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In recent years, we have witnessed the exponential proliferation of the Internet of
Things (IoT)-based networks of physical devices, vehicles, and appliances, as well as
other items embedded with electronics, software, sensors, actuators, and connectivity,
which enable these objects to connect and exchange data. Facilitating the introduction
of highly efficient IoT, wireless sensing, and network technologies will reduce the need
for traditional processes that must currently be manually carried out, thus freeing up
the precious resources of a dwindling workforce, and informing more meaningful and
necessarily human-centered work.

This Special Issue aims to collate innovative developments in areas relating to IoT,
wireless sensing, and networking. The eighteen papers published in this Special Issue
cover software-defined network (SDN)-based IoT networks, artificial intelligence (AI) for
IoT, industrial IoT, smart sensors, energy efficiency optimization for IoT and wireless
sensor networks, IoT applications for agriculture, smart cities, healthcare, localization, and
environment monitoring.

In [1], an IoT network with intercept access points (IAPs), SDN nodes, and non-SDN
nodes was developed for the purpose of lawful interception. Different from traditional
networks with centralized management, this paper optimized the deployment of IAPs in
hybrid software-defined networks containing both SDN and non-SDN nodes. This work
presented an enhanced equal-cost multi-path shortest-path algorithm for IAP deployment
and three SDN interception models in accordance. In addition, the authors proposed the
use of a restriction minimal vertex cover algorithm (RMVCA) in hybrid SDN nodes to
consider the geographic importance of all intercepted targets and the global cost of operator
operations and maintenance. By applying a variety of SDN interception algorithms based
on the RMVCA to actual network topologies, the authors were able to significantly optimize
the deployment efficiency of IAPs and improve the intercept link coverage in hybrid SDN
nodes, as well as reasonably deploy the best intercept access point and intercept the
whole hybrid SDN with the fewest SDN nodes, thereby aiding in the introduction of
lawful interception.

The second paper [2] developed anomaly detection methods by utilizing machine
learning to safeguard an IoT system. The authors provided a thorough analysis of prior
work in creating machine-learning-based anomaly detection methods for safeguarding IoT
systems. Additionally, they claimed that blockchain-based systems used for anomaly detec-
tion are capable of jointly building efficient machine learning models for anomaly detection.

The authors of [3] outlined a comprehensive self-testing method that used energy-
efficient learning modules and nanoscale electromagnetic (EM) sensing devices to identify
security concerns and malicious attacks at the front-end sensors. The development of a
built-in threat detection method employing intelligent EM sensors dispersed on the power
lines was proven to facilitate the efficient use of energy while detecting unusual data
activity without compromising performance. Energy-constrained wireless devices may
also be able to have an on-chip detection system to quickly foresee hostile attacks on the
front lines due to the minimal energy and space usage.

Sensors 2023, 23, 1461. https://doi.org/10.3390/s23031461 https://www.mdpi.com/journal/sensors1
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Ref. [4] introduced a D2D multi-criteria learning technique for secured IoT networks
to enhance data exchange without adding extra fees or data diversions for mobile sensors.
Additionally, machine learning was shown to lower the risks of compromise in the presence
of anonymous devices and increase the reliability of the IoT-enabled communication
system. Broad simulation-based experiments were also used to evaluate and assess the
proposed work, showing significantly better performance for realistic network topologies
in terms of packet delivery ratio, packet disruptions, data delays, energy consumption, and
computing complexity.

The authors of [5] demonstrated how machine learning can improve the functionality
of biosensors without biological receptors. The performance of these biosensors was
enhanced by machine learning, which effectively substitutes modeling for the bioreceptor to
increase specificity. Since their introduction, simple regression models have been commonly
used in biosensor-related fields to determine analyte compositions based on the biosensor’s
signal strength. Traditionally, bioreceptors offer good sensitivity and specificity to the
biosensor. However, a growing number of biosensors without bioreceptors have been
created for a variety of purposes. The usage of ML for imaging, E-nose and E-tongue,
and surface-enhanced Raman spectroscopy (SERS) biosensors was discussed in this study.
It is also particularly noteworthy that several artificial neural network (ANN) methods
paired with principal component analysis (PCA), support vector machine (SVM), and other
algorithms performed remarkably in a variety of tasks.

The authors of [6] stressed the exigency of using a virtual testbed dubbed IoTactileSim
to implement, investigate, and manage QoS provisioning in tactile industrial IoT (IIoT)
services. The study demonstrated that tactile IIoT enables the real-time control and manip-
ulation of remote industrial environments via a human operator. The authors also showed
that a communication network with ultra-low latency, ultra-high reliability, availability, and
security is required by TIoT application cases. Furthermore, it has become more difficult to
research and enhance the quality of services (QoSs) for tactile IIoT applications due to the
absence of the tactile IIoT testbed. IoTactileSim uses the robotic simulator CoppeliaSim and
network emulator Mininet to carry out real-time haptic teleoperations in both virtual and ac-
tual surroundings. This allows the real-time monitoring of network impairments, operators,
and teleoperator data flow, as well as various implemented technology parametric values.

In [7], a novel feature fusion-based approach to scene text detection was created.
Rather than solely relying on feature extraction from SENet, this technique incorporated
MPANet’s features to make up the difference. By using the suggested fusion technique, the
text detection model could achieve better detection performance than the baseline network.
In addition, the model was post-processed with a progressive expansion technique to
provide rapid and precise text detection. This method was shown to be important for in
studying natural scene text detection technology that is oriented toward actual application
scenarios because it aims to improve experimental results without introducing end-to-end
networks with too many parameters, and it ultimately achieves high accuracy and fast
text detection.

The energy-efficient design of IoT is a very challenging topic. As mentioned in [8],
although IoT technologies and paradigms such as edge computing have enormous po-
tential for the digital transition towards sustainability, they do not yet contribute to the
IoT industry’s sustainable development. Due to its use of scarce raw materials and its
energy consumption in manufacturing, operation, and recycling processes, this industry
has a substantial carbon footprint. To address these challenges, the green IoT (G-IoT)
paradigm was developed as a study field to lower this carbon footprint; nevertheless, its
sustainable vision directly clashes with the arrival of edge artificial intelligence (edge AI),
which mandates the use of additional energy. The authors of [8] addressed this issue by
investigating various factors that influence the design and development of edge AI G-IoT
systems. In addition, their study provided an Industry 5.0 use case that highlights the
various principles that were discussed. In particular, the proposed scenario involved an

2



Sensors 2023, 23, 1461

Industry 5.0 smart workshop that aims to improve operator safety and operation tracking,
employing a mist computing architecture built of IoT nodes with AI capabilities.

For the energy harvesting of IoT in paper [9], a fast and accurate numerical method
was given to determine the RF–DC power conversion efficiency (PCE) of energy harvesting
circuits in the case of power-carrying signals with multiple tones and periodic envelopes.
In recent years, extensive research has been conducted on this kind of signal. For low-to-
medium input power levels, their use was shown to produce a potentially higher PCE
than the usual sine wave signal. Because of this, the authors wanted to devise a fast and
accurate two-frequency harmonic balance method (2F-HB) because a fast PCE calculation
could speed up the process of optimizing the converter circuit by a lot. A comparison
study was conducted to show how well the 2F-HB works when it comes to computing.
The results of [9] show that the 2F-HB performs much better than widely used methods
such as the transient analysis (TA) method, the harmonic balance method (HB), and the
multidimensional harmonic balance method (MHB). This method also proved to be more
effective than Keysight ADS, a commercial non-linear circuit simulator that uses both HB
and MHB. The proposed method could also be easily added to commercially available
non-linear circuit simulation software, such as Keysight ADS and Ansys HFSS, as used by
many people.

Unmanned aerial vehicles (UAVs) represent one of the new types of devices that use
5G and 6G networks. One possible way of supporting advanced services for UAVs, such as
video monitoring, is to use the recently standardized millimeter-wave (mmWave) frequency
band for new radio (NR) technology. However, buildings may cause frequent outages if
they block the paths between NR base stations (BSs) and UAVs. In [10], the authors used
the tools of integral geometry to describe the connectivity properties of UAVs in terrestrial
urban deployments of mm-wave NR systems. The main metric of interest is the likelihood
of UAV line-of-sight (LoS) blockage. Unlike other studies, the proposed approach made
it possible to obtain a close approximation of the likelihood of line-of-sight blockage as a
function of city and network deployment parameters.

In another review [11], early-stage coverage path planning (CPP) methods were
presented in the robotics field. The objective of CPP algorithms is to reduce the overall
coverage path and execution time. Significant research has been conducted in the field
of robotics, particularly in the areas of multi-unmanned unmanned aerial vehicle (UAV)
collaboration and energy efficiency in CPP challenges. In addition, this paper also addressed
multi-UAV CPP techniques and focused on CPP algorithms that conserve energy.

In [12], the authors investigated a method used to mitigate the user’s body shadowing
effect on the RSSI to improve localization accuracy. They also examined the effect of
the user’s body on the RSSI. The idea of a landmark was then used to develop an angle
estimate method. An inertial measurement unit (IMU)-aided decision tree-based motion
mode classifier was used to accurately identify different landmarks. A compensation
strategy was then proposed to fix the RSSI. The closest neighbor method was used to
estimate the unknown location. The results show that the suggested system can greatly
increase localization accuracy. After adjusting for the body effect, a median localization
accuracy of 1.46 m was attained, compared to 2.68 m before the compensation using the
traditional K-nearest neighbor approach. Additionally, when comparing the suggested
system’s performance to that of the two other relevant works, it clearly surpassed the
competition. By using a weighted K-nearest neighbor approach, the median accuracy was
further increased to 0.74 m.

Direction-of-arrival (DOA) estimation is integral in array signal processing, and the
estimating signal parameter via rotational invariance techniques (ESPRIT) algorithm is one
of the typical super-resolution algorithms used for finding directions in an electromagnetic
vector sensor (EMVS) array. However, existing ESPRIT algorithms treat the output of the
EMVS array as a “long vector”, which leads to a loss of signal orthogonality. Ref. [13] pro-
posed a geometric algebra-based ESPRIT algorithm (GA-ESPRIT) to estimate 2D-DOA with
double parallel uniform linear arrays. The approach integrated GA with ESPRIT to describe
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multidimensional signals holistically. Direction angles were determined by different GA
matrix operations to retain correlations among EMVS components. Experimental results
show that GA-ESPRIT is robust to model mistakes and requires less time and memory.

The ‘15-min city’ concept offers new perspectives on livability and urban health in
post-pandemic cities. Smart city network technologies can offer personalized pathways to
respond to contextualized difficulties through data mining and processing to better enhance
urban decision-making processes. The authors of [14] argued that digital twins, IoT, and
6G can benefit from the ‘15-min city’ concept. The data collected by these devices and
analyzed by machine learning reveal urban fabric patterns. Unpacking these dimensions to
support the ‘15-min city’ notion can illuminate new ways of redefining agendas to better
respond to economic and societal requirements and line with environmental commitments,
including UN Sustainable Development Goal 11 and the New Urban Agenda. This study
argued that these new connectivities should be examined so that relevant protocols can
be created and urban agendas can be recalibrated to prepare for impending technology
breakthroughs, offering new avenues for urban regeneration and resilience crafting.

Environment monitoring is one of the commonly used IoT applications. Ref. [15]
proposed a low-latency LoRaWAN system for environmental monitoring in factories
at major accident risk (FMARs). Low-power wearable devices for sensing dangerous
inflammable gases in industrial plants are meant to reduce hazards and accidents. Detected
data must be provided immediately and reliably to a remote server to trigger preventive
steps and then optimize the functioning of a machine. In these scenarios, the LoRaWAN
system is the best connectivity technology due to off-the-shelf hardware and software.
The authors examined LoRaWAN’s latency and reliability restrictions and proposed a
strategy to overcome them. The suggested solution also used downlink control packets
to synchronize ED transmissions (DCPs). These experiments validated the proposed
technique for the FMAR scenario.

For low-cost IoT precision agriculture applications such as greenhouse sensing and
actuation, the authors of [16] created a LoRaWAN-based wireless sensor network with
low power consumption. All of the research’s subsystems were entirely constructed using
only commercially available components and freely available or open-source software
components and libraries. This entire system was established to demonstrate the possibility
of creating a modular system using low-cost commercially available components for sensing
purposes. The data generated by the experiments were compiled and kept in a database
maintained by a cloud-based virtual computer. Using a graphical user interface, the user
had the ability to observe the data in real time. In a series of experiments conducted with
two types of natural soil, loamy sand and silty loam, the overall system’s dependability was
demonstrated. The system’s performance in terms of soil characteristics was then compared
to that of a Sentek reference sensor. Temperature readings indicate good agreement within
the rated accuracy of the implemented sensors, whereas readings from the inexpensive
volumetric water content (VWC) sensor revealed variable sensitivity. The authors made
several conclusions using a unique approach to maximize the parameters of the non-linear
fitting equation connecting the inexpensive VWC sensor’s analog voltage output with the
standard VWC.

The authors of [17] integrated LPWAN technology to an existing proximate soil sensor
device by building an attachment hardware system (AHS) and accomplishing technical
upgrades for low-cost, low-power, wide-coverage, and real-time soil monitoring in fields.
The testing results demonstrate that, after upgrading, the sensor device can run for several
years with only a battery power supply, and that the effective wireless communication
coverage is nearly 1 km in a typical suburban farming context. As a result, the gadget
not only keeps the sensor device’s original mature sensing technology, but also displays
ultra-low power consumption and long-distance transmission. The proposed method also
serves as a model for extending LPWAN technology to a broader spectrum of inventoried
sensor devices for technical advancements.
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The final paper [18] of this Special Issue focused on digital twins for cattle care. The
authors established cutting-edge artificial-intelligence-powered digital twins of cattle status
in this research (AI). The project was based on an IoT farm system that can record and
monitor the health of livestock from a distance. The sensor data obtained from the farm
IoT system was used to create a digital twin model of cattle based on deep learning (DL).
It was shown that the real-time monitoring of the physiological cycle of cattle is possible,
and by applying this model, the next physiological cycle of cattle can be predicted. An
enormous amount of data to confirm the accuracy of the digital twins model acted as the
foundation of this effort. The loss error of training for this digital twin model, predicting
the future behavioral state of cattle, was approximately 0.580, and the loss error of doing so
after optimization was approximately 5.197. This work’s digital twins model could be used
to predict the cattle’s future time budget.

Conflicts of Interest: The authors declare no conflict of interest.
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Abstract: For the law enforcement agencies, lawful interception is still one of the main means to
intercept a suspect or address most illegal actions. Due to its centralized management, however, it is
easy to implement in traditional networks, but the cost is high. In view of this restriction, this paper
aims to exploit software-defined network (SDN) technology to contribute to the next generation
of intelligent lawful interception technology, i.e., to optimize the deployment of intercept access
points (IAPs) in hybrid software-defined networks where both SDN nodes and non-SDN nodes
exist simultaneously. In order to deploy IAPs, this paper puts forward an improved equal-cost
multi-path shortest path algorithm and accordingly proposes three SDN interception models: T
interception model, ECMP-T interception model and Fermat-point interception model. Considering
the location relevance of all intercepted targets and the operation and maintenance cost of operators
from the global perspective, by the way, we further propose a restrictive minimum vertex cover
algorithm (RMVCA) in hybrid SDN. Implementing different SDN interception algorithms based
RMVCA in real-world topologies, we can reasonably deploy the best intercept access point and
intercept the whole hybrid SDN with the least SDN nodes, as well as significantly optimize the
deployment efficiency of IAPs and improve the intercept link coverage in hybrid SDN, contributing
to the implementation of lawful interception.

Keywords: lawful interception; hybrid SDN; intercept access point; minimum vertex cover

1. Introduction

National security and social stability, in today’s world, have been shaken by some
security threats such as terrorist attacks, cybercrime and information warfare. For the
law enforcement agencies (LEAs; L), therefore, lawful interception (LI) is still one of the
main means to intercept a suspect or address these illegal actions at present. As we all
know, lawful interception is a kind of data acquisition of communication network based on
lawful authorization for the purpose of analysis or evidence collection. Thus, it allows the
law enforcement agencies with court orders or other legitimate authorities to selectively
eavesdrop on individual users. Most countries require those licensed telecom operators to
provide legitimate interception gateways and nodes on their networks for communication
interception. To deploy the gateways and nodes in legacy networking where traditional
gateways or nodes rely on dedicated devices and backhaul links to intercept network
traffic, however, leads to unimaginable cost. On the contrary, software-defined networking
(SDN) [1], different from the traditional networking, can simplify the traditional network’
architecture [2] and thus enable efficient management and centralized control [3] for
intercepting network traffic at an extremely low cost because of its property of software
definition with OpenFlow protocol [4]. The deployment of SDNs, however, is not a one-step
process, but a long process, namely, in the wake of the increasing deployment of SDNs [5],
a situation where both SDN nodes and non-SDN (N-SDN) nodes exist simultaneously is
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formed gradually. Therefore, it is of great significance to study how to design a brand-
new network information lawful interception system architecture based on the software-
defined network (SDN) technology and to discuss its challenges such as the deployment of
intercept access point (IAPs), route selection of intercept, the minimum cost of intercept,
the minimum number of intercept access points etc. in a hybrid SDN.

In this paper, we propose the deployment and optimization strategy of intercept
access points, which includes single intercept access point selection, the shortest route
optimization algorithm between three points, the minimum intercept traffic cost algorithm,
and the restrictive minimum vertex cover algorithm.

The problem of single intercept access point selection is the shortest path problem
that is to solve the shortest path between two given vertices in a weighted graph. At this
time, the shortest path not only refers to the shortest path in the sense of pure distance, but
also in the sense of economic distance, time and network. In this paper, the cost of shortest
path between two points can refer to hop-count, traffic, transmission delay, transmission
bandwidth, energy consumption etc. As is known to all, Dijkstra Algorithm [6] is the most
typical single source shortest path algorithm, which is used to calculate the shortest path
from one node to all nodes, and yet not all equal-cost multi-path shortest path. Meanwhile,
Li [7] proposed an improved Dijkstra Algorithm that can find most of the shortest paths
using the initial shortest path set through applying for concept of precursor node but
cannot find all shortest paths. Moreover, a lot of related work with respect to the shortest
path have been done by [8–14] in various fields.

In view of this, we develop an improved equal-cost multi-path shortest path algorithm
(i.e., ECMP-Dijkstra) which can find all shortest paths between the source (S) and the
destination (D), and accordingly put forward three SDN interception models based on
ECMP-Dijkstra Algorithm in hybrid SDN. The three SDN interception models can be
viewed as a cost-effective three-point shortest path algorithm with low time and space
complexity, and thus can be used to deploy the best intercept access point reasonably in
hybrid SDN.

The optimization of traffic engineering in hybrid SDN, like [15–17], is also one of our
focuses. This study mainly concerns with the best transmission quality of intercepted data,
the minimum cost of returning intercepted data to the interception center (i.e., LEA; L),
the total traffic in global network, the transmission quality of traffic normally accepted by
users when deploying intercept access points.

In reality, the deployment of intercept access points in the Internet does not simply
corresponds to the micro perspective of a single data flow between three points. There is a
very dynamic and complex traffic matrix [18] relationship and interactive influence among
hundreds of millions of nodes in the large-scale Internet. A certain intercept access point
(IAP; I) can meet the demand of traffic between S-D (from S to D) path, but there are also
tens of millions of other traffic between intercept target node pairs, which may also flow
through I node at the same time. Therefore, it is very important to select the deployment
location of intercept access point, which must occupy the hub position, and greatly covers
all intercepted traffic and must go through the critical path. For this reason, the location
relevance of all intercepted targets and the operation and maintenance cost of operators
must be taken into consideration from the global perspective, and thus the deployment
problem of intercept access points is viewed as the minimum vertex cover problem (MVCP)
that is NP-complete [19] to find its solution.

A lot of investigations have been done on MVCP in theory and applications for the
last several decades [20–22]. Some parameterized algorithms about MVCP have been
applied in biochemistry [23,24]. Moreover, the optimal approximation algorithm for MVCP
have been proposed in [25–30]. Authors in [25–30] proposed the approximate optimization
algorithm for MVCP by using the concept of degree.

Referring to their proposed algorithm, we develop a restrictive minimum vertex cover
algorithm (RMVCA) in hybrid SDN networks to optimize the deployment efficiency of
IAPs and to improve the link coverage of the whole interception system.
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The ultimate aim of this paper is to contribute to the theory of lawful interception
technology, the development of Internet and national security. In summary, the main
contributions of this paper are as follows:

• To solve the problem of single intercept access point selection and routing between
three points, we develop an improved equal-cost multi-path shortest path algorithm
(i.e., ECMP-Dijkstra) and accordingly put forward three SDN interception models
(e.g., T model, ECMP-T model and Fermat-point model) to deploy the best intercept
access point reasonably in hybrid SDN, realizing the effective deployment of intercept
access point in lawful interception system.

• Considering the location relevance of all intercepted targets and the operation and
maintenance cost of operators of the whole interception system, we proposed a restric-
tive minimum vertex cover algorithm (RMVCA) to intercept the whole interception
system with the least SDN nodes, optimize the deployment efficiency and improve
the intercept link coverage for the whole interception system when deploying IAPs.

• Based RMVCA, we put forward three approaches PA, RA, and HA for experiments,
and study and analyze the impact of different approaches on the efficiency of deploy-
ing intercept access points and on the intercept link coverage in hybrid SDN, to seek
out the best RMVCA approach.

• We study and analyze the impact of different SDN interception models on various per-
formance metrics of lawful interception system by using three real-world topologies,
to seek out the best interception model.

In this paper, we first analyze various SDN interception models in hybrid software-
defined networks and propose their algorithms, and then develop a restricted minimum
vertex coverage algorithm from a global perspective. Extensive simulation results based
on real-world network topology show that RMVCA can significantly improve network
interception link coverage and deployment efficiency of IAPs of whole interception system,
and that the performance metrics of the interception system are the best when Fermat-point
interception model is adopted.

The remainder of this article is structured as follows. Section 2 surveys relevant
work and Section 3 presents ECMP-Dijkstra Algorithm and SDN interception models. We
propose the RMVCA in Section 4, followed by the performance evaluation of RMVCA and
SDN interception models in Section 5. Then, Section 6 concludes the paper.

2. Related Works

Table 1 presents comparisons between our proposed and the related works according
to different parameters.

Table 1. Comparisons of related works.

Lawful Interception [31] [32] Our Proposed

SDN based No Yes Yes
Cost Very High Low Low

The shortest path algorithm [6] [7–14] Our proposed
Time-Space complexity Low Medium Medium-Low
The number of ECMP One The most All

Minimum Vertex Cover [33] [20–30] Our proposed
Time-Space complexity Low Medium Medium-Low

Results Very bad Near-optimal Near-optimal

2.1. Lawful Interception (LI) and Hybrid Software-Defined Networks (H-SDNs)

With the dramatic development of the Internet, an increasing number of people
commit crimes on the Internet, and criminal activities are extremely rampant, which
seriously affect people’s security and national stability. Thus, lawful interception (LI) is
still one of the momentous means for the law enforcement agencies (LEAs) to maintain
national security, crack down on crime and prevent cybercrime. For interception system, an
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intercept device is installed to intercept network traffic, and copies it back to LEAs, and then
carries out identifying and analyzing by manual or machine. With the development of new
network technology and the continuous increase of network traffic, it is a more and more
common and difficult task to carry out lawful interception on the Internet [31] for helping
tracking culprits and to understand the nature and behavior of current Internet traffic.

With the development of SDN technology, legacy Ether-net switches are gradually
migrating to SDN, and this process is harmless [32]. Although the emerging SDN networks
that provides programmability to networks can have an improvement in implementing
traffic engineering (TE), management departments still hesitate to deploy SDN fully be-
cause of various reasons such as budget constraints, risk considerations as well as service
level agreement (SLA) guarantees. This results in developing SDN network incrementally,
i.e., to deploy the SDN network only through migrating fewer SDN switches in legacy
network, thus, to form the hybrid SDN networks (H-SDNs). H-SDN network provides
a coexistence and cooperation environment for N-SDN nodes and SDN nodes, which
brings many benefits to traditional IP networks. For the near-optimal performance of
traffic engineering, therefore, it is crucial to maximize the benefits of SDN with minimal
SDN deployment. Therefore, it is imperative to deploy SDN intercept access point in a
hybrid SDN (H-SDN) network where SDN nodes (routers) and legacy nodes coexist and
operate in perfect harmony, realizing lawful interception. In H-SDN, the links between
SDN nodes and between SDN nodes and N-SDN nodes can be intercepted (i.e., SDN links),
and the links between N-SDN nodes cannot be intercepted (i.e., N-SDN links) due to the
lack of special equipment and dedicated return link in hybrid SDN. In other words, in the
interception system based SDN, the law enforcement agencies (LEAs) do not have to set
up special equipment and a dedicated line in traditional IP networks, but can intercept
traffic of links through SDN intercept access point to respond to requests from the intercep-
tion center, which can greatly reduce the cost of traditional special equipment and leased
lines. The interception system based SDN will be no longer restricted by the bandwidth of
the intercepting dedicated equipment and link. By deploying intercept access point, the
interception system will have a lot of redundant links or paths to be employed to return
data flow, thus, to reduce or avoid the risk of single point failure or to further guarantee
the multi-path routing method.

Therefore, the deployment of SDN intercept access point in interception system is
helpful to perfect the route of intercepting traffic, to make full use of Internet bandwidth
resources, to improve user’s quality of service, and to further optimize the performance of
the whole interception system.

2.2. Dijkstra Algorithm

The most classic single source shortest path algorithm is Dijkstra Algorithm [6], which
was proposed in 1956 and became well-known three years later. Dijkstra Algorithm can
calculate the shortest path from one node to all nodes, yet not all equal-cost multi-path
shortest path.

Many modified algorithms based on Dijkstra Algorithm are proposed in [7–14]. An
improved algorithm of Dijkstra Algorithm was proposed by Li [7]. Under the concept of
precursor node, Li exploited the initial shortest path set calculated by Dijkstra Algorithm,
to calculate most but not all of the shortest paths. The authors of [8] improved Dijkstra
Algorithm for solving three issues, such as the ineffective mechanism to digraph. In
addition, the work [9] proposed some modifications on Dijkstra Algorithm and made the
number of iterations less than the number of the nodes. Work [10] proposed an optimized
algorithm based on Dijkstra Algorithm to optimize logistics route for the supply chain. On
the other hand, the study [11] modified Dijkstra Algorithm and the modified algorithm is
very of efficiency for public transport route planning. Work [12] used Dijkstra Algorithm
towards shortest path computation in navigation systems for making sensible decision and
time saving decisions. By the way, the study [13] improved Dijkstra Algorithm to find the
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maximum load path. Work [14] introduced an improved Dijkstra Algorithm for analyzing
the property of 2D grid map and increased significantly the speed of Dijkstra Algorithm.

Referring to their proposed algorithms, we also improve Dijkstra Algorithm and
propose an improved equal-cost multi-path shortest paths algorithm (ECMP-Dijkstra),
which can calculate all equal-cost shortest paths from one node to all nodes, thus developing
a cost-effective shortest path optimization algorithm between three points (i.e., S, D and L)
with low time and space in hybrid SDN.

2.3. The Minimum Vertex Cover Problem (MVCP)

The traditional algorithm to solve the minimum vertex cover algorithm (MVCP) is
2-approximation [33]. This algorithm can find the set of vertex cover which is no more
than twice of the optimal vertex cover, and the time complexity of the algorithm is O
(E+V). More importantly, the results obtained by this algorithm are different each time,
and thus may be inaccurate and not approximate solution. However, this algorithm has
its advantages: every time a vertex is selected, and all the edges connected by the vertex
are deleted.

The authors in [20–22] made much contribution to MVCP in theory and applications.
The authors in [23,24] proposed parameterized algorithms for MVCP, and applied them
in biochemistry. Work [25] proposed an improved greedy algorithm for minimum vertex
cover problem, and the algorithm used the concept of degree (i.e., the number of links
connected by a node) to carry out an order of degree and to select the node with the largest
degree to add to the minimum vertex cover set until the degree of all nodes is 0 (i.e., the
vertexes in the minimum vertex cover set has covered all the edges). Thus, the result is
a very excellent approximate solution. However, the process of judging the degree of
the algorithm is too complicated. Authors in [26] presented a greedy heuristic algorithm
for MVCP to offer better results on dense graphs. The study [27] presented a breadth
first search approach, which can get the exact result of MVCP for grid graphs. Work [28]
proposed a near-optimal algorithm named MAMA to optimize the unweighted MVCP, and
MAMA can return near optimal result in quick-time. Authors in [29] proposed a NHGA
for MVCP to yield near-optimal solutions. In [30], authors studied an ameliorated genetic
algorithm for the partial VCP to skip the local optimum by powerful vertex and adaptive
mutation. All of their algorithm are based on the concept of degree.

Combining with the advantages of the above algorithms, we proposed an ameliorated
restrictive minimum vertex cover algorithm (RMVCA) in hybrid SDN using the concept of
degree to significantly simplify the process of degree judgment and to yield near-optimal
result, thus, in the whole interception system, realizing the optimization of the deployment
efficiency of IAPs and the improvement of intercept link coverage.

3. ECMP-Dijkstra Algorithm and SDN Interception Models

3.1. ECMP-Dijkstra Algorithm

When deploying the best intercept access point in hybrid SDN, we have to calculate
all equivalent shortest paths between two points and then select out the best route from all
equal-cost shortest paths to choose the best node as IAP. The most typical single source
shortest path algorithm is Dijkstra Algorithm [6]. Accordingly, an improved algorithm
of Dijkstra Algorithm was proposed by Li [7]. Under the concept of precursor node, Li
exploited the initial shortest path set calculated by Dijkstra Algorithm, to calculate most
but not all of the shortest paths. In view of this, on the basis of Dijkstra Algorithm and
Li’s Algorithm, we propose an improved equal-cost multi-path shortest paths algorithm
(ECMP-Dijkstra), which can calculate all equal-cost shortest paths from one node to all
nodes. The notations used in the algorithms and in the following equations are listed in
Table 2.
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Table 2. Notations.

Notation Meaning

NSDN the SDN nodes selected randomly from all nodes in H-SDN
S, D, L the source and the destination and the interception center or the LEA

I the set of the best intercept access points
spS,D or spS-D the shortest path from node S to node D

NS,D the set of nodes in the shortest path spS,D
SN the set of SDN nodes

i the SDN node or SDN devices
j the index of the j-th element of a vector

h(i) the set of hop-count, h(i) denotes the hop-count or cost of node i
numh(j) the set of costs, numh(j) denotes the cost of the j-th element

inh(j) inh(j) denotes the node with the index of j
minhops the minimum cost or hop-count

β the maximum index
N the number of nodes

hops(i,j) or hopsi-j the minimum hop-count or cost from node i to node j

The pseudo code of Dijkstra Algorithm is given in Algorithm 1. We input the source
node s and an undirected graph G (V,E) where V denotes the set of all nodes and E denotes
the set of all edges. We explain Algorithm 1 that inf denotes an infinity and sps,i denotes
the shortest path from the source node s to node i. In lines 11–14, we get the minimum
hop-count value minhops and the corresponding node key. In lines 15–19, we remove node
key from U and then add node key to S and add node key to the shortest path sps,i to get
the shortest path sps,key. Finally, we obtain the shortest path set SP from the source node s
to all nodes in V.

Algorithm 1 Dijkstra Algorithm

Input: s; G(V,E)
Output: SP
1: S(s) = 0; U(i) = inf, i ∈ V, i �= s; SP = ∅
2: SP ← SP ∪ sps,s
3: while U �= ∅ do
4: tsp = ∅; minhops= inf; key = None
5: for edge ei,j in E do // node i, j ∈ V, i �= j
6: if hops(ei,j) + S(j) ≤ U(i) then

7: U(i) ←hops(ei,j) + S(j)
8: tsp(i) = j
9: end if

10: end for

11: numu(k), inu(k) ←sort(U(i))
12: β ← Num(numu(k))
13: minhops= numu(β)
14: U ← U – key
15: S(key) = minhops
16: S(key) = minhops
17: for shortest path sp0s,i in SP do

18: if i == tsp(key) then

19: sps,key ← Merge(sps,i,key)
20: SP ← SP ∪ sps,key
21: end if

22: end for

23: end while

24: return SP

Based on Dijkstra Algorithm, we propose an improved equal-cost multi-path shortest
paths algorithm (ECMP-Dijkstra) so as to calculate all equal-cost shortest paths from
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the source node s to all nodes. Detailed pseudo code of ECMP-Dijkstra Algorithm is
summarized in Algorithm 2. At beginning, we input the source node s and the shortest
path set SP calculated by Dijkstra Algorithm, which contains only one shortest path from s
to all nodes. In line 1, we use the shortest path set SP to calculate the minimum hop-count
or cost set S from s to all nodes by the function hops() and S(i) denotes the minimum
cost from node s to node i. In line 5, rsp(i) denotes all equal-cost shortest paths from the
source node s to the destination node i. We loop through the edge-set E(ei,j) and judge
whether the hop-count or cost from node s to node i (i.e., S(i)) plus the hop-count of edgei,j
equals the hop-count from node s to node j (i.e., S(j)). If it does, then we add node j to
all equal-cost shortest paths from node s to node i in lines 11–12, thus obtaining multiple
shortest paths from node s to node j and adding them to the shortest path set SP in line 13.
In lines 2–13, we exploit the precursor node and the initial shortest path set SP repeatedly,
to add equal-cost shortest paths to SP and thus update SP constantly. In line 18, we delete
the duplicate shortest path from SP using the function DeleteDup(). Thus, we update the
shortest path set SP repeatedly until the number of shortest paths in SP does not increases.

Algorithm 2 ECMP-Dijkstra Algorithm

Input: s; G(V,E); SP
Output: SP
1: S ← hops(SP)
2: repeat

3: nSP ← Num(SP)
4: for shortest path sps,i in SP do
5: rsp(i) = sps,i
// sps,i may contain more than one shortest path.
6: end for

7: for edge ei,j in E do
// node i, j ∈ V, i �= j
8: sp0i,j ← Sp(ei,j)
// Convert ei,j to shortest path sp0i,j.
9: if shortest path sp0i,j /∈ SP then

10: if S(i) + hops(sp0i,j) == S(j) then

11: for shortest path sp’s,i in rsp(i) do
12: sp’s,i ← Merge(sp’s,i, j)
13: SP ← SP ∪ sp’s,i
14: end for

15: end if

16: end if

17: end for

18: SP ← DeleteDup(SP)
19: nSP’ ← Num(SP)
20: until nSP == nSP’

We use three real-world topologies CRN, COST 239, NSFNet for simulation ex-
periments, where China’s 156 major railway nodes network (China Railway Network;
CRN) [34] has 156 nodes and 226 links, Pan-European fiber-optic network (COST 239) [35]
has 28 nodes and 41 links and T1 NSFNet network topology [36] has 14 nodes and 21
links. Under the three topologies, we compared ECMP-Dijkstra Algorithm with Dijkstra
Algorithm and Li’s Algorithm and the experimental results are shown in Figure 1 where
TSP denotes the total number of shortest paths from one node to all nodes. Moreover, the
higher the TSP, the better the intercept access points deployment may be. From the figures,
we know that TSP of ECMP-Dijkstra Algorithm is higher than Dijkstra Algorithm and Li’s
Algorithm, thus, to deploy intercept access point reasonably.
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(a) CRN (b) COST 239 (c) NSFNet

Figure 1. The impact of three shortest path algorithm on TSP in three topologies. TSP. The higher, the better.

3.2. SDN Interception Models

For lawful interception in hybrid SDN, we first need to analyze how to intercept, that
is, how to deploy intercept access point between the source (S), the destination (D) and
the interception center (L). In this section, we will analyze various network interception
models (i.e., the deployment strategies of IAP) in hybrid SDN. The deployment of intercept
access point includes the single “IAP selection problem” in the shortest path S-D (i.e., the
shortest path from S to D) and its derived “the shortest path algorithm problem between
three points (i.e., S, D and L)”. The above two problems can be viewed as the same problem.
Once the location of the intercept access point is determined, then the fourth point (IAP; I)
can meet the service traffic between S, D and L. Under the condition that S-I, D-I, and L-I
path are the shortest at the same time, the shortest path between three points can be solved
to meet the needs of interception system.

We aim to solve the problem of selecting single intercept access point and routing
between three-points, namely to deploy the best intercept access point in the shortest
paths between S, D, and L. Analyzing interception models in hybrid SDN, we divide them
into two interception models by the deployment location of intercept access point: legacy
interception models and SDN interception models as shown in Figures 2 and 3.

(a) S/I (b) D/I (c) L/I

Figure 2. Legacy interception models.

(a) T (b) ECMP T Fermat point

Figure 3. SDN interception models.
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The legacy interception models include: S/I model, D/I model, and L/I model as
shown in Figure 2a–c. As we all know, the interception service in legacy networks is limited
by the deployment location of intercept access point due to the unimaginable cost of setting
up special equipment and dedicated return link, to intercept network traffic. Thus, S or D
or L is usually adopted as intercept access point I used to respond to the requirements of
the interception center and to perform the traffic interception action in legacy network.

In this paper, we mainly study and analyze the SDN interception models, which
includes T model, ECMP-T model and Fermat-point model as shown in Figure 3a–c. In
view of the performance metrics of lawful interception system, the three SDN interception
models are used to thoroughly study to find the optimal algorithm of deploying intercept
access point.

Figure 3a shows T model: its name comes from the topology similar to the T-word.
Under the concept of SDN networking in an undirected and weighted network G(V,E), any
SDN node on the shortest path S-D can be selected as intercept access point (I) under the
premise of not affecting the existing shortest path arrangement of S-D (i.e., maintaining
the existing end-to-end transmission quality). While only the node with the minimum
hop-count (or cost) to the interception center (L) should be adopted as the best I-point to
run the function to capture traffic transferred to the interception center.

Figure 3b shows ECMP-T model: based on the operation mode of T model, the path
I-L must be the shortest path, but this shortest path S-I-D does not necessarily meet the
optimal path. In fact, there may be more than one shortest path S-D, namely, the shortest
path S-D is equal-cost multi-path (ECMP). Hence there may be a southward equal-cost
shortest path in the T-word path theoretically, in which there is another intercept access
point (I) and the hop-count (or cost) of I-L path is lower than the current one, so this
interception model is called ECMP-T model that the nearest I-point from the interception
center (L) is selected as the best intercept access point I among all the equivalent shortest
paths between S and D.

Detailed pseudo code of T or ECMP-T model is presented in Algorithm 3. At the
beginning of the algorithm, the set I used to store the best intercept access point is set to be
empty in line 1. In lines 2–4, we calculate the shortest path spS,D from S to D using Dijkstra
or ECMP-Dijkstra Algorithm and then obtain the node-set NS,D in the shortest path spS,D,
and next select out SDN nodes from the node-set NS,D to get the SDN node-set SN. If the
SDN node-set SN is not empty, we traverse SDN nodes in SN and implement lines 6–16;
otherwise, we fail to deploy intercept access point (IAP) between S, D and L, and thus
save the wrong node combination of S, D and L in line 18. Line 7 calculates the lowest hop
count (or cost) from SDN nodes to L and get the cost vector h(i). In line 9, we sort the cost
vector h(i) by size of hop count in descending order and then get the sorted vector numh(j)
and the corresponding label vector inh(j), where j denotes the subscript of j-th element
of a vector. Line 11 takes the minimum hop-count value minhops from the sorted vector
numh(j). Finally, in lines 13–14, we select the node with the minimum cost minhops as the
best intercept access point and then add the selected IAP inh(j) to the set I.

Algorithm 3 T or ECMP-T Model

Input: NSDN; S; D; L
Output: I
1: I = ∅
2: spS,D ← Dijkstra(S,D) or ECMP-Dijkstra(S,D)
3: NS,D ← Onodes(spS,D)
4: SN ← Select(NS,D, NSDN)
5: if the SDN node-set SN �=∅ then

6: for node i in SN do

7: c(i)←hops(Dijkstra(i,L)) or
hops(ECMP-Dijkstra(i,L))

8: end for
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9: numh(j), inh(j) ← sort(h(i))
10: β ← Num(SN)
11: minhops← numh(β)
12: for key j in numh do

13: if numh(j) = minhops then

14: I ← I ∪ inh(j)
15: end if

16: end for

17: else

18: SaveFail(S,D,L)
19: end if

20: return I

The only difference of pseudo code of T model and ECMP-T model is whether to use
Dijkstra Algorithm or ECMP-Dijkstra Algorithm to calculate the shortest path.

Figure 3c shows Fermat-point model: In geometry, Fermat-point refers to the point
with the smallest sum of the distances from the three vertices of the triangle. Accordingly,
we extend it to the node with the smallest sum of the distances from the three nodes of S, D
and L in SDN network, and at the same time with meeting the constraints of the shortest
path of S-D, S-L and D-L between the three points. Theoretically, Fermat-point model
is optimal.

Details of pseudo code of Fermat-point model are summarized in Algorithm 4. In
lines 2–4, we calculate all equal-cost shortest paths of S-D, S-L, D-L using ECMP-Dijkstra
Algorithm, and then obtain all node sets in the equal-cost shortest paths in lines 5–7, and
next combine these node sets to get the node-set NS,D,L in line 8, and further select out
SDN nodes from the node-set NS,D,L to get the SDN node-set SN. If the SDN node-set SN
is not empty, we traverse SDN nodes in SN and implement lines 11–24; otherwise, we
fail to deploy intercept access point (IAP) between S, D and L, thus to save the wrong
node combination of S, D and L. Lines 12–14 calculate the lowest hop count (or cost) of i-S,
i-D, i-L, and then add the results to the sum, to get the cost vector h(i) in line 15. In lines
17–24, we sort the cost vector h(i) by size of cost value in descending order and then take
the minimum cost value minhops, and next select the node inh(j) with the minimum cost
minhops as the best intercept access point and finally add the selected IAP inh(j) to the set I.

Algorithm 4 Fermat-point Model

Input:NSDN; S; D; L
Output: I
1: I = ∅
2: spS,D,spS,L,spD,L←ECMP-Dijkstra((S,D),(S,L),(D,L))
3: NS,D, NS,L, ND,L← Onodes((spS,D, spS,L, spD,L)
4: NS,D,L ←NS,D ∪NS,L ∪ND,L
5: SN ← Select(NS,D,L, NSDN)
6: if the SDN node-set SN �= ∅ then

7: for node i in SN do

8: hs(i) ← hops(ECMP-Dijkstra(i,S))
9: hd(i) ← hops(ECMP-Dijkstra(i,D))
10: hl(i) ← hops(ECMP-Dijkstra(i,L))
11: h(i) ← hs(i) + hd(i) + hl(i)
12: end for

13: numh(j), inh(j) ← sort(h(i))
14: β ← Num(SN)
15: minhops ← numh(β)
16: for key j in numhdo

17: if numh(j) = minhops then

18: I ← I ∪ inh(j)
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19: end if

20: end for

21: else

22: SaveFail(S,D,L)
23: end if

24: return I

We use spi-j to denote the shortest path from node i to node j, and hopsi-j denotes the
lowest hop-count or cost from node i to node j. We use ‘→’ to denote that the next-node is
N-SDN node and use ‘⇒’ to denote that the next-node is SDN node. Examples of three
interception models are illustrated in Figure 4, where we select node 154, node 9, node 105
all marked by red as S, D and L respectively and select 30 nodes randomly in Figure 4 as
SDN nodes which includes node i∈{4, 8, 11, 19, 23, 25, 31, 38, 49, 50, 58, 60, 65, 67, 77, 82, 89,
92, 100, 103, 117, 120, 121, 125, 128, 134, 140, 150, 152, 156}, to construct a hybrid SDN.

Figure 4. China’s 156 major railway nodes network (China Railway Network; CRN).

We run T interception model: One shortest path from node 154 to node 9 is sp154-9
marked by pink in Figure 4 that is 154 → 153 ⇒ 152 → 146 → 142 → 136 ⇒ 134 → 124 ⇒
121 ⇒ 117 → 94 → 81 ⇒ 82 → 74 → 52 ⇒ 49 → 32 → 30 ⇒ 31 ⇒ 25→9, and hops154-9 = 20.
Among all nodes in sp154-9, node 117 that is an SDN node has the lowest hop count to node
105 due to hops117-105 = 6, and thus node 117 can be used as the best intercept access point I
in T interception mode.

We run ECMP-T interception model: There are 22 equivalent shortest paths from
node 154 to node 9, but we only show three shortest paths (i.e., sp154-9 contains sp1154-9,
sp2154-9, and sp3154-9) from node 154 to node 9 marked by pink, bright green, turquoise
respectively in Figure 4. sp1154-9 is 154 → 153 ⇒ 152 → 146 → 142 → 136 ⇒ 134 → 124⇒
121 ⇒ 117 → 94 → 81 ⇒ 82 → 74 → 52 ⇒ 49 → 32 → 30 ⇒ 31 ⇒ 25 → 9, and sp2154-9 is
154 → 153 → 155 → 144 ⇒ 140 → 133 ⇒ 134 → 124 ⇒ 121 ⇒ 117 → 99 → 97 → 69 →
68 → 61 ⇒ 60 → 56 ⇒ 23 → 24 ⇒ 25→9, and sp3154-9 is 154 → 153 → 155 → 144 ⇒ 140
→ 133 ⇒ 134 → 115 → 113 → 112 ⇒ 100 → 101 → 64 → 63 → 62 → 59 → 17 → 16 ⇒ 19
→ 10 → 9, and hops154-9 = 20. Among all nodes in sp154-9, node 100 that is SDN node in
sp3154-9 has the lowest hop count to node 105 due to hops100-105 = 4, and thus node 100 can
be used as the best intercept access point (I) in ECMP-T interception mode. Apparently,
hops100-105 < hops117-105, namely, this I-point outperforms the one in the T model.
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We run Fermat-point interception model: the node-set N154-9-105 with no repeat is
obtained by all sp154-9, sp154-105,sp9-105 (i.e., spS-D, spS-L, spD-L). Namely, N154-9-105 contains
all nodes of all the shortest paths from node 154 to node 9, from node 154 to node 105, and
from node 9 to node 105. And then, the sum of hop-count from node 103 in N154-9-105 to
node 154, node 9, node 105 (i.e., hops103-154,9,105) is the smallest and hops103-154,9,105 = 23,
This means that node 103 that is SDN node in N154-9-105 can be used as the best intercept
access point I in Fermat-point interception mode.

We have solved the problem of single intercept access point deployment above, and
then expand to deploy intercept access points in hybrid SDN.

Running different network interception models, we will study and analyze the influ-
ence on the best transmission quality of intercepted data (the minimum cost from intercept
access point (I) to interception center (L); MILC), the total cost of running intercept op-
eration in global network (TOC), and the quality of service of normal user’s data stream
(UQoS) with different proportion of SDN node. According to the proposed three models
in Figure 3, MILC, TOC, UQoS are calculated in respectively in (1), (2) and (3), where N
denotes the maximum node label or index, and any node can be selected as S, D and L in
hybrid SDN topology, i.e., there are N3 possibilities for node-combination of S, D and L.
After the node-combination selection (S, D, L), the best intercept access point (I) can be got
by the SDN interception models, then the hop count or cost of the shortest path S-I, D-I
and L-I can be calculated by the function hops(i,j), thus calculating MILC, TOC and UQoS.

4. Restricted Minimum Vertex Cover Algorithm

There is no exception that most network optimization deployment problems can be
viewed as the minimum vertex cover problem (MVCP) in graph theory. In the process of
migration of SDN technology for large-scale Internet, it may be faced with the situation of
hybrid deployment of SDN nodes and non-SDN nodes (N-SDN). In this hybrid SDN, not
all nodes have software-defined functions to play the role of intercept access point. Only
some nodes with the function of software definition can respond to the requirements of
the interception center and to run interception operation. Therefore, it is very critical to
select the best deployment location of intercept access point. And IPA must occupy the
position of the hub, greatly covering all traffic through the critical path, and under a certain
proportion of threshold, it may not achieve 100% intercept link coverage. Therefore, the
minimum vertex cover problem must be transformed into the restricted minimum vertex
cover problem question (RMVCP).

MILC =
N

∑
S=1

N

∑
D=1

N

∑
L=1

hops(L, I) (1)

TOC =
N

∑
S=1

N

∑
D=1

N

∑
L=1

hops(S, I) + hops(D, I) + hops(L, I) (2)

UQoS =
N

∑
S=1

N

∑
D=1

N

∑
L=1

hops(S, I) + hops(I, L) (3)

Considering overall situation (e.g., the location relevance of all intercepted targets,
the operation and maintenance cost of operators) from the whole interception system, we
intend to develop a restricted minimum vertex cover algorithm (RMVCA) to achieve the
best intercept link coverage of the whole network with the minimum number of intercept
access points as well as optimize the efficiency of deployment when deploying intercept
access points in the hybrid SDN.

RMVCP: given a network graph G(V,E), where V denotes the set of all nodes, and E
denotes the set of all links in the network. There exists non-SDN nodes and SDN nodes at
the same time in the network where V = S∪N, and S denotes the set of SDN nodes, and N
denotes the set of non-SDN nodes. To find a P set (P ⊆ S ⊆ V), so that every link in the
network is covered (intercepted) by at least an SDN node in the P set.
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Figure 5 shows an example of solving RMVCP. In this hybrid SDN, SDN nodes (i.e.,
solid circle) set S = {1, 3, 8, 9, 11, 12, 13, 17, 19, 20, 21, 22, 25, 26, 27, 28} and non-SDN nodes
(i.e., light circle) set N= {2, 4, 5, 6, 7, 10, 14, 15, 16, 18, 23, 24}. Using RMVCA, the SDN
nodes set P = {1, 8, 9, 11, 13, 20, 22, 25, 26, 27} is recommended to be selected as the intercept
access points set, but 7 links (marked as dotted lines) in the example failed to be covered
due to the hybrid deployment of SDN and N-SDN nodes, and thus only about 80% of the
links (marked as solid lines) are completely covered by 10 intercept access points.

Figure 5. Hybrid SDN covered by minimum vertexes.

RMVCA ensure the result a near-optimal solution or one of the approximate solutions,
so as to meet the optimal solution of the deployment problem of intercept access points.

Based on the concept of degree, we, at a time, use greedy algorithm to select one
approximate or equivalent optimal intercept access point to reduce the scale of the problem
recursively, so as to obtain the minimum vertex approximation set covering all SDN
links and achieve the best intercept link coverage with the minimum number of intercept
access point.

Details of pseudo code of RMVCA are summarized in Algorithm 5. We input an
undirected and weighted network cover set P is set to empty originally. In line 2–3, we
get the set N of N-SDN nodes and the accordingly edge-set EN-SDN of N-SDN nodes by
the set N. Line 4 removes EN-SDN from the edge-set E, to get the edge set ESDN of SDN
nodes. Lines 6–7 traverse each SDN node and calculate its degree d(i). In line 9, we sort
the degree vector d(i) in the ascending order and get the sorted degree vector numd(j) and
the accordingly label vector ind(j) where j denotes the index or subscript of j-th element.
Line 11 selects the maximum degree numd(β) from numd(j) where β denotes the number
of SDN nodes in the set S. In lines 12–18, we judge the degree of node and implement
accordingly measures. If the maximum degree of node is not equal to zero in line 12, we
first add the node ind(β) where β denotes the subscript of β-th element to the minimum
vertex cover set P in line 13 and then calculate the adjacent edge-set θ(ind(β)) of node ind(β)
in line 14, and next remove the adjacent edge-set θ(ind(β)) from the edge-set E in line 15,
which leads to the degree reduction of each SDN node. Finally, we return line 5 to judge
whether ESDN is empty and then calculate the degree of each SDN node again. Otherwise,
if the maximum degree of node is equal to zero, we break the loop and end the algorithm.
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Algorithm 5 RMVCA (Restricted Minimum Vertex Cover Algo-rithm)

Input: G(V,E); S: the SDN node-set
Output:P
1: P = ∅
2: N ← V – S
3: EN-SDN ← Edge(N(i))
4: ESDN ← E –EN-SDN
5: while ESDN �= ∅ do

6: for node i in S do

7: d(i) ← i
8: end for

9: numd(j), ind(j) ← sort(d(i))
10: β ← Num(S)
11: maxnumd ← numd(β)
12: if maxnumd > 0 then

13: P ← P ∪ ind(β)
14: θ(ind(β)) ←ind(β)
15: ESDN ←ESDN – θ(ind(β))
16: else

17: break
18: end if

19: end while

20: return P

Using RMVCA proposed above, we will study and analyze the influence of different
SDN node proportion on the maximum intercept link coverage of the whole network (i.e.,
max-ILC) and the accordingly needed minimum number of SDN nodes in the P set for
realizing the maximum intercept link coverage (i.e., numP), as well as the influence of
RMVCA on the intercept link coverage (i.e., ILC) and the efficiency of deploying intercept
access points in whole hybrid SDN.

5. Simulation and Results

5.1. Simulation Environment and Performance Metrics of Lawful Interception System

In our simulation, we choose three real-world backbone topologies CRN, COST 239,
NSFNet to evaluate the performance of three SDN interception models. Under the three
network topologies, we randomly select different number of nodes as SDN nodes to
construct the hybrid SDN network and the weight of each link is set to 1 by default, and
the source node (S), the destination node (D) and the interception center (L) are selected
randomly and thus there are 3,796,416 (1563), 21,952, 2,744 node combinations of S, D and L.

Under different proportion of SDN nodes, we will study and analyze the influence of
different SDN interception models on the best transmission quality of intercepted data (the
minimum cost from intercept access point (I) to the interception center (L); MILC), the total
cost of running intercept operation in global network (TOC), and the quality of service of
normal user’s data stream (UQoS), the deployment efficiency of IAP (the total number of
times to calculate the shortest path during the process of deploying IAP; TTC)), and the
total number of failures to deploy IEP (i.e., NFD).

According to the proposed three SDN interception models, MILC, MRLC, TOC, and
UQoS are calculated respectively in (1), (2) and (3). Based RMVCA, we run different SDN
interception models and calculate and count up MILC, TOC, UQoS, TTC and NFD of each
node combination of S, D and L and then compare and analyze the results to evaluate the
performance of three SDN interception models.

5.2. Benchmark Approach

In order to analyze the influence of RMVCA on the intercept link coverage of whole
hybrid SDN and the efficiency of deploying intercept access points, we propose three
approaches, proactive approach (PA), reactive approach (RA), hybrid approach (HA), and
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then compare them by running three SDN interception models in real-world topology
CRN. To show the effectiveness of HA, we compare it with the following baselines: PA
and RA.

Experimental initialization: We randomly select some nodes as SDN nodes (i.e., given
a hybrid SDN network topology), and then use RMVCA to calculate the minimum vertex
cover set P required to achieve the maximum intercept link coverage in theory and the
accordingly number N of SDN nodes in the P set. Additionally, the calculation amount of
this initialization process is negligible compared with the one of the whole H-SDN.

Nodes selection: we traverse any node as S, D and L in topology CRN (i.e., there are
3,796,416 (1563) possibilities for node-combination of S, D, L) and then the node combina-
tion of S, D and L is given for experiments.

Proactive approach (PA): when running SDN interception models to deploy intercept
access point, we select the best intercept access point from the minimum vertex cover
set P calculated by RMVCA. Details of pseudo code of PA in T or ECMP-T model are
summarized in Algorithm A1 of Appendix A. The only difference of pseudo code of PA
in T model and ECMP-T model is whether to use Dijkstra Algorithm or ECMP-Dijkstra
Algorithm to calculate the shortest path.

Reactive approach (RA): according to the selected node combination of S, D and L, we
run three interception models without exploiting RMVCA to deploy intercept access points.

Hybrid Approach (HA): running three SDN interception models to deploy intercept
access point, we get the node-set NS,D,L where all nodes are selected from the shortest paths
between S, D and L, and then obtain the node-set SP whose nodes also exist in the node-set
P calculated by RMVCA. If the node-set SP is not empty, we preferentially select node
from the SP set to deploy the best intercept access point; otherwise, we implement RA.
Details of pseudo code of HA in T or ECMP-T model are summarized in Algorithm A2 of
Appendix A.

When implementing PA or RA or HA, we count and calculate the frequency of the
nodes selected as the best intercept access point, and then sort the nodes from largest
to smallest based their frequency, and next select the first N nodes and calculate their
intercept link coverage for studying and analyzing the impact of different approaches on
the intercept link coverage (i.e., ILC) of the whole hybrid SDN. Additionally, we count
the total times of calculating the shortest path (i.e., TTC) during the process of deploying
intercept access points for studying and analyzing the impact of different approaches on
the efficiency of deploying IAPs.

5.3. Results and Discussion
5.3.1. ILC

Using RMVCA, we study and analyze the influence of different numbers of N-SDN
nodes on the maximum intercept link coverage (i.e., max-ILC) and the accordingly needed
minimum number of SDN nodes in the P set for realizing the maximum intercept link cover-
age (i.e., numP). Moreover, we take the operator’s operation and maintenance cost (i.e., the
minimum number of SDN nodes) and network intercept link coverage into account com-
prehensively, so as to find the best proportion of SDN nodes from the experimental results.

Randomly selecting the number of N-SDN nodes (node i ∈ (0,156)) in CRN topol-
ogy, we conducted 10,000 experiments in the same proportion of N-SDN nodes. Due
to the different network topologies under the same SDN node proportion, the results of
each experiment are different. The statistical results of 10,000 experiments are shown in
Figures 6 and 7.
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Figure 6. The influence of different numbers of N-SDN nodes on max-ILC.

Figure 7. The influence of the number of N-SDN nodes on numP.

Figure 6 shows the influence of different numbers of N-SDN nodes on max-ILC. From
the figure, we can see that the number of SDN links in hybrid SDN decreases gradually
with the increase of the number of N-SDN nodes (the decrease of the number of SDN
nodes), resulting in the gradual decline of the network intercept link coverage. And max-
ILC = 0.00% denotes that all links in the whole network are N-SDN links that cannot be
intercepted, namely, all nodes in the network are N-SDN nodes. Additionally, we can see
that the intercept link coverage of the whole hybrid SDN can reach 80.53~100% when the
number of N-SDN nodes is between 0 and 57 (i.e., the number of SDN nodes is between 99
and 156), namely, only when the number of SDN nodes in hybrid SDN is more than 99 can
SDN nodes intercept more than 80% of the links of the whole network.

Figure 7 shows the influence of different numbers of N-SDN nodes on numP. From
the figure, we can see that when the number of N-SDN is 0 (i.e., the number of SDN nodes
is 156), 79 SDN nodes are required to achieve the maximum intercept link coverage; the
number of SDN nodes required to intercept the whole network gradually increases first
and then decreases gradually. This is because that when the number of N-SDN nodes is
between 0 and 37 (i.e., the number of SDN nodes is between 119 and 156), though the
increase of N-SDN links results in the decrease of the degree of some SDN nodes, the
total number of SDN links does not decrease significantly. Thus, more SDN nodes are
needed to intercept the same number of links. Accordingly, the number of SDN nodes
required to intercept the whole network increases. While when the number of N-SDN is
between 38 and 156 (i.e., the number of SDN is between 0 and 118), the number of SDN
links greatly decreases with the increasing number of N-SDN nodes, so the number of
SDN nodes needed to achieve maximum intercept link coverage also decreases gradually.
Moreover, when all nodes in the network are N-SDN nodes, all links are N-SDN links,
and thus the minimum vertex cover set P is empty (i.e., numP = 0). To sum up, according
to Figures 4 and 5, we only need 69~95 SDN nodes to achieve 80.53~100% intercept link
coverage of the whole interception system when the number of SDN nodes in the whole
hybrid SDN is between 99~156.
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Next, we will study and analyze the influence of three different approaches and three
SDN interception models on intercept link coverage (ILC) as shown in Figure 8. From the
figure, we can see that ILC of PA and HA with RMVCA is higher than that of RA without
RMVCA in general, and ILC of PA and HA are relatively close, whether using T model,
ECMP-T model or Fermat-point interception model. Additionally, compared with RA, PA
and HA can significantly improve the intercept link coverage when the number of N-SDN
nodes is between 0 and 60 (i.e., the number of SDN nodes is between 96 and 156). And this
improvement decreases with the decrease of SDN nodes.

Figure 8. The impact of three approaches in three SDN interception models on ILC under CRN
topologies. ILC. The higher, the better.

Meanwhile, another conclusion we can make is that the three SDN interception models
have nearly the same intercept link coverage. In other words, the intercept link coverage
(ILC) has no relationship with SDN interception models and the SDN interception models
have little impact on ILC.

5.3.2. TTC

Using RMVCA, we will analyze the impact of RMVCA on the efficiency of deploying
intercept access points in whole hybrid SDN. In many experiments, we run three SDN
interception models to deploy IAPs in three approaches during which the shortest paths
need to be calculated, and thus the total times of calculating the shortest path (TTC) is
different. In order to evaluate the performance of RMVCA, we employ TTC as its most
important performance metric. We predict that RMVCA can improve the efficiency of
deploying IAPs (i.e., reduce the total deployment time). The experimental results are
shown in Figure 9.

Figure 9. The impact of three approaches in three SDN interception models on TTC under CRN
topologies. TTC. The lower, the better.
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From Figure 9, we can see that TTC of Fermat-point interception model is the highest
whether in PA, RA or HA, namely, running Fermat-point model may take the longest time
to deploy IAPs. In addition, TTC of T model and ECMP-T model is similar and is far lower
than that of Fermat-point model. Therefore, in terms of the efficiency of deploying IAPs, T
model and ECMP-T model are better than Fermat-point model.

Also, Figure 9 show the impact of three approaches in three SDN interception models
on TTC under CRN topologies. From the figure, we can see that compared TTC in PA
and RA, TTC in HA is the lowest, whether running T model, ECMP-T model or Fermat-
point model in hybrid SDN. Namely, HA is the best approach in terms of the efficiency of
deploying IAPs based on thorough analysis and comparison.

Meanwhile, we also can see that TTC in PA is the highest and thus PA is the most
undesirable approach. Considering that TTC is the most important performance metric
of RMVCA, we can abandon PA. According to Figure 9, we can conclude by calculating
that with the increasing number of N-SDN nodes (i.e., with the decreasing number of SDN
nodes) in hybrid SDN, HA can significantly improve the deployment efficiency of intercept
access points for the reason that compared with RA, HA can decrease TTC on average by
41.14%, 44.07%, 53.32% respectively in T model, ECMP-T model and Fermat-point model.
In conclusion, PA is the most undesirable approach that should be abandoned. While HA
is the best approach in terms of the deployment efficiency of IAPs.

5.3.3. MILC, TOC and UQoS

After deploying the best intercept access point (IAP; I), the interception center (the
law enforcement agencies; L) hopes to receive the data intercepted by the intercept access
point with the minimum cost (i.e., the minimum cost or hop-count from the intercept access
point (I) to the interception center (L); MILC). Therefore, MILC is one of the most important
performance metrics of lawful interception system. In addition, the network operators
are most concerned about the total cost of running intercept operation in global network
(i.e., TOC) which is the prominent performance metrics of lawful interception system.
Meanwhile, running different SDN interception models to deploy intercept access point
may lead to the different selection of the best intercept access point (namely the placement
location of IAP differs) and the different amount of calculation, thus affecting the quality
of service of normal user’s data stream (UQoS). Thus, UQoS is also one of the important
performance metrics of lawful interception system. In a word, MILC, TOC and UQoS are
of great significance for the Law Enforcement Agencies, the network operators and the
users, respectively. Focused on three hybrid SDN topologies CRN, NSFNet and COST 239,
we study and analyze the impact of running three different SDN interception models to
deploy the best IAPs on MILC, TOC, and UQoS of whole lawful interception system under
different number of SDN nodes. The experimental results of the three topologies are shown
in Figure 10a–c.

(a) CRN (b) COST 239 (c) NSFNet

Figure 10. The impact of three SDN interception models on MILC, TOC, UQoS under three topologies. Hop-count. The
lower, the better.
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From the figures, we can see that MILC, TOC in T model are relatively close to the ones
in ECMP-T model. And MILC and TOC consumed by ECMP-T model are lower than that
of T model, so ECMP-T model is better than T model. More importantly, compared with
MILC and TOC in T model and ECMP-T model, MILC and TOC in Fermat-point model are
the lowest in all number of SDN nodes. In other words, Fermat-point model can decrease
MILC and TOC compared with T model and ECMP-T model. More specifically, compared
with T model and ECMP-T model, Fermat-point model can decrease MILC on average
by 13.41%, 11.11% in CRN topology, 14.91%, 8.73% in COST 239, and 19.72%, 16.04% in
NSFNet, and TOC on average by 1.91%, 0.99% in CRN topology, 2.82%, 0.46% in COST 239,
and 2.65%, 1.03% in NSFNet. These simulation results verify that the performance of
Fermat-point model outperforms T model and ECMP-T model and thus Fermat-point
model is the best SDN interception model in terms of MILC and TOC.

Meanwhile, from the figures, we can see that no matter in CRN, COST 239 or NSFNet,
ECMP-T model and T model have the same UQoS. In other words, T model and ECMP-T
model have little impact on the transmission quality of traffic normally accepted by users
and on deployment efficiency of IAP. According to the principle of T model and ECMP-T
model, we know the simulation results in three hybrid SDN topologies are consistent
with the theory, so these results are true and reliable. In addition, we can also clearly
observe from the figures that UQoS in Fermat-point model is higher than the one in T
model and ECMP-T model, which means that Fermat-point model slightly affect UQoS.
Thus, Fermat-point model has poor performance in terms of UQoS.

5.3.4. NFD

Due to the hybrid SDN topologies where N-SDN nodes cannot be selected as IAP,
not every combination of S, D and L can successfully deploy intercept access point. We
count the total number of failures to deploy IEP (i.e., NFD), to evaluate the performance
of SDN interception models. The statistical results are shown in Figure 11a–c. We can
clearly observe from the figures that in the three hybrid SDN topologies, the total number
of failures to deploy IAPs (NFD) in Fermat-point model is the least compared with NFD in
T model and ECMP-T model, which means that Fermat-point model has a high success rate
to deploy intercept access point. More specifically, compared with T model and ECMP-T
model, Fermat-point model decreases NFD on average by 88.21%, 86.87% in CRN topology,
76.9%, 74.68% in COST 239, and 67.53%, 66.26% in NSFNet. To sum up, the performance
of Fermat-point model outperforms T model and ECMP-T model and thus Fermat-point
model is the best interception model in terms of NFD.

(a) CRN (b) COST 239 (c) NSFNet

Figure 11. The impact of SDN interception models on NFD under three topologies. NFD. The lower, the better.

6. Conclusions

In this paper, we proposed an improved equal-cost multi-path shortest path algorithm
(ECMP-Dijkstra) and accordingly proposed three SDN interception models T model, ECMP-
T model, and Fermat-point model, to deploy the best intercept access point reasonably in
three real-world hybrid SDN topologies. Subsequently, we proposed a restrictive minimum
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vertex coverage algorithm (RMVCA) to intercept the whole interception system with the
least SDN nodes, and to optimize the deployment efficiency of intercept access points
and improve the intercept link coverage, so as to optimize the performance of the whole
intercepting system. According to RMVCA, we analyze the effect of different SDN node
ratios on the intercept link coverage and the minimum vertex coverage set. Considering
the intercept link coverage and the minimum vertex coverage set, we found a suitable SDN
node ratio for deploying intercept access points reasonably, namely, to intercept the whole
hybrid SDN with the least SDN nodes.

Based RMVCA, we put forward three approaches PA, RA, and HA for experiments,
and compared the three experimental approaches. The experimental results show that HA
is the best approach, which can significantly optimize the efficiency of deploying intercept
access points (i.e., optimize TTC) and improve the intercept link coverage of the whole
hybrid SDN.

By the way, we analyzed the influence of three SDN interception models on various
performance metrics of lawful interception system using three real-world topologies. The
simulation results reveal that the three SDN interception models have little effect on the
intercept link coverage, and T model and ECMP-T model have no effect on user’s traffic
transmission quality. Compared with T model and ECMP-T model, Fermat-point model is
the best interception model for the reason that Fermat-point model can make MILC, TOC,
NFD the lowest by sacrificing a small part of user’s traffic transmission quality (UQoS) and
deployment time (TTC), intercepting the whole hybrid SDN at dramatically lower costs.

This paper has not considered the traffic bottleneck (link capacity) problem but has
proposed the deployment and optimization strategy of intercept access points that pave
the way for the future work that joint deployment of IAPs and LEAs in H-SDNs based on
the consideration of the traffic bottleneck problem.
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Appendix A

Based on Proactive Approach (PA) or Hybrid Approach (HA), the details of pseudo
code of T, ECMP-T or Fermat-point model can be presented respectively in Algorithm A1
or Algorithm A2.
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Algorithm A1 Proactive Approach—T or ECMP-T or Fermat-point Model

Input: P; S; D; L
Output: I
1: if P �= ∅ then

2: I = ∅
3: for node i in P do

: . . . . . .
4: return I

Algorithm A2 Hybrid Approach—T or ECMP-T or Fermat-point Model

Input: NSDN; P; S; D; L
Output: I
1: I = ∅
: . . . . . .
2: SP ← Select(NS,D, P) or Select(NS,D,L, P)
3: if the SDN node-set SP �=∅ then

4: for node i in SP do

: . . . . . .
5: else

6: Algo3(NSDN,S,D,L) or Algo4(NSDN,S,D,L)
7: end if

8: return I
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Abstract: The Internet of Things (IoT) consists of a massive number of smart devices capable of
data collection, storage, processing, and communication. The adoption of the IoT has brought
about tremendous innovation opportunities in industries, homes, the environment, and businesses.
However, the inherent vulnerabilities of the IoT have sparked concerns for wide adoption and
applications. Unlike traditional information technology (I.T.) systems, the IoT environment is
challenging to secure due to resource constraints, heterogeneity, and distributed nature of the smart
devices. This makes it impossible to apply host-based prevention mechanisms such as anti-malware
and anti-virus. These challenges and the nature of IoT applications call for a monitoring system such
as anomaly detection both at device and network levels beyond the organisational boundary. This
suggests an anomaly detection system is strongly positioned to secure IoT devices better than any
other security mechanism. In this paper, we aim to provide an in-depth review of existing works in
developing anomaly detection solutions using machine learning for protecting an IoT system. We
also indicate that blockchain-based anomaly detection systems can collaboratively learn effective
machine learning models to detect anomalies.

Keywords: cybersecurity; anomaly detection; the Internet of Things; machine learning; deep learn-
ing; blockchain

1. Introduction

The IoT consists of myriad smart devices capable of data collection, storage, processing,
and communication. The adoption of the IoT has brought about tremendous innovation
opportunities in industries, homes, the environment, and businesses, and it has enhanced
the quality of life, productivity, and profitability. However, infrastructures, applications,
and services associated with the IoT introduced several threats and vulnerabilities as
emerging protocols and workflows exponentially increased attack surfaces [1]. For instance,
the outbreak of the Mirai botnet exploited IoT vulnerabilities and crippled several websites
and domain name systems [2].

It is challenging to secure IoT devices as they are heterogeneous, traditional security
controls are not practical for these resource-constrained devices, and the distributed IoT
networks fall out of the scope of perimeter security, and existing solutions such as the
cloud suffer from centralisation and high delay. Another reason for this challenge is that
IoT device vendors commonly overlook security requirements due to a rush-to-market
mentality. Furthermore, the lack of security standards has added another dimension to the
complexity of securing IoT devices. These challenges and the nature of IoT applications call
for a monitoring system such as anomaly detection at device and network levels beyond
the organisational boundary.

An anomaly is a pattern or sequence of patterns in IoT networks or data that signif-
icantly deviate from the normal behaviour. Anomalies can be contextual and collective
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points based on the sources of anomalies [3]. Point anomaly represents a specific data point
that falls outside the norm, and it indicates random irregularity, extremum, or deviation
with no meaning, often known as outliers. The contextual anomaly denotes a data point
that deviates from the norm in a specific context such as in a time window. It means that
the same normal observation in a given context can be abnormal in a different context. The
contextual anomaly is driven by contextual features such as time and space and behavioural
features such as the application domain. A collection of related data points, specifically in
sequential, spatial, and graph data, that fall outside of normal behaviour forms collective
anomalies. It is denoted as a group of interconnected, correlated, or sequential instances,
where individuals of the group are not anomalous themselves; the collective sequence is
anomalous. Anomalous events rarely occur; however, these events bring about dramatic
negative impacts in businesses and governments using IoT applications [4].

As for protecting IoT and I.T. applications, intrusion detection systems (I.D.S.s) that
alert abnormal events or suspicious activities that might lead to an attack have been
developed. I.D.S.s can be divided into two main categories: anomaly-based and signature-
based. With anomaly-based I.D.S.s, unidentified attacks or zero-day attacks can be detected
as deviations from normal activities [5]. However, signature-based I.D.S cannot identify
unknown attacks until the vendors release updated versions consisting of the new attack
signatures [5]. This indicates that anomaly-based I.D.S.s are strongly positioned to secure
IoT devices better than signature-based I.D.S.s. Moreover, there is a large amount of
raw data generated by IoT devices, which leads to the process of identifying suspicious
behaviour from data suffering from high computation cost due to included noise. Hence,
lightweight distributed anomaly-based I.D.S.s play a significant role in thwarting cyber-
attacks in the IoT network.

In recent years, using machine learning techniques to develop anomaly-based I.D.S.s
to protect the IoT system has produced encouraging results as machine learning models are
trained on normal and abnormal data and then used to detect anomalies [1,2]. However,
building effective and efficient anomaly detection modules is a challenging task as machine
learning has the following drawbacks:

• First, machine learning models, specifically with classical algorithms, are shallow
to extract features that can truly represent underlying data to discriminate anomaly
events from normal ones.

• Second, running machine learning models can consume extensive resources, making
it challenging to deploy such models on resource-constrained devices.

• Third, it requires massive data for training machine learning models to archive high ac-
curacy in anomaly detection. Therefore, machine learning models may not capture all
of the cyber-attacks or suspicious events due to training data. This means that machine
learning suffers from both false positives and false negatives in some circumstances.

However, with the advancement in hardware such as GPU and neural networks such
as deep learning, machine learning has constantly improved. This makes it promising for
anomaly detection emerging platforms such as blockchain.

This paper aims to provide an in-depth review of current works in developing anomaly
detection solutions using machine learning to protect an IoT system, which can help re-
searchers and developers design and implement new anomaly-based I.D.S.s. Our contribu-
tions are summarised as follows: first, we present the significance of anomaly detection in
the IoT system (Section 2); then, we identify the challenges of applying anomaly detection
to an IoT system (Section 3); after that, we describe the state-of-the-art machine learning
techniques for detecting anomalies in the system (Section 4); finally, we analyse the use of
machine learning techniques for IoT anomaly detection (Section 5). In particular, this paper
also covers the federated learning technique that helps to collaboratively train effective
machine learning models to detect anomalies (Section 4) and indicates that the use of
blockchain for anomaly detection is a novel contribution as the inherent characteristics of a
distributed ledger is an ideal solution to defeat adversarial learning systems (Section 5).

30



Sensors 2021, 21, 8320

2. Significance of Anomaly Detection in the IoT

Over the years, anomaly-based I.D.S.s have been applied in a wide range of IoT
applications, as illustrated in Table 1. This section will focus on the important roles of
anomaly detection systems in industries, smart grids, and smart cities.

Table 1. Anomaly-Based I.D.S.s according to Anomaly Types and Applications.

ANOMALY TYPES
Points Contextual Collective

A
P

P
L

IC
A

T
IO

N
S

Generic

[6] [7] [8]
[9] [10]

[11]
[12]
[13]
[14]
[15]

Flights [16]

Industries

[17]
[18]
[19]

Health [20]

Smart Cities [21]

Smart Grids [22]

Smart Home

[23] [24]
[25]
[26]

Unmanned Aerial Vehicles [27]

Industrial IoT is one of the beneficiaries of anomaly detection tools. Anomaly de-
tection has been leveraged for industrial IoT applications such as power systems, health
monitoring [28], heating ventilation and air conditioning system fault detection [29], pro-
duction plant maintenance scheduling [30], and manufacturing quality control systems [31].
In [32], machine learning approaches such as linear regression have been applied to sensor
readings of engine-based machines to learn deviations from normal system behaviours.
The study demonstrated that anomaly detection plays a significant role in preventive main-
tenance by detecting machine failures and inefficiencies. In another study, autoencoder
(A.E.)-based outlier detection was investigated in audio data using reconstruction error [33].
The study showed that early detection of anomalies could be used as responsive main-
tenance for machine failures, thereby reducing downtime. Furthermore, water facilities
used IoT anomaly detection [34] to monitor and identify certain chemical concentration
levels as a reactive alerting mechanism. These studies show that IoT anomaly detection
provides mechanisms of improving efficiency and system up-time for industry machines
by monitoring machine health.

The power sector including existing smart grids has also attracted anomaly detection
systems to identify power faults and outages. The study in [35] utilised statistical methods
to develop an anomaly detection framework using smart meter data. The authors argue that
hierarchical network data can be used to model anomaly detection for power systems. The
other study [36] employed high-frequency signals to detect anomalies in power network
faults. The article concludes that local anomaly detection depends more on network size
than topology. In [37], big data analysis schemes were explored to detect and localise
failures and faults in power systems. The study showed that the compensation theorem in
circuit theory could be applied to event detection in power networks. Physical attacks on
smart grids such as energy theft can also be detected by using anomaly detection systems,
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as shown in [38]. It is compelling that anomaly detection plays a paramount role in
detecting failures and faults in power systems, enhancing system reliability and efficiency.

Abnormality detection can be used for smart city facilities such as roads and buildings.
Road surface anomalies were studied in [39]. It has been indicated that damage to private
vehicles can be reduced if the road surface is monitored for anomalies so that timely
measures such as maintenance are taken before road incidents. In the study undertaken
in [40], pollution monitoring and controlling were modelled as an anomaly to enable
policymaker decisions in health, traffic, and environment. Similarly, assisted living can
also benefit from IoT-based anomaly detection as deviations from normal alert caregivers
as studied in [41]. Thus, it can be summed up that abnormal situations in smart cities and
buildings can be detected using anomaly detection systems, and these can be provided to
policymakers for decision-making purposes.

3. Challenges in IoT Anomaly Detection Using Machine Learning

The development of anomaly detection schemes in the IoT environment is challenging
due to several factors such as (1) scarcity of IoT resources; (2) profiling normal behaviours;
(3) the dimensionality of data; (4) context information; and (5) the lack of resilient machine
learning models [15]. These factors will be explained in this section.

3.1. Scarcity of IoT Resources

The leverage of device-level IoT anomaly detection can be hindered by the constraints
in storage, processing, communication, and power resources. To compensate for this, the
cloud can be adopted as a data collection, storage, and processing platform. However, the
remoteness of the cloud can introduce high latency due to resource scheduling and round
trip time. This delay may not be acceptable for real-time requirements of IoT suspicious
events [15]. It is also evident that the scale of traffic in the IoT may degrade the detection
performance of the anomaly detection system if it exceeds the capacity of the devices. A
better solution is to offload certain storage and computations from devices to edge nodes
or to send aggregated data to the cloud. Sliding window techniques can also offer reduced
storage benefits by withholding only certain data points, though the anomaly detection
system may require patterns/trends [26].

3.2. Profiling Normal Behaviours

The success of an anomaly detection system depends on gathering sufficient data
about normal behaviours; however, defining normal activities is challenging. Due to their
rare occurrence, anomalous behaviours might be collected within normal behaviours. There
is a lack of datasets representing both IoT normal and abnormal data, making supervised
learning impractical, specifically for massively deployed IoT devices. This drives the need
to model IoT anomaly detection systems in unsupervised or semi-supervised schemes,
where data deviating from those collected in normal operations are taken as anomalous [3].

3.3. Dimensionality of Data

IoT data can be univariate as key-value xt or multivariate as temporally correlated
univariate xt =

[
xt

1, . . . , xt
n]. The IoT anomaly detection using univariate series compares

current data against historical time series. In contrast, multivariate-based detection pro-
vides historical stream relationships and relationships among attributes at a given time.
Thus, choosing a specific anomaly detection mechanism in IoT applications depends on
data dimensionality due to associated overheads in processing [3,29]. Furthermore, multi-
variate data introduces the complexity of processing for models, which needs dimension
reduction techniques using principal components analysis (P.C.A.) and A.E.s. On the other
hand, univariate data may not represent finding patterns and correlations that enhance
machine learning performance.
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3.4. Context Information

The distributed nature of IoT devices caters to context information for anomaly de-
tection. However, the challenge is to capture the temporal input at a time t1 is related to
input at a time tn and spatial contexts in large IoT deployments where some IoT devices are
mobile in their operations. This means that introducing context enriches anomaly detection
systems, but increases complexity if the right context is not captured [3].

3.5. Lack of Machine Learning Models Resiliency against Adversarial Attacks

The lack of a low false-positive rate of existing machine learning models and the
vulnerability to adversarial attacks during training and detection call for both accurate
algorithms and resilient models. On the other hand, the massive deployment of IoT devices
could be leveraged for collective anomaly detection as most of the devices in the network
exhibit similar characteristics. This large number of devices helps to utilise the power of
cooperation against cyber-attacks such as malware [42]. Model poisoning and evasion can
decrease the utility of machine learning models as adversaries can introduce fake data to
train or tamper the model.

4. Machine Learning Techniques for Detecting Anomalies in the IoT

Several aspects of IoT anomaly detection using machine learning must be considered.
Learning algorithm methods can be categorised into three groups: supervised, unsuper-
vised, and semi-supervised. The technique to train the learning algorithms across many
decentralised IoT devices is known as federated learning. In addition, anomaly detection
can be seen in terms of extant data dimension, leading to univariate-and multivariate-based
approaches. In the rest of this section, we will present the anomaly detection schemes
based on (1) machine learning algorithms; (2) federated learning; and (3) data sources
and dimensions.

4.1. Detection Schemes Based on Machine Learning Algorithms

Supervised algorithms, known as discriminative algorithms, are classification-based
learning through labelled instances. These algorithms consist of classification algorithms
such as the K-nearest neighbour (K.N.N.), support vector machine (SVM), Bayesian net-
work, and neural network (N.N.) [43,44]. K.N.N. is one of the distance-based algorithms of
anomaly detection where the distances of anomalous points from the majority of the dataset
are greater than a specific threshold. Calculating the distances is computationally complex;
it seems impossible to provide on-device anomaly detection using this algorithm. On the
other hand, SVM provides a hyperplane that divides data points for classification. As in
the case of K.N.N., it is so resource-intensive that the applicability to IoT anomaly detection
is impractical. As the Bayesian network may not require the prior knowledge of neighbour
nodes for anomaly detection, it can be adopted for resource-constrained devices through
low accuracy. Finally, N.N. algorithms have been extensively used to train on normal
data so that anomalous data can be detected as the deviation from normal. The resource
requirements of N.N. algorithms make it challenging to adapt to the IoT environment.
Hence, supervised algorithms are the least applicable for IoT anomaly detection systems
for their labelled dataset requirements and extensive resource requirements.

Commonly known as generative algorithms, unsupervised algorithms use unlabelled
data to learn hierarchical features. Clustering-based algorithms such as K-means and
density-based spatial clustering of applications with noise (D.B.S.C.A.N.) are unsupervised
techniques that apply similarity and density attributes to classify data points into clus-
ters [43,44]. Abnormal points are small data points significantly far from the dense area,
while normal points are either close to or within the clusters. Usually, clustering algorithms
are used with classification algorithms to enhance anomaly detection accuracy. Because of
resource usage, most of the clustering algorithms cannot be directly applied to IoT devices
for anomaly detection. Another unsupervised learning technique involves dimension-
reduction approaches such as P.C.A. and A.E. to remove noise and redundancy from data
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to reduce the dimension of original data [44,45]. P.C.A. has been extensively applied to
anomaly detection, but it fails in the dynamic IoT environment. A.E. has produced promis-
ing results in IoT anomaly detection in reducing data sizes and in reconstructing errors to
identify anomalous points. However, these techniques have been used extensively as a part
of feature extraction for classification algorithms. The dimensionality reduction algorithms
in unsupervised learning can be adapted to IoT anomaly detection. Semi-supervised al-
gorithms combine discriminative and generative algorithms by providing normal data
instances so that deviation from normal behaviour is seen as abnormal behaviour. Hence,
anomaly detection in IoT is geared toward unsupervised or semi-supervised algorithms
where normal system profiling is utilised as a baseline environment [46].

Table 2 shows the state-of-the-art machine learning algorithms according to three
anomaly types.

Table 2. Learning Algorithms According to Anomaly Types and Machine Learning Schemes.

ANOMALY TYPES
Points Contextual Collective

M
A

C
H

IN
E

L
E

A
R

N
IN

G
S

C
H

E
M

E
S

Supervised

RF [21] RL [16] CNN [24]
DL [17] LSTM [22] GNN [8]

Multiple [10]
AE-ANN [11]

LSTM [12]
AE-CNN [13]
Ensemble [14]

Unsupervised
AE-CNN [6] Subspace [27] AE [25]

AE [18] Self-learning [26]

Semi-Supervised TCN [23] AE-LSTM [20] DNN [15]
DBN [7]

4.2. Training Detection Schemes Based on Federated Learning Algorithms

Federated learning, also known as collaborative learning, allows IoT devices to train
machine learning models locally and send the trained models, not the local data, to the
server for aggregation [47,48]. This training method is different from the standard machine
learning training approaches that require centralising the training data in one place such as
a server or data centre.

The federating learning method consists of four main steps. First, the server initialises
a global machine learning model for anomaly detection and selects a subset of IoT devices
to send the initialised model. Second, each selected IoT device will train the model by
using its local data, then send the trained model back to the server. Next, the server will
aggregate received models to form the global model. Finally, the server will send the final
model to all IoT devices to detect anomalies. Note that the server can repeat the tasks of
selecting a sub-set of IoT devices, sending the global model, receiving the trained models,
and aggregating the received models multiple times, as some devices may not be available
at the time of federated computation or some may have dropped out during each round.

By using federated learning, data in the IoT system is decentralised, and data privacy
is protected. The other advantages of federated learning include lower latency, less network
load, less power consumption, and can be applied across multiple organisations. However,
federated learning also suffers from some drawbacks such as inference attacks [49] and
model poisoning [50].

4.3. Detection Mechanisms Based on Data Sources and Dimensions

Univariate IoT data consists of data representation from a single IoT device over time.
In reality, anomaly detection systems utilise data from multiple IoT devices deployed in
complex environments. These multivariate multi-sources feed richer contexts by providing
noise-tolerant temporal and spatial information than a single source.
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4.3.1. Univariate Using Non-Regressive Scheme

In the non-regressive scheme, threshold-based mechanisms can be leveraged by setting
low and high thresholds of observations on univariate stationary data to flag anomalies if
a data point falls outside the boundary. More advanced mechanisms such as mean and
variance thresholds produced over historical data can replace this min–max approach.
Another similar approach is using a box plot to split data distribution into a range of small
categories where new data points are compared against the boxes. These non-regressive
approaches are ideal in saving resources such as processors and memories for IoT devices.
However, being distributed techniques over univariate observations, the range-based
schemes fail to detect contextual and collective anomalies due to the lack of the ability to
capture temporal relationships [3].

N.N.s such as A.E.s, recurrent neural networks (R.N.N.), and long short-term memory
(L.S.T.M.) can be used as non-regressive models to solve the problem of anomaly detection
in the IoT ecosystem using univariate time series data. A.E. is used to reconstruct data
symmetrically from the input to the output layer, and a high reconstruction error probably
indicates abnormality [13]. A.E. can also be applied to resource-constrained IoT devices
for conserving resources and battery power. On the other hand, R.N.N. provides memory
in the network by affecting neurons from previous outputs through feedback loops. This
enables the capture of temporal contexts over time. The vanishing gradient problem in
R.N.N. makes it unsuitable for large IoT networks. L.S.T.M. can provide semi-supervised
learning on normal time series data to identify anomaly sequences from reconstruction to
solve this error problem. Hence, it seems that combining A.E. and L.S.T.M. can bring about
resource-saving and accuracy requirements of the IoT anomaly detection tasks.

4.3.2. Univariate Using Regressive Scheme

Predictive approaches, known as regressive schemes, enable identifying anomalies
by comparing predicted value to actual value in time series data. Parametric models such
as autoregressive moving average (A.R.M.A.) are popular techniques despite seasonality
or mean shift problems in non-stationary datasets. However, these problems can be
solved by using enhanced variants of A.R.M.A. such as autoregressive integrated moving
average (A.R.I.M.A.) and seasonal A.R.M.A. As another approach to predictive IoT anomaly
detection, NN-based predictive models such as M.L.P., R.N.N., L.S.T.M., and others can
be applied to capture the dynamics of a time series on complex univariate data [46]. For
instance, R.N.N., L.S.T.M., and G.R.U. models can represent the variability in time series
data to predict the expected values for time sequences. Recently, attention-based models
have been applied to IoT anomaly detection in complex long sequential data. Similar to the
non-regressive scheme, sequential models can boost the accuracy of IoT anomaly detection
if dimensional reduction algorithms can be used in feature extraction.

4.3.3. Multivariate Using Regressive Scheme

As the additional variables increase data sizes, dimensionality reduction techniques
such as P.C.A., A.E., and others can be employed to decrease overall data size. P.C.A. can
capture the interdependence of variables for multivariate sources. It reduces the data size
by decomposing multivariate data into a reduced set. The linearity and computational
complexity of P.C.A. can limit its usage for IoT anomaly detection. A.E. works like P.C.A.
and can discover anomalies in multivariate time series data using reconstruction error, the
same way as in univariate cases. The promising aspect of A.E. is its low resource usage
and its non-linear feature extraction. Similar to predictive and non-predictive models
on univariate data, schemes using L.S.T.M., CNN, DBN, and others can also be applied
to identifying anomalies in multi-source IoT systems. Specifically, CNN and L.S.T.M.
algorithms can be preceded by A.E. for important feature extraction and resource savings.
These deep learning schemes can learn spatio-temporal aspects of multivariate IoT data [12].
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Clustering mechanisms are another approach to detect anomalies in multivariate
data. In addition, graph networks can be used to learn models about variable or sequence
relationships where the weakest weight between graph nodes is considered anomalous.

5. Analysis of Machine Learning for IoT Anomaly Detection

Anomaly detection systems have proven their capabilities of defending traditional
networks by detecting suspicious behaviours. However, the standalone anomaly detection
systems in classical systems do not fit the architecture of distributed IoT networks. In such
systems, a single node compromise could damage the entire network. By collecting traffic
from various spots, a collaborative anomaly detection framework plays a paramount role
in thwarting cyber threats. However, the trust relationship and data sharing form two
major challenges [42,51]. In this massive network, insider attacks can be a serious issue.

