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Preface to ”Using Vis-NIR Spectroscopy for

Predicting Quality Compounds in Foods”

The development of affordable and more reliable methods of controlling food quality and

managing crops is imperative in order to maximize productivity and profitability and to minimize

the environmental impacts of agriculture.

For several years, visible and near-infrared (VIS–NIR) spectroscopy has contributed to

improving the control of food quality by providing the possibility to probe the internal quality of

fresh fruits, vegetables, cereals, and other edibles.

We aimed to provide the readership with a comprehensive summary of present state-of-the-art

NIR spectroscopy, current development trends, and future possibilities. We also believe that by doing

so, we will be able to provide an acceptable chance for all contributors to make their results and

methodologies more visible, as well as to highlight their current achievements in their respective

fields which have been made possible by the use of NIR spectroscopy. These articles cover a wide

range of topics related to NIR spectroscopy in a broad sense.

We would like to thank all of the authors and co-authors for their contributions, as well as all

of the reviewers for their time and effort in carefully analyzing the submissions. Last but not least,

we would like to express our gratitude to the Sensor journal’s editorial office for their cooperation in

preparing this Special Issue.

Mercedes Del Rı́o Celestino and Rafael Font Villa

Editors
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Editorial

Using Vis-NIR Spectroscopy for Predicting Quality Compounds
in Foods

Mercedes del Río Celestino * and Rafael Font

Agri-Food Laboratory, CAGPDS, Avd. Menéndez Pidal, s/n, 14080 Córdoba, Spain;
rafaelm.font@juntadeandalucia.es
* Correspondence: mercedes.rio.celestino@juntadeandalucia.es

Over the past four decades, near-infrared reflectance spectroscopy (NIRS) has become
one of the most attractive and used technique for analysis as it allows for fast and simulta-
neous qualitative and quantitative characterization of a wide variety of food samples [1].
NIR spectroscopy is also essential in various other fields, e.g., pharmaceuticals [2], petro-
chemicals [3], textiles [4], cosmetics [5], medical applications [6], and chemicals such as
polymers [7].

The high level of interest in NIR spectroscopy among scientific and professional
sectors demonstrates its relevance. We hope that this Special Issue’s scope facilitates the
interchange of ideas and thereby aids in expanding the frontiers of this field of knowledge.
Furthermore, we aim to provide readers with a comprehensive summary of present state-
of-the-art NIR spectroscopy, trends in development, and future possibilities. We believe
that by doing so, we will be able to provide a chance for all contributors to make their
results and methodologies more visible, as well as to highlight current achievements in
their respective fields made possible by the use of NIR spectroscopy.

This Special Issue has had a resoundingly enthusiastic response, with several submis-
sions from academics and professional spectroscopists, resulting in a collection of 13 papers,
including one exhaustive review paper [8–20]. The articles submitted represent the variety
of the discussed field well, covering a wide range of topics related to NIR spectroscopy.
The majority of the papers concentrate on applied qualitative and quantitative analysis in a
variety of fields.

New progress has been made in improving food quality thanks to the first investigation.
Accordingly, it was determined that the use of variable selection algorithms provided a
better performance in predicting the amount of organophosphorus pesticide residues in
tomatoes using NIRS than the use of all spectral data [8].

The feasibility of measuring physicochemical quality parameters of mangetout pods
by means of VIS-NIRS has also been demonstrated. The results revealed that the models
allow for an accurate quantification of protein and total polyphenol content and a rough
screening method of the samples for color parameters (c* and h*), firmness, ascorbic acid
content and pH [9].

In addition, despite the advantages of NIR nondestructive measurement, there is a
lack of basic studies comparatively evaluating various forms of sampling with and without
minimal processing. The analyses conducted in this Special Issue have showed that Vis-
NIR spectroscopy could be used as a quick method to assess the abundance of chemical
compounds (soluble solids content, saccharose (Pol), fiber, Pol of cane, and total recoverable
sugars) of sugarcane. Moreover, the performance of the models on defibrated cane and raw
juice samples were similar, but defibrated cane samples involve less preparation as they do
not require juice extraction [10].

For the first time, this research shows the applicability of NIR spectroscopy to assess
volatile phenol contents (guaiacol, 4-methyl-guaiacol, eugenol, syringol 4-methyl-syringol
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and 4-allyl-syringol) and confirms the ability of this technique to quantify compounds that
contribute to the sensory quality of aged wine spirits [11].

NIRS technology can be a powerful tool to ensure the quality of food products and
prevent fraud. From the results obtained, it can be concluded that NIRS together with
artificial neural networks allow for the accurate prediction of almost all sensory parameters
selected for an exhaustive characterization of dry-cured beef meat—cecina—quality. It
would be possible to substitute the sensory panel with a faster, reliable, nondestructive and
cheaper instrumental technique that may be implemented on site [12].

In addition, this Special Issue showed that NIRS is a feasible and useful tool for
screening purposes, and it has the potential to predict most of the fatty acids of freeze-dried
beef [13].

Moreover, a comprehensive review of the state of the art in research and the actual
potential of NIRS for the analysis of olive oil has been included. It can be concluded that
the four most common physicochemical parameters that define the quality of olive oils,
namely free acidity, peroxide value, K232, and K270, can be measured using NIRS with high
precision. In addition, NIRS is suitable for the nutritional labeling of olive oil because of its
great performance in predicting the total fat, total saturated fatty acid, monounsaturated
fatty acid, and polyunsaturated fatty acid contents in olive oils [14].

Likewise, the potential of hyperspectral imaging can be also recognized on the basis of
the articles collected in this Special Issue [15–17]. Hyperspectral imaging (his) emerges as a
non-destructive and rapid analytical tool for assessing food quality, safety, and authenticity.
This technology can not only identify the physical chemistry characteristics of a substance
through spectroscopic analysis, but also simultaneously obtains information about the
spatial distribution of certain components through image analysis [21]. In this Special Issue,
we present the possibility of rapidly inspecting and detecting Escherichia coli and Salmonella
typhimurium on the surface of food processing facilities, which is a major global public
health problem [22], via fluorescence hyperspectral imaging and various discriminant
analysis techniques [15].

This Special Issue aims to investigate the potential of combining the spectral and
spatial features of HSI data with the aid of deep-learning approaches for the pixel-wise
classification of food products (sweet products and salmon fillets). The results demonstrated
that spectral pre-processing techniques prior to convolutional neural network model’s
development can enhance the classification performance. This work will open the door for
more research in the area of practical applications in food industry [16].

Important information is generated for the agrifood industry thanks to the new data
provided in this Special Issue. Hyperspectral imaging technology has been used to develop
a method for diagnosing the soil plant analysis development (SPAD) value and mapping
the spatial distribution of chlorophyll in leaves located at different positions during the
growth season of pepper plants. The results show that hyperspectral imaging is a very
promising technology and has great potential for the intuitive monitoring of crop growth,
laying the foundation for the development of hyperspectral field dynamic monitoring
sensors [17].

The growing applicability and importance of portable NIR spectrometers is reflected
by several articles, opening a new window for the utilization of these types of instruments
in the analysis and monitoring of the composition of foods. In this context, the ability of a
micro-near-infrared portable instrument to predict vitamin C in both whole and pureed
Kakadu plum fruit samples was demonstrated [18].

In this regard, the use of MicroNIR as a tool for estimating dry matter and reducing
sugars of fresh potato in a warehouses by directly measuring the tubers without chemical
treatment and destruction of samples has been demonstrated. The efficiency of such
automation techniques optimizes the management of industrial processing, guaranteeing
the quality of the potato tubers during in-line processing [19].

In this work, we also focused on the development of a real-time and simple methodol-
ogy to quantify the macronutrients (fat, raw protein and carbohydrates) in breast milk using
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a portable NIRS instrument. Notably, the implementation of this procedure requires the
use of low-cost and handheld NIRS instruments where expert personnel are not required
for analyzing samples, facilitating the quality-control procedure in the feeding of newborns
in neonatology units [20].

It should be noted that these contributions accurately reflect the diversity and dy-
namism of current NIR spectroscopy development trends.

This Special Issue is accessible through the following link: https://www.mdpi.com/
journal/sensors/special_issues/NIR-Foods (accessed on 24 June 2022). We would like to
thank all of the authors and co-authors for their contributions, as well as all of the reviewers
for their time and effort in carefully analyzing the submissions. Last but not least, we
would like to express our gratitude to the editorial office of Sensors for their cooperation in
preparing this Special Issue.

Author Contributions: Conceptualization, M.d.R.C. and R.F.; writing—review and editing, M.d.R.C.
All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.
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Abstract: In this study, the possibility of non-destructive detection of tomato pesticide residues
was investigated using Vis/NIRS and prediction models such as PLSR and ANN. First, Vis/NIR
spectral data from 180 samples of non-pesticide tomatoes (used as a control treatment) and samples
impregnated with pesticide with a concentration of 2 L per 1000 L between 350–1100 nm were
recorded by a spectroradiometer. Then, they were divided into two parts: Calibration data (70%) and
prediction data (30%). Next, the prediction performance of PLSR and ANN models after processing
was compared with 10 spectral preprocessing methods. Spectral data obtained from spectroscopy
were used as input and pesticide values obtained by gas chromatography method were used as
output data. Data dimension reduction methods (principal component analysis (PCA), Random frog
(RF), and Successive prediction algorithm (SPA)) were used to select the number of main variables.
According to the values obtained for root-mean-square error (RMSE) and correlation coefficient (R)
of the calibration and prediction data, it was found that the combined model SPA-ANN has the
best performance (RC = 0.988, RP = 0.982, RMSEC = 0.141, RMSEP = 0.166). The investigational
consequences obtained can be a reference for the development of internal content of agricultural
products, based on NIR spectroscopy.

Keywords: pesticide residues; spectroscopy; PLS; soft computing; algorithm

1. Introduction

Tomato (Solanum lycopersicum) is one of the most widely used crops in the world,
which is rich in antioxidants such as carotenoids, total phenols, vitamin E, and vitamin
C [1]. Related empirical studies have shown that vitamin C affects the human immune
system and prevents diseases such as Alzheimer’s [2]. In addition, the prevention of
illnesses by fruits and vegetables also depends on antioxidants [3].

Tomatoes need intensive pest management due to their low resistance to pests and
diseases. The need to use pesticides can leave harmful residues in the product. Organophos-
phorus pesticides can be stable for a considerable time even after washing and cooking in
the product if used without observing its pre-harvest interval [4–6].

Today, many countries have restricted the use of pesticides, requiring the pesticide
maximum residue limit (MRL) in food [7], and the amount is specified for each crop [8–11].
Currently, there are several methods for determining the concentration of pesticides, includ-
ing GC, HPLC, thin layer chromatography, and capillary electrophoresis [12]. However,
due to time constraints and high costs, it is not possible to use these methods to control all
products [13].

5



Sensors 2021, 21, 3032

Many studies are currently underway to develop safe, rapid, reliable, and low-cost
methods for determining pesticide residues that can prevent the use of organic solvents and
reduce operator exposure to toxic substances. Spectroscopy-based methods are a potential
method that can solve the problems mentioned above.

NIRS is suitable non-destructive method for quantitative and qualitative analysis in
agriculture, chemistry, medicine, and other sciences [14–18]. This technique is faster and
cheaper than conventional methods and environmentally friendly and can usually be used
without the need to prepare samples [19–22]. This technology is based on the absorption of
radiation in the infrared region near the electromagnetic spectrum, which can be used to
control the quality of food products [23–25]. Furthermore, in some studies, this technology
has been used to detect pesticide residues in agricultural products [26–28].

Jun et al. [29] examined cadmium residue in tomato leaves using hyperspectral imag-
ing. In this method, WT and LSSVR were used to choose the best wavelength and create
a detection model. The best prediction performance for the detection of cadmium (Cd)
content in tomato leaves was obtained using the second derivative preprocessing method.

Chen et al. [30] used NIRS to determine organophosphate chemicals. PLSR was used
to create the prediction models. The best prediction result was obtained using PLSR with
MSC and the first derivative as the preprocessing method.

Fen et al. [31] used NIRS and ANN for non-destructive detection of a common pesti-
cide on the Longan surface. The results showed that the correct diagnosis ratio was 93%.

Jiang et al. [32] combined deep learning and machine vision to predict the pesticide.
The consequences showed that when the training epoch is 10, the precision of the test
set detection will be 90.09% and the average picture bandwidth detection precision will
be 95.35%.

Wei et al. [33] offered a technique for removing residues of pesticide in apple juice.
This technique can precisely identify and classify data about residues of pesticide in apples.

Soltani et al. [18] used NIRS technology with multivariate regression analysis to predict
pesticide residues in tomato. The best prediction results were obtained using the PLS model
based on the smoothing + moving average method (Rcv = 0.92, RMSECV = 4.25).

Xue et al. [34] used the PSO algorithm to predict dichlorvos residue on the orange
surface by Vis-NIR spectroscopy. The PSO-PLS model was able to predict the dichlorvos
residue with a correlation coefficient of 0.8732. They have stated that the selection of
wavelengths through a PSO algorithm increases the ability to predict when using the
PLS model.

According to previous studies, the NIRS can be used to predict pesticide residues
from other crops. To the best of our knowledge, there is no research to determine the
organophosphorus pesticides and their prediction methods in tomatoes.

Therefore, in this paper, we use NIRS and chemometric methods to create a prediction
model without destruction to detect the tomato pesticide residues. Spectral data obtained
with a spectroradiometer and reference data obtained by a gas chromatography equipment
were used as input and output of the models used in this study, respectively. PCA, SPA,
and RF algorithms were utilized to select the variable as input for artificial neural network
(ANN) and PLSR. First, all spectral data without dimension reduction and then spectral
data obtained from variable selection algorithms were used to predict the amount of
pesticide in tomatoes. Then 8 combined modes (PLS, ANN, PCA-ANN, RF-ANN, SPA-
ANN, PLS-PCA, PLS-RF, and PLS-SPA) were developed for pesticides residues prediction.
The use of several algorithms for variable selection to predict organophosphorus pesticide
in tomatoes has not been evaluated in previous research. New progress can be made in
improving food quality by this investigation.

2. Materials and Methods

2.1. Sample Preparation

180 samples of tomatoes (Queen) were randomly harvested from a greenhouse where
almost all their produce was uniform in size and stored until 5 ◦C until use. Pest control
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in tomatoes was non-chemical from the beginning of planting to the harvest stage. In
order to achieve different pesticide residual concentrations, the samples were infected with
Profenofos 40% (EC 40%) (C11H15BrClO3PS) with a Pre-Harvest Interval (PHI) of 14 days.
Therefore, the solution of Profenofos pesticide with a concentration of 2 per 1000 L of water
was prepared and sprayed on the samples. The samples were divided into 6 categories:
The first group (P0) was used without any spraying as control and non-pesticide samples;
second group two hours (P-2H); third group two days (P-2D); the fourth group is the same
as the third category, except that it was washed after spraying (P-2D-W); the fifth group for
one week (P-1W) and the sixth group for two weeks (P-2W) were subjected to VIS/NIR
spectroscopy after spraying with the prepared solution. All samples reached equilibrium
temperature in the laboratory before completing the measurements.

2.2. Vis/NIR Spectroscopy

Vis/NIR spectroscopy tests was performed using a PS-100 spectroradiometer (Apogee
Instruments, INC., Logan, UT, USA) with CCD detector, 2048 pixels, 1 nm resolution
and halogen-tungsten light source in the wavelength range of 350–1100 nm. Prior to
spectroscopy, black and white (reference) spectra were first defined and stored. In this
way, first by turning off the light source, the dark spectrum was taken, then in the light
source mode, a standard Teflon disk with the ability to reflect above 97 in the range of 300
to 1700 nm was used to achieve the reference spectrum. For each tomato sample from 4
different points of each sample with 8 scans, within the spectral range of the equipment
used, spectroscopy was performed with software Spectra-Wiz Spectrometer OS v5.33
(c) 2014 and the data were recorded after averaging. To find the spectral regions in the
pesticide solution a quartz cell and two single-stranded fiber optics P400-2-VIS-NIR was
used (Figure 1) [35]. Reference measurements were performed one day after spectroscopic
analysis [18].

  

Figure 1. Measurement of Vis/NIR spectra of tomato samples in reflection mode and pesticide in passing mode.

2.3. Reference Measurements

After Vis/NIR spectroscopy, all tomatoes were prepared frozen to measure profenofos
by gas chromatographic reference method (Agilent 5977A Series GC/MSD—Santa Clara,
CA 95051, USA). To determine the retention time of the peak of the diagram obtained for
Profenofos pesticide, the Profenofos standard material (95%) prepared from Agricultural
Exir Company was injected into the chromatograph. For this purpose, sample preparation
was performed according to the British standard BS EN 15662 [36,37]. First, 10 g of the
homogenized sample was poured into a 50 mL centrifuge falcon. Then 10 mL of ethyl
acetate, 1.9 mL of distilled water and 5 g of nitrogen sulfate were added and stirred for
1 min. It was then centrifuged at 5000 rpm for 5 min and 6 mL of the extract formed on
top of the falcon was transferred to another glass falcon. It was shaken for 1 min and
centrifuged at 5000 rpm for 5 min. Then 4 mL of the upper extract of glass was poured into
another falcon and 50 μL of ethyl acetate was added. After filtration, 1 μL of extract was
injected into the equipment. The run conditions of the gas chromatography equipment are
fully described in Table 1.
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Table 1. GC run conditions.

Analytical Column HP-5 ms Ultra Inert 30 m × 250 μm, 0.25 μm (p/n 19091S-433UI)

Injection volume 1 μL
Injection mode Spitless

Inlet temperature 280 ◦C
Liner UI, split less, single taper, glass wool (p/n 5190-2293)

Plated seal kit Gold Seal, Ultra Inert, with washer (p/n 5190-6144)
Carrier gas Helium, constant flow, 1 mL/min

Oven program

60 ◦C for 1 min
then 40 ◦C/min to 170 ◦C
then 10 ◦C/min to 310 ◦C

then hold for 2 min

Transfer line temperature 280 ◦C

2.4. Remove the Outlier Data

The Monte Carlo cross-validation method was used to remove outliers. This method
can simultaneously detect spectral outliers and reference data [38]. Initially, the data were
randomly divided into two categories: Calibration set (70%) and prediction set (30%). Then,
PLS models were got with full cross-validation. When the RMSECV is minimized, the
best number of PC of the model is achieved. Next, the statistical characteristic parameters
of each model and the cumulative value of the sum of squares of predicted residual
errors of each sample were determined [39,40]. In this paper, outlier data (20 samples)
have been deleted by the method mentioned and the amount of R of the model has been
improved from 0.8113 to 0.8609 after their removal. Table 2 shows the reference values
(mean, standard deviation, and range) for the profenofos content (mg kg−1) in the tomato
samples used in this study. As can be seen, the values ranged from n.d (Not detected) to
42.9 mg/kg.

Table 2. Reference values (mean, standard deviation (SD) and range) for profenofos content (mg/kg).

Profenofos (mg/kg)

Number Range Mean Standard Deviation

calibration 112 n.d. *–42.9 14.0 10.1
validation 48 n.d.–34.0 13.7 8.9

* Not detected.

2.5. Variable Selection Method
2.5.1. Random frog (RF) Algorithm

The RF algorithm is generally used in the set of meta-heuristic algorithms. This algo-
rithm is a useful wavelength selection method that calculates the probability of selection
for each variable [40]. In short, the random frog algorithm consists of three steps [41,42]: (1)
The random initialization of a subset of variable V0 containing the variables Q; (2) creating
a subset of the variable V * including the variable Q *; accepting V * as V1 with a certain
probability and considering V0 = V1; the above procedure is repeated until the end of N
and (3) calculating the probability of selecting each variable that can be used as a measure
of the importance of the variable. The schematic of the algorithm is shown in Figure 2.
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Figure 2. Flowchart of a random frog algorithm.

Figure 3 shows the appropriate wavelengths attained by the RF algorithm. In order to
have the large part of impressible data in the main spectrum, the selection threshold was
determined experimentally by 20% trial and error method and the wavelengths above this
selection threshold were selected as the number of characteristic wavelengths. Therefore,
28 wavelengths above the dotted line were used as the final wavelengths to predict pesticide
residues in tomatoes.

 

Figure 3. The result of extracting useful wavelengths using the RF algorithm.

2.5.2. SPA

SPA is a forward selection method that uses simple operations in a vector space to
minimize the linearity of variables. The useful variable can be selected in spectral data
analysis for multivariate calibration using this new method. This technique is widely
used in optimizing specific spectral wavelengths that evaluate variable subsets based
on RMSEC [43]. According to the change curve of RMSEC in relation to the number
of wavelengths, it was determined that by selecting 14 characteristic wavelengths, the
value of RMSE attained a lowest value of 0.141 (Figure 4). Thus, 14 effective wavelengths
were applied as input to the prediction model. The selected characteristic wavelength
distributions across the whole spectrum are shown in Figure 5. Wavelengths close to
650–700, 750–800 and 960–1000 were chosen to build the model. These wavelengths were
in some cases like the wavelengths of the RF algorithm.
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Figure 4. Change in RMSEC and Number of effective wavelengths.

 

Figure 5. Selected bands by SPA.

2.5.3. PCA

PCA is one of the most widely used multivariate statistical methods in chemistry [44,45].
The corresponding mathematical model for PCA is based on the decomposition of matrix
X into score matrix n × A (T) and loading matrix N × A (P) as Equation (1):

X = TP′+ F =
A

∑
a=1

ta p′a + F (1)

where X is the spectral data matrix, T is the score matrix for X, P is the loading matrix
for X, F is the residual or model error matrix, ta is the sample score vector on each PC for
X, and pa is the variable loading vector on each PC for X. In this study, the share of the
first principal component (PC1), the second principal component (PC2), the third principal
component (PC3) and the fourth component were 55%, 18%, 8%, and 6%, respectively.
In total, the cumulative share rate of these four components reached 87.00%. To avoid
under-fitting of the prediction model due to lack of components, and to prevent over-fitting
due to information of redundant components, finally 14 main components were selected as
input to the prediction model of the amount of pesticide residues in tomatoes.

2.6. Prediction Models
2.6.1. PLSR

PLSR is a method for relating two matrices X (predictor) and Y (response), by a linear
multivariate model, which also models the structure of X and Y [46]. It works well for
analyzing large, noisy, and collinear data. In this model, by increasing the number of
variables and related observations, the accuracy of the model parameters improves [47].
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This method, the least squares solution, is applied to several orthogonal components that
are a linear combination of independent variables and are created alternately with the aim
of maximizing the covariance of the linear transformation of independent variables and
dependent variables. It is very important to select the main factor when using PLSR for
regression analysis. Wrong selection of the number of main factors causes the model to
under-fitting or over-fitting, thus reducing the model prediction accuracy [48]. In this study,
the mentioned method in the wavelength range of 300–1100 nm was used for modeling
and analysis of spectral data. The fully cross-validation method was used to enhance the
selection and the number of main factors RF, SPA, and PCA were 28, 14, and 14, respectively.

2.6.2. BP-ANN

BP-ANN, a multilayer feed-forward neural network trained by the post-propagation
error algorithm, is today the most widely used reductive neural network [40,49]. In this
paper, a BP feed-forward neural network with one and two hidden layers was modeled.
“tansig”, “logsig”, and “purlin” were used in the hidden and output layers as transfer
functions. The training function used in this model was “trainlm” and the maximum
number of repetitions was 3000. The optimal number of hidden layer neurons for RF-BP,
PCA-BP, and SPA-BP combined models was obtained by trial-and-error method, 8, 12, and
14, respectively.

2.7. Model Validation

Validation methods are important to assess calibration precision and avoid data over-
fitting. The predictive power of a calibration model can be evaluated by the R, RMSEP and
RMSEC between the predicted value and the measured value in the validation set [50]. In
this research, we used R and RMSEC-RMSEP values to evaluate the accuracy and overall
strength of the model, respectively. These indicators are defined as follows:

R =

√√√√ ∑n
i=1(ŷi − yi)

2

∑n
i=1(ŷi − ymean)

2 (2)

RMSEC =

√
1
nc

nc

∑
i=1

(ŷi − yi)
2 (3)

RMSECV = RMSEP =

√√√√ 1
np

np

∑
i=1

(ŷi − yi)
2 (4)

ŷi: Predicted value of ith observation.
yi: Measured value of ith observation.
ymean: Mean of the prediction or calibration set.
n, nc, np: The number of observations in the data set, calibration and prediction set,

respectively.
In general, a good model should have higher correlation coefficients, lower RMSEC,

lower RMSEP [51,52].

3. Results and Discussion

Pre-Processing Spectra

Due to the presence of noise in the initial and final parts of the diagram of absorption
spectra of tomato samples with different concentrations of pesticides, the spectrum range
from 460–1050 nm was considered (Figure 6). The following 10 spectral preprocessing
methods were applied to stabilize the models: Moving average, gaussian filter, median
filter, S-Golay, Maximum normalize, derivative-S-Golay, SNV, MSC, (Gaussian filter) +
(median filter), Normalize + Gaussian.
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Figure 6. Absorption spectra of tomato samples with different concentrations of pesticides.

The residual reference values of the pesticide obtained by the GC-MS destructive
test are between 42.9–“n.d” percent. Moreover, according to the prediction results of
the combined models, the values of pesticide residues in the calibration and prediction
data were between “n.d” up to 62.75%. The spectral diagram for tomatoes with different
concentrations of pesticides is shown in Figure 6. In the diagram, the peak points in the
visible and infrared region are closely visible. The peak points between 650–700, 750–800,
and 960–1000 are related to the absorption of red pigments, the second and third overtone
vibrations of OH and the first and second overtone vibrations of OH are related to water
absorption. The results of PLS models obtained with different preprocessing methods to
predict the Profenofos pesticide residues in tomato samples were shown in Table 3. Most
of the developed calibration models had an acceptable ability to predict pesticide residues
in samples with an RCV above 0.8. However, the best prediction results were obtained
using the PLS model based on the Smoothing + moving average method (Rcv = 0.92,
RMSECV = 4.25). Hence, this model was selected for further analysis. Shan et al. (2020),
Soltani et al. (2021), Yi et al. (2010) and Sharabiani et al. (2019) also used the method used in
this study to predict the amount of soil atrazine uptake, residual pesticides in strawberries,
the amount of nitrogen in orange leaves and the amount of wheat protein, respectively,
and achieved acceptable results [16,18,53,54].

Table 3. Results of different preprocessing methods for predicting Profenofos residues.

Pre-Processing RMSECV RCV LV

No preprocessing 5.7129 0.8609 15
Smoothing-moving average 4.2562 0.9254 13
Smoothing-gaussian filter 4.2680 0.9251 14
Smoothing-median filter 5.2481 0.8847 13

Smoothing 4.1379 0.9295 15
Maximum normalize 5.5788 0.8679 11
1derivative (S-Golay) 7.6328 0.7522 15

SNV 6.8656 0.7978 13
MSC 7.1441 0.7828 15

(Smoothing-Gaussian) + (smoothing median) 7.0276 0.7778 11
Normalize + Gaussian 5.9218 0.8490 10

Figure 7 shows the correlation diagrams of the predicted values versus the main
values of the models used.

The use of NIRS technology in the detection of pesticide residues in fruits and veg-
etables, as well as their qualitative prediction, provides the researcher with a myriad of
spectral data for analysis. Large amounts of spectral data complicate analysis, prediction
errors, as well as over-fitting and under-fitting correlation curves. As a result, we need
to reduce the data dimension. In this paper, it was found that the combined models used
to predict the amount of Profenofos pesticide residues in tomato based on RF, SPA, and
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PCA can achieve the same performance using only a few characteristic spectra, and in
some cases achieve better performance than the mode based on all spectral data (Figure 7).
Some variables selected using the frog (28 wavelength) and SPA (14 wavelengths) al-
gorithms were similar and the rest of the characteristic wavelengths were close to each
other. Table 4 shows the results of model evaluation indicators. According to the results
obtained in ANN-based combined models, using SPA algorithm with values of Rc = 0.989,
Rp = 0.982, RMSEC = 0.141 and RMSEP = 0.166 and using total spectral data with values
of Rc = 0.86, Rp = 0.81, RMSEC = 0.521 and RMSEP = 0.561, respectively, had the best
and worst performance in predicting Profenofos pesticide in tomatoes. Also, in PLS-based
combined models, the modes of using SPA, RF, PCA, and total spectral data had the best
and worst performance in predicting, respectively. In general, according to the results
obtained in terms of validation parameters, the best model proposed in this paper is the
SPA-ANN model.

Figure 7. Correlation diagrams of the predicted values versus the main values of the models used.
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Table 4. Results of validation parameters of combined models.

Combined Models
Validation Parameters

Rc Rp RMSEC RMSEP

PLS 0.79 0.85 0.66 0.62
PCA-PLS 0.88 0.85 0.53 0.55
SPA-PLS 0.89 0.80 0.46 0.59
RF-PLS 0.91 0.91 0.40 0.36
ANN 0.86 0.81 0.52 0.56

PCA-ANN 0.93 0.89 0.36 0.40
SPA-ANN 0.98 0.98 0.14 0.16
RF-ANN 0.91 0.89 0.40 0.54

In a similar study the feasibility of using NIRS to detect the soluble solids content
(SSC) of Malus micro malus Makino were studied using SPA, SVR, PLSR, and BP-ANN.
The comparison studies confirmed that the optimal fusion model of SPA-SVR had the best
performance (RC = 0.9629, RP = 0.9029, RMSEC = 0.199, RMSEP = 0.271) [42]. In other
study, a new method of variable interval selection based on random frog (RF), known
as Interval Selection based on Random Frog (ISRF), is developed. The results show that
the proposed method is very efficient to find the best interval variables and improve the
model’s prediction performance and interpretation [55]. The results of various studies show
that the use of soft computing has been an effective method in the qualitative diagnosis of
products. This is evidence of the confirmation of the results obtained from our study.

4. Conclusions

In this paper, a rapid and non-destructive near-infrared method was used to predict the
profenofos pesticide residues in tomatoes. Spectral data obtained with a spectroradiometer
and reference data obtained by a gas chromatography equipment were used as input and
output of the models used in this research, respectively. PCA, SPA, and RF algorithms
were used to select the variable as input for artificial neural network (ANN) and PLSR.
First, all spectral data without dimension reduction and then spectral data obtained from
variable selection algorithms were used to predict the amount of pesticide in tomatoes.
Afterwards, 8 combined modes (pls, ANN, PCA-ANN, RF-ANN, SPA-ANN, PLS-PCA,
PLS-RF, and PLS-SPA) were developed for prediction. Finally, the prediction accuracy of
different combined models was compared and the best case was introduced. Based on what
was said in the previous sections of the paper, it was found that it is possible to predict the
amount of pesticide residues in tomatoes using the spectrum in the range of 460–1050 nm.
Accordingly, it was determined that the use of variable selection methods had a better
performance in predicting the amount of pesticide residues than the use of all spectral data.
Finally, according to the results of the validation parameters of the combined models used,
the SPA-ANN combined model with values of Rc = 0.989, Rp = 0.982, RMSEC = 0.141 and
RMSEP = 0.166 had the best performance in predicting Profenofos pesticide in tomatoes.

At the end of the article, it can be mentioned that NIRS technology, in addition to
advantages such as a non-destructive method, low cost measurement, high speed and
online uses in the processes of quality determination. However, this method has some
disadvantages, which are: NIRS requires chemometric techniques to provide the reference
data for calibration and validation of experimental results, and the large number of samples
with large variations to extract accurate information.
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Abbreviations

MRL Maximum Residue Limit
EU European Union
VIS/NIRS Visible/Near InfraRed Spectroscopy
PCA Principal Component Analysis
PLSR Partial Least Squares Regression
ANN Artificial Neural Network
R Regression Coefficient
RMSE Root Mean Square Error
GC Gas Chromatography
HPLC High-Performance Liquid Chromatography
WT Wavelet Transform
LSSVR Least-Square Support Vector Machine Regression
PSO Particle Swarm Optimization
RPD Residual Prediction Deviation
PLS-DA Partial Least Squares-Discriminant Analysis
PHI Pre-Harvest Interval
LOD Limit of detection
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Abstract: Pisum sativum L. ssp. arvense, is colloquially called tirabeque or mangetout because it is
eaten whole; its pods are recognized as a delicatessen in cooking due to its crunch on the palate
and high sweetness. Furthermore, this legume is an important source of protein and antioxidant
compounds. Quality control in this species requires the analysis of a large number of samples using
costly and laborious conventional methods. For this reason, a non-chemical and rapid technique
as near-infrared reflectance spectroscopy (NIRS) was explored to determine its physicochemical
quality (color, firmness, total soluble solids, pH, total polyphenols, ascorbic acid and protein content).
Pod samples from different cultivars and grown under different fertigation treatments were added
to the NIRS analysis to increase spectral and chemical variability in the calibration set. Modified
partial least squares regression was used for obtaining the calibration models of these parameters.
The coefficients of determination in the external validation ranged from 0.50 to 0.88. The RPD
(standard deviation to standard error of prediction ratio) and RER (standard deviation to range) were
variable for quality parameters and showed values that were characteristic of equations suitable for
quantitative prediction and screening purposes, except for the total soluble solid calibration model.

Keywords: mangetout; pea pod; near-infrared reflectance spectroscopy; quality parameters

1. Introduction

Vegetable proteins are appearing as a sustainable source for human consumption [1].
Demand for protein is likely to increase significantly over the next few decades to keep pace
with a growing population, which is projected to reach nearly ten billion by 2050 [2]. The
trend of animal protein consumption is increasing in recent decades [3,4], with production
of animal source foods responsible for a significant proportion of global greenhouse gas
(GHG) emissions, water consumption and land use [5]. However, the proportion of protein
consumption that the World Health Organization recommends is 75% vegetable and 25%
animal [6]. In this context, legumes, including soybeans, peanuts, beans, peas, fava beans
and lentils, among others, have a higher protein content than most plant foods and about
twice the protein content of cereals [7]. The high protein content of legumes may be related
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to their association with nitrogen-fixing bacteria in their roots, which converts the unusable
nitrogen into ammonium that is used for protein synthesis [8].

At present, the consumer demands new products on the supermarket shelves and
is also attracted by local markets and products. A segment of the population considers
itself a green consumer [9], in its different variants, and values healthy and quality foods.
Legumes, for all the above exposed, satisfy the current market trends [10].

Several species have been the subject of research for the diversification of vegetables
in the agricultural system of the province of Almería (Southeast Spain), with more than
32,000 hectares of greenhouses [11], more than 60% of cultivated vegetables belonging to
the Solanaceae family. The species tested to diversify these horticultural crops are sweet
cucumber, berries, pitahaya, passion fruit, fig tree and a wide range of legumes, among
some of them Pisum sativum L. ssp. arvense, colloquially called tirabeque or mangetout [12].
This species is recognized as a delicatessen in cooking due to its crocanti on the palate
and high sweetness. Whole mangetout pods are cooked and eaten, this being possible by
the absence of “parchment” in the pod walls, hence its pod is indehiscent. The external
appearance of pods, particularly their color, is also of great importance when considering
the fruits destined for fresh products.

Previous studies have also revealed the nutritional potential of mangetout, not only for
its protein content but also for its content of total soluble solids and antioxidant compounds
such as polyphenols, ascorbic acid, fiber, phytoprostanes and phytofurans [12–14].

Overall, the methodology used for the determination of phenolic compounds and
ascorbic acid content is based on spectrophotometric and chromatographic techniques;
however, these techniques require expensive equipment and usually use hazardous and
pollutant reagents [15,16]. Another relevant method includes colorimetric and titration
measurements, since it represents a relatively simple method for measuring total phenolic
compounds and ascorbic acid content, respectively.

The need to carry out screening in breeding programs, quality controls, traceability
studies and/or obtaining rapid information for labelling in a large number of samples using
conventional methods, leads to high costs, labour input and delays in the rapid decision
making. For this reason a non-chemical (producing no chemical waste) and rapid technique,
near-infrared reflectance spectroscopy (NIRS), which has been successfully applied in vari-
ous fields from life sciences to environmental issues, is explored here to screen quality in
mangetout pods [17]. Near-infrared spectroscopy is a technique that uses the radiation
absorbed by a set of samples in the region from 780 to 2500 nm (near-infrared region-
NIR spectroscopy in combination with chemometric analyses can be used for analysis of
numerous components (protein, carbohydrates, carotenoid, minerals, glucosinolates, phe-
nolics) and parameters of the sample (firmness, Brix, acidity, color) to be analyzed [18–23].
NIRS depends on the number and type of C-H, N-H and O-H bonds in the material being
analyzed, then spectral features are combined with reliable compositional or functional
analyses of the material in a predictive statistical model. This model is then used to predict
the composition of new or unknown samples [24].

Recently, the use of NIRS models for predicting the quality of vegetables has been
reported, several of which have addressed zucchini [19,20], pepper, rocket leaves, blackber-
ries [16,21,22] and Ethiopian mustard leaves [23], among others. The seed quality of various
legume species has also been analyzed using NIRS such as lentils [25], chickpeas [26] and
pea accessions from different germplasm collections [27,28]. Other studies have focused on
predicting the sensory quality and maturity of peas [29,30] using NIRS. To the best of our
knowledge, there is no research that predicted the quality in mangetout pods.

NIRS calibration models have been developed using a variety of linear regression
approaches, including modified partial least squares regression (MPLS). The modified
partial least squares (MPLS) is an improved version of traditional PLS that was developed
by Shenk and Westerhaus [31]. The MPLS procedure copes more effectively with non-
analyte interference in multicomponent determinations. This regression approach is a
soft-modeling method for generating predictive models when the factors are many and
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very collinear. It allows us to develop a model that is then evaluated on external samples to
estimate the predictive ability of the model. The mathematical procedure’s end goal is to
decrease the large amount of spectral data points (1050 data points from 400 to 2500 nm
wavelength range, every 2 nm) and remove the correlation presented by neighboring
wavelengths. As a result, the model developed only takes into account the most significant
factors, with the “noise” encapsulated in the less important factors, hence the accuracy of
NIRS analysis is improved.

At present, the purpose of the producers and the Andalusian Administrations involved
in the cultivation of mangetout is to apply for a “Protected Geographical Indication” (PGI)
for the Dalías Valley (Almería, Southeast Spain). This European Indication distinguishes
the quality attributes of the products grown in a certain region, and the NIRS technique
is a suitable tool that could contribute quickly and accurately to verify the quality of
the productions.

The objective of this paper was to investigate the feasibility for measuring physico-
chemical quality parameters (color, firmness, total soluble solids, pH, total polyphenols,
ascorbic acid and protein content) of mangetout pods by means of VIS-NIRS. For this
purpose, different cultivars of mangetout grown under organic cultivation and two fertiga-
tion regimes were tested to generate the highest variability for the development of NIRS
prediction models.

2. Material and Methods

2.1. Plant Material

The vegetal material consisted of a local landrace (germplasm maintained by local
growers in Almería Province, Southeast Spain) and 7 commercial cultivars of mangetout
(Figure 1, Table 1).

 
Figure 1. Pea pods of the different cultivars of mangetout analyzed. From left to right: Local
landrace (a), AR-24007 (b), Capuchino (c), Tirabeque IS (d), Tirabí (e), Pea Zuccola (f), Pea Delikata (g)
and Bamby (h).

Table 1. Cultivars, companies and growth habit of mangetout used in this study.

Cultivars Companies Growth Habit

Local landrace Growers production Indeterminate climbing
AR-24007 Ramiro Arnedo Indeterminate climbing
Capuchino Batlle Indeterminate climbing
Tirabeque IS Intersemillas Indeterminate climbing
Tirabí Fitó Indeterminate climbing
Pea Zuccola Tozer Determinate climbing
Pea Delikata Tozer Determinate climbing
Bamby Gautier Deterninate postrate

Edible pods of Pisum sativum L. spp. arvense (tirabeque or mangetout) were grown
in an organic greenhouse of 800 m2, at Instituto de Investigacion y Formacion Agraria y
Pesquera (IFAPA) Center “La Mojonera” (36◦48′ N, 2◦41′ W; altitude 142 m). The crop
(Figure 2) was carried out according to European ecological regulations [32]. The crop cycle
took place between October 2020 and March 2021. Two treatments, T100 (100% fertigation
treatment) and T50 (50% of water and fertilizers applied), were arranged in a randomized
complete block design with 3 replicates, for each cultivar and fertigation treatment, being
the planting density of 4 plants per m2 [13]. T100 consisted of water and fertilizer provided

21



Sensors 2022, 22, 4113

according to fertigation management. The fertigation treatments allowed us to have a
larger number of samples with physicochemical variability (different qualities) to develop
NIRS predictive models.

 

Figure 2. Detail of flower, leaves (left up) and pod (left down) of mangetout. Panoramic view of
field trial (right).

A random monitoring of disease and pest symptoms was conducted weekly. In T100,
the consumption of irrigation water was 100 L m−2, applying ecological fertilizers so that
the average nutrient solution reached 2.3 mS cm−1. Pods were harvested when reached
standard commercial sizes.

2.2. Physicochemical Parameters

The parameters considered to assess the physical quality in mangetout fruit were
firmness and skin color, whereas the parameters of chemical quality were total soluble
solids content, pH, total vitamin C, total polyphenol content and protein content. All these
characters were determined on the fruit of fresh mangetout except the protein content. For
each cultivar (8), treatment (2) and replicate (3), three samples were used. Each sample was
composed of 5 pods from 3 plants selected at random, which were then averaged (n = 144).

2.2.1. Firmness

Texturometer XTPlus (Texture Analyzer, Surrey, UK) was used to obtain pod firmness
(Figure 3). Shear force was measured by the Warner-Bratzler test. The pod was cut
perpendicular with a Warner-Bratzler blade at 1 mm s−1 during 5 s. The result was
expressed in Newton (N).
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Figure 3. Detail of Texturometer XTPlus Texture Analyzer (a); Smart-1 digital refractometer (b);
Automatic Metrohm 862 Titrosampler (c); Freeze-drying equipment (d); Mill (e); NIRS sample
holder (f); Spectrometer Model 6500 Foss-NIRSystems (g).

2.2.2. Color

CM-700d Konica Minolta portable colorimeter was used. Chroma and Hue angle were
measured externally, in two different pod locations, in the central plane.

2.2.3. Total Soluble Solids and pH

The soluble solid content (TSS) of the pods was obtained through measurement with
a Smart-1 digital refractometer (Atago, Japan) (Figure 3), and the previous sample was
homogenized for 30 s at 700 Braun CombiMax. The result was expressed in Brix. The pH
was obtained by automatic Metrohm 862 Titrosampler (Metrohm, Riverview, Florida, USA)
(Figure 3)

2.2.4. Total Polyphenol Content

In total, 10 g of the pods was homogenized with 10 mL of ethanol in PT3100 Polytron
(Littau, Switzerland) and then centrifuged for 10 min at 4 ◦C in J2-21M/E Beckman (Fuller-
ton, CA, USA). The pellet was resuspended in 10 mL 70% methanol in water (v/v) and
centrifuged again. Finally, the supernatant was diluted with 25 mL of 70% methanol. This
extract was used to determine the TPC according to the Folin–Ciocalteu procedure [33].
In total, 200 μL of the extract, 1 mL of Folin–Ciocalteu solution (diluted 1:10 in water)
and 800 μL of Na2CO3 (7.5%) were mixed vigorously, then the mixture was incubated
in the dark at room temperature. After 1 h, absorbance at 765 nm was determined on
ThermoSpectronic (Thermo Fisher Scientific, Waltham, MA, USA. The quantification of
TPC was expressed in Gallic acid equivalents (mg GAE kg−1 Fw).

2.2.5. Vitamin C

The reference values for ascorbic acid content (AAC) were obtained using the iodine
titration method by means of an automatic Metrohm 862 Titrosampler [34]. In total, 5 g of
sample juice was mixed with distilled deionized water until reaching 50 g of final weight,
mixing with 2 mL of glyoxal solution (40%). We proceeded to a brief stirring briefly and
5 min of rest. Once 5 mL of sulfuric acid (25%) was added, it was titrated with iodine
(0.01 mol L−1) to the end point (EP1). Pure ascorbic acid (AA) was used as an external
standard to determine the linearity of the method. For each standard solution, valuations
were performed in triplicate. The values of the regression equation and the regression
coefficient (r2 = 0.9998) were obtained. The ascorbic acid content was expressed as mg
100 g−1 fresh weight (fw).
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2.2.6. Protein Content

The nitrogen (N) content of the dried and ground pod samples was determined by the
Kjeldahl method using a distillation apparatus (k314, Büchi Labortechnik GmbH, Essen,
Germany) and then converted to protein content by multiplying it by 6.25. The protein
content was expressed as g 100 g−1 dry weight (dw).

2.3. Statistical Analysis

Analysis of variance (ANOVA) was used to compare differences among treatments for
total marketable yield. Previously, normality and homoscedasticity were tested using the
Shapiro–Wilk and Levenne tests, respectively. For these analyses, Fisher’s least significant
difference (LSD) test was used to compare the treatments, using the 5% level of significance.
Data were analyzed using the Statistical Package for the Social Sciences (SPSS) 24.0 software
package (LEAD Technologies, Inc., Chicago, IL, USA).

2.4. VIS-NIRS Analysis

Six replicate spectra were recorded for each sample (n = 144) and the average of the
spectra was calculated. The samples were lyophilized using freeze-drying equipment
(Telstar LyoQuest, Terrassa, Spain), then ground in a mill (Janke & Kunkel, model A10,
IKA®-Labortechnik) for about 20 s to pass through a 0.5 mm screen and stored at −80 ◦C
until analysis. The samples were freeze-dried to eliminate the strong absorbance of water in
the infrared spectral region, which overlaps with important bands of nutritional compounds
that are present in low concentration. Samples were placed in the NIRS sample holder
(3 cm diameter) until it was 3

4 full (weight ∼= 3.50 g) and were scanned (Spectrometer Model
6500 Foss-NIRSystems, Inc., Silver Spring, MD, USA). Their NIR spectra were acquired
over a wavelength range from 400 to 2500 nm (VIS + NIR regions) at 2 nm intervals.

Principal component analysis (PCA) was used to detect and remove possible spectral
outliers (spectra with a standardized Mahalanobis distance (H) from the mean spectrum of
the population greater than 3) [35].

Then, laboratory values were added to the spectra files. The reference values were
plotted as the dependent variable and the predicted NIRS values plotted as the indepen-
dent variable. The raw optical data (as log 1/R, being R = reflectance) or first or second
derivatives of the log 1/R data, with several combinations of derivative (gap) sizes and
segment (smoothing) were used to develop calibration equations [36,37]. Modified partial
least squares was used as regression method to correlate the spectral information (raw
optical and the different spectral treatments) of the samples and the quality components.
The applied pre-treatments to correct baseline offset due to spectral dispersion effects
(differences in particle size between samples) were standard normal variate and detrending
(SNV-DT) transformations.

2.5. Cross-Validation

Cross-validation is an internal validation method [38] and is useful because all samples
can be used to perform the calibration equation without the need to maintain separate
calibration sets and validation [39]. The method involves dividing the calibration set into M
segments (six) and calibrating M times, each time assessing a different part of the set of cal-
ibration (1/M) [40]. This number was proposed by WinISI software (Infrasoft International,
Port Matilda, PA, USA), five groups being used as the calibration set and then tested on the
remaining samples, performing a validation. This process continued until each group of
the six was used as a validation group. WinISI software uses principal component analysis
as a tool for selecting samples (spectra) to establish the calibration and validation groups.
Thus, both groups comprised samples representative of the whole spectral variability of
the population with similar mean and standard deviations for each trait.

Thus, cross-validation was conducted on the calibration set to establish the optimum
number of terms to be used in building the calibration equations and to identify spectral (H)
or chemical (T) outliers. “T” outliers are samples with high residuals when predicted by the
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model build in the cross-validation. T values of greater than 2.5 are considered significant
and those NIR analyses which have large T values may possibly be outliers. The H outlier
identifies a sample that is spectrally different from other samples in the population and has
a standardized H value of greater than 3.0. The outlier elimination pass was set to allow
the software to remove outliers twice before completing the final calibration [41].

The performances of the different calibration equations obtained were determined
from cross-validation. Thus, the prediction ability of the equations obtained for each
quality component was determined on the basis of two mathematical relationships, which
are the standard error of cross-validation (SECV) [42] to standard deviation (SD) ratio
(RPD = relative percent difference).

2.6. External Validation

To evaluate the precision and accuracy of the equations obtained in the calibration
models, an external validation procedure in 30 independent samples was completed. Thus,
having ordered the sample set by spectral distance using the CENTER algorithm (Winisi),
the 30 samples forming the validation set were selected by taking approximately 1 of every
5 samples in the final 144 sample set. The calibration set thus comprised the remaining
114 samples.

The statistical methods applied in this study included the coefficient of determination
calculated in cross-validation (R2 CV) and external validation (R2 V), the root mean square
error of calibration (RMSEC), the root mean square error of cross-validation (RMSECV)
and the root mean square error of prediction (RMSEP). Moreover, the ratio of prediction
to deviation (RPD), which indicated the correlations between the SD of the standard wet
chemical analyzed data and prediction data by NIRS model (RMSECV or RMSEP) [42],
was applied to estimate the prediction ability of the model.

NIR models can be classified depending on the R2 value from the external valida-
tion [43] as: models (0.26 < R2 v < 0.49) with a low correlation; models (0.50 < R2 v
< 0.64) that can be used to discriminate between low and high values of the samples;
models (0.65 < R2 v < 0.81) that can be used for rough predictions of samples; models
(0.82 < R2 v < 0.90) with good correlations; and models (R2 v > 0.90) with excellent precision.

The RPD statistic demonstrates how well the calibration model predicts data. The RPD
value >3 is desirable for excellent calibration equations, while equations with an RPD <1.5
are unsuitable, according to the guideline used for defining performance calibrations [43].
With regard to the range error ratio (RER), values in the 4 to 8 range indicate the ability
to discriminate between high and low values, and RER values from 8 to 12 establish the
ability to predict quantitative data [44,45].

The mathematical expressions of these statistics are as follows:

RPD = SD

〈[(
n

∑
i=1

(yi − ŷi)
2

)
(N − K − 1)−1

]1/2〉−1

where yi = lab reference value for the ith sample; ŷ = NIR measured value; N = number of
samples; K = number of wavelengths used in an equation; and SD = standard deviation.

The coefficient of determination in the cross-validation (R2):

R2 =

(
n

∑
i=1

(ŷ − y)2

)(
n

∑
i=1

(yi − y)2

)−1

where ŷ = NIR measured value; y= mean “y” value for all samples; yi = lab reference value
for the ith sample.

RER = range

〈[(
n

∑
i=1

(yi − ŷi)
2

)
(N − K − 1)−1

]1/2〉−1
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where yi = lab reference value for the ith sample; ŷ = NIR measured value; N = number of
samples; and K = number of wavelengths used in an equation.

3. Results and Discussion

3.1. Marketable Yield

Figure 4 shows the total marketable yield of the diverse varieties in response to different
fertigation treatments which ranged from 0.54 to 2.49 kg m−2. Significant differences were
found between the different cultivars of mangetout, the most productive being the varietal
types of the indeterminate climbing growth plant, corresponding to the local Landrace (T50
2.49 kg m−2, T100 2.44 kg m−2), AR-24009 (T50 2.22 kg m−2, T100 2.05 kg m−2) and Tirabeque
IS (T50 1.76 kg m−2, T100 2.05 kg m−2), followed by the varieties Tirabí (T50 1.57 kg m−2, T100
1.58 kg m−2), Pea Zuccola (T50 1.42 kg m−2, T100 1.34 kg m−2), Capuchino (T50 1.37 kg m−2,
T100 1.60 kg m−2), Pea Delikata (T50 1.37 kg m−2, T100 1.34 kg m−2) and lastly the Bamby
variety which shows the prostrate growth (T50 0.57 kg m−2, T100 0.54 kg m−2).

Figure 4. Total marketable yield (kg m−2) of the different varieties of mangetout under different
fertigation treatments (T50 and T100). Bars with different lowercase letters were significantly different
at p < 0.05 (Tukey’s multiple range test).

The production data obtained in the field trial for most of cultivars were higher than
those described previously in mangetout by García-García [46] (0.55–0.65 kg m−2), and
similar to those indicated by Estrada and Ibáñez [47] (1.5–2 kg m−2) in Mediterranean
greenhouse conditions.

Increasingly, the use of organic production regulations [48] as well as appropriate
fertigation management play an important role in enhancing crop quality and economizing
water [13] according to the Sustainable Development Goals (SDGs) by 2030. In this regard,
previous studies have showed that yield and quality of snap pods can be significantly
affected by different compositions of fertilization [49,50] and by different doses of water
in the fertigation solution [13,51]. In order to obtain the highest possible physicochemical
variability to develop NIRS predictive models, two fertigation treatments and different
mangetout cultivars were used.

3.2. Physicochemical Profiles

The samples analyzed varied in all variables as shown by the range and coefficient of
variation (CV) of the calibration set (Table 2). The highest values for the CV were observed
for C* chromatic value, firmness, ascorbic acid content and total polyphenol content (>20%),
possibly due to the different fertigation treatments and varieties used.
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Table 2. Mean, range and standard deviation (n = 144) for quality parameters of the mangetout
samples used in this study.

Parameters Mean Range SD

C* 27.87 15.20–35.58 6.15
h* 109.46 105.13–112.91 1.49
Firmness (N) 43.62 20.59–67.52 12.74
TSS (Brix) 7.53 6.08–8.85 0.65
pH 6.80 5.99–7.28 0.27
Protein (g 100 g−1 dw) 23.48 11.50–29.75 3.02
AAC (mg 100 g−1 fw) 43.82 19.75–68.86 10.82
TPC (mg GAE kg−1 fw) 389.09 202.30–685.05 111.52

Based on the results of this study, the chromatic parameters (C* and h*) varied from
15.20 to 35.58 and 105.13 to 112.91, respectively. The h* values correspond to the color green.
Green color of fresh pods is one the key factors for deciding the commercial acceptance of
snap bean as a fresh vegetable. Similar results have been previously found in snap pods
with values ranged from 107 to 111 for h* parameter, but a narrow variation range (27 to
33) for C* chromatic parameter [13,52,53].

Texture is a quality attribute in mangetout fruits very important for consumers since its
singular quality of edible crunchy pod is highly appreciated. From our study, the firmness
values in mangetout pods ranged from 20.59 to 67.52 N. Although information is lacking
for the comparison of firmness with other mangetout cultivars from the literature, our
previous research results showed that mangetout “Tirabí” showed values included in the
range mentioned above [13].

Vitamin C is essential in both plants and animals. The main suppliers of this vitamin
in the diet are fruits and vegetables [54]. Legumes are considered an important source of
vitamins, especially rich in ascorbic acid content in the pods [55]. Considerable variation
was found for AAC which ranged from 19.75 to 68.86 mg AA 100 g−1 fw in mangetout
pods. Previous studies revealed AA content within the range of AAC showed in this work
for three pea varieties (26 to 31 mg AA 100 g−1) [56]. Our findings are also in agreement
with those of Rickman et al. [57] and Avilés and Cruz [58], who described AA values of
40 and 27 mg 100 g−1 fw in peas and pea pods, respectively. Mangetout pods can be
considered a rich source of vitamin C, since orange and lemon contain 30–50 mg of ascorbic
acid 100 g−1 fw [54].

The pH of foods is an important parameter related to the taste perceived by consumers.
In our study, the pH ranged from 5.99 to 8.85. The values obtained agree with previous
studies on legumes [59–61], but lower than those obtained in French bean pods (5.84–5.96)
by Segura et al. [62].

TSS is another taste quality determinant [63], and cultivars with higher TSS have
higher taste quality. Mangetout pods are rich in TSS content (6.29–8.83 Brix) in comparison
with other legume pods; thus, cowpea accessions from different Mediterranean countries
showed lower sweetness (range 5.07–7.57 Brix) [55] in relation to our results.

On the other hand, the fresh mangetout pod TSS content in our study was lower
compared to those previously reported in the scientific literature [12]. This previous work
revealed that the TSS of fresh pods ranged from 9.1 to 11.3 under specific fertigation
treatments demonstrating that the environmental factors such as available water had a
highly significant effect on this quality parameter. According to the Brix reference values of
the main greenhouse vegetables, the mangetout pods analyzed showed a higher sweetness
than California green pepper fruits (4.03–6.31 Brix) and similar to red California pepper
fruits (7.37–8.85 Brix) [64].

The presence of polyphenols in plants is very varied, depending on the plant species,
variety, part of the plant, growing conditions, etc. More than 8000 phenolic compounds
with a very varied structure have been identified from simple molecules, such as phenolic
acids and complex polymers of high molecular mass such as tannins [65]. In our study,
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mangetout exhibited higher total polyphenol content (202.30 to 685.05 mg GAE kg−1 fw)
that those reported for other snap pods, such as the French bean with 300 mg GAE kg−1

fw [46]. Our results agree with those of Devi et al. [66] who found a wide variation range
(126.3–1286.3 mg GAE kg−1 fw) in pea pods from 22 different genotypes. On the other
hand, the consumer increasingly appreciates fruits with antioxidant properties due to
the health benefits. A source of phenolic compounds is identified as a chemopreventive
agent since it eliminates free radicals and has a preventive effect on degenerative diseases,
among others [67]. Mangetout pods have a high potential to be used in the development of
functional foods or nutraceutical products and unlike pea pods they would not require any
processing as the whole pod is edible.

Our results showed a wide variability for protein content (11.50–29.75 g 100 g−1 dw)
and our results agree with those of Hood-Niefer et al. [68] (24.4 to 27.5 g 100 g−1 dw), but
are higher than the results obtained by Mateos-Aparicio et al. [69] (10.8 ± 0.3 g 100 g−1 dw)
in pea pods. Overall, in the pea, both the seeds (20.5–22.6%) and pods (13.37%) are a rich
source of protein [70]. A diet rich in vegetable protein is increasingly important nowadays
due to its health benefits and thus it is recommended that people reduce their consumption
of animal protein. In addition, pea pods have protein-denaturing properties that show
anti-inflammatory effects and anti-cholinesterase activity because of the strong antidiabetic
properties of peas [71].

3.3. VIS-NIRS Analysis
3.3.1. Raw Spectra on Mangetout

Raw spectra of the calibration set samples are shown in Figure 5. A remarkable
variability in the VIS region (400–850 nm) absorbance spectra was observed because of pig-
ments. The peak around 640–700 nm illustrated the color transition of pea pods correlated
with the chlorophyll content that absorbs radiation in this region [72].

Figure 5. Raw spectra for dried mangetout samples.

Absorption bands in the region from 1300 to 2000 nm have been assigned to the third
overtones of C-N (amines); C=O (ketones, amino acids); and C-O (long-chain fatty acids,
phenols). From 2200 to 2400 nm, absorptions of C-N (primary amines) and C-O (alcohols)
have been assigned to the third overtones of these compounds, while in the same region,
C-H (asymmetrical deformation) and C-O (symmetrical vibrations) have been assigned to
the second overtones of these molecules. Finally, the second overtones of C-H deformation
and C-N (amides) have been reported in the 2400–2500 nm region [73].

3.3.2. Second Derivative Spectra of Mangetout

The second derivative and SNT-DT (standard normal variate and de-trending) algo-
rithms to the raw spectra led to a substantial correction (Figure 6) of the baseline shift
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produced by differences in path length and particle size. The increase in the complexity of
the derivative spectra resulted in a clear separation between peaks which overlap in the
raw spectra.

Figure 6. Second derivative spectra (2, 5, 5, 2; SNV + DT) of the raw optical data for mangetout
samples in the range of 400 to 2500 nm, together with the most relevant absorption bands.

Absorption maxima bands (λmax) were observed between 400 and 700 nm (at 444,
546 nm and 670 nm) in the spectra attributed to pod pigments that absorb in visible
region (Figure 6). From all pigments that can be found in plants, chlorophylls are used for
photosynthesis (“a” and “b”), which absorb preferentially violet-blue light (400–500 nm)
and red light (600–700 nm), respectively [74].

Pigment–protein complex molecules could be responsible for some of the traits that
determine the VIS region at longer wavelengths. Thus, binding proteins in chlorophyll a/b
absorb in the 498–568 nm range [74] and red absorbing pigments, particularly chlorophyll,
give the fruit its green color [75,76].

