17 × 17 grids, with each corresponding to an element in the interbank
exposure matrix. The grey scale of each grid is proportional to the value of the element in the matrix,
the brighter the grid is, the larger value the element has. Here we introduce the concept of contrast rate;
it is defined as the luminosity ratio of the brightest part to the darkest part of a map. Obviously, the heat
map in Figure 3 shows a higher contrast rate than that in Figure 2, this means that the interbank market
structure in 2011 is more diversified than that in 2012. Considering the whole interbank exposure
matrix is too big to present here, only part of the matrix is shown in Tables 2 and 3.
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Table 2. Interbank exposure matrix of five major Chinese banks in 2011.

billion ICBC CCB BOCOM ABC BOC

ICBC 0.0 130.9 36.4 51.8 103.1
CCB 128.2 0.0 29.9 34.6 62.9
BOCOM 44.0 24.9 0.0 19.8 77.6
ABC 151.0 72.0 30.6 0.0 72.1
BOC 183.6 49.8 51.7 64.3 0.0

Table 3. Interbank exposure matrix of five major Chinese banks in 2012.

billion ICBC CCB BOCOM ABC BOC

ICBC 0.0 127.8 21.6 88.8 253.5
CCB 191.5 0.0 28.1 65.6 251.6
BOCOM 65.7 37.4 0.0 19.5 131.1
ABC 171.5 74.2 96.7 0.0 227.0
BOC 304.9 89.0 43.3 27.5 0.0

4.4. The Contagion Process Simulation

In the contagion process simulation, we present the results given by both Furfine’s sequential
default algorithm and Eisenberg-Noe’s mechanism.

4.4.1. Furfine’s Sequential Default Algorithm

Note that both the loss rate given default and the non-interbank capital loss caused by a shock
outside the interbank market have an influence on the contagion process, so we construct scenarios
with different loss rates given default α and different non-interbank capital loss rate β; the loss rate
given default ranges from 0.1 to 1 with a step of 0.1, the initial equity capital loss rate are set to be 0, 0.3
and 0.5. Tables 4 and 5 give the simulation results.

In Tables 4 and 5, the first column represents initially failed banks, and only banks that could
trigger a contagion process are listed. The elements in each row are the amount of banks failed in the
contagion process under different α and β values. If an element equals 1, it means the corresponding
bank will not cause other bank failures given its own failure. The results show that given specific α

and β, only a few of the 17 banks can trigger a contagion process in the system, which reflects that
Chinese banking industry is resistant to contagion to a great extent. With greater β, the number of
banks capable of triggering a contagion process is increasing, along with the amount of banks failed in
the process. Such trend is also identified when we raise the value of α. This is in accordance with the
findings of Nier et al. [3].

Another interesting finding is the existence of a threshold value for α. Given the initial failure of a
specific bank at certain β, contagion won’t occur if α is lower than the threshold value. But when α

is greater than the threshold value, the amount of bank failures will increase sharply. A reasonable
inference is that interbank market can effectively diversify the risk caused by an initial bank failure in
normal condition, thus prevent contagion from happening. However, the linkages between banks also
serve as channels through which risk may spread. Under severe conditions, risk will be transferred to
all banks in the system and result in knock-on defaults.
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Table 4. Number of failed banks in the 2011 contagion process simulation.

α 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

β = 0.5

ICBC 1 2 2 9 10 10 10 17 17 17
BOC 1 1 1 1 1 1 1 12 17 17

IB 1 1 1 1 1 1 2 9 10 10
SPDB 1 1 1 1 1 1 1 1 1 10
CITIC 1 1 1 1 1 1 1 1 1 10

β = 0.3

ICBC 1 1 2 2 2 10 10 10 10 10
IB 1 1 1 1 1 1 1 1 2 3

β = 0

ICBC 1 1 1 2 2 2 2 9 10 10

Table 5. Number of failed banks in the 2012 contagion process simulation.

α 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

β = 0.5

ICBC 1 1 1 1 11 11 17 17 17 17
BOC 1 1 1 1 1 11 17 17 17 17

IB 1 1 1 1 1 1 1 10 10 17
BOCOM 1 1 1 1 1 1 1 1 1 17

β = 0.3

ICBC 1 1 1 1 1 1 11 11 17 17
BOC 1 1 1 1 1 1 1 11 14 17

β = 0

ICBC 1 1 1 1 1 1 1 1 1 11

To give a concrete example of the contagion process among Chinese banking system, we describe
the contagion process triggered by ICBC when α=0.5 and β = 0.5 in Figure 4. This is a 3-stage process
which begins with the failure of ICBC. In the second stage, IB suffers a capital loss including half the
money lent to ICBC and half the equity capital, which exceeds the total equity capital IB holds and
leads to its failure. The failures of ICBC and IB lead to the subsequent failures of eight other banks. In
the final stage, the contagion ends and the remaining seven banks survive.

Figure 4. 2011 contagion process given the initial bankruptcy of ICBC when α=0.5 and β = 0.5.
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4.4.2. Eisenberg-Noe’s Mechanism

In Eisenberg-Noe’s mechanism, the interbank exposure matrix and the exogenous operating cash
flow vector e are necessary to clear the system. For bank i, ei is represented by its equity capital under
the risk free assumption. However, considering that its non-interbank assets face market risk, credit
risk etc., ei should be adjusted by subtracting potential exogenous capital loss caused by these risks.
Similar to the simulation above, we suppose the adjusted exogenous capital loss is proportional to
equity capital, and the ratio is a constant β. We clear the system in scenarios of β = 0.5,0.3,0 respectively,
and obtain the clearing payment vectors as well as the defaulted banks. Table 6 lists the number of
defaulted banks under different β, Table 7 gives the percentage of debt repaid by defaulted banks.

Table 6. Defaults under different exogenous capital loss rate

2011 2012

β
0.5 6 7
0.3 4 3
0 0 1

With the decreasing exogenous capital loss, the economic situation of banks in the system is
ameliorated, thus the number of banks defaulted in the process drops as well. Unlike Furfine’s
sequential default algorithm, loss rate given default here is dynamically determined in the clearing
process, which seems more consistent with the true contagion process. In Table 7, it is natural to
find that the percentage of debt repaid by defaulted banks is increasing with decreasing β, since the
exogenous cash flow increases.

Generally speaking, Eisenberg-Noe’s model makes fewer assumptions about the system than
Furfine’s sequential default algorithm. In Eisenberg-Noe’s model clearing process of all banks and
defaults are simultaneous; the loss rate given default for a specific bank is determined by its solvency.
while in Furfine’s sequential default algorithm, banks are cleared sequentially. The results in Table 7
indicate that in reality the loss rate given default is usually quite low, even when the whole system
suffers an shock of exogenous capital loss of 50%, so the scenarios of quite large α in Furfine’s model
simulation is unlikely to happen in reality. Despite these differences, both simulations reveal something
in common, that the Chinese banking system is resistant to exogenous shock, and massive defaults
won’t happen unless under extreme situations.

Table 7. Recovery rate of interbank liabilities

BCCB ICBC BONJ BONB PAB BOC BOI

2011

β
0.5 0.926 0.852 0.912 0.972 0.764 - 0.592
0.3 - 0.999 0.996 - 0.895 - 0.820
0 - - - - - - -

2012

β
0.5 0.956 0.943 0.959 0.906 0.864 0.762 0.283
0.3 - - - - 0.952 0.878 0.393
0 - - - - - - 0.557

Notes: columns 3–9 are the percentage of debt repaid by defaulted banks, for example 0.926 in column 3 means
BCCB paid 92.6% of its debt to other banks in the scenario of β = 1. Banks denoted by “-” and those not listed in this
table means they are solvent in corresponding scenario.

5. Conclusions and Further Direction

In this paper, we investigate the risk contagion due to interbank exposure among the Chinese
banking industry with a transfer entropy method. By reviewing previous work, we find that
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maximum entropy method is widely used in determining the interbank exposure matrix, although it
is theoretically problematic. We propose a transfer entropy based method to estimate the interbank
exposure matrix and present a qualitative analysis to validate it. Then two widely used mechanisms of
the contagion process are presented and are adopted to simulate the contagion process.

The empirical analysis is based on 2011 and 2012 stock price sequences of 16 listed Chinese banks
from the Wind database, and the corresponding annual reports. We calculate the corresponding transfer
entropy matrix at first, and then the interbank exposure matrix is obtained after a RAS adjustment.
We run Furfine’s sequential default algorithm by varying loss rate given default and non-interbank
capital loss rate, and Eisenber-Noe’s fictitious default algorithm by varying non-interbank capital loss
rate. Both results indicate that the chance of Chinese banking system suffering a systemic crisis is quite
low, or in other words, the Chinese banking system is rather stable. Systemically important banks are
identified in the simulations, ICBC and BOC tend to trigger massive defaults under various scenarios
of non-interbank capital loss rates, and ICBC, BONJ, PAB is more likely to default than other banks,
revealing the unbalanced state of their interbank liabilities and interbank assets. This gives regulators
implications on which banks require additional regulation.

In the end, it’s worth noting that our research is primary and there is still much room for
improvement. In this paper, we use transfer entropy between stocks prices to approximate the
interbank market structure, which is based on the foundation of our qualitative analysis that transfer
entropy only contains the correlation of two stock prices due to interbank links. However, this
qualitative analysis is not quantitatively exact, and further mathematical proof is required to address
this issue.
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Abstract: This work uses the stocks of the 197 largest companies in the world, in terms of market
capitalization, in the financial area, from 2003 to 2012. We study the causal relationships between them
using Transfer Entropy, which is calculated using the stocks of those companies and their counterparts
lagged by one day. With this, we can assess which companies influence others according to sub-areas
of the financial sector, which are banks, diversified financial services, savings and loans, insurance,
private equity funds, real estate investment companies, and real estate trust funds. We also analyze
the exchange of information between those stocks as seen by Transfer Entropy and the network
formed by them based on this measure, verifying that they cluster mainly according to countries of
origin, and then by industry and sub-industry. Then we use data on the stocks of companies in the
financial sector of some countries that are suffering the most with the current credit crisis, namely
Greece, Cyprus, Ireland, Spain, Portugal, and Italy, and assess, also using Transfer Entropy, which
companies from the largest 197 are most affected by the stocks of these countries in crisis. The aim is
to map a network of influences that may be used in the study of possible contagions originating in
those countries in financial crisis.
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1. Introduction

In his speech delivered at the Financial Student Association in Amsterdam [1], in 2009,
Andrew G. Haldane, Executive Director of Financial Stability of the Bank of England, called for a
rethinking of the financial network, that is the network formed by the connections between banks
and other financial institutions. He warned that, in the last decades, this network had become more
complex and less diverse, and that these facts may have led to the crisis of 2008.

According to him, it was the belief of theoreticians and practitioners of the financial market that
connectivity between financial companies meant risk diversification and dispersion, but further studies
showed that networks of certain complexity exhibit a robust but fragile structure, where crises may
be dampened by sharing a shock among many institutions, but where they may also spread faster
and further due to the connections between companies. Other issue to be considered was the fact that
some nodes in the financial network were very connected to others, while some were less connected.
The failure of a highly connected node could, thus, spread a small crisis to many other nodes in the
network. Another factor was the small-world property of the financial network, where one company
was not very far removed from another, through relations between common partners, or common
partners of partners.

Such a connected network was also more prone to panic, tightening of credit lines, and distress
sales of assets, some of them caused by uncertainties about who was a counterpart to failing companies.
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Due to some financial innovations, risk was now shared among many parties, some of them not
totally aware of all the details of a debt that was sectorized, with risk being decomposed and then
reconstituted in packages that were then resold to other parties. This made it difficult to analyze the
risk of individual institutions, whose liabilities were not completely known even to them, since they
involved the risks of an increasingly large number of partners.

The other important aspect, the loss of diversity, increased when a large number of institutions
adopted the same strategies in the pursuit of return and in the management of risk. Financial companies
were using the same models and using the same financial instruments, with the same aims.

In the same speech, Haldane pointed at some directions that could improve the stability of the
financial network. The first one was to map the network, what implied the collection, sharing and
analysis of data. This analysis needed to include techniques that didn’t focus only on the individual
firms, like most econometric techniques do, but also on the network itself, using network techniques
developed for other fields, like ecology or epidemiology. The second was to use this knowledge to
properly regulate this network. The third was to restructure the financial network, eliminating or
reinforcing weak points. All these need a better understanding of the connections between financial
institutions and how these connections influence the very topology of the financial network.

This article contributes to the first direction pointed by Haldane, that of understanding the
international financial network. We do it by calculating a network based on the daily returns of the
stocks of the 197 largest financial companies across the world in terms of market capitalization that
survive a liquidity filter. These include not just banks, but also diversified financial services, insurance
companies, one investment company, a private equity, real estate companies, REITS (Real Estate
Investment Trusts), and savings and loans institutions. We use the daily returns in order to build the
network because we believe that the price of a stock encodes a large amount of information about the
company to which it is associated that goes beyond the information about the assets and liabilities of
the company. Also, we believe that it is more interesting to study the effects of stock prices on other
stock prices, as in the propagation of a financial crisis, rather than the spreading of defaults, since
defaults are events that are usually avoided by injecting external capital into banks.

The network is built using Transfer Entropy, a measure first developed in information science.
The network is a directed one, which reveals the transfer of information between the time series of
each stock. This network is used in order to determine which are the most central nodes, according to
diverse centrality criteria. The identification of these central stocks is important, since in most models
of the propagation of shocks, highly central nodes are often the major propagators. We also enlarge the
original network obtained by Transfer Entropy to include the most liquid stocks belonging to financial
companies in some European countries that have been receiving much attention recently due to the
fact that they are facing different degrees of economic crises, and determine who are the major financial
companies in the world that are most affected by price movements of those stocks, and which of those
stocks belonging to countries in crisis are the most influent ones.

1.1. Propagation of Socks in Financial Networks

The work that is considered the first that deals with the subject is the one of Allen and Gale [2],
where the authors modeled financial contagion as an equilibrium phenomenon, and concluded
that equilibrium is fragile, that liquidity shocks may spread through the network, and that cascade
events depend on the completeness of the structure of interregional claims between banks. In their
model, they used four different regions, which may be seen as groups of banks with some particular
specializations. They focused in one channel of contagion, which are the overlapping claims that
different regions or sectors of the banking system have on one another. According to them, another
possible channel of contagion that was not considered is incomplete information among agents. As an
example, the information of a shock in one region may create a self-fulfilling shock in another region
if that information is used as a prediction of shocks in other regions. Another possible channel of
contagion is the effect of currency markets in the propagation of shocks from one country to another.
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In their results, the spreading of a financial crisis depends crucially on the topology of the network.
A completely connected network is able to absorb shocks more efficiently, and a network with strong
connections limited to particular regions which are not themselves well connected is more prone to the
dissemination of shocks. In a work previous to theirs, Kirman [3] built a network of interacting agents
and made the network evolve with the probability of each of the links dependent on the experience
of the agents involved, obtaining results that were very different from those which might have been
predicted by looking at the individuals in isolation.

Later and Allen et al. [4] made a review of the progress of the network approach to the propagation
of crises in the financial market. They concluded that there is an urgent need for empirical work that
maps the financial network, so that the modern financial systems may be better understood, and that a
network perspective would not only account for the various connections within the financial sector
or between the financial sector and other sectors, but also would consider the quality of such links.
Upper [5] made a survey of a diversity of simulation methods that have been used with a variety of
financial data in order to study contagion in financial networks, and made a comparison between the
various methods used.

There is an extensive literature on the propagation of shocks in networks of financial institutions,
and describing all the published works in this subject is beyond the scope of this article. Most of
the works in this field can be divided into theoretical and empirical ones, most of them considering
networks of banks where the connections are built on the borrowing and lending between them.
In most theoretical works [6–23], networks are built according to different topologies (random, small
world, or scale-free), and the propagation of defaults is studied on them. The conclusions are that
small world or scale-free networks are, in general, more robust to cascades (the propagation of shocks)
than random networks, but they are also more prone to propagations of crises if the most central
nodes (usually, the ones with more connections) are not themselves backed by sufficient funds. Most
empirical works [24–38] are also based on the structure derived from the borrowing and lending
between banks, and they show that those networks exhibit a core-periphery structure, with few banks
occupying central, more connected positions, and others populating a less connected neighborhood.
Those articles showed that this structure may also lead to cascades if the core banks are not sufficiently
resistant, and that the network structures changed considerably after the crisis of 2008, with a reduction
on the number of connected banks and a more robust topology against the propagation of shocks.

1.2. Transfer Entropy

The networks based on the borrowing and lending between banks are useful for determining the
probabilities of defaults, but they are not useful in the study of how the stock price of one company
relates with the stock price of another company. Such a relation may be obtained using the correlation
between each stock price (or better, on its log-return) but, although useful for determining which
stocks behave similarly to others, the correlations between them cannot establish a relation of causality
or of influence, since the action of a stock on another is not necessarily symmetric. A measure that has
been used in a variety of fields, and which is both dynamic and non-symmetric, is Transfer Entropy,
developed by Schreiber [39] and based on the concept of Shannon Entropy, first developed in the theory
of information by Shannon [40]. Transfer entropy has been used in the study of cellular automata in
Computer Science [41–43], in the study of the neural cortex of the brain [44–49], in the study of social
networks [50], in Statistics [51–54], and in dynamical systems [55–57], and received a thermodynamic
interpretation in [58].

In terms of the applications of Transfer Entropy to finance, Marschinski and Kantz [59] analyzed
the information flow between the S&P500 index of the New York Stock Exchange (USA) and the
DAX index of the Frankfurt Stock Exchange (Germany) and detected a nonlinear information transfer
between both indices at the one minute scale. They also introduced a measure called Effective Transfer
Entropy, which subtracts from Transfer Entropy some of the effects of noise or of a highly volatile time
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series. This concept is now amply used, particularly in the study of the cerebral cortex, and is also
used in the present article.

Baek and Jung et al. [60] applied Transfer Entropy to the daily returns of 135 stocks listed on the
New York Stock Exchange (NYSE) from 1983 to 2003, and concluded that companies of the energy
industries influence the whole market. Kwon and Yang [61] applied Transfer Entropy to the S&P500
and Dow Jones indices of the New York Stock Exchange and to the stocks of 125 companies negotiated
at this stock exchange in order to analyze the flow of information between them, concluding that there
is more information flow from the indices to the stocks than from the stocks to the indices. Kwon and
Yang [62] used the stock market indices of 25 countries and discovered that the Transfer Entropy from
the American markets is high, followed by that of the European markets, and that the information
flows mainly to the Asia Pacific stock markets.

Jizba and Kleinert et al. [63] used both Transfer Entropy (based on Shannon’s entropy) and a
variant version of Transfer Entropy based on Rényi’s entropy, which is able to examine different
regions of the probability density functions of time series by the variation of a parameter, in the study
of the Transfer Entropy and of the Rényi Transfer Entropy between 11 stock market indices sampled in
a daily basis in the period 1990–2009 and also between the DAX and the S&P 500 indices based on
minute tick data gathered in the period from April, 2008 to November, 2009. Their results show that the
information flow between world markets is strongly asymmetric with a distinct information surplus
flowing from the Asia-Pacific region to both the European and the US markets, with a smaller excess
of information also flowing from Europe to the US, what is clearly seen from a careful analysis of the
Rényi information flow between the DAX and S& P500 indices. The results obtained by them are very
similar for different choices of the parameter that specifies the sector of the probability distribution
functions that is highlighted in the calculations.

Peter and Dimpfl et al. [64,65] used Transfer Entropy in order to analyze the information flows
between the CDS (Credit Default Swap) market and the corporate bond market using data on 27 iTraxx
companies, showing that, although there is information flowing in both directions, the CDS market
sends more information to the bond market than vice-versa. Their work also shows that the information
flow between both markets has been growing in time, and that the importance of the CDS market
as source of information is higher during the crisis of 2008. They also analyzed the dynamic relation
between the market risk (proxied by the VIX) and the credit risk (proxied by the iTraxx Europe),
showing that information flows mainly from the VIX to the iTraxx Europe, and that, although the
transfer of information was mostly bidirectional, the excess information flowing from the VIX to the
iTraxx Europe was highest during the crisis of 2008.

Kim and An et al. [66] used Transfer Entropy on five monthly macro-economic variables (industrial
production index, stock market index, consumer price index, exchange rate, and trade balance) for
18 countries, during the 1990s and the 2000s. They first applied Transfer Entropy in order to study the
inter-relations of each of the five variables inside each country, and then the Transfer Entropy between
the same variable across countries, for each of the five variables. Besides the relationship between
variables inside countries, with some variations of results, they discovered that more influence transfers
among the countries in Europe than in Asia or the Americas, most likely reflecting the formation
of the European Union, that the stock market indices of Germany and Italy are strong information
receivers from other European countries, and that one can expect that signs of the financial crisis
originating from some European countries in crisis will be transmitted, with either positive or negative
annotation, to the rest of Europe. They also discovered that the Americas, most notably the USA, are
sources of information for the stock market indices of Brazil and Mexico, and for the exchange rate in
Canada, and receivers of information of trade balance from Mexico and of industrial production index
from Argentina. As for Asia, there is a cluster of information transfer formed by China, India and
Japan in terms of exchange rate, and another one, in terms of industrial production index, between
South Korea, Indonesia and Japan. China and South Korea are large receivers of information of the
industrial production index from Indonesia and India, respectively, and Japan influences South Korea
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in terms of the consumer price index and acts as a receiver of information of the exchange rate from
India and Indonesia.