Furthermore, as most anomaly detection systems apply machine learning, nodes may
not be willing to share normal profiles for training or performance optimisation due to
privacy issues. The trust problem can be solved by implementing a central server that
handles trust computation and data sharing. However, this approach could lead to a single
point of failure and security, specifically for the large-scale deployment of IoT devices.
Recently, blockchain has attracted much interest in financial sectors for its capability
of forming trust among mistrusting entities using contracts and consensus. Blockchain
could provide an opportunity to solve the problem of collaborative anomaly detection by
providing trust management and a data-sharing platform. In the remainder of this section,
we will focus on analysing (1) the collaborative architecture for IoT anomaly detection
using blockchain; (2) datasets and algorithms for IoT anomaly detection; and (3) resource
requirements of IoT anomaly detection.

5.1. Collaborative Architecture for IoT Anomaly Detection

Blockchain is a decentralised ledger that provides immutability, trustworthiness,
authenticity, and accountability mechanisms for the maintained records based on majority
consensus. Though it was originally applied to digital currency systems, blockchain can
be applied in various fields. With the power of public-key cryptography, strong hash
functions, and consensus algorithms, participating nodes in a blockchain can verify the
formation of new blocks. A block typically consists of a group of records, timestamp,
previous block hash, nonce, and a block’s hash. Thus, the change in a record or group of
records will be reflected in the next block’s previous hash field, which makes it immune to
adversarial change [42].

The powerful attributes of blockchain could provide a solid foundation for anomaly
detection in distributed networks such as the IoT. IoT devices can collaboratively develop
a global anomaly detection model from local models without adversarial attacks using
blockchain architecture. As IoT needs mutual trust to share local models in a secure and
tamper-proof way, consensus algorithms and decentralised blockchain storage make it
challenging for malicious actors to manipulate the network. However, the successful
Bitcoin consensus algorithms in financial areas such as proof-of-work require extensive
storage and processing capabilities. Etherium has applied proof-of-stake where the partic-
ipants’ stakes determine consensus. It uses smart contracts, and is less computationally
intensive. Hyperledger Fabric is another customisable blockchain platform that applies
smart contracts in distributed systems rather than cryptocurrencies. As it relies on central
service to enable participants to endorse transactions, endorsing participants must agree
on the value of a transaction to reflect changes in the local participant ledger. These three
popular blockchain systems do not seem to solve resource-constrained IoT devices [51].

Blockchain-based security solutions have been discussed in a mix of traditional and
IoT systems [52,53]. In these studies, a resource-rich device was connected to IoT devices,
where the device acts as a proxy to connect IoT devices to the blockchain. A similar study
was conducted in [54]. The main advantages of these approaches lie in resource savings, but
they may also create a central point of failure. In [55], the author’s utilised smart contracts to
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integrate IoT devices into blockchain for communication integrity and authenticity through
the resource requirement issues that may not make it practical. The most promising result
has been achieved on distributed and collaborative IoT anomaly detection [51]. The study
uses a self-attestation mechanism to establish a dynamic trusted model against which
nodes compare to detect anomalous behaviour. The model is cooperatively updated by
majority consensus before being distributed to peers.

5.2. Datasets and Algorithms for IoT Anomaly Detection

The lack of labelled realistic datasets has hampered anomaly detection research in the
IoT. The existing data suffer from lacking realistic representation for IoT traffic patterns
and lack capture of the full range of anomalies that may occur in the IoT. Class imbalance
between normal traffic and anomalous patterns also manifests, which makes classification
systems inefficient. Most IoT traffic can be represented as normal behaviour while it
dynamically changes over time. As contextual information such as time, environment, and
neighbour nodes profile rich information to improve anomaly detection in the IoT, it seems
that multivariate data plays a significant role. The challenges associated with the absence of
truly representative, realistic, and balanced datasets favour an anomaly detection scheme
that profiles normal behaviours to detect anomalous points that deviate from the normal
data [56]. Table 3 shows the common datasets that have been commonly used in some
recent studies in this research area. As can be seen, most datasets are not specific to the IoT
system; however, they are still suitable for training and evaluating anomaly-based I.D.S.s
because they contain both normal and abnormal data.

Table 3. Common Datasets for Anomaly Detection in the IoT System (Adapted from [1]).

Dataset
Published

Year
IoT

Specific
Dimensions

Normal
Instances

Abnormal
Instances

N-BaIoT [57] 2018 Yes 115 555,932 6,545,967

CICIDS 2017 [58] 2017 No 80 2,273,097 557,646

AWID [59] 2015 No 155 530,785 44,858

UNSW-NB15 [60] 2015 No 49 2,218,761 321,283

NLS-KDD [61] 2009 No 43 77,054 71,463

Kyoto [62] 2006 No 24 50,033,015 43,043,255

KDD CUP 1999 [63] 1999 No 43 1,033,372 4,176,086

The initial deployment of the IoT anomaly detection system lacks historical data that
specify normal and anomalous points. This absence and the rare nature of anomalies
challenge the usage of traditional machine learning schemes. Though several techniques of
solving imbalanced data have been proposed, such methods cannot maintain the temporal
context of anomalies. In addition, supervised algorithms capture only known anomalies
while failing to detect novel attacks. Thus, unsupervised or semi-supervised approaches
can be used to solve the limitations of supervised algorithms [54].

While several techniques have been used in IoT anomaly detection, most of the ap-
proaches have failed to satisfy the resource and power requirements of IoT devices [54].
Though there is no single best anomaly detection approach, deep learning techniques,
specifically A.E. and CNN, have shown promising results in both delivering better resource-
saving and accuracy, respectively [64]. While algorithms such as CNN and L.S.T.M. can
boost detection accuracy, A.E. can be used to reduce the dimension of data and extract rep-
resentative features by eliminating noise. Specifically, L.S.T.M. can be applied to dynamic
and complex observations within time-series IoT data over a long sequence. Thus, it sug-
gests that these techniques or combinations could be further explored to detect anomalies
in the IoT ecosystem [65].
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5.3. Resource Requirements of IoT Anomaly Detection

The resource-constrained nature of IoT devices prohibits the deployment of traditional
host-based intrusion detection such as anti-malware and anti-virus. As traffic analysis con-
sumes huge computational resources during anomaly detection, incremental approaches
such as sliding windows can reduce the processing and storage requirements for IoT de-
vices. It is also critical that the anomaly detection engine of the IoT system should operate
in near real-time for reliable detection. This indicates that adaptive techniques help to
improve the detection model over time without major retraining. However, offline training
may be applied for initial deployment.

6. Conclusions

The IoT environment’s massive number, heterogeneity, and resource constraints have
hindered cyber-attack prevention and detection capabilities. These characteristics attract
monitoring IoT devices at the network level as on-device solutions are not feasible. To
this end, anomaly detection is better positioned to protect the IoT network. To protect the
system, anomaly detection is considered to be an important tool as it helps identify and
alert abnormal activities in the system. Machine learning has been applied for anomaly
detection systems in I.T. and IoT systems. However, the applications of anomaly detection
systems using machine learning in I.T. systems have been better than the IoT ecosystem
due to their resource capabilities and in-perimeter location. Nevertheless, the existing
machine learning-based anomaly detection is vulnerable to adversarial attacks. This article
has presented a comprehensive survey of anomaly detection using machine learning in
the IoT system. The significance of anomaly detection, the challenges when developing
anomaly detection systems, and the analysis of the used machine learning algorithms are
provided. Finally, it has been recommended that blockchain technology can be applied to
mitigate model corruption by adversaries where IoT devices can collaboratively produce a
single model using blockchain consensus mechanisms. In the future, we plan to implement
a blockchain-based anomaly detection system for protecting high-end IoT devices such as
Raspberry Pi. The system can be built on a python-based machine learning platform such
as TensorFlow and a blockchain platform such as Hyperledger Fabric, where Raspberry Pi
devices act as distributed nodes.
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Abstract: Rapid growth of sensors and the Internet of Things is transforming society, the economy
and the quality of life. Many devices at the extreme edge collect and transmit sensitive information
wirelessly for remote computing. The device behavior can be monitored through side-channel
emissions, including power consumption and electromagnetic (EM) emissions. This study presents a
holistic self-testing approach incorporating nanoscale EM sensing devices and an energy-efficient
learning module to detect security threats and malicious attacks directly at the front-end sensors. The
built-in threat detection approach using the intelligent EM sensors distributed on the power lines is
developed to detect abnormal data activities without degrading the performance while achieving
good energy efficiency. The minimal usage of energy and space can allow the energy-constrained
wireless devices to have an on-chip detection system to predict malicious attacks rapidly in the
front line.

Keywords: hardware security; electromagnetic sensing; machine learning; real time

1. Introduction

The rapid growth of sensors and the Internet of Things (IoT) has the potential to
transform society, the economy, and the quality of life. Many devices at the extreme
edge collect and transmit sensitive information wirelessly for remote computing. The
sensitive information can be leaked from side channels, including power consumption
and electromagnetic (EM) emissions. Some devices are simply controlled by a simple
wake-up signal to activate data transmission without two-way authentication. Moreover,
the wireless charging techniques that allow energy constrained devices and electric cars
to stay connected and operate continuously provide another entry point to exploit the
sensitive information and the vulnerability in the power domain, as shown in Figure 1a.
The vulnerability of those wireless devices to hacking or exploitation has emerged as a
major concern on both security and public safety. For instance, because the electronic
devices may continue receiving and transmitting signals while they are being wirelessly
powered, the data activities are exposed to the energy source. Nevertheless, state-of-the-art
cybersecurity approaches are mainly focused on software and digital modules. Security
measures are not integrated in the analog/radio frequency (RF) domain to verify signal and
power sources or to suppress the side-channel emissions in real time. To bridge the gap,
this study presents a self-testing approach incorporating nanoscale EM sensing devices
and learning algorithms to detect threats directly at the RF and analog front-end. As
shown in Figure 1b, the EM sensors are integrated into the RF/analog front-end through
post processing to monitor the EM emissions from power wires and critical signal nodes.
Machine-learning modules were developed to analyze the sensed data for threat and
vulnerability detection. Combing emerging material, device, circuit, and system concepts,
this study developed a built-in threat detection approach in the RF/analog domain without
degrading the performance while achieving good energy efficiency.
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Figure 1. (a) Security vulnerability of electromagnetic emissions and wireless charging (figure credit for wireless charging:
Infineon and PowerElectronics.com Available online: https://www.powerelectronics.com/markets/automotive/article/21
864097/wireless-charging-of-electric-vehicles accessed on 9 December 2021), and (b) the proposed non-invasive on-chip
sensing system.

2. Relevant Work

Wireless power transfer technology relies on the principle of electromagnetic induction,
which falls into two categories, near field and far field. Near-field techniques utilize induc-
tive coupling between coils of wire or capacitive coupling between metal electrodes [1–3].
Inductive coupling for power transfer over a short distance through magnetic fields is
one of the most widely used wireless powering technologies. Considering the conversion
efficiency and the safety criteria, radiative wireless power transfer is the most popular
far-field technique to remotely power mobile devices over a long distance for low-power
devices [4–6] and wireless sensor networks (WSNs) [7]. Nondirective antennas can be used
to energize sensors, but the efficiency is low. On the other hand, directive transmitting
antennas are more efficient to increase the maximum distances that can be remotely pow-
ered [8]. Many radiative wireless power transfer techniques have been discussed with
different operation frequencies, average chargeable distances, beamforming techniques,
and overall system complexity. Depending on different transfer schemes, specific wireless
power transfer patterns can be adopted to charge the devices without interrupting the op-
erations. For instance, the electric vehicles can be dynamically charged as they ride on the
wireless power lane [9]. Hence, the wireless power source is becoming a new shared input
to the devices and vehicles as they are all connected on the wireless charging platform,
so the data activities are exposed to the energy source. Especially when the devices and
vehicles with hardware trojans need to be recharged, its battery can be very low and the
existing security functions may not work intermittently, which raises critical concerns of
safety and security. However, the security vulnerabilities for pervasive devices accessing
the shared wireless charging platform have not been addressed.
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2.1. Survey of Hardware Trojans

Much attention has been focused on hardware trojan taxonomy, development, and
detection in the past two decades, especially since the Defense Science Board of US
Department of Defense released a report in 2005 on the security of the supply of high-
performance integrated circuits (ICs) which highlighted the need for “secure and authentic
hardware” [10]. The resulting research produced numerous publications [11–27] which not
only provide insight into existing hardware trojans, but also develop a general framework
of hardware trojan understanding. This section will first briefly review hardware trojan
taxonomy and detection methods, point out the lack of literature related to analog trojan
development, taxonomy, and detection, and then present a number of trojans scenarios
that can be possible in the analog/RF domain, specifically attacking a Class-E amplifier in
the later sections.

2.1.1. Hardware Trojan Taxonomy and Insertion

Hardware trojans defined by [12] are an intentional and malicious modification of
a circuit that is designed to alter the circuit’s behavior in order to accomplish a specific
objective. It also makes a distinction between such trojans and design bugs and defects
by defining such a bug as “an unintentional problem (i.e., error) that is unknowingly
introduced into the circuit during its design and development phases” and a defect as
“unintentional physical phenomenon (e.g., imperfection) that occurs during the circuit’s
fabrication, assembly, and testing phases”. Trojans, as they are malicious, seek to tamper
with the function of the integrated circuit and avoid detection, whereas flaws and bugs are
generally discoverable via conventional models of testing and verification.

Reference [11] provides an excellent description of a general view of hardware trojan
taxonomy. Furthermore, it details the supply chain and hardware development layout for
ASICs and FPGAs. Other resources, such as reference [12], also provide excellent insight
into the taxonomy of hardware trojans and the section of the design process into which
hardware trojans can be inserted. Hence, it is clear from the various literature that the
number of trojans, their triggers, payloads, and development can be inserted in numerous
areas of the design phase. These publications indicate not only the type of trojan trigger
and payload, but also the potential points at which the trojan can be inserted [1,4,17] which
all developed trojans that can be inserted by an untrusted foundry, or which insert the
trojan post-fabrication [11,12].

However, while a number of papers indicate hardware trojans, most focus on the
digital domain, even while utilizing “analog” trojans. A search of literature generally
yields results in which papers such as [15,18] developed “analog” trojans. However, the
in these papers, the circuits they are trying to attack generally are in the realm of digital
integrated circuits. In [12] the authors indicate there are at least four types of trojans, side
channel, semiconductor, analog, and digital, and includes a catch-all category of other for
those that do not directly fall into those other categories. Side-channel attacks generally
leak information out of an analog channel [12,14]. Semiconductor trojans generally tamper
with the dopant polarity [17], analog trojans seek to insert some sort of analog device or
additional circuit that will affect some sort of change in the operation of the circuit, either
immediate or over time [14,20–23], such as the capacitor trojan threat identified in [18].
Digital trojans generally try to cause issues with the finite state machines (FSM) [12] to
cause the overall FSM to end up in a “don’t-care” state, if available, that would contain a
trojan payload.

Whilst there is a great deal of literature seeking to define hardware trojans, all of
them, however, seek to attack circuits that remain in the digital domain. All the literature
mentioned above, even those considered “analog” or even “semiconductor” trojans, seek to
attack either microprocessors, digital circuits, etc. Additionally, some developed trojans for
“RF applications”, but their trojans generally remain in the realm of different transmitter
input termination [20], and do not cover the full spectrum of possible hardware trojan
attack vectors in the RF domain. Hence, we seek to contribute not only to this prior research,
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but also to provide some initial steps at the lack of research into trojans that can occur in
the analog domain.

2.1.2. Analog Circuit Trojans

Hence, after noting the expansive literature focusing much needed attention on hard-
ware trojans in the digital circuit design domain, the following papers attempt to address
trojans in the analog circuit design domain. Quite a few indicate the noticeable lack of
research in this field [23,25]. These trojans are more difficult to obfuscate or deceptively
insert than larger, more topographically complex digital circuits that can feasibly hide
a trojan, digital, analog or semiconductor, these trojans can still exist [25]. The class of
power/area/architecture and signature transparent (PAAST) trojans impact the fundamen-
tal operation of analog circuits, such as amplifiers, but do not require extra components,
area, or semiconductor changes [24]. The study states that by changing the high side
supply bus to an amplifier or oscillator circuit, it is possible to cause the circuit to go into a
trojan state without adding extra components. It also proves that even without having to
physically change the circuit, hardware trojans within analog IC development exist. The
research into PAAST trojans has generally focused on the determination of the possible
trojan states [26].

Other trojans in the analog/RF front-end domain have also been detected such as
changing the termination to the entrance of the power amplifier (PA) [20], or inserting a
trojan on a mm-wave RF PA matching network to leak information [27]. Hence, while
hardware trojans are possible, there has been little focus on detecting and defending the RF
front end from inserted hardware trojans.

2.2. Hardware Trojan Detection

Hardware trojan detection methods are broadly categorized as destructive and nonde-
structive [11,12]. Destructive methods can be applied on a smaller scale, but also provide
a way to find and form golden models for verification [12]. Nondestructive methods
include techniques such as side-channel analysis, formal verification, simulation, and logic
testing. Many nondestructive methods require a golden model, and thus, together, these
nondestructive and destructive methods form a complementary approach to hardware
trojan detection. Other recently studied methods include an optical analysis of various
ICs [28].

2.2.1. Side-Channel Detection

Side-channel analysis is a well-studied detection method, with physical side chan-
nels such as temporal (propagation delay), thermal, and electrical (current, EMI, voltage,
charge). Side-channel attack (SCA) analysis utilizes the hardware runtime characteristic,
such as power, of a cryptographic device to evaluate if it leaks secret information or reveals
encryption behaviors. Unlike exploiting software bugs, such attacks on hardware compo-
nents are not due to buggy hardware. Side-channel attacks can be categorized in a simple
power analysis [29], differential power analysis [29], and correlation power analysis [30].
Since a correlation power analysis requires far fewer traces for recovering the key than
a simple power analysis or differential power analysis, a correlation power analysis that
retrieves the key through analyzing the correlation between the computing data and the
measured power consumption, has become the most popular way for side-channel attacks
to crack many cryptographic implementations [31,32]. Among many kinds of targets,
an awareness of the potential of the EM side-channel attacks is developing [33–39]. The
attacker is typically interested in emanations resulting from data processing operations,
such as state changes and current flows in the CMOS circuits. These currents result in EM
emanations, sometimes, in unintended ways. Such emanations carry information about the
data or clock rates. The emanations provide multiple views of events unfolding within the
device at each clock cycle because each active component produces and induces various
types of emanations, increasing their vulnerability to hacking or exploitation. However,
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much of the literature on the utilization of current and EM side channels is generally not
isolated from the side-channel under test [20], and it requires components to be placed in
the circuit itself to detect changes in the waveform. In the case of an EM side-channel anal-
ysis, the unit under test must be within a particular test setup in order for those verifying
the chip to discover the trojan, and once it leaves that setting, if the trojan goes undetected,
it cannot be discovered until malicious events occur. Hence, this study proposes IC power
interconnect the EM side-channel analysis via magnetic tunnel junction sensors.

2.2.2. IC Current Sensing for Hardware Trojan Detection

Various IC current sensing methods have been previously proposed, including built-in
current sensors (BICSs) [40] and magnetoresistance sensors [41,42]. Previously, BICS were
employed and shown to be able to detect trojans [40]. Other research indicated that MTJ
sensors can be utilized for anomaly detection [43]. In many current sensing schemes, the
conventional methods utilize invasive series components, such as a series resistor, a power
MOSFET (to observe on-resistance), and even an integrator [44–47]. These schemes cause
high-power dissipation and have many limitations, including process dependency, control
difficulty and high complexity. The major issue is that the inserted components change
the characteristics of the overall circuits unless a small resistance component is inserted in
the loop. Although using a small resistance component can reduce the risk of degrading
the performance, it increases the difficulty to sense the signal accurately. In this study,
novel on-chip non-invasive EM sensors will be exploited to collect EM emanations for
(1) observing if the device reveals detectable patterns; (2) monitoring if the device is under
attack, which may result in unusual activities. To enable the on-chip security detection
function for mobile devices, we propose an EM-sensing system to monitor critical signals
with non-invasive sensors that can avoid inserting new components in the signal path, so
that the system characteristics will not be modified by the sensing circuits.

This study proposes to utilize MTJ sensors for current sensing, and machine learning
models to develop an on-chip, isolated current sensor that will enable hardware trojan
detection for protection of RF transceivers. Thus, this study not only focuses on the
physics of hardware transceivers, computationally light-weight machine learning models,
and MTJ sensors, but also develops a number of potential hardware trojans that cover
the vulnerabilities pointed out in previous research, such as added components and
injected noise.

3. On-Chip Magnetic Tunnel Junction (MTJ) Based Sensors for Instant Device
Power/Current and EM Emission Monitoring

The basic MTJ structure consists of two ferromagnetic layers separated by the insulator
layer. The pinned layer has the fixed magnetization direction, while the magnetization
direction can be changed in the free layer. Conventionally, the MTJ devices have been used
as oscillators or memory [48–52]. The MTJ devices can be fabricated monolithically over
CMOS circuits. An e-beam-based nanofabrication process was developed to fabricate the
MTJ-based spin torque oscillator over the Metal-4 layer of CMOS circuits. In this study we
directly changed the resistance of MTJ devices with an external magnetic field. Hence, the
MTJ devices are utilized as a non-invasive current sensor, which resistance is a function of
the external magnetic field. The MTJ devices can be exploited as EM sensors placed near
the critical signal paths.

Figure 2a shows the on-chip non-invasive current sensor that consists of the magnetic
flux guide and concentrator along with the magnetic tunnel junction to convert magnetiza-
tion rotation into a voltage change. A current along the power line of the chip generates
magnetization rotation in the above magnetic layer with its rotation magnitude linearly
proportional to the current amplitude. The patterned planar funnel-shaped magnetic film
will amplify the rotation angle as the magnetization flux travels along the strip. An MTJ is
placed at the end of the strip with its free layer exchange coupled to the flux guide. An MgO-
based tunnel barrier is used to obtain high magnetoresistance ratio (MR) of larger than 300%.
The reference magnetic layer on the other side of the tunnel barrier has its magnetization
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pinned in the direction orthogonal to the flux propagation direction by using an antiferro-
magnetic layer deposited above. The resistance of the MTJ depends on the relative magneti-
zation orientation of the two magnetic layers sandwiching the tunnel barrier, i.e., the angle
q in the figure on the left. The resistance can be computed by R(θ) = R⊥

1+p2 cos θ
where R_⊥

is the resistance when q = 90◦ and p is polarization factor. The maximum and minimum re-
sistance can be calculated as Rmin = R

(
0
◦)

= R⊥
1+p2 and Rmax = R

(
180

◦)
= R⊥

1−p2 . Therefore,

MR = (Rmax − Rmin)/Rmin =
(

R⊥
1−p2 − R⊥

1+p2

)
/ R⊥

1+p2 = 2p2

1−p2 . For today’s typical MTJ, p is
equal to 0.70~0.75 and MR is equal to ~200%. The resulting resistance-area product (R⊥A)
is around 1 kΩ · μm2 ∼ 1 MΩ ·μm2. The analysis shows that millivolts level signal voltage
is expected for a milliampere-level current change. Here, a bridge sensing structure [53] in
Figure 2b is used to eliminate any response to the external stray field disturbance, such as
the earth field effect.

Figure 2. (a) The on-chip non-invasive current sensor that consists of the magnetic flux guide and
concentrator along with magnetic tunnel junction, and (b) the bridge sensing structure to eliminate
any response to field disturbance.

The entire MTJ-based sensor structure can be directly fabricated on top of the top
metal layer of the semiconductor chip/circuit with two potential methods. The first one is
the chemical mechanical polishing (CMP) process that will be performed over the top metal
layer with deposition of the magnetic flux guide and MTJ film stack using the sputtering
technique. An e-beam/optical lithography with an ion-mill process will be employed to
fabricate the sensor structure along with contacting pads and connection to the circuit
underneath. The other method is to adopt the dry etch to remove the top passivation layers
for chip protection from the electrode areas. The silicon dioxide can be further thinned
down by an optional dielectric reactive etch in order to enhance the coupling efficiency and
the minimum detectable resolution.
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4. Machine Learning Algorithms for Real-Time Threat-and-Vulnerability Detection

A typical side-channel signal analysis involves pre-processing to diminish dimension-
ality, where the measured traces are compared with predicted leakage using distinguishing
algorithms. The most common technique is correlation computation [11]. For example,
the Pearson correlation coefficient, ρ, for the information component, t, of all measured
traces between predicted leakage, Lp, and measured leakage, Lm(t), is defined as follows:

ρ(t) = Cov
(

Lp, Lm(t)
)
/
√

Var
(

Lp
)·Var(Lm(t)), where Cov is covariance and Var defines

variance. Pre-processing is adopted to diminish the set of points in the trace to remove
high-order signals. However, it is still computationally expensive to realize pre-processing
and correlation computation on energy-constrained RF/analog devices. To eliminate the
need of pre-processing the data, Bayesian neural networks (BNNs) are exploited to directly
process data and extract the features in the proposed research.

4.1. Bayesian Neural Networks

Bayesian neural networks (BNNs) have been investigated as a computationally
lightweight yet robust approach to the classification of electrical signals. In particular,
a previous work [26] investigated the use of BNNs as a way to classify power amplifiers
(PAs) based upon variational differences due to process corners. This study also inves-
tigated classifying side-channel signals sensed from the MTJ sensors, such as integrated
circuit (IC) supply current, through Bayesian neural networks. BNNs are based upon Bayes’
probability theorem which states that the probability for a hypothesis from a given set of
data D to be true is equal to the probability that D is true given a hypothesis h multiplied
by the probability the hypothesis is true divided by the probability of D.

P(h|D) =
P(D|h)P(h)

P(D)
(1)

In this case, P(h|D) is the posterior probability of h because it reflects the confidence
that h holds after seeing D. Bayes concept learning is based upon some main assumptions,
that is, that the BNN is trained utilizing a sequence of training examples (D), consisting of
a set of instances x, which are mapped to a label, y such that:

D = [(Xn, yn)|n = 1, 2, . . . , N] (2)

For some n, Xn is a vector of a set of points corresponding to an IC current signal sensed
through a MTJ resistive sensor and yn is a vector of assigned class labels, corresponding
to a set of K classes. Given a model with parameters θ, and prior distribution Pr(θ) the
posterior distribution for the parameters is as follows:

Pr(θ|Xtr, ytr) =
Pr(θ)Pr(ytr|Xtr, θ)∫
Pr(θ)Pr(ytr|Xtr, θ)dθ

(3)

In classifying a test set Xnew, the predictive distribution of the classification set Ynew becomes:

Pr(Ynew|Xnew, Xtr, ytr) =
∫

Pr(Ynew|Xnew, θ)Pr(θ|Xtr, ytr)dθ (4)

Due to the intractable nature of the integral in Equation (4), various numerical methods,
such as the computationally heavy Markov Chain Monte Carlo method, must be applied to
estimate the predictive distribution. In this study, the comparatively lighter computational
method variational inference [54] is used to estimate the integral. The variational posterior
is assumed to be a Gaussian distribution, where the samples of the weights are obtained by
shifting and scaling unit Gaussian variables with mean μ and standard deviation σ, where
σ = ln(1 + exp(ρ)). Thus, each sample of the weights can be expressed as:

w = μ + σ ◦ ε (5)
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where “ ◦ ” denotes an element-wise multiplication and ε is a vector of Gaussian normal
distribution N(0, 1) to introduce variance to the weights for the Bayesian neural network
as in Figure 3.

Figure 3. The weights of the Bayesian neural network weights are sampled from probability distributions.

4.2. BNN Architecture and Optimization

The BNN for this study was a network of two hidden layers with thirty-two nodes
per layer, as shown in Figure 4. The BNN was trained utilizing the Python library Pytorch.
The Cadence simulation data were quantized and classified to train the BNN. The BNN
was trained and tested with the data from a number of different hardware trojans. We
first tested the ability of the system to classify individual trojans, the details of which will
be discussed in a further section. For each of these cases, certain trojans were easier to
detect than others, with some of the particular trojans being able to be detected with nearly
100% accuracy. Furthermore, we also trained and tested the BNN with all the different
hardware trojans combined into one dataset. We equally trained the BNN with normal and
abnormal data, and noticed that due to similarities between the normal and abnormal data,
the accuracy for the overall combined dataset was around 90%. We determined the exact
structure of our BNN in order to maximize the accuracy for the total trojan dataset and
we found that utilizing 32 hidden neurons per layer produced nearly 6% higher accuracy
after 1000 training epochs than 16 neurons, but more statistically insignificant accuracy
depreciation than a network with 64 neurons in the same amount of time. Thus, we decided
to utilize 32 neurons to minimize resource usage and accuracy.

Figure 4. The optimized architecture of the lightweight Bayesian neural network for classification of
the sensed EM signals.
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5. Experimental Results

5.1. Fabracation of the MTJ Sensors

This work aims to develop the reliable methods for design and fabricating the novel
MTJ sensor on the CMOS circuits. The planar funnel-shaped magnetic film was developed
to efficiently amplify and convert the sensed magnetic field to a voltage change. The
behavior of the MTJ sensor was characterized and modeled for the Cadence simulations.

5.1.1. Fabrication

To fabricate MTJ on top of top metal layer, first, we used chemical-mechanical pla-
narization (CMP) to polish and planarize the passivation layer. Then we deposited the
bottom electrode and MTJ stack at room temperature by magnetron sputtering with base
pressure <2 × 10−8 Torr. The film structure, as shown in Figure 5, is Ta/Ru multilayer
(30)/CoFeB(2)/MgO(1.5)/CoFeB(2)/Ta(0.5)/CoFe(1)/Ru(0.85)/CoFe(2.5)/IrMn(8)/Ta(1.5)
/RU(7) (in nm). After deposition, the film is post-annealed at 330 ◦C for 10 min with a
5000 Oe magnetic field applied along in the plane direction. The deposited film is processed
into elliptical pillars by e-beam lithography and carefully controlled ion milling. The long
and short axis of the pillars are 300 nm and 70 nm, respectively. We deposited a SiN layer on
top of the nanopillars for passivation followed by low angle ion milling for planarization.
The trench and via were defined by photolithography and etched by reactive ion etching
(RIE). Finally, Ti(5)/Au(100) (in nm) was deposited for the top electrode. Figure 5 also
shows the cross-section image of the MTJ device.

Figure 5. Cross-section TEM images of the MTJ pillar and the film structure.

5.1.2. MTJ Measurement Results

The MTJ sensor is characterized by applying magnetic field along the axis of the pillar
and measured the resistance change corresponding to the magnitude of magnetic field.
Figure 6 shows the typical tunneling magnetoresistance (TMR) curves. The sensor is in
the low-resistance state when the two CoFeB layers’ magnetizations are aligned in the
parallel state by a large magnetic field. While in the range of a small magnetic field, the
magnetization of the sensing CoFeB layer with respect to the reference CoFeB changes
gradually with the field intensity and eventually reaches a high-resistance state when they
are in the antiparallel state.
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Figure 6. Typical tunneling magnetoresistance (TMR) curves. This graph illustrates the H-field-
resistance curve for one MTJ sensor developed for this study. Two sweeps of the H-field are separate
tests of the sensor. For the purposes of our modeling, we used the greater resistance response.

5.1.3. Modeling for Cadence Simulation

The measured results discussed in Section 5.1.2 were utilized to find the relationship
between the magnetic field and resistance for this particular MTJ resistor. Once the mag-
netic field-resistance relationship was characterized, then electromagnetism, in particular
Ampere’s law, could be used to find the current-resistance relationship of the sensor.

The numerical analysis indicated the relationship between the magnetic field and
resistance was piecewise linear in two different regions of interest:

R =

{
0.849 ∗ H(t) + 15979.24 [Ω], H ≥ −425 A

m
2.629 ∗ H(t) + 16755.52 [Ω], H < −425 A

m
(6)

In order to determine the magnitude of the magnetic field sensed at the sensor, a
simplified electromagnetic analysis of the system was conducted. First, the current density
was assumed to be equally distributed over the entire surface area of the interconnect. Next,
the equation was determined for the magnetic field from an infinitely thin, finite width
plate a distance h beneath the sensor. Next, based on the principle of superposition, the
magnetic fields due to a number of plates that were an equal distance apart from each other
within the depth of the interconnect, Hinterconnect in Figure 7, were computed. For each
plate, it was assumed the current density was equal and a proportional current equal to the
current magnitude divided by the number of plates. Thus, the H field could be determined
mathematically, as shown in the following equations:∫

c
B · dl =

∮
J · dS (7)

H =
B
μ0

(8)

∫
c

H · dl = I (9)

Using polar coordinates we analyze the H-field from a single plate.

dH =
I

2 ∗ π ∗ r
θ̂, r = sqrt

(
y2 + h2

)
(10)

θ = −sinθŷ + cosθẑ = − h
r

ŷ +
y
r

ẑ (11)

dH =
I

2 ∗ π ∗ r
∗ 1

r
(−hŷ + yẑ) (12)
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dH =
I

2 ∗ π ∗ r2 ∗ (−hŷ + yẑ) (13)

Figure 7. Current carrying interconnect and sensor location.

Integrating in the y dimension of I yields:∫
dH =

∫ I
2 ∗ π ∗ y2 + h2 (−hŷ) (14)

H =
∫ 1

2π

I
w

h
h2 + y2 dy (15)

H =
I

π ∗ w
tan−1

( w
2h

)
(16)

H depends not only on the distance away from the interconnect, but also on the width
of the wire, a finding found to be true in [43].

To find the total estimated current in the interconnect, a large, but finite, number of
plates were integrated with varying distances from the first plate, which was at a distance
h from the sensor to the depth of the entire interconnect, Hinterconnect. Using the minimal h
distance illustrated in Figure 8, 50 nm from the surface of the interconnect, the estimated
magnetic field over varying currents could then be determined.

Figure 8. Magnetic field and current at varying sensor distances.
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Fitting the H-I relationship of the sensor 50 nm above the interconnect, the H-I rela-
tionship in Figure 9 was found to be approximated by the linear function:

R =

{
0.849 ∗ H(t) + 15979.24 [Ω], H ≥ −425 A

m
2.629 ∗ H(t) + 16755.52 [Ω], H < −425 A

m
(17)

Figure 9. Magnetic field-resistance relationship for an MTJ Sensor.

Although empirical evidence concerning the bandwidth of our MTJ sensor was not
collected, the authors of [53] indicated that while theoretical MTJ sensors have a wide
bandwidth of GHz, in practice the bandwidth is closer to 100 MHz. Hence, for the
simulation, we filtered the H-field at about a 100 MHz cutoff frequency.

H = 906.81 ∗ I(t), −400mA ≤ I < 400mA (18)

For this particular application, DC currents on the IC trace are approximately in
the range of ±400 mA. Hence, the maximum of change in resistance of this particular
sensor will be ±307 Ω according to the following equations, leading to a sensitivity of
around 1.9%.

ΔR ≈ (±400 mA ∗ 906.81 ∗ 0.849) (19)

ΔR = ±307 Ω (20)

∴ ΔR
R

≈ 307
15979

≈ 1.9% (21)

With the small 1.9 % change in resistance, it should be noted that accurate mea-
surements will be difficult, with potential sensing voltages through the utilization of a
Wheatstone bridge of approximately 3 mV peak to peak. Because the application requires
low-power ADC and a tolerable resolution, some way to boost the signal, either through an
amplifier circuit or through a current-to-frequency converter or a voltage-to-time converter
might be utilized to accurately measure the changing resistance, and hence, the changes in
the measured current for accurate classification of the BNN. Such small-signal measure-
ment techniques have been developed for MTJ sensor networks in the past [55]. Based
on these calculations and considerations, a Verilog-A model was created to simulate the
current sensing capabilities of the MTJ sensor.

5.2. Attacker Models and Evalution Results

The attacker scenarios developed based in the analog domain, and thus, can be
detected using a reverse side-channel analysis. Hardware trojans are well-researched in
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literature [11] and detection with methods such as a side-channel analysis is also widely
researched. However, there is little available information concerning analog hardware
trojans. Hence, this study created three classes of power amplifier stage hardware trojans.
The goal for these trojans was either decreasing efficiency, shutting off the device, or to inject
noise in the amplification stage. Furthermore, these trojans were developed to appear to be
like components found on an actual power amplifier IC and thus increase the probability
of being detected. Most importantly, no matter the trojan, all were able to be classified
using the lightweight BNN.

5.2.1. Power Amplifier Designs

A single-ended cascoded Class-E PA was designed and simulated for demonstration
of the proposed system. By reducing the overlapping time of the transistor’s output voltage
and current, power dissipation at the transistor of the switching mode PAs is minimized.
Hence, supply power can be delivered to the output load more efficiently. Figure 10
shows the PA schematic that exploits the switching Class-E operation to achieve high
efficiency to reflect the stringent power consumption requirements of IoT applications, and
their prominent nonlinearity. A cascode transistor was added to prevent the device from
breaking down. The harmonic content at the transistor drain is a result of the soft switching
effect generated by Csw and Lsw. In schematic-level simulation, an output power of 18.7
to 20 dBm and a drain efficiency of 40 to 44% across process and temperature corners
is achieved.

Figure 10. The designed Class-E PA that was used for demonstration of the proposed system.

5.2.2. Attacker Models on PA Designs

The attacker models are segmented into three main categories: shut-off, parasitic
capacitance, and noise injection. Few trojan models are available in literature due to the
pernicious nature of trojans. Figure 11 illustrates the main areas identified in this study
that can be targeted by attackers. The first area is the active device, the switching FET
controlled by the input signal. Two different attacks can be carried out here, a source switch
turn-off attack and a noise injection attack. A third attack can be at the output of the drain
of the cascaded MOSFET, increasing the parasitic capacitance through an injected trojan
capacitance circuit.

The development of trojans consisted of focusing on inserting trojans into various
regions of the device and the impact of these insertions on the PA efficiency. The most
obvious trojan is one that completely disables the PA. To disable the amplifier, a switch
can be placed at the source of lower MOSFET that, when triggered, will cause the active
devices (the transistors) to be shifted from the operation region to the off state, limiting the
ability of the device to operate, as shown in Figure 12.
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Figure 11. The main areas of attacker models are segmented into three categories: shut-off, parasitic
capacitance, and noise injection.

Figure 12. The killer switch that is used to shut off the operation of the power amplifier.

The second trojan studied was the parasitic capacitance trojan, impacting the matching
network Q factor of the circuit. By increasing the capacitance on the output of the drain of
the cascaded MOSFET (Figure 13), an attacker can easily cause the system to become less
efficient in transmitting the input signals. The efficiency of the power amplifier determined
the voltage-current relationship of the switching circuit. A Class-E amplifier is tuned to
be most efficient, and thus, the drain output capacitance magnitude is carefully selected.
Hence, a capacitance with a switch that can be triggered by an attacker can plausibly be
fabricated on the device and be thus activated to limit the efficiency and increase the power
consumption of the PA.

The third trojan studied was an AC-coupled noise source at the input of the cascaded
MOSFET in the Class-E topology as in Figure 14. The radio frequency (RF) circuit designers
usually set tolerances at which the amplifier can work, and hence, in moving outside of
that range, the power amplifier will be less effective by coupling a noise source at the input,
especially outside of that tolerance range. In this study, we analyzed noise voltages of 10%
of the DC voltage and higher at frequencies equal to the input frequency.

Finally, the last trojan studied was noise injection at the input signal of the amplifier.
A two-toned input, added through an RF power combiner in Figure 15, which vector-adds
two analog signals together, not only causing an issue with the gain of the circuit, but also
with noise in the side-band channels. By inserting a noise signal in the sideband of the of the
desired signal, with the signal large enough to interfere with standard specifications, in this
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case the Bluetooth specification, the attacker can not only change the power consumption
of the PA, but also interfere with signals in other channels as well.

Figure 13. The added parasitic capacitance degrades the output efficiency and increases the power
consumption of the power amplifier.

Figure 14. The AC-coupled noise source at the input of the cascaded MOSFET.

Figure 15. An RF power combiner to mix the noise source into the input signal.

Hence, all of these PA trojans were developed to change the operating ability of the
Class-E power amplifier.
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5.2.3. Evaluation Results

All the of presented trojans and the sensor model were simulated in Cadence. The MTJ
model was written in Verilog-A utilizing the current to H-field and H-field for resistance
equations earlier mentioned in this study. Based on previous literature search, we also
included a low-pass filter on the current-to-H-field equations at 100 MHz to approximately
model the actual frequency response of the sensor. Simulated with the Class-E PA with
trojans, tests were performed with a Wheatstone bridge configuration as suggested in [53],
and the output went to an amplifier to allow for the determination of optimal gain for this
sensing configuration.

The simulation results then were used as the input signals for the proposed BNN to
classify the results. The dataset for evaluating the BNN classifier was generated by simulat-
ing the PA with various trojans in Cadence. The trojans themselves were tested by utilizing
non-ideal switches that would be cycled on and off in the simulation. Each simulation was
run at 1.5 V with process variations in fast-fast (FF), slow-slow (SS), and typical-typical
(TT) process variations. Furthermore, the data were generated for temperatures of −40 ◦C,
27 ◦C, 60 ◦C, and 125 ◦C. Thus, for each trojan that was run, there were 12 different tests at
different temperatures and process variations. For each trojan besides the switched trojan,
we tested various configurations of the trojans to determine the precision of the classifier.
The switched trojan only had one configuration (on and off), while the voltage tolerance
trojan was swept from 0.1 V to 0.5 V in 0.1 V increments, the parasitic capacitance trojan
was tested with 10 fF, 100 fF, 1 pF, and 10 pF capacitors, and the power combiner trojan
was tested with combined signals of 0.024 GHz, 0.24 GHz and 2.4 GHz. All of these data
for the process technologies and temperatures were combined together for each trojan in
the following way: the trojan region for the source switch trojan was determined, the same
length of data for that trojan was taken for each of the trojans and then were quantized
at different quantization levels (4, 6, 8, 10, 12, 14, 16, and 24) between ±0.8 to produce
eight different quantized test sets, and those points were then added to an overall trojan
vector test vector for each quantization level that included all the different process and
temperature for that particular trojan (e.g., switch, pcap 10 f, pcomb 2.4 GHz, etc.). These
vectors were then added to an overall test vector that included normal operation data and
all of the variations in trojans. The training sets for all the training used 20,000 points and
a test set of 1000 points. Furthermore, to determine how well the classifier can resolve
individual trojans, vectors that included only normal operation with a particular trojan
were included. Note that in training, the dataset included an equal number of “normal”
operation and “trojan” operation sets to avoid over-training the model on trojan data.

In determining the difference between a source switch circuit, a power combiner
circuit, and a parasitic capacitance, the BNN performed well over all different quantization
levels. The BNN was able to determine a source switch trojan with 96% accuracy over
all quantization levels, a power combiner trojan with different frequencies from 200 MHz
through 2.4 GHz with nearly 100% accuracy, and an approximately 85% accuracy for the
parasitic capacitance trojan over all the quantization levels. When all the different types of
trojans were put into the same class and compared against the “typical” signal, there was
greater than 95% testing accuracy for the BNN over the various quantization levels. Table 1
summarizes the accuracies of the different type trojans.

Table 1. Accuracy summary of the different type trojans.

Trojan Type Accuracy

Source switch trojan 96%
Parasitic capacitance trojan 85%

Noise trojan 100%
Combined trojans of all types 95%
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6. Conclusions

Novel non-invasive sensors were developed to collect data for analysis of analog,
mixed-signal, power, and EM signal behavior. To sense small changes in magnetic fields
and inform the machine learning circuits, the nanoscale heterostructure was developed to
be able to monolithically integrate CMOS circuits with novel spin-torque devices that can
be utilized as robust high-fidelity sensors and embedded into interconnects. Lightweight
learning algorithms were developed for fast threat detection at the front-end of resource-
constraint devices in real time. The MTJ sessors were fabricated, measured and modeled
for Cadence simulations together with the presented attacker models. The results show
that the proposed system achieves 95% of the accuracy to recognize the attacker with all
trojan types applied.
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Abstract: Wireless networks and the Internet of things (IoT) have proven rapid growth in the
development and management of smart environments. These technologies are applied in numerous
research fields, such as security surveillance, Internet of vehicles, medical systems, etc. The sensor
technologies and IoT devices are cooperative and allow the collection of unpredictable factors from the
observing field. However, the constraint resources of distributed battery-powered sensors decrease
the energy efficiency of the IoT network and increase the delay in receiving the network data on
users’ devices. It is observed that many solutions are proposed to overcome the energy deficiency in
smart applications; though, due to the mobility of the nodes, lots of communication incurs frequent
data discontinuity, compromising the data trust. Therefore, this work introduces a D2D multi-criteria
learning algorithm for IoT networks using secured sensors, which aims to improve the data exchange
without imposing additional costs and data diverting for mobile sensors. Moreover, it reduces
the compromising threats in the presence of anonymous devices and increases the trustworthiness
of the IoT-enabled communication system with the support of machine learning. The proposed
work was tested and analyzed using broad simulation-based experiments and demonstrated the
significantly improved performance of the packet delivery ratio by 17%, packet disturbances by 31%,
data delay by 22%, energy consumption by 24%, and computational complexity by 37% for realistic
network configurations.

Keywords: wireless systems; mobile sensors; D2D; technological development; Internet of things

1. Introduction

IoT-based technologies have gained numerous growth in the development of smart
cities and support to real-time communication systems [1–3]. Wireless sensor networks
(WSN) enable low-power deployments, and they have become the dominating choice in
the composition of IoT devices. The technology of WSN is broadly utilized in various
applications, such as precision agriculture, healthcare, vehicle transportation, smart cities,
etc. [4–6]. It is comprised of tiny and battery-powered nodes with limited memory and
transmission power, and such constraints restrict the amount of computation in facilitat-
ing the network users [7–9]. In large network domains, most of the solutions prefer the
multi-hop paradigm rather than the single hop, which improves the connectivity among
IoT networks and supports the connected devices for transmitting their collected data.
However, with increases in data traffic, frequent changes occur in communication channels
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and most of the network systems degrade their performance in terms of resource manage-
ment and security. Many solutions have used the techniques of machine learning to make
an intelligent decision and forward the monitoring data with nominal overhead [10–12].
However, most of the existing solutions are not able to cope with malicious threats in the
existence of mobile IoT devices. Accordingly, it is easy to degrade the performance of smart
cities while transferring the gathered data among the D2D communication system over
the unreliable source of network channels [13–15]. Furthermore, due to the constraints
in devices for resources, authentication, integrity, and security are other significant pa-
rameters in transmitting the smart data from the critical field [16–18]. Therefore, network
devices must be protected from unauthorized access and maintain their accuracy in terms
of privacy and trustworthiness.

This study aims to propose a D2D multi-criteria reinforcement learning algorithm
using secured and mobile IoT devices. It offers an efficient way of collecting sensors’ data
and utilizes the technique of machine learning with the least overheads on sensors and
provides intelligent methods for ensuring low-latency data routing. Additionally, unlike
most of the existing solutions, the proposed algorithm increases the robustness of the
mobile network for security, given as follows. (i) Mobile devices are authenticated in their
transmission radius before connecting to the route discovery process, and after mutual
verification, the proposed algorithm allows them to become involved in the data routing.
(ii) It offers a trusted analysis of security measurements and improves enhancement in
terms of privacy with data integrity in mobile networks. (iii) Moreover, it provides the
security flow between three stages i.e., mobile devices, gateways, and the sink node. The
significant contributions of the proposed work are as follows:

i. D2D authentication algorithm is developed for a mobile network to ensure the
authenticity and trustworthiness between partial and fully-connected nodes.

ii. Using a multi-criteria process, the reinforcement learning technique is applied and
the network system is trained using realistic conditions. The proposed algorithm
offers the selection of optimal neighbors using the computation of rank value that
is comprised of energy, speed, link cost, and radio coverage. Accordingly, it reduces
the sizes of routing tables and avoids excessive routing intervals.

iii. Moreover, the proposed algorithm protects devices and attains uncompromised
data against security attacks.

iv. The simulations are performed to verify the improvement of the proposed algorithm
in the comparison of existing work.

The rest of the article is divided into the following subsections: The related work and
problem statement are described in Section 2. Section 3 explains the proposed algorithm
with flow diagrams. Simulation configuration and experimental results are discussed in
Section 4, and Section 5 provides the conclusion with suggestions for future work.

2. Related Work

IoT is one of the most promising technologies of the current era and interacts with sen-
sors for observing the physical world [19–21]. These technologies have expanded into the
real-time environment and support the applications to govern their operations. Recently,
many solutions have presented to optimize the transmissions and increase the accuracy
of online data retrieval systems. The authors of [22] determined the required resources of
energy at the BS for IoT-enabled systems. Numerous agricultural sensors have utilized
in precision agriculture for continually monitoring the field and communicating with the
smart nodes. They presented a unique product density model for estimating the energy
requirements for BS. Additionally, a method for Improved Duty Cycling was provided that
makes use of the residual energy parameter. The proposed routing protocol [23] employs
a region-based static clustering technique to efficiently cover the agricultural area while
utilizing threshold-sensitive hybrid routing to send sensed data to the base station. In
addition, the proposed protocol uses fuzzy logic to select the optimal cluster head (CH)
among all sensor nodes in a given round, minimizing node energy usage during each
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data transmission period. The suggested energy-efficient protocol is compared to establish
benchmark protocols, such as energy-efficient heterogeneous clustering (EEHC), developed
distributed energy-efficient clustering (DDEEC), and region-based hybrid routing (RBHR).
The research and testing findings indicate that user-defined transmission thresholds sub-
stantially decrease the data transmission rate. Furthermore, the balanced employment of
fuzzy logic, static clustering, and hybrid routing effectively reduces the energy consump-
tion of sensor nodes throughout each data transmission round, therefore extending the
network’s total lifetime. In [24], the authors proposed PAwCOR to develop a distributed
method for the selection of CH by using node energy, latency, and congestion characteristics.
Energy saving is accomplished via the use of nodes that are selected depending on sensing
inaccuracy. PAwCOR enables the application of periodic data with the least amount of
delay possible via the use of various routing routes. Additionally, it fulfills the need for
non-delay-tolerant applications by utilizing service differentiation to prioritize time-critical
data transmission. By allocating at least one route for both essential and routine data
transfers, the suggested method improves performance compared to current protocols.
It improved the performance in terms of latency, average energy consumption, packet
delivery ratio, and average residual energy to attain reliable transmission. The authors
of [25] proposed CTEER, an energy-efficient routing protocol based on cluster trees, to
address the fast energy loss experienced by ordinary nodes while using the conventional
static routing tree method. This protocol is a rendezvous-based method with a low-delay
characteristic. As a result, the protocol is well-suited for time-critical applications, such as
network live broadcast systems, automated railway operation systems, ticketing software,
and intelligent home systems. It creates a cross-routing tree in which the mobile sink
serves as the central node. Clustering algorithms are used to group the ordinary nodes and
aggregate the data packets based on the routing tree. The suggested approach outperforms
RRP in terms of the network lifecycle, energy consumption, and data latency. The authors
of [26] proposed a deep-reinforcement learning-based quality-of-service (QoS)-aware se-
cure routing protocol (DQSP). It aims to ensure the QoS and extract knowledge from traffic
history by cooperating with the observing environment. Moreover, the proposed protocol
optimizes the policies of routing. It performs significant improvement under different
network metrics and has proven high convergence and effectiveness. The authors of [27]
presented QL-MAC based on Q-learning, which iteratively tweaks the MAC parameters
through a trial-and-error process and attains energy-efficient communication. It offers
minimization problems without predetermining the system model, and also provides a
self-adaptive protocol in case of topological or any external events. It readjusts the duty
cycle of nodes and explicitly minimizes the energy consumption. The large-scale simulation
experiments demonstrate its efficacy over other schemes.

It was noticed that technologies of IoT and sensors are performing an extraordinary
role in the development of smart communication. The sensors are widely used in different
applications, including remote operations to observe the data and respond with a timely
reaction [28–30]. However, they are bound in terms of resources and limit the online services
for IoT networks. Moreover, transporting sensitive data from network devices towards
the data centers is another important characteristic for any IoT-enabled system. It has also
been seen that different solutions are discussed to improve the energy consumption and
QoS parameters by using artificial intelligence and machine learning techniques for D2D
communication; however, most of the reinforcement learning solutions lack the optimal
consumption of resources, especially in the routing phase for mobile devices. In addition,
they are not able to cope with the dynamic evaluation of routing links, and in such cases,
sensors’ data were frequently dropped. Moreover, it was also observed that a few solutions
are still vulnerable to external attacks and not able to cope with data security under mobile
nodes. Such solutions could not provide a robust mutual authentication system, and as a
result, communication performance is non-collaborative and uncertain. Table 1 summarizes
the discussion of the existing solutions.
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Table 1. Summary of related discussion.

Comparative Approaches Pros and Cons

Existing solutions

Most of the existing solutions have proposed for efficient
utilization of energy consumption with constraint devices and
improved the performance of data delivery.
However, it is noticed that some solutions can tackle mobile
devices at the cost of frequent data lost and overloaded
wireless channels.
Although machine learning techniques are explored by
different researchers for IoT networks; however, it was seen
that they overlooked security threats such as privacy, integrity,
and authentication for mobile devices. Such a solution affects
the reliability of smart cities and compromised
communication system in the presence of unknown machines.

Proposed D2D multi-criteria
learning algorithm using
secured sensors technologies

An algorithm is developed for smart cities using
reinforcement learning techniques based on devices and
packets’ reception information. It supports gathering
real-time data by imposing security restrictions for mobile
devices against malicious actions. Moreover, mobile devices
are verified first, and afterward, they are allowed to be
involved in the data-gathering phase. It also supports data
encryption with a session-oriented function and leads to
lightweight complexity for the mobile network.

3. Proposed Multi-Criteria Learning Algorithm Using Secured Sensors

Sensors integrated with IoT objects are utilized in different domains to gather data
and support the community using a smart communication system. IoT network provides
the processes of data collection and assists the end-users in observing and optimizing the
transmission based on environmental conditions. In this section, we present the details of
the proposed algorithm and its working flow.

The proposed algorithm is comprised of two stages. In the first stage, D2D authen-
tication is performed, and afterward, using the machine learning approach the optimal
forwarding tables are established. The forwarding tables are updated based on the network
conditions, which decreases the overheads in determining the optimal routes. The second
stage provides the trustworthiness forwarding in terms of privacy and integrity from the
observing field to network applications. In this stage, the proposed algorithm ensures
the accuracy of the collected data and eliminates the number of attacks from unknown
devices. Additionally, the proposed algorithm imposes the lowest computing cost and
data diverting for ensuring security between mobile devices, with nominal communication
delays. Figure 1 illustrates the development flow of the proposed algorithm.

The contributions of the proposed algorithm are as follows:

i. The first component is D2D authentication and key distribution. It consists of mobile
devices and is associated with the inline gateway for obtaining the secret keys.
Additionally, gateways are directly associated with the sink node for forwarding
the network information to data centers.

ii. Reinforcement learning is executed in the second component by fetching the nodes’
statistics from the constructed forwarding tables along with information of pack-
ets’ reception. The forwarding tables are updated iteratively, thus the proposed
algorithm converges the desired outcomes optimally. Using the machine learn-
ing technique, the proposed algorithm imposes lower routing overhead on the
constraint devices and informs about the latest information to mobile nodes by
exploring network parameters.

iii. The third component is secured IoT communication and accomplishing sustain-
able routing with the support of a D2D session-oriented system. It provides au-
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thentic and verifiable sessions between devices, gateways, and sink nodes with
low-security costs.

 

Figure 1. Development flow of the proposed algorithm.

3.1. D2D Authentication with Multi-Criteria Reinforcement Learning

In the beginning, the devices build a table containing their neighbor information,
which is saved in their memories. We consider that the devices are mobile, and they
advertise their current address when they are away from their home network. In the
table, each device maintains the neighbors’ information, such as identity id, distance, di ,
residual energy, ei , and radio coverage limit, CRi , to next-level nodes. Moreover, as the
devices are mobile, the proposed algorithm initiates the process of authentication using
gateways, wi , by utilizing the session keys, Ks . All the nodes are required to distribute the
tokens, Tk, at the beginning of data forwarding, which consists of identity, timestamp, and
positioning coordinates. Additionally, the token is encrypted using the obtained session
key, from device x to device y. The session keys are temporary for a specific authentication
process, and when the positioning coordinates of the devices are changed, the generated
keys are revoked. Afterward, device x has to obtain a new session key from the proximity
gateway for communication with its other peer devices. Each device generates a request
with its id to the nearest gateway for mutual communication with a peer device. Upon
receiving this information, the gateway constructs a record inside its table and generates
a symmetric key sK for the peer devices over the secured channel. Later, both devices
perform an encryption function, e, to securely transmit the data packets mi as defined in
Equations (1) and (2):

wi → x : esK (mi ) +d′ (1)

wi → y : esK (mi ) +d′ (2)

where d′ shows the digital signatures. On the other hand, the devices first verify the validity
of the encryption blocks using digital signature, and afterward, the peer nodes perform a
decryption function to recover the data packets. In the proposed algorithm, each device
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updates the information in the constructed table and makes an entry of the authorized
device as well. In case any device is found faulty, then its entry is removed from the table
by the source device.

Most of the solutions [31,32] utilize multiple parameters for data aggregation and
route the data in the network system. The proposed algorithm uses the concept of multi-
criteria evaluation for data aggregation and optimizing the learning procedure in terms
of constraint resources. The learning procedure also makes use of radio coverage, nodes’
mobility, and link cost to attain an energy-efficient and stable end-to-end communication
system. In the proposed algorithm, each node obtains the information of the neighbor and
utilizes the reinforcement learning technique for optimizing the intelligence process with
nominal resources’ consumption. The source node initiates the process for the selection
of the next-hop based on the highest rank. This route rank, R(i), denotes the most opti-
mal neighbor, i, for decreasing the communication delay, energy consumption, and data
disturbance, as defined in Equation (3):

R(i)= rei +

(
1
si

)
+CRi +1/lcosti,j (3)

where rei is residual energy, si is speed, CRi is radio coverage, and lcosti denotes the link
cost from node i to node j. lcosti,j is the integration of packet reception ratio, PRR, and
average delay time, avedtime . To compute this, the source node distributes n number of
probes’ packets in a fixed time interval, t, and as a result, the neighboring node j determines
the value of lcosti,j for node i, as defined in Equations (4) and (5):

lcosti =
(

PRR(i,j) +
1

avedtime
) + 1/derr (4)

avedtime =
(pn − pi )

t
(5)

where pn and pi denote the reception time for the first and last probe packets, t is the given
time interval, and derr is the data error, used to measure the number of retransmissions.

The proposed algorithm utilizes reinforcement learning [33] for computing and se-
lecting the routing states using network conditions and experiences. The reinforcement
algorithm is comprised of agents, states, S, and a set of actions, A, per state. Using rein-
forcement learning, node i exploits the R(i) values and selects the next hop using energy,
speed, radio coverage, and link cost metrics. On receiving the data, the next-hop performs
the re-computation of the R(i) value and forwards the data through its selected routing
states. This process is continued for each neighbor selection until network data are received
at the sink node. Additionally, when device i needs to route the data at the time t0, it
performs a set of actions and selects the neighbor node based on the computed route rank.
The value of route rank is dynamically changed by evaluating the network and nodes’
statistics. Later, the device i gains a reward, Rwd, and enters the next state, i.e., (S, a, Rwd).
A node has only a single reward value at any time. If any node has no reward value at
any moment, then it will not be allowed to participate in the routing phase. On entering
into the next state, the device i updates its forwarding table by adding the value of the
reward. Moreover, the preceding device retrieves the updated information of device i. This
practice of reinforcement learning is exploited by the proposed algorithm for finding the
most optimal routes for forwarding the IoT data towards the sink node. At the end of the
learning period, the entries of forwarding tables are converged to a numeric value that
indicates the optimal route from the source device to the sink node. Converged forwarding
tables with computation of route rank not only decreases the unnecessary data diverting
but also increases the packets reception ratio over the communication channels in the
existence of malicious nodes. Figure 2 illustrates the flow of reinforcement learning by
exploiting the computed route rank. It uses the multi-criteria of the nodes to determine its
rank value and accordingly assign the reward. Based on the updated forwarding tables and
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reward values the proposed algorithm offers convergence results and increases the route
lifetime in terms of energy, speed, and link cost. The convergence levels depend on the
number of iterations until end-to-end routes are established with the efficient distribution
of constraint resources. Figure 3 shows the message flow for the selection of the next-hop
between the source node and its neighbors. The source node floods the route request packet
in its radio coverage and identifies the nearest neighbors. In a case when no reply has
been received, then it resends the request packet. Once it has found the list of neighbors,
then the process of data discovery is initiated, utilizing the node-level table to fetch the
statistics. Based on the fetched data, the proposed algorithm computes the route rank using
a multi-criteria process and the assigned reward value by exploiting reinforcement learning.
Thus, selected nodes advertise their status for the connection in the routing phase, and
sensors’ data is forwarded to the sink node.

 

Figure 2. Route rank using reinforcement learning.

Figure 3. Next-hop selection procedure.
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The format of the node-level table is presented in Table 2.

Table 2. Node level information.

1 Byte 1 Byte 1 Byte 2 Bytes 1 Byte 2 Bytes 1 Byte

Identity, id Energy, ei Distance, di Link cos t, lcosti Radio Coverage, CRi Route rank, R(i) Reward, Rwd

3.2. Secured Data Transmission Using a Secured Session-Oriented Scheme

The proposed algorithm offers secure IoT-enabled smart data routing by utilizing the
interaction of session keys between devices, gateways, and the sink node. This process is
comprised of two levels. In the first level, the devices and gateways exchange their session
keys and obtain the cipher information over the insecure channel. In the second level, the
session keys are shared among the gateway and the sink node. Furthermore, session keys
have an expiration time and are revoked after the completion of this time. However, we
consider that the devices are mobile, so it might be a case that the device moves to another
communication range, thus the session key is also revoked, and it sends a new request to
the nearest gateway for providing the new session key and executes the authentication
process. The session keys are encrypted using the public key. Let us consider that (ksi)

n

denotes the set of session keys. Then, data encryption, E, from the mobile network device
i to the gateway j can be obtained as shown in Equation (6). Before this, device i to the
gateway j performs an authentication function to validate the session key, as defined in
Equation (6):

i → j : E(ksi, [ ni, ti ]) (6)

where ti is a timestamp and ni is a nonce, also known as a random number. It is encrypted
using the symmetric key of mobile device i. On receiving the encrypted session key,
the gateway j includes its nonce, nj, along with the timestamp, tj, and sends back the
confirmation message, as defined in Equation (7):

j → i : E
(
ksi,
[

nj, tj
])

(7)

Accordingly, both devices on the network authenticate themselves, and now the
network messages, mi, can be ciphered using the encryption function, as provided in
Equation (8):

i → j : xor (mi,ksi) (8)

Finally, when data are received by gateways, they establish separate sessions with sink
nodes using Equations (6) and (7). Afterward, the device data, M, are forwarded to the sink
node, sink, including the digital signature, MAC, of the gateway with its private key, Rj,
and ciphered data, E[mi, ksi], as shown in Equation (9):

M(j, sink) = MAC
(

Rj , E[mi, ksi]) (9)

Figure 4a,b describes the flowcharts of the proposed algorithm. Initially, the network
services and mobile devices gather the network data from the smart environment. Network
keys are generated for D2D authentications, and after their verification, they can be a part
of the routing. The proposed algorithm determines the value of route rank based on the
multi-criteria and updates the nodes’ tables. Afterward, it utilizes reinforcement learning
to assign rewards for the nodes. These rewards significantly improve the training process
for the devices to extract the optimal neighbors from the set of choices, and accordingly,
offer energy-efficient, least error rate delivery paths. Moreover, the proposed algorithm
also secures the sessions among the gateway and the sink node for data transfer. Both the
gateway and the sink node established secure sessions for their direct communication and
are valid for a fixed time interval. After the mutual authentication, the gateways interact
with the sink node for forwarding the network data with nominal communication costs.
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(a) D2D authentication and routing computation 

 
(b) Session generation with mutual forwarding among the gateway and the sink node 

Figure 4. Flowchart of the proposed algorithm.

Figure 5 shows the flow of messages between the gateway and sink node for the
establishment of a secure session with encrypted data transfer. In the beginning, the
gateway device transmits the route request packet along with its id towards the sink node.
Upon successful verification, the sink node acknowledges it, and later the gateway device
requests the session key. If the time expires, the gateway device resends the request for the
session key. Once the sink node receives the request for the session key, it generates the key
and sends it towards the gateway device in encrypted form. The gateway device decrypts
it and sends an acknowledgment message to the sink node that it has received the session
key. The sink node confirms the acknowledgment message and afterward, both devices
use the same session key for data encryption and decryption.

Figure 5. Message flow between the gateway and the sink node.
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Algorithm 1 explains the pseudocode for the proposed work. It has two main com-
ponents: one for the authentication of mobile devices with the reinforcement learning
technique to assign the rewards, and the other for session-oriented data encryption from
mobile sensors towards the sink node. After the successful verification of mobile sensors,
the proposed algorithm evaluates the route rank for the neighbors using multiple param-
eters, along with the link cost. Accordingly, the neighbor with the highest route rank is
assigned a reward value and selected as a forwarder. Moreover, the proposed algorithm
also established a secure session from mobile sensors towards the sink node using gateway
services. In this case, only that node is allowed to send the route request to the sink node
that has a valid session key. The secure session key is utilized by both the mobile sensor
and the sink node for data encryption and decryption, respectively.

Algorithm 1: Multi-criteria learning algorithm with secured devices.

Input: SN: Sensor nodes
RREQ: Route request
ID: Identity
K: Session key
S: Sink node
G: Gateway nodes
Output: Authentic devices, Dynamic routes, R, Secure transmission, Sec

1. for i = 1:N
2. initiate Authen_service
3. if Authen_service = True
4. call keys_gen_process
5. else
6. node is declared as faulty
7. end for

8. for j = 1:G
9. if dist(j) closest to S
10. mutual_authen service
11. encrypt(data, K)
12. else

13. execute keys_gen_process
14. mutual_authen service
15. e = encrypt(data, K)
16. end if

17. end for

18. If destination == S
19. Recover K
20. decrypt(e, K)
21. end if

4. Simulation Setup

This section presents the simulation configuration to evaluate the performance of the
proposed algorithm. We experimented with the proposed algorithm, CTEER [25], and
QL-MAC [27] solutions in terms of energy consumption, packet delivery ratio, packet
disturbance, data latency, and computational complexity. The experiments were performed
under varying rounds and the varying number of nodes using NS-3. Initially, nodes have
homogeneous energy levels of 5 joules. The transmission range was set to 10 m. We
deployed varying sensor nodes in the field of 300 × 300 m with a static sink. Sensor nodes
are mobile with an installed GPS. Additionally, we assumed the number of malicious nodes
to be 10. The data traffic between connected devices is a type of Constant Bit Rate (CBR).
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We assumed the energy model as discussed in [34,35]. Equations (10) and (11) define the
energy consumption by exploiting the transmitted and received data bits:

Etx(k, d)=
{

Eelect ∗ k + k ∗ Ef s ∗ d2 i f d < d0
Eelect ∗ k + k ∗ Eamp ∗ d4 i f d ≥ d0

(10)

Erx(k) = Eelect ∗ k (11)

where Etx and Erx are the transmitting and receiving energy, k is data bits, d is the distance
among sensor nodes, Eelect is the amount of consumed energy per data bit, and the energy
of the transmitting amplifier is denoted by Ef s. Table 3 illustrates the parameters for
simulation configuration.

Table 3. Simulation configuration.

Parameter Value

Simulation area 300 × 300 m
Deployment Random

Propagation Model Two Ray Ground
Node speed 5 m/s
Pause time 20 s

Malicious nodes 10
Simulations 10

Regular nodes 100–500
Initial energy 5 j

Transmission range 10 m
MAC layer IEEE 802.11 b

Mobility model Random waypoint
Simulation rounds 500–2500 s

Data traffic CBR

Results and Discussion

In this section, we first evaluate the security test of our proposed algorithm against
different possible attacks. In the proposed algorithm, the D2D communication is based
on the authenticity and verification of devices. Once on the communication channels, the
devices are verified, and then they generate session keys. Using the sessional keys, the
device initiates the sharing of data over secure links. It might be possible that the session
keys are compromised, so the proposed algorithm utilizes the encrypted procedure to
forward the security keys. Additionally, session keys are automatically revoked, and each
node has to send a new request to the gateway for issuing the session key. In our proposed
algorithm, the devices are assumed as mobile, so when any node shifts to other coverage
limits, then the obtained session key will not work and it generates a request packet to the
new gateway for mutual association and further authentication. Table 4 shows the general
network attacks and the procedures of the proposed algorithm used to avoid them.

In Figure 6a,b, the performance evaluation of the proposed algorithm is evaluated with
other solutions for the packet delivery ratio. It can be computed as the ratio of the number
of delivered packets to the total number of transmitted packets from the source node to the
destination node. It is seen that with a varying number of nodes and rounds, the proposed
algorithm increases the packet delivery ratio by an average of 18% and 17%. This is because
the proposed algorithm utilizes the route rank function to estimate the aggregate condition
of the devices. Unlike QL-MAC and CTEER solutions, the proposed algorithm periodically
judges the situation of the mobile devices in terms of speed, coverage ratio, and packets
information, and supports robust IoT-based routing development. Accordingly, it offers the
most reliable neighbors for the selection of routing states. Moreover, the proposed algorithm
utilizes the position of mobile sensors to balance the load among devices, thus ultimately
increasing the delivery performance towards the sink node. Additionally, the sensing range
is exploited by the route rank function to incorporate the high node density option in
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routing decisions. The proposed algorithm makes use of multi-hop mode for forwarding
the network data rather than single-hop mode, and gateways perform the intermediate
roles among mobile sensors and the sink node. Such an approach efficiently exploits the
coverage option and robust connectivity among deployed devices and network applications.

Table 4. Security attacks and their related procedures.

Security Attacks Proposed Procedures

Device authentication Unique ID
Session keys

Session key security Encryption

Verification Decryption using symmetric key

Confidentiality Ciphered data using the session-oriented encryption

Malicious nodes regenerate request packet for
session key ID and session key expire automatically

Storage overload Distributed data chunks and diffusion

Connectivity loss Reinforcement learning

Additional resources’ consumption Computing route rank

Network load Distributed forwarding

Data originality MAC, Digital hashes

 
(a) Number of nodes with packet delivery ratio 

(b) Simulation rounds with packet delivery ratio 

Figure 6. The performance evaluation of the proposed algorithm compared to QL-MAC and CTEER
for packet delivery ratio.
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Figure 7a,b illustrates the performance evaluation of the proposed algorithm for packet
disturbance with existing solutions. It can be determined as a ratio of the number of packets
lost to the data packets transmitted in a communication system. Compared to other work,
the proposed algorithm improves the packet disturbance ratio by an average of 34% and
28% under a varying number of nodes and rounds. This is because the proposed algo-
rithm does not overlook the constraint resource of the nodes and uniformly distributes the
communication load among devices using reinforcement learning. Unlike QL-MAC and
CTEER, the proposed algorithm utilizes network conditions in terms of multiple criteria
and balances the data distribution on transmission links with the evaluation of the link
cost. The proposed algorithm utilizes the PRR and response time factors in determining the
optimal neighbors from the set of nodes. Additionally, with better utilization of the energy
consumption of data forwarders, the proposed algorithm increases the strength of routes
and prolongs the stability of the transmission system. Moreover, the D2D multi-criteria
reinforcement learning-based routing decision avoids the chance of selecting faulty and
overloaded links for the forwarding of IoT data. Based on the reward value, the proposed
algorithm increases the efficiency for learning and offers a stable routing performance.
Unlike QL-MAC and CTEER, the authentication and verification process of the proposed al-
gorithm offers trustworthy communication among devices and supports improved packets’
distribution over the links.

(a) Number of nodes with packet disturbance 

(b) Simulation rounds with packet disturbance 

Figure 7. The performance evaluation of the proposed algorithm compared to QL-MAC and CTEER
for packet disturbance.
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Figure 8a,b illustrates the experimental results of the proposed algorithm compared
to the existing solution. It measures the round-trip time of forwarding the network data
towards its destination in the communication system. It was observed that the proposed
algorithm significantly decreased the data delay by an average of 20% and 23% for varying
nodes and rounds. The proposed algorithm utilizes the concept of mobile sensors that
rapidly shift their positions for the observation and forwarding of network data. In ad-
dition, the multi-criteria parameters in the forwarding scheme explicitly achieve optimal
performance for constraint devices. Unlike most of the other proposed reinforcement learn-
ing schemes, the proposed algorithm assigns the appropriate rewards to nodes, decreasing
the response time and data delay for smart mobile devices. Moreover, it uses the error rate
metrics in determining the loss ratio, and thus only optimal neighbors whose link cost is
not congested are chosen for data routing. The D2D direct authentication and verification
in the routing of data packets also decrease the involvement of unauthorized nodes. Such
an approach improves the transmission path, avoiding unnecessary delays and retransmis-
sions. Unlike other solutions that impose overheads for securing the data forwarding and
lead to a high delay rate, our proposed algorithm offers lightweight session keys based on
secure routing, which explicitly minimizes the latency ratio on communication paths.

 
(a) Number of nodes with data delay metrics 

(b) Simulation rounds with data delay 

Figure 8. The performance evaluation of the proposed algorithm compared to QL-MAC and CTEER
for data delay.

In Figure 9a,b, the performance analysis of the proposed algorithm is evaluated
compared to other solutions in terms of energy consumption. It is computed as a ratio of
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depleted energy to the total network energy in data sensing, receiving, and transmitting. It
was found that the proposed algorithm minimized the energy consumption by an average
of 22% and 27% under a varying number of nodes and rounds. This is because of the
uniform load distribution among forwarders based on the machine learning technique.
The reward value significantly trains the source node to fetch the previous information
of the selected neighbors from its node-level table and optimize the performance for the
constraint network. Moreover, it also decreases the extra energy consumption in sending
the data from agricultural land using mobile sensors, which near uniformly balances the
load on nodes. Additionally, only those nodes that fall into the coverage range exchange
their information to proceed with the data routing. In case no node is found, then the next
inline gateway device is assigned the responsibility of achieving the routing process. In
all these processes, the proposed algorithm decreases the load on the mobile nodes and
explicitly optimizes the consumption of energy resources.

 
(a) Number of nodes with average energy consumption 

 
(b) Simulation rounds with average energy consumption 

Figure 9. The performance evaluation of the proposed algorithm compared to QL-MAC and CTEER
for average energy consumption.

Figure 10a,b demonstrate the experimental results of the proposed algorithm com-
pared to the existing solution for computational complexity. The results determined the
number of processing overheads it takes to execute the proposed algorithm. It was seen
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that the proposed algorithm minimized the computational complexity by 36% and 39% for
varying numbers of nodes and rounds. In computing the computational time, the proposed
algorithm measures the number of route requests and route response packets, especially in
the presence of malicious nodes. Moreover, it also considers the number of retransmissions
in computing the computational time of the proposed algorithm. Based on the security func-
tion, the proposed algorithm efficiently identified the false requester, which significantly
decreases the ratio for a computational time as compared to other solutions. Furthermore,
using the reinforcement learning technique, balanced the resources’ consumption among
the nodes and decreased the communication complexity by minimizing the least distance
towards the sink node. The gateways perform the role of local supervision and reduced
the cost of D2D communication by utilizing the method of coverage limit. Unlike QL-
MAC and CTEER, the proposed algorithm supports the authentication and verification
phase for mobile sensors and avoids the chance of malicious nodes generating excessive
false traffic. Additionally, such security methods of the proposed algorithm impose the
least communication complexity on constraint devices in the presence of malicious nodes,
with affordable data retransmissions. Moreover, the link cost function identifies the more
appropriate trusted links by utilizing the information of packets’ reception and data error.

(a) Number of nodes with network overhead 

 
(b) Simulation rounds with network overhead 

Figure 10. The performance evaluation of the proposed algorithm compared to QL-MAC and CTEER
for computational complexity.

5. Conclusions

IoT technology and sensor networks are widely utilized for monitoring, data collection,
and analysis of smart environments using the wireless communication system. However,
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due to the constraints of resources of the nodes, most of the solutions are unable to balance
the routing load on the selected routes and incur rapid data losses in the presence of
security attacks. In this paper, we presented a D2D multi-criteria reinforcement learning
algorithm with secured IoT infrastructure for smart cities. It offers a more authentic
and verified solution for directly connected devices and increases the trustworthiness of
transmission. Using multi-criteria reinforcement learning, the proposed algorithm offers
intelligent methods for sensing the coverage area and efficiently distributing the energy
load between mobile devices. The proposed algorithm can be used for smart buildings to
interconnect various operations and for security surveillance using mobile IoT devices and
sensors technologies. Our proposed algorithm makes it possible to gather the real-time
data from the smart building and timely transmit the data towards network applications
for further analysis and appropriate actions.

However, the proposed algorithm still suffers from link disruption with the high
exchange of control packets, and thus in the future, we aim to utilize the deep learning
model and real-time dataset to train the network nodes and cope with network anomalies.
Additionally, we would like to introduce the concept of multi-clouds in the proposed
algorithm for high scalability and parallel processing.
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Abstract: Since their inception, biosensors have frequently employed simple regression models to
calculate analyte composition based on the biosensor’s signal magnitude. Traditionally, bioreceptors
provide excellent sensitivity and specificity to the biosensor. Increasingly, however, bioreceptor-free
biosensors have been developed for a wide range of applications. Without a bioreceptor, maintaining
strong specificity and a low limit of detection have become the major challenge. Machine learning
(ML) has been introduced to improve the performance of these biosensors, effectively replacing the
bioreceptor with modeling to gain specificity. Here, we present how ML has been used to enhance
the performance of these bioreceptor-free biosensors. Particularly, we discuss how ML has been
used for imaging, Enose and Etongue, and surface-enhanced Raman spectroscopy (SERS) biosensors.
Notably, principal component analysis (PCA) combined with support vector machine (SVM) and
various artificial neural network (ANN) algorithms have shown outstanding performance in a
variety of tasks. We anticipate that ML will continue to improve the performance of bioreceptor-free
biosensors, especially with the prospects of sharing trained models and cloud computing for mobile
computation. To facilitate this, the biosensing community would benefit from increased contributions
to open-access data repositories for biosensor data.

Keywords: label-free biosensor; machine learning; support vector machine; artificial neural network;
principal component analysis

1. Introduction

The field of biosensing has exploded into nearly all areas of research, from medical
applications [1] to environmental monitoring [2]. Some of the greatest appeals of biosensors
are their specificity and sensitivity. These properties are primarily due to bioreceptors,
which are selected for their inherent specificities such as enzymes [3], antibodies [4], and
aptamers [5]. However, the very aspect that makes biosensors so specific and sensitive can
also limit the sensor stability due to the degradation of the bioreceptor [6]. Additionally, as
the bioreceptor is specific to an individual analyte, the particular sensor’s scope is limited
to the specific analyte to which the bioreceptor can bind.

To obviate these issues, many nature-inspired sensors have emerged that are bioreceptor-
free. Some of the most notable examples that have made great progress include the electronic
nose (Enose) [7–11] and electronic tongue (Etongue) [12–16]. Additionally, surface enhanced
Raman spectroscopy (SERS)-based sensors have demonstrated incredible chemosensing
ability [17–21]. Without a bioreceptor, however, there is the risk of significantly com-
promised biosensor performance including the limit of detection (LOD) and specificity.
Researchers have introduced machine learning (ML) to bioreceptor-free biosensors to
bridge this trade-off gap, improving the LOD and specificity [22]. In a sense, ML can be
used to take the place of a bioreceptor by reintroducing specificity during data analysis.
This is made possible by powerful ML techniques capable of detecting subtle patterns in
sensor responses.
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While this approach has demonstrated success, there are still several challenges that
these systems must overcome. A major challenge being faced is model generalizability.
Since many models rely on subtle patterns in the data, they can be quite sensitive to
underlying data changes. This can make the models susceptible to error when faced with
sensor drift or replacing parts of the system [14].

Since the scope of this review is quite large and covers all bioreceptor-free biosensors
that utilize ML, there are a few points to clarify. Many subsets of our scope have received
thorough attention and review. For instance, the use of ML for Enose and Etongue [23–27]
and SERS-based biosensors [28] have previously been described. Since the literature is rich
in these areas, we realize that all recent original research cannot be adequately covered here.
Rather, our intent is to provide a unified discussion of the relevant methods and challenges
to give a bigger picture. We also would like to acknowledge that there is a complementary
review in the literature discussing the use of ML in biosensing in general [29], but not for
biosensors that are bioreceptor-free.

In this review, we will give the current state of using ML to enhance the performance
of bioreceptor-free biosensors. Section 2 briefly introduces the types of biosensors that
have most benefited from ML. Section 3 provides some background on machine learning
algorithms and how their performance can be assessed. Section 4 covers electrochemical
biosensors, with particular emphasis on Enose and Etongue. Successful methods are
discussed as well as some of the challenges and how they are being addressed with ML.
Section 5 discusses optical biosensors, notable for imaging- and SERS-based biosensors.
Additional considerations and future perspectives are discussed in Section 6 including
what currently prevents many of these systems from being commercialized and what
directions may be taken. We also present some considerations on best practices for ML in
biosensing, especially regarding communication of methods and reproducibility.

2. How Biosensors Can Benefit from Machine Learning

Biosensors in the classic definition are sensors that utilize a bioreceptor such as anti-
body, enzyme, peptide, nucleic acid, etc. A bioreceptor binds to a target biological molecule
and generates a signal when coupled with a transducer. Biosensors have evolved to a wide
range of transducer types including electrochemical, optical, and spectroscopic biosensors.
Traditionally, it is the bioreceptor that provides specificity and sensitivity to the biosensor.
Increasingly, however, researchers are developing biosensors that lack a specific bioreceptor.
A typical example is a semi-specific chemical sensor array, termed Enose (from gas), or
Etongue (in solution). Since such a sensor’s specificity is not provided by the bioreceptor,
a fingerprinting technique is used to recognize signal patterns indicative of a particular
analyte. Frequently, machine learning techniques are employed to detect these patterns
and provide specificity.

The use of machine learning to enhance the performance (e.g., specificity, sensitivity,
and LOD) of bioreceptor-free biosensors is not limited to chemical sensor arrays. It has
been employed in various biosensor mechanisms. Some of the most famous examples
aside from Enose and Etongue are imaging-based biosensors and SERS-based biosensors.
Additionally, the use of machine learning for biosensors is not limited to those that lack
bioreceptors. Cui et al. [29] cover several examples of traditional biosensors employing
machine learning to enhance performance.

Table 1 provides an overview of the tasks for which machine learning has been
applied, the specific algorithms used, and the relevant papers. More information on the
algorithms themselves can be found in Section 3. Additionally, Table 2 gives a comparison
of each of the major biosensing mechanisms including data type and appropriate feature
engineering and ML methods. All information in Table 2 comes from Table 1 and serves as
a higher-level summary.
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Table 1. Machine learning tasks and algorithms used in biosensing.

Biosensing Mechanism Task Target Algorithm Ref.

ELECTROCHEMICAL

CV Regression Maleic hydrazide ANN [30]

CV Classification Industrial chemicals LSTM, CNN [31]

Enose

Feature extraction

Harmful gases

PCA

[32]Classification DT, RF, SVM

Regression SVR

Enose Regression Formaldehyde BPNN [33]

Enose
Classification Chinese wines BPNN [34]

Target task change Chinese liquors Transfer learning

Enose Sensor drift compensation for
classification

Gases

JDA [35]

DTBLS [36]

TrLightGBM [37]

ELM [38]

Enose Sensor drift compensation &
noise reduction Bacteria ELM [39]

EIS Classification Breast tissue ELM + SVM [40]

EIS Classification Milk adulteration k-NN [41]

EIS Classification Breast tissue RBFN [42]

EIS
Feature extraction

Avocado ripeness
PCA

[43]
Classification SVM

EIS & EIT Classification Prostatic tissue SVM [44]

Etongue
Taste classification

Tea storage time
CNN

[45]
Increase generalizability Transfer learning

Etongue
Feature Extraction

Beverages
t-SNE

[46]
Classification k-NN

Etongue Classification Cava wine age LDA [47]

Etongue Regression Black tea theaflavin Si-CARS-PLS [48]

OPTICAL

Colorimetric Classification Plant disease VOCs (blight) PCA [49]

Diff. contrast microscopy Digital staining &
domain adaptation Leukocytes GAN [50]

Fluorescence
imaging Classification Microglia ANN [51]

FTIR imaging Digital staining H&E stain Deep CNN [52]

Lens-free
imaging

Image reconstruction
Blood & tissue

CNN
[53,54]

Herpes [55]

Lens-free
imaging

Image reconstruction &
classification Bioaerosol CNN [56]

Multi-modal multi-photon
microscopy

Digital staining &
modal mapping Liver tissue DNN [57]

Multispectral imaging Classification Pollen species CNN [58]

Quantitative phase imaging Digital staining Skin, kidney & liver tissue GAN [59]

Raman
spectroscopy

Feature extraction Thyroid dysfunction
biomarker

PCA
[60]

Classification SVM
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Table 1. Cont.

Biosensing Mechanism Task Target Algorithm Ref.

TLC-SERS
Feature extraction

Histamine
PCA

[61]
Quantification SVR

SERS
Exploratory analysis Malachite green & crystal

violet

PCA
[37,62]

Quantification PLSR

SERS Quantification Methotrexate PLSR [63]

SERS

Classification
Oil vs lysate spectra
Leukemia cell lysate

k-means clustering

[64]Dimension reduction PCA

Classification SVM

SERS
Dimension reduction

Levofloxacin
PCA

[38,65]
Regression PLSR

SERS Quantification Potassium sorbate & sodium
benzoate PLSR [66]

SERS Dimension reduction &
regression Congo red PCR [39,67]

SERS
Dimension reduction

Mycobacteria
PCA

[40,68]
Classification LDA

SERS Quantification Biofilm formation PLSR [41,69]

SERS
Feature extraction Non-structural

protein 1

PCA
[70,71]

Classification BPNN, ELM

SERS
Exploratory analysis

Pollen species
PCA, HCA

[72]
Classification ANN

SERS
Feature extraction

Human serum
KPCA

[73]
Classification SVM

Note. CV = cyclic voltammetry; ANN = artificial neural network; LSTM = Long short-term memory; PCA = principal component analysis;
DT = decision tree; RF = random forest; SVM = support vector machine; SVR = support vector regression; BPNN = back-propagation
neural network; JDA = joint distribution adaptation; DTBLS = domain transfer broad learning system; GBM = gradient boost machine;
ELM = extreme learning machine; EIS = electrical impedance spectroscopy; EIT = electrical impedance tomography; k-NN = k-nearest
neighbor; RBFN = radial basis function network; CNN = convolutional neural network; t-SNE = t-distributed stochastic neighbor
embedding; Si-CARS-PLS = synergy interval partial least square with competitive adaptive reweighted sampling; FTIR = Fourier transform
infrared; VOC = volatile organic compound; GAN = generative adversarial network; DNN = deep neural network; TLC = thin layer
chromatography; SERS = surface enhance Raman spectroscopy; PLSR = partial least squares regression; PCR = principal component
regression; LDA = linear discriminant analysis; HCA = hierarchical cluster analysis; KPCA = kernel principal component analysis.

Table 2. Summary of data types and useful ML methods for biosensing mechanisms.

Biosensing
Mechanism

Description of Data
Feature

Extraction
ML Model

CV Cyclic voltammogram ANN, LSTM, CNN
EIS Nyquist plot PCA k-NN, ELM, SVM, RBFN

Enose Multivariate PCA DT, RF, ELM, SVM, BPNN
Etongue Multivariate PCA, t-SNE LDA, k-NN, CNN, PLS

Lens-free imaging Image CNN
Digital staining Image Deep learning, GAN

SERS Spectrum PCA, KPCA PLSR, LDA, SVM, SVR, BPNN, ELM

3. A Brief Tour of Machine Learning

In simple terms, machine learning aims to learn patterns in data to make predictions
on new data. Generally, this prediction is either categorical classification (into one of a set
of classes) or regression (continuous numerical output). In machine learning terms, the
data used for prediction (i.e., biosensor data) are termed features or predictors. The set
of features associated with one “observation” (e.g., biosensor data from one sample) is
termed the feature vector.
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3.1. Feature Engineering

Frequently, the predictor variables (feature vector) are not the raw biosensor data.
One of the most challenging parts of using machine learning is the construction of the
feature vector from the raw data. This process is termed feature engineering and mostly
entails finding the relevant information from the data to aid the machine learning algo-
rithm’s performance. Common feature engineering steps include denoising, normalization,
and rescaling.

One of the most powerful feature engineering processes is dimension reduction. This
reduces a large number of features to a smaller number of features while minimizing
information loss. Perhaps the most common method of dimension reduction is principal
component analysis (PCA) [74], which reduces the original set of variables to a smaller set
of independent variables termed principal components (PCs). The effectiveness of PCA to
represent the data can be assessed by the amount of variance in the data explained by the
PCs. Since PCA determines the PCs based on the eigenvectors’ directions in the feature
space, data must first be centered and rescaled to avoid bias toward those variables with a
larger magnitude. Another common dimension reduction algorithm is linear discriminant
analysis (LDA), which also produces a smaller number of variables but is supervised and
optimally maximizes class separation [75]. Other more complex dimension reduction
methods exist including artificial neural networks (ANN), as discussed in Section 3.3. ANN
is typically used as a supervised machine learning method, while it has occasionally also
been used for dimension reduction.

3.2. Unsupervised vs. Supervised

The two broad categories of machine learning algorithms are unsupervised and
supervised [76]. In unsupervised methods, data labels are not provided during model
training, while in supervised methods, they are. An example of an unsupervised algorithm
is cluster analysis, used to group similar data. Unsupervised methods are less common in
biosensing since we generally know what kind of prediction(s) we would like the model
to make. A notable exception is PCA, as mentioned in Section 3.1. While PCA may be
considered an unsupervised machine learning method, its use has recently been limited to
dimension reduction (one of feature engineering processes) prior to supervised machine
learning analyses.