In the region NIRS of the spectra, peaks at 1208 nm (attributed to a CH second
overtone), 1726 nm and 1762 nm (assigned to CH first overtone), 2308 nm and 2348 nm
(attributed to CH stretch and deformation in a CH2 group) were detected which are
related to lipids [77,78]. Other peaks located at 1210 nm corresponded to absorption by
OH groups in carbohydrates [79,80]. Other peaks at 1512, 2056 and 2174 nm related to
protein, specifically to NH stretch, NH stretch and amide II, and amide I and amide III,
respectively [78]. The last significant peaks were observed at 1436 and 2270 nm, these
wavelengths corresponding to the deformation of the OH + CO cellulose groups [79].

3.3.3. Calibration Development

Tables 3 and 4 show the summary of the statistics obtained from calibration, cross-
validation and external validation models in mangetout samples, respectively. The full
available visible region and near-infrared region (400–2500 nm) were used.

The coefficients of determination (R2) achieved in calibration were higher than those
found in external validation models for mangetout, as expected. The coefficient of deter-
mination for cross-validation (R2 CV), oscillated between 0.55 for pH to 0.92 for protein
(Table 3), whereas RPDcv values ranges from 1.50 for pH to 3.45 for protein.

Based on the R2 values of the external validation, the models were as follows [39]:
models that can be used to discriminate between low and high values of the samples
(0.50 m< R2 < 0.64), in our work the models developed for AAC and TSS; models that can be
used for rough predictions of samples (0.65 < R2 < 0.81), in our case the calibrations achieved
for C* and h* color parameters, firmness and pH; and models with good correlations
(0.83 < R2 < 0.90), these values corresponding with models obtained for total polyphenol
content and protein.
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The SEP values of the validation were lower than their respective SD, which indicates
that NIRS is able to determine these traits in mangetout.

Table 3. Calibration and cross-validation statistics of quality compounds for mangetout.

Parameters Range 1 SD 2 R2 3 SEC 4 R2 CV 5 SECV 6 RPDcv 7 Treatment 8 Cv

C* 15.20–35.58 6.35 0.87 2.24 0.81 2.78 2.28 2,5,5,2 0.22
h* 106.41–112.10 1.41 0.80 0.62 0.71 0.75 1.88 1,4,4,1 0.01
Firmness (N) 21.75–67.52 10.09 0.71 5.46 0.71 5.93 1.70 1,4,4,1 0.21
9 TSS (Brix) 6.29–8.83 0.65 0.93 0.18 0.68 0.39 1.66 1,4,4,1 0.08
pH 6.01–7.28 0.27 0.60 0.17 0.55 0.18 1.50 1,4,4,1 0.04
Protein
(g 100 g−1 dw) 15.69–29.75 2.80 0.97 0.48 0.92 0.81 3.45 2,5,5,2 0.13
10 AAC
(mg 100 g−1 fw)

19.75–64.40 10.89 0.79 5.02 0.56 7.16 1.52 1,4,4,1 0.24

11 TPC
(mg GAE kg−1 fw)

239.28–670.30 101.91 0.93 27.01 0.86 39.08 2.61 1,4,4,1 0.28

1 SD: Standard deviation; 2 R2: Coefficient of determination in calibration; 3 SEC: Standard error in calibration;
4 R2: Coefficient of determination in cross-validation; 5 SECV: Standard error of cross-validation; 6 RPDcv: Ratio
of the standard deviation to standard error of cross-validation; 7 Mathematical treatment; 8 Coefficient of variation;
9 TSS: Total soluble solids; 10 AAC: Ascorbic acid content; 11 TPC: Total polyphenol content.

Table 4. Reference values and external validation statistics of the NIRS calibrations for quality
compounds in mangetout.

Reference Values (n = 30) External Validation

Parameters Range Mean 1 SD 2 Rv2 3 SEP 4 RPDp 5 RER

C* 15.20–34.89 25.50 7.33 0.78 3.34 2.19 5.89
H* 107.40–111.71 109.71 1.24 0.68 0.56 2.00 6.95
Firmness (N) 24.45–67.20 40.48 12.51 0.65 7.34 1.70 5.96
6 TSS (Brix) 6.29–8.76 7.54 0.69 0.52 0.51 1.35 4.84
pH 6.22–7.20 6.83 0.22 0.50 0.14 1.57 7.00
Protein (g 100 g−1 dw) 17.22–29.5 24.95 2.18 0.88 0.68 3.20 14.89
7AAC (mg 100 g−1 fw) 22.71–63.47 45.69 8.82 0.50 8.82 1.50 7.03
8 TPC (mg GAE kg−1 fw) 250.89–570.21 360.89 80.37 0.84 29.46 2.72 10.84

TSS: Total soluble solids; AAC: Ascorbic acid content; TPC: Total polyphenol content; 1 SD: Standard deviation;
2 Rv2: Coefficient of determination in external validation; 3 SEP: Standard error of prediction corrected for bias;
4 RPDp: Ratio of the standard deviation to standard error of prediction (performance); 5 RER: Ratio of the range
to standard error of prediction (performance); 6 TSS: Total soluble solids; 7 AAC: Ascorbic acid content; 8 TPC:
Total polyphenol content.

According to the guideline used for defining performance calibrations [43] when this
ratio is greater than 3, the calibration equation is very significant, and this was reached
in our study for protein content; if RPD values range between 2.5 < RPD < 3, predictive
models are considered very good, in our case corresponding to the TPC model; while RPD
range between 1.5 < RPD < 2.5 predictive models are appropriate for screening purposes,
which was achieved for AAC, pH, firmness and C* and h* color parameter models.

Figure 7 shows the relationship between the predicted reflectance spectroscopy in the
near infrared (NIRS) and reference values for all parameters (color parameters (chroma *
and hue angle), firmness, total soluble solids, pH, protein content, ascorbic acid and total
polyphenol content) in the mangetout validation set samples.

In reference to RER (ratio of the range to standard error of prediction) coefficients, this
dimensionless parameter is also used to evaluate the predictive ability of NIRS equations,
in this work ranged from 4.84–14.89.

Prediction models for C*, h*, firmness, TSS, pH, AAC showed RER values within the
range from 4 to 8, which suggest the possibility of discriminating between high and low
values; while RER values in the range of 8 to 12 represent the possibility of predicting
quantitative data [44,45] which was achieved for protein and TPC predictive models.
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Figure 7. Predicted versus reference values for calibration and external validation for all parameters:
c* (a); h* (b); firmness (c); total soluble solids (d); pH (e); protein content (f); ascorbic acid (g); total
polyphenol content in the mangetout (h).

Previous works have demonstrated the validity of the NIRS technique in evaluating
the accuracy of pea single seed protein with R2 = 0.94 and RPD = 3.7 in external valida-
tion [28], and also for predicting soybean single seed protein content with Rval2 = 0.84 and
RPDval = 2.28 values [81].

The estimation of protein and total polyphenol content in common beans (Phaseolus
vulgaris L.) by NIRS has also been previously assayed by several authors reaching signifi-
cantly good results in general. Thus, the high R2 obtained ranged from 0.91–0.94 and RPD
values above 3.5 [82–85]. Other authors supported the validity of the NIRS technique in
similar approaches, with R2 and RPD values for firmness of 0.61 and 1.7, respectively, in
soybean single seed [82]. Wang [86] used NIRS to predict the total polyphenol content in
ground faba bean (Vicia faba L.), with an R2 of 0.79, RMSECV of 0.40 and RPD of 2.20, and
also for the determination of protein in ground faba bean seed powder with an R2 of 0.94.

It should be noted that the prediction accuracies in all of the above-mentioned studies
were comparable to those reported for mangetout in this study. To our knowledge, this is
the first article dealing with the use of NIRS to predict pod quality traits in mangetout.

Modified PLS regression was employed to reduce the spectral information of the
mangetout samples by creating a much smaller number of new orthogonal variables
(factors) which retain the essential information needed to predict the composition of
the samples.
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3.3.4. Modified Partial Least Squares Loadings for Quality Equations

The scores of the best models for all quality parameters were plotted by their first
MPLS loadings (Figure 8) to identify those areas within the spectral range where variance
had influenced the model fitting, to a lesser or greater degree, as well as the direction
(negative or positive).

Figure 8. Modified partial least squares (MPLS) loading of the optimal calibrations for physicochemi-
cal compounds measured by NIRS.

The region of the spectrum which most influenced the fitting of the model was the
visible segment between 480 to 700 nm. Thus, the contribution of chlorophyll (672 nm)
showed the highest weight on first MPLS loading [75] (Figure 8). Other chromophores
absorbing at 496 and 512 nm also participated in the equations. With respect to NIR region,
previous studies have shown the contribution of this region to predict color parameters for
species such as fresh Ginkgo biloba leaves [87], green-leafy species [88] or Sassafras tzumu [89].
Some plant chemical compounds (e.g., phenolics and flavonoids) respond to the stress and
environmental changes and correlate in a secondary way with the color parameters. The
characteristic bands of phenolics and flavonoids can be detected in wavelength regions
from 1415 nm to 1512 nm, 1650 to 1750 nm and from 1955 to 2035 nm in the MPLS loadings
for the color parameters (Figure 8) [90]. Furthermore, the color is caused by the reflection
of helicoidally stacked cellulose microfibrils that form multilayers in the cell walls of the
epicarp [91]. Thus, the wavelengths at 1932 nm (O-H stretching plus O-H deformation)
could be related to the cellulose of the pod tissues which can be observed in the MPLS

32



Sensors 2022, 22, 4113

loadings of the optimal calibrations for the color parameters (Figure 8). Others main NIR
contributions were those at 2284 nm (C-H stretching plus C-H deformation), 2300 nm
(stretching–bending of CH—CH2 bonds and C—O bonds) and 2348 nm (C-H combination
of methylene groups) [77]. In addition, absorption bands in the NIR region that influenced
the fitting of the models were found at 1212, 1388, 1412 and 1990 nm (associated with
glucides and water absorptions), and the region around 2072 nm (N—H bonds) associated
with protein.

4. Conclusions

This work has showed that genetic variability exists for the quality parameters ana-
lyzed in mangetout cultivars. Many of the traits analyzed are of economic interest (color,
firmness, protein content and antioxidant compounds). These new understandings could
be useful in selecting parents for breeding programs aimed at enhancing physicochemical
parameters that respond to the new trends market.

Moreover, the result of the present investigation explores the potential of NIRS to
simultaneously determine eight quality traits in mangetout, as an alternative to reference
methods. The measurements with the reference methods of most of these parameters are
expensive, have laborious protocols and require a long analysis time. Utilizing NIRS, every
2 min, we can analyze all the quality parameters of a sample. The results reveal that the
models allow an accurate quantification of protein and TPC and a rough screening method
of the samples for color parameters (c* and h*), firmness, AAC and pH.

The inclusion future of mangetout cultivars from different geographical origins and
segregant populations in the calibration models will allow us to increase the robustness of
the equations for these parameters.

The performance of the calibration model for TSS was lower than that obtained for
the other quality parameters in this work. The low variability among mangetout cultivars
used in this work (6.29–8.76 Brix) could be based on the lower accuracy of the calibration
model for TSS. An increase in both the number of samples and trait variation can be crucial
factors for improving the accuracy of this calibration model.

It is interesting to focus attention on firmness (shear force). Pod firmness is an excellent
indicator of pod quality, but its quantification is time consuming and not easily measured.
Pods must be harvested before they become tough and develop poor culinary acceptance,
even if it means sacrificing maximum yield. From this point of view, the use of NIRS
instead of a texturometer could be clearly advantageous.

Spectral ranges associated with the absorbance of chromophores, carbohydrates, water
and protein were used by MPLS regression for the model fitting of quality equations
in mangetout.
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Abstract: Proximal sensing for assessing sugarcane quality information during harvest can be affected
by various factors, including the type of sample preparation. The objective of this study was to
determine the best sugarcane sample type and analyze the spectral response for the prediction of
quality parameters of sugarcane from visible and near-infrared (vis-NIR) spectroscopy. The sampling
and spectral data acquisition were performed during the analysis of samples by conventional methods
in a sugar mill laboratory. Samples of billets were collected and four modes of scanning and sample
preparation were evaluated: outer-surface (‘skin’) (SS), cross-sectional scanning (CSS), defibrated
cane (DF), and raw juice (RJ) to analyze the parameters soluble solids content (Brix), saccharose (Pol),
fibre, pol of cane and total recoverable sugars (TRS). Predictive models based on Partial Least Square
Regression (PLSR) were built with the vis-NIR spectral measurements. There was no significant
difference (p-value > 0.05) between the accuracy SS and CSS samples compared to DF and RJ samples
for all prediction models. However, DF samples presented the best predictive performance values for
the main sugarcane quality parameters, and required only minimal sample preparation. The results
contribute to advancing the development of on-board quality monitoring in sugarcane, indicating
better sampling strategies.

Keywords: chemometrics; proximal sensing; precision agriculture

1. Introduction

Near-Infrared (NIR) spectroscopy is a well-established technique to monitor the qual-
ity of raw sugarcane received by sugar mills [1], and consequently, for pricing and trading
with producers and growers [2]. Crop quality is estimated based on physicochemical
parameters related to physiological composition, such as soluble solids content (Brix),
water-insoluble solids (Fibre), and the apparent sucrose in the juice (Pol). Furthermore, all
other parameters (purity, Pol of cane, reducing sugars, and total recoverable sugars) are cal-
culated based on the former parameters [3], from which total recoverable sugars (TRS) are
used for the pricing and trading of the raw material. Sugarcane quality parameters are de-
termined by analytical methods and empirical equations described by the National Council
of Sugarcane Producers (CONSECANA), which are based on the International Commission
for Uniform Methods of Sugar Analysis (ICUMSA). Using calibration methods, it is now
possible to obtain some crop quality parameters by NIR spectroscopy [4].

Different wavelength regions of the electromagnetic spectrum can be used in spec-
troscopy, such as visible (400 to 750 nm), near-infrared (NIR, 750 to 2500 nm), shortwave
near-infrared (SWNIR, 750 to 1100 nm), and visible and near-infrared (vis-NIR, 400 to
2500 nm) [5–8]. However, there is no consensus on the limits between these regions.
Interaction between electromagnetic radiation and matter causes molecular vibrations
involving heavy atom (C, N, O, and S) attached to a hydrogen atom [8]. This basic principle
has allowed substantial scientific advances to predict organic compounds of agricultural
products associated with its quality using vis-NIR spectroscopy as a nondestructive and
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environmentally friendly analysis technique [5]. Moreover, several studies have shown
promising results when using the technique to predict sugar cane quality in the sugar
mill [9–12] and for breeding programs [13–15].

Despite the advances in industrial sugarcane quality monitoring, spectral methods are
still a distant reality for in-field measurements in line with precision agriculture practices.
Current proximal sensing technologies applied at the canopy level allow only monitoring
crop yield [16,17]. However, some studies have indicated that vis-NIR could also be a
viable technology for acquiring quality data of harvested products in real-time during
mechanical harvesting [16]. The monitoring of crop quality parameters across the field is
important to adopting precision agriculture (PA) practices, in which quality maps would
show the variability of the crop and help guide site-specific management [18]. In this
context, mechanical harvest opens a way to obtain a high frequency of sampling and
data collection to analyze the quality variability across the field [19]. However, some
requirements need to be satisfied to use vis-NIR as proximal sensing technology for this
purpose: (i) the location of adaptation in the harvester, (ii) development of a sampler
system, and (iii) the type of sampling required for analysis. The first two requirements are
fundamentally dependent on the last one.

Nawi et al. (2014) indicated that the ideal place for implementing an on-board sug-
arcane quality monitor would be in the elevator of the harvester, where the sugarcane
material is partially cleaned and processed in the form of billets. In this context, some
studies have reported promising results on the prediction of sugarcane Brix from sensor
readings made on the outer-surface (‘skin’) [20] or on cross-sections [21] of sugarcane bil-
lets. Furthermore, more recent studies have advanced with on-board vis-NIR spectroscopy
sensor applications on the elevator of a sugarcane harvester simulator, i.e., analyzing
samples at a distance and in motion [2,22]. However, Maraphum et al. [23] and Phupha-
phud et al. [24] reported that the waxy material should be removed from the cane surface
for maximum accuracy in the spectral data condition, even though this may be imprac-
tical for an embedded system. Associated with this fact, Phetpan et al. [2] reported on
the need to evaluate the potential of the vis-NIR spectroscopy technique with data sets
consisting of a larger number of sugarcane varieties. In addition, despite the advantages
of nondestructive measurement, there is a lack of basic studies comparatively evaluating
various forms of sampling without and with minimal processing, using extensive numbers
of samples obtained over the course of a harvest. Thus, the objective of this study was to
compare different sugarcane sample types, including billets, defibrated cane, and raw juice,
and to analyze the spectral response of each sampling type for the prediction of quality
parameters of sugarcane from vis-NIR spectroscopy.

2. Materials and Methods

2.1. Sampling

Variability of sugarcane quality parameters throughout a harvest occurs due to diverse
environmental conditions, mainly temperature and precipitation, during the harvest [25].
Based on this, the data collection procedure occurred on random periods over six months
of the 2019 harvest (June to November). We sought to obtain higher variability of the
sugarcane quality parameters from this collection procedure throughout the harvest.

The data collection was carried out in the quality laboratory of a sugar mill. Three hun-
dred and two samples were collected, and different levels of processing were applied. Also,
all data acquisition was performed in a controlled temperature environment (20 ± 5 ◦C),
minimizing the effects of sugar degradation by microorganisms. In addition, we collected
the daily results of conventional analysis performed by sugar mill quality laboratory over
the same months in which the samples were collected for spectral analysis.

The sampling procedure for vis-NIR analysis was carried out sequentially and simul-
taneously to the sample preparation for conventional analysis, as described:
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1. An oblique probe collected a sample of sugarcane billets in each truckload to pro-
ceed with the conventional analyzes of the sugarcane transported to the sugar mill
(Figure 1a). Before the laboratory processes the sample, we took a subsample com-
posed of three random sugarcane billets (Figure 1b);

2. The remaining sample of billets was milled in a mechanical knife crusher and homog-
enized in a mixer (Figure 1c). Then, samples with 500 g and 50 g of the homogenized
defibrated sugarcane were collected (Figure 1d) to proceed with the conventional and
spectral analysis, respectively;

3. The 500 g sample was pressed in a hydraulic press under constant pressure, at
24.5 MPa (250 kgf cm−2) for 60 s to obtain the raw juice for conventional analysis
(Figure 1e). At the same moment, the third sample composed of extracted raw juice
was collected for spectral measurements (Figure 1f).

 

Figure 1. The sequence samples collection and spectral measurements during the preparation steps of samples for
conventional analysis. (a) Sampling of sugarcane billets by an oblique probe in the cargo truck; (b) sugarcane billets for
skin and cross-sectional scanning measurements; (c) milling and homogenization of sugarcane to defibrated sample; (d)
defibration sample; (e) pressing of defibrated sample to extracting of juice; (f) extracted raw juice; prepared samples for
vis-NIR spectral measurements: (g) cross-sectional and skin of billets inside pipeline chambers, (h) defibrated cane and raw
juice; (i) Veris vis-NIR spectrometer and internal configuration scheme of the measurement shank; (j) fibrous cane residue
and extracted raw juice for conventional analysis.

The sample types composed of three billets, defibrated cane, and raw juice were
prepared (Figure 1g,h) and immediately used for spectral measurements at the sugar mill
laboratory (Figure 1i). The remains of raw juice and the bagasse without juice (after pressed)
were used for conventional analytical analysis (Figure 1j).
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2.2. Sugarcane Quality Analysis

All the procedures and equations for sugarcane quality parameters determination
followed the standard protocol proposed by the CONSECANA [26]. These protocols agree
with the international rules from ICUMSA.

Initially, the soluble solids content (Brix) was determined by pouring raw juice into a
refractometer probe (RX-5000α, ATAGO Co Ltd., Tokyo, Japan) with a maximum resolution
of 0.1 Brix. Then, 14 g of a mixture composed of a 4:2:1 proportion of Celite (mineral filtering
agent), aluminum chloride, and calcium hydroxide, respectively, was added to 200 mL
of raw juice homogenized by a magnetic stirrer until the solution was well-mixed. The
solution was filtered through filter paper to obtaining clarified juice. A volume of 70
mL was added in a digital polarimeter (Schmidt + Haensch, Polartronic NHZ 8, Berlin,
Germany) to the saccharimetric reading. The result was obtained as percentage of apparent
sucrose in the juice (Pol).

After the juice extraction, the remaining fibrous cane residue (Figure 1j) was trans-
ferred to metal baskets, with holes at the base. The fibrous residue was weighed on a
semianalytical balance. Then, samples were maintained in a forced air circulation dryer
at a temperature of 105 ◦C, until constant weight was achieved. The dryer samples were
weighed, and the fibre content (insoluble solids) was determined.

The Pol of cane and TRS were calculated for each sample from the previous parameters
as described by CONSECANA (2015). The triplicate values obtained from each sample
were averaged.

It is important to mention that reducing sugars (fructose and glucose) and purity
(apparent sucrose in the soluble solids content) were also determined in the laboratory.
However, while these parameters are not the subject of the present study, they were used
to calculate TRS by the reference method.

2.3. Acquisition of Spectral Data

The spectral measurements were performed with a Veris vis-NIR spectrometer (Veris
Technologies Inc., Salina, KS, USA). This equipment was developed for on-the-go soil
measurements mounted on a platform, connected to a three-point hitch, and pulled by a
tractor [27]. However, it may also be used in bench mode. The equipment consists of a
CCD array spectrometer (USB4000, Ocean optics, Largo, FL, USA), measuring wavelengths
between 373 and 1011 nm, and an InGaAs photodiode-array spectrometer (C9914GB, Hama-
matsu Photonics, Hamamatsu, Japan), with a spectral range between 1170 and 2222 nm.
The system presents a resolution of around 5 nm. Spectral measurement acquisitions were
performed via a sapphire window in the lower of the shank using a tungsten halogen
lamp as an electromagnetic energy source (Figure 1i). Each spectrum recorded by the
equipment software (Veris spectrophotometer software V1.79) corresponded to the average
of 20 spectral readings. The inside shutter is operated automatically to obtain dark and
reference spectra before each analysis. Four external references with different grey levels
were used for spectral calibration of the spectrometer before the analysis. The spectral data
were stored as absorbance units.

The three billets of each sugarcane sample were cut transversely at both extremities,
and their skin was lightly cleaned with paper to remove residues from harvest (Figure 1b).
An ad hoc dark chamber was constructed with PVC pipes and foam to accommodate the
billets, and its inside was painted matte black. Also, magnets were placed on the cover of
the chamber, next to the hole through which the spectral scans were performed, aiming
to fix the chamber on the reading shank of the spectrometer. This device standardizes the
distance between the sapphire window of the spectrometer and the sugarcane billets and
removes interference from external lighting (Figure 1g).

The spectral scan method on billets was adapted from Nawi [20,21] and Phupha-
phud [15]. The spectral scans were performed at three equidistant points (around 120◦) on
the skin of each billet. Furthermore, the cross-sectional scanning of billets was performed in
triplicate in each cross-sectional surface of each billet, only changing the position after each
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reading. Therefore, each sample type measurement, skin scanning (SS), and cross-sectional
scanning (CSS) of billets was represented by an average of nine successive scans.

The spectral measurements of defibrated cane and raw juice were performed in the
same manner. A recipient available from the equipment itself with a volume of around 3
mL was used. The recipient was filled with sample (defibrated cane or extracted raw juice,
Figure 1h), and the spectral measurements were performed in triplicate. Three replicates
were performed for each sample. Thus, the average of nine spectral readings of defibrated
cane (DF) and nine spectral readings of raw juice (RJ) were recorded.

2.4. Spectral Preprocessing

Data preprocessing steps were performed to remove or minimize the sources of
spectral variabilities, such as noise present in the dataset, which was not related to the
analytical signal [8,28].

Firstly, the spectra were preprocessed using standard normal variate (SNV) [29] to
eliminate the deviations caused by particle size and scattering, which centers each spectrum
on its mean and then scales it by its standard deviation. Also, the second derivative based
on the Savitzky-Golay algorithm [30] was applied, with a window size of 11 points and
second-order polynomial fitting to minimize hurdles such as baseline shifts drifts and to
remove high-frequency noise from a spectrum and improve the signal-to-noise ratio [28].
After the preprocessing of the spectral data, Pareto scaling (PS) was applied to variables,
which is the most commonly applied scaling method in infrared data [31]. The method
centered all variables at their means, and then divided them by the square root of the
standard deviation.

2.5. Multivariate Analysis

Firstly, the spectral data of the four sampling conditions were concatenated. Then,
the data was divided into calibration (75%, 227 samples) and external validation (25%,
75 samples) data sets, based on the Kennard-Stone method [19]. This procedure allowed to
obtain the same samples for calibration and external validation data set for both sample
types evaluated. The spectral measurements were used to build predictive models for
sugarcane quality parameters based on Partial least square regression (PLS) [20].

The models were calibrated using the venetian blinds cross-validation method with
10 splits. The optimal PLS models were determined based on the lowest number of latent
variables (LV), in which the root mean square error of cross-validation (RMSECV) was not
significantly higher than the minimum RMSECV [23]. The root mean square error (RMSE)
was calculated as follows:

RMSE =

√
∑n

i=1(yi − ŷi)
2

n
(1)

where n is the number of samples, yi is the reference measurement of sample i, and ŷi is the
estimated result for sample i.

The outliers were evaluated during the calibration step for the reference lab values
and spectral data. The presence of outliers in the spectral data was evaluated by the
“influence plots” based on high leverage and unmodeled residuals by Hotelling T2 and Q
statistics, respectively [8]. Samples with high values in both cases, at 5% of significance
level, were considered outliers and removed from the spectral data set. On the other hand,
outliers in reference data were evaluated by the root mean square error in calibration
(RMSEC) values. Samples that presented errors in prediction greater than ±3 × RMSEC
were considered outliers and removed from the data set [32]. The external validation
samples were considered unknown samples. In this way, the outliers were evaluated only
for the spectral data set. The process was carried out at most three times in the calibration
step, as recommended by ASTM E1655-7 [33].

The model accuracy was evaluated based on the RMSE for calibration, cross-validation,
and prediction (RMSEC, RMSECV, RMSEP, respectively). Prediction performance was
evaluated based on the determination coefficient (R2) for calibration and prediction (R2c
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and R2p, respectively), and the ratio of performance to the interquartile range (RPIQ),
which is calculated by the ratio between the interquartile difference and the RMSEP. Also,
a randomization test [34] with 0.05 significance level of probability was performed. The
aim was to compare the accuracy of regression models using different sugarcane sample
types in the validation set. The hypothesis evaluated were:

• Null hypothesis (H0): RMSEPsample type 1 = RMSEPsample type 2 (accuracy is similar);
• Alternative hypothesis (H1): RMSEPsample type 1 �= RMSEPsample type 2 (accuracy is not

similar).

An advantage of this test is its simplicity and the fact that assumptions about normality
or homoscedasticity of the data are not required (distribution-free) [35]. More details about
this test, included an algorithm script, can be found in Olivieri [36].

Moreover, the variable importance for the projection (VIP) was calculated to verify
the wavelengths with a more significant impact on the external validate models [27] for
each sample type. The VIP was calculated as follows:

VIPj =

√√√√p
h

∑
k=1

[
Z
( wjk

||wk||
)2

]
.

(
h

∑
k=1

Z

)−1

(2)

where VIP is the variable importance for projection (dimensionless), j is a specific wave-
length (nm), p is the number of wavelengths (dimensionless), h is the number of latent
variables (dimensionless), Z is the fraction of variance in the prediction explained by the
latent variable (dimensionless), and w is the loading weight (dimensionless).

All models, routines, and data processing were performed in Matlab R2015a (The
MathWorks, Natick, MA, USA) and PLS Toolbox 8.9 (R8.9.1; Eigenvector Research, We-
natchee, WA, USA).

3. Results and Discussion

3.1. Overview of Sugarcane Quality Reference Data and vis-NIR Spectral Measurements of
Different Sample Types

From the daily results of analyses performed by conventional methods at the mill, it
was possible to characterize the variation of the main parameters determined analytically
(Brix, Pol, and Fibre), as well as for TRS, throughout the months in which the experiment
was performed (Figure 2).

It is possible to observe an increasing trend in all parameters from June to October.
Afterward, there is a tendency to decrease, except for fibre. Weather is highly influen-
tial on sucrose storage [25]. In the months corresponding to autumn (June) and winter
(June to September), water stress and cooler temperatures contribute to the reduction
of vegetative crop growth and favor sucrose storage [37]. With the beginning of spring
(September/October) and the beginning of the rainy season, the vegetative growth of the
crop is resumed, and the reserves are consumed. The sample acquisition on different peri-
ods (vertical bars in Figure 2) throughout the harvest allowed us to obtain data including
different stages in this variation. The effect of this variability was reflected in the range of
all samples collected during the experiment (Table 1).

On a first view, the Kennard-Stone method provides a representative calibration data
set, with external validation data set between its range (Table 1). The sample acquisition
method provided a satisfactory variability of data, as expected; TRS varied from 86.94 to
173.80 kg of sugar per Mg of cane.
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Figure 2. Mean and standard deviation (SD) of annual variation of sugarcane quality parameters, Brix, Pol, Fibre, and total
recoverable sugars (TRS); and spectral data collection periods (vertical bars).

Table 1. Descriptive statistics of the reference results for the sugarcane quality attributes of all samples, calibration, and
external validation data sets.

Parameter unit Mean ± SD Median Range p25 p75 SEL

All samples (n = 302)

Brix % 18.95 ± 1.71 18.99 13.08–23.42 17.80 20.01 0.03
Pol % 16.67 ± 1.90 16.66 10.78–21.20 15.41 17.95 0.01

Fibre % 13.29 ± 1.79 12.90 7.22–20.08 12.07 14.33 0.07
Pol of cane % 13.80 ± 1.56 13.91 8.40–17.56 12.92 14.78 0.01

TRS kg Mg−1 137.66 ± 14.48 138.66 86.94–173.80 129.75 146.84 1.12

Calibration set (n = 227)

Brix % 18.86 ± 1.66 18.80 13.08–23.42 17.79 19.98 -
Pol % 16.54 ± 1.86 16.55 10.78–21.20 15.38 17.78 -

Fibre % 13.31 ± 1.89 12.83 7.22–20.08 12.05 14.41 -
Pol of cane % 13.69 ± 1.52 13.79 8.40–17.56 12.83 14.60 -

TRS kg Mg−1 136.65 ± 14.07 137.01 86.94–173.80 128.99 145.19 -

Validation set (n = 75)

Brix % 19.24 ± 1.85 19.59 13.55–23.05 18.06 20.61 -
Pol % 17.06 ± 1.98 17.33 11.24–20.90 15.73 18.54 -

Fibre % 13.23 ± 1.44 13.02 10.49–17.15 12.24 14.16 -
Pol of cane % 14.14 ± 1.64 14.34 8.96–17.14 13.27 15.47 -

TRS kg Mg−1 140.76 ± 15.36 142.59 92.16–169.02 132.35 152.44 -

SD: standard deviation; p25: lower quartile; p75: upper quartile; SEL: standard error of laboratory; TRS: total recoverable sugar.

The distribution of all quality parameter values had wide distribution (Figure 3). Fibre
content did not positively or negatively correlate with any other parameters analyzed,
with values varying from −0.16 to 0.13 (p < 0.05). On the other hand, the other parameters
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showed a positive correlation higher than 0.94 (p < 0.05). The highest correlation was
observed between Pol of cane and TRS, close to 1.00 (p < 0.05). Higher correlation values
are observed between the TRS with parameters analytically determined such as Brix and
Pol (0.94 and 0.96, respectively, p < 0.05). The correlation values for these attributes are
firstly explained by the composition of the soluble solids content of sugarcane, measured
by Brix, in which the largest proportion corresponds to sucrose (about 15–18%), measured
by Pol [38,39], and reducing sugars (fructose and glucose) in a smaller proportion (about
0.5%) [40]; note that the determination of reducing sugars was not the objective of the
present study.

Figure 3. Correlogram of sugarcane quality parameters with frequency distributions on the principal diagonal, Pearson’s
correlation coefficient and respective p-values, and the correlation trend line.

The vis-NIR raw spectral data obtained for 302 samples of each sugarcane sample
type are shown in Figure 4. The spectral data were evaluated to identify possible spectral
errors [41]. We observed a noisy aspect in the region corresponding to the visible spectrum
(400 to 698 nm), mainly for SS samples. This effect may have been attributed to the influence
of skin colors of billet samples, which were obtained for several different sugarcane varieties
(Table A1), or soil residues from the harvest present in the RJ samples. Therefore, this
spectral region was removed from the data set. Phuphaphud [14] observed the same effect
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due to the skin color of sugarcane billets. Also, based on the evaluation of the coefficient
of variation (CV) obtained for each spectral band, the last spectral bands showed high
CV concerning their neighbors and were also removed from the dataset, similar to the
procedure performed by Franceschini [27] in a study on the external effects on the spectral
reading of vis-NIR of soil samples using the same equipment. Thus, only bands in the
spectral range between 699 and 1010 nm and between 1070 and 2153 nm (303 spectral
bands) were retained.

Figure 4. vis-NIR mean spectra and standard deviation (SD) of all 302 sugarcane samples for (a) skin and (b) cross-sectional
scanning of billets, (c) defibrated, and (d) raw juice samples.

A PCA analysis performed an exploratory overview of the data structure. The spectral
data were only mean-centered, and the classes were identified by sample type. Two
principal components, PC1, and PC2, explained 98.6% of the data variance (Figure 5). The
first component explained 96.8% of the data variance. The data structure was different for
each sample type, as can be seen from ellipses illustrating the majority of samples (Figure 5).
However, a first overview allowed us to verify the greater difficulty in explaining the
variance of less processed samples, such as samples obtained by spectral readings in the
skin (SS) and cross-sectional (CSS) of the billets, than processed samples, such as raw juice
samples (RJ).
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Figure 5. PCA score plot for the sugarcane sample types analyzed. SS-skin scanning of billets; CSS-cross-sectional scanning
of billets; DF-defibrated samples; RJ-raw juice samples.

Vis-NIR spectroscopy may be used in a number of applications, including the clas-
sification of sugarcane varieties, with promising results [42]. The same authors showed
that the spectral regions between 650 and 750 nm, corresponding to the visible spectrum,
was the most suitable for sugarcane discrimination. The principal component analysis
for the four sample types individually showed that the scatter plots were not categorized
into groups based on sugarcane varieties (Figure A1). These results indicated that the
sample set composed for many different varieties did not affect the spectral characteristics
between each variety for both sample types. A similar effect was observed by Phupha-
phud et al. (2020) [14] when evaluating the classification of three varieties. Therefore, the
present study was conducted for all varieties combined.

The vis-NIR technique principle is based on the detection of compounds and molecules
through their molecular vibration states [8]. Different varieties naturally have different
concentrations of parameters such as sucrose and fibre according to genetics. Furthermore,
for all of them, the plant matrix is essentially composed of water (75–82%), insoluble
solids content (Fibre, 10–18%), and soluble solids (Brix, 18–25%), which are composed of
nonsugars (1–2%), sucrose (14–24%), and reducing sugars (0–1.5%) [43]. However, the
prediction of quality parameters related to chemical compounds of interest should be
independent of sugarcane varieties.

3.2. Prediction Performance of Models Based on Different Sugarcane Sample Types

Figure 6 presents scatter plots showing reference versus predicted values of sugarcane
quality parameters. There was an underestimation of high values and overestimation of
lower values for all attributes and sample types evaluated. However, this effect was more
intense for the less prepared sampling condition, such as SS and CSS. Also, overall, the
residuals showed no trend (Figure A2).
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Figure 6. Plots of observed values versus predicted sugarcane quality values from vis-NIR by skin (SS) and cross-sectional
(CSS) scanning of billets, defibrated (DF), and raw juice (RJ) samples. Brix, Pol, Fibre, and Pol of cane are in percentage, and
TRS values are in kg Mg−1.

More LVs were necessary to explain the variance of the data for models constructed
from SS samples (between 7 and 10) than those obtained to predict the same parameters
from other sample types (Table 2). Also, it could be observed that SS and CSS did not show
similar accuracy (p-value < 0.05) for Fibre, Pol of cane, and TRS (Table 3). Moreover, the
prediction performance results for these parameters by these sample types were worse than
the performance results obtained by DF and RJ samples (Table 3). The RPIQ values for TRS
were 40% higher on average than those for SS and CSS samples, for example. Furthermore,
the model accuracy observed between sampling methods for all the other conditions was
statistically nonsignificant (p-value > 0.05).
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Table 2. Figures of merit for the PLSR models for all studied sugarcane quality attributes and sample types.

Attribute Sample Type LV RMSEC a RMSECV a RMSEP a R2c R2p RPIQ

Brix

SS 9 0.92 1.10 1.29 0.64 0.48 1.98
CSS 6 0.95 1.04 1.38 0.62 0.41 1.85
DF 7 0.67 0.75 0.84 0.81 0.80 3.05
RJ 8 0.64 0.83 0.75 0.85 0.85 3.39

Pol

SS 8 1.09 1.26 1.42 0.60 0.48 1.98
CSS 6 1.09 1.19 1.44 0.61 0.44 1.95
DF 7 0.82 0.93 0.87 0.79 0.83 3.24
RJ 7 0.80 0.97 0.90 0.82 0.81 3.12

Fibre

SS 10 1.02 1.29 0.87 0.59 0.65 2.22
CSS 4 1.45 1.50 1.27 0.24 0.23 1.51
DF 5 0.93 1.04 0.82 0.69 0.69 2.36
RJ b - - - - - - -

Pol of cane

SS 7 0.95 1.07 1.13 0.52 0.46 1.94
CSS 5 1.01 1.09 1.27 0.52 0.31 1.73
DF 7 0.73 0.84 0.72 0.76 0.81 3.04
RJ 7 0.71 0.85 0.72 0.78 0.81 3.07

TRS

SS 9 8.57 10.27 10.86 0.60 0.50 1.85
CSS 5 9.49 10.17 11.86 0.50 0.32 1.69
DF 7 6.50 7.51 6.71 0.76 0.82 2.99
RJ 7 6.38 7.95 6.79 0.78 0.81 2.96

SS: skin scanning of billets samples; CSS: cross-sectional scanning of billets samples; DF: defibrated samples; RJ: raw juice samples. LV:
latent variable. RMSEC: root mean square error of calibration. RMSECV: Root Mean Square Error of Cross-Validation. RMSEP: Root
Mean Square Error of Prediction. R2c: calibration coefficient of determination. R2p: prediction coefficient of determination. RPIQ: Ratio
of performance to interquartile distance. a values for Brix, Pol, Fibre, and Pol of cane are in percentage and TRS in kg Mg−1. b The fibre
content was not determined from raw juice samples.

Table 3. p-Values of randomization test of external validation set for all compared sugarcane sample types.

Binary Combination
(Sample Types)

Sugarcane Quality Parameters

Brix Pol Fibre Pol of cane TRS

SS vs. CSS 0.104 0.116 <0.001 0.036 0.008
SS vs. DF 1.00 1.00 0.667 1.00 1.00
SS vs. RJ 1.00 1.00 - 1.00 1.00

CSS vs. DF 1.00 1.00 1.00 1.00 1.00
CSS vs. RJ 1.00 1.00 - 1.00 1.00
DF vs. RJ 0.879 0.344 - 0.606 0.502

SS: skin scanning of billets; CSS: cross-sectional scanning of billets; DF: defibrated samples; RJ: raw juice samples; TRS: total recover-
able sugar.

The model performance for DF and RJ samples was equivalent for practically all
parameters evaluated. There was no significant difference between the model’s accuracy
(p-value > 0.05) and very close values of R2p and RPIQ. Moreover, from DF samples, it was
possible to obtain a satisfactory performance to predict Fibre content; this was not possible
for RJ samples. On the other hand, the models performed for SS samples presented a
higher number of LV than for a prepared sample. The model performance for predicting
parameters related to sucrose (Brix, Pol, Pol of cane, and TRS) was not satisfactory, with
R2p and RPIQ below 0.5 and 2.0, respectively, except for Fibre prediction. The prediction
results from SS samples for Fibre were close to those obtained for DF samples, as shown by
the values of R2p and RPIQ. However, the results were less promising than those obtained
by Phuphaphud et al. (2019) [15], which obtained the following results: maxima of 0.81 for
R2p and 0.63 for RMSEP. Although Fibre content is an important attribute for sugarcane
quality determination, it is not essential for sucrose estimation. Fibre content has no relation
with some important attributes, such as Brix and Pol, and only minimally impacts TRS
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calculation. The prediction of this parameter is important for producing energy cane and
breeding programs, as in work developed by Phuphaphud et al. (2019) [14].

Some models developed for CSS samples were similar to those developed for SS, as
for Brix and Pol prediction. However, its predictive performance was lower than those
obtained for Fibre, Pol of cane, and TRS predicted by SS samples, with worse results for
R2p and RPIQ. In a first investigation, Nawi et al. (2013a) obtained values of 0.87 for
R2p. The excellent performance of this index can be explained by the method of data
acquisition adopted by the authors, with individualized samples according to the stem
portion (lower, middle, and upper portion) and only three varieties of cane. Sucrose
accumulation occurs in an ascending manner, with more accumulation in the lower portion
and less in the internodes of the upper portion, close to the leaves [38,44,45]. Therefore,
samples composed of different sections resulted in more variability in quality parameters.
However, if we analyze the characteristics of a sugar cane harvester, after the stems pass
through the chopper roll system, the distinction between portions of the sugarcane stem is
not viable.

The RPIQ values for the SS method were higher than those obtained by the CSS
method. The SS method on billet samples on the harvester conveyor would be the most
practical method, due to the better operability of sample acquisition in that portion of the
harvester [16]. However, several external factors must be considered to measure quality
attributes by the SS method. A critical one is the constitution of the sugarcane skin itself,
as various colors depending on the variety, black and white waxy material, and organic
compounds may be present [24,46].

There are common waxy materials on the cane surface that affect vis-NIR measure-
ments by the SS method. Maraphum et al. (2018) evaluated the effect of the waxy material
on the cane surface to eliminate or avoid getting low accuracy of the models for Pol mea-
surements. They obtained RMSEP values were around 1.20 to 1.50%, i.e., close to those
found by the present study. The authors concluded that spectra acquisition by removed-
wax samples was convenient for the measurement of Pol. However, other compounds
could affect vis-NIR spectroscopy measurements, such as cellulose and lignin [7].

Overall, the predictive performance results of the models (based on the R2p and RPIQ)
indicate that DF and RJ samples presented similar performance and provide the best results.
However, models built from DF samples require less preparation, i.e., by avoiding juice
extraction, making them more attractive for an on-board system. Moreover, CSS samples
presented worse performance than all other samples. SS samples presented higher values
of R2p and RPIQ than CSS samples for all quality parameters. Furthermore, SS samples
showed a nonsignificant difference (p-value > 0.05) of accuracy (RMSEP) with models built
from DF samples, but worse results for performance (R2p and RPIQ), except for Fibre.
Possibly DF results were satisfactory due to the exposure of the internal constituents, which
overlapped concerning the waxy material that becomes visually negligible. On the other
hand, the organic compounds in the sugarcane outer-surface may have interfered in the
prediction models. Future studies using nonlinear processing methods [47] or advanced
filtering methods, with orthogonalization of unwanted signals concerning the compounds
of interest [48], may help in increasing the predictive performance of the models, which is
more interesting for an on-board system.

3.3. Variable Influence on the Models

VIP scores were used to describe the importance of each wavelength to the prediction
of the main sugarcane quality parameters (Figure 7).
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Figure 7. Heatmap of Variable Importance in Projection (VIP) for models used to predict Brix, Pol, Fibre, Pol of cane, and
TRS based on different spectral sample types datasets. SS: skin scanning of billets; CSS: cross-sectional scanning of billets;
DF: defibrated samples; RJ: raw juice samples; TRS–total recoverable sugars.

As a vibrational spectroscopy technique, the interaction between the vis-NIR electro-
magnetic radiation and the matter of the sample could be interpreted mainly by overtones
and combinations of vibrational modes involving C-H, O-H, and N-H chemical bonds [8,49].
VIP values greater than 1.0 indicate variables with greater influence on the models, and VIP
values between 0.8 and 1.0 indicate the moderately influential variables. All variables with
VIP smaller than 0.8 are insignificant to the predictions [50]. Some substantial similarities
could be observed for different samples and quality parameters on a first overview.

At around 960 nm, there is a small interval with high values of VIP (higher than
2.3), especially related to the prediction of Brix, Pol, Pol of cane, and TRS by CSS and
RJ samples, corresponding to the second and third overtone of O-H and C-H stretching,
respectively [51]. The region between 980 and 1030 nm can be regarded as an important
contributor to quality predictions (VIP higher than 1.0). Between 972 and 1009 nm there is
a characteristic signal related to saccharides and the third overtone of O-H [7]. This signal
is more expressive for parameters determined for SS samples. This spectral range could
be associated with cellulosic fibres, which explained the higher VIP values to SS samples.
Similar observations were found by Phuphaphud et al. (2020) to predict commercial cane
sugar from growing cane stalks for breeding programs using vis-NIR spectroscopy.

At 1139 nm, there is a small band with VIP values higher than 1.0 for all parameters
predicted for four sample types, except for Fibre content. On the interval between 1100
and 1230 nm occurs the second vibrational frequency overtones associated with C-H
stretching [51]. Also, at around 1170–1180 nm, there are VIP values higher than 1 for Fibre
predicting, mainly by DF and CSS samples. In this region, the third overtone of C-H and
unsaturated C=C double bonds are typically associated with fibre, such as lignin [7].

At 1360 nm, there is another expressive region with high VIP values, possibly related
to C-H combinations and the O-H first overtone, respectively [49]. Then, at 1600 nm,
there are highly similar VIP values possibly associated with to first vibrational frequency
overtone of C-H stretching [51]. Another region shows a high contribution, with VIP
values higher than 1, for Fibre predicting between 1850 and 1900 nm, mainly for CSS and
DF samples. Around 1820 nm occurs the effects of O-H stretching associated with two
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combinations of C-O stretching commonly associated with Fibre as cellulosic [7]. This
interval is lower and with lower VIP values for SS samples, possibly due to the waxy effect
on the near-infrared signal [23]. Finally, in the last bands of the spectra, after 2100 nm, the
intensity of VIP values is similar for all predicted attributes from any sample type due to
O-H bending and C-O stretching combination [7].

The scores of the models for all measured quality parameters are displayed by their
first PLS loadings (Figures A3–A7 see Appendix A), accounting for more than 95% of the
data variance. Overall, the most considerable variation occurred in the spectral region
between 1300 and 1500 nm and between 1800 and 1950 nm. Other authors have found
similar response in these spectral regions for prediction of sugars in other products [52,53].
This effect was similar for all sample types and all parameters evaluated. Therefore, this
fact proved the relationships identified by the VIP scores and the key molecular bonds
related to the parameters of interest described earlier.

The gap between two spectrometers, starting at 1011 nm until 1070 nm, is not related
to significative known vibrational frequency overtones associated with some bands related
to sugars or fibres [7]. Therefore, the absence of information in this range would not have
significantly affected the development of the models.

Processed samples allowed a more significant interaction of electromagnetic radiation
corresponding to vis-NIR bands with matter constituents. This physical effect resulted in
more prominent signals from specific vibrational frequency bands related to the chemical
constitution of sugarcane quality parameters. Overall, defibrated samples (DF) showed
performance prediction results that were close to raw juice samples (RJ). Also, the DF
sample allowed us to predict Fibre content as well as other parameters, which is not possible
with RJ samples. The prediction of sugarcane quality parameters from less processed
samples is a desirable characteristic for mechanization of on-the-go measurements of crops,
thus promoting spatial information of crops based on quality. DF samples may partially
satisfy this requirement; however, this is a destructive sampling technique.

Improving the predicting performance of sugarcane quality parameters from billets
for on-the-go systems may be possible [20]. Some effects, such as waxy and skin organic
compounds, need to be considered and minimized [24]. Other data processing techniques
such as nonlinear models [47] or advanced filtering methods such as orthogonalization [48],
could be investigated to improve the performance aiming to develop reliable models for
measuring sugarcane quality using billets of cane.

4. Conclusions

This study demonstrates that vis-NIR spectroscopy could be used as a quick method
to assess the abundance of chemical compounds of sugarcane related to its quality. There
was no significant difference (p-value > 0.05) in the accuracy (RMSEP) of prediction of
whole cane samples when compared to processed samples, such as defibrated cane (DF)
and extracted raw juice (RJ), for all evaluated quality parameters. Also, outer-surface
measurements of sugarcane billets presented a better accuracy (RMSEP, p-value > 0.05) and
performance (R2p and RPIQ) than measurements on the cross-section.

Despite the similar accuracy (p-value > 0.05), DF and RJ sampling presented better
performance than outer-surface measurements of sugarcane billets. Moreover, the perfor-
mance of the models from DF and RJ samples were similar, but DF samples involve less
preparation, as they do not require juice extraction of the sample.

The results showed that DF sampling could be used to predict the main sugarcane
quality parameters, such as soluble solids content (Brix), saccharose (Pol), Fibre, Pol of cane,
and total recoverable sugars (TRS), all of which are used for pricing and trading between
mills and sugarcane producers. The DF models presented RMSEP varying between 0.72%
and 0.87% for Brix, Pol, Fibre, and Pol of cane, and 6.71 kg Mg−1 for TRS.

The results in this study contribute to advancing the development of on-board quality
monitoring in sugarcane. This information shows the spatial variability of crop quality and
helps guide site-specific management of sugarcane fields.
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Appendix A

Table A1. Number of samples of each Brazilian sugarcane variety used in the study.

Variety # Samples Variety # Samples Variety # Samples

CT96-1007 12 CTC 9001 1 RB966928 7
CT96-3346 7 CTC 9005 2 RB975201 1

CTC 11 19 CV 6654 3 RB975952 2
CTC 14 10 IACSP95-5000 1 RB985476 1
CTC 15 12 RB855002 3 SP80-3280 9
CTC 17 7 RB855156 33 SP83-2847 31
CTC 2 19 RB855536 4 SP83-5073 2

CTC 20 26 RB867515 9 RB965621 1
CTC 22 2 RB935621 4 SP91-1049 1
CTC 4 34 RB965621 1 Various 26
CTC 7 1 RB965902 12
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Figure A1. Principal component scores of different sugarcane varieties for spectral data of skin scanning of sugarcane billets
(a), cross-sectional scanning of sugarcane billets (b), defibrated cane samples (c), and raw juice samples (d).
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Figure A2. The plot of standardized residuals versus predicted sugarcane quality values from vis-NIR by skin (SS) and
cross-sectional (CSS) scanning of billets, defibrated (DF), and raw juice (RJ) samples. Black dots are calibration samples, and
red dots are external validation samples.
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Figure A3. The three first Partial least squares loadings for Brix prediction using near-infrared reflectance spectroscopy
from the skin (a) and cross-sectional (b) scanning of billets, defibrated cane (c), and extracted raw juice (d).

Figure A4. The three first Partial least squares loadings for Pol prediction using near-infrared reflectance spectroscopy from
the skin (a) and cross-sectional (b) scanning of billets, defibrated cane (c), and extracted raw juice (d).
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Figure A5. The three first Partial least squares loadings for Fibre prediction using near-infrared reflectance spectroscopy
from the skin (a) and cross-sectional (b) scanning of billets, and defibrated cane (c).

Figure A6. The three first Partial least squares loadings for Pol of cane prediction using near-infrared reflectance spectroscopy
from the skin (a) and cross-sectional (b) scanning of billets, defibrated cane (c), and extracted raw juice (d).
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Figure A7. The three first Partial least squares loadings for total recoverable sugars (TRS) prediction using near-infrared
reflectance spectroscopy from the skin (a) and cross-sectional (b) scanning of billets, defibrated cane (c), and extracted raw
juice (d).
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Abstract: Near-infrared spectroscopic (NIR) technique was used, for the first time, to predict volatile
phenols content, namely guaiacol, 4-methyl-guaiacol, eugenol, syringol, 4-methyl-syringol and 4-
allyl-syringol, of aged wine spirits (AWS). This study aimed to develop calibration models for the
volatile phenol’s quantification in AWS, by NIR, faster and without sample preparation. Partial
least square regression (PLS-R) models were developed with NIR spectra in the near-IR region
(12,500–4000 cm−1) and those obtained from GC-FID quantification after liquid-liquid extraction. In
the PLS-R developed method, cross-validation with 50% of the samples along a validation test set
with 50% of the remaining samples. The final calibration was performed with 100% of the data. PLS-R
models with a good accuracy were obtained for guaiacol (r2 = 96.34; RPD = 5.23), 4-methyl-guaiacol
(r2 = 96.1; RPD = 5.07), eugenol (r2 = 96.06; RPD = 5.04), syringol (r2 = 97.32; RPD = 6.11), 4-methyl-
syringol (r2 = 95.79; RPD = 4.88) and 4-allyl-syringol (r2 = 95.97; RPD = 4.98). These results reveal that
NIR is a valuable technique for the quality control of wine spirits and to predict the volatile phenols
content, which contributes to the sensory quality of the spirit beverages.

Keywords: NIR; calibration models; PLS-R; volatile phenols; aged wine spirit

1. Introduction

Volatile phenols are low molecular weight aromatic alcohols that comprise phenol and
may include substituents such as alkyl, methoxyl, vinyl and allyl. These compounds can
exist in foods due to a variety of mechanisms, as summarized by Schieber and Wust [1].
Some of these compounds are responsible for characteristic odor notes of various foods [1]
and alcoholic beverages such as wine [2], whisky [3], rum [4] and aged wine spirit (AWS) [5].
Like other alcoholic beverages such as rum or whisky, Wine spirits are aged in wooden
barrels, and the volatile phenols are among the most important compounds, in terms of
sensory impact, extracted from the wood into the beverage. The main volatile phenols
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identified and quantified in AWS are guaiacol, eugenol, syringol, 4-methy-lsyringol, 4-allyl-
syringol, 4-methyl-guaiacol and ethyl guaiacol, which are well related to odour notes such
as smoky, clove, burnt, flowery and carnation, respectively [5]. Their amounts in the AWS
are usually low (from traces to 1.5 g/L), increasing over time [6,7] and influenced by the
wood species and toasting level, as well as the ageing system [7,8]. Although their low
concentration in alcoholic beverages, these compounds have very low detection thresholds,
and for this reason, several volatile phenols have been identified as critical odorants in
wooden aged alcoholic beverages [3–5].

Gas chromatography (GC), coupled to an appropriate detection system (flame ioniza-
tion detection (FID) or mass spectrometry (MS)), is typically used to analyse volatile phenols
in alcoholic beverages. HPLC has also been used, although less extensively than GC [9].
These analyses are commonly preceded by an extraction step, which can be made through a
variety of procedures such as liquid-liquid extraction [10], solid-phase extraction [11], solid-
phase microextraction [12,13] stir bar sorptive extraction [14,15], dispersive liquid-liquid
microextraction [16] and ultrasound-assisted emulsification-microextraction [17].

Near-infrared spectroscopy (NIR) is an analytical technique that uses the region of
the electromagnetic spectrum between 12,500 and 4000 cm−1, and the collected spectrum
of a sample comprises overtones and combination vibrations of molecules with different
functional groups [18,19]. This analytical method has been applied in several matrices,
namely foods and beverages. Compared to chemical analysis, NIR spectroscopy provides
the ideal technology for quick and efficient analysis and has the advantage of being faster
and requiring no sample preparation [20–23]. The most significant drawback is that the
identification of small compounds is limited to a mass fraction more significant than
roughly 0.1–0.5%. However, this also depends on the functional group(s) present in these
compounds, which determines the magnitude of the absorption band shown in the NIR
spectra. The intensity of a C–H vibration, for example, is substantially lower than that of
an O–H vibration.

When paired with an appropriate chemometric methodology, NIR spectroscopy pro-
vides a rapid, non-destructive, and cost-effective method of food analysis that may be used
for a wide range of products. It is used in the food sector to guarantee that the food being
marketed meets the highest standards of food safety and hygiene and defend against false
claims made by the food producer, processor, distributor, or retailer [20]. Its advantage is
that NIR spectroscopy provides a spectrum that may be typical of a sample and may behave
as a “fingerprint” by recording the response of specific chemical bonds (for example, O–H,
N–H, C–H) to NIR radiation. Overtones of O-H or N-H stretching modes provide detailed
data on intermolecular interactions, and NIR spectroscopy offers unique capabilities for
analyzing hydrogen bonding. As a result, it is no surprise that NIR is commonly used
to evaluate food compositional elements, but it can also be employed to determine more
complicated attributes like texture and sensory characteristics [24].

PLS-R is a method for relating two data matrices to investigate complex problems
and analyze available data more realistically. Many studies with different food products,
was made using NIR data and PLS-R to perform calibration model [25,26], and in some
cases with better responses than other regression techniques [27]. Additionally, the PLS-R
technique is known to be affected by outliers in the data, and, in the present study, it is
instrumental to eliminate possible outliers from the GC analyses. In the analyses of volatile
compounds with low molecular weight, some outliers can occur and, with this technique,
will be identified and eliminated more easily.

Concerning the alcoholic beverages, NIR analysis has been applied to assess the alco-
holic strength of whiskies and vodkas [28] as well as other constituents of whiskies [28,29],
rum and brandies [30], gin and vodka [31], and other distilled beverages [30,32–34] and
to identify adulteration in distilled spirits [35]. Hanousek et al. [36] performed calibration
models for major volatile compounds and phenols of wine spirits based on least squares
regression. A recent study used NIR to distinguish wine spirits produced with two different
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wood species (oak and chestnut) and ageing technologies (barrel and alternative) with a
precision of up to 90% [37].

Figure 1 shows the chemical structures and sensory properties of the most frequent
volatile phenols in AWS, examined in this study.

Figure 1. Chemical structure of volatile phenols studied in the AWS and their associated sensory
descriptors (SD) [5].

This study aimed to assess the capability of NIR technology combined with chemo-
metrics to perform calibration models to predict the content of volatile phenols in AWS.

2. Materials and Methods

2.1. Samples

The AWS samples used in this study were produced within the Oxyrebrand project-
https://projects.iniav.pt/oxyrebrand (accessed on 14 December 2021) [6]. Briefly, samples
resulting from ageing with different wood species (chestnut and oak), from traditional
(250 L wooden barrel) and alternative technology (50 L glass demijohns with wood staves
and micro-oxygenation-MOX) and two different periods of storage in the bottle were
used. For the alternative systems, the 50 L demijohns with chestnut or oak wood staves
underwent different micro-oxygenation conditions: flow rate of 2 mL/L/month during
the first 15 days followed by 0.6 mL/L/month until 365 days; 2 mL/L/month during the
first 30 days followed by 0.6 mL/L/month until 365 days; 2 mL/L/month during the first
60 days followed by 0.6 mL/L/month until 365 days; nitrogen application with a flow rate
of 20 mL/L/month.
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After the ageing process aforementioned, the AWS was bottled and stored for 2 months
and analysed in the first stage of bottling (T0) and after 6 months (T6). For each modality,
two essay replicates and three analytical measurements were used; a total of 120 samples
were analysed, according to Table 1.

Table 1. Sample characterization and number used in the model calibration.

Chestnut Wood
(C)

Oak Wood
(L) Total

T0 T1 T0 T1

(B) 250 L wooden barrel 6 * 6 * 6 * 6 * 24

50 L glass
demijohns with

wood staves
with MOX

(15) with a flow rate
of 2 mL/L/month
during the first 15

days followed by 0.6
mL/L/month until

365 days

6 * 6 * 6 * 6 * 24

(30) flow rate of 2
mL/L/month during

the first 30 days
followed by 0.6

mL/L/month until
365 days

6 * 6 * 6 * 6 * 24

(60) a flow rate of 2
mL/L/month during

the first 60 days
followed by 0.6

mL/L/month until
365 days

6 * 6 * 6 * 6 * 24

(N) nitrogen application with a flow rate of 20
mL/L/month 6 * 6 * 6 * 6 * 24

Total 30 30 30 30 120
* Two replicates of each modality were carried and the analysis was made in triplicate (2 × 3 = 6).

The use of these different AWS samples is intended to ensure a high variability to have
accurate models that can be applied in a broader range of this kind of beverage.