Li and Liang et al. [67] used data of the stocks of 16 Chinese banks between 2011 and 2012 and
applied Transfer Entropy in order to determine an interbank exposure matrix, using it to evaluate the
stability of the Chinese banking system by simulating the risk contagion process using the resulting
network. The results show that the Chinese banking system is quite stable with respect to systemic
risk, and the study also identifies systemically important banks, what gives regulators information for
the development of policies.

Dimpfl and Peter [68] applied Rényi’s Transfer Entropy to high frequency data (at one minute
intervals) from July, 2003 to April, 2010, of the S&P 500 (USA), the DAX (Germany), the CAC 40
(France), and the FTSE (UK) indices at the intervals in time when all stock exchanges were operating, in
order to analyze the information flow across the Atlantic Ocean. Their results show that the information
transfer between Europe and America increased during the 2008 financial crisis, and has remained
higher than before the crisis occurred. The dominant role of the USA as a source of information to the
European markets diminished after the crisis, except in the case of France. They also found that the
collapse of the Lehman Brothers led to a significant increase in information flow among the countries
that were part of the study. The comparison of results using different parameters for the Rényi Transfer
Entropy did not show important differences between them.

1.3. How This Article Is Organized

Section 2 explains the data used in the article and some of the methodology. Section 3 explains
Transfer Entropy and uses it in order to study the information flows between the stocks of financial
institutions. Section 4 highlights which are the most central stocks according to different centralities
criteria. Section 5 studies the dynamics of Transfer Entropy for the stock markets in moving windows
in time. Section 6 studies the relationships between countries in crisis in Europe with the largest
financial institutions, analyzing which stocks are more affected by movements in the stocks belonging
to those countries in crisis. Finally, Section 7 shows some conclusions and possible future work.

2. Data and Methodology

In order to choose appropriate time series of the top stocks in terms of market capitalization
belonging to the financial sector, we used the S&P 1200 Global Index as in 2012, which is a free-float
weighted stock market index of stocks belonging to 31 countries. The stocks belonging to the index
are responsible for approximately 70 percent of the total world stock market capitalization and 200 of
them belong to the financial sector, as classified by Bloomberg. From those, we extracted 197 stocks
that had enough liquidity with respect to the working days of the New York Stock Exchange (NYSE).
From the 197 stocks, 79 belong to the USA, 10 to Canada, 1 to Chile, 21 to the UK, 4 to France, 5 to
Germany, 7 to Switzerland, 1 to Austria, 2 to the Netherlands, 2 to Belgium, 5 to Sweden, 1 to Denmark,
1 to Finland, 1 to Norway, 6 to Italy, 4 to Spain, 1 to Portugal, 1 to Greece, 12 to Japan, 9 to Hong Kong,
1 to South Korea, 1 to Taiwan, 3 to Singapore, and 18 to Australia. The time series were collected from
January, 2003, to December, 2012, thus covering a period of ten years. The stocks and their classification
according to industry and sub industry are listed in Appendix A.

Some of the limitations of our choice of variables are that, first, some companies like Lehman
Brothers or Bear-Stearns, which were key players prior to and during the crisis of 2008, are not present,
since their stocks do not exist anymore. Second, there are companies that are major players in the
financial industry, and particularly some funds, which are not listed in any stock exchange, and so are
not in our data set. Such limitations are consequences of our choice of data set, and their effects might
be lessened by the number of stocks being considered, but only up to a certain extent.

We took the daily closing prices of each stock, and the resulting time series of all 197 stocks were
compared with the time series of the NYSE, which was taken as a benchmark, since it is by far the
major stock exchange in the world. If an element of the time series of a stock occurred for a day in
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which the NYSE wasn’t opened, then this element was deleted from the time series, and if an element
of the time series of a stock did not occur in a day in which the NYSE functioned, then we repeated
the closing price of the previous day. The idea was not to eliminate too many days of the time series
by, as an example, deleting all closing prices in a day one of the stock exchanges did not operate.
The methodology which we chose would be particularly bad for stocks belonging to countries where
weekends occur on different days than for Western countries, like Muslim countries or Israel, but since
no stocks from our set belong to those countries, differences on weekends are not relevant here.

The data are organized so as to place stocks of the same country together, and then to discriminate
stocks by industry and sub industry, according to the classification used by Bloomberg. From the
197 stocks, 80 belong to Banks, 27 to Diversified Financial Services, 50 to Insurance Companies, 1 to
an Investment Company, 1 to a Private Equity, 8 to Real Estate Companies, 28 are REITS (Real Estate
Investment Trusts), and 2 belong to Savings and Loans.

In order to reduce non-stationarity of the time series of the daily closing prices, we use the
log-returns of the closing prices, defined as

Rt = ln(Pt)− ln(Pt−1) , (1)

where Pt is the closing price of the stock at day t and Pt−1 is the closing price of the same stock at day
t − 1.

Since the stocks being considered belong to stock markets that do not operate at the same times,
we run into the issue of lagging or not some stocks. Sandoval [69], when dealing with stock market
indices belonging to stock markets across the globe, showed that it is not very clear that an index
has to be lagged with respect to another, except in cases like Japan and the USA. A solution is to use
both original and lagged indices in the same framework, and to do all calculations as if the lagged
indices were different ones. The same procedure is going to be followed here with the log-returns of
the closing prices of the stocks that have been selected, so we shall deal with 2 × 197 = 394 time series.

3. Transfer Entropy

In this section, we shall describe the concept of Transfer Entropy (TE), using it to analyze the data
concerning the 197 stocks of companies of the financial sector and their lagged counterparts. We will
start by describing briefly the concept of Shannon entropy.

3.1. Shannon Entropy

The American mathematician, electronic engineer and cryptographer, Claude Elwood Shannon
(1916–2001), founded the theory of information in his work “A Mathematical Theory of
Communication” [40], in which he derived what is now known as the Shannon entropy. According to
Shannon, the main problem of information theory is how to reproduce at one point a message sent
from another point. If one considers a set of possible events whose probabilities of occurrence are pi,
i = 1, · · · , n, then a measure H(p1, p2, · · · , pn) of the uncertainty of the outcome of an event given
such distribution of probabilities should have the following three properties:

• H(pi) should be continuous in pi;
• if all probabilities are equal, what means that pi = 1/n, then H should be a monotonically
increasing function of n (if there are more choices of events, then the uncertainty about one outcome
should increase);
• if a choice is broken down into other choices, with probabilities cj, j = 1, · · · , k, then H = ∑k

j=1 cj Hk,
where Hk is the value of the function H for each choice.

Shannon proved that the only function that satisfies all three properties is given by

H = −
N

∑
i=1

pi log2 pi , (2)
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where the sum is over all states for which pi �= 0 (Shannon’s definition had a constant k multiplied by
it, which has been removed here). The base 2 for the logarithm is chosen so that the measure is given
in terms of bits of information. As an example, a device with two positions (like a flip-flop circuit)
can store one bit of information. The number of possible states for N such devices would then be 2N ,
and log2 2N = N, meaning that N such devices can store N bits of information, as should be expected.
This definition bears a lot of resemblance to Gibbs’ entropy, but is more general, as it can be applied to
any system that carries information.

The Shannon entropy represents the average uncertainty about measures i of a variable X (in bits),
and quantifies the average number of bits needed to encode the variable X. In the present work, given
the time series of the log-returns of a stock, ranging over a certain interval of values, one may divide
such possible values into N different bins and then calculate the probabilities of each state i, what is
the number of values of X that fall into bin i divided by the total number of values of X in the time
series. The Shannon entropy thus calculated will depend on the number of bins that are selected.
After selecting the number of bins, one associates a symbol (generally a number) to each bin.

Using the stocks of the J.P. Morgan (code JPM), classified as a Diversified Banking Institution,
we shall give an example of the calculation of the Shannon Entropy for two different choices of bins.
In Figure 1, we show the frequency distributions of the log-returns for the stocks of the J.P. Morgan
from 2007 to 2012, which varied from −0.2323 to 0.2239 during that period, with two different binning
choices. The first choice results in 24 bins of size 0.02, and the second choice results in 6 bins of size 0.1.

i

pi
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4

8

12

16

Figure 1a

i

pi

-0.2 -0.1 0 0.1 0.2 0.3

2
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8

Figure 1b

Figure 1. Histograms of the log-returns of the stocks of the J.P. Morgan for two different binnings.
In Figure 1a, we have 24 bins in intervals of size 0.02, and in Figure 1b, 6 bins in intervals of size 0.1.

To each bin is assigned a symbol, which, in our case, is a number, from 1 to 24 in the first case
and from 1 to 6 in the second case. Figure 2 shows the assigning of symbols for the two choices of
binning for the first log-returns of the stocks of the J.P. Morgan. Then, we calculate the probability
that a symbol appears in the time series and then use (2) in order to calculate the Shannon entropy,
which, in our case, is H = 2.55 for bins of size 0.02 and H = 0.59 for bins of size 0.1. The second
result is smaller than the first one because there is less information for the second choice of binning
due to the smaller number of possible states of the system. The difference in values, though, is not
important, since we shall use the Shannon entropy as a means of comparing the amount of information
in different time series.
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Date Log-return Symbol

01/03/2007 −0.0048 12
01/04/2007 0.0025 13
01/05/2007 −0.0083 12
01/08/2007 0.0033 13
01/09/2007 −0.0042 12
01/10/2007 0.0073 13

...
...

...

Date Log-return Symbol

01/03/2007 −0.0048 3
01/04/2007 0.0025 4
01/05/2007 −0.0083 3
01/08/2007 0.0033 4
01/09/2007 −0.0042 3
01/10/2007 0.0073 4

...
...

...

Figure 2. The assigning of symbols to the first values of the log-returns of the J.P. Morgan according to
binning. On the left, for 24 bins and, on the right, for 6 bins.

Figure 3 shows the Shannon Entropy calculated for each stock in this study (the lagged stocks
are not represented, since their entropies are nearly the same as the entropies of the original stocks).
The results for both choices of binning are in fact very similar, and their correlation is 0.97. Stocks with
higher Shannon Entropy are the most volatile ones. As one can see, the second choice, with larger bin
sizes, shows the differences more sharply, which is one of the reasons why larger binnings are usually
favored in the literature.

Stock

Shannon Entropy
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Figure 3a
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Figure 3. Shannon entropies of the 197 stocks, in the same order as they appear in Appendix A.
Figure 3a is the Shannon Entropy for bins of size 0.02, and Figure 3b is the Shannon Entropy for bins of
size 0.1.

3.2. Transfer Entropy

When one deals with variables that interact with one another, then the time series of one variable
Y may influence the time series of another variable X in a future time. We may assume that the time
series of X is a Markov process of degree k, what means that a state in+1 of X depends on the k previous
states of the same variable. This may be made more mathematically rigorous by defining that the time
series of X is a Markov state of degree k if

p (in+1|in, in−1, · · · , i0) = p (in+1|in, in−1, · · · , in−k+1) , (3)

where p(A|B) is the conditional probability of A given B, defined as

p(A|B) = p(A, B)
p(B)

. (4)

What expression (3) means is that the conditional probability of state in+1 of variable X on all its
previous states is the same as the conditional probability of in+1 on its k previous states, meaning that
it does not depend on states previous to the kth previous states of the same variable.
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One may also assume that state in+1 of variable X depends on the � previous states of variable Y.
The concept is represented in Figure 4, where the time series of a variable X, with states in, and the
time series of a variable Y, with states jn, are identified.

The Transfer Entropy from a variable Y to a variable X is the average information contained in the
source Y about the next state of the destination X that was not already contained in the destination’s
past. We assume that element in+1 of the time series of variable X is influenced by the k previous
states of the same variable and by the � previous states of variable Y. The values of k and � may vary,
according to the data that is being used, and to the way one wishes to analyze the transfer of entropy
of one variable to the other.

The Transfer Entropy from a variable Y to a variable X is defined as

TEY→X(k, �) = ∑
in+1,i(k)n ,j(�)n

p
(

in+1, i(k)n , j(�)n

)
log2 p

(
in+1|i(k)n , j(�)n

)
− ∑

in+1,i(k)n ,j(�)n

p
(

in+1, i(k)n , j(�)n

)
log2 p

(
in+1|i(k)n

)

= ∑
in+1,i(k)n ,j(�)n

p
(

in+1, i(k)n , j(�)n

)
log2

p
(

in+1|i(k)n , j(�)n

)
p
(

in+1|i(k)n

) , (5)

where in is element n of the time series of variable X and jn is element n of the time series of variable Y,
p(A, B) is the joint probability of A and B, and

p
(

in+1, i(k)n , j(�)n

)
= p (in+1, in, · · · , in−k+1, jn, · · · , jn−�+1) (6)

is the joint probability distribution of state in+1 with its k + 1 predecessors, and with the � predecessors
of state jn, as in Figure 4.

X t
1 2 · · · n− k + 1 · · · n− 1 n n+ 1

�

�
� �

�

�

Y t
1 2 · · · n− �+ 1 · · · n− 1 n n+ 1

�
� �

�

�
�

Figure 4. Schematic representation of the transfer entropy TY→X .

This definition of Transfer Entropy assumes that events on a certain day may be influenced by
events of k and � previous days. We shall assume, with some backing from empirical data for financial
markets [69], that only the day before is important, since log-returns of the prices of stocks were shown
to have low memory (what is not the case for the volatility of the log-returns of prices). By doing so,
formula (5) for the Transfer Entropy of Y to X becomes simpler:

TEY→X = ∑
in+1,in ,jn

p (in+1, in, jn) log2
p (in+1|in, jn)

p (in+1|in)

= ∑
in+1,in ,jn

p (in+1, in, jn) log2
p (in+1, in, jn) p (in)
p (in+1, in) p (in, jn)

, (7)

where we took k = � = 1, meaning we are using lagged time series of one day, only.
In order to exemplify the calculation of Transfer Entropy, we will now show some steps for the

calculation of the Transfer Entropy from the Deutsche Bank to the J.P. Morgan. In Figure 5, first table,
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we show the initial part of the time series for the log-returns of the J.P. Morgan, which we call vector
Xn+1 (first column), for its values lagged by one day, vector Xn (second column), and the log-returns
of the Deutsche Bank lagged by one day, vector Yn (third column). Calculating the minimum and
maximum returns of the entire set of time series, we obtain a minimum value m = −1.4949 and a
maximum value M = 0.7049. Considering then an interval [−1.5, 0.8] with increments 0.1, we obtain
24 bins to which we assign numeric symbols going from 1 to 24. Then, we associate one symbol to
each log-return, depending on the bin it belongs to. As seen in Figure 5, second table, most of the
symbols orbit around the intervals closest to zero (corresponding to symbols 15 and 16), since most of
the variations of the time series are relatively small.

In order to calculate the simplest probabilities, p(in), appearing in (7), we just need to count how
many times each symbol appears in vector Xn and then divide by the total number of occurrences.
As an example, from the first 10 lines of data shown in Figure 5, symbol 15 appears four times. In order
to calculate p (in+1, in), we must count how many times a particular combination of symbols, (a, b),
appears in the joint columns Xn+1 and Xn. As an example, in the first 10 lines of such columns, the
combination (15, 15) appears zero times, the combination (15, 16) appears four times, the combination
(16, 15) appears four times, and the combination (16, 16) appears two times.

Date Xn+1 Xn Yn

04/01/2007 0.0025 −0.0048 0.0044
05/01/2007 −0.0083 0.0025 0.0001
08/01/2007 0.0033 −0.0083 −0.0127
09/01/2007 −0.0042 0.0033 −0.0053
10/01/2007 0.0073 −0.0042 0.0056
11/01/2007 0.0044 0.0073 −0.0106
12/01/2007 −0.0066 0.0044 0.0177
16/01/2007 0.0083 −0.0066 0.0137
17/01/2007 0.0008 0.0083 −0.0012
18/01/2007 −0.0058 0.0008 −0.0048

...
...

...
...

−→

Xn+1 Xn Yn

16 15 16
15 16 16
16 15 15
15 16 15
16 15 16
16 16 15
15 16 16
16 15 16
16 16 15
15 16 15
...

...
...

Figure 5. Table on the left: first log-returns of the time series of the J.P. Morgan (Xn+1), of its lagged
values by one day (Xn), and of the log-returns of the Deutsche Bank (Yn) lagged by one day. Table
on the right: symbols are associated to each value of the log-return, inside an interval [−1.5, 0.8] with
increments 0.1.

For the whole data, we have the following probabilities and joint probabilities shown in Figure 6.
Here, it becomes clearer why, sometimes, it is best to use a binning of larger size in order to calculate
Transfer Entropy, since when one has too many binnings, the chance of having particular combinations
drop very quickly, making the calculation of probabilities less informing.

We now sum over all combinations of the components of Xn+1, Xn, and Yn using definition (7),
obtaining as a result TE177→4 = 0.0155. This result indicates the average amount of information
transferred from the Deustche Bank to the J.P. Morgan which was not already contained in the
information of the past state of the J.P. Morgan one day before. Doing the same for all possible
combinations of stocks, one obtains a Transfer Entropy matrix, which is represented in terms of false
colors in Figure 7a.

270



Entropy 2014, 16, 4443

Xn Freq p(in)
13 1 0.0007
14 13 0.0086
15 757 0.5020
16 720 0.4775
17 14 0.0093
18 3 0.0020

Xn+1 Xn Freq p(in+1, in)
13 15 1 0.0007
14 14 1 0.0007
14 15 7 0.0046
14 16 3 0.0020
14 17 2 0.0013
15 14 5 0.0033
15 15 338 0.2241
15 16 408 0.2706
15 17 5 0.0033
15 18 1 0.0007
16 14 5 0.0033
16 15 404 0.2679
16 16 304 0.2016
16 17 5 0.0033
16 18 2 0.0013
17 14 2 0.0013
17 15 5 0.0033
17 16 5 0.0033
17 17 2 0.0013
18 13 1 0.0007
18 15 2 0.0013

Xn Yn Freq p(in, jn)
13 14 1 0.0007
14 14 2 0.0013
14 15 11 0.0073
15 14 10 0.0066
15 15 473 0.3137
15 16 271 0.1797
15 17 3 0.0020
16 15 289 0.1916
16 16 421 0.2792
16 17 10 0.0066
17 14 2 0.0013
17 15 4 0.0027
17 16 6 0.0040
17 17 1 0.0007
17 18 1 0.0007
18 16 2 0.0013
18 17 1 0.0007

Xn+1 Xn Yn Freq p(in+1, in, jn)
13 15 15 1 0.0007
14 14 15 1 0.0007
14 15 14 1 0.0007
14 15 15 3 0.0020
14 15 16 3 0.0020
14 16 15 1 0.0007
14 16 16 1 0.0007
14 16 17 1 0.0007
14 17 15 1 0.0007
14 17 17 1 0.0007
15 14 14 1 0.0007
15 14 15 4 0.0027
15 15 14 5 0.0033
15 15 15 216 0.1432
15 15 16 115 0.0763
15 15 17 2 0.0013
15 16 15 154 0.1021
15 16 16 247 0.1638
15 16 17 7 0.0046
15 17 14 1 0.0007
15 17 15 1 0.0007
15 17 16 3 0.0020
15 18 16 1 0.0007
16 14 14 1 0.0007

Xn+1 Xn Yn Freq p(in+1, in, jn)
16 14 15 4 0.0027
16 15 14 3 0.0020
16 15 15 249 0.1651
16 15 16 151 0.1001
16 15 17 1 0.0007
16 16 15 132 0.0875
16 16 16 170 0.1127
16 16 17 2 0.0013
16 17 14 1 0.0007
16 17 15 1 0.0007
16 17 16 2 0.0013
16 17 18 1 0.0007
16 18 16 1 0.0007
16 18 17 1 0.0007
17 14 15 2 0.0013
17 15 14 1 0.0007
17 15 15 3 0.0020
17 15 16 1 0.0007
17 16 15 2 0.0013
17 16 16 3 0.0020
17 17 15 1 0.0007
17 17 16 1 0.0007
18 13 14 1 0.0007
18 15 15 1 0.0007
18 15 16 1 0.0007

Figure 6. Probabilities and joint probabilities of the times series Xn+1, Xn, and Yn.
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Figure 7. False color representations of the Transfer Entropy (TE) matrix. In Figure 7a, we have the
representation of the TE for a binning of size 0.1; in Figure 7b, we have the representation of the TE for a
binning of size 0.02. The brightness of Figure 7a has been enhanced in comparison with the brightness
of Figure 7b, to facilitate visualization.

Here, like in the calculation of the Shannon Entropy, the size of the bins used in the calculations
of the probabilities changes the resulting Transfer Entropy (TE). The calculations we have shown in
Figures 5 and 6 are relative to a choice of binning of size 0.1. In order to compare the resulting TE
matrix with that of another choice for binning, we calculated the TE for binning size 0.02, what leads
to a much larger number of bins and to a much longer calculation time. The resulting TE matrix
for binning 0.02 is plotted in Figure 7b. The two TE matrices are not very different, with the main
dissimilarities being due to scale, and the visualization for binning size 0.1 is sharper than the one
obtained using binning size 0.02. In what follows, we shall consider binning size 0.1 throughout the
calculations, since it demands less computation time and delivers clearer results in comparison with
the ones obtained for some smaller sized binnings.