3.3. Classification Algorithms

Among the supervised methods, classification algorithms are some of the most well-
known. Classification gives prediction in the form of a class label (e.g., which bacteria
species is present), thus, the output is inherently categorical. Briefly, some of the most
common classification algorithms are presented in the following.

k-nearest neighbors (k-NN): One of the simplest classification algorithms, k-NN is a
distance-based classifier. Class is predicted as the most common class of the k-nearest
neighbors in the feature space [77]. In the example shown in Figure 1, the feature space is
two dimensional (with variables x1 and x2) and the value of k is 4. In k-NN, the number of
neighbors used for assignment, k, is a hyperparameter (i.e., a model parameter that is not
optimized during the training process itself). As with most ML models, hyperparameter
selection may strongly influence performance [78].

Support vector machine (SVM) is a non-probabilistic, binary, linear classifier [79]. SVM
relies on the construction of hyper-plane boundaries in the feature space to separate
data of different classes. Although SVM itself only accounts for linear separation of
classes (i.e., hyper-plane boundaries must be “flat”), the data may be mapped to a higher-
dimensional feature-space using the “kernel trick” [80]. Some of the most common kernels
are radial basis function and Gaussian. When the hyperplane boundaries are projected back
into the original feature space, they allow for non-linear boundaries, as shown in Figure 1.
Additionally, there are methods allowing SVM to be used for multi-class prediction [81].
The placement of hyperplanes is determined by minimizing the distance between the
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hyperplane and several of the points closest to the boundary between classes. SVM’s
robustness against outliers is improved by a soft margin. This allows for a certain quantity
of misclassifications, which are presumably outliers, to improve the separation of the
other observations [82]. While SVM shows resilience against outliers and performs well in
high-dimension feature spaces, it is prone to over-fitting, especially when using non-linear
kernels [83]. Overfitting is when the model performs well on training data but performs
poorly when generalized to unseen data.

 

Figure 1. Comparison of classification technique using k-NN and SVM. In k-NN, four nearest
neighbors are shown contributing to the gray point’s assignment. Classification of the gray point
is the blue star class. In hypothetical SVM with nonlinear kernel, new data are classified in which
region the point lies. In both examples, the feature space consists of two dimensions. Classification
could be, for example, bacterial species like E. coli, Salmonella spp., Pseudomonas spp., Staphylococcus
spp., Enterococcus spp., etc. In practical applications, the feature space has many more dimensions,
where decision boundaries for SVM are hyperplanes in the (n−1) dimension for an n-dimensional
feature vector.

Linear discriminant analysis (LDA): In addition to dimension reduction, LDA can be
used for classification. Other related algorithms allow for non-linear classification such as
quadratic discriminant analysis (QDA) [84]. One of the limitations of LDA and its relatives
is that they assume the data are normally distributed.

Decision tree (DT) and random forest (RF): In tree-based models such as decision tree
(DT), the feature vector starts at the tree’s “trunk,” and at each branching point a decision
is made based on the learned decision rules. The end classification would then be at the
terminal or “leaf” node that the instance results. DTs can be used for classification and
regression [85]. When the target variable is categorical, it is referred to as a classification
tree; when the target variable is numerical and continuous, it is referred to as a regression
tree [86]. Random forest (RF) is so called because it can be considered a forest of decision
trees (Figure 2) [87]. There are many RF architectures, but in all instances, the classification
from each decision tree contributes to the overall classification for an observation.

Artificial neural network (ANN) draws inspiration from biological neural networks
(i.e., neurons in the brain) and is composed of a collection of connected nodes called
artificial neurons (see Figure 3). ANNs can be used for classification and regression. As
mentioned earlier, ANN can be used for dimension reduction prior to supervised machine
learning. There are a large variety of ANN structures such as (1) recurrent neural network
(RNN) [88], (2) extreme learning machine (ELM) [89], and (3) deep learning algorithms
such as the convolutional neural network (CNN) [90], deep belief network [91], and
back-propagation neural network (BPNN) [92]. “Deep” indicates several hidden layers.
ANN architectures have many hyperparameters such as the number of hidden layers,
connectedness, and activation functions [93].
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Figure 2. Decision tree (DT) showing nodes at which binary decisions are made on features. Terminal node dictates
model prediction. Actual DTs have many more nodes than shown here. Random forest (RF) shown as a series of distinct
decision trees.

 

Figure 3. Artificial neural network (ANN) showing nodes of the input, hidden, and output layers.

One of the aspects that makes ANN so powerful is that features do not need to be
well-defined real numbers. This allows them to excel at working with data such as images
for which extracting numerical features would be difficult and inefficient. One limitation
of ANNs is that they require a large amount of data for effective training. In some settings,
training data sparsity can be mitigated through a generative adversarial network (GAN)
using back propagation [94].

Common classification model performance metrics are accuracy, precision, sensitivity
(also known as recall), specificity, and F1. For binary classification with labels “positive”
and “negative”, they are defined as follows:

accuracy =
TP + TN

TP + TN + FP + FN
(1)

precision =
TP

TP + FP
(2)

sensitivity =
TP

TP + FN
(3)
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speci f icity =
TN

TN + FP
(4)

F1 =
2 × precision × sensitivity

precision + sensitivity
(5)

where TP is true positive, TN is true negative, FP is false positive, and FN is false negative.

3.4. Regression Algorithms

In contrast to classification, the prediction made by a regression algorithm is a numeric
value from a continuous scale (e.g., glucose concentration in blood). A simple regression
example fits a linear model of the form y = mx + b, where a model is built for the prediction
of the output variable y based on the input variable x, and the coefficients m and b are
“learned” from the data. The learning is typically done by the least-squares regression
approach, minimizing the sum of the squared residuals. The following are some of the
most common regression algorithms.

Multilinear regression (MLR) is a simple regression model, which expands the above
linear model example, accounting for multiple input variables. This model shows how
it can be difficult to determine when an algorithm becomes sophisticated enough to be
considered “machine learning”.

Support vector regression (SVR) is an adaptation of SVM used for regression problems.
Like SVM, SVR can utilize kernels to allow for non-linear regression. An advantage of SVR
over traditional regression is that one need not assume a model that might not be accurate.
For instance, with linear regression, there is an assumption that the data distribution is
linear. SVR does not require such pre-determined assumptions [95].

Regression tree is an adaptation of DT for regression. Regression tree has the advantage
that it is non-parametric, implying that no assumptions are made about the underlying
distribution of values of the predictors [86].

Artificial neural network (ANN) is also widely used for regression problems, and many
varieties exist, some of which were mentioned previously.

A large variety of metrics exist for regression model performance. Since there are
too many to define here, for further reading, we suggest the study by Hoffman et al. [96]
to learn more. Some of the most common metrics are briefly presented here. Root mean
squared error (RMSE) and mean absolute error (MAE) have the benefit that their units are
the same as the output (predicted) variables, but this makes the metrics less universally
understandable. Normalized root mean squared error (NRMSE) partially resolves that.
Coefficient of determination, R2, on the other hand, is unitless and R2 ≤ 1, where a value
near 1 is generally considered good performance (although this is a bit oversimplified).

3.5. Model Performance Assessment

Frequently, researchers will try various models and compare their performance. The
value of the performance metrics listed above can be treated as random variables and sta-
tistical analyses can be used to test hypotheses regarding which model is better [96]. While
this sounds simple, it can be nuanced: for instance, when working with a classification
model, which metric is most important for your application? In some cases, specificity may
be more important than accuracy, for instance. Additionally, when using statistical tests to
compare model performances, certain assumptions are made, and their validity should be
assessed such as when using NRMSE, as it is assumed that noise affecting the output is
random and normally distributed.

The best practice for model selection, tuning, and performance assessment is to split
the data into 3 sets: training, testing, and validation. For example, if the database consists of
1000 observations, 100 (10%) are assigned to the validation set and the remaining 900 (90%)
are split between the training and test sets as 810 (90%) for training, 90 (10%) for testing.
The model is then trained on the labeled training set. Model selection and hyperparameter
tuning is conducted based on model performance when challenged using the test set.
In addition to train–test splitting, cross-fold validation can be used on the training set
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when tuning hyperparameters or comparing models [97]. Train–test splitting and cross-
validation are most important when you intend to generalize the model to predict new,
unseen data [96]. Final model performance validation is conducted on the validation
set, which should not be used until all model selection and hyperparameter tuning have
been completed.

4. Electrochemical Bioreceptor-Free Biosensors

Since their inception, electrochemical biosensors have become extremely popular. In
traditional electrochemical biosensors, the bioreceptor interacts with the target to generate
a signal at the electrical interface. A widespread scheme is an enzyme (e.g., glucose dehy-
drogenase or glucose oxidase) interacting directly with the target analyte (e.g., glucose),
catalyzing a redox reaction that generates a signal at the electrical interface [98]. Electrical
interfaces include metal electrodes, nanoparticles, nanowires, and field-effect transistors
(FET) [99].

It is also possible to eliminate the biorecognition element (=bioreceptor, e.g., an en-
zyme) in electrochemical biosensors. Voltametric sensors described in Section 4.1 can
detect biomolecules based on direct interaction with the electrical interface [30]. Electrical
impedance spectroscopic biosensors can also detect subtle differences in a solution or mate-
rial’s electrical impedance, as discussed in Section 4.2. Alternatively, we can use an array
of chemical or physical sensors varying the electrical interface to create multi-dimensional
data. Machine learning-based pattern recognition is used to identify the target analyte.
Two of the most common sensor arrays are termed Enose and Etongue, which are covered
in Section 4.3.

4.1. Cyclic Voltammetry (CV)

Voltammetry sensors apply electric potential to a “working” electrode and measure
the current response, which is affected by analyte oxidation or reduction [100]. Cyclic
voltammetry (CV) is a specific voltammetry technique in which the potential is swept
across a range of values, and current response is recorded. These CV curves (cyclic
voltammograms) can serve as a fingerprint of the sensor response. A typical CV curve is
shown in Figure 4A.

 

Figure 4. (A) Hypothetical cyclic voltammograms for three samples. (B) Hypothetical Nyquist plot
obtained through EIS showing curves for three samples.

CV biosensors often employ bioreceptors to provide specificity in the interaction be-
tween target analyte and electrode surface. However, there has also been research on utiliz-
ing more complex electrode surface structures and modifications to allow for semi-specific
interaction with the target analyte without the need of a bioreceptor. Sheng et al. [30]
describe a compound electrode utilizing Cu/PEDOT-4-COOH particles for CV detection of
the phytoinhibitor maleic hydrazide. They found that several regression models had poor
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performance for modeling the sensor current response with respect to target concentration.
However, they employed an ANN with great success for the same regression task. The
result is that their detection range is broader than comparable methods by an order of
magnitude at each extreme (detection range = 0.06–1000 μM and LOD = 0.01 μM).

4.2. Electrical Impedance Spectroscopy (EIS)

Electrical or electrochemical impedance spectroscopy (EIS) is an analytical technique
that provides a fingerprint of the electrical properties of a material. EIS is performed by
applying a sinusoidal electric potential to a test sample and recording the impedance (both
resistance and reactance expressed in a complex number) over a range of frequencies [101].
Frequently, an equivalent circuit model is fitted to EIS data to provide a fingerprint of
the material properties [101]. Figure 5 shows an equivalent circuit diagram for EIS being
performed on a single cell suspension. An example EIS spectrum is shown in Figure 4B. It
is the classification and regression on such fingerprints that machine learning tends to be
well suited.

 

Figure 5. Equivalent circuit diagram of single cell suspension. Reproduced with permission
from [102] without modification. Copyright 2020 John Wiley and Sons.

A simple example of this is the use of k-NN on EIS data for the detection of adulteration
in milk [41]. In this work, the feature space was composed of resistance at a certain
temperature and pH. They demonstrated good accuracy of 94.9%. However, the data
were highly imbalanced, and in the example classification plot [41], one of the three
unadulterated samples were misclassified, a 66% specificity.

More robust classification has been performed using SVM. One example is for the
assessment of avocado ripeness [43]. This work describes using PCA for feature extraction,
resulting in two PCs that explain >99.3% of the variance. SVM is then used for classification
based on the first two PCs. SVM for EIS was also described by Murphy et al. [44] for
classification of malignant and benign prostatic tissue. However, instead of using PCA for
feature extraction, equivalent electrical circuit model parameters were used as predictors.
The feature vector size was 2160, consisting of four electrical features for each of eleven
frequencies across multiple electrode configurations. Classification was also performed
on electrical impedance tomography (EIT) data from the same samples using SVM. Both
showed good classification performance, though the authors mention that EIT may be
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preferable since the measurements are not dependent on probe electrical properties, and
thus can be compared more easily to other studies.

While SVM is renowned for its tolerance of outliers, this is a trade-off in that data
points not near the boundary between classes do not contribute to defining class attributes.
However, ANNs preserve more of this information for prediction. When the number of
observations or predictors are small, this can lead to overfitting. However, with suffi-
cient data size, ANNs can preserve predictive information and be robust against outliers
and overfitting. These attributes have been utilized for EIS based classification of breast
tissue [40,42]. Both works use the same publicly available dataset of EIS measurements
from freshly excised breast tissue [103], made available on the University of California,
Irvine (UCI) Machine Learning Repository [104]. The dataset contains nine spectral fea-
tures from EIS. Daliri [40] describes using three ELMs, each with different numbers of
nodes, and feeding the output of the three ELMs (extreme learning machines) into SVM
for classification. This method showed improved performance over previous methods for
the same dataset such as LDA [105]. Helwan et al. [42] compared both BPNN and radial
basis function network (RBFN) for the same task. Both methods showed an improvement
over ELM-SVM as described by Daliri [40], with RBFN performing better than the BPNN
including improved generalizability (i.e., classification performance on new data).

It is seen that in the case of EIS classification, node-based models have shown im-
proved performance over other models. This can be seen most clearly when comparing
classification accuracy for those methods that utilized the same dataset. The RBFN and
BPNN had the highest classification accuracy, with 93.39% and 94.33%, respectively [42].
The next best performance was achieved by the ELM-SVM, achieving 88.95% accuracy [40].
These results show marked performance increase over LDA [105]. Model performance is
greatest in those models that do not utilize distance for classification (i.e., SVM and LDA).
While distance-based classifiers are robust to outliers, in these EIS datasets, performance
benefitted by node-based classification.

4.3. Enose and Etongue

Enose and Etongue are named in analogy to their respective animal organs. Both
sensor types rely on an array of semi-specific sensors, each of which interacts to a different
degree with a wide range of analytes. Figure 6 shows a comparison between Enose and
Etongue alongside the analogy to their respective biological systems [27,106]. The sensor
arrays can be composed of any variety of sensors. The following chemical gas sensors
have been used in Enose systems: metal oxide (MOX) gas sensor, surface or bulk acoustic
wave (SAW and BAW) sensors, piezoelectric sensor, metal oxide semiconductor field-effect
transistor (MOSFET) sensor, and conducting polymer (CP) based sensor [107]. Similarly, a
variety of sensors can be employed in Etongue systems such as ion-selective field-effect
transistor (ISFET) and light-addressable potentiometric sensor (LAPS) [108].

Analyte presence, or a more general attribute such as odor or taste, is detected through
pattern recognition of the sensor array response. For pattern recognition on this naturally
high-dimensional data, machine learning techniques are an obvious choice. Scott et al.
provided a relevant and succinct paper on data analysis for Enose systems [23]. As
discussed in Section 3 of this review, feature engineering is critical in any machine learning
pipeline. Yan et al. [24] provide a review article on the feature extraction methods for Enose
data. For non-linear feature extraction of Etongue data, Leon-Medina et al. [46] give a great
comparison of seven manifold learning methods.

A vast number of papers exist detailing such systems and their use of machine learning.
As such, it would be infeasible to cover all of them adequately. For this review, a higher-level
analysis is presented by looking at the conclusions reached in the review papers covering
this topic as well as a few notable examples of specific papers. Of particular interest is
which algorithms had the most success with Enose and Etongue sensors or applications.

A common task of Enose is the prediction of “scent”, which is a classification problem.
Before the application of the classification algorithm, it is common to perform dimension
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reduction. PCA is the most common choice for this task, although independent component
analysis (ICA, a generalization of PCA) has shown success [25]. PCA has been shown
to improve the performance over classification algorithms alone for the piezoelectric
Enose [25]. The two classifiers most commonly in use are SVM [109,110] and various ANN
methods [25,111]. In addition to classification problems, Enose may be used for analyte
concentration prediction. One example is the use of MOS (metal oxide semiconductor)
gas sensors for formaldehyde concentration assessment. In this case, the back-propagated
neural network (BPNN) outperformed radial basis function network (RBFN) and SVR [33].
In another instance, with the single nickel oxide (NiO) gas sensor, PCA with SVR was
utilized for harmful gas classification and quantification [32]. In cases where the amount
of data are not large, SVM may be advantageous over node-based models (ANNs) for its
resilience against outliers and overfitting.

 

Figure 6. Comparison of operation principle of Enose and Etongue, and the analogy to the biological systems. Reproduced
with permission from [27] without modification. Copyright 2019 Elsevier.

While Enose and Etongue systems have shown great promise for non-destructive
analytical devices, there are challenges that have limited their use in commercial settings.
Several challenges involve changes in the sensor data, which affect the performance of the
trained model. A common phenomenon is when the sensor array response changes over
time or upon prolonged expose under identical conditions. Such change in sensor response
is referred to as sensor drift and can greatly affect the trained models’ performance [14].
Another way in which the sensor response may change is if a sensor in the array becomes
defective and must be replaced, as it is difficult to replace it with one that responds
identically, largely due to variability in manufacturing [112,113]. For both challenges, time
consuming and computationally expensive recalibration may be necessary.

The issue of needing retraining due to underlying data distribution changes is com-
monly addressed through transfer learning in many machine learning settings. Transfer
learning is a computational method for minimizing the need for retraining when either the
data distributions change (e.g., sensor array response to an analyte) or the task changes
(e.g., new classes of analytes are being detected).

Transfer learning has been extensively employed to counter Enose sensor drift and
reduce the need for complete retraining [35–38]. It has also been used to reduce the
deleterious effect of background interference [39,114]. Although several of the above
papers [35,36,38,39] demonstrate the efficacy of their approach on a shared sensor drift
dataset shown in Figure 7 [115], ranking of the methods is difficult due to inconsistent
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benchmarking metrics. As mentioned previously, the data distribution may also change
due to replacing a sensor with a new sensor, or when attempting to apply a trained model
to a theoretically identical array with differences due to manufacturing variability. Transfer
learning, specifically using ANN, has demonstrated decent recalibration [116].

Figure 7. Gas sensor drift dataset from [36]. Each color represents a different gas. Each panel
represents a measurement “batch” at various times spanning 36 months. Reproduced from [36]
without modification, under Creative Commons Attribution 4.0 License.

One instance of utilizing transfer learning for target task change was demonstrated by
Yang et al. by training an Enose classifier on wines (source task) and applying it to classify
Chinese liquors (target task) while only retraining the output layer [34]. Interestingly,
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transfer learning has been used much less commonly for Etongue systems, although they
also face sensor drift. However, Yang et al. utilized transfer learning to improve the
generalizability of their Etongue [45]. In this work, they demonstrate the superiority of
their transfer learning trained CNN over other methods such as BPNN, ELM, and SVM for
tea age classification.

A trend that has been gaining traction is data fusion to combine Enose and Etongue
systems. The value of this can again be appreciated in how closely the senses of smell and
taste are linked in animals [117], complementing each other to provide the most accurate
assessment. Similarly, by using information from both Enose and Etongue, better analysis
can be conducted. As illustrated in Figure 8, data fusion can be performed at three levels:
low, mid, and high [118]. Recently, mid-level fusion schemes have shown promising
results for fusion of Enose and Etongue data [119,120], especially when performing PCA
on the two systems and using those features for fusion before model training [121–123].
Such systems have also benefitted from the inclusion of a computer vision system in data
fusion [121,124].

 

Figure 8. General scheme depicting the main differences among low-, mid-, and high-level data
fusion. Reproduced with permission from [118] without modification. Copyright 2019 Elsevier.

Currently, another class of systems exist with the same goals as Enose and Etongue
that utilize biochemical recognition elements, termed bioelectronic nose (bEnose) and
tongue (bEtongue). These devices utilize biological elements such as taste receptors, cells,
or even tissues for sensing [106,125]. These systems show impressive selectivity and sensi-
tivity, especially when coupled with nanomaterials to aid in signal transduction from the
biochemical recognition element [106,126]. Their major challenges, as with most biosensors,
is stability and reproducibility of the biological element [106]. For these reasons, Enose
and Etongue remain popular for their sensor stability. Continued efforts are necessary to
improve sensitivity closer to their bioelectronic counterparts, especially regarding sensor
design and feature extraction methods.

With such a large variety of sensors in use for Enose and Etongue systems, data
processing can vary significantly. Of particular interest is finding appropriate feature

94



Sensors 2021, 21, 5519

extraction methods [23,24]. A huge variety of machine learning classification and regression
methods have been employed, both on unsupervised dimensionally reduced feature vectors
and classically extracted features. Transfer learning methods have been successful in
allowing target task change with minimal retraining, especially when using node-based
models. However, the challenges posed by sensor drift and manufacturing variability are
still significant and will likely remain a focus for researchers over the next several years.

4.4. Summary of Electrochemical Bioreceptor-Free Biosensing

Many electrochemical bioreceptor-free biosensors employ chemical or physical sensor
arrays coupled with machine learning. These are most obvious in Enose and Etongue
systems, inspired by nature (humans and animals). Other systems generate multivariate
spectral data also coupled with machine learning. In both cases, machine learning models
can aid in analyte classification or quantification. Especially when using distance-based
models, choice of feature extraction method is important to optimally capture the features
relevant to the task (i.e., classification or regression). Node-based models, primarily ANNs
often require less feature extraction pre-processing as this step is built into the model
learning. Additionally, node-based models offer a great solution to target task change
and noise elimination through transfer learning, often aided by integration through the
back-propagation step so that only the final layer needs to be refined [34].

5. Optical Bioreceptor-Free Biosensors

The mechanisms of optical detection in biosensing are diverse. A classic example
is the colorimetric lateral flow assay [127–129]. Mechanisms beyond colorimetry include
fluorescence [130–132], luminescence [133], surface plasmon resonance [134], and light
scattering [135,136].

Machine learning has been widely employed in optical biosensors. An example
with similarities to Enose and Etongue is the bacterial bioreporter panel. Each bacterial
bioreporter responds to target analytes in a semi-specific manner. Machine learning is used
to discover patterns in the bioreporter panel response and relate them to analyte presence
or concentration [137,138]. However, this review’s focus is to discuss cases in which the
bioreceptor is absent, so such sensors are not covered in detail.

Another prevalent use of machine learning for analyzing images as biosensor data is
for image processing, especially segmentation [139–142]. The literature is rich in reviews
on machine learning for image segmentation, and this technology is in no way specific to
biosensors, so this review will not discuss those examples. However, the topic is essential
to many biosensors, so it must be mentioned.

5.1. Imaging

Imaging sensors utilize an array of optical sensors such as a CMOS array (complemen-
tary metal-oxide-semiconductor array; the most used image sensor for digital cameras).
Images of the specimen can be used to identify the target presence and concentration as
the molecules exhibit different coloration, fluorescence, or light scattering, with varying
morphology and spatial distribution. In this manner, several imaging biosensors have been
developed to eliminate the need for labels and bioreceptors.

A growing field of imaging-based biosensors utilizes lens-free imaging techniques [143,144].
Since the images from lens-free imaging are not in focus, computational techniques are needed
for image reconstruction, the most common of which is deep learning (mostly based on ANN
with “deeper” layers) [53,54,145]. Lens-free imaging may be used to detect the aggregation of
particles caused by bioreceptor–analyte interaction [55] (Figure 9). However, an exciting appli-
cation is the direct, label-free classification of particles by lensless holography. Wu et al. [56]
presented a lensless holography biosensor for classifying pollen and spores. As with many
of these systems, a CNN was used for image reconstruction. In this work, another CNN
was used to classify the particles, yielding > 94% accuracy.
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Figure 9. Lensless hologram reconstruction via CNN for particle aggregation detection. Reprinted
with permission from [55] without modification. Copyright 2019 American Chemical Society.

Another work on the imaging classification of pollen utilizes multispectral imag-
ing [58]. Again, a CNN was trained for classification, and a species-averaged accuracy of
96% was achieved for 35 plant species.

Artificial neural networks (ANNs) have also found great success in the developing
field of digital staining. Hematoxylin and eosin (H&E) stain is the most common stain
for histology [146]. However, the quality of tissue staining is subject to many factors
that can affect the diagnosis. Digital staining is an alternative in which tissue sections
are imaged unstained, and a trained model generates an image simulating stained tissue
(Figure 10). Deep learning has been applied for digital staining on images acquired from
a variety of methods including quantitative phase imaging [59], Fourier transformed
infrared spectroscopy (FTIR) [52], and multi-modal multi-photon microscopy [57]. To
overcome the issue of data scarcity and overfitting, researchers have frequently employed
generative adversarial neural network (GAN) for medical imaging [147], which has shown
promising results for digital staining model training [148]. Additionally, transfer learning
has improved the model’s generalizability to multiple domains [50].

Fluorescence-based imaging biosensors are also worthy of mention. Sagar et al. [51]
presented a microglia classification based on fluorescence lifetime utilizing ANN.

The applications of imaging biosensors are extensive. Indeed, the scope is too large to
analyze all papers in this review. However, of particular importance to imaging biosen-
sors is the ANN, especially the CNN. This preference is expected since CNN has shown
exceedingly good performance in a variety of image classification contexts [149,150].

5.2. Colorimetry

One class of optical biosensors is the colorimetric biosensor. Currently, the applications
of machine learning to enhance the performance of bioreceptor-free colorimetric biosensors
are limited. This limitation is because the colorimetric biosensors (most notably lateral
flow assays) mostly utilize bioreceptors (e.g., antibodies, enzymes, and aptamers) [98]. One
example of such a bioreceptor-free biosensor is non-invasive plant disease diagnosis by
Li et al. [49]. They utilized an array of plasmonic nanocolorants and chemo-responsive
organic dyes that interact with volatile compounds from the plant. Their technique is
similar to Enose and Etongue since it is a fingerprinting approach to the array response
for classification. They used PCA, but do not cite an actual classifier, although they give
performance metrics such as accuracy. At this time, it is unclear how the classification was
performed on the PCA-transformed data.

Most colorimetric biosensors do not require machine learning due to their simplicity
for readout. However, the arrays of bioreceptor-free (semi-specific) colorimetric sensors
require machine learning-based classification in a way similar to Enose and Etongue.
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In these instances, they will likely benefit from the same treatment, namely dimension
reduction by PCA and SVM classification.

 

Figure 10. A quantitative phase image of a label-free specimen is virtually stained by a deep
neural network, bypassing the standard histological staining procedure that is used as part of
clinical pathology. Reproduced from [59] without modification under Creative Commons Attribution
4.0 License.

5.3. Spectroscopy

Of the spectroscopic biosensing techniques, surface-enhanced Raman spectroscopy
(SERS) has shown great success [151,152]. SERS is a vibrational surface sensing technique
that enhances Raman scattering based on surface characteristics. Briefly, SERS utilizes
incident laser light to induce inelastic scattering (Raman scattering) from the target analyte.
The intensity of the Raman scattering is enhanced by interaction with the conduction elec-
trons of metal nanostructures (SERS substrate). The enhancement of the Raman scattering
is what makes SERS so sensitive. Researchers have reported enhancement factors of up to
ten or eleven orders of magnitude [153]. Figure 11 illustrates a SERS sensor for the analysis
of breath volatile organic compound (VOC) biomarkers [154]. Due to the complex nature
of the obtained spectral signal, various machine learning algorithms have been used to
process SERS data in multiple contexts [28].

 

Figure 11. SERS sensor for analysis of breath VOC biomarkers utilizing AuNPs. Reprinted with
permission from [154] without modification. Copyright 2016 American Chemical Society.

Although bioreceptors may be used to allow for specific binding of the target analyte
to the SERS sensing surface [155,156], direct detection is also possible. Robust classification
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and regression algorithms can bring specificity and sensitivity to these biosensors. A simple
yet effective method for SERS based quantification is partial least squares regression (PLSR).
PLSR has been used for a variety of quantification applications such as biofilm formation
monitoring [69], blood serum methotrexate concentration [63], aquaculture toxins [62],
and food antiseptics [66]. PLSR has the advantage of model simplicity with well-defined
parameters, but it may be insufficient in modeling data with significant sources of noise.

Since the spectra have high dimensionality, dimension reduction is a frequent prepro-
cessing step (Figure 12). PCA is again popularly used as a dimension reduction or feature
extraction step [60,61,64,65,68,70,71,73], or for exploratory analysis [62,72,157]. Once the
spectra are remapped using PCA, a classifier or regression model is employed such as an
extreme learning machine (ELM) [71], LDA [68], SVM [60,64,73], PLSR [65], or ANN [70].
An alternative to dimension reduction is utilizing the high dimensionality spectral data
directly with a node-based algorithm such as ANN [72,158,159] and CNN [160,161].

 

Figure 12. PCA results using the spectral range of 400–1700 cm−1 of 112 average SERS spectra from
14 different commercially available pollen species. Loadings of the first four PCs (a) as well as the
scores of the first and second (b), first and third (c), and first and fourth PC (d) are shown. PCA
was done with standardized first derivatives of the mean spectra of 500 vector-normalized spectra.
Reprinted with permission from [72] without modification. Copyright 2016 John Wiley and Sons.

The reusability and generalizability of the trained models are often limited. Spectral
response is affected not just by analyte presence but surface structure. Therefore, for the
model to be reused on a new SERS biosensing dataset, the surface characteristics must be
very similar. In terms of transfer learning, this is an issue of changes in the underlying data
distributions. However, if the surface structure methods are well documented and repro-
ducible, transfer learning could be employed on a spectral library [28]. Ideally, researchers
could contribute to this library in an open-access manner and use these spectra for model
training. In this case, the quality of the attached metadata would be a crucial factor.

Clearly, machine learning has been used extensively in the context of SERS sensors.
The most common pipeline is to perform unsupervised dimensionality reduction/feature
extraction for which PCA is generally the preferred method. Less consistency is seen in the
algorithms used for classification and regression. Alternatively, ANNs can be used directly
on the data, and the advantage of one approach over the other is not clearly illustrated
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in the literature. We anticipate, however, that like in the case of electrochemical sensors,
node-based models would allow for more efficient transfer learning to accommodate target
task change.

5.4. Summary of Optical Bioreceptor-Free Biosensing

A variety of optical sensing methods have benefited from machine learning techniques,
with the preferred method being dependent on the data type. For image type data, CNN
is the most obvious choice for its ability to detect features as well as reconstruct images
obtained by lensless systems. For spectral data, the approach is similar to spectral data
obtained with electrochemical sensors. In those instances, dimensionality reduction cou-
pled with a classification/regression algorithm may perform nearly as well as node-based
methods. Indeed, they may be preferable in instances where the quantity of training data
is small.

6. Considerations and Future Perspectives

Biosensor research has shown great success and promise. For both systems with and
without bioreceptor, ML has demonstrated huge success in going from large, complex sen-
sor datasets to getting meaningful measurements and classification of analytes. However,
in many of these systems, a key challenge is consistency in device manufacturing. This
manifests itself regarding sensor reproducibility for Enose and Etongue, or as substrate
reproducibility for SERS. Since the models used to process these data often rely on subtle
signals in the data, even small changes in sensor response characteristics can lead to poor
performance. These issues have effectively limited widespread commercial adoption of
these technologies. There has been some success in accommodating these inconsistencies
through computational methods, notably with transfer learning for Enose. More work,
both from a manufacturing and computational standpoint, needs to be done before many
of these systems are robust enough for widespread adoption.

One area in which these systems have pushed to increase commercial potential is
through miniaturization and modularity. There have been efforts with several of the
methods presented here to develop compact standalone devices that rival their bulkier
counterparts in terms of performance [16,47,162–166]. We believe that cloud computing
may be a key element to the success of these endeavors. Some of the models in use,
especially for image-based sensors, are computationally expensive. By offloading the
computational work to cloud computing, the device footprint imposed by processing and
memory needs is greatly reduced.

A central question is what the relative advantages and disadvantages are between
systems that utilize a bioreceptor and those that do not. A key advantage of those that
eliminate the bioreceptor addresses one of the barriers to commercialization—manufacture
variability. By eliminating the bioreceptor, device manufacture is simplified, and may
decrease manufacture variability. Additionally, sensor longevity is generally improved
because the long-term stability of the bioreceptor is often limited [6]. However, to match
LOD and specificity of bioreceptors, improvements must be made. Nanomaterials show
promise for improving device performance [167].

There have been studies that attempt to gain the advantages of both systems by
creating artificial bioreceptors, notably nanomaterials with enzymatic properties referred
to as nanozymes [168,169]. While exciting progress has been made in this field, current
nanozyme-based biosensors have inferior catalytic activity and specificity to their biological
alternatives [170,171]. Nanozyme catalytic activity is also currently limited to oxidase-like
activity [171]. If researchers can broaden nanozyme activity and improve selectivity, these
biosensors may become a competitive alternative for biological bioreceptors.

In addition to device considerations, there are computational challenges to consider.
Although some ML algorithms have been in use for decades such as PCA and SVM, the
field of ML is advancing rapidly with new algorithms being described frequently. While
many areas are quick to adopt the new methods, improper usage is common and certainly
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not limited to biosensing. Some common mistakes are inappropriate data splitting, hidden
variables serving as bad predictors, and mistaking the objective of the model [172]. Great
emphasis must be placed on the importance of reporting appropriate performance metrics.
A great example of a misleading metric is reporting accuracy on highly imbalanced data
such as in Durante et al. [41]. It can often be difficult to determine if the proper pre-
processing and model assumption checks are being performed. This may be centering and
re-scaling prior to PCA, or normality checks for LDA.

Some of these issues can be solved with better methods reporting, especially regarding
computational methods. Certain key details are frequently left out, making critical evalua-
tion difficult and reproducibility impossible [173]. One of the most striking examples from
the literature described herein is reporting classification metrics, without reporting what
classifier was used on PCA processed data [49]. Perhaps the best way to make methods
clear and reproducible is to release all associated code, preferably publicly.

Increased availability in general can greatly improve this field. More open access
repositories of training sets may allow researchers to improve model robustness by ex-
posing them to more diverse datasets [16]. Some examples currently exist such as the gas
sensor drift dataset [115] and the EIS breast tissue dataset [103], both available in the UCI
Machine Learning repository [104]. One vision would be to have large repositories of gas
sensor responses to many analytes under various experimental conditions. Models could
be trained on such repositories to improve generalizability. Ideally, with such repositories
and improved manufacturing consistency, trained models could be shared directly and
need only minimal recalibration.

7. Conclusions

In this review we have explored the ways in which bioreceptor-free biosensors can
benefit from ML methods. Robust ML models bring specificity and accuracy to array-based
biosensors such as Enose and Etongue by learning the patterns in the sensor responses.
Notably, PCA has shown great performance as a feature extraction technique for these
systems. Similar power of PCA has been demonstrated for optical biosensors that generate
spectra such as Raman spectra or SERS. ANNs using deep learning generate impressive
results for imaging-based sensors including lensless holography and digital staining. ML
has also been used in creative ways such as for data fusion of multiple biosensors, and
transfer learning for noise correction, sensor drift compensation, and domain adaptation.

However, many practical challenges still exist. Many of the methods presented
here are not widely used in commercial settings. This is due to many reasons including
variability in manufacturing and the ability to make compact versions of the biosensors
while maintaining performance. ML models that can adapt to differences in sensor response
are at an advantage, and transfer learning shows promise to be part of the solution.

In recent years, ML has garnered strong research interest in many fields including
biosensing, as evidenced in this review. If this review has inspired interest to learn more
about how machine learning is being used for one of the methods presented here, we
encourage you to seek more specific reviews for the subject. There are great reviews in the
literature, many of which were referenced, that take a closer look at the methods presented
in this review.
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Abstract: With the inclusion of tactile Internet (TI) in the industrial sector, we are at the doorstep
of the tactile Industrial Internet of Things (IIoT). This provides the ability for the human operator
to control and manipulate remote industrial environments in real-time. The TI use cases in IIoT
demand a communication network, including ultra-low latency, ultra-high reliability, availability,
and security. Additionally, the lack of the tactile IIoT testbed has made it more severe to investigate
and improve the quality of services (QoS) for tactile IIoT applications. In this work, we propose
a virtual testbed called IoTactileSim, that offers implementation, investigation, and management
for QoS provisioning in tactile IIoT services. IoTactileSim utilizes a network emulator Mininet and
robotic simulator CoppeliaSim to perform real-time haptic teleoperations in virtual and physical
environments. It provides the real-time monitoring of the implemented technology parametric values,
network impairments (delay, packet loss), and data flow between operator (master domain) and
teleoperator (slave domain). Finally, we investigate the results of two tactile IIoT environments to
prove the potential of the proposed IoTactileSim testbed.

Keywords: 5G/6G; URLLC; tactile Internet; industrial IoT; network emulator; robotic simulator;
virtual testbed

1. Introduction

The rapid development of communication technologies from First-Generation (1G)
to Sixth-Generation (6G) has gained enormous attention due to its emerging services like
human-to-human (H2H), machine-to-machine (M2M), and human-to-machine (H2M) com-
munication. These emerging services are induced by drivers like mobile Internet, Internet
of Things (IoT), and tactile Internet (TI). The IoT envisions to fill the gap between the
cyber and physical world [1]. It is defined as to interrelate every existing computing object
around us such as, mobile devices, sensors, and actuators, over the Internet. Moreover, IoT
technology provides data sharing and communication in the M2M environment. Recently,
the TI, with the aim to enable haptic communications, has shifted the IoT paradigm to
real-time interaction between H2M and revolutionized the next-generation communication
technologies [2,3]. The TI is envisioned to empower H2M communication where a human
can interact with machines in a virtual and physical environment, while experiencing the
haptic sensations (touch and forces) in addition to traditional audio-video data [4]. Figure 1
depicts the technological evolution of the communication trends from 1G to 6G wireless
communication.

Several international standard organizations, such as the international telecommunica-
tion union, the Third-Generation Partnership Project (3GPP), and the Institute of Electrical
and Electronics Engineering (IEEE), are working to enable the existing and develop new
network architectures to carry haptic data over the communication in real-time. The TI
standard working group IEEE P1819.1 has already initiated and defined reference archi-
tecture, technical functions, and the definition of the TI [5]. Moreover, it also described
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standard use cases of the TI and corresponding strict requirements, including teleopera-
tion, automotive, immersive virtual/augmented reality, internet of drones, interpersonal
communication, live haptic broadcast, and cooperative automated driving. However, these
use cases demand near real-time connectivity (ultra-reliable and ultra-responsive) for M2M
and H2M communication. This type of real-time connectivity is termed as ultra-reliable
and low latency communication (URLLC). The URLLC is one of the key services of the
Fifth-Generation (5G) networks, along with enhanced mobile broadband and massive
machine-type communication. Moreover, 3GPP has introduced the 5G new radio to in-
crease reliability and minimize end-to-end (E2E) communication latency for the URLLC
services. In Release 15, 3GPP describes the URLLC requirement with the reliability of 99.9%
for a single 32-byte packet under 1ms latency [6]. Conclusively, 5G URLLC services are one
of the potential enablers for the extreme requirements of the TI.

Figure 1. A taxonomy of the different emerging communication trends.

Moreover, these requirements become more critical for loss-intolerant and delay-
sensitive TI industrial and medical applications. For example, remote industrial manage-
ment and the automation of industrial robots (sensitivity of control circuits) demand latency
between 0.25–10 ms with a packet loss of ≤10−9 [7]. Therefore, supporting next-generation
industrial applications, including immersive reality, holographic, and haptic/tactile com-
munication, demands a 5G network with new physical and upper layer techniques to
guarantee quality of service (QoS) and quality of experience (QoE) provisioning. Further-
more, the 6G technology paradigm promises to break the 5G network limitations and
enable them to virtualize human skills and transfer them from one place to another within
1ms through 6G native artificial intelligence (AI) network architecture. In-depth work
on 5G URLLC services, beyond the 5G and 6G communication network, is presented in
these articles [8–12]. Table 1 compares the connectivity requirements of the traditional and
emerging tactile IIoT applications (adapted from [7]). The relationships between emerging
technologies such as IoT, IIoT, Industrial Internet, Internet of Everything (IoE), TI, tactile
IoT, tactile IIoT, Industry 4.0 and 5.0 are presented in Figure 2.

An in-depth discussion on conventional and emerging industrial is presented in [7],
where the authors investigated the role of TI in the industrial environment, along with
technical connectivity requirements of the TI industrial services. One of the vital use cases
of the TI in the industrial domain is the bilateral/multilateral haptic-driven teleoperation
systems. A teleoperation system consists of a human operator (master), teleoperator (slave),
and a communication network that link the master to a slave domain, and enable the
operator to interact with the teleoperator in the distant and inaccessible remote environment
to perform complex tasks. The TI-based network provides bilateral communication to
manage touch and actuation in real-time between the master and slave domain with a
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focus to ensure QoS and QoE requirements. Haptic-enabled teleoperation systems have
numerous applications in Industry 4.0, such as robotic automation, smart manufacturing,
smart logistic, the mining industry, food industry, healthcare industry, and industrial
management (controlling and monitoring). Contrary to the traditional application, Haptic-
enabled industrial applications demand high QoS and QoE, and depend on the nature of
the application.

Table 1. Summary of the connectivity requirements for traditional IIoT and emerging tactile IIoT services.

Applications/Requirements Latency (ms) Reliability (%) Scalability Data Rate (Mbps)

C
on

ve
nt

io
na

l Monitoring 50–100 99.9–99.99 100–1000 0.1–0.5

Safety control 10 99.99–99.999 10–20 0.1–1

Motion control 0.5–2 99.9999–99.99999 10–50 1–5

Closed-loop control 100–150 99.99–99.999 100–150 1–5

Em
er

gi
ng

Remote monitoring and maintenance 20–50 99.99–99.999 500–1000 1–2

Remote operation (teleoperations) 2–10 99.999–99.99999 1–5 100–200

Mobile workforce 5–10 99.999–99.9999 50–100 10–50

Augmented reality 10 99.99–99.999 10–20 500–1000

Figure 2. An overview of the relation between IoT, IIoT, tactial IoT, tactile IIoT, Industry 4.0, and
Industry 5.0.

One of the effective ways to investigate the tactile IIoT application requirements,
performance, and testing the new solutions to ensure QoS and QoE, is to set up a virtual
testbed similar to the real network. The testbed must allow us to utilize and maintain
hardware and software virtually on a standard computer without purchasing them. In the
literature, several recent articles have proposed testbeds to overcome the above-mentioned
challenges. The work in [13] proposed a haptic system testbed to characterize and validate
E2E haptic communication of different use cases of TI. The authors introduce a framework
comprised of multiple sub-blocks that can be re-configured based on the nature of use
cases, with a focus on minimizing cost and evaluation time. It also provides an option to
integrate the testbed with the simulation platform through a connector interface to perform
testing. Commonly, it is intended to offer an extensive range of haptic hardware, including
sensors, actuators, and tactile interface boards. A testbed for tactile and kinesthetic data
coding was proposed in [14] aligned with IEEE P1918.1 TI standard working group to
improve and standardize haptic codec. The proposed haptic coding testbed is considered as
a reference testbed with the aim to develop optimal data compression schemes to exchange
tactile and kinesthetic information and enable human-in-the-loop TI services. The authors
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also provide some reference tactile data traces, software, and hardware to evaluate newly
developed kinesthetic and tactile codecs.

In [15], a framework for tactile cyber physical systems was proposed, which is specifi-
cally for physical remote environments and based on network simulator NS3. It provides
an interface for robotic experiments, along with haptic communication modules. However,
the authors ignored the extensibility of the proposed testbed for other haptic-driven appli-
cations. Similarly, the authors in [16,17] proposed a generic testbed framework for different
TI use cases. A data-driven experiment setup was proposed in [16] to provide a common
playground for testing haptic applications. The proposed haptic communication testbed
at the Otto-von-Guericke University of Magdeburg (OVGU-HC) focused on providing
experiment testbed for long-distance haptic-enabled teleoperation systems, in addition
to small scale wireless haptic-driven applications. The OVGU-HC presents experiment
automation and data collection utilizing experiment description language (DES-Cript).
The proposed OVGU-HC did not work standalone, is a part of the MIoT-Lab, and is just
used to gather hepatic experiment information. Moreover, it utilized domain-specific
language DES-Cript [18], and did not provide an open-source facility to the research and
development community.

The study in [17] presents a two-level classification of the TI applications based
on controlled environment and master-slave integrations to develop a generic testbed,
with a focus to ensure compatibility for all these classified applications, which is named
as TI- eXtensible Testbed (XT). To demonstrate the potential of the TIXT, they discuss
H2M haptic communication in the virtual and physical environment. However, they
ignored the explanation on how to characterize the network impairments (delay, jitter,
and packet losses) and investigate the performance of the haptic-driven IIoT application.
Therefore, there is a strong need for a testbed that offers flexibility, scalability, open-source
availability, tailored to examine network impairments, communication flow, and extensible
for TI IIoT use cases. In this regard, we proposed a virtual testbed called IoTactileSim
to investigate tactile IIoT services from QoS and QoE perspectives. The IoTactileSim
employs Software Define Network (SDN) and edge computing at the core network to
tactile industrial application. The following section presents the main contribution of the
proposed IoTactileSim testbed.

1.1. Research Contributions

The primary contributions of this work are summarized below as:

• We presented the details of TI in the context of various industrial environments and
discussed some emerging applications of the tactile IIoT.

• A hybrid virtual testbed, IoTactileSim, is proposed by combining a network emulator
and an industrial robotic simulator to simulate tactile IIoT applications and investigate
their performance.

• We designed the IoTactileSim by adopting a hierarchical approach, where the network
is divided into two parts; a core and an edge layer. The core layer consists of SDN
routers to perform intelligent routing, while the edge layer performs as an intelligent
support engine for tactile IIoT services.

• The proposed IoTactileSim identifies the challenges imposed by the tactile IIoT and
their strict QoS/QoE requirements. Moreover, it focuses on investigating the com-
munication network parameters (latency, reliability) and other configurations corre-
sponding to the identified requirements.

• We conduct two different experiments in the tactile IIoT environment to evaluate the
performance and present the potential of the proposed IoTactileSim testbed.

1.2. Paper Organization

As illustrated in Figure 3, the rest of this paper is organized as follows. Section 2
discusses the proposed IoTactileSim structure and setup, along with the topological view.
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Section 3 presents the scenarios and case studies to demonstrate the potential of the
proposed testbed. Finally, Section 3 concludes the paper and offers some future avenues.

Figure 3. Diagrammatic view of the structure of the paper.

2. Proposed Framework

In this section, we describe the proposed IoTactileSim testbed to support a broad
range of tactile IIoT services. At first, we will present the network emulator to mimic the
real-world communication network, followed by a detailed discussion on the industrial
robotic simulator. Finally, we present the topologic view of the proposed simulator, along
with the basic parametric settings.

2.1. Simulator Structure and Setup

The structure of the proposed testbed IoTactileSim as depicted in Figure 4, following
the IEEE P1918.1 TI standard architecture. In general, the TI use cases are comprised of
three key domains: master domain, network domain, and slave or controlled domain [5].
The master domain consists of operators (human or control algorithms) that exploit haptic
devices. The slave domain deals with the slave robots or teleoperators that the master
side operator directly controls via control signals. The network domain connects the
master and slave sides to enable bi-directional communication. To control the slave side
teleoperator, the master side sends the control signal, and in return receives the feedback
information including haptic and audio-visual signals. The master and slave domain
creates a global control loop over communication network infrastructure. To maintain
stability for the tactile IIoT services and provide a real-time haptic sensation to the users,
this global control loop demands a haptic packet sampling rate of ≥1 kHz, a packet loss
rate between 10−3–10−5, and latency ranging from 1–10 ms. The proposed IoTactileSim
helps the users to investigate these strict requirements and evaluate their newly developed
strategies for emerging industrial applications.
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Figure 4. Indepth overview of the proposed virtual testbed IoTactileSim.

2.1.1. Network Emulator Environment

As can be seen in Figure 4, the control signal is captured through the controller on the
master side and forwarded to the network domain in a specifically encoded format. SDN,
network function virtualization (NFV), and mobile edge computing (MEC) are employed
with 5G technology in the core network of the proposed testbed to overcome the 1 ms
latency challenge and to provide support for the next-generation industrial applications [19].
The network domain receives these packets and forwards them to the slave domain to
perform the required task. The feedback in form of the haptic data is sent from the slave
teleoperator to the master side human operator. The proposed IoTactileSim utilizes the
Mininet emulator for the network design, resembling a real-world network operations and
hardware in a virtual environment [20]. Mininet employs process-level virtualization to
develop a virtual communication network with virtual hosts and connects them via virtual
Ethernet pairs.

The proposed IoTactileSim enables the evaluation of large custom topologies with
actual application traffic traces by deploying them into the physical network. It also
enables the utilization of emerging technologies such as SDN, NFV, and MEC. In the
SDN framework, control planes are separated from the forward plane in the network.
The emulator is written in python language and freely available at the Mininet official
website (http://mininet.org/, accessed on 10 November 2021). An overview of the basic
architecture of the Mininet with open-source virtual switches Open vSwitch (OVS) and
SDN standard protocol OpenFlow is depicted in Figure 5a. Mininet by itself is a network
emulator that allows users to mimic real network topologies. It also enables users to
build such network topologies in SDN architecture. This is what Mininet is capable
of in a nutshell. It does not provide any support for integrating tactile Input/Output
(I/O) modules or any other modules for that matter. It only provides us with a virtual
environment where all network nodes are present (virtually) on a single physical device.
The contribution of the IoTactileSim over Mininet is defined as:

• IoTactileSim allows users to integrate several tactile I/O modules with the Mininet
environment.
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• IoTactileSim enables users to implement each network module on a separate physi-
cal device.

• IoTactileSim also has an embedded tactile support engine which is not present in
Mininet. This support engine can be modified by the user based on their use cases.

Main Client 
Application 

Figure 5. Overview of the basic framework for Mininet and CoppeliaSim. (a) represents the Mininet network emulator with
Open vSwitch and SDN based OpenFlow protocol, (b) illustrates the CoppeliaSim simulator scene environment along with
control architecture.

2.1.2. Robotic Simulator Environment

To develop the smart industry with human-in-the-loop and human-robot interaction
haptic-driven teleoperation use cases like remote maintenance, inspection, industrial man-
agement, we utilized one of the famous industrial robotic simulators CoppeliaSim. This
industrial robotic simulators CoppeliaSim is formerly known as (V-REP: Virtual Robot
Experimentation Platform) [21]. The reason to use the CoppeliaSim is that it provides a
range of emerging industrial applications, including factory automation, remote monitor-
ing, safety monitoring, telerobotic operations, etc. Figure 5b illustrates the basic control
architecture and scene environment of the CoppeliaSim simulator. As can be seen from
Figure 5b, the simulation loop consists of the main and child script. The main script controls
all child scripts attached to the specific object in the simulation environment. The remote
Application Programming Interface (API) allows the user to interact with the simulator
from outside the system through socket communication. The remote API client and server
are responsible for providing these services through different programming languages like
C/C++, Python, Matlab, Java, etc.

In the proposed IoTactileSim, we utilized the python remote API client to interact
with the smart industrial application in the CoppeliaSim environment through socket
communication. The control code of the developed IIoT applications is executed in the
same computing machine where the network emulator was employed. The CoppeliaSim
simulator is connected with a network to represent network-slave interaction that was
designed utilizing Mininet. Additionally, the network is linked with the master domain
and makes the master-network relationship. The overview of the connection between
master, network, and slave domain using Mininet and CoppeliaSim in a single computing
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machine (personal computer) is illustrated in Figure 6, and an in-depth discussion on each
module is presented in the next section.

Figure 6. The flowchart illustrating the overall flow of the IoTactileSim testbed dynamics and
relationship between different parts.

2.2. Topological View of the IoTactileSim

This section focuses on the architecture of the proposed IoTactileSim testbed as de-
picted in Figure 6. At first, we discuss the parameter initialization, settings, and user
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interface to interact with the proposed testbed. Second, the topological view of the core
network architecture is presented. Third, an in-depth discussion on application-agnostic
design with the application and network connectivity is reported.

Initialization: In the initialization module, the simulator reads the parametric config-
uration files. It sets packet size, packet rate, Internet Protocol (IP) suite, IP address, link
bandwidth, and link latencies. This module facilitates the users to provide the parameter
settings as per their experiment need. If the user does not provide the parametric settings,
then it automatically uses the default values of the parameters, as defined in Table 2.

Table 2. Summary of parameters and settings used for Simulation.

Parameters Settings Used

Simulation environment

Operation system Linux (Ubuntu 18.04)
Programming language Python 3.8
Network emulator Mininet 3.6.9
Industrial robotic simulator CoppeliaSim 4.2

Network emulator

Network topology Mesh network of switches
IP suite User datagram protocol
Software switch type Open vSwitch 2.9.8
SDN controller OVS-controller
Interface protocol for controller OpenFlow

Link latency Shortest route 1.2 ms
Longest route 1.8 ms

Link bandwidth 100 Mbps
No. of packets 10, 100, 1000, 10,000
Packet sampling Rate 1 kHz

Industrial robotic simulator

Remote API Python legacy remote API client
Simulation mode Real-time simulation
Execution techniques Same machine with the same thread
Interaction network Socket communication
Simulation scene model Custom design (Teleoperation)

Start Network Emulator: In order to design a real-world network, a Mininet emulator
creates a custom topology with five OVSs and three hosts. The hosts act as a standard
computing machine and are responsible for the master domain, slave domain, and tactile
support engine. The OVSs are connected with a single SDN controller. The SDN controller
decides to handle the data plane and allows the network operator to control and manage
the whole network via API provided by the Mininet. Therefore, we utilized the Mininet
Python API in IoTactileSim, so that the users can change the network settings as per
their experiment demands to evaluate their newly developed approaches. The users
can change the parametric values from the configuration files as discussed earlier in the
initialization step.

Simulation Cycle: After creating the network topology with three hosts that work as a
master, slave, and tactile support engine, the simulator enters into the simulation cycle. In
the simulation cycle, the actual experiments are performed as per defined conditions by the
users through parametric settings or default values. The network host that acts as the master
side, connects to the haptic device that the human operator uses to send the control signals
to the salve side manipulator. The other host acting as a slave, connects to the CoppeliaSim
simulator for executing the control commands in the designed virtual/physical tactile
IIoT applications. After conducting a desired control experiment, the haptic feedback is
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sent to the human teleoperator at the master domain. This loop runs until the simulator
reaches the defined threshold values like 1000 packets, etc. Finally, at the end of the
simulation cycle, the simulator stores the experimental results into a file to investigate
various network impairments.

Performance Analysis: This module receives the stored experimental data file and
compiles result graphs to understand the strengths and weaknesses of the conducted
experiments from the QoE and QoS perspectives. After representing the experimental
result in the visual form, it stores these results, and enables the users to perform new
experiments or to exit the simulator. The list of the default parameter values and settings
used in the proposed IoTactileSim are summarized in Table 2. The proposed IoTactileSim is
publicly available at Github (https://github.com/zubair1811/IoTactileSimV1.git, accessed
on 30 November 2021) to the interested researchers to conduct extensive experiments to
evaluate their suggested approaches.

3. Result and Discussion

In this section, we demonstrate the effectiveness of the proposed IoTactileSim with
two different tactile industrial scenarios using the simulation environment and parameters
setting defined in Table 2. These two realistic applications belonging to tactile industrial
use cases define as follows

• Scenario I: Teleoperation with 3 Degree-of-Freedom (3DoF)
• Scenario II: Haptic-driven remote operations

Moreover, these scenarios can be classified into two categories, like offline and real-
time applications. On the one hand, offline (teleoperation with 3DoF) experimentation
means that we already have a static dataset of some real-world teleoperation applications
and utilize previously collected data for analytical analysis. On the other hand, real-time
or online (haptic-driven remote operations) experiments indicate that interaction data
between operator and teleoperator are collected in real-time to make a suitable decision to
ensure stability and transparency. The real-time scenario is complex compared to offline
because it deals with more data under time constraints. Most of the existing studies on
industrial testbeds just utilized the offline methodology, while the proposed IoTactileSim
considered both scenarios. The discussion considering offline and real-time scenarios is
presented in detail in the following subsections.

3.1. Scenario I: Teleoperation with 3DoF

Scenario I considers the offline experimentation, where publicly available 3DoF haptic
traces in [22] on teleoperations were utilized. To record the haptic traces, a human oper-
ator employs a haptic device (Phantom Omni) at the master to interact with the virtual
environment, which acts as a slave domain. The virtual environment is comprised of a
rigid movable cube lying on a wooden, smooth surface. The human operator makes an
interaction (static and dynamic) with the rigid cube via the haptic device and receives force
feedback. Figure 7 illustrates the 3DoF position and velocity control by the human operator
via the haptic device and the received force feedback of the used haptic dataset [22] for
experimentation. In the proposed IoTactileSim testbed, we transmit the control signals
(position/velocity) from the master side to the slave side and get the haptic feedback
(force). To minimize the E2E communication delay, a common practice is to transmit the
haptic traffic packets instantly after receiving sensors’ data, resembling a real-time tactile
industrial IoT application.
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Figure 7. Dynamic interaction of the human operator with virtual application via haptic device. ( a) positions of the human
operator’s hand at master side device, (b) velocity traces of the operator (c) force data traces of the teleopertor x, y and
z-axis.

We adopt the same method in our experiments; after reading the sensors data, the
system makes packets of the haptic traces as following:

PacketSize = Ethernet/UDP/IP/8 × NDoF (1)

where Ethernet/UDP/IP indicates the header of the ethernet, user datagram protocol, and
internet protocol layer, respectively. NDoF is the number of DoF in the experimental data.
We are using 3DoF, so the formulation can be evaluated as:

Packet Size = 14/8/20/8 × 3

Packet Size = 14 + 8 + 20 + 24 = 78

The interface of the IoTactileSim during communication between master and slave
domain is depicted in Figure 8. At the master domain, control signals from utilized 3DoF
haptic traces are selected and transmitted to the slave domain through the network domain.
Similarly, after receiving specific control signals, the slave domain returns the correspond-
ing force feedback to the master domain. The overview of the data flow interfaces between
master and slave for the scenario I is depicted in Figure 8.

The performance analysis for a scenario I in terms of round trip delay is presented in
Figure 9. To investigate the effect of the number of haptic data packets on round trip delay
for IoT applications, the scenario I was simulated for the number of haptic data traces = 10
to 10,000. The latency investigation using IoTactileSim for a scenario I with the number
of packets = 10, 100, 1000, 10,000 is depicted in Figure 9a–d, respectively. It can be seen
clearly from the results, the tendency with an increase in the number of haptic data packets
the round trip delay decreases from 5 to 2 ms. In Figure 9a, with the number of packet = 1,
the packet latency approaches 6 ms as compared to Figure 9b–d, where packet latency is
below 5 ms. To elaborate this latency decrement in detail, Figure 10 illustrates the packet
delay histogram for a scenario I.
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Figure 8. IoTactileSim interface for scenario I experiment.

Figure 9. Packet latency investigation for scenario I haptic data transmission; (a) data packets = 10,
(b) data packets = 100, (c) data packets = 1000, ( d) data packets = 10,000.
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Figure 10. Packet latency histogram for scenario I haptic data transmission; (a) data packets = 10,
(b) data packets = 100, (c) data packets = 1000, (d) data packets = 10,000.

Contrary to Figure 9, the results in Figure 10 reveal the latencies of the most frequent
haptic data packets. Similar to the results presented in Figure 10a–d, the simulation
results in Figure 10a–d also indicate the decrease in packet latencies from 5.8 to 2.1 ms.
From Figure 10a–d, it can be seen clearly that most of the haptic traces latencies centered
between 1 to 2 ms, which is one of the stringent requirements for the tactile IoT services.
Figure 10b–d, depicts the improvement in the communications network impairments
(delay, jitter) with the number of packets = 100, 1000, 10,000. The reason behind this is
that at the beginning, the proposed testbed IoTactileSim understands and fine-tunes the
simulation parameters to support delay-sensitive and loss-intolerant applications. The
efficacy of the scenario I regarding reliability characterization is summarized in Table 3.
The reliability of the transmitted haptic data packets is evaluated in terms of delayed/lost
and out-of-ordered packets.

Table 3. Summary of the reliability characterization for haptic datset and real-time haptic drive
teleoperation experiment.

Experiments
Packet Statistics

Dropped/Delayed (%) Out-of-Order (%)

Haptic data transmission

D
at

a
Pa

ck
et

s 10 20.0 (2 Packets) 11.1

100 2.00 (2 Packets) 1.00

1000 0.10 (1 Packets) 0.00

10,000 0.10 (7 Packets) 0.00
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Table 3. Cont.

Experiments
Packet Statistics

Dropped/Delayed (%) Out-of-Order (%)

Haptic-driven remote operations
D

at
a

Pa
ck

et
s 10 100 (10 Packets) 100

100 44.0 (44 Packets) 44.4

1000 3.10 (31 Packets) 3.00

10,000 0.40 (39 Packets) 0.30

3.2. Scenario II: Haptic-Driven Remote Operations

In this section, we will present the real-time control of the teleoperator in the virtual
environment to mimic the real-world tactile industrial remote operations. Similar to
the scenario I, II also consists of the master, slave, and network domain where virtual
teleoperator developed in CoppeliaSim acts as salve domain. In the master domain,
physical haptic devices (haptic computer mouse, glove, and hapkit) are used to interact
with the virtual environment, as illustrated in Figure 11. These haptic devices are easy
to develop because their supplementary material is available publicly for the research
community. The tactile computer mouse was presented in [14], while the study in [23,24]
provide the design and development detail on a haptic glove and Hapkit, respectively.
However, in this experiment, we only employed the (computer mouse and glove) to
interact with the teleoperator as slave side. We mapped the physical computer mouse
and glove X and Y direction to the XY coordinates of the developed virtual teleoperator
in CoppeliaSim. The key focus of this experiment is to investigate the communication
network parameters (latency, reliability) that affect the TI services. Additionally, it also
demonstrates the potential of the proposed IoTactileSim to provide TI services under TI
QoS/QoE requirements (1–5 ms). Human operators in the master domain use the haptic
device to interact with the teleoperator at the slave side and receive haptic feedback. The
interface of the IoTactileSim during direct controlling of the teleoperator in the virtual
environment is depicted in Figure 11.

To observe the effect of the number of data packets on latency for scenario II, the
simulation results are summarized in Figure 12. These results also demonstrate that with
the increase in the number of packets from 10 to 10,000, the network communication latency
tends to decrease. In this experiment, we directly control the teleoperator in the virtual
environment via a computer mouse in real-time. The control signals from the computer
mouse are packetized as defined in (1), sampled as per haptic system requirement, and
transmitted to the teleoperator using default parameters values as listed in Table 2. The
teleoperator at slave side receives the control commands to perform the required task and
backward the force feedback to the human operator. Figure 12a–d, indicates the results
of the packet latency for the number of data packets 10, 100, 1000, 10,000, respectively. In
Figure 12a with the number of packets = 10, the value of latency lies between 9–7 ms.

In Figure 12b, up to 40 packets, latency value remains higher than 5 ms, and after
that, the system gets convergence round trip latency around 2.5 ms. Similarly, the results
in Figure 12c, gain a minimum latency value of 2.5 ms from the 20th data packet to the
1000th packet. To continue on a similar line as mentioned above, Figure 12d, exhibits a
quick decreasing trend in round trip latency from 6 to 2.2∼2.0 ms , as the number of data
packets increases from 10, to 10,000.
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Figure 11. IoTactileSim interface for scenario II experiment.

Figure 12. Packet latency investigation for scenario II real time haptic-driven remote operation;
(a) data packets = 10, (b) data packets = 100, (c) data packets = 1000, (d) data packets = 10,000.

To elaborate this packet latency convergence in a better way, Figure 13 illustrates
the histogram of the frequent data packets regarding packet latencies. The results in
Figure 13c,d indicate that the packet latency reduces for an increase in the number of
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packets compared to results in Figure 10c,d. In addition, these results depict that the
latency is more concentrated between 2 to 2.3 ms. It is also interesting to observe that,
for the higher number of the data packet with a higher sampling rate, the proposed
IoTactileSim is capable of reducing congestion and maintaining the application latency
requirement. In addition Table 3 presents the in-depth reliability analysis for the scenario II
experiment. As it can be seen clearly from Table 3 for scenario II the percentage of delayed
or dropped packets decrease from 100% to 0.40% (10 to 39 data packets) with 100% to 0.30%
out-of-order sending packets from 10 to 10,000 number of data packets.

Figure 13. Packet latency histogram for scenario II real time haptic-driven remote operation; (a) data
packets = 10, (b) data packets = 100, (c) data packets = 1000, (d) data packets = 10,000.

In summary, the packet latency convergence analysis in Figures 9 and 12 and periodic
packet variation analysis Figures 10 and 13 for use case scenarios I and II indicates that
the proposed virtual testbed IoTactileSim provides the facility to the users to implement
complex tactile industrial use cases, evaluate their proposed strategy, and investigate the
QoS and QoE requirement of the implemented tactile IoT services. Some of the complex
tactile IIoT use cases are illustrated in Table 4. The proposed IoTactileSim concentrate
on providing QoS and QoE provisioning by taking different network parameters into
account. Based on the mentioned complex tactile IIoT use cases along with requirement
specification (delay, packet size, packet rate, packet loss rate, etc.) in Table 4 it indicates
that IoTactileSim can ensure strict QoS-based traffic. The main objective of this paper is
to provide a tool to minimize the network development cost while realizing the stringent
QoS/QoE requirements for tactile IIoT applications. Moreover, it also offers to implement
edge intelligence to the designed tactile support engine, which can be leveraged to improve
QoS and QoE provisioning in highly dynamic network environments. The users can deploy
machine learning, specifically reinforcement learning models, to track the frequently
dynamic network environment states and make online decisions to improve network
conditions and support time-varying user demands.
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Table 4. Tactile IIoT use cases requirements specifications and characteristics supporting by proposed IoTactileSim.

Applications
IIoT Use Cases and Requirements

Cycle Time Message Size Data Rate Latency Packet Loss Rate

Control loop motion control

Machine tools
0.5∼2 ms 20∼50 Bytes 1∼10 Mbps 0.25∼1 ms 10−9∼10−8Packaging machines

Printing machines

Remote control

Process automation

≤50 ms ≥10 Mbps 1∼100 Mbps ≤50 ms ≤10−7Process monitoring
Process maintenance
Fault reporting

4. Discussion and Future Work Directions

In our previous work [23], we analyzed the different haptic gloves and investigated
how data processing increased the latency in the haptic communication loop and proposed
a low-latency haptic open glove (LLHOG). Contrary to previous work, the focus of this
paper is to provide network infrastructure to transmit haptic traffic between operator
and teleoperator and simulate delay-sensitive and loss-intolerant tactile IIoT applications.
However, there are various industry 4.0 applications under use cases class C, such as
fleet management, tactile-driven logistics, cooperative robotics, and motion control, which
demand higher QoS and QoE. To allow these real-time applications, the utilization of edge
computing is required. Therefore, there is a need for edge-based network systems with
native machine learning parts to provide the QoS and QoE requirement provisioning for
these applications. In this regard, as a future, an edge-based ITE is developed as a tactile
support engine to enable the ability for the user to train and deploy machine learning
models at the edge to ensure QoS and QoE. The conceptual diagram to design and deploy
the trained model on ITE is illustrated in Figure 14.

Figure 14. Conceptual architecture of ITE in IoTactileSim.

In future work, more practical challenges regarding tactile IIoT in the real-world
scenario need to be considered. As discussed above, providing required QoS and QoE in
the real-time complex industrial application is more challenging than simulation analysis.
Therefore, we indented to test the proposed IoTactileSim in real-time physical IIoT scenarios
and demonstrate the real-world experiment design overview in Figure 15. On the master
side, we utilized the LLHOG, which consists of the rotary position sensors with a min-
max scaling filter to send haptic data. The bionic robot hand, which consists of Arduino
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and servo controllers, is used at the slave side. The specification, sample code, and
documentation are available at the official website (https://wiki.dfrobot.com/, accessed on
30 November 2021 ). The proposed IoTactileSim connects the LLHOG and bionic robot hand
to develop a closed control loop. The ITE is also integrated with the proposed IoTactileSim
to monitor the network dynamics and guarantee the QoS and QoE requirements for tactile
IIoT applications.

Figure 15. Modular representation of ITE in real-world scenario.

5. Conclusions

In this paper, we proposed a virtual testbed termed as IoTactileSim to investigate
and provision QoS and QoE strict requirements for tactile industrial IoT applications. The
proposed IoTactileSim is equipped with a network emulator Mininet and an industrial
simulator CoppeliaSim to mimic the real-world communication network and industrial
IoT environment. It provides the users to evaluate the efficacy of their designed strategies
under possible settings, including advanced core network technologies (SND, NVF), edge
intelligence, and application-agnostic parameters (packet size, sampling rate, etc.) for
improving QoS and QoE. The proposed IoTactileSim is investigated for two different
industrial use case scenarios with haptic data traces and real-time remote interaction. The
simulation results indicate that the IoTactileSim is able to handle real-time data traffic then
offline scenario by providing communication latency ranges from 6 to 2.2∼2.0 ms, and
from 5.8 to 2.1 ms for 10 to 10,000 data packets, respectively. Moreover, the experimentation
analysis indicates that the IoTactileSim allows the user to investigate network impairments
(latency, jitter, reliability) and can support complex tactile industrial environments with a
higher number of data packets. In the early future, we plan to extend the IoTactileSim with
network coding and machine learning approaches like federated reinforcement learning at
the tactile support engine to integrate it with the 6G network infrastructure.
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TI Tactile Internet
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IIoT Industrial Internet of Things
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QoS Quality of Service
QoE Quality of Experience
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Abstract: Recently, various object detection frameworks have been applied to text detection tasks
and have achieved good performance in the final detection. With the further expansion of text
detection application scenarios, the research value of text detection topics has gradually increased.
Text detection in natural scenes is more challenging for horizontal text based on a quadrilateral
detection box and for curved text of any shape. Most networks have a good effect on the balancing of
target samples in text detection, but it is challenging to deal with small targets and solve extremely
unbalanced data. We continued to use PSENet to deal with such problems in this work. On the other
hand, we studied the problem that most of the existing scene text detection methods use ResNet
and FPN as the backbone of feature extraction, and improved the ResNet and FPN network parts
of PSENet to make it more conducive to the combination of feature extraction in the early stage.
A SEMPANet framework without an anchor and in one stage is proposed to implement a lightweight
model, which is embodied in the training time of about 24 h. Finally, we selected the two most
representative datasets for oriented text and curved text to conduct experiments. On ICDAR2015,
the improved network’s latest results further verify its effectiveness; it reached 1.01% in F-measure
compared with PSENet-1s. On CTW1500, the improved network performed better than the original
network on average.

Keywords: text detection; natural scene; feature fusion

1. Introduction

The rapid development of deep learning has promoted the remarkable success of
various visual tasks. Among them, the progress of text detection in natural scenes is
increasing. Traditional CNN networks can effectively extract image features and train text
classifiers. Other networks are gradually being derived from CNNs, such as segmentation,
regression, and end-to-end methods. Deep learning brings algorithms that include more
diverse structures, and the results are even more impressive [1,2].

Text detection in natural scenes is based on target detection, but it is different from
target detection: it considers the diversity of text direction rotation and size ratio changes;
the lighting of the scene, such as the actual streets and shopping mall scenes, (causing the
image to be blurred); the inclined shooting angle; and the difficulty caused by the change of
text language from horizontal text to curved text. The competition is still fierce. The disad-
vantage of most network structures is that the simple form cannot satisfy the improvement
of the results. Generally speaking, models with high results have significant parameters
and large models, while complex systems are time-consuming. Many algorithms are in
the research stage, and it is difficult to enter the batch use stage, which still has a large
unmet demand. Therefore, this type of application-based algorithm needs to produce
state-of-the-art accuracy in theoretical research and consider the request for production in
the application scenario and the lightweight model in the portable device.

A series of target detection algorithms [3,4] have been applied in the scene text
detection field and promoted the research and development of natural scene text detection
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recently. The SSD algorithm [5] proposed by Liu et al. uses a pyramid structure and
feature maps of different sizes to perform softmax classification and position regression
on multiple feature maps simultaneously. The location box of the real target is obtained
through classification and bounding box regression. Based on SSD, many researchers
improve their methods for the detection of scene text. Shi et al. proposed the SegLink
algorithm [6], which is enhanced based on the SSD target detection method. It detects
partial fragments at first, and connects all fragments through rules to obtain the final
text line, which can better detect text lines of any length. Ren et al. [7] proposed the
Faster-RCNN target detection algorithm. Reference [2] proposed a hybrid framework that
integrates Persian dependency-based rules and DNN models, including long short-term
memory (LSTM) and convolutional neural networks (CNN). Tian et al. proposed the CTPN
algorithm [8], which combines CNN and LSTM networks, and adds a two-way LSTM to
learn the text-based sequence features via Faster-RCNN; this kind of approach is conducive
to the prediction of text boxes. Ma et al. proposed the RRPN algorithm [9] based on
Faster-RCNN, a rotation area suggestion network using text inclination angle information,
which adjusts the angle information for border regression to fit the text area better.

It is worth noting that many new tasks based on ResNet [10,11] and FPN [12] have
appeared and have attracted more attention in recent years. At the same time, ResNet and
FPN have many improved methods. SENet [13] adds an SE module to the residual learning
unit and integrates a learning mechanism to explicitly model the interdependence between
channels so that the network can automatically obtain the importance of each feature
channel. This importance enhances the valuable features and suppresses the features that
are not useful for the current task. The SE module is also added to some target detection
algorithms. Take M2Det [14] as an example: the SFAM structure in this paper uses an SE
block to perform an attention operation on the channel to capture useful features better.
PANet [15] uses the element addition operation by layer, different levels of information
are fused, and a shortcut path is introduced. The bottom-up way is enhanced, making
the low-level information more easily spread to the top, and the top-level can also obtain
fine-grained local information. Each level is a richer feature map. It can be seen from the
above that the latest improved methods also have apparent effects on the improvement of
other tasks. Based on the above, this paper introduces a new basic network framework for
scene text detection tasks, namely, SEMPANet.

Compared with the previous scene text detection systems, the proposed architecture
has two different characteristics:

(1) Compared with the standard ResNet residual structure, the addition of SENet
in this paper enables the network to enhance the beneficial feature channel selectively
and suppress the useless feature channel by using the global information to realize the
feature channel adaptive calibration, reflected in the improvement of the value in the
experimental results.

(2) Considering the information flow between the network layers during the training
period, the bottom-up path of MPANet is enhanced, making the bottom-up information
more easily spread to the top. This paper verifies the influence of PANet on the detection
method and modifies the process of PANet to make it more effective. Experimental results
show that it can get a more accurate text detection effect than the model with FPN.

The paper is organized as follows:
Section 2 introduces the popular experimental framework in scene text detection in

recent years, which describes related work from the following three aspects: whether the
detector is based on anchoring, whether it is one stage or two-stage, and whether it is based
on RESNET and FPN. Section 3 presents the overall network framework of this paper; the
principle of the algorithm is introduced as well, including the SE module and MPANet
module. Section 4 includes testing results and their evaluation by the proposed methods.
Conclusions are given in Section 5.
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2. Related Work

2.1. Anchor-Based and Anchor-Free

Both anchor-based detectors and anchor-free detectors have been used in recent
natural scene text detection tasks.

Specifically, anchor-based methods traverse the feature maps calculated by convo-
lutional layers, and place a large number of pre-defined anchors on each picture, the
categories are predicted, and the coordinates of these anchors are optimized, which will
be regarded as detection results. According to the text area’s aspect ratio characteristics,
TextBoxes [16] equips each point with six anchors with different aspect ratios as the initial
text detection box. TextBoxes+ [17] can detect text in any direction, which uses text boxes
with oblique angles to detect irregularly shaped text. DMPNet [18] retains the traditional
horizontal sliding window and separately sets six candidate text boxes with different incli-
nation angles according to the inherent shape characteristics of the text: add two 45-degree
rectangular windows in the square window; add two long parallelogram windows in the
long rectangular window; add two tall parallelogram windows inside the tall rectangular
window. The four vertices coordinates of the quadrilateral are used to represent the text
candidate frame.

Anchor-free detectors can find objects directly in two different ways without defining
anchors in advance. One method is to locate several pre-defined or self-learning key points
and limit the spatial scope of the target. Another method is to use the center point or area of
the object to define the positive, and then predict the four distances from the positive to the
object boundary. For example, in FCOS [19], the introduction of centerness can well inhibit
these low-quality boxes’ production. Simultaneously, it avoids the complex calculation
of anchor frames, such as calculating the overlap in the training process, and saves the
memory consumption in the training process. AF-RPN [20] solves the problem that the
classic RPN algorithm cannot effectively predict text boxes in any direction. Instead of
detecting fusion features from different levels, it detects the text size by the size of the multi-
scale components extracted by the feature pyramid network. The RPN stage abandons the
use of anchors and uses a point directly to return the coordinates of the four corners of the
bounding box, and then shrinks the text area to generate the text core area.

PSENet [21] is slightly different from anchor-free methods. It segments the fusion
features of different scales’ outputs by the FPN network. Each text instance is reduced to
multiple text segmentation maps of different scales through the shrinkage method. The
segmentation maps of different scales are merged by the progressive expansion algorithm
based on breadth-first-search, which focuses on reconstructing the text instance as a whole
to get the final detected text. The progressive scale expansion algorithm can detect the
scene text more accurately and distinguish the text that is close or stuck together, which is
another method that can process text well without an anchor.

2.2. One-Stage and Two-Stage Algorithms

The representative one-stage and two-stage algorithms are YOLO and Faster-R-CNN,
respectively.

The most significant advantage of the single-stage detection algorithm is that it is
fast. It provides category and location information directly through the backbone network
without using the RPN network to display the candidate area. The accuracy of this algo-
rithm is slightly lower than that of the two-stage. With the development of target detection
algorithms, the accuracy of single-stage target detection algorithms has also been improved.
Gupta et al. proposed the FCRN model [22], which extracts features based on the full
convolutional network, and then performs regression prediction on the feature map by
convolution operation. Unlike the prediction of a category label in FCN [23], it predicts the
bounding box parameters of each enclosing word, including the center coordinate offset,
width, height, and angle information. EAST [24] directly indicates arbitrary quadrilateral
text based on the full convolutional network (FCN). It uses NMS to process overlapping
bounding boxes and generates multi-channel pixel-level text scoring maps and geometric
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figures with an end-to-end model. R-YOLO [25] proposed a real-time detector including a
fourth-scale detection branch based on YOLOv4 [26], which improved the detection ability
of small-scale text effectively.

The precision of the two-stage is higher, while the speed is slower than that of the
one-stage. The two-stage network extracts deep features through a convolutional neural
network, and then divides the detection into two stages: The first step is to generate
candidate regions that may contain objects through the RPN network, and complete the
classification of the regions to make a preliminary prediction of the position of the target;
the second step is to further accurately classify and calibrate the candidate regions to
obtain the final detection result. The entire network structure of RRPN [9] is the same as
Faster-R-CNN, which is divided into two parts: one is used to predict the category, and
the other one is used to regress the rotated rectangular box to detect text in any direction.
Its two-stage is embodied in the use of RRPN to generate a candidate area with rotation
angle information, and then adding an RROI pooling layer to generate a fixed-length
feature vector, followed by two layers fully connected for the classification of the candidate
area. Mask TextSpotter [27] is also a two-stage text detection network based on Mask
R-CNN [28], it replaces the RoI pooling layer of Faster-R-CNN with the RoIAlign layer,
and adds an FCN branch that predicts the segmentation mask. TextFuseNet [29] merged
the ideas of masktextspotter and Mask R-CNN to extract multi-level features from different
paths to obtain richer features.

2.3. ResNet and FPN

In addition to the design and improvement of various target detection algorithms that
focus on different positions, a detector that can be applied currently in either one stage or
two stages usually has the following two parts: the backbone network and the neck part.

It comprises a series of convolution layers, nonlinear layers, and downsampling
layers for CNN. The features of images are captured from the global receptive field to
describe the images. VGGNet [30] improves performance by continuously deepening the
network structure. The increase in the number of network layers will not bring about
an explosion in the number of parameters, and the ability to learn features is more vital.
The BN layer in batch normalization [31] suppresses the problem that small changes in
parameters are amplified as the characteristic network deepens and is more adaptable
to parameter changes. Its superior performance makes it the standard configuration in
current convolutional networks. ResNet establishes a direct correlation channel between
input and output. The robust parameterized layer concentrates on learning the residual
between input and output, and improves gradient explosion and gradient disappearance
when the network develops deeper.

The backbone of target detection includes VGG, ResNet, etc. In CTPN [8], the VGG16
backbone is first used for feature extraction, SSD network [5] also uses VGG-16 as the
primary network. ResNet-50 module was first used for feature extraction in the method
proposed by Yang et al. [32], and most of the later networks adopt the ResNet series.
The backbone part has also helped develop many excellent networks, such as DenseNet.
DenseNet establishes the connection relationship between different layers through feature
reuse and bypass settings to further reduce the problem of gradient disappearance and
achieve a good training effect, instead of deepening the number of network layers in ResNet
and widening network structure in Inception to improve network performance. Besides,
the use of the bottleneck layer and translation layer makes the network narrower and
reduces the parameters, suppressing overfitting effectively. Some detectors use DenseNet
as a backbone for feature extraction.

With the popularity of multi-scale prediction methods such as FPN, many lightweight
modules integrating different feature pyramids have been proposed. In FPN, the informa-
tion from the adjacent layers of bottom-up and top-down data streams will be combined.
The target texts of different sizes use the feature map at different levels and detect them
separately, leading to repeated prediction results. It is not possible to use the information
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of the other level feature maps. The neck part of the network has also further developed
PANet and other networks. In the target detection algorithm, Yolov4 [26] also uses the
PANet method based on the FPN module of YOLOv3 [33] to gather parameters for the
training phase to improve the performance of its detector, which proves the effectiveness
of PANet. That multi-level fusion architecture has been widely used recently.

3. Principle of the Method

This paper is based on PSENet: without an anchor and in one stage, it explores com-
mon text detection frameworks such as ResNet and FPN in other directions. The proposed
framework is mainly divided into two modules: the SENet module and the MPANet
module. In the residual structure of ResNet, the original PANet processes adjacent
layers through addition operations. The MPANet used in this paper is modified from
original PANet and connects the characteristic graphs of adjacent layers together to im-
prove the effect. Figure 1 clearly describes the proposed architecture of the scene text
detection algorithm.

Figure 1. An illustration of our framework. It includes a basic structure with SE blocks; a backbone of
feature pyramid networks; bottom-up path augmentation; the progressive scale expansion algorithm,
which predicts text regions, kernels, and similarity vectors to describe the text instances. Note that
we omit the channel dimensions of feature maps for brevity.

3.1. SENet Block

Convolution neural networks can only learn the dependence of local space according
to the receptive field’s size. A weight is introduced in the feature map layer considering
the relationship between feature channels. In this way, different weights are added to each
channel’s features to improve the learning ability of features. It should be noted that the SE
module adds weights in the dimension of channels. YOLOv4 uses the SE module to do
target detection tasks, proving that the SE module can improve the network.

In terms of function, the framework shown in Figure 2 consists of three parts: firstly,
a backbone network is constructed to generate the shared feature map, and then a squeeze and
excitation network is inserted. This framework’s key is adding three operations to the residual
structure: squeeze feature compression, exception incentive, and weight recalibration.
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Figure 2. Illustration of an SE block in our model.

Main steps of SENet:
(1) The spatial dimensions of features are compressed, and global average pooling is

used Capture the global context, compress all the spatial information to generate channel
statistics, compress the size of the graph from H × W to 1 × 1, and the one-dimensional
parameter 1 × 1 can obtain the global view of H × W, and the perception area is wider, that
is, the statistical information z, z ∈ R C. The c-th element of z in the formula is calculated
by the following formula:

zc = Fsq(uc) =
1

H × W

H

∑
i=1

W

∑
j=1

uc(i, j) (1)

where Fsq (·) is the compression operation, and uc is the c-th feature.
(2) A 1 × 1 convolution and Relu operation follow, reducing the dimension by 16 times

from 256; that is, the channel is transformed to 16—Relu activation function δ(x) = max(0,x),
dimension reduction layer parameter, W1 ∈ RC× C

r ; then, the dimension increment layer of
1 × 1 convolution stimulates the number of channels to the original number of 256.

S = Fex(Z, W) = σ(g(Z, W)) = σ(W2δ(W1Z)) (2)

where the sigmoid activation function σ(x) = 1
(1+e−x)

, and the dimension increase layer

parameter W2 ∈ RC× C
r ,Fex(·) is the excitation operation, S = [s1, s2, s3, ..., sc], sk ∈ RH×W

(k = 1, 2, 3, ..., c);
(3) The weight is generated for each feature channel’s importance after feature selection

is obtained, which are multiplied one by one with the previous features to complete the
calibration of the original features in the channel dimension.

∼
XC = Fscale(uC, sC) = sC · uC (3)

where
∼
X = [

∼
x1,

∼
x2, ...,

∼
xC], Fscale(uC, sC) refers to the corresponding channel product be-

tween the feature map uC ∈ RH×W and the scalar sC.

3.2. Architecture of MPANet

Inspired by FPN, which obtains the semantic features of multi-scale targets, we
propose a path aggregation network described in Figure 3; it can be added to the FPN to
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make the features of different scales more in-depth and more expressive. The emphasis is
on fusing low-level elements and adaptive features at the top level.

Our framework improves the bottom-up path expansion. We follow FPN to define
the layer that generates the feature map. The same space size is in the same network stage.
Each functional level corresponds to a specific stage. We also need ResNet-50 as the basic
structure; the output vector of Conv2-x, Conv3-x, Conv4-x, and Conv5-x in the ResNet
network is C2,C3,C4,C5. P5, P4, P3, and P2 are used to represent the feature levels from top
to bottom of FPN generation.

Pi =

{
f 3×3
1 (Ci) i = 5.

f 3×3
2 {Ci ⊕ F×2

upsample[ f 3×3
1 (Pi+1)]} i = 2, 3, 4.

(4)

where f 3×3
1 means that each Pi+1 first passes a 3 × 3 convolutional layer to reduce the

number of channels; then the feature map is upsampled to the same size as Ci and adds to
the Ci feature map elements; f 3×3

2 means that the summed feature map undergoes another
3 × 3 convolution operation to generate Pi.

Ni =

{
Pi i = 2.
f 3×3
2 { f 1×1[Pi+1‖ f 3×3

1 (Ni)]} i = 3, 4, 5.
(5)

Our augmented path starts from the bottom P2 and gradually approaches P5. The
spatial size is gradually sampled down by factor 2 from P2 to P5. We use N2,N3,N4,N5 to
represent the newly generated feature graph. Note that N2 is P2, without any processing,
and retains the original feature map’s information.

Figure 3. An illustration of our modification of the bottom-up path augmentation.

As shown in Figure 3, each building block needs a higher resolution feature map Ni
and a coarser Pi+1 to generate a new feature map Ni+1.

f 3×3
1 means that each feature map Ni passes through a 3×3 convolution layer with a

step size of 2 to reduce the space size firstly.
“‖“ means that the feature map Pi+1 of each layer is connected horizontally, not added,

but concatenated with the downsampled map.
After this operation, f 1×1 means that the number of channels in the concatenated

feature map will be doubled, through 1×1 convolution layer, the step size is 1, and then
the channel number is restored to 256.

f 3×3
2 means that the fused feature map is then processed by 3×3 convolution fusion

to generate Ni+1 layer for the next step. This is an iterative process, which ends when it
approaches P5. In these building blocks, we mostly use each feature map with 256 channels.

N = N2‖F×2
upsample(N3)‖F×4

upsample(N4)‖F×8
upsample(N5) (6)
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Then, the suggestions of each function are collected from the new feature mapping,
namely, N2,N3,N4,N5. The N3, N4 and N5 are upsampled to the size of N2, F×2

upsample ,

F×4
upsample, F×8

upsample refers to 2, 4, 8 times unsampling, and the four layers are concatenated
into a feature map.

inputPSE = F×2
upsample{ f 1×1[ f 3×3(N)]} (7)

where f 3×3 refers to convolution operation for reducing the number of channels to 256,
f 1×1 refers to the generation of 7 segmentation results. Fupsample refers to upsampling to the
size of the original image, and the output channel is 7, which is input into the PSE block.

4. Experiments

4.1. Experiment Configuration

The computer configuration shows in Table 1, the training details are as follows:
When training ICDAR2015 [34] and CTW1500 [35] datasets separately, we use a single

dataset, note that there are no extra data available for pretraining, e.g., SynthText [22]
and IC17-MLT [36]. Before loading them into the network for training, we preprocess
images with data augmentation, images are rescaled and returned with random ratios of
0.5,1.0,2.0,3.0; the rotated images randomize in the range [−10◦, 10◦]. Samples are randomly
selected from the transformed images, and the minimum output area of the bounding box
is calculated for ICDAR2015, the final result is generated by PSE results for CTW1500. All
the networks are using SGD. We train each independent dataset with a batch size of 10 on
two GPUs for 600 iterations. The training time for each lightweight model is only 24 h. The
initial learning rate is set to 1 × 10−3 , divided by 10 at 200 and 400 iterations. We ignore all
the text areas labeled as “DO NOT CARE“ in the dataset during the training stage, which
are not shown as data. Other hyper-parameter settings of the loss function are consistent
with PSENet, such as the number of λ is set to 0.7, the positive value of ohem is set to 3, etc.
During the testing stage, the confidence threshold is set to 0.89.

Table 1. Computer configuration.

Software Platform System Code Edit Framework

Ubuntu 16.04 LTS Python2.7 PyTorch1.2

Hardware Platform Memory GPU CPU

25 GB GeForce RTX 2080Ti 11G memory 28 core

4.2. Benchmark Datasets
4.2.1. ICDAR2015

This is a standard dataset proposed for scene text detection in the Challenge4 of
ICDAR2015 Robust Reading Competition, which is divided into two categories: the training
part contains 1000 image-text pairs; the testing part contains 500 image-text pairs. Each
picture is associated with one or more labels annotated with four vertices of the quadrangle.
Unlike the previous datasets (such as ICDAR2013 [37]) that only contain horizontal text,
the orientations of the reference text in this benchmark are arbitrary.