2.2. Analytical Procedures
2.2.1. Reagents

Anhydrous sodium sulfate and ethanol were acquired from Merck (Darmstadt, Ger-
many), dichloromethane from Honeywell Riedel-de Haën (Steinheim, Germany), and
silanized glass wool from Supelco (Steinheim, Germany).

The ultrapure water was achieved through the arium®comfort I equipment from
Sartorius Lab Instruments, Goettingen, Germany.

GC-FID and GC-MS standards: guaiacol, eugenol, 3,4-dimethylphenol (internal stan-
dard), syringol, 5-methyl-2-hexanol (internal standard; IS) were bought from Fluka (Buchs,
Switzerland); 4-methyl-syringol, 4-allyl-syringol were acquired from Aldrich (Steinheim,
Germany); 4-methyl-guaiacol, were purchased from TCI (Zwijndrecht, Belgium).

2.2.2. Quantification of Volatile Phenols in AWS

Prior to GC analysis, liquid-liquid extraction with ultrasonication was performed. The
wine spirits samples (100 mL), previously diluted to 20% v/v, were added with internal stan-
dards and extracted with successive additions of 30, 10 and 10 cm3 dichloromethane and
using ultrasonication according to the methodology described by Granja-Soares et al. [7].
The organic phases were collected, dried over sodium sulphate, filtered with glass wool
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silanized and then concentrated using a Büchi rotary concentrator (without vacuum at a
temperature of 42 ± 0.5 ◦C) until a final volume of 0.25 mL. Each wine spirit sample was
extracted in duplicate.

GC-FID analysed the concentrated extracts under the following chromatographic
conditions: Agilent Technologies 6890 Series gas chromatograph (Wilmington, DE, USA)
joined to a flame ionization detector (FID) and fitted out with a fused silica capillary column
of polyethylene glycol (INNOWax of J&W Scientific, Folsom, CA, USA), 30 m, 0.32 mm i.d.,
0.25 μm film thickness; split injection (1:25) of 0.8 μL of each extract; injector and detector
temperatures (250 ◦C); carrier gas hydrogen (2.4 mL/min); oven temperature program:
3.5/min from 35 ◦C (6 min isothermal) to 55 ◦C, 7.5 ◦C/min to 130 ◦C, 5 ◦C/min to 210 ◦C
(30 min isothermal). For each extract, three injections were done.

Hydroalcoholic solutions (20% v/v) of standards were extracted and analysed un-
der similar conditions, and a calibration curve with five points was established for each
compound. These curves were used for the quantification of volatile phenols in the AWS.

The compounds were identified by analyzing the extracts in GC-MS equipment (Mag-
num, Finnigan Mat, San Jose, CA, USA) under similar chromatographic conditions, with
transfer line at 250 ◦C, working with electron impact mode at 70 eV and scanning the
mass range of m/z 20–340. The compounds’ identities were determined by comparing
the MS fragmentation pattern with reference compounds and with mass spectra in the
NIST libraries.

2.3. Spectroscopic Measurements

The spectra of the AWS samples were obtained using a NIR spectrometer (MPA Bruker)
in a transmitted light mode with 1 mm quartz cells. The samples were measured at 25 ◦C
after 2 min in the instrument before scanning; the background was air-made. The samples
were measured with an 8 cm−1 spectral resolution and 32 scans in the wavenumber range of
12,500 to 4000 cm−1 [32,37]. A background scan was performed after scanning a sequence
of 10 samples.

2.4. Data Analysis

To ensure that the models were produced with a significant variability for the analytical
determination, two principal component analysis (PCA) was performed: the first with the
analytical determination identifying the different factor variance effects, and the second
one with NIR spectra of AWS. The second PCA was also useful to identify the region that
best discriminated the samples and, consequently, was the best to use in the models.

The model calibration analysis was performed with the average of two replicated
spectra for each AWS sample.

The vector normalization pre-processes (SNV) were applied to all spectra used in
the calibration models, which first normalizes a spectrum by calculating the average in-
tensity value and then subtracting this value from the spectrum. Following that, new
pre-treatments for model construction were tested. Briefly, multiplicative scatter correction
(MSC); first derivative (1stDer); second derivative (2stDer), first derivative + multiplica-
tive scatter correction (1stDer + MSC) and first derivative + straight line elimination
(1stDer + SLS).

The cross-validation process was used in model validation with the general theoret-
ical validation criterion leave-one-out method, which is more appropriate when a small
dimension data set is used. The parameters used to identify a better calibration model
were: r2—coefficient of determination (proportion of variance in the dependent variable
that the independent one can explain); RPD—residual prediction deviation (by providing a
metric of model validity, higher values correspond to better model’s predictive capacity);
RMSEP—root means square error of validation; RMSECV—root means a square error of
cross-validation, and RMSEC—root mean of the standard error of calibration.

Data pre-processing methods and selection of wavenumber ranges resulted in high
predictability and precise estimation of volatile phenol in AWS.
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The samples were divided into two sets, one for calibration (50% of data) and the
other for validation (50% of data) after the model was tested with all values (100% of data),
according to a similar methodology previously used [38].

The PCA for analytical data analysis was carried out using Statistica version 7.0
software (StatSoft Inc., Tulsa, OK, USA). Calibration models were made using OPUS
8.5.29 From Bruker Optik GmbH 2019. Spectral PCA analysis was performed using the
UnscramblerX 10.5 (CAMO, Oslo, Norway).

3. Results

In this study, guaiacol, 4-methyl-guaiacol, eugenol, syringol, 4-methyl-syringol and 4-
allyl-syringol contents in AWS presented a wide range of values (Figure 2) and significative
variability given the different ageing modalities used as variability sources, which suggests
a good data scattering.

 

Figure 2. PCA representation of loadings and scores of all AWS samples and all volatile phenols
analysed. Legend: C and L stand for the wood used in the ageing process, Chestnut and Limousin
respectively; O15, 30 and 60 are the different micro-oxygenation modalities used in the alternative
system; N—without micro-oxygenation; B—Barrel; 0—0 months in bottle; 6—6 months in bottle.

Regarding Figure 3, it is possible to establish that the NIR spectra followed the trend
of sample differentiation, which was also observed in Figure 2. However, NIR spectra
showed that other compounds present in AWS could affect their relative position along the
PCA axes [8,39,40]. In Figure 3, the AWS samples aged with chestnut wood and Limousin
oak wood are presented separately to understand better.
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Figure 3. PCA was performed with spectral information of the AWS with chestnut (C) and with
Limousin wood, acquired in NIR. Legend: C and L stand for the wood used in the ageing process,
Chestnut and Limousin respectively; 15, 30 and 60 the different levels of micro-oxygenation used
in the alternative system; N—no micro-oxygenation used in the alternative system; B—Barrel; 0—0
months in a bottle; 6—6 months in bottle.

Figure 4 exhibits a representative NIR spectrum of the AWS, similar to those obtained by
other authors for wine spirit, grape marc spirit, fruit spirits, whisky and vodka [28,29,37,40–43].

Figure 4. Representative absorption spectra of all AWS samples acquired in the NIR region measured
against a background of air.

The water content in the spirits can be detected in the region around 6859 cm−1,
which comprises the second overtones of the stretching νO–H band and a combination of
deformation and stretching vibrations of the OH group (specifically water).

The peak with lower intensity near 8434 cm−1 is assigned to the second overtone of
the C–H stretch of ethanol, one of the main compounds in AWS. This peak is also ascribed
to the combination of the bending vibration of δO–H bend and the first overtone of the
stretching νO–H has given the water influence [37].

The region from 5600 to 6000 cm−1 presents three small peaks ascribed to the νC–
H stretch of the first overtones of CH2 and CH3 groups [22,43] and OH from aromatic
groups [44].

At 6859 cm−1 occurs the second overtone of the stretching vibrations of ν(O–H) of
water and ethanol as well.
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The strong band at 5176 cm−1, characteristic of AWS [37], is related to a combination
of stretching and deformation of the OH group and first overtones of water and ethanol
and C–H stretch first overtones [43].

The peak at 4843 cm−1 can be assigned to aromatic C–H and –C=CH [44].
Volatile compounds extracted from the wooden barrel (mainly furanic and phenolic

compounds) contribute to the flavour of the beverage [45,46]. Even in small amounts,
soluble carbohydrates, most notably sugars, may contribute to the final flavour [46]. The
ethanol, sugars and phenolic compounds have an absorption band at 4404 cm−1 related to
the second overtone of stretching νC–H and νO-H overtones at 4338 cm−1 [47]. The bands
at 4404 cm−1 and 4337 cm−1 are also related to the methanol content in the AWS [32,37].
The band at 4251 cm−1 is related to the combination of stretching and bending deformation
of CH units of C–H(aromatic) and C–H(aryl) [48,49].

Table 2 presents the descriptive statistics (average, standard deviation, range, and co-
efficient of variation) for the volatile phenols, namely, guaiacol; 4-methyl-guaiacol, eugenol,
syringol, 4-methyl-syringol, 4-allyl-syringol, content in the AWS samples used to develop
the NIR calibrations. Table 3 shows the statistics of the prediction model for cross-validation
of the calibration set and of the test set validation of the compounds above in the set of all
samples analysed.

Table 2. Statistics of the sample sets for guaiacol, 4-methyl guaiacol, eugenol, syringol, 4-methyl-
siringol and 4-allyl-syringol quantification in AWS analysed.

Volatile Phenol
Number of

Samples
N Mean ± SD Min–Max

CV
(%)

LOQ
1

Guaiacol
(mg/L)

Set1 56 0.491 ± 0.165 0.098–0.696 33.65
0.037Set2 56 0.489 ± 0.158 0.095–0.699 32.31

Set1 + Set2 112 0.487 ± 0.158 0.095–0.696 32.33

4-methyl-guaiacol
(mg/L)

Set1 56 0.279 ± 0.109 0.073–0.487 39.07
0.033Set2 56 0.280 ± 0.101 0.073–0.478 38.92

Set1 + Set2 112 0.279 ± 0.174 0.073–0.487 37.75

Eugenol
(mg/L)

Set1 54 0.291 ± 0.020 0.252–0.350 6.91
0.021Set2 54 0.290 ± 0.019 0.251–0.328 6.57

Set1 + Set2 108 0.289 ± 0.021 0.252–0.328 7.22

Syringol
(mg/L)

Set1 54 1.708 ± 0.705 0.221–3.172 41.31
0.029Set2 54 1.679 ± 0.683 0.244–3.106 40.66

Set1 + Set2 108 1.702 ± 0.695 0.221–3.172 39.65

4-methyl-syringol
(mg/L)

Set1 55 1.034 ± 0.383 0.274–1.552 37.04
0.034Set2 55 1.090 ± 0.395 0.259–1.536 36.21

Set1 + Set2 110 1.043 ± 0.393 0.259–1.552 37.66

4-allyl-syringol
(mg/L)

Set1 51 0.414 ± 0.076 0.273–0.55 18.32
0.043Set2 51 0.416 ± 0.078 0.255–0.578 18.80

Set1 + Set2 102 0.417 ± 0.075 0.255–0.578 17.87
1 LOQ—limit of quantification; CV—coefficient of variation (CV = SD/mean); SD—standard deviation; min—
minimum value observed in the corresponding set; max—maximum value observed in the corresponding set.
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Table 3. Cross-validation and validation set results of the calculated models obtained for different
determinations.

Volatile
Phenol

Spectral Range
(cm−1)

Pre-Process Rk r2 RMSEP RMSECV RMSEC RPD Bias

Guaiacol 9118.1–5415.3 1stDer + MSC
Set 1 10 96.80 0.0296 5.90 −0.0095
Set 2 5 96.84 0.0270 5.63 0.0004

Set 1 + 2 8 96.34 0.0298 5.23

4-methyl-
guaiacol

8304.2–7347.7
6869.4–5434.6
4956.3–4478

1stDer + SLS
Set 1 10 96.34 0.0233 5.36 −0.0052
Set 2 10 92.70 0.0204 3.7 0.0006

Set 1 + 2 10 96.10 0.0218 5.07

Eugenol 9337.9–5446.2 1stDer + SLS
Set 1 7 95.30 0.0049 4.92 −0.0017
Set 2 10 92.30 0.0053 3.59 0.0001

Set 1 + 2 10 96.06 0.0044 5.04

Syringol 6101.9–5446.2 1stDer + SLS
Set 1 9 97.81 0.1170 6.76 −0.0028
Set 2 8 93.74 0.1560 4.50 −0.0028

Set 1 + 2 10 97.32 0.1170 6.11

4-methyl-
syringol 9160.5–4512.7 1stDer + SLS

Set 1 10 94.88 0.0874 4.45 −0.0108
Set 2 10 90.42 0.0653 3.23 −0.0024

Set 1 + 2 10 95.79 0.0772 4.88

4-allyl-
syringol

9353.3–7498.1
6101.9–5446.2 1stDer + MSC

Set 1 8 90.05 0.0176 3.19 −0.0018
Set 2 10 92.44 0.0243 3.64 −0.0011

Set 1 + 2 10 95.97 0.0159 4.98

MSC—multiplicative scatter correction; SLS—straight line elimination; 1stDer—first derivative; 2ndDer—second
derivative; r2—coefficient of determination; RMSECV—root mean square error of cross-validation; RMSEP—root
mean square error of prediction; RMSEC: root mean square error of calibration; RPD—ratios of performance to
deviation; Bias—mean value of deviation, also called systematic error; Rk—rank.

For the calibration models development, the entire infrared spectral region (12,000–4000 cm−1)
was considered for spectral acquisition after eliminating the redundant spectra based on the spectral
PCA analyses.

As shown in Table 2, a wide-ranging concentration value was found in the AWS for
each volatile phenol, indicating a good scattering for such model development.

The more accurate model, for each analysed compound, obtained with NIR raw
spectral data regressed against their GC–FID determination is summarised in Table 3 for
validation set (50% of the samples), cross-validation (50% of the samples) and calibra-
tion (100% of the samples). Figure 5 represents the deviation observed with the final
calibration model.

The model selection was based on the analyses of all error parameters. Only the model
with higher RPD, lower standard error of prediction of the test-set and calibration model
(given by the root mean square error of cross-validation (RMSECV) and root mean square
error of prediction (RMSEP)) and lower rank used in the prediction, were selected and
presented. Bias analysis was also performed to confirm the adjustment of the model, and
the value must be as nearer as possible to zero.

PLS was used to perform the calibration model with the more appropriate pre-
treatments to increase the performance of the predictive models in the selected spectral
range. Regarding Table 3, different spectral ranges were identified for each volatile phenol
comprising wave number values from 9300 to 4500 cm−1.
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Figure 5. True value−Prediction value of each volatile compound analysed compared to the difference
between the minimum and maximum a value.

Thus, for guaiacol quantification, the spectral range from 9118.1 to 5415.3 cm−1 was
selected; for 4-methyl-guaiacol, three spectral ranges 8304.2 to 7347.7 cm−1 + 6869.4 to
5434.6 cm−1 + 4956.3 to 4478 cm−1, were selected; for eugenol, the spectral range was
between 9337.9 and 5446.2 cm−1; for syringol, the spectral range between 6101.9 and
5446.2 cm−1 was selected; for 4-methyl-syringol, the spectral range was between 9160.5
and 4512.7 cm−1; for 4-allyl-syringol, the spectral range from 9353.3 to 7498.1 cm−1 +
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from 6101.9 to 5446.2 cm−1 were selected. Each chemical structure influences the analyte’s
absorption bands’ position, shape, and size. Concerning the results mentioned above, the
wavelength range selected in all calibration models was the region from 6000 to 5500 cm−1

ascribed to the νC–H stretch of the first overtones of CH3 and CH2 groups [42,49], and
OH from aromatic groups [44]. According to the ageing time, these regions were also
identified as good discriminants of wine spirits aged with different kinds of wood and
ageing systems [37]. All these groups are presented in the volatile phenols studied, as
shown in Figure 1, and some of them can even be differentiators when thoroughly examined.
The hydroxyl groups arrangement (or even other substituent groups) at the aromatic
phenolic skeleton has a significant impact on the absorption band shown in the NIR spectra,
such as some of their chemical properties: dipole moment, bond dissociation enthalpy
for the O–H bond, ionization potential or the antioxidant activity, among others. As a
result, various skeleton and structural parameters, including the number and position
of hydroxyl groups, the presence of other functional groups, their position in relation to
hydroxyl groups, and stereochemical impediment, may affect the distinctive bands of each
compound [50,51].

According to Jakubíková et al. [40], which used NIR spectroscopy to distinguish fruit
spirits, the spectral region of 6050–5500 cm−1 is the more accurate to discriminate the
different beverages analysed using PCA with linear discriminant analysis and general
discriminant analysis models that giving 100% classification of spirits.

Concerning the pre-process selected, the one identified as better in the calibration
model was the first derivative with 17 smoothing points combined with the multiplicative
scatter correction or straight-line elimination (Table 3).

Regarding Table 3, all values of r2 are higher than 90.05%, which can be classified as
excellent precision [52]. The values of r2 ranged between 90.05% for 4-allyl-syringol and
97.81 for syringol.

Several authors defined different threshold values for the accuracy of the model
given by RPD that report the ratio between the standard deviation of the reference data
of the validation set and the standard error of cross-validation prediction or the test set
validation. According to Workman and Weyer [47], RPD must be higher than 2.5 to have
good calibration. Conzen [53] states that a good calibration model must have an RPD
higher than 3.0. In the present study, all models have values of RPD higher than 3.19.

The RPD values obtained for the analysed compounds ranged between 3.19 and
6.76 to predict 4-allyl-syringol and syringol, respectively. As far as we know, no studies
were published about calibration models for volatile phenols. Therefore, it is only possi-
ble to compare with other volatile compounds of the AWS, but even these are scarce in
the bibliography.

As aforementioned, the RMSEs (root mean square errors) of the validation set, cross-
validation and calibration was also used to evaluate the ability of the PLS-R models
developed to predict these parameters. All obtained values are low, denoting an accurate
calibration model.

The NIR spectroscopy ability to monitor the distillation process of ethanol and
methanol (two compounds that have legal limits for this beverage) from wine has been
demonstrated by Dambergs et al. [54]. In this case, the more relevant regions studied for
methanol and ethanol were 4401 cm−1 (related to CH combinations from the CH3 group)
and 4337 cm−1 (associated with the CH2 group), respectively, which were also visible in
the spectra obtained in the present study (Figure 4). At 5176 cm−1, the most significant
peak is related to OH vibration combinations found in WS compounds and the volatile
compounds that rise with the ageing process. These compounds are major volatiles of the
WS, so they are easier to identify by NIR, and consequently, with more accurate models
than those obtained for volatile phenols in this work. PLS and multiple linear regression
(MLR) methods were tested for NIR calibrations using gas chromatography as the reference
method in the study mentioned above. The PLS calibrations show better results with r2 of
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0.96, a calibration error of 0.08% v/v for ethanol, and r2 of 0.99 and a calibration error of
0.06 g/L for methanol [54].

Yang et al. [32] proposed using two-dimensional NIR to determine the concentration
of methanol in the white spirit combined with multivariate analysis, obtaining values of
relative error of 2.97 and root mean square error of 0.079%.

In another research work [55], NIR was used to discriminate sugarcane spirits accord-
ing to their origin using PLS-R, PLS combined with linear discriminant analysis, successive
projection algorithm and genetic algorithm, which allowed identifying the authenticity
of the studied beverages. Among the statistical approaches performed, the PLS-R model
exhibited accurate values to predict the ethanol content of sugarcane spirits in the quality
control process.

Figure 5 exhibits that the concentration value measured by GC (assumed as actual
value) subtracted from the prediction value given by the corresponding proposed model
for each volatile compound. Each graphic is represented in the spaces of the higher possible
variance given by the minimum and maximum value difference observed in each analytical
parameter. The results show the excellent performance of the models and the low deviation
of the predicted value to the actual value one.

For the first time, this research shows the applicability of NIR spectroscopy to assess
the volatile phenol’s contents, namely guaiacol, 4-methyl-guaiacol, eugenol, syringol 4-
methyl-syringol and 4-allyl-syringol and confirms the ability of this technique to quantify
those compounds in AWS.

4. Conclusions

The results attained in this study demonstrate that NIR spectroscopy can be used as
an easy and quick method, without sample preparation and good reproducibility, to assess
the content of volatile phenols in AWS. The performance of the models, given by the values
of RPD, which are higher than 3.19 with a coefficient of determination higher than 90%
and low root mean square error, are promising results for the use of this methodology at
an industrial scale. However, further studies are needed to compare the ability of NIR
with other methodologies, namely FTIR and RAMAN, using samples from other aged
spirits, such as grape marc spirits, to increase the accuracy of the models and to extend this
prediction analytical approach to other volatile compounds.
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25. Özdemir, İ.S.; Karaoğlu, Ö.; Dağ, Ç.; Bekiroğlu, S. Assessment of sesame oil fatty acid and sterol composition with FT-NIR
spectroscopy and chemometrics. TURKISH J. Agric. For. 2018, 42, 444–452. [CrossRef]

26. Macedo, L.; Araújo, C.; Vimercati, W.; Hein, P.R.; Pimenta, C.J.; Saraiva, S. Evaluation of chemical properties of intact green coffee
beans using near-infrared spectroscopy. J. Sci. Food Agric. 2021, 101, 3500–3507. [CrossRef]

75



Sensors 2022, 22, 286

27. Dhaulaniya, A.S.; Balan, B.; Sodhi, K.K.; Kelly, S.; Cannavan, A.; Singh, D.K. Qualitative and quantitative evaluation of corn
syrup as a potential added sweetener in apple fruit juices using mid-infrared spectroscopy assisted chemometric modeling. LWT
2020, 131, 109749. [CrossRef]

28. Nordon, A.; Mills, A.; Burn, R.T.; Cusick, F.M.; Littlejohn, D. Comparison of non-invasive NIR and Raman spectrometries for
determination of alcohol content of spirits. Anal. Chim. Acta 2005, 548, 148–158. [CrossRef]

29. Mendes, L.S.; Oliveira, F.C.C.; Suarez, P.A.Z.; Rubim, J.C. Determination of ethanol in fuel ethanol and beverages by Fourier
transform (FT)-near infrared and FT-Raman spectrometries. Anal. Chim. Acta 2003, 493, 219–231. [CrossRef]

30. Palma, M. Application of FT-IR spectroscopy to the characterisation and classification of wines, brandies and other distilled
drinks. Talanta 2002, 58, 265–271. [CrossRef]

31. Kolomiets, O.A.; Lachenmeier, D.W.; Hoffmann, U.; Siesler, H.W. Quantitative Determination of Quality Parameters and
Authentication of Vodka Using near Infrared Spectroscopy. J. Near Infrared Spectrosc. 2010, 18, 59–67. [CrossRef]

32. Yang, Y.R.; Ren, Y.F.; Dong, G.M.; Yang, R.J.; Liu, H.X.; Du, Y.H.; Zhang, W.Y. Determination of Methanol in Alcoholic Beverages
by Two-Dimensional Near-Infrared Correlation Spectroscopy. Anal. Lett. 2016, 49, 2279–2289. [CrossRef]

33. Mosedale, J.; Puech, J. Wood maturation of distilled beverages. Trends Food Sci. Technol. 1998, 9, 95–101. [CrossRef]
34. França, L.; Grassi, S.; Pimentel, M.F.; Amigo, J.M. A single model to monitor multistep craft beer manufacturing using near

infrared spectroscopy and chemometrics. Food Bioprod. Process. 2021, 126, 95–103. [CrossRef]
35. Power, A.C.; Jones, J.; NiNeil, C.; Geoghegan, S.; Warren, S.; Currivan, S.; Cozzolino, D. What’s in this drink? Classification and

adulterant detection in Irish Whiskey samples using near infrared spectroscopy combined with chemometrics. J. Sci. Food Agric.
2021, 101, 5256–5263. [CrossRef]

36. Hanousek-Cica, K.; Pezer, M.; Mrvcic, J.; Stanzer, D.; Cacic, J.; Jurak, V.; Krajnovic, M.; Gajdos-Kljusuric, J. Identification of
phenolic and alcoholic compounds in wine spirits and their classification by use of multivariate analysis. J. Serb. Chem. Soc. 2019,
84, 663–677. [CrossRef]

37. Anjos, O.; Caldeira, I.; Roque, R.; Pedro, S.I.; Lourenço, S. Screening of Different Ageing Technologies of Wine Spectroscopy and
Volatile Quantification. Processes 2020, 8, 8–18.

38. Anjos, O.; Santos, A.J.A.; Estevinho, L.M.; Caldeira, I. FTIR–ATR spectroscopy applied to quality control of grape-derived spirits.
Food Chem. 2016, 205, 28–35. [CrossRef]

39. Canas, S.; Caldeira, I.; Anjos, O.; Belchior, A.P. Phenolic profile and colour acquired by the wine spirit in the beginning of ageing:
Alternative technology using micro-oxygenation vs traditional technology. LWT 2019, 111, 260–269. [CrossRef]

40. Jakubíková, M.; Sádecká, J.; Kleinová, A.; Májek, P. Near-infrared spectroscopy for rapid classification of fruit spirits. J. Food Sci.
Technol. 2016, 53, 2797–2803. [CrossRef]

41. Schiavone, S.; Marchionni, B.; Bucci, R.; Marini, F.; Biancolillo, A. Authentication of Grappa (Italian grape marc spirit) by Mid and
Near Infrared spectroscopies coupled with chemometrics. Vib. Spectrosc. 2020, 107, 103040. [CrossRef]

42. Giannetti, V.; Mariani, M.B.; Marini, F.; Torrelli, P.; Biancolillo, A. Grappa and Italian spirits: Multi-platform investigation based
on GC–MS, MIR and NIR spectroscopies for the authentication of the Geographical Indication. Microchem. J. 2020, 157, 104896.
[CrossRef]

43. Li, S.; Shan, Y.; Zhu, X.; Zhang, X.; Ling, G. Detection of honey adulteration by high fructose corn syrup and maltose syrup using
Raman spectroscopy. J. Food Compos. Anal. 2012, 28, 69–74. [CrossRef]

44. Chen, H.; Tan, C.; Wu, T.; Wang, L.; Zhu, W. Discrimination between authentic and adulterated liquors by near-infrared
spectroscopy and ensemble classification. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2014, 130, 245–249. [CrossRef]

45. Schwarz, M.; Rodríguez, M.; Martínez, C.; Bosquet, V.; Guillén, D.; Barroso, C.G. Antioxidant activity of Brandy de Jerez and
other aged distillates, and correlation with their polyphenolic content. Food Chem. 2009, 116, 29–33. [CrossRef]

46. Tsakiris, A.; Kallithraka, S.; Kourkoutas, Y. Grape brandy production, composition and sensory evaluation. J. Sci. Food Agric.
2014, 94, 404–414. [CrossRef]

47. Workman, J., Jr.; Weyer, L. Practical Guide to Interpretive Near-Infrared Spectroscopy; Taylor & Francis Group: Boca Raton, FL, USA,
2007; ISBN 978-1-57444-784-2.

48. Yu, H.; Zhou, Y.; Fu, X.; Xie, L.; Ying, Y. Discrimination between Chinese rice wines of different geographical origins by NIRS and
AAS. Eur. Food Res. Technol. 2007, 225, 313–320. [CrossRef]

49. Cozzolino, D.; Corbella, E. Determination of honey quality components by near infrared reflectance spectroscopy. J. Apic. Res.
2003, 42, 16–20. [CrossRef]

50. Pardeshi, S.; Dhodapkar, R.; Kumar, A. Quantum chemical density functional theory studies on the molecular structure and
vibrational spectra of Gallic acid imprinted polymers. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2013, 116, 562–573.
[CrossRef]

51. Badhani, B.; Sharma, N.; Kakkar, R. Gallic acid: A versatile antioxidant with promising therapeutic and industrial applications.
RSC Adv. 2015, 5, 27540–27557. [CrossRef]

52. Williams, P.; Dardenne, P.; Flinn, P. Tutorial: Items to be included in a report on a near infrared spectroscopy project. J. Near
Infrared Spectrosc. 2017, 25, 85–90. [CrossRef]

53. Conzen, J.P. Multivariate Calibration. A Practical Guide for the Method Development in the Analytical Chemistry, 2nd ed.; Bruker Optick:
Ettlingen, Germany, 2006.

76



Sensors 2022, 22, 286

54. Dambergs, R.G.; Kambouris, A.; Schumacher, N.; Francis, I.L.; Esler, M.B.; Gishen, M. Wine quality grading by near infrared
spectroscopy. In Near Infrared Spectroscopy: Proceedings of the 10th International Conference; IMPublications Open: Chichester, UK,
2001; pp. 187–190. ISBN 978-1-906715-22-9.

55. De Carvalho, L.C.; de Lelis Medeiros de Morais, C.; de Lima, K.M.G.; Cunha, L.C., Jr.; Martins Nascimento, P.A.; Bosco de Faria,
J.; de Almeida Teixeira, G.H. Determination of the geographical origin and ethanol content of Brazilian sugarcane spirit using
near-infrared spectroscopy coupled with discriminant analysis. Anal. Methods 2016, 8, 5658–5666. [CrossRef]

77





sensors

Article

NIR Spectroscopy for Discriminating and Predicting
the Sensory Profile of Dry-Cured Beef “Cecina”

Isabel Revilla 1,* , Ana M. Vivar-Quintana 1 , María Inmaculada González-Martín 2,

Miriam Hernández-Jiménez 1 , Iván Martínez-Martín 1 and Pedro Hernández-Ramos 3

1 Food Technology, University of Salamanca Escuela Politécnica Superior de Zamora, Avenida Requejo 33,
49022 Zamora, Spain; avivar@usal.es (A.M.V.-Q.); miriamhj@usal.es (M.H.-J.); ivanm@usal.es (I.M.-M.)

2 Analytical Chemistry, Nutrition and Bromatology, University of Salamanca Calle Plaza de los Caídos s/n,
37008 Salamanca, Spain; inmaglez@usal.es

3 Graphic Expression in Engineering, University of Salamanca Escuela Politécnica Superior de Zamora,
Avenida Requejo 33, 49022 Zamora, Spain; pedrohde@usal.es

* Correspondence: irevilla@usal.es

Received: 2 November 2020; Accepted: 1 December 2020; Published: 2 December 2020

Abstract: For Protected Geographical Indication (PGI)-labeled products, such as the dry-cured
beef meat “cecina de León”, a sensory analysis is compulsory. However, this is a complex and
time-consuming process. This study explores the viability of using near infrared spectroscopy (NIRS)
together with artificial neural networks (ANN) for predicting sensory attributes. Spectra of 50 samples
of cecina were recorded and 451 reflectance data were obtained. A feedforward multilayer perceptron
ANN with 451 neurons in the input layer, a number of neurons varying between 1 and 30 in the
hidden layer, and a single neuron in the output layer were optimized for each sensory parameter.
The regression coefficient R squared (RSQ > 0.8 except for odor intensity) and mean squared error of
prediction (MSEP) values obtained when comparing predicted and reference values showed that it is
possible to predict accurately 23 out of 24 sensory parameters. Although only 3 sensory parameters
showed significant differences between PGI and non-PGI samples, the optimized ANN architecture
applied to NIR spectra achieved the correct classification of the 100% of the samples while the residual
mean squares method (RMS-X) allowed 100% of non-PGI samples to be distinguished.

Keywords: near infrared spectra; chemometry; dry meat; artificial neural networks; organoleptic
parameters; prediction; protected geographical indication distinguishing

1. Introduction

The dry-cured beef meat called Cecina is a meat of intermediate moisture from different anatomic
parts which undergoes a process of profiling, salting, washing, settling, smoking and drying; the whole
procedure takes between 7 and 12 months after salting. In Spain, cecinas produced exclusively in the
province of León from hind leg pieces of beef cattle (at least 5 years old and 400 kg of weight) and
produced following the processing scheme established by the Supervisory Council of cecina de León
may be awarded the quality label “Protected Geographical Indication” (PGI) [1]. The most remarkable
characteristics of this product include its intense red color, smoked odor, slightly salty taste, and soft
texture owing to which it is highly appreciated by consumers. These sensory characteristics constitute
the distinguishing marks of this product. One of the activities of the Supervisory Council of PGI cecina
de León is, therefore, to perform a sensory analysis to determine the existence of defects and to certify
its typicality in order to differentiate it from that of non-PGI products [2].

However, a descriptive sensory analysis is a very complex and time-consuming process which
involves the recruitment, selection, training and qualification of assessors following the ISO 8586 and
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ISO 5492 standards [3,4]. Although it is possible to find literature on the creation of sensory panels to
certificate Protected Denomination of Origin (PDO) or PGI products [5,6], the information related to
meat products is scarce [7]. This illustrates the difficulty of performing a sensory analysis for products
under quality labels and means that it would be desirable to replace it with a fast, reliable, and cheap
instrumental analysis.

Near infrared spectroscopy (NIRS) is a fast, accurate, multiparametric and non destructive
technique which, due to its agility and can be implemented on-line. This technique has been shown to
be a powerful tool for discriminating products according to the geographical origin of the samples.
Therefore, it has been used for rice wines [8], honey [9], tea [10], and lentils [11] among other products.
These results indicate that this technique can be a simple way of distinguishing PGI from non-PGI meat
products. However, there are numerous discriminating methods which could be applied to NIR spectra
which have been assayed for discriminating between food products belonging to PDO or PGI quality
labels. Examples include principal component analysis for almonds [12], factorial discriminant analysis
(FDA) for Swiss cheeses [13], partial least squares discriminant analysis (PLS-DA) for vinegars [14],
K-nearest neighbors (KNN) for hazelnuts [15], the residual mean squares method (RMS-X residuals)
for dry sausages [16] or artificial neural networks (ANN) for cheeses [17]. However, all this research
has also shown that the most suitable distinguishing method is closely linked to the product; a detailed
study should be carried out for each specific PDO or PGI label or food matrix.

Moreover, NIRS has also shown promising results for predicting the sensory characteristics of
meat [18,19] and meat products such as sausages [20] or dry-cured ham [21–23]. However, a determinant
step is the selection of the chemometric tool for multivariate analysis of data. In this sense,
previous studies indicate that ANNs are more suitable for predicting sensory parameters than
multiple regression tools. In general, higher regression coefficient R squared (RSQ) and lower mean
squared error of prediction (MSEP) are observed when ANN are used for predictions [24–26] and it is
possible to predict a higher number of parameters [16].

This study is part of a larger project which aims to develop a fast, objective, and reliable
methodology for classifying and predicting the sensory parameters of meat products with quality
labels [20,23]. Taking this into account, the aim of this study was to assess the feasibility of the
prediction of sensory parameters of dry-cured beef meat cecina using NIR spectroscopy, as a fast and
non destructive method, together with Levenberg–Marquardt feedforward ANN of the multi-layer
perceptron type, which have shown the best results for other meat products. Moreover, the study
also aims to determine the most suitable multivariate classification tool for distinguishing whether a
sample belongs to a quality label such as the PGI Cecina de León only by using its NIR spectra.

2. Materials and Methods

2.1. Samples

Fifty samples of dry-cured beef Cecina were used for this study. Of these, 25 samples belonged
to the “cecina de León” Protected Geographical Indication and were produced according to the
specifications of the Regulatory Board of the cecina de León PGI published in the Official Bulletin of
Castilla y León [27]. To this end, the hind leg was selected and after trimming the external connective
tissue the pieces were covered in salt, placed in piles alternating meat and salt, and kept at 3–4 ◦C and
85–90% relative humidity (RH) for 3 days. The pieces were subsequently rinsed to remove the salt
and moved again to the cold-storage room under controlled temperature and humidity for 50 days’
post-salting. The smoking process was carried out using oak wood in a smoking chamber (5 days at
12–15 ◦C and 65–75% RH). Finally, the pieces were dried and aged by reducing the RH from 80–85%
to 60–65% at 12–16 ◦C for a variable period of time. The total period of salting, rinsing, post-salting,
smoking, drying and aging ranged between 7 and 12 months.

The remaining 25 samples did not belong to the PGI and were acquired in shops in the same
province (León) as those of the PGI and their productive process was similar to that of “cecina de León”.
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2.2. Sensory Analysis

The panel that carried out the sensory analysis was formed by 10 assessors with a wide previous
experience of dry-cured meat analysis as previously described [16,23]. The training for the specific
sensory profiling of this product involved 8 sessions lasting 1–1.5 h each. The choice, definition and
consensus of the evaluation methodology of the parameters were established during four sessions.

The selected parameters for appearance were veined, fat color, color intensity, exudate and white
dots. For flavor, the evaluated parameters were odor intensity, cured odor, rancid odor, flavor intensity,
cured flavor, saltiness, sweetness, rancidity and aftertaste. Finally, for texture the parameters were
hardness, juiciness, fibrousness, chewiness and gumminess. The description and score criteria for
these parameters were the same as previously selected for dry-cured ham by this sensory panel [23].
Together with these parameters, the following which were characteristic of dry-cured beef meat were
also selected by the assessors: smoked odor and smoked flavor described as intensity of odor and
flavor respectively produced by the presence of smoke, moldy odor described as the presence of a
characteristic odor recalling that of mushrooms, and pungency described as the intensity of a pungent
sensation. Other parameters such as color homogeneity, atypical aroma, fat flavor intensity, sourness,
atypical flavor, heterogeneity of the texture, or chewing residue which were assessed in dry-cured ham
were not included by the panel for dry-cured beef meat characterization.

During the next four qualification sessions, the same sample was assessed three times each session.
The results were used to calculate the reproducibility of the panel whose maximum uncertainty has to
be lower than 0.5 and repeatability of the panel whose maximum uncertainty has to be lower than
0.8 [5]. Finally, 14 quantification sessions were held with four samples being tested in each of them.
Some selected samples were tasted three times to check the continuous accuracy of the panel. A slice
of approximately 1.5 mm thick from each sample was presented to the assessors. The samples were
coded with three digits codes and kept at room temperature. A structured 9-point scale was used for
each of the attributes, ranged from low intensity (1) to high intensity (9) of the parameter.

A statistical analysis of the sensory data was carried out in the form of an analysis of variance
(ANOVA) using the SPSS Package 25 (IBM, Chicago, IL, USA).

2.3. Near Infrared (NIR) Spectroscopy

All samples were analyzed by using Foss NIR System 5000 equipment (Foss, Hillerod, Denmark)
to obtain the NIR spectra. The NIR measurement was recorded by applying directly the quartz window
of 5 cm × 5 cm to a slice of the product cut with a slicing machine transversally to the direction of the
muscle fiber (Figure 1a).

 

(a) (b) 

Figure 1. Near infrared (NIR) measurements: (a) a record of NIR Spectra; (b) spectra of the
cecina samples.
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The NIR System is coupled with a remote reflectance fiber-optic probe of 1.5 m 210/210
(Ref no. R6539-A) and uses a remote reflectance system and a ceramic plate as a reference. The spectra
of the samples were recorded between 1100 and 2000 nm (Figure 1b), at intervals of 2 nm, i.e., 451 data
for each spectrum; 32 scans for both the reference and the samples were recorded for each sample.
Three NIR records were made for each slice of cecina, one in the centre of the slice and the other two
at the ends of the slice. The average representative spectrum of each slice of cecina was correlated
with the sensory data provided by the sensory panel, as the assessors were given the whole slice and
consumed it completely for evaluation. Spectra were stored as the logarithm reciprocal of reflectance
log (1/R) (R = reflectance). The software used for spectral collection and data handling was Win ISI
1.50 (Foss, Hillerod, Denmark) installed on a Hewlett-Packard Pentium III computer.

2.4. Discriminant Analysis

Samples of cecina were analyzed according to whether they belonged to the “cecina de León” PGI
or not. The significance of the effect of belonging to the PGI as determined by sensory attributes was
assessed by the analysis of variance (ANOVA). Indeed, different discriminant analysis was carried out
using the whole NIR spectrum from 1100 to 2000 nm measuring each 2 nm, i.e., 451 data.

Soft independent modelling of class analogy (SIMCA) using principal component analysis
(PCA) was used to group the samples. The data for SIMCA modeling were normalized, scaled,
and mean-centered. Subsequently the original variables were linearly transformed into a new set of
variables (principal components, PCs) which preserve the information of the original set. The number of
PCs for classifying purposes was determined by selecting those with an eigenvalue of> 1. The projection
of the samples in the space determined by the principal components allowed the detection of groups
present in the samples. An orthogonal projection latent structure discriminant analysis (OPLS-DA) was
then carried out. To do so, the total of the samples were randomly divided into a training set (80% of
the data) and a validation set (20% of the samples) in order to test the robustness of the discriminant
model. Moreover, it was possible to calculate the discriminating plot which identifies the wavelengths
or bands which may have a higher impact on the classification ability of the model. The software used
was SIMCA-P software version 14.1 (Umetrics, Sartorius Stedim Biotech AS, Umeå, Sweden).

The RMS-X residuals analysis was carried out with the Win ISI 1.50 (Infrasoft International,
State College, PA, USA) software using the whole NIR spectrum. Different combinations of the
following mathematical treatments (none, multiplicative scatter correction (MSC), standard normal
variate (SNV), detrend (DT) or SNV-DT), first or second derivatives, and several gaps over the
derivative were calculated, and different numbers of data points in a running average and one or
two smoothing were assayed and coded as follows (None 2,10,10,1) as previously described by
González-Martín et al. [28]. The best mathematical treatment for distinguishing between the samples
was selected taking into account the highest percentage of correctly classified samples.

The ANN selected for product classification was a multi-layer perceptron feedforward of the
backpropagation type. This ANN type uses the tangent sigmoid function in the hidden layer and the
softmax transfer function in the output layer. The following ANN learning or training algorithms
were tested in order to minimize the error process: gradient descent, gradient descent with adaptive
learning rate backpropagation, gradient descent with momentum, gradient descent with momentum
and adaptive learning rate, scaled conjugate gradient, conjugate gradient with Powell–Beale restarts,
conjugate gradient with Fletcher–Reeves restarts, conjugate gradient with Polak–Ribiere restarts
and Levenberg–Marquardt.

For each of the learning algorithms the ANN architecture includes an input layer with 451 data,
a hidden layer with a number of neurons between 1 and 30 and one output layer with two nominal
variables that was PGI or non-PGI. If the classification is in the correct class output the target output
value is 1 and 0 for the other nominal variable. The data (NIR spectra) set was randomly divided into
three sets: the training set with 70% of the data, the validation set with 15%, and the test set with 15%.
For all the ANN structures 500 trainings with different initial seed values were held in order to select
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the ANN with the best performance, which was established by the highest percentage of correctly
classified samples. The software used was the Deep Learning Toolbox of MatLab (MathWorks®) in its
R2020a version.

2.5. Artificial Neural Network for Predicting Sensory Parameters

In this case, a feedforward artificial neural network of the multi-layer perceptron type was used
for processing the data. The input layer had 451 neurons (i.e., 451 values of log (1/R) recorded by
NIR spectroscopy), a varying number of neurons between 1 and 30 were also tested in the hidden
layer, and the output layer had only one neuron that showed the predicted value of the sensory
parameter. An ANN was constructed for each of the 24 sensory parameters. As previously reported
by Hernández-Jiménez et al. [16], the best training algorithm for predicting sensory parameters is
the Levenberg-Marquardt backpropagation. The hyperbolic tangent sigmoid function was selected
for the hidden layer and the pure linear transfer function was used for the output layer. The weight
and bias matrix were randomly initialized and a known seed value number was used and stored.
As previously reported, this will allow the reproducibility of the ANN data [17]. For all the ANN,
the data (NIR-expected sensory parameter) were randomly divided into three sets: the training set
with 70% of the data, the validation set with 15%, and the test set with 15%. In order to achieve
the best prediction capability, 100 trainings of architectures were tested for each sensory parameter.
The best ANN architecture was selected according to the highest value of the RSQ and the lowest
value of the MSEP. The software used was the Deep Learning Toolbox of MatLab (MathWorks®) in its
R2020a version.

3. Results and Discussion

3.1. Sensory Data

The mean values together with the minimum, maximum and standard deviation for the 50 samples
analyzed are shown in Table 1. These values show that the range of variation was wide enough to
guarantee an adequate margin for calibration purposes. The observed variation is a consequence of
using different producers, ripening times, and pieces of muscle [2,29].

The sensory parameters were divided into three groups: appearance parameters, flavor parameters
including odor, flavor and taste characteristics and texture characteristics to coincide with previous
studies which used these three modalities for the attributes of cecina [2]. Regarding appearance
parameters, veined showed a mean between the mean values previously reported for beef
cecina [2,29]. Mean values for fat color and color intensity were nearer to those described by
Rodríguez-Lázaro et al. [2], while the mean value for exudate, equivalent to brightness of lean
described by these authors, was slightly lower. The amount of white spots was not previously
quantified for cecina but is a parameter that is usually applied in dry-cured ham descriptions [7,22,30].
These white crystals appear during the meat curing process and are composed mainly of tyrosine [31].
The mean value was low as is usually reported for dry-cured ham [22,30] but some of the samples
showed high values of this parameter.

The flavor characteristics included 13 odor, flavor and taste parameters, i.e., a higher number than
that usually reported for dry-cured meat [2,7,29,32]. Odor and flavor intensity, cured odor, and flavor
and after taste showed mean values close to those reported by Rodriguez-Lazaro et al. [2] and higher
than those reported by Molinero Sastre et al. [29]. The mean value for rancid odor was similar to that
reported by Lorenzo and Carballo [32], and the rancidity that was perceived during consumption
was slightly higher than the rancid odor. Moldy odor has been used for describing other dry meat
products [33] and has been pointed out as one of the typical odor notes of this product owing to the
presence of Penicillium and Aspergillus on the surface of the product [34]. Cecina is characterized by its
smoked flavor and slightly salty taste [35] which justify the values close to 5 observed for these two
parameters (4.90 and 4.35, respectively). These values were slightly higher than those previously found
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for dry-cured beef cecina [2]. Sweetness or a sweet taste, which is related to the amount of amino acid
released during the maturation process [36], is a frequent descriptor of dry-cured ham [7,30] which
gives in general higher values than those observed for cecina. Finally, the pungent or burnt taste
related to the presence of aldehydes and ketones released from lipid oxidation [36] showed low values.

Table 1. Mean, minimum, maximum and standard deviation for 50 samples of cecina.

Mean Minimum Maximum SD

Appearance
Veined 4.11 1.86 8.71 1.68

Fat color 5.97 4.43 7.50 0.59
Color intensity 5.78 3.57 8.00 1.09

Exudate 3.11 1.29 7.71 1.15
White spots 1.43 1.00 7.57 1.14

Flavor
Odor intensity 5.83 4.14 7.00 0.56

Cured odor 5.39 3.67 6.71 0.67
Smoked odor 4.90 3.14 7.00 0.72
Rancid odor 1.36 1.00 3.00 0.40
Moldy odor 1.11 1.00 2.33 0.23

Flavor intensity 6.14 4.00 7.14 0.62
Cured flavor 5.56 3.67 6.86 0.74

Saltiness 4.35 3.33 5.14 0.42
Sweetness 1.54 1.00 2.29 0.30

Smoked flavor 4.49 2.33 5.86 0.71
Rancidity 1.61 1.00 3.83 0.57
Pungency 1.38 1.00 2.00 0.25
Aftertaste 5.42 3.29 6.71 0.58

Texture
Hardness 3.88 2.33 6.43 0.94
Juiciness 4.49 2.33 6.00 0.81
Fatness 3.17 1.50 6.29 0.96

Fibrousness 3.11 1.71 5.29 0.78
Chewiness 3.60 2.29 5.43 0.84

Gumminess 2.63 1.67 4.50 0.70

The texture parameters of hardness, juiciness and chewiness showed a range of variation within
the margins reported by Rodríguez-Lázaro et al. and Molinero Sastre et al. [2,29], while fibrousness
was lower and juiciness was higher than the mean values reported by these authors and within the
margin found by Lorenzo and Carballo [32]. The fatness sensation which has been previously reported
as an important descriptor of dry-cured meat products [33] showed a higher mean value and a wider
range of variation than juiciness.

3.2. Discrimination of the Samples According to Protected Geographical Indication (PGI) Quality Label

“Cecina de León” has the PGI quality label; only the products manufactured in León (Castilla y
León, Spain) which follow the scheme approved by the PGI Supervisory Council can bear the PGI label.
However, cecina is also produced outside of the PGI but in the same province (León) and following
similar manufacturing techniques; therefore, it is necessary to have tools that can help to distinguish
whether a product belongs to the PGI or not.

As far as we know, no studies exist comparing the sensory characteristics of cecina depending on
whether the product bears the PGI label. The sensory profile of both groups of cecina, PGI cecina de
León and non-PGI, is shown in Figure 2.
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Figure 2. The mean values of (a) the appearance and odor attributes and (b) flavor and texture attributes
of the Protected Geographical Indication (PGI) (red) and non-PGI (blue) samples.

The statistical analysis of the sensory parameters showed that there were significant differences
between PGI and non-PGI cecina in only two parameters: white spots (p = 0.019), with the PGI cecina
de León samples giving a slightly higher value than non-PGI cecina (1.83 vs. 1.06), and cured odor
(p = 0.044). In this case, however, the samples from the cecina de León PGI showed a lower value
(5.18 vs. 5.58). Veined tended (p = 0.067) to be higher in cecina de León PGI samples (4.57 vs. 3.68)
but the differences were statistically significant at 90% level. These results show that differences
between the sensory characteristics of both groups are small. This is due to the fact that both “cecina
de León” and not-PGI cecina are produced from four different pieces of hind leg: thick flank, rump,
silver side and topside, that show significant differences in sensory properties [2] and physico-chemical
composition [29]. Moreover, the production area is very small and sometimes the same producer
manufactures cecina with and without the PGI label.

Therefore, it is very important to have fast and reliable tools that allow the classification of the
samples according to their origin. Previous studies have shown that a combination of NIR spectroscopy
and chemometric tools is very useful for this purpose [9–11,16].
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The analysis of the whole NIR spectra using SIMCA shows that after the Principal Component
Analysis 4 PCs with an eigenvalue > 1 were obtained which explained the 98.8% of the total variance.
The projection plot of the samples on the space defined by the three first PCs, which accounts for the
95.5% of the variance shown in Figure 3. It can be observed that both groups are not well separated.
In fact, the classification obtained by OPSL-DA (orthogonal projection latent structure discriminant
analysis) showed that the 68.4% of the PGI samples and the 70% of non-IGP samples were correctly
classified in the calibration and only a 25% of the IGP samples and the 40% of the not-IGP samples
were correctly classified in the external validation.

Figure 3. Projection plot of the samples in the space defined by the firsts three components.

An analysis of the whole NIR spectra using the RMS-X residuals was also carried out. This analysis
implies the pre-treatment of the spectra with different combinations of mathematical treatments
(MSC, SNV, DT or SNV-DT), derivatives, and smoothing procedures. The optimal treatment is that
giving the highest percentage of correctly classified samples. In this case two treatments, None 2,10,10,1
and detrend 2,10,10,1 (Table 2), classify correctly 100% of the samples of non-PGI and 84% of the
samples of the cecina de León PGI. The average success rate of the procedure is 92%, which indicates
that it is a promising technique as the samples analyzed are very similar to each other.

Table 2. Discrimination results (number of samples and percentage of samples correctly classified) of
residual mean squares (RMS-X) residuals method for some of the mathematical treatments assayed.

None 2,4,4,1 None 2,10,10,1 SNV 1,4,4,1 Detrend 1,4,4,1 Detrend 2,10,10,1

PGI Not PGI PGI Not PGI PGI Not PGI PGI Non-PGI PGI Not PGI

PGI 18 7 21 4 22 3 18 7 21 4
Non-PGI 0 25 0 25 3 22 2 23 0 25
Hit rate 72% 100% 84% 100% 88% 88% 72% 92% 84% 100%

PGI: Samples from Protected Geographical Indication, Non-PGI: Samples not belonging to Protected Geographical
Indication, SNV: Standard Normal Variate.

The differences in the average spectra of PGI and non PGI samples in the absorption bands are
shown in Figure 4a. These differences are due to physical and chemical changes that occur during
the maturation process of the cecina. The different treatments that have been applied to correct the
scattering of the spectra (None, SNV, DT, SNV-DT) and to achieve the optimization of the discrimination
among samples using the RMS-X residual method give rise to different results, as can be seen in Table 2.
The differences are due to the fact that the scattering treatments are conditioned by the moisture
content of the samples, both of the two groups PGI and non-PGI, moisture that influences the size of
the particles and the variations in homogeneity.
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Figure 4. Plot of average near infrared (NIR) spectra of Protected Geographical Indication (PGI)
(red) and non-PGI (blue) samples (a) without processing and (b) processed with detrend 2,10,10,1
mathematical treatment.

Figure 4b plots the average NIR spectra of PGI and non-PGI samples processed with detrend
2,10,10,1 mathematical pre-treatment in which differences between the two groups are observed at
certain wavelengths.

Thus, the bands at 1450 nm are correlated with the first overtone of the O-H bond of the water,
i.e., with the moisture of the samples. Previous works show that in meat products the 1450 nm band
has been mainly related to moisture content; as well as to the third overtone of the C=O bond (1450 nm);
and to the first overtone of the NH bond (urea at 1460 nm and CONH2 at 1463 [37,38].

On the other hand, a correlation between NIR spectra and C–H–oil and C–O–oil groups at the
wavelengths 1720 and 1760 nm, in agreement with the differences observed between PGI and non-PGI
samples for veined. Furthermore, the odor intensity which also showed significant differences between
the two groups of samples, and which depend on the amount of volatiles such as ketones, aldehydes
and other compounds that are produced from lipolysis and fat oxidation [36] are related to the C=O
bonds of the ketones at 1896 nm and to the C–H bond of aromatic structures at 1686, 1690 and 1696 nm.
Finally, the salt content is reflected in the C–Cl bond at 1856 nm.

Applying ANNs for discriminating the samples, it was possible to find several ANNs with a
classifying capability of over 90% for all the learning algorithms assayed. However, it is noteworthy
that the number of successful ANNs was low for all of them. The results for the best ANN architecture
for the nine learning algorithms, the number of the neurons in the hidden layer and the percentage
of the samples correctly classified for the training, validation and test set, together with the average
percentage for the total of the samples are shown in the Table 3.
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Table 3. Architecture and discrimination results of the best artificial neural network (ANN) find for
each of the assayed learning methods.

Neurons
Percentage of Samples Correctly Classified

Training Set Validation Set Test Set Total

Gradient Descent 27 95.6 85.7 85.7 92.7
Gradient Descent with Adaptive

Learning Rate 30 98.5 85.7 85.7 94.8

Gradient Descent with
Momentum 9 89.7 100 85.7 90.6

Gradient Descent with
Momentum and Adaptive

Learning Rate
19 98.5 85.7 100 96.9

Scaled Conjugate Gradient 29 98.5 100 100 98.9
Conjugate Gradient with

Powell-Beale 10 100 100 92.8 98.9

Conjugate Gradient with
Fletcher-Reeves 18 98.5 100 85.7 96.9

Conjugate Gradient with
Polak-Ribiere 7 98.5 100 100 98.9

Levenberg-Marquardt 13 100 100 100 100

The results show that the gradient descent, gradient descent with adaptive learning rate,
gradient descent with momentum, gradient descent with momentum and adaptive learning rate
algorithms showed the lowest values of the samples correctly classified ranging from 90.6% to 96.9%.
The group of the learning algorithms which uses variations of the conjugate gradient (scaled conjugate
gradient, conjugate gradient with Powell–Beale restarts, conjugate gradient with Fletcher–Reeves
restarts and conjugate gradient with Polak–Ribiere restarts) obtained higher values of correctly classified
samples of between 96.9% and 98.9%. However, Levenberg-Marquardt was the method giving the
best results because it was possible to find a significantly higher number of ANN architectures which
correctly classified over 90% of the samples and it was also possible to find ANN architectures which
correctly classified 100% of the samples.

These results showed the feasibility of the fast and accurate classification of unknown samples
according to their origin using NIR spectroscopy.

3.3. Prediction of the Sensory Parameters of Cecina

The best ANN architecture, which is obtained by the higher RSQ and the lower MSEP, used for
the prediction of cecina the sensory parameters is shown in Table 4. As previously reported,
the Levenberg–Marquardt algorithm using the hyperbolic tangent sigmoid for the hidden layer
and the linear functions for the output layer is the most suitable for this purpose. With this algorithm,
it is possible to find an ANN with a higher RSQ and a lower MSEP than with other algorithms such
as gradient scalar. The network was optimized as follows: the data were divided into a training
set with 34 samples which was used to obtain the predicting neural network. The accuracy of the
ANN (a comparison of the reference with the predicted value) is given by the RSQ. The validation
set, which included 8 new samples, was subsequently used to avoid the overfitting of the network.
The test set constituted by 8 new different samples was used to check the performance of the network
so that new RSQ and MSEP values were obtained. These parameters were used to select the most
suitable ANN., so this process was repeated using from 1 to 30 neurons in the hidden layer and for each
architecture up to 100 training sessions with different and known seed values were carried out because
previous works [23] have shown that the higher the number of trainings the better the prediction
capacity of the ANN. The number of neurons for the best ANN architecture, together with the RSQ
and the MSEP for the prediction of all the sensory parameters analyzed and for the total of the samples
analyzed, is shown in Table 4.
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Table 4. The number of neurons in the hidden layer, correlation coefficient R squared (RSQ), and mean
square error or prediction (MSEP) of the best ANN for each sensory parameter.

Neurons RSQ MSEP

Appearance
Veined 15 0.90 0.293

Fat color 18 0.84 0.054
Color intensity 8 0.89 0.135

Exudate 13 0.87 0.190
White dots 1 0.99 0.008

Flavor
Odor intensity 9 0.65 0.133

Cured odor 14 0.87 0.066
Smoked odor 25 0.73 0.183
Rancid odor 9 0.84 0.025
Moldy odor 6 0.91 0.005

Flavor intensity 22 0.80 0.097
Cured flavor 14 0.81 0.108

Saltiness 7 0.83 0.037
Sweetness 6 0.83 0.014

Smoked flavor 8 0.81 0.101
Rancidity 25 0.87 0.044
Pungency 25 0.79 0.013
Aftertaste 12 0.88 0.042

Texture
Hardness 13 0.90 0.090
Juiciness 24 0.95 0.036
Fatness 19 0.90 0.101

Fibrousness 9 0.88 0.067
Chewiness 18 0.92 0.050

Gumminess 15 0.93 0.033

The results show that it was possible to predict all the sensory parameters with very high RSQ
values (>0.80) with the exception of odor intensity. These values were higher than those previously
reported for the prediction of sensory parameters in meat [39–41] and meat products [16,23]. The highest
RSQ were observed for white dots (0.99) while odor intensity showed the lowest (0.68), which coincides
with that reported by Hernández-Jiménez et al. [16] for dry sausages. In general, the highest RSQ
values were observed in texture parameters as previously observed in cheeses by Curto et al. [42],
with values close to or higher than 0.9, followed by the appearance parameters with RSQ values close
to or higher than 0.85.

The MSEPs varied between 0.005 for moldy odor and 0.293 for veined and showed lower values
than those previously found for dry-cured ham [23]. Furthermore, as in this study the lowest values
of MSEP were observed in general for flavor parameters while the highest values were those of
appearance attributes. The small differences between the reference and the predicted values can be
seen in Figure 5 in which both sets of data are compared for some of the sensory parameters predicted.

These results point out the t feasibility of the prediction of sensory parameters of dry-cured beef
meat cecina using NIR spectroscopy, as a fast and non destructive method, together with ANN using
the Levenberg–Marquardt algorithm after the correct optimization process of the ANN.
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Figure 5. Reference vs. predicted values for (a) veined, (b) exudate, (c) cured odor, (d) saltiness,
(e) juiciness, and (f) chewiness.