3.3. Effective Transfer Entropy

Transfer Entropy matrices usually contain much noise, due to the finite size of data used in their
calculation, non-stationarity of data, and other possible effects, and we must also consider that stocks
that have more entropy, what is associated with higher volatility, naturally transfer more entropy to the
others. We may eliminate some of these effects [59] if we calculate the Transfer Entropy of randomized
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time series, where the elements of each time series are individually randomly shuffled so as to break any
causality relation between variables but maintain the individual probability distributions of each time
series. The original Transfer Entropy matrix is represented in Figure 8a. The result of the average of
25 simulations with randomized data appears in Figure 8b. We only calculated 25 simulations because
the calculations are very computationally demanding, and because the results for each simulation are
very similar. Then, an Effective Transfer Entropy matrix (ETE) may be calculated by subtracting the
Randomized Transfer Entropy matrix (RTE) from the Transfer Entropy matrix (TE):

ETEY→X = TEY→X − RTEY→X . (8)

The result is shown in Figure 8c.
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Figure 8. False color representations of the Transfer Entropy matrix (Figure 8a), of the Randomized
Transfer Entropy matrix (Figure 8b, the average of 25 simulations with randomized data), and of the
Effective Transfer Entropy matrix (Figure 8c). The brightness of the Randomized Transfer Entropy
Matrix was enhanced with respect to the other two matrices in order to facilitate visualization.

One effect of calculating Randomized Transfer Entropy matrices is that we may then define a
limit where noise is expected to take over. The values calculated for the average of 25 simulations with
randomized time series are in between 0 and 0.0523, while the values of the Transfer Entropy matrix
calculated with the original time series range from 0 to 1.3407. So, values of TE smaller than around
0.05 are more likely to be the result of noise. The Effective Transfer Entropy matrix has values that
range from −0.0202 to 1.3042.

The main feature of the representation of the Effective Transfer Entropy matrix (or of the Transfer
Entropy matrix) is that it is clearly not symmetric. The second one is that the highest results are all in
the quadrant on the left topmost corner (Quadrant 12). That is the quadrant related with the Effective
Transfer Entropy (ETE) from the lagged stocks to the original ones. The main diagonal expresses the
ETE from one stock to itself on the next day, which, by the very construction of the measure being
used, is expected to be high. But Quadrant 12 also shows that there are larger transfers of entropy from
lagged stocks to the other ones than between stocks on the same day. We must remind ourselves that
we are dealing here with the daily closing prices of stocks, and that the interactions of prices of stocks,
and their reactions to news, usually occur at high frequency. Here, we watch the effects that a whole
day of negotiations of a stock has on the others. Figure 9a shows a closer look at the ETE of the stocks
on stocks on the same day, what corresponds to the quadrant on the bottom left (Quadrant 11), and
from lagged to original stocks, in Figure 9b (Quadrant 12).
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Figure 9. False color representations of two quadrants of the Transfer Entropy matrix. Figure 9a
shows the quadrant of the Effective Transfer Entropies (ETEs) from stocks to the stocks at the same
day (Quadrant 11), and Figure 9b shows the quadrant of ETEs from lagged stocks to original ones
(Quadrant 12). The brightness of Figure 9a has been enhanced with respect to the brightness of Figure
9b, for better visualization.

Analyzing Quadrant 12 (Figure 9b), we may see again the structures due to geographical positions,
with clusters related with stocks from the USA (1 to 79), Canada (80 to 89), Europe (91 to 152), Japan
(153 to 165), Hong Kong (166 to 174), Singapore (177 to 179), and Australia (180 to 197). We also detect
some ETE from lagged stocks from the USA to stocks from Canada and Europe, from lagged stocks
from Europe to stocks from the USA and Canada and, with a smaller strength, from lagged stocks
from Europe to stocks from Australasia, and transfer of entropy within the Australasian stocks.

Quadrant 11 (Figure 9a) shows much smaller values, but one can see a clear influence of Japan
(153–165) on North America (1–89) and Europe (91–152), and also some influence from Europe to the
USA. A very light influence may be seen from the USA to itself on the next day, Canada, and Europe,
but it is already hard to distinguish this influence from noise. There are negative values of ETE, what
means that the Transfer Entropy calculated is smaller than what would be expected from noise. These
are the same results found in [63], who used only same day time series in their calculations.

The Effective Transfer Entropy relations may be used in order to define a network where each
stock is represented by a node and each ETE between two stocks is an edge. The network defined by
the ETE matrix is one in which each edge has a label attached to it, which is the ETE it represents [70].
Another type of network may be obtained if one defines a threshold value for the ETE and then
represents only the ETEs above this threshold as edges, and only the nodes connected by edges thus
defined are represented in the network. The representation of such network is called an asset graph,
and by using the concept of asset graph, we may choose values for a threshold and represent only
the edges that are above that threshold and the nodes connected by them. By choosing appropriate
threshold values for the ETE, above which edges and nodes are removed, we may obtain some filtered
representations of the ETE structure between the stocks. This is more clearly visible if one plots only
the elements of the ETE matrix that are above a certain threshold. In Figure 10, we take a closer look at
the relationships between the stocks at threshold 0.4.
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Boston Properties
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Sumitomo Realty & Development

Industrial & Commercial Bank of China

China Construction Bank

Figure 10. Detailed look at the ETEs between stocks at threshold 0.4. Each group of stocks is
located in a magnified window, with the names of each stock close to the position it occupies in
the complete network.

At the lower right corner, there are three small clusters of stocks from the USA in the same
rectangle: the first one is the transfer entropy between stocks of two banks, the second one is a cluster
of insurance companies, and the third one is a small cluster of super-regional banks. At the top right
rectangle, there are two clusters of stocks from the USA, the first one a large cluster of REITS (Real
Estate Investment Trusts), and the second one a pair of two REITS of Health Care. At the center of the
graph, we have a rectangle with stocks of two major commercial banks based in Brazil negotiated in
the New York Stock Exchange. At the lower left of the graph, there are two pairs: one of diversified
banking institutions from France and one of major commercial banks from Spain. At the top left, we
have the last clusters; the first one, a pair of stocks from Japan, and the second one is a cluster of Real
Estate operations, management and services firms; the third one is a pair of two commercial banks
from Hong Kong. It is to be noticed that most relations are reciprocate, although the ETE between
stocks is rarely very similar.

We shall not make a deeper analysis of the remaining asset graphs, but one can see from the
ETE matrix in figures 8 and 9 that integration begins inside countries, with the exception of certain
countries from Europe, and then goes continental. Only at threshold 0.1 and below do we start having
intercontinental integration. This may be due to differences in operation hours of the stock exchanges,
to geographical, economic and cultural relations, or to other factors we failed to contemplate (see,
for instance, [71] for a discussion and for further references).

3.4. Aggregate Data

After [66], we now aggregate data so as to compare first the ETEs among countries and then
among continents. We do this by first calculating the correlation matrix of the stocks belonging to
each country (we use Pearson’s correlation) and then by calculating its eigenvalues and eigenvectors.
As an example, we take the time series of log-returns of the 79 stocks belonging to the USA and
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calculate their correlations, and the eigenvalues and eigenvectors of the resulting correlation matrix.
The largest eigenvalue is usually much larger than the others (it amounts to around 61% of the sum
of the eigenvalues for the US data), and its first eigenvector (when normalized so that the sum of its
components equals to 1) provides the weights of a vector that, when multiplied by the log-returns,
results in an index which is associate with a “market mode” for that particular market. For countries
with just one stock represented in the data, the index was the same time series of the single stock. So,
by using this procedure, we created one index for each country, based on the stocks of the financial
sector, only. Each index has a time series that is then used to calculate an ETE matrix where each line
and column corresponds to one country, according to Table 1, in the same order as in this table.

Table 1. Countries used for the calculation of the ETE with aggregate data by country.

Countries

1 - USA 5 - France 9 - Netherlands 13 - Finland 17 - Portugal 21 - South Korea
2 - Canada 6 - Germany 10 - Belgium 14 - Norway 18 - Greece 22 - Taiwan
3 - Chile 7 - Switzerland 11 - Sweden 15 - Italy 19 - Japan 23 - Singapore
4 - UK 8 - Austria 12 - Denmark 16 - Spain 20 - Hong Kong 24 - Australia

The ETE matrix for this data is depicted in Figure 11, together with the matrix corresponding to
the ETEs from lagged to original variables. Again, we can notice a flow of information from Pacific
Asia and Oceania to Europe and America on the same day (lower left quadrant), and higher values of
ETE among European countries (top left quadrant and Figure 9b). There are particularly high values of
ETE from lagged France and lagged Switzerland to the Netherlands and, almost symmetrically, from
the lagged Netherlands to France and Switzerland.
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Figure 11. (Left) Effective Transfer Entropy (ETE) matrix of the aggregate data by country; (Right)
sector of the ETE matrix corresponding to ETEs from lagged to original variables. Brighter colors
represent higher values of ETE and darker colors correspond to lower values of ETE.

We may do the same for continents, aggregating data now by continent, with three continents,
America, Europe, and Asia if we consider Oceania together with Asia. The resulting ETE matrix is
plotted in Figure 12. There is some transfer of entropy from Europe to America on the same day, and
also from Asia and Oceania to America and Europe on the same day. We also have higher values of
ETE from lagged America to Europe and Asia on the next day, from lagged Europe to America and
Asia on the next day, and from lagged Asia to Europe on the next day. These results confirm the ones
obtained in [63] and [66].
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Figure 12. (Left) Effective Transfer Entropy (ETE) matrix of the aggregate data by continent; (Right)
sector of the ETE matrix corresponding to ETEs from lagged to original variables. Brighter colors
represent higher values of ETE and darker colors correspond to lower values of ETE.

Also based on [66], we now aggregate data by industry (according to Bloomberg), in the same way
that it was done for countries and continents, in order to study more directly the flow of information
between the industries of the financial sector. The industries are the same as the ones we used in order
to classify stocks within a country, and are displayed in Table 2.

Table 2. Industries used for the calculation of the ETE with aggregate data by industry.

Industries

1 - Banks 4 - Investment Companies 7 - REITS
2 - Diversified Financial Services 5 - Private Equity Funds 8 - Savings and Loans
3 - Insurance 6 - Real State

Figure 13 (left) shows the ETE matrix from industry to industry, and also (right) the sector of
ETEs from lagged to original variables. Looking at the lower left quadrant, one may see that there
is some transfer of entropy from Private Equity Funds and Real State Investments to Insurance and
REITS, and also to Banks, Diversified Financial Services, and to Savings and Loans, all in the same day
of negotiation.

Now, looking at the top left quadrant and in Figure 13b, we have the ETEs from lagged to
original variables. There is clearly a cluster of Banks, Diversified Financial Services and Insurance
Companies exchanging much information, also exchanging information in a lesser degree with
Investment Companies, REITS, and Savings and Loans, which exchange some information with
one another; finally, there is a very strong connection between Private Equity Funds and Real State
Companies.
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Figure 13. (Left) Effective Transfer Entropy (ETE) matrix of the aggregate data by industry; (Right)
sector of the ETE matrix corresponding to ETEs from lagged to original variables. Brighter colors
represent higher values of ETE and darker colors correspond to lower values of ETE.
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3.5. The Rényi Transfer Entropy

By adopting a different definition of entropy, we may define another measure of how entropy is
transferred from a variable to another in such a way as to highlight the influence of extreme events
in the time series of the variables concerned. Rényi entropy was first defined by the Hungarian
mathematician Alfréd Rényi [72] as

H =
1

1 − q
log2

N

∑
i=1

pq
i , (9)

where the logarithm may be of any base, but we adopt base 2 so as to obtain measures in bits, and q
is a positive parameter that may be varied in order to emphasize different regions of the probability
distribution pi. For q < 1, small values of pi (the tails of the probability distribution) assume greater
importance, and for q > 1, the larger values (more central) of the probability distribution assume
greater importance. It may be shown that the Shannon entropy is the limiting case of the Rényi entropy
when q → 1.

Jizba and Kleinert et al. [63] proposed a variant of Transfer Entropy based on the Rényi entropy,
and applied it to financial data. This variant may be written like

RTEY→X(k, �) =
1

1 − q
log2

∑
in+1,i(k)n

φq

(
i(k)n

)
pq
(

in+1|i(k)n

)
∑

in+1,i(k)n ,j(�)n

φq

(
i(k)n , j(�)n

)
pq
(

in+1|i(k)n , j(�)n

) , (10)

where φq is the escort distribution [73] given by

φq(i) =
pq(i)

∑
i

pq
i

. (11)

Rényi Transfer Entropy may be negative, and it may be zero without implying that processes X
and Y are independent, and it also depends on the parameter q that enhances different regions of the
probability distributions. Dimpfl and Peter [68] applied Rényi’s Transfer Entropy to high frequency
financial data and compared results using different values of the parameter q. In the particular case of
k = � = 1, we obtain

RTEY→X =
1

1 − q
log2

∑
in+1,in

φq (in) pq (in+1|in)

∑
in+1,in ,jn

φq (in, jn) pq (in+1|in, jn)
, (12)

which is the version we shall use here, since log-returns of financial data rarely depend on more than
one day of data in the past, and because the calculations are also much simpler and faster using this
simplification.

Figure 14 shows the Rényi Transfer Entropy calculated for q = 0.1, q = 0.5, q = 0.9, and q = 1.3.
One may see that, although the local details are clearer for lower values of q, which favor the low
probabilities of the probability distributions used in the calculations, the overall detail is best for higher
values of q. One may also notice that, for q = 0.9, the results are very similar to the ones obtained with
Transfer Entropy based on Shannon’s entropy.
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Figure 14. Rényi Transfer Entropy for different values of the parameter q. Brighter colors indicate
higher values of transfer entropy, and darker colors indicate lower values of transfer entropy.

4. Centralities

In all studies on the propagation of shocks in financial networks discussed in the introduction
[2–38], the centrality of a node (generally a bank in most studies) is one of the single most important
factors in the capacity of that node in the propagation a crisis. In network theory, the centrality
of a node is important in the study of which nodes are, by some standard, more influential than
others. Such measures may be used, for instance, in the study of the propagation of epidemics, or the
propagation of news, or, in the case of stocks, in the spreading of high volatility. There are various
centrality measures [70], tending to different aspects of what we may think of “central”. For undirected
networks, for instance, we have Node Degree (ND), which is the total number of edges between a
node and all others to which it is connected. This measure is better adapted to asset graphs, where not
all nodes are connected between them, and varies according to the choice of threshold [71]. Another
measure that can be used for asset graphs is Eigenvector Centrality (EC), which takes into account not
just how many connections a node has, but also if it is localized in a region of highly connected nodes.
There is also a measure called Closeness Centrality (CC) that measures the average distance (in terms
of number of edges necessary to reach another node) of a certain node. This measure is larger for less
central nodes, and if one wants a measure that, like the others, is larger for more central nodes, like the
others we cited, then one may use Harmonic Closeness (HC), that is built on the same principles as
Closeness Centrality, but is calculated using the inverse of the distances from one node to all others.
The Betweenness Centrality (BC) of a node is another type of measure, that calculates how often a
certain node is in the smaller paths between all other nodes. Still another measure of centrality, called
Node Strength (NS), works for fully connected networks, and so is independent of thresholds in asset
graphs, and takes into account the strength of the connections, which, in our case, are the correlations
between the nodes. It measures the sum of the correlations of a node with all the others.

These measures of centrality are appropriate for an undirected network, like one that could be
obtained by using correlation, but the networks built using Effective Transfer Entropy are directed
nodes, that have either ingoing edges to a node, outgoing edges from the node, or both. So, centrality
measures often break down into ingoing and outgoing ones. As an example, a node may be highly
central with respect to pointing at other nodes, like the Google search page; these are called hubs.
Other nodes may have many other nodes pointing at it, as in the case of a highly cited article in a
network of citations; these are called authorities. Each one is central in a different way, and a node
may be central according to both criteria. Node degree, for example, may be broken in two measures:
In Node Degree (NDin), which measures the sum of all ingoing edges to a certain node, and Out Node
Degree (NDout), which measures the sum of all outgoing edges from a node. In a similar way, one
defines In Eigenvector Centrality (ECin) and Out Eigenvector Centrality (ECout), and In Harmonic
Closeness (HCin) and Out Harmonic Closeness (HCout). Betweenness Centrality is now calculated
along directed paths only, and it is called Directed Betweenness Centrality, (BCdir).

As we said before, when applying centrality measures to asset graphs, those measures vary
according to the chosen value for the threshold. As extreme examples, if the threshold is such that the
network has very few nodes, Node Centrality, for example, will also be low. If the threshold value is
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such that every node is connected to every other node, then all Node Degrees will be the same: the
number of all connections made between the nodes. It has been shown empirically [71] that one gets
the most information about a set of nodes if one considers asset graphs whose thresholds are close
to the minimum or the maximum of the values obtained through simulations with randomized data.
We may rephrase it by saying that we obtain more information of a network when we consider its
limit to results obtained from noise. From the simulations we have made in order to calculate the
Effective Transfer Entropy, we could check that the largest values of Transfer Entropy for randomized
data are close to 0.05 for the choice of bins with size 0.1 (Figure 1a). So, we shall consider here the
centrality measures that were mentioned applied to the directed networks obtained from the Effective
Transfer Entropy with threshold 0.05. The results are plotted in Figure 15. As the values of different
centralities may vary a lot (from 3 to 153 for NDin and from 0 to 1317 for BCdir), we normalize all
centrality measures by setting their maxima to one. For all but Directed Betweenness Centrality, stocks
belonging to the Americas and to Europe appear more central.

America

Europe

Australasia

NDin

NDout

ECin

ECout

HCin

HCout

BCdir

0.5
1

Figure 15. Centrality measures of stocks for the asset graph with threshold 0.05. All measures were
normalized so as to have maximum one.

Table 3 presents the most central stocks according to each centrality measure. Only the first five
stocks are shown (more, in case of draws). Lagged stocks appear with an ∗ besides the names of the
companies. Since we are considering only the strong values of Effective Transfer Entropy, and since
asset graphs do not involve the nodes that are not connected, this excludes all connections, except
the ones between lagged and original log-returns. So, all in degrees are of original stocks and all out
degrees (including Directed Betweenness) are of lagged stocks. For out degrees, insurance companies
occupy the top positions, together with some banks, all of them belonging to European or to U.S.
companies. For in degrees, we see a predominance of banks, but insurance companies also occupy top
positions. This means there is a tendency of entropy being transferred from insurance companies to
banks. For Directed Betweeenness, the top positions are occupied by major European banks and also
by other types of companies.

By inspection, we may see that the companies with the largest centralities are also the ones with
the larger values in terms of market capitalization. This same result has been found in the empirical
results relating to the networks found by using the borrowing and lending between banks [24–38].
These networks, with a structure in which some few nodes have large centralities and most nodes
have low centralities, are the ones that, in theoretical simulations [6–23], show more stability than most
random networks, but also lead to more propagation of shocks when the most central nodes are not
strong enough to act as appropriate buffers for the shocks.
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Table 3. Classification of stocks with highest centrality measures, the countries they belong to, their
industry and sub industry classifications, for asset graphs based on threshold 0.05. Only the five stocks
with highest centrality values are shown (more, in case of draws).

Centrality Company Country Industry Sub Industry
In Node Degree

153 Credit Suisse Group AG Switzerland Banks Diversified Banking Inst
150 Deutsche Bank AG Germany Banks Diversified Banking Inst
149 Invesco USA Diversified Finan Serv Invest Mgmnt/Advis Serv
149 ING Groep NV Netherlands Insurance Life/Health Insurance
149 KBC Groep NV Belgium Banks Commer Banks Non-US

Out Node Degree

160 ING Groep NV* Netherlands Insurance Life/Health Insurance
158 Hartford Financial Services Group* USA Insurance Multi-line Insurance
154 KBC Groep* Belgium Banks Commer Banks Non-US
152 Genworth Financial* USA Insurance Multi-line Insurance
151 Lincoln National Corp* USA Insurance Life/Health Insurance

In Eigenvector
11.99 Invesco USA Diversified Finan Serv Invest Mgmnt/Advis Serv
11.91 Credit Suisse Group AG Switzerland Banks Diversified Banking Inst
11.86 Hartford Financial Services Group USA Insurance Multi-line Insurance
11.85 Lincoln National Corp USA Insurance Life/Health Insurance
11.83 MetLife USA Insurance Multi-line Insurance

Out Eigenvector
0.094 Hartford Financial Services Group* USA Insurance Multi-line Insurance
0.094 Lincoln National Corp* USA Insurance Life/Health Insurance
0.093 Invesco* USA Diversified Finan Serv Invest Mgmnt/Advis Serv
0.093 MetLife* USA Insurance Multi-line Insurance
0.093 ING Groep* Netherlands Insurance Life/Health Insurance
0.093 Genworth Financial* USA Insurance Multi-line Insurance
0.093 Principal Financial Group* USA Insurance Life/Health Insurance
0.093 UBS* Switzerland Banks Diversified Banking Inst
0.093 Prudential Financial* USA Insurance Life/Health Insurance
0.093 Ameriprise Financial* USA Diversified Finan Serv Invest Mgmnt/Advis Serv

In Harmonic Closeness
174.00 Credit Suisse Group AG Switzerland Banks Diversified Banking Inst
172.5 Deutsche Bank AG Germany Banks Diversified Banking Inst
171.8 KBC Groep NV Belgium Banks Commer Banks Non-US
171.2 ING Groep NV Netherlands Insurance Life/Health Insurance
170.5 Commerzbank AG Germany Banks Commer Banks Non-US

Out Harmonic Closeness
178 ING Groep* Netherlands Insurance Life/Health Insurance
177 Hartford Financial Services Group* USA Insurance Multi-line Insurance
175 KBC Groep* Belgium Banks Commer Banks Non-US
174 Genworth Financial* USA Insurance Multi-line Insurance
173 Barclays* UK Banks Diversified Banking Inst

Directed Betweenness
1317 KBC Groep* Belgium Banks Commer Banks Non-US
1202 China Construction Bank Corp* Hong Kong Banks Commer Banks Non-US
1074 ING Groep* Netherlands Insurance Life/Health Insurance
998 Goodman Group* Australia REITS REITS-Diversified
984 Barclays* UK Banks Diversified Banking Inst

For thresholds 0.1 and 0.2, with results not displayed here, there is a preponderance of insurance
companies and banks from the USA, and for thresholds 0.3 and 0.4, also not displayed here, there are
mostly banks and REITS occupying the first positions, also due to the fact that they are some of the
only nodes that are part of the asset graphs at these threshold values.