4.2.2. CTW1500

It is a challenging text detection dataset in long curve format, 1000 for training and 500
for testing form a total of 1500 images. Unlike traditional text datasets (such as ICDAR2017
MLT), the text instance in CTW1500 is marked by a 14-point polygon. The annotations in
this dataset are labelled in textline level, which can describe the arbitrary curved form.

4.3. Performance Evaluation Criteria

In this detection algorithm, three evaluation indexes are involved, namely:
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4.3.1. Recall

Recall rate(R) is the ratio of the number of positive classes predicted as positive classes
to the number of positive real positive classes in the dataset, that is, how much of all the
accurate text has been detected.

recall =
TP

TP + FN
(8)

4.3.2. Precision

The precision rate(P) represents the ratio of all samples to the total number of samples
predicted correctly, that is, how much text detected is accurate.

precision =
TP

TP + FP
(9)

4.3.3. F-measure

We aim to have higher precision and recall in the evaluation results, but they are rarely
in high results at the same time. Generally speaking, the former is higher while the latter is
often inclined to the lower side; the latter is higher while the former is usually lower.

Therefore, when considering the performance of the algorithm, the precision rate and
recall rate are not unique. We need to link the two to evaluate. Generally, the weighted
average of the two is used to measure the quality of the algorithm and reflect the overall
index, namely, F-measure(F). The formula is as follows:

2
F
=

1
precision

+
1

recall
(10)

the formula is transformed to:

F =
2PR

P + R
=

2TP
2TP + FP + FN

(11)

Here, TP, FP, and FN are the numbers of True Postive(the instance is a positive class
while the prediction is a positive class), False Postive(the instance is a negative class while
the prediction is a positive class), and False Negative(the instance is a positive class while
the prediction is a negative class), respectively.

4.4. Ablation Study
4.4.1. Effects of MPANet

We conduct several ablation studies on ICDAR2015 and CTW1500 datasets to verify
the effectiveness of the proposed MPANet(see Table 2). Note that all the models are trained
using only official training images. As shown in Table 2, MPANet obtains 1.01% and 1.21%
improvement in F-measure on ICDAR2015 and CTW1500, respectively.

Table 2. The performance gain of MPANet. * and † are results from ICDAR2015 and CTW1500,
respectively. FPN * and FPN † represent the results of using the FPN network model in PSE [21] on
ICDAR2015 and CTW1500, respectively.

Method Recall Precision F-Measure

FPN * 79.68 81.49 80.57
MPANet * 79.97 83.26 81.58

Gain * 0.29 1.77 1.01

FPN † 75.55 80.57 78.00
MPANet † 75.52 83.29 79.21

Gain † −0.03 2.72 1.21
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Figure 4 shows the train loss difference between modified PANet with SE block
(SEMPANet) and MPANet without SE block (MPANet). It demonstrates that the loss
function of SEMPANet drops faster on ICDAR2015. Figure 5 shows the loss comparison of
two models with and without SE block, which proves that the loss function of MPANet
model has a slightly faster convergence effect on average than the other one on CTW1500.
The difference of the loss function on the two datasets is reflected in the last two rows of
Table 4 and Table 5.
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Figure 4. Ablation study of an SE block on ICDAR2015. These results are based on (ResNet 50 and
SE block) and (ResNet 50 block) trained on MPANet.
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Figure 5. Ablation study of an SE block on CTW1500. These results are based on (ResNet 50 and SE
block) and (ResNet 50 block) trained on MPANet.

4.4.2. Effects of the Threshold λ in the Testing Phase

The hyper-parameter λ in the final test balances the influence between the three
evaluation indexes. Table 3 compares the prediction effects of MPANet and SEMPANet
with different λ within a short fluctuation range on the dataset ICDAR2015. We see that
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when SEMPANet with a λ of 0.89 is used, even if the performance is robust to changes in
λ, in the average performance of the three evaluation indexes, F-measure is higher than
PSENet, and Recall also performs best.

Table 3. The performance comparison of λ.

λ in MPANet Recall Precision F-Measure

0.93 78.77 85.92 82.19
0.91 79.82 84.25 81.98
0.89 79.97 83.26 81.58

λ in SEMPANet Recall Precision F-Measure

0.93 78.57 84.74 81.54
0.91 79.83 83.57 81.65
0.89 80.45 82.80 81.61

4.5. Experimental Results
4.5.1. Evaluation on Oriented Text Benchmark

In order to verify the effectiveness of the bankbone proposed in this paper, we have
carried out comparative experiments on ICDAR2015 with CTPN, Seglink, EAST, PSENet
and other mainstream methods. The ICDAR2015 dataset mainly includes horizontal, ver-
tical and slanted text. As shown in Table 4, the proposed method without external data
achieves a state-of-the-art result of 80.45%, 82.80% and 81.61% in recall, precision and
F-measure, respectively. Each paper in Table 4 has its representative detection method for
natural scene text characteristics. Compared with EAST, our precision is reduced by 0.8%,
while recall and F-measure are increased by 6.95% and 3.41%, respectively. Compared
with WordSup, the recall, precision and F-measure are increased by 3.45%, 3.5% and 3.41%,
respectively. Compared with PAN, our precision is slightly decreased by 0.1%, while
recall is increased by 2.65%, the F-measure reflecting the comprehensive detection ability is
increased by 1.31%. We have also compared with several lightweight networks in 2020.
As shown in Table 3, we selected the results of three indicators that have been improved to
above 80 when considering the overall performance. Compared with [38–40], our recall are
increased by 3.75% 0.25% and 0.77%, respectively.

Table 4. The single-scale results on ICDAR2015. “Ext“ indicates external data. MPANet is a model
without an SE module.

Method Year Ext Recall Precision F-Measure

CTPN [8] 2016 - 51.6 74.2 60.9
Seglink [6] 2017

√
73.1 76.8 75.0

SSTD [41] 2017
√

73.9 80.2 76.9
EAST [24] 2017 - 73.5 83.6 78.2

WordSup [42] 2017
√

77.0 79.3 78.2
DeepReg [43] 2017 - 80.0 82.0 81.0

RRPN [9] 2018 - 73.0 82.0 77.0
Lyu et al. [44] 2018

√
70.7 94.1 80.7

PAN [45] 2019 - 77.8 82.9 80.3
PSENet-1s [21] 2019 - 79.7 81.5 80.6

Pelee-Text++ [39] 2020
√

76.7 87.5 81.7
Qin et al. [40] 2020 - 80.20 82.86 81.56

Jiang et al. [38] 2020 - 79.68 85.79 82.62

MPANet - 79.97 83.26 81.58
SEMPANet - 80.45 82.80 81.61
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Compared with PSENet-1s, we can find that this paper’s method has improved recall,
precision, and F-measure. The rates are increased by 0.75%, 1.3% and 1.01%, respectively.
The comparison with the above methods on the ICDAR2015 dataset shows that the method
proposed in this paper has a high level of detection results for regular text and slanted
text. Overall, SEMPANet has a higher recall rate than MPANet on ICDAR2015, and its
recall also achieves state-of-the-art result in Table 4. Some qualitative results are visualized
in Figure 6.

(a)

(b)

Figure 6. Results on ICDAR2015. The green boxes in (a,b) and the red boxes in (b) represent the
evaluation results of the text and the error detection boxes of them, respectively.

4.5.2. Evaluation on Curve Text Benchmark

We have verified the superiority of our method in the Curve text by conducting
experiments on the public dataset CTW1500. The experimental results are shown in Table 5.
The data for the comparison methods in the table are all from their corresponding papers.
The CTW1500 dataset contains many curved letters. Methods such as CTPN and Seglink
often fail to detect and label with rectangular boxes accurately. The bankbone proposed
in this paper extracts richer features, combined with the post-processing part of PSENet,
which is not limited by rectangular boxes and can detect any shape well. Compared with
the benchmark method CTD+TLOC of the CTW1500 dataset, our accuracy rate has been
improved by 3.02%, 6.68%, and 4.64% in recall, precision and F-measure, respectively.
Compared with TextSnake, our recall is lower, while the precision is higher, which is
16.2% higher than TextSnake. The F-measure is lower by 2.16% compared with TextSnake.
Compared with [38,40], our precision are increased by 2.28% and 3.48%, respectively.

Compared with PSENet-1s, the method proposed in this paper has a lower recall
of 2.78%, however, the precision is greatly improved 3.48%. Due to the fact that many
letters in the CTW1500 dataset are too close or even glued and overlapped, they are still
difficult to separate. The F-measure of the method proposed in this paper reached 78.04%,
indicating that it can detect curved text well. Figure 7 demonstrates some detection results
of SEMPANet on CTW1500.
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Table 5. The single-scale results from CTW1500. * indicates the results from [35]. Ext is short for
external data used in the training stage. MPANet is a model without an SE module.

Method Year Ext Recall Precision F-Measure

CTPN * [8] 2016 - 53.8 60.4 56.9
Seglink * [6] 2017 - 40.0 42.3 40.8
EAST * [24] 2017 - 49.1 78.7 60.4

CTD+TLOC [35] 2017 - 69.8 77.4 73.4
TextSnake [46] 2018

√
85.3 67.9 75.6

CSE [47] 2019
√

76.0 81.1 78.4
PSENet-1s [21] 2019 - 75.6 80.6 78.0
Jiang et al. [38] 2020 - 75.9 80.6 78.2
Qin et al. [40] 2020 - 76.8 81.8 79.4

MPANet - 75.52 83.29 79.21
SEMPANet - 72.82 84.08 78.04

(a)

(b)

Figure 7. Some visualization results from CTW1500. The green boxes in (a,b) and the red boxes in (a)
represent the evaluation results of the text and the error detection boxes of them respectively.

4.6. Discussion of Results

Most of the text can be well detected: see the green text detection boxes in Figures 6
and 7. Invalid examples are shown in the red boxes in Figures 6b and 7b, some of which are
missing. We have analyzed the failure results of the proposed method. The following briefly
introduces several sets of test results and analyzes environmental factors. In Figure 6b, the
first image shows multiple text targets on the billboard. The red target of overly large size
cannot be detected correctly, which is mistakenly divided into three target boxes. Due to the
influences of the text and the background environment, the characters on the building in
the second picture are omitted; due to the impact of the surrounding colors and the dense
arrangement, the characters “3“ and “20“ in the third picture were left out. In Figure 7b, the
“HO“ in the first image is omitted; the two small samples in the second image are omitted;
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characters in the third image are close to the white background. In short, the test results
in an austere environment are good. For example, for text with a complex environment,
a small portion of the text with shallow definition can be detected. Since there are scenes
with many lines and colorful spots in the image, the existing model will classify the text as
clearly recognizable by the human eye but not detected as background.

The proposed method can achieve outstanding detection results. However, PSENet
still has limitations in processing small-sized text. Compared with the previous methods,
this paper uses SEMPANet to improve the overall structure and adjusts the network
parameters. In ICDAR2015, the recall rate R has been improved; P and F perform well;
there are still deficiencies in the curved text CTW1500.

5. Conclusions

In this paper, our network can be divided into two parts: feature extraction and
post-processing. The post-processing part using the progressive expansion algorithm can
guarantee the accuracy of text detection, but the experimental results prove that the simple
use of FPN network in the feature extraction part has insufficient feature extraction, which
leads to the decline of the text detection effect. This paper proposes a new scene text
detection method based on feature fusion. This method uses SENet as the basic network
and integrates the features of the MPANet to make up for the lack of features extracted
from the original network. The fusion strategy proposed in this paper enables the text
detection model to reach a detection level higher than that of the original network. Finally,
the progressive expansion algorithm is used for post-processing so that the entire model
can detect the text quickly and accurately. With the aim of improving the experimental
results, the method in this paper avoids the introduction of end-to-end networks with
too many parameters, and finally achieves the purpose of accurate and fast text detection,
which is of great significance for the research of natural scene text detection technology
oriented toward actual application scenarios. Furthermore, I hope to introduce new
mathematical tools for research and discussion. In that regard, a recent approach based on
geometric algebra [48] extracts features for multispectral images to be investigated. Finally,
other multi-dimensional data processing such as L1-norm minimization [49] and hashing
networks [50] remain primarily unexplored and can benefit from further research.
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Abstract: Internet of Things (IoT) can help to pave the way to the circular economy and to a more
sustainable world by enabling the digitalization of many operations and processes, such as water
distribution, preventive maintenance, or smart manufacturing. Paradoxically, IoT technologies and
paradigms such as edge computing, although they have a huge potential for the digital transition
towards sustainability, they are not yet contributing to the sustainable development of the IoT sector
itself. In fact, such a sector has a significant carbon footprint due to the use of scarce raw materials and
its energy consumption in manufacturing, operating, and recycling processes. To tackle these issues,
the Green IoT (G-IoT) paradigm has emerged as a research area to reduce such carbon footprint;
however, its sustainable vision collides directly with the advent of Edge Artificial Intelligence (Edge
AI), which imposes the consumption of additional energy. This article deals with this problem by
exploring the different aspects that impact the design and development of Edge-AI G-IoT systems.
Moreover, it presents a practical Industry 5.0 use case that illustrates the different concepts analyzed
throughout the article. Specifically, the proposed scenario consists in an Industry 5.0 smart workshop
that looks for improving operator safety and operation tracking. Such an application case makes use
of a mist computing architecture composed of AI-enabled IoT nodes. After describing the application
case, it is evaluated its energy consumption and it is analyzed the impact on the carbon footprint
that it may have on different countries. Overall, this article provides guidelines that will help future
developers to face the challenges that will arise when creating the next generation of Edge-AI G-IoT
systems.

Keywords: Green IoT; IIoT; edge computing; AI; edge AI; sustainability; digital transition; digital
circular economy; Industry 5.0

1. Introduction

The current digital transformation offers substantial opportunities to industry for
building competitive and innovative business models and complex circular supply chains;
however, such a transformation also implies severe implications concerning sustainability,
since the Information and Communications Technology (ICT) industry has a significant
environmental footprint. In order to reach the milestones defined by the United Nations
Agenda for Sustainable Development [1] and to implement the visions of circular economy,
it is necessary to provide solutions in an efficient and sustainable way during their whole
life cycle. Such a sustainable digital transition towards a smart circular economy is enabled
by three key technologies: IoT, edge computing, and Artificial Intelligence (AI).

It is estimated that Internet of Things (IoT) and Industrial IoT (IIoT) technologies,
which enable ubiquitous connectivity between physical devices, can add, only in industrial
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applications, USD 14 trillion of economic value to the global economy by 2030 [2]. In
addition, the development of the classic view of the Internet of People (IoP) [3] and the
Internet Protocol (IP) led to a convergence of IoT technologies over the last two decades,
which paved the way for the so-called Internet of Everything (IoE) [4]. Such a concept is
rooted in the union of people, things, processes, and data to enrich people’s lives.

The explosion of IoT/IIoT technologies and their potential to pave the way to a more
sustainable world (in terms of full control of the entire life cycle of products), can also lead
to some pitfalls that represent a major risk in achieving the milestones defined by the UN
Agenda for Sustainable Development [1]. As part of the IoT Guidelines for Sustainability
that were addressed in 2018 by the World Economic Forum, a recommendation to adopt
a framework based on the UN Sustainable Development Goals (SDGs) [1] to evaluate
the potential impact and measure the results of the adoption of such recommendations
was put forward [2]; however, in 2010–2019, and considering Goal 12: Ensure sustainable
consumption and production [1], electronic waste grew by 38% and less than 20% has been
recycled. Paradoxically, although these technologies have a huge potential for the digital
transformation towards sustainability, they are not yet contributing to the sustainable
development of the ICT sector. Specifically, such a contribution is expected for the IoT
sector, which has been seen as the driving force for a sustainable digital transition. The
need for policies that effectively promote the sustainable development of new products
and services is crucial and can be seen as a societal challenge in the years to come.

The concept of Green IoT (G-IoT) [5,6] is defined in [7] as: “energy-efficient procedures
(hardware or software) adopted by IoT technologies either to facilitate the reduction in the greenhouse
effect of existing applications and services or to reduce the impact of the greenhouse effect of the
IoT ecosystem itself ”. In the former case, the use of IoT technologies may help to reduce
the greenhouse effect, whereas the latter focuses on the optimization of IoT greenhouse
footprints. Moreover, the entire life cycle of a G-IoT system should focus on green design,
green production, green utilization, and finally, green disposal/recycling, to have a neutral
or very small impact on the environment [7].

IoT devices have increasingly higher computational power, are more affordable and
more energy-efficient, which helps to sustain the progress of Moore’s law to bring a
sustainable IoT revolution in the global economy [8]; however, this vision directly collides
with the advent of the concept of Edge Intelligence (EI) or Edge Artificial Intelligence
(Edge-AI), where the processing of the IoT collected data is performed at the edge of the
network, which imposes additional challenges in terms of latency, cybersecurity, and more
specially, energy efficiency.

This article summarizes the most relevant emerging trends and research priorities for
the development of Edge-AI G-IoT systems in the context of sustainability and circular
economy. In particular, the following are the main contributions of the article:

• The essential concepts and background knowledge necessary for the development of
Edge-AI G-IoT systems are detailed.

• The most recent Edge-AI G-IoT communications architectures are described together
with their main subsystems to allow future researchers to design their own systems.

• The latest trends on the convergence of AI and edge computing are detailed. Moreover,
a cross-analysis is provided in order to determine the main issues that arise when
combining G-IoT and Edge-AI.

• The energy consumption of a practical Industry 5.0 application case is analyzed to
illustrate the theoretical concepts introduced in the article.

• The most relevant future challenges for the successful development of Edge-AI G-IoT
systems are outlined to provide a roadmap for future researchers.

The remainder of this article is structured as follows. Section 2 introduces the essential
concepts that will be used in the article. Section 3 analyzes the main aspects related to
the development of G-IoT systems, including their communications architecture and their
main subsystems. Section 4 analyzes the convergence of AI and edge computing to create
Edge-AI systems. Section 5 provides a cross-analysis to determine the key issues that arise
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when combining G-IoT and Edge-AI systems. Section 6 presents a practical Industry 5.0
application case and evaluates the energy consumption of a mist computing Edge-AI G-IoT
model. Section 7 outlines the main future challenges that stand in the way of leveraging
Edge-AI G-IoT systems. Finally, Section 8 is devoted to the conclusions.

2. Background

2.1. Digital Circular Economy
2.1.1. Circular Economy

Circular Economy (CE) promotes an enhanced socio-economic paradigm for sustain-
able development. It aims to fulfill current needs without jeopardizing the needs of future
generations under three dimensions: economic, social, and environmental. The European
Green Deal [9], Europe’s new agenda for sustainable growth, is an ambitious action plan
to move to a clean circular economy, to restore biodiversity, to reduce emissions by at
least 55% by 2030, and to become the world’s first climate neutral continent by 2050. The
EC strategy is well aligned with the United Nations (UN) 2030 Agenda for Sustainable
Development [10]. The 17 Sustainable Development Goals (SDGs) are at the heart of the
EU policymaking across all sectors.

CE reforms current linear “take-make-dispose” economic models based on unsus-
tainable mass production and consumption and proposes a new model that is restora-
tive by design (materials, components, platforms, resources, and products add as much
value as possible throughout their life cycle). Such a model also aligns the needs of
the different stakeholders through business models, government policies, and consumer
preferences [11]. At the end of their lifetime, much of these products and components are
regenerated and/or recycled.

The European Commission adopted a new Circular Economy Action Plan (CEAP) in
March 2020, as one of the main key elements of the European Green Deal [12]. Such an
action plan promotes initiatives along the entire life cycle of products, from design to the
end of their lifetime, encouraging sustainable consumption and waste reduction. According
to the World Economic Forum [13], achieving a CE transition will require unprecedented
collaboration, given that, in 2019, only 8.6% of the world was circular, although CE can
yield up to USD 4.5 trillion in economic benefits in 2030 [14].

2.1.2. Digital Circular Economy (DCE)

Data centers and digital infrastructures require substantial levels of energy. ICT
accounts for 5 to 9% of the total electricity demand with a potential increase to 20% by
2030 [15]. In addition, materials (e.g., physical resources, raw materials) linked to the
digital transformation are also a problem: the world produces over 50 million tons of
electronic and electrical waste (e-waste) annually and just 20% is formally recycled. Such
an amount of waste will reach 120 million tons annually by 2050 [16].

The challenge posed by the increase in digital technologies requires the application
of circular economy principles to the digital infrastructure. While currently, the focus of
the sector is mainly on meeting the needs in a sustainable way (e.g., energy efficiency and
cybersecurity), the supply of critical raw materials will be an issue in the coming years.
Moreover, the opportunities provided by the DCE to the digital transition should be also
explored (e.g., new business models, new markets, and reduced information asymmetry).

2.1.3. G-IoT and Edge-AI for Digital Circular Economy (DCE)

Digital technologies are a key enabler for the upscaling of the circular economy, as
they allow for creating and processing data required for new business models and complex
circular supply chains. In addition, they can close the information and transparency gaps
that currently slow down the scale-up of DCE.

There is a need for further integration of digital enabling technologies such as func-
tional electronics (e.g., nanoelectronics, flexible, organic and printed electronics or electronic
smart systems), blockchain [17], edge computing [18], UAVs [19], 5G/6G [20], big data, and
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AI [21] into existing circular business approaches to provide information and additional
services.

Specifically, G-IoT and Edge-AI have the potential to substantially leverage the adop-
tion of DCE concepts by organizations and society in general in two main ways. First, by
considering an open G-IoT architecture [11], where G-IoT devices have circularity enabling
features (e.g., end-to-end cybersecurity, privacy, interoperability, energy harvesting capa-
bilities). Second, by having a network of Edge-AI G-IoT connected devices that provide
fast smart services and real-time valuable information to the different stakeholders (e.g.,
designers, end users, suppliers, manufacturers, and investors). Thus, supply chain visibility
and transparency of the product, of the production system, and the whole business, are
ensured. Moreover, stakeholders can rely on real-time accurate information to make the
right decisions at the right time to use resources effectively, to improve the efficiency of the
processes, and to reduce waste. Furthermore, asset monitoring and predictive maintenance
can increase product lifetime. Figure 1 illustrates the previous concepts and provides an
overall view of the main areas impacted by the combined use of G-IoT and Edge-AI.
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Figure 1. Edge-AI G-IoT main areas and their digital circular life cycle.

2.2. Industry 5.0 and Society 5.0

The Industry 5.0 paradigm is still being characterized by industry and academia, but
the European Commission has already defined its foundations, due to the impact that such
a concept will have in the coming years for the European industry [22]. The proposed
concept seeks to correct some Industry 4.0 aspects that have not been properly addressed
or that have become controversial due to forgetting essential values such as social fairness
and sustainability. Thus, according to the European Commission, the foundations of
Industry 5.0 have to be completely aligned with societal goals and to aim higher than
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just considering jobs and economic growth. As a consequence, Industry 5.0 is focused on
sustainable manufacturing and industrial operator well-being [23].

It is important to note that Industry 5.0 has not been conceived as a complete in-
dustrial revolution, but as a complement to Industry 4.0 that contemplates aspects that
link emerging societal trends to industrial development [24]; therefore, the Industry 5.0
paradigm looks for the improvement of smart factory efficiency through technology, while
minimizing environmental and social impacts.

It is also worth pointing out that the vision of Industry 5.0 according to the European
Commission seems to be clearly inspired by a previous concept: Society 5.0. Such a concept
was first put forward by the Japanese government in 2015 [25] and later (in 2016) it was
fostered by Keidanren, one of the most relevant business federations of Japan [26]. Society
5.0 goes beyond industrial company digitalization and proposes a collaborative strategy
for the whole Japanese society, as it happened throughout history with the four previous
society revolutions: Society 1.0 and Society 2.0 are related to hunters and gatherers; Society
3.0 is associated with the industrial revolution that occurred at the end of the 18th century;
and Society 4.0 arose from the information-based economies related to the spread of the
Internet and on industrial digitalization. As a continuation to Society 4.0, Society 5.0 still
looks for expanding economic development, but, at the same time, it keeps in mind societal
and environmental concerns.

2.3. Technology Enablers

In order to reach the UN Sustainable Development Goals and to implement the visions
of the digital circular economy, Society 5.0, and Industry 5.0, it is necessary to provide
solutions to integrate the physical and virtual worlds in an efficient and sustainable way.
Thus, the next subsections describe the three key technology enablers that this article is
focused on and that need to be optimized to make our daily lives and industrial processes
greener.

2.3.1. IoT and IIoT

The term IoT refers to a network of physical devices (i.e., “things”) that can be con-
nected among themselves and with other services that are deployed over the Internet. Such
devices are usually composed of sensors, actuators, communications transceivers, and
computationally constrained processing units (e.g., microcontrollers). IoT devices have
multiple applications in fields such as appliance remote monitoring [27], home automa-
tion [28], or precision agriculture [29]. The adaptation of the IoT principles to industrial
environments is referred to as IIoT and allows for deploying many remotely monitored
and controlled sensors, actuators, and smart machinery in industrial scenarios [30–32].

2.3.2. Cloud and Edge Computing

Most current IoT applications are already deployed on cloud computing based sys-
tems since they allow for centralizing data storage, processing, and remote monitor-
ing/interaction; however, such centralized solutions have certain limitations. The cloud
itself is considered a common point of failure, since attacks, vulnerabilities, or maintenance
tasks can block it and, as a consequence, the whole system may stop working [33]. In
addition, it is important to note that the number of connected IoT devices is expected to
increase in the next years [34] and, consequently, the number of predicted communications
with the cloud may overload it if it is not scaled properly.

Due to the previous constraints, in recent years, new architectures have been proposed.
In the case of edge computing, it is aimed at offloading the cloud from tasks that can be
performed by devices placed at the edge of an IoT network, close to the end IoT nodes.
Thus, different variants of the edge computing paradigm have been put forward, such as
fog computing [35], proposed by Cisco to make use of low-power devices on the edge, or
cloudlets [36], which consist of high-end computers that perform heavy processing tasks
on the edge [37,38].
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2.3.3. AI

AI is a field that looks for adding intelligence to machines [39]. Such intelligence
can be demonstrated in the form of recommendation systems, human-speech recognition
solutions, or autonomous vehicles that are able to make decisions on their own. The
mentioned examples are able to collect information from the real world and then process it
in order to provide an output (i.e., a solution to a problem). In some cases, AI systems need
to learn previously how to solve a specific problem, so they need to be trained.

In the case of IoT systems, AI systems receive data from the deployed IoT nodes,
which usually collect them from their sensors. In traditional IoT architectures, such data
are transmitted to a remote cloud where they are processed by the AI system and a result
is generated, which usually involves making a decision that is communicated to the user
or to certain devices of the IoT network.

The problem is that real-time IoT systems frequently cannot rely on cloud-based
architectures, since latency prevents the system from responding timely. In such cases, the
use of Edge-AI provides a solution: edge computing devices are deployed near the IoT end
nodes, so lag can be decreased, and IoT node requests are offloaded from the cloud, thus
avoiding potential communications bottlenecks when scaling the system.

Although Edge-AI is a really useful technology for IoT systems, their combination
derives into systems that can consume a significant amount of energy, so Edge-AI IoT
systems need to be optimized in terms of power consumption. The next sections deal
with such a problem: first, the factors that impact the development of energy-efficient (i.e.,
green) IoT systems are studied and then the power consumption of Edge-AI systems is
analyzed.

3. Energy Efficiency for IoT: Developing Green IoT Systems

3.1. Communications Architectures for G-IoT Systems

Before analyzing how G-IoT systems try to minimize energy consumption, it is first
necessary to understand which components make up an IoT architecture. Thus, Figure 2
depicts a cloud-based architecture, currently the most popular IoT architecture, which is
built around the cloud computing paradigm. Such a cloud collects data from remote IoT
sensors and can send commands to IoT actuators. The cloud is also capable of interacting
with third-party services (usually hosted in servers or other cloud computing systems) and
with remote users, to whom it provides management software.

Cloud-based IoT systems have allowed the spread of IoT systems, but, since they are
commonly centralized, they suffer from known bottlenecks (e.g., Denial of Service (DoS)
attacks) and from relatively long response latency [33]. To tackle such issues, in recent years,
new IoT paradigms have been explored, such as edge, fog, or mist computing [35,40], which
offload the cloud from certain tasks to decrease the amount of node requests and to reduce
latency response. In the case of edge computing, it adds a new layer between the cloud
and the IoT devices (where the gateway is placed in Figure 2) to provide them with fast-
response services through edge devices such as cloudlets or fog computing gateways [41].
Fog computing gateways are computationally constrained devices (e.g., routers and Single-
Board Computers (SBCs)) that provide support for physically distributed, low-latency,
and Quality of Service (QoS) aware applications [35,37]. Cloudlets allow for providing
real-time rendering or compute-intensive services, which require deploying high-end PCs
in the local network [36]. Regarding mist computing devices, they perform tasks locally at
the IoT nodes and can collaborate with other IoT nodes to perform complex tasks without
relying on a remote cloud [37,40,42–44]. Thus, mist nodes reduce the need for exchanging
data to the higher layers of the architecture (thus saving battery power), but, in exchange,
they are responsible for carrying out multiple tasks locally.
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Figure 3 depicts an example of mist computing based architecture. In this figure,
for the sake of clarity, no edge computing layer is included, but it is standard to make
use of it in practical applications [42]. The two layers that are present are the cloud layer,
which works similarly to the previously described architectures, and the mist computing
layer, which is composed by mist nodes. Such nodes embed additional hardware to
perform the necessary local processing tasks. In addition, it is worth noting that mist
nodes often can communicate directly among themselves, thus avoiding the need for using
intermediate gateways.

IoT Node Layer

IoT Devices

Gateway

Smart Bulb Smart Irrigator Temperature Sensor

Remote Users

Other IoT 
Networks

Cloud

IoT Services

Internet

Third-Party Services

Management
Software

Figure 2. Cloud-based IoT architecture.
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Figure 3. Example of mist computing architecture.

After analyzing the previous architectures, it can be stated that, to create G-IoT
systems, it is necessary to consider the efficiency of the hardware and software of their
main components: the IoT nodes, the edge computing devices, and the cloud. The next
sections delve into such a topic, reviewing the most relevant contributions of the state of
the art.

3.2. Types of G-IoT Devices

The development and deployment of efficient G-IoT devices is conditioned by their
hardware and software. It is also important to note that the requirements of the G-IoT
devices differ significantly: G-IoT nodes do not have the same energy consumption needs
as edge devices (e.g., fog computing gateways, cloudlets, Mobile Edge Computing (MEC)
hardware) or the cloud. Nonetheless, all the involved hardware have in common the
fact that it is essential to select the main parts that allow for optimizing their energy effi-
ciency (the control and power subsystems), and the communications interfaces. Regarding
software, the control software, the implemented communications protocols, and the used
security algorithms are essential when minimizing energy consumption. The next sub-
sections analyze such hardware and software components in order to guide future G-IoT
developers.

3.3. Hardware of the Control and Power Subsystems

There are different approaches to maximize the energy efficiency of IoT deployments.
One of the most important is to find the right trade-off between the different capabilities
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of the control hardware and their energy consumption. Currently, the most popular
IoT nodes are based on microcontrollers. Such devices are usually cheap, have enough
processing power to perform control tasks, can be easily reprogrammed, and have low-
energy consumption. There are other more sophisticated alternatives, such as Digital
Signal Processors (DSPs), System-On-Chips (SOCs), Central Processing Units (CPUs), Field-
Programmable Gate Arrays (FPGAs), Complex Programmable Logic Devices (CPLDs),
Graphics Processing Units (GPUs), and Application-Specific Integrated Circuits (ASICs).

DSPs are usually power efficient, especially certain models designed specifically
for low power consumption (e.g., Texas Instruments TMS320C5000). Central Processing
Units (CPUs) (e.g., Intel Xeon) are general-purpose processing units that offer an adequate
trade-off between performance and power consumption, but they are usually optimized
for high-speed and parallel processing. With respect to SoCs, they integrate medium-to-
high performance microcontrollers and peripherals, so they consume more power than
traditional microcontrollers, but they are more appropriate for lightweight systems. In the
case of FPGAs, they offer very good performance for executing deterministic tasks, but its
programming is not as easy as with microcontrollers, and they require to power the used
logic continuously. There are also hybrid solutions that combine the benefits of FPGAs
and CPUs, known as Field-Programmable Systems-on-Chips (FPSoCs) [45]. In the case
of CPLDs, they can execute tasks faster than FPGAs, but their maximum allowed design
complexity is inferior to the one offered by FPGAs. GPUs were created to offload graphic
computation from the CPUs, but current products can include several thousands of cores
designed for the efficient execution of complex functions. Regarding ASICs, they offer even
higher performance than FPGAs and other embedded devices, since they are optimized
for power consumption, but their development cost is very high (usually in the order of
millions of dollars).

Besides choosing the right control hardware, it is necessary to optimize the power
subsystems. Most current IoT node deployments rely on batteries. Such batteries can store a
finite amount of energy, and they need to be replaced or recharged frequently. Maintenance
tasks are costly and cumbersome, especially in large deployments, industrial confined
spaces, or remote areas. In addition, such tasks are critical when developing power-hungry
applications. Battery replacement also leads to a heavy carbon footprint due to the use
of scarce raw materials, the battery manufacturing process, and the involved recycling
processes; therefore, there is a need for self-sustainable solutions such as environmental
energy harvesting. Such solutions exploit ubiquitous energy sources in the deployment
area without requiring external power sources and ease maintenance tasks. The most
common harvesting techniques are related to solar and kinetic energy sources. Examples
of different energy harvesting techniques are presented in [46–49].

3.4. Communications Subsystem

G-IoT devices can make use of different technologies for their communications in-
terfaces. The communications with the cloud are usually through the Internet or a wired
intranet, so this section focuses on the energy efficiency of the wireless communications
technologies used by G-IoT nodes and edge devices. Table 1 compares the characteristics
of some of the most relevant communications technologies according to their power con-
sumption, operating band, maximum range, expected data rate, their relevant features,
and main applications.
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Table 1. Main characteristics of the most relevant communications technologies for G-IoT nodes.

Technology Power Consumption Frequency Band
Maximum

Range
Data Rate Main Features Popular Applications

NFC Tags require no batteries,
no power 13.56 MHz <20 cm 424 kbit/s Low cost Ticketing and payments

Bluetooth 5 LE
1–20 mW, Low power and

rechargeable (days to
weeks)

2.4 GHz <400 m 1360 kbit/s Trade-off among
different PHY modes Beacons, wireless headsets

EnOcean
Very low consumption or

battery-less thanks to using
energy harvesting

868–915 MHz 300 m 120 kbit/s Up to 232 nodes Energy harvesting building
automation applications

HF RFID Tags require no batteries 3–30 MHz
(13.56 MHz)

a few
meters <640 kbit/s NLOS, low cost Smart Industry, payments,

asset tracking

LF RFID Tags require no batteries 30–300 KHz
(125 KHz) <10 cm <640 kbit/s NLOS, durability, low

cost
Smart Industry and

security access

UHF RFID Batteries last from days to
years 30 MHz–3 GHz tens of

meters <640 kbit/s NLOS, durability, low
cost

Smart Industry, asset
tracking and toll payment

UWB/IEEE
802.15.3a

Low power, rechargeable
(hours to days) 3.1 to 10.6 GHz < 10 m >110 Mbit/s Low interference Fine location,

short-distance streaming

Wi-Fi (IEEE
802.11b/g/n/ac)

High power consumption,
rechargeable (hours) 2.4–5 GHz <150 m up to 433 Mbit/s

(one stream)

High-speed, ubiquity,
easy to deploy and

access

Wireless LAN connectivity,
Internet access

Wi-Fi
HaLow/IEEE

802.11ah

Power consumption of
1 mW 868–915 MHz <1 km 100 Kbit/s per

channel

Low power, different
QoS levels

(8192 stations per AP)
IoT applications

ZigBee

Very low power
consumption, 100–500μW,

batteries last months to
years

868–915 MHz,
2.4 GHz <100 m Up to 250 kbit/s Up to 65,536 nodes Smart Home and industrial

applications

LoRa Long battery life, it lasts
>10 years 2.4 GHz kilometers 0.25−50 kbit/s High range, resistant

to interference
Smart cities, M2M

applications

SigFox

Battery lasts 10 years
sending 1 message,
<10 years sending

6 messages

868–902 MHz 50 km 100 kbit/s Global cellular
network M2M applications

G-IoT node communications need to provide a trade-off between features and energy
consumption. For example, Near-field Communication (NFC) [50] is able to deliver a
reading distance of up to 30 cm, but NFC tags usually do not need to make use of batteries
since they are powered by the readers through inductive coupling. NFC is a technol-
ogy derived from Radio Frequency Identification (RFID), which, despite certain security
constraints [51], in recent years, has experienced significant growth in home and industrial
scenarios [52,53] thanks to its very low power consumption. It must be noted that RFID
and NFC are essentially aimed at identifying items, but they can be used for performing
regular wireless communications among G-IoT nodes (e.g., for reading embedded sensors).
Nonetheless, there are technologies that have been devised to provide more complex in-
teractions. For instance, Bluetooth implementations such as Bluetooth Low Energy (BLE)
can provide wireless communications distances between 10 and 100 m [54] and very low
energy consumption thanks to the use of beacons [55], which are a sort of lightweight IoT
devices able to transmit packets at periodic time intervals.

The widely popular Wi-Fi (i.e., IEEE 802.11 standards) can also provide indoor and
outdoor coverage easily and inexpensively for IoT nodes; however, its energy consumption
is usually relatively high and proportional to the speed rate. Nonetheless, new IEEE 802.11
standards have been proposed in recent years so as to reduce energy consumption. For
instance, Wi-Fi Hallow offers low power consumption (comparable with Bluetooth) while
maintaining high data rates, and a wider coverage range.

In terms of green communications, the following are currently the most popular and
promising technologies:

• ZigBee [56]. It was conceived for deploying Wireless Sensor Networks (WSNs) that
are able to provide overall low energy consumption by being asleep most of the time,
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just waking up periodically. In addition, it is easy to scale ZigBee networks, since they
can create mesh networks to extend the IoT node communications range.

• LoRA (Long-Range Wide Area Network) and LoRAWAN [57]. These technolo-
gies have been devised to deploy Wide Area IoT networks while providing low
energy consumption.

• Ultrawideband (UWB). It is able to provide low-energy wide-bandwidth communica-
tions as well as centimeter-level positioning accuracy in short-range indoor applica-
tions. Mazhar et al. [58] evaluate different UWB positioning methods, algorithms, and
implementations. The authors conclude that some techniques (e.g., hybrid techniques
combining both Time-of-Arrival (TOA) and Angle-of-Arrival (AOA)), although more
complex, are able to offer additional advantages in terms of power consumption
and performance.

• Wi-Fi Hallow/IEEE 802.11ah. In contrast to Wi-Fi, it offers very low energy con-
sumption by adopting novel power-saving strategies to ensure an efficient use of
energy resources available in IoT nodes. It was specifically created to address the
needs of Machine-to-Machine (M2M) communications based on many devices (e.g.,
hundreds or thousands), long range, sporadic traffic needs, and substantial energy
constraints [59].

3.5. Green Control Software

There is a significant number of recent publications that propose different techniques
and protocols for network control and power saving. For instance, there are G-IoT protocols
for interference reduction, optimized scheduling (e.g., switching selectively inactive sensor
nodes and put them into deep sleep mode), resource allocation and access control, temporal
and spatial redundancy, cooperative techniques in the network, dynamic transmission
power adjustment, or energy harvesting [6].

Power-efficient network routing is also a hot topic. For instance, Xie et al. [60] re-
viewed recent works on energy-efficient routing and propose a novel method for relay node
placement. Other authors focused on solutions for service-aware clustering [61]. Another
interesting work can be found in [62], where the authors present an energy-efficient IoT
architecture able to predict the adequate sleep interval of sensors. The experimental results
show significant energy savings for sensor nodes and improved resource utilization of
cloud resources. Nonetheless, this solution is not valid for applications with real-time
requirements or that require constant availability. Finally, recent approaches such as [63]
proposed solutions that combine distributed energy harvesting-enabled mobile edge com-
puting offloading systems with on-demand computing resource allocation and battery
energy level management.

3.6. Energy Efficient Security Mechanisms

A number of attacks can be performed to break the confidentiality, integrity, and
availability of IoT/IIoT networks (e.g., jamming, malicious code injection, Denial of Service
(DoS) attacks, Man-in-the-Middle (MitM) attacks, and side-channel attacks) [64]. In order
to have protection for such attacks, secure deployment of G-IoT networks should involve
three main elements: architecture, hardware, and the security mechanisms across the
different devices.

The resource-constrained nature of IoT devices, specially IoT nodes, imposes limita-
tions on the inclusion of complex protocols to encrypt and secure communications [65].
This is particularly challenging when implementing cryptosystems that require substan-
tial computational resources. Hash functions, symmetric cryptography, and public-key
cryptosystems (i.e., asymmetric cryptographic systems such as Rivest–Shamir–Adleman
(RSA) [66], Elliptic Curve Cryptography (ECC) [67,68], or Diffie–Hellman (DH) [69]) are
among the most used cryptosystems.

Public-key cryptosystems are essential for authenticating transactions and are part
of Internet standards such as Transport Layer Security (TLS) (TLS v1.3 [70]), currently the
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most-extended solution for securing TCP/IP communications. Regarding cipher suites
recommended for TLS, Rivest–Shamir–Adleman (RSA) and Elliptic Curve Diffie–Hellman
Ephemeral (ECDHE) are the most popular ones.

The execution of cryptographic algorithms must be fast and energy efficient, but still
provide adequate security levels. Such a trade-off has attracted scientific attention, which
is currently an active area of research [71], especially since recent advances in computation
have made it easy to break certain schemes (e.g., 1024-bit RSA is broken [72]); however,
there are few articles in the literature that address the impact of security mechanisms on
energy consumption for G-IoT systems. For instance, in [42], the authors compare the
energy consumption of different cryptographic schemes, showing that, at the same security
level, some schemes are clearly more efficient in terms of energy and data throughput than
others when executed on certain IoT devices.

Moreover, hardware acceleration can be used for keeping energy consumption and
throughput values at a reasonable level when executing public-key cryptography algo-
rithms [73]. Furthermore, the use of specific hardware can also speed up the execution of
cryptographic algorithms such as hash algorithms [74] or block ciphers [75].

3.7. G-IoT Carbon Footprint

The concept of carbon footprint (or carbon dioxide emissions coefficient) measures the
amount of greenhouse gases (including CO2) caused by human or non-human activities. In
the case of the development and use of a technology, it involves a carbon footprint related
to its life cycle: from the design stage to the recycling of products. This is especially critical
for IoT, since a large number of connected devices is expected in the coming years (up to
30.9 billion in 2025 [76]), which will consume a significant amount of electricity and, as a
consequence, a high volume of carbon dioxide will be emitted into the environment. G-IoT
has emerged as an attractive research area whose objective is to study how to minimize the
environmental impact related to the deployment of IoT networks in smart homes, factories,
or smart cities [77].

The following are some of the challenges that must be faced in order to reduce IoT
network carbon footprint and environmental impact [78,79]:

• Hardware power consumption. The used IoT hardware is the basis for the IoT network,
so its energy consumption should be as energy efficient as possible while preserving
its functionality and required computing power.

• IoT node software energy consumption. Software needs to be optimized together with
the hardware, so developers need to introduce energy-aware constraints during the
development of G-IoT solutions. Such optimizations are especially critical for certain
digital signal processing tasks such as compression, feature extraction, or machine
learning training [80].

• IoT protocol energy efficiency. The IoT relies on protocols that enable communicating
between the multiple nodes and routing devices involved in an IoT network. As a
consequence, such protocols need to be energy efficient in terms of software implemen-
tation and should consider the minimization of the usage of communication interfaces.
For instance, Peer-to-Peer (P2P) protocols are well-known for being intensive in terms
of the number of communications they manage, although some research has been
dedicated to reducing their energy consumption [81–85].

• RF spectrum management optimization. The increasing number of deployed IoT
nodes will derive into the congestion of the RF spectrum, so its management will need
to be further optimized to minimize node energy consumption [77].

• Datacenter sustainability. As the demand for IoT devices grows, ever-increasing
amounts of energy are needed to power the datacenters where remote cloud services
are provided. This issue is especially critical for corporations such as Google or Mi-
crosoft, which rely on huge data centers and, in fact, the U.S. Environmental Protection
Agency (EPA) already warned about this problem in 2007 [86]. As a consequence of
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such a warning, carbon footprint estimations were performed in order to determine
the emissions related to the construction and operation of a datacenter [87].

• Data storage energy usage. In cloud-centric architectures, most of the data are stored
in a server or in a farm of servers in a remote datacenter, but some of the latest
architectures decentralize data storage to prevent single-point-of-failure issues and
avoid high operation costs. Thus, for such decentralized architectures, G-IoT requires
minimizing node energy consumption and communications. This is not so easy,
since devices are physically scattered, and they usually make use of heterogeneous
platforms whose energy optimization may differ significantly.

• Use of green power sources. IoT networks can become greener by making use of
renewable power sources from wind, solar, or thermal energy. IoT nodes can also
make use of energy-harvesting techniques to minimize their dependence on batteries
or extend their battery life [46–49]. Moreover, battery manufacturing and end-of-life
processes have their own carbon footprint and impact the environment with their
toxicity. Furthermore, IoT architectures can be in part powered through decentralized
green smart grids, which can collaborate among them to distribute the generated
energy [78].

• Green task offloading. Traditional centralized architectures have tended to offload
the computing and storage resources of IoT devices to a remote cloud, which requires
additional power consumption and network communications that are proportional to
the tasks to be performed and to the latency of the network. In contrast, architectures
such as the ones described in Section 3.1, can selectively choose which tasks to offload
to the cloud. Thus, most of the node requests are processed in the edge of the network,
which reduces latency and network resource consumption due to the decrease in the
number of involved gateways and routers [88]. Nonetheless, G-IoT designers must be
aware of the energy implications of decentralized systems [89].

4. AI and Edge Computing Convergence

As previously mentioned in Section 2.3.3, AI can be broadly defined as a science
capable of simulating human cognition to incorporate human intelligence into machines.
Machine Learning (ML) can be seen as a specific subset of AI, as a technique for training
algorithms that focuses on empowering computer systems with the ability to learn from
data, perform accurate predictions, and therefore, make decisions. The training stage in ML
involves the collection of huge amounts of data (train set) to train an algorithm that allows
the machine to learn from the processed information. Then, after training, the algorithm
is used for inference in new data [90]. Deep Learning (DL) is a subset of ML that can
be seen as the natural evolution of ML. DL algorithms are inspired by the human brain
cognitive processing patterns (i.e., by its ability for pattern identification and classification),
using DL algorithms that are trained to perform the same tasks in computer systems. By
analogy, the human brain typically attempts to interpret a new pattern by labeling it and
performing subsequent categorization [91]. Once new information is received, the brain
attempts to compare it to a known reference before reasoning, which is conceptually what
DL algorithms perform (e.g., Artificial Neural Networks (ANNs) algorithms aim to emulate
the way the human brain works). In [91], Samek et al. identified two major differences
between ML and DL:

1. DL can automatically identify and select the features that will be used in the clas-
sification stage. In contrast, ML requires the features to be provided manually (i.e.,
unsupervised vs. supervised learning).

2. DL requires high-end hardware and large training data sets to deliver accurate
results, as opposed to ML, which can operate in low-end hardware with smaller
data sets in the training stage (i.e., ML is typically adopted in resource contained
embedded hardware).
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The use of such AI techniques is highly dependent, not only on the hardware spec-
ifications and the available computational power, but also on the adopted inference ap-
proach [92].

4.1. AI-Enabled IoT Hardware

AI-enabled IoT devices are paving the way to implement new and increasingly com-
plex cyber–physical systems (CPS) in distinct application domains [93–95]. The increasing
complexity of such devices is typically specified based on SWaP requirements (i.e., re-
duced Size, Weight, and Power) [96]. When considering the IoT/IIoT ecosystems, changes
in SWaP requirements, and also in unit cost, may impact the overall performance and
functionality of the end devices, since the number of devices tends to increase at a steady
pace, the cost per unit becomes more and more relevant. Note that the number of devices
deployed is expected to increase massively in the coming years, with many of these devices
operating as sensors and/or actuators, which will demand increasing processing power
enabling effective edge AI deployment. On the other hand, portability is also relevant,
and therefore, power will often come from an external battery or an energy harvesting
subsystem, which imposes several challenges in the design of AI-enabled IoT devices. For
example, in [97], a study regarding low-power ML architectures has been put forward
and results have shown that sub-mW power consumption can potentially be deployed in
“always-ON” AI-enabled IoT nodes.

4.1.1. Common Edge-AI Device Architectures

The G-IoT hardware previously described in Section 3.2 has evolved in recent years as
illustrated in Figure 4 in order to provide AI-enable functionality. Thus, basic IoT hardware
(represented at the top of Figure 4), typically uses a traditional computing approach
that combines an embedded processor (CPU) or a microcontroller (MCU) with on-board
memory, sensor/actuator interfacing—digital (e.g., SPI, I2C, 1-Wire) and analog (ADCs,
DACs) inputs/outputs—and basic connectivity (e.g., Wi-Fi, Bluetooth).

AI-enabled IoT device architectures (depicted in the middle of Figure 4), use a near-
memory computing approach based on a multicore CPU or FPGA, and typically includes
external sensors and actuators, and extended connectivity options such as NB-IoT, Lo-
RaWAN, or 5G/6G support.

Lastly, an AI-specific IoT device also includes cognitive capabilities and typically uses
an in-memory computing approach, which may be supported by a dedicated AI SoC,
specifically included to execute learning algorithms (this architecture is depicted at the
bottom of Figure 4). IoT devices are getting increasingly powerful and computationally
efficient as new SoCs with integrated AI chips become available. For example, the usage of
FPGAs in AI-enabled IoT devices allows high-speed inference, parallel execution, and the
implementation of application-specific computational architectures without the need for
expensive ASICs; however, the total power consumption may be a problem when using
FPGAs in power-sensitive applications [96].
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Figure 4. Basic, AI-enabled and AI-specific IoT device architectures.

4.1.2. Embedded AI SoC Architectures

Embedded AI SoCs are used in specific IoT architectures [98], allowing for the exe-
cution of ML algorithms directly on the end device, and therefore detecting patterns and
trends in data, and enabling the transmission of low-bandwidth data streams with contex-
tual information to enhance decision-making and empower prognosis throughout the use
in-device prediction models and ML, as it is represented at the bottom in Figure 4. In [96],
Mauro et al. achieved high performance in power saving for both logic and SRAM design,
using Binary Neural Networks (BNNs). BNNs enable the deployment of deep models on
resource-constrained devices [99], because they may be trained to produce outcomes com-
parable to full-precision alternatives while maintaining a smaller footprint, a more scalable
structure, and better error resilience. Such characteristics enable the implementation of com-
pletely programmable SoC IoT end-devices capable of performing hardware-accelerated
and software-defined algorithms at ultra-low power, reaching 22.8 Inference/s/mW while
using 674 μW [98].

4.1.3. AI-Enabled IoT Hardware Selection Criteria

Running an AI model at an AI-enable IoT device presents four main advantages when
compared with the classical cloud-based approach:

1. Reliable Connectivity: data can be gathered and processed on the same device instead
of relying on a network connection to transmit data to the cloud, which reduces the
probability of network connection problems.

2. Reduced Latency: when processing is performed locally, all communications-related la-
tencies are avoided, resulting in an overall latency that converges to the inference latency.
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3. Increased Security and Privacy: reducing the need for communicating between the
IoT edge device and the cloud means reducing the risk that data will be compromised,
lost, stolen, or leaked.

4. Bandwidth Efficiency: reducing the communications between IoT edge devices and
the cloud, also reduces bandwidth needs and the overall communications cost.

Table 2 compiles several AI-enabled IoT hardware boards that are able to run ML libraries,
such as Tensorflow Lite [100]. TensorFlow Lite is an open-source ML library specifically
designed for resource-constrained IoT devices, that typically use MCU-based architectures.

Table 2. AI-enabled IoT hardware compatible with TensorFlow Lite.

Board Processor Power Connectivity Architecture Type Cryptographic Engine Cost

Arduino Nano 33

BLE Sense
[101]

ARM Cortex-M0

32-bit@64 MHz
52 μA/MHz BLE AI-enabled Yes €27

SparkFun Edge [102]
ARM Cortex-M4F

32-bit@48/96 MHz
6 μA/MHz BLE 5 AI-enabled Yes €15

Adafruit EdgeBadge [103]
ATSAMD51J19A

32-bit@120 MHz
65 μA/MHz BLE/WiFi AI-enabled Yes €35

ESP32-DevKitC [104]
Xtensa dual-core

32-bit@160/240 MHz
2 mA/MHz BLE/WiFi AI-enabled Yes €10

ESPEYE-DevKit [105]
Xtensa dual-core

32-bit@160/240 MHz
2 mA/MHz BLE/WiFi AI-enabled Yes €50

STM32 Nucleo-144 [106]

ARM Cortex-M4

Nucleo-L4R5ZI

32-bit@160/120 MHz

43 μA/MHz Ethernet AI-enabled No €100

4.2. Edge Intelligence or Edge-AI

Typically, in cloud-centric architectures, IoT devices can transfer data to the cloud
using an Internet gateway. In this architecture, the raw data produced by IoT devices are
pushed to a centralized server without processing; however, since IoT devices are becoming
more efficient and powerful, new possibilities arise at the network edge, enabling real-time
intelligent processing with minimal latency. Edge Intelligence (EI) or Edge-AI are the
common names given to this approach, and its performance is often expressed in terms of
model accuracy and overall latency [107].

A common IoT device (also known as a “dumb” device) tends to generate large
quantities of raw and low-quality data, which may have no operational relevance. In
most cases, data are noisy, intermittent, or change slowly, being useless in specific periods.
Moreover, the management and transmission of these useless data streams consume
vital power and tend to be bandwidth-intensive. On the other hand, the inclusion of
in-device/edge intelligence results in the reduction in the data dimension by turning
data into relevant information, lowering power consumption, latency, and the overall
bandwidth needs. Intelligence at the edge of the network enables the distribution of the
computational cost among edge devices. In this computational approach, data can be
classified and aggregated before its transmission up to the cloud. By using this approach,
only information with historical value is archived, which can be later used for tuning
prediction models and optimizing the cloud-based processing.
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4.2.1. Model Inference Architectures

The three major Edge-AI computing paradigms are [108]:

(i) On-device computation: it relies on AI techniques (e.g., Deep Neural Networks
(DNNs)) that are executed on the end device.

(ii) Edge-based computation: it computes on edge devices the information collected from
end devices.

(iii) Joint computation: it allows for processing data on the cloud during training and
inference stages.

Given the limited resources that are typically available in most IoT devices, bringing
AI to the edge can be challenging. Reducing model inference time has been implemented
successfully at the cost of decreasing the overall model inference accuracy. According to
Merenda et al. [109], to effectively run an AI model (after the compression stage) in an
embedded IoT device, the hardware selection must be carefully performed.

4.2.2. Edge-AI Levels

Besides the well-known Cloud Intelligence (CI), which consists in training and in-
ferencing the DNN models fully in the cloud, EI, as described in [110], can be classified
into the six levels depicted in Figure 5. The quantity of data sent up to the cloud tends
to decrease as the level of EI increases, resulting in lower communications bandwidth
and lower transmission delay; however, this comes at the cost of increased computational
latency and energy consumption at the network’s edge (including IoT nodes), implying
that the EI level is application-dependent and must be carefully chosen based on several
criteria: latency, energy efficiency, and privacy and communications bandwidth cost.

Inference and training are the two main computing stages in an NN. Depending on the
Edge-AI level (as illustrated in Figure 5), the computational power is typically distributed
between the IoT node or the edge layer, which requires increased computational power. In
recent years, AI-specific hardware accelerators have enhanced high-performance inference
computation at the edge of the network, namely in embedded and resource-constrained
devices. For example, in [111], Karras et al. present an FPGA-based SoC architecture to
accelerate the execution of ML algorithms at the edge. The system presents a high degree
of flexibility and supports the dynamic deployment of ML algorithms, which demonstrate
an efficient and competitive performance of the proposed hardware to accelerate AI-based
inference at the edge. Another example is presented in [112] by Kim et al., where they
propose a co-scheduling method to accelerate the convolution layer operations of CNN
inferences at the edge by exploiting parallelism in the CNN output channels. The developed
FPGA-based prototype presented a global performance improvement of up to 200%, and
an energy reduction between 14.9% and 49.7%. Finally, in [113], the authors introduce
NeuroPipe, a hardware management method that enables energy-efficient acceleration
of DNNs on edge devices. The system incorporates a dedicated hardware accelerator
for neural processing. The proposed method enables the embedded CPU to operate
at lower frequencies and voltages, and to execute faster inferences for the same energy
consumption. The provided results show a reduction in energy consumption of 11.4% for
the same performance.
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Figure 5. Edge-AI Levels and model inference computation architectures: on-device, edge-based, and joint.

4.2.3. Embedded ML

Conventional IoT devices are ubiquitous and low-cost, but natively resource-constrained,
which limits their usage in ML tasks; however, data generated at the edge are increasingly
being used to support applications that run ML models. Until now, edge ML has been
predominantly focused on mobile inference, but recently several embedded ML solutions
have been developed to operate in ultra-low-power devices, typically characterized by
its hard resource constraints [97]. Recently, a new field of ML, known as Tiny ML, was
put forward to enable inference at the edge endpoints. ML inference at the edge can
optimize the overall computational resource needs, increases privacy within applications,
and enhances system responsiveness. TinyML, which has been coined due to its ML infer-
ence power consumption of under a milliWatt, overcomes the power limitations of such
devices, enabling low-power and low-cost distributed machine intelligence. TinyML is
an open-source ML framework specifically designed for resource-constrained embedded
devices. It is fully compatible with several low-cost, globally accessible hardware platforms
and was designed to streamline the development of embedded ML applications [114].

TinyML technologies and applications target battery-operated devices, including
hardware, algorithms, and software for on-device inference and data analytics at the edge.
In [115], MLCommons, an open engineering consortium, presented a recent benchmark
(MLPerf™ Tiny Inference v0.5). This inference benchmark suite targets ML use cases
on embedded devices by measuring how rapidly a trained NN can process new data in
ultra-low-power devices. Embedded ML is a new field in which AI-based sensor data
analytics is carried out near to where the data are collected in real time. The benchmark
presented in [115] focuses on a number of use cases that rely on tiny NNs (i.e., models
lower than 100 kB) to analyze sensor data such as audio and video to provide intelligence
at the edge of the network. The benchmark consists of four ML tasks that include the use
of microphone and camera sensors in different embedded devices:
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1. Visual Wake Words (VWW): classification task for binary images that detects the pres-
ence of a person. For instance, an application use case is in-home security monitoring.

2. Image Classification (IC): small image classification benchmark with 10 classes, with
several use cases in smart video recognition applications.

3. Keyword Spotting (KWS): uses a neural network to detect keywords from a spectro-
gram, with several use cases in consumer end devices, such as virtual assistants.

4. Anomaly Detection (AD): uses a neural network to identify anomalies in machine
operating sounds, and has several application cases in industrial manufacturing (e.g.,
predictive maintenance, asset tracking, and monitoring).

This benchmark aims to measure performance for ML in embedded systems, which
operate at a microwatt level and include cameras, wearables, smart sensors, and other IoT
devices that demand a certain level of intelligence. Thus, the objective of the benchmark
is to measure the performance of such constrained systems in order to achieve higher
efficiency over time. The results have been reported based on the embedded ML approach
and its hardware and software. Table 3 compares the benchmark results for distinct
embedded hardware when running a trained model by measuring the processing latency
in milliseconds (i.e., how fast systems can process inputs to produce a valid result) and the
respective consumed energy in μJ [116].

4.3. Edge-AI Computational Cost

Computation needs for AI are growing rapidly. Recent numbers show that large AI
training runs are doubling every 3.5 month and, since 2012, the computational needs have
increased by more than 300,000 times [117]. In recent years, a lot of effort has been put into
increasing AI accuracy and, especially with DL, accuracy has increased at a steady pace.
This increase in accuracy has been very important in making AI a reality in real-world
applications; however, to run such high accuracy models, more and more computational
resources need to be considered. In the short and medium term, AI will face major
challenges that put its sustainability and ecological footprint into perspective. Due to the
explosion of its use in several application domains, increased pressure on computational
resources is already happening, not only to train but also to run these models, which are
increasingly more accurate but also, computationally heavier.

Due to this novel and more sustainable practices regarding AI implementation and
deployment are yet to come. In [118], Schwartz et al. introduced the concepts of Red and
Green AI, as a way to clarify and distinguish the two major currents AI approaches.

Red AI is known for relying on large models and datasets, as its performance is
typically evaluated through accuracy, which is usually obtained through the use of massive
processing power. In this context, the relation between model performance and model
complexity is known to be logarithmic (i.e., an exponentially bigger model is required for a
linear improvement in performance [119]). Furthermore, the quantity of training data and
the number of tuning experiments, present the same exponential growth [118]. In each of
these cases, a small performance improvement comes at an increased computational cost.

Green AI, on the other hand, focuses on achieving results without increasing or,
preferably, lowering computational costs. Unlike Red AI, which results in rapidly increasing
computing costs and, as a result, a rising carbon footprint, Green AI has the opposite
effect [118]. In Green AI, efficiency is usually prioritized over accuracy when evaluating
performance. As a result, Green AI focuses on model efficiency, which includes the amount
of effort necessary to create a given result using AI, the amount of work required to train a
model, and, if appropriate, the total of all tuning experiments. Efficiency may be assessed
using a variety of metrics, including carbon emissions, power consumption, real-time
elapsed time, number of parameters, and so on.
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4.4. Measuring Edge-AI Energy Consumption and Carbon Footprint

The overall cost of using AI can be obtained by considering the resources involved in
all processing stages, which include energy consumption and CO2 emissions.

4.4.1. Energy Consumption

In [120], Pinto et al. define energy consumption as an accumulation of power dissipa-
tion over time:

Energy Consumption = P × t (1)

Note that Energy Consumption is measured in joules and Power (P) is measured in
watts. The relationship between these two quantities can be easily interpreted through an
example: if a software program takes 5 s to execute and dissipates 5 watts, it consumes
25 joules of energy. In the case of software energy consumption, attention must be paid not
only to the software under execution, but also to the hardware that executes the software,
the environmental context of execution, and its duration.

4.4.2. CO2 Emissions

In [121], Strubell et al. presented a study that focused on the estimation of the financial
and environmental cost of training a variety of recently successful NN models. To estimate
CO2 emissions (CO2e), they proposed a simple method based on the multiplication of the
energy consumption with the average produced CO2. After measuring the CO2e for several
models using different hardware, they concluded that the CO2 required for training one
model can range from 12 kg up to 284 t. Note that this CO2e footprint is highly significant
when compared with the world average CO2 emissions per capita, whose estimate was
4.56 t in 2016 [122]. Moreover, they evaluated the cost of training these models in the cloud,
which raised from USD 41 up to USD 3,201,722, respectively.

4.5. Measuring Edge-AI Performance

Although this article focuses on Edge-AI sustainability, there are other factors that
should be considered during the evaluation of the performance of an Edge-AI system.
Specifically, four main metrics are often used for the performance evaluation of AI algo-
rithms [123]: accuracy, memory bandwidth, energy efficiency, and execution time.

4.5.1. Accuracy

Classification accuracy is the simplest performance metric and is commonly used with
balanced datasets (i.e., the number of samples per class is balanced). Accuracy is defined
as the number of correct predictions, divided by the total number of predictions, and is
implemented by comparing the annotated ground truth data with the predicted results:

Accuracy =
tp + tn

tp + tn + f p + f n
(2)

where tp represents the true positives, tn the true negatives, f p are the false positives, and
f n the false negatives. Note that, if unbalanced data are considered (i.e., the number of
samples per class is not balanced), a new accuracy metric, known as balanced accuracy,
should be computed. The balanced accuracy is computed by normalizing tp and tn by the
number of positive and negative samples, respectively, then perform their sum, and divide
by two, as indicated in Equation (3):

Balanced accuracy =
TP + TN

2
(3)

where TP represents the normalized true positives and TN the normalized true negatives;
however, a fair performance evaluation between algorithms should not only rely on the
accuracy, as Red AI tends to favor.
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4.5.2. Memory Bandwidth

In [124], Jouppi et al. compare the performance of several processors used by Google
cloud-based systems on inference tasks when running various types of NNs. The anal-
ysis uses a roofline model, where the performance of the algorithms is plotted based on
the computational performance (operations per second) versus the operational intensity
(number of operations per byte of data). Typically, in cloud-based architectures, the overall
performance is limited by the memory bandwidth, and as the operational intensity tends to
increase, the performance is limited by the computational capacity of the computer system
architecture. Recent hardware architectures, notably SoC architectures, are focused on
increasing the memory bandwidth to address the continuously growing demand of AI [98].

4.5.3. Energy Efficiency

A simple metric that can be used to measure the software energy efficiency is presented
in [123] and is shown in Equation (4). In Edge-AI, the useful work performed can be defined
as the number of model inferences. As a result, Energy Efficiency can be measured as the
number of inferences per Joule.

Energy Efficiency =
Useful Work Performed

Energy Consumption
=

Number of Inferences
Energy Consumption

(4)

4.5.4. Execution Time

This metric represents the execution time of a specific task in the ML process to
obtain a valid result, which may include, model training or model inference [123], and
are measured in seconds, being typically referred as the “training time” and “inference
time”, respectively.

5. Cross-Analysis of G-IoT and Edge-AI: Key Findings

Although Edge-AI G-IoT system deployment in real-world applications has already
started, the research and development are still undergoing, and some issues compromise
its wider acceptance, of which we highlight: trustworthiness (e.g., algorithm transparency,
traceability, privacy, and data integrity); capacity (e.g., communications bandwidth and
coverage, hardware constraints such as power and computational power, security in
edge distributed architectures); heterogeneity (e.g., dealing with distinct data sources
and formats as well as adapting with a variety of operational, technical, and human
requirements); and scale (e.g., inadequate volume of publicly available data, high-quality
data required to effectively simulate the physical world’s complexity). In addition, the
cross-analysis of the G-IoT and Edge-AI literature allows for obtaining the following key
findings that can be useful for future developers and researchers:

• Communications between G-IoT nodes and Edge-AI devices are essential, so develop-
ers should consider the challenges related to the use of energy efficient transceivers
and fast-response architectures. Thus, researchers need to contemplate aspects such
as the use of low-power communications technologies (e.g., ZigBee, LoRa, UWB, and
Wi-Fi Hallow), the management of the RF spectrum or the design of distributed AI
training, learning algorithms, and architectures that achieve low-latency inference
(either distributed or decentralized [107]).

• Although the most straightforward way to implement Edge-AI systems is to deploy
the entire model on edge devices, which eliminates the need for any communica-
tions overhead, when the model size is large or the computational requirements
are very high, this approach is unfeasible and it is necessary to include additional
techniques that involve the cooperation among nodes to accomplish the different AI
training and inference tasks (e.g., federated learning techniques [107]). Such tech-
niques should minimize the network traffic load and communications overhead in
resource-constrained devices.
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• Edge-AI G-IoT systems should consider that the different nodes of the architecture
(e.g., mist nodes, edge computing devices, and cloudlets) have heterogeneous capabili-
ties in terms of communications, computation, storage, and power; therefore, the tasks
to be performed should be distributed in a smart way among the available devices
according to their capabilities.

• Besides heterogeneity, developers should take into account that G-IoT node hardware
constrains the performance of the developed Edge-AI systems. Such hardware must
be far more powerful than traditional IoT nodes and provide a suitable trade-off
between performance and power consumption. In addition, such hardware should be
customized to the selected Edge-AI G-IoT architecture and application.

• Currently, most G-IoT systems rely on traditional cloud computing architectures,
which do not meet some of the needs of Edge-AI G-IoT applications in terms of
high availability, low latency, high network bandwidth, and low power consumption.
Moreover, current cloud-based approaches may be compromised by cyberattacks;
therefore, new architectures such as the ones based on fog, mist, and edge computing
should be considered to increase the robustness against cyberattacks and to allow
for choosing which AI tasks to offload to the cloud, if any, while reducing network
resource consumption.

• Green power sources and energy-harvesting capabilities for Edge-AI G-IoT systems
still need to be studied further. Although batteries are typically used to meet power
requirements, future developers should analyze the use of renewable power sources or
energy-harvesting mechanisms to minimize energy consumption. In addition, the use
of decentralized green smart grids for Edge-AI G-IoT architectures can be considered.

• High-security mechanisms are usually not efficient in terms of energy consumption,
so it is important to analyze their performance and carry out practical energy mea-
surements for the developed Edge-AI G-IoT systems.

• Developers should consider using energy efficiency metrics for the developed AI
solutions. For instance, in [123] the authors propose four key indicators for an objective
assessment of AI models (i.e., accuracy, memory bandwidth, energy efficiency, and
execution time). The trade-off between such metrics will depend on the environment
where the model will be employed (e.g., "increased safety" scenarios impose low
execution time).

6. Application Case: Developing a Smart Workshop

6.1. Workshop Characterization and Edge-AI System Main Goals

To illustrate the concepts described in the previous sections, it was selected a practical
Industry 5.0 use case in a real-world scenario. Specifically, the selected Industry 5.0 scenario
consists in an industrial workshop that looks for improving operator safety through IIoT
sensors/actuators and Edge-AI. The chosen scenario is based on the previous work of the
authors [125–127], which participated in a Joint Research Unit together with one of the
largest shipbuilders in the world (Navantia). The specific scenario is the pipe workshop
that such a company owns in its shipyard in Ferrol (Spain). The workshop manufactures
pipes as follows:

1. First, raw pipes are stored in the Reception Area (shown in Figure 6a). Thus, they
are collected by the workers as they are needed. If the pipes are delivered with
dirt or grease, then, before being stored in the Reception Area, they are cleaned in
the Cleaning Area (in Figure 6b). Operators need to keep away from the Cleaning
Area unless authorized because of the presence of dangerous chemical products (e.g.,
chloridric acid, caustic soda) and water that is pressurized and hot.
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(a) Reception Area. (b) Cleaning Area.
Figure 6. Relevant areas of the workshop.

2. Second, every pipe is first cut in the Cutting Area according to the required dimen-
sions. Really powerful (and dangerous) mechanical and plasma saws (shown in
Figure 7a,b) are used in the Cutting Area. It is important to note that pipes are moved
from the Reception Area to the Cutting Area (or from one area to any other area) by
stacking them on pallets, which are carried by big gantries installed in the ceiling of
the workshop (several pallets can be seen on the foreground of Figure 7b).

(a) Mechanical saws in the Cutting Area. (b) Plasma saw in the Cutting Area.
Figure 7. Saws of the Cutting Area.

3. Third, pipes are bent in the Bending Area. There are three large bending machines in
such an area. Operators need to always keep a safe distance and safety glasses when
operating a bending machine.

4. Fourth, pipes are cleaned and moved to the Manufacturing Area, where accessories
are added. For instance, operators may need to weld a valve to a pipe. Welding
requires taking specific safety measures and only the authorized operators can access
the welding area when someone is working.

5. Finally, pipes are stacked into pallets, packed, and then stored in two different areas
of the workshop (shown in Figure 8a,b).

(a) Outbound storage area. (b) Another outbound storage area.
Figure 8. Main storage areas.

Figure 9 depicts the main areas of the workshop floor map and shows the position
of the IIoT cameras that monitor the presence of the workers. In addition, the dashed
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semicircles indicate the estimation of the field of view of such cameras. Specifically, Figure 9
shows 18 distinct areas of the factory floor that are equipped with cameras for continuous
monitoring (24 h a day, 7 days a week) of a complete manufacturing process. Note that,
in this specific application case, images should be neither transmitted nor recorded in
the cloud, not only due to bandwidth and connectivity limitations, but also due to the
impositions of the General Regulation on Data Protection (GDPR) in force.

Figure 9. Floor map of the smart workshop.

The objective of the proposed solution is to harness “visual wake words” in order to
detect the presence of the workers with the help of cameras and then lock or unlock the
deployed industrial devices and machinery, and automate the available security mecha-
nisms. For instance, industrial robot arms or cutting machines can harm a worker during
their operation when safety distance is not respected. Thus, the system takes advantage of
the proposed mist AI-enabled architecture (described next in Section 6.2) to achieve two
specific application goals:

• Increased Safety: automatically detect humans in the proximity of machinery that
is operating. After detection, a sound warning should be physically generated in
the surrounding zone. After triggering the sound warning, if the detection persists
and the estimated distance between the operating machine and the human does not
increase, a shutdown command should be sent to the operating machine.

• Operation Tracking: automatically detect and track human operators and moving
machinery. The tracking information is then used for the continuous improvement of
manufacturing processes.

Besides the mentioned goals, it is important to note that the proposed system impacts
different circular economy aspects:

• Smarter use of resources: the detection of the presence of operators allows for deter-
mining when machinery should be working and when it should be shut down.

• Reduction of total annual greenhouse gas emissions: the smarter use of resources
decreases energy consumption and, as a consequence, carbon footprint.

• Enhanced process safety: human proximity detection allows for protecting against
possible incidents or accidents with the deployed industrial devices and machinery.

6.2. System Architecture

The architecture proposed for the application case is shown in Figure 10. As it can be
observed, there are two main layers:

• Mist Computing Layer: it is composed of AI-enabled IIoT nodes that run AI algorithms
locally. Thus, after the AI training stage, nodes avoid exchanging image data through
the network with edge computing devices or with the cloud, benefiting from:

– Lower latency. Since most of the processing is carried out locally, the mist
computing device can respond faster.
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– Communications problems in complex environments can be decreased. Local
processing avoids continuous communications with local edge devices or remote
clouds. Thus, potential communications problems are reduced, which is really
important in industrial scenarios that require wireless communications [126].

– Fewer privacy issues. Camera images do not need to be sent to other devices
through the network, so potential attacks to such devices or man-in-the-middle
attacks can be prevented and thus avoid image leakages.

– Improved local communications with other nodes. Mist devices can implement
additional logic to communicate directly with other mist devices and machines,
so responses and data exchanges are faster, and less traffic is generated due to
not needing to make use of intermediate devices such as edge computing servers
or the cloud.

Despite the benefits of using mist AI-enabled nodes, it is important to note that IIoT
nodes, since they integrate cameras/sensors and the control hardware, are more
expensive and complex (i.e., there are more hardware parts that can fail).

• Cloud: it behaves like in the edge computing based architecture. As a consequence, it
deals with the requests of the mist devices that cannot be handled locally.

Figure 10. Mist-computing-based communications architecture.

6.3. Energy Consumption of the Mist AI-Enabled Model

In this application case, latency is a critical factor, and a low fault-tolerance policy
needs to be implemented. To achieve the “Increase Safety” goal, the use of object detection
models with low inference latencies is mandatory. In this case, the human movement
dynamics are typically low, since, running on the factory floor is typically not allowed.
Moreover, with respect to the “Operations Tracking” goal, the inference latency is not
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critical, since it does not affect the obtained results, due to the deterministic nature of the
inference latency.

To estimate the energy cost of the overall system, it was considered the data presented
in Table 3 for an STM32 Nucleo-L4R5ZI processor running TensorFlow Lite with a Mobinet-
V1 model (Task #1-Visual Wake Words) to simulate the “Increase Safety” task and a Resnet-
V1 model (Task #2-Image Classification) for simulating the “Operations Tracking” task. The
former is a classification task for binary images that detect the presence of a person with an
inference latency of 603.14 ms and energy consumption of 24,320.84μJ per inference (1 joule
= 2.77777778 × 10−7 kWh). The latter is an image classification benchmark with 10 classes
for smart video recognition applications with an inference latency of 704.23 ms and energy
consumption of 29,207.84μJ per inference. At this stage, it is important to notice that only
inference is being considered, since no information is available regarding the training stage,
namely the consumed energy.

First, the number of inferences can be estimated for a year and one camera, and
then the overall power consumption can be extrapolated to all cameras, based on the
previous assumptions:

NVWW =
365 × 24 × 3600 s

603.14 ms
= 52,286,368 inferences/year (5)

EVWW = NVWW × 24,320.84 μJ = 12,716,483.9 J = 0.353 kWh/device (6)

NIC =
365 × 24 × 3600 s

704.23 ms
= 44,780,824 inferences/year (7)

EIC = NIC × 29,207.84 μJ = 1,307,951.2 J = 0.363 kWh/device (8)

where Nx represents the number of inferences per year for model x (VWW or IC) and Ex
represents the total equivalent energy consumed in one year per device. In this particular
case, the energy refers only to the one consumed by the inference task. Given that, in this
study, we are only focused on the additional power consumption of the inference stage,
the power consumed by all functional hardware blocks has not been included.

Equation (6) indicates that each camera, when running the VWW model, consumes
approximately 0.353 kWh in a year. When running the IC model for the same period
(Equation (8)), each camera consumes approximately 0.363 kWh; therefore, by extrapolat-
ing for the 18 cameras, we achieve a total consumption (in one year) of 6.354 kWh and
6.534 kWh, for the VWW and IC models, respectively. This power consumption is on the
Green-AI magnitude scale, and the yearly inference cost of all the 18 cameras can easily be
maintained by a conventional renewable energy source, such as a photovoltaic panel.

6.4. Carbon Footprint

Carbon footprint can be estimated by using the formula in Equation (9) [128]:

CO2e(g) = Ex(KWh)× IN(g/KWh) (9)

where CO2e is the number of grams of emitted CO2, Ex (x equal to VWW or IC) is the
consumed energy (in KWh) and IN is the carbon intensity (in grams of emitted CO2 per
KWh). This latter parameter can be obtained through the data published publicly by many
countries or by organizations such as the European Union, but it is easier to obtain it from
Electricity Maps [129], an open-source project that collects such data automatically and
plots them through a user-friendly interface. Such a website also indicates the energy
sources used by each country (an example of such sources for France, Portugal, Spain,
California, and the province of Alberta is shown in Figure 11). The data were obtained for
25 July 2021 and, as it can be observed, energy sources differ significantly from one country
to another:
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• France (data source: Réseau de Transport d’Electricité (RTE)): it has almost got rid
of CO2-intensive energy sources thanks to generating most of its electricity through
nuclear power. Nonetheless, on 25 July 2021, when the data in Figure 11 were collected,
only roughly 31% of France’s energy came from renewable sources.

• Portugal (data source: European Network of Transmission System Operators for
Electricity (ENTSOE)): its most relevant energy source is natural gas, but, when the
data were gathered, approximately 43% of its energy came from renewable sources
and none from nuclear power.

• Spain (data source: ENTSOE): like Portugal, it has a dependency on natural gas, but,
thanks to a powerful solar energy sector, it generates roughly 53% of its energy from
renewable sources. In addition, almost 24% of the Spanish energy comes from nuclear
power, so a total of 77% of the energy is generated from low-carbon technologies.

• California (data source: California Independent System Operator (CAISO)): in spite of
being a state of the U.S., it was selected due to its crucial role in IT and cloud-based
services. Nearly 42% of its energy on 25 July 2021 was generated through low-carbon
technologies, but almost 58% came from natural gas.

• Alberta (data source: Alberta Electric System Operator (AESO)): it was included as
an example of a rich area with a key role in the oil and natural gas production in
North America. As it can be observed in Figure 11, most of its energy (almost 84%) is
generated by natural gas and coal, which results in the generation of a large amount
of CO2 emissions.

Figure 11. Energy sources for France, Portugal, Spain, California, and Alberta (25 July 2021).

Figure 12 shows the estimated CO2 emissions for the energy consumption estimated
in the previous section. As it can be easily guessed, emissions increase with the number of
deployed mist AI-enabled devices; however, such growth changes dramatically from one
country to another depending on the energy source: while near-zero emission countries like
France are barely impacted by the increase in the number of deployed devices, a province
like Alberta emits more than 17 times more CO2 for 1000 deployed devices.
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Figure 12. Estimated CO2 emissions for different number of deployed devices for different countries.

It is also possible to obtain the monetary cost of running the mist AI-enabled devices
(as an example, the average prices for April 2021 for each territory were considered), which
is depicted in Figure 13. As it can be seen in the figure, the cost of running the system in
Alberta would be cheaper but will result in more CO2 emissions. In contrast, the countries
with the largest shares of renewable energy sources (Spain and Portugal) are the ones
with the most expensive electricity. Nonetheless, please note that such a link between
the use of renewable energies and cost is impacted by other external factors (e.g., taxes,
environmental policy, and energy trading).

Figure 13. Electricity cost for different number of deployed devices and for different countries.

7. Future Challenges of Edge-AI G-IoT Systems

Despite the promising foreseen future of Edge-AI G-IoT systems, it is possible to
highlight some open challenges that must be faced by future researchers:

• Additional mechanisms are needed to offer protection against network, physical,
software, and encryption attacks. In addition, it is critical to have protection against
adversarial attacks during on-device learning [130].

• Future communications networks. 5G/6G are intended to deliver low-latency com-
munications and large capacity; therefore, moving the processing tasks to the network
edge will demand higher edge computing power, which puts G-IoT and Edge-AI
convergence as fundamental technology enablers for the next 6G mobile infrastructure.
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Moreover, the rapid proliferation of new products and devices and their native connec-
tivity (at a global level) will force the convergence of not only G-IoT and Edge-AI, but
also 5G/6G communication technologies, the latter being a fundamental prerequisite
for future deployments. Indeed, future communications services should also provide
better dependability and increased flexibility to effectively cope with a continuously
changing environment.

• Edge-AI G-IoT Infrastructure. The IoT market is currently fragmented, so it is nec-
essary to provide a comprehensive standardized framework that can handle all the
requirements of Edge-AI G-IoT systems.

• Decentralized storage. Cloud architectures store data in remote data centers and
digital infrastructures that require substantial levels of energy. Luckily, recent archi-
tectures for Edge-AI G-IoT systems are able to decentralize data storage to prevent
cyberattacks and avoid high operating costs; however, to achieve energy optimizations
for such decentralized architectures, sophisticated P2P protocols are needed.

• G-IoT supply chain visibility and transparency. To increase the adoption of the
DCE and limit the environmental impact of a huge number of connected devices,
further integration of value chains and digital enabling technologies (e.g., functional
electronics, UAVs, blockchain) is needed. End-to-end trustworthy G-IoT supply chains
that produce, utilize, and recycle efficiently are required.

• Development of Edge-AI G-IoT applications for Industry 5.0. The applications to
be developed should be first analyzed in terms of its critical requirements (e.g., la-
tency, fault tolerance) together with the appropriate communications architecture,
while considering its alignment with social fairness, sustainability, and environmental
impact. In addition, hardware should be customized to the selected Edge-AI G-IoT
architecture and the specific application.

• Complete energy consumption assessment. For the sake of fairness, researchers should
consider the energy consumption of all the components and subsystems involved
in an Edge-AI G-IoT system (e.g., communications hardware, remote processing,
communications protocols, communications infrastructure, G-IoT nodes, and data
storage), which may be difficult in some practical scenarios and when using global
networks.

• Digital circular life cycle of Edge-AI G-IoT systems. In order to assess the impact of
circular economy based applications, all the different stages of the digital circular life
cycle (i.e., design, development, prototyping, testing, manufacturing, distribution,
operation, maintenance, and recycling stages) should be contemplated.

• CO2 emission minimization for large-scale deployments. Future developers will need
to consider that CO2 emissions increase with the number of deployed Edge-AI IoT
devices. In addition, such growth changes dramatically from one country to another
depending on the available energy source.

• Corporate governance, corporate strategy, and culture. Organization willingness
to explore new business strategies and long-term investments will be critical in the
adoption of Edge-AI G-IoT systems, as a collaborative approach is required to involve
all the stakeholders and establish new ways for creating value while reducing the
carbon footprint. New business models will emerge (e.g., Edge-AI as a service, such
as NVIDIA Clara [131]).

8. Conclusions

This article reviewed the essential concepts related to the development of Edge-AI
G-IoT systems and their carbon footprint. In particular, the most relevant Edge-AI G-IoT
communications architectures were analyzed together with their main subsystems. In
addition, the most recent trends on the convergence of AI and edge computing were ana-
lyzed and a cross-analysis on the fusion of Edge-AI and G-IoT was provided. Furthermore,
an Industry 5.0 application case was described and evaluated in order to illustrate the
theoretical concepts described throughout the article. The obtained results show how CO2
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emissions increase depending on the number of deployed Edge-AI G-IoT devices and on
how greener is the energy generated by a country. Finally, the main open challenges for the
development of the next generation of Edge-AI G-IoT systems were enumerated to guide
future researchers.
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Abstract: The paper presents a computationally efficient and accurate numerical approach to evaluat-
ing RF–DC power conversion efficiency (PCE) for energy harvesting circuits in the case of multi-tone
power-carrying signal with periodic envelopes. This type of signal has recently received considerable
attention in the literature. It has been shown that their use may result in a higher PCE than the
conventional sine wave signal for low to medium input power levels. This reason motivated the
authors to develop a fast and accurate two-frequency harmonic balance method (2F-HB), as fast
PCE calculation might appreciably expedite the converter circuit optimization process. In order
to demonstrate the computational efficiency of the 2F-HB, a comparative study is performed. The
results of this study show that the 2F-HB significantly outperforms such extensively used methods as
the transient analysis (TA), the harmonic balance method (HB), and the multidimensional harmonic
balance method (MHB). The method also outperforms the commercially available non-linear circuit
simulator Keysight ADS employing both HB and MHB. Furthermore, the proposed method can be
readily integrated into commonly used commercially available non-linear circuit simulation software,
including the Keysight ADS, Ansys HFSS, just to name a few—minor modifications are required. In
addition, to increase the correctness and reliability of the proposed method, the influence of PCB is
considered by calculating Y parameters of its 3D model. The widely employed voltage doubler-based
RF–DC converter for energy harvesting and wireless power transfer (WPT) in sub-GHz diapason
is chosen to validate the proposed method experimentally. This RF–DC converter is chosen for its
simplicity and capability to provide sufficiently high PCE. The measurements of the PCE for a voltage
doubler prototype employing different multi-tone waveform signals were performed in laboratory
conditions. Various combinations of the matching circuit element values were considered to find the
optimal one in both—theoretical model and experimental prototype. The measured PCE is in very
good agreement with the PCE calculated numerically, which attests to the validity of the proposed
approach. The proposed PCE estimation method is not limited to one selected RF–DC conversion
circuit and can also be applied to other circuits and frequency bands. The comparison of the PCE
obtained by means of the proposed approach and the measured one shows very good agreement
between them. The PCE estimation error reaches as low as 0.37%, and the maximal estimation error
is 32.65%.

Keywords: wireless power transfer; energy harvesting; power conversion efficiency; single diode
rectifier; voltage doubler; harmonic balance method; autonomous sensor node; wireless sensor
network; multi-tone signal; full-wave simulations of PCB

1. Introduction

The current decade has witnessed a rapid increase in the number of smart wireless
devices, their influence over social and economic development has also been growing.
Wireless devices have become increasingly compact, it has become much easier to integrate
them into various environments, which in turn promotes development of the Internet
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of Things (IoT) and the underlying wireless sensor networks (WSNs). Smart cities [1],
agriculture [2], and medicine [3] are just some areas where WSNs are employed to control
smart environments via the IoT. The increasing use of WSNs has caused exponential growth
in the number of autonomous individual sensor nodes (SN), which in turn poses powering-
related challenges for the sensor networks. Battery power is the most common source for
powering autonomous devices. Along with the increase of the number of autonomous
devices used in the network, more time and attention are required to monitor the power
level of every single device; the batteries should also be changed when necessary. However,
devices situated in confined areas cannot be easily maintained, which may compromise
the integrity of the WSN. Radio frequency (RF) wireless power transfer (WPT) offers a
solution for preserving the integrity of the WSN during operation, providing control over
the amount of energy each SN receives to perform its duties. The key benefits of using
WPT for powering autonomous devices consist of a reduced need for batteries, which in its
turn mitigates inconveniences related to powering of these devices, and the opportunity to
maintain closer control over device energy levels. The use of RF allows transferring power
to secluded SNs from a sufficient distance, it also allows for ambient energy harvesting.

The rectenna (receiving antenna paired with an RF–DC converter) with high power
conversion efficiency (PCE) is the most important element of an efficient RF WPT. High
PCE increases the amount of useful energy the autonomous device receives, which is
particularly relevant in case of relatively long distances between the power transmitter
and receiver, which cause reduction of the amount of received RF power. Over the years,
many studies proposed various rectennas for WPT. Table 1 lists the key properties of the
proposed rectennas ordered by frequencies and input powers. The table also includes
the results of this study for comparison. The results will be further elaborated upon in
this manuscript.

Table 1. Comparison of the experimentally studied rectennas.

Ref. Substrate
RF–DC

Topology
Frequency,

GHz
RF Input

Power, dBm
Waveform PCE, %

[4] - 1 diode 24 27.0
16.0 Single-tone 1 43.6

42.9
[5] Custom 3 4 diodes 5.8 30 Single-tone 92.8
[6] FR4 2 diodes 5.76 20 Single-tone 84.0

[7] RT/Duroid 5870 1 diode 5.80
2.45

16.9
19.5 Single-tone 82.7

84.4
[8] Custom 4 1 diode 2.45 37 Single-tone 91.0
[9] FR4 2 diodes 2.45 24.7 Single-tone 78.0
[10] RO4003C 1 diode 2.45 3 Multi-tone 2 54.5
[11] FR4 4 diodes 2.4 27 Multi-tone 75.0
[12] PTFE 4 diodes 2.4 26.2 Single-tone 80.0
[13] FR4 2 diodes 2.4 22 Single-tone 82.3
[14] RO4003C 1 diode 2.4 10 Single-tone 60.0
[15] - 1 diode 2.4 −10 Multi-tone 42.0
[16] FR4 4 diodes 2.15 0 Single-tone 70.0
[17] Arlon A25N 1 diode 0.915 0 Multi-tone 67.8

This work FR4 2 diodes 0.865 −2 Single-tone
Multi-tone

64.8
63.2

[18] RT/Duroid 5880 2 diodes 0.860 −4 Single-tone 60.0
[19] - 1 diode 0.433 −10 Multi-tone 55.0

1 All instances of “single-tone” refer to an unmodulated carrier. 2 All instances of “multi-tone” refer to a sum of
several subcarriers. 3 Relative permittivity εr = 3.4, the dielectric loss tangent tanδ = 0.0015. 4 Relative permittivity
εr = 2.55, the dielectric loss tangent tanδ = 0.0018.