4. Conclusions

From the results obtained it can be concluded that near infrared spectroscopy together with
artificial neural networks allow the accurate prediction of almost all (23 out of 24) the sensory parameters
selected for an exhaustive characterization of dry-cured beef meat cecina quality with RSQ values
higher than 0.8. Taking into account that a sensory analysis is compulsory for cecina de León PGI
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products, this result stresses the fact that it would possible to substitute the sensory panel by a
faster, reliable, non destructive and cheaper instrumental technique that may be implemented on
site. Moreover, after an optimization procedure, the ANNs also allow differentiation between the PGI
and non-PGI samples produced in the same geographical area with 100% of samples being correctly
classified, while the average percentage of correct classification when RMS-X residual was applied was
92%. This reveals that NIRS technology can be a powerful tool to ensure the quality of the product and
to prevent fraud.
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Abstract: Research on fatty acids (FA) is important because their intake is related to human health.
NIRS can be a useful tool to estimate the FA of beef but due to the high moisture and the high
absorbance of water makes it difficult to calibrate the analyses. This work evaluated near-infrared
reflectance spectroscopy as a tool to assess the total fatty acid composition and the phospholipid
fraction of fatty acids of beef using freeze-dried meat. An average of 22 unrelated pure breed young
bulls from 15 European breeds were reared on a common concentrate-based diet. A total of 332
longissimus thoracis steaks were analysed for fatty acid composition and a freeze-dried sample was
subjected to near-infrared spectral analysis. 220 samples (67%) were used as a calibration set with the
remaining 110 (33%) being used for validation of the models obtained. There was a large variation
in the total FA concentration across the animals giving a good data set for the analysis and whilst
the coefficient of variation was nearly 68% for the monounsaturated FA it was only 27% for the
polyunsaturated fatty acids (PUFA). PLS method was used to develop the prediction models. The
models for the phospholipid fraction had a low R2p and high standard error, while models for neutral
lipid had the best performance, in general. It was not possible to obtain a good prediction of many
individual PUFA concentrations being present at low concentrations and less variable than other FA.
The best models were developed for Total FA, saturated FA, 9c18:1 and 16:1 with R2

p greater than
0.76. This study indicates that NIRS is a feasible and useful tool for screening purposes and it has the
potential to predict most of the FA of freeze-dried beef.

Keywords: NIRS; muscle; bovine; chemometrics; MUFA; PUFA; SFA
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1. Introduction

Near-infrared spectroscopy has been used for many years to measure the chemical
composition of raw materials in the agri-food industry because it is a rapid, clean and
accurate tool. The meat industry routinely uses infrared spectroscopy to analyse the
chemical composition of meats [1–6].

Research on the fatty acid (FA) composition of meats has been growing in response
to consumer concerns about their healthiness. It is widely known that the intake of mo-
nounsaturated FA (MUFA) and polyunsaturated FA (PUFA), mainly n-3 FA, reduces the
prevalence of coronary heart disease and cholesterol levels [7] and other inflammatory and
immune disorders [8]. Conversely, high intakes of saturated fatty acids (SFA) is associ-
ated with increased susceptibility to heart attacks due to the formation of blood clots [9],
although that relationship remains unclear [10]. However, whilst high concentrations of
PUFA in meat may be nutritionally desirable [11], in the absence of adequate concentrations
of antioxidant, it can increase meat colour intensity (saturation) and fat oxidation resulting
in poor sensory quality [12,13]. The FA composition of meat is usually determined by gas
chromatography. When this method is optimized and long columns are used it allows
many fatty acids to be quantified. However, gas chromatography is expensive, slow and
uses dangerous chemicals. NIR spectroscopy is fast, cheap and clean and is useful in
estimating multiple characteristics at the same time. It is not used widely because not all
minor FA are accurately determined [14–17], partly because of the high water content of
meat that absorbs more infrared light than the solutes [18,19], and as a result, calibration
often fails. The absorbance of materials with high moisture content is temperature depen-
dent [20] which also makes it difficult to calibrate the analyses. Consequently, removing
water from materials before NIRS analysis is likely to improve the quantification of certain
substances [19,21–23]. Freeze drying meat prior to analysis has been shown to improve the
determination of minor fatty acids such as individual FA [17]. In addition to improving
performance compared with raw meat because water absorption bands are reduced, freeze-
drying also concentrates substances in beef around fourfold [24]. NIRS can determine
fatty acid profiles of phospholipid and neutral lipid fractions independently. Using this
technique SFA and MUFA concentrations in the neutral fraction have been shown to be
higher than in the phospholipid fraction while PUFA is higher in the phospholipid fraction
than the neutral lipid fraction [25]. The ability to study the fatty acids of neutral and
phospholipid fractions is of interest because phospholipids are the building blocks of the
cell membrane. The fatty acid composition of the membrane is mainly controlled by the
genes involved in fatty acid metabolism, whilst the fatty acid composition of neutral lipid
is influenced by the diet [26,27]. The positive impact of dietary phospholipids on human
health is well established [28] and in addition, phospholipids contribute to the flavour of
meat together with the Maillard reactions [26,29].

This work evaluated near-infrared reflectance spectroscopy as a tool to assess the
total fatty acid composition and the phospholipid fraction of fatty acids of beef using
freeze-dried meat.

2. Materials and Methods

2.1. Animal and Rearing Conditions

The care and use of animals were in accordance with the European Union Direc-
tive 2010/63 on the protection of animals used for experimental and other scientific pur-
poses [30] because, at the time of the experiment, the member states of the European Union
had no obligation to have an Ethics Committee for Animal Experiments.

A total of 332 unrelated pure breed young bulls from 15 European breeds were reared
on commercial farms or in experimental research centres, depending on the experimental
facilities of each country in France, Denmark, Italy, Spain and the United Kingdom. A uni-
form beef management system, representative of those used in European Union countries,
was used for all breeds to standardise, as far as possible, the influence of diet, management
and rearing systems on meat quality. The breeds and number of animals were: Aberdeen
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Angus (27), Highland (24), Jersey (25), South Devon (20), Danish Red (24), Holstein (25),
Simmental (20), Asturiana de la Montaña (22), Asturiana de los Valles (20), Avileña-Negra
Ibérica (22), Pirenaica (20), Marchigiana (22), Piemontese (20), Charolais (21) and Limousin
(20). At 9 months of age, all the animals were transferred to the experimental farms, where
they were divided into groups of 7 to 8 animals, and fed the standardised diet, which
consisted of a concentrate compounded from barley flakes (80 to 84%), soya bean meal
(7.5 to 11%) sodium bicarbonate (0.6%) with vitamin supplements (1.5%) and barley straw,
fed ad libitum. The energy density ratio ranged from 12.9-13.5 ME/kg DM. The protein
content was 160 g Crude Protein/kg DM up to 10 months of age and then decreased to
150 g CP/kg DM to slaughter. Performance, body size and carcass characteristics of the
fifteen breeds have been previously reported by Albertí, et al. [31].

2.2. Sampling and Measurements

At 75% mature bull weight, which was at about 15 months of age, animals were
slaughtered as reported in Albertí, et al. [31]. The carcasses were chilled at 4 ◦C for 24 h.
Then, the longissimus thoracis (LT) muscle was excised from the left side of the carcass
between the 6th and the 13th ribs and was stored at 2 ◦C ± 1 ◦C until 48 h post-mortem.
Then, a steak per animal was taken from around the position of the 8th vertebra and split
into two pieces. Both pieces were vacuum packed and frozen at −18 ◦C. One-piece was
transported in polystyrene boxes filled with dry ice to the CREA-ZA (Monterotondo, Italy)
for NIR analysis, while the other was transported to the University of Bristol (Bristol,
United Kingdom) for fatty acid analysis.

2.3. Collection of NIR Reflectance Spectra

The intermuscular fat covering of the LT was discarded and the remaining sample
was freeze-dried and stored at −70 ◦C until spectra collection. The sample was homoge-
nized using a meat mincer Moulinex D-56 (Groupe SEB, Écully, France) and kept at room
temperature for 1 h before recording the spectra. The minced freeze-dried sample was
inserted into a cylindrical quartz glass cup with an internal diameter of 35 mm and a depth
of 10 mm. Reflectance spectra were scanned and collected twice per sample with a FOSS
NIRSystems 5000 (FOSS NIRSystems Inc., Silver Spring, MD, USA). Spectra were recorded
from 10,000 to 4000 cm−1 each 2 cm−1 interval (1000 to 2500 nm each 0.5 nm interval) and
recorded as log

(
1
R

)
.

2.4. Fatty Acid Composition Analysis

The samples for fatty acid determination were stored at –70 ◦C until analysis. After
thawing in tap water, the muscle was blended and the lipids were extracted from 10 g
samples using chloroform:methanol (2:1, v/v) [32], separated into neutral lipid (NL) and
phospholipid (PL) fractions, using silicic acid chromatography (Isolute Si, Jones Chromatog-
raphy, Hengoed, Glamorgan, UK) and methylated as described in Scollan, et al. [33] using
a solution of diazomethane in diethyl ether. Total lipid content was taken as the sum of the
neutral lipid and phospholipid fractions. Samples were analysed by gas chromatography
by injection in the split mode, 70:1, onto a CP Sil 88, 50 m × 0.25 mm fatty acid methyl
esters (FAME) column (Chrompack UK Ltd., London, UK) with helium as the carrier gas.
The individual peaks of each FA were identified and quantified as described in detail by
Scollan, et al. [33]. Only the major fatty acids were reported, which represented over 90%
of the total FA present.

2.5. Chemometrics

The samples from each breed were assigned to a Calibration or a Validation set
randomly. Random numbers between 0 and 1 were generated using MS-Excel and they
were assigned to each sample. Therefore, samples with a number lower than 0.67 were
assigned to the Calibration set and the remaining samples were assigned to Validation
set. Hence, the Calibration set comprised 222 samples (67%), while the Validation set had
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110 samples (33%). Mathematical treatments and pre-treatments such as scatter correction
and derivatives, as well as gap and smooth segments, were investigated. Forty-eight
48 optimal models were developed including FA of the total and phospholipid fraction
and groups of FA. The number of factors for each model were selected to optimize the
R2. Spectral ranges and individual wavelengths were selected according to the loadings
and regression coefficients of the models, and then tested to obtain the best calibration
model. Because many of the data points in the spectrum were highly co-linear, they
were compressed using few factors [34] to derive the calibration equation. Compression
was carried out using Partial Least Squares. The performance of the different predictive
models obtained were determined from calibration and validation. The standard errors
of calibration (SEC) and validation (SEP) sets, the coefficients of determination (R2

c and
R2

p) of calibration and validation, respectively the residual predictive value (RPD) and
Consistency were used to test the accuracy of the calibration models [35] and to choose
the best model. RPD was calculated as (RPD = SD

SEP ), where SD is the standard deviation
of the laboratory (SD). Consistency was calculated as (C = SEC

SEP ·100) and expressed as a
percentage [36]. The Hotelling statistic (H statistics) was calculated and samples with an H
statistic greater than 10 were defined as outliers. When outliers were eliminated from the
calibration set the model improved. Chemometrics and spectral data management were
carried out with Unscrambler X (Camo Software AS, Norway). Calibration equations were
derived for the phospholipid fraction of FA and total FA but not the neutral FA as these
can be calculated by the difference between total and phospholipid fraction.

3. Results and Discussion

3.1. Sample Composition

Twenty fatty acids were detected, and 4 FA groups were calculated. Tables 1 and 2
shows the descriptive statistics of the phospholipid fraction of FA and total FA, respectively.
Means of total FA were higher than means of the FA of phospholipid fraction but differences
were much higher for SFA and MUFA than PUFA. In general, total FA was more variable
than the phospholipid fraction, as expected, because the different carcass fatness of the
animals used in the study is related to the neutral lipid fraction, while the phospholipid
fraction is more constant and less susceptible to differences in bodycomposition [37].
Therefore, the coefficient of variation (CV) of total FA from 11 FA was higher than 60%
while only 4 FA had a CV of the phospholipid fraction higher than this value. Moreover,
total SFA, total MUFA and total FA also had a CV above 65% while the phospholipid
fraction had a CV below 30%. The total FA (Table 2) ranged from 2.7% to 10.9%.

In the calibration set, neutral and phospholipid fractions were 81.7% and 18.3%,
respectively, in agreement with MacKintosh, et al. [37]. The phospholipid fraction contained
much more PUFA than the neutral lipid (13.5% of SFA, 9.6% of MUFA and 74.1% of PUFA)
while 18:1c9, 18:1t9 and CLA had lower percentages in phospholipid fraction (9.9%, 9.0%
and 9.1% respectively) than in neutral lipid, which is in agreement with the findings of
Wood, et al. [38] and MacKintosh, et al. [37]. Conversely, the percentages of FA with 20 or
more carbons were greater in the phospholipid fraction than in neutral lipid. Therefore, the
percentages of 20:3n-6, 20:4n-6, 20:5n-3, 22:4n-6, 22:5n-3 and 22:6n-3 in the phospholipid
fraction were 92.3%, 98.1%, 96.2%, 93.5%, 95.4% and 95.6%, respectively [9].
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Table 1. Descriptive statistics of the phospholipid fraction of fatty acids (mg/100 g of meat) of calibration and validation sets.

Calibration Set Validation Set

Fatty Acid Mean Min Max S.D. C.V. Mean Min Max S.D. C.V.

12:0 0.06 0.00 0.53 0.08 133.33 0.09 0.57 1.32 0.16 177.78
14:0 1.64 0.34 6.34 1.13 68.90 1.62 2.49 4.96 1.05 64.81
16:0 64.42 34.05 109.85 14.34 22.26 65.92 64.20 103.23 14.93 22.65

16:0 ald 23.42 3.91 43.46 6.42 27.41 24.00 4.650 40.99 7.27 30.29
16:1 7.36 3.07 19.35 2.33 31.66 7.47 6.17 13.79 2.30 30.79
18:0 52.38 29.16 83.93 8.85 16.90 53.44 69.77 73.38 8.81 16.49

18:0 ald 15.87 3.47 26.64 4.48 28.23 16.64 3.36 31.87 5.47 32.87
18:1 t9 4.39 0.93 14.20 2.75 62.64 4.47 6.95 16.85 2.91 65.10
18:1 c9 76.72 26.06 182.51 24.35 31.74 77.08 53.77 137.56 24.19 31.38

18:1 c11 14.58 7.87 25.92 3.43 23.53 14.79 11.29 26.03 3.69 24.95
18:2 n-6 124.47 62.45 210.43 29.61 23.79 127.88 67.43 199.28 29.67 23.20

20:1 0.57 0.00 1.20 0.22 38.60 0.59 0.30 1.26 0.23 38.98
18:3 n-3 6.37 1.51 22.07 4.35 68.29 6.57 3.58 19.57 4.55 69.25

18:2
9c11tCLA 0.75 0.18 2.49 0.41 54.67 0.77 0.70 2.71 0.45 58.44

20:3 n-6 8.43 4.94 15.00 2.00 23.72 8.44 3.60 13.66 2.22 26.30
20:4 n-6 37.84 20.29 69.55 9.39 24.82 38.63 16.27 69.77 9.69 25.08
20:5 n-3 4.02 1.00 12.07 2.01 50.00 4.20 1.23 10.97 2.27 54.05
22:4 n-6 4.59 1.34 10.40 1.82 39.65 4.67 1.10 10.21 1.94 41.54
22:5 n-3 9.17 4.26 21.13 2.94 32.06 9.35 3.43 20.38 3.30 35.29
22:6 n-3 0.87 0.00 4.85 0.48 55.17 0.85 0.00 2.28 0.40 47.06
Total FA 493.81 270.43 813.78 85.49 17.31 504.13 467.25 726.78 89.74 17.80

SFA 157.80 89.26 252.16 28.679 18.17 161.71 101.33 228.035 31.09 19.23
MUFA 103.61 46.35 228.31 28.18 27.20 104.400 47.82 169.93 28.26 27.07
PUFA 196.51 107.55 319.65 39.61 20.16 201.36 103.90 297.84 40.64 20.18

SD, standard deviation; FA, fatty acid; SFA, saturated fatty acid; MUFA, monounsaturated fatty acid; PUFA, polyunsaturated fatty acid;
C.V., coefficient of variation.

Table 2. Descriptive statistics of the total fatty acid composition (mg/100 g of meat) of calibration and validation sets.

Calibration Set Validation Set

Fatty Acid Mean Min Max S.D. C.V. Mean Min Max S.D. C.V.

12:0 2.10 0.00 8.86 1.87 89.05 2.06 0.06 8.69 1.80 87.38
14:0 73.63 0.87 313.13 58.97 80.09 71.57 2.49 256.53 55.15 77.06
16:0 651.20 51.20 2878.25 480.58 73.80 639.85 64.20 2420.91 442.30 69.13

16:0 ald 23.42 3.91 43.46 6.42 27.41 24.00 4.65 40.99 7.27 30.29
16:1 92.50 5.55 414.79 73.77 79.75 89.04 6.17 266.67 64.18 72.08
18:0 401.08 50.04 1741.09 254.19 63.38 398.22 69.77 1497.58 237.68 59.69

18:0 ald 15.87 3.47 26.64 4.48 28.23 16.64 3.36 31.87 5.47 32.87
18:1 t9 77.48 3.47 625.86 76.14 98.27 75.20 6.95 363.93 68.72 91.38
18:1 c9 854.17 31.86 4125.90 658.56 77.10 831.04 53.77 2866.55 573.11 68.96

18:1 c11 49.02 11.24 191.83 29.18 59.53 47.77 11.29 119.64 25.02 52.38
18:2 n-6 183.30 83.15 500.18 62.86 34.29 183.30 67.43 314.36 54.76 29.87

20:1 4.03 0.27 22.16 3.28 81.39 3.77 0.30 13.58 2.58 68.44
18:3 n-3 15.16 2.70 69.20 12.27 80.94 14.99 3.58 48.81 11.81 78.79

18:2 9c11t
CLA 8.14 0.45 43.18 6.39 78.50 7.84 0.70 27.41 5.26 67.09

20:3 n-6 9.14 5.15 16.12 2.48 27.13 9.11 3.60 16.29 2.67 29.31
20:4 n-6 38.56 20.29 71.23 9.60 24.90 39.32 16.27 70.47 10.01 25.46
20:5 n-3 4.18 1.00 15.56 2.18 52.15 4.35 1.23 11.41 2.37 54.48
22:4 n-6 4.91 1.34 11.33 2.15 43.79 4.96 1.10 11.70 2.26 45.56
22:5 n-3 9.61 4.26 21.85 3.11 32.36 9.82 3.43 20.65 3.47 35.34
22:6 n-3 0.91 0.00 4.95 0.61 67.03 0.89 0.00 5.56 0.60 67.42
Total FA 2701.26 452.75 10922.01 1780.47 65.91 2652.12 467.25 8701.06 1596.84 60.21

SFA 1167.30 133.90 4981.92 790.24 67.70 1152.34 157.41 4182.02 734.39 63.73
MUFA 1077.19 54.47 4916.56 818.18 75.96 1046.83 78.48 3570.11 713.46 68.15
PUFA 265.76 139.73 607.29 79.13 29.77 266.73 114.32 439.52 72.54 27.20

SD, standard deviation; FA, fatty acid; SFA, saturated fatty acid; MUFA, monounsaturated fatty acid; PUFA, polyunsaturated fatty acid.

99



Sensors 2021, 21, 4230

Variations in the FA profiles from the 15 breeds used in the current study are represen-
tative of the variation present in European beef FA. The 15 breeds included different cattle
types, milk, meat and dual purpose. The individual profiles and different lipid ratios of the
15 European cattle breeds included in the study are given in Sevane, et al. [39] and their
correlations with sensory traits, such as flavour, texture or juiciness in Sevane, et al. [40].
However, as the animals were fed a standardized diet the variations were lower than if they
had been fed different diets, especially in PUFA [27]. Andueza, et al. [17] noted that the
variation in FA in cattle is limited because of the biohydrogenation of ruminants during the
digestion process. The goodness of calibration models relies on the variability of samples
in the data set used to develop the prediction models [14,24], but increasing the variability
in the data does not always increase the accuracy of the calibration. Khan, et al. [41] used
meat from four different species to increase the variability and showed that the calibration
for the chemical composition could not be improved. The total amount of fat influences
the fatty acid composition. Therefore, increasing the age of animals and fattening could
increase the variation in FA, but this does not help for the phospholipid fraction which
remains constant even though the total lipids increase [42].

Most of the recent studies on beef used absolute values to develop the calibration
models, and have achieved good statistical results [14,43] although other authors still
express the results as a percentage of total fatty acids [24]. The absorbance varies linearly
with the parameter concentration, not the relative ratio, therefore using absolute content
gives a better calibration than the use of percentages or relative amounts [44].

The use of freeze-dried samples increases the relative concentration of fatty acids
and so improves the results [24]. In addition, freeze-drying reduces the water absorption,
improving the resolution of the absorption spectra for muscle. Freeze-drying also has the
advantage of fine grinding, which is expected to improve the calibration [45], because it
has been demonstrated that mincing meat prior to analysis gives better results than intact
meat [46]. As intact muscle fibres and myofibrils tend to conduct NIR light by absorbing
more energy [47]. Expressing the results as an absolute value indicates the nutritional value
of meat, but differences in the treatment of the data and the way results are expressed make
it difficult to compare results among studies.

3.2. Spectral Characteristics

The mean spectrum for the 15 breeds started with values of 0.4 (minimum value above
0.2) which was sustained until 1600 nm and finished at 2500 nm with values of 1.0 and a
maximum of almost 1.4 (Figure 1).

Values of absorbance and the shape of the spectrum are similar to the spectrum of
freeze-dried beef reported by Andueza, et al. [17]. The absorbance for freeze-dried beef
was lower than the absorbance of fresh beef [14,17,48], broiler breast [48] and pork [49] but
the shape of the spectrum is similar among all the meats. The low absorbance values in
the ranges 1440–1470 nm and 1920–1960 nm are due to the absence of water [50]. Giaretta,
et al. [24] compared spectra from fresh and freeze-dried beef and reported similar values
to ours at 1000 nm but much higher values at 2500 nm. In addition, these authors found
more sharp peaks around 1700 nm and also in the C–H resonance region (2200–2500 nm).
Within that latter band, Zhou, et al. [48] reported absorbance peaks, specifically 2310 nm
and 2348 nm, which are related to lipids. In the present study, this region had subtle peaks
which were highlighted with the use of scattering corrections and derivatives (Figure 1a,b).
In that region, we also found the highest regression coefficients for the prediction of total
FA and many individual FA (data not shown), which is in agreement with the findings of
Prieto, et al. [51].
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Figure 1. (a) Average (bold line), maximum and minimum (thin lines) of raw NIR spectra. (b) Stan-
dard normal variate (SNV) and standard normal variate plus detrending (SNVD) pre-treatments.
(c) SNVD and first-order derivative pre-treatments. Spectra were recorded as log(1/R).

3.3. Prediction Models

The spectral pre-treatments and factors used to develop calibrations of phospholipids
and total fatty acids used in this study are shown in Tables 3 and 4.

The offset baseline correction was used in 62.5% of the prediction models for the
phospholipid fraction, while it was only used in the 8.3% of the prediction models for
the total fraction of fatty acids. Area normalization was used in 50% of the prediction
models for the phospholipid fraction and 12.5% of the prediction models for the total
fraction of FA. The extended multiplicative scatter correction, SNV and SNVD were used
in most of the calibrations of phospholipids (58.3%) but it was only required for 33.3%
of calibrations of total fat fraction, mainly SNVD. The Savitzky–Golay derivative of first
order with the second polynomial order and a smoothing gap of 3 or 5 were used in 15
calibrations while a Norris gap first-order derivative with large gap sizes (from 11 to 27)
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was useful to develop 6 calibrations. The most useful mathematical treatments were SNVD
with or without first-order derivatives although many optimal models were developed
without mathematical treatment. Indeed, the best prediction models of total FA, SFA, 9c18:1
and 16:1 used offset baseline correction, non-treatment, first-order Norris-Gap derivative
and non-treatment, respectively. Figure 2 shows the regression coefficients of the model of
total fatty acids.

Table 3. Spectral treatments and factors included in the prediction models of phospholipid fraction
of fatty acids of beef.

Fatty Acid
Baseline

Correction
Spectra

Normalization
Scatter

Correction a Smooth
Mathematical
Treatment b F c

12:0 Offset None EMSC None None 6
14:0 Offset None EMSC None SG-1-2-5 5
16:0 Offset Area SNV+D None SG-1-2-3 4

16:0 ald None None None None SG-1-2-3 3
16:1 Offset None None None None 4
18:0 Offset Area EMSC None None 4

18:0 ald Offset Area SNV+D None None 6
18:1 t9 None None EMSC None None 3
18:1 c9 None None None None SG-1-2-5 2
18:1 c11 Offset Area SNV+D None None 3
18:2 n-6 None None None None None 8

20:1 Offset Area SNV None None 6
18:3 n-3 Offset None None None None 10

18:2 9c11t CLA Offset Area SNV+D None None 5
20:3 n-6 None None EMSC None None 3
20:4 n-6 None Area SNV None None 12
20:5 n-3 Offset Area EMSC+D None None 8
22:4 n-6 None None None None SG-1-2-3 5
22:5 n-3 Offset Area None None None 10
22:6 n-3 None Area None None None 1
Total FA Offset Area None None SG-1-2-5 5

SFA Offset None SNV None None 6
MUFA None None SNV None None 5
PUFA Offset Area None None SG-1-2-3 5

a EMSC, extended multiplicative scatter correction; MSC, multiplicative scatter correction; SNV, standard normal
variate; D, detrending. b SG, Savitzky–Golay derivative—derivative order—polynomial order—smoothing points;
NG, Norris Gap derivative—derivative order—gap size. c F, number of factors.

Table 4. Spectral treatments and factors included in the prediction models of total fatty acids of beef.

Fatty Acid
Baseline

Correction
Spectra

Normalization
Scatter

Correction a Smooth
Mathematical
Treatment b F c

12:0 None None SNV+D None SG-1-2-3 4
14:0 None Area SNV+D None SG-1-2-3 3
16:0 None Area SNV+D None SG-1-2-3 3

16ald None None None None None 2
16:1 None None None SG1-1-1 None 8
18:0 None None None None None 5

18ald None None SNV+D None None 8
18:1t9 None None SNV+D None None 2
9c18:1 None None None None NG-1-13 7

11c18:1 None Area SNV+D None None 11
18:2n-6 None None None SG1-2-2 SG-1-2-3 5

20:1 None None None None SG-1-2-3 4
18:3n-3 Offset None None None None 9

9c11tCLA None None MSC None SG-1-2-3 4
20:3n-6 None None None None NG-1-7 7
20:4n-6 None None None None SG-1-2-3 7
20:5n-3 None None None None NG-1-15 7
22:4n-6 None None None None SG-1-2-3 6
22:5n-3 None None SNV None NG-1-7 5
22:6n-3 None None None None None 1
TotalFA Offset None None None None 9

SFA None None None None None 9
MUFA None None None None NG-1-27 7
PUFA None None None None NG-1-11 6

a EMSC, extended multiplicative scatter correction; MSC, multiplicative scatter correction; SNV, standard normal
variate; D, detrending. b SG, Savitzky–Golay derivative—derivative order—polynomial order—smoothing points;
NG, Norris Gap derivative—derivative order—gap size. c Number of factors included in the calibrations.
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Figure 2. Regression coefficients of each wavelength for the model of total fatty acids.

There are no studies focused on the prediction of FA phospholipids, so the total FA
fraction will be discussed here. The best statistical results have been found by applying SNV
(with or without detrend) with the second-order derivative for most of the FA [49,52,53].
SNVD treatment reduced multicollinearity and the deleterious effects of a baseline shift
and curvature while derivatives increase the resolution of peaks and reduce scattering [52].
However, the use of finely ground freeze-dried samples, means that for many calibrations
pre-treatments are not needed, which has also been reported by Andueza, et al. [17].

Calibration and validation statistics of the models are shown in Tables 5 and 6. Some
authors [49] reported calibrations for C16:0 and C18:0 with R2 of 0.66 and 0.71, respectively,
in pork using the SNVD and second-order derivatives, while Sierra, et al. [53] and Cecchi-
nato, et al. [54] found that for beef C16:0 and C18:0 FA had an R2 of 0.8 and 0.7, respectively.
These values were similar to those using lamb and beef mixed together [14] and for rabbit
meat [55]. An R2 equal to or greater than 0.9. has been reported for freeze-dried beef [17]
and a high R2 for predicting C16:0 and C18:0 has also been found for broiler breast using
SNVD and first-order derivatives [48]. Therefore, most of the authors reported similar
or slightly better results than our results when using beef, pork and lamb with similar
mathematical pre-treatments such as SNVD.

Table 5. Calibration and validation statistics for the phospholipids fraction of fatty acid composition
(mg FA/100 g of meat).

Fatty Acid n SEC R2
c SEP R2

P RPD Consistency

12:0 206 0.04 0.48 0.15 0.07 1.06 26.67
14:0 215 0.46 0.77 0.73 0.52 1.44 63.01
16:0 210 7.52 0.67 10.45 0.48 1.43 71.96

16:0ald 210 5.31 0.24 6.70 0.13 1.08 79.25
16:1 205 1.35 0.44 1.85 0.32 1.24 72.97
18:0 211 5.72 0.50 6.92 0.36 1.27 82.66

18:0ald 210 3.10 0.40 5.17 0.10 1.06 59.96
t918:1 200 1.56 0.19 2.89 0.03 1.01 53.98
9c18:1 205 14.91 0.50 18.81 0.37 1.29 79.27

11c18:1 212 2.66 0.20 3.51 0.09 1.05 75.78
18:2n-6 200 18.81 0.42 33.94 0.04 0.87 55.42

20:1 215 0.15 0.49 0.20 0.27 1.16 75.00
18:3n-3 207 2.26 0.69 3.11 0.53 1.46 72.67

9c11tCLA 200 0.25 0.36 0.43 0.06 1.04 58.14
20:3n-6 201 1.56 0.26 2.08 0.11 1.07 75.00
20:4n-6 201 5.88 0.55 7.59 0.29 1.28 77.47
20:5n-3 202 1.34 0.56 1.74 0.41 1.30 77.01
22:4n-6 207 1.10 0.59 1.58 0.29 1.23 69.62
22:5n-3 200 1.73 0.58 2.47 0.41 1.33 70.04
22:6n-3 198 0.28 0.12 0.38 0.05 1.07 73.68

Total FA 199 39.14 0.67 63.88 0.44 1.40 61.27
SFA 202 14.80 0.65 20.68 0.57 1.50 71.57

MUFA 210 17.46 0.53 18.85 0.50 1.50 92.63
PUFA 198 19.77 0.65 31.84 0.14 1.24 62.09

n, number of samples used in validation; SEC, standard error of calibration; R2c, coefficient of determination of
calibration; SEP, standard error of validation; R2p, coefficient of determination of validation; RPD = SD/SEP;
Consistency (%) = SEC*100/SEP.
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Table 6. NIRS calibration and validation statistics for the total fatty acid composition (mg FA/100 g
of meat).

Fatty Acid n SEC R2
c SEP R2

p RPD Consistency

12:0 222 1.02 0.70 0.97 0.72 1.9 105.15
14:0 219 26.05 0.77 27.97 0.74 2.0 93.14
16:0 222 233.56 0.71 234.99 0.72 1.9 99.39

16:0ald 222 5.98 0.13 6.66 0.16 1.0 89.79
16:1 218 32.17 0.76 30.31 0.78 2.1 106.14
18:0 222 158.17 0.61 129.39 0.70 1.8 122.24

18:0ald 222 3.79 0.53 4.85 0.21 1.1 78.14
t918:1 219 41.01 0.47 50.16 0.47 1.4 81.76
9c18:1 217 244.72 0.80 274.92 0.77 2.1 88.59

11c18:1 218 12.14 0.77 12.69 0.74 2.0 95.67
18:2n-6 222 41.63 0.56 41.32 0.43 1.3 100.75

20:1 220 1.40 0.80 1.10 0.71 1.8 127.27
18:3n-3 222 7.73 0.60 7.07 0.65 1.7 109.34

9c11t CLA 222 4.00 0.61 3.25 0.62 1.6 123.08
20:3n-6 217 1.45 0.64 2.09 0.39 1.3 69.38
20:4n-6 222 4.89 0.74 8.60 0.26 1.2 56.86
20:5n-3 210 1.71 0.39 1.90 0.38 1.3 90.00
22:4n-6 217 1.00 0.78 1.74 0.39 1.3 57.47
22:5n-3 211 2.47 0.37 2.79 0.36 1.2 88.53
22:6n-3 222 0.61 0.01 0.60 0.01 1.0 101.67

Total FA 222 908.22 0.74 730.79 0.79 2.2 124.28
SFA 222 412.56 0.73 355.68 0.77 2.1 115.99

MUFA 222 393.64 0.77 340.36 0.77 2.1 115.65
PUFA 222 53.35 0.54 53.81 0.45 1.3 99.15

n, number of samples used in validation; SEC, standard error of calibration; R2c, coefficient of determination of
calibration; SEP, standard error of validation; R2p, coefficient of determination of validation; RPD = SD/SEP;
Consistency (%) = SEC*100/SEP.

Conjugated linoleic acid (CLA) describes a group of 18-carbon fatty acids with two
conjugated double bonds. These isomers, of which c9,t11 and t10,c12 are the predominant
members in beef, are beneficial for human health [56]. Some authors reported models
that are for the entire CLA group, others report models for individual components, in this
case, c9t11 and other isomers are used because major CLA isomers can coelute during
GC analysis [57]. Hence, the comparison of results is not easy. The model we used (MSC,
1st derivative and R2

p = 0.62) is consistent with those described in the literature because
most used SNVD together 1st or 2nd derivative [14,17,53]. Prieto, et al. [51] used finely
ground beef to predict several groups of CLA isomers with R2

c ranging from 0.77 to 0.84,
confirming that the finer the grinding, the higher the accuracy [47]. Finally, other authors
did not report CLA [24,50,58].

Most FA with more than 19 carbons were not well predicted in our study, which has
also been found by other authors [14,17,48,53,55]. Therefore, these are often not reported
and published data tend to focus on the main groups of FA [24,50,52,58]. Most authors
reported worse statistics for PUFA than for SFA and MUFA [14,48,53,55,59]. This could be
explained because long-chain PUFA are mainly located in the membrane phospholipids
which are quite constant because they are controlled by a complex enzymatic system,
providing low variability among animals and have relatively low concentrations [58].

The models developed for the phospholipid fraction of the FA had RPD lower than
2 being useful just for screening purposes. However, some models for the estimation of
FA were adequate for analytical purposes such as 14:0, 16:1, 11c18:1, total FA, SFA and
MUFA. The other models remained below RPD = 2. The plots of those models are shown
in Figure 3. The main weakness of NIRS to predict the FA composition is the inconsistency.
While gas chromatography can identify all the FA that are important for meat science, NIRS
does not. The reasons for the low-quality calibrations of some FA of meat include low
concentration and variability, presence of water, and comparison of intact vs ground meat.
The poor performance of NIRS in prediction equations for FA is due to this low variability
and because some FA absorbs at the same wavelengths [14,47]. In our data set the range
of variability may result in a complex relationship between the spectra and the response
variables that are not predicted under a PLS model [59]. Using the NIRS technique to
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predict fatty acids is hampered by the absorption of light by the C–H bonds in certain
wavelengths.

Figure 3. Scatter plots of models of 16:1, 11c18:1, total FA, SFA and MUFA of the total fraction.

Therefore, a C–H bond together with a cis bond modifies the absorption at the same
wavelengths as a double cis bond [60]. This means that some individual fatty acids are
not determined accurately, which could be related to similarities in the NIR absorption
spectra among FA [48,53]. Other authors that have studied the PLS method, used in
our study, fail when the relationship between spectra and the analyte of interest is non-
linear [59,61]. Spectra collected in the reflectance mode are influenced not only by the
main components of meat (water, fat, protein, etc.) but also the particle size, which is
affected by the sample homogenization method and has to be accounted for using the right
mathematical preprocessing [62]. Our results, using spectra from milled freeze-dried meat,
suggest that this type of sample requires little or no preprocessing.

4. Conclusions

This study indicates that NIRS is a feasible and useful tool for screening purposes
and has the potential to predict most of the FA of beef. The use of freeze-dried samples,
thus reducing the water absorption bands and increasing the concentration of analytes,
improved the accuracy of calibrations. Minimal mathematical pre-treatments were required
to obtain good results. Using 15 breeds ensured that there was a large variation in the
samples, which enabled us to develop good models. However, these improvements were
not enough to achieve good calibrations for the phospholipid fraction, mainly due to the
low concentrations of the FA in this fraction.
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49. Ortiz, A.; Parrini, S.; Tejerina, D.; Pinto de Araújo, J.P.; Čandek-Potokar, M.; Crovetti, A.; Garcia-Casco, J.M.; González, J.;
Hernández-García, F.I.; Karolyi, D.; et al. Potential Use of Near-Infrared Spectroscopy to Predict Fatty Acid Profile of Meat from
Different European Autochthonous Pig Breeds. Appl. Sci. 2020, 10, 5801. [CrossRef]

50. Pieszczek, L.; Czarnik-Matusewicz, H.; Daszykowski, M. Identification of ground meat species using near-infrared spectroscopy
and class modeling techniques—Aspects of optimization and validation using a one-class classification model. Meat Sci. 2018,
139, 15–24. [CrossRef] [PubMed]

51. Prieto, N.; Lopez-Campos, O.; Aalhus, J.L.; Dugan, M.E.; Juarez, M.; Uttaro, B. Use of near infrared spectroscopy for estimating
meat chemical composition, quality traits and fatty acid content from cattle fed sunflower or flaxseed. Meat Sci. 2014, 98, 279–288.
[CrossRef]

52. Davies, A.M.C.; Grant, A. Review: Near-Infrared analysis of food. Int. J. Food Sci. Technol. 1987, 22, 191–207. [CrossRef]
53. Sierra, V.; Aldai, N.; Castro, P.; Osoro, K.; Coto-Montes, A.; Olivan, M. Prediction of the fatty acid composition of beef by near

infrared transmittance spectroscopy. Meat Sci. 2008, 78, 248–255. [CrossRef] [PubMed]
54. Cecchinato, A.; De Marchi, M.; Penasa, M.; Casellas, J.; Schiavon, S.; Bittante, G. Genetic analysis of beef fatty acid composition

predicted by near-infrared spectroscopy. J. Anim. Sci. 2012, 90, 429–438. [CrossRef] [PubMed]
55. Zomeño, C.; Juste, V.; Hernandez, P. Application of NIRS for predicting fatty acids in intramuscular fat of rabbit. Meat Sci. 2012,

91, 155–159. [CrossRef] [PubMed]
56. Hargrave-Barnes, K.M.; Azain, M.J.; Miner, J.L. Conjugated linoleic acid-induced fat loss dependence on Delta6-desaturase or

cyclooxygenase. Obesity 2008, 16, 2245–2252. [CrossRef]
57. Cruz-Hernandez, C.; Deng, Z.; Zhou, J.; Hill, A.R.; Yurawecz, M.P.; Delmonte, P.; Mossoba, M.M.; Dugan, M.E.; Kramer,

J.K. Methods for analysis of conjugated linoleic acids and trans-18: 1 isomers in dairy fats by using a combination of gas
chromatography, silver-ion thin-layer chromatography/gas chromatography, and silver-ion liquid chromatography. J. AOAC Int.
2004, 87, 545–562. [CrossRef]

58. Scollan, N.; Hocquette, J.F.; Nuernberg, K.; Dannenberger, D.; Richardson, I.; Moloney, A. Innovations in beef production systems
that enhance the nutritional and health value of beef lipids and their relationship with meat quality. Meat Sci. 2006, 74, 17–33.
[CrossRef] [PubMed]

59. Barragan-Hernandez, W.; Mahecha-Ledesma, L.; Burgos-Paz, W.; Olivera-Angel, M.; Angulo-Arizala, J. Using near-infrared
spectroscopy to determine intramuscular fat and fatty acids of beef applying different prediction approaches. J. Anim Sci. 2020,
98. [CrossRef]

60. Sato, T.; Kawano, S.; Iwamoto, M. Near infrared spectral patterns of fatty acid analysis from fats and oils. J. Am. Oil Chem. Soc.
1991, 68, 827–833. [CrossRef]

61. Balabin, R.M.; Lomakina, E.I. Support vector machine regression (SVR/LS-SVM)–an alternative to neural networks (ANN) for
analytical chemistry? Comparison of nonlinear methods on near infrared (NIR) spectroscopy data. Analyst 2011, 136, 1703–1712.
[CrossRef]

62. Geladi, P.; MacDougall, D.; Martens, H. Linearization and scatter-correction for near-infrared reflectance spectra of meat. Appl.
Spectrosc 1985, 39, 491–500. [CrossRef]

108



Citation: García Martín, J.F. Potential

of Near-Infrared Spectroscopy for the

Determination of Olive Oil Quality.

Sensors 2022, 22, 2831. https://

doi.org/10.3390/s22082831

Academic Editors: Mercedes Del Río

Celestino and Rafael Font Villa

Received: 18 February 2022

Accepted: 4 April 2022

Published: 7 April 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Review

Potential of Near-Infrared Spectroscopy for the Determination
of Olive Oil Quality

Juan Francisco García Martín 1,2

1 Departamento de Ingeniería Química, Facultad de Química, Universidad de Sevilla, 41012 Seville, Spain;
jfgarmar@us.es

2 University Institute of Research on Olive Groves and Olive Oils, GEOLIT Science and Technology Park,
University of Jaén, 23620 Mengíbar, Spain

Abstract: The analysis of the physico-chemical parameters of quality of olive oil is still carried out in
laboratories using chemicals and generating waste, which is relatively costly and time-consuming.
Among the various alternatives for the online or on-site measurement of these parameters, the
available literature highlights the use of near-infrared spectroscopy (NIRS). This article intends to
comprehensively review the state-of-the-art research and the actual potential of NIRS for the analysis
of olive oil. A description of the features of the infrared spectrum of olive oil and a quick explanation
of the fundamentals of NIRS and chemometrics are also included. From the results available in the
literature, it can be concluded that the four most usual physico-chemical parameters that define
the quality of olive oils, namely free acidity, peroxide value, K232, and K270, can be measured
by NIRS with high precision. In addition, NIRS is suitable for the nutritional labeling of olive oil
because of its great performance in predicting the contents in total fat, total saturated fatty acids,
monounsaturated fatty acids, and polyunsaturated fatty acids in olive oils. Other parameters of
interest have the potential to be analyzed by NIRS, but the improvement of the mathematical models
for their determination is required, since the errors of prediction reported so far are a bit high for
practical application.

Keywords: chemometrics; olive oil; near-infrared spectroscopy; quality parameters

1. Introduction

The International Olive Council defines olive oil as the oil obtained solely from fruits
of the olive tree (Olea europaea L.), with the exclusion of oils obtained by solvents or by
re-esterification procedures and any mixture with oils of another nature. As stated by this
international intergovernmental organisation, the olive oils with the highest quality (so-
called virgin oil oils) are those obtained ‘solely by mechanical or other physical means under
conditions, particularly thermal conditions, that do not lead to alterations in the oil, and
which have not undergone any treatment other than washing, decantation, centrifugation
and filtration’ [1]. Virgin olive oils are classified, in turn, into extra virgin olive oils (EVOO),
virgin olive oils (VOO), ordinary virgin olive oil, and lampante virgin olive oil [1,2], where
EVOO is the olive oil of the highest quality. While the first three virgin olive oils are fit for
consumption, lampante virgin olive oil must undergo processing prior to consumption.

Olive oil is regarded as one of the healthiest food oils due to its high content in
triglycerides with unsaturated acids, mainly oleic acid, and its phenolic composition. The
former is related to a decrease in LDL-cholesterol fraction, while the latter is responsible
for the antioxidant properties and the bitter taste of olive oil. Triglycerides account for
almost all the saponifiable fraction of the olive oil (roughly 98 wt.%). On the contrary, the
phenolic compounds belong to the unsaponifiable fraction, which represents about 2 wt.%
of total olive oil. The most representative phenolic compounds in olive oils are oleuropein
and hydroxytyrosol. In addition to phenolic compounds, the unsaponifiable fraction is
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composed of a wide variety of compounds, such as triterpenic alcohols, α-tocopherol
(vitamin E), γ-tocopherol, β-carotene (precursor substance of vitamin A and responsible
for the yellow–orange colour of olive oil), phytosterols, sterols, hydrocarbons, chlorophylls
(responsible for the green colour of olive oil), and volatile compounds responsible for the
aroma of olive oil.

Due to the current popularity of the Mediterranean diet and its use in a wide range
of different recipes, the nutritional value of olive oil is internationally recognized today.
EVOO is mainly used as a salad dressing and food to be eaten cold due to its flavour and
taste. The rest of the edible olive oils are used mostly for cooking.

The most common physico-chemical parameters that define the quality of olive oils
are the free acidity (FA), the peroxide value (PV), and the absorbency in ultraviolet (at
232 and 270 nm). These three physico-chemical parameters, along with the organoleptic
characteristics (odour and taste, defects, fruity attributes, and colour), are used by producers
for the determination of the quality of virgin olive oils. Notwithstanding, the International
Olive Council establishes additional quality criteria for the designation of olive oils (both
edible and non-edible), namely moisture and volatile matter (wt.%), insoluble impurities in
light petroleum (wt.%), flash point (◦C), trace metal content (mg/kg of iron and copper),
fatty acid ethyl esters content (mg/kg), and biophenols content (mg/kg) [1]. Generally, olive
oil producers do not regard them as quality parameters, but as composition parameters.
Additional physico-chemical parameters such as oxidative stability (h), chlorophyll and
carotenoid pigment profiles, and the bitterness index are often included [2]. Regarding
organoleptic characteristics, the absence (EVOO) or weak presence (VOO) of sensory defects
and the presence of three positive attributes, namely fruitiness, bitterness, and pungency,
must be evaluated by skilled tasters.

The determination of the aforementioned physico-chemical parameters is currently
carried out in a laboratory using chemicals and generating waste, which is relatively costly
and time-consuming. In addition, the online determination of the quality parameters
of olive oil during the olive oil extraction process in olive mills is not possible using
conventional methods. Among the various alternative, non-destructive methods for these
analyses, the use of near-infrared (NIR) spectroscopy stands out. Its aim is to correlate
the signal of the olive oils in the NIR spectrum with the quality parameters through the
use of chemometrics. This article intends to show the state-of-the-art research and the
actual potential of near-infrared spectroscopy (NIRS) for the analysis of olive oil, not only
its main four quality parameters, but also other parameters of interest for the olive oil
industry. For a better understanding, the following three sections include, in the following
order, the fundamentals of NIRS, a description of the main features of the NIR spectrum of
olive oil, and a brief explanation of what chemometrics is and how it is applied to NIRS,
while the last three sections illustrate the results obtained by various authors on the quality
parameters, other compounds of interest and sensory attributes, respectively.

2. Near-Infrared Spectroscopy (NIRS)

NIR spectroscopy is a vibrational spectroscopy, like Raman spectroscopy. A molecule
absorbs NIR radiation (from 800 to 2500 nm) if the energy of the radiation corresponds to
the energy difference between two vibrational levels and, in addition, a change occurs in
the dipole moment of the molecule [3]. This is similar to what happens in the mid-infrared
region. However, the bands of fundamental vibrations (Δn = ±1, where n is the vibra-
tional quantum number) do not appear in the NIR spectrum, while absorptions due to the
overtones and combination bands are observed. The overtone bands are due to Δn >±1.
Depending on the type of bonds, only the first (Δn = ±2) and second (Δn = ±3) overtones
are likely to be observed. Combination bands occur only in polyatomic molecules and
are due to simultaneous changes in the energy of two or more modes of vibration [3,4].
Therefore, the near-infrared spectrum is the result of the change in the molecular dipole
moment during vibration. For example, the stretches of C=O in the CO2 molecule and of
O–H in the water molecule, which are polar functional groups, have great absorption in the
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NIR spectrum [5]. Since the NIR spectrum of an analysed sample is the result of the combi-
nations and overtones of the functional groups of its chemical constituents, the absorption
peaks and bands found in the NIR spectrum are generally broad and weak. This makes
NIRS more suitable for quantitative analysis than for compound identification (although
NIRS can provide some information on functional groups). Hence, NIRS is regarded as
a powerful analytical technique for the non-destructive, low-cost, rapid determination of
compounds and parameters in food. Since NIR spectroscopy neither requires reagents nor
generates waste, other advantages are providing a safe working environment and a huge
potential for online measurement.

An NIR spectrometer is composed of a radiation source (the most common is a
tungsten–filament–fire halogen lamp with quartz window), a wavelength selector (gen-
erally a dispersive equipment), a sample holder, and a detector (generally built with
semiconductors such as InGaAs and PbS). There are many sample holders depending
on how the NIR spectrum is acquired [4]: transmittance, reflectance, and transflectance
(Figure 1).

Figure 1. Main configurations to acquire NIR spectra: (a) transmittance; (b) reflectance;
(c) transflectance [4].

The use of cuvettes of different path lengths for transmittance and probes for trans-
flectance is best for homogeneous liquids, while reflectance is generally used for solid,
heterogeneous samples.

FTIR (Fourier-transform infrared) spectroscopy is an analytical technique generally
used to identify functional groups in organic and inorganic compounds by obtaining their
infrared spectra in the range of 2500–25,000 nm [6]. FTIR spectrometers acquire infrared
spectra from solid, liquid, or gaseous samples in absorption, total, attenuated, and diffuse
reflectance, and photoacoustic modes [6]. The raw signal is first Fourier-transformed by the
equipment. FTIR spectrometers generate a unique type of signal called an interferogram
that has all of the infrared wavelengths encoded into it [7]. Some authors regard the
Fourier transform as a type of wavelength selector [4]. Although it is not the most common,
FTIR spectroscopy can be applied to the NIR region, i.e., FTNIR spectroscopy, resulting
in a faster NIR spectra acquisition with a higher signal-to-noise ratio than conventional
NIRS [8]. Some works can be found in the literature on the use of FTNIR with olive oils for
quantitative or discriminating purposes [9–14].

Since the 1980s, several works have addressed the determination of the main properties
of olives of interest to the farmer. An industrial development of NIRS equipment to
measure the internal properties of intact olives occurred about 15 years ago, so nowadays
it is easy to find commercial equipment to non-destructively measure the moisture and
fat content of olives, such as the OliveScan™2 and Olivia™ equipment (FOSS, Hilleroed,
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Denmark), the Luminar 5030 olive and olive paste analyser (Soluciones Integrales de
Laboratorio, S.L., El Casar de Talamanca, Spain), and the NIT-38 olive analyser (NIR
Technology Systems, Sidney, Australia). In addition, portable NIR spectrophotometers
can be purchased for roughly EUR 6000 (e.g., Flame-NIR spectrometers, Ocean Optics,
Inc., Orlando, FL, USA) and could be used at any stage of the olive oil production process.
Although they have not been recognized as official methods by the International Olive
Council, the determinations of fat content and moisture in olives by NIRS have been
accredited as official methods by the pertinent authority of diverse countries. Thus, the
accreditations 684/LE937 and 1335/LE2481 issued by the ENAC (Spanish Accreditation
Bureau, Madrid, Spain) to various laboratories according to the criteria included in the
UNE-EN ISO/IEC 17025:2017 standard [15], officially allow the determination of total
fat and moisture in intact olives by NIRS following an internal method based on the
manufacturer’s method FOSS for the OliviaTM equipment (FOSS, Hilleroed, Denmark).
Notwithstanding, and despite the large available literature, such industrial development
does not exist for the measurement of the quality parameters of olive oil.

At the beginning of the twentieth century, several works have addressed the use of
NIRS to determine the olive oil quality’s parameters at different points in the oil extrac-
tion process in olive mills [16–18]. Thus, NIRS equipment was installed on an olive oil
production line, in order to take samples at the exit of the clarifying centrifuge and from
the hopper where the oil is continuously weighed, as shown in Figure 2 [18]. Furthermore,
NIRS has been applied to design a quality control system for the identification of adul-
terated olive oils with other oils such as sunflower oil, corn oil, and raw olive waste [19],
and to the differentiation of olive oils that belong to different denominations of origin [20].
Comprehensive reviews on these latter topics can be found elsewhere [21].

Figure 2. Schematic diagram of the proposed NIRS sensor in the last pass in the olive oil extraction
process: (1) oil from horizontal centrifuge decanter; (2) vertical centrifuge for oil clarification; (3) tank
for oil sedimentation; (4) continuous oil weigher; (5) to oil storage container; (6) NIRS equipment [18].

Once experts in the olive oil production process have been consulted, three points
within the process, which can be found in Figure 2, seem to be the most suitable for the
sampling of olive oils and the on-site determination of their quality parameters by NIRS.
The first is at the exit of the horizontal decanter (2- or 3-outlet decanter). However, the
samples taken at this point would be more intended for experimental purposes and the
enhancement of the process (assessment of temperature of the olive oil in the decanter, etc.),
and the values of the quality parameters could not match those of the oil once bottled. The
second and third would be at the exit of the vertical centrifuge for oil clarification (or the
sedimentation tank if available in the olive mill) and at the olive oil storage containers,
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respectively. Nevertheless, considering that NIRS is a rapid, non-destructive, technique
that requires minimal sample preparation (no reagent) and relatively small amounts of a.
sample (a few mL of olive oil), experts consider that the most suitable location for the NIRS
equipment would be at the bottling plant. In this way, after filling a bottle with olive oil,
a small sample would be immediately taken and its NIR spectrum acquired, which would
provide the actual values of the quality parameters of the olive oil contained in the bottle.
This would also speed up and make the olive oil labelling process more precise, as long as
the International Olive Council (or the national quality bureaus) accepts NIRS as an official
method for the determination of the olive oil’s quality parameters.

However, such types of online proposals have not been, or have been installed only to
a limited extent, in olive mills. This is because the development of robust mathematical
models is the key to the industrial application of NIRS for online monitoring. These models,
previously obtained by using chemometrics, could be the starting point for designing
and installing an online tool for the determination of the quality parameters of olive oil
on process lines at olive mills, but a full-scale application requires a huge number of
samples, not only from the different varieties of olives that the olive mill works with but
also over several harvestings in order to develop mathematical models that can be used in a
production context. In addition, the chemometric tools of NIRS equipment should provide
self-learning model calibration systems. That is to say, the just-acquired spectra directly
from the oils in the process line should be automatically included in the calibration data
set to strengthen the models by expanding the data sets over time [16]. In this sense, FOSS
annually updates the calibration models of their NIRS equipment to measure properties in
intact olives and olive pastes, and customers have to pay to update their equipment if they
apply for it.

3. Near-Infrared Spectrum of Olive Oils

The sample temperature has a great influence on the NIR radiation that it reflects and
absorbs, which makes temperature a parameter of paramount importance in NIRS. For olive
oils (and other oils), a sample temperature of approximately 32 ◦C is usually chosen [22–28].
At this temperature, olive oil is a homogeneous liquid, with a non-important loss of
volatile compounds occurring. Therefore, the only sample preparation required in NIRS
is heating and maintaining olive oil at that temperature during spectrum acquisition. On
the other hand, near-infrared radiation penetrates deeper into organic samples than other
electromagnetic radiations, such as ultraviolet (UV), visible, far-infrared, and mid-infrared
radiations [29]. Therefore, the optical path length chosen when acquiring NIR spectra
has a significant influence on the radiation absorption intensity at different wavelengths.
Figures 3–6 show the visible-NIR spectra of 127 olive oils from the variety ‘Picual’ acquired
using a Labspec Pro 350-2500P visible/NIR spectrophotometer (Analytical Spectral Devices
Inc., Boulder, CO, USA) equipped with three detectors and an operating in transmittance
mode. This equipment was used for the spectral acquisition of olive oils in the range
350–2500 nm using quartz cuvettes with different path lengths (from 0.5 to 10 mm) as
sample holders. The reflectance was transformed into absorbance. As shown in these
figures, the use of cuvettes with higher path lengths for spectral acquisition leads to higher
absorbance in the NIR region, thus providing smoother NIR spectra that are more suitable
for further building mathematical models for the determination of quality parameters [22].
In this sense, small differences in path length (0.2 and 0.5 mm) when acquiring the spectra
of South African EVOO in the transflectance mode with quartz cuvettes as sample holders
have been reported not to have a significant effect on regression model performance [9].
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Figure 3. Mean-normalized visible/NIR spectra of 127 olive oils obtained with 0.5-mm path-length
quartz cuvette [22].

Figure 4. Mean-normalized visible/NIR spectra of 127 olive oils obtained with 2-mm path-length
quartz cuvette [22].
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Figure 5. Mean-normalized visible/NIR spectra of 127 olive oils obtained with 5-mm path-length
quartz cuvettes [22].

Figure 6. Mean-normalized visible/NIR spectra of 127 olive oils obtained with 10-mm path-length
quartz cuvette [22].

The NIR spectrum of olive oil has previously been described in the literature by
various authors [21,22,27,29,30]. In fact, the NIR spectrum of olive oil is quite similar to
that of triglycerides, as olive oil is mainly composed of triglycerides [31]. What is more, as
triolein is the main triglyceride and therefore the major component of olive oil, the highest
absorption band in the NIR spectrum of olive oil is the same as that of the triolein spectrum,
which is observed at 1725 nm [29]. The two regions of the NIR spectrum that are of great
importance [31] can be clearly observed in Figures 3–6. One is the absorption band near
1720 nm, which is related to the first overtone of the C-H vibration of several chemical
groups such as –CH3, –CH2 and =CH2, and the other is the absorption peaks at 1660 and
2145 nm, which are related to the C-H vibration of cis-unsaturation. When the degree
of cis-unsaturation increases, the absorption peak at 1725 nm (cis-C18:l) shifts to lower
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wavelengths, i.e., to 1717 nm and 1712 nm for cis-C18:2 and cis-C18:3, respectively [31]. The
high adsorption peak at 2145 nm makes the main peaks related to saturated and trans fatty
acids, usually observed at 2128 and 2131 nm, respectively, hardly noticeable in the olive
oil spectrum [29]. Wavelengths close to 1800 nm have also been related to the saturated
fatty acids [29]. Finally, a broad absorbance band can be observed at 1210 nm as a result of
second overtones of C–H and CH=CH– stretching vibrations [27].

Besides the bands and peaks corresponding to molecules that compose the fatty acids
of the olive oil, a broad band at 1400 nm and a broader one at around 1950 nm are also
observed in these figures. These bands have been related to the presence of water, to be
specific to its first overtone, and to a combination band, respectively [25].

As observed in Figures 3–6, the absorbance in the 2300–2500 nm region is out of the
range of the detector used (a holographic fast scanner InGaAs detector, cooled at 25 ◦C,
and coupled with a high-order blocking filter) when increasing the path length of the
cuvette (lower radiation transmission and therefore higher absorbance by the olive oil).
This problem has also been reported when disposable borosilicate vials were used for the
spectral acquisition of olive oil between 400 and 2500 nm in the transmittance mode [32].
This problem was attributed to the high absorbance of this material. For this reason, quartz
cuvettes are the most used and appropriate sample holders for NIRS, since quartz does
not absorb radiation in the NIR region [21]. However, since neither of the two regions of
major importance in the NIR spectrum of olive oil falls in this region, the absorbance at
wavelengths between 2200 and 2500 nm can be discarded when working with olive oil NIR
spectra without losing important information on the sample.

Regarding the visible spectrum, it is sometimes used together with the NIR spectrum
for the determination of olive oil’s quality parameters. There are three main absorption
peaks of olive oil in the visible spectrum. The first is found at 415 nm (dark blue coloured
light) and is related to carotenoids, pheophytin a, pheophorbide a, and pyropheophytin
a [33]. The second absorption peak can be observed at 450 nm (blue light), which is
characteristic of carotenoids [33]. The third absorption peak is found at 670 nm, and
is related to chlorophylls [27]. It is worth noting that the two former peaks (between
350 and 500 nm) were easier to differentiate with the 0.5-mm and 2-mm quartz cuvettes
(Figures 3 and 4, respectively) than with the 5-mm path-length cuvette (Figure 5). They
could not be clearly distinguished using the 10-mm path-length cuvette (Figure 6), which
could indicate that increasing the path length when working in the transmittance mode
reduces the quality of the visible spectrum of olive oil. This is contrary to what was found
in the NIR spectrum.

The features of the visible and NIR spectra of olive oil have been exploited in different
ways. For example, the absorbances in the 470–690 nm, 1145–1265 nm, and 1355–1500 nm
visible/NIR ranges have been related to olive pomace oil, so these spectral ranges have been
used to determine the amount of olive pomace adulterating EVOO with a low standard
error of prediction (SEP = 3.27 wt.%) [5]. Besides, two minor carbonyl absorptions at
1894 and 1930 nm have been used to assess the authenticity of EVOO based on the ratio
of absorption intensity at these wavelengths, which are related to the loss of volatiles
from EVOO, and therefore to the loss of quality of olive oils [11]. On the other hand, the
use of wavelengths in which the absorption of NIR radiation is related to the structure
of fatty acids (aliphatic chains), and therefore responsible for the free acidity of olive oil,
resulted in more reliable mathematical models for the determination of free acidity in edible
olive oils [22].