The centrality measures we have considered thus far in this section do not take into account
the strength of the connections between the nodes. There are centrality measures that take that into
account, being the main one called Node Strength (NS), which, in undirected networks, is the sum of
all connections made by a node. For directed networks, we have the In Node Strength (NSin), which
measures the sum of all ingoing connections to a node, and the Out Node Strength (NSout), which
measures the sum of all outgoing connections from a node. These are centrality measures that can
be applied to the whole network, including all nodes. Figure 16 shows the results for both centrality
measures, and Table 4 shows the top five stocks according to each node centrality. We used ETE in the
calculations. Had we used TE instead, the results would be the same.
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Figure 16. Node Strengths (in and out) for the whole network. Both measures were normalized so as
to have maximum one.

Table 4. Top five stocks according to In Node Strength and to Out Node Strength, the countries they
belong to, their industry and sub industry classifications. Nodes related with lagged stocks have an
asterisk beside their names. Calculations were based on the ETEs between stocks.

Centrality Company Country Industry sub industry
In Node Strength

30.34 Hartford Financial Services Group USA Insurance Multi-line Insurance
29.86 Lincoln National Corp USA Insurance Life/Health Insurance
29.77 Prudential Financial USA Insurance Life/Health Insurance
29.22 Principal Financial Group USA Insurance Life/Health Insurance
27.87 Citigroup USA Banks Diversified Banking Inst

Out Node Strength
30.16 Hartford Financial Services Group * USA Insurance Multi-line Insurance
28.71 Prudential Financial * USA Insurance Life/Health Insurance
27.83 Lincoln National * USA Insurance Life/Health Insurance
27.31 Principal Financial Group * USA Insurance Life/Health Insurance
26.57 ING Groep NV * Netherlands Insurance Life/Health Insurance

The five top stocks for In Node Strength are those of Insurance Companies, qualified as authorities,
which are nodes to which many other nodes point, and with high values of ETE, what means that there
is a large amount of information flowing into the log-returns of those stocks. For Out Node Strength,
again insurance companies dominate, what means that they send much information into the prices of
the other stocks (they are also hubs).

5. Dynamics

We now look at the network of stocks of financial companies evolving in time. In order to do so,
we use moving windows, each comprising data of one semester of a year, moving one semester at a
time. The number of days of a semester ranges from 124 to 128, so that there is some small sample
effect on the results of ETE, but this choice makes it possible to analyze the evolution of the transfer of
information between the stocks at a more localized level in time. Figure 17 shows the ETEs calculated
at each semester, and one can see that there are brighter colors, indicating higher levels of ETE, in times
of crisis, like in the second semester of 2008 (Subprime Mortgage Crisis) and in the second semester of
2011 (European Sovereign Debt Crisis). Looking at the ETEs from original to original variables (bottom
left sector of each ETE matrix), one can see that the largest ETEs on the same day are from Japanese
stocks to American and European ones, as it was the case when we used the whole data, but now one
may follow a growth in ETE from Japan to America and Europe on the second semester of 2007, on the
first semester of 2010, on the second semester of 2011, and on the first semester of 2012.

Figure 18 shows the ETEs only from lagged to original variables, corresponding to the top, left
sector of each ETE matrix, with the self-interactions removed for better visualization. The exchange of
information between the time series of the stocks is low for the first semester of 2007, except for most
US REITS. It increases, mostly among US banks and stocks from Europe, in the second semester of the
same year. Prior to the crisis of 2008, we have high ETEs among US stocks, among some European
stocks, and also between some stocks from Japan and from Hong Kong. During the height of the
Subprime crisis (second semester of 2008 and first semester of 2009), the high exchange of information
(represented by high ETE) seems to be restricted mostly to US and Canadian stocks. One interesting
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result is that the ETE is higher for the second semester of 2011, the height of the European Sovereign
Debt Crisis, than during the crisis of 2008. The ETE lowers soon afterwards to normal levels. Something
else to be noticed is that the exchange of information among REITS decreases in time. Since REITS
(Real Estate Investment Trusts) represent the interest of investors in the real state market, a decrease in
ETE is associated with lower volatility in this particular market. On a more local level, one can also
detect an increase in ETE among mainly Japanese stocks and also among stocks from Hong Kong after
the second semester of 2011.
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Figure 17. Effective Transfer Entropy (ETE) calculated for each semester, from 2007 to 2012. Brighter
colors represent higher values of ETE and darker colors represent lower values of ETE.
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Figure 18. Effective Transfer Entropy (ETE) from lagged to original variables, calculated for each
semester, from 2007 to 2012. Brighter colors represent higher values of ETE and darker colors represent
lower values of ETE. The main diagonal, representing the ETE from a lagged variable to itself, has been
removed for clarity of vision.
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6. Relations with Economies in Crisis

Economic broadcasts of the past few years constantly warned of the dangers of a new global
financial crisis that may be triggered by the failure of some European countries to pay their sovereign
debts. It is not completely clear how far reaching a default by one of those countries could be, and
which institutions are more vulnerable to that. Using networks based on financial loans and debts
between banks, researchers can try to evaluate some of the consequences of defaults in banks, but,
as said in the introduction, networks built on loans and debts do not account for a myriad of other
economical facts that define the relationships between financial institutions. So, in order to attempt
to study those relations, we shall build networks based on the ETEs between the 197 major financial
institutions considered until now together with all financial institutions listed in Bloomberg of some of
those countries in crisis, after a liquidity filter. The aim is to investigate which of the main financial
institutions receive more entropy from the financial institutions of those countries, meaning that the
prices of stocks from those target institutions are much influenced by the prices of institutions that
might be in danger of collapse. Of course, we are not saying here that the institutions being considered
that belong to one of the countries in crisis might default; we just analyze what could happen if the
prices of their stocks would go substantially down.

The countries we shall consider here are Greece, Cyprus, Spain, Portugal, Italy, and Ireland,
although Italy is not considered as a country in crisis, but is usually pointed at as being a fragile
economy at the moment. We will do a separate analysis for each country, following the same procedures.
First, we remove the stocks belonging to the country in crisis from the original network of financial
institutions; then we add to this network all stocks that belong to the country in crisis and that are
listed in Bloomberg. The number of stocks from each country is restrained by the data available and
by the liquidity of those stocks. The second condition eliminates many of the time series available,
particularly in less developed stock markets.

Greece is represented by 17 stocks, including the Bank of Greece, which is removed from the
197 original stocks of financial companies. For Cyprus, we obtain the time series of 20 stocks, after
removing the less liquid ones. Spain is one of the main players in the international fears for the world
economic market; we remove the stocks belonging to Spanish companies (four of them) from the
bulk of main stocks and then add 26 stocks of financial companies from that country, including the
ones that had been previously removed. Portugal is also an important country in the monitoring
for an economic crisis since its institutions have deep connections with Spanish companies. In order
to study the influence of its stocks on other stocks of main financial companies, we first remove the
one stock belonging to Portugal in that group, that of the Banco Espírito Santo. Then we add to the
data the log-returns of five major Portuguese banks, including the one that had been removed from
the main block. The country in this group with the largest number of companies that take part of
the original data set, 6 of them, is Italy, for which we start by removing those stocks from the main
block, including the 6 original ones. Then we add 61 stocks belonging to the financial sector which are
negotiated in Italy and which survive the liquidity filter. For Ireland, we have four stocks that survive
the liquidity filter.

Table 5 shows the first five stocks that receive the most ETE from the stocks of each country in
crisis. Almost all stocks that receive the most ETE are banks, with the exception of the ING Groep,
which is a Dutch corporation that specializes in general banking services and in insurance, and so
is not just an insurance company, but also a bank. The stocks that are most affected by Greek stocks
are well spread among European banks, with the most affected one being the ING Groepe from the
Netherlands. The stock most affected by Cypriot stocks is the one of the National Bank of Greece, what
is expected due to the economic and financial relations between Cyprus and Greece. The remaining
influence is evenly divided by some other European stocks. The ETE transmitted from Spain to the
five most influenced stocks is larger than the ETE transmitted by Greece and Cyprus, and the influence
is evenly divided among the European stocks. Portuguese stocks transmit more entropy to two of
the largest Spanish banks, and also to some other European stocks. The influence of Italian stocks
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is much larger than the influence of other stocks belonging to the group of countries in crisis, and it
spreads rather evenly among some European stocks. The influence from Irish stocks is low, and evenly
distributed among European stocks, including two from the UK.

Table 5. Five stocks that receive more ETE from the stocks of each country in crisis. In the table, are
shown the name of the company, the total ETE received from the stocks of countries in crisis, the
country the stock belongs to, the industry and sub industry.

Stock ETE Country Industry Sub industry
Greece

ING Groep 1.04 Netherlands Insurance Life/Health Insurance
KBC Groep 1.04 Belgium Banks Commercial Banks
Deutsche Bank 0.98 Germany Banks Diversified Banking Institution
Société Générale 0.98 France Banks Diversified Banking Institution
Crédit Agricole 0.94 France Banks Diversified Banking Institution

Cyprus
National Bank of Greece 0.68 Greece Banks Commercial Banks
KBC Groep NV 0.34 Belgium Banks Commercial Banks
Deutsche Bank AG 0.33 Germany Banks Diversified Banking Institution
ING Groep NV 0.30 Netherlands Insurance Life/Health Insurance
DANSKE DC 0.28 Denmark Banks Commercial Banks

Spain
Deutsche Bank 2.34 Germany Banks Diversified Banking Institution
BNP Paribas 2.33 France Banks Diversified Banking Institution
AXA 2.31 France Insurance Multi-line Insurance
ING Groep 2.21 Netherlands Insurance Life/Health Insurance
KBC Groep 2.17 Belgium Banks Commercial Bank

Portugal
Banco Santander 0.91 Spain Banks Commercial Bank
Banco Bilbao Vizcaya Argentaria 0.72 Spain Banks Commercial Bank
BNP Paribas 0.62 France Banks Diversified Banking Institution
Deutsche Bank 0.60 Germany Banks Diversified Banking Institution
AXA 0.60 France Insurance Multi-line Insurance

Italy
AXA 6.37 France Insurance Multi-line Insurance
Deutsche Bank AG 6.29 Germany Banks Diversified Banking Institution
BNP Paribas 6.18 France Banks Diversified Banking Institution
Banco Bilbao Vizcaya Argentaria 5.90 Spain Banks Commercial Bank
Société Générale 5.84 France Banks Diversified Banking Institution

Ireland
ING Groep NV 0.39 Netherlands Insurance Life/Health Insurance
Barclays 0.37 UK Banks Diversified Banking Institution
Lloyds Banking Group 0.37 UK Banks Diversified Banking Institution
Aegon NV 0.36 Netherlands Insurance Multi-line Insurance
KBC Groep NV 0.36 Belgium Banks Commercial Bank

One must keep in mind that what we are measuring is the sum of ETEs to a particular company,
and so the number of companies that send the ETEs is important, but since the number of relevant
financial companies a country has is an important factor of its influence, we here consider the sum of
ETEs as a determinant of the influence of one country on another.

It is interesting to see that there are some stocks that are consistently more influenced by the
stocks of countries in crisis. The Deutsche Bank appears in five lists, and the ING Groep and the KBC
Groep appear in four lists. Most of the stocks listed are also some of the more central ones according to
different centrality criteria.

Table 6 shows the first five stocks that send the most ETE from the stocks of each country in crisis
(four, in the case of Ireland). The most influential stocks are mainly those of banks, but we also have
highly influent stocks belonging to insurance companies and to investment companies. The influence
of Greece is distributed among some banks, and the influence of Cyprus is also mainly distributed
among banks. The Spanish influence also comes from commercial banks, and is concentrated on the
top three ones. The same applies to Portugal, with the main ETE being transmitted from a stock that
belongs to a Spanish bank but that is also negotiated in Portugal. The most influential stocks from Italy
are those of companies that are originally from other European countries, but whose stocks are also
negotiated in Italy. The influence of Ireland is mainly distributed among two banks and one insurance
company.
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Table 6. Five stocks that send more ETE from each country in crisis. In the table, are shown the name
of the company, the total ETE sent to the stocks of main financial companies, the industry and sub
industry.

Stock ETE Industry Sub industry
Greece

National Bank of Greece 5.95 Banks Commercial Bank
Piraeus Bank 4.68 Banks Commercial Bank
Cyprus Popular Bank 4.48 Banks Commercial Bank
Eurobank Ergasias 4.38 Banks Commercial Bank
Bank of Cyprus 4.28 Banks Commercial Bank

Cyprus
Cyprus Popular Bank 5.18 Banks Commercial Banks
Bank of Cyprus 4.01 Banks Commercial Banks
Hellenic Bank 3.02 Banks Commercial Banks
Interfund Investments 2.12 Investment Companies Investment Companies
Demetra Investments 1.88 Investment Companies Investment Companies

Spain
Banco Santander 15.90 Banks Commercial Bank
Banco Bilbao Vizcaya Argentaria 14.74 Bank Commercial Bank
Banco Popular Espanol 11.35 Banks Commercial Bank
Banco de Sabadell 10.47 Bank Commercial Bank
Banco Bradesco 9.99 Banks Commercial Bank

Portugal
Banco Santander 12.67 Banks Commercial Banks
Banco Espírito Santo 8.60 Banks Commercial Banks
Banco BPI 8.32 Banks Commercial Banks
Banco Comercial Portugues 3.08 Banks Commercial Banks
Espírito Santo Financial Group 4.08 Banks Commercial Banks

Italy
ING Groep NV 15.91 Insurance Life - Health Insurance
Deutsche Bank AG 15.43 Banks Diversified Banking Institution
AXA 15.23 Insurance Multi-line Insurance
BNP Paribas 14.51 Banks Diversified Banking Institution
UniCredit SpA 14.09 Banks Diversified Banking Institution

Ireland
Bank of Ireland 12.67 Banks Commercial Bank
Permanent TSB Group Holdings 8.60 Insurance Property - Casualty Insurance
Allied Irish Banks 8.32 Banks Commercial Bank
FBD Holdings 3.08 Insurance Property - Casualty Insurance

So we may conclude that the most influenced stocks by stocks of the countries in crisis according
to ETE are those of European companies, and mainly some stocks belonging to some particular banks.
The stocks that influence the most, also according to the ETE criterium, are those of banks belonging
to the countries in crisis, in particular if the banks are native to other countries, but their stocks are
negotiated in the country in crisis.

In order to study the dynamics of the influences of the countries in crisis with the countries in
the original sample, once more we aggregate data using the eigenvector corresponding to the largest
eigenvalue of the correlation matrix of the stocks belonging to each country, as described in Section 3.
By doing this, we calculate an ETE matrix such that the first 24 variables are the original countries in
the sample, in the same order as in Section 3, and the remaining 6 variables are the aggregate time
series for stocks belonging to Greece, Cyprus, Spain, Portugal, Italy, and Ireland, in this same order.
This is done for each semester, from 20007 to 2012, and in Figure 19 we print only the ETEs from
the lagged variables corresponding to the countries in crisis (vertical axis) to the original variables
corresponding to the affected countries (horizontal axis).
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Figure 19. Effective Transfer Entropy (ETE) from lagged variables of countries in crisis (vertical axis) to
original variables of the 197 large financial companies (horizontal axis), calculated for each semester,
from 2007 to 2012. Brighter colors represent higher values of ETE and darker colors represent lower
values of ETE.

Analyzing the graphs, we may see that, as expected, there is a rise of ETE during the crisis
of 2008 and the crisis of 2010. Looking at each country that is sending information, and ignoring
the information going from one country to itself, we see that Greece and Cyprus do not send much
information to other countries, and that the largest sources of information are Italy, Spain, and Portugal,
in this same order. On the first semester of 2010, we see a lot of ETE between Italy, Spain and Portugal.
By the first semester of 2011, the transfer of volatility was mainly due to two countries: Spain and Italy.
The transfer of volatility rose again on the second semester of 2011, going down ever since, probably
due to the efficacy of the austerity measures adopted by some of the countries in crisis and the policy
of the European Union, which chose to sustain the strength of the Euro and the unity of the Eurozone.

We may also see that the transfer of entropy is mainly to European countries, as expected. So,
according to ETE, the influence of these countries in crisis is mainly on Europe. Any crisis triggered by
them would first hit other countries in Europe, most of them with more solid economies, and, only
then, could affect other continents.

In Figure 20, we plot the average ETE that was sent, in each semester from 2007 to 2012, from the
six countries in crisis to the 24 original countries in our data set, as a percentage of the average ETE
sent from each of these original countries to themselves. So, whenever the percentage is above one,
that means that the average information sent from the stocks of these countries was above the average
information exchanged between the target countries. From the figure, we see that the average ETE sent
from Italy and from Spain is always above the average, and that the average ETE sent from Portugal
has also been above the average most of the time. Greece, Cyprus and Ireland have had ETEs sent
below the average almost all of the time, and the average ETE sent from those countries has been going
down in time, when compared with the average ETE between the target countries. This is evidence
that, according to ETE, the stocks of Greece, Cyprus and Ireland have little effect on other stocks of
the world, and this is not a result that depends on the number of stock considered for each country,
since the result is from aggregate data. So, Italy, Spain and Portugal, in this order, seem to be the most
influent countries in crisis.
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Figure 20. Average ETE sent from the countries in crisis to the original 24 countries as a percentage of
the ETE sent from those countries to themselves, calculated each semester.

7. Conclusions

We have seen in this work how the stocks of the top 197 financial companies, in market volume,
relate to one another, using the Effective Transfer Entropy between them. We saw that they are related
first by country where the stocks are negotiated, and then by industry and sub industry. The network
structure for Transfer Entropy is very different from one obtained by correlation, being the network
obtained using Transfer Entropy a directed one, with causal influences between the stocks. The use of
original and lagged log-returns also revealed some relationships between stocks, with the stocks of
a previous day influencing the stocks of the following day. A study of the centralities of the stocks
revealed that the most central ones are those of insurance companies of Europe and of the USA, or
of banks of the USA and Europe. Since insurance and reinsurance companies are major CDS (Credit
Default Securities) sellers, and banks are both major CDS buyers and sellers, some of this centrality of
insurance companies, followed by banks, might be explained by the selling and buying of CDS.

A further study of the influence relations between stocks of companies belonging to countries in
crisis, namely Greece, Cyprus, Spain, Portugal, Italy, and Ireland, reveal which are the most affected
financial companies belonging to the group of largest financial stocks. This calls attention to liabilities
of those companies to possible defaults or fall of stocks prices of companies belonging to those countries
in crisis.

This work plants the seeds for the study of contagion among financial institutions, but now based
on a real network, showing which companies are most central for the propagation of crises and which
ones are more dependent on failing economies. This may be used to develop policies for avoiding the
spread of financial crises.
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Appendix

A. List of Stocks Used

Here are displayed, in order of country and of industry and sub industry, the stocks that are used
in the present work, not considering stocks from particular countries in crisis.