As seen from Table 1, different rectenna configurations have been proposed and stud-
ied. Rectennas that show PCE above 70% [5–9,11–13] use high RF input power (>15 dBm),
which greatly limits the range of effective distances between the power transmitter and
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the secluded SN if this received input power is to be achieved. Increase of the distance
calls for increase of transmission power to maintain the required input power and PCE,
which potentially exceeds power restrictions for the given frequencies. Studies [5,8] reached
efficiencies over 90%. This can only be achieved with the receiver optimized for such high
input powers (the RF–DC conversion is done using GaAs diodes), which is not optimal
for practical applications in powering secluded SN using the given frequencies. The use of
input power in the range around 0 dBm implies application of both SN and low-power tech-
nologies, such as RFID and E-ink [20,21]. This range of input RF power was less frequently
addressed in literature than high and low (<−15 dBm) power ranges. Comparing rectennas
in terms of frequencies, Table 1 demonstrates that rectennas were mainly developed for
2.45 GHz ISM frequency band. The use of high frequency also limits the effective distance
between the transmitter and the SN. Sub-GHz ranges, such as 433 MHz (ISM) and 860 MHz
(GSM-850), allow transferring of power to greater distances. Regarding the waveform of
the power-carrying signal, rectennas listed in Table 1 mainly use a single-tone signal (an
unmodulated carrier). However, studies, such as [11,15,19,22] and [23–25], reported an
increase in PCE when multi-tone (formed by a sum of several subcarriers) power-carrying
signals are used. The topology of the RF–DC circuit is another crucial parameter of rectenna
design. The most common RF–DC topologies are presented in Figure 1: one-diode-based
(half-wave rectifier), two-diode-based (voltage doubler), and four-diode-based (diode
bridge rectifier) topologies. These topologies with slight variations were used in the studies
listed in Table 1. Analyzing information in Table 1, it may be concluded that rectenna based
on a voltage doubler RF–DC converter working at a sub-GHz frequency and multi-tone
power-carrying signals proved to be the most well-balanced solution in terms of cost and
efficiency for RF WPT applications targeted at powering SN and low power electronics.

Figure 1. One-diode-based rectifier (a), two-diode-based rectifier (b), diode bridge rectifier (c).

The considered studies mainly focused on enhancing performance of rectennas with
experimental validation of results, aiming at development of reliable theoretical models
for the WPT and RF–DC converters. Numerous theoretical models exist in the field of
AC–DC [26] and DC–DC [27,28] converters, several modeling approaches have also been
proposed over the years for RF–DC circuits. Development of an accurate computer model
and its use in simulations is a feasible alternative to experimental studies of RF–DC power
converters. In contrast to experiments, simulation is a more convenient and cost-effective
solution, as it does not require fabrication of prototypes, especially when circuit design
optimization is needed.

Despite recent advances in the field, the analysis of non-linear circuits not amenable to
linearization is usually very time-consuming. This issue becomes even more pronounced
when complex input waveforms are employed. Although transient analysis (TA) is a robust
circuit analysis method [29], it is not suitable for analyzing RF–DC converters because
long simulation times are required due to the presence of transients [30]. Furthermore, in
case of narrow-band signals with periodic envelopes, the time step must be much smaller
compared to the period of the carrier wave that leads to a very large number of iterations.
Though some attempts have been made to speed-up the TA [31], the aforementioned
restriction on the time step size considerably limits the performance of the method, as will
be shown in this paper (see Section 2.5). Another widely used non-linear circuit analysis
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method is the Volterra series method [32]. However, this method is mainly applied to
weakly non-linear circuits, since for circuits with highly pronounced non-linearity the
convergence is very slow. The harmonic balance (HB) method was initially proposed
in [33] to solve problems in mechanical engineering, it has subsequently been adapted
to treat non-linear circuits under sinusoidal excitation [34]. The issue of transients does
not pose problems within HB, as this method allows computing the steady state response
directly, involving the solving of a system of non-linear equations [35]. The system of
equations can be reduced by partitioning the original circuit into linear and non-linear
parts [36]. The resulting non-linear equations can be solved by means of Newton’s method
(NM) [37], or iteration relaxation method (IRM) [38,39], among others. The evaluation
of the Jacobian matrix can be significantly accelerated using FFT algorithms [40] and the
continuation method was developed to ensure convergence at high input powers [41].
The HB has also been extended to handle multi-tone input signals [42,43]. However, in
such cases the Jacobian matrix is significantly larger, resulting in the high computational
burden. This issue can be mitigated by exploiting useful properties of multidimensional
FFT algorithms [44]. Over the last several decades, the method has found use in a number
of applications, including the analysis of the behavior of both autonomous and non-
autonomous oscillators [45–47]. Additionally, in an effort to reduce the simulation time,
several extensions and modifications of the HB, as well as its multidimensional extensions,
have been proposed, such as the hierarchical harmonic balance method [48], several parallel
versions of the HB [49,50], the multi-level frequency decomposition-based HB [51], and the
HB using the graph sparsification [52].

Although the methods mentioned above are accurate, they are highly computationally
intensive. As a result, a number of approximate closed-form expression-based models
have been proposed to analyze rectennas sharing a common load [53], single diode recti-
fiers [54,55], and Class-F rectifiers converters [56]. In [8], PCE up to 90% has been achieved
for the input power range of 30–35 dBm at 2.4 GHz, using the SPICE model with the
parameters obtained from experimental data by means of curve fitting. Similar results
were obtained in [57] for a single shunt diode rectifier using an analytical model that also
considers the effect of the transmission line. In [58], an approximate model was used to
find PCE for multi-tone excitation with equally spaced frequencies. Unfortunately, the
analytical models give only approximate results that may not be sufficient for the precise
evaluation and circuit optimization, like in the case of [59], where the nonlinearity of the
diodes and the possible influence of the PCB are not taken into account, resulting in a
highly idealized theoretical model.

The method proposed in this paper allows for more computationally efficient treat-
ment of RF–DC converters in the case of input signals with evenly spaced subcarriers. The
method has been successfully validated experimentally, as it will be shown in Section 3. In
contrast to the multidimensional HB method (MHB) that treats each subcarrier frequency
as a fundamental frequency, the proposed approach requires only two fundamental fre-
quencies. Thus, fewer harmonics are needed to approximate the voltages and currents,
thereby significantly reducing CPU time.

The aforementioned studies of the rectennas and RF–DC converters focused largely
on experimental research and design-specific modeling, paying limited attention to devel-
opment of reliable and computationally effective models considering the influence of the
PCB material for estimating the PCE, whose great importance has been comprehensively
demonstrated in [18].

In the current paper, a novel theoretical approach to evaluating the PCE of a rectenna
is introduced. The proposed approach offers the following advantages:

(1) Employment of the two-frequency harmonic balance (2F-HB) method is less computa-
tionally demanding than other methods, while it still ensures adequate accuracy.

(2) It allows for investigating the impact of different multi-tone power-carrying signal
waveforms on the PCE, especially in the sub-GHz band.
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(3) It offers an effective approach to considering various effects of the PCB and their
impact on the PCE.

(4) It offers an opportunity to examine the influence of variation in the nominal values of
several RF–DC circuit elements on the PCE, including the matching circuit.

The validity and accuracy of the proposed approach were verified by measuring the
PCE of a prototype RF–DC converter. A voltage doubler circuit with a sub-GHz carrier
frequency was selected as a test case and a comprehensive analysis of the effect of multi-
tone power-carrying signals with different peak-to-average power ratio (PAPR) levels on
its PCE was conducted. To the best of the authors’ knowledge, no exhaustive study of such
combination of the circuit and signals has been reported in the literature thus far.

The paper is structured as follows: Section 2 describes the novel theoretical approach
to PCE estimation and presents a comparative analysis of its performance against con-
ventional methods with a voltage doubler circuit employed as a test object. Discussion
and comparison of the results obtained by means of the proposed theoretical estimation
approach and its experimental verification are presented in Section 3. Section 4 presents
conclusions of the research.

2. Development of a Realistic Model of RF–DC Conversion

This section describes a computationally efficient theoretical approach (model) devel-
oped to estimate the PCE for RF–DC converter circuits. For the sake of completeness, the
general case of the circuit containing an arbitrary number of diodes is considered. A voltage
doubler-based RF–DC converter circuit illustrated in Figure 2 used to validate the approach
(see Section 3) can be viewed as a special case. The approach is adapted to power-carrying
signals with periodic envelopes. The spectra of such signals comprise harmonics whose
frequencies can be expressed as linear combinations of two fundamental frequencies only.
This property allows for the employment of a two-dimensional FFT algorithm, which accel-
erates computation. Performing PCE estimation in shorter times is particularly important,
since converter optimization involving PCE calculation for various circuit configurations is
tremendously time-consuming, especially for a large number of carriers.

Figure 2. Voltage doubler circuit topology.

Unfortunately, due to the sufficiently high complexity of circuit PCB layout and high
operating frequency, some of the existing and extensively used non-linear circuit methods
fall short of expectations. For instance, despite numerous advantages, the TA is not suitable
for the analysis of converters driven by a multi-carrier signal for several reasons. First, quite
a large ratio of the period of the envelope to that of the carrier wave (in the present study, it
is in the order of 1000) leads to a large number of iterations needed to calculate at least one
period of the output voltage. Second, the presence of a filtering capacitor causes transients;
therefore, many periods have to be computed until the steady state is reached. Third, for
the equivalent circuit of the PCB to be valid over a frequency range encompassing at least
7–10 harmonics of the carrier wave, it must possess quite a complicated topology that is
difficult to handle [60]. Therefore, TAs have been abandoned in favor of their frequency (or
time-frequency) domain counterparts, such as the HB.

The HB relies upon Fourier series representation of circuit voltages (currents) and
leverages some useful properties of well-established FFT algorithms leading to reduced
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consumption of computational resources. However, the method is not well-suited for
multi-tone excitation. To tackle this issue, the authors propose to employ a two-frequency
harmonic balance (2F-HB) method described in this paper. In contrast to its conventional
counterpart, the 2F-HB exploits the fact that the spectra of the circuit currents and voltages
consist of a number of sub-bands centered at integer multiples of the carrier frequency.
Furthermore, each sub-band contains harmonics that are equally spaced. This property
of the spectrum enables one to leverage the power of 2D versions of FFT [61] to achieve a
substantial reduction in CPU time.

Experimental studies and simulations using RF–DC converter circuit models that do
not consider the effect of the PCB show large discrepancies between the experimental and
theoretical results [62]. Discrepancies are generally caused by the fact that the contribution
of the PCB is either completely neglected, or its effect is only partially accounted for via
some approximations. The proposed approach, in contrast, considers the contribution
of the PCB through the calculation of the Y parameters obtained by means of full-wave
numerical analysis. More precisely, the PCB is treated as a multi-port network formed
from the original circuit by disconnecting discrete circuit components, as illustrated in
Figure 3. The main advantage of this approach is that the accuracy of the PCE estimation
depends solely on the accuracy of the 3D model. It should be noted that the approach is
by no means perfect—3D models are typically idealized, neglecting some imperfections
of real-world circuits. Nevertheless, it provides more accurate PCE estimation for PCBs
having a complex layout, such as the one studied herein. Regarding the nonlinearity of the
circuit, the proposed approach utilizes the standard SPICE diode model [63], as it describes
the behavior of Schottky diodes with reasonable accuracy. Furthermore, the model closely
approximates the diode breakdown behavior, which is particularly important, since the
diodes under study possess quite low breakdown voltages (in the order of 2–4 V).

Figure 3. An equivalent circuit of PCB with equivalent two-port networks of linear devices connected
to its linear ports.

It is noteworthy that the approach can be integrated into existing non-linear circuit
simulators employing the HB or its extended multi-tone version, namely, the MHB. In the
case of simulators using the MHB, only the subroutines responsible for the evaluation of
the Jacobian entries have to be replaced or modified. Specifically, the approach proposed
in this work requires the use of 2D-FFT and its inverse algorithms to perform time-to-
frequency and reverse transformations of the non-linear element voltages (diode voltages).
Regarding solvers capable of handling multi-tone signals driven non-linear circuits, only
minor modifications in the existing codes are required. In fact, the proposed method can be
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viewed as a two-dimensional MHB where one of the fundamental frequencies is that of the
carrier wave, whereas the other is the subcarrier separation frequency.

2.1. Two-Frequency Harmonic Balance Method

As mentioned previously, the conventional HB is not a good candidate for handling
multi-tone excitation, since FFT algorithms require uniform spectra, thus, a large number of
harmonics should be considered. More specifically, all harmonics up to a specific order must
be used for the approximation. In contrast, in the case of multi-tone excitation, the spectrum
is not uniform—it consists of a number of sub-bands formed from the nonlinear conversion
products. Therefore, it would not be wise to consider the harmonics between the sub-
bands with negligibly small amplitudes. On the other hand, neglecting these harmonics
prohibits the use of FFT, thereby reducing the computational efficiency. To overcome
this issue, a multidimensional extension of the harmonic balance method (MHB) has
been proposed [42–44]. The method approximates voltages (currents) with the truncated
multidimensional Fourier series [64], enabling the use of multidimensional FFT algorithms
(NFFT) to speed up calculations. While the MHB can be used to analyze multi-tone signal-
powered RF–DC converters, the CPU time grows rapidly with the number of subcarriers.
To mitigate this problem, the 2F-HB was developed and validated on a voltage doubler circuit.

The 2F-HB handles multi-tone signals in a more time-efficient way, since it requires
fewer voltage (current) phasors than the HB and MHB and thus outperforms them. The
proposed method relies upon the approximation of the voltage across each circuit element
by a truncated two-dimensional extension of the Fourier series of the form:

vm(t) ⇒ vm(t1, t2) =
N1/2

∑
n1=−N1/2

N2/2

∑
n2=−N2/2

Ṽ(m)
n1,n2ejn1ω1t1ejn2ω2t2 , (1)

where Ṽ(m)
n1,n2 are the phasors of voltage vm(t), ω1 denotes the carrier frequency (CF) and ω2—

the subcarrier separation frequency (CSF), N1 and N2 determine the numbers of harmonics
of ω1 and ω2, respectively, used to approximate the voltage.

The circuit currents are approximated in the same way. The main benefit of using
Equation (1) is that it yields a compact equation system, owing to derivative-free relations
between the linear element voltage and current phasors. The introduction of time variables
t1 and t2 associated with ω1 and ω2, respectively, allows evaluating the Jacobian matrix,
which will be discussed further, in a considerably more time-efficient manner via the use of
2D-FFT [65].

The voltage (current) phasors can be found by solving a system of circuit equations
derived by applying nodal analysis to the equivalent circuit (EC) obtained by reducing the
linear sub-circuit to a mesh network. The equation for the n-th node of the EC is:

i∑,n = in(vn) + Ynvn +
M

∑
m=1,m �=n

Ynmvm + ieq,n = 0, (2)

where Yn denotes an operator transforming the phasors according to the self-admittance of
the n-th node, Ynm is the mutual admittance operator for the n-th and m-th nodes, in(vn) is
the current through the n-th diode, ieq,n is an equivalent current representing the effect of
independent sources contained in the circuit, i∑,n is the total current at the n-th node, and
M is the number of circuit nodes.

NM is used to solve the system of equations obtained by collecting Equation (2) for all
nodes, iteratively constructing and solving the following systems of linear equations:

Ĵ
(l)Δv(l) = −r̂(l), (3)

where Ĵ
(l) is the Jacobian matrix, r̂(l) is the residual vector calculated at the l-th iteration of

the NM, and Δv(l) is the phasor correction vector.
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The Jacobian matrix entries are 2D-FFT transformed partial derivatives of each i∑,n

with respect to the real and imaginary parts of each Ṽ(m)(l)
n1,n2 . The residual vector contains

2D-FFT transformed i(l)∑,n. It is worth noting that the Jacobian matrix can be transformed
column-wise using 2D-FFT algorithms. Alternatively, the 2D-FFT algorithm needs to be run
only once to evaluate the first column of the Jacobian matrix, while the other columns can be
obtained by applying cyclic shifts to the entries of the first column. Equation system (3) can
be solved by using either a plain linear equation solver [66] or various iterative methods,
e.g., Krylov subspace methods [67].

2.2. Diode Equations

As follows from (2), relations I–V for diodes are required to evaluate Ĵ
(l) and r̂(l). While

diodes play a crucial role in the RF–DC converters, their inherent nonlinearity renders
circuit analysis considerably more complex. As in the present study, a sub-GHz range
is concerned, the choice of diode model becomes even more critical with regard to the
PCE estimation reliability. This is due to a number of effects that may be neglected at
low frequencies, while they start to manifest themselves at high frequencies dramatically
affecting the overall efficiency of the power conversion.

In the proposed approach, the standard SPICE model was selected to describe the
behavior of the Schottky diodes. The model has the following advantages: ease of im-
plementation, high stability when used in conjunction with 2F-HB, as well as accurate
modeling of breakdown current and junction capacitance. The parameters of the SPICE
model used in the theoretical analysis of voltage doubler PCE are taken from the datasheet
for the SMS7630 Schottky diode [68]. The main part of the diode equivalent circuit (DEC) is
shown in Figure 4. Throughout the paper, the voltage across the junction of the m-th diode
is denoted as vm.

Figure 4. Low frequency diode SPICE model.

As indicated in Figure 4, the current flowing through the diode is comprised of two
components: the junction current and the current determined by the junction capacitance.
The former depends non-linearly on the voltage across it, and in the framework of the
SPICE model it can be calculated as:

id,m = is
(

evm/(Nvt) − 1
)
− ibve−

vm+vbv
Nbvvt , (4)

where id,m denotes the junction current of the m-th diode, is—the saturation current, vt—the
thermal voltage of the diode junction, N—the ideality factor, vbv denotes the breakdown
voltage, and Nbv and ibv, are the ideality factor and the knee current of the breakdown
current, respectively.

The contribution of the non-linear diode capacitance to the total diode current plays
an important role in the behavior of diodes at high frequencies, therefore, it has to be
considered as well. The total capacitance of the diode is given by:

Cd,m = Ct,m + Cj,m = tt
d(is(e

vm/(Nvt) − 1))
dvm

+ Cj,m, (5)
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where Ct,m is the transit time capacitance of the m-th diode and tt is the transit time. Since for
the Schottky diodes this quantity is typically negligibly small and therefore does not have a
substantial effect on diode performance, it is assumed that Ct,m = 0. The other component is
the junction capacitance given by Cj,m = Cj0(1 − FC)−(M+1)(K + Mvm/vj), if vm > FC · vj

and Cj,m(vm) = Cj0(1 − vm/vj)
−M, otherwise, where Cj0 is zero bias voltage capacitance,

M is the grading coefficient, vj is the junction built-in voltage, K = 1 − FC(M + 1), and FC
represents the forward-bias depletion capacitance coefficient. Using (4) and (5), the expres-
sions for the Jacobian matrix and residual vector entries can be derived in a straightforward
manner, however, for the sake of brevity they are not presented here. Parameters of the
SMS7630 Schottky diode are compiled in Table 2.

Table 2. SPICE model parameters of the SMS7630 Schottky diode [68].

Parameter Value Unit

ibv 1 × 10−4 A
RS 20 Ω
Cj0 0.14 pF
vbv 2 V
is 5 × 10−6 A
tt 1 × 10−11 s
M 0.4 -
N 1.05 -
vj 0.51 V

2.3. Evaluating Y Parameters for the Linear Sub-Network

In addition to the diode I–V relation, Equation (3) also requires the knowledge of the
behavior of the linear sub-network composed of all linear elements, including the PCB. As
it was mentioned previously, within the proposed approach the PCB is treated as a separate
circuit element—multi-port network. In the frequency domain, the behavior of the PCB
can be fully described in terms of Y parameters. Similar to diodes, a proper model of the
PCB is essential, since the impact of the PCB upon the converter plays a crucial role and
therefore should not be neglected.

Conventional lumped element equivalent circuits (LEEC) are not suitable for the
excitation and the working frequency at hand due to highly pronounced non-linear dis-
tortions. More specifically, the equivalent circuit must be usable for a frequency range
encompassing at least 6–8 harmonics of the CW, which is quite challenging to meet owing
to the frequency-dependent nature of different parasitic effects. As it is rather difficult to
evaluate the values of the LEEC constituents, the authors decided to perform a full-wave
analysis (FWA) of the PCB for the RF–DC circuit under study. The main advantage of the
FWA is that it allows capturing of the effects that other methods cannot because of their
approximate nature. Thus, the FWA is the most reliable method for characterizing non-linear
high frequency circuits.

The discrete circuit components are modeled as lumped elements (LE), or equivalent
circuits composed of LE. Since the PCB of the circuit under study has a complex layout
and it may be complicated to construct an LEEC that would be valid over a relatively wide
band, the Y parameters of the circuit are obtained using an FWA.

For this purpose, commercially available software Ansys HFSS is employed [69],
which solves Maxwell‘s equations using the well-established finite element method [70].
Each discrete element is replaced with a lumped port. The PCB model of the voltage
doubler circuit can be seen in Figure 5a. The model is enclosed by a fictitious absorbing
surface that truncates the solution domain [52]. The dimensions of the PCB model itself
and its conducting parts are the same as for the prototype circuit used for the experimental
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validation. As the main objective is to eliminate all linear equations, the Y matrix for the
PCB model can be partitioned as follows:(

iL
iN

)
=

(
YLL YLN
YNL YNN

)(
vL
vN

)
, (6)

where vectors vL and vN contain voltages at linear and non-linear ports, respectively,
whereas iL and iN contain the vectors of current at linear and non-linear ports, respectively.

Figure 5. HFSS model of the voltage doubler-based RF–DC converter PCB (a), an equivalent network
for 4 diodes in a single package (b).

In order to make the model even more reliable, various parasitic effects associated
with diodes should also be considered by introducing a number of lumped elements,
each modeling the corresponding effect, such as bond wire inductance, lead inductance,
package capacitance, etc. An extended diode equivalent circuit (EDEC) incorporating
parasitic inductances and capacitances of four diodes within a single package is illustrated
in Figure 5b. A port composed of the reference terminal (indicated by 0’ in Figure 5b) and a
non-referenced one is termed an internal port (IP), whereas a port obtained by eliminating
the non-linear part of the DEC depicted in Figure 4 is termed an external port (EP). Similar
to the Y matrix of PCB-EC, the Y matrix for the EDEC can be partitioned as follows:(

i(i)

i(e)

)
=

(
Y
(ii)
r Y

(ie)
r

Y
(ei)
r Y

(ee)
r

)(
v(i)

v(e)

)
, (7)

where vectors v(o) and i(o) contain voltages and currents at the EPs, respectively, while
vectors v(i) and i(i) correspond to the IPs.

Finally, combining (6) and (7), as well as using the Norton equivalent circuit parameters
for all elements other than diodes connected to PCB-EC, yields the relation:

id = id,eq + Ydvd, (8)

where id is a vector of total diode currents, vd is the voltages across the non-linear part of
the DEC, Yd is the admittance matrix for the linear subcircuit of the RF–DC converter, and
id,eq contains equivalent currents that represent the effect of the voltage source.

2.4. Estimation of the PCE for a Voltage Doubler Circuit

A voltage doubler circuit shown in Figure 2 was considered as an example. Following
the methodology described in the previous subsection, the circuit can be regarded as a multi-
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port network representing the effect of the PCB on the circuit behavior. The voltage doubler
circuit can then be represented as the multi-port network with other circuit elements, or
their equivalent circuits connected to its ports. Since only 2, not 4, diodes in a single package
are used for the prototype circuit, only one of the two subcircuits shown in Figure 6 must be
considered. The entire circuit of the voltage doubler is represented as a multi-port network
corresponding to the PCB, to which lumped circuit elements are connected, including the
generator, as illustrated in Figure 3. The Y matrix of the PCB is computed using Ansys
HFSS as described in the previous subsections. The impedance of the generator is assumed
to be 50 Ω. The values of the elements of the DEC are taken from the relevant datasheet.

Figure 6. The equivalent circuit of the voltage doubler with the PCB replaced by the equivalent
mesh network.

The equivalent circuit of the entire linear part of the voltage doubler circuit is depicted
in Figure 6. It should be noted that the diode symbol in the equivalent circuits represents
the non-linear part of the low frequency DEC, while the effect of RS (see Figure 4) is
incorporated in the equivalent circuit for the linear part of the original one. The current
sources ieq,1 and ieq,2 are the equivalent current sources representing the contribution of
the voltage source to the total currents at nodes 1 and 2. Thus, the behavior of the circuit
can be described using two non-linear equations:{

i∑,1 = i1 + v1(Y11 + Y12) + v2Y12 − ieq,1 = 0
i∑,2 = −i2 − v2(Y22 + Y12)− v1Y12 − ieq,2 = 0

(9)

To determine the phasors of v1 and v2, system (9) is solved using the NM. The NM is
employed as it has proven itself as a rapidly converging method, provided the initial guess
is close enough to the actual solution. If it is not the case, the continuation method [41]
can be utilized to take advantage of the fact that the convergence of the NM is more
stable for small amplitudes. The convergence is ensured by gradually increasing the input
excitation amplitude, starting with the smallest one. Each time the NM fails, the values of
the equivalent current sources are reduced. The phasors of both the initial guess and input
currents are multiplied by a scaling factor F. The NM is then applied to the altered (scaled)
input data. If the algorithm still fails to converge, the scaling is applied repeatedly until the
convergence is achieved. In addition, upon each failure, the scaling factor is reduced, thus
making the procedure more adaptive. In the case of successful convergence, the algorithm
does the opposite—it increases the scaling coefficient until its value reaches the desired one
(the one before the scaling). The last successfully calculated set of phasors is used as an
initial guess for the next iteration of the continuation method.

The flowchart of the algorithm employed to find the PCE of the circuit under study
is depicted in Figure 7, where the scaling coefficients are denoted by Si, and i = 0 corre-
sponds to the smallest magnitude. At the very first iteration of the algorithm, the spectral
coefficients of diode voltages are initialized using some a priori knowledge about them.
The optimal value of NM damping factor (β) is found to be in the range from 0.9 to 1.1.
Values of β beyond this range result in an increase in the number of iterations. The value
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of the DC voltage is utilized as a convergence criterion—the execution of the algorithm is
terminated once the DC voltage falls below the prescribed threshold.

Figure 7. The flowchart of the algorithm to compute diode voltages.

2.5. Comparison of the Proposed Method with Other Methods

In order to demonstrate the efficiency of 2F-HB, a comparative study of the most
commonly used non-nonlinear circuit analysis methods was undertaken. The methods
were applied to an idealized voltage doubler circuit shown in Figure 2. The circuit element
values are C1 = 2.4 pF, C2 = 8.5 nF, C3 = 1 μF, R1 = 7.5 kΩ, and L1 = L2 = 17 μH.
The diode SPICE model parameters used in the analysis are summarized in Table 2 that
correspond to the SMS7630 Schottky diode. The effect of the PCB, as well as parasitic
inductances and capacitances of diodes and other circuit elements, were not taken into
account in this study due to the lack of the appropriate PCB model for the TA (LTSpice [71]).
The voltage doubler PCE obtained using the TA, 2F-HB, MHB, and HB is shown in Figure 8.
Since both the HB and MHB are implemented in the commercially available Keysight ADS
software [72] that has proven itself as a reliable and powerful non-linear circuit simulator,
we employ it to calculate the PCE in place of custom programs. In order to compute
the PCE using the TA, the well-established circuit simulator LTSpice is employed. The
time required to compute the output voltage at 100 values of the input power level taken
uniformly in the range of −20-0 dBm using each method is summarized in Table 3. The
circuit was excited by a multi-carrier with 8 subcarriers occupying a 4.5 MHz band centered
at 865.5 MHz (the CSF is 0.5 MHz). The Y of the PCB is computed for the two frequency
ranges separately: 0.1-100 MHz and 0.1-10 GHz and exported into two MATLAB script
files. The entire frequency range is divided into two subranges is to improve the calculation
accuracy at low frequencies. More specifically, when applied to a wide frequency range, the
interpolative sweep may result in a poor accuracy at the lower end. Once the computations
are done, the exported MATLAB files are used by the program written in C++ to evaluate
the entries of both the Jacobian matrix and the right-hand side vector, as well as to solve
the resulting non-linear equations with Newton’s method. Additionally, it should be noted
that although the HB method can yield accurate results while solving the problem under
consideration, it requires considering a large number of harmonics, which in turn would call
for a considerable amount of computational resources. However, in this study, the issue is
mitigated by considering signals whose CF is an integer multiple of the CSF. Unfortunately,
such an approach imposes serious restrictions on the shape of the input signals.
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Figure 8. The PCE of the ideal voltage doubler obtained using four different methods as a function of
the input power level.

Table 3. Comparison of different analysis methods.

Method CPU Time, s Number of Harmonics

HB
(Keysight ADS) 6833 20,000 (fund. freq. 0.5 MHz)

MHB
(Keysight ADS) 26,441 425 (8 fundamental freq. with

the max. mixing order of 3)

2F-HB
(proposed method) 71 683 (2 fund. freq.: 0.5 and

865.5 MHz)

TA with SM 3227

No harmonics.
Time step: 0.01 ns

Max. num. of SM iterations:
20

As can be seen in Figure 8, the HB, 2F-HB, and TA show sufficiently high accuracy,
while the accuracy of the PCE obtained using the MHB method is much lower. The low
accuracy is conditioned by a small number of harmonics used to approximate voltages
(currents) in the circuit. However, as can be seen in Table 3, even with the small number of
harmonics (425 harmonics), the CPU time required by the MHB is larger than that of other
methods. The fundamental frequencies for the MHB were set to be equal to those of the
subcarriers, i.e., 8 frequencies.

It should be noted that in this particular case the conventional HB method solves
the task faster than the MHB, since the fundamental frequency was chosen to be equal to
the CSF, and CF can be expressed as an integer multiple of CSF. In a more general case,
however, the MHB considerably outperforms its conventional counterpart.

Although the computational time of the TA scales linearly with the number of har-
monics provided the bandwidth is kept fixed, the main drawback of the TA is the lack of
simple and reliable PCB-EC. In order to expedite simulation time, the TA was accelerated
through the shooting method (SM) with the maximum number of iterations set to 20 and
time step of 0.05 ns. The first period of the input signal envelope was skipped to avoid
transients due to energy storage elements other than the filtering capacitor. The SM has
been implemented as a MATLAB script that modifies the circuit netlist, runs the LTSpice
simulations in the batch mode, and processes the results of the intermediate simulations, as
well as performs postprocessing.

The proposed method (2F-HB) demonstrates good accuracy, allowing performing
of computations considerably faster than other harmonic balance methods and TA. The
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reason why the 2F-HB outperforms the MBH when applied to multi-tone signals is the
spectral redundancy of the latter. More specifically, because subcarriers are evenly spaced,
a great deal of non-linear conversion products may have the same frequency, which is not
considered by the MBH. Therefore, to ensure the same accuracy, the MBH requires much
larger matrices than 2F-HB, and that explains the huge difference in the computational
time. However, the MBH is more general. In contrast, the 2F-HB can handle multi-tone
signals with unevenly distributed tone frequencies.

3. Comparison of Theoretical and Experimental Results

This section discusses experimental verification of the validity of the proposed the-
oretical PCE evaluation method, especially in the case of employment of the multi-tone
power-carrying signals. For this purpose, the voltage doubler circuit discussed in the
previous section was chosen as a test object. The set of non-linear equations describing the
circuit was derived in the preceding section. The PCE can be calculated by applying the
approach presented in the previous section to the set of equations. From the calculated
current spectrum of the second diode it is then possible to retrieve the output DC voltage
in a straightforward way. To obtain a full picture of the performance of the voltage doubler
circuit under different conditions, including different types of excitations, the calculations
were carried out for different values of the inductance and capacitance of the matching
circuit in order to find an optimal combination for achieving the highest PCE.

The power-carrying signals considered in the present study are a classical sine wave
(SW). The three types of the considered multi-tone periodic envelope signals are listed below:

• Signals formed by adding a certain number of sine waves (subcarriers) with different
frequencies arranged to form a uniform spectrum with equal amplitudes and phases.
These signals have high peak-to-average power ratio (PAPR) values and thus for
notational simplicity will be referred to throughout this paper as HPAPR signals.
The HPAPR signals considered in the present study have 4, 8, 16, 32, 64, 128, and
256 subcarriers with PAPR levels of 9.03 dB, 12.04 dB, 15.05 dB, 18.06 dB, 21.07 dB,
24.08 dB, and 27.09 dB, respectively.

• Signals formed by adding a certain number of sine waves with different frequencies
(forming a uniform spectrum) and with amplitudes and phases generated using
Zadoff–Chu sequences [73] and an inverse fast Fourier transform (IFFT). These signals
have low PAPR values and will be referred to as LPAPR signals. The numbers of
carriers of the LPAPR signals under study are 4, 8, 16, 32, 64, 128, and 256 subcarriers
with PAPR levels of 6.6 dB, 6.06 dB, 6.0 dB, 7.47 dB, 7.43 dB, 6.78 dB, and 7.44 dB,
respectively.

• Signals formed by adding a certain number (4–256) of sine waves with different
frequencies (forming a uniform spectrum) and with random amplitudes and phases
following a uniform distribution. Regarding, the PAPR level for these kinds of signals,
it can take arbitrary values, depending on a random combination of amplitude and
phase values and are referred to as RPAPR signals.

3.1. Calculation of the PCE by Means of the Theoretical Model

The doubler circuit was selected for being one of the most widespread RF–DC con-
verter topologies. It has been used in a wide variety of applications and demonstrates suffi-
ciently high efficiency [74]. The converter employs an SMS7630-005LF Schottky diode [68]
that possesses a low forward voltage, small junction capacitance, and is capable of operating
in the desired license free sub-GHz ISM band around 865.5 MHz.

The results of the theoretical analysis are displayed using a color plot shown in Figure 9.
The plot is composed of colored squares, different colors correspond to different values
of the PCE. Darker colors correspond to lower PCE values, while brighter colors are used
for higher PCE values. The squares are arranged into a two-dimensional array. Each
row corresponds to a particular value of the matching network capacitance, and each
column corresponds to a specific value of the matching network inductance according to
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the topology illustrated in Figure 2. Each array element is also a two-dimensional array,
whose rows correspond to different values of the input power level in dBm. The columns
of subarrays correspond to different waveforms of the input signals in the following order:
SW, HPAPR with 4, 8, and 16 subcarriers, LPAPR with 4, 8, and 16 subcarriers, and RPAPR
with 4, 8, and 16 subcarriers. The results obtained for signals with the number of subcarriers
greater than 16 are omitted in this example, since for HPAPR signals the highest achieved
PCE does not exceed 25% and thus they are of little practical interest in WPT. Additionally,
the obtained results demonstrate that consideration of the LPAPR and RPAPR signals with
the number of subcarriers greater than 16 is completely irrelevant, since for these types of
signals the PCE does not exhibit any dependence on the number of subcarriers.

Figure 9. Color plot showing the PCE value of the voltage doubler for different values of the matching
circuit parameters, waveforms, and average input power levels.

The power levels considered are −2 dBm, −8 dBm, and −14 dBm. The frequency of
the carrier SW in all cases was 865.5 MHz. The reason why the results are given for the
range of −14–2 dBm is due to a relatively low breakdown voltage of the diode employed
in the experimental studies, namely, SMS7630. The breakdown voltage for this diode is
just 2 V, resulting in considerable degradation of the PCE as the input power level exceeds
approximately 0 dBm. Another reason is the nonlinearity of the generator that manifests
itself at power levels close to −2 dBm when producing HPAPR signals with a large number
of subcarriers, as they exhibit high peak voltages. The primary factor determining the
lower limit of the input power level range being considered is the total noise level due
to the generator, and both diodes. More specifically, the noise power measured by the
oscilloscope when the generator power level was set to −30 dBm was in the vicinity of
4 μW that corresponds to about −23.9 dBm. This noise has not been considered during the
theoretical modeling, which might result in huge discrepancies between the calculated data
and the experimentally obtained data for input power levels below −14 dBm.

Figure 9 shows that the optimal value of the inductances is L = L1 = L2 = 17 nH,
while the optimal value of C1 is 2.4 pF. The SW and LPAPR signals are the waveforms with
the highest achieved PCE (approx. 70%). The PCE obtained for the HPAPR signals is lower
than that of the SW and LPAPR signals. Furthermore, it deteriorates as the number of
subcarriers increases, attaining the maximum and minimum values for 4 and 16 subcarriers,
respectively. The PCE obtained for the RPAPR signal with different subcarriers is slightly
lower than that of the SW and LPAPR signals.
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3.2. Experimental Validation of the Theoretical Model

In order to validate the proposed theoretical approach, experimental verification is
performed with a specially designed prototype (see Figure 10) of the voltage doubler
with SMS7630-005LF Schottky diode [68] capable of effectively operating at the required
frequency of 865.5 MHz. The circuit components of voltage doubler are mounted on the top
layer of PCB made of FR-4 with a dielectric constant of 4.2 and the thickness of the substrate
of 1.6 mm. The SMA type connector is used to feed the power-carrying signal via a coaxial
cable with characteristic impedance of 50 Ω during the current experimental study, or via
antennas during wireless power transfer or harvesting in the real employment scenario.
The matching network component values are selected by enumeration, obtaining the input
impedance of the matching network closest to 50 Ω resistive load at 865.5 MHz and 0 dBm.
Table 4 shows the matching process, where the optimal values of L1, L2, and C1(matching
network elements) are examined. The initial values are L1 = L2 = 20 nH, C1 = 2.4 pF. The
values of other circuit elements are: C2 = 8.2 pF, C3 = 1 μF, and R1 = 7.5 kΩ.

Figure 10. The fabricated prototype of the voltage doubler circuit for 865.5 MHz carrier frequency.

Table 4. Determining nominal values of the matching network.

C1, pF L1, nH L2, nH
Input Impedance at

865.5 MHz
|S11| at 865.5 MHz, dB

Frequency for |S11|
Minimum, MHz

|S11| Minimum
Value, dB

2.4 20 20 72.76 − 67.50j 1 −5.87 790.63 −22.862
2.4 10 10 7.35 − 15.06j −2.35 1126.90 −20.270
2.4 16 16 37.59 − 1.45j −16.91 888.13 −47.431
2.4 18 18 73.26 − 13.70j −13.24 839.38 −29.442
2.4 17 17 48.03 − 2.55j −29.67 866.25 −29.759
2.9 17 17 44.99 − 5.76j −21.97 870.01 −22.550
1.9 17 17 53.91 + 6.15j −23.08 858.13 −26.166

1 All instances of “j” mean the imaginary unit.

Measurements are made for different multi-tone signals with a different number of
subcarriers and at different average input signal power levels. The SW is considered as the
reference signal for comparison of the obtained PCE. The measurement setup is shown in
Figure 11, it demonstrates the average input power level measurement (a) and converted
power level measurement (b), and PCE estimation as the ratio of the average input and
output powers.

Figure 11. Measurement setup for evaluating the RF–DC conversion efficiency: (a) setup used for
measuring the average power level of the input signal using a digital oscilloscope with the embedded
average power estimation function, (b) setup used for measuring the RF–DC converted power level.
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3.3. Evaluation of the Effect of the Matching Network Parameters on the PCE

In order to evaluate how the values of the matching network elements, namely, L and
C1, affect the performance of the voltage doubler circuit in terms of PCE, the following two
different case study scenarios are considered:

a. dependence of the circuit PCE on the inductance of both inductors contained in
circuit (L) for the fixed value of capacitance C1 is calculated.

b. dependence of the circuit PCE on capacitance C1 for the fixed value of L is found.

In order to validate the theoretical model, the aforementioned dependences are ob-
tained experimentally as well.

As can be observed in Figures 12 and 13, the results of the theoretical analysis are
in good agreement with those achieved experimentally, which means that the proposed
methodology allows predicting of the behavior of diode-based RF–DC converters with a
reasonably small discrepancy between the measurements and simulations. It is particularly
apparent in the case of HPAPR signal, i.e., the shapes of the curves corresponding to differ-
ent number of subcarriers match the calculated ones well. In the case of the dependence
of the PCE on C1 the largest discrepancy between the results is observed for small values
of C1. Similar to L sweep, in this case, the largest difference is also observed at the input
power level of −14 dBm. The highest PCE of 64.8% was achieved for the SW. As for the
multi-tone signals, the LPAPR signals exhibit the highest PCE of 63.15%. Furthermore, the
PCE of LPAPR signals varies only slightly with the number of carriers. In the case of the
HPAPR signals, the highest PCE reaches 51.64% for the signal with 4-subcarriers.

Figure 12. The calculated (dashed line) and measured (solid line) PCE of the voltage doubler RF–DC
converter as a function of L when C1 = 2.4 pF for different numbers of subcarriers: 4 (blue), 8 (red),
and 16 (yellow) with the SW (purple) used as a reference.

The highest PCE of 60% that is very close to the one obtained in this work for a sine
wave-driven single diode rectifier operating at 10 GHz was achieved in [75]. Though the
working frequency is about an order of magnitude higher than the one considered in the
present study, the input power level at which such a high efficiency has been attained is
much higher. To compute the PCE the authors employed both the closed form expressions
and LIBRE software employing the harmonic balance.

197



Sensors 2022, 22, 787

Figure 13. The calculated (dashed line) and measured (solid line) PCE of the voltage doubler RF–DC
converter as a function of C1 when L = 17 nH for different numbers of subcarriers: 4 (blue), 8 (red),
and 16 (yellow) with the SW (purple) used as a reference.

A comprehensive comparative analysis of the efficiencies attainable by means of vari-
ous RF–DC converters, including diode converters and CMOS technology-based converters,
is presented in [76,77]. From this analysis it follows that using a pure sine wave, i.e., a single
tone signal, the maximum achievable PCE does not exceed 60% when input power levels
below 1 mW (0 dBm) are considered. Nevertheless, the same analysis also demonstrates
that it is possible to achieve a PCE of up to 90% for sufficiently high power levels (around
1 W). However, to obtain such an amount of received power for medium distances (few tens
of meters), that are typical distances in IoT sensor networks, according to the well-known
Friis transmission equation one needs to maintain a high transmitted power that, in turn,
necessitates more expensive equipment. This makes the deployment and wireless charging
process costly, while the goal of the present study is to develop an affordable medium
power alternative with sufficiently high PCE not the highest possible.

Although the voltage doubler circuit studied in this work has a limited range of the
input power level (<0 dBm) due to a relatively low breakdown voltage of the diodes,
as well as exhibiting the highest PCE that is just about 65%, the proposed approach has
no limitation with respect to the circuit topology, PCB layout, working frequency, and
power levels of input signals as it relies on the full-wave analysis. Alternatively, the only
limitation of the full-wave analysis is the CPU time that increases with the frequency, and
the complexity of the layout.

3.4. Simulation and Experimental Results for HPAPR Signals

The results discussed in the previous subsection show that the notable difference of
PCE for different carrier number is observed only in the case of the high PAPR level. Thus,
they deserve more detailed consideration. The PCE for the circuit under study is obtained
for a larger number of subcarriers to obtain a more in-depth insight into the circuit behavior
driven by such signals. The considered signals are HPAPR signals with 4, 8, 16, 32, 64, 128,
and 256 subcarriers. Both the calculated and experimental PCE are graphically represented
with scatterplots. For the graphs shown in Figure 14, the horizontal axis represents values
of the matching network inductance, while the vertical one—the input power level. Each
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circle corresponds to a specific number of subcarriers. The size of circles increases with
the number of subcarriers, i.e., the innermost circle corresponds to 4 subcarriers, while the
outermost—to 256 subcarriers. The color of each circle represents different values of the
PCE (both calculated and measured), where darker colors show the lower values of the
PCE, while brighter ones—the higher values of the PCE. Regarding the graphs shown in
Figure 15, the same format is used, but the horizontal axis represents different values of C1.

Figure 14. The calculated (a) and measured (b) PCE of the voltage doubler RF–DC converter as a
function of both L and input signal power for C1 = 2.4 pF. PCE is represented by color. Size of the
circle represents the number of subcarriers (4, 8, 16, 32, 64, 128, 256), the smallest is for 4 carriers and
the largest—for 256 carriers.

Figure 15. The calculated (a) and measured (b) PCE of the voltage doubler RF–DC converter as a
function of C1 values and input signal power for L = 17 nH. PCE is represented by color. Size of the
circle represents the number of subcarriers (4, 8, 16, 32, 64, 128, 256), the smallest is for 4 carriers and
the largest—for 256 carriers.

Again, Figures 14 and 15 show that the results of the measurements are consistent
with the results obtained with the theoretical model, proving the validity of the proposed
method. Both theoretical and experimental results show that in the case of input signal
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formed, to have the maximum possible PAPR level among signals with the same number
of subcarriers, the PCE diminishes progressively with the number of subcarriers. In most
of the cases considered, the highest PCE is attained by the signals with 4 subcarriers. The
PCE for signals with 8 subcarriers is typically 10% lower than that of the signal with
4 subcarriers. For some combinations of the matching network element values (L and C1),
the opposite behavior is observed, i.e., a 4-subcarrier signal shows lower PCE than its
8-subcarrier counterpart. However, those combinations are not the optimal ones and the
PCE of the sine wave in these cases is lower or comparable with that of the signals with
4 and 8 subcarriers. Another finding of this study concerns the sensitivity of the PCE to
variations in the values of L, and C1. Despite being the most optimal waveform in terms of
the PCE, it was found that SW exhibits the highest sensitivity to variations in the matching
network element values.

In some cases, the difference between the calculated and experimentally obtained
results is quite small, e.g., for HPAPR signals with a small number of tones (<16). Although
even in this case the error is large at large deviation from the optimal values of L and C
(matching circuit elements), it occurs due to the shift between the theoretical and measured
curves. A possible source of such a shift is likely the difference between the actual values
of the discrete inductor used in the experimental studies and the one used in the theoretical
model calculated from the data provided in the relevant datasheets.

The PCE is unacceptably low as far as signals with the number of subcarriers greater
than 16. For this reason, such signals cannot be used for powering isolated sensor network
nodes. This finding agrees with the results of a recent study undertaken by another
group of researchers who also examined a voltage doubler circuit, but operating at lower
frequencies [78]. The researchers also found that the use of signals with a high peak-to-
average power ratio does not improve the PCE of RF–DC converters.

For numerical comparison of the theoretical and measured results from Figures 14 and 15,
the estimation error is presented in Tables 5 and 6 corresponding to each figure. The error is
taken as relative to the measured PCE. Since Figures 14 and 15 contain a substantial amount
of data, tables show estimation errors for the input power of −2 dBm and in the range
of 4–32 carriers. The tables show that the estimation error reaches as low as 0.37%, and
the maximal estimation error is 32.65%. In Table 5 the estimation error notably increases
when L is greater than 18 nH, which is visible in Figure 12 for the HPAPR. In Figure 12 the
difference between the theoretical and measured curves increases with subcarrier number
and L value. The source of such shift between the theoretical and measured curves is
explained with the nominal mismatch of the two L elements (L1 and L2) and the SDR signal
nonlinearity in the case of a large number of subcarriers.

Table 5. Relative error for theoretical and measured PCE results in % (C = 2.4 pF).

Pin, dBm Subcar. No. L = 10 nH L = 14 nH L = 15 nH L = 16 nH L = 17 nH L = 18 nH L = 19 nH L = 20 nH L = 24 nH

−2

4 10.29 4.34 0.37 3.49 3.45 3.10 16.45 20.75 18.58
8 8.47 3.47 8.08 4.06 3.89 7.15 18.78 25.40 23.64
16 8.53 9.00 13.72 9.06 10.36 11.60 19.44 27.38 28.32
32 5.74 14.80 19.33 15.33 17.43 17.77 23.51 30.33 32.65

Table 6. Relative error for theoretical and measured PCE results in % (L = 17 nH).

Pin, dBm Subcar. No. C = 0.3 pF C = 1.1 pF C = 1.9 pF C = 2.4 pF C = 2.9 pF C = 3.9 pF

−2

4 3.60 3.45 2.27 3.45 2.88 1.40
8 0.83 3.63 6.26 3.89 3.71 6.81

16 4.49 8.36 12.73 10.36 9.98 11.55
32 8.97 14.48 19.63 17.43 17.52 17.95
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4. Conclusions

The current paper proposes a novel theoretical approach to estimating the power con-
version efficiency (PCE) of RF–DC converters for WPT applications. The approach relies on
using the two-frequency harmonic balance (2F-HB) method in conjunction with full-wave
simulations of the circuit PCB. A comparative numerical study showed that when applied
to multi-tone signals, the 2F-HB appreciably outperforms the multi-dimensional harmonic
balance method (MHB), conventional harmonic balance method (HB), and transient anal-
ysis (TA) in terms of required CPU time. The results of the HB and the MHB have been
obtained using the commercially available Keysight ADS circuit simulator, whereas those
of TA were computed by means of the LTSpice in conjunction with the shooting method
(SM) implemented as a MATLAB script. To evaluate the accuracy of the theoretical model,
the authors performed experimental measurements for the RF–DC converter prototype
based on the voltage doubler rectifier topology. The PCE of the voltage doubler circuit was
calculated and measured for different RF–DC converter matching network elements and
different average input signal power levels and waveforms in the sub-GHz band.

The numerical results obtained using the proposed theoretical model have been found
to be in good agreement with the results measured experimentally, which firmly attests the
consistency between the simulations and experiments. The calculation accuracy reaches
0.37%. Furthermore, the results obtained for different values of the matching network
elements exhibit the existence of optimal combinations for achieving the highest PCE, thus
demonstrating the potential of the proposed estimation method in the design of highly
efficient RF–DC converters.

Although only a voltage doubler was considered in this work, the applicability range
of this approach is not limited to such a simple circuit, as it is capable of handling a wide
range of RF–DC converter topologies involving an arbitrary number of diodes. The new
method allows for editing and fine-tuning the design of an RF–DC converter much quicker
than previous methods due to accelerated PCE estimation, which is 96 times faster than the
broadly used harmonic balance method.
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Abstract: Unmanned aerial vehicles (UAV) are envisioned to become one of the new types of
fifth/sixth generation (5G/6G) network users. To support advanced services for UAVs such as
video monitoring, one of the prospective options is to utilize recently standardized New Radio (NR)
technology operating in the millimeter-wave (mmWave) frequency band. However, blockage of
propagation paths between NR base stations (BS) and UAV by buildings may lead to frequent outage
situations. In our study, we use the tools of integral geometry to characterize connectivity properties
of UAVs in terrestrial urban deployments of mmWave NR systems using UAV line-of-sight (LoS)
blockage probability as the main metric of interest. As opposed to other studies, the use of the
proposed approach allows us to get closed-form approximation for LoS blockage probability as a
function of city and network deployment parameters. As one of the options to improve connectivity
we also consider rooftop-mounted mmWave BSs. Our results illustrate that the proposed model
provides an upper bound on UAV LoS blockage probability, and this bound becomes more accurate
as the density of mmWave BS in the area increases. The closed-form structure allows for identifying
of the street width, building block and BS heights, and UAV altitude as the parameters providing the
most impact on the considered metric. We show that rooftop-mounted mmWave BSs allow for the
drastic improvement of LoS blockage probability, i.e., depending on the system parameters the use of
one rooftop-mounted mmWave BS is equivalent to 6–12 ground-mounted mmWave BSs. Out of all
considered deployment parameters the street width is the one most heavily affecting the UAV LoS
blockage probability. Specifically, the deployment with street width of 20 m is characterized by 50%
lower UAV LoS blockage probability as compared to the one with 10 m street width.

Keywords: millimeter wave; new radio; unmanned aerial vehicles; LoS blockage; closed-from
approximation; rooftop deployments

1. Introduction

The opportunities offered by unmanned aerial vehicles (UAVs) in a wide variety
of fields have led to a dramatic increase in their production and deployment. Initially
utilized in the military, UAVs today are applied in many fields including communications
networks [1]. Specifically, UAVs can be used in wireless communications systems to reliably
support connectivity in disaster management, public safety, and rescue operations [2–4].

The support of UAVs as a new network user in fifth generation (5G) systems opens
up new opportunities related to the organization of services such as delivery, security
surveillance, mapping navigation, and many others [5–7]. Furthermore, UAVs can be
utilized by the network operator as repeaters and mobile base stations (BS). However,
UAVs are characterized by the new unique properties compared to classic users (higher
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speed, higher position relative to the ground, etc.) and thus require new mechanisms to
support them in 5G systems.

Many factors such as selected frequency range, line-of-sight (LoS) range, and signal
attenuation play an important role in UAV communications. The work within 3GPP related
to integration of UAV to 5G systems started with 3GPP SP-180909 (see Section 2 for a
detailed overview of 3GPP standardization efforts) outlining requirements for communica-
tion delay, rate, and reliability as key performance indicators (KPI), for UAV applications.
For example, security surveillance requires very high data rates in the downlink for air-
to-ground communications [8]. Services such as private property monitoring, flying BSs,
and mobile integrated access and backhaul (IAB) nodes also require high bandwidth at
the air interface [9]. It is worth noting that some missions cannot be completed by one
UAV. In such cases, a swarm of UAVs are needed, resulting in additional communications
overheads [10]. Specifically, as a result of the movement of UAVs, the structure of the
swarm may change dynamically, requiring regular updates.

Based on the abovementioned application requirements, UAVs need to be supported
by all radio access technologies (RAT) within 5G systems. Within the range of technologies,
the most challenging is the support of UAVs in the millimeter wave (mmWave) bands [11].
The rationale is that this band is highly susceptible to a blockage by buildings. A feasible
solution to this problem would be to support the multi-connectivity functionality standard-
ized for 5G NR systems [12]. According to it, when blockage occurs, it is possible to switch
to another BS that is currently non-blocked. This technique has been shown to drastically
improve performance of conventional terrestrial users, see, e.g., [13,14]. To assess the
coverage of 5G mmWave NR deployments with multiconectivity functionality for UAV
users, simple and accurate line-of-sight (LoS) blockage models are thus required [15].

The conventional approach to analyzing the coverage/outage phenomenon in the
presence of blockage is to utilize the tools of stochastic geometry, see, e.g., [16–18] among
others for human body blockage models. The core of the analysis is to estimate the
probability that a LoS path between user equipment (UE) and BS is not blocked by obstacles
having a certain shape. The major step is thus to determine the number of blockers falling
to the so-called LoS blockage zone, see [19] for details. The approach has proved itself as
a versatile tool for analysis of human blockage in mmWave systems with purely random
deployments of blockers, where the dimensions of obstacles are negligible compared to the
length of the path between communicating entities.

Analyzing regular deployments, where dimensions of the obstacles are not negligible
as compared to the LoS path between the communicating entities, the described approach
results in a number of inherent limitations. In particular, the probability that a LoS path
is blocked by an obstacle depending on relative positions of obstacles with respect to
each other leading to complex expressions for coverage/outage probabilities that cannot
be provided in closed-form. When dealing with such deployments the results are often
provided in product form either having infinite sums [20] or involving integration [21].
An alternative approach is to utilize field measurements of LoS blockage, see, e.g., [22].
The latter approach is mainly dictated by the simplicity of the final expression but is limited
to those conditions where the measurements data have been gathered. Thus, there is a need
for a model providing simple closed-form approximation for UAV LoS blockage probability
accounting for both system and environment characteristics.

In this paper, we will target the abovementioned two challenges. Specifically, we
first provide closed-form approximation for LoS blockage probability of UAVs in urban
terrestrial deployments of mmWave systems. To this end, we utilize the tools of inte-
gral geometry rather than stochastic geometry. Then, we proceed to apply the proposed
methodology to estimate the UAV LoS blockage probability in the rooftop deployment of
BSs. The proposed approach allows for the providing of UAV LoS probability in closed-
form in grounded, rooftop, and mixed grounded-rooftop deployments as a function of
environmental characteristics.
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Our main contributions can be summarized as follows:

• closed-form approximation for UAV LoS blockage probability in urban deployments
of mmWave NR technology showing excellent agreement with complex models;

• numerical results showing that the most impact on UAV LoS blockage probability
in ground-mounted mmWave deployment is produced by UAV altitude, BS height,
street width, and mean building block height while the effect of other parameters is of
secondary importance;

• numerical results for mixed ground-rooftop deployments of mmWave BSs showing
that it allows for the drastic increase of UAV LoS blockage probability and, depending
on system parameters, adding one rooftop-mounted mmWave BS is equivalent to
adding 6–12 ground-mounted mmWave BSs.

The rest of the paper is organized as follows. First, we overview recent efforts in
the analysis of UAV blockage probability in Section 2. The system model utilized in
our study is introduced in Section 3. UAV LoS blockage probability for grounded and
rooftop deployments is derived in Section 4. Numerical results are provided in Section 5.
Conclusions are provided in the last section.

2. Related Work

In this section, we first review recent vendors’ and standardization bodies’ activities
related to UAV integration into cellular 5G systems. We then proceed by providing an
outlook of UAV LoS blockage models proposed over the last few years.

2.1. UAV Integration into 5G

In recent years, UAVs support in modern wireless networks has attracted attention
from network operators and standardization organizations. The 3GPP TR 36.777 sum-
marizes the research done on LTE support for UAVs. In particular, it considers several
cellular network improvements for efficient service of UAV users, quantifies the impact
of UAVs on the network, and evaluates characteristics of UAV-based service in urban and
rural environments. Computer simulations of such systems, augmented with measurement
data, show that the use of UAVs may lead to increased interference in both uplink and
downlink directions. TR 36.777 also suggests methods to eliminate interference. Another
issue identified in TR.36.777 is related to UAV mobility. The standard defines methods for
providing additional information about the deployed ground network that can be used for
decision-making during flight.

Since 3GPP Release 16, UAV support has been seen as a critical feature of the 5G
cellular network infrastructure. In this context, TR 22.829 summarizes the use cases and
analyzes UAV functions that may require enhanced support from access networks. It
includes video broadcast applications, command and control services, and the use of UAVs
as aerial BSs. The latter UAV application is covered in detail in TR 38.811.

3GPP is currently continuing research in this area. In particular, some of the tasks
are to reduce the negative effects caused by the mobility of UAVs and to adapt to the
needs of business, security, and the remote identification of UAVs. Specifically, TR 22.125
defines operational requirements for 3GPP systems. The 3GPP is expected to improve UAV
integration methods in 5G communication networks in future revisions of TR 23.754 and
TR 23.755. Nevertheless, it is already clear that UAVs will soon provide a wide range of
services in 5G access networks.

2.2. LoS blockage Probability

The question of LoS occlusion by large static objects such as buildings has been signifi-
cantly investigated in the context of terrestrial users. One of the fundamental studies dating
back to 1984 [23] uses a methodology based on the combination of mathematical modeling
and field measurements. Specifically, the study proposed a mathematical model describing
a statistical method for predicting LoS propagation paths for a receiver-transmitter pair
in densely populated areas based on a statistical building distribution model. The core of

207



Sensors 2022, 22, 977

the model is based on an analysis of the mean free path of moving particles in randomly
distributed obstacles. The resulting LoS blockage probability was calculated for a scenario
where buildings are located along a certain axis between the receiver and transmitter,
with building heights distributed exponentially.

The work in [24] includes a description of a model for calculating the LoS blockage
probability for a pair UE-BS in the Fresnel zone of a certain radius, applicable to typical
European cities with dense and regular streets. This empirical model is based on empirical
data from the city center of Bristol, UK. The model takes into account the height of the
buildings, their dimensions, the width of the streets, and the distribution of street corners.
The carried out numerical analysis demonstrated that the distribution and variance of
building height has little impact on the LoS blockage probability. Furthermore, in [16],
a random shape theory for modeling random blockage effects in urban cellular networks
is utilized. A fundamental method has been established to determine the LoS blockage
probability from irregularly placed buildings. Although no direct comparison with em-
pirical measurements has been performed, the main finding was that the LoS blockage
probability decreases exponentially fast with the link length. Another example of a similar
model for terrestrial users is reported in [25], where cube-shaped structures with uniformly
distributed height are utilized as a model for buildings. The authors report the LoS blockage
probability in integral form.

Recently, a number of models for UAV LoS blockage probability have been reported.
In [26], the authors carried out a large-scale simulation campaign based on real data taken
from the city of Ghent for collecting UAV coverage data with both LTE and mmWave BS
terrestrial deployments. The reported data highlights that mmWave NR coverage of UAV
is insufficient even for the highly dense deployment of these BSs. In [27], a method to
estimate LoS blockage probability based on a scanning laser is proposed. This methodology
is applied to open parking situations to collect data and use them to form an exponentially
decaying probabilistic LoS blockage model.

Both ITU-R and 3GPP have also defined their LoS blockage models for UAV. In partic-
ular, the ITU-R model, reported in [20], considers the frequency range from 20 to 50 GHz.
The LoS blockage probability is calculated assuming that the terrain is flat and has a certain
constant slope over the area of interest. The model also accounts for different heights of
UE and BS and uniform distribution of the building height. The LoS blockage probability
is produced in product-form. Contrarily, 3GPP models of LoS blockage defined in TR
38.901 are purely empirical, obtained by fitting the measurement data to the exponentially
decaying function starting from a certain breaking point. The model specifically tailored
to UAV and proposed in TR.36.777 [28] utilizes only two parameters: BS height and UAV
altitude. Parameters such as the height of buildings, building density and others are not
taken into account. Thus, the model can only be used for certain BS heights, significantly
reducing the application scenarios.

Recently, the authors in [21] proposed a detailed and versatile UAV LoS blockage prob-
ability that accounts for most critical parameters including different UAV and BS heights,
different building height distribution, and various widths of streets and building blocks.
The standard city deployment is however limited to the regular one and captured by the
Manhattan Poisson line process (MPLP). Owing to the model complexity, closed-form
expressions have been provided for specific building height distributions only. The au-
thors demonstrated that the LoS blockage probability is highly sensitive to the type of
deployment, the distribution of building heights, and the flight altitude of the UAV. Also,
according to the authors, the existing standardized models developed by 3GPP and ITU-R
provides an overly optimistic approximation of the UAV LoS blockage probability.

2.3. Summary

In summarizing, we note that the accuracy of empirical models proposed so far for
UAV LoS blockage analysis heavily depends on the similarities of the analyzed deployment
and the one where measurements have been taken. Specifically, measurement-based
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models require large-scale measurement campaigns for each specific environment. Purely
analytical models are either too simple to account for critical details or do not provide the
solution in closed-form.

In this paper, we will fill the abovementioned gap by proposing an accurate analytical
model accounting for all the major specifics of the environment. The distinguishing feature
of the proposed model is that, as opposed to other models, it provides the result in closed-
form and is capable of capturing the specifics of both ground- and rooftop-mounted
BS simultaneously.

3. System Model

In this section, we first introduce the considered system model by defining the system
and environmental input parameters. We then define the metrics of interest and outline the
proposed methodology.

3.1. Deployment Model and Metrics of Interest

We assume deterministic Manhattan grid deployment with street width l, see Figure 1.
The widths and lengths of building blocks are assumed to be bw and bl . The height of
building blocks is assumed to be a random variable (RV), HB, with probability density
function (pdf) fHB(x). We consider a certain zone of interest having MV and MH vertical
and horizontal streets, respectively. We further assume that there are N ground-mounted
mmWave BSs located on the streets leading to the spatial density of N/[MV ∗ (l + bl) ∗
MH(l + bw)] mmWave BSs per squared meter. On top of this, we assume that there are M
rooftop-mounted mmWave BS randomly located on the building roofs.

Figure 1. Illustration of the considered deployment.

MmWave BSs are assigned to streets randomly, i.e., first a discrete uniformly dis-
tributed RV between 0 and MH + MV is used to determine the street index, and then the
position of mmWave BS is determined by choosing x or y coordinate uniformly along the
street width, excluding parts occupied by crossroads. Similarly, NC, NC < N, crossroad-
installed mmWave BSs are assigned to crossroads randomly using discrete RV uniformly
distributed between 0 and MV MH . A particular location of mmWave BS on a crossroad
is defined with respect to the left upper corner and is fully determined by the distances
lA,1 and wA,1. Similarly, we choose a particular position for BSs installed along the street
at the distance lA,1, from the building. Note that in practice these BSs can be installed on
lampposts, for example, and distances lA,1, and wA,1 may coincide with the sidewalk width.

The UAV attitude is assumed to be constant, hR. We assume that UAV is in coverage
of BS if there is a LoS path between UAV and BS and this path is less than a certain r. UAV
is assumed to cross this region following a random line at the constant speed vU . We are
interested in the UAV coverage probability–the probability that UAV is in coverage of at
least one BS.

3.2. Methodology at a Glance

Instead of accounting for inherent dependencies between building positions and their
shapes in regular urban deployments, we characterize LoS visibility regions in �2 located at
the UAV flying altitude, hR, see Figure 1. Using these regions we then proceed by utilizing
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the tools of integral geometry to determine the probability that a random point in this plane
is covered by at least one LoS visibility region immediately delivering the sought metrics
of interest in a simple closed-form.

4. UAV Blockage Analysis

In this section, we develop our framework. We start by defining the so-called LoS
visibility zones at the flying altitude of the UAV. Next, we utilize the integral geometry to
specify the LoS probability for the ground deployment of mmWave BSs. Finally, we extend
the methodology to account for rooftop-mounted mmWave BSs.

4.1. Geometric Structure of LoS Zones

We start by characterizing the LoS visibility zone induced by BR BS located along
the street, see Figure 2a. As one may observe, this zone is of rectangular shape with sides
that depend on (i) heights of buildings, HB,1 and HB,2, (ii) maximum coverage of BS, r,
and (iii) UAV altitude hR.

Observing Figure 3a, the length of the LoS visibility zone is

D = 2
√

r2 − (hR − hT)2, (1)

where r is the maximum communications distance,

r =
√

10
PA+GR+GT−N0−ST−32.4−20 log10 FC

21 − [hR − hT ]2, (2)

where ST is the SNR threshold, GT and GR are the transmit and receive antenna gains, PA
is the emitted power at mmWave BS, N0 is the thermal noise, FC is the carrier frequency.

The width of the LoS visibility zone, L, is an RV that is determined by building heights,
HB,1 and HB,2, where both have the same pdf fHB(x), see Figure 3b. Observe that angles α1
and α2 are given by

αi = tan−1
(

HB,i − hT

lA,i

)
, i = 1, 2, (3)

where l1, l2 are the distances to the buildings, see Figure 3b.

LoS zone

AP

(a)

Lo

S z ne AP

(b)

Figure 2. Two types of feasible LoS visibility zones in the considered scenario. (a) BS located along
the street; (b) BS located at the crossroad.
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Figure 3. Geometrical illustration of the sides of LoS visibility zone. (a) Length of the LoS visibility
zone; (b) Width of the LoS visibility zone.

Further, using tan βi = Li/(hR − hT), i = 1, 2 and observing that angles βi are related
to αi as βi = π/2 − αi we arrive at the following expressions for RVs L1 and L2

Li = (hR − hT) tan
(

π

2
− tan−1

[
HB,i − hT

lA,i

])
=

=
lA,i(hR − hT)

HB,i − hT
, i = 1, 2. (4)

One may now determine the mean area of the LoS visibility zone as

E[SB] = D
∞∫

0

∞∫
0

fHB(x) fHB(y)[L1(x) + L2(y)]dxdy =

= 2
√

r2 − (hR − hT)2E[LB], (5)

where the mean length of the LoS visibility zone, E[LB], is provided by

E[LB] =
∫ ∞

0

∫ ∞

0

(
lA,i(hR − hT)

x − hT

)
×

×
(

lA,i(hR − hT)

y − hT

)
fHB(x) fHB(y)dxdy, (6)

that can be evaluated in closed-form for a given distribution of the building height.
A simple yet reliable approximation for (5) can be obtained by assuming the same

random height of both buildings on the street, as it is usually the case in practice. In this
case, the width of the blockage zone becomes

LB = L1 + L2 =
(hT − hR)(lA,1 + lA,2)

x − hT
, (7)
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implying that (6) can be written as

E[LB] =
∫ ∞

0
fHB(x)

(hT − hR)(lA,1 + lA,2)

x − hT
dx. (8)

For example, for HB having uniform distribution in (A, B) we have

E[LB] =
(hT − hR)(lA,1 + lA,2)(log[1 − A

hT
]− log[1 − B

hT
])

B − A
. (9)

Similarly, the mean perimeter of the LoS visibility zone B is E[LB] = 2D + 2E[L].
The LoS visibility zones induced by BS deployments on the crossroads can be found
similarly. Indeed, as one may observe in Figure 2b, they consist of two overlapping LoS
visibility zones forming a “cross”. Individually, parameters of these two zones can be
estimated as shown above.

4.2. Blockage Probability with Grounded Infrastructure

We are now in a position to evaluate blockage probability, pB, with ground-mounted
BSs. The input parameters are the number of LoS visibility zones characterized by their
mean areas and perimeters, E[SB] and E[LB], in �2 plane positioned at the UAV flying
altitude hR.

To provide simple yet accurate expression for blockage probability, we will rely upon
the tools of integral geometry. Further, we need two fundamental notions of integral
geometry. A curious reader is referred to [29] for a basic account of information and to [30]
for modern developments in the field.

Definition 1 (Kinematic density, [29]). Let K denote the group of motions of a set A in the
plane. The kinematic density dA for the group of motions K in the plane for the set A is

dA = dx ∧ dy ∧ dφ, (10)

where ∧ is the exterior product [31], x and y are Cartesian coordinates, φ is the rotation angle of A
with respect to OX.

Definition 2 (Kinematic measure, [29]). The kinematic measure m of a set of group motions K
on the plane is defined as the integral of the kinematic density dA over K, that is,

mA =
∫

K
dA =

∫
K

dx ∧ dy ∧ dφ. (11)

Consider first a single mmWave BS in the area of interest A and let B define a LoS
visibility zone. We are first interested in the probability pC that UAV, located at a randomly
chosen point P in A, is in coverage of this BS, that is, it is located in B. Using conditional
probability we may write

pC =
Pr{P ∈ A ∩ B}
Pr{A ∩ B �= 0} , (12)

where the probability that UAV location P belongs to the intersection area of two sets, A and
B, is in the nominator, while the probability that these sets do intersect is in the denominator.

Using the notion of kinematic measure, we get [29]

Pr{P ∈ A ∩ B} = m(A : P ∈ A ∩ B}),
Pr{A ∩ B �= 0} = m(A : A ∩ A �= 0), (13)
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where the first expression is the kinematic measure of the set of motions of A such that
P ∈ A, while the second one provides the measure of all motions of A, for which the
intersection between A and B is non-zero.

Following [29], the first measure is

mj(P ∈ A ∩ B}) =
∫

P∈B
f (x, y)dx ∧ dy ∧ dφ, (14)

where f (x, y) is the density of LoS visibility zone positions in A.
The measure of all motions of A, such that A ∩ B, is [29]

mj(A ∩ B �= 0) =
∫

A∩B �=0
f (x, y)dx ∧ dy ∧ dφ. (15)

Finally, the sought probability is given by

pC =

∫
P∈A∩B f (x, y)dx ∧ dy ∧ dφ∫
A∩B �=0 f (x, y)dx ∧ dy ∧ dφ

, (16)

and can be computed for a particular form of A, B, and f (x, y).
The numerator in (16) is computed as [29]

mj(P ∈ A ∩ B}) =
∫

P∈B
dx ∧ dy ∧ dφ =

=
∫

P∈B
dx ∧ dy

∫ 2π

0
dφ = 2πE[SB], (17)

where E[SB] is the mean area of LoS visibility zone provided in (5).
The measure of motions of A is such that A ∩ B �= 0 is [29]

mj(A ∩ B �= 0) =
∫

A∩B �=0
dx ∧ dy ∧ dφ =

= 2π(SA + E[SB]) + LAE[LB], (18)

where E[LB] is the perimeter of LoS visibility zone, SA and LA are the area and the perimeter
of A, given by

SA = [MV ∗ (l + bl) + bl ] ∗ [MH(l + bw) + bl ],
LA = 2[MV ∗ (l + bl) + bl ] + 2[MH(l + bw) + bl ].

(19)

Substituting (17), (18) into (12) we obtain

pC =
2πE[SB]

2π(SA + E[SB]) + LAE[LB]
. (20)

Recall that mmWave BSs are deployed randomly along the streets. When mmWave BS
is deployed on the crossroad it creates two LoS visibility zones as illustrated in Figure 3b.
Let u be the probability that mmWave BS is at the crossroad. This probability is found as
the ratio of crossroad area to the overall area of streets as

u =
MV MHl2

MH(l[(bw + l)MV + bw]) + MV(l[(bl + l)MH + bl ])− MV MHl2 . (21)

The mean number of LoS visibility zones of rectangular shape is then given by the
mean of Binomial distribution with parameters N and u shifted by N, i.e., N(1 + u). Thus,
the blockage probability can now be approximated as

pB = 1 − (1 − pC)
N(1+u), (22)

where pC is provided in (20).
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Substituting intermediate results and simplifying, we arrive at the closed-form ex-
pression for blockage probability in the presence of N ground-mounted mmWave BS as

pB = 1 −
(

1 − 2πE[SB]

2π(SA + E[SB]) + LAE[LB]

)N
(

1+ MV MH l2

MH (l[(bw+l)MV+bw ])+MV (l[(bl+l)MH+bl ])−MV MH l2

)
. (23)

where SA and LA are provided in (19), E[SB] and E[LB] are calculated using (5) and (6) for
a given fHB(x).

4.3. Blockage Probability with Rooftop-Mounted BSs

The blockage probability heavily depends on the density of mmWave BSs, as well
as on the heights of buildings. For some values of these input parameters, the blockage
probability might be unacceptably high. In practical deployments, network operators may
want to add additional dedicated mmWave BSs. Mounting these BSs on rooftops would
allow for an unobstructed LoS of circular shape, drastically reducing blockage probability.

To assess joint deployment, one may apply the methodology developed in the previous
section to rooftop mmWave BSs. The principal difference is that the LoS visibility zone is of
circular form with radius D/2 as in (1) with HB replacing hT . However, as these mmWave
BSs are now deployed on the roofs, D is a RV. Thus, we have

E[D] =
∫ ∞

0
fHB(x)2

√
r2 − (hR − x)2dx. (24)

that can be evaluated for a given fHB(x), x < hR.
The blockage probability by M rooftop mmWave BSs is obtained similarly to (22).

Finally, in the presence of N ground-mounted and M rooftop-mounted mmWave BSs the
blockage probability is the product of individual blockage probabilities.

5. Numerical Results

In this section, we first assess the accuracy of the model identifying its application
range, and then proceed to report on the impact of system parameters on the UAV blockage
probability. Finally, we evaluate the effect of rooftop-mounted BSs. The values of input
system parameters are provided in Table 1.

Table 1. Summary of notation and parameters.

Parameter Value

mmWave BS height, hT 5 m
UAV height, hR 150 m
Carrier frequency, FC 28 GHz
Emitted power, PT 0.02 W
mmWave BS and UAV antenna gains, GT , GR 15 dB, 5 dB
Number of vertical and horizontal streets, MH , MV 10, 10
Length and width of building blocks, bl , bw 100 m, 100 m
Street width, l 20 m
SNR threshold, ST 0 dB
Thermal noise, N0 −174 dBm

5.1. Accuracy Assessment

To identify the application range of the developed closed-form approximation, we
start assessing the accuracy of the model by comparing its results to those obtained using
the computer simulations. To this end, Figure 4 shows the UAV LoS blockage probability
obtained using the proposed model and computer simulations for various UAV altitudes
and BS heights hU and hA, respectively, street width l = 20 m, mean building height
and standard deviation E[HB] = 30 m and σ[HB] = 10 m, block width and length of
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bw = bl = 100 m. The considered region of interest is formed by considering 10 horizontal
and vertical building blocks interchanged with streets.

Model: hA=5 m., hU=100 m.
Sim.: hA=5 m., hU=100 m.
Model: hA=10 m., hU=200 m.
Sim.: hA=10 m., hU=200 m.
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Figure 4. Comparison of the developed model and computer simulations.

By analyzing the results shown in Figure 4, one may deduce that the proposed model
allows for the approximation of the results obtained via computer simulations quite closely.
Similar observations have been made for rooftop-mounted mmWave BSs. Notably, the de-
veloped model slightly overestimates the actual value of the probability. This is explained
by the inherent structure of the model that assumes that all the LoS visibility regions are
completely independent. This observation allows us to identify the applicability regions
of the model. First of all, observe that due to the abovementioned property the model
always provides the upper bound on the UAV LoS blockage probability. Secondly, the re-
sults become more accurate as of the area of the zone and/or the density of the mmWave
BSs increase. Based on these results, when discussing the response of the UAV blockage
probability to system parameters and assessing the effect of rooftop-mounted mmWave
BSs, we thus utilize the developed model.

5.2. Effects of System Parameters

We now proceed to evaluating the effect of system parameters on the UAV blockage
probability including the BS height and altitude of UAV, the mean and variance of building
height and, finally, the street width and building block’s width and length.

We start with an assessment of the effects of mmWave height and UAV flying altitude.
To this aim, Figure 5 shows UAV LoS blockage probability as a function of these parameters
for street width l = 20 m, mean building height and standard deviation E[HB] = 30 m and
σ[HB] = 10 m, block width and length of bw = bl = 100 m. By analyzing the presented
results, we see that higher BS heights result in lower UAV LoS blockage probability, see
Figure 5a. Particularly, the gain of changing mmWave BS height from 5 m to just 15 m leads
to the decrease of UAV LoS blockage probability by approximately 0.15 for 20 mmWave
BS deployed in the area. The rationale for these improvements is that higher mmWave BS
heights make the visible regions at the UAV flying altitude larger, see Figure 2. Furthermore,
this effect is non-linear as the area increases faster when the mmWave BS height increases.
We also note that these gains depend heavily on BS deployment density and are minimal
highly dense deployments.

Analyzing the effect of UAV flying altitude in Figure 5b, qualitatively similar con-
clusions can be made. More specifically, the higher the altitude the smaller the UAV LoS
blockage probability. Specifically, for the density of 20 mmWave BS in the considered area,
the gain of changing the altitude from 100 to 200 m is approximately 0.15 and is comparable
to that of the change in BS height from 5 to 15 m. We also note that in practice this parameter
should be tuned with care. The reason is that higher altitudes may lead to much lower
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received power, especially for ground-mounted mmWave BS that is usually downtilted to
provide better coverage for terrestrial users, e.g., pedestrians.
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Figure 5. UAV blockage probability as a function of BS height and UAV altitude. (a) Various BS
heights; (b) Various UAV altitudes.

In dense city deployments of mmWave BS, the characteristics of building block height
may produce a significant impact on UAV LoS blockage probability. We investigate this
hypothesis in Figure 6, where we illustrate the UAV LoS blockage probability as a function
of the number of deployed mmWave BS for UAV altitude hU = 150 m, BS height hA = 5 m,
street width l = 20 m, block width and length of bw = bl = 100 m. Here, in Figure 6a we
show the effect of different mean values by keeping the standard deviation constant at
σ[HB] = 10, while in Figure 6b we vary standard deviation and keep the mean constant at
E[HB] = 30 m.

E[HB]=20 m.
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Figure 6. UAV blockage probability as a function of building block height parameters. (a) Various
mean heights; (b) Various standard deviations.

By analyzing the presented data, we may conclude that the mean building height
logically produces a significant effect on the UAV LoS blockage probability. The magnitude
of this effect is comparable to that of BS height or UAV altitude. Particularly, when
considering districts with high building heights, e.g., city centers, one needs to utilize
additional ways to improve UAV LoS blockage probability. However, at the same time,
the effect of standard deviation is rather limited, leading to differences in the range of
0.05–0.1 for the considered range of the number of deployed mmWave BS.

Finally, we consider the effect of street and building block widths on UAV LoS blockage
probability illustrated in Figure 7 for UAV altitude hU = 150 m, BS height hA = 5 m, mean
building height and standard deviation E[HB] = 30 m and σ[HB] = 10 m, respectively,
block width and length of bw = bl = 100 m. As one may observe, both parameters
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drastically affect the considered metric of interest. However, the effects are different.
Specifically, by increasing the street width the UAV LoS blockage probability drastically
increases, see Figure 7a. The rationale is that this leads to much larger areas of LoS visibility
zones, see Figure 2. At the same time, one may observe that by increasing the street and
building block widths, the considered area increases as the number of streets and building
blocks in both horizontal and vertical directions are kept constant. Thus, logically, larger
building blocks dimensions lead to higher UAV LoS blockage probability, see Figure 7b.
Nevertheless, this effect is attributed to the increase of the considered area.
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Figure 7. UAV blockage probability as a function of street and building block widths. (a) Various
street widths; (b) Various building block width.

5.3. The Effect of Rooftop-Mounted BSs

Finally, we highlight the effect of rooftop-mounted BS on the UAV blockage prob-
ability. To this aim, Figure 8 shows the effect of rooftop-mounted mmWave BSs on the
UAV blockage probability for UAV altitude hU = 150 m, BS height hA = 5 m, street width
l = 20 m, mean building height and standard deviation E[HB] = 30 m and σ[HB] = 10 m,
block width and length of bw = bl = 100 m. By analyzing the presented data, one
may observe that mounting BSs on rooftops allows us to greatly reduce the BS block-
age probability. More specifically, adding just three rooftop-mounted mmWave BSs
to the considered area allows for the reduction of the UAV LoS blockage probability
by multiple times. Recall that in the considered deployment the deployment area is
(bl + l)MV × (bw + l) ∗ MH ≈ 1.44 × 106 m2, implying that the density of rooftop BS is just
≈2 ×10−6 BS/km2. Specifically, by comparing the horizontal and vertical distances be-
tween lines in Figure 8, we observe that in terms of UAV LoS blockage probability, adding
additional BS at the rooftop is equivalent to deploying 10 more ground-mounted mmWave
BSs. This value is affected by system parameters and environmental characteristics of the
deployment and may vary between six and twelve.

5m.mm10m2 346
8 .mm10m2 34
N.mm10m2 346

u 8u bu Nu eu r u
uou

uob

uoe

uof

uog

8ou

5nd t B. m1S.mnsU-d mns0BU346

A
Vl

tc
mk
ap
SB
2.
mt
pt
ici0
y,
p
B

Figure 8. The effect of the rooftop-mounted BSs.
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5.4. Discussion, Limitations and Applications

The presented results illustrate that out of all considered deployment parameters,
street width and building block length are the ones impacting the UAV LoS blockage
probability the most. The impact of BS and UAV heights as well as the mean building block
height is also noticeable. These parameters all need to be accounted for when estimating
the required density of BSs to support UAVs in mmWave 5G systems. Note that in real
deployments, these parameters are not independent as specified in [20]. Thus, in general,
in city centers, where the mean building heights and width are larger, much higher BS
deployment density will be required for the same target UAV LoS blockage probability as
compared to the suburbs.

We specifically emphasize the importance of rooftop-mounted BS. As we have ob-
served, qualitatively, the density of ground-mounted BS deployment has to be extremely
high, especially in city center deployment conditions. Here, to support the uninterrupted
connectivity, it is much more economically sustainable for network operators to deploy
dedicated BSs having almost unobstructed coverage for UAV. Our results demonstrate that
one rooftop-mounted BS is equivalent to six to twelve ground-mounted ones in terms of
UAV LoS blockage probability.

Although the proposed model by design can capture the specifics of different deploy-
ments, it also has its limitations. Specifically, as the model assumes that visibility areas are
all convex, the visibility areas created by BSs deployed on the crossroads need to be treated
as two independent rectangular visibility areas. This implies that the accuracy of the model
increases as the size of the analyzed regions with homogeneous building deployments
increases. Furthermore, the independence of all visibility areas also implies that the BS loca-
tions should be close to the Poisson point process (PPP, [32]). Note that due to restrictions
of BS locations in the city center and also due to the need for high densification to satisfy the
growing customer needs, BS deployment locations are far from regular cellular structures.
Specifically, many studies assume PPP as the deployment process for 4G/5G systems.

The proposed model is especially usable in system-level simulations of mmWave NR
deployments supporting UAVs. As noticed in [33], the handling of dynamic blockage
events is one of the most time-consuming operations. Associating UAVs with the blockage
process having the fraction of time in blockage coinciding with the UAV LoS blockage
probability may efficiently address this challenge. Furthermore, the proposed model can be
utilized by network operators at the network deployment phase to assess the density of
mmWave BSs providing the required level of UAV coverage.

6. Conclusions

UAVs are expected to soon become a vital part of 5G deployments, acting as both
users and aerial BSs. Motivated by the use of UAVs in future 5G deployments, in this paper,
we utilize the tools of integral geometry to provide closed-form approximations for UAV
blockage probability. In addition to LoS blockage with ground-mounted mmWave BSs, we
also considered the case of the operator utilizing rooftop-mounted mmWave BSs.

The numerical results illustrate that the model can closely match the actual UAV LoS
blockage probability. Furthermore, the accuracy of approximation increases as either the
density of mmWave BSs or the area of interest increases. In analyzing the effect of the
rooftop-mounted mmWave BSs, we have shown that one additional rooftop-mounted BS
improves the UAV LoS blockage probability as six to twelve ground-mounted mmWave
BS. Finally, the most impact on UAV blockage probability is produced by the mmWave
BS height, UAV altitude, street width, and mean building block height. The developed
model allows for the mathematical assessment of the sought metric for a given deployment
condition and density of ground- and rooftop-mounted mmWave BSs.

We foresee two application areas of the proposed model. The first is with regard to
system-level simulations, where one needs to utilize simple models for UAV LoS blockage
probability. Additionally, the model can be utilized for assessment of the required density
of mmWave NR BS to ensure a certain UAV LoS blockage probability. We also note that the
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accuracy of the model increases as the deployment area with the homogeneous building
deployments increases. Thus, the proposed model needs to be applied to large city districts.
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Abstract: The coverage path planning (CPP) algorithms aim to cover the total area of interest with
minimum overlapping. The goal of the CPP algorithms is to minimize the total covering path and
execution time. Significant research has been done in robotics, particularly for multi-unmanned
unmanned aerial vehicles (UAVs) cooperation and energy efficiency in CPP problems. This paper
presents a review of the early-stage CPP methods in the robotics field. Furthermore, we discuss
multi-UAV CPP strategies and focus on energy-saving CPP algorithms. Likewise, we aim to present
a comparison between energy efficient CPP algorithms and directions for future research.

Keywords: coverage path planning; unmanned aerial vehicle; cell decomposition; decomposition
methods; energy-aware approaches; energy optimal path; multi-robot systems; multi-UAV

1. Introduction

In recent years, due to rapid technological development, UAVs and sensors they can
carry have been developed to the extent that they can cover a wide range of applications [1]
that cannot be satisfied by other types of robots [2]. Some of the applications are precision
agriculture [3,4], search and rescue [5], firefighting [6], law enforcement [7], powerline
inspection [8], oil and gas [9], disaster management [10], and cell network expansion [11].
However, a fundamental problem is the optimal use of autonomous aircraft in terms of
time and space [2].

Recently, CPP algorithms have been developed, considering the parameters required
for more efficient data retrieval from remote sensing sensors [12,13]. In addition, algorithms
have been developed that use multi-UAV to cover the area, thus reducing the coverage
time of the area of interest [14,15]. The way to cover an area with autonomous robots
differs depending on the algorithm [2,16,17]. In the literature, CPP algorithms use different
methods (e.g., grids, graphs, and neural networks) with calculations performed online or
offline for known or unknown areas [18].

The CPP algorithms can be classified into two main categories: offline and online [19].
Offline algorithms need to know the environment and the information included, such as
obstacles and the geometry of the area of interest. Of course, in a real-life environment,
many dynamic parameters cannot be known in advance. Offline algorithms have prior
knowledge of the coverage area environment [20]. They also provide more efficient and
convenient route plans and use less central processing unit (CPU) power than online
algorithms [21].

The online algorithms are based on real-time environment data retrieved from onboard
sensors to cover the area of interest. Online algorithms do not fully understand the
coverage area environment, and the coverage path is executed in real-time by the UAV
after processing the data using the sensors it carries. The benefits of online algorithms are
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the design of the in-flight route to complete the mission regardless of unforeseen situations
and the unnecessary prior detailed knowledge of the coverage area [20,22].

Furthermore, there are two categories of problems in area coverage: single coverage
and repeat coverage. The goal of single coverage is to cover the entire area of interest and,
at the same time, minimize the time and distance traveled by the coverage route [23]. On
the other hand, repetitive coverage aims to repeatedly cover all points of interest in the
area, maximize the frequency of visits to points of interest, and minimize time and total
coverage [24].

This paper aims to present the CPP methods and approaches used by UAVs, focusing
on energy-saving CPP methods, such as using the direction of the wind in the cover
area [25]. The CPP problem is the optimal motion of the robot in a specific area that
includes obstacles to cover this area with minimum overlapping and the shortest path. In
the case of a UAV in a three-dimensional area, the shortest path is related to the sensor’s
footprint. Of course, as the altitude of flight is higher, the footprint is more extensive, which
means the shortest path. On the other hand, the higher the flight altitude of the UAV, the
bigger the ground sample distance (GSD) and the lower the image quality. GSD is the
distance between pixel centers measured in the ground. However, there are a lot of other
limitations, such as no-flight zones, that must be computed during path planning to avoid
obstacles [26].

Many surveys present studies related to UAV trajectory planning in an environment
with obstacles [27], UAV autonomous guidance [28], and in specific applications, such as
remote sensing with UAVs in precision agriculture [29]. A survey on CPP methods for
mobile robots was presented by Choset, who classified the approaches in two classes [19].
The robots follow simple rules, but the success of area coverage is not guaranteed to be
classified as a heuristic approach. On the other hand, the complete methods using cellular
decomposition guarantee coverage. Moreover, the author mentions the flight time, which
can be minimized by using multiple robots and reducing the number of turns.

The most recent surveys regarding the CPP methods for robotics or UAVs are pre-
sented in Table 1. Cabreira et al. [30] present a survey of the decomposition methods,
UAV and Multi-UAV CPP methods, and energy-saving algorithms. Galceran and Car-
reras [20] present a survey of the decomposition methods and ground multi-robot strategies.
Additionally, Almandhoun et al. [31] present Multi-UAV CPP methods in their survey.
Chen et al. [32] present a survey of CPP methods using UAV or Multi-UAV. The existing
surveys of CPP methods considering unmanned ground vehicles (UGV) and the surveys of
CPP methods using UAVs extend the UGV’s CPP methods. However, many factors, such
as the sensors’ weight, the flight endurance, direction, and intensity of the wind, must be
considered when using UAVs on CPP methods developed for UGVs.

Table 1. Related surveys.