4. Chemometrics Coupled with NIRS

Chemometrics is defined as ‘the science of relating measurements made on a chemical
system or process to the state of the system via application of mathematical or statistical
methods’, according to the International Chemometrics Society [34]. It started to be applied
to spectroscopic data about five decades ago. Chemometrics coupled with NIRS can be
defined as the application of statistics and mathematical models to extract the desired
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information from the NIR spectra. The NIR spectra of olive oils are difficult to interpret
since they are the result of overlapped overtones and combination bands, which can
contain different baselines or noise. The combination of NIRS and chemometrics provides
calibration models for olive oil spectra analysis and both classification and discrimination
tools. Chemometrics coupled with NIRS are also suitable to handle the dimensional
overload, collinearity, spectral interferences, and spectral noise on olive oil NIR spectra. To
do this, several specific software has been developed, such as The Unscrambler (CAMO
Software AS, Oslo, Norway) or the Chemometrics Toolbox (Eigenvector Research, Inc.,
Manson, WA, USA) for MatLab (The MathWorks, Inc., Natick, MA, USA), which allow
obtaining results with great precision, speed, and comfort.

To speed up data evaluation and to increase the precision of the mathematical mod-
els, pre-treatments are generally applied to raw spectra, consisting of classical methods
for spectral normalization, smoothing, and differentiation [35,36]. Spectra pre-treatments
include data spectra derivatization, normalization, baseline correction, standard normal
variate, mean centring, Savitzky and Golay smoothing, first and second derivatives and
multiplicative scatter corrections [8,36–38]. The use of spectra pre-treatments, which at
first is an advantage for the use of NIRS for the determination of quality parameters of
olive oil, can result in a huge hindrance to the implementation of NIRS for online moni-
toring or on an industrial scale. For example, when applying a normalization (generally
maximum normalization or mean normalization) to olive oil spectra, all available spectra
are selected for that normalization, and the normalized spectra are subsequently used to
build a calibration method for the determination of one or more olive oil properties via
chemometrics. As mentioned above, the chemometric tools coupled with NIRS should
provide self-learning calibration models. That is to say, spectra acquired later (e.g., olive
oils from next harvestings) must be included in the calibration data set to expand data sets
and strengthen models over time [16]. The problem is that the current set of spectra has
already been normalized. The new added spectra cannot be normalized in the same way.
At most, all the spectra (old and newly acquired) could be normalized together, but this
normalization would be different from the normalization done with the old spectra, thus
affecting the later selection of outliers, the developed calibration model, etc. As a result,
this kind of pre-treatments would be difficult to implement for an online measurement of
olive oil’s quality parameters during olive oil extraction at the olive mills.

For olive oils, chemometrics coupled with NIRS are generally used for oil classification
(including adulterations) or property quantification. To do this, there are mathematical
algorithms that explore the correlation structure within a single data block. For olive
oil classification, unsupervised pattern recognition such as principal component analysis
(PCA) and supervised pattern recognition such as partial least squares (PLS) combined
with discriminant analysis (DA) is the most used chemometric technique [36,39]. Many
works can be found in the literature for the detection of adulteration in olive oils using
NIRS. Thus, PCA has been applied to detect corn, sunflower, or raw olive residue oils in
the range 0–30 wt.% in VOO and EVOO [19], to detect between 5 and 50 wt.% sunflower,
soybean, and sesame oils in VOO [40], and to detect corn, sunflower, soybean, and canola
oils in EVOO, with lower limits of adulteration detection of approximately 20, 20, 15, and
10 wt.%, respectively [41], all of them in the laboratory. The good results obtained in the
determination of adulteration in EVOO using PCA and NIRS have led to testing the use of
portable NIR spectrometers, which could provide in situ information on adulteration. In
this sense, it was proven that the use of PCA and a portable spectrometer, which collected
spectra in the range 908−1676 nm, resulted in a reliable tool to identify, classify, and
quantify the content of different vegetable oils (canola, corn, soybean, and sunflower oil) in
EVOO at a confidence level of 95% [42]. On the other hand, PLS-DA has been applied, for
example, to detect corn, hazelnut, soya, and sunflower oils in olive oils [43]. Furthermore,
PCA and PLS-DA of olive oil NIR spectra have also been applied to predict the geographical
origins of olive oils. For example, 57 EVOO were successfully classified according to their
geographical origin (Chianti Classico or Maremma) using different pre-treatments and
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chemometric methods; among them, PCA stood out [44]. Both PCA and PLS-DA were
used to discriminate between 135 VOO (10 commercial VOO and 125 VOO from 5 French
Protected Designation of Origin) based on their NIR spectra features [45].

In order to correlate the NIR or visible/NIR spectra of olive oils with the quantifiable
parameters of interest, multivariate calibration methods are applied, namely multiple linear
regression (MLR), principal component regression (PCR), and partial least squares (PLS)
regression. Regarding the determination of olive oil quality parameters by NIRS, few
papers can be found in the literature that apply MLR or PCR [46]. In contrast, in almost all
the published articles available in the literature dealing with NIRS and the determination
of the quality parameters of olive oil, the building of predictive models is based on PLS
regression [9,18,22–25,28,30,46,47].

The parameter of interest (acidity, peroxide value, etc.) must be previously analysed
by the traditional, official method (i.e., the reference method according to the International
Olive Council standard), to use the obtained values for building the mathematical model
with which this parameter will be measured in the future by NIRS. That is to say, the spectra
of the olive oils will be correlated with the values of the parameter of interest measured
with the reference method.

For a quick explanation of these three regression methods, R will be defined as the
matrix i × j of the absorbances of the i samples at the j wavelengths of the NIR spectrum
and C as the matrix i × 1 of the different values of the olive oil’s parameter to be analysed
by the NIRS for each sample.

Multiple linear regression (MLR) is a method that directly establishes a linear combina-
tion of the variables of R (absorbances at different wavelengths) that reproduces the values
of C (values of the olive oil’s parameter measured by the reference method) minimising the
error (Equation (1)).

C = (R × S) + E (1)

where S stands for the matrix of coefficients that, multiplied by the values of R, provides the
matrix of values of the analysed parameter (C), and E is the residual error matrix [4,38,48].
This method is the least used and is applied when the number of samples is greater than
the number of variables [37].

Principal component regression (PCR) is a method in which the matrix V of the
principal components (PC) of R is first determined. The first principal component (PC1)
is the vector in the column space of R that describes the maximum amount of variation
within the spectra of the olive oils. The second principal component (PC2) describes the
maximum residual variation not described by PC1, and so on. The minimum number of
PC that minimises the information not explained is selected. Then, the projection of R
in V is performed, thus obtaining the matrix of scores U (Equation (2)). Finally, a linear
combination of U provides the values of C that minimise the error (Equation (3)).

U = (R × V) (2)

C = (U × S) + E (3)

Thus, to determine by NIRS the value of the parameter C of an olive oil sample,
different from those used for PCR, the scores matrix Uunk is obtained from the absorbance
matrix Runk by multiplying it by the matrix of principal components V. Then, the value of
the parameter C of that sample is obtained by introducing Uunk in Equation (3) [4,38,48].

Finally, partial least squares (PLS) regression is the most used method, and the most
suitable when the number of samples is smaller than the number of variables [37,49].
Furthermore, PLS regression provides a better approach to quantitative modelling than
MLR, because the correlations among the noise in R are more realistic [49].
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In this method, the projection of both R and C is performed in the space V defined by
the PC, i.e., the projection of R in V provides a matrix of scores U, and the projection of C in
V leads to the score matrix T (Equation (4)).

T = C × V (4)

From these score matrices, the following equations are obtained:

R = (U × P) + E (5)

C = (T × Q) + F (6)

T = (b × U) + G (7)

where P stands for the loadings matrix of R, Q is the loadings matrix of C, b is a constant
and E, F and G are the residual matrices (error matrices). The ideal situation to relate R to C
is when U and T are very similar. That is, b should be close to 1.

Therefore, for an olive sample not used in the PLS regression of which the value of the
parameter C is unknown, the scores matrix Uunk is calculated from the values of its NIR
spectrum matrix Runk using Equation (2), which in turn will allow one to obtain the scores
matrix Tunk using Equation (7). Once Tunk has been calculated, the matrix C, that is, the
parameter of olive oil to be calculated by NIRS, is obtained [4,38,48].

Once the calibration model is built by MLR, PCR, or PLS, it is necessary to assess its
predictive capacity when applied to samples not used in the calibration process. In other
words, validation is necessary to determine the extent to which the results obtained can
be extrapolated from samples different from those used to build the calibration method,
so the model can be used to determine the parameter desired by NIRS in olive oils from,
for example, future harvestings [4,38]. Therefore, in the research papers available in the
literature for the determination of the olive oil’s quality parameters by NIRS, the samples are
usually divided into calibration and validation sets, so that some of the well-characterized
samples are reserved to validate the accuracy of the model. In most cases, the calibration
set is made up of two thirds of the samples and the validation set of the remaining third,
the selection from the samples of each set being random [9,23–25,47]. Other authors have
selected one out of four olive oils for the validation set, the remaining olive oils forming the
calibration set [30]. However, this does not guarantee a good spread of spectral variability
within both sets, so samples for the calibration set should not be selected primarily as a
function of their number, but rather for their variability [34]. This means that increasing
the number of samples for the calibration set does not always result in a more accurate and
robust model.

The simplest solution is to distribute samples uniformly within both calibration and
validation sets, taking into account the highest and the lowest values of the parameter of
interest of olive oil (measured in the samples with the reference method) to be analysed
by NIRS. However, with this solution, only the variability in the analysed parameter is
distributed, while the distribution of the variability in the spectral information remains
uncertain. The most used method in NIRS that takes into account the variability among
spectra is the Kennard–Stone method [50]. The Kennard–Stone algorithm is applied to
the spectra (not to the values of the parameter of interest). To select the samples for the
calibration set, the algorithm starts by searching for the two samples with the largest
Euclidean distance. The following samples for this set will be those that maximise the
Euclidean distance from previously selected samples, and so on. This will guarantee that
all the variation within the spectral information is contained in the calibration sample
set. The Kennard–Stone method has been applied, for example, in the determination of
the acidity of olive oil by NIRS [22]. When there is not a validation set of samples, an
internal validation method is used, which uses the same samples of the calibration set to
validate the mathematical model. The most commonly used internal validation method
is full cross-validation (CV). It consists of creating models using all samples except one
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and validating the model with the excluded sample (leave-one-out method). Therefore,
n calibration models are built from n samples. The standard error of cross validation is
obtained from the arithmetic mean of the error values obtained in the n models [51].

The robustness of the PLS calibration models is usually evaluated by the multiple
correlation coefficient of calibration (r2

c), while their ability to predict the parameter of
interest is assessed by the standard error of prediction (SEP) or the root mean square error of
prediction (RMSEP). Both SEP and RMSEP describe the error between the results from the
reference method and the results from the NIRS equipment for a set of unknown samples
not used for the building of the PLS calibration model. SEP is related to the precision of
the model, while RMSEP is related to its accuracy. If the samples were not divided into
calibration and validation sets, then the standard error of cross-validation (SECV) or the
root mean square error of cross-validation (RMSECV) is used instead.

Generally, an ideal PLS model should have a very high r2
c and a value of SEP close to

the standard error of laboratory (SEL) of the reference method. The closer SEP is to SEL,
the greater the precision of the PLS model and the probability of this to provide roughly
the same values of the parameter of interest as the reference method. Table 1 summarises
the criteria proposed by Shenk and Westerhaus to assess the statistical results of the PLS
calibration models and their validations.

Table 1. Criteria for the assessment of PLS models in NIRS [52].

Calibration (r2
c) Prediction (SEP)

r2
c ≥ 0.90 Excellent precision SEP = 1–1.5 SEL Excellent precision

r2
c = 0.70–0.89 Good precision SEP = 2–3 SEL Good precision

r2
c = 0.50–0.69 Good separation between low, medium, and high values SEP = 4 SEL Medium precision

r2
c = 0.30–0.49 Correct separation between low and high values SEP = 5 SEL Low precision

r2
c = 0.05–0.29 It is better than no analysing

r2
c: correlation coefficient of calibration; SEP: standard error of prediction; SEL: standard error of laboratory.

Usually, the larger the number of samples used for building the calibration model,
the better the predictive capacity of the model, and the smaller the error of prediction.
There is not a rule about how many samples should contain the calibration set, but it is
informally accepted that at least 100 samples should be used for building the calibration
models. However, this number of samples is not mandatory and robust calibration models
can be built with fewer samples.

The number of principal components used in the PLS model is also related to the
performance of the model. The lower the PC number, the better. Normally, the minimum
number of PC that maximises the explained information of the PLS model is chosen.

The performance of the PLS models is also assessed by the ratio of performance to
deviation (RPD), also called the residual predictive deviation. This parameter is defined
as the ratio of the standard deviation (σ) of the reference data from the validation set to
the SEP. It is assumed that PLS models with RPD values higher than 3 can be suitable for
routine analysis. This parameter is very popular in the literature but, in the opinion of the
author, is a tricky parameter. For example, consider that a parameter of food must have a
value less than 1 unit to be accepted for human consumption. Imagine that the samples to
validate a PLS model have values in this parameter from 0 to 10 units used, the average
value of the samples is 5 units, the standard deviation is 2.5 units, and the achieved SEP
is 0.5 units. As RPD is defined as σ/SEP, then RPD = 2.5/0.5 = 5, the method will thus be
regarded as a method of great precision. In the opinion of the author, a new PLS model
for determining a parameter in food (based on the data obtained from a reference method)
which must be less than 1 unit and of which the SEP is 0.5 units (i.e., the average difference
between the values provided by the new method and the reference method is 0.5 units), is
not a very good one, regardless of its acceptable RPD value. The next section will provide
some examples on this matter.
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Unfortunately, although PLS regression is a powerful tool for building calibration
models from NIR full-spectrum, even noise, background and uninformative wavelengths
have the possibility of being included in the models [22,37,53]. In the literature, several
mathematical methods can be found to remove these wavelengths and only let those
wavelengths that actually contribute to the PLS model remain, such as Monte Carlo uninfor-
mative variable elimination (MCUVE) [22,53–55], moving window variable importance in
projection [56,57], the successive projections algorithm (SPA) [22,55,58], etc. Other authors
perform the selection of the spectral variables involved in the models by consecutive cycles,
removing those which contribution to the model (regression coefficient) close to zero in
each cycle [24,28].

Another interesting option to improve the performance of PLS models is to remove
outliers. If the prediction sample is inconsistent with the calibration data, it is regarded
as a prediction outlier [59]. They can be removed manually or by applying multivariate
outlier detection methods. However, wavelength selection and outlier removal must be
carefully performed or avoided at early stages due to the risk of eliminating important
spectral information related to the quality parameter of interest. As mentioned above, NIRS
equipment should provide self-learning model calibration systems, i.e., spectra from new
samples (new harvestings, different geographical origins, etc.) should be automatically
included in the calibration data set to strengthen the PLS models by expanding the data sets
over time [8]. Only once a robust PLS model is created for determining a quality parameter
from hundreds (or thousands) of olive oils of different varieties, harvestings, geographical
origins, etc., should the selection of variables and removal of outliers be performed, and
the resulting PLS validated with new samples from next harvestings, etc.

5. Determination of Olive Oil’s Quality Parameters by NIRS

5.1. Free Acidity (FA)

The acidity value or free acidity of an oil is a measurement of its free fatty acids
content, which is released from the hydrolysis of oil triglycerides by lipolytic enzymes.
These enzymes are normally present in the seed and pulp cells of olives. When the integrity
of the fruit is damaged, the enzymes react with the oil contained in vacuoles. Unhealthy,
damaged, or bruised olives, along with unsuitable storage conditions, are responsible for
olive oils with high acidity values [2].

FA is expressed as a percentage of grams of oleic acid per 100 g of oil. The conventional
determination of FA is carried out in the laboratory using chemicals according to the Official
Methods of Analysis of the European Commission [60], being relatively costly and time-
consuming. Briefly, the method consists of placing a few grams of olive oil into wide-mouth
Erlenmeyer flasks, along with an ethyl alcohol:ethyl ether solution (1:1 v/v) and a few drops
of phenolphthalein, to neutralize the free fatty acids with NaOH until pink in colour [22].

Olive oils with FA greater than 2% are not regarded as fit for consumption and must
be refined prior to consumption [1]. With regard to edible olive oils, according to the
European Regulation, the maximum levels of free acidity for EVOO and VOO are 0.8%
and 2%, respectively, while the FA threshold for olive oils (blends of refined olive oil and
VOO fit for consumption) and olive pomace oils (obtained by treating olive pomace with
solvents) is 1%.

The estimation of FA by NIRS has been previously assayed by several authors (Table 2),
achieving significantly good results in general. Thus, the average FA values for ‘Arbequina’
and ‘Picual’ olive oils were 0.49 ± 0.01 and 0.33 ± 0.00, respectively, by means of the refer-
ence method [60], while the average values were 0.54 ± 0.15 and 0.37 ± 0.16, respectively,
using the 1100–2500 nm NIR spectrum [18]. For the calibration set, these authors used olive
oils with acidity between 0.12 and 15.1%, while for the validation set, the olive oils had
FAs ranging between 0.16 and 12.2%. Using 15 PC, these authors achieved a R2

cal of 0.998
and a SEP of 0.16% (Table 2). This error was very close to the SEL estimated by the authors
(0.1%), which accounts for the robustness of the PLS model. As illustrated in Table 2, by
reducing the free acidity range of olive oils for creating the PLS models, lower SEP was
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achieved. It is worth noting that an SEP of 0.35% [27] and an RMSEP of 0.34% [61] led to an
RPD greater than 3. As indicated in the previous section, these values of RPD could make
one think that these PLS models have good precision. However, these predictive errors
seem to be slightly too high to be suitable for measuring FA or discriminating between
edible olive oils, of which the maximum allowed FA is 2% (0.8% for EVOO). Besides, these
errors are much higher than SEL for the reference method reported by several authors:
0.1% [18], 0.048% [22], and 0.032% [9]. In Table 2, it can be observed that PLS models with
low RPD such as [47] showed low prediction errors, because the FA range chosen to build
the calibration model was more appropriate.

Table 2. PLS statistics obtained for free acidity (FA) of olive oils using different FA ranges, visible/NIR
spectral intervals and optical path lengths.

FA Range
(%)

Spectral
Acquisition

Spectrum
(nm)

ncal nval

Path
Length
(mm)

PC r2
cal SEP RPD Reference

0.25–4.5 Transmittance 1100–2500 72 35 0.2 7 0.69 0.12 1.8 [9]
0.25–4.5 Transflectance 978–2500 72 35 0.6 8 0.58 0.15 1.5 [9]
0.15–1.3 Reflectance 1961–2212 62 17 8.0 12 0.99 0.060 - [12]

0.12–15.1 Transmittance 1100–2500 131 45 1.0 15 0.99 0.16 - [18]
0.10–1.3 Transmittance 800–2200 87 40 10.0 15 0.94 0.075 2.6 [22]
0.16–0.5 Reflectance 1100–2300 38 19 - - 0.89 0.023 - [24]
0.10−8.7 Transmittance 350–2500 222 47 5.0 - 0.86 0.35 3.1 [27]
0.10–5.7 Transflectance 400–2500 359 100 0.1 - 0.99 0.060 1 7.7 [30]
0.06–8.0 Transmittance 400–2250 208 - - - 0.97 0070 2 8.4 [32]
0.10–1.1 Transmittance 800–2500 60 37 8.0 - 0.76 0.080 3 1.5 [47]
0.36–3.3 Transmittance 400–1100 34 14 3.0 2 0.88 0.34 3 3.1 [61]
0.11–1.7 Transmittance 800–2500 14 10 6.5 13 0.99 0.048 3 - [62]
0.15–2.2 Transmittance 1000–2222 49 11 - 8 0.98 0.088 4 4.9 [63]

ncal = number of samples in the calibration set; nval = number of samples in the validation set; PC = number of
principal components; r2

c = multiple correlation coefficient of calibration; SEP = standard error of validation;
RPD = ratio of performance to deviation. 1 bias-corrected standard error of prediction; 2 standard error of cross
validation; 3 root mean square error of prediction; 4 root mean square error of cross validation.

All in all, it can be concluded that the free acidity of olive oils can be measured by
NIRS with great precision. This precision can be graphically observed when plotting the
predicted values against the FA measured by the reference method (Figure 7).

Figure 7. Validation exercise for the determination of the free acidity of olive oil by PLS-NIRS using
all the wavelengths between 400 and 2500 nm [30].
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In a previous work, the elimination of noise and uninformative spectral variables
affecting a PLS model for the determination of FA of olive oils by NIRS was assayed by
the Monte Carlo uninformative variable elimination (MCUVE) method and the successive
projections algorithm (SPA) [22]. When using the 1401 wavelengths from 800 to 2200 nm,
the achieved SEP was 0.75%. The PLS model built with the 314 wavelengths selected
by MCUVE led to SEP = 0.064%, while the MLS model built with the 85 wavelengths
selected by SPA was 0.051%, quite close to the SEL (0.048%) reported by the author. This
improvement in the goodness in the prediction can be visually observed when plotting
the FA values predicted by the PLS calibration model built with the full NIR spectrum
(Figure 8) and by the MLS calibration model built with the 85 selected wavelengths by SPA
(Figure 9) against the FA values obtained using the reference method.

Figure 8. Validation exercise for the determination of the free acidity of olive oil by PLS-NIRS using
all the wavelengths between 800 and 2200 (FA values retrieved from [22]).

Interestingly, only 12 of the 80 wavelengths selected by SPA were among the 314 wavelengths
selected by MCUVE. This accounted for the difficulty of interpreting the NIR spectra and
PLS models obtained from them. It was found that most of the selected wavelengths
by MCUVE were related to the main NIR absorption bands of free fatty acids. On the
contrary, most of the wavelengths selected by SPA were correlated with triacylglycerols [22].
A tentative assignment of the wavelength ranges selected by each method has been carried
out by the author (data not previously published) and illustrated in Table 3. Several years
later, the author tried to predict the FA of waste cooking oils with the PLS models obtained
for olive oils, with the wavelengths selected by MCUVE and SPA. The statistics were quite
poor (hence the prediction error was very high), which could be due to impurities in the
waste cooking oils used or the premature removal of wavelengths when creating the PLS
models. In the end, the author had to build a specific PLS model to determine the free
acidity of waste cooking oils by NIRS [64].

123



Sensors 2022, 22, 2831

Figure 9. Validation exercise for the determination of the free acidity of olive oil by PLS-NIRS using
85 wavelengths from the NIR spectrum (FA values retrieved from [22]).

Table 3. Spectral bands’ tentative assignments correlated to FA of olive oil obtained by the
Monte Carlo uninformative variable elimination (MCUVE) method and the successive projections
algorithm (SPA).

MCUVE (nm) SPA (nm) Bond Vibration Molecule/Compound Reference

1202–1221
- C–H First overtone –CH=CH– [29]

C–H Second overtone –CH2 [65]
1484–1506 - O–H stretch First overtone Cellulose [65]
1531–1569 - O–H stretch First overtone Starch [65]
1582–1603 - - - - -
1613–1644 - C–H stretch First overtone =CH2 [65]

- 1717–1729
C–H stretch First overtone –CH3 [29,65]C–H stretch First overtone

- 1751–1763 C–H stretch First overtone –CH2 [29,65]
1915–1934 - C=O stretch Second overtone CONH [65]

1957–1973 - O–H stretch O–H bend
combination

Starch and
cellulose [65]

2154–2192 -
C–H

Asym C–H stretch
C–H stretch

Combination –CH2 [29]
C–H deformation

combination –HC=CH– [65]

C=O stretch
combination Protein [65]

Combination
bands –COOH [66]

Finally, some works can be found in the literature on the determination of FA in other
IR spectral regions different from the NIR range. For example, the use of FTIR spectroscopy
in the infrared spectral region from 5800 to 6075 nm and the wavelength 3308 nm resulted in
an R2

cal of 0.99 and a root mean square error of cross-validation of 0.0107% [13]. However,
the calibration model was built with solely a set of 15 samples with FA between 0 and 1%,
which were prepared by the gravimetric addition of oleic acid to deodorised olive oil.
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5.2. Peroxide Value (PV)

Peroxides are the primary products of the oxidation of olive oil. The peroxide value is
a measure of the total peroxides in olive oil expressed as mEq O2/kg oil, and therefore a
major quality guide. EVOO and VOO cannot exceed the maximum value of 20 mEq O2/kg,
the limit fixed by the International Olive Council [1].

The reference method consists of dissolving the oil sample in acetic acid and chlo-
roform, adding potassium iodide and subsequent titration with sodium thiosulphate of
the liberated iodine [60]. The precision of the reference method was determined from the
results of collaborative tests by the International Olive Council [28], the reproducibility and
repeatability coefficients of variation being 7.1% and 1.9%, respectively, for EVOO, and
13.8% and 3.4% for ordinary olive oils. The standard error of laboratory was reported to be
1.41 meq O2/kg [9].

Table 4 illustrates the errors of prediction of PV by NIRS achieved by several authors.
As can be seen, most of the SEP values are close to the reported SEL, even though the RPD
values are not too high. Therefore, it can be concluded that PV is another olive oil’s quality
parameter that can be predicted by NIRS.

Table 4. PLS statistics obtained for peroxide value (PV) of olive oils using different PV ranges,
visible/NIR spectral intervals, and optical path lengths.

PV Range
(meq O2/kg)

Spectral
Acquisition

Spectrum
(nm)

ncal nval

Path
Length
(MM)

PC R2
cal SEP RPD Reference

2.2–74.0 Transmittance 1100–2500 90 44 0.2 6 0.92 4.15 3.5 [9]
2.2–74.0 Transflectance 1100–2500 90 44 0.6 8 0.87 5.28 2.8 [9]
3.0–32.0 Reflectance 1333–1587 65 14 8.0 12 0.98 1.0 - [12]
5.6−43.9 Transmittance 350–2500 199 46 5.0 - 0.87 3.82 2.8 [27]
1.6–44.5 Transflectance 400–2500 359 100 0.1 - 0.83 1.31 1 2.0 [30]
2.6–18.0 Transmittance 400–2250 125 - - - 0.92 1.34 2 2.7 [32]
7.1–75.4 Transmittance 800–2500 60 37 8.0 - 0.92 2.65 3 1.6 [47]
3.6–8.0 Transmittance 400–1100 34 14 3.0 2 0.83 2.25 3 3.1 [61]
2.5–17.2 Transmittance 800–2500 14 10 6.5 10 0.94 1.87 3 - [62]
0.0–26.7 Transmittance 1000–2222 49 11 - 8 0.84 3.0 4 1.8 [63]

ncal = number of samples in the calibration set; nval = number of samples in the validation set; PC = number of
principal components; r2

c, = multiple correlation coefficient of calibration; SEP = standard error of validation;
RPD = ratio of performance to deviation. 1 bias-corrected standard error of prediction; 2 standard error of cross
validation; 3 root mean square error of prediction; 4 root mean square error of cross validation.

However, when comparing Figure 7 with Figure 10, it can be observed that the
precision of the determination of the peroxide value by NIRS seems to be lower than that
of the free acidity.

Figure 10. Validation exercise for the determination of the peroxide value of olive oil by PLS-NIRS
using all the wavelengths between 400 and 2500 nm [30].
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5.3. K270 and K232

The determination of UV-specific extinctions permits an approximation of the oxida-
tion process in unsaturated oils. At 232 nm, primary oxidation products show an absorption
(conjugated dienes) that increases due to the defective storage of olive fruits or faulty oil
extraction. Secondary oxidation products, such as carbolynic compounds (aldehydes and
ketones), are detected at 270 nm, indicating an advanced oxidation process. The maximum
permitted values are 2.5 for K232 and 0.20 for K270 [1]. The extinction coefficients K232
and K270 are measured by UV spectrophotometric analysis at the specific wavelengths
of 232 and 270 nm and are expressed in absorbance units (AU). Notwithstanding, their
determination has been assayed by NIR and visible/NIR spectroscopy (Tables 5 and 6).

Table 5. PLS statistics obtained for K232 of olive oils using different K232 ranges, visible/NIR spectral
intervals, and optical path lengths.

K232
(AU)

Spectral
Acquisition

Spectrum
(nm)

ncal nval

Path
Length
(mm)

PC r2
cal SEP RPD Reference

1.7–20.4 Transmittance 1100–2500 70 34 0.2 6 0.94 0.94 3.6 [9]
1.7–20.4 Transflectance 978–2500 70 34 0.6 4 0.87 1.3 2.6 [9]
0.9−5.0 Transmittance 350–2500 223 55 5.0 - 0.82 0.32 2.6 [27]
1.4–5.4 Transflectance 400–2500 359 100 0.1 - 0.75 0.10 1 1.5 [30]
1.2–2.0 Transmittance 800–2500 60 37 8.0 - 0.40 0.090 2 1.2 [47]
1.5–3.5 Transmittance 1000–2222 49 11 - 8 0.84 0.27 2,3 1.6 [63]

ncal = number of samples in the calibration set; nval = number of samples in the validation set; PC = number of
principal components; r2

c = multiple correlation coefficient of calibration; SEP = standard error of validation; RPD
= ratio of performance to deviation. 1 bias-corrected standard error of prediction; 2 root mean square error of
prediction; 3 root mean square error of cross validation.

Table 6. PLS statistics obtained for K270 of olive oils using different K270 ranges, visible/NIR spectral
intervals and optical path lengths.

K270
(AU)

Spectral
Acquisition

Spectrum
(nm)

ncal nval

Path
Length
(mm)

PC r2
cal SEP RPD Reference

0.10–2.0 Transmittance 1100–2500 70 34 0.2 6 0.87 0.094 2.5 [9]
0.10–2.0 Transflectance 978–2500 70 34 0.6 3 0.71 0.13 1.8 [9]

0.07–0.41 Transflectance 400–2500 359 100 0.1 - 0.67 0.012 1 2.2 [30]
0.06–0.17 Transmittance 800–2500 60 37 8.0 - 0.54 0.020 2 1.2 [47]
0.08–0.21 Transmittance 1000–2222 49 11 - 10 0.74 0.019 3 1.6 [63]

ncal = number of samples in the calibration set; nval = number of samples in the validation set; PC = number of
principal components. 1 bias-corrected standard error of prediction; 2 root mean square error of prediction; 3 root
mean square error of cross-validation.

The standard errors of laboratory for these methods have been reported to be 0.42 and
0.048 for K232 and k270, respectively [9]. These SEL have been calculated for ranges of
values exceeding, by far, the limits established by the International Olive Council. Thus,
SEL for K232 (0.42) was provided for samples in the range 1.7–20.4, while the maximum
permitted value is 2.5. Similarly, SEL for K270 (0.048) was calculated for samples in the
range 0.10–2.0, while the maximum permitted value is 0.2. This could make the comparison
between the errors of prediction and SEL difficult. In any case, some of the statistics
illustrated in Tables 5 and 6 show the feasibility of using NIRS to determine K232 and
K270. Reference [30] and, to a lesser extent, reference [47] show bias-corrected SEP and
RMSEP, respectively, suitable for predicting the extinction coefficients by visible/NIR or
NIR spectroscopy, respectively. Figures 11 and 12 show the relation between K232 and
270 predicted by NIRS and K232 and 270 analysed by the reference method, as reported in
Reference [30]. Similarly to what was observed for PV, the determination of the specific
extinction coefficients by NIRS has lower precision than the determination of FA. It is
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noteworthy that all but one of the RPD values reported in Tables 5 and 6 are less than 3,
which accounts for the poor practical application of this parameter.

Figure 11. Validation exercise for the determination of K232 of olive oil by PLS-NIRS using all the
wavelengths between 400 and 2500 nm [30].

Figure 12. Validation exercise for the determination of K270 of olive oil by PLS-NIRS using all the
wavelengths between 400 and 2500 nm [30].

6. Other Compounds

In addition to the four basic quality physico-chemical parameters of olive oil, several
other compounds and parameters of olive oil have been assayed to be quantified by NIRS
(Table 7). The RPD values reported by the different authors on the various parameters
are generally low, but RPD is not considered in the discussion of the statistics collected
in Table 7 to the problems that its interpretation presents, as has been pointed out in the
previous sections. For most of these parameters, the authors did not provide SEL, so the
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most suitable approach to assess the feasibility of NIRS to predict these parameters is then
to compare the error of prediction with the unit range of these parameters for olive oils.

Table 7. PLS statistics obtained for different compounds and parameters of olive oils using different
unit ranges, visible/NIR spectral intervals, and optical path lengths.

Parameter Units Range
Spectral

Acquisition
Spectrum

(nm)
ncal nval

Path
Length
(mm)

PC r2
cal SEP RPD Reference

K225 AU 0.06–0.66 Transmittance 1100–2500 149 30 1.0 13 0.87 0.058 - [18]
Carotenoids mg/kg 1.6–18.1 Transmittance 450–2500 151 32 1.0 4 0.985 0.66 - [17]
Carotenoids mg/kg 0.12–13.1 Transmittance 1100–2500 64 32 0.2 5 0.66 1.1 1.7 [9]
Carotenoids mg/kg 0.12–13.1 Transflectance 978–2500 64 32 0.6 3 0.52 1.4 1.4 [9]
Carotenoids mg/kg 2.1–38.5 Transmittance 1100–2500 205 50 5.0 - 0.62 - - [46]
Carotenoids mg/kg 2.1–38.5 Transmittance 350–2500 205 50 5.0 - 0.95 1.8 3.9 [46]
Chlorophylls mg/kg 0.7–27.5 Transmittance 450–2500 151 32 1.0 4 0.993 0.96 - [17]
Chlorophylls mg/kg 0.082–25.2 Transmittance 1100–2500 65 32 0.2 8 0.56 3.6 1.5 [9]
Chlorophylls mg/kg 0.082–25.2 Transflectance 978–2500 65 32 0.6 3 0.31 4.4 1.2 [9]
Chlorophylls g/kg 0–14.5 Transmittance 400–2250 168 - - - 0.98 0.51 1 5.6 [32]
Chlorophylls mg/kg 1.4–88.1 Transmittance 1100–2500 205 53 5.0 - 0.56 - - [46]
Chlorophylls mg/kg 1.4–88.1 Transmittance 350–2500 205 53 5.0 - 0.96 3.5 4.1 [46]
Alkyl esters mg/kg 3–610 Transflectance 400–2500 359 100 0.1 - 0.79 19.5 2 1.9 [30]
Ethyl esters mg/kg 1–461 Transflectance 400–2500 359 100 0.1 - 0.80 14.2 2 1.9 [30]

Moisture wt.% 0.01−0.63 Transflectance 400–2500 283 66 0.1 - 0.71 0.04 2 1.5 [30]
Total

polyphenols mg/kg 44.5–738.8 Transmittance 1100–2500 67 31 0.2 2 0.21 89.7 1.1 [9]

Total
polyphenols mg/kg 44.5–738.8 Transflectance 978–2500 67 31 0.6 2 0.34 82.1 1.2 [9]

Total
polyphenols mg/kg 110.7–594.0 Transmittance 800–2500 60 37 0.8 - 0.85 44.5 3 1.7 [47]

Squalene g/kg 1.0−10.1 Transflectance 1100–2300 118 59 - - 0.86 1.2 2.3 [23]
Squalene g/kg 1.0−10.1 Transmittance 350–2500 118 59 10.0 - 0.76 1.0 1.9 [23]

α-tocopherol mg/kg 54.5–755.9 Transflectance 1100–2300 218 109 10.0 0.95 47.2 2.4 [25]
α-tocopherol mg/kg 54.5–755.9 Transmittance 350–2500 218 109 10.0 0.94 58.3 1.9 [25]
α-tocopherol mg/kg 91.0–249.3 Transmittance 800–2500 60 37 0.8 - 0.71 15.2 3 1.3 [47]
β-tocopherol mg/kg 0.5–14.1 Transflectance 1100–2300 218 109 10.0 0.64 1.4 1.0 [25]
β-tocopherol mg/kg 0.5–14.1 Transmittance 350–2500 218 109 10.0 0.66 1.3 1.1 [25]
β-tocopherol mg/kg 9.11–17.2 Transmittance 800–2500 60 37 0.8 - 0.42 1.5 3 1.0 [47]
γ-tocopherol mg/kg 1.8–103.8 Transflectance 1100–2300 218 109 10.0 0.92 6.3 1.9 [25]
γ-tocopherol mg/kg 1.8–103.8 Transmittance 350–2500 218 109 10.0 0.87 8.1 1.5 [25]
γ-tocopherol mg/kg 10.7–36.6 Transmittance 800–2500 60 37 0.8 - 0.63 2.2 3 1.2 [47]

Total
tocopherol mg/kg 63.1–1078.0 Transflectance 1100–2300 218 109 10.0 0.92 61.8 2.0 [25]

Total
tocopherol mg/kg 63.1–1078.0 Transmittance 350–2500 218 109 10.0 0.91 76.2 1.6 [25]

Total
tocopherol mg/kg 110.8–278.8 Transmittance 800–2500 60 37 0.8 - 0.61 19.3 3 1.2 [47]

Oxidative
stability h 15.2−90.6 Transmittance 350–2500 133 43 5.0 - 0.94 7.4 3.0 [27]

ncal = number of samples in the calibration set; nval = number of samples in the validation set; PC = number of
principal components; r2

c = multiple correlation coefficient of calibration; SEP = standard error of validation;
RPD = ratio of performance to deviation. 1 standard error of cross validation; 2 bias-corrected standard error of
prediction; 3 root mean square error of prediction.

The UV absorbance at K225 is an index of oil bitterness. High bitterness in olive
oils is not well accepted by consumers [18]. Using 13 PC, an R2

cal of 0.870 and an SEP of
0.058 were obtained for this parameter (Table 7), with SEL = 0.026 [18].

For carotenoid and chlorophyll pigments in VOO, Jiménez Marquez [17] concluded
that his results showed similarities between visible-near infrared transmittance spec-
troscopy and reference laboratory methods. The SEL for chlorophylls was 0.25 mg/kg,
while SEL for carotenes was 0.35 mg/kg for the ranges indicated in Table 7, with SEP
being slightly superior to SEL [17]. The standard error of the laboratory depends on many
factors. The range of concentrations used can be highlighted. In this sense, other authors
have found that SEL was 0.23 mg/kg for carotenoids in the range 0.12–13.13 mg/kg, and
0.47 mg/kg for chlorophylls in the range 0.082–25.23 mg/kg [9]. Of note is that β-carotene
is the precursor substance of vitamin A and is responsible for the yellow–orange colour
of olive oil, while chlorophylls are responsible for the green colour of olive oil. Therefore,
both absorb radiation mainly in the visible spectrum.

One could ask why one would determine these compounds by NIRS, since they
absorb mainly in the visible spectrum and, as for the K225, K232 and K270 parameters,
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ultraviolet radiation. As stated in Section 3, the peaks observed at 420 and 460 nm in the
olive oil spectrum correspond mainly to carotenoids, while the peak at approximately
670 nm corresponds to chlorophyll absorption [33]. This was the reason why the PLS
models built solely with the NIR spectrum (Table 7) achieved maximum R2

cal of 0.66
and 0.56 for carotenoids and chlorophylls, respectively, which are too low for practical
use [9,46]. For this reason, NIRS (or visible/NIR spectroscopy) should be implemented
as a multiparametric tool, i.e., not only to determine a property of olive oil, but as many
parameters as possible from its NIR (or visible/NIR) spectral information. The idea is
to find out the composition and quality parameters of olive oil by simply acquiring its
NIR or visible/NIR spectrum in a few seconds. This is the main advantage of NIRS when
compared to the laborious, time-consuming reference methods that have to be individually
carried out in the laboratory for each quality parameter of olive oil.

Alkyl esters in olive oils are derived from the non-desired fermentation of the fruit,
normally when overripe or incorrectly stored, thus suffering damage in the cell structure
prior to entering the olive oil processing. The most important quality of olive oil is the
number of ethyl esters, which is regarded as a quality criterion by the International Olive
Council. The content of fatty acid ethyl esters must be ≤35 mg/kg for an oil to be classified
as EVOO [1]. The SEP illustrated in Table 7 for ethyl esters (14.2 mg/kg) [30] seems to be a
bit excessive to meet the requirements of the International Olive Council.

Moisture, which can promote the rancidification of olive oil, leading to an unpleasant
taste and an unpleasant odour, has been determined by PLS-NIRS to achieve an r2

cal of
0.71 and a bias-corrected SEP of 0.04 wt.% [30]. Taking into account that the moisture and
volatile matter content is another quality criterion of the International Olive Council, and it
must be ≤0.2 wt.% for edible olive oils [1], this prediction error should be lowered a bit.
The relation between analysed and predicted values obtained by these authors is illustrated
in Figure 13. It is worth noting that the determination of water content in olive oils by NIRS
has not been assayed to date by using only the wavelengths where the broad absorption
bands of water are found (at 1400 and 1950 nm).

Figure 13. Validation exercise for the determination of the moisture and volatile matter content of
olive oil by PLS-NIRS using all the wavelengths between 400 and 2500 nm [30].

Parameters such as total polyphenols have not been successfully predicted by NIRS.
In this sense, SEPs of 82.10 and 89.66 mg/kg were obtained when analysing total polyphe-
nols in EVOO using two spectrometers, SEL being 9.24 mg/kg for samples in the range
44.49–738.76 mg/kg [9]. Other authors achieved a good correlation coefficient of calibration
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(r2
cal = 0.85) and a lower error of prediction (RMSEP = 44.5 mg/kg) [47], but these were

still a bit high for practical use.
Squalene is a hydrocarbon that can be found in relatively high quantities (between

60 and 75 wt.%) within the unsaponifiable fraction of olive oil, accounting for between
0.2 and 7.5 g/kg of olive oil [67]. In spite of the multiple pieces of scientific evidence of the
beneficial effects of squalene on human health, its determination is generally not performed
in the olive oil industry, as squalene is neither considered a quality nor a purity parameter
in olive oil regulation [1]. The only attempt found in the literature to determine squalene in
olive oil by NIRS or visible/NIR spectroscopy used EVOO, VOO, ordinary oil oils, pomace
oils, and lampante oils of different varieties for the calibration and validation exercises [23].
The best results were obtained with the NIR spectra (Table 7). However, the SEP achieved
(1 g/kg) is too high for its use in the olive oil industry since, as aforementioned, the
concentration of squalene in olive oils ranges between 0.2 and 7.5 g/kg olive oil.

Olive oil is a notorious source of vitamin E (α-tocopherol). EVOO and VOO contain
about 207.3 mg α-tocopherol per kg of olives. Pomace olive oils contain higher amounts
of vitamin E, up to 981.6 mg/kg [68]. The determination of α-tocopherol, β-tocopherol,
γ-tocopherol and total tocopherols of olive oils has been assayed using their NIR and
visible/NIR spectra [25]. In that work, lampante and pomace olive oils were used in the cal-
ibration PLS models along with EVOO and VOO to increase the diversity of tocopherols, so
that the range of concentrations of α-tocopherol (Table 7) was much higher than the content
of α-tocopherol reported for EVOO and VOO [68]. Models using only NIR wavelengths
predicted the content in α-, γ- and total tocopherols better than those using all wavelengths
from the visible/VIR spectrum [25]. The PLS-NIR model for α-tocopherol achieved a good
correlation coefficient of calibration (0.95), but SEP (47.2 mg/kg) seems to be quite high for
practical application, taking into account that the average content of vitamin E in olive oils
is 207.3 mg/kg [68]. The statistics found by other authors did not improve the ability of
NIRS to determine α-tocopherol in olive oils [47].

Finally, other parameters of interest for the quality of olive oil, such as the oxidative sta-
bility, for which the units are time-based, have been predicted by visible/NIR spectroscopy
with relatively good precision [27], as illustrated in Table 7.

On the other hand, olive oil is practically composed of fat (the saponifiable fraction
accounts for roughly 98 wt.% olive oil). The fatty acid profile of olive oils is one of the most
suitable and with the highest precision analysis that NIRS can perform [10,18,31,32,69].
The current European regulation settles the obligation of food manufacturers to include
nutritional information on their product labels [26]. Mandatory information on food
labels includes energy value, total fat content, total saturated fatty acids (TSFA), and other
compounds that olive oil does not contain, such as carbohydrates, sugars, proteins, and
salt. As voluntary nutritional information, the European label can contain other nutritional
information, such as monounsaturated fatty acids (MUFA) and polyunsaturated fatty acid
(PUFA) content. Furthermore, food labelling regulations in the USA and Canada also
require a declaration of TSFA content on product labels [10]. Regarding olive oil, the
most frequently included information on its nutritional label is total fat, saturated fat,
monounsaturated fat, and polyunsaturated fat [26]. It has been reported that the first
overtone of MUFA can be observed at 1724 and 1766 nm, with the combination bands at
2358 nm [29]. As for PUFA, 1660, 1698, and 1730 nm wavelengths have correlated with the
first overtone, 1162 and 1212 nm with the second overtone, and 2136, 2176, 2224, 2310, 2348,
and 2434 nm with combination bands [29]. Some works available in the literature have
shown the feasibility of NIRS for determining TSFA, MUFA, and PUFA in the American,
Canadian, Spanish, and Portuguese EVOO, VOO, and ordinary olive oils [10,14,26,47].
Hence, NIRS is suitable for the nutritional labelling of olive oil.

7. Sensory Attributes

The sensory parameters of olive oil are of equal importance as the physico-chemical
quality parameters described in Section 5. Notwithstanding, scarce information can be
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found in the literature on the use of NIRS for the determination of the sensory parameters
of olive oil. The prediction of the minor composition of VOO, in particular its phenolic
and volatile compounds, as well as its organoleptic attributes, has been assayed in the
800–2500 nm NIR spectrum. Acceptable multivariate algorithms based on the multiple
coefficient of determination were obtained for some minor components, such as hydroxyty-
rosol derivatives (r2 = 0.86–0.88) and C6 alcohols (r2 = 0.69–0.80), and for positive sensory
attributes such as ‘fruity’ (r2 = 0.87) and ‘bitter’ (r2 = 0.85) [47]. More research is needed to
correlate the NIR spectra of olive oil with its sensory parameters before regarding NIRS as
a potential tool for the determination of these parameters.

8. Conclusions

The information available in the literature illustrates that the application of NIRS
to olive oil could undergo an industrial development similar to that of olives and olive
pastes, which have commercial, available NIRS equipment for assessing some of its main
parameters of interest. A sampling system of olive oils and NIRS equipment for the
acquisition of their NIR spectra could be implemented in the olive oil mill or in the bottling
plant, thus allowing the on-site determination of their main quality parameters.

The four primary olive oils’ quality parameters (FA, PV, K232 and K270) can be
accurately determined by NIRS spectroscopy, based on promising results reported by
different authors. In addition, NIRS is suitable for the nutritional labelling of olive oil, since
its feasibility for determining TSFA, MUFA, and PUFA has been demonstrated. Therefore,
all these parameters in an olive oil could be measured by NIRS, as a multiparametric
analytical technique, simply by acquiring the NIR spectrum of the oil and using the PLS
model developed for each parameter.

Other parameters such as α-tocopherol (vitamin E), fatty acid ethyl esters, squalene
and K225 show potential to be determined by NIRS, but the prediction errors reported
by the various authors are still a bit high for practical application. Furthermore, by ex-
panding the wavelength range to which spectra are acquired to the visible region, other
compounds such as carotenoids and chlorophylls, which absorb radiation mainly in the
visible spectrum, could be quantified by visible/NIR spectroscopy. However, visible/NIR
spectrophotometers are more expensive than NIR spectrophotometers, so the implementa-
tion of one or another will depend on the robustness of the PLS models for each parameter
and, hence, their practical application.

NIRS equipment at olive oil mills or bottling plants should provide self-learning
model calibration systems, so that samples from new harvestings, different designations,
geographical origin, and varieties, etc. are automatically added to the calibration set to
strengthen the PLS models over time. Validation exercises with samples not used to build
the PLS models are mandatory to assess their performance.

Spectra pre-treatments (derivatisation, normalisation, baseline correction, standard
normal variate, mean centring, Savitzky and Golay smoothing, first and second derivatives,
multiplicative scatter corrections) enhance the handling of the spectra and the building of
the PLS calibration models. Similarly, the selection of actual contributing spectral variables
and the removal of outliers can improve the performance of the PLS models. Notwithstand-
ing, these latter two procedures must be carefully performed or avoided at early stages
of the model building (when there is not a large calibration sample set) due to the risk of
removing important spectral information related to the quality parameter of interest.

The ultimate goal is to achieve acceptance of NIRS as an official method for the
determination of the quality parameters and the nutritional parameters for the labelling
of olive oil by the relevant national authorities and, as a priority, the International Olive
Council, which will greatly contribute to the industrial development of NIRS equipment
for the olive oil industry.
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Abstract: Biofilms formed on the surface of agro-food processing facilities can cause food poison-
ing by providing an environment in which bacteria can be cultured. Therefore, hygiene manage-
ment through initial detection is important. This study aimed to assess the feasibility of detecting
Escherichia coli (E. coli) and Salmonella typhimurium (S. typhimurium) on the surface of food pro-
cessing facilities by using fluorescence hyperspectral imaging. E. coli and S. typhimurium were
cultured on high-density polyethylene and stainless steel coupons, which are the main materials
used in food processing facilities. We obtained fluorescence hyperspectral images for the range of
420–730 nm by emitting UV light from a 365 nm UV light source. The images were used to perform
discriminant analyses (linear discriminant analysis, k-nearest neighbor analysis, and partial-least
squares discriminant analysis) to identify and classify coupons on which bacteria could be cultured.
The discriminant performances of specificity and sensitivity for E. coli (1–4 log CFU·cm−2) and
S. typhimurium (1–6 log CFU·cm−2) were over 90% for most machine learning models used, and
the highest performances were generally obtained from the k-nearest neighbor (k-NN) model. The
application of the learning model to the hyperspectral image confirmed that the biofilm detection was
well performed. This result indicates the possibility of rapidly inspecting biofilms using fluorescence
hyperspectral images.

Keywords: E. coli; S. typhimurium; biofilm; hyperspectral imaging; discriminant analysis

1. Introduction

Despite the increasing social interest in safe agro-food, food poisoning occurs fre-
quently. Food poisoning due to foodborne illnesses is one of the major public health
problems worldwide [1]. The Centers for Disease Control and Prevention (CDC) estimates
that food poisoning causes 48 million people to get sick, 128,000 to be hospitalized, and
3000 to die each year [2]. Although the cause of food poisoning varies, most food poisoning
incidents are caused by ingestion of food contaminated with germs or viruses [3,4]. In the
case of food contamination occurring in the process of food processing and distribution,
cross-contamination is one of the main routes of contamination caused by the surface
of germ-contaminated facilities, machinery, and containers and contaminated washing
water [5,6].

Food safety accidents caused by cross-contamination in food processing facilities [7–11]
or home kitchens [12–14] are related to biofilms found in a wide range of environments.
Biofilms are composed of an extracellular polymeric substance, which comprises mostly
polysaccharides secreted by microorganisms. Biofilms are firmly attached to the surface of
living organisms (vegetables, meat, etc.) or non-living objects (stainless steel, plastics, etc.) [15].
Sessile bacteria attached to biofilms are known to withstand stress better than planktonic
bacteria in stressful environments such as in the presence of antibiotics, disinfectants, high
temperatures, light, and dryness [16,17]. Cross-contamination occurs when food passes
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through a surface contaminated with biofilms or when cells are separated from the biofilm
structure through an aerosol derived from a contaminated food processing facility [1,11].
According to the US National Institutes of Health, about 80% of human infections are related
to biofilms [18]. These biofilms cause serious hygiene problems and economic losses due to
food spoilage, equipment damage, and food poisoning (microbiological infection). Therefore,
this is an important issue for the food industry, including the agricultural and livestock
production and processing industries, to tackle [19].

Soon [4] conducted a factor analysis through cases of food safety incidents and recalls
of food safety accidents that occurred around the world during 2008–2018. He revealed
that 40.11% of food safety hazards were caused by microbiological hazards, and the major
hazards were Listeria monocytogenes (32.91%), Salmonella spp. (29.85%), and Escherichia coli
(17.86%). Among them, Escherichia coli (E. coli) infection can occur by eating contami-
nated agricultural products (sprouts, spinach, lettuce, etc.) or undercooked meat and is
highly likely to lead to hospitalization in disease outbreaks [2]. Food poisoning due to
E. coli infection is associated with serotype O157:H7. In particular, Shiga toxin-producing
Escherichia coli causes hemolytic uremic syndrome (also known as Hamburger’s disease),
which leads to acute kidney damage; it is a fatal disease in children and the elderly [20].
Salmonella typhimurium (S. typhimurium) causes salmonellosis, which leads to acute and
chronic enteritis symptoms such as diarrhea and abdominal pain [21]. The main sources of
disease are contaminated poultry, meat, and eggs [22]. The CDC estimates that Salmonella
causes approximately 1.2 million diseases and 450 deaths each year in the United States and
reports that it is the most common cause of food poisoning in June, July, and August [2,23].
As noted in many studies, E. coli [11,24–26] and S. typhimurium [27–32] form a strong
biofilm on the surface of non-living objects or living organisms. Cross-contamination in
agro-food processing lines caused by biofilms is a serious concern in the food industry.

There is growing demand for technology that can quickly and easily detect biolog-
ical contaminants to prevent cross-contamination [33,34]. Conventional biofilm testing
techniques use swabs to collect samples of the suspected area. After that, the bacteria are
cultured to check the presence of contamination using various methods such as contact
plate system, microbial diagnostic platform like TEMPO® (bioMerieux, Marcy-l’Etoile,
France), and adenosine triphosphate (ATP) determination [35,36]. In this case, testing
performance is degraded when we collect samples using swabs, and it takes a long time to
cultivate bacteria. As an alternative, hyperspectral imaging (HSI) technology with rapid
and non-destructive inspection characteristics is drawing attention [37]. HSI technology
can not only identify the physical chemistry characteristics of a substance through spectro-
scopic analysis but also simultaneously obtain information about the spatial distribution of
certain components through image analysis [38]. Since hyperspectral imaging has many
independent variables, analysis methods that can reduce the number of independent
variables have been used rather than using general multiple regression analysis [39–43].
Among them, partial least-squares regression (PLSR) and principal component analysis
(PCA) are mainly used. PLSR analysis is suitable for regression modeling under the con-
dition that the number of samples is less than the number of variables. PCA is suitable
for classification modeling that reduces the number of independent variables through
dimensional transformation [44]. Recently, there are increasing cases of applying various
machine learning techniques [45,46] or artificial neural networks [47–49] to increase the
performance of the model.

Many studies have demonstrated that HSI technology is a powerful tool for monitor-
ing food safety incidents in relation to biofilms, which cause cross-contamination in the
food industry [50–54]. Zhu [54] determined corn contaminated by aflatoxin mycotoxin
over 100 ppb with 95.3% performance using fluorescence hyperspectral images. Jun [52]
identified a biofilm over 7 log CFU·cm−2 formed by E. coli and S. typhimurium with a per-
formance of 95% using the one-wavelength image and the ratio image of the fluorescence
hyperspectral image of two wavelength bands. Lee [15] identified a biofilm over 1 log
CFU·cm−2 formed by E. coli on a high-density polyethylene (HDPE) coupon. Lee used the
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single-wavelength method that Jun [52] used for detecting biofilm and machine learning
techniques. Then Lee confirmed that the prediction performance of a biofilm by machine
learning techniques is higher than that by the single-wavelength method.

This study was conducted to examine the feasibility of rapidly inspecting biofilms
using HSI technology by expanding the targets of detection than the previous research [15]
we did. First, we confirmed the fluorescence characteristics of E. coli and S. typhimurium
using a microplate reader. Then, we obtained a biofilm fluorescence image between 420
and 730 nm for a 365 nm UV light source using a hyperspectral imaging device. The
biofilm is formed by E. coli and S. typhimurium on the surface of HDPE and stainless steel
(SS), which are the main materials in agro-food processing facilities. Consequently, we
developed a biofilm discrimination model for hyperspectral images by applying various
machine learning algorithms and compared their performances.

2. Materials and Methods

2.1. Fluorescence Characteristics of Food Poisoning Bacteria

To examine the fluorescence characteristics of food poisoning bacteria, strains of non-
pathogenic Escherichia coli (E. coli, KCCM11234) and Salmonella typhimurium (S. typhimurium,
KCCM12041) were obtained from the Korean Culture Center of Microorganisms. All
reagents and media were sterilized at 121 ◦C for 15 min using an autoclave (MLS–2420;
SANYO, Tokyo, Japan) before use. Each strain was individually grown in tryptic soy
broth (TSB; BD, Franklin Lakes, NJ, USA) at 36 ◦C for 24 h for activation. The cultures
were transferred onto the surface of a tryptic soy agar (TSA; BD, Franklin Lakes, NJ, USA)
plate by loop and incubated at 36 ◦C for 24 h. Single colonies, which were formed after
incubation, were collected from the plates and were suspended in 0.1 M phosphate-buffered
saline (PBS) solution in a microtube. The suspension was centrifuged at 8000 rpm for 3 min
(Eppendorf centrifuge 5804 R; Eppendorf, Hamburg, Germany). Then, the supernatant
was removed using a pipette, and the pellets were resuspended in 0.1 M PBS solution. The
washing step was performed three times. The optical density (OD) of the cell suspension
was measured at 600 nm using a microplate reader (Infinite M1000; Tecan, Männedorf,
Switzerland), and the final concentration was adjusted to 109 CFU·mL−1 (OD 0.1 and
100 μL). Then, each strain was serially diluted tenfold from 106 to 101 with 0.1 M PBS
solution. The 0.1 M PBS solution was used as a control group. Each cell suspension with
the adjusted number of E. coli and S. typhimurium cells was placed in a 96-well plate.
Fluorescence emission intensity from 400 to 800 nm bands was acquired for excitation light
from 350 to 400 nm bands at 5 nm intervals using a microplate reader.

2.2. Bacterial Biofilm Formation

The biofilm was formed by using the non-pathogenic E. coli and S. typhimurium
strains that were previously obtained. All HDPE and SS coupons (20 × 50 × 1 mm3) for
the formation of biofilms were washed with an ultrasonic cleaner (WUC-A, DAIHAN
Ultrasonic cleaner; Wonju, Korea), which was sterilized at 121 ◦C for 15 min in an autoclave
(MLS–2420; SANYO, Tokyo, Japan) and then completely dried before use. The OD of the
cell suspension was measured at 600 nm using a microplate reader, and 100 μL of the
cell suspension was adjusted to an OD value of 0.1. To achieve biofilm formation on the
surface of HDPE and SS coupons, the cell suspension was inoculated in a 50 mL conical
tube containing 15 mL of TSB (approximately 102 CFU·mL−1), and coupons were placed
in a conical tube and incubated at 36 ◦C for seven days, as shown in Figure 1a. Every 24 h
interval, the culture medium of the conical tube was removed and 0.1 M PBS solution was
added and washed twice with gentle stirring. Then, 15 mL of sterilized TSB medium was
added to supply nutrients for biofilm formation. For the control, the process proceeded
under the same conditions, but the bacteria were not inoculated into the TSB medium.
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Figure 1. (a) Bacterial biofilm formation using a conical tube, (b) stainless steel (SS) coupons (left) and high-density polyethy-
lene (HDPE) coupons (right), and (c) cultivation of Escherichia coli (E. coli) and Salmonella typhimurium (S. typhimurium).