Country Company Industry Sector
USA 1 Bank of America Corp Banks Diversified Banking Inst
USA 2 Citigroup Inc Banks Diversified Banking Inst
USA 3 Goldman Sachs Group Inc/The Banks Diversified Banking Inst
USA 4 JPMorgan Chase & Co Banks Diversified Banking Inst
USA 5 Morgan Stanley Banks Diversified Banking Inst
USA 6 Comerica Inc Banks Super-Regional Banks-US
USA 7 Capital One Financial Corp Banks Super-Regional Banks-US
USA 8 KeyCorp Banks Super-Regional Banks-US
USA 9 PNC Financial Services Group Inc/The Banks Super-Regional Banks-US
USA 10 SunTrust Banks Inc Banks Super-Regional Banks-US
USA 11 US Bancorp Banks Super-Regional Banks-US
USA 12 Wells Fargo & Co Banks Super-Regional Banks-US
USA 13 Fifth Third Bancorp Banks Super-Regional Banks-US
USA 14 Huntington Bancshares Inc/OH Banks Super-Regional Banks-US
USA 15 BB&T Corp Banks Commer Banks-Southern US
USA 16 First Horizon National Corp Banks Commer Banks-Southern US
USA 17 Regions Financial Corp Banks Commer Banks-Southern US
USA 18 M&T Bank Corp Banks Commer Banks-Eastern US
USA 19 Zions Bancorporation Banks Commer Banks-Western US
USA 20 Bank of New York Mellon Corp/The Banks Fiduciary Banks
USA 21 State Street Corp Banks Fiduciary Banks
USA 22 Northern Trust Corp Banks Fiduciary Banks
USA 23 Banco Bradesco SA Banks Commer Banks Non-US
USA 24 Itau Unibanco Holding SA Banks Commer Banks Non-US
USA 25 Banco Santander Chile Banks Commer Banks Non-US
USA 26 Credicorp Ltd Banks Commer Banks Non-US
USA 27 American Express Co Diversified Finan Serv Finance-Credit Card
USA 28 Ameriprise Financial Inc Diversified Finan Serv Invest Mgmnt/Advis Serv
USA 29 Franklin Resources Inc Diversified Finan Serv Invest Mgmnt/Advis Serv
USA 30 BlackRock Inc Diversified Finan Serv Invest Mgmnt/Advis Serv
USA 31 Invesco Ltd Diversified Finan Serv Invest Mgmnt/Advis Serv
USA 32 Legg Mason Inc Diversified Finan Serv Invest Mgmnt/Advis Serv
USA 33 T Rowe Price Group Inc Diversified Finan Serv Invest Mgmnt/Advis Serv
USA 34 E*TRADE Financial Corp Diversified Finan Serv Finance-Invest Bnkr/Brkr
USA 35 IntercontinentalExchange Inc Diversified Finan Serv Finance-Other Services
USA 36 NYSE Euronext Diversified Finan Serv Finance-Other Services
USA 37 NASDAQ OMX Group Inc/The Diversified Finan Serv Finance-Other Services
USA 38 Hudson City Bancorp Inc Savings & Loans S& L/Thrifts-Eastern US
USA 39 People’s United Financial Inc Savings & Loans S& L/Thrifts-Eastern US
USA 40 ACE Ltd Insurance Multi-line Insurance
USA 41 American International Group Inc Insurance Multi-line Insurance
USA 42 Assurant Inc Insurance Multi-line Insurance
USA 43 Allstate Corp/The Insurance Multi-line Insurance
USA 44 Genworth Financial Inc Insurance Multi-line Insurance
USA 45 Hartford Financial Services Group Inc Insurance Multi-line Insurance
USA 46 Loews Corp Insurance Multi-line Insurance
USA 47 MetLife Inc Insurance Multi-line Insurance
USA 48 XL Group PLC Insurance Multi-line Insurance
USA 49 Cincinnati Financial Corp Insurance Multi-line Insurance
USA 50 Principal Financial Group Inc Insurance Life/Health Insurance
USA 51 Lincoln National Corp Insurance Life/Health Insurance
USA 52 Aflac Inc Insurance Life/Health Insurance
USA 53 Torchmark Corp Insurance Life/Health Insurance
USA 54 Unum Group Insurance Life/Health Insurance
USA 55 Prudential Financial Inc Insurance Life/Health Insurance
USA 56 Travelers Cos Inc/The Insurance Property/Casualty Ins
USA 57 Chubb Corp/The Insurance Property/Casualty Ins
USA 58 Progressive Corp/The Insurance Property/Casualty Ins
USA 59 Aon PLC Insurance Insurance Brokers
USA 60 Marsh & McLennan Cos Inc Insurance Insurance Brokers
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Country Company Industry Sector
USA 61 Berkshire Hathaway Inc Insurance Reinsurance
USA 62 CBRE Group Inc Real Estate Real Estate Mgmnt/Servic
USA 63 Apartment Investment & Management Co REITS REITS-Apartments
USA 64 AvalonBay Communities Inc REITS REITS-Apartments
USA 65 Equity Residential REITS REITS-Apartments
USA 66 Boston Properties Inc REITS REITS-Office Property
USA 67 Host Hotels & Resorts Inc REITS REITS-Hotels
USA 68 Prologis Inc REITS REITS-Warehouse/Industr
USA 69 Public Storage REITS REITS-Storage
USA 70 Simon Property Group Inc REITS REITS-Regional Malls
USA 71 Macerich Co/The REITS REITS-Regional Malls
USA 72 Kimco Realty Corp REITS REITS-Shopping Centers
USA 73 Ventas Inc REITS REITS-Health Care
USA 74 HCP Inc REITS REITS-Health Care
USA 75 Health Care REIT Inc REITS REITS-Health Care
USA 76 American Tower Corp REITS REITS-Diversified
USA 77 Weyerhaeuser Co REITS REITS-Diversified
USA 78 Vornado Realty Trust REITS REITS-Diversified
USA 79 Plum Creek Timber Co Inc REITS REITS-Diversified
Canada 1 Bank of Montreal Banks Commer Banks Non-US
Canada 2 Bank of Nova Scotia Banks Commer Banks Non-US
Canada 3 Canadian Imperial Bank of Commerce/Canada Banks Commer Banks Non-US
Canada 4 National Bank of Canada Banks Commer Banks Non-US
Canada 5 Royal Bank of Canada Banks Commer Banks Non-US
Canada 6 Toronto-Dominion Bank/The Banks Commer Banks Non-US
Canada 7 Manulife Financial Corp Insurance Life/Health Insurance
Canada 8 Power Corp of Canada Insurance Life/Health Insurance
Canada 9 Sun Life Financial Inc Insurance Life/Health Insurance
Canada 10 Brookfield Asset Management Inc Real Estate Real Estate Oper/Develop
Chile Banco de Chil Banks Commer Banks Non-US
UK 1 Barclays PLC Banks Diversified Banking Inst
UK 2 HSBC Holdings PLC Banks Diversified Banking Inst
UK 3 Lloyds Banking Group PLC Banks Diversified Banking Inst
UK 4 Royal Bank of Scotland Group PLC Banks Diversified Banking Inst
UK 5 Standard Chartered PLC Banks Commer Banks Non-US
UK 6 Aberdeen Asset Management PLC Diversified Finan Serv Invest Mgmnt/Advis Serv
UK 7 Man Group PLC Diversified Finan Serv Invest Mgmnt/Advis Serv
UK 8 Schroders PLC Diversified Finan Serv Invest Mgmnt/Advis Serv
UK 9 Old Mutual PLC Diversified Finan Serv Invest Mgmnt/Advis Serv
UK 10 Provident Financial PLC Diversified Finan Serv Finance-Consumer Loans
UK 11 London Stock Exchange Group PLC Diversified Finan Serv Finance-Other Services
UK 12 Aviva PLC Insurance Life/Health Insurance
UK 13 Legal & General Group PLC Insurance Life/Health Insurance
UK 14 Prudential PLC Insurance Life/Health Insurance
UK 15 Standard Life PLC Insurance Life/Health Insurance
UK 16 RSA Insurance Group PLC Insurance Property/Casualty Ins
UK 17 3i Group PLC Private Private
UK 18 Hammerson PLC REITS REITS-Shopping Centers
UK 19 British Land Co PLC REITS REITS-Diversified
UK 20 Land Securities Group PLC REITS REITS-Diversified
UK 21 Segro PLC REITS REITS-Diversified
France 1 Credit Agricole SA Banks Diversified Banking Inst
France 2 BNP Paribas SA Banks Diversified Banking Inst
France 3 Societe Generale SA Banks Diversified Banking Inst
France 4 AXA SA Insurance Multi-line Insurance
Germany 1 Commerzbank AG Banks Commer Banks Non-US
Germany 2 Deutsche Bank AG Banks Diversified Banking Inst
Germany 3 Deutsche Boerse AG Diversified Finan Serv Finance-Other Services
Germany 4 Allianz SE Insurance Multi-line Insurance
Germany 5 Muenchener Rueckversicherungs AG Insurance Reinsurance
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Country Company Industry Sector
Switzerland 1 Credit Suisse Group AG Banks Diversified Banking Inst
Switzerland 2 UBS AG Banks Diversified Banking Inst
Switzerland 3 GAM Holding AG Diversified Finan Serv Invest Mgmnt/Advis Serv
Switzerland 4 Baloise Holding AG Insurance Multi-line Insurance
Switzerland 5 Zurich Insurance Group AG Insurance Multi-line Insurance
Switzerland 6 Swiss Life Holding AG Insurance Life/Health Insurance
Switzerland 7 Swiss Re AG Insurance Reinsurance
Austria Erste Group Bank AG Banks Commer Banks Non-US
Netherlands 1 Aegon NV Insurance Multi-line Insurance
Netherlands 2 ING Groep NV Insurance Life/Health Insurance
Belgium 1 KBC Groep NV Banks Commer Banks Non-US
Belgium 2 Ageas Insurance Life/Health Insurance
Sweden 1 Nordea Bank AB Banks Commer Banks Non-US
Sweden 2 Skandinaviska Enskilda Banken AB Banks Commer Banks Non-US
Sweden 3 Svenska Handelsbanken AB Banks Commer Banks Non-US
Sweden 4 Swedbank AB Banks Commer Banks Non-US
Sweden 5 Investor AB Investment Companies Investment Companies
Denmark Danske Bank A/S Banks Commer Banks Non-US
Finland Sampo Insurance Multi-line Insurance
Norway DNB ASA Banks Commer Banks Non-US
Italy 1 Banca Monte dei Paschi di Siena SpA Banks Commer Banks Non-US
Italy 2 Intesa Sanpaolo SpA Banks Commer Banks Non-US
Italy 3 Mediobanca SpA Banks Commer Banks Non-US
Italy 4 Unione di Banche Italiane SCPA Banks Commer Banks Non-US
Italy 5 UniCredit SpA Banks Diversified Banking Inst
Italy 6 Assicurazioni Generali SpA Insurance Multi-line Insurance
Spain 1 Banco Bilbao Vizcaya Argentaria SA Banks Commer Banks Non-US
Spain 2 Banco Popular Espanol SA Banks Commer Banks Non-US
Spain 3 Banco de Sabadell SA Banks Commer Banks Non-US
Spain 4 Banco Santander SA Banks Commer Banks Non-US
Portugal Banco Espírito Santo SA Banks Commer Banks Non-US
Greece National Bank of Greece SA Banks Commer Banks Non-US
Japan 1 Shinsei Bank Ltd Banks Commer Banks Non-US
Japan 2 Mitsubishi UFJ Financial Group Inc Banks Diversified Banking Inst
Japan 3 Sumitomo Mitsui Trust Holdings Inc Banks Commer Banks Non-US
Japan 4 Sumitomo Mitsui Financial Group Inc Banks Commer Banks Non-US
Japan 5 Mizuho Financial Group Inc Banks Commer Banks Non-US
Japan 6 Credit Saison Co Ltd Diversified Finan Serv Finance-Credit Card
Japan 7 Daiwa Securities Group Inc Diversified Finan Serv Finance-Invest Bnkr/Brkr
Japan 8 Nomura Holdings Inc Diversified Finan Serv Finance-Invest Bnkr/Brkr
Japan 9 ORIX Corp Diversified Finan Serv Finance-Leasing Compan
Japan 10 Tokio Marine Holdings In Insurance Property/Casualty Ins
Japan 11 Mitsui Fudosan Co Ltd Real Estate Real Estate Oper/Develop
Japan 12 Mitsubishi Estate Co Ltd Real Estate Real Estate Mgmnt/Servic
Japan 13 Sumitomo Realty & Development Co Ltd Real Estate Real Estate Oper/Develop
Hong Kong 1 Hang Seng Bank Ltd Banks Commer Banks Non-US
Hong Kong 2 Industrial & Commercial Bank of China Ltd Banks Commer Banks Non-US
Hong Kong 3 BOC Hong Kong Holdings Ltd Banks Commer Banks Non-US
Hong Kong 4 China Construction Bank Corp Banks Commer Banks Non-US
Hong Kong 5 Hong Kong Exchanges and Clearing Ltd Diversified Finan Serv Finance-Other Services
Hong Kong 6 Ping An Insurance Group Co of China Ltd Insurance Multi-line Insurance
Hong Kong 7 China Life Insurance Co Ltd Insurance Life/Health Insurance
Hong Kong 8 Cheung Kong Holdings Ltd Real Estate Real Estate Oper/Develop
Hong Kong 9 Sun Hung Kai Properties Ltd Real Estate Real Estate Oper/Develop
South Korea Shinhan Financial Group Co Ltd Diversified Finan Serv Diversified Finan Serv
Taiwan Cathay Financial Holding Co Ltd Insurance Life/Health Insurance
Singapore 1 DBS Group Holdings Ltd Banks Commer Banks Non-US
Singapore 2 Oversea-Chinese Banking Corp Ltd Banks Commer Banks Non-US
Singapore 3 United Overseas Bank Ltd Banks Commer Banks Non-US
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Country Company Industry Sector
Australia 1 Australia & New Zealand Banking Group Ltd Banks Commer Banks Non-US
Australia 2 Commonwealth Bank of Australia Banks Commer Banks Non-US
Australia 3 National Australia Bank Ltd Banks Commer Banks Non-US
Australia 4 Westpac Banking Corp Banks Commer Banks Non-US
Australia 5 Macquarie Group Ltd Diversified Finan Serv Finance-Invest Bnkr/Brkr
Australia 6 ASX Ltd Diversified Finan Serv Finance-Other Services
Australia 7 AMP Ltd Insurance Life/Health Insurance
Australia 8 Suncorp Group Ltd Insurance Life/Health Insurance
Australia 9 Insurance Australia Group Ltd Insurance Property/Casualty Ins
Australia 10 QBE Insurance Group Ltd Insurance Property/Casualty Ins
Australia 11 Lend Lease Group Real Estate Real Estate Mgmnt/Servic
Australia 12 CFS Retail Property Trust Group REITS REITS-Shopping Centers
Australia 13 Westfield Group REITS REITS-Shopping Centers
Australia 14 Dexus Property Group REITS REITS-Diversified
Australia 15 Goodman Group REITS REITS-Diversified
Australia 16 GPT Group REITS REITS-Diversified
Australia 17 Mirvac Group REITS REITS-Diversified
Australia 18 Stockland REITS REITS-Diversified
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Abstract: Information flow, or information transfer as it may be referred to, is a fundamental notion in
general physics which has wide applications in scientific disciplines. Recently, a rigorous formalism
has been established with respect to both deterministic and stochastic systems, with flow measures
explicitly obtained. These measures possess some important properties, among which is flow or
transfer asymmetry. The formalism has been validated and put to application with a variety of
benchmark systems, such as the baker transformation, Hénon map, truncated Burgers-Hopf system,
Langevin equation, etc. In the chaotic Burgers-Hopf system, all the transfers, save for one, are
essentially zero, indicating that the processes underlying a dynamical phenomenon, albeit complex,
could be simple. (Truth is simple.) In the Langevin equation case, it is found that there could be
no information flowing from one certain time series to another series, though the two are highly
correlated. Information flow/transfer provides a potential measure of the cause–effect relation
between dynamical events, a relation usually hidden behind the correlation in a traditional sense.

Keywords: Liang-Kleeman information flow; causation; emergence; Frobenius-Perron operator;
time series analysis; atmosphere-ocean science; El Niño; neuroscience; network dynamics; financial
economics

1. Introduction

Information flow, or information transfer as it sometimes appears in the literature, refers to the
transference of information between two entities in a dynamical system through some processes, with
one entity being the source, and another the receiver. Its importance lies beyond its literal meaning in
that it actually carries an implication of causation, uncertainty propagation, predictability transfer, etc.,
and, therefore, has applications in a wide variety of disciplines. In the following, we first give a brief
demonstration of how it may be applied in different disciplines; the reader may skip this part and go
directly to the last two paragraphs of this section.

According to how the source and receiver are chosen, information flow may appear in two types of
form. The first is what one would envision in the usual sense, i.e., the transference between two parallel
parties (for example, two chaotic circuits [1]), which are linked through some mechanism within a
system. This is found in neuroscience (e.g., [2–4]), network dynamics (e.g., [5–7]), atmosphere–ocean
science (e.g., [8–11]), financial economics (e.g., [12,13]), to name but a few. For instance, neuroscientists
focus their studies on the brain and its impact on behavior and cognitive functions, which are associated
with flows of information within the nervous system (e.g., [3]). This includes how information flows
from one neuron to another neuron across the synapse, how dendrites bring information to the
cell body, how axons take information away from the cell body, and so forth. Similar issues arise
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in computer and social networks, where the node–node interconnection, causal dependencies, and
directedness of information flow, among others, are of concern [6,14,15]. In atmosphere–ocean science,
the application is vast, albeit newly begun. An example is provided by the extensively studied El
Niño phenomenon in the Pacific Ocean, which is well known through its linkage to global natural
disasters, such as the floods in Ecuador and the droughts in Southeast Asia, southern Africa and
northern Australia, to the death of birds and dolphins in Peru, to the increased number of storms over
the Pacific, and to the famine and epidemic diseases in far-flung parts of the world [16–18]. A major
focus in El Niño research is the predictability of the onset of the irregularly occurring event, in order
to issue in-advance warning of potential hazardous impacts [19–21]. It has now become known that
the variabilities in the Indian Ocean could affect the El Niño predictability (e.g., [22]). That is to say,
at least a part of the uncertainty source for El Niño predictions is from the Indian Ocean. Therefore,
to some extent, the El Niño predictability may also be posed as an information flow problem, i.e., a
problem on how information flows from the Indian Ocean to the Pacific Ocean to make the El Niño
more predictable or more uncertain.

Financial economics provides another field of application of information flow of the first type;
this field has received enormous public attention since the recent global financial crisis triggered by the
subprime mortgage meltdown. A conspicuous example is the cause–effect relation between the
equity and options markets, which reflects the preference of traders in deciding where to place their
trades. Usually, information is believed to flow unidirectionally from equity to options markets because
informed traders prefer to trade in the options markets (e.g., [23]), but recent studies show that the flow
may also exist in the opposite way: informed traders actually trade both stocks and “out-of-the-money"
options, and hence the causal relation from stocks to options may reverse [12]. More (and perhaps the
most important) applications are seen through predictability studies. For instance, the predictability of
asset return characteristics is a continuing problem in financial economics, which is largely due to the
information flow in markets. Understanding the information flow helps to assess the relative impact
from the markets and the diffusive innovation on financial management. Particularly, it helps the
prediction of jump timing, a fundamental question in financial decision making, through determining
information covariates that affect jump occurrence up to the intraday levels, hence providing empirical
evidence in the equity markets, and pointing us to an efficient financial management [13].

The second type of information flow appears in a more abstract way. In this case, we have one
dynamical event; the transference occurs between different levels, or sometimes scales, within the
same event. Examples for this type are found in disciplines such as evolutionary biology [24–26],
statistical physics [27,28], turbulence, etc., and are also seen in network dynamics. Consider the
transitions in biological complexity. A reductionist, for example, views that the emergence of new,
higher level entities can be traced back to lower level entities, and hence there is a “bottom-up”
causation, i.e., an information flow from the lower levels to higher levels. Bottom-up causation lays
the theoretical foundation for statistical mechanics, which explains macroscopic thermodynamic
states from a point of view of molecular motions. On the other hand, “top-down” causation is also
important [29,30]. In evolution (e.g., [31]), it has been shown that higher level processes may constrain
and influence what happens at lower levels; particularly, in transiting complexity, there is a transition of
information flow, from the bottom-up to top-down, leading to a radical change in the structure of
causation (see, for example [32]). Similar to evolutionary biology, in network dynamics, some
simple computer networks may experience a transition from a low traffic state to a high congestion
state, beneath which is a flow of information from a bunch of almost independent entities to a collective
pattern representing a higher level of organization (e.g., [33]). In the study of turbulence, the notoriously
challenging problem in classical physics, it is of much interest to know how information flows over the
spectrum to form patterns on different scales. This may help to better explain the cause of the observed
higher moments of the statistics, such as excess kurtosis and skewness, of velocity components and
velocity derivatives [34]. Generally, the flows/transfers are two-way, i.e., both from small scales to
large scales, and from large scales to small scales, but the flow or transfer rates may be quite different.

296



Entropy 2013, 15, 327–360

Apart from the diverse real-world applications, information flow/transfer is important in that
it offers a methodology for scientific research. In particular, it offers a new way of time series
analysis [35–37]. Traditionally, correlation analysis is widely used for identifying the relation between
two events represented by time series of measurements; an alternative approach is through mutual
information analysis, which may be viewed as a type of nonlinear correlation analysis. But both
correlation analysis and mutual information analysis put the two events on an equal stance. As a
result, there is no way to pick out the cause and the effect. In econometrics, Granger causality [38]
is usually employed to characterize the causal relation between time series, but the characterization
is just in a qualitative sense; when two events are mutually causal, it is difficult to differentiate their
relative strengths. The concept of information flow/transfer is expected to remedy this deficiency, with
the mutual causal relation quantitatively expressed.

Causality implies directionality. Perhaps the most conspicuous observation on information
flow/transfer is its asymmetry between the involved parties. A typical example is seen in our daily life
when a baker is kneading a dough. As the baker stretches, cuts, and folds, he guides a unilateral flow of
information from the horizontal to the vertical. That is to say, information goes only from the stretching
direction to the folding direction, not vice versa. The one-way information flow (in a conventional point
of view) between the equity and options markets offers another good example. In other cases, such as in
the aforementioned El Niño event, though the Indian and Pacific Oceans may interact with each other,
i.e., the flow route could be a two-way street, the flow rate generally differs from one direction to
another direction. For all that account, transfer asymmetry makes a basic property of information flow;
it is this property that distinguishes information flow from the traditional concepts such as mutual
information.

As an aside, one should not confuse dynamics with causality, the important property reflected in
the asymmetry of information flow. It is temptating to think that, for a system, when the dynamics
are known, the causal relations are determined. While this might be the case for linear deterministic
systems, in general, however, this need not be true. Nonlinearity may lead a deterministic system
to chaos; the future may not be predictable after a certain period of time, even though the dynamics
is explicitly given. The concept of emergence in complex systems offers another example. It has
long been found that irregular motions according to some simple rules may result in the emergence
of regular patterns (such as the inverse cascade in the planar turbulence in natural world [39,40]).
Obviously, how this instantaneous flow of information from the low-level entities to high-level entities,
i.e., the patterns, cannot be simply explained by the rudimentary rules set a priori. In the language
of complexity, emergence does not result from rules only (e.g., [41–43]); rather, as said by Corning
(2002) [44], “Rules, or laws, have no causal efficacy; they do not in fact ‘generate’ anything... the
underlying causal agencies must be separately specified.”