Related Work
Decomposition

Methods
Multi-Robot

Strategies
UAV CPP
Methods

Multi-UAV
CPP Methods

Energy-Saving
Algorithms

Comparison of
Energy-Saving
CPP Methods

Cabreira et al. [30] � � � � � �

Galceran and
Carreras [20] � � � � � �

Almandhoun
et al. [31] � � � � � �

Chen et al. [32] � � � � � �

Our work � � � � � �

Table 1 compares the present work to already existing surveys of CPP methods for
robotics or UAVs. The present paper is focused not only on surveying the CPP methods
for UAVs, but also on: (a) examining all the decomposition methods, (b) reviewing the
multi-robot strategies, (c) the multi-UAV’s and standalone UAV’s CPP methods, (d) UAVs’
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energy-saving CPP algorithms, and (e) the comparison of the energy-saving CPP methods.
Our approach proves to be the most complete regarding the variables considered for the
survey comparison.

The key contributions of this work can be summarized as follows:

• A review of the decomposition methods in different shapes of the area of interest, such
as rectangular, concave, irregular, and convex polygons, has been presented.

• A presentation of multi-robot and multi-UAV CPP strategies based on single robot
approaches, methods that guarantee the mission’s completeness, and bio-inspired
methods that perform coverage under uncertainty.

• A review of energy-saving algorithms and the limitations of them, according to the
UAV’s constraints and environmental conditions.

• A discussion of the CPP methods’ limitations, how to overcome them, and directions
for future research on energy-saving CPP algorithms.

This paper is organized considering the CPP methods, multi-UAV strategies, and
energy-saving algorithms. Section 2 focuses on a detailed analysis of the systematic review
research methodology. Section 3 reviews all decomposition algorithms, multi-robot CPP
strategies, multi-UAV CPP methods, and presents UAVs’ energy-saving CPP algorithms
and a comparative table. Finally, directions for future research on energy-saving CPP
algorithms are given in Section 4.

Our review considers the research gap concerning the differences between UGV CPP
methods and the UAV CPP methods. Furthermore, our review presents the limitations
of the UAVs considering environmental conditions, such as the intensity and direction of
the wind. A detailed discussion about the main aspects of multi-robot and multi-UAV
CPP methods is also provided. Our review focuses on approaches related to UAV energy-
saving algorithms and a discussion of the combination of these algorithms considered for
future research.

This paper aims to inform the reader of the coverage path planning approaches
in different shapes of the area of interest, including rectangular, concave, and polygons,
according to the decomposition method employed. Furthermore, we explore the limitations
of the CPP methods between UGVs and UAVs, the latest multi-robot and multi-UAV CPP
strategies, and the energy-efficient algorithms for UAVs. Finally, our review considers the
performance metrics and the limitations of these methods.

2. Methods

For the present work, a systematic review research methodology was adopted. In that
context, a range of platforms was sourced for information. Most of the sources cited in this
survey were found in (a) the IEEE Xplore digital library, (b) the Google scholar platform,
(c) the online Elsevier platform, and d) the online MDPI platform.

Keywords utilized were: “Coverage Path Planning”, “Decomposition methods”, “CPP
methods”, “Multi-robot CPP methods”, “Cell decomposition”, “Unmanned Aerial Vehi-
cles”, “Energy optimal path”, “Energy-aware approaches”, “Multi-robot systems”, “Robot
coverage”, “Robot kinematics”, and “UAV Remote Sensing”. Initially, the resulting pa-
pers (approximately 170) were filtered by choosing the ones referring to CPP algorithms,
decomposition methods, multi-robots and multi-UAV coverage path strategies, and energy-
awareness CPP algorithms.

The 170 aforementioned publications reviewed for the decomposition methods, single
or multi-robot CPP strategies, multi-UAV CPP methods, and UAV energy-saving algo-
rithms. From the 170 papers, 128 were classified according to the relevance of the survey’s
scope and their overlapping information. In the end, 128 papers were analyzed for their
approaches and their correlation to categorize in sub-sections of decomposition methods,
CPP methods, and energy-saving algorithm, of which 88 made it into the refined version of
the present survey.
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3. Results

Choset [19] classified the CPP algorithms according to the decomposition used. Most
CPP algorithms decompose the area of interest in cells. This method is preferable for
irregular areas. On the other hand, when the area of interest is a regular shape, it does
not require any decomposition for single coverage of UAV. Table 2 at the end of this
section summarizes the decomposition methods and presents the CPP approach, the
decomposition method, the algorithm processing, the shape of the area of interest, and the
corresponding reference.

3.1. No Decomposition

There is no need for decomposition in areas with regular shapes and without complex-
ity, such as rectangular areas. Patterns with simple path planning, such as boustrophedon
or square, are adequate for total coverage of a non-complex area without overlapping. The
boustrophedon method, which means “the way of the ox,” is a pattern of simple back and
forth motion along the longest side of the polygon, as shown in Figure 1 [33–35].

 

Figure 1. Boustrophedon pattern.

The literature assumes that the actual path is closely true to the plan when this method
is executed from a ground vehicle. On the other hand, UAVs are aerodynamically directly
affected by the direction and intensity of the wind, which means that the actual trajectory
of the flight in most cases is not close to that planned.

The square method is represented by Andersen [36], and it is a pattern for a search
and rescue mission. The flight path is straight lines with right 90 degrees turns. The pattern
starts from the center of the area of interest and expands until the borders, as shown in
Figure 2.

 

Figure 2. Square pattern.

224



Sensors 2022, 22, 1235

3.2. Exact Cellular Decomposition

The cellular decomposition methods are based on dividing an irregular space into
cells. One class of these methods is the exact one. The exact cellular decomposition method
decomposes the irregular space into cells, and their connections produce an accurate free
space composition. Accurate methods are complete because they guarantee the finding
of an accessible path, if any [37]. The sub-areas that arise from the decomposition can be
covered from a single UAV or multiple UAVs. There are patterns for a single UAV, such as
boustrophedon and spiral for polygon and concave areas. Nevertheless, there are strategies
for the cooperation of multiple UAVs in order to minimize the coverage time [38].

3.3. Trapezoidal Decomposition

One exact cellular decomposition technique for irregular spaces that can give a com-
plete coverage path is trapezoidal decomposition. This method is classified in the offline
category of algorithms because it does not use remote-sensing information [39,40]. Each
cell is a trapezoid in this method, and simple methods such as back and forth can be used to
cover every cell. The coverage can be achieved by an exhaustive walk that generates a path
to cover each cell to execute the path using back and forth motions such as boustrophedon,
as shown in Figure 3. Often, this method is used for agriculture applications where the
fields are polygonal and clear from obstacles. Oksanen and Visala [41] introduced an
algorithm for CPP in agricultural fields and used the path cost function to optimize the
final path.

 
Figure 3. Trapezoidal decomposition.

3.4. Boustrophedon Decomposition

Trapezoidal decomposition produces many cells, some of which can be merged. This
characteristic is a disadvantage because as many cells exist, the coverage path will be longer.
To overcome this limitation, a method that creates nonconvex cells is needed. The bous-
trophedon cellular decomposition is similar to trapezoidal decomposition but considers
vertices in the area called critical points [33,35]. The boustrophedon decomposition reduces
the number of cells compared with trapezoidal decomposition, which means shorter path
planning, as shown in Figure 4. As the trapezoidal decomposition, this method is for
polygonal areas, and the environment of the coverage area should be known. For this
reason, it can be classified as an offline method.
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Figure 4. Boustrophedon decomposition.

3.5. Morse-Based Decomposition

Another cellular decomposition method proposed by Acar et al. [42] is based on Morse
functions [43]. The Morse-based decomposition method has the advantage of different
cells shapes such as circular and can be applied in any dimensional space, such as concave,
polygon, and irregular space. The cell decomposition is succeeded with a slice that sweeps
through the area of interest. A slice is discontinued at the critical point of the Morse
function, which is restricted from the obstacle boundaries, as shown in Figure 5. This
method uses information concerning the area during motion planning. For this reason, the
method can be classified as online [44,45].

 

Figure 5. Morse-based decomposition.

3.6. Online Topological Coverage Algorithm

Wong [46] presented an algorithm that finds the cell boundaries online using slice
decomposition. Slice decomposition is a method for determining the cell boundaries using
a sweeping line over the area of interest. As the line sweeps over the area, it separates
the obstacles and free space in two regions or more, as shown in Figure 6. The algorithm
constructs a topological map using the slice decomposition on the area of interest [47].
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Figure 6. Slice decomposition.

3.7. Contact Sensor-Based Coverage of Rectilinear Environments

Butler et al. [48] present an exact cell decomposition algorithm for contact sensor-based
robots for online coverage of the rectilinear environment. In contact sensor-based coverage,
the robot’s path is cycling with retracing, while at the same time it repeatedly constructs a
cellular decomposition of the area of interest. When a robot’s full-cycle path is unsuccessful,
it chooses a new path based on its position and environment. The robot’s motion depends
on the area’s cell decomposition state, updated as the CPP progresses.

3.8. Grid-Based Methods

Grid-based methods are classified as approximate cellular decomposition due to the
restriction of the grid’s shape, which is uniform in space. It is impossible to represent
precisely the shape of the target space and its obstacles [19]. The grid-based methods
decomposed the space into uniform grid cells, which can be squares or other shapes, as
shown in Figure 7. Moravec and Elfes [49] proposed a grid map presentation based on a
sonar mounted on a mobile robot mapping an indoor environment.

 

Figure 7. Grid-based decomposition.

3.8.1. Wavefront Algorithm

The first CPP’s grid-based method was proposed by Zelinsky et al. [50]. Their method
has a start cell and a goal cell. A grid represents the coverage area, and a wavefront
algorithm is used from the goal cell to the start cell. Its operation is based on propagating a
“wavefront” from the target cell passing through the free cells and bypassing all obstacles
to the starting cell.

More specifically, the transmission of the “wavefront” from the target cell to the starting
cell is used to assign specific numbers to each cell of the grid, as shown in Figure 8. Firstly,
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0 is assigned to the target cell and then 1 to all adjacent cells. Then, all the other adjacent
cells of 1 to which no number has been assigned are assigned 2. The process repeats
incrementally until the wavefront reaches the starting point [13,20]. The environment
should be known in this method, so the method can be classified offline.

 

Figure 8. Wavefront Transmission from starting cell (S) to target cell (T).

Nevertheless, Shivashankar et al. [51] proposed a wavefront algorithm to accomplish
an online CPP with a mobile robot in an unknown spatial environment.

3.8.2. Spanning Tree Coverage

The spanning tree coverage (STC) algorithm solves the problem of covering an area
using a robot [38]. The method used by the STC algorithm is first to decompose the region
into cells and calculate a connecting tree of the resulting graph. Finally, the robot’s path
starts near the “connecting tree” and follows its perimeter, as shown in Figure 9 [37]. A
Spiral-STC algorithm was proposed by Gabriely and Rimon [52]. This online method
converts the space into a grid map. The mobile robots execute a spanning tree-generated
spiral path using onboard sensors.

 
Figure 9. Spanning Tree-based coverage.

3.9. Neural Network-Based Coverage on Grid Maps

The CPP using a neural network is an online coverage method. First, in a 2D coverage
area, a grid map is constructed where the length of the diagonal of each cell is equal to
the coverage radius of the robot (e.g., the coverage radius of a robotic broom), and then
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a neuron is associated with each cell in the grid. Each neuron is connected to the eight
primary neighboring neurons, as shown in Figure 10. Finally, the robot’s path to the
coverage area is executed by knowing each output value of each neuron at a given time, so
that the robot is attracted to cells it has not visited while at the same time being rejected by
cells it has visited [53,54].

 

Figure 10. Neural Network-based coverage.

Table 2. CPP and decomposition methods.

CPP Approach
Decomposition

Method
Algorithm
Processing

Shape of Area Reference

Boustrophedon None Offline Rectangular [33–35]
Square None Offline Square [36]

Boustrophedon, Spiral Exact cellular Offline Polygon,
Concave [37]

Back and Forth Trapezoidal Offline Polygon [39,40]
Boustrophedon Boustrophedon Offline Polygon [33,35]

Boustrophedon Morse-based Online Any
dimensional [42]

Online Topological Slice Online Polygon [46]
Contact Sensor-based Exact cellular Online Rectilinear [48]

Wavefront Approximate
cellular Offline Polygon,

Concave [50]

Wavefront Approximate
cellular Online Polygon,

Concave [51]

STC Approximate
cellular Offline Polygon,

Concave [37]

Spiral-STC Approximate
cellular Online Polygon,

Concave [52]

Neural Network-based Approximate
cellular Online Polygon,

Concave [53,54]

3.10. Multi-Robot CPP Strategies

Multiple robots have an advantage over single robotic systems [24]. The use of
multiple robots accelerates coverage of an area of interest. The problem of covering an
area with multiple robots lies in the calculation of optimal routes in order to minimize
the coverage time [38]. Using multiple robots in a CPP work reduces the completion
time due to workload division [20]. This section discusses multi-robot coverage methods
based on single robot approaches, multi-robot strategies, and multiple UAVs to cover an
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area of interest. Some drawbacks of multiple UAV strategies are spatial orientation and
communication difficulties. Table 3 at the end of this section summarizes the multi-robot
CPP strategies and presents the CPP approach, the decomposition method, the algorithm
processing, and the corresponding reference.

3.11. Multi-Robot Boustrophedon Decomposition

Rekleitis et al. [16] presented a set of online algorithms for solving the CPP using a
group of mobile robots in an unknown environment. The algorithms employ the same
planar cellular decomposition as the Boustrophedon single robot coverage algorithm, with
additions to manage how robots cover a single cell and distribute among cells. Their
solution takes into account the team members’ communication limitations. The robots
serve two roles to accomplish coverage where some members, known as explorers, cover
the boundaries of the actual target cell, while others, known as coverers, conduct basic
back-and-forth motions to cover the cell.

3.12. Multi-Robot Spanning Tree Coverage

Their experimental data reveal that their technique outperforms multi-robot spanning
tree coverage (MSTC) by a significant margin. Nevertheless, the coverage time of an
area with the multi-robot forest coverage (MFC) algorithm is shorter than the MSTC
algorithm [38]. Moreover, an online, robust version of MSTC was provided by Hazon
et al. [55]. They show that the approach is robust analytically, providing as much coverage
as a single robot can.

3.13. Multi-Robot Neural Network-Based Coverage

A neural network approach for multi-robot coverage where each robot sees all the
others as obstacles and the avoidance ability of stalemate situations was proposed by
Luo and Yang [54,56,57]. The multi-robot neural-network based coverage is inspired by
single robot neural-network coverage. During the coverage of the irregular-shaped area of
interest, the robots see each other as moving obstacles.

3.14. Multi-Robot Graph-Based and Boundary Coverage

Easton and Burdick [58] presented a two-dimensional boundary coverage method
for multiple robots. A team of robots must inspect all points on the boundary of the two-
dimensional target environment, and each robot’s inspection routes are planned to use a
heuristic search. The planned paths cover the entire boundary. Moreover, the algorithm
has been validated by simulations. The multi-robot boundary coverage is inspired by the
need to inspect the blade surfaces inside a turbine.

Table 3. Multi-robot CPP strategies.

CPP Approach
Decomposition

Method
Algorithm Processing Reference

Boustrophedon Exact cellular Online [16]
Spanning Tree Coverage Approximate cellular Online [55]
Neural network-based Approximate cellular Online [54,56,57]

Graph-based and
Boundary Approximate cellular Offline [58]

3.15. Multi-UAV CPP Methods

The number of applications where UAVs can be used is increasing as remote-sensing
technology is developed. In the literature, there are a lot of multi-UAV CPP methods
using different coverage algorithms with heterogeneous or homogeneous UAVs that were
used in a variety of applications, such as agriculture [59], surveillance [60], mapping [61],
and search and rescue missions [62]. Table 4 at the end of this section summarizes the
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multi-UAV CPP strategies and presents the CPP approach, the type of UAVs, the algorithm
processing, the evaluation metrics, and the corresponding reference.

3.16. Multi-UAV Coverage

In the agricultural sector, Barrientos et al. [13] proposed a method for area coverage
using a fleet of mini aerial robots. Their method divides the area of interest in k non-
overlapping subtasks and assigns them in k UAVs. A decentralized method for surveillance
missions using homogeneous UAVs was proposed by Acevedo et al. [63]. This method’s
primary goal is to minimize latency, which means a short sharing time of information
between the UAVs. In a later work, Acevedo et al. [64] developed a method for surveillance
in urban environments with heterogeneous UAVs that fly at low altitudes and avoid
obstacles. Finally, in their most recent work, Acevedo et al. [65] developed a method based
on grid-shape area partition, which can readjust the area shape and UAVs’ capacity.

A terrain coverage method using a fleet of heterogeneous UAVs was presented by
Maza and Ollero [61]. Their method divides the irregular-shaped area of interest per each
UAV capability, such as total flight time. Each partition is assigned to a UAV that plans a
zig-zag covering pattern according to the area’s characteristics to minimize the number of
turns. The method was validated in simulation.

A coverage algorithm for fixed-wing UAVs with the ability for obstacle and previously
scanned regions avoidance was presented by Xu et al. [23,66]. Their method uses boustro-
phedon cellular decomposition [33], an exact cellular decomposition, and presents better
accuracy than trapezoidal decomposition. The method can be classified as online in the
phase of region scanning and offline in the coverage phase.

3.17. Back-and-Forth

Maza and Ollero [61] present a cooperative technique using heterogeneous UAVs in
a convex polygonal area. A ground control station divides the area into sub-regions and
assigns them to every UAV by the capability and starting position. Every UAV calculates
back-and-forth patterns according to the camera footprint to reduce the number of turns.

3.18. Spiral

Balampanis et al. [67,68] present a spiral CPP algorithm using multiple heterogeneous
UAVs. The area of interest is divided according to UAVs sensing capabilities using a
constrained Delaunay triangulation (CDT) [69]. The CDT generates triangle cells that
match almost exactly the shape of the area of interest. To make the triangles more uniform,
they applied Lloyd optimization [70]. Then, a spiral algorithm generates the coverage
pattern for each sub-area. This method can generate smoother trajectories considering
avoiding no-fly zones and the shape of the coverage area. However, it generates more
extensive coverage paths and a higher number of turns than classical grid decomposition
and motion methods [71,72].

3.19. Multi-Objective Path Planning (MOPP) with Genetic Algorithm (GA)

Hayat et al. [73] propose multi-objective path planning (MOPP) with a genetic algo-
rithm (GA) for search and rescue missions using multiple UAVs. The mission is divided
into two phases: search and response. The search phase monitors an event to guarantee the
total coverage in a given area, and the response phase spreads detection updates on the
network. The MOPP algorithm performs the planning task during the search, while the
GA minimizes the mission completion time. As a result, the method can be classified as
offline in the search phase and online in the response phase.

3.20. Genetic Algorithm (GA) with Flood Fill Algorithm

Based on the Trujillo et al. [74] approach, Darrah et al. [75] present a CPP method for
missions over more extensive areas using multi-UAVs. The method produces equitable
sub-areas of the area of interest to cover by multi-UAVs or several flights performed by a
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single UAV. The flood fill algorithm integrated with game theory was applied to partition
the area of interest. Each UAV is a player and has a starting position. According to a
predefined pattern in a diamond shape, the UAVs take turns flooding the neighbor cells.
The UAVs cannot fly over building cells or cells previously occupied by other UAVs. The
partitioning method guarantees an approximate amount of work for each assigned UAV by
balancing the tasks. An improved version of the approach proposed by Trujillo et al. [74]
was used for each sub-area’s coverage trajectories. The method can be classified initially as
offline and then as online.

Table 4. Multi-UAV CPP strategies.

CPP Approach Type of UAVs
Algorithm
Processing

Evaluation Metrics Reference

Sub-perimeter
method Homogeneous Online Minimize latency [63]

Back-and-Forth Homogeneous Online/Offline Total path length
Time coverage [23,66]

Back-and-Forth Heterogeneous Offline Number of turns [61]

Spiral Heterogeneous Offline Coverage path,
Number of turns [67,68]

Multi-Objective
Path Planning

with GA
Homogeneous Offline/Online Mission Completion

Time [73]

GA with flood
fill algorithm Homogeneous Offline/Online Path length [74,75]

3.21. Energy-Saving CPP Algorithms

In the literature, there are a lot of CPP strategies for energy saving. One method
for energy saving proposed by Lawrance and Sukkarieh [25] is the energy exploitation
of the wind using a small gliding UAV. The authors present an algorithm that generates
energy gain paths according to the UAV’s constraints, the field’s wind conditions, and
static and dynamic soaring. One of the limitations of this method is the requirement for
prior knowledge of the field’s wind conditions. In future research, an online stochastic
wind estimation and planning method using current wind conditions of the field should
be developed.

Another method for minimizing the power consumption of a UAV is reducing the
number of turns of the CPP. Torres et al. [76] present an algorithm that reduces the number
of turns and the total flying path to minimize battery consumption.

The effect of wind direction and intensity on the time of mission completion was pre-
sented by Coombes et al. [77]. The authors used a fixed-wing UAV and the boustrophedon
method to cover the area of interest. Their simulated experiments used a constant direction
of the wind and six different speeds, and for the coverage path used different directions of
the fixed-wing UAV motion from 0 to 360 degrees in increments of 10 degrees. The results
showed that the direction of the coverage path should be 90 degrees to the wind direction to
minimize the coverage time. Furthermore, the direction of the turns is directly affected by
the vertical component of the wind. In a later work, Coombes et al. [78] presented the flight
time in wind (FTIW) function, which computes the total flight time for a total coverage of
the area of interest. The flight time needed for the total coverage of the area is less than the
previous methods. Their approach was validated after simulations and real flights.

An energy-efficient back and forth CPP algorithm proposed by Di Franco and But-
tazzo [18] computes the best motion trajectory and the maximum altitude according to the
ground sample distance (image resolution) to minimize the number of turns. Another ap-
proach for energy efficiency is to find an optimal constant speed according to the coverage
path. An energy-aware spiral CPP algorithm uses wider angle turns to minimize the accel-
eration and deceleration to maintain an optimal constant speed Cabreira et al. [79]. After
simulated and real flights, the most energy-efficient CPP method between energy-efficient
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back and forth CPP [18] and the energy-aware spiral CPP approach proposed by Cabreira
et al. [79] for a convex area was the energy-aware spiral CPP method which adopted the
energy model proposed by Di Franco and Buttazo [80].

Another energy-aware CPP algorithm for UAVs was proposed by Li et al. [81], where
the algorithm has three stages. In the first stage, the algorithm builds a 3D terrain model.
In the second stage, constant power consumption is computed by total take-off weight,
flight speed, and air friction. In the third stage, a genetic algorithm generates an energy-
optimal coverage path, which represents the amount of energy consumption in every part
of the path.

Another problem concerning UAV energy consumption is the deceleration and ac-
celeration at every turn of a conventional trajectory such as boustrophedon. Artemenko
et al. [82] present an algorithm that modifies conventional trajectories using Bézier curves,
smoothing the turns on a given path to minimize deceleration and acceleration before and
after the turning point. The authors concluded that their algorithm could reduce energy
spending compared to conventional algorithms. Restrictions, such as the UAV motion
and camera’s location, can be overcome using integer linear programming. Ahmadzadeh
et al. [83] present a cooperative coverage technique with critical time for rectangular areas
utilizing several fixed-wing heterogeneous UAVs, some carrying a frontal camera, flying
circular paths and some of them carrying a camera on the left side, flying straight lines with
left turn paths. Their proposed method uses four fixed-wing UAVs covering 100% of the
area of interest instead of the simple methods covering 80%. The proposal was validated in
simulation tests and real flights.

Araujo et al. [84] propose an algorithm where the workspace is divided into sub-areas
assigned to each UAV according to its relative capability. According to the kinematics
constraints of the UAVs, the algorithm generates an optimal number of stripes to minimize
the number of stripes and eventually the number of turns, which means less energy con-
sumption.

Majeed and Lee [85] present a CPP method for UAV low-altitude navigation in three-
dimensional urban areas with fixed convex obstacles based on footprint sweeps fitting
and a sparse waypoint graph. The primary goals of the proposed approach are to reduce
computational time, the number of turns, and path overlapping while minimizing the total
coverage path of the area of interest. The suggested method outperforms the similarly
related CPP approaches according to simulation findings.

In a later work, Majeed and Hwang [86] present a CPP algorithm for UAV navigation
to cover areas of interest (AOIs) surrounded by obstacles in three-dimensional urban areas
with fixed obstacles. The proposed method is applicable in a wide range of practical
applications that involve computing a low-cost coverage for spatially distributed AOIs in
an urban environment. However, the proposed algorithm has not incorporated and tested
for constraints and limitations, such as image resolution and UAV battery.

Cheng et al. [87] present a bio-inspired method for cooperative coverage. This method
represents the trajectory of each UAV as the B-spline curve containing control points.
This optimization problem aims to maximize the desirability of a path by combining four
variables: path distance, minimum turning angle, maximum pitch rate, and superposition
of the actual trajectory over different UAV trajectories. According to the authors, the
beginning and last control points are at the area’s borders because the UAV always travels
from left to right. The ant colony optimization (ACO) algorithm was adapted for coverage
with multiple UAVs by Kuiper and Nadjm-Tehrani [88]. The y-axis in the intermediate
control points is optimized using the ACO algorithm to maximize the coverage. Several ants
are launched during the algorithm repetitions, passing through the starting, intermediate,
and endpoints.

Table 5 summarizes the energy-saving CPP methods reviewed in this paper according
to the method used for energy saving. The table presents the CPP method, the energy-
saving factor, the type of UAV, and the corresponding reference.
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Table 5. CPP energy-aware methods.

CPP Method Energy-Saving Approach Type of UAV Reference

Energy gain path Energy exploitation of the wind Fixed-wing [25]

Back and Forth Reducing the number of turns and
the total flying path Rotorcraft [76]

Boustrophedon
The direction of the UAV path and

the turns according to the wind
direction

Fixed-wing [77]

Back and Forth
Altitude maximization according
to the Ground Sample Distance to

reduce the number of turns
Rotorcraft [18]

Spiral Wider angle turns to minimize the
acceleration and deceleration Rotorcraft [79]

Three stages energy
optimal path

An energy-aware algorithm
computes the take-off weight,
flight speed, and air friction to

generate an energy-optimal path

Rotorcraft [81]

Smoothing turns

Smoothing the turns on a given
path to minimize deceleration and

acceleration before and after the
turning point

Rotorcraft/Fixed-
wing [82]

Circular and straight
lines with left turns

paths

Cooperative coverage algorithm
with critical time

Multiple
Fixed-wing [83]

Back and Forth
Minimizing the number of stripes

and eventually the number of
turns

Multiple
Fixed-wing [84]

Back and Forth

Reduce computational time, the
number of turns, and path

overlapping while minimizing the
total coverage path

Rotorcraft [85]

Back and Forth

Reducing the computational time
and path length for the

inter-regional path, the number of
turning maneuvers, and path

overlapping

Rotorcraft [86]

ACO with Gaussian
distribution functions

Path length, rotation angle and
area overlapping rate

Rotorcraft/Fixed-
wing [87]

4. Discussion

The CPP problem using UAVs in areas of interest with different shapes and environ-
mental conditions has been studied by several authors. Standard-shaped areas of interest,
such as polygons and rectangles, do not require decomposition and can be covered by
boustrophedon and spiral patterns. Generally, no decomposition methods, such as back-
and-forth, require low computational cost to find the path trajectory. The main issue of
these patterns is not considering that the UAVs are directly aerodynamically affected by
the environmental conditions, which means the actual trajectory of the flight in most cases
is not close to that planned.

In more complex and irregular areas of interest, a cellular decomposition method may
be applied to split the area of interest into subregions. The subregions can be covered by
different CPP methods to obtain the optimum path to minimize the total path and the total
coverage flight time. Multi-UAV cooperative strategies are also being studied using the
decomposition method according to the capabilities of the UAVs.
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When the vehicle used for the proposed CPP algorithms is a UAV, there is the limitation
of the motion constraints, such as the feasible trajectory of fixed-wing UAVs. However, the
CPP methods plan the coverage path according to a performance metric. These approaches
do not consider the UAVs’ environmental factors and aerodynamic and flight limitations.

A further study is necessary for the area of CPP methods using UAVs. The coverage
algorithms should consider the constraints of the aerial vehicles, such as the actual path
trajectory rather than that planned. Moreover, the environmental factors in the area of
interest that affect the path, the time, and the actual flight path should also be considered.
According to all these mutable factors, an offline CPP method will not achieve optimal
path planning, but an online CPP method considering all these factors and re-planning the
trajectory will achieve the optimal coverage path within minimum time.

In recent years, many new CPP algorithms have been developed for energy-efficiency
and awareness. The approach using a glider UAV for soaring limits early knowledge of
the field’s wind conditions. Otherwise, the method is less effective in a situation where the
knowledge of wind conditions is limited [25]. In approaches where engine-driven UAVs
are used, there are some methods or combinations for energy saving. A method for power
saving in non-complex areas is reducing the number of turns in the UAV’s trajectory to
minimize the total path and the acceleration’s power consumption after every turn, and
eventually the total coverage time of the area of interest [20,76]. In approaches for energy
saving, considering the direction and intensity of the wind was validated as the UAV’s
path should be vertical in the wind direction, and the turning maneuvers against the wind
direction [77,78]. This approach can be combined with the previous method for greater
energy saving.

Two more approaches that can be used in combination with the previous methods
for further energy saving include minimizing the UAV’s turns according to the GSD [18].
A spiral CPP algorithm uses wider angle turns to maintain a constant speed [67] or an
algorithm for a conventional trajectory that modifies the turns for smoother motion [70]
to minimize the deceleration and acceleration before and after the turning point. Another
energy-aware algorithm computes the take-off weight, flight speed, and air friction to
generate an energy-optimal path [81].

In convex areas, there are approaches using multiple UAVs to divide into sub-areas and
assign each sub-area according to the UAV’s capability, such as motion, sensors onboard,
and total endurance flight time [83,84].

The proposed energy-efficient UAV CPP methods aim to minimize the total flight time
and the coverage path length to save energy. However, the performance metrics are based
on the path trajectory without considering other constraints, such as UAV aerodynamics and
environmental conditions. For example, in a convex area, a CPP method with a performance
metric for minimum path trajectory may produce very sharp turns. Meanwhile, it is
infeasible for a fixed-wing UAV to obtain the planned trajectory due to its aerodynamics
constraints. Another variable affecting the UAV’s actual trajectory is the wind’s direction
and intensity. The UAV will consume more energy than a more extensive path length with
smoother turns considering all these limitations.

A further study is necessary to combine all of the above constraints to develop new
energy-efficient UAV CPP methods that consider variables, such as the vehicle kinematics
and environmental conditions offline and online. A research direction to develop UAV CPP
methods to maximize energy-saving should combine machine learning or deep learning
and IoT onboard sensors in order to develop a CPP approach that will plan offline and
adapt online the coverage path trajectory according to the main performance metrics, such
as UAV kinematics constraints, and the information retrieved from onboard sensors such
as wind conditions.

5. Conclusions

This paper presented a survey of coverage path planning according to the decomposi-
tion methods, such as no decomposition, exact, and approximate decomposition methods.
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Different shapes of the area of interest, such as concave, rectangular, and polygon, are
considered in this survey. We focused on simple path planning patterns, such as boustro-
phedon and spiral, and more complex approaches such as grid-based methods. We also
presented multi-robot and multi-UAV CPP strategies that aim to accelerate the coverage
area by focusing on optimal routes.

Some authors in more complex missions and areas use multiple UAVs to overcome
their endurance limitations. However, this approach demands computational complexity
to solve communication issues and coordinate the UAVs. The coordination of the UAVs
requires a ground control station, which presents many communication failures in real-
world scenarios.

CPP methods with simple path planning, such as boustrophedon [33] and square [36],
are preferred over cellular decomposition methods for regular shapes without complexity.
These CPP methods need less computational time, but they have limitations when UAVs
use them. Exact cellular decomposition CPP methods are preferable in more complex area
shapes, such as a polygon or concave. The boustrophedon cellular decomposition [37]
is similar but better than trapezoidal decomposition [39,40] when the shape of the area
has many vertices. The boustrophedon overcomes the trapezoidal decomposition by
reducing the number of cells, which means shorter path planning. The morse-based
decomposition [42] has the advantage over the other decomposition approaches in that it
can produce different cell shapes such as circular and can be applied in any dimensional
space. The contact sensor-based coverage is preferable in a rectilinear environment and for
online coverage of the area because the coverage trajectory is updated as the CPP progresses.

Furthermore, we present UAVs’ energy-saving CPP algorithms, which enhance the
energy efficiency using optimal coverage methods and approaches, such as the sub-area
assignment of the area of interest according to the capability of the UAV in a multi-UAV
CPP strategy.

Finally, several kinds of research have been performed for UAV energy-aware methods
in the literature. However, a remaining issue for further research is the combination of
these techniques with machine learning, deep learning, and IoT sensors to develop a
new, dynamic CPP method that will maximize energy-saving compared to the proposed
energy-efficient CPP methods.
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Abstract: Nowadays, location awareness becomes the key to numerous Internet of Things (IoT)
applications. Among the various methods for indoor localisation, received signal strength indicator
(RSSI)-based fingerprinting attracts massive attention. However, the RSSI fingerprinting method
is susceptible to lower accuracies because of the disturbance triggered by various factors from the
indoors that influence the link quality of radio signals. Localisation using body-mounted wearable
devices introduces an additional source of error when calculating the RSSI, leading to the deterioration
of localisation performance. The broad aim of this study is to mitigate the user’s body shadowing
effect on RSSI to improve localisation accuracy. Firstly, this study examines the effect of the user’s
body on RSSI. Then, an angle estimation method is proposed by leveraging the concept of landmark.
For precise identification of landmarks, an inertial measurement unit (IMU)-aided decision tree-based
motion mode classifier is implemented. After that, a compensation model is proposed to correct
the RSSI. Finally, the unknown location is estimated using the nearest neighbour method. Results
demonstrated that the proposed system can significantly improve the localisation accuracy, where
a median localisation accuracy of 1.46 m is achieved after compensating the body effect, which is
2.68 m before the compensation using the classical K-nearest neighbour method. Moreover, the
proposed system noticeably outperformed others when comparing its performance with two other
related works. The median accuracy is further improved to 0.74 m by applying a proposed weighted
K-nearest neighbour algorithm.

Keywords: indoor localisation; fingerprinting; landmark; wearable device; inertial measurement
device; motion mode detection; body shadowing compensation; nearest neighbour

1. Introduction

Knowledge about location information becomes the key to numerous location-based
services (LBS) in various application domains including healthcare and safety, search and
rescue, assisted living, robotics, shopping and museum assistance, context awareness
and social networking, advertising, and marketing [1]. One of the key prerequisites to
successfully empower these services is estimating the position of a subject of interest. This
task can be effortlessly accomplished by employing the receivers of the Global Navigation
Satellite System (GNSS) with direct line-of-sight (LOS) scenarios in the case of outdoors.
The existence of the complex nature of indoors in terms of geometrical structures, presence
of numerous objects made of multivariate materials, and the variations in ambient mete-
orological conditions lead to the reflection, refraction, or even complete blockage of the
GNNS signal. Hence, the GNSS is unable to produce the desired accuracy required for the
indoors [2].

Typically, an indoor localisation system utilises an infrastructure inside a building with
a set of devices wirelessly connected to locate an unknown target carrying devices compati-
ble with that network. Various technologies are used so far for indoor localisation including
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Bluetooth low energy (BLE), radio frequency identification (RFID), ultra-wideband (UWB),
ultrasound, wireless local area network (WLAN), and wireless sensor network (WSN) [1].
Among them, RSSI-based WSN technology has drawn massive attention of the researchers
owing to the emerging usability for numerous IoT applications as well as the easiness
in RSSI acquisition. RSSI is the standard to measure the received signal power, which is
used by various methods, such as propagation modelling, trilateration, multidimensional
scaling, DV-Hop, and fingerprinting for location estimation [1]. From them, the RSSI
fingerprinting approach offers satisfactory results without the requirement of additional
costs in terms of hardware and computation. The fingerprinting method comprises two
major phases: the offline training phase and the online localisation phase. The training
phase builds a database, named the radio map, by gathering geotagged RSSI fingerprint
data from visible radio modules/anchor nodes, named reference nodes (RN), at known
locations, named reference points (RP). The online phase calculates the position of an
unknown target node by comparing a query fingerprint with the radio map.

Recently, WSN has become an attractive research area, especially for various mon-
itoring applications, due to its real-time and accurate response, coverage, and simple
infrastructure. With the continuous advancement and miniaturisation of sensing, as well
as communication technologies, wearable devices are becoming an essential component for
daily living. WSNs using wearable sensor devices are emerging for many IoT applications.
Acquiring information about the location of a user is one of the key features of wearable
devices, which becomes one of the major issues for WSN due to the presence of a massive
number of wearable sensor nodes in modern IoT applications.

One of the major limitations of RSSI-based indoor localisation is the erroneous deter-
mination of RSSI. The main reasons for this are the abovementioned complex nature of
indoor environments and the non-line-of-sight (NLOS) situations triggered by the signal
blockage between a sender and a receiver. In the case of wearable devices, the user’s
body can introduce the NLOS scenario that leads to an additional effect on the resulted
RSSI. The human body encompasses around 70% of water that can absorb part of the
radio signal [3]. Moreover, the human body can scatter the longer radio signal waves
while reflecting or attenuating the shorter ones due to its conductive nature [4]. Thus, the
presence of the human body in between a sender and a receiver influences the propagation
of radio signal that can cause an incorrect calculation of RSSI. Eventually, this circumstance
leads to an erroneous position estimation in RSSI fingerprinting-based localisation when a
wearable device calculates incorrect RSSI from multiple RNs. Researchers have already
reported that human body shadowing could distort the RSSI by up to 5 dBm, causing a
positioning performance degradation of about 67%, where there is a strong correlation
between that distortion and user orientation [5]. Besides the NLOS scenarios created by
the wearable user’s body, there may be other sources that can introduce errors in RSSI
calculation, including the presence and movement of other humans, as well as objects in
between the sender and receiver. Although it is impractical to characterise all such errors
precisely due to the randomness in the numbers and sizes of those humans and objects, it is
realistic to deal with the systematic source of error caused by the wearable user’s body [5].
In the case of RSSI fingerprint-based localisation, the user’s body shadowing effect (BSE)
can be mitigated explicitly by modelling and compensating this systematic error when
comparing a query RSSI fingerprint with a radio map. Although there are several studies
that investigate the effects of user’s BSE on wireless signal transmission, there are still some
challenges that require further attention, including:

• The estimation of the orientation angle between a user and an RN in real time.
• The derivation of a BSE compensation model that can mitigate the user’s body effects

for every single orientation angle scenario instead of some discrete orientation angles.
• The adaptation of the orientation angle estimation and BSE mitigation methods in

real-life indoor localisation applications.

Knowledge of the indoor area, i.e., the spatial information, may be an assistive tool
that can be leveraged to improve the indoor localisation accuracy without paying extra cost
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for setup. Landmark, i.e., the sensory landmark, is one such piece of spatial information
that is distributed naturally to a floor plan and can be helpful to enhance localisation
accuracy [2,6]. Specifically, landmarks are the markers in the indoor map that experience
specific signal patterns all the time when one or more sensors meet those markers. Although
some previous works utilised landmarks for robot tracking or pedestrian dead reckoning
(PDR)-based positioning, this work used landmarks as a supportive tool for mitigating the
human BSE on RSSI.

The aim of this study is to compensate the user’s BSE on RSSI to improve the RSSI
fingerprinting-based indoor localisation performance with a chest-mounted wearable de-
vice in a WSN setting. The proposed fingerprinting system composed the offline and online
phases similar to the traditional fingerprint methods. However, the online phase performs
several additional tasks to mitigate human body shadowing errors. To compensate the
RSSIs of a query fingerprint with proper values, the angle between the wearable device and
the RNs is estimated considering the user’s orientation. The concept of landmark graph
along with arctangent function is utilised for angle estimation. To identify a landmark, an
IMU-aided decision tree-based motion mode detection classifier is implemented. Then, a
human body shadowing compensation model is proposed to correct the RSSIs of the query
fingerprint. Finally, both the classical k-nearest neighbour (K-NN) and weighted k-nearest
neighbour (WK-NN) algorithms are employed to calculate the location of the unknown
target. The main contributions of this research are as follows:

• An in-depth analysis of the behaviour of XBee RSSI is performed to investigate its
effect on the user’s body.

• A unique method is proposed to estimate the orientation angle between a user and
the RNs.

• A new model is proposed that can compensate the user’s BSE on XBee RSSI for every
possible orientation angle.

• A landmark-assisted weight calculation method is used to implement the WK-NN
algorithm to improve the localisation accuracy.

• Experiments were conducted in a real indoor scenario by applying the proposed
method and model for real-time application.

The remainder of the paper is organised as follows: Section 2 discusses and compares
the existing literature related to this study; Section 3 presents an in-depth analysis of the
effect of the user’s body on RSSI; Section 4 presents an overview of the proposed system;
Sections 5–7 describe the details of the proposed system that includes landmark identifi-
cation, user’s BSE compensation, and fingerprinting localisation, respectively; Section 8
discusses the experiments and illustrates the results by comparing with other related works;
finally, Section 9 concludes this study with future recommendations.

2. Related Works

Until now, there are numerous studies that investigate the effects of the human body
shadowing on wireless signal transmission to characterise and model the wireless channel
and antenna radiation by focusing on various aspects of body-centric radio frequency-
based communication. Moreover, human BSEs have been analysed and modelled for a
variety of applications, including people counting [7,8], fall detection [9,10], and activity
recognition [11], as well as proximity detection for coronavirus contact tracing applica-
tion [12]. Although several studies have been performed on analysing the effect of human
body shadowing on radio signal transmission targeting indoor localisation applications,
they have mostly neglected the derivation of a compensation model and/or the inte-
gration of a compensation model to implement a real-time localisation system. Table 1
presents an overview of the existing literature that discusses human BSEs on wireless signal
transmission for indoor localisation and tracking applications.

In the literature, researchers utilised several wireless technologies; this study only
focuses on the systems that exploited RSSI as their measurement approach and/or finger-
printing as their localisation method. An RFID-based system is presented in [13], where the
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authors demonstrated the improvement in indoor localisation accuracy by compensating
the errors caused by human body shadowing. Channel models for both the LOS and NLOS
cases were derived, and RFID RSSI-based Monte Carlo localisation was implemented to
achieve an accuracy of 1.18 m. However, this approach has very limited applicability for
real-time location tracking applications because the differentiation between the LOS and
NLOS conditions were assessed manually.

Table 1. Comparison among existing studies focused on human body shadowing effects on wireless signal for indoor
localisation and tracking applications.

Research
Type 1

Wireless
Technology

Measurement
Approach

Sensor
Placement

Angle
Variations (◦)

Localisation
Methods

Evaluation 2 Localisation
Accuracy (m)

Ref.

An, Co 2.4 GHz RF RSSI Handheld 90 Fingerprinting Ex 2.94 (50th
percentile) [5]

An, Co WiFi RSSI Handheld 45 Fingerprinting Ex 1.65 (average) [14]

Mo, Co RFID RSSI Wrist N/A Monte Carlo Ex 1.18 [13]

An, Mo, Co WiFi RSSI Chest,
Handheld N/A NLLS Ex N/A [15]

An, Mo, Co Zigbee RSSI Chest, Back 45 Fingerprinting Ex 2.5 (median) [16]

An, Mo, Co Zigbee RSSI Chest, Back,
Wrist 45 Fingerprinting Si and Ex

2.99 (50th
percentile for

chest)
[17]

An, Mo WiFi RSSI Handheld N/A Fingerprinting Ex N/A [18]

An, Co WiFi RSSI Handheld 90 Fingerprinting Ex 2.00 (50th
percentile) [19]

An, Mo, Co BLE RSSI Handheld 3 orientations Ranging,
Trilateration Ex 0.77 (mean) [20]

An, Mo, Co Zigbee RSSI Chest 15 Fingerprinting Ex 0.74 (median) This
study

1 An = analysis; Mo = modelling; Co = compensation. 2 Ex = experiment; Si = simulation.

From Institute of Electrical and Electronic Engineers (IEEE) 802.11 family of standards,
the impact of the human body on RSSI-based ranging measurements for cooperative
localisation is presented in [15]. The authors investigated both the body and hand grip
effects on RSSI among the neighbouring nodes. This study demonstrated that there is
no significant improvement in cooperative localisation, compared to the noncooperative
case, if the BSEs are not mitigated correctly. In [18], a mathematical model is proposed to
mitigate the user’s BSE on RSSI of WiFi signals for improving indoor positioning accuracy.
Handheld mobile devices were used to collect WiFi signals in a multipath-free environment,
both for the LOS and NLOS cases, to analyse the BSEs. Finally, a model was derived that
can intensify the strength of the signals which are coming through the NLOS states caused
by the user body. Still, the authors did not discuss the methods of orientation estimation
for real-time applicability of the proposed model. Moreover, this study only considers the
handheld mobile devices for the experiment, and thus the model may not be compatible
with body-attached wearable devices. In [5], the authors presented the first fingerprinting-
based indoor localisation system that considered the subject’s BSEs on signal RSSI for
position estimation. A radio map was created by using both the empirical measurements of
RSS and a signal propagation model. To reduce the location estimation error that is cause
by the user’s body, RSSI fingerprints were collected for four orientations of the subject’s
body, compared to the RNs, in terms of four directions, i.e., north, south, east, or west. A
K-NN search algorithm was employed, and a median accuracy of 2–3 m was achieved
after compensating the human BSE. However, this solution only analyses the effect of
user orientation on location estimation and falls short of proposing any compensation
model with its real-time applicability to mitigate that effect. To solve the issue of estimating
user orientation in real time, King et al. described an approach named COMPASS, where
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the authors utilised a digital compass to acquire the user’s orientation during both the
offline and online phases [14]. During the offline phase, radio fingerprints were collected
from each RN for eight orientations in every 45◦ angle position. In the online phase, a
subset of fingerprints from the radio map was preselected based on the user orientation,
and a probabilistic algorithm was applied to the subset to calculate the user position.
Results demonstrated that considering the body orientation improved the localisation
accuracy, where the average accuracy was 1.65 m. Yet, the radio map becomes highly
redundant as eight radio fingerprints corresponding to eight directions, i.e., in every
45◦, were collected for a single RP. As a result, the search space increases by eight times,
which can cause an extra burden on the system performance in terms of computation cost
and memory requirement for a large environmental area. It may even become infeasible
for resource-constrained wearable devices for edge computing in the case of real-world
applications. Moreover, it also increases the cost of the offline phase in terms of time and
labour. Additionally, using COMPASS may produce high errors in orientation estimation
for indoors, especially around the objects that have electromagnetic radiations. A similar
approach was applied in [19], where the authors used mobile phone integrated compass
and collected radio fingerprints for four orientations in the offline phase. During the online
phase, they narrowed down the search space by applying a clustering method that used
both the signal domain and spatial domain. An adaptive weighted K-NN algorithm was
developed, which achieved an accuracy of 2.0 m for the 50th percentile; however, this study
only considers four orientations of the human body in four directions, which is not enough
to explore the complete variations of RSS values around a body.

From Zigbee-based indoor localisation solutions, a body-worn device is used in [16],
where the authors analysed the BSEs on RSSI of 2.4 GHz ZigBee signals. Two tags were
attached on the chest and back of a wearer, and data were collected at different angular
positions. The arc tangent function is used for orientation estimation, and a simple cosine
model is used to compensate the user’s BSE. Another improved version for BSE compen-
sation in indoor localisation is proposed by the same group in [17], where the authors
presented two solutions for improving localisation accuracy. In the first solution, a subject
requires multiple wearable tags that need to be mounted in different positions to calculate
RSSI. Then, their means are used as the input for fingerprint matching with reference
fingerprints from a radio map generated using the WHIPP tool [21]. In the second solution,
an arc tangent function is used to estimate the orientation of the target, where the target’s
current location is calculated by averaging four previous positions. To mitigate the BSE,
two compensation models are proposed: one is a basic over/underestimation model, and
the other is a simulation-based three-dimensional model. Results demonstrated that the
proposed models could compensate the BSE to improve localisation accuracy from 3.48 m
to 2.99 m (50th percentile for chest). However, this approach requires a subject to wear
multiple tags, which may limit its scope for real-world application. Moreover, as the radio
map created during the offline phase did not consider the BSE, the estimated location
accuracy will be low and, eventually, the orientation estimator’s performance will degrade
with time. Furthermore, the system assumes a subject always walks forward, and is unable
to infer rotation and moving direction, which can cause a significant difference between
the estimated orientation and actual orientation.

Recently, Deng et al. reported an IMU-aided system to compensate body shadowing
error for BLE-based indoor positioning [20]. The effects of the human body on BLE signal
RSSI were analysed. A compensation model was proposed which considers the distance
and angle between an RN and the unknown target to calculate the error. The distance is
calculated from the signal propagation model, and the user’s heading is approximated from
the IMU. Finally, an algorithm was proposed to estimate the location of an unknown target
by mitigating the body shadowing error in real time. Results demonstrated that the system
could achieve an average accuracy of 0.77 m for location estimation. However, the use of
IMU exclusively can produce wrong heading estimation because of error accumulation
issues with IMU. Moreover, the use of a signal propagation model solely to measure

245



Sensors 2021, 21, 5405

distance can produce high distance error, especially indoors. Thus, the described body
shadowing detection strategy can lead to erroneous output as a consequence of the errors
from the heading and distance estimation.

In this study, the user’s orientation is estimated by applying a unique approach using
a BSE compensation model that is proposed to mitigate the user’s body shadowing error
in real time to improve indoor localisation accuracy.

3. Analysis of User’s Body Shadowing Effect on RSSI

Several experiments were performed to investigate the effects of the user’s body on
radio signal RSS values. This section describes the experiments and provides observations
from the experiments.

3.1. Experiments Overview

The experiments were conducted in two different indoor environments with a similar
type of setup. The details of the hardware modules used for the experiments are discussed
in Section 8.1. Four adults (two males and two females) with different heights, weights,
and body shapes participated to allow us to collect data for the experiments. During each
experiment, a participant wore a chest-mounted wearable device as shown in Figure 1a.
Data were collected from six RNs installed in the ceiling, as shown in Figure 1b, and
placed in the same direction 2.1 m, 5.1 m, 7.5 m, 9.9 m, 12.3 m, and 15.6 m away from
the participant. There were both the LOS and NLOS communication scenarios between
the participants and RNs. A participant collected the RSSI from each RN while standing
and turning 360

◦
towards the clockwise direction around the vertical axis. During data

collection, a participant turned 15
◦

in every 60 s and collected RSSI data with a frequency
of 2 Hz that took 24 min for a complete rotation. The average of the collected RSSI was
calculated for every angle position and stored in a database for further analysis. Each
participant performed the experiment several times and at different time periods of a day
for a month.

Figure 1. Experimental setup to measure user’s body effect. (a) Wearable device attached to the chest
of a user; (b) reference nodes attached beneath the ceiling (marked by circles).

3.2. Observations

Figure 2 shows the experimental results from two different experiments, performed
by a female participant and a male participant in different indoor environments. For each
case, the figure presents the average RSSI values for different angles under four specific
distances between a participant and the RNs.
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Figure 2. RSSI values versus angle for different distances. (a,b) illustrate the mean of multiple data
points collected by two different participants from two separate indoor environments.

As can be observed from Figure 2, there is a similar trend in the ups and downs of
the RSSI values for the different angle positions. The general trend shows the highest RSSI
values when the body is placed at 0

◦
, which is the straight LOS between the transmitter and

the receiver. Then, the RSSI values start decreasing with the body’s rotation throughout
the first quarter (Q1) and reach the lowest at around the ending of Q1 and the starting of
the second quarter (Q2). They then start rising and continue throughout Q2 and reach a
small peak at around the ending of Q2 and starting of the third quarter (Q3). Then, again,
the RSSI values start falling until the end of Q3 and start of the fourth quarter (Q4) where
they reach the lowest once more. After that, the RSSI values continue to increase until they
become straight LOS again, where the values reach the peak. Thus, for most of the cases,
the lowest RSSI values are found at the angle positions just after the angle 90

◦
and just

before the angle 270
◦
.

To further understand the reason for the results obtained above, Figure 3 illustrates the
body position for each quarter, as well as a graphical representation of the electromagnetic
waves when arriving at the body and the sensor.

Figure 3. Body position and the status of the electromagnetic waves for different angle positions in
each quarter. (a) at 0◦, (b) at 45◦, (c) just after 90◦, (d) at 180◦, (e) just before 270◦, and (f) at 315◦.
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When the body is placed with an angle of 0
◦

with respect to the LOS with the trans-
mitter, as in Figure 3a, the electromagnetic wave arrives directly to the antenna without
major interference. The antenna used for the experiments in Figure 1 was a common
dipole antenna connected to the XBee receptor node, with vertical orientation. We can
assume for 0

◦
that the signal is mostly perpendicular to the chest surface, and therefore

also the sensor surface. From 0◦ to 45
◦

(clockwise orientation), the low variability among
the measured RSSIs at the receptor may be explained due to their closeness to the LOS
between the transmitter nodes and the body. On the other hand, after the angle values
of 45

◦
, the variability among the consecutive RSSI values starts to increase, which can be

explained using Figure 3b. The body as a transmission medium can be seen as a charged
object with higher conductivity (higher loss) and low penetration depth. This low pene-
tration depth means that the signal is highly attenuated inside the conductive body, due
to muscles and tissue, and the effect of the electromagnetic wave is highly concentrated
on the surface. This influences the signal in such a way that the body guides the surface
wave and behaves as a reflector for space waves [22]. These surface waves are explained
due to the diffraction of the electromagnetic signal. The diffracted wave’s components are
propagated along a curved surface, such as the body [23]. This means, as in Figure 3b, if
the signal arrives first to the shoulder, the surface-propagated component can affect the
direct vertical electromagnetic components that arrive at the antenna and change the RSSI
value. On the other hand, some electromagnetic waves are also reflected on the surface.
From all the reflected wave components, the one with the biggest amplitude has the same
angle as the incident wave [24]. Such interactions between the reflected, incident, and
diffracted waves influence the difference in the values obtained for specific angles and
the variability of the data as well. The diffracted and reflected wave components may
constructively or negatively interfere with the original signal from the transmitter. This
explains the distribution of data observed in Figure 2 for some angles in Q2 and Q3.

In Figure 3c–e, it is shown, for Q1 and Q2, how the shadowing effect affects the value
of the RSSI in Figure 2. Depending on the penetration depth and the shape of the human
body, the signal is attenuated in a nonuniform way inside the body. This explains, then,
the variability and the lower values presented for each distance in Q2 and Q3, especially
at the angle positions just after 90

◦
and just before 270

◦
. However, something important

shall be mentioned. It is observed from Figure 3 that the lowest value on each of the tests
is not at 180

◦
. As depicted in Figure 3c–e, due to the body geometry and position, the

shadowing influence in 180
◦

is physically lower than the shadowing in an angle position in
Q2 and Q3. For 180

◦
in Figure 3d, the waveform shall travel through the distance (a length

from back to chest) inside the body. In the case of Figure 3c,e, the signals become more
attenuated when travelling through a distance D1 (higher than D2, since it is the length
from the back part of the shoulder to chest), which explains the results obtained for the
values between 195

◦
to 270

◦
. Finally, once the body is placed with a heading angle towards

Q4 (Figure 3f), the reflected space components and the diffracted surface components can
affect (by component cancellation) the RSSI value, with less attenuation than in Figure 3c–e.
The last is proved in Figure 2, which shows the trend of increasing in Q4 and the variability
of the signal being reduced. Thus, it is clear from the above observations that, on top of the
other factors, the user’s body has a significant impact on RF signal and RSS values, which
is crucial to consider for RSSI fingerprinting-based indoor positioning applications.

4. Overview of the Proposed System

Figure 4 presents the architecture of the proposed system that follows the traditional
fingerprinting scheme. It is mainly composed of two phases: offline training phase and
online localisation phase. However, the core contributions lie in the profiling of the query
fingerprints by correcting the RSSI and in the fusion of IMU-aided landmarks with classical
K-NN method during the online localisation phase. More specifically, when matching a
query from a target, the rectification of the queried fingerprint is performed to mitigate
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the user’s BSE on signal RSSI by leveraging the geometrical features from the indoor floor
plan, named landmark.

Figure 4. Proposed architecture of RSSI fingerprinting-based indoor localisation with user’s body
shadowing compensation.

4.1. Offline Training Phase

Although the traditional way of creating a radio map is to partition the area of interest
into grids of uniform size followed by the radio fingerprint data collection along a straight
path within those grids, this type of manual collection of fingerprint incurs the radio map
with RSSIs which have human body shadowing error with them. To exclude this error
from the collected RSSI, this study utilised a self-directed car to collect radio fingerprints
for radio map. The details of the car, along with its working principle, can be found in
our previous work [25]. The car can produce a radio map having nonuniform grids with
curved path which have better coverage within the selected area, thus making the system
more realistic for real-life localisation applications. Suppose R̃ij is the set of RSS values
collected from RN j in the ith entry of the radio map; therefore

R̃ij =
{

rijk : k ∈ Ns

}
(1)

where rijk is the kth sample and Ns is the total number of samples from a particular RN for
a specific collection point. Together with the coordinate of the collection point, Equation (1)
becomes

{xi, yi, (R̃ij : j ∈ NRN) : i ∈ NCP} (2)

where xi and yi are the 2D coordinates of the ith fingerprint, NRN is the total number of RN
that can be accessed from ith collection point, and NCP is the total number of individual
fingerprint tuples in the radio map. As several RSS measurements are collected from each
RN for every RP, the mean value of RSS is calculated as

Rij =
1

Ns

Ns

∑
k=1

R̃ijk (3)
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where Rij is the mean RSS value recorded in the database. Therefore, the final formations
of an entry in the radio map can be defined as{

xi, yi,
(

Rij : j ∈ NRN
)

: i ∈ NCP
}

(4)

4.2. Online Localisation Phase

As shown in Figure 4, the online phase consists of three main modules: landmark
identification module, body effect compensation module, and location estimation module.
The landmark identification module detects motion modes from IMU data and recognises
indoor landmarks by leveraging a landmark graph. The body effect compensation mod-
ule estimates the angle between a wearable device and an RN by utilising the detected
landmarks, the landmark graph, and the previously estimated location. Then, this module
corrects a query fingerprint by compensating the RSSI based on a user’s body shadowing
compensation model. Finally, the K-NN algorithm computes the current location of a
target by searching the closest match from the radio map based on the corrected query
fingerprint. The detailed descriptions of the three modules for the online localisation phase
are presented in Sections 5–7, respectively.

5. Landmark Identification

The basic concept of landmarks and landmark graph are adopted from previous
studies [2,6]. Here, landmarks are the sensory markers in the indoor floor plan that
encounter specific signal patterns when one or more sensors meet those markers. A
landmark can be identified by detecting a subject’s motion modes and by applying a
set of rules to those motion modes. Therefore, the landmark identification problem can
be described as a motion mode detection problem where the key to efficiently detect a
landmark depends on the accuracy of motion mode detection. If the system can detect the
motion modes with high accuracy, then the detected motions can be used as inputs to a set
of rule-based algorithms to identify the landmarks with high accuracy. Thus, this section
mainly focuses on the motion mode detection problem. Before describing the details of
the motion mode detection, this section presents an overview of the landmark types along
with their detection rules, as well as the landmark graph.

5.1. Landmarks and Landmark Graph

Although there are various types of landmarks used for indoor localisation in previous
works, this study only considers two types of landmarks: door landmarks and turning
landmarks, which are useful for localisation in a 2D indoor environment.

Door landmarks are the sensory markers in the indoor floor plan where the state of
motion modes of a subject experience a distinct change in signal patterns. In this work,
accelerometer readings are utilised to perceive the door landmarks that can present a
specific signal pattern. The usual change pattern in motion modes when accessing a
doorway is “walking→static→walking”, which is exploited to infer the door landmark.
Figure 5a illustrates the concept of a door landmark that presents a typical change pattern
from accelerometer measurement that can be identified by detecting the corresponding
motion modes for walking and static activities, and setting a proper time threshold in
between the activities. Mathematically, the rule to detect a door landmark, Ldoor, can be
defined as follows [6]:

Ldoor =
(
(xt, yt)

∣∣ (mmt−Tht1:t == walk) ∧ (mmt:t+Tht2
== static) ∧ (mmt+Tht2:t+Tht1+Tht2 == walk)

) (5)

where mmt is the subject’s motion mode at time t, and Tht1 and Tht2 are the two time
thresholds that regulate the time for the corresponding motion status.
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Figure 5. Illustrations and signal patterns of sensory landmarks: (a) door landmark; (b) turning
landmark.

Turning landmarks are the sensory markers in the indoor map where the motion
modes provide distinct signal patterns. In this study, data from both the gyroscope and
accelerometer combinedly provide a specific motion pattern such as “walking→turning→
walking”, corresponding to the direction of turning. Figure 5b shows the idea of turning
landmark when a subject takes right and left turns. The rule for detecting a turning
landmark can be expressed as follows:

Lturning =
(
(xt, yt)

∣∣ (mmt−Tht1:t == walk) ∧ (mmt:t+Tht2
== turn) ∧ (mmt+Tht2:t+Tht1+Tht2 == walk)

) (6)

A landmark graph is a directed graph where the landmarks act as nodes and the path
segment between two adjacent landmarks acts as edges. Let LG = (LM, TJ) denote a
landmark graph where LM is the set of vertices {lm1, lm2, . . . lmN}, i.e., the potential set of
landmarks, and TJ is the set of edges {tj1, tj2, . . . tjN}, i.e., the potential set of trajectories
that connect the landmarks. Each landmark, lmi, is represented by its location coordinates,
its type, and its unique identifier using the tuple < xi, yi, lti, idi >. Each trajectory tji is a
tuple < lmj, lmk, θjk, di > that connects two adjacent landmarks, with the angle difference
relative to the x-axis in anticlockwise direction and the accessible path distance between
those landmarks. The locations of these landmarks are acquired from the indoor floor plan,
and a landmark graph is constructed.

5.2. Motion Mode Detection
5.2.1. Motion Mode Definition

The understanding and detection of motion mode are helpful to implement IMU-
assisted indoor localisation. There are different kinds of motions experienced by an IMU
which mainly depend on the placement of the sensor on a user’s body. Usually, motion
models used by the researchers are specific to the position of IMU installation on the
body, e.g., foot-mounted [26], handheld [27], head-mounted [28], etc. In this study, we
use chest-mounted IMU for landmark detection; the chance of interference by motions
coming from the irregular motion class is minimal because of the steadiness of the device.
Moreover, the pose of the device will not vary, as in the case of handheld or head-mounted
IMU. Thus, to detect a landmark precisely, the following four types of motion modes were
considered in this study.
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• Static motion: this type of motion mode includes all the circumstances when a subject
is static. A subject will be deemed to be in static mode when his/her spatial position
does not change throughout a considered time window. This mode also considers
the states as static when a subject obtains slight motion that is not significant enough
to infer it as typical locomotion, for example, if a subject moves slightly by stepping
on the same spot while opening a door. To detect a landmark correctly, this type of
movement must be identified as static.

• Striding motion: this type of motion mode involves the continuous and smooth motion
states that contain periodicity and similarity characteristics for a particular time period
in their feature set attributes. It includes the motions that change a subject’s spatial
position, e.g., plain walking, walking on stairs, or running.

• Turning motion: this refers to the motion states when a subject takes a turn while
standing or walking, e.g., performing left or right turning.

• Intermittent motion: this type of motion mode refers to the cases that generate irregular
motion states without having the periodicity and continuity properties. It includes
all the motion states that a subject performs while remain standing and does not
contribute to the change in his/her spatial position, for example, bending or shaking
the subject’s body while standing on the same spot.

5.2.2. Motion Mode Classification

The purpose of a typical classification system is to allocate an input pattern auto-
matically to a known set of items based on some decision rules. As shown in Figure 6,
usually, a typical classification method is performed using four steps, such as data prepro-
cessing, data segmentation, feature extraction, and decision-making. This study adopted
the motion mode classification methods as described in [29]. For data preprocessing, a
band-pass filter is used that removes both the unwanted low- and high-frequency noises to
focus only on the body movement-contributed signal portion. In this study, a band-pass
Butterworth filter of order eight was used to remove both the low- and high-frequency
noises. The power spectral analysis of the raw data collected from three-axis accelerometer
and three-axis gyroscope was performed to determine the signal and noise characteristics.
As analysed, most of the energy related to human motion captured by the accelerometer
and gyroscope was between 0.75 Hz and 25 Hz. Thus, these two frequencies were applied
as the cut-off frequencies to the filter for removing the low- and high-frequency noises,
respectively. In this study, though the sensor is body fixed, it can slightly change its ori-
entation regarding the original setup in the x-, y-, and z-axis, because of the generated
motions during experiments. This change in sensor orientation affects the acceleration in
various degrees towards the x, y, and z coordinate systems by decomposing the gravita-
tional component [30]. To eliminate the dependency on device orientation, the normalised
magnitude of the IMU data was considered in this study. As the human movement is a
continuous process over time, an individual data point cannot reflect a complete motion
mode of a user. Thus, to extract features that can characterise a motion mode, collected
sensor data need to be segmented into sequences within a certain time frame, named a
window. Here, a window size of 2 s with 50% overlapping was selected, which translates
200 samples for a sampling frequency of 100 Hz. The choice of this type of window is
typical and often utilised for motion mode detection, which has already been validated
by previous studies [29,31,32]. As this study only considers four types of motion modes,
the feature set proposed by Susi et al. [29] was used, which can manage the trade-off
between the classification performance and computation cost. The features were extracted
from the preprocessed windowed data, which include the energy of the accelerometer and
gyroscope, the variance of the accelerometer and gyroscope, and the dominant frequencies
of the accelerometer and gyroscope. In addition to those features, this work considered the
change of angular velocity along the vertical axis to detect the turning motion.
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Figure 6. Motion mode detection process pipeline.

As proposed by [29], this work utilised a supervised approach of classification named
decision tree for performing the classification task. A decision tree forms a tree-like
mapping that comprises leaf nodes, representing the classes, and internal nodes that
symbolise the tests regarding the features. The internal nodes contain one (i.e., univariate)
or multiple (i.e., multivariate) conditional control statements, and traversing the tree from
the root node to leaf nodes can classify a given input pattern. Figure 7 presents the decision
tree that was used in this study to detect the abovementioned motion modes. The threshold
values for each feature set in every internal node is set by the classifier after performing
the training. Initially, the tree characterises the static and dynamic types of motion modes
based on the energies and variances of the accelerometer and gyroscope, as well as the raw
angular velocity along the vertical axis. As the signal variances for the random movement
are significantly higher in short temporal periods than the striding motion, it is utilised to
separate the striding motion from other dynamic motions. Moreover, to ascertain whether
that motion is from a periodic activity, the periodicity of the dominant frequencies of the
accelerometer is evaluated, which reflects the periodic motions generated from human
gait. However, the striding motion can be further divided into other classes, such as plain
walking, fast walking, running, walking up or down stairs, etc., for other aims that are
beyond the scope of this study. Finally, the turning motions are differentiated from other
random motions by evaluating the angular velocity of the raw data along the vertical axis.
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Figure 7. Structure of the decision tree to classify various motion modes.

6. User’s Body Shadowing Effect Compensation

There are two main parts to compensate the effect of user’s body shadowing on RSSI
calculation: angle estimation and compensation model.

6.1. Angle Estimation

Because of the geometrical structures of the indoor environment, the movement of
people indoors usually tends to be in the same direction at least for a few seconds, e.g.,
in the case of a corridor, a user can walk in two directions. As the usual direction of
a chest-mounted wearable device is the same as the movement direction of a user, this
behaviour, along with the concept of landmark graph, RNs location information, and indoor
environmental geometrical constrain, can be exploited to calculate the angle between the
chest-mounted wearable tag and the RNs. To calculate the angle between a user and an
RN, the two-argument arctangent function (atan2) is used, which can estimate the angle in
the Euclidean plane between the positive x-axis and a line connecting to a point, as shown
in Figure 8a.
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Figure 8. Angle estimation between a wearable device and an RN: (a) concept of atan2; (b) adaptation
of atan2 for estimating the angle between the moving direction and the RN.

In this study, the path segment where the user is walking during the angle estimation
is considered as the line corresponding to the x-axis. Thus, the angle is calculated between
the moving path and the line connecting the current location of the user and the location of
the RN (Figure 8b), as follows:

θrad = atan2(YRN − YT , XRN − XT) ∈ (−π, π) and (XRN , YRN) �= (0, 0) (7)

θdeg =
180

◦

π
θrad (8)

θB =

{
θdeg, when θdeg ≥ 0
2π + θdeg, when θdeg < 0

(9)

where (XT , YT) and (XRN , YRN) are the coordinates of the current locations of the user
and the RN, and θB is the bearing angle between the user and an RN in degrees. In this
study, a coarse location of the unknown target is estimated first as the current location
(XT , YT) to estimate the bearing angle between the target and an RN. This coarse location
is computed based on its immediate previous location, and the step length and moving
direction. Here, the step length and step direction are obtained by leveraging the landmark
graph. At the start, the step length for a target is initialised to a constant value. As the
target progresses and passes two adjacent landmarks, the step length is updated. Let a
target pass two adjacent landmarks denoted by L1 and L2. Then, the step length of that
target can be obtained as follows:

ls =

√(
xL1 − xL2

)2
+
(
yL1 − yL2

)2

NS
(10)

where
(

xL1 , yL1

)
and

(
xL2 , yL2

)
are the coordinates of the landmarks L1 and L2, respec-

tively, and NS is the total number of previous location points in between the landmarks
L1 and L2 that are estimated when the target passes the landmarks. Here, the step length
will only be updated if the trajectory between the adjacent landmarks is a straight line.
Otherwise, the system will retain the step length that estimated last. The estimation of step
direction exploits the geometrical structures of indoor environment and infers the moving
direction as the direction of the current trajectory relative to the considered x-axis. Thus,
when the step length ls and heading θs are known, the estimation of the next location can be
obtained by using the elementary pedestrian dead reckoning (PDR) technique as follows:

xs+1 = xs + ls sin(θs) (11)
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ys+1 = ys + ls cos(θs) (12)

where (xs, ys) and (xs+1, ys+1) are the positions of a subject at step s and s+ 1, respectively,
and θs and ls are the heading and displacement at step s. Therefore, (xs+1, ys+1) are
considered as the current location (XT , YT) to calculate the angle between an RN and the
current coarse position of the target, considering the target is moving exactly the same
direction as the trajectory’s direction. However, a target can rotate his/her body while
walking towards a trajectory’s direction, which will eventually affect the measured θB in
the perspective of RSSI correction. Let θR be the rotation angle obtained from the gyroscope.
Then, the orientation angle θO of the target relative to an RN can be calculated as follows:

θO = θB ± θR ± θL1L2 (13)

where θL1L2 is the angle difference of the path segment connecting the landmarks L1
and L2 relative to the x-axis in anticlockwise direction, which can be obtained from the
landmark graph.

6.2. Compensation Model

To compensate the effects of the user’s body on signal RSSI value, a compensation
model is proposed in this study. This model can intensify the signal RSSI values that are
being interrupted by the user’s body. Thus, the proposed model for correcting the raw
RSSI is as follows, which considers the angle between the user’s body and the RN:

RSSIcorr = RSSI

⎛⎝−σ

d
e
−(θO)2

2θ2
O+1 + 1

⎞⎠ (14)

where RSSI and RSSIcorr. are the raw and corrected RSSI values, θO is the orientation
angle between the user and an RN in degrees, σ is the intensification parameter, and d is
the distance between the wearable tag and the edge of the far-ended shoulder. The value of
σ depends both on the environment and the user orientation with respect to the RN, which
needs to be chosen empirically.

However, as observed from Figure 3, the corrected RSSI will be an overestimation
when applying the proposed compensation model with the straight LOS direction (e.g.,
around 0

◦
) between the wearable tag and the RN. Moreover, it will be an underestimation

when the signals are being interrupted by the maximum obstacles (e.g., the angle positions
just after the angles 90

◦
and just before the angle 270

◦
). To resolve this issue, the following

rules with different values of the parameter σ are chosen for different angles:

σ =

⎧⎨⎩
σ1, i f (0

◦ ≤ θB ≤ 45
◦
)
∣∣∣∣ (315

◦ ≤ θB ≤ 360
◦
),

σ2, i f (45
◦
< θB ≤ 135

◦
)
∣∣∣∣ (225

◦
< θB ≤ 315

◦
),

σ3, i f (135
◦
< θB ≤ 225

◦
).

(15)

To estimate the values of σ, this study first calculates the amount of error (eθ) as
given in Equation (16), for a given range of angles by choosing a value of σ. Secondly, the
optimum value of σ is estimated by adjusting its value untill the smallest eθ is obtained.

eθ =
∑n

i=0

√(
RSSIθs+i∗m − RSSI0◦

)2

θe − θs
× 100% (16)

where RSSIθs+i∗m and RSSI0◦ are the RSSI values at angle θs + i × m and 0
◦
, respectively,

n is the total number of angle values considered to collect data within the range θs to θe,
and m is the amount of angle considered to rotate in each move. As this study considers
collecting RSSI data at every 15

◦
rotation, the value of m is 15.
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7. Location Estimation

Irrespective of the utilised features, a fingerprinting-based localisation problem is
mainly a pattern matching problem. During the online phase, a target sends a query
fingerprint from an unknown location that needs to be matched with the fingerprints
stored in the radio map. It is very unlikely that a radio map will contain a fingerprint
with an exact match. Thus, the traditional way is to find K different fingerprints closest
to the queried one from the radio map, which is known as the K-nearest neighbour (K-
NN) method. This study exploits the classical K-NN algorithm for location estimation.
Moreover, an improved version of the classical K-NN algorithm, named weighted K-NN
(WK-NN), is applied to further improve the localisation accuracy.

Let ruj be the body shadowing-compensated mean RSSI collected from RN j at un-
known target location u. Then, the RSSI distance between an RP i from the radio map to
the target point u can be obtained as follows:

dui =
1

NRN

√√√√NRN

∑
j=1

(
ruj − rij

)2 (17)

where dui is the Euclidean distance between the RSSI of the target point and RP, rij is the
mean RSSI collected from RN j at RP i, and NRN is the total number of RNs considered for
a fingerprint. In the case of the K-NN method, K RPs from the radio map will be selected
that have the smallest distance value with the target. Therefore, the estimated location of
the target can be calculated as follows:

LOC(xu, yu) =
1
K

K

∑
i=1

LOC(xi, yi) (18)

where (xi, yi) are the locations of the RPs. Here, the spatial distances between a target
location and its neighbouring RPs are usually different. Thus, the WK-NN algorithm also
considers the corresponding spatial distances in terms of weight factor when selecting
the K nearest RPs. As proposed in [33], the weight is inversely proportional to the spatial
distance and can be calculated as follows:

wci =
1/Dci

∑K
i=1 1/Dci

(19)

where Dci =
√
(xc − xi)

2 + (yc − yi)
2 is the spatial Euclidean distance between the coarse

location (xc, yc) of the unknown target and an RP location (xi, yi). Therefore, the estimated
location will be

LOC(xu, yu) =
∑K

i=1 wciLOC(xi, yi)

∑K
i=1 wci

(20)

In this study, the coarse location of an unknown target is estimated first to calculate
the spatial distance between the RPs and a target location. The coarse location of the target
is computed by leveraging the landmark graph and using the same technique proposed in
Section 6.1. Therefore, the estimated coarse location is used to calculate the weight for the
WK-NN algorithm.

8. Experimental Evaluation

This section presents the evaluation of the proposed models through quantitative
experimental results.

8.1. Experimental Setup

The experiments were carried out using two customised sensor boards designed by
our group. To collect the RSSI fingerprint, the XBee wireless technology-based XBee S1
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802.15.4 module was used as the radio in the first sensor board, as shown in Figure 9a,
which was employed both in the RNs and wearable devices. To acquire the acceleration
and angular velocity data, the second sensor board was used as part of the wearable node.
This sensor board is equipped with IMU and BLE, as well as some environmental sensors,
as shown in Figure 9b. The RNs were attached to the ceiling, as shown in Figure 9c. The
wearable sensor boards were attached to a subject’s chest and fastened by an elastic strap, as
presented in Figure 9d. A computer connected with an XBee module acted as a server that
collected and stored both the RSSI fingerprint data through XBee and IMU data through
BLE. In the case of the indoor localisation, the data collected from both the devices were
synchronised by using the timestamps and stored on a database for further processing.

Figure 9. Experimental setup: (a) sensor board with XBee wireless module; (b) sensor board with IMU and BLE modules;
(c) RN mounted beneath the ceiling; (d) wearable device mounted on chest.

8.2. Evaluation of Motion Mode Detection
8.2.1. Data Collection

Several experiments were carried out for collecting an adequate amount of data with
ground truth labels to train and test the designed motion mode classifier. Data from four
adults (two males and two females) of different heights and weights were collected to
evaluate the performance of the proposed classifier. The data collections were conducted in
an open field, and each participant was equipped with a chest-mounted IMU device. The
participants were requested to walk approximately 500 m of distance while performing
several activities. The experiments were performed using a predefined protocol that
consisted of six activities including static, walking, turning right, turning left, opening a
door, bending, and random movement. As the data were collected from an open field,
the participants were asked to simulate the door-opening activity. To complete one run of
the defined protocol, a participant required four minutes, and each participant repeated
the protocol three times. Thus, enough data was collected for training and testing of
the classifier.

To facilitate the labelling of ground truth, another IMU device, named NGIMU
(https://x-io.co.uk/ngimu/ (accessed on 10 February 2021)), was utilised. Pressing the
power button of the device while powered on will send a message to the receiver with
timestamped information for the button-pressing event. During the experiment, the par-
ticipants were asked to press the button of the NGIMU each time they began an activity.
Thus, by annotating the exact number and sequence of performed activities and mapping
this information with the timestamped button event’s data, the ground truth labelling was
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performed. For precise evaluation of the classifier, the data recorded during the transition
of two activities were removed manually.

8.2.2. Evaluation Metrics

To validate the skill of the proposed classification model, five-fold cross-validation
was applied, which is a typical resampling technique that shuffles the dataset randomly
and splits it into five equal-sized groups. From those, four groups were used for training
the model, and one group was kept for testing the model. Five iterations were performed
with the grouped data to cross-validate the model by using each group as a testing dataset
while employing the others for training. The average of the evaluation metrics from the five
iterations was taken as the final evaluation score of the model. To evaluate the motion mode
classification performance, several metrics were used in this study, including accuracy,
precision, sensitivity, specificity, and F-measure. The accuracy for a motion class is the ratio
of correctly labelled motion modes for that class to the total number of labelled motion
modes for that class. The precision for a motion class can be defined as the ratio of correctly
positive-labelled motion modes for that class to the total number of positive-labelled motion
modes for that class. The sensitivity (which is also known as recall) for a motion class
is the ratio of correctly positive-labelled motion modes for that class to the total number
of motion modes that actually belong to that class. The specificity for a motion class is
the ratio of correctly negative-labelled motion modes for that class to the total number
of motion modes that do not belong to that class. F-measure is the harmonic average of
precision and sensitivity. These metrics are defined as follows:

Accuracy =
TP + TN

TP + FP + FN + TN
(21)

Precision =
TP

TP + FP
(22)

Sensitivity =
TP

TP + FN
(23)

Speci f icity =
TN

TN + FP
(24)

F − measure = 2 ∗ ( Precision ∗ Sensitivity
Precision + Sensitivity

) (25)

8.2.3. Classification Performance

Figures 10 and 11 summarise the classification performance of the proposed motion
mode classifier for detecting each motion mode. As illustrated in Figure 10, the columns of
the confusion matrix refer to the ground truth motion modes performed by the participants,
and the rows refer to the motion modes predicted by the classifier. The percentage of
prediction accuracy, together with their actual number for each motion mode, is presented
along the principal diagonal in black colour. The percentage of confused classification for
the motion modes are reported along the off-diagonal sections in white colour.

As can be seen from the confusion matrix, the classifier can detect the correct motion
mode in more than 95% of cases, irrespective of the type of motion class performed by
a participant. The highest accuracy of 99.5% was attained by the classifier for the static
motion mode. As reported, 2 and 3 segments out of 928 segments for static type motions
were misclassified as striding motion and intermittent motion, respectively. The main
reason behind this confusion is because of the simulated door opening activities performed
by the participants, which are actually considered as static activities; however, this type of
activity sometimes may generate high energy and variance in the signal which can satisfy
the decision thresholds, leading to misclassification.

259



Sensors 2021, 21, 5405

Figure 10. Confusion matrix of the proposed motion mode classifier.

Figure 11. Classification performance of the proposed motion mode classifier for each motion mode.

The lowest accuracy of 95.4% was achieved for detecting the intermittent motion mode
by the classifier. This is because intermittent motions are more likely to be confused as
other types of motions. As reported in the confusion matrix, among the total 696 segments
for intermittent motions, 17 were detected as striding motion. One possible reason for
this confusion may be the consecutive occurrence of a similar type of movement several
times (e.g., multiple bending activities), which can produce periodicity and lead to that
misclassification. However, during the landmark identification phase, it is very unlikely
that such intermittent movement will occur in a pattern that can satisfy the landmark rules.
Thus, the defined rules for landmark identification can mitigate the impact of this type of
misclassification. Moreover, 17 segments out of 1020 for the striding motion mode were
misclassified as intermittent motion, causing the accuracy for that class to be 96.8%.

As presented in Figure 11, the overall sensitivity, specificity, precision, and F-measure
of the proposed motion mode classifiers are 97.03%, 99.28%, 95.17%, and 96.06%, respec-
tively, which can eventually produce high accuracy for the landmark identification task.

8.3. Evaluation of User’s Body Shadowing Effect Compensation Model

The proposed BSE compensation model was evaluated firstly using the same experi-
mental data as shown in Figure 2. The polar plot for the raw data is shown in Figure 12,
where the distance between the sender and the receiver is 9.9 m. It is noticeable from
the figure that the minimum and maximum attenuation of RF signals occur at the angle
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positions as discussed in Section 3.2, due to the effect of the user’s body. The higher RSSI
value is observed at approximately 0

◦
with LOS angle positions, and the lowest values of

RSSI can be observed at approximately 90
◦

and 270
◦

angle positions for the raw RSSI data.

Figure 12. User’s body effect on RSSI (raw RSSI vs. orientation angle).

As the human body shape is uneven, the amount of RSSI depletion, while facing
the different body parts, by the signal will be different. The intensification parameter σ
boosts the RSSI with an amount that can cope with the loss caused by the user’s body.
Using a single value of σ for every orientation angle may lead to an overestimation or an
underestimation for some orientations. Thus, three different σ values were chosen based on
the analysis, as described in Section 3. To evaluate the compensation model performance,
firstly the values for the intensification parameters σ were empirically investigated, and
optimal values were selected, as described in Section 6.2. Figures 13 and 14 present the
results after applying the proposed compensation model for two different combinations of
values for σ. To show the effect of σ on the proposed compensation model, first the values
of σ1, σ2, and σ3 were chosen as 0.1, 4.0, and 3.0, respectively. Figure 13 shows the polar plot
for the compensated RSSI after applying those values to corresponding orientation angles.
As can be noticed from the figure, though the model can correct some RSSI values by
applying this set of σ values that are affected by the user’s body shadowing, the corrected
values are the underestimation of the 0

◦
faced LOS value. Figure 14 presents the results

with the values of σ1, σ2, and σ3 as 0.1, 2.0, and 1.5, respectively, which were found as the
optimal values for the experimented indoor environments. As can be seen from that figure,
the proposed model can considerably correct the attenuated RSSI values while presenting
a negligible amount of noise. Most of the corrected RSSI values are almost similar to the 0

◦

faced LOS value with a negligible deviation. Thus, the values of σ1, σ2, and σ3 were chosen
as 0.1, 2.0, and 1.5 to compensate the user’s body affected RSSI values for the proposed
indoor localisation system.
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Figure 13. Results after applying the body shadowing effect compensation model with σ1 = 0.1,
σ2 = 4.0, σ3 = 3.0, and d = 25.

Figure 14. Results after applying the body shadowing effect compensation model with σ1 = 0.1,
σ2 = 2.0, σ3 = 1.5, and d = 25.

To validate the efficiency of the proposed model, RSSI data were also collected using
the same experimental setup, except the wearable device was placed on the back of a user.
Figure 15 illustrates the compensation results along with the raw RSSI for the two different
sets of σ values. As can be seen from the figure, the values of σ1, σ2, and σ3 as 0.1, 2.0,
and 1.5 can produce the best estimates for most of the angle positions, compared to the
other set.
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Figure 15. Raw and corrected RSSI for data collected with back-mounted wearable device.

The impacts of the parameter d, which represents the distance between the wearable
tag and the edge of the far-ended shoulder, were also examined. Figure 16 presents
the results of the proposed model for different d values, including 41, 25, 50, and 20.
Considering the average shoulder width of 41 cm, selecting the value of d as 25 produces
the best results demonstrated in the figure.

Figure 16. Results after applying different values of d with σ1 = 0.1, σ2 = 2.0, σ3 = 1.5.

8.4. Evaluation of the Proposed Localisation System

To evaluate the performance of the proposed localisation system, experiments were
performed in an office building. The experiment building was Building 72 at the Clayton
campus of Monash University, which comprises three floors. The experiment was carried
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out on the second floor, with a total area of about 1475 m2, and the length of the test path
was about 150 m, represented by the green line in Figure 17. The path starts from the red
circle, then follows the path, and ends at the red square.

Figure 17. Experimental area with the markings of experimented path and distribution of
reference nodes.

8.4.1. Evaluation Criterion

To evaluate the system performance, 40 key points were set along the experimented
path, which served as the ground truth for comparison. During the experiment, the
participant was asked to stop a little at each key point for the purpose of recording the
markers. Let

(
xi

e, yi
e
)

and
(

xi
g, yi

g

)
be the estimated location of an unknown target, and

the ground truth location at the ith key point, respectively; then the error at ith key point is

εi
ge =

√(
xi

g − xi
e

)2 −
(

yi
g − yi

e

)2
(26)

This study reports the mean error, median error, standard deviation, 25th, 75th, and
90th percentile errors, and a cumulative distribution function (CDF) plot to analyse the
localisation performance of the proposed system.

8.4.2. Localisation Performance

The localisation performance of the proposed system was compared with two other
studies that proposed different models for angle estimation and BSE compensation, in-
cluding the work presented in [17], referred to as MODEL I, and in [20], referred to as
MODEL II. To compare the relative accuracy of the proposed system with these studies,
we mainly implemented the angle estimation and compensation models as proposed by
the researchers, and then applied the fingerprinting localisation method. For example, the
use of multiple wearable devices and Semcad simulation parts were omitted for MODEL I,
and Kalman filter and path loss model implementation were overlooked for MODEL II.
Moreover, identical preprocessing of the raw data was considered, and the same weight
calculation method was applied for all the cases with a value of 3 for k, both in the K-NN
and WK-NN algorithms.

Figure 18 presents the routes for the experimented path estimated by the different
systems using the classical K-NN algorithm. As shown in the figure, the performance of
the systems with BSE compensation (WBSEC) on indoor localisation is apparent and the
estimated route of the systems without BSE compensation (WOBSEC) produced the worst
path. Among the other results, MODEL II generated a better path compared to MODEL
I, because in MODEL I the authors only considered two groups for orientation angle
(over/underestimation) when applying their compensation model. MODEL II considered
three groups (front, back, side) and there was no consideration of the volume of body parts
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that creates the NLOS scenarios. However, this work considered three groups as well as
the consideration of body volume when calculating the compensation value, and hence
produced the best path.

Figure 18. Routes estimated by different systems using the K-NN method: (a) Without BSEC; (b) Model I; (c) Model II and
(d) With BSEC.

The details of the positioning performance are presented in Figure 19 and Table 2
for the K-NN algorithm. The boxplot indicates the summary of some error statistics
including the maximum, minimum, 25th, 75th, mean, and median errors for each system.
As presented in Figure 19 and Table 2, the proposed system significantly outperformed
the other systems for all types of statistics. The proposed system demonstrated the best
performance with a mean error of 1.62 m and median error of 1.46 m, followed by MODEL
II (mean error 2.17 m and median error 2.38 m). The mean and median errors of MODEL I
were 2.39 m and 1.75 m, respectively. The system without any BSE compensation achieved
a mean error of 3.17 m and a median error of 2.68 m.

Figure 19. Localisation performance of the proposed system compared with other systems using the
K-NN method.
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Table 2. Localisation accuracy comparison for different systems with K-NN method.

Method Min. (m) Max. (m) Mean (m) Median (m) STD (m) 25th (m) 75th (m) 90th (m)

WOBSEC 0.34 9.41 3.17 2.68 1.69 2.10 3.89 5.08

MODEL I 0.60 6.46 2.39 1.75 1.64 1.16 3.27 5.60

MODEL II 0.38 5.69 2.17 2.38 1.10 1.41 2.74 3.07

WBSEC 0.22 4.27 1.62 1.46 0.94 0.92 2.11 2.83

Figure 20 illustrates the accumulative distribution function of the estimated locali-
sation errors of the different systems for the K-NN algorithm. This plot also shows the
superiority of the proposed system compared to the others. More specifically, the intro-
duced system can achieve a performance that produces localisation errors less than 2.5 m
for 80% of cases, while it is around 60% for MODEL II and around 70% for MODEL I.
The result that was produced without compensating the BSE outputted the worst, since
the body effect errors are not considered when comparing a query fingerprint with the
radio map.

Figure 20. Accumulative distribution of positioning error of the proposed system compared with
other systems using the K-NN method.

The superiority of the proposed system is further increased by applying the WK-NN
algorithm when comparing a query fingerprint with the radio map. The performance is
improved by including the spatial prominence of the neighbouring RPs in terms of weight
factor. Figures 21 and 22, and Table 3 compare the performance of the different systems
using the WK-NN algorithm. As can be seen, the WK-NN algorithm with the proposed
weighting method improves the localisation accuracy for all the considered systems. The
developed system yields a mean error of 1.01 m and median error of 0.74 m, while they
are 1.56 m and 1.19 m for MODEL II, and 2.74 m and 2.23 m for MODEL I. The system
without any BSE compensation can attain a mean error of 2.99 m and a median error of
2.98 m using the WK-NN algorithms. Moreover, as presented in Figure 22, the WK-NN
algorithm produces localisation errors less than 1.5 m for 80% of cases for the proposed
system, while it is around 60%, 25%, and 15% for MODEL II, MODEL I, and without
applying any compensation, respectively. Overall, the proposed BSE compensation model
along with the landmark-assisted WK-NN method is able to achieve sub-metre median
localisation accuracy that outperforms some recent related methods.
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Figure 21. Localisation performance of the proposed system compared with other systems using the
WK-NN method.