After biofilm incubation, each coupon was rinsed three times with distilled water using
a pipette to reduce interference from other substances, such as the medium and loosely
attached bacteria cells. Coupon surfaces were dried completely on a sterile workbench,
from which hyperspectral images were acquired, as shown in Figure 1b. To enumerate
attached cells, the biofilms formed on the surface of the coupon were carefully detached
with a cell scraper. Detached biofilms were transferred into 0.1 M PBS solution and diluted
sequentially. The diluted culture medium was incubated at 36 ◦C for 24–48 h. The degree
of biofilm formation on the surface of coupons was determined by counting the number of
colonies using the standard plate count (SPC) method and the dry-film method (Figure 1c).
To determine the number of adherent cells, the SPC method was performed with plate
count agar (Plate Count Agar; Becton Dickinson and Company, Franklin Lakes, NJ, USA),
and the dry-film method used a rapid-dry film (3M Petri-film E. coli/coliform count plates;
3M, St. Paul, MN, USA) for E. coli. In the case of S. typhimurium, the cell suspension was
streaked onto XLT4 selective media (Xylose-Lysine-Tergitol 4 agar; Becton Dickinson and
Company, Sparks, MD, USA).

2.3. Hyperspectral Imaging System

Figure 2 shows a fluorescence hyperspectral imaging system using ultraviolet (UV)
excitation light. This system was composed of a highly sensitive electron-multiplying
charge-coupled device (EMCCD, MegaLuca; Andor Technology Inc., Belfast, Northern
Ireland) for obtaining hyperspectral images. The EMCCD camera consisted of 8 μm × 8 μm
pixels and received a 14-bit digital image at a rate of 12.5 MHz. The EMCCD camera was
thermo-electrically cooled to a temperature of −20 ◦C using a two-stage Peltier device. The
imaging spectrograph (VNIR Hyperspec; HeadwallPhotonics Inc., Fitchburg, MA, USA)
and a Schneider–Kreuznach Xenoplan 1.4/23 C-mount lens (f/1.9 35 mm Compact Lens;
Schneider Optics, Hauppauge, NY, USA) were positioned in front of the EMCCD. The light
source was a 365 nm UV beam (model XX–15A 365 nm; Spectronics Corp., Westbury, NY,
USA), and the motorized sample stand was driven by a linear motor (XSlide; Velmax Inc.,
Bloomfield, NY, USA). The field of view of an image is limited by the size of the slit, which
was 25 μm in this study. The fluorescence generated from the sample by the UV light
source passed through the lens and slit of the imaging spectrograph. Then, the line scan
image acquired through the slit was spectroscopically irradiated onto the EMCCD surface.
Consequently, each line scan image was collected with spatial information horizontally
and spectral information vertically.
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Figure 2. The ultraviolet fluorescence hyperspectral imaging system.

2.4. Acquisition of Hyperspectral Fluorescence Images and Spectra

To investigate the possibility of biofilm detection using hyperspectral images,
7-day-passed coupons after inoculation of E. coli and S. typhimurium were used in each ex-
periment: 15 HDPE coupons and 15 SS coupons were used as the test group contained in the
culture medium inoculated with bacteria, while 9 HDPE coupons and 9 SS coupons were
used as the control group treated in the culture medium without bacteria. Hyperspectral
images were acquired for both sides (front and back) of the coupons, and 96 hyperspectral
images were obtained in the end. In the case of S. typhimurium, 96 hyperspectral images
were acquired in the same manner from the third to the fifth day after inoculation of
S. typhimurium. There was a difference in the culture rates of E. coli and S. typhimurium
even after adjusting for the initial number of cultured bacteria.

For each sample, we obtained hyperspectral fluorescence images, dark reference
images, and white reference images. The fluorescence hyperspectral images were acquired
by the line scanning method, with 340 lines and 1 mm intervals for exposure times of 100 ms
using a UV beam. The hyperspectral image included a spatial resolution of 310 × 502 pixels
and contained 420–730 nm wavelength images, which were equally divided into 65 bands,
with a waveband interval of 4.8 nm. The hyperspectral image was averaged after 4 repeated
measurements for the same location to remove the noise.

Dark reference plate images for device noise compensation were measured by blocking
the light using the cover of the camera lens. Fluorescence reference plate images were
measured using a plate where the fluorescence was uniformly displayed. The white
reference plate images were measured by a premium white inkjet paper (Union Camp
Co.) exhibiting uniform blue fluorescence [55]. Fluorescence hyperspectral images were
transformed for a total of 65 bands using Equation (1):

I f luorescence (i) =
Ir (i)− Id (i)
I f (i)− Id (i)

(1)

where I f luorescence is the corrected relative fluorescence image, Ir is the raw hyperspectral
fluorescence image, I f is the hyperspectral white reference image, and Id is the hyper-
spectral dark reference image at the i-th wavelength. Before analyzing the hyperspectral
fluorescence image of the biofilm, it was preprocessed by a normalization method to re-
move the effects of non-uniformity of the light source and the electrical noise signal of
the hyperspectral imaging equipment. Then, pixel and average fluorescence spectra were
extracted from the modified fluorescence hyperspectral image.
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2.5. Biofilm Detection Algorithm

Figure 3 shows a flowchart of the biofilm detection algorithm using hyperspectral
imaging technology. As a preprocessing step, the original sample fluorescence hyperspec-
tral images were corrected using dark and white reference images. A region of interest (ROI)
of the spectra was extracted for the HDPE and SS coupon regions of the test group and the
control group from the calibrated hyperspectral images. For the next step, the extracted
spectra were discriminated and analyzed through various discriminant analyses. Discrim-
inant analyses included decision trees (DTs), k-nearest neighbor (k-NN) analysis, linear
discriminant analysis (LDA), and partial least-squares discriminant analysis (PLS-DA).

Figure 3. Flowchart of detecting bacterial biofilms using discriminant analyses.

2.5.1. Decision Tree

A DT predicts a class by plotting decision rules in a tree structure and classifying
samples into several smaller groups. It is a top-down approach, where classes are divided
by the partitioning rule until the stop criterion is met [56]. A DT is a popular supervised
learning model for classification and regression because of its easy interpretation. However,
it is easy to over-fit the training data, so tuning hyper-parameters (e.g., partitioning rule
and stop criteria) is important.

2.5.2. k-Nearest Neighbor

The k-NN classifies samples into the closest class based on the distance between
samples in the feature space. It is named in that it predicts values from k neighbors [57].
The distance between samples is measured through the Euclidean distance. The Euclidean
distance between the datum x and y is calculated using Equation (2):

d(x, y) =
√
(x1 − y1)

2 + (x2 − y2)
2 + · · ·+ (xn − yn)

2 (2)

where d represents the distance and n is the number of features. In the k-NN for classi-
fication, the input data are predicted as the largest number of class of the closest k data.
As the value of k increases, the effect of noise can decrease, but the boundary between
classes becomes unclear. Therefore, a process of finding proper k-value through repeated
experiments is required [58].
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2.5.3. Linear Discriminant Analysis

LDA reduces the dimension of feature vectors by maximizing the ratio of variance
between classes and within classes [59–61]. It means that LDA finds the optimal trans-
formation matrix (w) that maximizes the criterion function Wlda, which is the ratio of the
within-class scatter (Sw) and between-class scatter (SB) like Equations (3)–(5):

Wlda =

∣∣WTSBW
∣∣

|WTSWW| (3)

Sw =
n

∑
i=1

∑
x∈ni

(x − mi)(x − mi)
T (4)

SB =
n

∑
i=1

ki(mi − m)(mi − m)T (5)

where n is the number of classes, ni is a set of data belonging to the i-th class, mi is the
mean of the i-th class, and ki is the size of ni.

2.5.4. Partial Least Squares Discriminant Analysis

PLS-DA is an analysis technique based on PLSR that classifies predicted regression
models using threshold values. Although PLS-DA and PLSR are the same analysis methods,
PLSR uses continuous dependent variables (e.g., spectra) to develop and predict regression
models, and PLS-DA is a variant version for categorical prediction models [62]. PLSR
model is calculated using Equations (6) and (7):

X = TPT + E (6)

Y = UQT + F (7)

where n is the number of samples, p is the number of variables, X = (n × p) matrix,
Y = (n × 1) matrix, T and U are (n × p) score matrices of latent vectors, P and Q are
matrices of loading, and E and F are the error terms (residuals). PLS-DA is performed by
applying the score obtained through PLSR to discriminant analysis.

2.5.5. Biofilm Detecting Performance

The development of an E. coli and S. typhimurium biofilm prediction model and
detection of biofilm regions through discriminant analyses were performed using the
open statistical software R (ver. 2019; R Foundation, Vienna, Austria) and the commercial
software MATLAB (ver. 2018; MathWorks Inc., Matick, MA, USA). To develop a biofilm
detection model, 80% of the spectra extracted from the hyperspectral images were used
to develop a prediction model, and the remaining 20% of the spectra were used to verify
the biofilm prediction performance. Fivefold cross-validation was performed to prevent
over-fitting, and the prediction performance was calculated using Equations (8) and (9):

Control group performance (Specificity) =
TN

TN + FP
(8)

Experimental group performance (Sensitivity) =
TP

TP + FN
(9)

where TP (true positive) is the frequency of accurately predicting the area where the biofilm
was formed, FP (false positive) is the frequency of erroneously predicting the area where
the biofilm was not formed, TN (true negative) is the frequency of accurately predicting
the region where the biofilm was not formed, and FN (false negative) is the frequency of
erroneous prediction of the region where the biofilm was formed.

Additionally, the receiver operating characteristics (ROC) curve was drawn and the
area under the curve (AUC) was calculated for choosing the best model. The ROC curve is
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the plot with the true-positive rate against the false-positive rate, and yjr AUC is the area
under the ROC curve. After selecting the model with the highest performance, the biofilm
detection result was validated by applying the model to hyperspectral images that were
not used for model development.

3. Results and Discussion

3.1. Fluorescence Characteristics of Food Poisoning Bacteria

Figure 4 shows fluorescence emission spectra obtained by the microplate from 400 to
800 nm bands for excitation light from 350 to 400 nm bands. Figure 4a,b is the fluorescence
emission spectra of E. coli and S. typhimurium, respectively. It can be seen that both
E. coli and S. typhimurium cultures exhibited a high fluorescence expression intensity in
400–450 nm wavelength bands.

Figure 4. Fluorescence emission results from 400 to 800 nm bands for the excitation light from 350 to
400 nm bands: (a) E. coli and (b) S. typhimurium.

Figure 5 shows the fluorescence emission spectra for each concentration of food
poisoning bacteria for 365 nm excitation light. Figure 5a,b shows the fluorescence emission
spectra of E. coli and S. typhimurium concentrations controlled at 105, 104, 103, 102, 101, and
100 (PBS) CFU·mL−1, respectively. It can be seen that the fluorescence intensity is high
in the 400–450 nm wavelength bands and around 700 nm bands. It was also confirmed
that both E. coli and S. typhimurium showed high fluorescence intensity in the 415 nm
wavelength band according to the bacterial concentration. In the case of the band around
700 nm, the bacterial culture medium showed higher fluorescence intensity than the PBS
solution, but there was no difference in fluorescence intensity according to the bacterial
concentration.

Figure 5. Fluorescence emission spectra for six concentrations (105, 104, 103, 102, 101, and
100 CFU·mL−1) of food poisoning bacteria for 365 nm excitation light: (a) E. coli and (b) S. typhimurium.

3.2. Food Poisoning Bacteria Biofilm Formation

As a result of measuring the number of bacteria using the standard plate count method
and dry-film method, E. coli was successfully cultured on 16 pieces of HDPE coupons and
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26 pieces of SS coupons, while S. typhimurium was cultured on 23 pieces of HDPE coupons
and 26 pieces of SS coupons.

Figure 6 shows the number of bacteria measured for each culture. The number of E. coli
per HDPE coupon ranged from 0.78 to 3.94 log CFU·cm−2, whereas the number of E. coli
per SS coupon ranged from 0.78 to 3.51 log CFU·cm−2. In the case of S. typhimurium, 2.4 to
4.99 log CFU·cm−2 bacteria were formed on HDPE coupons and 1.93 to 6 log CFU·cm−2

bacteria were formed on SS coupons.

Figure 6. Cultivated E. coli and S. typhimurium count graph: (a) E. coli cultivated on high-density
polyethylene (HDPE), (b) E. coli cultivated on stainless steel (SS), (c) S. typhimurium cultivated on
HDPE, and (d) S. typhimurium cultivated on SS.

Figure 7a,b shows the RGB hyperspectral images of the 551.8 nm band for the test
group coupons. In the case of RGB images, areas were not visually separated based on
whether the biofilm was formed or not. In the case of hyperspectral images, the intensity
difference was not significant, but it is difficult to distinguish a biofilm region using only
one wavelength image.

Figure 7. HDPE and SS coupons of bacterial biofilms: (a) RGB images and (b) hyperspectral images
of the 551.8 nm band.

Spectrum extraction from the hyperspectral image was performed using the area
contained in the medium. A total of 183,212 spectra were extracted for use in model
development. In the case of E. coli, 17,185 spectra were extracted from 10 of 16 HDPE
coupons and 25,926 spectra were extracted from 15 of 26 SS coupons for model development.
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A total of 31,921 spectra were extracted from 18 of 23 HDPE coupons and 34,600 spectra
were extracted from 18 of 26 coupons for the S. typhimurium model. As a control group,
19,662 and 15,709 spectra were extracted from 12 HDPE and 12 SS coupons in the case of the
E. coli model, respectively. In the case of the S. typhimurium model, 19,053 and 19,156 spectra
were extracted from 12 HDPE and 12 SS coupons, respectively. Consequently, 36,847 spectra
were used to develop a model to detect E. coli on HDPE coupons, and 41,635 spectra were
used to detect E. coli on SS coupons. In the case of S. typhimurium, 50,974 and 53,756 spectra
were used for detection on HDPE and SS coupons, respectively.

3.3. Biofilm Detection Model

Figure 8 shows the average value of the extracted pixel spectra to develop a biofilm
detection model. Figure 8a,b shows the average spectrum of E. coli cultured on HDPE
and SS coupons, and Figure 8c,d shows the average spectrum of S. typhimurium cultured
on HDPE and SS coupons. Both HDPE and SS coupons showed the highest fluorescence
signal near 550 nm, and the fluorescence signal of SS coupons was low in all wavelength
regions compared to HDPE coupons. It can be seen that the fluorescence signal intensity
of the region where the biofilm is formed appears higher than that of the control region
for all wavelength ranges. However, the wavelength bands could not indicate a distinct
difference between the experimental group and the control group, except for the E. coli
biofilm formed on SS coupons. Moreover, the spectral deviation was severe for each pixel,
so it was be difficult to distinguish the two groups with only part of the wavelengths.

Figure 8. Average spectra of extracted pixel spectra from hyperspectral images: (a) E. coli cultivated
on HDPE, (b) E. coli cultivated on SS, (c) S. typhimurium cultivated on HDPE, and (d) S. typhimurium
cultivated on SS.

The biofilm detection model was developed by applying discriminant analyses using
multiple wavelength bands. The DT, k-NN, LDA, and PLS-DA methods were used, which
are widely used in discriminant analysis. After dividing the total amount of data in the
80:20 ratio, the model was trained using 80% of the data and the performance of the model
was verified using the remaining 20% of the data. Fivefold cross-validation was performed,
and average performances of specificity and sensitivity were calculated. Table 1 shows the
results of discriminant analyses after classifying the test group’s spectrum by 1 and the
control group’s spectrum by 0.
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Table 1. Discriminant model performance.

Performance (%)

1 2 3 4 5 Average

spe sen spe sen spe sen spe sen spe sen spe sen

HDPE E. coli

DT
Train 97.05 94.09 91.07 95.89 96.64 96.53 94.33 95.04 94.23 95.07 94.66 95.32
Test 97.06 94.86 91.33 95.79 96.52 96.04 93.53 94.88 94.03 94.61 94.49 95.24

k-NN
Train 99.99 100 100 100 99.99 100 99.99 100 99.99 100 99.99 100
Test 99.97 100 100 100 100 100 99.94 100 100 100 99.98 100

LDA
Train 99.82 100 99.81 100 99.78 99.99 99.79 99.99 99.75 100 99.79 100
Test 99.65 99.97 99.71 100 99.85 99.97 99.8 100 99.91 100 99.78 99.99

PLS-
DA

Train 96.76 98 96.67 97.97 96.8 98.02 96.78 97.89 96.63 97.61 96.73 97.90
Test 96.74 98.19 96.66 97.72 96.67 97.78 96.59 97.91 97.06 97.53 96.74 97.83

HDPE S. typhimurium

DT
Train 85.4 76.41 84.46 78.66 87.63 69.57 84.81 76.78 86.69 70.64 85.80 74.41
Test 84.07 75.89 83.71 76.79 87.48 69.84 85.18 75.89 85.85 70.22 85.26 73.73

k-NN
Train 98.9 97.24 98.86 97.36 98.94 97.21 98.97 97.21 98.85 97.22 98.90 97.25
Test 97.85 94.83 97.78 94.7 97.64 95.13 98.19 95.29 97.84 94.85 97.86 94.96

LDA
Train 96.47 96.26 96.52 96.46 96.61 96.29 96.5 96.27 96.46 96.42 96.51 96.34
Test 96.65 96.69 96.47 95.96 96.3 96.31 96.5 96.68 96.53 96.15 96.49 96.36

PLS-
DA

Train 87.17 44.95 86.92 45.42 87.15 45.11 87.01 44.68 87.23 45.19 87.10 45.07
Test 87.13 45.25 86.69 46.02 87.1 44.78 88.25 44.76 86.47 44.41 87.13 45.04

SS E. coli

DT
Train 95.93 85.35 96.31 84.88 96.24 84.77 95.84 85.33 96.29 84.92 96.12 85.05
Test 95.55 85.81 96.18 84.26 96.46 84.73 95.9 85.88 96.24 84.13 96.07 84.96

k-NN
Train 98.41 93.43 98.32 93.31 98.38 93.51 98.35 93.37 98.67 94.31 98.43 93.59
Test 97.21 92.12 97.51 91.19 97.34 90.84 91.85 97.67 97.35 91.21 96.25 92.61

LDA
Train 92.15 92.9 92.09 93.2 92.01 93 92 92.87 92.19 92.93 92.09 92.98
Test 91.9 93.16 92.46 91.9 92.47 92.62 91.86 93.52 91.94 92.95 92.13 92.83

PLS-
DA

Train 91.66 89.2 91.58 89.47 91.54 89.41 91.53 89.41 91.43 89.44 91.55 89.39
Test 90.14 91.39 90.96 89.26 92.05 89.06 91.39 89.48 92.01 88.99 91.31 89.64

SS S. typhimurium

DT
Train 99.19 9.17 92.82 23.26 99.18 9.2 99.41 8.43 99.45 8.41 98.01 11.69
Test 99.22 9.17 92.73 21.72 99.28 9.02 99.4 8.44 99.25 8.51 97.98 11.37

k-NN
Train 94.37 58.83 94.27 58.26 94.58 58.12 94.58 58.2 94.78 58.41 94.52 58.36
Test 85.65 38.29 85.67 40.77 84.42 40.36 85.26 38.41 85.75 39.5 85.35 39.47

LDA
Train 91.05 26.42 90.76 26.84 91.02 26.74 91.15 26.31 91.12 26 91.02 26.46
Test 91.4 26.12 90.83 26.02 90.86 25.46 90.9 26.86 91.07 27.47 91.01 26.39

PLS-
DA

Train 93.89 20.81 93.64 21.27 93.93 20.82 93.93 20.88 94.02 20.55 93.88 20.87
Test 94.36 20.65 93.69 20.38 93.77 20.87 93.53 20.93 94.01 21.33 93.87 20.83

In general, discriminant model performances of specificity and sensitivity were higher
than 90%, except the S. typhimurium model for SS coupons. The performances of the
detection model for the biofilm formed on HDPE coupons was higher than that of the
biofilm formed on SS coupons. It is estimated that the edge part of SS coupons reflected
fluorescence, which made model learning difficult. In addition, it was found that the mod-
els used on E. coli had higher detection performances than those used on S. typhimurium.
In particular, the k-NN model average specificity in the test group was 99.98% and 97.86%
and the average sensitivity was 100% and 94.96% for the HDPE coupons of E. coli and
S. typhimurium, respectively. The average specificity of the k-NN model in the test group
was 96.25% and 85.35% and the average sensitivity was 92.61% and 39.47% for the SS
coupons of E. coli and S. typhimurium, respectively, showing higher classification perfor-
mances than other discriminant analyses. However, in some cases, the test group showed
better performance than the k-NN model. In the case of the S. typhimurium model for
HDPE coupons, the average sensitivity of LDA in the test group was 96.36%, and for
the E. coli model for SS coupons, the average sensitivity was 92.83%. In the case of the
S. typhimurium model for SS coupons, the average specificity of the DT analysis in the test
group was 97.98%. Nevertheless, the k-NN model showed the highest performance under
many conditions.

Then, the ROC curve was drawn (Figure 9), and the AUC was calculated for choosing
the best model. In the case of the E. coli model for HDPE coupons, the AUC of the DT analysis
in the test group was 0.968, that of the k-NN analysis was 1, that of LDA was 1, and that of
PLS-DA was 0.997. In the case of the S. typhimurium model for HDPE coupons, the AUC of
the DT analysis in the test group was 0.808, that of the k-NN analysis was 0.994, that of LDA
was 0.994, and that of PLS-DA was 0.769. In the case of the E. coli model for SS coupons, the
AUC of the DT analysis in the test group was 0.911, that of the k-NN analysis was 0.984, that
of LDA was 0.975, and that of PLS-DA was 0.967. In the case of the S. typhimurium model
for SS coupons, the AUC of the DT analysis in the test group was 0.636, that of the k-NN
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analysis was 0.715, that of LDA was 0.671, and that of PLS-DA was 0.667. Therefore, the k-NN
algorithm is suitable for detecting E. coli and S. typhimurium biofilms.

Figure 9. Receiver operating characteristics (ROC) curve of the discriminant model: (a) E. coli
cultivated on HDPE, (b) E. coli cultivated on SS, (c) S. typhimurium cultivated on HDPE, and (d)
S. typhimurium cultivated on SS.

3.4. Food Poisoning Bacteria Biofilm Detection Result

Among discriminant analyses, the k-NN model, which showed the highest detection
performance, was applied to all pixels constituting the hyperspectral image to predict the
presence of a biofilm. First, the coupon region area and background area were binarized by
setting the ROI in the image. Then, the k-NN model was applied to the coupon region area.
Figure 10 shows the binarization result of bacterial detection. It was confirmed that the
biofilm area, which was difficult to determine with the naked eye, was successfully detected.
Jun [52] detected the E. coli biofilm on the surface of SS coupons using a short wavelength,
and the minimum detection limit of the E. coli biofilm was 7 log CFU·cm−2. In addition,
the same research group detected the E. coli biofilm on the surface of HDPE coupons using
a short wavelength and a ratio of two wavelength images in the hyperspectral image. The
minimum detection limit of E. coli was reported to be 7.56 log CFU·cm−2. Lee [15] detected
the E. coli biofilm formed on the surface of HDPE coupons using multiple wavelengths and
confirmed that the k-NN algorithm had the highest detection performance. In this study,
biofilms of E. coli and S. typhimurium were detected using discriminant analyses and the
k-NN model had the highest detection performance, which agrees with the results reported
by Lee [15]. In addition, it was confirmed that the E. coli biofilm formed at a concentration
of 0.78 log CFU·cm−2 and S. typhimurium biofilm formed at a concentration of 1.93 log
CFU·cm−2 could be detected. Using the k-NN algorithm, the minimum detection limit was
lowered to almost one-tenth of that in previous studies. Recently, as sensor technology
has rapidly developed, miniaturization of the hyperspectral imaging system has also
progressed. Currently, our research was conducted in a laboratory environment, so there
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is a limitation that learning models cannot be used directly in the field. However, if a
portable hyperspectral system that is capable of implementing our learning model is made,
real-time biofilm detection would be possible in the field.

Figure 10. Region of interest of coupons (left) and bacterial biofilm detection result (right): (a) E. coli
cultivated on HDPE, (b) E. coli cultivated on SS, (c) S. typhimurium cultivated on HDPE, and (d)
S. typhimurium cultivated on SS.

4. Conclusions

This study was conducted to determine whether biofilms, which are the main cause of
cross-contamination of bacteria in agro-food processing facilities, can be quickly inspected
using hyperspectral imaging technology and various discriminant analysis techniques.
Biofilms were formed by E. coli and S. typhimurium on the surface of HDPE and SS coupons,
which are used as main materials in agro-food processing facilities.

To examine the fluorescence characteristics of food poisoning bacteria, the fluorescence
emission intensity of E. coli and S. typhimurium from 400 to 800 nm bands was acquired for
excitation light from 350 to 400 nm bands at 5 nm intervals using a microplate reader. As a
result, high fluorescence intensity was confirmed according to the bacterial concentration
in the 400–450 nm wavelength bands, and fluorescence expression was also confirmed in
the 700 nm band.

Hyperspectral fluorescence images of a 365 nm UV light source in the wavelength
range of 420 to 730 nm were acquired using a line scan apparatus. The average spectra of
the samples were extracted from the corrected hyperspectral image data. Extracted spectra
were analyzed by various discriminant analyses such as DTs, k-NN, LDA, and PLS-DA.
The k-NN algorithm predicted the biofilm region with a high performance of 90% or more.
The minimum detection limit of the detected biofilm was 0.78 log CFU·cm−2 and 1.93 log
CFU·cm−2 for E. coli and S. typhimurium, respectively. The biofilm detection model using
the k-NN algorithm was applied to all pixels of the hyperspectral images, and it was found
that the biofilm region could be accurately detected. The possibility of real-time biofilm
detection in the field using hyperspectral images was confirmed.

In the case of discriminant analysis, there is a disadvantage that the data volume used
for model development is large and the model training time is long. These issues can be
solved using an optimization technique by selecting wavelength bands essential for model
development. In addition, further research is required to secure more samples to reduce
the false detection rate.
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Abstract: Hyperspectral imaging (HSI) emerges as a non-destructive and rapid analytical tool for
assessing food quality, safety, and authenticity. This work aims to investigate the potential of
combining the spectral and spatial features of HSI data with the aid of deep learning approach for the
pixel-wise classification of food products. We applied two strategies for extracting spatial-spectral
features: (1) directly applying three-dimensional convolution neural network (3-D CNN) model;
(2) first performing principal component analysis (PCA) and then developing 2-D CNN model from
the first few PCs. These two methods were compared in terms of efficiency and accuracy, exemplified
through two case studies, i.e., classification of four sweet products and differentiation between white
stripe (“myocommata”) and red muscle (“myotome”) pixels on salmon fillets. Results showed that
combining spectral-spatial features significantly enhanced the overall accuracy for sweet dataset,
compared to partial least square discriminant analysis (PLSDA) and support vector machine (SVM).
Results also demonstrated that spectral pre-processing techniques prior to CNN model development
can enhance the classification performance. This work will open the door for more research in the
area of practical applications in food industry.

Keywords: hyperspectral; spatial-spectral features; classification; principal component analysis;
convolutional neural network

1. Introduction

Hyperspectral imaging (HSI) was originally developed in the early 1970 for remote sensing
applications [1]. The invention of the first charge-coupled device (CCD) detector played a crucial role in
pushing this technology forward. In recent years, the technology has been reported to have applications
in many diverse fields such as forensic science [2], pharmaceutical research [3], agriculture [4], and food
science [5]. HSI goes beyond traditional imaging techniques by integrating spectral and spatial
information from an object [6]. Therefore, the merits of spectroscopy and computer vision are both
reflected in hyperspectral imaging. Spectroscopy identifies the analyte of interest based on its spectral
signature, and imaging transforms this information into distribution maps for spatial visualization.

A key step in the successful implementation of HSI applications is the development of calibration
models. For a classification task on near infrared hyperspectral imaging dataset acquired from benchtop
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instruments, chemometrics is currently considered as a popular tool that has been used for many
years. Partial least squares discriminant analysis (PLSDA) [7] is a supervised classification modelling
method that uses the PLS algorithm to predict the belonging of a sample to a specific class. PLSDA
is increasingly used in hyperspectral data analysis for classification problems due to its capability to
deal with multicollinearity problem in near infrared (NIR) spectra, which occurs because of very high
intercorrelation between absorbances [8,9]. Nevertheless, only spectral features were used as input for
classification models in most cases.

Machine learning (ML) techniques have been introduced for HSI data classification [10], which
have been collected in an extensive list of detailed reviews, such as Li, et al. [11,12]. The ML field has
experienced a significant revolution thanks to the development of new deep learning (DL) models
since the early 2000s [13], which is supported by advances in computer technology. These models have
gained popularity in the development of HSI classifiers [13,14]. For instance, support vector machine
(SVM) was applied to HSI data for strawberry ripeness evaluation achieving classification accuracy
over 85%. Convolutional neural network (CNN), being the current state-of-the-art in deep learning [15],
first achieved success in the field of image recognition and has become an extremely popular tool
for remotely sensed HSI data classification [10]. More importantly, CNN models show flexibility
to deal with HSI data by introducing a one-dimensional CNN for processing spectral inputs [16],
two-dimensional CNN for single or multiple wavelength images [17], and three-dimensional CNN
(3D-CNN) for an intelligent combination of spectral and spatial image data [18,19]. Although CNN
models have been successfully implemented for remote sensing applications, they are not often applied
to HSI data of food products. Earlier this year, Al-Sarayreh, et al. [20] reported that 3D-CNN model
approach applied to HSI data significantly enhanced the overall accuracy of red meat classification.

In this context, the current work aims to investigate the advantages and disadvantages of applying
deep learning approaches to near infrared HSI data. The main objective is to compare CNN based
modelling strategies against traditional chemometric (i.e., PLSDA) and machine learning (i.e., SVM)
methods for the pixel-wise classification tasks of food products. We will apply a hybrid framework
which involves first performing principal component analysis (PCA) to highlight the major spectral
variation and then building 2-D CNN model from the first few PCs using spatial features. PLSDA, SVM
and 3-D CNN are also applied for classifying HSI image data. The performance will be evaluated and
compared in terms of efficiency and accuracy, exemplified through two case studies, i.e., classification
of four sweet products and differentiation between white stripe (“myocommata”) and red muscle
(“myotome”) pixels on salmon fillets.

2. Materials and Methods

2.1. Sweets Dataset

Spectral images of the sweet samples are acquired in the reflectance mode by employing a
laboratory-based pushbroom hyperspectral imaging system. The main components of this system are
an imaging spectrograph (Specim N17E, Spectral Imaging Ltd., Oulu, Finland) and an InGaAs camera
(InGAs 12-bit SU320MS-1.7RT Sensors Unlimited, Inc., Princeton, NJ, USA). This configuration captures
an image of a line across the sample, spanning the 320-pixel width of the sensor, and the spectrograph
produces a spectrum for each of these pixels across the other dimension of the array, accounting for a
two-dimensional image. The wavelength interval is 7 nm in the spectral range of 943–1643 nm, leading
to 101 spectral bands. Direct reflectance spectra are used for subsequent data analysis.

This dataset consists of NIR hyperspectral images of four different sweets with different shapes,
colors, and nutritional compositions among classes. Specifically, the details of the selected four products
are as follows: raspberry flavor mushroom in pink and white color with a mushroom shape, mint
humbugs in brown and golden stripe with an ellipse shape, teeth and lips in pink and white color
with a teeth-like appearance, and tub in brown with a cola bottle shape. These sweets, made and
purchased from Tesco Ireland Ltd., are labelled as raspberry flavor mushroom (RFM), Mint, Teeth,
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and Tub, respectively. Sweet samples are chosen because the different spatial information among
classes has great potential for improving classification performance.

Four hypercubes of each sample type are obtained with the mean image showing in Figure 1,
together with the representative red/green/blue (RGB) images captured by a computer vision system
as described in Xu and Sun [21]. As seen, the first three samples of each type are selected as the
training set for model development, while the remaining one serves as the validation set, leading to
12 hypercubes consisting of 27,807 pixels for training and 4 hypercubes of 8947 pixels for validation
purpose. In addition to this, the developed model is tested on two mixed images containing two samples
of each material. The mean images of the mixture are shown in Figure S1 of Supplementary Materials.

Figure 1. The RGB images of sweet samples and mean images at the spectral domain.

2.2. Salmon Dataset

NIR spectral images of farm-raised Atlantic salmon (Salmon salar) fillets are also collected in the
reflectance configuration. The core components of the system included: an imaging spectrograph
(ImSpector, N17E, Spectral Imaging Ltd., Oulu, Finland) collecting spectral images in a wavelength
range of 900–1700 nm, a high performance camera with C-mount lens (Xeva 992, Xenics Infrared
Solutions, Leuven, Belgium), two tungsten-halogen illuminating lamps (V-light, Lowel Light Inc.,
New York, NY, USA), a translation stage operated by a stepper motor (GPL-DZTSA-1000-X, Zolix
Instrument Co., Beijing, China), and a computer installed with a data acquisition software (SpectralCube,
Spectral Imaging Ltd., Oulu, Finland). Each fillet was individually placed on the moving table and then
was scanned line by line at a speed of 2.7 cm/s adjusted to provide the same vertical and horizontal
resolution (0.58 mm/pixel).

Salmon is valued as a fat-rich fish with a large proportion of lipids congregated in the white
stripe of connective tissue (“myocommata”), segmenting the red-colored muscle (“myotome”) tissue in
vertical blocks and presenting a zebra-like appearance [22]. Previous study has demonstrated that the
proportion of myocommata in a salmon fillet correlated well with its fat content [23]. In this sense, it is
interesting to classify the white stripe from the red muscle because the proportions of the white strip in
one fillet might contain some valuable information about the fat content and/or lipid oxidation [24].
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The salmon dataset is of interest because there is spatial information on the salmon surface, yet it is
unsure if this spatial information could help classification.

Overall, six salmon fillets are used with the mean images shown in Figure 2. The first three samples
are included in the training set to develop classifiers, while the fourth sample is used as the validation
set and the remaining two images are considered as the test set. These salmon fillets are obtained from
three different batches. As seen from Figure 2, they are cut from different positions of fish. It can be
discerned that samples are in different sizes and shapes. Some pixels with strong signals are also
observed, which poses some challenges for the pixel classification. There could be due to the specular
reflection of the illumination source at the salmon surface to produce regions with high-intensity values
in the hyperspectral images. These regions act like a mirror and lead to saturation of CCD because of
the white stripe or the existence of scales.

Figure 2. Mean images of salmon fillets at the spectral domain.

2.3. Background Removal

All data analysis is carried out using MATLAB (release R2019a, The MathWorks, Inc., Natick, MA,
USA) incorporating functions from Deep Learning Toolbox, Statistics, and Machine Learning Toolbox,
and additional functions written in-house.

Sweet samples are placed on a white tile for imaging. Background removal is carried out by
subtracting a low-reflectance band from a high-reflectance band followed by a simple thresholding.
In this context, the reflectance image at 1496 nm is subtracted from that of 957 nm to enhance the
contrast between the sample and white tile. Afterwards, a threshold of 0.22 is applied for background
removal. A binary mask for background removal is subsequently generated with all background
regions set to zero.

Salmon samples are directly placed on the moving table for image acquisition. The background
is removed from the salmon flesh image in the same manner. Bands 944 nm and 1450 nm are used
followed by a thresholding value of 0.2. However, the selected bands and thresholding values might
change depending on the segmentation result of individual hyperspectral image.

2.4. Spectral Pre-Processing

In the field of hyperspectral imaging, the most common practice is the adaptation of different
pre-processing techniques [25]. Spectral preprocessing algorithms are mathematically used to improve
spectral data. It aims to correct undesired effects such as random noise, length variation of light path,
and light scattering resulting from variable physical sample properties or instrumental effects. This step
is generally performed prior to multivariate modelling so as to reduce, eliminate, or standardize the
impact on the spectra and to greatly enhance the robustness of the calibration model [26]. In this work,
three spectral pre-processing methods are attempted comparatively, namely, standard normal variate
(SNV), first derivative, and external parameter orthogonalization (EPO [27]). SNV is a mathematical
transformation method of spectra, which is used to remove slope variation and correct light scattering
effects. As one of the normalization methods, SNV is performed by first calculating the standard
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deviation and then normalizing by this value, thus giving the sample a unit standard deviation. First
derivative using Savitzky-Golay (SG) method can reduce additive effects [28]. EPO decomposes a
spectrum into two components: a useful component that has a direct relationship with the response
variable, and a parasitic component that is from an external influence [29]. By removing the parasitic
component through orthogonal transformation of spectra, the calibrated spectral model can be less
sensitive to the external influence.

2.5. PLSDA and SVM Modelling

Partial least squares discriminant analysis (PLSDA) [30] and SVM are used to build classification
models. It is common practice to “unfold” hypercubes such that the three-dimensional information
is presented in two dimensions. Unfolding simply refers to rearranging spectra from a hypercube
with three dimensions ((1) rows, (2) columns, and (3) wavelengths) to a matrix with two dimensions
((1) rows × columns against (2) wavelengths). Non-background pixels are extracted from each
hypercube by unfolding and concatenated to make a two-dimensional matrix (X, i.e., a matrix where
the rows represent observations and columns represent spectral features). PLSDA and SVM models are
developed from X and Y (i.e., a matrix where the rows represent observations and columns represent
the true classes). It is significant to select the proper number of latent variables (LVs). Inclusion of too
few or too many LVs may lead to, respectively, under or over-fitting of the data and subsequently lead
to poor future model performance [31]. In this work, venetian blinds cross-validation is applied to
determine the optimal number of LVs, which is performed by checking the evolution of the accuracy
with the number of LVs.

Multiclass support vector machine (SVM) with the error correcting output codes (ECOC) is also
implemented for comparison. The SVM is a binary classifier which can be extended by fusing several
of its kind into a multiclass classifier [32]. In this work, SVM decisions are fused using the ECOC
approach, adopted from the digital communication theory [33].

2.6. PCA-CNN Modelling

This method starts with employing PCA on the global dataset to seek for the spectral variance
among different sample types. To do this, it is necessary to unfold all image cubes in the training set
along the spatial axis and takes all of the pixel spectra from each hypercube (omitting the background)
and then concatenates them to make a two-dimensional matrix on which PCA is performed. PCA
decomposes the original data matrix into scores and loadings. Each loading is a vector which provides
information on the relative importance, or the weighting, of specific wavelengths relative to each
other. The first PC describes the largest variance in the dataset and each following PC describes
progressively less of the variance. Therefore, instead of using all loading vectors, we can opt to just use
some of the earlier loading vectors to represent the original dataset. For samples in validation and test
sets, the individual hypercube is first unfolded and then projected along the PC loadings by matrix
multiplication producing PC scores matrices which are subsequently re-folded to form score images.

Score images from the first few PCs are used as the input for 2-D CNN model. For a pixel-based
classification of hypercube I(x, y, λ), where x and y are the width and the height of the image and λ
denotes the number of spectral bands, it aims at predicting the label of each pixel within the image.
Initially, the original hypercube I(x, y, λ) is reduced to score images with the size of x× y× d where d
refers to the number of selected PCs. The next step is to extract a k× k× d patch for each pixel, where k
denotes the window size of the patch. In specific, each patch (i.e., the spatial context) is constructed
surrounding a pixel, the center point of the patch. For the pixels that reside near the edge of the image,
the patch includes some pixels belonging to the sample while the others belonging to the background.

In this work, the structure of the 2-D CNN consists of an input layer, a convolution (Conv) layer,
a rectified linear unit (ReLU) layer, a pooling (POOL) layer, a dropout layer, a fully connected (FC) layer,
a softmax layer, and an output layer. The convolutional layer convolves the input data by applying
sliding convolutional filters and outputs the convolved features [34], that is, the feature maps. Each
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convolutional kernel outputs a feature map corresponding to a type of extracted features. Traditional
convolution moves from left to right and from top to bottom with a step of 1. Strided convolution has a
larger and user-defined step size for traversing the input. All feature maps are stitched and merged by
the first fully connected layer to summarize all local features. The number of neural nodes in the fully
connected layer changes with the convolution kernel size, the sampling kernel size, and the number of
feature maps. For a classification task, it is a common practice to place a softmax layer after the last FC
layer. The softmax function is used to compute the probability that each input data pattern belongs
to a certain class. The kernel size, the number of feature maps, and the spatial size (i.e., the window
size of the patch) are critical parameters in CNN model. These parameters were optimized based on a
systematic way of tuning one parameter and fixing it followed by the same procedure for others.

2.7. Three-Dimensional CNN Modelling

As the image formed by hyperspectral bands may have some correlations, e.g., close spectral bands
may account for similar images, it is desirable to take into account spectral correlations. Although
the 2-D CNN model enables to use the spatial context, it is applied without consideration of spectral
correlations. To address this issue, a 3-D CNN model is proposed to extract high-level spectral-spatial
features from the original 3-D hyperspectral images. A patch (k× k× λ) for each pixel is extracted from
hypercube and used as the input. The operational details of the 3-D CNN model are quite similar to
those of the 2-D CNN model. Different from 2-D CNN, the convolution operator of this model is 3-D,
whereas the first two dimensions are applied to capture the spatial context and the third dimension
captures the spectral context. In addition to a Conv layer, a BN layer, a ReLU layer, a dropout layer,
a FC layer, a softmax layer are included in the designed network structure.

2.8. Assessment of Classification Models

Essentially, the performance of a classifier is assessed by the data set classification accuracy index, i.e.,
% correct classification rate (%CCR). The ground truth for sweet samples is directly obtained by labelling
after removing background (see Section 2.3). For salmon samples, a local thresholding strategy is applied
on PC2 score images to obtain ground truth. Firstly, individual score image is divided into several
sub-images and then an optimal threshold value is manually selected for each sub-image. Confusion
matrix, also known as an error matrix, is used to evaluate the quality of the output of the classifier for
validation and test sets. The elements in the diagonal are the elements correctly classified, while the
elements out of the diagonal are misclassified. We also compute the percentages of all the examples
belonging to each class that are correctly and incorrectly classified and show them on the far right
of the confusion matrix. These metrics are often called the recall, also known as sensitivity (or true
positive rate (TPR)) and false negative rate (FNR), respectively. The row at the bottom of the confusion
matrix shows the percentages of all the examples predicted to belong to each class that are correctly
and incorrectly classified. These metrics are often known as the precision (or positive predictive value
(PPV)) and false discovery rate (FDR), respectively. In detail, they are calculated as below:

TPR =
TP

TP + FN
(1)

FNR =
FN

FN + TP
(2)

PPV =
TP

TP + FP
(3)

FDR =
FP

FP + TN
(4)

In these equations, TP, TN, FP and FN respectively refer to true positive, true negative, false
positive and false negative. Desirable classification performance is characterized with higher CCR,
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TPR, PPV, and lower FNR and FDR. Apart from these, classification and misclassification maps are
also displayed to visualize where are the correctly and incorrectly classified pixels.

3. Results

3.1. Results of Sweet Dataset

3.1.1. Spectral Pre-Processing

Figure 3 shows the spectra averaged from one hypercube in the training set and the outcome of
pre-treatments. RFM presents the highest reflectance across the whole spectral region (see Figure 3A),
while Tub is the lowest. Discrimination among sweet types is highly possible owning to the observable
difference in spectral profiles. SNV pre-processed results are displayed in Figure 3B. The combination
of SNV and first derivative (window size of 11 and third order polynomial degree) is also applied,
as shown in Figure 3C. It is noticed that the spectral difference among sweet samples is highlighted
over 1400–1500 nm, which is related to water band due to hydrogen bonding [35].

Figure 3. Influence of different spectral pre-processing methods on the mean spectra of one hypercube
in the training set. (A) Raw spectra; (B) Pre-processed spectra with standard normal variate (SNV);
(C) First derivative spectra (Saviztky-Golay with a window size of 11 and third order polynomial
degree) followed by SNV.
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3.1.2. PLSDA and SVM Modelling

Figure S2 shows the evolution of accuracy (%) with the number of LVs. In general, CCR (%)
increases rapidly at the first few LVs and then remains constant, i.e., adding more variables will
not improve accuracy. To avoid both underfitting and overfitting, LVs that contributed most to the
enhancement of accuracy were selected, as per the outcome shown in Figure S2. The classification
model performance of PLSDA and SVM, in terms of CCR (%) calculated on the validation set and
prediction images, are shown in Table 1. In general, the accuracy was found to be higher than 99% for
validation and test sets, suggesting the classifiers can generalize well on unknown samples. Apparently,
pre-treatments enable the enhancement of the model’s performance, as evidenced by the increased
accuracy of test sets. It is also noticed that SVM outperformed PLSDA under the condition of using the
same spectral pre-treatment.

Table 1. Model performance of sweet samples for validation and test images in terms of % correct
classification rate (%CCR).

Model Pre-Treatment Time (min) Training Validation Test1 Test2

PLSDA-I - <1 97.02 99.42 99.55 98.37
PLSDA-II SNV <1 99.37 99.41 99.58 99.16
PLSDA-III SG+SNV <1 99.44 99.33 99.69 99.52

SVM-I - <1 99.59 99.61 99.62 99.29
SVM-II SNV <1 99.99 99.97 99.83 99.69
SVM-III SG+SNV <1 99.99 99.97 99.80 99.70

PCA-CNN-I - 2 99.95 99.01 99.39 99.00
PCA-CNN-II SNV 2 100 98.79 100 100
PCA-CNN-III SG+SNV 2 100 100 100 100

3D-CNN-I - 14 97.72 98.64 98.05 97.94
3D-CNN-II SNV 13 100 100 100 100
3D-CNN-III SG+SNV 13 100 100 100 100

Note: PLSDA: partial least squares discriminant analysis; SVM: support vector machine; PCA: principal
component analysis; CNN: convolutional neural network; SNV: standard normal variate; SG: First derivative
using Saviztky-Golay.

Confusion matrices for test sets were obtained for PLSDA-III (pre-processed with SNV combined
with first derivative) and SVM-II (pre-processed with SNV) and displayed in Figure 4. As illustrated,
classification of Teeth pixels had the lowest TPR (i.e., sensitivity), suggesting that the true Teeth pixels
are less likely to be recognized. Indeed, 10 pixels of Teeth were wrongly classified as Mint and 26 pixels
as RFM in Test 1 image (Figure 4A), while 40 pixels of Teeth were incorrectly identified as RFM for
Test 2 (Figure 4B), in consistent with Figure 3C where Teeth and RFM present close spectral profiles
spanning the entire spectral region. The same observation can be found from SVM modelling result,
in which 32 Teeth pixels were wrongly classified as RFM for Test 1 image (Figure 4C) and 51 pixels
misclassified as RFM for Test 2 image (Figure 4D).

In order to produce classification maps, the mixture image was first unfolded with background
pixels removed using masking to form a two-dimensional matrix on which the developed classifier
could be applied. Finally, the resultant matrix with the predicted class assigned to each pixel
needed to be refolded to generate classification maps, as shown in Figure 5. It is observed that most
misclassification pixels are distributed along the edge of each object. It is also seen that SVM modelling
produced less misclassified pixels.
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Figure 4. Confusion matrices for Test 1 image (A) and Test 2 image (B) obtained from PLSDA-III model;
for Test 1 image (C) and Test 2 image (D) obtained from SVM-II model.

Figure 5. Classification and misclassification maps for Test 1 image (A) and Test 2 image (B) obtained
from PLSDA-III model; for Test 1 image (C) and Test 2 image (D) obtained from SVM-II model.

3.1.3. PCA-CNN Modelling

First derivative (Saviztky-Golay with a window size of 11 and third order polynomial degree)
followed by SNV pre-treated spectra were used to build PCA, with the first three PCs displayed in
Figure 6. The pixels belonging to Tub can be easily separated from Teeth and RFM on PC1. The loading
plot indicates that the band around 1410 nm mainly contributed to this separation, in agreement
with the spectral profiles of Figure 3C. PC1 score images are shown in Figure S3 where different spatial
patterns among classes are clearly perceivable, suggesting the suitability of using 2-D CNN modelling
subsequently. Figure S4 showing the PC2 score image demonstrates that Mint pixels have higher values
(red color) compared to others (blue color), implying the potential of separating Mint from other classes.

The original hypercube with 101 spectral variables was transformed to score images with the first
10 PCs (explaining 97% of variance) selected, followed by patch extraction with the window size of 17.
For the training of 2-D CNN, the learning rate was set to 0.01, and the epoch of training was set to 100,
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the mini-batch size was set to 1024. Convolution layer was implemented with 20 feature maps (filter
size = 5 × 5, stride = [2 2]), while the height and the width of the pool size are set to 2 with a stride of 2.

Figure 6. Principal component analysis score plots (A) and loading for PC1 (B), PC2 (C) and PC3 (D).

The accuracy and loss for training and validation sets were plotted against the number of iterations,
as shown in Figure S5. The accuracy for training and validation both increase and then remain flat.
The loss on the training set decreased rapidly for the first 100 iterations, suggesting that the network
was learning fast to classify sweet samples. The loss of the validation set also decreased fast and stayed
roughly within the small range as the training loss, implying that this model generalizes reasonably
well to unseen data.

PCA-CNN model performances are also illustrated in Table 1. As shown, spectral pre-processing
enabled the improvement of the model’s performance, for instance, from the accuracy of 99.00%
using raw spectra to accuracy of 100% using SNV pre-treated spectra. Compared to PLSDA and
SVM modelling, PCA-CNN-III (pre-processed with first derivative followed by SNV) facilitated
better predictive ability, providing 100% accuracy in validation and test sets. In terms of efficiency,
PCA-CNN-III required two minutes for processing, which is acceptable compared to SVM and PLSDA.

3.1.4. Three-Dimensional CNN Modelling

The same pre-processing procedures (SNV, SG+SNV) were carried out in order to compare with
raw spectra, after which a patch with the size of 7× 7× 101 was extracted from hypercube and used as
the input. The same learning rate, and the number of epoch (see Section 3.1.3) were utilized in 3-D
CNN model training. Convolution layer was performed with 3-D convolution operator (10 feature
maps, filter size = 3 × 3 × 10, stride = [1 1 1]) with the training progress shown in Figure S6. Compared
to PCA-CNN model (Figure S5), similar curve shapes (i.e., accuracy and loss) are noticed. Likewise,
accuracy first soars and then remains stable after 400 iterations, while loss declines fast at the beginning
and keeps flat, indicating that the model was not under or over-fitted.

The model performance of 3-D CNN is also displayed in Table 1. Again, we can observe that spectral
pre-processing techniques greatly enhance classification performance. The accuracy of 100% was obtained
from pre-processed spectra for training, validation, and both test sets. However, 3D-CNN-I model built
from raw spectra delivered the worst performance with the lowest accuracy (in terms of validation
and test sets) compared to other models. This suggests that spectral pre-treatment plays an important
role in improving the effectiveness of 3-D CNN model developed from near-infrared HSI dataset.
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The advantage of 3-D CNN is that it can exploit the spatial and spectral context simultaneously.
In essence, PCA can exploit the spectral features, and then 2-D CNN can exploit the spatial context;
therefore, the PCA-CNN method also enables the extraction of joint spectral-spatial information
from each hypercube. Sweet samples suggest that PCA-CNN and 3-D CNN models after spectral
preprocessing, i.e., PCA-CNN-III, 3D-CNN-II, and 3D-CNN-III from Table 1, delivered the best
predictive ability with 100% accuracy for validation and test sets. Nevertheless, 3-D CNN required
much longer time for the training process, i.e., 2 min of training 2-D CNN model versus 13 min of
training 3-D CNN model using the same computer. Indeed, 3-D CNN model brings complexity into
the classifier, increasing the number of parameters that each neural model needs to adjust during the
training phase.

3.2. Results of Salmon Dataset

3.2.1. Spectral Pre-Processing

The mean spectra of white stripe and red muscle were computed from the first image of the
training set. As seen from Figure 7A, higher reflectance is evidenced in white stripe owing to its bright
white appearance. It is also observed that white stripe and red muscle present the different band
shapes at 1210 nm and 1450 nm, which can be assigned to second overtone of CH2 bond [36] and OH
bond [35], respectively. SNV pre-treatment (Figure 7B) is seen to reduce some interfering variability.
Using the mean spectrum of each fillet as the interference, the spectral difference between red muscle
and white stripe is clear to observe after employing EPO (Figure 7C).

Figure 7. Influence of different spectral pre-processing methods on the mean spectra of one hypercube in
the training set. (A) Raw spectra; (B) Pre-processed spectra with SNV; (C) Pre-processed spectra with EPO.

3.2.2. PLSDA and SVM Modelling

The selection of LVs for PLSDA modelling is shown in Figure S7. Table 2 summaries the classification
performance of models built for salmon samples. It is noted that the prediction performance varies
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from sample to sample. For instance, the PLSDA model developed from raw spectra (i.e., PLSDA-I)
presented the accuracy of 89.06% for the validation sample, while the inferior predictive ability is
witnessed in test sets with the accuracy of 81.02 % for Test 2 fillet. Overall, pre-processing attempts to
enhance model performance compared to using raw spectra, which is expected due to the reduction of
variance that is irrelevant to classification. SVM outperformed PLSDA under the same pre-treatment
condition. The best model performance was found using SVM classifier (SVM-III) built from EPO
pre-treated spectra.

Table 2. Model performance of salmon samples for validation and test images in terms of % correct
classification rate (%CCR).

Model Pre-Treatment Time (min) Training Validation Test1 Test2

PLSDA-I - <1 92.89 89.06 82.54 81.02
PLSDA-II SNV <1 92.48 93.10 83.75 87.97
PLSDA-III EPO <1 90.37 87.81 89.00 85.85

SVM-I - <1 94.13 93.72 83.27 87.37
SVM-II SNV <1 94.96 87.74 83.81 80.85
SVM-III EPO <1 93.02 93.43 94.32 95.22

PCA-CNN-I - 8 94.51 92.97 84.76 87.85
PCA-CNN-II SNV 7 94.46 92.86 84.32 85.76
PCA-CNN-II EPO 7 95.02 93.63 93.96 93.29

3D-CNN-I - 43 92.76 92.17 81.99 85.44
3D-CNN-II SNV 43 96.21 93.16 84.87 87.71
3D-CNN-III EPO 43 93.25 92.19 90.79 91.27

Note: PLSDA: partial least squares discriminant analysis; SVM: support vector machine; PCA: principal
component analysis; CNN: convolutional neural network; SNV: standard normal variate; SG: First derivative
using Saviztky-Golay.

Confusion matrices for validation and test sets were computed from SVM-III (model built from EPO
pre-treated data) due to its better performance in general and displayed in Figure 8. For test sets, it was
found that the classification of red muscle pixels has high sensitivity (over 99%), implying the strong
ability to correctly identify red muscle pixels on the salmon surface. On the other hand, the sensitivity
of identifying white stripe was relatively low, meaning that it is more likely to wrongly classify actual
white stripe pixels into the red muscle category.

Figure 8. Confusion matrices for validation and test sets obtained by the SVM-III model built from
EPO pre-treated spectra.
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Prediction maps and misclassification maps were subsequently developed from SVM-III and shown
in Figure 9. Meanwhile, the ground truth images are displayed in Figure S8. Visually, the misclassified
pixels are distributed along the white stripe. It is consistent with the confusion matrix (Figure 8) where
the sensitivity of red muscle is much higher than that of white stripe.

Figure 9. Classification and misclassification maps for validation (the left image) and test sets
(the middle and right images) obtained by the support vector machine (SVM) model built from EPO
pre-treated spectra (SVM-III of Table 2).

3.2.3. PCA-CNN Modelling

PCA is the key to the proposed method which aims to extract spectral and spatial information from
hyperspectral images. To visualize PCA results, scores and loadings obtained from EPO pre-processed
spectra are presented in serval figures. Figure 10 shows the scatter plots of score values from the first
four PCs. It can be seen that PC1 and PC2 express the major difference between these two classes,
facilitating the separation into two clusters on the PC1-PC2 scatter plot. In the case of spectral loadings
(see Figure S9), it is found that the separation mostly relies on the influence of the band over 1000–1100 nm,
1250–1350 nm, and 1400–1500 nm. Additionally, PC1 and PC2 score images are illustrated in Figures
S10 and S11 of Supplementary Materials, respectively. PC1 score images exhibit some noisy pixels
corresponding to the pixels with strong signals in the reflectance images of Figure 2. White stripe
pixels presenting the blue colors are slightly distinguishable from red muscle pixels in PC2; however,
there is an area of red pixels occurred in individual salmon fillet mostly due to the higher thickness.
The surface of salmon fillet was usually not flat, with varying thickness from region to region, making
it a challenging task for pixel classification.

Figure 10. PCA scatter plots from the first four PCs. Explained variance of each PC is indicated in bracket.
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PCA-CNN models were respectively developed from raw, SNV, and EPO pre-processed spectra,
as the results shown in Table 2. In all cases, the window size were set to 7 and the first 5 PCs (explaining
99% of variance for raw spectra, 98% of variance for SNV, and 99% for EPO pre-processed spectra)
were used for 2-D CNN modelling, meaning that the classification of pixels was based on the patch
of 7 × 7 × 5. Figure S12 shows training process for the model built from SNV pre-treated spectra.
The accuracy for training and validation both increase and then remain flat, while the loss decreases
rapidly at the beginning and keeps stable at the late stage. EPO pre-treatment outperforms SNV
with higher accuracy for test sets. EPO pre-treatment improved the accuracy of Test 1 image from
84.76%, using raw spectra to 93.96%. Figure 11 shows confusion matrices for validation and test sets
calculated from the PCA-CNN-III (pre-processed with EPO) model. In addition, classification and
misclassification maps are exhibited in Figure 12 for visualization purpose.

Figure 11. Confusion matrices for validation and test sets obtained by the PCA-CNN model built from
EPO pre-treated spectra.

Figure 12. Classification and misclassification maps for validation (the left image) and test sets
(the middle and right images) obtained by the PCA-CNN model built from EPO pre-treated spectra.
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3.2.4. Three-Dimensional CNN Modelling

3-D CNN models were developed from raw, SNV and EPO pre-treated spectra, with the training
progress of 3D-CNN-II (SNV pre-processed spectra) shown in Figure S13. Compared to the 2-D
CNN model (Figure S12), similar curve shapes (i.e., accuracy and loss) are noticed. Originally,
the training set was characterized as 5-dimensional dataset (7× 7× 180× 1× 21222 where 7 represents
the window size of each patch, 180 denotes to the number of spectral variables, and 21,222 refers to the
number of observations). However, CNN training produced a “CPU out of memory” error message.
As a result, we extracted every fourth observation and formed a reduced training set with the size of
7× 7× 180× 1× 5306. Again, spectral pre-treatments improved the model performance, which was
more obvious for the test sets. According to Table 2, the 3D-CNN-III model leads to the accuracy
of 92.19%, 90.79%, and 91.27%, respectively, for validation of the Test 1, and Test 2 images, which
are inferior to that of the PCA-CNN-III model. Confusion matrices for validation and test sets are
computed and illustrated in Figure 13. There is little distinguishable difference in classification maps
obtained from PCA-CNN-III (Figure 12) and 3D-CNN-III (Figure 14), although less misclassified pixels
are found for PCA-CNN-III on closer inspection.

For classification of white stripe pixels from red muscle, the best performance was achieved by
using SVM developed from EPO pre-treated spectra (SVM-III), followed by PCA-CNN-III. This is
probably because the spatial information was unable to make much contribution for this classification
task. Deep learning strategies (PCA-CNN and 3-D CNN) show better predictive ability than PLSDA
with overall higher accuracy. In terms of running time, 3-D CNN is the most time-consuming,
while SVM and PLSDA are the fastest. In spite of using a reduced training set equivalent to 25% of
original data, 3-D CNN (43 min) is still much slower than 2-D CNN training (7 min) given the same
programming environment.

Figure 13. Confusion matrices for validation and test sets obtained by the 3-D CNN model built from
EPO pre-treated spectra.
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Figure 14. Classification and misclassification maps for validation (the left image) and test sets (the
middle and right images) obtained by the 3-D CNN model built from EPO pre-treated spectra.

4. Discussion

This work intends to compare different supervised classifiers for NIR hyperspectral imaging
data acquired from benchtop instruments. Using PLSDA, the relevant sources of data variability are
modelled by LVs, which are a linear combination of the original variables, and, consequently, it allows
graphical visualization and understanding of the different data patterns and relations by LV scores
and loadings. Theoretically, PLSDA combines dimensionality reduction and discriminant analysis
into one algorithm and is especially applicable to modelling high dimensional data. Therefore, it has
demonstrated great success in modelling hyperspectral imaging datasets for diverse purposes. In this
work, however, PLSDA presented the inferior modelling performance in both example datasets.