Historically, quantification of information flow has been an enduring problem. The challenge
lies in that this is a real physical notion, while the physical foundation is not as clear as those
well-known physical laws. During the past decades, formalisms have been established empirically or
half-empirically based on observations in the aforementioned diverse disciplines, among which are
Vastano and Swinney’s time-delayed mutual information [45], and Schreiber’s transfer entropy [46,47].
Particularly, transfer entropy is established with an emphasis of the above transfer asymmetry between
the source and receiver, so as to have the causal relation represented; it has been successfully applied
in many real problem studies. These formalisms, when carefully analyzed, can be approximately
understood as dealing with the change of marginal entropy in the Shannon sense, and how this
change may be altered in the presence of information flow (see [48], section 4 for a detailed analysis).
This motivates us to think about the possibility of a rigorous formalism when the dynamics of the
system is known. As such, the underlying evolution of the joint probability density function (pdf)
will also be given, for deterministic systems, by the Liouville equation or, for stochastic systems,
by the Fokker-Planck equation (cf. §4 and §5 below). From the joint pdf, it is easy to obtain the
marginal density, and hence the marginal entropy. One thus expects that the concept of information
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flow/transfer may be built on a rigorous footing when the dynamics are known, as is the case with
many real world problems like those in atmosphere–ocean science. And, indeed, Liang and Kleeman
(2005) [49] find that, for two-dimensional (2D) systems, there is a concise law on entropy evolution that
makes the hypothesis come true. Since then, the formalism has been extended to systems in different
forms and of arbitrary dimensionality, and has been applied with success in benchmark dynamical
systems and more realistic problems. In the following sections, we will give a systematic introduction
of the theories and a brief review of some of the important applications.

In the rest of this review, we first set up a theoretical framework, then illustrate through a simple
case how a rigorous formalism can be achieved. Specifically, our goal is to compute within the
framework, for a continuous-time system, the transference rate of information, and, for a discrete-time
system or mapping, the amount of the transference upon each application of the mapping. To unify the
terminology, we may simply use “information flow/transfer” to indicate either the “rate of information
flow/transfer” or the “amount of information flow/transfer” wherever no ambiguity exists in the
context. The next three sections are devoted to the derivations of the transference formulas for three
different systems. Sections 3 and 4 are for deterministic systems, with randomness limited within
initial conditions, where the former deals with discrete mappings and the latter with continuous flows.
Section 5 discusses the case when stochasticity is taken in account. In the section that follows, four
major applications are briefly reviewed. While these applications are important per se, some of them
also provide validations for the formalism. Besides, they are also typical in terms of computation;
different approaches (both analytical and computational) have been employed in computing the flow
or transfer rates for these systems. We summarize in Section 7 the major results regarding the formulas
and their corresponding properties, and give a brief discussion on the future research along this line.
As a convention in the history of development, the terms “information flow” and “information transfer”
will be used synonymously. Throughout this review, by entropy we always mean Shannon or absolute
entropy, unless otherwise specified. Whenever a theorem is stated, generally only the result is given
and interpreted; for detailed proofs, the reader is referred to the original papers.

2. Mathematical Formalism

2.1. Theoretical Framework

Consider a system with n state variables, x1, x2, ..., xn, which we put together as a column vector
x = (x1, ..., xn)T . Throughout this paper, x may be either deterministic or random, depending on the
context where it appears. This is a notational convention adopted in the physics literature, where
random and deterministic states for the same variable are not distinguished. (In probability theory,
they are usually distinguished with lower and upper cases like x and X.) Consider a sample space of x,
Ω ⊂ Rn. Defined on Ω is a joint probability density function (pdf) ρ = ρ(x). For convenience, assume
that ρ and its derivatives (up to an order as high as enough) are compactly supported. This makes
sense, as in the real physical world, the probability of extreme events vanishes. Thus, without loss of
generality, we may extend Ω to Rn and consider the problem on Rn, giving a joint density in L1(Rn)

and n marginal densities ρi ∈ L1(R):

ρi(xi) =
∫
Rn−1

ρ(x1, x2, ..., xn) dx1...dxi−1dxi+1...dxn, i = 1, ...n

Correspondingly, we have an entropy functional of ρ (joint entropy) in the Shannon sense

H = −
∫
Rn

ρ(x) log ρ(x) dx (1)

and n marginal entropies

Hi = −
∫
R

ρ(xi) log ρ(xi) dxi, i = 1, ..., n (2)
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Consider an n-dimensional dynamical system, autonomous or nonautonomous,

dx
dt

= F(x, t) (3)

where F = (F1, F2, ..., Fn)T is the vector field. With random inputs at the initial stage, the system
generates a continuous stochastic process {x(t), t ≥ 0}, which is what we are concerned with. In many
cases, the process may not be continuous in time (such as that generated by the baker transformation,
as mentioned in the introduction). We thence also need to consider a system in the discrete mapping
form:

x(τ + 1) = Φ(x(τ)) (4)

with τ being positiver integers. Here Φ is an n-dimensional transformation

Φ : Rn → Rn, (x1, x2, ..., xn) �→ (Φ1(x), Φ2(x), ..., Φn(x)) (5)

the counterpart of the vector field F. Again, the system is assumed to be perfect, with randomness
limited within the initial conditions. Cases with stochasticity due to model inaccuracies are deferred to
Section 5. The stochastic process thus formed is in a discrete time form {x(τ), τ}, with τ > 0 signifying
the time steps. Our formalism will be established henceforth within these frameworks.

2.2. Toward a Rigorous Formalism—A Heuristic Argument

First, let us look at the two-dimensional (2D) case originally studied by Liang and Kleeman [49]

dx1

dt
= F1(x1, x2, t) (6)

dx2

dt
= F2(x1, x2, t) (7)

This is a system of minimal dimensionality that admits information flow. Without loss of
generality, examine only the flow/transfer from x2 to x1.

Under the vector field F = (F1, F2)
T x evolves with time; correspondingly its joint pdf ρ(x) evolves,

observing a Liouville equation [50]:

∂ρ

∂t
+

∂

∂x1
(F1ρ) +

∂

∂x2
(F2ρ) = 0 (8)

As argued in the introduction, what matters here is the evolution of H1 namely the marginal entropy
of x1. For this purpose, integrate (8) with respect to x2 over R to get:

∂ρ1

∂t
+

∂

∂x1

∫
R

F1ρ dx2 = 0 (9)

Other terms vanish, thanks to the compact support assumption for ρ. Multiplication of (9) by
−(1 + log ρ1) followed by an integration over R gives the tendency of H1:

dH1

dt
=
∫
R2

[
log ρ1

∂(ρF1)

∂x1

]
dx1dx2 = −E

(
F1

ρ1

∂ρ1

∂x1

)
(10)

where E stands for mathematical expectation with respect to ρ. In the derivation, integration by parts
has been used, as well as the compact support assumption.

Now what is the rate of information flow from x2 to x1? In [49], Liang and Kleeman argue
that, as the system steers a state forward, the marginal entropy of x1 is replenished from two
different sources: one is from x1 itself, another from x2. The latter is through the very mechanism
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namely information flow/transfer. If we write the former as dH∗
1 /dt, and denote by T2→1 the rate of

information flow/transfer from x2 to x1 (T stands for “transfer”), this gives a decomposition of the
marginal entropy increase according to the underlying mechanisms:

dH1

dt
=

dH∗
1

dt
+ T2→1 (11)

Here dH1/dt is known from Equation (10). To find T2→1, one may look for dH∗
1 /dt instead. In [49],

Liang and Kleeman find that this is indeed possible, based on a heuristic argument. To see this,
multiply the Liouville Equation (8) by −(1 + log ρ), then integrate over R2. This yields an equation
governing the evolution of the joint entropy H which, after a series of manipulation, is reduced to

dH
dt

=
∫
R2

∇ · (ρ log ρF)dx1dx2 +
∫
R2

ρ∇ · Fdx1dx2

where ∇ is the divergence operator. With the assumption of compact support, the first term on the right
hand side goes to zero. Using E to indicate the operator of mathematical expectation, this becomes

dH
dt

= E (∇ · F) (12)

That is to say, the time rate of change of H is precisely equal to the mathematical expectation of the
divergence of the vector field. This remarkably concise result tells that, as a system moves on, the
change of its joint entropy is totally controlled by the contraction or expansion of the phase space of the
system. Later on, Liang and Kleeman show that this is actually a property holding for deterministic
systems of arbitrary dimensionality, even without invoking the compact assumption [51]. Moreover, it
has also been shown that, the local marginal entropy production observes a law in the similar form, if
no remote effect is taken in account [52].

With Equation (12), Liang and Kleeman argue that, apart from the complicated relations, the rate
of change of the marginal entropy H1 due to x1 only (i.e., dH∗

1 /dt as symbolized above), should be

dH∗
1

dt
= E

(
∂F1

∂x1

)
=
∫
R2

ρ
∂F1

∂x1
dx1dx2 (13)

This heuristic reasoning makes the separation (11) possible. Hence the information flows from x2 to x1

at a rate of

T2→1 =
dH1

dt
− dH∗

1
dt

= −E
(

F1

ρ1

∂ρ1

∂x1

)
− E

(
∂F1

∂x1

)
= −E

[
1
ρ1

∂(F1ρ1)

∂x1

]
= −

∫
R2

ρ2|1(x2|x1)
∂(F1ρ1)

∂x1
dx1dx2 (14)

where ρ2|1 is the conditional pdf of x2, given x1. The rate of information flow from x1 to x2, written
T1→2, can be derived in the same way. This tight formalism (called “LK2005 formalism” henceforth),
albeit based on heuristic reasoning, turns out to be very successful. The same strategy has been applied
again in a similar study by Majda and Harlim [53]. We will have a chance to see these in Sections 4
and 6.

2.3. Mathematical Formalism

The success of the LK2005 formalism is remarkable. However, its utility is limited to systems of
dimensionality 2. For an n-dimensional system with n > 2, the so-obtained Equation (14) is not the
transfer from x2 to x1, but the cumulant transfer to x1 from all other components x2, x3,..., xn. Unless
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one can screen out from Equation (14) the part contributed from x2, it seems that the formalism does
not yield the desiderata for high-dimensional systems.

To overcome the difficulty, Liang and Kleeman [48,51] observe that, the key part in Equation (14)
namely dH∗

1 /dt actually can be alternatively interpreted, for a 2D system, as the evolution of H1 with
the effect of x2 excluded. In other words, it is the tendency of H1 with x2 frozen instantaneously at
time t. To avoid confusing with dH∗

1 /dt, denote it as dH1\2/dt, with the subscript \2 signifying that the
effect of x2 is removed. In this way dH1/dt is decomposed into two disjoint parts: T2→1 namely the
rate of information flow and dH1\2/dt. The flow is then the difference between dH1/dt and dH1\2/dt:

T2→1 =
dH1

dt
− dH1\2

dt
(15)

For 2D systems, this is just a restatement of Equation (14) in another set of symbols; but for systems
with dimensionality higher than 2, they are quite different. Since the above partitioning does not have
any restraints on n, Equation (15) is applicable to systems of arbitrary dimensionality.

In the same spirit, we can formulate the information transfer for discrete systems in the form
of Equation (4). As x is mapped forth under the transformation Φ from time step τ to τ + 1,
correspondingly its density ρ is steered forward by an operator termed after Georg Frobenius and
Oskar Perron, which we will introduce later. Accordingly the entropies H, H1, and H2 also change
with time. On the interval [τ, τ + 1], let H1 be incremented by ΔH1 from τ to τ + 1. By the foregoing
argument, the evolution of H1 can be decomposed into two exclusive parts according to their driving
mechanisms, i.e., the information flow from x2, T2→1, and the evolution with the effect of x2 excluded,
written as ΔH1\2. We therefore obtain the discrete counterpart of Equation (15):

T2→1 = ΔH1 − ΔH1\2 (16)

Equations (15) and (16) give the rates of information flow/transfer from component x2 to
component x1 for systems (3) and (4), respectively. One may switch the corresponding indices to
obtain the flow between any component pair xi and xj, i �= j. In the following two sections we will be
exploring how these equations are evaluated.

3. Discrete Systems

3.1. Frobenius-Perron Operator

For discrete systems in the form of Equation (4), as x is carried forth under the transformation Φ,
there is another transformation, called Frobenius–Perron operator P (F-P operator hereafter), steering
ρ(x), i.e., the pdf of x, to Pρ (see a schematic in Figure 1). The F-P operator governs the evolution of
the density of x.

A rigorous definition requires some ingredients of measure theory which is beyond the scope this
review, and the reader may consult with the reference [50]. Loosely speaking, given a transformation
Φ : Ω → Ω (in this review, Ω = Rn), x �→ Φx, it is a mapping P : L1(Ωn) → L1(Ωn), ρ �→ Pρ,
such that ∫

ω
Pρ(x)dx =

∫
Φ−1(ω)

ρ(x)dx (17)

for any ω ⊂ Ω. If Φ is nonsingular and invertible, it actually can be explicitly evaluated. Making
transformation y = Φ(x), the right hand side is, in this case,∫

Φ−1(ω)
ρ(x) dx =

∫
ω

ρ
[
Φ−1(y)

]
·
∣∣∣J−1

∣∣∣ dy

301



Entropy 2013, 15, 327–360

where J is the Jacobian of Φ:

J = det
[

∂(y1, y2, ..., yn)

∂(x1, x2, ..., xn)

]
and J−1 its inverse. Since ω is arbitrarily chosen, we have

Pρ(x) = ρ
[
Φ−1(x)

]
·
∣∣∣J−1

∣∣∣ (18)

If no nonsingularity is assumed for the transformation Φ, but the sample space Ω is in a Cartesian
product form, as is for this review, the F-P operator can also be evaluated, though not in an explicit
form. Consider a domain

ω = [a1, x1]× [a2, x2]× ... × [an, xn]

where a = (a1, ..., an) is some constant point (usually can be set to be the origin). Let the counterimage
of ω be Φ−1(ω), then it has been proved (c.f. [50]) that

Pρ(x) =
∂n

∂xn...∂x2∂x1

∫
Φ−1(ω)

ρ(ξ1, ξ2, ..., ξn) dξ1dξ2...dξn

In this review, we consider a sample space Rn, so essentially all the F-P operators can be calculated
this way.

x

ρ(  )

xρ(  )P

P

x

Φ

Φ

x

Figure 1. Illustration of the Frobenius-Perron operator P , which takes ρ(x) to Pρ(x) as Φ takes x to Φx.

3.2. Information Flow

The F-P operator P allows for an evaluation of the change of entropy as the system evolves forth.
By the formalism (16) , we need to examine how the marginal entropy changes on a time interval
[τ, τ + 1]. Without loss of generality, consider only the flow from x2 to x1. First look at increase of H1.
Let ρ be the joint density at step τ, then the joint density at step τ + 1 is Pρ, and hence

ΔH1 = H1(τ + 1)− H1(τ)

= −
∫
R
(Pρ)1(y1) · log(Pρ)1(y1) dy1 +

∫
R

ρ1(x1) · log ρ1(x1) dx1 (19)

Here (Pρ)1 means the marginal density of x1 at τ + 1; it is equal to Pρ with all components of x but x1

being integrated out. The independent variables with respect to which the integrations are taken are
dummy; but for the sake of clarity, we use different notations, i.e., x and y, for them at time step τ and
τ + 1, respectively.

The key to the formalism (16) is the finding of

ΔH1\2 = H1\2(τ + 1)− H1(τ) (20)
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namely the increment of the marginal entropy of x1 on [τ, τ + 1] with the contribution from x2 excluded.
Here the system in question is no longer Equation (4), but a system with a mapping modified from Φ:

Φ\2 :

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
y1 = Φ1(x1, x2, x3, ..., xn)

y3 = Φ3(x1, x2, x3, ..., xn)
...

...
yn = Φn(x1, x2, x3, ..., xn)

(21)

with x2 frozen instantaneously at τ as a parameter. Again, we use xi = xi(τ), yi = Φ(x(τ)) =

xi(τ + 1), i = 1, ..., n, to indicate the state variables at steps τ and τ + 1, respectively, to avoid any
possible confusion. In the mean time, the dependence on τ and τ + 1 are suppressed for notational
economy. Corresponding to the modified transformation Φ\2 is a modified F-P operator, written P\2. To
find H1\2(τ + 1), examine the quantity h = − log(P\2ρ)1(y1), where the subscript 1 indicates that this is
a marginal density of the first component, and the dependence on y1 tells that this is evaluated at step
τ + 1. Recall how Shannon entropy is defined: H1\2(τ + 1) is essentially the mathematical expectation,
or “average” in loose language, of h. More specifically, it is h multiplied with some pdf followed by an
integration over Rn, i.e., the corresponding sample space. The pdf is composed of several different
factors. The first is, of course, (P\2ρ)1(y1). But h, as well as (P\2ρ)1, also has dependence on x2, which
is embedded within the subscript \2. Recall how x2 is treated during [τ, τ + 1]: It is frozen at step
τ and kept on as a parameter, given all other components at τ. Therefore, the second part of the
density is ρ(x2|x1, x3, ..., xn), i.e., the conditional density of x2 on x1, x3, ..., xn. (Note again that xi means
variables at time step τ.) This factor introduces extra dependencies: x3, x4, ..., xn (that of x1 is embedded
in y1), which must also be averaged out, so the third factor of the density is ρ3...n(x3, ..., xn) namely the
joint density of (x3, x4, ..., xn). Put all these together,

H1\2(τ + 1) = −
∫
Rn
(P\2ρ)1(y1) · log(P\2ρ)1(y1) · ρ(x2|x1, x3, ..., xn)

·ρ3...n(x3, ..., xn) dy1dx2dx3...dxn (22)

Subtraction of H1\2(τ + 1) − H1(τ) from Equation (19) gives, eventually, the rate of information
flow/transfer from x2 to x1:

T2→1 = −
∫
R
(Pρ)1(y1) · log(Pρ)1(y1) dy1

+
∫
Rn
(P\2ρ)1(y1) · log(P\2ρ)1(y1) · ρ(x2|x1, x3, ..., xn)·
ρ3...n(x3, ..., xn) dy1dx2dx3...dxn (23)

Notice that the conditional density of x2 is on x1, not on y1. (x1 and y1 are the same state variable
evaluated at different time steps, and are connected via y1 = Φ1(x1, x2, ..., xn).

Likewise, it is easy to obtain the information flow between any pair of components. If, for example,
we are concerned with the flow from xj to xi (i, j = 1, 2, ..., n, i �= j), replacement of the indices 1 and 2
in Equation (23) respectively with i and j gives

Tj→i = −
∫
R
(Pρ)i(yi) · log(Pρ)i(yi) dyi

+
∫
Rn
(P\jρ)i(yi) · log(P\jρ)1(yi) · ρ(xj | x1, x2, ..., xj−1, xj+1, ..., xn)·
ρ\i\j dx1dx2...dxi−1dyidxi+1...dxn (24)
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Here the subscript \j of P means the F-P operator with the effect of the jth component excluded through
freezing it instantaneously as a parameter. We have also abused the notation a little bit for the density
function to indicate the marginalization of that component. That is to say,

ρ\i = ρ\i(x1, ..., xi−1, xi+1, ..., xn) =
∫
R

ρ(x) dxi (25)

and ρ\i\j is the density after being marginalized twice, with respect to xi and xj. To avoid this
potential notation complexity, alternatively, one may reorganize the order of the components of
the vector x = (x1, ..., xn)T such that the pair appears in the first two slots, and modify the mapping Φ
accordingly. In this case, the flow/transfer is precisely the same in form as Equation (23). Equations (23)
and (24) can be evaluated explicitly for systems that are definitely specified. In the following sections
we will see several concrete examples.

3.3. Properties

The information flow obtained in Equations (23) or (24) has some nice properties. The first is a
concretization of the transfer asymmetry emphasized by Schreiber [47] (as mentioned in the
introduction), and the second a special property for 2D systems.

Theorem 3.1. For the system Equation (4), if Φi is independent of xj, then Tj→i = 0 (in the mean time, Ti→j
need not be zero).

The proof is rather technically involved; the reader is referred to [48] for details. This theorem states
that, if the evolution of xi has nothing to do with xj, then there will be no information flowing from xj
to xi. This is in agreement with observations, and with what one would argue on physical grounds.
On the other hand, the vanishing Tj→i yields no clue on Ti→j, i.e., the flow from xi to xj need not be
zero in the mean time, unless Φj does not rely on xi. This is indicative of a very important physical
fact: information flow between a component pair is not symmetric, in contrast to the notion of mutual
information ever existing in information theory. As emphasized by Schreiber [47], a faithful formalism
must be able to recover this asymmetry. The theorem shows that our formalism yields precisely what
is expected. Since transfer asymmetry is a reflection of causality, the above theorem is also referred to
as property of causality by Liang and Kleeman [48].

Theorem 3.2. For the system Equation (4), if n = 2 and Φ1 is invertible, then T2→1 = ΔH1 − E log |J1|,
where J1 = ∂Φ1/∂x1.