Figure 22. Accumulative distribution of positioning error of the proposed system compared with
other systems using the WK-NN method.

Table 3. Localisation accuracy comparison for different systems with the proposed WK-NN method.

Method Min. (m) Max. (m) Mean (m) Median (m) STD (m) 25th (m) 75th (m) 90th (m)

WOBSEC 0.43 8.01 2.99 2.98 1.65 2.03 3.68 4.58

MODEL I 0.36 7.85 2.74 2.23 1.92 1.51 2.92 6.29

MODEL II 0.13 4.39 1.56 1.19 1.14 0.61 2.25 3.14

WBSEC 0.12 3.02 1.01 0.74 0.73 0.51 1.42 1.99

9. Conclusions

This study describes solutions for improving the accuracy of wearable sensor-based fin-
gerprinting indoor localisation by mitigating the user’s BSE on RSSI. An in-depth analysis
of RSSI for different orientations of the user’s body was performed, and a body shadowing
compensation model is proposed. To calculate the orientation angle between a wearable
device and an RN, an IMU-aided motion mode detection technique was implemented by
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fusing the spatial knowledge from the indoor floor plan. The decision tree-based classifier
yields an outstanding performance for motion mode detection that, in turn, accurately iden-
tifies the landmark to produce high precision for the estimation of the user’s orientation
angle. Results demonstrated that the implemented classifier achieves an overall accuracy
of 97.31% for detecting a motion mode correctly, which eventually helps to compensate the
errors caused by the user’s body. To validate the proposed body shadowing compensation
model, both the classical K-NN and the WK-NN methods were implemented with a unique
weighting technique. For selecting the K nearest neighbours in the case of the WK-NN
method, the spatial prominence of the neighbouring RPs was applied as the weights,
which were calculated by using a unique landmark-assisted distance measurement method.
Finally, the localisation performance of the proposed system was compared with two other
recent studies that proposed different models for angle estimation and BSE compensation.
The experimental results show a mean and median accuracy of 1.62 m and 1.46 m for
the classical K-NN method, which is further improved to 1.01 m and 0.74 m, respectively,
using the WK-NN method. Overall, the proposed BSE compensation model along with the
landmark-assisted WK-NN method can realise sub-metre median localisation accuracy that
noticeably outperforms the considered related studies. Although the proposed methods
are intended for RSSI fingerprinting localisation, these can be adopted in other RSSI-based
indoor localisation applications with body-mounted wearable devices. The main limitation
of the proposed system is the dependency of the orientation angle estimation phase on
the previously estimated location. Future work will include the implementation of the
proposed system in multistorey buildings by addressing this issue.
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Abstract: Direction-of-arrival (DOA) estimation plays an important role in array signal processing,
and the Estimating Signal Parameter via Rotational Invariance Techniques (ESPRIT) algorithm is one
of the typical super resolution algorithms for direction finding in an electromagnetic vector-sensor
(EMVS) array; however, existing ESPRIT algorithms treat the output of the EMVS array either as
a “long vector”, which will inevitably lead to loss of the orthogonality of the signal components,
or a quaternion matrix, which may result in some missing information. In this paper, we propose
a novel ESPRIT algorithm based on Geometric Algebra (GA-ESPRIT) to estimate 2D-DOA with
double parallel uniform linear arrays. The algorithm combines GA with the principle of ESPRIT,
which models the multi-dimensional signals in a holistic way, and then the direction angles can be
calculated by different GA matrix operations to keep the correlations among multiple components of
the EMVS. Experimental results demonstrate that the proposed GA-ESPRIT algorithm is robust to
model errors and achieves less time complexity and smaller memory requirements.

Keywords: direction-of-arrival estimation; geometric algebra; ESPRIT algorithm; electromagnetic
vector-sensor array

1. Introduction

Direction-of-arrival (DOA) estimation of electromagnetic (EM) signals has attracted
wide attention in many communication fields, such as radar [1,2], mobile networks [3] and
sonar [4]. It is clear that DOA estimation is the basic and essential part in an array signal
processing system. For example, a corresponding transmitting or receiving beamformer
can be designed to extract signals in the direction of interest and suppress uninteresting in-
terference signals. The electromagnetic vector sensor (EMVS) can catch polarization-related
information compared to a conventional scalar sensor, which can further improve the
target resolution, anti-interference ability and detection stability for DOA estimation [5–7];
therefore, the research for EMVS array direction finding has become a hotspot.

With the appearance of the Long-Vector MODEL (LV-MODEL) [5] (built for EMVS),
multiple researchers have proposed various DOA estimators. The existing estimators
can be summarized into three categories: (1) research on DOA estimators transplanting
from scalar sensor; (2) research based on special array arrangement; (3) research based on
advanced mathematical tools.

In terms of transplantation, the classic subspace-based super-resolution algorithm [8]
(Multiple Signal Classification—MUSIC) was transplanted to the EMVS [9–11] array, but
the algorithms often suffer high computational complexity because of the four-dimensional
parameter search for two direction angles and two additional polarization angles; therefore,
Weiss [12] used the polynomial root to reduce the computational complexity to a certain
extent. In addition, another subspace-based super-resolution algorithm [13,14] (Estimation
of Signal Parameters via Rotational Invariance Techniques—ESPRIT) was also transplanted
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into the EMVS array, and realized closed-form estimation of DOA. In [15,16], authors
showed that the statistical performance of the maximum likelihood and subspace-fitting
algorithms based on the EMVS array are better than both MUSIC and ESPRIT, but the high
calculation limits its application in actual engineering.

There are few studies based on the special array arrangement because most EMVS
arrays are co-centered, leading to the mutual coupling interference and spatial information
loss. In [17], a double-parallel-line EMVS array whose six components are all spatially
separated achieved mutual coupling reduction to refine the DOA-finding accuracy by
orders of magnitude. A triangular array [18] combined with a vector cross product and
interferometric angle measurement, aimed to overcome the drawback that [17] cannot
achieve two-dimensional aperture expansion. In addition, a spatial expansion method of a
triangle structure [19] was proposed to provide higher-precision DOA estimation.

The traditional model for EMVS is just a linear combination of each component, which
somehow locally destroy the orthogonality of the signal components [20]. Meanwhile,
the heavy computational efforts and memory requirements during data processing for
the DOA estimation cannot be ignored [21]. Recently, the hypercomplex has been widely
studied and applied in multi-dimensional parameter estimation. Miron et al. [22] first
proposed a new Quaternion Model (Q-MODEL) for the two-component EMVS array.
Then, many models and algorithms based on quaternion have been proposed [23–25];
however, the Q-MODEL had to discard some of the original information because the
quaternion only has three imaginary parts. Further, the research has extended to bi-
quaternion [26] and quad-quaternion [27,28]. These quaternion-based algorithms showed
higher estimation accuracy and less complexity; however, Jiang et al. [21] found that the
physical interpretations of the presented quaternion-like models have not been discussed.
In order to solve the problem, they derived G-MODEL [21] by Geometric Algebra (GA)
formulations of Maxwell equations. The computing technology of G-MODEL not only
minimizes the memory requirements and computational complexity, but also removes the
correlation of noise on different antennas.

It is easy to find that the current studies utilizing hypercomplex algebra are mainly
focused on the MUSIC algorithm [22,26–28]. In fact, MUSIC greatly suffers from a heavy
computational burden for its spectrum search, while the computation of ESPRIT algorithm
is cheaper, and it can automatically decouple [29]; therefore, the research in this paper
extends the ESPRIT algorithm using a new mathematical tool—GA. Through the new
calculation rules, the physical nature of EMVS is matched with the signal processing
technology, which avoids correlation loss between different components in the previous
algorithms. The major contributions of this paper are as follows.

1. We incorporate the multi-dimensional consistency of GA into ESPRIT, and propose a
Geometric Algebra-based ESPRIT algorithm (GA-ESPRIT) for 2D-DOA estimation.

2. We use the new calculation rules of the high-dimensional algebra system to preserve
the correlation among multiple components of EMVS.

3. Experimental results demonstrate that the proposed GA-ESPRIT algorithm can
achieve more accurate, stable and lighter DOA estimation.

The rest of this paper is organized as follows. Section 2 introduces the basics of GA and
the EMVS model for narrow-band signals based on GA. Section 3 describes the proposed
GA-ESPRIT in detail. Experimental results and analysis are provided in Section 4, followed
by concluding remarks in Section 5.

2. Preliminaries

2.1. Fundamental of Geometric Algebra

The concept of GA [30] was proposed by David Hestenes in the 1960s, who combined
Clifford Algebra with a physical geometric structure. After decades of research, GA has
shown its absolute superiority in electromagnetism [31], cosmology [32], multi-channel
image [33–35] and other physical sciences.
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2.1.1. Geometric Product

The crucial product operation in GA theory is the geometric product [30]. For vectors
a and b, the geometric product is denoted by

ab = a · b + a ∧ b, (1)

where {·} and {∧} denote the inner product and the outer product, respectively.

2.1.2. Multi-Vector

Let Gn = C�n,0, which is the real GA of the quadratic pair (V, Q) where V = Rn and
Q is the quadratic form of signature (n, 0). There is an orthogonal basis {e1, e2, . . . , en} in
Rn, which generates 2n basis elements of Gn via the geometric product as shown in (2):

{1}︸︷︷︸
k=0

, {ei}︸︷︷︸
k=1

,
{

eij, i < j
}︸ ︷︷ ︸

k=2

, . . . , {e1e2 · · · en}︸ ︷︷ ︸
k=n

(2)

for i, j = 1, 2, . . . , n.
The multi-vector A of Gn is defined as

A = E0(A) + ∑
1≤i≤n

Ei(A)ei + ∑
1≤i<j≤n

Eij(A)eij + . . . + E1...n(A)e1...n

= 〈A〉0 + 〈A〉1 + 〈A〉2 + . . . + 〈A〉n,
(3)

where Ei(A), Eij(A), . . . , E1...n(A) ∈ R, and 〈A〉k denotes the component of A of grade k.
The reverse of multi-vector A is defined as

Ã =
n

∑
k=0

(−1)k(k−1)/2〈A〉k. (4)

2.2. The Geometric Algebra of Euclidean 3-Space

According to the structural characteristics of EMVS, G3 is chosen to model and process
the received signals [21]. The multiplication rule can be found in Table 1.

Table 1. The multiplication rule in G3.

1 e1 e2 e3 e12 e23 e13 e123
1 1 e1 e2 e3 e12 e23 e13 e123
e1 e1 1 e12 e13 e2 e123 e3 e23
e2 e2 −e12 1 e23 −e1 e3 −e123 −e13
e3 e3 −e13 −e23 1 e123 −e2 −e1 e12
e12 e12 −e2 e1 e123 −1 e23 −e23 −e3
e23 e23 −e123 −e3 e2 −e13 −1 e12 −e1
e13 e13 −e3 −e123 e1 e23 −e12 −1 e2
e123 e123 e23 −e13 e12 −e3 −e1 e2 −1

Referring to (2) and (3), a G3 matrix with m-row and n-column, noted G
m×n
3 , is

constructed as follows [20]

A = A0 + A1e1 + A2e2 + A3e3 + A4e12

+ A5e23 + A6e13 + A7e123,
(5)

where Ak for k = 1, 2, 3, . . . , 7 are all m × n real number matrices. The transpose with
reversion of A is denoted by AH

AH = AT
0 + AT

1 e1 + AT
2 e2 + AT

3 e3 − AT
4 e12

− AT
5 e23 − AT

6 e13 − AT
7 e123,

(6)
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where AT
i for k = 1, 2, 3, . . . , 7 denotes the transpose.

2.3. G-MODEL

A compact polarized GA model for the vector-sensor array was proposed in [21],
named G-MODEL, which models the six-component outputs of a vector sensor holistically
using a multi-vector in G3. Suppose there are K narrow-band, far-field and uncorre-
lated sources with wavelength λ impinging on an array, which includes Q vector sensors.
Define θk ∈ [0, 2π), φk ∈ [0, π), γk ∈ [0, π/2) and ηk ∈ [−π, π) are the azimuth an-
gle, elevation angle, polarization amplitude angle and phase difference angle of the kth
source, respectively.

Define uk = cos θk sin φke1 + sin θk sin φke2 + cos φke3 as the unit vector (see Figure 1)
of the kth source when it impinges on the sensor at the origin. vk1 = − sin θke1 + cos θke2

and vk2 = cos θk cos φke1 + sin θk cos φke2 − sin φke3 are unit multi-vectors. The position
vector of the qth sensor is rq = rq1e1 + rq2e2 + rq3e3. The output of the qth vector sensor in
the array is denoted by [21]

Y(q)
EH(t) =

K

∑
k=1

Xq(θk, φk)VkPkSk(t) + N(q)
EH(t), (7)

where Xq(θk, φk) = ee123
2π
λ (cos θk sin φkrq1+sin θk sin φkrq2+cos φkrq3) is the spatial phase factor of

the kth source incident on the qth vector sensor.

Vk = (1 + uk)[vk1,−vk2],

Pk =

[
cos γk

sin γkee123ηk

]
,

Sk(t) = |Sk(t)| exp[e123(2π fkt)].

In next section, the GA-ESPRIT algorithm is deduced based on the G-MODEL.

Figure 1. Direction vector of incident source.

3. Proposed Algorithm

The basic premise of the ESPRIT algorithm is that there are identical subarrays, the
spacing between subarrays is known and the structure of subarrays is identical, which
satisfies the rotational invariance in space [13]. Uniform linear arrays (ULAs) appear when
it comes to one-dimensional DOA estimation using conventional ESPRIT [1,13]. Compared
with ULAs, double parallel uniform linear arrays (DPULAs) can identify two-dimensional
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DOA because of the special construction, which consists of two parallel ULAs [36–38];
therefore, the algorithm discussed in this paper is based on DPULAs.

3.1. Complex Representation Matrix and Related Calculations

In view of the paucity of research on calculations with multi-vector, the Complex
Representation Matrix (CRM) [20] is introduced because of the mature matrix theories.
Consider a matrix A ∈ G

m×n
3 , the CRM is defined by Ψ(A)

Ψ(A) =

(
A0 + A3 + (A7 + A4)e123 −A1 + A6 + (A2 − A5)e123
−A1 − A6 − (A2 + A5)e123 A0 − A3 + (A7 − A4)e123

)
. (8)

Let ν = (−e1 + e13)/2 ∈ G3, and its reversion is ν̃ = (−e1 − e13)/2 ∈ G3. Then,

ν2 = ν̃2 = 0 and νν̃ + ν̃ν = 1, (9)

which imply νν̃ν = ν, ν̃νν̃ = ν̃, (νν̃)2 = νν̃, (ν̃ν)2 = ν̃ν.
It immediately follows that, for every A ∈ G3, we have

A = E2mΨ(A)EH
2n, (10)

Ψ(A) = Q2m

[
A 0

0 A

]
Q2n, (11)

where in (10) and (11) we have

E2k = [νν̃Ik ν̃Ik] ∈ G
k×2k
3 , (12)

Q2k =

[
νν̃Ik ν̃Ik
νIk ν̃νIk

]
∈ G

2k×2k
3 . (13)

Ik denotes the k × k identity matrix. It is not difficult to prove that

Q2k = QH
2k = Q2k

−1, (14a)

Ψ(AH) = (Ψ(A))H , (14b)

Ψ(A+) = (Ψ(A))+, (14c)

where {+} denotes the pseudo-inverse. Referring to (10) and (14c), the pseudo-inverse of
any A ∈ G3 is

A+ = E2n(Ψ(A))+EH
2m. (15)

Since e2
123 = −1 and e123 commutes with all elements in G3, one can identify it with the

complex imaginary unit j [20], and so we can view Ψ(A) given in (8) as a complex matrix.

3.2. Model for DPULAs

Consider a DPULA with 2M + 2 sensors, as shown in Figure 2, in which d and M refer
to the spacing between two adjacent sensors and the number of sensors in per subarray,
respectively. The array is divided into three subarrays. The 1st to Mth sensors on the x-axis
compose the first subarray, the 2nd to (M + 1)th sensors form the second subarray and the
(M + 2)th to (2M + 1)th that located on a straight line parallel to the x-axis make up the
third subarray. The reason for the division can be found in Figure 3, that is, there are two
unknown DOA parameters in the model, which need two rotational invariance relations.
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Figure 2. Double parallel uniform linear array.

Figure 3. Schematic diagram of GA-ESPRIT.

Since the three subarrays have the same structure and the same number of sensor,
each output of them has only one phase difference for the same signal. Signals received by
subarray one, two and three are defined as Y1

EH , Y2
EH and Y3

EH , respectively. According to
the above array model, the outputs of the three subarrays at time t are as follows

Y1
EH(t) = AS(t) + N1(t),

Y2
EH(t) = AFS(t) + N2(t),

Y3
EH(t) = AGS(t) + N3(t),

(16)

where
Y1

EH(t) =
[
Y(1)

EH(t), . . . , Y(M)
EH (t)

]T
,

Y2
EH(t) =

[
Y(2)

EH(t), . . . , Y(M+1)
EH (t)

]T
,

Y3
EH(t) =

[
Y(M+2)

EH (t), . . . , Y(2M+1)
EH (t)

]T
,

(17)

and
A = [a(Γ1), . . . , a(ΓK)],

a(Γk) =
[
1, x(θk, φk), . . . , xM−1(θk, φk)

]T
VkPk,

x(θk, φk) = ee123
2π
λ d cos θk sin φk ,

F = diag( f1, . . . , fK), G = diag(g1, . . . , gK).

(18)
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According to (18), we find that the DOA information is contained in matrix A, F and G.
Because F and G are diagonal matrices that only contain direction information of incident
signals, the focus is the two matrices, i.e.,

fk = ee123
2π
λ d cos θk sin φk ,

gk = ee123
2π
λ d sin θk sin φk .

(19)

Clearly, it is easy to figure out the DOA in the light of (19) if we obtain the two ideal
matrices F and G. From the rules of subarray division, we can see that the latter (M − 1)
sensors of subarray one and the former (M + 1) sensors of subarray two are overlapped.
Thus, in order to reduce the computational complexity, subarray one and subarray two can
be merged to form a new matrix YEH , that is,

YEH(t) = [y1(t), y2(t), . . . , yM+1(t)]
T . (20)

After merging, the (2M + 2)th redundant sensor is added to subarray three to form a
new subarray PEH , so that the third subarray has the same dimension as YEH

PEH(t) = [yM+2(t), yM+3(t), . . . , y2M+2(t)]
T . (21)

Let A be the array flow pattern of YEH , then

A = [a(Γ1), a(Γ2), . . . , a(ΓK)],
a(Γk) =

[
1, x(θk, φk), . . . , xM(θk, φk)

]TVkPk.
(22)

YEH and PEH can be written as

YEH(t) = AS(t) + Na(t),

PEH(t) = AGS(t) + Nb(t),
(23)

where

Na(t) =
[

N1(t)
nM+1(t)

]
, Nb(t) =

[
N3(t)

n2M+2(t)

]
.

Then, B(t) is defined as

B(t) =
[

YEH(t)
PEH(t)

]
= CS(t) + N(t), (24)

where

C =

[
A

AG

]
, N(t) =

[
Na(t)
Nb(t)

]
.

Finally, the output of the whole array is denoted by

B(t) = CS(t) + N(t). (25)

3.3. Algorithm Details

It is assumed that the sources received by the vector-sensor array are random signals
which are independent and uncorrelated. In the same way, the measuring noise on six
antennas of each sensor is white noise with the same power.

3.3.1. Subspace Separation

Under the above assumption, theoretically, the covariance matrix of the array output
is given by

R = E

{
BBH

}
= CRsCH + 6σ2I2M+2, (26)
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where E{·} stands for the mathematical expectation operator, σ2 is the noise power on
each vector antenna, RS = E

{
S(t)SH(t)

}
.

Since the geometric product is non-commutativity, the Eigenvalue Decomposition
(ED) is different from the conventional real methods but similar to the quaternion case. In
other words, there are two possible eigenvalues, namely the left and the right eigenvalue
for G3 matrix. In the proposed algorithm, the right eigenvalue is selected because the right
ED of G3 matrix can be converted to the right ED of its CRM [20].

The ED of R is denoted by

R = UsΣsUH
s + UnΣnUH

n . (27)

According to the principle of subspace separation, Us is the signal subspace cor-
responding to K larger eigenvalues, and Σs is a diagonal matrix composed of K larger
eigenvalues. In addition, Un is orthogonal to Us and it is the noise subspace correspond-
ing to the remaining 4(M + 1)− K small eigenvalues. Similarly, Σn is a diagonal matrix
composed of the remaining small eigenvalues.

In the actual processing, the received signal is usually sampled. So, for a certain
number of snapshots N, (26) and (27) can be rewritten as

R̂ =
1
N

N

∑
i=1

B(ti)B
H(ti),

R̂ = ÛsΣ̂sÛH
s + ÛnΣ̂nÛH

n .

(28)

Because the space formed by the eigenvectors corresponding to the larger eigenvalues
is the same as the space formed by the steering multi-vectors of the incident signals, that is,
span{Us} = span{C}, there exists a unique non-singular matrix T, which satisfies

Us = CT. (29)

The rotational invariance relations exist among three subarrays, but Us is the signal
subspace of the whole array; therefore, after obtaining Us, the signal subspace of three
subarrays must be separated. By the arrangement of sensor array, we find that the signal
subspace of three subarrays can be calculated by

Us1 = K1Us = CT,

Us2 = K2Us = CFT,

Us3 = K3Us = CGT,

(30)

where Us1, Us2 and Us3 are signal subspaces of subarray one, subarray two and subarray
three, respectively.

K1 =
[

IM 0M×(M+2)
]

M×(2M+2),

K2 =
[

0M×1 IM 0M×(M+1)
]

M×(2M+2),

K3 =
[

0M×(M+1) IM 0M×1
]

M×(2M+2).

(31)

3.3.2. Rotation Invariance

From (30), the pivotal matrices F and G can be found. So, let

Us2 = Us1Ψx (32)

in the same way,
Us3 = Us1Ψy (33)

278



Sensors 2021, 21, 5933

It is discovered that the eigenvalues of Ψx and Ψy are diagonal elements of F and G,
respectively.

Equations (32) and (33) are equations themselves, and are usually solved by the Least
Squares (LS) method [29,36,38,39]; however, LS only takes the error on the left side of the
equation into account, it ignores that the coefficient matrix also has an error; therefore, in
order to reduce the error caused by solving the equation as much as possible, this paper
considers a more accurate method—TLS [13]. Next, the solution of the equation is obtained
by taking (32) as an example.

Combining the idea of TLS with the orthogonal property of subspace, we define a new
matrix Us12 = [Us1 Us2]. In fact, the main aim is to seek a unitary matrix D ∈ G

M×2K
3 ,

which is orthogonal to Us12. In other words, the space formed by D is orthogonal to the
space formed by the column vectors of Us1 or Us2. So the D can be obtained from the ED
of UH

s12Us12 [40]
UH

s12Us12 = EΛEH , (34)

where Λ is the diagonal matrix whose diagonal elements are composed by K multi-vectors
that only have 0-grade-vector (can regard as non-zero real number) and 3K multi-vectors
that equal to 0. E can be written as

E =

[
E11 E12
E21 E22

]
. (35)

Let EN =

[
E12
E22

]
, which is composed by eigenvectors whose eigenvalues are 0 and

form the noise subspace. Since Us12 is signal subspace, we find that D = EN , i.e.,

Us12D = [Us1 Us2]

[
E12
E22

]
= 0. (36)

Then,
Ψx = −E12E+

22. (37)

The pseudo-inverse of G3 matrix E22 can be found in (15).

3.3.3. Angle Estimation

The azimuth and elevation angle of K signals are included in F and G. In theory,
the eigenvectors obtained by ED of these two matrices are both T; however, in the actual
calculation process, the two eigenvalue decomposition operations are carried out indepen-
dently, which can not ensure that the arrangement of eigenvectors in them is reflected well;
therefore, the diagonal elements of F and G should be matched.

Suppose that T1 and T2 are eigenvector matrices derived from GA-ED of Ψx and Ψy,
respectively. Then

O = |T2HT1| (38)

where {| · |} is the operator that gets magnitude of every multi-vector in a matrix. For the
same signal, the eigenvectors in T1 and T2 corresponding to matched fk and gk are related;
therefore, the order of diagonal elements in F and G can be adjusted by the coordinate of
the largest element in each row (or column) of O to complete matching.

After observing (19), f and g are multi-vectors that only have scalar and 3-grade-
vector, if we replace e123 with the imaginary unit j of complex number, f and g can be
regarded as complex numbers. Finally, we calculate θk and φk with fk and gk, that is,

θk = tan−1
[

angle(gk)
angle( fk)

]
,

φk = sin−1
{

λ
2π sqrt

[
angle(gk)

2 + angle( fk)
2
]}

,
(39)
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where angle(·) is the operator for getting phase angle. In conclusion, the steps of the
GA-ESPRIT algorithm are:

1. The original data received from three subarrays are integrated into the measurement
model of the whole array according to (25);

2. Calculate the covariance matrix R̂, and then the ED in GA of R̂ is performed and the
signal subspace Us can be obtained by the larger eigenvalues;

3. According to (30), the signal subspace Us of the whole array is divided into three
subspaces Us1, Us2 and Us3;

4. Ψx and Ψy can be obtained using TLS in GA, and details can be found in (34)–(37);
5. The ED of Ψx and Ψy is performed to obtain matrices F and G;
6. The eigenvalues are matched in line with (38) and then taken them into Equation (39)

to calculate K pairs direction angles.

Further, the corresponding relationship between the logic flow and steps of GA-
ESPRIT is shown in Figure 4.

Figure 4. Logic flow diagram of GA-ESPRIT.

3.4. Complexity Analysis

As discussed in [21,22,27], the estimation of the data covariance matrix is an important
factor to illustrate the complexity of ESPRIT algorithm and another one is ED, because they
imply many repetitive operations and results, which mean heavy computational burden
and memory requirements. Thus, we evaluate the time complexity of the two processes
and space complexity in terms of real value memory requirements.

Suppose that an array composed of M vector sensors, and N snapshots are taken.
LV-ESPRIT [13] and GA-ESPRIT consider six-component measurements of each vector
sensor, whereas Q-ESPRIT [25] only records two-component measurements (electric field
on x-axis and y-axis.); therefore, we compare the complexity between LV-ESPRIT and GA-
ESPRIT. The output of each vector sensor for each signal consists of six complex numbers
in LV-ESPRIT, while GA-ESPRIT only has one multi-vector with vector and bivector parts.

The geometric product of two multi-vectors received by the array output implies 36
real multiplications [21], which is nine times as many real multiplications as two complex
numbers. As mentioned in Section 2, the ED of a G3 matrix is calculated by its CRM;
therefore, the time complexity of the two algorithms is shown in Table 1. As for space
complexity, the memory requirements of a real number is used to measure [21]. In the
following two tables, CM is the Covariance Matrix, R represents real number.

The complexity comparison of these two algorithms can be found in Table 2, where
CM and R represent covariance matrix and real number, respectively. Observing the time
complexity in Table 2, it is not difficult to find that the computational burdens of CM
and ED in GA-ESPRIT are a quarter and 1/27 of these in LV-ESPRIT, respectively. As for
space complexity, GA-ESPRIT achieves such a significant reduction, more than 1.5 times
compared to LV-ESPRIT, which means that the memory pressure is alleviated, especially
for the large data size. The reason for the above comparison results is the natural advantage
of GA matrix operations. In detail, because the six-dimensional measurement data in
LV-MODEL (stored as 12 real numbers) are mapped into a multi-vector in the G-MODEL
(stored as six real numbers), the amount of calculation will be reduced to varying degrees
with different matrix operations, which will also bring fewer data storage requirements.
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The superior description and calculation ability of GA for multi-dimensional signals make
GA-ESPRIT a very notable method for direction finding.

Table 2. Complexity of GA-ESPRIT and LV-ESPRIT.

Method
Time Complexity Space Complexity

CM ED CM (R) Eigenvalue (R) Eigenvectors (R)

LV-ESPRIT O
{

N · (6M)2} O
{
(6M)3} 72M2 6M 36M2

GA-ESPRIT O
{

9N · M2} O
{
(2M)3} 8M2 2M 64M2

4. Simulation Results and Analysis

In this section, we simulate and analyze the proposed GA-ESPRIT based on DPULAs
with d = λ/2, discuss its feasibility and performance compared with LV-ESPRIT [14] (in
complex number field) and Q-ESPRIT [24] (in quaternion field). The estimation accuracy is
evaluated by Root Mean Square Error (RMSE), which is calculated by the average of 200
Monte Carlo simulation experiments.

The RMSE of DOA estimation is defined as

RMSE =
1
K

K

∑
k=1

√√√√ 1
200

200

∑
k=1

[(Δθk)
2 + (Δφk)

2], (40)

where K, Δθk and Δφk denote the number of incident signals and errors between the result cal-
culated by DOA algorithm and direction angle initially defined in the experiment, respectively.

In actual applications, the sensor model errors [27,41–43] cannot be ignored, which
main include sensor-position error, gain error and phase error. The sensor-position error, as
defined in [27], is the error between the actual position and the ideal position of each vector
sensor. In the simulation experiment, the sensor-position error is modeled as additive noise
with uniform distribution in a certain range, that is,

km = km + d
√

Ppe
[
εmx, εmy, εmz

]T (41)

where km and km are the actual position and ideal position of the mth sensor in vector-
sensor array, respectively. εmx, εmy and εmz are uniformly distributed noise terms. Ppe
represents the perturbation power of sensor-position error and the larger Ppe means the
greater deviation of the sensor from its ideal position. Further, referring to [43], the array
output with the gain and phase error is denoted by

B(t) = (I + ΠΞ)CS(t) + N(t), (42)

where
Π = diag(η1, η2, . . . , η2M+2),
Ξ = diag(exp(e123ξ1), . . . , exp(e123ξ2M+2)),

in which ηi and ξi (i = 1, 2, 3, . . . , 2M+ 2) are gain error and phase disturbance, respectively.
In this paper, we also model them as additive noise. In addition, the six components of all
EMVSs are added with noise according to the Signal-to-Noise ratio (SNR) in the following
experiments. The SNR is defined as SNR = 10lg(Ps/Pn), in which Ps and Pn are the power
of signal and noise on each component, respectively.

In the first experiment, we consider three far-field, narrow-band and uncorrelated
signals with parameters Γ = {160◦, 80◦, 35◦, −60◦}, {60◦, 50◦, 35◦, 60◦} and {20◦, 110◦,
45◦, 80◦} with respect to Signal-to-Noise ratio (SNR) vary −10 dB to 20 dB in two different
cases. In addition, we set M = 7 and the snapshot number is 200. The aim of the first
experiment was to examine the performance of GA-ESPRIT, LV-ESPRIT and Q-ESPRIT
under different noise statistical characteristics. Figure 5a shows the estimation results
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of three algorithms when ideal Gaussian white noise is added, whereas, the noise in
Figure 5b is related. It can be concluded that the three algorithms have very close accuracy
of calculating DOA at high levels of SNR from Figure 5a,b, while with the lower SNR,
GA-ESPRIT has higher accuracy over the other two and can achieve remove the correlation
of noise partially.

(a) (b)

Figure 5. RMSE versus SNR with different noise. (a) RMSE versus SNR with uncorrelated noise.
(b) RMSE versus SNR with correlated noise.

In the second experiment, we compare the performance of GA-ESPRIT, LV-ESPRIT
and Q-ESPRIT when the sensor-position error exists. Assume that two signals with
Γ = {58◦, 77◦, 35◦, −60◦} and {136◦, 50◦, 35◦, 60◦} impinge on a DPULA with M = 9.
Figure 6a shows the performance of the three algorithms when sensor-position error exists
with different intensities. Meanwhile, we set SNR to 10 dB and the snapshot number is
200. The sensor-position error of the array sensor is changed by the value of Ppe, whose
range is 0–0.07. It can be seen in Figure 6b that we fix Ppe = 0.02 to observe the estimation
of the three algorithms by altering SNR from −10 dB to 20 dB. Figure 6a,b both imply
that accuracy of GA-ESPRIT is highest in the presence of the sensor-position error, so the
conclusion is that GA-ESPRIT has the strongest robustness against sensor-position errors
among the three algorithms.

(a) (b)

Figure 6. RMSE with sensor-position error. (a) RMSE versus the power of sensor-position error.
(b) RMSE versus SNR in the presence of sensor-position error.

The third experiment is also designed for two cases. Case one is that only gain error
exists (see Figure 7a), while for case two, only phase error exists (see Figure 7b). Other
conditions are the same as experiment two except that there is no position error. The gain
error is constructed by the random numbers, whose mean value is 1 and variance is 0.2, and
the phase error is constructed by the random numbers with zero-mean and 0.005 variance.
We can learn from Figure 7a,b that, whether there is gain error or phase error, GA-ESPRIT
can maintain the estimation accuracy very well, especially in low SNR.
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(a) (b)

Figure 7. RMSE with gain or phase error. (a) RMSE versus SNR in the presence of gain error.
(b) RMSE versus SNR in the presence of phase error.

In general, it is because Q-ESPRIT only takes part of the array output information into
consideration that makes large RMSE. The reason for LV-ESPRIT’s poor accuracy in the face
of the sensor-model error would be that its “long vector” destroys the orthogonality of the
signal components. The improvement of detection robustness of GA-ESPRIT largely results
from the fact that it can effectively preserve the orthogonality of the signal components
and guarantee the completeness of the information.

5. Conclusions

In this paper, considering that the GA representation contains physical interpretations
and complete information of incident signals, we use the idea of the traditional ESPRIT
algorithm to find multiple EM signals in the direction finding method in GA. In particular,
the model for DPULAs was built in GA and GA-ESPRIT was successfully derived using
new calculation rules to achieve the two-dimensional DOA estimation. Compared with the
previous ESPRIT algorithms, due to the robustness to sensor-model error and correlated
noise, our proposed approach has potential in many practical situations, such as military
radar in difficult environments. According to the experimental results, we have confirmed
that the GA-ESPRIT has improved accuracy in two-dimension DOA estimation and can
resist environmental interference to some extent. More importantly, the proposed algo-
rithm achieves a reduction of more than 1/3 of the memory requirements while the time
complexity is also greatly decreased.

Future works on the GA-ESPRIT will include polarization parameter estimation by
optimizing matrix operations in GA and the ability of DOA recognition when facing
coherent EM signals. It is expected that the proposed GA-ESPRIT will be an efficient
DOA estimator.
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Abstract: The ‘15-minute city’ concept is emerging as a potent urban regeneration model in post-
pandemic cities, offering new vantage points on liveability and urban health. While the concept
is primarily geared towards rethinking urban morphologies, it can be furthered via the adoption
of Smart Cities network technologies to provide tailored pathways to respond to contextualised
challenges through the advent of data mining and processing to better inform urban decision-making
processes. We argue that the ‘15-minute city’ concept can value-add from Smart City network
technologies in particular through Digital Twins, Internet of Things (IoT), and 6G. The data gathered
by these technologies, and processed via Machine Learning techniques, can unveil new patterns to
understand the characteristics of urban fabrics. Collectively, those dimensions, unpacked to support
the ‘15-minute city’ concept, can provide new opportunities to redefine agendas to better respond
to economic and societal needs as well as align more closely with environmental commitments,
including the United Nations’ Sustainable Development Goal 11 and the New Urban Agenda. This
perspective paper presents new sets of opportunities for cities arguing that these new connectivities
should be explored now so that appropriate protocols can be devised and so that urban agendas
can be recalibrated to prepare for upcoming technology advances, opening new pathways for urban
regeneration and resilience crafting.

Keywords: smart cities; Internet of Things (IoT); sensors; 6G; wireless communications; resilience;
sustainability; climate change; connectivity; data

1. Introduction

Cities across the globe have undergone notable transformations, especially following
the different waves of the industrial revolutions witnessed since the 18th century. Under-
pinned by these waves, contemporary cities are now experiencing a transformation hinged
on widespread technological integration, with diverse and city-specific outcomes being
expected. Of this, the most notable objective and outcome being pursued by these cities is
the increasing efficiency and performance in different urban frontiers [1]. Technological
integration in different elements of cities is enveloped within the Smart City concept. Pro-
ponents of the concept envision an urban environment characterised by reduced human

Sensors 2022, 22, 1369. https://doi.org/10.3390/s22041369 https://www.mdpi.com/journal/sensors287



Sensors 2022, 22, 1369

interventions as a result of automation of different urban elements in diverse geographical
locations globally. However, automation, being one aspect of ‘smartness’, is dependent
on the amount, quality, and type of data that different urban elements generate [2]. Thus,
it is credible to argue that data are becoming a cornerstone of urban planning practice.
Therefore, data collection, storage, analysis, and interpretation is critical, especially in
helping to understand different urban dynamics and in scaffolding more informed decision
making [3].

In addition to data, the smart city concept is further grounded upon the availability of
other diverse and advanced technologies that not only allow for data collection, storage,
and exploitation but also permit for technologies that help in implementing decisions and
insights after data are synthesised, analysed, and interpreted. Such technologies include
Artificial Intelligence (AI), Machine Learning (ML), Crowd Computing (CC), connectivity
technologies such as 5G (including anticipated 6G), Robotics, and many others [4]. When
compounded, the bulk of these technologies, plus different urban elements are seen to
make smart cities and their market attractiveness very lucrative.

Currently, the smart cities ‘industry’ is valued at approximately USD 741.6 billion.
With the attention on its sustained implementation amid the prevailing global pandemic
challenges, this industry is expected to grow substantially to over USD 2.5 trillion by
2026 [5]. While there are other sources that estimate the market value of this industry
differently (for example, Marekts and Markets [6] estimates it to be currently worth USD
457 billion and to grow to USD 873.7 billion by 2026), it is evident that regardless of
different market valuations, the concept is promising and is expected to contribute to
strategic urban planning trends globally. In particular, beyond the economic frontier, the
smart city concept is expected to continue providing opportunities for increased liveability
standards, increased sustainability prospects, and improved social dimensions amongst
other unparralleled benefits [7–9].

While the smart cities concept is still gaining traction, the COVID-19 pandemic has
prompted the emergence of a new urban planning concept—the ’15-minute city’. This city
type focuses more on promoting social dimensions, urban proximity, and diversity via
increasing use of technologies [10]. While the ’15-minute city’ concept will be described
comprehensively in the next section, it is worth noting that the concept has only been
described in the literature since 2016, with authors noting commonalities including social
distancing, work-from-home concepts, and reduced travel movements, and the concept
is increasingly becoming associated in tandem with the smart city concept in crafting
and structuring more liveable and human scale cities [11]. However, this urban planning
model promises to introduce new characteristics, such as proximity-based approaches to
the planning of urban amenities, and urban restructuring, especially in relation to existing
urban infrastructures and other elements, so that ultimately, there is a need to mediate
these new aspects to human dimensions and values.

The 15-minute city concept, when unpackaged, both in the global north and south, is
expected to transform urban areas and allow them to become more human-friendly, espe-
cially in the shadow of the post-pandemic ‘new normal’. Furthermore, this concept will
prompt urban areas to better align for prospective future post-pandemic urban morpholo-
gies, especially with prospects that new concepts and technologies (e.g., metaverse) may
have in prompting urban restructuring, greenfield policy reinvention, and regeneration
generally. The contributions of this paper to the knowledge on 15-minute city concept
include the following:

• Comprehensively showcases that the adoption of smart technologies can render more
inclusive urban fabrics.

• Explores the adoption of the concept within the new realities (new normal) prompted
by COVID-19.

• Explains in detail how emerging technologies such as the Digital Twins and the
anticipated 6G technology will further accelerate the adoption and success of this new
planning model.
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• Highlights some possible obstacles that will need to be overcome to ensure that the
anticipated benefits, especially on the social front, are realised.

Within this context, this paper seeks to explore the technological dimensions that are
influencing the adoption and implementation of the 15-minute city concept in different
global cities. This appraisal includes introducing the ’15-minute city’ concept in Section 2;
Section 3 situates its relationship within Smart Cities practices and relevant techniques
and technologies; Section 4 unpacks the concept’s technological dimensions; and Section 5
presents a discussion and conclusions.

2. The ‘15-Minute City’

The ‘15-minute city’ concept is a new urban planning model conceived in 2016 by
Franco-Colombian scientist Carlos Moreno, a specialist in intelligent control of complex
systems, who envisioned the need for urban environments to be people-centred [12,13].
Moreno acknowledges that he drew inspiration from Jane Jacobs’ writings [14]. His model
gained prominence with its electoral advancement by Paris Mayor Anne Hidalgo within her
“living smart city” initiative called the “Ville du quart d’heure”—the 15-minute city [15].

Moreno’s concept is that within an urban area, where human aspects such as socialisa-
tion, self-actualisation, cultural demand, and health, among others, the time required for
people to access different nodes within the space is given precedence and priority during
city planning. This policy empowers that the placement of essential urban amenities,
infrastructures, and opportunities is deliberately actioned to facilitate enhanced accessi-
bility. With policy implementation, it becomes possible for residents within given urban
areas to comfortably walk or cycle to any given node within a city in a timeframe not
exceeding 15 minute [16]. Thus, the demand for the use of automobiles to travel within
the city is reduced, providing room for opportunities to create walkways and bicycle lanes
that would have been otherwise suppressed in conventional urban planning models that
prioritise vehicular flows’ efficiencies. Therefore, the 15-minute city concept seeks to bring
a paradigm shift in the way urban planning has been previously practiced, shifting it from
one focused upon vehicular flows, resulting in gridlocked cities, being a deterrent to the
human societal endeavours and city liveability.

Moreno’s ‘15-minute city’ concept is inspired from ‘Chrono-urbanism’, where the
aspect of time is believed to be a key factor to consider relative to space [10,13]. That is, the
act of placing of different urban amenities and different elements needs to be guided by
how much time it would take a walking or a cycling resident to move from one node to
the next. In essence, even in urban areas endowed with maximum space, the proximity of
different urban elements needs to be a critical consideration.

Within this concept, it is possible to structure a number of nodes within a city, as long
as all these observe the four key characteristics (as shown in Figure 1 below) that Moreno,
Allam, Chabaud, Gall and Pratlong [11] argue are key in driving urban liveability. These
include proximity, diversity, ubiquitousness, and density. In regard to diversity, the vision is
to render urban areas accommodating of people from given backgrounds, thus promoting
cultural vibrancy, while ensuring that there is diversity in terms of urban structures. That is,
planners need to ensure that each of the urban structures, infrastructure, and elements could
be used utilised for multiple purposes, hence allowing for their maximum utilisation [12].
For instance, in the case of neighbourhoods, there are opportunities for building urban
structures such as car parks that would have capacities for multiple use. Such a move
would ensure that there is maximum utility derived from buildings and urban public
spaces. Therefore, there is the capacity to craft sufficient urban spaces for the creation of
other critical amenities within the same neighbourhoods. Another example is the utilisation
of school playing grounds for other purposes including parking, and recreation centres,
especially external to school time whether on the surface, above, or below.
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Figure 1. The 15-minute city framework as introduced by Moreno, Allam, Chabaud, Gall, and
Pratlong [11].

In terms of density, the 15-minute city concept espouses that cities should have
an optimal number of residents. This assumption thereby ensures that it is possible to facil-
itate quality resource and service provision, without over-consumption or under-utilisation.
In respect to the theme of this paper, the density dimension is critical in terms of data gener-
ation, which in turn helps not only with influencing how resources are utilised but also in
feeding the virtual model of the city, thereby helping in rendering improved urban dimen-
sions. The ubiquitousness principle advances the need for 15-minute cities’ requirements
to be in large supply in all geographies, thereupon making them available for everyone
and at an affordable cost. This aspect will greatly benefit from the deployment of the three
technologies (IoT, Digital Twins, and 6G) being advanced in this paper. We argue that with
these technologies, it will be possible for urban planners to contextualise and implement
15-minute city models. Additionally, through using the aforementioned technologies, it will
be possible to customise each model to varying geographies to fully address place-relevant
human dimensions. Thus, such technologies will help in fast tracking those customisations
and implementation as is already being done in cities such as Paris, where the agenda is
to reduce private cars with a target of 50%, while ensuring cycling-friendly environments
through the creation of more bicycle lanes in the city. Another city implementing this
concept is Bellevue through its Environmental Stewardship Plan 2021–2025.

3. The ’15-Minute City’ via the Smart City Network

One of the key dimensions of the 15-minute city is digitalisation. This entails the
use of digital technologies to influence how the city functions and thus deliver services
as well as provide value-producing opportunities in relation to various urban systems
and domains. The latter relate to the overall landscape of the 15-minute city in terms of
its underlying components, including ICT infrastructure, built infrastructure, green/blue
infrastructure, transport infrastructure, energy infrastructure, economic infrastructure, and
social infrastructure. Against the backdrop of this perspective paper, the focus is mainly on
the ICT infrastructure and the built infrastructure given their particular relevance to the
dimensions of the 15-minute city. The built infrastructure denotes the following:

“ . . . the patterns of the physical objects in the city pertaining to the built-up areas
as well as those areas planned for new development and redevelopment . . . The
compact and ecological dimensions of urban design characterize most of the built
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infrastructure as regards its buildings, blocks, streets, open space, public space,
green space, and essential infrastructure” [17].

The core design strategies shared by both the compact city and the eco-city are den-
sity, diversity, and proximity enabled by mixed land use—which are strategies that also
characterise the 15-minute city. ICT infrastructure enables a 15-minute city to move to a
data-driven form of urbanism by leveraging advanced data and information technologies
to entirely transform its processes and practices—evaluating, analysing, re-engineering,
and envisioning the way urban infrastructures and services can be designed, developed,
managed, and planned in line with the vision of sustainability. ICT infrastructure digitally
consists of those components that power the technology that pervades the fabric of the city
(e.g., sensors, smart devices, systems, software programs, networks, data storage facilities,
data processing platforms, cloud and fog computing, policies, and standards) and thus
permeates urban life, providing support for the management of the city. To coordinate the
many different components that comprise the digitalisation dimension of the 15-minute city
requires a much stronger function of intelligence. This brings together what government
and business have to offer in terms of engaging users of services and communities and
providing hardware, software, and solutions enabling smartness, respectively. In this re-
spect, among the issues deemed important are the ways in which ICT infrastructure can be
integrated and coordinated, how the data can be analysed and harnessed, and how services
can be delivered in a more efficient way. With respect to the latter, digital infrastructure is
critical in remote areas in improving not only the efficiency of infrastructure networks but
also their sustainability and services (e.g., energy, mobility, transport).

ICT infrastructure can be deployed within the 15-minute city’s own facilities (or
cloud computing) in order to deliver solutions to different stakeholders with respect to
services and applications. In this regard, ICT infrastructure should initiate innovative
approaches to the use and integration of IoT, AI, AIoT, big data analytics, simulation
models, and intelligent decision-support systems as part of urban computing to enable
urban intelligence (e.g., enhancing mobility, reducing congestion, lowering energy use,
reducing air pollution, improving planning, optimising governance, etc.). The purpose of
this approach will be towards solving problems and issues related to the 15-minute city’s
operational management and development planning. As related to urban computing, the
efforts “ . . . dedicated to connecting unobtrusive and ubiquitous sensing technologies,
advanced data management and analytics models, and novel visualisation methods to
structure intelligent urban computing systems for smart cities . . . ” [18] can be utilised to
develop innovative solutions in the form of applied urban intelligence for the management,
planning, and governance of the 15-minute city.

Unsurprisingly, urban computing and intelligence is increasingly gaining momentum
in academic circles and policy debates as a policy agenda for integrated advanced technolo-
gies and their novel smart applications for tackling many of the contemporary complex
problems and challenges associated with urbanisation and sustainability.

[As] “ . . . a process of acquisition, integration, and analysis of big and heteroge-
neous data generated by a diversity of sources in urban spaces, such as sensors,
devices, vehicles, buildings and humans, to tackle the major issues that cities face
. . . ” [urban computing] “ . . . create win–win–win solutions that improve urban
environment, human life quality, and city operation systems . . . [and] also helps
us understand the nature of urban phenomena [and urban dynamics] and even
predict the future of cities . . . ” [19].

As an integrated and holistic approach, urban computing and intelligence makes it
possible to generate well-informed decisions concerning a wide range of city services and
operations, and it can also enable feedback loops between urban environments, human
activities, and physical movements [20]. The analytical process in this approach enables
the creation of knowledge services required for enhancing decision making based on the
design of the components and their relationships, as illustrated in Figure 2.
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Figure 2. General architecture for urban computing and intelligence based on big data analytics.
Illustration by authors.

With the escalating rate of urbanisation and mounting challenges of sustainability, it
has become of crucial importance to develop a new urban fabric that can deal effectively
with urban development in regard to its dimensions—namely land use change, popu-
lation increase, cultural change, and economic growth, through such design strategies
as compactness, density, diversity, and mixed land use. In this context, an urban fabric
refers to

“ . . . the physical characteristics of urban areas in terms of components, buildings,
spatial patterns, scales, streetscapes, infrastructure, networks, and functions, as well
as socio-cultural, ecological, economic, and organizational structures . . . ” [21].

This also involves making the best use of the digital and informational assets to ensure
that the city is sustainable in its approaches to integrating new technologies and their novel
applications with compact design strategies. This requires implementing an advanced
form of urban computing for monitoring, measuring, analysing, evaluating, designing,
and planning urban systems, thereby enabling many functions of urban intelligence for
the purpose of improving the sustainability, efficiency, resilience, and life quality in the
15-minute city.

Within this context, IoT has recently become the predominant paradigm of urban
computing and intelligence, shifting from a vision of ICT of ubiquitous computing towards
one of a deployable paradigm. This shift heralds a new wave of city analytics whose
basic ingredient is big data analytics [22–24], which is fostered by the proliferation and
widespread diffusion of wireless communication technologies on a hard-to-imagine scale.
This is manifested mainly in the quantity and scale of Wi-Fi hotspots covering many urban
areas to form a dense multi-faceted IoT network necessitating a large number of sensors
exhaustively deployed across the city in order to enhance their communication capabilities
and data transfer processes.

Given the wide array of its network in urban areas, via smart city networks, IoT has
been extensively installed and used in cities without many engineering obstacles as regards
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resources, buildings, and infrastructures. IoT infrastructure, involving a myriad of devices
seamlessly connected for information exchange, is used to collect vast troves of data to aid
in enhancing and optimising urban operations, functions, designs, and policies in relation
to various urban domains. IoT when coupled with the data deluge flowing through its
multiple networks of sensors plays a key role in the development and implementation
of the 15-minute city as a new concept, serving as a technological backbone to the city’s
attempts to address its goals of sustainability with respect to its underlying dimensions.
As an unprecedented planning effort, the 15-minute city initiative is a response to the
deconcentration of land use, and as such, it emphasises density, diversity, and mixed land
use as key strategies for ensuring liveability, vitality, affordability, energy conservation, and
environmental quality. This emerging approach to urban development seeks to deliver
more efficient land use, build a resilient and adaptable urban community, lower per capita
rates of energy usage and per capita infrastructure provision, and thereby reduce pollution
thanks to density and proximity.

Further, IoT infrastructure is necessary to fulfil the needs and visions of the 15-minute
city as a smart sustainable approach to urban development. IoT is seen as key to enabling
both the smart city [1] and sustainable city infrastructure [25], as it provides a flexible
infrastructure that is of crucial importance to deal with the myriad of interconnected
devices. It is important for the 15-minute city to have IoT infrastructure in place, where end-
device connectivity is monitored, communication reliability is assured, and its sub-systems
are intelligent enough to communicate and exchange information with one another while
forming a large-scale digital system with widely deployed devices to enable services [26–28]
associated with sustainable urban living. A successful implementation of IoT in the 15-
minute city means

“ . . . supporting the complexity of different sensors and their networks set up
in urban environments as well as simplifying the composition of interoperable
services and applications. Sensor–enabled smart objects are regarded as the
essential feature of the interconnected infrastructures of the future” [29].

IoT is an advanced form of ICT of ubiquitous computing. It includes an array of
ICT architectures that are fundamentally aimed at describing and providing the relevant
infrastructure that underlie the functioning of the digital ecosystem of the city—urban com-
puting and intelligence—within both smart cities [30] and sustainable cities [29]. Thus, ICT
architecture denotes a framework for the design of the components and their relationships,
functioning as a kind of a roadmap to a city’s ICT aspects: for example, what needs to be
done to respond to the city’s digital needs. ICT infrastructure, in contrast, includes the
assets themselves that are used in the city, such as hardware, software, networks, comput-
ers, towers, servers, and so forth. Accordingly, the architectural design of ICT determines
the variety and number of technologies that can be included in the ICT infrastructure. In
essence, a digital ecosystem is built on an infrastructure that has a particular architecture.
Therefore, it is impossible to use a particular architecture or infrastructure as a blueprint
for all possible implementations in real-world settings. In other words, there is no single
consensus on architecture for ICT or infrastructure for ICT that can be agreed upon uni-
versally. Different cities have different architectures and different infrastructures, such as
planning-based architecture, governance-based architecture, operations-based architecture,
healthcare-based architecture, and smart home-based architecture and others.

Bibri and Krogstie [29] offer a detailed review of the key technological and computa-
tional components of IoT, including its relationship with big data technology and analytics,
sensors and things, big data analytics as a holistic digital system, the core enabling tech-
nologies of big data ecosystem, big data analytics solutions, ICT architecture, and IoT
infrastructure. Nevertheless, as an advanced approach to ICT design, IoT architecture tends
to converge on the number of layers with regard to the design of the components that make
up a technological system and their relationships. This still depends on the application
domain [24,31–34]. Sometimes, the architectural layers are combined depending on the
complexity of the application domain while using different, and sometimes overlapping,
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labels, such as the physical layer, perception layer, information source layer, middleware
layer, network layer, technology layer, application layer, service layer, and domain layer. In
the context of the 15-minute city, the four layers of IoT architecture include the following:

(1) Physical/Perception Layer: Urban sensing and data acquisition;
(2) Network/Transmission Layer: Data transfer and communication;
(3) Middleware/Technology Layer: Data hosting, management, processing, and analysis;
(4) Application/Service Layer: Service provisioning specific to urban domains.

3.1. Physical/Perception Layer

This layer works with various types of sensors to generate and collect the data from
different sources from across urban systems and domains based on sensor-centric and
human-centric sensing mode. A sensor is a device that converts signals from one energy
domain to an electrical domain.

Urban sensing includes mobile sensing, participatory sensing, crowd sensing, satellite
remote-sensing, and light-detection-and-ranging (LIDAR) sensing. For example, these
pertain to mobility, traffic, energy, environment, road networks, transport systems, and
built objects. Accordingly, the billions of connected devices forming the IoT infrastructure
across a city are equipped with sensors to collect data about the way they are used as
well as about the environment surrounding them, with built-in wireless connectivity and
communication capabilities enabling them to exchange the generated data. One of the key
features of sensors, once deployed, is their ability to interpret the data received from the
surrounding environment and generate an output. Sensors measure physical input and
send signals to the processor, converting it into data that can be interpreted by a machine
or a human. With respect to the former, sensors send their readings to a backend system
with humans being left out of the loop. In essence, sensors have the ability to convert
data obtained from the outside world into a format that can be preprocessed and further
processed and analysed. Sensors are the core enabling technology of IoT, providing an
automated approach to urban data generation and thus serve as the main source for big
data management and analytics as a form of large-scale computation through middleware.
However, among the challenges of urban sensing are resource deployment, implicit and
noisy data, skewed sample data, and data sparsity and missing data [35–37].

Raw data are generated about a city in terms of its urban environments, human ac-
tivities, and physical movements by means of a broad network of sensors spread across
the city, including radio frequency identification (RFID) tags, near-field communication
(NFC), accelerometers, surveillance cameras, LIDAR, transponders, smart metres, global
positioning system (GPS), transduction loops, smartphones, and a number of other digital
platforms generating ranges of real-time data. In terms of sensors associated with human
mobility and activity, sensors leverage humans as data agents to investigate urban phenom-
ena and dynamics during their movements in urban areas for the purposes of solving and
servicing urban problems collectively.

3.2. Network/Transmission Layer

This layer acts as a bridge between the physical layer and the application layer through
a middleware layer. It includes a dispersed network as a set of technologies and solutions
that allows the transmission of the acquired data for further processing and analysis. As
such, it carries and transfers the data collected from the physical objects through sensors by
means of multiple wireless networking technologies that provide continuous data regard-
ing the physical and social forms of the city, including Wi-Fi, Bluetooth, satellite, cellular
(4G/5G/6G), Local Area Network (LAN), Low Power Wide Area Networks (LPWANs), Zig-
bee (a low-cost, low-power, wireless mesh network standard targeted at battery-powered
devices in wireless control and monitoring applications), and other mesh protocols. While
IT devices traditionally are connected to a central access point, satellite, or cell tower some-
where, relying upon expensive hardware infrastructure, mesh networking devices connect
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directly to each other. Thus, IoT is predicated upon making it possible for about anything
to be wirelessly connected and to communicate data over a multiplicity of networks.

3.3. The Middleware/Technology Layer

This layer provides a connectivity layer for the physical layer and for the applica-
tion layer. As such, it serves as an interface between the varied components of the IoT
architecture, making communication and possible among different, often complex, and
already existing elements and programs. It contains the main framework for organising
and centralising the data collected from the sensor network. One of the key functions
of middleware, which operates on cloud computing, is handling the distribution, hetero-
geneity, interoperability, dynamicity, and scalability of computing resources and systems
related to the logic of IoT applications. Middleware is at the core of IoT as a pervasive
computing environment, distributing applications across urban domains. It empowers
distributed processing for information fusion from multiple components of the physical
layer [38]. It is the logic glue with respect to the functionality of distributed applications
by connecting and coordinating many components of the IoT as a complex distributed
computing system. This involves a variety of the heterogeneous hardware and software
elements that are highly interoperable and dynamic, involving a myriad of embedded
devices and information processing units required for scaffolding the IoT environment and
its proper functioning.

Middleware is necessary for bridging the gap between the massively embedded and
networked devices and systems elevating IoT as a form of urban computing and intelligence
as it allows multiple processes to run on various sensors, computers, and networks to link
up, interact, and communicate to support and maintain the operation of IoT applications.
The scope is the ability of an ensemble of devices, smartphones, computers, databases, data
warehouses, application integration methods, application servers, application networks,
web servers, content management systems, messaging systems, routing, and message
transformation to cooperate, interconnect, and communicate seamlessly across disparate
networks that create the IoT environment rather than their pervasiveness and extensiveness.
Furthermore, middleware supports and deploys numerous applications networks across
large geographical areas that are created by sensor networks, network–monitoring systems,
and dynamic Web, and that collaborate with, or leverage services from, other disparate
systematically tied applications using integration approaches [24].

Middleware is a multi-layered architecture in itself, which comprises four distinct
sub-layers, namely [39]:

1. Host–infrastructure middleware or infrastructure and communication;
2. Semantic services and agents or distribution middleware;
3. Common middleware services or services for software environment;
4. Intelligence or domain-specific services related to application action coordination.

Considering the last two sub-layers, the middleware layer also provides process-
ing and analytics procedures to obtain the meaningful information or extract the useful
knowledge for numerous applications [23]. This pertains to both urban data manage-
ment using cloud computing platforms, indexing structures, and retrieval algorithms in
regard to spatio-temporal data [19], as well as urban data analytics in terms of adopting
machine-learning and data-mining algorithms and models to extract useful knowledge
from data across different urban domains using such supervised and unsupervised tech-
niques such as classification, clustering, regression, causal modelling, predictive modelling,
and profiling. The process of urban data analytics also fuses the knowledge from multiple
disparate datasets across domains [40], using such methods as deep learning-based [35],
multi-view-based, transfer learning-based data fusion, similarity-based, and probabilistic
dependency-based [19].
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3.4. The Application/Service Layer

This layer involves a varied set of applications that use the meaningful information
obtained from the physical and middleware layers. Accordingly, this layer provides a wide
range of knowledge services for a city in the form of applied intelligence functions. The
categories of services provided in this regard are based on the common types of big data
analytics, namely diagnostic, descriptive, predictive, and prescriptive, and the domain
for which these services are created. Furthermore, this layer offers interfaces that allow
urban domain systems to call the knowledge from an IoT application through a city’s
own facilities (or cloud computing platforms), where the knowledge extracted from data
must be integrated into decision-support processes in existing urban domain systems
to inform their decision making. This includes visual analytics for model exploration,
simulation and prediction methods, and distributed data mining or knowledge discovery
strategies. These processes in turn entail distributed data mining and network analytics,
extracted models underpinning management and evaluation, and model construction for
making assumptions and powerful predictions enabled by mining through AI to improve
decision-making processes. In particular, it is of vital importance to enable interactive
visual analytics [41], which “ . . . combine human wisdom with machine intelligence by
keeping domain experts in a learning loop” [19]. This layer also relates to urban dashboards
and smart boards with visualisation in relation to management system control, automated
response systems, and other types of applications. It offers a connectivity of an extensive
and transversal resources to multiple users and consumers enabling the adoption of data-
driven smart solutions.

Accordingly, 15-minute city architecture is organised into four layers: (1) data gen-
eration, (2) data transmission, (3) data management and analytics, and (4) smart services
for applications. The services supporting the 15-minute city architecture benefit from the
analytical outcome of urban data. Thus, they are provided based upon sensor-based data
that is abundant, holistic, dynamic, fine-grained, relational, resolute, and actionable thanks
to the intensification of datafication of contemporary cities, allowing for real-time analysis
and innovative and adaptive forms of city management and planning. Concerning the
latter, IoT architecture for the 15-minute city involves a whole collection of data-driven
smart solutions for various urban systems and domains. Such solutions can be adopted
by city management agencies and city planning centres to serve various stakeholders by
improving sustainability, optimising efficiency, strengthening resilience, and enhancing
life quality.

4. Unpacking the ‘15-Minute City’ via Tech-Centric Approaches

4.1. The ‘15-Minute City’ and Digital Twins

Digital twins is an emerging technology that allows for the virtual representation
of the physical objects, processes, and services in the virtual environment [4]. With this
technology, it has become possible to create replicas that different stakeholders are able to
interact within the virtual world, just as in the real world. This then makes it possible to
virtualise, analyse, simulate, test, and map different aspects and scenarios in the virtual
world to help in making informed decisions, including predictions and modelling that
ultimately influence situations in the physical world [42]. In this context, the backbone of
the Digital Twins (DT) technology, as argued by Dontha [43], is the availability of real-time,
massive, and quality data of a given object, or process that is collected from multiple sources
and later fed into the virtual model; hence, it allows us to understand the real situation in
the physical world. With data, Qi and Tao [44] note that it is becoming possible for different
players in the global spheres to predict future scenarios as well optimise performances.

For cities, especially those that have already embraced some aspects of the smart city
concept, they now have the capacity and means to not only generate enough data but also
have systems to collect and store the data. Accordingly, DT technology is expected to play
a critical role in urban regeneration and its implementation [4]. Indeed, DT could help
in the introduction and fashioning of improved regeneration models, as DT technology
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would allow for the simulation and testing of different scenarios. DT technology would in
particular benefit from dynamic models of decision making that allow for participatory
planning models that in turn make it possible for data to be collected even from different
communities, especially in regard to their expectations and aspirations [45]. With such
data, it would then be possible to simulate the impacts of those expectations on the urban
areas in case they are factored in, in the regeneration models, including in the adoption of
the ‘15-minute city’ concept. Ultimately, it becomes possible for the urban planners and
designers to incorporate urban dwellers’ expectations, which guarantees optimal impacts
and also allows for maximum acceptance and increases ‘ownership’ of the regeneration
model. For instance, in the pursuit of the ‘15-minute city’ concept, the integration of DT
technology in the urban planning approaches would allow residents to visualise, and where
possible interact virtually, with the different anticipated scenarios and outcomes. Such
opportunities would allow them to participate and propose the elements and components
that they would wish to be included in their proposed urban regeneration model. However,
on a negative tone, the integration of DT technology in the 15-minute city concept may
prompt a number of disadvantages. For instance, this will render higher initial costs
of implementation of the planning model, noting that this technology is also equally
expensive. Furthermore, due to the financial needs to establish relevant infrastructures for
DT technology, some cities may take longer to achieve as already, most cities do not have
the capacities to finance such projects from their public budgets and have to rely on PPP
programs and external loans. The DT technology is also in its infancy stage and will take
time before it matures complete to be successfully implemented in the 15-minute cities.

4.2. The ‘15-Minute City’ and the Internet of Things (IoT) Network

The ‘15-minute city’ concept, as advanced by its proponents, may overly concentrate
on the human-centric agendas and therefore, conceivably, could work sufficiently without
the need for digital solutions. However, there is evidence that cities that have deployed
elements of technology are able to improve aspects including quality of life for its residents
by 10% to 30% [46], and they are also far better placed to achieve global accords and
policy expectations including the United Nations’ (UN) Sustainable Development Goals
(especially Goal 11 that seeks to “Make cities and human settlements inclusive, safe, resilient
and sustainable”) [47] and the Glasgow Climate Pact emanating from the 26th UN Climate
Change Conference (COP26) [48].

For the ‘15-minute city’ concept, while the vision is to render neighbourhoods that
are compact and diverse, if not all services and amenities available are within reach, the
integration of IoT networks and devices would further underpin the benefits being sought.
On this, Turner and Townsend [49] note that ‘15-minute cities’ would benefit from the
use of smart technologies in areas such as pollution warning, controlling, managing, and
implementing local traffic and parking policies, and in providing real-time information on
issues such as weather and emissions.

The massive data generated from different smart IoT devices in different nodes within
‘15-minute cities’ would further help in the adoption of modern solutions including smart
lighting, especially for street lighting projects, smart parking, traffic light coordination, bike
sharing, and others. With the data, for instance, it would be possible to effectively estimate
local energy consumption rates enabling the adoption of economic and energy-efficient
lighting programs that meet place-specific needs without unnecessary generic consump-
tion [50]. Similar benefits would be derived in respect to the demand and consumption of
other resources and the utilisation of available public spaces and infrastructures, thereby
allowing for informed decision making in the provision of services. On this, one of the
positive aspects of the ‘15-minute city’ concept is the prospect of addressing car depen-
dency [51], by reducing the number of vehicles in cities through the provision of bicycle
and walk-friendly environments for urban dwellers. Such can equally be rolled out in
monitoring and measuring the health and oxygen generating of street trees and park trees,
and their corresponding capacity in hosting animal and avian species offering new avenues
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to monitor and measure the biodiversity (and biophilic [52]) ecological health of a city [53].
With the adoption of smart technologies, Woods [50] showcases that such objectives can be
achieved even quicker, as the availability of data could help identify priority areas as well
as be used to help convince local residents of the benefits they would derive from adopting
the new planning methods. However, to derive those benefits, a number of limitations
associated with IoT and its applications will need to be addressed. First, the issue of data
quality, data quantity, and privacy is critical. For instance, the case of privacy has been
reported to prompt apprehension on the part of residents to embrace and participate in
projects, and such predicaments could befall the 15-minute city concept if there are pitfalls
regarding the guarantee for privacy and security. IoT technologies are also expensive;
hence, they will require urban managers to commit extra financial resources, which might,
in some scenarios, lead to plunging cities into increasing debt margins where the projects
are already credit financed.

4.3. The ’15-Minute City’, 6G, and the Data-Driven Cities

As the number of IoT networks and devices continue to increase and become more
advanced, we argue that there will be an increased demand for wireless connectivity and
speed to facilitate real-time and fast connections [54]. However, although 5G networks
have the capacity to help meet our current demands for connectivity, they are still not
widespread, and most cities are only covered by the 4G networks, which are limited in
their capacity to handle the demand for huge data transfers, real-time recordings, and
other connectivity needs [55]. For 5G, Barakat et al. [56] argue that substantial resources
including financing will need to be availed to ensure sufficient infrastructures are installed
to facilitate the increasing demand emanating from both subscribers and the new devices
and innovations that are powered by this technology. For subscribers, it is noted that by the
first quarter of 2021, the numbers of those already subscribed had increased by 41%, and
more will join following the realities of COVID-19 [57]. This means that in the near future,
5G technology will not be sufficient to support all the connection needs, especially in cities
where the number of IoT devices are projected to increase to over 25.4 billion devices by
2030 from the current 8.74 billion devices available globally [58].

Then, the 6th generation (6G) of wireless communication will be inevitable, as the large
number of smart IoT devices and networks and the subsequent increase in data will require
a wireless technology that can facilitate quicker and real-time transfers from the point of
generation to the relevant networks [4]. According to Nguyen et al. [59], 6G technology will
bring to life the prospects of full intelligence and automations of systems. 6G technology
will help actualise concepts such as the smart city, and in this case, it will be instrumental in
helping realise the ‘15-minute city’ concept, which will also ride on the power of technology.
In particular, 6G will allow for more user participation and efficiency in the correction and
transfer of real-time data to the central networks for analysis and decision making. 6G will
further allow for the emergence of new technologies such as the anticipated metaverse
(a combination of multiple elements of technology, including virtual reality, augmented
reality, and video where users “live” within a digital universe) that have prospects to help
actualise the ‘15-minute city’, especially due to reduction of the need to travel, through its
emphasis on remote working, and increase social aspects.

However, the 6G technology might take time before the prerequisite infrastructures
are put in place before the technology undergoes the relevant piloting and testing, prior
to eventually being launched. Whereas the 15-minute city concept is also still very new,
it might not immediately benefit from the prospects of 6G as expressed here; thus, it
will have to content with available technologies and find alternative ways of overcoming
shortcomings that would otherwise be eased by the 6G technology.

5. Discussions and Conclusions

The smart city concept emerged and gained popularity in parallel to the equally
exponential growth and increase in the use of advanced technologies riding on internet
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connections that came about with the fourth industrial revolution wave [60]. In particular,
the technologies that emerged and continue to advance to date have initiated a new wave
of data generation and also correction, and as such, they have been viewed to increase the
prospect of efficiency in many frontiers such as decision making, improving performance,
and allowing for real-time predictions, among others [1]. In urban areas as explained
above, data mining prospects are seen to be propitiously play critical roles in shaping
discourses and trends in topics including climate change, biodiversity health, cultural
heritage conservation, traffic management, First Nations’ Country Plans [61], adoption
of alternative energy such as rooftop solar energy, etc. However, while those benefits
amass and will continue to emerge, it is worthwhile to note that the smart city concept
attracts notable and genuine criticism from different quarters, especially in regard to the
collection, storage, analysis, management, and control of data [62] enveloping also human
privacy concerns echoing Orwell’s dystopian social science fiction novel and cautionary
tale [63]. Such criticisms, especially associated with handling the urban data by the private
entities, are well placed, particularly in view of privacy and security of personal data, and
also the fear of monetisation thereof that is synonymous with most profit-oriented private
entities [64].

Empowering the local government is particularly important as the ‘15-minute city’
concept promises to enhance people-centric dimensions and thereby is expected to generate
large private datasets that would need high levels of privacy and security. With the assur-
ance of data safety, it would be possible to convince urban residents to embrace the concept,
enabling wider opportunities for urban managers to pursue the project, including adopting
the smart urban technologies such as the DT, IoT, and the anticipated 6G technology.

From the literature above, it has been expressed how the DT technology holds un-
matched potentials in helping actualise the ‘15-minute city’ concept. In particular, the
ability to create a virtual replica of the city model will be critical, noting that the ‘15-minute
city’ concept is an emerging technology that may face objections from people who do not
understand how it may pan out. In a similar way, the DT technology has had successes
in other sectors including manufacturing, the transport industry, and others, especially in
providing opportunities for simulations and predictions [65]; it would be expected that DT
could help actualise the ‘15-minute city’ concept and its implementation. As noted in the
literature, this will be influenced by the availability of real-time data that is also quality
and in emanating from different urban fabrics to ensure it allows for a real replica of the
‘15-minute city’ concept. Areas that would gain from this would include sustainability,
resilience and quality of life, and the ability to predict and monitor urban health dimen-
sions, such as air quality. These topics are increasingly the subject of new research activities
leading to the emergence of varying air monitoring tools [66]. Such will be facilitated by
the availability of IoT networks and devices that, as Liu [67] notes, will continue to increase,
and new ones will emerge as more demand increases. Therefore, it will be safe to argue
here that the prospect of the ‘15-minute city’ concept will not only benefit from existing IoT
networks devices but will also play a critical role in influencing the emergence of new ones
that help in its actualisation. It is possible that the increase in IoT devices, especially in
advanced forms, will pose some connection challenges, and this then justifies the need for
the 6G technology explained above. However, it is worth noting that while 6G technology
is still in the pipeline, the early piloting of the ‘15-minute city’ concept can still benefit
from the 5G technology, but the launch of 6G will revolutionise this concept, especially in
view of the speed of transfer of data and increased capacities for communication between
different smart devices installed.

The increased connectivity of devices, and the data gathered and processed, can
further aid in automating urban dimensions [2,68,69], which can lead from ‘automation’
to ‘autonomy’ [70,71]. Of interest to this concept would be the need to replicate those
automated features digitally for testing in varying scenarios [72], supporting the need
for Digital Twins and the concept of ‘City Brains’. This convergence of AI-driven data
processing and simulation can further aid in the better planning and implementation of
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the 15-minute city concept, leading to the contextual solutions, supporting the identity and
character of neighbourhoods.

The need to align the ‘15-minute city’ concept with smart city networks would not
need to be overemphasised. This is because it is already evident from the realities prompted
by the global COVID-19 pandemic that data-driven cities hold the future for the urban
areas. However, data alone are not enough. It will need to be exploited to help align urban
areas with people-centric dimensions, which have not been sufficiently explored in existing
smart cities [63]. With this element catered for, the ‘15-minute city’ concept is poised to
be a successful urban planning model, with human scale elements sufficiently provided.
However, this success will depend on how well this concept will be aligned with existing
and emerging ‘smart’ technologies. Therefore, it could be safe to argue that the ‘15-minute
city’ concept is emerging as a by-product, or an evolution, of the smart city narrative, and
going into the future, it might become even more prominent and widely embraced within
smart city models.

While this paper has anticipated some of the benefits that cities would accrue from
a widespread acceptance and implementation of the 15-minute city concept, a follow-up
study will be necessary to evaluate how the concept is taking shape. In particular, this
will be relevant as some of the technologies appraised in this article are still very new, or
some such as the 6G are still in the pipeline, and it will be prudent to report how those will
eventually influence the 15-minute city model once they are deemed mature enough.
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Abstract: In this article, we propose a reliable and low-latency Long Range Wide Area Network
(LoRaWAN) solution for environmental monitoring in factories at major accident risk (FMAR). In
particular, a low power wearable device for sensing the toxic inflammable gases inside an industrial
plant is designed with the purpose of avoiding peculiar risks and unwanted accidents to occur.
Moreover, the detected data have to be urgently and reliably delivered to remote server to trigger
preventive immediate actions so as to improve the machine operation. In these settings, LoRaWAN
has been identified as the most proper communications technology to the needs owing to the
availability of off the shelf devices and software. Hence, we assess the technological limits of
LoRaWAN in terms of latency and reliability and we propose a fully LoRaWAN compliant solution to
overcome these limits. The proposed solution envisages coordinated end device (ED) transmissions
through the use of Downlink Control Packets (DCPs). Experimental results validate the proposed
method in terms of service requirements for the considered FMAR scenario.

Keywords: LoRaWAN; reliability; downlink; safety; IoT

1. Introduction

Safety can be defined as the state of being free from unacceptable risks which can
potentially cause damages to humans, environment or properties [1]. Public safety is
very important in industrial environments especially in high-risk fields such as oil and
gas, chemical industry or nuclear reactor plants where any event or accident can lead to
catastrophic consequences both for humans, i.e., the workers and/or those who are living
in the surrounding areas, and for the environment. These kinds of scenarios are typically
categorized as Factories at Major Accident Risk (FMAR). A mapping of the most frequent
major accidents in this context has been produced in Italy in 2013 by the ISPRA (Istituto
superiore per la protezione e la ricerca ambientale—High Institute for Environmental
Protection and Research) [2] and they are mainly due to release of dangerous substances
(liquid or gas), fires, and explosions. The possible causes are several, such as machinery or
piping break up, watertight loss, tanks overfill, mistakes during the handling procedures,
submission of material on already filled cans, blending of incompatible materials, valves
break up, accidental falls or vehicle collisions, and, more generally, spillover of cisterns.

Activities of ensuring compliance with procedures to prevent major accidents are
traditionally in charge of humans control, and, as such, they are naturally error prone. On
the other hand, with the rapid development of the numerous innovations in manufacturing
and in information and wireless communications technologies, we have assisted in the
last years to the birth of the new Industry 4.0 era [3]. In this scenario, the Internet of
Things (IoT) is a hot topic nowadays either from a research point of view and from an
application perspective as well [4]. Needless to say, IoT may provide great support to
safety in the considered FMAR scenario in which workers and machines operate in a
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shared environment and a great amount of heterogeneous information can be collected
by sensors and automatically delivered to a Central Controller (CC) allowing a real time
control of the whole activity chain (and, as a consequence, of the associated risks). More
specifically, the most important sensing technologies in the considered application scenario
are represented by sensors for detecting gases with the purpose of avoiding fires and
explosions involving flammable gas leakages as well as for controlling the level of oxygen in
the atmosphere. In particular, electrochemical and catalytic gas sensors were chosen in this
work, whose main focus is the implementation of a reliable limited time delay transmission
system using a LoRa radio channel to transmit dangerous gas concentration detected
by the sensors. For this purpose, we refer to the wearable device embedding sensing
and communications capabilities described in Section 3, which is under development
within a collaboration between the University of Siena and INAIL (Istituto nazionale per
l’assicurazione contro gli infortuni sul lavoro—Italian National Institute for Insurance
against Accidents at Work). Regarding in particular the communication aspects, the
considered IoT scenario is characterized by low power devices transmitting infrequent
short bursts of data over a low power wide area network. Indeed, the devices cannot
have any external power supply (i.e., they run on batteries and they are installed in areas
where frequent batteries substitution cannot be always guaranteed). Accordingly, they are
expected to be very power efficient. Moreover, most of the detected data are not critical and,
as such, can be referred to as Regular Packets (RPs). However, in some cases, i.e., when the
concentration of gases crosses a pre-defined threshold, the detected data have to be urgently
and reliably delivered and, accordingly, they are referred to as Urgent Packets (UPs).
In this setting, one of the most promising communications technologies is represented
by the Long Range (LoRa) one, together with the associated LoRa Wide Area Network
(LoRaWAN) protocol.

When designing a LoRa-based network infrastructure, the adoption of LoRaWAN
provides several advantages with respect to other customized Media Access Control (MAC)
protocols. First of all, there is a large availability of open source LoRaWAN servers which
can be easily installed and employed to rapidly set-up LoRaWAN networks. As a matter of
fact, most of the Gateways (GWs) currently available on the market support the LoRaWAN
protocol. In terms of range and coverage, this technology provides a far longer range
than Wireless Fidelity (WiFi) or Bluetooth connections [5], applicable for indoor as well as
outdoor scenarios, especially in remote areas where the cellular networks have poor con-
nections. Moreover, when setting up dense network infrastructures, upper layer protocols
like MAC ones are developed in LoRaWAN with the aim of managing the whole network
infrastructure as well as the coexistence of large quantity of end devices (EDs). Moreover,
LoRaWAN provides several built-in features that can be very important for the scenario at
hand such as: (i) security in the transmission by means of Advanced Encryption Standard
(AES-128) end-to-end data encryption; (ii) Possibility of boosting the capacity through
the use of multiple channels; (iii) Adaptive Data Rate (ADR) and power consumption by
controlling the Spreading Factor (SF), the Bandwidth (BW) and the Coding Rate (CR).

Finally, LoRaWAN provides a number of different message types which allow to
set up unconfirmed (UNCONF) or confirmed (CONF) data transmissions (by means of
Acknowledgement (ACK)) and a downlink (DL) channel to send information back to ED as
well as the Over-The-Air Authentication (OTAA), a procedure that simplifies the association
of an ED to the network by means of Join request messages.

The rest of the paper is structured as follows. In Section 2, the state of the art of LoRa
solutions for reliable communication and related works are presented. In Section 3, we
introduce the sensing and communication parts describing the main sensor characteristics,
power consumption analysis and server architecture. Then, the proposed approach is
described in Section 4. The main experimental results and discussions are presented in
Section 5. Finally, concluding remarks are given in Section 6.
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2. State of the Art

Various works have investigated the reliability of LoRa networks. In [6], the authors
investigate the problem of collision and propose two distinct mechanisms for collision
free transmission, namely TDMA (Time-Division Multiple Access)-based and FDMA (Fre-
quency Division Multiple Access)-based with an ultimate aim of increasing the reliability of
the service. The first mechanism allows all clusters to transmit in sequence where up to six
EDs belonging to the same cluster can transmit using different SFs in parallel whereas the
latter allows all clusters to transmit in parallel, each cluster on its own frequency. However,
within each cluster, all EDs transmit in sequence. The simulation results provide better
performances than standard LoRaWAN in terms of Packet Delivery Rate (PDR) even if the
number of EDs is high. Similarly in [7], a two-step lightweight scheduling is proposed to
divide nodes into groups where similar transmission powers are used in each group to
reduce the capture effect. The nodes are guided by the GW coarse-grained scheduling to
use different SFs to enable simultaneous transmissions through the use of beacon signals
at every pre-defined interval, thus reducing packet collisions. The validity of the pro-
posed scheme is assessed using NS-2 simulations showing better performance than legacy
LoRaWAN in terms of packet error ratio, throughput, and energy efficiency. However,
inter-SF transmission is still a problem due to the loss of the orthogonality between the
two signals [8,9]. Since the ALOHA mechanism of the LoRaWAN drastically decreases the
performance because of the non-negligible on-air collision probabilities, some authors in
literature have proposed the synchronization of LoRa networks by assigning slots to each
node using fine-grained scheduling [10].

In order to overcome the problems of classical ALOHA in LoRaWAN, Zorbas
et al. [11] propose a time-slotted mechanism where data are buffered locally and transmit-
ted whenever a GW is available by avoiding bursts of collisions. Similarly, in [12] a Time
Slotted (TS)-LoRa that allows the nodes to organize autonomously and determine their
slot positions in a frame is proposed. This is achieved by sharing an easy-to-compute hash
algorithm between the network server and the nodes able to map the nodes’ addresses that
are assigned during the join phase into unique slot numbers. Moreover, this mechanism
ensures backward compatibility with legacy LoRaWAN nodes and liberates TS-LoRa from
the huge schedule dissemination overhead. The last slot in each frame is used for send-
ing synchronization ACK responsible for handling time synchronization and ACKs. The
considered TS-LoRa achieves a very high packet delivery ratio for all the tested SFs.

The availability of CONF messages is one of the important features in the LoRaWAN
networks that is not available in some of its competing low power technologies like Sigfox,
Bluetooth Low Energy (BLE) etc. This feature can be used in those scenarios where data
reliability is concerned. However, very few works in literature have investigated the CONF
traffic, its effects and, more in general, the DL viability. Marais et al. [13] provides an
analysis of use cases requiring CONF traffic and concludes that CONF traffic is viable
in small networks, especially when data transfer is infrequent. Additionally, aspects
likes duty-cycle regulations, SF12 for RX window 2, maximum re-transmission numbers
and ACK_TIMEOUT transmission back-off interval negatively impact the viability of the
CONF traffic. Similarly, Capuzzo et al. [14] conclude that the performance of a single
LoRaWAN cell can significantly degrade when the fraction of nodes that require CONF
traffic grows excessively. Moreover, they also suggest that it is necessary to carefully choose
the maximum number of transmission attempts for CONF packets, based on the node
density and traffic load to get the best performances. In addition, various works in the
literature [15–18] investigate the applicability as well as criticism of DL in LoRaWAN
networks and its possible negative impact on performances when not well implemented.
To sum up, LoRaWAN technology has limitations that need to be carefully considered
for its use in the considered FMAR scenario. In particular, one of the most critical issues
is related to the use of the CONF mode to provide link reliability. Indeed, as discussed
in [19], the use of ACK in DL can significantly drain the network capacity since GWs
must be compliant with duty-cycle regulations. This problem is also studied in detail
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in [20] where the authors propose a solution called sub-band swapping where a first receiving
window is opened on the dedicated downlink (DL) channel and a second one on the uplink
(UL) channel to alleviate the duty cycle’s bottleneck. Another line of investigation deals
with the use of ad-hoc control schemes which deviate from the standard LoRaWAN ACK
mechanism [21,22].

One of the most closely paper to ours is [6], where collision free mechanism based
on clustering of EDs is provided with the aim of increasing the reliability. The authors
provide various optimized solutions by maximizing the number of EDs in a service area
via maximum possible channel utilization. However, the considered test scenario is built
with the aim of enabling massive IoT (mIoT) and it differs then from ours (FMAR) in the
following aspects:

• The considered solution is more generally focused on a air pollution monitoring
system where there is the requirement of sending RPs containing the measurement
report at every pre-defined interval within a given time window (400 s–1600 s).

• The EDs should be perfectly synchronized with the GW in time so that the transmission
times for the users are accurate. In this case, they have introduced some guard times
which require major infrastructural modifications both at ED and GW level.

• It does not consider the FMAR scenario; especially the situations of UP delivery is not
considered in their work: this aspect deals not only with the reliability but also with
the stringent latency constrains.

• The EDs are assumed fixed.

In this paper, we propose a reliable and low-latency communications solution which
is suitable for the considered FMAR scenario and that is fully LoRaWAN compliant. On the
other hand, to the best of our knowledge all the previous works in the literature addressing
the problem of reliability in LoRa deviate from LoRaWAN standard and, as such, would
require a brand-new firmware update at both nodes’ and GW level. Conversely, the aim of
the solution proposed in this work is to integrate the standard LoRaWAN configurations:
this would make the implementation of this system almost straightforward since only minor
modifications on the server side of the network infrastructure are required. As a matter of
fact, the proposed solution may exploit already existing LoRaWAN networks and thus may
be installed without any need for major infrastructural integration. Accordingly, this work
proposes a fully operating experimental setup and the viability of the proposed scheme is
demonstrated by means of a fully operating LoRaWAN network infrastructure whereas in
all the referenced works the results could be achieved only by means of simulations. To
sum up, this work does not require any modification in the current LoRaWAN protocol
and is fully compliant with the current standard.

3. The Integrated Sensing and Communication Platform

3.1. Sensor Node Architecture

The sensor node was fully custom designed to fulfill the requirements of the ap-
plication scenario and to comply with the constrains in terms of physical dimensions,
measurement accuracy and energy consumption. Its architecture is reported in Figure 1
and it encompasses 3 gas sensors, two electrochemical amperometric gas sensors [23] and a
catalytic gas sensor. The sensors used in this application, all manufactured by Alphasense,
Braintree, UK, are the CO-A4 for the measurement of carbon monoxide concentration (CO)
and the O2-A1 for the measurement of oxygen concentration (O2), while the catalytic sensor,
for the detection of potentially explosive atmospheres, is the CH-A3.
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Figure 1. Sensor node architecture.

Electrochemical and catalytic gas sensors, as well as many other chemical sensors, be-
have linearly in the working range. The average response time (t90) for all the used sensors
is less than than 15 s from producer specifications. From tests reported in Figures 2–4 we
verified the sensor responses. The response times, for the CO sensor tested from 0 ppm to
28 ppm of CO in air, for the O2 sensor tested from 20.9% to 10% of O2 in nitrogen and for
the explosive gas sensor tested with steps of 0.2% of methane in air, do not exceed what
expected and for all the tested sensors is in general around 10 s. This induces a time delay
which is relatively small and aligned with commercial gas detecting systems performance.
Considering the application scenario, for example a small room or an operator entering
into a tank, the sensor response time is smaller than the time required to a gas to fill the
room volume or the time an operator takes to enter into a tank. Hence, this aspect does
not represent a critical issue for the developed architecture as it is actually a delayed or
unreliable data transmission.

Figure 2. Catalytic Sensor test.
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Figure 3. CO Sensor test.

Figure 4. O2 Sensor test.

The digital part of the node is based on a low power ARM microcontroller from
STMicroelectronics (STM32LQT5), that embeds 12 bits Analog to Digital Converters (ADCs)
and Digital to Analog Converters (DACs) used to acquire signals from the sensors front
end and to provide the correct biasing of electrochemical sensors. The microcontroller can
save and read data from an Secure Digital (SD) card memory storage for logging purposes
and to load sensors calibration parameters. The node sends data through the LoRa radio
channel exploiting an RFM95 transceiver by HopeRF, interfaced through an SPI bus.
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In Figure 5, the current absorption of the sensor node microcontroller and LoRa
transceiver parts is shown. The measurement was taken during a sensors data acquisition
phase followed by a 20 bytes LoRaWAN packet transmission using SF = 7. From this plot,
it is possible to measure the maximum time delay from the sensor data acquisition phase
end and the radio transmission start. The measurement was obtained by clocking the
microntroller at 32 MHz, acquiring data from the ADC channels and processing them. The
acquisition and processing time (few milliseconds) is negligible with respect to the LMIC
stack packet elaboration, however, this time delay is below 50 ms.

Figure 5. Sensor Node supply current at 4.2V showing sensors data acquisition followed by Lo-
RaWAN message transmission.

The final prototype of the node with gas sensors is reported in Figure 6.

Figure 6. Sensor node device final prototype.

3.2. LoRaWAN Communication Platform: LoRa Node, GW and Server

In the following we provide a brief outline on the overall technology and the network
architecture considered in this work.

LoRaWAN protocol is based on the LoRa transmission technology, a proprietary
modulation patented by Semtech. LoRa operates in the unlicensed Sub-GHz (below
1 GHz) Industrial, Scientific and Medical (ISM) bands, with three operating frequencies:
433 MHz, 868 MHz and 915 MHz. It exploits the Chirp Spread Spectrum (CSS) modula-

311



Sensors 2022, 22, 2372

tion technique which allows to achieve extremely high receiver sensitivity values (up to
−146 dBm): in these conditions, very long transmission ranges are obtained (up to some
kms in urban areas and some tens of kms in rural areas) with limited power consumption.
LoRa is then the ideal candidate for a plethora of wide area IoT applications, with a large
number of connected devices. LoRaWAN networks adopt a star-of-stars topology, which
enables multiple GWs to receive packets from a large quantity of EDs: GWs are in charge to
transfer the packets to a central network server which manages the network aspects related
to security, scalability and reliability. EDs are divided in 3 Classes (Class A, Class B and
Class C) which differ for their ability to receive DL packets from the GW. Class A devices
are the simplest and less power hungry ones and, as such, they are by far the most common
ones. However, all the three ED typologies are bi-directional in operation. Every ED must
be registered with a network before performing communication. These activation processes
are of two types: (a) OTAA; the most secure and recommended for EDs and (b) Activation
by Personalization (ABP); less secure and requires hardcoding the device address as well as
the security keys in the device. Moreover, one of the important aspects of LoRaWAN is the
use of frequency plan and its duty cycle regulations. More specifically, duty cycle indicates
the fraction of time a resource is busy. As an example, when a ED transmits on a channel for
3 time units every 10 time units, the device has a duty cycle of 30%. As for the transmission
frequencies, they are specified in the LoRaWAN regional parameters document [24]. Note
that the words frequency and channel are used interchangeably throughout the paper. The
duty cycle policy is often regulated by the government and it applies to an entire sub-band.
This means that if a user transmits in one of the channels of a given sub-band, it cannot use
any of the frequencies of the same sub-band for a time interval regulated by the duty cycle
policy. Specifically, the duty cycle values for different sub-bands are regulated by the ETSI
EN300.220 standard and are reported below [25].