For sweet samples, there are distinctive spatial patterns among classes, which could potentially
contribute to the classification. PLSDA and SVM focus exclusively on the spectral domain despite
the inherent spatial-spectral duality of the hyperspectral dataset. In other words, the hyperspectral
data are considered not as an image but as an unordered listing of spectral vectors where the spatial
coordinates can be shuffled arbitrarily without affecting classification modeling results [37]. As we can
observe from classification and misclassification maps of sweet samples, PLSDA and SVM classifiers
exhibit random noise in pixel-based classification (significantly less in the CNN-based methods),
because they ignore spatial-contextual information when providing a pixel prediction. Therefore,
pixel-based CNN models outperform traditional chemometric technique (i.e., PLSDA) and machine
learning (SVM) in terms of every aspect of classification performance for sweet samples, e.g., higher
accuracy, sensitivity, and precision. On the other hand, the spectral difference is the main source for
classification between white strip and red muscle classes of salmon samples. Therefore, inclusion
of spatial information by applying CNN based strategies (i.e., PCA-CNN and 3-D CNN) cannot
necessarily enhance model performance.

PCA-CNN and 3-D CNN both enable to use the conjunction of spatial and spectral information,
therefore achieving better classification results compared to PLSDA. PCA is based on the fact that
neighboring bands of hyperspectral images are highly correlated and often convey almost the same
information about the object. In this sense, PCA facilitates to transform the original data so to remove
the correlation among the bands. Technically, the first few PC score images may contain most of
the information contained in the entire hyperspectral image data; hence, classifications using the
most significant PCA bands yield the same class patterns as when entire hyperspectral data sets
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are used. Our two hyperspectral datasets (i.e., sweet and salmon) suggested that similar predictive
capability is witnessed between these two CNN-based strategies. However, in terms of the runtime of
modelling training, the PCA-CNN classifier requires much less time than 3-D CNN partly due to the
computational complexity of the 3-D convolution layer. Moreover, it is observed that the number of
parameters that each model needs to adjust during the training phase, being the PLSDA model with
fewest parameters and the 3-D CNN the one with the most parameters to fit.

5. Conclusions

In this work, PLSDA, SVM, PCA-CNN, and 3-D CNN models for pixel classification were
developed and compared in terms of accuracy and efficiency. The results from sweet dataset strongly
support the fact that joint spectral and spatial features are more useful than focusing only on spectral
features, making the CNN-based modelling ideal for the extraction of highly discriminative features
for classification purposes. Nevertheless, salmon dataset demonstrated that SVM model outperformed
CNN based methods because spatial information is less important for this classification task. PCA-CNN
and 3-D CNN delivered similar classification results, yet the run-time to implement PCA-CNN is
much faster than 3-D CNN, suggesting that the use of the PCA approach prior to hyperspectral image
classification is beneficial and effective. It significantly reduces the amount of data to be handled
and achieves practically acceptable and accurate classification results that are comparable with those
obtained using the entire hyperspectral image data. This work also demonstrated the significance of
applying spectral pre-processing techniques to complex HSI scenes before classification. Although
CNN modelling is powerful in feature extraction, spectral pre-processing techniques manage to remove
or reduce some unwanted variance and therefore enhance the classification performance. The proposed
CNN based modelling framework from this work could be adopted for solving similar classification
problems in food and agriculture applications.
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Abstract: Chlorophyll content is an important indicator of plant photosynthesis, which directly
affects the growth and yield of crops. Using hyperspectral imaging technology to quickly and
non-destructively estimate the soil plant analysis development (SPAD) value of pepper leaf and its
distribution inversion is of great significance for agricultural monitoring and precise fertilization
during pepper growth. In this study, 150 samples of pepper leaves with different leaf positions were
selected, and the hyperspectral image data and SPAD value were collected for the sampled leaves. The
correlation coefficient, stability competitive adaptive reweighted sampling (sCARS), and iteratively
retaining informative variables (IRIV) methods were used to screen characteristic bands. These were
combined with partial least-squares regression (PLSR), extreme gradient boosting (XGBoost), random
forest regression (RFR), and gradient boosting decision tree (GBDT) to build regression models. The
developed model was then used to build the inversion map of pepper leaf chlorophyll distribution.
The research results show that: (1) The IRIV-XGBoost model demonstrates the most comprehensive
performance in the modeling and inversion stages, and its R2

cv, RMSEcv, and MAEcv are 0.81, 2.76,
and 2.30, respectively; (2) The IRIV-XGBoost model was used to calculate the SPAD value of each
pixel of pepper leaves, and to subsequently invert the chlorophyll distribution map of pepper leaves
at different leaf positions, which can provide support for the intuitive monitoring of crop growth and
lay the foundation for the development of hyperspectral field dynamic monitoring sensors.

Keywords: pepper leaf; SPAD value; hyperspectral inversion; characteristic waveband selection

1. Introduction

Chlorophyll content is one of the most important indicators of the health status of
crops and is significant for guiding crop fertilization and field management in different
crop growth periods [1]. SPAD values can be directly used as relative values to characterize
chlorophyll content. A portable chlorophyll meter is usually used to measure the SPAD
value of plant leaves to directly characterize the relative plant chlorophyll content. How-
ever, leaves need to be repeatedly inserted during the process, which makes large-scale
chlorophyll detection using this method difficult. Research shows that the SPAD value
can be used to accurately derive hyperspectral remote sensing data in a non-destructive
and pollution-free manner at a low price. In recent years, hyperspectral remote sensing
has become a powerful tool for chlorophyll content estimation. Because it is rapid, non-
destructive, and capable of detecting chlorophyll over large areas, it is of great significance
for crop growth monitoring, precise fertilization, and yield evaluation [2,3].

Hyperspectral imaging technology combines the advantages of both spectrum and
image. It has a high resolution and multi-band capabilities. Further, it integrates an atlas,

171



Sensors 2022, 22, 183

combining traditional imaging and spectral technologies [4]. Changes in plant chlorophyll
content lead to changes in the plant reflectance spectrum characteristics [5]. The use of
hyperspectral technology to obtain plant growth parameters provides a theoretical basis
for measuring chlorophyll, which makes it possible to monitor the growth of crops across
a large area [6]. Traditional chlorophyll determination methods mainly rely on chemical
experiments, are labor intensive, consume a lot of material resources, and require sample
destruction. Although portable chlorophyll meters can measure chlorophyll content in real
time, they require manual and repeated measurements, which limits their application in
the monitoring of large areas. Furthermore, portable devices can only provide information
about the chlorophyll content at a certain point of the leaf, which is not sufficient to obtain
an accurate whole-leaf chlorophyll concentration [7].

Hyperspectral technology can not only quantitatively predict the chlorophyll content
of the plant leaf but also perform inversion research and image presentation on the distribu-
tion of the leaf’s chlorophyll content. Zhao et al. used this technology in combination with
vegetation index analysis to develop a method that uses hyperspectral imaging technology
to obtain five different images in real time to facilitate measurements of leaf water status,
relative water content, and equivalent water thickness in tomato varieties [8]. Daughtry
and Wu et al. analyzed the accuracy of more than 10 spectral indices, such as MCARI and
OSAVI, to estimate the chlorophyll concentration in maize leaves [9,10]. Yu et al. collected
samples of leaves, roots, and stems of pepper plants and determined the nitrogen content
using a random frog algorithm combined with the partial least-squares method to establish
the nitrogen content growth model of the pepper plant [11]. Their results show that hyper-
spectral imaging is a very promising technology and has great potential for determining
the spatial distribution of nitrogen content in pepper plants.

However, there are no studies that use hyperspectral imaging to examine the differ-
ences in spatial distribution of SPAD values in leaves located at different positions on
pepper plants. Therefore, to ascertain the response of pepper plants’ leaf chlorophyll
spatial distribution during the growth process, this study adopted hyperspectral imaging
technology to develop a method for diagnosing the SPAD value and mapping the spatial
distribution of chlorophyll in leaves located at different positions. Four algorithms were
used to screen the sensitive wavelengths of pepper leaf chlorophyll diagnosis. These were
combined with four regression models to establish a SPAD value diagnostic model. This
lays a foundation for the dynamic response of chlorophyll during the growth season of
pepper plants.

2. Materials and Methods

2.1. Sample Collection

The study area was located in Wuhu Dehong Ecological Agriculture Co., Ltd. (118◦12′ E,
31◦26′ N), Shuangba Village, Shenxiang Town, Jiujiang District, Wuhu City, China. It
has a subtropical temperate monsoon climate, with sufficient sunlight and rainfall. The
experimental variety was Wanjiao 177, the planting time was 20 July 2020, and the collection
time was 7 September 2020. The pepper samples were collected at the seedling stage. The
fertilization level was selected according to the local conventional fertilization level. The
pepper leaves are arranged in descending order according to the leaf growth sequence
and are divided into upper, middle, and lower leaves. The upper leaves were the smallest
in size, while the lower leaves were the largest. The size of the middle leaves was in
between the sizes of the upper and lower leaves (Figure 1). The leaves of the pepper plants
were artificially plucked. Fifty leaves were randomly collected from three leaf positions
of different pepper plants. Hence, 150 leaf samples in total were placed in a sealed bag to
keep the leaves fresh, and taken back to the laboratory immediately to obtain hyperspectral
image data.
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Figure 1. Pepper plant leaf position.

2.2. Chlorophyll Determination

The SPAD-502 Plus chlorophyll meter (Konica Minoita, Tokyo, Japan) was used to
measure chlorophyll content. SPAD values can be directly used as relative values to charac-
terize chlorophyll content [12–14]. The chlorophyll meter has the following characteristics:
measurement area: 2 × 3 mm2; measurement accuracy: ±1.0 SPAD unit; and measurement
range: −9.9–199.9 SPAD unit. Each leaf was divided into six plots (as shown in Figure 2).
Three measurements were recorded for each plot, and the average value was taken as the
final result of the chlorophyll content of the leaves.

Figure 2. Sampling area of pepper leaves.

The formula used to calculate the SPAD values is shown in Equation (1):

SPAD =K · lg
(

IRt/IR0
Rt/R0

)
(1)

where K is a constant; IRt is the incident 940 nm infrared light intensity passing through
the blade; IR0 is the emitted infrared light intensity; Rt is the incident 650 nm red light
intensity passing through the blade; and R0 is the emitted red light intensity.

2.3. Hyperspectral Data Collection

After completing the chlorophyll measurements, the leaves were cleaned with ultra-
pure water, and the excess surface water was removed using an absorbent paper. Figure 3
shows a schematic diagram of the hyperspectral imaging system used in this study (Wuxi
Dualix Spectral Image Technology Co., Ltd. (formerly Sichuan Dualix Spectral Image Tech-
nology Co., Ltd.), Wuxi, China, Model: GaiaSorter). The imaging system mainly includes
a tungsten halogen lamp as the light source, a hyperspectral camera, an electronically
controlled mobile platform, a server and computer control, and other parts.
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Figure 3. Schematic diagram of the GaiaSorter hyperspectral imaging system. 1. Hyperspectral
imager, 2. imaging lens, 3. halogen lamp, 4. sample table, 5. correction whiteboard, and 6. electric
translation table.

The height between the hyperspectral camera and the displacement platform was
60 cm, and the height between the halogen tungsten light source and the displacement
platform was 40 cm. The wavelength range was 400–1000 nm, and the spectral resolution
was 3.6 nm. Experiments were performed in a dark box to perform image correction on the
collected spectral images. The image correction formula is given in Equation (2).

Rre f =
DNraw − DNdark

DNwhite − DNdark
(2)

where Rre f is the corrected image, DNraw is the original image, DNwhite is the whiteboard
image, and DNdark is the blackboard corrected image.

2.4. Spectral Extraction

ENVI 5.3 was used to read the hyperspectral image data of pepper leaves and select six
representative rectangular regions of interest (avoiding leaf veins) in the image (Figure 2)
as the original spectrum of the sample. A weighted average spectrum was also obtained,
which was used as the original spectral data (Figure 4).

Figure 4. Original spectral curve.
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2.5. Research Methods
2.5.1. Correlation Coefficient Method

Spearman’s correlation coefficient, which is an index that measures the association
between two sets of variables, was used to describe the relationship between the spectral
characteristics and SPAD value of pepper leaves [15,16]. We used a monotonic equation to
evaluate the correlation between the two statistical variables. The formula used is shown
in Equation (3):

ρ =
∑N

i=1 (xi − x)(yi − y)√
∑N

i=1 (xi − x)2∑N
i=1 (yi − y)2

(3)

where ρ represents the correlation coefficient, xi is the reflectance of the ith band, yi is the
SPAD value of the ith leaf sample, x is the average reflectance, and y is the average SPAD
value of the pepper leaves.

2.5.2. Stability Competitive Adaptive Reweighted Sampling (sCARS)

sCARS is an advanced wavelength selection method that gradually removes unimpor-
tant variable information to achieve the purpose of collecting informative variables [17,18].
The algorithm defines the critical wavelength as the wavelength with the largest absolute
value of the regression coefficient in a multivariate linear model (such as PLSR). sCARS
can be summarized as follows:

1. Select N wavelength subsets from N Monte Carlo sampling [19] runs in an iterative
and competitive manner. In each sampling process, a fixed proportion of samples is
randomly selected to establish a calibration model.

2. Perform a two-step process to select characteristic wavelengths: use an exponential
decrease function [17] for wavelength selection and use adaptive reweighted sampling
to achieve competitive wavelength selection.

3. Use cross-validation [20] to select the subset with the smallest cross-validation root
mean square error (RMSECV).

2.5.3. Iteratively Retaining Informative Variables

Iteratively retaining informative variables (IRIV) is a feature variable selection algo-
rithm based on the binary matrix shift filter (BMSF) [21]. Each row of the matrix (containing
random combination of the variables) separately establishes partial least-squares mod-
els and uses RMSECV to evaluate the effect of different random variable combination
models [22,23]. Based on the model cluster analysis method, the average value of RM-
SECV with and without the variable is calculated for each wavelength, and the difference
between the two, known as the difference of mean values (DMEAN), is obtained. The
non-parametric test method, Mann–Whitney U test, is used for hypothesis testing [22,24].
Each iteration generates different DMEAN and p values. Both the strongly and weakly
informative wavelength variables are retained. After multiple iterations, the uninformative
wavelength variables and interfering wavelength variables are eliminated, and finally,
reverse elimination is performed to obtain the optimal characteristic wavelength variable.

Step 1: The raw data of m samples of p variables are formed into a matrix A containing
only the numbers 0 and 1, where the number 1 represents a variable used for modeling, and
the number 0 means that the variable was not used for the modeling. The RMSECV value
obtained by five-fold cross-validation was used as the evaluation standard, and the vector
of m × 1 size was recorded as RMSECV0. substitute 1 in the ith column (i = 1, 2, ..., p) of
matrix A for 0, and 0 for 1 to obtain matrix B. The partial least squares (PLS) model is also
established in each row of matrix B, and the vector of m × 1 size is recorded as RMSECVi.

Step 2: Define ϕ0 and ϕi to evaluate the importance of each variable as follows:

ϕ0k =

{
kthRMSECV0
kthRMSECVi

Aki = 1
Bki = 1

; ϕik =

{
kthRMSECV0
kthRMSECVi

Aki = 0
Bki = 0

(4)
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where kth represents the kth line in the vector, and the kthRMSECV0 and kthRMSECVi rep-
resent the values of the kth row in the vectors RMSECV0 and RMSECVi, respectively. The
mean values of ϕ0 and ϕi are denoted as Mi,in and Mi,out, respectively, and the two mean
values are subtracted to obtain DMEANi. If DMEANi < 0, it is a strongly informative
variable or a weakly informative variable; if DMEANi > 0, it is an uninformative variable
or an interfering variable.

DMEANi = Mi,in − Mi,out (5)

p = 0.05 was defined as the threshold for the Mann–Whitney U test [21], where the
p value, denoted as pi, is computed by the Mann–Whitney U test with the distribution of
ϕ0 and ϕi. The smaller the pi value, the more significant the difference between the two dis-
tributions. Finally, the variables were divided into the four categories (strongly informative
variables, weakly informative variables, uninformative variables, and interfering variables).

Step 3: Strongly informative variables and weakly informative variables are retained
for each iteration, and uninformative variables and interfering variables are eliminated, so
that a new subset of variables is generated. Return to step 1 for the next iteration until there
are only strong and weak informative variables left. The defined variable types are listed
in Table 1.

Table 1. Variable classification rules.

Wavelength Variable Type Classification Rules

Strongly informative DMEANi < 0, Pi < 0.05
Weakly informative DMEANi < 0, Pi > 0.05

Uninformative DMEANi > 0, Pi > 0.05
Interfering DMEANi > 0, Pi < 0.05

Step 4: The backward elimination of the reserved variables is undertaken as follows:
(a) Denote t as the number of reserved variables.
(b) For all the reserved variables, obtain the RMSECV value with five-fold cross-

validation using PLS, which is denoted as θt.
(c) Leave out the ith variable and apply five-fold cross-validation to the remaining

t − 1 variables to obtain the RMSECV value θ−i. Conduct this for all variables i = 1, 2, . . . , t.
(d) If min{θ−i, 1 ≤ i ≤ t} > θt, step (g) is performed.
(e) When excluding the ith variable with the minimum RMSECV value, remove the

ith variable and change t to be t − 1.
(f) Repeat steps (a)–(e).
(g) The remaining variables are the final informative variables.

2.5.4. Partial Least-Squares Regression

Partial least-squares regression (PLSR) is a spectral analysis method that includes
multiple linear regression, canonical correlation analysis, and principal factor analysis. The
main objective of PLSR is to establish a linear model of independent variables, particu-
larly in cases where two groups containing a large number of highly linearly correlated
variables are analyzed. PLSR is also used when the number of samples is less than the
number of variables to avoid overfitting [25–27]. The principle of PLSR is as follows. First,
extract the mutually independent components (x1, x2,...,xm) from the independent variable
Th(h = 1, 2, . . .). The extracted principal components carry as many original components as
possible. Then, extract the independent components (y1,y2, . . . , ym) from the independent
variable Uh = (h = 1, 2, . . .). The covariance between Th and Uh must be maximized, and
the regression equation between the extracted components and the dependent variable is
established through the multiple regression method. The basic model of the PLSR is:

X = ThPT + E (6)

Y = UhQT + F (7)
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where P and Q are m × h orthogonal load matrices, and E and F are error terms, which are
random variables that follow a normal distribution.

2.5.5. Extreme Gradient Boosting (XGBoost)

XGBoost is a distributed gradient boosting algorithm based on classification and
regression trees. XGBoost is popular in the fields of machine learning and data mining and
has excellent judgment and recognition capabilities. The basic principle is to weigh the
results of multiple decision trees (weak classifiers) as the final output (strong classifier) [28].
XGBoost achieves good control of model complexity by adding rule items to the objective
function, thereby solving the problem of collinearity between the variables to a certain
extent and preventing overfitting of the model. In the XGBoost model, the second-order
Taylor series is used for the cost function, and the first-order and second-order derivatives
are used to approximate the optimization of the objective function closer to the actual value,
thereby improving the prediction accuracy [29,30].

2.5.6. Random Forest Regression (RFR)

RFR is an integrated statistical learning classification and regression algorithm that
combines multiple decision trees to produce similar predictions for different features of the
same phenomenon [31]. The output is the average of all the decision tree results in a random
forest, assuming that the training set is independently extracted from the distribution of
random vectors. The prediction result of the model is the mean of the k regression trees.

2.5.7. Gradient Boosting Decision Tree (GBDT)

GBDT is a comprehensive algorithm with a strong learning strategy. Although the
original purpose was to solve the classification problem, it has been successfully applied in
the field of regression [32,33].

Fm(x) = Fm−1(x) + hm(x) (8)

Here, hm(x) represents the basic functions of the weak learners. In GBDT, the basic
function hm is a small regression tree of fixed size, and the GBDT model Fm(x) can be
regarded as the sum of m small regression trees. A new tree is generated for each iteration,
m. A simple tree is determined by the deviation between the experimental measurements
and all previous model (i.e., gradient) predictions. Then, the regression tree is incorporated
into the GBDT model.2.5.8. Software

CA, sCARS, and IRIV were programmed in MATLAB Version 2017b. SPXY and the
regression models (PLSR, XGBoost, RFR, GBDT) were written in Python/Jupyter Notebook.
The machine learning algorithms in the scikit-learn packages were also used.

2.6. Accuracy Evaluation

A 10-fold cross-validation was used to evaluate the accuracy of the model. The original
dataset was randomly divided into 10 subsets with approximately equal sample sizes. Nine
of them were combined as the training set in turn, and the one remaining set was used
as the test set. In each test, the evaluation index, such as the correct rate, was calculated,
and the generalization ability of the model was evaluated by taking the average value of
the evaluation index after k tests. The parameters of determination coefficients (R2

cv), root
mean square error (RMSEcv), and mean absolute error (MAEcv) generated by 10- fold cross
validation were used to measure the accuracy of the models. The closer R2

cv is to 1, the
better the stability of the model and the higher the degree of fit. The RMSEcv and MAEcv
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were used to test the predictive ability of the model. The smaller the RMSEcv and MAEcv,
the better the predictive ability.

R2 =

⎛
⎜⎜⎜⎜⎝

n
∑

i=1
(xi − x)(yi − y)√

n
∑

i=1
(xi − x)2

√
n
∑

i=1
(yi − y)2

⎞
⎟⎟⎟⎟⎠ (9)

RMSE =

√
∑n

i−1 (yi − ŷi)
2

n
(10)

MAE =
1
m∑n

i=1|yi − ŷi| (11)

where n is the number of samples, yi is the measured value, ŷi is the predicted value, and y
is the average of the measured values.

2.7. Technical Roadmap

In this study, 150 samples of pepper leaves with different leaf positions were selected as
the research object, and the hyperspectral image data and chlorophyll content of the pepper
leaves were obtained. The technical roadmap is illustrated in Figure 5. The hyperspectral
images were first white-calibrated, and then the original spectral data were obtained
through the region of interest. The CA, sCARS, and IRIV methods were used, respectively.
The IRIV screens the characteristic bands and uses PLSR, XGBoost, RFR, and GBDT to
construct regression models. A 10-fold cross-validation was used as the accuracy evaluation
index to filter out uninformative variables. The optimal algorithm reuses the constructed
model to establish the inversion map of pepper leaf chlorophyll distribution, which lays
the foundation for exploring the dynamic response of pepper chlorophyll during the
growth period.

Figure 5. Technical Roadmap.

3. Results

3.1. Selection of Characteristic Band Based on CA Algorithm

Spearman’s correlation analysis was performed between the original spectral re-
flectance of the whole wave band (400–1000 nm) and the SPAD values of pepper leaves.
The spectral reflectance of each band was correlated with the SPAD value and a correlation
curve was drawn. As shown in Figure 6, the overall correlation was relatively high, and the
volatility was relatively large. In visible light (533–560 nm), the correlation is highly nega-
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tive. After 697 nm, the correlation tends to be stable and continues to increase. Through the
significance level test of p=0.01, the band with a correlation greater than 0.65, was finally
extracted as the sensitive band. This significant band range was 403–475 nm, with a total
of 76 bands, accounting for 43.18% of the overall variable. They are 533.3 nm, 536.7 nm,
540 nm, 543.4 nm, 546.7 nm, 550.1 nm, 553.4 nm, 556.8 nm, 560.1 nm, 697.1 nm, 700.6 nm,
704.1 nm, 707.6 nm, 711.1 nm, 767.6 nm, and 771.1–990.4 nm.

Figure 6. Correlation of SPAD values and spectral reflectance.

3.2. Selection of Characteristic Band Based on SCARS Algorithm

Using the original spectrum as the input spectrum, the specific calculation process of
the sCARS algorithm is shown in Figure 7. Figure 7a shows that as the number of sCARS
iterations increases, the number of wavelengths retained gradually decreases. The decrease
speed is from fast to slow, indicating that sCARS has two stages, “rough selection” and
“selection” in the process of screening characteristic bands. Figure 7b shows the change
in trend of 10-fold cross-validation, which has a trend from large to small and then to
large. When the operation reaches 459 times, the value is the smallest, which means that
at 459 times, the wavelength that affects the SPAD value modeling of the pepper leaf is
eliminated. The smallest is the best selection of the band subset, and a total of 46 bands
were selected, accounting for 26.14% of the overall variable. They are 386.6 nm, 392.9 nm,
402.5 nm, 415.4 nm, 431.5 nm, 526.7 nm, 530.0 nm, 590.5 nm, 593.9 nm, 597.3 nm, 600.7 nm,
610.9 nm, 614.3 nm, 617.7 nm, 624.6 nm, 641.7 nm, 645.1 nm, 676.2 nm, 679.7 nm, 683.2 nm,
693.6 nm, 711.1 nm, 718.1 nm, 732.2 nm, 832.1 nm, 850.2 nm, 853.8 nm, 868.4 nm, 872.0 nm,
875.7 nm, 879.3 nm, 890.3 nm, 894.0 nm, 916.0 nm, 919.7 nm, 923.4 nm, 927.1 nm, 930.8 nm,
938.2 nm, 945.6 nm, 953.0 nm, 960.5 nm, 971.7 nm, 979.2 nm, 982.9 nm, and 986.7 nm.

Figure 7. Characteristic variable selection process of sCARS algorithm. (a) Changes in the number of
waveband variables. (b) Validation of RMSECV. (c) Path of variable regression coefficients.

3.3. Selection of Characteristic Band Based on IRIV Algorithm

The purpose of the IRIV algorithm is to eliminate irrelevant variables and retain
variables related to the SPAD value of pepper leaves. The algorithm uses a 5-fold cross-
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validation method to establish a partial least-squares model to select the characteristic
variables. The IRIV algorithm has gone through seven rounds. As shown in Figure 8, the
number of iteration variables in the first three rounds decreased rapidly, from 176 to 48, and
then the rate of variable reduction slowed down. After the 6th iteration, the uninformative
variables and interfering variables are completely eliminated. In general, only variables
with a large amount of information are selected as the best set of variables. Although
they have significant positive effects, they are not always optimal because the positive
effects of weakly informative variables are ignored. Thus, weakly informative variables
are retained at this stage. Therefore, IRIV is used to search for important variables through
multiple iterative loops until there are no uninformative or interfering variables, and the
optimal characteristic wavelength variable is obtained through reverse elimination. A total
of 26 bands were selected, accounting for 14.77% of the overall variables. They are 477.1 nm,
490.3 nm, 510.1 nm, 526.7 nm, 597.3 nm, 600.7 nm, 610.9 nm, 614.3 nm, 617.7 nm, 624.6 nm,
628 nm, 638.3 nm, 648.6 nm, 676.2 nm, 725.1 nm, 728.7 nm, 839.3 nm, 853.8 nm, 861.1 nm,
868.4 nm, 875.7 nm, 879.3 nm, 894 nm, 916 nm, 945.6 nm, and 979.2 nm.

 
(a) (b) 

Figure 8. IRIV algorithm selection process: (a) The change in the number of retained informative
variables in each round; (b) Changes in P value and DMEAN in the sixth round.

3.4. Screening Results

As shown in Figure 9, the order of the three methods used to simplify the model
capacity is as follows: IRIV > sCARS > CA. The CA, sCARS, and IRIV algorithms selected
76, 46, and 26 characteristic variables for modeling, accounting for only 43.18%, 26.14%,
and 14.77% of the entire band, respectively. The sensitive wavelengths of pepper leaf SPAD
value were concentrated between 415.4–431.5 nm, 526.7–676.2 nm, and 839.3–979.2 nm,
indicating that these three bands are closely related to pepper leaf SPAD value, as shown
in Figure 9, where the blue line part is the same part of the band selected by the three
feature selection methods, and they are 853.8 nm, 868.4 nm, 875.7 nm, 879.3 nm, 916 nm,
945.6 nm, and 979.2 nm. This may be related to the plant nutritional status. When the
nutritional status is good, the content of chlorophyll in leaves is high, there are more cell
layers, and the gap between mesophyll and cells is thick, which can further increase the
spectral reflectance. Finally, the higher the SPAD value, the higher the reflectance, and
the same correlation is also high, which provides a reliable mathematical basis for the
chlorophyll diagnosis model of pepper leaves [34].
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Figure 9. Comparison chart of optimal variable distribution.

3.5. Optimal Algorithm Selection
3.5.1. Accuracy Comparison of Different Methods

A comprehensive comparison of the model prediction results established by different
variable selection methods can be seen in Table 2. According to the 10-fold cross-validation
discriminant results, the model based on the characteristic variables of the IRIV algorithm
achieves the highest accuracy, and the modeling accuracy of each model is relatively high.
R2

cv is above 0.8, and the accuracy of the four models constructed by it is much greater
than that of the other three methods. It can be seen that the IRIV method is an effective
variable selection method and is better than the full band, CA, and sCARS methods. This
also shows that the IRIV algorithm is an effective means of improving the accuracy of
model prediction and can improve modeling efficiency. In addition, a comparison of the
four modeling methods indicates that the characteristic variable modeling of the PLSR
algorithm achieves the highest accuracy. However, in terms of the overall accuracy, there is
not much difference among the four models.

Table 2. Comparison of accuracy of different methods.

Selection
Method

Number of
Bands

Modeling
Algorithm

R2
cv RMSEcv MAEcv

Full bands 176

PLSR 0.52 2.57 2.11
XGBoost 0.48 2.80 2.28

RFR 0.42 2.95 2.83
GBDT 0.50 2.76 2.19

CA 76

PLSR 0.48 2.59 2.1
XGBoost 0.29 3.00 2.39

RFR 0.41 2.95 2.4
GBDT 0.44 2.84 2.23

sCARS 46

PLSR 0.55 2.59 2.13
XGBoost 0.54 2.68 2.17

RFR 0.43 2.92 2.32
GBDT 0.53 2.74 2.17

IRIV 26

PLSR 0.84 2.46 2.02
XGBoost 0.81 2.76 2.30

RFR 0.80 2.85 2.28
GBDT 0.80 2.82 2.22
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3.5.2. Model Construction Based on the Bands selected by the IRIV Algorithm

Figure 10 shows a scatter plot of the four estimation models under IRIV feature
variable screening. From the fitting effect, the results of the four modeling methods were
evenly distributed on both sides of the 1:1 straight line. This shows that selecting effective
feature variables from the full band spectral data and using these feature variables to build
a prediction model can not only greatly simplify the model and reduce the amount of
model calculations, but also improve the prediction ability and robustness of the built
model. It also shows that the model constructed using this method can be used in the actual
monitoring of the SPAD value of pepper leaves.

Figure 10. Scatter plot of measured and predicted values of the four models: (a) PLSR; (b) XGBoost;
(c) RFR; and (d) GBDT.

3.6. Chlorophyll Distribution of Pepper Leaves

Using the IRIV-XGBoost model, we estimated the SPAD value of each pixel of pepper
leaves, and then drew the chlorophyll distribution map of the pepper leaves. Each SPAD
value corresponds to a specific color in the color table. The specific steps are as follows:

Step 1: Hyperspectral images of pepper leaves were obtained under 26 characteristic
wavelengths selected by the IRIV algorithm.

Step 2: The reflectivity of each pixel in the characteristic wavelength image was
extracted.

Step 3: The SPAD value of each pixel was calculated, and a gray distribution map
was obtained.

Step 4: The gray distribution map was used to draw the SPAD distribution map of the
pepper leaves at different leaf positions.
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As shown in Figures 11–13, different colors (green, yellow, and red) and color depth
represent the SPAD value of pepper leaves at different concentrations. Overall, leaf chloro-
phyll spreads around the central vein. In the lower leaf, the overall color was evenly
distributed, and the yellow and red were darker, while the middle leaf and upper leaf
chlorophyll were lighter in yellow and red. The distribution of SPAD value in different
leaf positions can be seen intuitively: lower > middle > upper, which is consistent with the
actual measurements regarding the distribution and changes in the trend of pepper leaf
SPAD values, as well as with the growth law of the pepper seedling stage.

Figure 11. Distribution of SPAD value in the lower leaf in different models: (a,e—PLSR),
(b,f—XGBoost), (c,g—RFR), (d,h—GBDT).

As shown in Table 3, the statistical information of the inversion graph constructed by
the three nonlinear models of XGBoost, RFR, and GBDT is relatively close to the true value,
while the statistical results of the linear model PLSR show a maximum value of 82 and
a minimum value of 2. This is inconsistent with the actual situation. In terms of overall
performance, IRIV-XGBoost performed the best.
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Figure 12. Distribution of SPAD value in the middle leaf in different models: (a,e—PLSR),
(b,f—XGBoost), (c,g—RFR), (d,h—GBDT).

Table 3. Statistical information of chlorophyll inversion map of pepper leaves under different models
and different leaf positions.

Leaf Position Measured Value Model Method Min Value Max Value

Lower leaf

66.0

PLSR 19 82
XGBoost 43 69

RFR 46 67
GBDT 43 70

69.0

PLSR 21 85
XGBoost 44 69

RFR 47 67
GBDT 45 69

Middle leaf

61.0

PLSR 14 82
XGBoost 42 69

RFR 45 66
GBDT 42 69

60.6

PLSR 12 83
XGBoost 41 69

RFR 45 66
GBDT 44 69

Upper leaf

48.3

PLSR 3 73
XGBoost 42 67

RFR 45 65
GBDT 42 68

50.5

PLSR 2 72
XGBoost 42 67

RFR 45 64
GBDT 42 68
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Figure 13. Distribution of SPAD value in the upper leaf in different models: (a,e—PLSR),
(b,f—XGBoost), (c,g—RFR), (d,h—GBDT).

3.7. Statistical Summary Based on the IRIV-XGBoost Algorithm

The SPAD inversion images of pepper leaves obtained by the IRIV-XGBoost algorithm
were separately counted. From the mean and standard deviation of each pixel of the
inversion image (Figure 14), most of the predicted values are consistent with the measured
values, and the predicted and measured values have strong correlation. This shows that
the use of hyperspectral imaging technology to construct the SPAD distribution map of
pepper leaves is effective, realizes the rapid and accurate acquisition of the SPAD of pepper
leaves at a small area scale, and provides a theoretical basis for later crop growth and the
development of new equipment.

Figure 14. Predicted SPAD value and measured value with the standard deviation as error bars
(No.1,2—Figure 11b,f, No.3,4—Figure 12b,f, No.5,6—Figure 13b,f).
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4. Discussion

CA, sCARS, and the IRIV algorithm respectively select 76, 46, and 26 characteristic
variables for modeling. The results show that prior to modeling, screening the characteristic
variables of the original spectrum not only ensures the accuracy of the model, but also
greatly reduces the complexity of the model. There are two reasons for this phenomenon:
(1) A large number of spectral bands in hyperspectral data provides us with rich spectral
information. At the same time, it also leads to redundant information and increases
the complexity of data processing, which increases the calculation deviation of statistical
parameters. The extraction of characteristic parameters can effectively reduce the dimension
of hyperspectral data so as to achieve the effect of optimizing the model [35,36]. (2) The IRIV
strategy considers the synergetic effect among variables through random combination. By
means of this, only strongly informative and weakly informative variables are retained in
each round. This is due to their positive effect under the condition of random combinations
among variables. When compared with two outstanding variable selection methods, the
outstanding performance of IRIV indicates that it is a good alternative to variable selection
in multivariate calibration [22].

The three nonlinear models, XGBoost, RFR, and GBDT, obtained similar results in the
hyperspectral imaging inversion stage. All three achieved good results and conformed
to the measured value distribution and growth law of pepper. However, the PLSR does
not match the actual situation in the inversion stage. Although the accuracy of PLSR in
the modeling stage was slightly higher than that of the other three models, it performed
poorly in the inversion stage. This is because the PLSR model is a linear model, and it has
certain limitations when dealing with high-dimensional data. PLSR can solve the problems
of multiple variables and multiple correlations between variables, but it will lose part of
the effectiveness after the principal component transformation of the data. Therefore, PLSR
is weak in solving nonlinear problems [37,38], and the three nonlinear models of XGBoost,
RFR, and GBDT can better solve the complex nonlinear relationship between hyperspectral
images and SPAD value. The model has good anti-noise ability, high model accuracy, and
good robustness [39].

As shown in Figures 11–13, the SPAD value of pepper leaves exhibited a stepped
distribution. The farther away from the center of the plant, the lower the chlorophyll index
value. The lower leaves contained higher SPAD value than the upper leaves. The reasons
for this analysis may be as follows: (1) Chlorophyll is a light-absorbing substance and an
important nutritional indicator. Plant nutrients are transported from the stem upward
through the center of the plant to the edge of the leaf, so the SPAD value in the center of
the plant is slightly higher than in the edge of the leaf. (2) Since the collected pepper plants
are in the seedling stage and the lower leaves are still in the vigorous growth period, they
contain more mesophyll, and the leaf functions characterized by chlorophyll are growing
vigorously. The leaves are only formed during the seedling stage, and they are in a vigorous
growth period. Respiration was strong. Although the stomatal conductance is high, many
internal structures are imperfect, so the SPAD value is relatively low. As the leaf age
increased, the leaf structure became complete, and the SPAD value gradually increased.

5. Conclusions

Hyperspectral data for pepper leaves located at different positions on the plant were
collected to analyze the differences in the SPAD value distribution and the dynamic char-
acteristics of the growth period of the pepper plants. The average spectra of the SPAD
value measurement positions of pepper leaves were extracted, and CA, sCARS, and IRIV
were used to screen feature bands. These methods were combined with PLSR, XGBoost,
RFR, and GBDT to construct regression models, and the distribution of SPAD value in
pepper leaves at different leaf positions was drawn. The main conclusions of this study are
as follows:

(1) A comprehensive comparison of the full band, CA, sCARS, and IRIV variable
screening feature bands was undertaken to construct a variety of SPAD value estimation
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models and the model capabilities were tested through 10-fold cross-validation. The
estimation capabilities of the different models were quite different. The IRIV algorithm
achieved the highest accuracy, above 0.8, which greatly reduces the complexity of the model
while ensuring the accuracy of the model.

(2) Four modeling methods were compared: PLSR, XGBoost, RFR, and GBDT. The
accuracy of PLSR in the modeling stage is slightly higher than that of the other three models,
but it performs poorly in the inversion stage. XGBoost is better suited to solve the complex
nonlinear relationship between hyperspectral images and SPAD value. The model has
good anti-noise ability, high model accuracy, and good robustness.

(3) The IRIV-XGBoost model was used to calculate the SPAD value of each pixel of
pepper leaves and then invert the chlorophyll distribution map of pepper leaves at different
leaf positions, which can reflect the dynamic response of pepper leaf chlorophyll in plants
in the seedling stage and finally realize the non-destructive detection of pepper leaf content
for different leaves and the visual expression of chlorophyll distribution. This result is
consistent with the distribution and change trend of the SPAD value of pepper leaves when
measured, and it is also in line with the growth law of pepper seedling stage. In future,
the dynamics of different growth periods need to be tested and verified in the field to lay a
foundation for the overall dynamic diagnosis of pepper canopy.
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Abstract: Kakadu plum (KP; Terminalia ferdinandiana Exell, Combretaceae) is an emergent indigenous
fruit originating from Northern Australia, with valuable health and nutritional characteristics and
properties (e.g., high levels of vitamin C and ellagic acid). In recent years, the utilization of handheld
NIR instruments has allowed for the in situ quantification of a wide range of bioactive compounds
in fruit and vegetables. The objective of this study was to evaluate the ability of a handheld NIR
spectrophotometer to measure vitamin C and ellagic acid in wild harvested KP fruit samples. Whole
and pureed fruit samples were collected from two locations in the Kimberley region (Western
Australia, Australia) and were analysed using both reference and NIR methods. The standard error
in cross validation (SECV) and the residual predictive deviation (RPD) values were 1.81% dry matter
(DM) with an RPD of 2.1, and 3.8 mg g−1 DM with an RPD of 1.9 for the prediction of vitamin
C and ellagic acid, respectively, in whole KP fruit. The SECV and RPD values were 1.73% DM
with an RPD of 2.2, and 5.6 mg g−1 DM with an RPD of 1.3 for the prediction of vitamin C and
ellagic acid, respectively, in powdered KP samples. The results of this study demonstrated the
ability of a handheld NIR instrument to predict vitamin C and ellagic acid in whole and pureed KP
fruit samples. Although the RPD values obtained were not considered adequate to quantify these
bioactive compounds (e.g., analytical quantification), this technique can be used as a rapid tool to
screen vitamin C in KP fruit samples for high and low quality vitamin C.

Keywords: near infrared; vitamin C; ellagic acid; wild harvest; Kakadu plum

1. Introduction

Kakadu plum (KP; Terminalia ferdinandiana Exell, Combretaceae) is an emerging in-
digenous fruit originating from Northern Australia, with valuable health and nutritional
characteristics and properties such as high levels of vitamin C, ellagic acid, and other
polyphenolic compounds [1–6]. Kakadu plum is the most common name for this fruit,
and it is found from the Kimberley (Western Australia) to Darwin (Northern Territory)
and Queensland regions [1–6]. Commercial harvesting of KP fruit started in the late 1990s.
While the vast majority of production is from wild harvested fruit [1–6], some commercial
orchards can be found in Australia. Like many wild-harvested native foods, weather condi-
tions, including drought, bushfires, and cyclones, might have an impact on the volume of
fruit available, so production is highly variable from year to year [1–6]. The main harvest
time is January, although some trees have multiple flowerings and can produce fruit up
until July, depending on the region. The production of this fruit is estimated to average
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15–17 tonnes per annum [1–6]. Although the KP is commercialised as whole fruit, it can
be processed as a pureed or dehydrated powder (e.g., freeze dried) [7]. The dehydrated
powder is used as a functional food ingredient in order to add value to a wide range
of different food products (e.g., yogurts and ice creams), a common practice in the food
industry [1–7]. It is well recognised that the health benefits of native plants are attributed
to the content of antioxidant compounds such as natural ascorbic acid (vitamin C) and
polyphenols, including gallic and ellagic acids [4,5]. These antioxidants have become very
important in human health and nutrition, motivating the rapidly expanding search for
plant sources containing these compounds in the wild (e.g., native plants). Kakadu plant
materials (e.g., fruit and leaves) have high quantities of ellagic acid, together with the
bioactive forms of vitamin C (ascorbic acid), making this plant very attractive as a source
of natural antioxidants [4–6].

In recent years, applications based on the use of vibrational spectroscopy (near in-
frared, mid infrared, and Raman) have been utilised to quantify and monitor the composi-
tion and nutritional value in a wide range of plant and fruit materials [8–13]. In particular,
the use of near infrared (NIR) spectroscopy has demonstrated that it can be a versatile tool
to analyse different types of samples and conditions [8–13]. These recent developments
in portable and handheld instrumentation have opened a new window for utilising these
types of instruments to analyse and monitor the composition of fruit and vegetables [8–14].
In this context, the utilization of handheld instrumentation is allowing the quantification of
antioxidants and bioactive compounds in native or wild harvest fruit samples like KP fruit.

Therefore, the objective of this study was to evaluate the ability of a handheld NIR
instrument combined with chemometrics to measure vitamin C and ellagic acid concentra-
tions in KP fruit samples.

2. Materials and Methods

2.1. Samples

Kakadu plum fruit samples were wild harvested in January 2020 from two different
locations in the Kimberley region (Western Australia, Australia). Ten KP trees from each site
were randomly selected for harvesting (approximately 50–100 fruit per tree). The samples
were stored and transported to the laboratory under refrigerated conditions and then
immediately stored at −80 ◦C for further analysis. The frozen fruit samples were thawed
at room temperature (20 ◦C) before the NIR and reference analyses. After NIR scanning,
the fruit samples were blended into a puree using a mortar and pestle. Consequently, the
obtained pureed samples were analysed as a puree using the same NIR spectrophotometer
as described in the section below (infrared spectroscopic measurements). Following the
NIR analysis, the pureed samples were lyophilized (Lindner and May Ltd., Windsor,
QLD, Australia) and finely ground using a Retsch MM301 cryomill (Retsch GmbH, Haan,
Germany) in order to provide a uniform powder for the determination of vitamin C
and ellagic acid. After all of the fruit samples underwent NIR scanning, representative
samples were selected using principal component analysis in order to be utilised for further
reference analysis and calibration development.

2.2. Infrared Spectroscopic Measurements

The NIR spectra of either whole (n = 60) or pureed (n = 60) KP fruit samples were
collected using a portable NIR spectrophotometer (Micro-NIR 1700, Viavi, Milpitas, CA,
USA) operating in a 950–1600 nm wavelength range, with a spectral resolution of 10 nm
with no moving parts (Viavi Solutions, 2015, Milipitas, CA, USA). The NIR instrument was
connected through a USB interface to a notebook computer running proprietary software
(MicroNIR Prov 3.1, Viavi, Milpitas, CA, USA) for the acquisition of the diffuse reflectance
spectra of the samples (Viavi Solutions, 2015, Milipitas, CA, USA). The controlling parame-
ters for the spectral data acquisition were set at 50 min integration time and with an average
of 50 scans (MicroNIR Prov 3.1, Viavi, Milpitas, CA, USA). The reference spectra for the
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absorbance/reflectance calculations were collected using Spectralon® after the consecutive
scanning of 10 samples.

2.3. Determination of Ellagic Acid

The extraction and analysis of ellagic acid (EA) were conducted according to the
method previously reported by Williams and collaborators, with some modifications [5,6].
Briefly, 100 mg of powdered samples were extracted with 80% methanol containing 0.01N
HCl using a vortex, followed by sonication for 10 min. The free EA released in the
supernatant (referred to as extract A) was collected after being centrifuged (3220× g, 5 min
at 20 ◦C; Eppendorf Centrifuge 5810 R, Hamburg Germany), whereas the residues were
extensively extracted with absolute methanol in order to completely release the remaining
free EA (extract B).

In order to measure the EA existing under bound form (e.g., ellagitannins), hydrol-
ysis was conducted following the method reported by Williams and collaborators [5,6].
The obtained extract A was added into a 5 mL Reacti-Therm vial (Fisher Scientific, Belle-
fonte, PA, USA) and subjected to overnight hydrolysis at 90 ◦C using 2N HCl. The EA
released after hydrolysis was dissolved in methanol (referred to as extract C) before the
UPLC-PDA analysis.

EA in three different extracts was analysed using a Waters AcquityTM UPLC-PDA
System (Waters, Milford, MA, USA). The compound was separated on a Waters BEH Shield
RP C18 column (100 × 2.1 mm i.d; 1.7 μm) maintained at 35 ◦C. The mobile phases included
0.1% formic acid (FA) in Milli-Q water (A) and 0.1% FA in methanol (B). The flow rate was
0.3 mL/min, with the following gradient elution for B: 35% B isocratic conditions for 5 min,
50% B for 10 min, and 100% B for 15 min. The contents of free EA (extracts A and B) and
total free and bound EA (extracts B and C) were quantified using an external calibration
curve of ellagic acid acquired at 254 nm [5,6].

2.4. Determination of Vitamin C

The extraction and analysis of vitamin C in the powder samples were conducted
following a method previously described elsewhere [15]. Briefly, 100 mg of powdered
KP samples were extracted with 3% meta-phosphoric acid containing 8% acetic acid and
1 mL ethylenediaminetetraacetic acid (EDTA). The reduction of dehydroascorbic acid
(DHAA), which was also present in the extracts/samples, to ascorbic acid (L-AA) was
performed [15,16]. The total vitamin C (L-AA + DHAA) was determined using a Waters
UPLC-PDA system and a Waters HSS-T3 column (150 × 2.1 mm i.d; 1.8 μm; 25 ◦C), with
water with 0.1% formic acid as the mobile phase (0.3 mL/min) under isocratic elution.
Vitamin C was quantified using an external calibration curve of ascorbic acid acquired at
245 nm [15].

2.5. Data Analysis

The NIR spectra were pre-processed (second derivative, second order polynomial,
21 smoothing points) using The Unscrambler software (version 11, CAMO, Oslo, Nor-
way) [17]. A principal component analysis was conducted using The Unscrambler software,
after a second derivative with cross validation (full cross validation) [18]. Partial least
squares regression (PLS) was used to relate the NIR spectra with the content of vitamin
C and ellagic acid in the KP fruit samples analysed. To evaluate the performance of the
PLS models, validations were performed on two different datasets. For the purpose of this
study, the original dataset was split into two subsets of 70% (e.g., calibration) and 30% (e.g.,
validation), using the Kennard-Stone algorithm [19]. Thus, 40 uniformly distributed sam-
ples were selected and used in the calibration, while 20 samples were used for validation.
By performing data partitioning, knowledge of the training dataset did not affect the test
dataset, and the predictive power of the created model subsequently increased. Leave-one-
out cross-validation was applied on the calibration set for internal validation, and the test
set was used to externally validate the generated models. The coefficient of determination
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(R2), the standard error in cross validation (SECV), and the residual predictive deviation
(RPD) were used to evaluate the calibration models developed [18,20–22].

3. Results and Discussion

Table 1 reports the descriptive statistics (e.g., average, standard deviation, range, and
coefficient of variation) for the measurement of the dry matter, vitamin C, and ellagic acid
content in the KP fruit samples used to develop the NIR calibrations. Table 2 shows the
cross validation and validation statistics for the prediction of vitamin C and ellagic acid
in the set of whole and pureed KP fruit samples analysed. As stated above, the SECV
and the RPD (SD/SECV) were used to evaluate the ability of the PLS models developed
to predict these parameters [18,20]. SECV is a quantitative measure of how precise the
samples are predicted during validation where the bias is a systematic deviation of the
predicted values from the true value due to a particular measurement method [18,20]. The
SECV and RPD values were 1.81% dry matter (DM) with an RPD of 2.1, and 3.8 mg g−1

DM with an RPD of 1.9 for the prediction of vitamin C and ellagic acid, respectively, in the
set of whole KP fruit samples. Using the set of pureed KP samples, the SECV and RPD
values were 1.73% DM with an RPD of 2.2, and 5.6 mg g−1 DM with an RPD of 1.3 for
the prediction of vitamin C and ellagic acid, respectively. According to other authors, an
RPD value between 2 and 2.5 might indicate that rough quantitative predictions could be
possible, while a value between 2.5 and 3 or above might be associated with good and
excellent prediction accuracy [18,20–23]. The RPD values in this study were between 1.3 to
2.2 for the prediction of vitamin C and ellagic acid. Similar SECV values were reported
by other authors using mid infrared spectroscopy to predict ellagic acid in coastal oak
samples [24].

Table 1. Descriptive statistics for the measurement of vitamin C and ellagic acid in Kakadu plum
fruit samples analysed using NIR spectroscopy.

% DM VIT C (% DM) EA (mg g−1 DM)

Average 16.4 12.5 20.64
SD 1.2 3.81 7.7

Minimum 14.2 7.8 7.6
Maximum 18.7 19.3 31.5

CV (%) 7.3 30.4 37.4
CV—coefficient of variation (CV = SD/mean); DM—dry matter; EA—total ellagic acid; SD—standard deviation;
VIT C—vitamin C.

Table 2. Cross validation and validation statistics for the prediction of ellagic acid and vitamin C in
whole and pureed Kakadu plum sample analyses using near infrared reflectance spectroscopy.

R2
CV SECV Slope Bias LV RPDCV r SEP

Whole VIT C (% DM) 0.55 1.81 0.53 0.029 8 2.1 0.85 2.0
EA (mg g−1 DM) 0.57 3.8 0.61 −0.007 11 1.96 0.55 7.5

Puree VIT C (% DM) 0.86 1.73 0.87 0.10 8 2.2 0.89 1.9
EA (mg g−1 DM) 0.48 5.6 0.57 0.002 11 1.3 0.56 6.2

CV—cross validation; DM—dry matter; LV—number of optimal latent variables used to develop the models;
VIT C—vitamin C; EA—total ellagic acid; R2CV—coefficient of determination in cross validation; r—correlation
coefficient in prediction; RPD—SD/SECV; SECV—standard error for cross validation; SEP—standard error of
prediction.

R2 indicates the percentage of variance present in the true component values, which
will be reproduced in the prediction (18, 20–23). Depending on the R2 values obtained
during the calibration process, the NIR models can be classified as follows: possessing a
low correlation (0.26 < R2 < 0.49), models that can be used to discriminate between a low
and high composition of samples (0.50 < R2 < 0.64), models that can be used for a rough
prediction of the composition (0.65 < R2 < 0.81), possessing a good correlation (0.82 < R2

194



Sensors 2021, 21, 1413

< 0.90), and having excellent precision (R2 > 0.90) [18,20–23]. The PLS calibration models
developed using the pureed KP samples explained between 48% and 86% of the variation
related to vitamin C and ellagic acid, while 55% to 57% of the variation was explained in
the calibration models using the whole KP fruit samples. The observed differences in the
PLS models were associated with sample presentation (whole vs. pureed fruit).

It has been reported that the NIR spectra are comprised of wide bands originating
from overlapping absorptions corresponding to overtones and combinations of vibrational
modes involving C-H, O-H, and N-H chemical bonds [8,25,26]. Although the water ab-
sorption bands related to the O-H bonds are predominant in the NIR spectra of fruit such
as KP fruit, other molecules can be measured [8,25,26]. Carbohydrates, organic acids,
proteins, and other minor compounds can exhibit wide absorption bands as a result of
complex hydrogen bonding interactions with different molecules in the NIR wavelength
range [8,24,25]. Therefore, the interpretation of the NIR spectra is not as straight forward
as the interpretation of the MIR region [8,25,26].

In order to understand the basis of the NIR calibrations developed, the PLS loadings
were analysed and interpreted for each of the sample presentations used to develop the
calibrations for vitamin C and ellagic acid (e.g., whole or pureed fruit; Figures 1 and 2).
The relationships between the wavelength and PLS latent variables/loadings imply that
these wavelengths contribute to explaining the developed models [18,20–22]. Therefore,
the value and direction (e.g., positive and negative) of the PLS loading indicated the
contributions of individual wavelengths to the model [18,20–22]. It has been reported that
when PLS models are developed for the same parameters, using different pre-processing or
sampling presentation modes for the same sample, they can utilise different wavelengths
or loadings. In this study, sample presentations (whole vs. pureed) were shown to have
an effect by explaining the observed differences in the PLS calibrations and loadings. The
loadings used by the PLS calibrations for the measurement of vitamin C and ellagic acid in
the KP puree samples are shown in Figure 1. The loadings for vitamin C were observed
at wavelengths of around 1137 nm (C-H combination, aromatic groups), 1217 nm (C-H2),
1299 nm (first overtone of C-H combination), 1465 nm (N-H associated with secondary
amines), and 1558 nm (O-H), whereas for ellagic acid, the most important wavelengths
were observed at 1174 nm (C-H), 1310 nm (first overtone of C-H combination), 1410 nm
(O-H bonds), and 1510 nm (N-H amide) [8,25–33]. The PLS loadings observed for the
calibrations developed using the whole KP fruit samples are shown in Figure 2. The main
loadings were observed at 1093 nm (C-H, aromatic groups), 1347 nm (C-H), 1465 nm (N-H),
and 1570 nm (N-H) for vitamin C, while for ellagic acid, four wavelengths were observed
to influence the models, at 1155 nm (C-H), 1242 nm (C-H), 1440 nm, and 1508 nm (C-H and
N-H) [8,25–33]. It has been observed that the calibration models for the same parameters
used similar wavelengths, and these might indicate that the sample presentation (whole
vs. pureed fruit samples) might not have a greater effect on the information collected by
the NIR instrument for the prediction of the bioactive compounds in the set of KP fruit
samples analysed.

Figure 3 shows the scatter plot for the validation of the measurement of vitamin C
and ellagic acid in the pureed samples. The influence of the region or origin of the samples
was observed upon cross-validation models developed for vitamin C (bimodal distribution
as a result of region). However, this trend was not observed for the prediction of ellagic
acid in the KP fruit samples analysed. In addition, one and three outlier samples were
observed in the prediction of vitamin C and ellagic acid, respectively. A detailed analysis
of these outlier samples indicated that they corresponded to spectral outliers. These results
are in agreement with those reported by other authors, who indicated that region might
have an effect on the concentration of some of these bioactive compounds [1–3,7]. It is
well known that vitamin C is an important parameter because of its important health and
antioxidant properties, which have received a great deal of attention, thus necessitating
the development of rapid analytical methods [26]. However, some authors have reported
unsatisfactory results using short wavelengths in the NIR region or when the samples
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contain low concentrations of vitamin C (less than 10 g L−1) [22,28–33]. Another reported
issue might be related to the effect of moisture and its interference when determining
the presence of compounds with low concentrations. Recently, Oliveira-Folador and
collaborators [33] suggested that the high water content of the pulp of fruit (approximately
84%) contributes to the inherent complexity of NIR spectra. This might also be explained
by the fact that the NIR spectral range used is highly sensitive to elements that modify
light diffusion, such as physical structure and the presence and content of water in the
sample [20,21]. The physical structure of the fruit has been reported to have a large effect on
the acquisition of spectra, and this is strongly influenced by the light scattering phenomena,
as reported by other authors in different types of fruit and vegetables [22,28–32]. Figure 4
shows the principal component score plot of the KP samples scanned as whole and pureed
fruit. Two groups were observed related to the sample presentation used. Whole samples
tended to scatter along principal component one (50% of the variation), while most of
the pureed samples were clustered together. It is also important to highlight that the
NIR spectrum of fresh materials is essentially composed of a large set of overtones and
combination bands. This combination, together with the complex chemical composition
of a typical fruit or vegetable, makes the near infrared spectrum highly complex [8,25].
Regardless of these issues, the NIR region used in this study showed a high applicability
for the rapid screening of samples for high, medium, and low vitamin C and ellagic acid.

Figure 1. Partial least square loadings for the measurement of vitamin C and ellagic acid in whole Kakadu plum fruit
samples.
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Figure 2. Partial least square loadings for the measurement of vitamin C and ellagic acid in pureed Kakadu plum fruit
samples.

Figure 3. Scatter plot for the validation (n = 20) of the measurement of vitamin C (Panel (A)) and ellagic acid (Panel (B)) in
the pureed Kakadu plum samples.
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Figure 4. Principal component score plot of Kakadu plum samples analysed as pureed or as whole fruit using near infrared
spectroscopy.

4. Conclusions

The results of this study showed the ability of a handheld NIR instrument to predict
vitamin C and ellagic acid in both whole and pureed KP fruit samples. Although the
RPD values obtained are not considered adequate to quantify these bioactive compounds,
they can be used to quickly screen the fruit for high- and low-quality vitamin C. The
handheld instrument used in this study can be an alternative for rapid and throughput
screening of raw materials in remote areas, where it might not be appropriate to use other
types of instruments to assess fruit quality (e.g., bioactive compounds). However, further
studies are needed to optimize the prediction models for these bioactive compounds and to
evaluate the effect of region/origin and harvest (years) in order to make the models more
robust for routine applications.
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Abstract: The aim of the present work was to determine the main quality parameters on tuber
potato using a portable near-infrared spectroscopy device (MicroNIR). Potato tubers protected
by the Protected Geographical Indication (PGI “Patata de Galicia”, Spain) were analyzed both
using chemical methods of reference and also using the NIR methodology for the determination
of important parameters for tuber commercialization, such as dry matter and reducing sugars.
MicroNIR technology allows for the attainment/estimation of dry matter and reducing sugars in
the warehouses by directly measuring the tubers without a chemical treatment and destruction of
samples. The principal component analysis and modified partial least squares regression method
were used to develop the NIR calibration model. The best determination coefficients obtained for dry
matter and reducing sugars were of 0.72 and 0.55, respectively, and with acceptable standard errors of
cross-validation. Near-infrared spectroscopy was established as an effective tool to obtain prediction
equations of these potato quality parameters. At the same time, the efficiency of portable devices for
taking instantaneous measurements of crucial quality parameters is useful for potato processors.

Keywords: NIR spectrometer; intact potato; dry matter; reducing sugars; chemometrics; MPLS

1. Introduction

The potato is a traditional crop and the base of human diet in many world regions.
In the past two decades, potato production has experienced a greater growth compared
with other tubers, due to its high yield and human nutritional value [1,2]. This increase is
favored by the need to meet the increased demand for food due to the world population
growth [2]. Undoubtedly, the potatoes have played an important role in food availability,
and are currently still holding this role.