A brief proof will help to gain better understanding of the theorem. If n = 2, the modified system has
a mapping Φ\2 which is simply Φ1 with x2 as a parameter. Equation (22) is thus reduced to

H1\2(τ + 1) = −
∫
R2
(P\2ρ)1(y1) · log(P\2ρ)1(y1) · ρ(x2|x1) dy1dx2

where y1 = Φ1(x1, x2), and (P\2ρ)1 the marginal density of x1 evolving from ρ\2 = ρ1 upon one

transformation of Φ\2 = Φ1. By assumption Φ1 is invertible, that is to say, J1 = ∂Φ1
∂x1

�= 0. The F-P
operator hence can be explicitly written out:

(P\2ρ)1(y1) = ρ
[
Φ−1

1 (y1, x2)
]
·
∣∣∣J−1

1

∣∣∣
= ρ1(x1)

∣∣∣J−1
1

∣∣∣ (26)

So

ΔH1\2 = H1\2(τ + 1)− H1(τ)
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= −
∫
R2

ρ1(x1)
∣∣∣J−1

1

∣∣∣ log
(

ρ1(x1)
∣∣∣J−1

1

∣∣∣) ρ(x2|x1) |J1| dx1dx2 +
∫
R

ρ1 log ρ1 dx1

= −
∫
R2

ρ1(x1) ρ(x2|x1) log
∣∣∣J−1

1

∣∣∣ dx1dx2

=
∫
R2

ρ(x1, x2) log |J1| dx1dx2

= E log |J1| (27)

The conclusion follows subsequently from Equation (16).
The above theorem actually states another interesting fact that parallels what we introduced

previously in §2.2 via heuristic reasoning. To see this, reconsider the mapping Φ : Rn → Rn, x �→ x. Let
Φ be nonsingular and invertible. By Equation (18), the F-P operator of the joint pdf ρ can be explicitly
evaluated. Accordingly, the entropy increases, as time moves from step τ to step τ + 1, by

ΔH = −
∫
Rn

Pρ(x) logPρ(x) dx +
∫
Rn

ρ(x) log ρ(x) dx

= −
∫
Rn

ρ
[
Φ−1(x)

] ∣∣∣J−1
∣∣∣ log ρ

[
Φ−1(x)

] ∣∣∣J−1
∣∣∣ dx +

∫
Rn

ρ(x) log ρ(x) dx

After some manipulation (see [48] for details), this is reduced to

ΔH = E log |J| (28)

This is the discrete counterpart of Equation (12), yet another remarkably concise formula. Now, if the
system in question is 2-dimensional, then, as argued in §2.2, the information flow from x2 to x1 should
be ΔH1 − ΔH∗

1 , with ΔH∗
1 being the marginal entropy increase due to x1 itself. Furthermore, if Φ1 is

nonsingular and invertible, then Equation (28) tells us it must be that

ΔH∗
1 = E log |J1|

and this is precisely what Theorem 3.2 reads.

4. Continuous Systems

For continuous systems in the form of Equation (3), we may take advantage of what we already
have from the previous section to obtain the information flow. Without loss of generality, consider
only the flow/transfer from x2 to x1, T2→1. We adopt the following strategy to fulfill the task:

• Discretize the continuous system in time on [t, t + Δt], and construct a mapping Φ to take x(t) to
x(t + Δt);

• Freeze x2 in Φ throughout [t, t + Δt] to obtain a modified mapping Φ\2;
• Compute the marginal entropy change ΔH1 as Φ steers the system from t to t + Δt;
• Derive the marginal entropy change ΔH1\2 as Φ\2 steers the modified system from t to t + Δt;
• Take the limit

T2→1 = lim
Δt→0

ΔH1 − ΔH1\2
Δt

to arrive at the desiderata.

4.1. Discretization of the Continuous System

As the first step, construct out of Equation (3) an n-dimensional discrete system, which steers
x(t) = (x1, x2, ..., xn) to x(t + Δt). To avoid any confusion that may arise, x(t + Δt) will be
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denoted as y = (y1, y2, ..., yn) hereafter. Discretization of Equation (3) results in a mapping, to the first
order of Δt, Φ = (Φ1, Φ2, ..., Φn): Rn → Rn, x �→ y:

Φ :

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
y1 = x1 + Δt · F1(x)
y2 = x2 + Δt · F2(x)
...

...
yn = xn + Δt · Fn(x)

(29)

Clearly, this mapping is always invertible so long as Δt is small enough. In fact, we have

Φ−1 :

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
x1 = y1 − Δt · F1(y) + O(Δt2)

x2 = y2 − Δt · F2(y) + O(Δt2)
...

...
xn = yn − Δt · Fn(y) + O(Δt2)

(30)

to the first order of Δt. Furthermore, its Jacobian J is

J = det
[

∂(y1, y2, ..., yn)

∂(x1, x2, ..., xn)

]
= ∏

i

(
1 + Δt

∂Fi
∂xi

)
+ O(Δt2)

= 1 + Δt
n

∑
i=1

∂Fi
∂xi

+ O(Δt2) (31)

Likewise, it is easy to get

J−1 = = det
[

∂(x1, x2, ..., xn)

∂(y1, y2, ..., yn)

]
= 1 − Δt

n

∑
i=1

∂Fi
∂xi

+ O(Δt2) (32)

This makes it possible to evaluate the F-P operator associated with Φ. By Equation (18),

Pρ(y1, ..., yn) = ρ
(

Φ−1(y1, ...yn)
) ∣∣∣J−1

∣∣∣
= ρ(x1, x2, ..., xn) · |1 − Δt∇ · F|+ O(Δt2) (33)

Here ∇ · F = ∑i
∂Fi
∂x1

; we have suppressed its dependence on x to simplify the notation.
As an aside, the explicit evaluation (31), and subsequently (32) and (33), actually can be utilized

to arrive at the important entropy evolution law (12) without invoking any assumptions. To see this,
recall that ΔH = E log |J| by Equation (28). Let Δt go to zero to get

dH
dt

= lim
Δt→0

ΔH
Δt

= E lim
Δt→0

1
Δt

log
(

1 + Δt∇ · F + O(Δt2)
)

which is the very result E(∇ · F), just as one may expect.

4.2. Information Flow

To compute the information flow T2→1, we need to know dH1/dt and dH1\2/dt. The former is
easy to find from the Liouville equation associated with Equation (3), i.e.,

∂ρ

∂t
+

∂(F1ρ)

∂x1
+

∂(F2ρ)

∂x2
+ ... +

∂(Fnρ)

∂xn
= 0 (34)
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following the same derivation as that in §2.2:

dH1

dt
=
∫
Rn

log ρ1
∂(F1ρ)

∂x1
dx (35)

The challenge lies in the evaluation of dH1\2/dt. We summarize the result in the following proposition:

Proposition 4.1. For the dynamical system (3), the rate of change of the marginal entropy of x1 with the effect
of x2 instantaneously excluded is:

dH1\2
dt

=
∫
Rn
(1 + log ρ1) ·

∂(F1ρ\2)
∂x1

· Θ2|1 dx +∫
Rn

ρ1 log ρ1 · F1 ·
∂(ρ/ρ\2)

∂x1
· ρ\1\2 dx (36)

where

θ2|1 = θ2|1(x1, x2, x3, ..., xn) =
ρ

ρ\2
ρ\1\2 (37)

Θ2|1 =
∫

Ω
Rn−2

θ2|1(x) dx3...dxn (38)

and ρ\2 =
∫
R

ρ dx2, ρ\1\2 =
∫
R2 ρ dx1dx2 are the densities after marginalized with x2 and (x1, x2), respectively.

The proof is rather technically involved; for details, see [51], section 5.
With the above result, subtract dH1\2/dt from dH1/dt and one obtains the flow rate from x2 to

x1. Likewise, the information flow between any component pair (xi, xj), i, j = 1, 2, ..., n; i �= j, can be
obtained henceforth.

Theorem 4.1. For the dynamical system (3), the rate of information flow from xj to xi is

Tj→i =
∫

Ω
(1 + log ρi)

(
∂(Fiρ)

∂xi
− ∂(Fiρ\j)

∂xi
· Θj|i

)
dx

+
∫

Ω

∂(Fiρi log ρi)

∂xi
· θj|i dx (39)

where

θj|i = θj|i(x) =
ρ

ρ\j
ρ\i\j (40)

ρ\i =
∫
R

ρ(x) dxi (41)

ρ\i\j =
∫
R2

ρ(x) dxidxj (42)

Θj|i = Θj|i(xi, xj) =
∫
Rn−2

θj|i(x) ∏
ν �=i,j

dxν (43)

In this formula, Θj|i reminds one of the conditional density xj on xi, and, if n = 2, it is indeed so. We
may therefore call it the “generalized conditional density” of xj on xi.

4.3. Properties

Recall that, as we argue in §2.2 based on the entropy evolution law (12), the time rate of change of
the marginal entropy of a component, say x1, due to its own reason, is dH∗

1 /dt = E(∂F1/∂x1). Since
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for a 2D system, dH∗
1 /dt is precisely dH1\2/dt, we expect that the above formalism (36) or (39) verifies

this result.

Theorem 4.2. If the system (3) has a dimensionality 2, then

dH1\2
dt

= E
(

∂F1

∂x1

)
(44)

and hence the rate of information flow from x2 to x1 is

T2→1 = −E
[

1
ρ1

∂(F1ρ1)

∂x1

]
(45)

What makes a 2D system so special is that, when n = 2, ρ\2 = ρ1, and Θ2|1 is just the conditional
distribution of x2 given x1, ρ/ρ1 = ρ(x2|x1). Equation (36) can thereby be greatly simplified:

dH1\2
dt

=
∫
Rn
(1 + log ρ1)

∂F1ρ1

∂x1
· ρ

ρ1
dx +

∫
Rn

ρ1 log ρ1 · F1 · ∂ρ(x2|x1)

∂x1
dx

=
∫
Rn

∂(F1ρ1)

∂x1

ρ

ρ1
dx +

∫
Rn

log ρ1 · ∂(F1ρ)

∂x1
dx

=
∫
Rn

ρ

(
∂F1

∂x1

)
dx = E

(
∂F1

∂x1

)
(46)

Subtract this from what has been obtained above for dH1/dt, and we get an information flow just as
that in Equation (14) via heuristic argument.

As in the discrete case, one important property that Tj→i must possess is transfer asymmetry,
which has been emphasized previously, particularly by Schreiber [47]. The following is a concretization
of the argument.

Theorem 4.3. (Causality) For system (3), if Fi is independent of xj, then Tj→i = 0; in the mean time, Ti→j
need not vanish, unless Fj has no dependence on xi.

Look at the right-hand side of the formula (39). Given that (1 + log ρi) and ρ\j, as well as Fi (by
assumption), are independent of xj, the integration with respect to xj can be taken within the multiple
integrals. Consider the second integral first. All the variables except θj|i have dependence on xj. But∫

θj|idxj = 1, so the whole term is equal to
∫
Rn−1

∂(Fiρi log ρi)
∂xi

dx1...dxj−1dxj+1...dxn which vanishes by
the assumption of compact support. For the first integral, move the integration with respect to xj into
the parentheses, as the factor outside has nothing to do with xj. This integration yields

∫
R

∂(Fiρ)

∂xi
dxj −

∫
R

∂(Fiρ\j)
∂xi

· Θj|idxj

=
∫
Rn−1

[
∂

∂xi

(
Fi

∫
ρdxj

)
− ∂

∂xi
(Fiρ\j) ·

∫
Θj|idxj

]
dx1...dxj−1dxj+1...dxn

= 0

because
∫

ρdxj = ρ\j and
∫

Θj|idxj = 1. For all that account, both the two integrals on the right-hand
side of Equation (39) vanish, leaving a zero flow of information from xj to xi. Notice that this vanishing
Tj→i gives no hint on the flow in the opposite direction. In other words, this kind of flow or transfer
is not symmetric, reflecting the causal relation between the component pair. As Theorem 3.1 is for
discrete systems, Theorem 4.3 is the property of causality for continuous systems.
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5. Stochastic Systems

So far, all the systems considered are deterministic. In this section we turn to systems with
stochasticity included. Consider the stochastic counterpart of Equation (3)

dx = F(x, t)dt + B(x, t)dw (47)

where w is a vector of standard Wiener processes, and B = (bij) the matrix of perturbation amplitudes.
In this section, we limit our discussion to 2D systems, and hence have only two flows/transfers to
discuss. Without loss of generality, consider only T2→1, i.e., the rate of flow/transfer from x2 to x1.

As before, we first need to find the time rate of change of H1, the marginal entropy of x1. This
can be easily derived from the density evolution equation corresponding to Equation (47), i.e., the
Fokker-Planck equation:

∂ρ

∂t
+

∂(F1ρ)

∂x1
+

∂(F2ρ)

∂x2
=

1
2

2

∑
i,j=1

∂2(gijρ)

∂xi∂xj
(48)

where gij = gji = ∑2
k=1 bikbjk, i, j = 1, 2. This integrated over R with respect to x2 gives the evolution

of ρ1:

∂ρ1

∂t
+
∫
R

∂(F1ρ)

∂x1
dx2 =

1
2

∫
R

∂2(g11ρ)

∂x2
1

dx2 (49)

Multiply (49) by −(1 + log ρ1), and integrate with respect to x1 over R. After some manipulation, one
obtains, using the compact support assumption,

dH1

dt
= −E

(
F1

∂ log ρ1

∂x1

)
− 1

2
E

(
g11

∂2 log ρ1

∂x2
1

)
(50)

where E is the mathematical expectation with respect to ρ.
Again, the key to the formalism is the finding of dH1\2/dt. For stochastic systems, this could be

a challenging task. The major challenge is that we cannot obtain an F-P operator as nice as that in
the previous section for the map resulting from discretization. In early days, Majda and Harlim [53]
have tried our heuristic argument in §2.2 to consider a special system modeling the atmosphere–ocean
interaction, which is in the form

dx1 = F1(x1, x2)dt

dx2 = F2(x1, x2)dt + b22dw2

Their purpose is to find T2→1 namely the information transfer from x2 to x1. In this case, since the
governing equation for x1 is deterministic, the result is precisely the same as that of LK05, which is
shown in in §2.2. The problem here is that the approach cannot be extended even to finding T1→2, since
the nice law on which the argument is based, i.e., Equation (12), does not hold for stochastic processes.

Liang (2008) [54] adopted a different approach to give this problem a solution. As in the previous
section, the general strategy is also to discretize the system in time, modify the discretized system with
x2 frozen as a parameter on an interval [t, t + Δt], and then let Δt go to zero and take the limit. But this
time no operator analogous to the F-P operator is sought; instead, we discretize the Fokker–Planck
equation and expand x1\2(t+Δt), namely the first component at t + Δt with x2 frozen at t, using the
Euler–Bernstein approximation. The complete derivation is beyond the scope of this review; the reader
is referred to [54] for details. In the following, the final result is supplied in the form of a proposition.
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Proposition 5.1. For the 2D stochastic system (47), the time change of the marginal entropy of x1 with the
contribution from x2 excluded is

dH1\2
dt

= E
(

∂F1

∂x1

)
− 1

2
E

(
g11

∂2 log ρ1

∂x2
1

)
− 1

2
E

(
1
ρ1

∂2(g11ρ1)

∂x2
1

)
(51)

In the equation, the second and the third terms on the right hand side are from the stochastic
perturbation. The first term, as one may recall, is precisely the result of Theorem 4.2. The heuristic
argument for 2D systems in Equation (13) is successfully recovered here. With this the rate of
information flow can be easily obtained by subtracting dH1\2/dt from dH1/dt.

Theorem 5.1. For the 2D stochastic system (47), the rate of information flow from x2 to x1 is

T2→1 = −E
(

1
ρ1

∂(F1ρ1)

∂x1

)
+

1
2

E

(
1
ρ1

∂2(g11ρ1)

∂x2
1

)
(52)

where E is the expectation with respect to ρ(x1, x2).

It has been a routine to check for the obtained flow the property of causality or asymmetry. Here
in Equation (52), the first term on the right hand side is from the deterministic part of the system,
which has been checked before. For the second term, if b11, b12, and hence g11 = ∑k b1kb1k have no
dependence on x2, then the integration with respect to x2 can be taken inside with ρ/ρ1 or ρ(x2|x1),
and results in 1. The remaining part is in a divergence form, which, by the assumption of compact
support, gives a zero contribution from the stochastic perturbation. We therefore have the following
theorem:

Theorem 5.2. If, in the stochastic system (47), the evolution of x1 is independent of x2, then T2→1 = 0.

The above argument actually has more implications. Suppose B = (bij) are independent of x, i.e., the
noises are uncorrelated with the state variables. This model is indeed of interest, as in the real world, a
large portion of noises are additive; in other words, bij, and hence gij, are constant more often than
not. In this case, no matter what the vector field F is, by the above argument the resulting information
flows within the system will involve no contribution from the stochastic perturbation. That is to say,

Theorem 5.3. Within a stochastic system, if the noise is additive, then the information flows are the same in
form as that of the corresponding deterministic system.

This theorem shows that, if only information flows are considered, a stochastic system with additive
noise functions just like deterministic. Of course, the resemblance is limited to the form of formula; the
marginal density ρ1 in Equation (52) already takes into account the effect of stochasticity, as can be
seen from the integrated Fokker–Planck Equation (49). A more appropriate statement might be that,
for this case, stochasticity is disguised within the formula of information flow.

6. Applications

Since its establishment, the formalism of information flow has been applied with a variety of
dynamical system problems. In the following we give a brief description of these applications.

6.1. Baker Transformation

The baker transformation as a prototype of an area-conserving chaotic map is one of the most
studied discrete dynamical systems. Topologically it is conjugate to another well-studied system, the
horseshoe map, and has been be used to model the diffusion process in real physical world.
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The baker transformation mimicks the kneading of dough: first the dough is compressed, then
cut in half; the two halves are stacked on one another, compressed, and so forth. Formally, it is defined
as a mapping on the unit square Ω = [0, 1]× [0, 1], Φ : Ω → Ω,

Φ(x1, x2) =

{
(2x1, x2

2 ), 0 ≤ x1 ≤ 1
2 , 0 ≤ x2 ≤ 1

(2x1 − 1, 1
2 x2 +

1
2 ),

1
2 < x1 ≤ 1, 0 ≤ x2 ≤ 1

(53)

with a Jacobian J = det
[

∂(Φ1(x),Φ2(x))
∂(x1,x2)

]
= 1. This is the area-conserving property, which, by

Equation (28) yields ΔH = E log |J| = 0; that is to say, the entropy is also conserved. The
nonvanishing Jacobian implies that it is invertible; in fact, it has an inverse

Φ−1(x1, x2) =

{
( x1

2 , 2x2), 0 ≤ x2 ≤ 1
2 , 0 ≤ x1 ≤ 1

( x1+1
2 , 2x2 − 1), 1

2 ≤ x2 ≤ 1, 0 ≤ x1 ≤ 1
(54)

Thus the F-P operator P can be easily found

Pρ(x1, x2) = ρ
[
Φ−1(x1, x2)

]
·
∣∣∣J−1

∣∣∣ = {
ρ( x1

2 , 2x2), 0 ≤ x2 < 1
2

ρ( 1+x1
2 , 2x2 − 1), 1

2 ≤ x2 ≤ 1
(55)

First compute T2→1, the information flow from x2 to x1. Let ρ1 be the marginal density of x1 at time
step τ. Taking integration of Equation (55) with respect to x2, one obtains the marginal density of x1 at
τ + 1

(Pρ)1(x1) =
∫ 1/2

0
ρ(

x1

2
, 2x2) dx2 +

∫ 1

1/2
ρ(

x1 + 1
2

, 2x2 − 1) dx2

=
1
2

∫ 1

0

[
ρ
( x1

2
, x2

)
+ ρ

(
x1 + 1

2
, x2

)]
dx2

=
1
2

[
ρ1

( x1

2

)
+ ρ1

(
x1 + 1

2

)]
(56)

One may also compute the marginal entropy H1(τ + 1), which is an entropy functional of (Pρ)1.
However, here it is not necessary, as will soon become clear.

If, on the other hand, x2 is frozen as a parameter, the transformation (53) then reduces to a dyadic
mapping in the stretching direction, Φ1 : [0, 1] → [0, 1], Φ1(x1) = 2x1 (mod 1). For any 0 < x1 < 1,
The counterimage of [0, x1] is

Φ−1([0, x1]) =
[
0,

x1

2

]
∪
[

1
2

,
1 + x1

2

]
So

(P\2ρ)1(x1) =
∂

∂x1

∫
Φ−1([0,x1])

ρ(s) ds

=
∂

∂x1

∫ x1/2

0
ρ(s) ds +

∂

∂x1

∫ (1+x1)/2

1/2
ρ(s) ds

=
1
2

[
ρ
( x1

2

)
+ ρ

(
1 + x1

2

)]
Two observations: (1) This result is exactly the same as Equation (56), i.e., (P\2ρ)1 is equal to (Pρ)1.
(2) The resulting (P\2ρ)1 has no dependence on the parameter x2. The latter helps to simplify the
computation of H1\2(τ + 1) in Equation (22): Now the integration with respect to x2 can be taken
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inside, giving
∫

ρ(x2|x1)dx2 = 1. So H1\2(τ + 1) is precisely the entropy functional of (P\2ρ)1. But
(P\2ρ)1 = (Pρ)1 by observation (1). Thus H1(τ + 1) = H1\2(τ + 1), leading to a flow/transfer

T2→1 = 0 (57)

The information flow in the opposite direction is different. As above, first compute the
marginal density

(Pρ)2(x2) =
∫ 1

0
Pρ(x1, x2) dx1 =

{ ∫ 1
0 ρ

( x1
2 , 2x2

)
dx1, 0 ≤ x2 < 1

2∫ 1
0 ρ

(
x1+1

2 , 2x2 − 1
)

dx1, 1
2 ≤ x2 ≤ 1

(58)

The marginal entropy increase of x2 is then

ΔH2 = −
∫ 1

0

∫ 1

0
Pρ(x1, x2) ·

[
log

(∫ 1

0
Pρ(λ, x2)dλ

)]
dx1dx2

+
∫ 1

0

∫ 1

0
ρ(x1, x2) ·

[
log

(∫ 1

0
ρ(λ, x2)dλ

)]
dx1dx2, (59)

which is reduced to, after some algebraic manipulation,

ΔH2 = − log 2 + (I + I I) (60)

where

I =
∫ 1

0

∫ 1/2

0
ρ(x1, x2) ·

[
log

∫ 1
0 ρ(λ, x2)dλ∫ 1/2

0 ρ(λ, x2)dλ

]
dx1dx2 (61)

I I =
∫ 1

0

∫ 1

1/2
ρ(x1, x2) ·

[
log

∫ 1
0 ρ(λ, x2)dλ∫ 1

1/2 ρ(λ, x2)dλ

]
dx1dx2 (62)

To compute H2\1, freeze x1. The transformation is invertible and the Jacobian J2 is equal to a constant 1
2 .