The potatoes are characterized as a good source of starch with unique characteristics
compared with the basic starches of cereals. In addition to fresh consumption, tubers can
be destined for the processing industry (such as chips, flakes, dry and frozen potatoes),
for additional food ingredients, such as tuber seed for field cultivation, animal feed, and
in the chemical industry as a source of starch and ethanol [2,3]. The potato in Spain is
mainly intended for fresh consumption, industrial processing, and animal feed. The highest
production of this tuber is found in the Northwest of Spain. Specifically, in Galicia, this
traditional agricultural activity is an important source of economic income for families [4],
in order for the production to be covered by the Protected Geographical Indication (PGI)
Patata de Galicia [5]. Kennebec, Agria, and Fina de Carballo are the potato varieties, which
are protected by the designation of origin comprising the largest extensions of this crop
in Galicia.

The potato tubers are stored for several months after their harvest, in order to meet
the market demands throughout the year. This increases their marketability and generates
an additional benefit for growers, processors, and consumers [6,7]. The composition of
the potato varies with the storage time and cultivar type [7–9]. Generally, the respiration
and the evaporation rate increase during maturity and tuber storage. This produces an
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increase in weight loss and peroxidase enzymatic activity together with a decrease in starch
and ascorbic acid content. As a consequence, reducing sugars are synthesized [8,10,11].
Therefore, the nutritional quality degradation of potato during their storage is induced,
with changes in starch content, dry matter, and reducing sugars [7,8,12]. Reducing sugar
is an important indicator for evaluating the quality of raw material in the processing of
potato industry [13]. Excess levels of reducing sugars cause an unacceptable non-enzymatic
brown color for fried products, due to the reaction between the reducing sugars and the
α-amino groups of amino acids [6,13,14]. Therefore, high reducing sugars in tubers are not
suitable for processing.

The industry has innovated and invested in improved post-harvest storage, preserving
potato quality for the seed, fresh, and processing sectors [3,15]. The acceptance of the tuber
in fresh markets depends mainly on its external appearance [9], but with dependence
on the internal composition, which is determined by destructive analytical procedures.
The amount of dry matter and reducing sugars are the main physicochemical parameters
that determine the industrial yield, quality, and flavor of potato tubers. The most used
conventional analytical techniques are colorimetric and titration measurement methods [13].
In addition, the operators themselves based on their professional experience select the
potato tubers by hand on the processing belt. However, this operation is not enough to
guarantee optimal quality and compliance with quality standards. Analytical methods
commonly employed to determine the main compounds of potatoes do not seem to be
suitable for in-line applications in the food industry since they require a large amount of
time and are destructive. Therefore, ensuring the minimum level of quality of basic foods
that is accepted by the consumer requires assessing its quality by swift and non-destructive
techniques [6,16,17]. As a result, the importance of quantifying the dry matter and the
sugars in-line during potato processing ensures optimal quality and discards unsuitable
tubers for marketing.

In the last years, visible- and near-infrared (VIS-NIR) spectroscopy has contributed to
providing non-destructive methods for the evaluation of the internal quality of fresh fruits and
vegetables or cereals [7,17–20]. The advantages of NIRS are time saving, offering the ability to
record many quality characteristics or ingredients with a single measurement. Some studies
have been conducted to test the near-infrared spectroscopy measuring quality parameters
of potatoes, such as sugars or dry matter content in laboratory [6,12,14,17,21–25]. According
to some researchers, the results of these studies are difficult to compare since some are
focused on whole tubers, unpeeled or peeled, in cross-sections or crushed in the form of
puree [6,25]. However, these researchers have shown the potential of the NIR technology
for the application in the potato industry. With the appearance of miniaturized or portable
spectrometers, NIR spectral analysis became feasible directly in the field or during food
processing [26,27]. The advance in the technological improvement of portable systems of
NIR spectrometers is displacing the benchtop instruments, due to the advantages in the
food industry [28]. In addition, this technique is favored by the increased availability of
low-cost portable devices, which can be more easily implemented into the processing line.
The estimation of potato quality parameters has not been applied with modern and portable
systems of this type.

Currently, the food industry faces the challenge of the demand for high quality
products with the possibility of monitoring much of the product in real time, but meeting
with the requirements of food safety and traceability [29]. Spectroscopic sensors are optimal
instruments for real time analysis of analytical techniques [27], with direct measurements
in situ, which are very flexible and rugged, without the use of chemical reagents and
waste [16,17,20,26,29]. The objective of this paper was to investigate the feasibility for
measuring the main quality parameters of intact potatoes by means of a portable near-
infrared (MicroNIR) spectroscopy device. The estimation of dry matter and reducing
sugars content in potatoes was validated with NIR-spectra data and chemometrics.
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2. Materials and Methods

2.1. Potato Samples

NIR recordings were performed directly on the tubers before chemical analysis in
the laboratory. A superficial cleaning of the tubers was carried out to eliminate possible
particles that could interfere with the spectral acquisition and obtain a representative
sample of the whole tubers. The spectral and chemical measurements were carried out
on six replicates (N = 534), resulting in an average value (N = 89) that was used for the
subsequent chemometric treatments.

The sampled potatoes were grown during the crop seasons of 2019 and 2020 in A
Limia region (Northwest of Spain). Two types of potato varieties were analyzed: Kennebec
(N = 48) and Agria (N = 41). The choice of these types of potatoes is due to the different
commercial destinations in this geographical region. Kennebec is intended for fresh
consumption, and Agria for the potato processing industry. These potato cultivars are
the ones with the highest production in the geographical area and are covered under the
designation “PGI Patata de Galicia” recognized by the European Union.

2.2. Destructive Measurements of the Reference Quality Parameters

For reference analytical procedures, the tubers were gently washed to remove traces
of soil adhering to the skin. Once the potatoes were dried, they were cut into four pieces for
chemical analysis. Two alternate parts of the tuber were taken for the dry matter analysis by
thermogravimetry, and the other two parts were used for the quantification of the reducing
sugars content by a colorimetry method.

2.2.1. Dry Matter Content

A piece of 5 g of each fresh potato was weighed to obtain the fresh weight (FW). Then,
the sample cubes were placed in a dryer at 60 ◦C for 24 h. After this time, the samples were
weighed to obtain the dry weight (DW). The dry matter content expressed in percentage
was calculated according to Equation (1), based on the weight before and after drying.

Dry matter (%) = [(FW − DW)/FW] × 100 (1)

2.2.2. Reducing Sugars Content

The potato pieces selected for the determination of reducing sugars were crushed to
form a puree. The potato solutions were prepared with 50 g of each potato puree dissolved
in 200 g of distilled water. Then, 5 mL of the potassium oxalate solution (5%), 5 mL of the
zinc acetate solution (0.1 M), and 5 mL of the potassium ferrocyanide solution (10.6%) were
added to each mashed potato mixture (potato solution) to remove the reducing materials that
were not sugars. At the same time, a blank solution was prepared. Thereafter, the potato and
blank solutions were filtered. The oxidation of the reduced sugars was carried out with the
ferricyanide solution. For this, 500 μL of the filtrated sample was deposited in a test tube with
10 mL of ferricyanide for 15 min in a boiling bath. The more intense the yellow color of the
oxidation-reduction reaction, the greater the amount of ferricyanide remained unreacted, and
the sample contained less reducing sugars. Finally, the intensity of the oxidation-reduction
reaction of the solutions was measured by spectrometry at 422 nm at room temperature.
Glucose solutions (0.2–0.8 g/L) as a reference standard were used for the calibration curve
(R2 = 0.99). The reducing sugars content was expressed in g/100 g.

2.3. Near-Infrared Spectroscopy: Instrumentation and Spectral Data Acquisition

The NIR measurements of tuber samples were obtained using the portable MicroNIR
Pro v2.5 equipment (MicroNIR 1700 ES, VIAVI, Santa Rosa, CA, USA) coupled to an
instrument that is designed to measure the diffuse reflectance in the NIR region of the
electromagnetic spectrum [30]. The portable MicroNIR system is easily handled and sized
(45 mm diameter × 42 mm height; 60 g of weight), and it is equipped with a 128-pixel
detector array [30]. The MicroNIR system employs a linear variable filter (LVF) as the
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dispersing element. The LVF is connected to a linear indium gallium arsenide (InGaAs
array detector) into the equipment, which results in an extremely compact and rugged
spectral engine with no moving parts [28]. Uncooled detectors of this type are often
used since they offer good performance and cover the major part of the NIR spectral
region [27,28]. The ultra-compact spectroscopic engine is coupled with a tungsten lamps
diffuse illumination system.

NIR measurements were taken by the direct application with the MicroNIR spectrom-
eter on tubers. Six replicate spectra were recorded for each sample and the average of the
spectra was calculated (Figure 1). Spectra were recorded using the instrument acquisition
software MicroNIR™ Pro v.2.2 (VIAVI, Santa Rosa, CA, USA) at intervals of 6 nm in the
spectra in a range between 900–1700 nm. Spectral data were downloaded directly from
the NIR equipment to a laptop connected through a USB port. However, this miniaturized
spectrometer has the advantage of operating while it is connected by an USB interface
to a tablet or wirelessly connected to a smartphone [28]. MicroNIR used a Spectralon®

ceramic tile as a white reference (100% reflectance) of polytetrafluoroethylene (~99%). The
obtained spectra were combined into the spectral matrix, where the diffuse reflectance
signal of the NIR spectrum is expressed as reflectance (R), using the values of log (1/R) for
the chemometric analyses.

Figure 1. NIR spectra measured by the MicroNIR spectrometer.

2.4. Chemometric Analysis

First, the data spectral matrix was subjected to principal component analysis (PCA) to
perform the spectral selection of samples, maintaining the spectral variability of the original
matrix. The methods of spectra pre-processing included the mathematical procedures for
correction and improvement of spectra, which were applied before the qualitative and/or
quantitative interpretation of spectral data [31]. The fluctuations or drift of the spectral
baseline were reduced through normalization procedures as well as spectra derivation [27].
The applied pre-treatments to eliminate spectral dispersion effects were multiplicative
dispersion correction (MSC), standard normal variant (SNV), DeTrend (DT) or SNV-DT [32].
The calibration for the quality parameters was obtained after removing the samples for
spectral reasons, according to the Mahalanobis distance (H criterion = 3) and chemical
reasons (T criterion ≥ 2.5) [20]. The mathematical treatments were also used to develop
NIRS calibrations considering a code of four digits (for example, 1,4,4,1). This encoding
explains the first digit as the number of the derivative, the second digit as the interval over
which the derivative was calculated, the third as the number of data points in an average
or smoothing, and the fourth as the second smoothing. Then, the samples were selected by
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this procedure to establish the calibration set, and the best treatment was chosen later to
calibrate each quality parameter independently.

NIR models were developed using 89 potato samples: 70 samples for the calibration
group and 19 samples for the external validation group. Partial least squares (PLS) re-
gression was used to obtain the models with the best prediction performance, taking into
account the different spectral pre-treatments. Calibration equations were performed by
modified partial least squares regression (MPLS) using the raw spectral data and testing
the different spectral treatments, as well as allocating the corresponding reference values to
each sample. During the processing of this method, the cross-validation is recommended
in order to select the optimum number of factors and to avoid overfitting [33]. The group of
calibration samples is divided into a series of subsets in order to perform cross-validation.
Then, each subset is validated with calibration, which is developed on the other sam-
ples [33]. Finally, several statistics were considered to evaluate the predictive capacity
of the equations obtained. The standard error of cross-validation (SECV) is considered a
good estimate for the prediction capability of the equation [33]. The ratio performance
deviation (RPD) is a non-dimensional statistic for the evaluation of a NIR spectroscopy
calibration model [34,35], which is the relation between the standard deviation of the
reference chemical values (SD) and the root mean square error of prediction (SEP) in the
NIR model and the standard error of cross-validation (SECV). The statistics used to select
the best calibration equations were multiple correlation coefficients (RSQ) and the standard
error of cross-validation (SECV). The software WinISI II v.1.50 (Infrasoft International, LLC,
Silver Spring, MD, USA) was used for chemometric processing.

3. Results

3.1. Quantified Reference Data on Tubers: Dry Matter and Reducing Sugars

The descriptive analyses (mean, minimum, maximum, and relative standard deviation)
of the dry matter and reducing sugars, which are quantified in the tubers are summarized
in Table 1, according to the potato cultivar. The data were presented according to the
two groups established for the NIR treatment: 70 samples constituted the denominated
calibration group, and 19 samples were used for the validation group.

Table 1. An overview of the samples by potato cultivar and distribution by the calibration and
validation set.

Mean SD Min Max

Samples set by potato cultivar
Kennebec (N = 48) Dry matter (%) 19.88 1.63 16.00 22.10

Reducing sugar
(g/100 g) 0.23 0.09 0.15 0.49

Agria (N = 41) Dry matter (%) 20.19 1.04 17.30 22.20
Reducing sugar

(g/100 g) 0.15 0.04 0.10 0.37

Calibration set (N = 70)
Dry matter (%) 19.67 2.07 16.0 22.0
Reducing sugar

(g/100 g) 0.19 0.08 0.10 0.49

Validation set (N = 19)
Dry matter (%) 19.89 1.25 17.80 22.0
Reducing sugar

(g/100 g) 0.20 0.09 0.12 0.43

Total sample set (N = 89)
Dry matter (%) 20.03 1.39 16.00 22.20
Reducing sugar

(g/100 g) 0.19 0.08 0.10 0.49

SD: Relative standard deviation; Max: Maximum; Min: Minimum.
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The mean dry matter content was similar between the tubers of Agria and Kennebec
(p = 0.68) (Figure 2), with a mean value of 20.19% and 19.88%, respectively (Table 1). The
box and whisker plot showed a higher range in the dry matter content of Kennebec tubers,
with values between 16.0% and 22.1% (Figure 2), and a relative standard deviation of 1.63%.
Regarding the reducing sugars, Kennebec cultivar had a significantly higher content than
Agria (p < 0.0001), with a mean value of 0.23 g/100 g, and maximum value of 0.49 g/100 g
(Figure 2). Agria tubers had a mean value and maximum value of 0.15 g/100 g and
0.37 g/100 g, respectively (Table 1). Therefore, the greater relative standard deviation in
reducing sugars content in Kennebec tubers was found (0.09 g/100 g).

Figure 2. Box and whisker plot for dry matter (p-value = 0.68) and reducing sugars (p-value < 0.0001)
by potato cultivar. The p-value according to the Kruskal-Wallis test by potato cultivar.

3.2. Spectral Information and NIR Calibration Equation

The PCA with the samples randomly selected in the calibration set was carried out
(Table 1). The explained spectral variability was higher than 99.6% and between 4 and
10 principal components were required. In MPLS processing, the NIR residuals obtained
after each factor and at each wavelength were calculated and standardized (dividing them
by the standard deviations of the residuals at each wavelength) and then the next factor
was calculated. The standardized method was conducted by dividing the NIR residuals
with the standard deviations at each wavelength. Therefore, the obtained data of dry
matter and reducing sugars, and the absorbance of the samples from 900 to 1700 nm were
used to develop the calibration equations by this method.

The statistical parameters of calibration were obtained for each quality constituent
after eliminating the samples using the spectral and chemical reasons. Between four and
seven samples were eliminated to calibrate the dry matter, and seven and 10 samples
for reducing sugars (Table 2). The optimal calibration equations for the determination
of dry matter and reducing sugars were calculated based on the lowest SECV and the
highest RSQ. The best NIR calibration models were shown in Table 2, indicating the best
mathematical treatments, the range of applicability, the value of RSQ, and standard errors
of calibration and cross-validation. For dry matter, the best equation showed a RSQ
coefficient of 0.72 and a wide range of applicability (of the same order as the reference
chemical method). Reducing sugars had a lower value of RSQ (0.55), and the marge of
minimum and maximum values was acceptable. On the other hand, SEC and SECV were
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acceptable for both parameters. The RPD value was also taken into account to assess the
predictive capacity of the models, with values of 1.90 and 1.48 for dry matter and reducing
sugars, respectively (Table 2).

Table 2. Calibration descriptors of the best models obtained for each parameter by NIR.

Constituent Math Treatment * N Mean SD
Range of

Applicability
SEC RSQ SECV RPD

Min Max
Dry

matter
Detrend only

0,0,1,1 65 20.09 1.36 16.00 24.18 0.72 0.72 0.93 1.90

Standard MSC
2,10,10,1 65 20.04 1.42 15.77 24.31 0.75 0.72 10.21 1.89

None 2,4,4,1 65 20.17 1.25 16.41 23.94 0.68 0.71 0.98 1.85
Standard MSC

2,4,4,1 63 20.15 1.28 16.30 24.00 0.70 0.70 0.96 1.84

SNV only 2,4,4,1 66 20.07 1.43 15.76 24.37 0.79 0.70 10.31 1.82
Reducing

sugars SNV only 0,0,1,1 62 0.18 0.06 0.01 0.35 0.04 0.55 0.05 1.48

Detrend only
2,8,6,1 61 0.17 0.04 0.06 0.28 0.02 0.51 0.03 1.42

Standard MSC
0,0,1,1 63 0.17 0.04 0.05 0.29 0.03 0.50 0.03 1.41

Detrend only
0,0,1,1 61 0.17 0.04 0.06 0.28 0.03 0.48 0.03 1.39

None 2,4,4,1 60 0.17 0.04 0.06 0.27 0.03 0.48 0.03 1.39
N: Number of samples after removing the outliers; MSC: Multiplicative dispersion correction; SNV: Standard
normal variate; SD: Standard deviation; Min: Minimum; Max: Maximum; RSQ: Multiple correlation coefficients;
SEC: Standard error of calibration; SECV: Standard error of cross-validation; RPD: Ratio performance deviation.
* In the math treatment, the first digit is the number of the derivative, the second is the gap over which the
derivative is calculated, the third is the number of data points in a running average or smoothing, and the fourth
is the second smoothing.

Cross-validation was carried out to evaluate the robustness of the obtained models.
The set of calibration samples was divided into six subsets, of which five subsets were used
for calibration and the other subset for the prediction set. This procedure was carried out
several times, with the objective that all of the subsets were subjected to the calibration and
prediction process. Subsequently, the resulting models for each parameter were validated
and its predictive capacity was determined. The correlation between the values of reference
(obtained by the reference method in laboratory) and the values predicted by NIR are
represented in Figure 3. Internal validation showed better results for dry matter (higher
RSQ and good errors of prediction) than reducing sugars. SEP, SEP (C), and bias indicated
that the calibration models for the two quality parameters allows their determination.
Therefore, the results reflected the prediction capacity and validity of the models. Although
a larger number of samples including more types of potato cultivars, and more growing
seasons could improve the predictions of these quality parameters.

3.3. External Validation and Prediction Capacity of the Models

The obtained calibration equations were validated with 19 new potato samples (vali-
dation set, Table 1) and the generated values were compared with the reference, according
to the residual mean and root mean square error (RMSE) (Table 3). The predictive ability of
models resulted as satisfactory, with RMSE of 1.17 and 0.07, and the mean residual values
of 1.01 and 0.05 for dry matter and reducing sugars, respectively. The predicted values by
NIR equations were compared with the reference data of samples that did not belong to
the calibration equation using the Student’s t-test for paired values. The null hypothesis
is accepted and there is no difference between the reference values and the NIR method
generated for each parameter (p > 0.05).
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Figure 3. Internal validation. Comparison of reference values with predicted values by the NIRS
model for each quality parameter. RSQ: Multiple correlation coefficient; SEP: Standard error of
prediction; SEP (C): Standard error of prediction corrected by BIAS.

Table 3. External validation (19 samples) of potato quality parameters with the results of the
NIR calibration.

Constituent Mean Residual RMSE p-Value

Dry matter 1.01 1.17 0.22
Reducing sugars 0.05 0.07 0.16

RMSE: Root mean standard error. p-value: Level of significance calculated according to the Student’s test.

4. Discussion

The demand for nutritional information and quality aspects of food by consumers
makes it necessary to discover fast and safe methods that guarantee the safety and particu-
larities of food. The precise assessment of potato freshness degree is a complex task. Food
producers need techniques to evaluate changes in quality parameters, and non-destructive
techniques, such as NIR technology, provide these advantages. These analytical methods
are potentially useful tools to control the stability of the quality requirements in postharvest
technology [3]. In this sense, the fresh and processed potato sector joins the challenge
of offering quality products. Recent advances have shown good potentials of NIRS in
real-time monitoring and modeling for different food processes. However, most of the
studies have been carried out at a lab scale, while applications at industrial levels are still
few [29], due to the difficulty of integrating scientific and industrial knowledge.

The sugars in potato tubers are very critical compounds for estimating the viability of
processing, such as chipping and French frying [6,36]. In particular, glucose is responsible
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for the undesirable browning color of the frying process and it negatively affects the mar-
ketability of chips and other fried potato products [14]. PGI “Patata de Galicia” established
values of reducing sugars content below 0.4% and dry matter above 18% for its industrial
processing. Monitoring sugars in potato tubers before and during the storage has become a
basic quality practice in the frying industry [6]. Therefore, it is of great importance for the
processing industry that the quality of potato tubers meets their standards after storage [8].

In recent years, there have been investigations of the efficacy of NIR for determining
dry matter and sugar contents in the potato processing industry. Benchtop NIR devices
are generally built for experts in the laboratory, since they generate spectra that require
interpretation and further data processing to generate a result. In response to an industrial
demand, portable instruments can be designed for non-scientific personnel [28]. Portable
NIR spectroscopic instrumentation and methods for spectral data analysis and interpreta-
tion are undergoing notable advancements. This has allowed for better optimization of the
analytical procedures and the use of this technique directly on site [27].

NIR technology has been extensively studied for homogenized samples of potatoes, such
as potato pulp, sliced potatoes, freeze-dried potato, and cooked potato mash [14,17,37,38],
but to a lesser extent in intact potato [14,25,39,40]. Often, several pre-treatment methods are
applied independently and the performance of the subsequent chemometric analysis was com-
pared, in order to establish the best selection of the pre-processing set [27]. Regression analysis
groups the methods used for the quantitative prediction of a physicochemical property for
a large set of unknown samples. Then, the properly calibrated and validated regression
model can be used significantly quicker and more efficiently compared with the conventional
methods [27]. Therefore, chemometric methods are used to reduce the complexity of NIR
spectral datasets and to build prediction models [17,20,37,41]. MPLS regression was used to
estimate some chemical and quality constituents of potato tubers [14,17,25,40]. Specifically,
models for glucose, sucrose, and soluble solids were built, with R2 in sliced potato samples
(around 0.96, 0.83, and 0.50, respectively) higher than whole tubers (around 0.90, 0.80, and
0.30, respectively) [14]. The reducing sugars and dry matter content of potato varieties for
frying (Innovator, Lady Claire, and Markies) according to three types of preparations (un-
peeled, peeled, and transversally cut tubers) were compared, resulting in whole peeled potato
tubers as the obtained maximum accuracy of the models to predict the dry matter (around
R2 = 0.84) and reducing sugars (around R2 = 0.77) [25]. The best results in the estima-
tion of dry matter concentration in sliced potato samples (R2 = 0.95) than the whole tuber
(R2 = 0.85) were also found [39]. R2 around 0.98 was obtained for the prediction of dry matter
content of the reported potato pulp [23]. In addition, lower values of R2 for glucose and
fructose content on intact potato were obtained (with values of 0.65 and 0.71, respectively), as
well as an acceptable standard error of prediction [40]. However, potato processors are more
interested in determining the quality on whole tuber, but the application on intact unpeeled
tubers is less frequent.

The accuracy and goodness of the models were evaluated according to the statistic
RPD. Some researchers considered that a RPD ratio of less than 1.5 indicates poor predic-
tions and a value higher than 2 indicates a good calibration [20]. Although the results
in the present study using the portable equipment were not excellent, in the case of dry
matter they were acceptable (RDP = 1.98). The calibration was performed on unpeeled
potato tubers, which complicates the model robustness of these quality parameters. In
addition, it must be taken into account that products with a low moisture content, such
as ground or dehydrated samples, usually presented high values of RPD. This is the case
of the estimation of dry matter and total soluble solid content on peeled and freeze-dried
potato by the NIR system, with a RPD greater than 2.8 [17]. For the prediction of glucose
content on whole tubers, a RDP of around 2 was reported [14], and for reducing sugars a
RPD lower than 2 was found [40]. Sugars are generally reported to yield a lower prediction
performance by NIR technology [6,37,38]. Some researchers mentioned the effect of the
skin on the lower performance of the models that varies depending on the cultivar [6].
Consequently, sorting potato tubers based on sugar content is a more challenging task than
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assessing sugars in ground, homogenized or even sliced samples. In particular, the peeled
potato was determined as the most interesting in order to obtain precise models for sugar
and dry matter contents, which improves the RPD values from 15% to 38% for reducing
sugars and 35% for dry matter [25]. However, potato processors are interested in obtaining
the prediction models for whole tubers, in order for the technology to be developed for
application in potato processing lines.

The calibration models should be based on large datasets, which are obtained from
different destinations, growing conditions, and operational conditions [18]. This is the
first study to apply the MicroNIR directly to whole tubers in an area closely linked to
the potato crop and with a notable economic impact on the agricultural sector of the
Galician community. Rapid measurement devices, such as the MicroNIR, calibrated for
working with multiple cultivars and different shapes make its application attractive for
the potato industries. The portable equipment incorporated the analytical precision re-
quired for chemical identification and quantification with a spectral resolution, which is
equivalent to the benchtop instruments [26,27]. These portable devices have the advan-
tages of ease of transportation and the necessary flexibility for an analysis in an industrial
environment. Undoubtedly, technological innovations in portable instruments have been
increased by developing interesting advantages in their application in-line with respect to
laboratory equipment.

5. Conclusions

Taking into account the industrial range defined for reducing sugars and dry matter
parameters according to the PGI Patata de Galicia standard, we consider the MicroNIR as a
useful portable device and with a promising performance for the sector. The efficacy of NIR
spectroscopy was demonstrated as a rapid and non-destructive method for the estimation
of dry matter and reducing sugars in intact potato tuber. Although the model calibrations
were not excellent, as a first approach for the use of this technology on-site in the potato
warehouses, it is attractive for the sector. The results are interesting for the use of MicroNIR
as a tool for fresh potato quality control during in-line processing. The efficiency of the
automation techniques of this type optimizes the management of industrial processing,
guaranteeing the quality of the potato tubers. However, a close collaboration between the
potato processors and researchers is very important in order to achieve these goals and for
future improvements.
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31. Beć, K.B.; Grabska, J.; Huck, C.W. Biomolecular and bioanalytical applications of infrared spectroscopy—A review. Anal. Chim.
Acta 2020, 1133, 150–177. [CrossRef] [PubMed]

32. Dhanoa, M.S.; Lister, S.J.; Barnes, R.J. On the scales associated with near infrared reflectance difference spectra. Appl. Spectros.
1995, 49, 765–772. [CrossRef]

33. Shenk, J.S.; Westhaus, M.O. Analysis of Agriculture and Food Products by Near Infrared Reflectance Spectroscopy. Monograph NIR
Systems. Infrasoft International, NIR Systems; Silver Spring Inc.: New York, NY, USA, 1995; p. 488.

34. Williams, P. The RPD statistic: A tutorial note. NIR News 2014, 25, 22–26. [CrossRef]
35. Esbensen, K.H.; Geladi, P.; Larsen, A. The RPD myth . . . . NIR News 2014, 25, 24–28. [CrossRef]
36. Stark, J.C.; Love, S.L. (Eds.) Tuber quality. In Potato Production Systems; University of Idaho: Moscow, ID, USA, 2003; pp. 329–342.
37. López, A.; Arazuri, S.; García, I.; Mangado, J.; Jarén, C. A review of the application of near-infrared spectroscopy for the analysis

of potatoes. J. Agric. Food Chem. 2013, 61, 5413–5424. [CrossRef] [PubMed]
38. Helgerud, T.; Wold, J.P.; Pedersen, M.B.; Liland, K.H.; Ballance, S.; Knutsen, S.H.; Rukke, E.O.; Afseth, N.K. Towards on-line

prediction of dry matter content in whole unpeeled potatoes using near-infrared spectroscopy. Talanta 2015, 143, 138–144.
[CrossRef]

39. Subedi, P.P.; Walsh, K.B. Assessment of potato dry matter concentration using short-wave near-infrared spectroscopy. Potato Res.
2009, 52, 67–77. [CrossRef]

40. Chen, J.Y.; Zhang, H.; Miao, Y.; Asakura, M. Nondestructive determination of sugar content in potato tubers using visible and
near infrared spectroscopy. Jpn. J. Food Eng. 2010, 11, 59–64. [CrossRef]

41. Lei, T.; Sun, D.W. A novel NIR spectral calibration method: Sparse coefficients wavelength selection and regression (SCWR). Anal.
Chim. Acta 2020, 1110, 169–180. [CrossRef] [PubMed]

212



Citation: Melendreras, C.; Forcada,

S.; Fernández-Sánchez, M.L.;

Fernández-Colomer, B.;

Costa-Fernández, J.M.; López, A.;

Ferrero, F.; Soldado, A. Near-Infrared

Sensors for Onsite and Noninvasive

Quantification of Macronutrients in

Breast Milk. Sensors 2022, 22, 1311.

https://doi.org/10.3390/s22041311

Academic Editors: Rafael Font Villa

and Mercedes Del Río Celestino

Received: 14 January 2022

Accepted: 7 February 2022

Published: 9 February 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Near-Infrared Sensors for Onsite and Noninvasive
Quantification of Macronutrients in Breast Milk

Candela Melendreras 1 , Sergio Forcada 2 , María Luisa Fernández-Sánchez 1 , Belén Fernández-Colomer 3 ,

José M. Costa-Fernández 1 , Alberto López 4, Francisco Ferrero 4,* and Ana Soldado 1,*

1 Department of Physical and Analytical Chemistry, University of Oviedo, 33006 Oviedo, Spain;
uo257805@uniovi.es (C.M.); marisafs@uniovi.es (M.L.F.-S.); jcostafe@uniovi.es (J.M.C.-F.)

2 Department of Nutrition, Grasslands and Forages, Regional Institute for Research and Agro-Food
Development (SERIDA), 33450 Villaviciosa, Spain; sforcada@serida.org

3 Service of Neonatology, Department of Pediatrics, Hospital Universitario Central de Asturias, 33011 Oviedo,
Spain; bcolomer@gmail.com

4 Department of Electrical Engineering, University of Oviedo, 33204 Gijon, Spain; uo181549@uniovi.es
* Correspondence: ferrero@uniovi.es (F.F.); soldadoana@uniovi.es (A.S.);

Tel.: +34-985-182552 (F.F.); +34-985-103583 (A.S.)

Abstract: Breast milk is an optimal food that covers all the nutritional needs of the newborn. It is
a dynamic fluid whose composition varies with lactation period. The neonatal units of hospitals
have human milk banks, a service that analyzes, stores, and distributes donated human milk. This
milk is used to feed premature infants (born before 32 weeks of gestation or weighing less than
1500 g) whose mothers, for some reason, cannot feed them with their own milk. Here, we aimed to
develop near-infrared spectroscopy (NIRS) measures for the analysis of breast milk. For this purpose,
we used a portable NIRS instrument scanning in the range of 1396–2396 nm to collect the spectra
of milk samples. Then, different chemometrics were calculated to develop 18 calibration models
with and without using derivatives and the standard normal variate. Once the calibration models
were developed, the best treatments were selected according to the correlation coefficients (r2) and
prediction errors (SECVs). The best results for the assayed macronutrients were obtained when no
pre-treatment was applied to the NIR spectra of fat (r2 = 0.841, SECV = 0.51), raw protein (r2 = 0.512,
SECV = 0.21), and carbohydrates (r2 = 0.741, SECV = 1.35). SNV plus the first derivative was applied
to obtain satisfactory results for energy (r2 = 0.830, SECV = 9.60) quantification. The interpretation of
the obtained results showed the richness of the NIRS spectra; moreover, the presence of specific bands
for fat provided excellent statistics in quantitative models. These results demonstrated the ability
of portable NIRS sensors in a methodology developed for the quality control of macronutrients in
breast milk.

Keywords: breast milk quality control; chemometrics; handheld; spectroscopy

1. Introduction

Breast milk is a complex and highly variable fluid that provides nutrients and bioactive
components for the correct growth and development of infants. The composition of breast
milk changes throughout the lactation period, adapting to the nutritional needs of the
rapidly growing newborn. Depending on the time of lactation, three types of milk can be
distinguished: colostrum, transitional milk, and mature milk.

Breastfeeding is necessary for the development of newborns because it protects them
from infections and diseases such as diabetes, obesity, and or hypercholesterolemia. Due to
the multiple benefits of breast milk for infants, in the middle of the 20th century, milk banks
were established. Currently, the World Health Organization and national and international
pediatric associations consider breast milk banks as necessary to guarantee adequate
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nutrition for premature infants (born before 32 weeks of gestation or weighing less than
1500 g) or sick infants who, for whatever reason, cannot be fed with their mother’s milk.

Milk banks are a specialized service integrated into the neonatology units of hospitals.
Their objectives are the promotion and support of breastfeeding; they are responsible for
the selection of donors, and the storage, processing, analysis, and distribution of milk. To
guarantee the safety of donated milk, it is subjected to a pasteurization process using the
Holder method (62.5 ◦C for 30 min and then rapidly cooled in less than 15 min to 4 ◦C). In
neonatal units, human breast milk contains 70 kcal/100 mL because it was obtained from
women of term babies later in the lactation period. However, the amount of macronutrients
in breast milk depends on different factors such as gestational age, feed, or sampling
procedure [1] and no predictions can be established [2]. As such, when comparing preterm
and term milk, the former one has less energy and protein than the latter. Considering
these issues, one major concern when feeding neonates with breast milk from hospital
banks is the nutritional adequacy of the milk in meeting the nutritional requirements of the
neonate, because some nutrients such as protein are associated with neurodevelopmental
outcomes [3].

To determine the quality of breast milk, nutritional analysis should be carried out.
Nowadays, milk quality is controlled in laboratories using properly validated chemical
reference methodologies such as Mojonnier, Folch, Gerber, or the Roese-Gottlieb method
for fat quantification, and the Bradford method for protein elemental analysis. Another
alternative used in some milk banks involves quantifying the referred compounds in milk
analyzers using pre-calibrated medium or near-infrared (IR) instruments. To establish the
quality of the results obtained by the IR technique, Fusch et al. compared eight different
laboratory IR analyzers to quantify macronutrients in breast milk, concluding that research
groups using these devices must be cautious about their measurements, finding that
adequate sample preparation and instrumental calibration and validation are necessary
following the Good Laboratory and Clinical Practices [4].

Given these considerations, the best method of guaranteeing the adequate nutrition of
newborns is the use of onsite and real-time sensors that are able to quantify the macronu-
trients in breast milk. Moreover, due to the value and short supply of breast milk, a
noninvasive analysis would be the best method to achieve final sample analysis. This type
of analysis can be carried out just before consumption. Among the portable, noninvasive,
and real-time analytical techniques for food analysis, near-infrared spectroscopy (NIRS) is
a real-time, noncontaminating, and versatile technology capable of providing information
on food quality attributes in situ. Moreover, no sample pretreatment or chemical reagents
are required for the analysis, making it a waste-free technique, unlike traditional labo-
ratory nutritional compositional analyses [5–7]. Nevertheless, there are some important
limitations of NIRS analysis due to the strong absorption of water in the NIR region, which
increases the background, preventing obtaining satisfactory results in quantitative analysis.
Nowadays, the applications of NIRS have increased due to the development of aquapho-
tomics [8], a novel science and methodology that features water NIRS spectra in aqueous
and biosystems for indirect analysis of components.

The drawbacks of using NIRS (Near Infrared Spectroscopy) with portable instruments
are the sensitivity of the NIR signal, the narrow wavelength range of low-cost devices, and
spectrum complexity. NIR spectra are difficult to interpret because the vibrations of different
molecular bonds are involved in the same absorption band, resulting in overlapping
information. However, to overcome these shortcomings and to extract information, it is
necessary the use multivariate analysis [5,9,10]. By combining NIR spectra and appropriate
multivariate analysis, it is possible to extract all the relevant information and to develop a
fit calibration model that is able to quantify the macronutrients in breast milk both onsite
and in real-time. This methodology will enable newborns to be fed with breast milk that is
adequate for their development stage [11–13].

Qualitative models have been developed with portable instruments, which allow
differentiation between colostrum, transition milk, and mature milk [14]; however, no in-
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formation about breast milk quantification parameters or the effect of spectra chemometric
pretreatments on the final calibration models with portable devices is available. NIRS
methodologies were developed based on the use of handheld, portable NIRS, and were
tested for the analysis of the three major components in cow raw milk (fat, protein, and
nonfat solids) [15]. Because of this, the application of onsite NIRS technology to the study
of breast milk can be an effective alternative for the characterization and control of the
quality of donated breast milk received by milk banks. An important aspect to take into
account, and studied by Kwan et al., is that quantitative NIRS studies on breast milk were
carried out with high-performance laboratory equipment, that were acquired precalibrated,
which can lead to errors due to a systematic displacement of the data or some inaccurate
calibrations [16].

To the best of our knowledge, no studies have proved the effectiveness of low-cost,
onsite, and easy-to-use handheld instruments in quantifying macronutrients in breast milk.
The complexity of the analysis, the need for obtaining macronutrients quantification in
real-time, and the small amount of available breast milk demand new methodologies able
to meet all the above-detailed requirements.

As such, in this study, we constructed methodology based on the use of low-cost
NIRS sensors and appropriate chemometric procedures for onsite, real-time quality control
monitoring of breast milk. The aim was to provide the neonatology units and milk banks
with a cheap and easy-to-use tool that is able to establish the quality of milk just before
newborn consumption to enable real-time decision making and ensure adequate nutrient
combinations for feeding newborns.

2. Materials and Methods

2.1. Milk Samples

A total of 17 samples from the Asturias Breast Milk Bank (University Central Hospital
of Asturias, HUCA, Oviedo, Spain) at different stages (colostrum, transitional milk, and
mature milk) were used in this study. These samples covered the variability in breast milk
for feeding newborns. However, for the development of an NIR calibration procedure, the
recommended calibration samples minimum for any quality parameter is about 50 [16].
To increase the number of samples and the variability in the macronutrients content, we
prepared three other batteries of 17 samples each (17 × 3) mixing different breast milk
samples in a 1:1 proportion or diluting them 1:1 and 1:3.5 with distilled water (Figure 1).
The final range of concentrations of all the parameters is shown in Table 1.

Table 1. Statistics of macronutrients and energy in breast milk (N = 68).

Calibration Set (N = 53) Validation Set (N = 15)

Mean Max Min SD Mean Max Min SD

Fat 1 2.39 5.30 0.51 1.25 2.60 4.60 0.57 1.58
CP 1 0.87 2.50 0.27 0.50 0.78 1.70 0.33 0.39
RP 1 0.72 2.00 0.21 0.40 0.69 1.40 0.27 0.34
CH 1 5.80 8.80 2.34 2.56 5.58 8.40 2.31 2.63

Energy 2 49.30 86.00 15.60 22.06 50.09 81.00 15.90 26.36
TS 1 7.42 14.60 3.27 4.02 8.04 14.50 3.27 4.17

Max: maximum, Min: minimum, SD: standard deviation, RP: raw protein, CP: crude protein, CH: carbohydrates;
TS: total solids. 1 g/100 mL; 2 Kcal/100 mL.

215



Sensors 2022, 22, 1311

Figure 1. Scheme for battery sample preparation (N = 68). * Mixes (1:1) of following samples: 16 + 17,
10 + 4, 6 + 1, 7 + 1, 2 + 17, 3 + 16, 4 + 15, 5 + 1, 6 + 13, 7 + 12, 8 + 11, 9 + 10, 2 + 3, 5 + 8, 9 + 11, 12 + 13,
and 3 + 15.

A total of 68 breast milk samples were involved in this NIRS research work. This
initial set was separated into two groups: (i) a calibration set containing 53 samples because,
when developing NIRS calibration models, a minimum of 50 samples is recommended [17];
(ii) an external validation set with 15 samples. Spectral data included in one or another set
were randomly selected.

The statistics of the calibration and validation populations for all the parameters
included for the quality control of breast milk are detailed in Table 1. The macronutrients
analyzed were fat, crude protein (CP), real protein (RP), carbohydrates (CH), energy, and
total solids (TS). As can be seen, we report two values for protein, crude protein, and true
protein. The first is the protein content based on the total amount of nitrogen in breast
milk; this value can include nonprotein nitrogen compounds, and true protein does not
include these nonprotein nitrogen compounds [18]. All reference data were provided for
the Asturias Breast Milk Bank.

All milk samples were stored frozen, allowed to thaw at room temperature before
analysis, and then heated at 37 ◦C in a water bath. Once the samples were at temperature,
they were homogenized by manual stirring and NIR analysis was carried out.

Each mother provided written informed consent for donating the samples for this
study, which was approved by the institutional review board.

2.2. NIRS Spectra Collection

NIRS spectra were collected with a portable NIRS instrument (microPHAZIR Mod.
1624, Thermo Fisher Scientific Inc., Wilmington, MA, USA). This handheld instrument
includes an electromechanical system (MEMS) and an incandescent tungsten light source
for illumination, which is safe for users and ensures the integrity of the sample. It has a
single, broad-spectrum InGaAs detector, which makes it a low-cost, energy-efficient device
with a good spectral response. The scanning window or sampling area is 0.13 cm2, and
the wavelength range of the device is 1596 to 2396 nm, with an approximate interval of
8.7 nm. It is compact and easy to handle, has a gun shape, and an integrated reference
for easy calibration. For sampling, we used a liquid cup (Foss IH-0397, Foss NIRSystems,
Silver Spring, USA), 45 mm high and 25 mm wide, with an optical path of 17 mm. This
cuvette had a quartz wall (the wall of radiation incidence) and a rear wall of aluminum
that reflected the NIR radiation and allowed the radiation to pass through the sample
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twice. Spectral information was collected in transreflectance mode, from direct exposure
on the cuvette, and each NIRS spectrum is reported as the average of 5 scans. To obtain
a representative spectrum of each breast milk, the collection procedure was as follows:
each sample was divided in three aliquots and one spectrum was collected for each one.
The final signature for each sample is reported as the averaged spectrum of the three
subsamples. In the global procedure, a total of 204 scans (68 samples × 3 scans per sample)
were collected as log 1/R, where R is reflectance, to build the spectra database of the
68 breast milk samples.

2.3. Data Processing

NIRS spectra collected with the handheld instruments are defined by 100 points in a
range of wavelengths between 1596 and 2396 nm. Unscrambler X software (version 10.1,
CAMO Software, Oslo, Norway) was used for chemometric developments. The calibration
set was centered prior to performing the regression models by principal component analysis
(PCA) to detect potential spectral outliers, and the regression procedure employed to build
the calibration models using the global spectrum (all the wavelengths 1596–2396 nm)
was partial least squares (PLS) [19]. The models were optimized using a random cross-
validation method included in the Unscrambler X software package, with 20 segments and
3 samples per segment. The optimal number of PLS factors was established considering
the minimum residual variance.

With the aim of minimizing the scattering phenomenon, the standard normal variate
(SNV) mathematical pretreatment was applied to raw spectral data. After that, different
derivative pretreatments were applied to the spectral data to minimize unforeseen varia-
tions and to improve calibration. The pretreatments code in this chemometric software can
be summarized using a four-digit notation, where the first digit (a) refers to the order of
magnitude of the Savitzky-Golay derivative (SG) (0 = underived spectrum, 1 = 1st deriva-
tive, 2 = 2nd derivative, etc.); the second digit (b) indicates the polynomial order of the
derivate; and the third (c) and fourth (d) digits indicate the size of the left and right intervals,
respectively, expressed in nanometers, used for the derivative smoothing calculation. A
total of 18 different models (6 parameters × 3 chemometric strategies) were developed
using different pretreatments of the breast milk samples and PLS as the regression model.
According the four-digit notation, the chemometric strategies assayed in this research work
were 0 0 0 0, 0 2 2 2, and 1 2 2 2.

The best-fitting equations were selected by the statistical criterion for each parame-
ter, based on the lowest standard error of calibration (SEC) and standard error of cross-
validation (SECV), the highest coefficient of determination for calibration, (R2), and coeffi-
cient of determination for cross-validation (r2) [20,21].

The external validation was evaluated based on the lowest standard error of prediction
(SEP) and the best Student’s t-statistic for paired samples comparing the reference and
NIRS method.

3. Results and Discussion

In order to understand the information in the collected NIRS spectra, Figure 2 plots the
raw and after-derivation values of the averaged spectra for the calibration and validation
sets. We observed no differences between the populations, with the water band (O-H
interactions) at 1950 nm being the most intense. At this wavelength, the band was a result
of multiple overlapping bands, and it was directly influenced by chemical interactions
with other molecular species in the sample [5]. Other important bands that could be
associated with macronutrients in milk located at 2300 and 2380 nm. These are described
as protein and fat (oil) bands, respectively [22]. Based on the aquaphotomic principle
(strategy of monitoring a spectral band associated with a specific parameter, such as water,
fat, protein, etc.), the location of these specifics bands (protein and fat) could help improve
the calibration models for the aforementioned macronutrients.
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Figure 2. Average spectra of the calibration and validation sets: (a) raw spectra; (b) SNV + first
derivative pretreatment.

After explaining the effect of vibrations associated with the macronutrients at different
wavelength bands and their importance in the development of the NIRS procedure for the
proposed parameters, we applied PCA with Hotelling’s T2 ellipse to raw NIR spectra of
the calibration set to explore the spectra and detect outliers. As shown in Figure 3, the data
outside the ellipse need to be checked because they are potential outliers. We can see that
there are two samples located outside the ellipse: numbers 36 and 44. These samples were
a mix of the originals 16 + 17 and 7 + 12, respectively. These results could be explained
by operational error and not due to a compositional or spectral difference between these
samples and all the others involved in this study. All original samples other than the
mixed and diluted ones were satisfactory according PCA. Both outliers were deleted for
the development of the final calibration models.

218



Sensors 2022, 22, 1311

Figure 3. Principal component analysis with Hotelling’s T2 ellipse analysis for outlier detection in
the calibration set.

The next step was to run the calibration models with the global spectrum using PLS as
a regression strategy and cross-validation with random groups. As detailed in the Section 2,
different pretreatment procedures were evaluated to obtain the best calibration statistics,
ranging from no pretreatment to scattering correction (SNV) plus first derivative. As shown
in Table 2, a total of 18 calibration models applying different pretreatments, both with and
without scattering correction and derivatives, were used to quantify six parameters (fat,
crude protein, raw protein, carbohydrates, energy, and total solids) for quality control of
breast milk.

Table 2. Calibration and cross-validation statistics for breast milk samples using partial least squares
regression.

Math Pre-Treatment Parameter R2 SEC r2 SECV

0 0 0 0

Fat 0.910 0.37 0.841 0.51
CP 0.782 0.19 0.508 0.30
RP 0.797 0.14 0.512 0.21
HC 0.874 0.91 0.741 1.35

Energy 0.922 6.17 0.791 10.39
TS 0.787 1.86 0.686 2.42

SNV 0 2 2 2

Fat 0.876 0.44 0.795 0.58
CP 0.725 0.25 0.498 0.35
RP 0.580 0.22 0.411 0.27
HC 0.860 0.94 0.593 1.65

Energy 0.835 8.96 0.756 11.32
TS 0.709 2.13 0.529 2.77

SNV 1 2 2 2

Fat 0.826 0.52 0.779 0.61
CP 0.796 0.22 0.524 0.36
RP 0.787 0.16 0.482 0.25
HC 0.894 0.83 0.699 1.42

Energy 0.927 5.94 0.830 9.60
TS 0.929 1.07 0.685 2.20

SNV: standard normal variate, N1N2N3N4: Savitzky-Golay derivative order, polynomial order of derivative, left,
and right intervals for the derivative smoothing; R2: coefficient of determination for calibration, SEC: standard
error of calibration, r2: coefficient of determination for cross-validation, SECV: standard error of cross-validation,
RP: raw protein, CP: crude protein, CH: carbohydrates, TS: total solids.

As shown in Table 2, for all parameters, with the exception of raw protein (R2 = 0.58),
the R2 calibration coefficient obtained was higher than 0.7, and the best performance
was exhibited by fat, energy, and total solids with R2 values all higher than 0.9. These
results for fat could be explained due to spectrum bands: as shown in Figure 2, a specific
band for fat is noted around 2380 nm, as was observed for the breast milk samples. The
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presence of this band allowed us to obtain excellent calibration results with raw spectra
data, without any pretreatment (R2 = 0.91). Notably, fat is one of the most important
parameters when characterizing donated breast milk as it is the main source of energy for
newborns. Furthermore, it provides essential nutrients such as fat-soluble vitamins and
polyunsaturated fatty acids [23]. These results showed that the NIR spectra successfully
captured quantitative variations in fat, showing the richness of the NIRS spectra.

Similarly, quantitative results could be obtained using the proposed procedure, because
NIRS regression coefficients were obtained for energy and total solids, with R2 values higher
than 0.9 [5]. Precision values calculated as coefficient of variation (CV% = 100 × SEC/mean
calibration set reference values) ranged between 10% and 15% for all the parameters involved
in this study. Similar results were obtained in previous research [16] when comparing the
results produced by different devices and reference methods. For these parameters, the best
results were obtained after applying SNV and the first derivative to the raw spectra. For RP,
CP, and CH, not many differences were observed when developing PLS regression with or
without pretreated spectra. The R2 value for protein data was higher than 0.75 and for CH, it
was higher than 0.8. These values indicated that all the developed models can be used for
quantitative analysis.

After studying the calibration statistics of the NIRS multivariate models in depth,
the next step was to select the best chemometric models to quantify each macronutrient
in breast milk. This choice was made based on the criterion detailed in the Section 2
(the highest r2 value and the lowest SECV) and on the comparison between SEC and SECV,
because a gap between SEC and SECV is related to large differences between calibration
and prediction results, which indicate that the calibration model was not robust.

Although few differences were found when comparing the NIRS calibration and cross-
validation statistics, the best results for fat (r2 = 0.841, SECV = 0.51), proteins (RP, r2 = 0.512,
SECV = 0.21), and carbohydrates (r2 = 0.741, SECV = 1.35) were obtained when no pre-
treatment was applied to the NIR spectra. For energy (r2 = 0.830, SECV = 9.60), SNV plus
the first derivative obtained satisfactory results. As shown in Table 2, the best R2 value
for TS was obtained with a first-derivative pretreatment; however, the difference observed
between cross-validation and calibration data was too large, indicating that the results were
not robust and the validity of that model was limited. For these reasons, we determined
that the best model for TS quantification was that without applying any pretreatment to
the spectra (r2 = 0.685, SECV = 2.42).

The energy and TS parameters showed the largest differences in SECV and SEC values.
The reason for these results may be that both parameters are indirect. This means that they
are not directly related to a molecular bond. However, the robustness of the calibrations
could be improved by enlarging the sample size and the variability in the breast milk. An
update of the calibration models is required when new samples are considered. However,
no conclusions could be reached with this calibration and cross-validation data, as an
adequate statistic test is needed to quantify the SEP (external validation).

After selecting the best treatments, to confirm the validity of the developed models,
we then externally validated the models, predicting all the macronutrients by using the
selected models. As detailed in the Section 2, 15 breast milk samples with reference
data were selected for external validation and all the parameters were quantified. After
quantifying all the breast milk parameters with the developed models, Student’s t-test was
applied to compare the results obtained when analyzing samples using the reference and
onsite NIRS method.

As detailed above, the final acceptance or evaluation of the NIRS calibration models
necessitated an external validation including samples not involved in the calibration pro-
cedure. In this work, 15 breast milk samples were included in the external validation set
and quantified with the selected calibration models developed in this study. The selected
methods and external validation statistics are detailed in Table 3.
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Table 3. External validation statistics used for predicting nutritive parameters of breast milk (valida-
tion set, N = 15).

Math
Pre-Treatment

SECV SEP SECV/SEP RPD Accuracy %
tstudent Reference

vs. Predicted

Fat 0 0 0 0 0.510 0.579 0.881 2.7 94 1.21
CP SNV 1.2.2.2 0.359 0.426 0.843 0.9 114 0.57
RP 0 0 0 0 0.210 0.203 1.035 1.7 92 0.69
HC 0 0 0 0 1.347 1.630 0.826 1.6 108 1.36

Energy SNV 1.2.2.2 9.603 11.757 0.817 2.2 94 1.74
TS 0 0 0 0 2.420 4.541 0.533 0.9 115 1.57

SNV: standard normal variate, N1N2N3N4: Savitzky-Golay derivative order, polynomial order of deriva-
tive, and left and right intervals for the derivative smoothing, SECV: standard error of cross-validation,
SEP: standard error of prediction, RPD = standard deviation of the validation set/SEP; Accuracy %:
100 − ((reference value − predicted value)/reference value) × 100), t-critical value for 95% confidence and
14 degrees of freedom = 2.145, RP: raw protein, CP: crude protein, CH: carbohydrates, TS: total solids.

As shown in Table 3, we compared the SEP and SECV values for the selected models.
The ratio between SECV and SEP ranged between 0.817 and 1.035 for all parameters except
for TS (0.533). The similarity between SECV and SEP confirmed that no difference was
found between the external and cross-validation predicted errors, indicating a sufficiently
robust calibration for all parameters [24]. For TS quantification, an improvement in the
models is required by including new samples and enhancing the multivariate model.

Another statistic that can explain model reliability in NIR spectroscopy is RPD
(RPD = standard deviation/SEP). For this parameter, three categories can be defined:
(1) excellent models, with RPD > 2; (2) fair models, with 1.4 < RPD < 2; and, (3) unre-
liable models, with RPD < 1.4 [25]. These values have been applied in NIRS studies;
however, no statistical basis has been used to establish these thresholds. Moreover, re-
searchers developed useful calibration models with RPD values lower than the proposed
standard values [25]. Considering this statistic in Table 3, we the fat and energy models are
categorized as excellent and the RP and HC models as fair. For TS and CP, the range of and
variability in the samples should be increased to improve the NIR statistics and obtain a
valuable model.

After determining the fit and quality of the calibration models, and taking into account
the coefficients of determination and calibration or cross-validation errors, a statistical
test including SEPs and reference data was conducted to evaluate the prediction errors
of the multivariate NIRS models. In this work, we selected Student’s t-test to compare
paired samples. We applied a paired difference t-test to compare the results obtained when
samples were analyzed by the reference and NIRS methods. Then, we used the set of
differences to build the t-statistic using the mean and standard deviation of the differences.
Student’s t-test is a useful statistic strategy for comparing two data sets of quantitative
results obtained with different analytical methods. In this study, we compared the reference
and predicted data of all samples included in the validation set (N = 15). The results
showed that there were no differences when considering a confidence level of 95% because,
for all parameters, the calculated tstudent was is lower than 2.145 (theoretical value of t
for 14 freedom degrees and 95% confidence level). Another parameter that we used to
characterize the proposed methodology was accuracy. We calculated the accuracy for all
the macronutrients involved in this study, and the best results were obtained for fat and
energy with a value of 94%.

We could find no information about analytical methodologies for onsite and real-time
quantification of the macronutrients in breast milk. Table 4 summarizes the most relevant
studies conducted using NIRS technology, including the instrumentation employed to
quantify macronutrients (high-performance laboratory instruments). Only dos Santos
et al. [14] used a portable NIRS instrument to classify breast milk in colostrum, transition
milk, and mature milk, which are the three stages of the lactation period.
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Table 4. An overview on reported NIRS-based methods for breast milk analysis.

Reference Device Lab/Portable
Wavelength

Range λ (nm)
Sample Size

(N)
Analyzed Parameters

Corvaglia [26] Fenir 8820, Esetek Lab 700–2750 124 Fat and nitrogen contents

Sauer [27]
SpectraStar

2400 Near Infrared
Analyzer, Unity Scientific

Lab 1200–2400 52 Fat, protein, and
carbohydrates

Fusch [28]
SpectraStar

2400 Near Infrared
Analyzer, Unity Scientific

Lab 1200–2400 1188 Fat, protein, and
carbohydrates

dos Santos [14] MicroNIR™ 1700, JDS
Uniphase Corporation Portable 910–1676 198

Qualitative (colostrum,
transition milk, and

mature milk)

Present study
MicroPHAZIR Mod.
1624, Thermo Fisher

Scientific Inc.
Portable 1396–2396 68

Fat, crude protein, raw
protein, carbohydrates,
total solids, and energy

Lab: laboratory instrument; N = number of samples involved in the study.

Focusing on spectroscopic laboratory methodologies, previous researchers evaluated
and compared the use of near- and mid-infrared instruments vs. reference methodologies
using high-performance laboratory devices [28]. More specifically, the macronutrients
quantified were fat, protein, and carbohydrates. The NIRS instruments employed were
precalibrated NIRS laboratory devices, scanning in a range of 1200–2400 nm. No infor-
mation about the statistics of calibration models were included in this work; however,
external validation statistics can be compared with our results. The values of coefficients
of determination detailed by Fusch et al. for validation were 0.76 for protein, 0.01 for
lactose, and 0.79 for fat. In our study, employing a portable device and developing our own
calibration models, the coefficient of determination of cross-validation was 0.52 for protein,
0.74 for HC, and 0.84 for fat MISSING [28].

Table 5 compares the external validation statistics obtained with laboratory instrument
vs. the developed portable-device methodology by computing the linear regression of the
reference and predicted NIRS data [28]. To evaluate the random error in the prediction
based on regression results, the Sy/x statistic (random error in the y-direction, y-direction
indicates the prediction values and x-direction reference values) was calculated. Com-
paring these data with SEP values (Table 3) for fat, RP, and HC, we observed that the
regression error (Sy/x) was equal or lower than the error obtained in external validation
(SEP), confirming the validity of the developed models.

Table 5. Comparison of external validation statistics: Ref. [28] (laboratory instrument) vs. the
proposed methodology (portable device).

Portable Laboratory Portable Laboratory

Linear Regression r2 Sy/x r2

Fat y = 0.69x + 0.72 y = 0.55x + 1.25 0.85 0.547 0.79
RP y = 0.77x + 0.16 y = 0.55x + 0.54 0.67 0.154 0.76
HC y = 0.95x + 0.60 y = 0.02x + 5.69 0.01 0.904 0.89

RP: raw protein, CH: carbohydrates, r2: coefficient of determination, Sy/x: random errors in the y-direction,
y: prediction values, x: reference values.

Another NIRS strategy for macronutrients milk analysis was carried out by de la Roza
et al. [2], who developed in-house NIR calibrations with a high-performance laboratory
instrument (working range 400–2500 nm) for fat, protein, and nonfat total solids in cow
milk. The best result, with an R2 value of 0.971, was obtained for the quantification of
fat, applying mathematical SNV, detrend, and second derivative pretreatments. The R2

value is similar to that obtained in this work (0.910). However, for total solids, the values
of the calibration coefficient of determination for cross-validation were lower than 0.700

222



Sensors 2022, 22, 1311

(r2 = 0.612) [2], and better results, above 0.750, were obtained using our handheld portable
instrument (r2 = 0.787).

4. Conclusions

In this work we focused on the development of a real-time and simple methodology to
quantify the macronutrients in breast milk. Notably, the implementation of this procedure
requires the use of low-cost and handheld NIRS instruments. Moreover, expert personnel
are not required for analyzing samples, facilitating the quality control procedure in the
feeding of newborns in neonatology units.

In this paper, we demonstrated the feasibility of using a cheap and easy-to-use hand-
held NIRS instrument with a narrow scanning range, from 1596 to 2396 nm, and a small
scanning window to control the quality of breast milk. By using a multivariate strategy
and different pretreatments, we developed quantitative calibration models to determine
the energy, fat, carbohydrate, and protein contents in this type of sample, with coefficients
of determination for calibration (R2) higher than 0.79 for all parameters. These results,
obtained with a limited number of breast milk samples (68 samples), can be considered
as a first step in the development of an appropriate method, even if more work needs to
be carried out to improve the equations and to include more samples in the database. The
interpretation of the results obtained for fat analysis demonstrated the richness of NIRS
spectra because the presence of specific bands shows excellent potential for constructing
useful quantitative models.

Prior to implementation, external validation was required. We tested the proposed
methodology with breast milk samples not involved in the calibration procedure, and
nonsignificant differences were observed when comparing the reference and portable NIRS
methods. The accuracy obtained for the tested parameters was higher than 90%. Our
results suggest that NIR sensor measurements of macronutrients are acceptable for clinical
use in breast milk banks. The limitation of the proposed method is related to the range of
values for each nutrient; however, further improvements can be achieved by including new
samples to update this first calibration method.
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