By Theorem 3.2,

ΔH2\1 = E log
1
2
= − log 2 (63)

So,

T1→2 = ΔH2 − ΔH2\1 = I + I I (64)

In the expressions for I and I I, since both ρ and the terms within the brackets are nonnegative,
I + I I ≥ 0. Furthermore, the two brackets cannot vanish simultaneously, hence I + I I > 0. By
Equation (64) T1→2 is strictly positive; in other words, there is always information flowing from x1 to
x2.

To summarize, the baker transformation transfers information asymmetrically between the two
directions x1 and x2. As the baker stretches the dough, and folds back on top the other, information
flows continuously from the stretching direction x1 to the folding direction x2 (T1→2 > 0), while no
transfer occurs in the opposite direction (T2→1 = 0). These results are schematically illustrated in
Figure 2; they are in agreement with what one would observe in daily life, as described in the beginning
of this review.
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Figure 2. Illustration of the unidirectional information flow within the baker transformation.

6.2. Hénon Map

The Hénon map is another most studied discrete dynamical systems that exhibit chaotic behavior.
Introduced by Michel Hénon as a simplified Poincaré section of the Lorenz system, it is a mapping
Φ = (Φ1, Φ2) : R2 �→ R2 defined such that{

Φ1(x1, x2) = 1 + x2 − ax2
1

Φ2(x1, x2) = bx1
(65)

with a > 0, b > 0. When a = 1.4, b = 0.3, the map is termed “canonical,” for which initially a point will
either diverge to infinity, or approach an invariant set known as the Hénon strange attractor. Shown in
Figure 3 is the attractor.

Like the baker transformation, the Hénon map is invertible, with an inverse

Φ−1(x1, x2) =
( x2

b
, x1 − 1 +

a
b2 x2

2

)
(66)

The F-P operator thus can be easily found from Equation (18):

Pρ(x1, x2) = ρ(Φ−1(x1, x2))|J−1|
=

1
b
· ρ
( x2

b
, x1 − 1 +

a
b2 x2

2

)
(67)

In the following, we compute the flows/transfers between x1 and x2.

−1.5 −1 −0.5 0 0.5 1 1.5
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

x
1

x 2

Figure 3. A trajectory of the canonical Hénon map (a = 1.4, b = 0.3) starting at (x1, x2) = (1, 0).
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First, consider T2→1, i.e., the flow from the linear component x2 to the quadratic component x1.
By Equation (23), we need to find the marginal density of x1 at step τ + 1 with and without the effect
of x2, i.e., (Pρ)1 and (Pρ)1\2. With the F-P operator obtained above, (Pρ)1 is

(Pρ)1(x1) =
∫
R
Pρ(x1, x2) dx2

=
∫
R

1
b
· ρ
( x2

b
, x1 − 1 +

a
b

x2
2

)
dx2

=
∫
R

ρ(η, x1 − 1 + aη2) dη (x2/b ≡ η)

If a = 0, this integral would be equal to ρ2(x1 − 1). Note it is the marginal density of x2, but the
argument is x1 − 1. But here a > 0, the integration is taken along a parabolic curve rather than a
straight line. Still the final result will be related to the marginal density of x2; we may as well write it
ρ̃2(x1), that is

(Pρ)1(x1) = ρ̃2(x1) (68)

Again, notice that the argument is x1.
To compute (P\2ρ)1, let

y1 ≡ Φ1(x1) = 1 + x2 − ax2
1

following our convention to distinguish variables at different steps. Modify the system so that x2 is
now a parameter. As before, we need to find the counterimage of (−∞, y1] under the transformation
with x2 frozen:

Φ−1
1 ((−∞, y1]) =

(
−∞, −

√
(1 + x2 − y1)/a

]
∪
[√

(1 + x2 − y1)/a, ∞
)

Therefore,

(P\2ρ)1(y1) =
d

dy1

∫
Φ−1

1 ((−∞,y1])
ρ1(s) ds

=
d

dy1

∫ −
√

(1+x2−y1)/a

−∞
ρ1(s) ds +

d
dy1

∫ ∞
√

(1+x2−y1)/a
ρ1(s) ds

=
1

2
√

a(1 + x2 − y1)

[
ρ1

(
−
√
(1 + x2 − y1)/a

)
+ ρ1

(√
(1 + x2 − y1)/a

)]
(y1 < 1 + x2)

=
1

2a|x1| [ρ1(−x1) + ρ1(x1)] . (recall y1 = 1 + x2 − ax2
1)

Denote the average of ρ1(−x1) and ρ1(x1) as ρ̄1(x1) to make an even function of x1. Then (P\2ρ)1

is simply

(P\2ρ)1(y1) =
ρ̄1(x1)

a|x1| (69)

Note that the parameter x2 does not appear in the arguments. Furthermore, J1 = det
(

∂Φ1
∂x1

)
= −2ax1.

Substitute all the above into Equation (23) to get

T2→1 = −
∫
R
(Pρ)1(x1) · log(Pρ)1(x1) dx1
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+
∫
R2
(P\2ρ)1(y1) log(Pρ)1\2(y1) · ρ(x2|x1) · |J1| dx1dx2

= −
∫
R

ρ̃2(x1) log ρ̃2(x1) dx1

+
∫
R

ρ̄1(x1)

a|x1| log
ρ̄1(x1)

a|x1| · |−2ax1| ·
[∫

R
ρ(x2|x1)dx2

]
dx1

The taking of the integration with respect to x2 inside the integral is legal since all the terms except the
conditional density are independent of x2. With the fact

∫
R

ρ(x2|x1)dx2 = 1, and the introduction of
notations H̃ and H̄ for the entropy functionals of ρ̃ and ρ̄, respectively, we have

T2→1 = H̃2 − 2H̄1 − log |ax1| (70)

Next, consider T1→2, the flow from the quadratic component to the linear component. As a common
practice, one may start off by computing (Pρ)2 and (P\1ρ)2. However, in this case, things can be much
simplified. Observe that, for the modified system with x1 frozen as a parameter, the Jacobian of the
transformation J2 = det

[
∂Φ2
∂x2

]
= 0. So, by Equation (24),

T1→2 = −
∫
R
(Pρ)2(x2) · log(Pρ)2(x2) dx2

+
∫
R
(P\1ρ)2(y2) · log(P\1ρ)2(y2) · ρ(x1|x2) · |J2| dx1dx2,

(y2 ≡ Φ2(x1, x2))

= −
∫
R
(Pρ)2(x2) · log(Pρ)2(x2) dx2

with Equation (67), the marginal density

(Pρ)2(x2) =
∫
R
Pρ(x1, x2) dx1

=
∫
R

1
b

ρ

(
x2

b
, x1 − 1 + a

x2
2

b2

)
dx1

=
1
b

∫
R

ρ(y, ξ) dξ =
1
b

ρ1

( x2

b

)
allowing us to arrive at an information flow from x1 to x2 in the amount of:

T1→2 = −
∫
R

1
b

ρ1

( x2

b

)
· log

[
1
b

ρ1

( x2

b

)]
dx2

= H1 + log b (71)

That is to say, the flow from x1 to x2 has nothing to do with x2; it is equal to the marginal entropy of x1,
plus a correction term due to the factor b.

The simple result of Equation (71) is remarkable; particularly, if b = 1, the information flow
from x1 to x2 is just the entropy of x1. This is precisely what what one would expect of the mapping
component Φ2(x1, x2) = bx1 in Equation (65). While the information flow is interesting per se, it also
serves as an excellent example for the verification of our formalism.

6.3. Truncated Burgers–Hopf System

In this section, we examine a more complicated system, the Truncated Burgers–Hopf system (TBS
hereafter). Originally introduced by Majda and Timofeyev [55] as a prototype of climate modeling, the
TBS results from a Galerkin truncation of the Fourier expansion of the inviscid Burgers’ equation, i.e.,

∂u
∂t

+ u
∂u
∂x

= 0 (72)
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to the nth order. Liang and Kleeman [51] examined such a system with two Fourier modes retained,
which is governed by 4 ordinary differential equations:

dx1

dt
= F1(x) = x1x4 − x3x2 (73)

dx2

dt
= F2(x) = −x1x3 − x2x4 (74)

dx3

dt
= F3(x) = 2x1x2 (75)

dx4

dt
= F4(x) = −x2

1 + x2
2 (76)

Despite its simplicity, the system is intrinsically chaotic, with a strange attractor lying within

[−24.8, 24.6]× [−25.0, 24.5]× [−22.3, 21.9]× [−23.7, 23.7]

Shown in Figure 4 are its projections onto the x1-x2-x4 and x1-x3-x4 subspaces, respectively.
Finding the information flows within the TBS system turns out to be a challenge in computation,

since the Liouville equation corresponding to Equations (73)–(76) is a four-dimensional partial
differential equation. In [51], Liang and Kleeman adopt a strategy of ensemble prediction to reduce the
computation to an acceptable level. This is summarized in the following steps:

1. Initialize the joint density of (x1, x2, x3, x4) with some distribution ρ0; make random draws
according to ρ0 to form an ensemble. The ensemble should be large enough to resolve adequately
the sample space.

2. Discretize the sample space into “bins.”

3. Do ensemble prediction for the system (73)–(74).

4. At each step, estimate the probability density function ρ by counting the bins.

5. Plug the estimated ρ back to Equation (39) to compute the rates of information flow at that step.

Notice that the invariant attractor in Figure 4 allows us to perform the computation on a compact
subspace of R4. Denote by [−d, d]4 the Cartesian product [−d, d] × [−d, d] × [−d, d] × [−d, d].
Obviously, [−30, 30]4 is large enough to cover the whole attractor, and hence can be taken as the
sample space. Liang and Kleeman [51] discretize this space into 304 bins. With a Gaussian initial
distribution N(μ, Σ), where

μ =

⎡⎢⎢⎢⎣
μ1

μ2

μ3

μ4

⎤⎥⎥⎥⎦ , Σ =

⎡⎢⎢⎢⎣
σ2

1 0 0 0
0 σ2

2 0 0
0 0 σ2

3 0
0 0 0 σ2

4

⎤⎥⎥⎥⎦
they generate an ensemble of 2,560,000 members, each steered independently under the system
(73)–(76). The details about the sample space discretization, probability estimation, etc., are referred to
[51]. Shown in the following are only the major results.

Between the four components of the TBS system, pairwise there are 12 information flows, namely,

T2→1, T3→1, T4→1

T1→2, T3→2, T4→2

T1→3, T2→3, T4→3

T1→4, T2→4, T3→4
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Figure 4. The invariant attractor of the truncated Burgers–Hopf system (73)–(76). Shown here is the
trajectory segment for 2 ≤ t ≤ 20 starting at (40, 40, 40, 40). (a) and (b) are the 3-dimensional projections
onto the subspaces x1-x2-x3 and x2-x3-x4, respectively.

To compute these flows, Liang and Kleeman [51] have tried different parameters μ and
σ2

k (k = 1, 2, 3, 4), but found the final results are the same after t = 2 when the trajectories are attracted
into the invariant set. It therefore suffices to show the result of just one experiment: μk = 9 and σ2

k = 9,
k = 1, 2, 3, 4.
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Figure 5. Information flows within the 4D truncated Burgers-Hopf system. The series prior to t = 2 are
not shown because some trajectories have not entered the attractor by that time.
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Plotted in Figure 5 are the 12 flow rates. First observe that T3→4 = T4→3 = 0. This is easy to
understand, as both F3 and F4 in Equations (75) and (76) have no dependence on x3 nor on x4,
implying a zero flow in either direction between the pair (x3, x4) by the property of causality. What
makes the result remarkable is, besides T3→4 and T4→3, essentially all the flows, except T3→2, are
negligible, although obvious oscillations are found for T2→1, T3→1, T1→2, T4→1, T2→3, and T2→4. The
only significant flow, i.e., T3→2, means that, within the TBS system, it is the fine component that causes
an increase in uncertainty in a coarse component but not conversely. Originally the TBS was introduced
by Majda and Timofeyev [55] to test their stochastic closure scheme that models the unresolved high
Fourier modes. Since additive noises are independent of the state variables, information can only be
transferred from the former to the latter. The transfer asymmetry observed here is thus reflected in
the scheme.

6.4. Langevin Equation

Most of the applications of information flow/transfer are expected with stochastic systems. Here
we illustrate this with a simple 2D system, which has been studied in reference [54] for the validation
of Equation (52):

dx = Axdt + Bdw (77)

where A = (aij) and B = (bij) are 2 × 2 constant matrices. This is the linear version of
Equation (47). Linear systems are particular in that, if initialized with a normally distributed
ensemble, then the distribution of the variables will be a Gaussian subsequently (e.g., [56]). This
greatly simplifies the computation which, as we have seen in the previous subsection, is often a

formidable task. Let x ∼ N (μ, Σ). Here μ =

(
μ1

μ2

)
is the mean vector, and Σ =

(
σ2

1 σ12

σ21 σ2
2

)
the

covariance matrix; they evolve as

dμ/dt = A μ (78a)

dΣ/dt = A Σ + Σ AT + B BT (78b)

(BBT is the matrix (gij) we have seen in Section 5), which determine the joint density of x:

ρ(x) =
1

2π (det Σ)1/2 e−
1
2 (x−μ)TΣ−1(x−μ) (79)

By Theorem 5.1, the rates of information flow thus can be accurately computed.
Several sets of parameters have been chosen in [54] to study the model behavior. Here we just look

at one such choice: B =

(
1 1
1 1

)
, A =

(
−0.5 0.1

0 −0.5

)
. Its corresponding mean and covariance

approach to an equilibrium: μ(∞) =

(
0
0

)
, Σ(∞) =

(
2.44 2.2
2.2 2

)
. Shown in Figure 6 are the

time evolutions of μ and Σ initialized with μ(0) =

(
1
2

)
and Σ(0) =

(
9 0
0 9

)
, and a sample

path of x starting from (1, 2). The computed rates of information flow, T2→1 and T1→2, are plotted
in Figure 7a and b. As time moves on, T2→1 increases monotonically and eventually approaches
a constant; on the other hand, T1→2 vanishes throughout. While this is within one’s expectations,
since dx2 = −0.5x2dt + dw1 + dw2 has no dependence on x1 and hence there should be no transfer
of information from x1 to x2, it is interesting to observe that, in contrast, the typical paths of x1 and
x2 could be highly correlated, as shown in Figure 6c. In other words, for two highly correlated time
series, say x1(t) and x2(t), one series may have nothing to do with the other. This is a good example
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illustrating how information flow extends the classical notion of correlation analysis, and how it may
be potentially utilized to identify the causal relation between complex dynamical events.
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Figure 6. A solution of Equation (78), the model examined in [54], with a21 = 0 and initial conditions
as shown in the text: (a) μ; (b) Σ; and (c) a sample path starting from (1,2).
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Figure 7. The computed rates of information flow for the system (77): (a) T2→1, (b) T1→2.

7. Summary

The past decades have seen a surge of interest in information flow (or information transfer, as
it is sometimes called) in different fields of scientific research, mostly in the appearance of some
empirical/half-empirical form. We have shown that, given a dynamical system, deterministic or
stochastic, this important notion can actually be formulated on a rigorous footing, with flow measures
explicitly derived. The general results are summarized in the theorems in Sections 3, 4 and 5. For
two-dimensional systems, the result is fairly tight. In fact, if writing such a system as{

dx1 = F1(x, t)dt + b11(x, t)dw1 + b12(x, t)dw2

dx2 = F2(x, t)dt + b21(x, t)dw1 + b22(x, t)dw2

where (w1, w2) are standard Wiener processes, we have a rate of information flowing from x2 to x1,

T2→1 = −E
(

F1
∂ log ρ1

∂x1

)
− E

(
∂F1

∂x1

)
+

1
2

E

(
1
ρ1

∂2(g11ρ1)

∂x2
1

)

This is an alternative expression of that in Theorem 5.1; T1→2 can be obtained by switching the
subscripts 1 and 2. In the formula, g11 = ∑k b2

1k, ρ1 is the marginal density of x1, and E stands for
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mathematical expectation with respect to ρ, i.e., the joint probability density. On the right-hand side, the
third term is contributed by the Brownian notion; if the system is deterministic, this term vanishes. In
the remaining two terms, the first is the tendency of H1, namely the marginal entropy of x1; the second
can be interpreted as the rate of H1 increase on x1 its own, thanks to the law of entropy production
(12) [49], which we restate here:

For an n-dimensional system dx
dt = F(x, t), its joint entropy H evolves as dH

dt = E(∇ · F)

This interpretation lies at the core of all the theories along this line. It illustrates that the marginal
entropy increase of a component, say, x1, is due to two different mechanisms: the information
transferred from some component, say, x2, and the marginal entropy increase associated with a
system without taking x2 into account. On this ground, the formalism is henceforth established, with
respect to discrete mappings, continuous flows, and stochastic systems, respectively. Correspondingly,
the resulting measures are summarized in Equations (24), (39) and (52).

The above-obtained measures possess several interesting properties, some of which one may
expect based on daily life experiences. The first one is a property of flow/transfer asymmetry, which
has been set as the basic requirement for the identification of causal relations between dynamical
events. The information flowing from one event to another event, denoted respectively as x2 and x1,
may yield no clue about its counterpart in the opposite direction, i.e., the flow/transfer from x1 to x2.
The second says that, if the evolution of x1 is independent of x2, then the flow from x2 to x1 is zero.
The third one is about the role of stochasticity, which asserts that, if the stochastic perturbation to the
receiving component does not rely on the given component, the flow measure then has a form same as
that for the corresponding deterministic system. As a direct corollary, when the noise is additive, then
in terms of information flow, the stochastic system functions in a deterministic manner.

The formalism has been put to application with benchmark dynamical systems. In the context
of the baker transformation, it is found that there is always information flowing from the stretching
direction to the folding direction, while no flow exists conversely. This is in agreement with what
one would observe in kneading dough. Application to the Hénon map also yields a result just as
expected on physical grounds. In a more complex case, the formalism has been applied to the study of
the
scale–scale interaction and information flow between the first two modes of the chaotic truncated
Burgers equation. Surprisingly, all the twelve flows are essentially zero, save for one strong
flow from the high-frequency mode to the low-frequency mode. This demonstrates that
the route of information flow within a dynamical system, albeit seemingly complex, could
be simple. In another application, we test how one may control the information flow by
tuning the coefficients in a two-dimensional Langevin system. A remarkable observation is
that, for two highly correlated time series, there could be no transfer from one certain series,
say x2, to the other (x1). That is to say, the evolution of x1 may have nothing to do with
x2, even though x1 and x2 are highly correlated. Information flow/transfer analysis thus
extends the traditional notion of correlation analysis and/or mutual information analysis by providing
a quantitative measure of causality between dynamical events, and this quantification is based firmly
on a rigorous mathematical and physical footing.

The above applications are mostly with idealized systems; this is, to a large extent, intended for the
validation of the obtained flow measures. Next, we would extend the results to more complex systems,
and develop important applications to realistic problems in different disciplines, as envisioned in the
beginning of this paper. The scale–scale information flow within the Burgers–Hopf system in § 6.3,
for example, may be extended to the flow between scale windows. By a scale window we mean,
loosely, a subspace with a range of scales included (cf. [57]). In atmosphere–ocean science, important
phenomena are usually defined on scale windows, rather than on individual scales (e.g., [58]). As
discussed in [53], the dynamical core of the atmosphere and ocean general
circulation models is essentially a quadratically nonlinear system, with the linear and nonlinear
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operators possessing certain symmetry resulting from some conservation properties (such as energy
conservation). Majda and Harlim [53] argue that the state space may be decomposed into a direct sum
of scale windows which inherit evolution properties from the quadratic system, and then information
flow/transfer may be investigated between these windows. Intriguing as this conceptual model might
be, there still exist some theoretical difficulties. For example, the governing equation for a window
may be problem-specific; there may not be such governing equations as simply written as those like
Equation (3) for individual components. Hence one may need to seek new ways to the derivation
of the information flow formula. Nonetheless, central at the problem is still the aforementioned
classification of mechanisms that govern the marginal entropy evolution; we are expecting new
breakthroughs along this line of development.

The formalism we have presented thus far is with respect to Shannon entropy, or absolute entropy
as one may choose to refer to it. In many cases, such as in the El Niño case where predictability is
concerned, this may need to be modified, since the predictability of a dynamical system is measured
by relative entropy. Relative entropy is also called Kullback–Leibler divergence; it is defined as

D(ρ‖q) = Eρ

[
log

(
ρ

q

)]
i.e., the expectation of the logarithmic difference between a probability ρ and another reference
probability q, where the expectation is with respect to ρ. Roughly it may be interpreted as the
“distance” between ρ and q, though it does not satisfy all the axioms for a distance functional.
Therefore, for a system, if letting the reference density be the initial distribution, its relative entropy at
a time t informs how much additional information is added (rather than how much information it
has). This provides a natural choice for the measure of the utility of a prediction, as pointed out by
Kleeman (2002) [59]. Kleeman also argues in favor of relative entropy because of its appealing
properties, such as nonnegativity and invariance under nonlinear transformations [60]. Besides, in
the context of a Markov chain, it has been proved that it always decreases monotonically with time, a
property usually referred to as the generalized second law of thermodynamics (e.g., [60,61]). The
concept of relative entropy is now a well-accepted measure of predictability (e.g., [59,62]). When
predictability problems (such as those problems in atmosphere-ocean science and financial economics
as mentioned in the introduction) are dealt with, it is necessary to extend the current formalism to one
with respect to the relative entropy functional. For all the dynamical system settings in this review, the
extension should be straightforward.
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