• g (863.0—868.0 MHz): 1%
• g1 (868.0—868.6 MHz): 1%
• g2 (868.7—869.2 MHz): 0.1%
• g3 (869.4—869.65 MHz): 10%
• g4 (869.7—870.0 MHz): 1%

The above regulations apply to both EDs and GWs. In the followings, we briefly
describe the main components of overall system.

3.2.1. RFM95 Radio Transceiver

RFM95 LoRa module is a radio transceiver manufactured by HopeRF [26]. It has a
receiver sensitivity of −148 dBm and power amplifier of +20 dBm. Consequently, it has
a maximum link budget of 168 dBm. It requires 3.3 V of voltage supply and draws a
minimum RX current of 10.3 mA. The choice of this transceiver is due to its low cost and its
low power consumption with a very good receiver sensitivity, suitable for the proposed
application scnario.

3.2.2. LPS8 GW

LPS8 is an open source LoRaWAN GW [27] which acts as a bridge between the ED and
the network infrastructure. It has a backhaul Internet connectivity that connects it to the
remote network server. The LPS8 uses a Semtech packet forwarder, a software responsible
for forwarding packets to the server and includes a SX1308 LoRa concentrator. It allows
users to send data and reach extremely long ranges at low data-rates providing 10 parallel
demodulation paths. The receiver has a sensitivity of up to −140 dBm with SX1257 Tx/Rx
front-end.

3.2.3. Chirpstack LoRaWAN Server

We consider ChirpStack open-source LoRaWAN Network Server stack [28] for the
server side. Chirpstack provides open-source components to form the network infrastruc-
ture. Any instance of each component can be installed locally or in a cloud platform to
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construct the overall network infrastructure. Moreover, this infrastructure provides a user-
friendly web-interface for device management and Application Programming Interfaces
(APIs) for integration.

It is also important to highlight that by default Chirpstack uses Message Queue
Telemetry Transport (MQTT) protocol for publishing and receiving application payloads.
MQTT is used by ChirpStack GW Bridge, ChirpStack Network Server, and ChirpStack
Application Server. Figure 7 provides the overall network architecture including the sensor
node/ED described in the previous subsection.

Figure 7. LoRaWAN Infrastructure together with Sensor Node shown in Figure 1.

3.3. Communication Service Requirements

As discussed in detail in Section 1, in order to avoid fires and explosions in the
presence of faults and gas leakages, it is necessary to promptly communicate to the CC
any anomalous concentration of gases. In the considered system, this kind of data is
referred to as UPs. Accordingly, UPs are characterized by stringent requirements in terms
of reliability and latency. More specifically, in the scenario at hand we have identified as
minimum requirements a packet loss rate (PLR) and end-to-end latency (l) of 0.1% and
500 ms, respectively. Moreover, basing on the required resolution of the data collected from
the sensors, the UPs payload is set to 20 bytes. Basing on these requirements, we have
limited our LoRaWAN system to use only SF7-10, since with SF11 and SF12 the time on air
exceeds 500 ms [29]. Finally, packets retransmissions are not allowed for UP packets which,
as such, can be transmitted in UNCONF mode only.

4. The Proposed Communication Strategy

In the following, we will focus on the approach proposed in this paper to provide the
required reliability. To this aim, we exploit the DL communication scheme provided by
standard LoRaWAN: DL packets are sent by a Network Server to only one ED through
one or more GWs. To elaborate, in the proposed system a remote central LoRaWAN server
shown in Figure 7 is capable of performing various tasks such as reception of data from
the EDs forwarded by GWs, exploitation of the collected data with further processing,
and more importantly scheduling of DL messages to the EDs for enabling coordinated
transmissions. We describe each aspect in detail in the following subsections.

4.1. Clustering of EDs

In our system, the central server not only collects the sensor data from the EDs, but
it is also responsible of forming clusters of users in close proximity. This task is achieved
assuming that the system is equipped with a localization system where the server is aware
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of users’ locations. More specifically, the creation of clusters of users is performed with the
aim of coordinating the transmissions of close users to avoid possible packets collisions.
Indeed, it is highly probable that a critical event such as the presence of gas is jointly
detected by all the EDs of the cluster.

The clustering algorithm and the specific localization technology to be adopted in the
system are still under investigation and are beyond the scope of this paper. Figure 8 depicts
the overall vision of the system where several GWs are installed inside the service area and
the clusters of users are associated to the closest GW (represented by different colors). In
the figure DCP stands for downlink control packets, which are regularly transmitted by
GWs to the associated EDs as detailed in the next section. Note that ED-GWs association is
fully in charge of the server and is only to provide a separated control mechanisms, i.e.,
it is completely transparent to the EDs which are actually connected to each GW as in
standard LoRaWAN.

Figure 8. A service area with different clusters represented by different colors.

4.2. Coordination of ED Transmissions through Downlink Control Packets (DCPs)

We refer to the Class A DL operation in which the Network Server transmits a DL
packet to an ED after the reception of an UP packet precisely at the beginning of one of
two possible receiving windows. More precisely, the ED opens Class A RX1 and RX2
receiving windows after RECEIVE_DELAY1 and RECEIVE_DELAY2 secs respectively. The
DL data rate for RX1 depends on the corresponding UL whereas RX2 uses a fixed data rate
depending on the region.

In the considered scenario, each node transmits RPs periodically every predetermined
(long) time intervals (e.g., several minutes) in UNCONF mode. We program the server
in such a way that for every received RP a corresponding DCP is scheduled. Specifically,
the DCP message is intended to control the eventual transmission of UPs. The adopted
control mechanism, which is discussed in detail in the next section, acts independently
on each cluster since it is highly unlikely that in the considered scenario EDs of different
clusters have to transmit an UP at the same time (the potentially dangerous event is local
and infrequent).

Hence, upon the necessity of delivering an UP to the system, the ED transmits accord-
ing to the control information specified in the last received DCP. More specifically, we opted
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to choose the UNCONF mode also for UPs. The rationale for this choice will be given in
the next section.

One of the important aspects that has to be taken into consideration while design-
ing any LoRaWAN system is to comply with the duty cycle regulations as discussed in
Section 3. This poses some stringent constrains in the process of allocating the resources
to the EDs. Owing to the per sub-band duty cycle regulations, we have various pos-
sibilities to assign the resources to the EDs for the next UPs. In particular, one of the
feasible choice is to differentiate the sub-bands for the two types of packets, i.e., allocating
fixed non-overlapping sub-bands for the RPs and UPs. Indeed, this not only allow the
isolation in terms of frequencies but also address the issue of duty cycling in the case
when it is necessary to transmit an UP when the time elapsed form the last RP is lower
than the minimum time established by duty cycling restrictions. In particular, the server
assign different sub-bands for RPs and UPs so that duty cycling restrictions are indepen-
dently established for the two kinds of transmissions. An illustrative example is given in
Figure 9, where 5 EDs in close proximity, i.e., belonging to the same cluster, are allocated
sub-band g (Channel (Ch0-4) with frequencies 867.1, 867.3, 867.5, 867.7, 867.9 MHz) and g1
(Channel (Ch5-7) with frequencies 868.1, 868.3, 868.5 MHz) for UPs and RPs respectively.
To elaborate, each EDs transmit RPs by randomly selecting one of the available frequencies
from g1 whereas the UPs are transmitted using different frequencies in sub-band g to avoid
collisions. Such frequencies can be selected by each ED according to the last DCP received
from the server which is in charge of isolating the UP transmissions of the same cluster.
Considering 5 channels in sub-band g, it is worth noting that we can allocate a maximum
of 5 different channels to 5 EDs in each cluster. However, we also have the possibility
to accommodate more users in the cluster by assigning different SFs as shown in the
next section.

Figure 9. A schematic diagram of transmission of RP, UPs and DCP for 5 EDs belonging to the same
cluster where each ED transmits UPs at the same time using different channels from sub-band g.

4.3. The Problem of DL Priority

In standard LoRaWAN, the GWs work in half duplex mode only, i.e., they cannot
receive and transmit simultaneously. Moreover, in commercial GWs, if there is the need to
send a DL message, the reception of any incoming signal is interrupted, i.e., the concurrent
UL packet is lost. Accordingly, the mechanism proposed in this paper for coordinating
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simultaneous UL UPs, which is based on periodic delivery of DCPs, could dramatically
affect the PLR of UPs.

It is then of paramount importance to evaluate the PLR due to GW transmissions. To
this aim, it is worth noting that the UL packet is lost by the concurrent DL transmission
either when the DL packet is ongoing at the UL packet arrival time, or if it is started
during the reception of the UL packet, since the GW gives priority to transmission anyway.
Accordingly, denoting by τ and D the durations of a DCP and of an UP, respectively, the
PLR of UPs is equal to the probability that at least one DCP is generated in the interval
Δ = τ + D. To elaborate, in the considered setting DCPs are created as a response of
RPs transmitted in the UL by each node. Accordingly, the DCPs arrival process statistics
is equivalent to that of RPs generation process. Let then denote by T the rescheduling
period set by each ED. Owing to inevitable clock drifts, the actual rescheduling time can be
modeled as a random variable (rv) r = T + δ, where δ is the clock error.

In the considered scenario we deal with internal clocks which are natively embedded
inside the ED microcontroller. This choice allows to save cost, energy, and complexity with
respect to external clocks. In this case, it is shown in [30] that the clock errors are unbiased
and that they can be reasonably modeled as independent and identically distributed (IID)
Gaussian rvs, i.e., δ~N (0, σ). Accordingly, also the interarrival times r are IID rvs, i.e., the
arrival process of DCPs belong to the class of renewal processes [31]. More specifically, we
have r~N (T, σ).

From the theory of renewal processes, it is possible to evaluate the time asymptotic
density w(x) for the the time elapsed from a generic time till the next arrival, i.e.,

w(x) = 1
T (1 − Fr(x)) (1)

where Fr(x) is the cdf of r. In the following, we are interested in evaluating the probability
that an UP does not experience any collision with DCPs. To this aim, it is reasonable to
assume that different nodes are characterized by independent clocks and independent time
delays, and, hence, the probability PC that the an UP does not experience any collision
can be evaluated as the product of individual probabilities of all independent events. To
elaborate, let us denote by N the number of EDs and by τ = {τ1, τ2, . . . , τN} the DCP time
duration of each node. Such terms depends on the SF used by the correspondent nodes to
transmit DCPs, i.e., the higher SF the longer τ. Since the adopted SFs in the UL depend
on the channel conditions of each ED, e.g., the distance from the GW, it is reasonable to
consider τ as a set of i.i.d. rvs with individual pdf fτ(t). Similarly, also D depends on the
SF adopted by the ED to transmit an UP and, hence, it can be characterized by a given
pdf fD(y).

Accordingly, the probability PC that the an UP does not experience any collision with
DCPs for given τ = {τ1, τ2, . . . , τN} and D is:

PC(τ, D) =
N

∏
n=1

⎛⎝1 − 1
T

τn+D∫
0

(1 − Fr(x))dx

⎞⎠ (2)

and the marginal probability is:

PC =

⎡⎣∫
t

∫
y

⎛⎝1 − 1
T

t+y∫
0

(1 − Fr(x))dx

⎞⎠ fτ(t) fD(y)dtdy

⎤⎦N

(3)

with PLR = 1 − PC.
In the interesting case where PLR � 1, the expression in (3) can be manipulated to

get an easy to understand approximation of the PLR. To elaborate, when T � τ + D (i.e.,
small PLR), we have 1 − Fr(x) ≈ 1 thus yielding:

PC ≈
(

1 − E(τ)+E(D)
T

)N
(4)

316



Sensors 2022, 22, 2372

PLR ≈ N E(τ)+E(D)
T (5)

5. Experimental Results and Discussion

In the following we describe the experimental testbed to assess the possibility of
achieving the required service requirements using the proposed LoRaWAN solution based
on DL control and clustering.

5.1. Test Scenario

We consider an indoor testbed at the premises of the Department of Information
Engineering and Mathematical Science (DIISM) of the University of Siena. The environment
is made of several rooms at the same level and includes the presence of machinery and
obstacles, movements of objects and people. In this setting, we deployed several EDs and
GWs inside the building for different test scenarios. In particular, we have conducted a
preliminary set of tests to evaluate the PLR in the presence of a single ED transmitting
in UNCONF mode. In this case, we have verified that the PLR is always well below
the required limit of 0.1% even in the SF7 case. These results are in line with the LoRa
coverage expectations and are not reported here for the sake of brevity. Hence, we focus
on the results obtained in three different experimental setup characterized by the presence
of possible collisions and of concurrent DL transmissions. In all the reported results,
we consider only the PLR of UP packets, since RPs are not critical in the considered
scenario. We report the parameter settings for the three different scenarios in Table 1 where
NED, NGW , NUP, ΔtRP, and ΔtUP denote the number of EDs, GW, and UPs, and the RPs
and UPs inter-packet arrival times, respectively. In order to achieve consistent statistics and
reduce the experimental time, we have kept the RPs inter-packet arrival times to relatively
low values. Moreover, the UPs are generated by forcing the triggering of gas sensors at
random intervals. In the following, we report the description of each scenario, rationale for
performing the particular test, the results obtained and the corresponding discussion.

Table 1. Parameter settings for experimental tests.

Test NED NGW NUP ΔtRP ΔtUP

1 2 1 20,000 70 s Random (120–130 s)

2 8 1 20,000 70 s Random (120–130 s)

3 8 2 20,000 70 s Random (120–130 s)

5.2. Test 1: Analysis of PLR in the Presence of Collisions

In the first set of experiments, as reported in Table 1, we deployed two EDs, namely
ED1 and ED2 nearly close to each other at distance of approximately 20 m from the GW.
Both nodes asynchronously transmit RPs every 70 s using Ch5. In addition, both nodes
are triggered to transmit synchronously the UPs at random intervals using Ch0. The SFs
adopted for transmitting the UPs are set according to the DCP commands. In this case, we
force the users to transmit at the same time using the same channel to assess the possibility
of isolating the two transmissions in the SF domain.

We summarize the results in Tables 2–4 where we report the PLRs for different cases.
We neglect the PLR due to DL transmissions discussed in Section 4.3 and which will be
separately assessed in Test 2. As expected, the results reveal significant packet losses when
transmitting with the same SF. On the other hand, in the case of different SFs, the node
transmitting with higher SF has a much lower PLR. i.e., it is able to often capture the packet
even in the presence of interference owing to quasi inter-SF orthogonality. Nevertheless, in
the SF7-8 case there is a residual probability (slightly higher than the constraint of 0.1%) that
the packet is lost by both EDs, while this probability goes to zero for the SF8-9 and SF9-10
cases. Since it is highly probable that concurrent UPs will report the same information to
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the server, e.g., a gas concentration is higher than the threshold, in many cases it could be
sufficient to receive only one UP to prevent the accident. Under this hypothesis, the 0.1%
constraint can be satisfied when a maximum of 3 nodes in a cluster are assigned the same
frequency and different SFs, namely, SFs 8–10. Considering the 5 channels in sub-band g, a
cluster can be composed of 15 EDs.

Table 2. Analysis of PLR between SF7 and SF8.

Node SF PLR (%)

ED1 7 94.3
ED2 7 35
Both 7 29.66

Node SF PLR (%)

ED1 7 4.7
ED2 8 3.23
Both 7 and 8 0.12

Table 3. Analysis of PLR between SF8 and SF9.

Node SF PLR (%)

ED1 8 17.96
ED2 8 84.88
Both 8 3.46

Node SF PLR (%)

ED1 8 32
ED2 9 0

Table 4. Analysis of PLR between SF9 and SF10.

Node SF PLR (%)

ED1 9 5.18
ED2 10 0

5.3. Test 2: Analysis of the PLR in the UL Due to DL

We have deployed 8 EDs where ED1-7 transmit asynchronous RPs every T = 70 s (with
SF7) whereas ED8 is triggered to transmit also the UP at a random interval of 120–130 s
with SF9. According to the notation used in (5) the considered scenario corresponds to
N = 8, E(τ) = 72 ms, E(D) = 247 ms, yielding a predicted PLR of 3.6%.

In the considered setting we force ED1-7 to use a random channel from sub-band g1
whereas ED8 is allowed to transmit using Ch0 from sub-band g. Table 5 reports a PLR of
3.66% which is indeed a very high value and is certainly unacceptable in our case. It is
worth noting that this value almost perfectly matches the PLR predicted by (5).

A possible way for overcoming this problem is to duplicate each GW. More specifically,
only one of the 2 GWs is configured to transmit the DCPs, so that the other is always free to
receive UPs.

As a matter of fact, there are several papers that propose full-duplex or multi-cast
GWs to overcome this problem. However, as discussed in Section 2, such feature is not
present in off-the-shelf GW solutions.

Table 5. Analysis of PLR in UL due to DL transmission.

Node SF PLR (%)

ED8 (UPs) 9 3.66
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5.4. Test 3: Analysis of Residual Loss with Two GWs

The final test is performed with considering the same scenario of Test 2 in the presence
of an additional GW configured to receive only UP packets. Table 6 reports the total
number of lost packets for ED8 for two different SFs. It is worth noting that in this case
the residual PLR is by far less than 0.1% even for small SFs (7–8), which confirms that the
double GW solution provides the required service levels in the considered scenario.It is
also important to stress that the use of double GW is effective if and only if the proposed
transmission scheme is adopted: this highlights the viability and importance of such
scheme. In particular, the required service levels cannot be achieved just using two GWs.

Table 6. Analysis of residual loss using double GW for ED8.

Test Set SF Number of Loss Packets

1 7 10
2 8 8

5.5. Discussions

In Table 7 we have summarized some of the performances of various schemes from
the literature related to reliability of LoRaWAN networks. Even though there is a huge gap
between these papers and ours, we did our best to compare the performance levels with
the ones achieved in this work.

In particular, the achieved reliability values are reported with the corresponding
number of nodes used in the simulations. As mentioned in Section 2, the closely paper to
ours is [6] which provides significant results in terms of reliability with the accommodation
of nearly 2000 users. However, this scheme doesn’t provide any specific solution to address
the problem of urgent traffic delivery, i.e., the latency problem is not specifically addressed.
As a matter of fact, the authors just speculate that the proposed solution can handle urgent
traffic if the number of EDs is small without actually simulating this scenario. Moreover,
the nodes are considered to be fixed so that it is possible to design a fixed frequency/time
scheduling procedure in which all the nodes are perfectly synchronized with the GW, a
situation which is not verified in the FMAR time varying scenario considered in our paper.
Finally, the solution provided in [6,7] deviates from standard LoRaWAN and requires
modification of the MAC layer. To sum up, the results obtained through our scheme not
only validate the proposed algorithm but also provide important intuitions in enabling a
real FMAR scenario where both reliability and latency requirements are very critical.

Table 7. Performance comparison with other works from the literature.

Paper/Scenario Proposed Scheme (LoRaWAN Compliance) Reliability (PDR) Latency Constraint Number of Nodes Simulated

[15]/General Standard LoRaWAN MAC (�) 0.6 (CONF) 0.8 (UNCONF) Not discussed 100

[7]/General New MAC protocol RS-LoRa (�) 0.84 Not discussed 100

[6]/Air pollution monitoring (mIoT) TDMA-based FDMA-based (�) ≈1 Not available <2000

Our/FMAR Coordinated transmission through DCP (�) >0.999 <500 ms 15/cluster can be accommodated

6. Conclusions

In this work, we have proposed a LoRaWAN compliant reliable and low-latency
solution to fulfil the requirements of a FMAR scenario. To this aim, a low-cost and low-
power wearable device was developed to detect the leakage of hazardous and flammable
gases. The proposed approach allows to reliably transmit urgent data to the central server.
This goal is achieved by leveraging the transmission of DL control messages aimed at
avoiding collisions among concurrent transmissions. Finally, we validated the proposed
approach with extensive experimental tests in an industrial-like scenario. Numerical results
suggest that LoRaWAN can be exploited to obtain the required level of reliability in the
considered scenario.
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Abbreviations

The following abbreviations are used in this manuscript:

ABP Activation by Personalization
ACK Acknowledgement
ADR Adaptive Data Rate
ADC Analog to Digital Converter
AES Advanced Encryption Standard
API Application Programming Interface
BLE Bluetooth Low Energy
BW Bandwidth
CC Central Controller
Ch Channel
CO Carbon Monoxide
CONF CONFirmed
CR Coding Rate
CSS Chirp Spread Spectrum
DAC Digital to Analog Converter
DCP Downlink Control Packet
DL Downlink
ED End Device
FDMA Frequency-Division Multiple Access
FMAR Factories at Major Accident Risk
GW Gateway
IoT Internet of Things
ISM Industrial, Scientific and Medical
ISPRA Istituto superiore per la protezione e la ricerca ambientale
KPI Key Performance Indicator
LoRa Long Range
LoRaWAN Long Range Wide Area Network
LEL Lower Explosive Level
MAC Medium Access Control
mIoT massive IoT
MQTT Message Queue Telemetry Transport
OTAA Over-The-Air-Activation
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O2 Oxygen
PDR Packet Delivery Rate
PLR Packet Loss Rate
QoS Quality of Service
RF Radio Frequency
RP Regular Packet
SD Secure Digital
SF Spreading Factor
TDMA Time-Division Multiple Access
TS Time Slotted
UL Uplink
UNCONF UNCONFirmed
UP Urgent Packet
WiFi Wireless Fidelity
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Abstract: A low power wireless sensor network based on LoRaWAN protocol was designed with
a focus on the IoT low-cost Precision Agriculture applications, such as greenhouse sensing and
actuation. All subsystems used in this research are designed by using commercial components and
free or open-source software libraries. The whole system was implemented to demonstrate the
feasibility of a modular system built with cheap off-the-shelf components, including sensors. The
experimental outputs were collected and stored in a database managed by a virtual machine running
in a cloud service. The collected data can be visualized in real time by the user with a graphical
interface. The reliability of the whole system was proven during a continued experiment with two
natural soils, Loamy Sand and Silty Loam. Regarding soil parameters, the system performance
has been compared with that of a reference sensor from Sentek. Measurements highlighted a good
agreement for the temperature within the supposed accuracy of the adopted sensors and a non-
constant sensitivity for the low-cost volumetric water contents (VWC) sensor. Finally, for the low-cost
VWC sensor we implemented a novel procedure to optimize the parameters of the non-linear fitting
equation correlating its analog voltage output with the reference VWC.

Keywords: soil water content; sensor networks; distributed sensing; IoT measurements; Precision
Agriculture; moisture sensor; wireless communication; LoRa; LoRaWAN™

1. Introduction

In recent years, the rapid development and broad application of the IoT (Internet of
Things) concept pushed towards the improvement of best practices in Wireless Sensor
Networks (WSNs) [1] in Precision Agriculture (PA) applications, also relevant to Green-
houses [2,3]. Smart, cheap, and powerful connected sensor nodes (things) are transforming
from stand-alone devices to parts of collaborative systems [4,5]. Data are stored, aggregated,
and analyzed to improve the precision of temporal-spatial parameters on croplands [6,7].
WSN could be made of simple and cheap components: the results provided by complex
technology systems are not necessarily significantly better than the results derived from a
combination of descriptive statistics and simple sensors: intrinsic limitations of the sens-
ing element could be overcome [8] also providing the measurement readout in a digital
format [9].

Currently, the sensor networks that characterize the IoT technology have the main
purpose of collecting data from the surrounding world on intelligent systems for environ-
mental applications [10,11]. Additionally, in cloud computing approaches, the collected
data are analyzed, processed, and used to undertake the correct decisions to optimize
natural resources: it follows that the set of sensors, devices, and storage systems, by
which the IoT is composed, is very similar to a huge, distributed measurement system, as
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clearly outlined in [12]. The management of such complex systems is part of the present
Big Data paradigm. Details on sampling techniques, distributed smart monitoring, and
mathematical theories of distributed sensor networks can be found in [1,13].

In [14] the authors made a very good literature review on the use of machine learning
(ML), a subset of artificial intelligence having a considerable potential to handle numerous
challenges in the establishment of knowledge-based farming systems. In the paper, the
authors considered four main generic categories of applications: crop, water, soil, and
livestock management. In the paper the authors underlined also that (i) the majority of
the journal papers focused on crop management [15,16]; (ii) several ML algorithms have
been developed to handle the heterogeneous data coming from agricultural fields [17];
(iii) multispectral or RGB images constituted the most common input for ML algorithms,
thus justifying the broad usage of Convolutional Neural Networks due to their ability to
handle this type of data more efficiently [18,19]. Moreover, a wide range of parameters
regarding the weather as well as the soil, water, and crop quality was used. The most
common means of acquiring measurements for ML applications was remote sensing,
including imaging from satellites, unmanned vehicles (both ground (UGV) and aerial
(UAV)), while in situ and laboratory measurements were also used [20].

Very good reviews of the most common sensors used in agriculture applications are
reported in [21,22]. In [23], agricultural sensors have been divided into three main classes:
physical property type sensors, biosensors, and micro-electro-mechanical system (MEMS)
sensors. Near and remote sensing techniques use IoT sensors for monitoring multiple
parameters, such as soil water content, temperature, and pH level, air humidity, temper-
ature, light, and pressure [23–26]. The determination of soil water content is a subject
of great value in different scientific fields, such as agronomy, soil physics, geology, soil
mechanics, and hydraulics. Physical, mineralogical, chemical, and biological properties
are also involved. Moreover, soil water content measurements could be affected by soil
temperature [27]. Ambient Relative Humidity (RH) affects leaf growth, photosynthesis,
pollination rate, and finally crop yield. A prolonged dry environment or high temperature
can make the delicate sepals dry quickly and cause the death of flowers before maturity.
Hence it is very crucial to control air humidity and temperature. Recent technological ad-
vances have enabled real-time sensors to be used directly in the soil, wirelessly transmitting
data without the need for human intervention. It is now possible to set up a large number
of low-cost devices not only capable of transducing a physical quantity of interest but
also of performing some post-processing on raw data to extract useful information, fully
complying with current regulations [27–29]. Due to the rapid advancement of technologies,
the size and the cost of sensors have been reduced, making WSN the foremost driver of
PA [30].

While most previously cited parameters (including soil temperature) can reliably be
monitored through low-cost sensors available in the market, the experimental and accurate
determination of soil water content with low-cost sensors is still an issue. A summary of
state of the art on soil water content measurement techniques has been reported in [31].
The prices of the most reliable soil water content sensors range between USD 150 and USD
5000, thus positioning these sensors far from the IoT world. Instead, the reliability of very
low-cost soil water content sensors easily purchasable in the worldwide internet market is
still a matter of scientific debate [8,32–37] as further highlighted in the next sections.

In this scenario, the objectives of the present work can be summarized as follows:

• Acquisition of basic physical parameters of plants and ambient with low-cost sensors:
soil water content and temperature, greenhouse ambient RH, temperature, and light.
Even if the present paper will mostly be focused on soil water content and most param-
eters will not be discussed, the availability of multiple parameters could be exploited
in the future to build a more intelligent system by using machine learning algorithms.

• Availability of a modular system built with cheap off-the-shelf components also
providing capabilities for automation and management of plant irrigation.
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• Comparison of the performance of a very low-cost soil moisture sensor with a com-
mercially available expensive system using two different types of soil with an original
modeling approach which helps us to compare measurement results taken at different
soil depths.

2. IoT Architecture in Precision Agriculture Scenario

2.1. Water Waste and Agriculture

The integration of information and control technologies in agriculture processes is
known as Precision Agriculture. To obtain the greatest optimization and profitability PA
adapts common farming techniques to the specific conditions of each point of the crop,
by applying different technologies: micro-electro-mechanical Systems, Wireless Sensor
Networks (WSN), computer systems, and enhanced machinery. PA optimizes production
efficiency, increases quality, minimizes environmental impact, and reduces the use of
resources (energy, water) [38].

The application of IoT allows farmers to boost the production process through planta-
tion monitoring, soil and water management, irrigation scheduling, fertilizer optimization,
pest control through chemicals as herbicides, delivery tracking. These tasks can be accom-
plished by using data from sensors, images, agricultural information management systems,
global positioning systems (GPS), and communication networks. This integration results
in the optimization of scarce resources [39].

Atmospheric changes and, in particular, the sudden rise in temperatures worsen the
problem of searching for fresh water and water storage resources [40]. These problems
are exacerbated in countries characterized by drought and rare rainfall, where the diffi-
culty in finding the raw material prevents the development of crops (e.g., the California
drought [41]). The scarcity of water in some regions of the world has led farmers to re-
evaluate conventional agricultural methods to reduce waste. To this purpose, innovative
systems and methods aimed at PA are needed, where sensor technology, electronic and
communication engineering, and farming machinery are blended with cloud storage and
computing. If on one hand, there is a tendency to optimize traditional irrigation systems us-
ing intelligent drip systems [42–44], on the other hand, systems and sensors [8] are sought
to measure the soil water content in real-time [45]. In this way, it is possible to know the
exact time and the specific position of soil that requires irrigation. However, regardless of
all the advances in the IoT domain, the adoption of PA has been limited to some developed
countries. Because of the lack of resources, remote sensing-based techniques to monitor
crop health are uncommon in developing countries, thus resulting in a loss of yield. [25]

The development of WSN applications in PA makes it possible to increase efficiency,
productivity, and profitability in many agricultural production systems while minimizing
unintended impacts on wildlife and the environment. The real-time information obtained
from the fields can provide a solid base for farmers to adjust strategies at any time. Instead
of making decisions based on some hypothetical average conditions, which may not exist
anywhere, a precision farming approach recognizes differences and adjusts management
actions accordingly [46].

The combination of WSN, which are cheaper to implement than wired networks [29],
with intelligent embedded systems and applying on this combination the technology of
ubiquitous systems [40], leads to the development of the design and implementation
of low-cost systems for monitoring agricultural environments, suitable for developing
countries and difficult access areas.

2.2. IoT Architectures

Wireless Sensor Networks (WSNs) have extensively been adopted in agriculture [47] as
well as in livestock farming [48] due to installation flexibility especially when wireless trans-
mission introduces a significant reduction and simplification in wiring and harness [30,49].
In addition, greenhouse technology profits from this technology through automation and
informatization. In [46] an intelligent system, controlling and monitoring greenhouse tem-
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perature has been described, aiming at reducing consumed energy while maintaining good
conditions that improve productivity. A review of the common wireless nodes and sensors
capturing environmental parameters related to crops in the agriculture domain is reported
in [29]. Agriculture in the Internet era is quickly becoming a data-intensive industry. Farm-
ers need to gather and evaluate a massive amount of information from meteorological and
physical sensors to increase production efficiency [50]. In [51] a description of a modular
IoT architecture for several applications including but not limited to healthcare, health
monitoring, and PA is reported. All the proposed subsystem choices used in that research
are cheap off-the-shelf components with open-source software libraries.

2.3. Radio and Wireless Protocols in PA

The goal of optimizing water use for crops leads also to the development of auto-
mated irrigation systems. In [52] wireless sensors are linked by ZigBee radio transceivers,
implementing a WSN where soil water content and temperature data are transferred. The
wireless information unit also features a GPRS module that connects to a web server via the
public mobile network. An online graphical application through Internet access devices
allows operators to remotely monitor the information data. The feasibility of the imple-
mented automated irrigation system was demonstrated. However, the total cost was high
for some applications. The cost of each wireless sensor unit was ∼USD 100, whereas the
wireless information unit cost was ∼USD 1800.

In addition to ZigBee, the IoT world is pushing new technologies. The Long-Range
(LoRa) technology, originally developed for IoT, is investigated in [10] to demonstrate its
use for implementing Distributed Measurement Systems. The LoRa wireless technology
is designed for sending small packets at a low data rate (0.3–5.5 kbps) at relatively long
distances. The protocol can be used in IoT nodes where energy efficiency is considered the
most critical parameter.

The LoRaWAN™ protocol exploits the unlicensed radio spectrum in the Industrial,
Scientific, and Medical band. Operating frequencies (433 MHz, 868 MHz, or 915 MHz) de-
pend on the particular geographical region. Formally, LoRaWAN™ is a member of the low
power LPWAN family, i.e., WAN wireless communications that are designed to minimize
the power consumption while covering large areas but offering a relatively small bit rate.
The specification defines the device-to-infrastructure of LoRa physical layer parameters
and the LoRaWAN™ protocol. The LoRa physical layer or PHY exploits a Chirp Spread
Spectrum (CSS) modulation. Fundamental keywords are low power transmission, low
throughput, and optimum coverage. The LoRaWAN™ network architecture is deployed
in a star-of-stars topology in which gateways relay messages between end-devices and a
central network server. The gateways are connected to the network server via standard IP
connections and act as a transparent bridge, simply converting RF packets to IP packets
and vice versa [53].

LoRa is having success, as confirmed by the high number of papers adopting it
(see e.g., [54–58] and references therein). The LoRa alliance sponsors the integration of
LoRaWAN™ into the IoT, and some open implementations of network servers are available
helping the constant growth of the LoRaWAN™ ecosystem. A fairly complete analysis of
the scalability of networks based on LoRaWAN™ is reported in [58]. Employing analytic
and simulation-based approaches, the authors explore the dimensions of the LoRa network
configuration. The chosen spreading factor, a parameter directly related to the bitrate of
the LoRa message, significantly depends on the number of sensors deployed in the field
and on the transmission rate, given in packets/day.

3. System Architecture

The modular design of the proposed approach splits the architecture into different lay-
ers (Figure 1): (i) wireless nodes (encompassing sensors, actuators, low-power embedded
processor, battery), (ii) internet gateway/concentrator, and The Things Network (TTN) [59],
a worldwide open-access LoRaWAN™ network, (iii) uplink and downlink connection,
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database applications, and user interface placed in a virtual machine in the cloud. Our layer
structure is a simplified version for what is reported in [23] where our layer “i” corresponds
to the perception layer, layer “ii” merges the network and the middleware layers, while
our layer “iii” combines the common platform and the application layers. Details on the
different blocks of Figure 1 will be given in the following sections.

 

Figure 1. System architecture.

3.1. Nodes

Two basic wireless nodes have been envisaged, each one equipped with Semtech
SX1272 LoRa Radio: “Greenhouse Node” and “Plant Node”. A single “Greenhouse
Node” is needed for a greenhouse. Instead, every plant to be monitored will feature
a “Plant Node”.

Both node types share the same structure (Figure 2a), i.e., (1) low power, ARM-based
STM32L152RE microcontroller hosted in a NUCLEO_L152RE board, (2) chirp spread
spectrum SX1272 LoRa Radio, and (3) sensor shield.

The sensor shield of the Greenhouse Node (Figure 2b) provides the connections to
(1) a Si7021, a common and widely used RH and temperature sensor, (2) a Photoresistor for
light detection, and (3) a 4.8 V battery.

The Plant Node is dedicated to measuring the fundamental parameters of the soil,
i.e., soil water content and soil temperature, and to soil watering. Its dedicated shield
(Figure 2c) hosts a BD6212HFP H-bridge used for driving a bistable solenoid valve and
a power feed interconnection to turn the sensors on and off. Moreover, it is connected to
(1) a TMP36 or an LM35 temperature sensor, (2) a “Capacitive Soil Moisture Sensor v1.2”
for measuring water content, (3) a bistable solenoid valve, and (4) a 4.8 V battery. Finally, it
includes a 1 MΩ shunt resistor useful to correct a fabrication defect of the batch of sensor
we received.
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(a) 

 

(b) (c) 

Figure 2. (a) Plant and Greenhouse node electronics and their actuator and sensors. (1) Semtech
SX1272 LoRa Radio, (2) L152RE low power microcontroller, (3) Sensor/Actuator Interface Shield;
(b) from left to right for the Greenhouse Node: Si7021 and Photoresistor. (c) from left to right for
the Plant Node: “Capacitive Soil Moisture Sensor v1.2”, TMP36 or LM35 temperature sensor, and
bistable solenoid valve.

It is worth giving some details here on the design choices of this Plant Node. The use
of an H-bridge and a bistable valve greatly helps in minimizing power consumption, as the
valve will drain current only during switching. Power supply for temperature and water
content sensors was delivered through the GPIOs of the microcontroller to feed the sensors
only when a measurement must be accomplished. In fact, the maximum allowed current
delivered by the GPIOs of the STM32L152RE microcontroller is more than enough for the
low power sensors we adopted. However, it must be pointed out the present version of
the system is designed to provide maximum flexibility and is not conceived for power
optimization. For example, the STM NUCLEO boards still include the ST-LINK/V2-1
programming and debugging tool, whose power consumption is way larger than that of
the main STM32L152RE microcontroller.

Several plant nodes have been manufactured (Figure 3). After some design steps, the
present version of the Plant Node is composed of (i) a waterproof junction box (including
all electrical and electronic components) connected with (ii) a 3D printed PET-G shell which
protects the soil sensor and the temperature sensor.

 
Figure 3. The final version of the Plant Node.

Regarding the soil water content sensor, most papers presented in the literature either
measure the capacitance of the soil, which, of course, depends on the water content, or
adopt high frequency (around 100 MHz) AC measurements to characterize the dielectric
constant of the soil [58]. Other papers describing low-cost IoT nodes adopt fork-like
metallic sensors that, when used with a DC bias, mainly characterize the ionic content of
the soil by measuring the electrical resistance between the two arms of the fork. AC could
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also be used with fork-like sensors to limit electrolysis and consequent metal electrode
etching/degradation and DC ion currents in the soil. Examples can be found in GardenBot
literature [60] or [27] and references therein.

For this prototype of the system, we use the commercial, blade-shaped, “Capacitive
Soil Moisture Sensor v1.2” (also dubbed SKU: SEN0193 in its version 1.0 by DFROBOT [61])
for sensing water content in the soil. This sensor is undoubtedly the least expensive water
content sensor in the market and was also exploited in other scientific papers (see for
example [32,33]) and well-documented internet projects [62]. In [32] the authors found that
this sensor did not perform acceptably in predicting soil moisture content in a laboratory
soil mixture prepared by mixing organic-rich soil and vermiculite, while it can estimate soil
water in gardening soil in the so-called “field capacity” range. In [33] the author linearly
correlates the voltage provided by the sensor reading to the gravimetric moisture approxi-
mations, providing an effective relationship between the reading from the capacitive sensor
and the water content in the soil. This calibration procedure demonstrated that low-cost
capacitive-type soil moisture sensors are capable of predicting the water content in soils to
a high degree of accuracy, with little required outside of the device itself, which is in direct
contrast to the time it takes to traditionally measure the water content in soils.

Being that the water content sensor is the hearth of our plant nodes and since a detailed
data sheet is not available for the sensors, an accurate study of the sensor electronics was
initially accomplished to get acquainted with the operation of the sensors [8]. A low
dropout 3.3 V voltage regulator (omitted in a very recent version–v1.2 and v2.0–of this
sensor) feeds a TL555I CMOS timer (Figure 4) which generates a trapezoidal waveform in
astable mode running at about 1.5 MHz. The trapezoidal shape is because the operating
frequency of the timer is pushed beyond the physical limit for the TL555I device, specified
in the datasheet as guaranteed for 1.2 MHz in astable mode. On the other hand, the
non-steep rising and falling edges of the waveform help in minimizing the electromagnetic
interference possibly generated by the sensor and would be beneficial in the case of “CE”
or “FCC” compliance certification.

Figure 4. A detailed view of the printed circuit board component section with the electrical schematic
of the “Capacitive Soil Moisture Sensor v1.2”. The reported resistance values are taken from the
component labels while the capacitance values were measured using an HP4275A LCR meter. Cprobe
is the variable capacitance of the coplanar capacitor printed on the circuit board. Due to a missing
grounding line of the printed circuit board [8], in our measurements, a 1 MΩ shunt resistor has been
directly connected to the Sensor/Actuator Interface Shield.

The trapezoidal waveforms of nine sensors (S1, S2, S5, S6, S7, S9, S10, S13, and S14)
were initially characterized to assess their uniformity. We discarded sensor S1 since its
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measured frequency f and duty cycle DC (1.22 MHz and 37.12% respectively) were very
far from the average operating frequency and duty cycle of the other eight sensors (1.53
MHz and 34.48%, with sample standard deviations of 1% and 2.2%, respectively) [8], as
reported in Table 1.

Table 1. Selected sensors characteristics.

Sample ID DC/% f /MHz

S1 37.12 1.221
S2 35.58 1.533
S5 34.36 1.533
S6 32.93 1.524
S7 34.78 1.552
S9 34.36 1.533
S10 35.00 1.510
S13 35.12 1.535
S14 34.02 1.527

After this initial screening of the available samples of Capacitive Soil Moisture Sensor
v1.2, we are confident that the measurement results of a single sensor chosen among other
homogeneous samples represent the expected behavior of the whole family “S2, S5, S6, S7,
S9, S10, S13, and S14”.

The TL555I timer supplies a passive circuit shown in Figure 4, composed of a first
stage where the coplanar capacitor of the sensor Cprobe is low-pass connected with a
10 kΩ resistor. Then a peak detector provides the analog output signal that we acquire
through the ADC of the microcontroller. Regarding sensor settling time, in [33] it was
asserted this sensor should settle in 1–5 min, depending on the saturation level of the soil
and how well the wet soil was mixed. We accomplished measurements with the Capacitive
Soil Moisture Sensor v1.2 immersed in tap water and found that the output voltage could
take up to one hour to reach the regime value. This could be due to a non-complete
waterproofing of the sensor materials that likely incorporate water molecules. Therefore,
the behavior of the Capacitive Soil Moisture Sensor v1.2 after initial watering could not be
completely reproducible.

We underline that other more documented and reliable but also more expensive blade-
shaped moisture sensors have been commercialized. Examples are the dielectric capacitance
sensors ECH2O probe (Decagon Devices, Inc. Pullman, WA USA, now discontinued [63,64])
and the PROBE sensor [65], then modified to SMT100 ring-oscillator sensor (Truebner
GmbH, Neustadt, Germany [66]) operating at approximately 150 MHz in water and 340
MHz in air.

A worst-case estimation of the overall cost of our plant node is roughly USD 60, where
the most impacting figures are the microcontroller board and the LoRa shield.

3.1.1. Soil Volumetric Water Content Fitting Equations

Water content measurements were previously accomplished in silica sandy soil with
the Capacitive Soil Moisture Sensor v1.2 in conditions such that the dry unit weight
γdry = Ws/V (Ws = dry soil weight, V = total volume of the soil) could be assumed
as a constant [8]. It was demonstrated that this condition guarantees a monotonically
decreasing Vs output voltage as a function of gravimetric water content (GWC), which
was approximated using a 2nd order polynomial or an exponential function. In this paper,
we will deal with volumetric water content (VWC) instead of GWC. However, the two
parameters are proportional to each other for a given soil where the dry unit weight is
constant. In the remainder of this paper, we will use the following exponential fitting
equation between the output voltage Vs of the Capacitive Soil Moisture Sensor v1.2 and
the VWC:

Vs = A exp
(
−VWC

B

)
+ C, (1)
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VWC = B ln
(

A
Vs − C

)
(2)

being A, B, and C suitable constants. Other fitting equations were also adopted in the
literature for the same sensor. In [32] a 3rd order polynomial function VWC = f (Vs) was
implemented. In [33] the following equation was used:

VWC =
P
Vs

− Q (3)

being P = 2.48 V and Q = 0.72 for a soil composed of dried coconut coir. In the remainder
of this paper, we will mainly deal with fitting Equations (2) and (3).

3.1.2. Embedded Software Implementation of Nodes

The C++ code exploits ARM Mbed OS libraries. Mbed OS is an open-source Real-Time
Operating System (RTOS) for the creation and deployment of IoT devices based on ARM
processors. The code structure is outlined in Figure 5 for the case of the Plant Node.

 

Figure 5. Embedded software implementation for the Plant Node.

The heart of the firmware is the main.cpp file. The header of main.cpp includes Mbed
libraries (e.g., EventQueue.h) and LoRaWAN™ libraries. In particular, LoRaWANInter-

face.h encompasses the prototypes of the member functions managing the upper level
of the LoRaWAN™ protocol stack, lorawan_data_structures.h includes LoRaWAN pa-
rameters, e.g., network and application key, datarate, duty cycle, antenna gain, buffer
size, and SNR while lora_radio_helper.h regards the physical layer and selects the type
of shield adopted in our system. The functions of main.cpp dedicated to the Plant Node
are listed in the lower part of Figure 5. Among them, we cite the lora_event_handler()

which manages the state machine of the LoRa events, the measuring functions for water
content (measure_SoilWC()) and temperature (measure_Temp()), and the LoRa send and
send_message() and receive_message() functions. The receive function also handles the
bistable irrigation solenoid valve. In the case of the Greenhouse Node, the actual measuring
functions regard ambient RH, temperature, and the ambient luminous flux.

Every node transmits a packet conforming to the structure defined in Figure 6. De-
pending on the node type (plant or greenhouse node), it will include different values.
For example, the Plant Node features node type = 1 and transmits soil water content and
temperature, while the greenhouse node is characterized by node type = 0 and transmits
ambient RH, temperature, and light intensity.
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Figure 6. Packet structure.

3.2. The Things Network and Connection to the LoRaWAN™ Gateway

Routing and processing procedures of the LoRaWAN™ network are managed by
The Things Network (TTN), acting as an active crossroad between the gateway and the
application. For our application, we extensively use the TTN, a network server whose
aim is building a global, worldwide open LoRaWAN™ network. They provide a set of
open tools and a global, open network to build an IoT application at low cost, featuring
maximum security and ready to scale. A secure and collaborative Internet of Things
network is built through robust end-to-end encryption, spanning many countries around
the globe. A network server does the complicated part in creating a LoRaWAN™ network
(handling duplicate packets from multiple gateways, shunting data to servers, handling
joins, etc.).

As shown in Figure 1, in the network architecture The Things Network is located
between the LoRa concentrator/gateway and the applications. TTN is composed of three
main structures: Router, Brokers, and Handler. The Router is in charge of managing the
gateway’s status and of planning transmissions. Each Router is associated with one or
more Brokers. The assignment of Brokers is to map a device to an application, to forward
uplink messages to the proper application, and to forward downlink messages to the
correct Router-Gateway path. A Handler is responsible for treating the data of different
Applications. To do so, it deals with a Broker where it registers devices and applications.
The Handler is also in charge of encrypting and decrypting data.

In our system, the Uplink connection to TTN is carried out by the Radio SW of the
gateway (Figure 1) that publishes the node sensor data on a specific uplink topic of the
TTN MQTT broker using an internet connection.

Then, through the well-known flow-based programming tool Node-RED [67] running
on the Gateway, a specific device is allowed to communicate with the database installed in
the virtual machine, as sketched in Figure 1.

The Node-RED flow is composed of two sub-flows, an uplink, and a downlink flow,
respectively (Figure 7a).

The uplink sub-flow, after subscribing to the same uplink topic of the TTN broker, is
in charge of:

• Retrieving through the internet the data received and published by the TTN broker
exploiting the light blue TTN Uplink Node producing an output Node.js buffer;

• Converting this Node.js buffer to a string;
• Parsing this string by exploiting two function nodes featuring JavaScript codes, dedi-

cated to Water Content and Temperature, respectively, which also compose the query
for the database;

• Sending the query to the MySQL database running on the Virtual Machine through a
dedicated TCP port (internet connection through MySQL 3306 port) employing the
orange node.

Moreover, in the second Node-RED sub-flow the application is allowed to transmit
downlinks to TTN (i.e., to the device) when the bistable solenoid valve must be actuated.
This is accomplished by publishing on a specific downlink topic of the TTN broker using
the internet again. In the NodeRED flow, the first “TCP in” node is ready to receive
messages on a given unassigned TCP port, then a “Reply” JavaScript function returns an
object which contains the ID of the target node and the payload, i.e., the message sent by
the server. The last light blue node is a TTN Downlink Node which publishes these data
on the TTN broker.
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(a) 

 
(b) 

Figure 7. (a) The Node-RED flow running in the Raspberry of the Gateway. (b) The 8-channel iC880a /Concentrator, with
interconnection backplane and Raspberry PI3, is mounted in a plastic box.

Our LoRaWAN™ Gateway is composed of a Raspberry Pi, an iC880a concentrator able
to receive packets of different end devices simultaneously sent with different spreading fac-
tors on up to 8 different channels in parallel, and an interconnecting backplane (Figure 7b).
The embedded software of the Gateway is proprietary and supplied by TTN. The gateway
receives LoRa packets from nodes and forwards them to The Things Network [59] through
the MQTT protocol thanks to a wideband network, typically WiFi or Ethernet build. On
the other hand, it is well known that for data transmission, MQTT could rely on the TCP
protocol but a variant, MQTT-SN, is used over other transports such as UDP (or even
Bluetooth). However, TTN does not specify which transport protocol is exploited in its
Raspberry Pi firmware.

3.3. The Virtual Machine in the Cloud, Database Application, and Graphical User Interface

At the application level, we installed a Linux virtual machine (Figure 8) that includes:

• Web site (HTML, PHP, CSS, and JavaScript) within a web server;
• MySQL Database Management System (DBMS) server.

The database is divided into two units: (i) node data section and (ii) web application
user data section (e.g., username and password). The node data section is further composed
of two tables: the first one identifies the node and the second one the sensor with its
data. Finally, the webserver fetches data in the database using PHP and shows them
on a web page. CanvasJS is used for the Graphical User Interface (GUI). CanvasJS is
described as a JavaScript Charting Library for High Performance and ease of use. It is
built using the Canvas element and it can render thousands of data points in a matter of
milliseconds. CanvasJS is also interactive and can be updated dynamically. Examples of the
GUI, operating both from a PC and a smartphone, can be found in the following sections.
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Figure 8. Block diagram of the virtual machine.

The information contained in the database of our virtual machine could represent a
starting point for decision-making processes supporting smart monitoring in the frame
of PA. A possible implementation could be to develop and enhance the PHP code, used
until now to retrieve information from the database, adding a new section where data
are analyzed by a dedicated algorithm. The decisions made by the algorithm could be
directly sent to the nodes through TTN and the gateways. As an alternative, the watering
decision could be directly issued by an application running on the mobile device of the
greenhouse manager.

A plant node was placed in a pot hosting a daisy plant, while a greenhouse node
was acquiring data in the ambient. Figure 9 includes three plots of our JavaScript GUI
showing the soil water content recorded by the Plant Node together with the ambient
relative humidity and temperature recorded by the greenhouse node in the same room
where the plant pot was located.

 
Figure 9. Simultaneous acquisition of ambient temperature and ambient relative humidity (RH) of the greenhouse node
and soil water content of a single plant node, shown on the display of a portable device.
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4. Materials

The functionality and reliability of the whole system were proven during two con-
tinued experiments with two different natural soils, characterized by very different soil
hydraulic properties (see Table 2).

Table 2. Main hydraulic properties of study soils. Ks = saturated hydraulic conductivity; θs and θr =
saturated and residual water content, respectively; bd = bulk density.

Fine-Textured Soil
(Silty Loam)

Coarse-Textured Soil
(Loamy Sand)

Ks (mmh−1) 10.0 30.0
θs 0.420 0.295
θr 0.057 0.035

bd (gcm−3) 2.628 2.669

The fine-textured soil (a Silty Loam, according to the United States Department of
Agriculture, USDA, classification [68,69]) was composed of 1% gravel, 22% sand, 54% silt,
and 23% clay (Figure 10a), while the coarse-textured soil (a Loamy Sand, according to
USDA) was composed of 4% gravel, 79% sand, 11% silt, and 6% clay (Figure 10b).

 
(a) (b) 

Figure 10. Grain size distribution of the soils used for the experiments: (a) fine-textured soil (Silty Loam, according to
USDA); (b) coarse-textured soil (Loamy Sand, according to USDA).

5. Methods, Tests, and Results

Focusing on the Plant Nodes, the system has been tested during a continued experi-
ment where the two different greenhouse soils were watered several times, to verify if the
sensor was able to reliably acquire, transmit, and store the ambient temperature and the
soil water content parameters in real time and to show them on the custom GUI.

The measurements were made in a plastic box initially filled with expanded clay
aggregate which allowed percolated water to outflow and where a Sentek Drill & Drop
Probe (hereafter named “reference sensor”) was driven (Figure 11a). Then the remaining
top 30 cm of the box was filled with the chosen soil, either Loamy Sand or Silty Loam.
Both soils were packed in 0.05 m lifts and gently tapped into place. This accurate packing
mechanism was adopted to achieve homogeneity vertically, to keep perfect contact at the
interface, and to minimize preferential flow along the sides of the box. The reference sensor
was placed at the center of the box. It features an array of water content and temperature
sensors placed at 5 cm, 15 cm, 25 cm, 35 cm, and 45 cm from the top surface.
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(a) (b) 

Figure 11. The plastic box used for our experiments. (a) Expanded clay aggregate bottom filler,
together with a Sentek Drill & Drop Probe. (b) Plant Node #1 and Sentek sensor during acquisition.

Then our Plant Node #1 was inserted in the soil at a distance of 10 cm from the Sentek
sensor (Figure 11b, where Node #1 is shown without the lid and connected to a 230 ACV-5
DCV adapter during a test measurement). Since the reference sensor and the Plant Node
#1 are installed in different positions/depths, this has an impact on the measurements,
as explained in the following sections. Data of Plant Node #1 were collected every 5 min
for several days while the automatic acquisition system of the reference sensor stored the
measurement results every minute. In carrying out the measurements, the soil was watered
in consecutive steps.

Before and after each measurement a calibration was performed on the Capacitive
Soil Moisture Sensor v1.2 measuring water content, exposing it for 15 min. to air, then
dipping it for 15 min in tap water. The reproducibility of these measurements certifies that
the low-cost water content is in working order.

5.1. Measurements in Silty Loam

In Figure 12 we compare the water content measured by the reference sensor at a
depth of 5 and 15 cm in Silty Loam. After installing the sensors in a uniformly and slightly
moistured Silty Loam (initial volumetric water content of 10%), then four synchronous
waterings, clearly visible at a depth of 5 cm, were performed during the last two days of
this measurement. The two plots witness the strong dependence of the water content on
the soil depth in Silty Loam.

Figure 12. Water content measured by the reference system at two different depths in Silty Loam:
red, 5 cm underground, and green, 15 cm underground.
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Figure 13 shows the water content measured by the reference system (5 cm under-
ground) and the output voltage of the Capacitive Soil Moisture Sensor v1.2 in Silty Loam
(Node #1). The qualitative correlation between the two plots is evident: each watering
causes an increase in the measured water content of the reference sensor and a decrease
in the output voltage of Node #1. Moreover, the long time elapsed in soil with VWC of
about 10% before the first watering guarantees the Capacitive Soil Moisture Sensor v1.2
had plenty of time to reach its settling time. However, we note the lack of linearity of the
Capacitive Soil Moisture Sensor v1.2: its sensitivity is too high for small values of water
content and it is substantially reduced for volumetric water contents greater than about
15%. The low draining capability of this soil which maintains its water content during the
time causes high values of water content and for this reason, the Capacitive Soil Moisture
Sensor v1.2 works most of the time almost in saturation. Future improvements for the
sensor should be directed towards the linearization of the input/output curve to obtain a
constant sensitivity. A detailed discussion of the correlation between the results of the two
sensors is reported below.

Figure 13. Water content measured by the reference system (red, 5 cm underground) and the
Capacitive Soil Moisture Sensor v1.2 (blue) in Silty Loam. Initial and final peaks of the Node #1 plot
represent a calibration of the Capacitive Soil Moisture Sensor v1.2 obtained by placing the sensor for
15 min in the air (maximum peak) and 15 min in tap water (minimum peak).

Figure 14 shows the reference temperature compared to the temperature of Node #1.
In addition, in this case a slight difference is detected, most likely due to the distance of
the two sensors and the intrinsic measurement error. Indeed, the LM35 declares a 0.5 ◦C
ensured accuracy (at 25 ◦C) while the reference Sentek system has a temperature error of
0.1 ◦C.

5.2. Measurements in Loamy Sand

In Figure 15 we compare the water content measured by the reference sensor at a
depth of 5 and 15 cm in Loamy Sand. The water content curve at 5 cm clearly shows five
consecutive waterings performed during the 2 days of this measurement. On the other
hand, the water content curve at 15 cm shows an increase only after the 3rd watering,
clearly witnessing the dependence of water content on the soil depth. Furthermore, due
to the alternation of rainfall and water redistribution periods, the evolution in time of the
wetting front is very complex, as [70,71] showed in their schemes with compound profiles.

Figure 16 shows the water content measured by the reference system (5 cm under-
ground) and the output voltage of the Capacitive Soil Moisture Sensor v1.2 in Loamy Sand.
In addition, for this soil, we obtain a “first sight” reasonable qualitative agreement between
the results of the two sensors. Again, we note that the sensitivity of the Capacitive Soil Mois-
ture Sensor v1.2 is too high for small values of water content and it is substantially reduced
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for volumetric water contents greater than about 10% for this soil material. A detailed
discussion of the correlation between the results of the two sensors is reported below.

Figure 14. Temperature measured by the reference system (red, 5 cm underground) and the LM35
mounted in Node #1 (blue) in Silty Loam. The rectangular area shows the region where we realized
the calibrations of Section 6.2.

Figure 15. Water content measured by the reference system at two different depths in Loamy Sand:
orange, 5 cm underground, and blue, 15 cm underground.

 

Figure 16. Water content measured by the reference system (orange, 5 cm underground) and the
Capacitive Soil Moisture Sensor v1.2 (blue) in Loamy Sand. Initial and final peaks of the Node #1
plot represent a calibration of the Capacitive Soil Moisture Sensor v1.2 obtained by placing the sensor
for 15 min in the air (maximum peak) and 15 min in water (minimum peak).
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Figure 17 shows the reference temperature compared to the temperature of Node #1.
A slight difference is detected, most likely due to the distance of the two sensors and the
intrinsic measurement error.

Figure 17. Temperature measured by the reference system (orange, 5 cm underground) and the LM35
mounted in Node #1 (blue) in Loamy Sand.

6. Discussion

Measurement outcomes have been discussed in the relevant sections. In this section,
we add some comments and considerations that will help to clarify the experimental
observations and will allow us to extract the VWC from the output voltage of the Capacitive
Soil Moisture Sensor v1.2.

In principle, the results of the reference sensor and the Capacitive Soil Moisture Sensor
v1.2 could not exactly be correlated since:

• Node #1 is 10 cm far from the reference sensor and soil compaction and watering
could not be perfectly uniform in that area;

• Measurement results from Node #1 could be influenced by temperature variations;
• The Capacitive Soil Moisture Sensor v1.2 measures an average water content of

approximately the first 5 cm of the soil where it is inserted, while the reference sensor
is placed at 5 cm from the soil surface with a wider thickness of influence (spanning a
depth between 0 and 10 cm).

Regarding the first observation, sample preparation described in Section 4 included
an accurate packing mechanism to achieve vertical homogeneity. However, this sample
preparation does not guarantee uniform compaction of the soil. In [8] we demonstrated
that compaction has an obvious strong influence on the results of the Capacitive Soil
Moisture Sensor v1.2. The 10 cm distance between the reference sensor and the Capacitive
Soil Moisture Sensor v1.2 could affect water content measurement accuracy and cause
a discrepancy between the reference and the low-cost sensor. Non-uniform watering is
a second source of non-uniformity, even if watering was manually performed trying to
evenly distribute water. Therefore, non-uniform soil compaction and watering represent
a random added error to our measurements, which should be kept at a minimum using
experience and best practices.

Regarding the temperature variations during the measurements, temperature compen-
sation of VWC could be feasible. This task has been demonstrated to be necessary in the
case of a temperature spanning about 20 ◦C [27]. In that case, backpropagation neural net-
works have been successfully adopted for correcting the soil moisture information from a
low-cost sensor using soil temperature data. However, in our experiment, the temperature
variations are significantly smaller, about 2 ◦C, and a correction was not implemented.

Differently from the previous sources of error, the possible error due to different depths
of the reference and the low-cost sensor could be taken into account by properly modeling
infiltration and redistribution of water during and after rainfall [69–71] as explained in
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the next subsections. In detail, in Section 6.1 we introduce a consolidated infiltration
model available in the literature to obtain the soil water content at any depth, whereas in
Section 6.2 we correlate the described Capacitive Soil Moisture Sensor v1.2 output voltage
with the prediction of the infiltration model for the two different soils.

6.1. The Modeling Infiltration and Redistribution of Water

To obtain the soil water content at any depth, z, the Corradini et al. [72] infiltration
model was used (hereafter named “C et al. (97)”). As shown by Melone et al. [70,71], this
model can accurately represent the infiltration process during complex rainfall patterns
involving rainfall hiatus periods.

The model was derived considering a constant value of the initial soil water content, θi,
and combining the depth-integrated forms of the Darcy law and continuity equation [72].
In addition, as the event progresses in time, t, a dynamic wetting profile, of the lowest
depth Z and represented by a distorted rectangle through a shape factor β(θ0) ≤ 1, was
assumed. The resulting ordinary differential equation is

dθ0

dt
=

(θ0 − θi)β(θ0)

F′
[
(θ0 − θi)

dβ(θ0)
dθ0

+ β(θ0)
][q0 − K0 − (θ0 − θi)G(θi, θ0)β(θ0)pK0

F′

]
(4)

where p is a parameter linked with the profile shape of the soil water content, θ, θ0 is the soil
water content at the surface, K0 is the hydraulic conductivity at the soil surface, F′ is the cu-
mulative dynamic infiltration amount, and G(θi,θ0) is expressed by the following equation:

G =
1

Ks

θs∫
θi

D(θ)dθ (5)

where θ0 and K0 were replaced by θs and Ks, with Ks the saturated hydraulic conductivity.
D(θ) is the soil water diffusivity, defined by D(θ) = K(θ) ∂ψ

∂θ , where K is the hydraulic
conductivity and ψ the soil water matric potential. Equation (4) can be applied until a
second rainfall pulse happens, with the profile shape of θ(z) approximated [72] by

θ(z)− θi
θ0 − θi

= 1 − exp
[

βz(θ0 − θi)− F′

(β − β2)− F′

]
(6)

Functional forms for β and p were obtained by calibration using results provided by
the Richards equation applied to a generic silty loam soil, specifically:

β(θ0) = 0.6
θs − θi
θs − θr

+ 0.4 (7)

β·p = 0.98 − 0.87 exp
(
− r

Ks

)
dθ0

dt
≥ 0 (8)

β·p = 1.7
dθ0

dt
< 0 (9)

Equation (4) can be solved numerically. For q0 = r, with F′ = (r − Ki)t, it gives θ0(t)
until time to ponding, tp, corresponding to θ0 = θs and dθ0/dt = 0, then after tp, with θ0 = θs
and dθ0/dt = 0, it provides the infiltration capacity (q0 = fc) and for the period with r = 0,
with q0 = 0, it gives dθ0/dt < 0 thus describing the redistribution process.

The involved parameters were estimated through the volume balance criterion along
with a best-fit procedure for the water content measured at 5 cm depth by the reference
sensor. The initial water contents were set equal to those observed before each experiment,
which was found to be almost invariant with depth. Figure 18 shows the results of the
model calibration for both the study soils at different depths.
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(a) 

(b) 

Figure 18. Modeling results for infiltration and redistribution of water (“C et al. (97)” model) during
and after rainfall at different depths (1, 2, 3, 4, and 5 cm) for (a) Silty Loam and (b) Loamy Sand. The
model was calibrated with respect to the measured values at a 5 cm depth (Reference sensor). For
example, in the figure “C et al. (97)_1” stands for the modeling result at a 1 cm depth.

6.2. Correlation of the Capacitive Soil Moisture Sensor v1.2 Output Voltage with the Prediction of
the Hydraulic Model

In Section 3.1.1 we listed two equations used to correlate and calibrate the output
voltage of the Capacitive Soil Moisture Sensor v1.2 with certified water content for two
different types of soil: Silty Loam and Loamy Sand. However, the experiments described
in the present paper provide a reference water content at an average depth of 5 cm, which
is for sure greater than the average detection depth of 2 or 3 cm of the Capacitive Soil
Moisture sensor v1.2, which spans a depth from 0 to 5 cm. A possible solution to this
problem is to correlate the VWC from Equations (2) and (3) with the extrapolations of the
infiltration and distribution Corradini et al. model at a depth of 2 or 3 cm.

In the remainder of the paper, we show the results obtained for the two different soils.
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6.2.1. Water Content in Silty Loam

A three-parameter least-square best fit was calculated between the VWC function
obtained using the Corradini model (hereafter indicated as “C et al. (97)” [72] at different
depths of 2 and 3 cm, with Equation (1), obtaining two triplets of A, B, and C values shown
in Table 3 where the Placidi model “P et al. (20)” [8] is referred to different depths. Similarly,
a two-parameter least-square best fit was calculated with the Hrisko model “H (20)” at
2 and 3 cm depths and the model from “C et al. (97)”, obtaining two couples of P and Q
values shown in Table 3.

Table 3. Least-square best-fit parameters of Equations (2) and (3) in Silty Loam.

P et al. (20)_3 P et al. (20)_2

A 0.711 0.731
B 9.72 10.2
C 0.864 0.859

H (20)_3 H (20)_2

P 73.4 75.8
Q 55.1 57.2

The plots reporting the water content obtained by using the three models for the two
different depths are reported in Figure 19.

Figure 19. Comparison among the water infiltration and redistribution “C” model for Silty Loam at
a depth of 2 and 3 cm with the VWC obtained from the voltage measured by Node #1 using Equation
(2) (“P” curves) and Equation (3) (“H” curves).

In Figure 20 a statistical analysis between all the possible couples of the “C et al. (97)”
model and voltage measured by Node #1 using Equation (2) (“P” curves) and Equation (3)
(“H” curves) at different depths has been reported. The analysis has been performed by
using scattering plots, cross-correlation values, and kernel density estimation accomplished
by using the Seaborn Python3 tool [73]. In the figure, the eight plots in the main diagonal are
the calculated histograms of the corresponding eight quantities, together with the estimated
Gaussian mixture probability density function. The plots in the lower triangular part
represent the scattering plots of each couple of quantities, together with the locally weighted
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regression curve whereas the values in the upper triangular part, instead, represent the
correlation coefficients between each couple of quantities.

 
Figure 20. Statistical analysis with scattering plots, cross-correlation values, and kernel density estimation (KDE) obtained
by using the Seaborn Python3 tool [73–75] in Silty Loam.

Looking at homogeneous values (i.e., correlation data obtained at the same depth),
The best correlation values we obtained (0.94) are between “C et al. (97)” and “P et al. (20”)
at a depth of 3 cm. The 0.94 correlation coefficient is slightly greater than the value of
0.91 obtained between “C et al. (97)” and “P et al. (20)” at a depth of 2 cm. In Figure 21
the comparison among the best results obtained from the correlation are reported for the
three models. Even if peaks and valleys of the hydraulic model are not always perfectly
reproduced by the Capacitive Soil Moisture Sensor v1.2 fitting equations, the overall
behavior of the “P et al. (20)” model can capture the main features of the VWC at a
shallow depth. We note that, due to the peculiarities of experimental systems involving
natural soils, it is impossible to obtain results that are completely reproducible from
mathematical schemes. For example, inserting different sensors into the soil produces
different preferential waterways that can turn out in minimally different results, especially
when the experimental behavior is compared with mathematical model performances.
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Figure 21. Comparison among the best results obtained from the correlation procedure for the three
considered models.

6.2.2. Water Content in Loamy Sand

A three-parameter least-square best fit was also calculated in Loamy Sand between
Equation (1) and the VWC function obtained using the “C et al. (97)” model at different
depths of 2 and 3 cm. The two triplets of A, B, and C values are reported in Table 4
where the model “P et al. (20)” is referred to different depths. Similarly, a two-parameter
least-square best fit was calculated with the Hrisko model “H (20)” at 2 and 3 cm depths
and the model from “C et al. (97)”, obtaining two couples of P and Q values shown in
Table 4.

Table 4. Least-square best-fit parameters of Equation (2) and Equation (3) in Loamy Sand.

P et al. (20)_3 P et al. (20)_2

A 1.64 1.65
B 8.16 8.41
C 0.85 0.85

H (20)_3 H (20)_2

P 17.44 17.54
Q 2.37 2.1

The plot with the water content for the three models for the two different depths is
reported in Figure 22.

Figure 22. Comparison among the water infiltration and redistribution “C” model for Loamy Sand at
a depth of 2 and 3 cm with the VWC obtained from the voltage measured by Node #1 using Equation
(2) (“P” curves) and Equation (3) (“H” curves).
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Then a statistical analysis with scattering plots, cross-correlation values, and kernel
density estimation was accomplished by using the Seaborn Python3 tool (Figure 23) be-
tween all the possible couples of models at different depths. Looking at homogeneous
values (i.e., correlation data obtained at the same depth), the best correlation values we
obtained (0.58) are between “C et al. (97)” and the “Hrisko model”. A much worse corre-
lation was obtained for Loamy Sand compared to Silty Loam. However, as highlighted
in [54], the behavior of coarse-textured soil (as the Loamy Sand) can be mathematically
modeled with greater difficulty than that of fine-textured soil (as the Silty Loam).

 
Figure 23. Statistical analysis with scattering plots, cross-correlation values, and kernel density estimation (KDE) in
Loamy Sand.

Figure 24 shows the comparison among the best results obtained from the correlation
procedure. Even if a first sight comparison of the three curves shows significant differences,
it should be noted that for practical applications of sensors for measuring the soil water
content, differences of a few percent are often irrelevant.
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Figure 24. Comparison among the best results obtained from the correlation procedure for the three
considered models.

7. Conclusions

A low-power WSN based on LoRaWAN™ was designed with a focus on low-cost
PA applications, such as greenhouse sensing and actuation. Two types of wireless nodes
were envisaged, greenhouse node and plant node, and the whole LPWAN was designed
and implemented, including an 8-channel gateway/concentrator. The first experimental
results were collected and stored in a database managed by a virtual machine running in a
cloud service. Since all subsystems adopted in this research are off-the-shelf elements with
available open-source software libraries, only a minimal effort is needed when the system
is implemented for a different application.

Measurement results were focused on measurements of water content and were
collected using plant nodes in Loamy Sand and Silty Loam, proving the functionality
and reliability of the whole system (sensor nodes, gateway, GUI, Node-RED, and Cloud)
and comparing the system behavior with a reference sensor from Sentek. Temperature
measurements of our plant nodes compare as expected with the reference sensor within
the supposed accuracy of the adopted sensors. Regarding water content measurements,
a correlation was attempted between the results of the cheap Capacitive Soil Moisture
Sensor v1.2 and those of the Sentek reference sensor. We realized the low-cost water content
sensor suffers from a non-constant sensitivity; therefore, non-linear fitting equations are
necessary for correlating its voltage output with the VWC. We adopted for the Capacitive
Soil Moisture Sensor v1.2 two VWC fitting equations taken from the literature. Since the
reference sensor and the cheap water content sensor span different soil depths (5 cm and
2-3 cm, respectively), we first modeled the theoretical VWC profiles at different depths
using a proven water infiltration and redistribution model, calibrating the model on the
reference sensor results at a depth of 5 cm. Then we used the two fitting equations for the
Capacitive Soil Moisture Sensor v1.2 and calculated multi-parameter least squares fit to
the hydraulic model at 2 and 3 cm depths. A very satisfactory correlation coefficient of
0.94 was obtained for Silty Loam using the exponential/logarithmic “P” model at a depth
of 3 cm. Instead, the best correlation value we obtained using the same fitting procedure
applied to the results in Loamy Sand was 0.58 at a depth of 2 cm using the hyperbolic
“H” model. Despite the low correlation coefficient, the VWC values we obtained with the
hyperbolic “H” model can be considered as representative of the real VWC at a depth of
2 cm, since differences of a few percent are often irrelevant for practical applications of
sensors for measuring the soil water content.

In this work, we demonstrated the lack of linearity of the adopted soil water content
sensor. Notwithstanding this lack of linearity, the introduction of the infiltration model

346



Sensors 2021, 21, 5110

and of a dedicated statistical analysis allowed us to extract reliable values of the volumet-
ric water content for both Silty Loam and Loamy Sand. This procedure represents the
novelty and the potential of the proposed approach. Therefore, future work will address
the optimization of the sensor performance. To this purpose, it will be useful to better
understand the behavior of the sensor from simulations and to optimize the layout of
the sensor without impacting significantly on the cost, also considering the mechanical
integration constraints needed for industrialization.
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Abstract: In recent years, the Internet of Things (IoT), based on low-power wide-area network
(LPWAN) wireless communication technology, has developed rapidly. On the one hand, the IoT
makes it possible to conduct low-cost, low-power, wide-coverage, and real-time soil monitoring
in fields. On the other hand, many proximal soil sensor devices designed based on conventional
communication methods that are stored in an inventory face elimination. Considering the idea
of saving resources and costs, this paper applied LPWAN technology to an inventoried proximal
soil sensor device, by designing an attachment hardware system (AHS) and realizing technical
upgrades. The results of the experimental tests proved that the sensor device, after upgrading, could
work for several years with only a battery power supply, and the effective wireless communication
coverage was nearly 1 km in a typical suburban farming environment. Therefore, the new device
not only retained the original mature sensing technology of the sensor device, but also exhibited
ultralow power consumption and long-distance transmission, which are advantages of the LPWAN;
gave full play to the application value and economic value of the devices stored in inventory; and
saved resources and costs. The proposed approach also provides a reference for applying LPWAN
technology to a wider range of inventoried sensor devices for technical upgrading.

Keywords: IoT; LPWAN; proximal soil sensor device; conventional communication methods; ultralow
power consumption; long-distance transmission; economic value; inventoried sensor devices

1. Introduction

Soil is an important natural resource and the most critical material basis for agricultural
production. The acquisition and analysis of data related to soil moisture, salt, pH, and
other physicochemical properties is an important basis for land resource utilization and
agricultural production activities. Conventional soil sampling and laboratory analyses have
long sampling and analysis cycles and high labor costs; therefore, various proximal soil
sensor devices and data acquisition systems have been widely used in fields [1,2]. Proximal
soil sensing mainly refers to the use of field sensors to acquire information proximal to the
ground or in the soil. This concept was first proposed by Viscarra Rossel and McBratney
in 1998 [3] and further developed in 2010 [4]. At present, various proximal ground sensor
devices based on different working principles have been developed. For example, the
EM38 conductivity meter developed by Geonics Inc. (Mississauga, ON, Canada) is an
instrument used to obtain soil comprehensive apparent electrical conductivity (ECa) based
on the principle of electromagnetic induction. Myers et al. used this instrument to combine
conductivity data from the soil surface and soil profiles for high-resolution ECa soil digital
mapping [5]. Besson et al. used MUCEP (multi-continuous electrical profiling) to measure
soil resistance coefficient and monitor the temporal and spatial changes in soil moisture
at the field scale [6]. Electrochemical sensors based on ion selective electrodes (ISEs)
and ion sensitive field effect transistors (ISFETs) are mainly used for the determination
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of soil pH and nitrate and potassium ion concentrations. Adsett and Thottan designed
a real-time automatic nitrate content measurement system using ISFETs and a nitrate
detector [7]. Similar instruments include the pH meters produced by Veris Technologies,
Inc. (Salina, KS, USA) and Spectrum Technologies, Inc. (Aurora, IL, USA). These proximal
soil sensor devices or systems are usually deployed in field environments and connected
to data acquisition devices with RS-485, RS-232, or SDI-12 cables, and manually obtain
data on-site. In practical applications, such systems face the problems of limited bearing
capacity, cumbersome wiring, high operation costs, and inconvenient installation and
maintenance. With the rapid development of information technology, the IoT has been
widely used in various industries, promoting their rapid development and extension.
Low-power wide-area networks (LPWANs) form one of the main hotspots of IoT access
technology [8]. Compared with conventional wired communication technologies (such as
RS-485 and SDI-12), mobile cellular technologies (such as 2G, 3G, 4G, etc.), and short-range
wireless communication technologies (such as Bluetooth, ZigBee, etc.), an LPWAN has the
advantages of low cost, low power consumption, wide coverage, and strong connection [9],
and can effectively achieve the application of a proximal soil sensing system. An LPWAN
is an important technical support tool for promoting the transformation from conventional
laboratory-based physicochemical soil analyses to field-based measurements. Vu et al.
designed an automatic irrigation system for greenhouses based on LoRa technology [10].
Rachmani et al. designed an IoT monitoring system based on LoRa technology for a starfruit
plantation [11]. Co et al. designed and developed the hardware and software components
of a wireless sensor network (WSN) for soil monitoring [12]. In these applications, the
LoRa communication module is usually independent of the sensor device, but the sensor
device is still based on the conventional application design, and its power requirements
cannot be met by a long-term battery power supply. Thus, the deployment of the system is
troublesome, and a lot of maintenance work is required in the later stages of use.

To meet the needs of long-term field work, and considering the limitations of sensor
battery power supply, LPWAN technology needs to be integrated and applied in proximal
soil sensor devices. However, such devices generally need to be redesigned at a high cost,
and this leads to the elimination of the previous generation of inventoried devices, due
to their outdated technology. At the same time, the redesigned sensor not only needs
to have its communication function tested, but also requires more practice to verify its
sensing technology [13]. Therefore, this paper selected an inventoried soil moisture sensor
based on an RS-485 interface as the research object; designed and adapted the attachment
hardware system (AHS), according to its electrical specifications and communication proto-
col, integrated LPWAN technology; and realized the technological upgrade of the sensor,
so that it not only retained the function and performance of the original sensor, but also
had the attributes of ultralow power consumption and long-distance transmission, while
supporting long-term battery power supply, easy deployment, and simple management.
At the same time, the elimination of an inventoried device due to the application of new
technology was avoided, and resources and costs were saved, because the design was
based on the inventoried device.

The main contributions of this paper are as follows:

1. This paper put forward a new idea for applying the emerging LPWAN technology in
proximal soil sensing systems and carried out engineering practice.

2. Instead of directly eliminating the inventoried proximal soil sensor device with out-
dated technology, this paper upgraded it by designing an AHS; the new device not
only retained the original mature sensing technology of the sensor device, but also
exhibited ultralow power consumption and long-distance transmission. In addition,
this paper gave full play to the application value and economic value of the devices
stored in the inventory.

3. The proposed approach also provides a reference for applying LPWAN technology to
a wider range of inventoried sensor devices for technical upgrading.
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The rest of this paper is organized as follows: Section 2 presents the overall architecture
design of the system. Section 3 describes the hardware design of the AHS. Section 4
introduces the software design of the system. Section 5 tests and analyzes the sensor device,
after loading the AHS, and also discusses the relevant factors affecting the communication
quality. The last section summarizes this paper and discusses its significance.

2. Design of the System Architecture

The AHS, which was designed to adapt inventoried sensor devices, mainly included
an ultralow-power MCU system, a communication module, and a power module. The
overall architecture is shown in Figure 1. The AHS took the ultralow-power MCU system
as its core, and enabled and controlled the boost chip to turn the working power supply of
the sensor device on or off. It obtained the data acquired by the sensor device or configured
its relevant parameters by adapting the 485 interface communication protocol; connected
and controlled its communication module through UART; and exchanged data with the
server through ultralow power wireless transmission, which included uploading the data
acquired by the sensor device and receiving the control command parameters sent by the
server to control the workflow of the system.

 

Figure 1. Overall structure of the system.

3. Hardware Design of the AHS

3.1. Proximal Soil Sensor Device and Power Supply

Soil moisture is not only an important part of soil fertility and an important factor
affecting plant growth and development, but it is also an important parameter for studying
agricultural drought and crop drought. Therefore, data acquisition devices and systems
based on various soil moisture sensors have been widely used [14]. In this paper, a
commercial soil moisture sensor was used as the research object and was taken as the
sensing module of the AHS. Its accuracy and reliability have been tested in practice and
in the market for a long time. The volumetric moisture content of the soil was measured
with an RS-485 standard communication interface, with a working voltage of 12 V and
a response time of less than 1 s. Under the condition of no external load, the maximum
working current was less than 25 mA, and the average was no more than 10 mA. More
parameters are shown in Figure 2.

Figure 2. Soil moisture sensor.
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The system power supply adopted a lithium thionyl chloride battery with an output
voltage of 3.6 V and a battery capacity of 3500 mAh. It has the characteristics of high energy
density, long service life, and excellent low-temperature performance. It is especially
suitable for all-weather battery-based power supply devices in the field [15]. To simplify
the hardware structure and facilitate application deployment, the system adopted a single-
battery global power supply and an efficient power management scheme. The sensor
device adopted a 12 V DC power supply, and the MCU, flash chip, RS-485 transceiver, and
other chips adopted 3.3 V power supplies. Therefore, the battery voltage was boosted to
12 V in the circuit hardware, to supply power to the sensor. A stable 3.3 V was output
by the multichannel linear voltage regulator to supply power to the chips, in which the
main controller (3.3 V) and the peripheral circuit (3.3 V) were independently supplied to
eliminate the interaction between loads.

3.2. Ultralow-Power MCU System

MCUs typically use CMOS technology, and their power consumption mainly includes
static power consumption and dynamic power consumption. Static power consumption
mainly consists of the energy consumed by transistors, which is almost constant, most of
the time. Dynamic power consumption includes switching power consumption, short-
circuit power consumption, and burr power consumption. In general, especially when
working at a high frequency, dynamic power consumption plays a major role, which can
be approximately expressed as the following Equation (1) [16]:

P = CL × V2
DD × f (1)

where CL is the load capacitance, VDD is the supply voltage, and f is the clock frequency.
The total power consumption is the sum of the static power consumption and dynamic
power consumption. Therefore, to reduce the total power consumption, we can reduce
the size of the MCU chip or the number of transistors; reducing the MCU supply voltage
can reduce power consumption at the square level and reduce the clock frequency to just
meet the application needs. In addition, a reasonable choice of working mode, such as
entering sleep mode after working at full speed for a very short time, can also greatly save
energy [17–19].

In this paper, the ultralow-power MCU adopted the MSP430 series, which was spe-
cially designed for battery-powered devices in field environments [20]. It adopted a low-
power supply voltage of 1.8–3.6 V. When operating under the clock condition of 1 MHz, the
power consumption in active mode was only approximately 280 μA, in standby mode it
was approximately 1.6 μA, and the minimum power consumption in RAM hold mode was
only 0.1 μA. In addition, the MSP430 integrated rich on-chip resources and had multiple
interrupt sources, which could be arbitrarily nested and used in a flexible and convenient
manner. When the system was in a low-power state, the wake-up interrupt took only 5 μs.
The minimum ultralow-power MCU system of the AHS is shown in Figure 3.

3.3. Communication Module Based on LoRa

LPWANs have attracted extensive attention, mainly because they can provide afford-
able connections for low-power devices distributed in very large geographical areas. When
realizing the vision of the IoT, LPWAN technologies complement and sometimes even
replace conventional wired communication and cellular and short-range wireless technolo-
gies, in terms of their performance for various emerging smart city and machine-to-machine
applications [21]. Sigfox, LoRa, and NB-IoT are the three leading LPWAN technologies that
compete for large-scale IoT deployment, and they have different characteristics that affect
the performance of IoT solutions; device connectivity, information delay, and even device
battery life [22]. Some of their key characteristics are shown in Table 1.
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Figure 3. Minimum ultralow-power MCU system.

Table 1. The key characteristics of LPWAN technologies: Sigfox, LoRa, and NB-IoT.

Sigfox LoRa NB-IoT

Frequency Unlicensed sub-1
GHz ISM bands

Unlicensed sub-1
GHz ISM bands

Licensed LTE
frequency bands

Range 10 km (urban),
40 km (rural)

5 km (urban),
20 km (rural)

1 km (urban),
10 km (rural)

Bandwidth 100 Hz 250 kHz and 125 kHz 200 kHz
Maximum data rate 100 bps 50 kbps 200 kbps

Interference immunity Very high Very high Low
Adaptive data rate No Yes No

Allow private
network No Yes No

LoRa has the characteristics of long-distance and low power consumption, which
can prolong the battery life. It uses the unlicensed Sub-1GHz ISM bands and does not
need to pay additional licensing fees. In addition, LoRa can adapt the data rate and allow
private networks, while Sigfox and NB-IoT cannot [23]. LoRa, as a representative LPWAN
technology, has emerged as an attractive communication platform for the IoT [24,25].
Therefore, in this paper, the mature commercial LoRa module, which was designed based
on SemTech sx1278 (Camarillo, CA, USA), was used as the communication module of
the AHS, with an adjustable transmission power and a maximum transmission power
of 20 dBm; it supported remote wake-up in sleep mode and adopted advanced channel
coding technology. Its receiving sensitivity could reach −142 dBm, enabling it to realize
long-distance communication under ultralow power consumption. The LoRa gateway was
designed based on a sx1301 transceiver controller. The gateway has a higher receiving
sensitivity than other technologies, its sight distance coverage radius can reach 5 km, it
includes eight receiver channels and one transmission channel (among which 8 receiver
channels can receive data simultaneously), and it supports up to 10,000 LoRa terminals,
which are convenient for building a massive connection network. It can also support LTE
(4G/3G/2G), connect to servers without wiring, and adapt to the multiple access modes of
PAAS platforms, such as MQTT, TCP, and Modbus [26].
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4. Software Design

4.1. Software Design of the MCU

To reduce power consumption, in addition to selecting low-power devices in the
hardware design, the key modules also adopted an efficient power management algorithm
in the software design of the MCU. The working voltage of the soil moisture sensor device,
which was one of the main energy consumption components of the system, was high.
However, in practical applications, the sensor device does not need to work continuously
for a long time. In a data acquisition and transmission cycle, it would be idle most of the
time. Therefore, a 12 V power supply that enabled control was designed for the hardware.
When the sensor device worked and effectively outputted data, the MCU controlled the
MOS tube to be in the cut-off state and turned off the power supply of the sensor device to
avoid continuous power consumption after data acquisition. The LoRa RF communication
module was also a main energy-consuming unit, and the working currents corresponding
to 5 dB and 20 dB transmission powers were 75 ma and 130 mA, respectively. When the
module did not need to work, the MCU would put it to sleep.

The working flow of the MCU software is shown in Figure 4. After the initialization of
the MCU and each module, the MCU controlled the MOS tube to be in the cut-off state,
turned off the sensor power supply to reduce energy consumption, enabled the MCU
to interrupt, and then entered the low power consumption mode. The timer interrupt
function was used to realize the acquisition of sensor data, and the MCU timer could
automatically overload the time constant, thereby accurately controlling each module to
complete different tasks during different timer cycles (250 ms).

 

Figure 4. Software flow diagram and timer interrupt function.

4.2. Server Design

The data acquired by the sensor device were finally transmitted to the server for
storage and user access. The LPWAN system was composed of a sensor device loaded with
the AHS as a node. Its network structure diagram is shown in Figure 5.
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Figure 5. Overall system network structure.

Although a server built based on a private cloud can control all resources, such
as computing and storage resources, and enjoy exclusive use rights, it also faces high
design, installation, deployment, and upgrading costs, and cannot meet the connection
requirements of an increasing number of sensor devices and the management requirements
of data for multiple future applications [27]. Therefore, this paper used the operator’s
IoT platform (OneNet) based on a PAAS as the service end, which was efficient, stable,
and safe; could adapt to a variety of network environments and common transmission
protocols; provided a fast access scheme, a management service, and data storage capacity
for terminal devices; facilitated data storage and querying; and had flexible on-demand
payments and controllable costs [28]. Its architecture is shown in Figure 6.

 

Figure 6. IoT platform architecture based on a PaaS.

In this paper, the sensor node used TCP-based transparent communication to access
the IoT platform of the server. We customized the protocol content, wrote the protocol
analysis script in the Lua scripting language, and uploaded the analysis script to complete
the protocol analysis. The application interface is shown in Figure 7.

5. System Test and Analysis

5.1. Actual Energy Consumption Test and Analysis

The physical object of the AHS and the encapsulated soil moisture sensor loaded with
the AHS are shown in Figure 8.
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Figure 7. Server application interface.

  
(a) (b) 

Figure 8. Hardware of the system. (a) Physical object of the AHS; (b) Soil moisture sensor after
loading the AHS.

Energy consumption is a major problem for battery-powered devices. Once the
power is exhausted, the device will “strike”. Although the system minimized the energy
consumption of device selection and algorithm design at the beginning of the design
process, there needed to be a gap between the actual energy consumption and the theoretical
value [29]. To analyze the actual energy consumption performance of the system, the energy
consumption of the sensor device after loading the AHS was tested by connecting a high-
precision multimeter in series in the system; the real current of the system in each state
was measured, and its single service life was estimated according to the battery capacity.
When designing the hardware circuit of the AHS system, a special current test interface
was reserved so that the jumper would be used for the short circuit during operation,
and the multimeter could be directly connected in series during measurement. In this
experiment, the DC micro-ampere mode of a Fluke (18B+) multimeter was used. The
interrupt timing cycle was set to 250 ms, the system was initialized within the initial 2 s,
and the MCU entered the low power consumption mode after configuring the LoRa module.
At the 4th second, the MCU exited the low power consumption mode, the ADC started
sampling the battery voltage, and the MCU entered low power consumption mode again
after sampling. At the 10th second (COUNT1), the MCU turned on the 12 V power supply
of the sensor, the MCU exited low power consumption mode and woke up the LoRa. At
the 13th second (COUNT2), the sensor started working, the MCU acquired the sensor data,
and LoRa started sending and receiving data. At 15 s (COUNT3), the sensor power supply
was forcibly turned off, the MCU entered low power consumption mode, and the LoRa
entered sleep mode.

The energy consumption of each main state of the system is shown in Table 2. If the
sampling period T was 2 h, i.e., 2 × 3600 s, the energy consumption in one cycle can be
expressed as E0 = 2.99 J. If the battery capacity P1 = 3500 mAh, then the single battery
energy was E = P1 × 3.6 V = 45,360 J, and the battery life was 2 × E/E0 = 30,340 h; ap-
proximately 3.46 years. When working with ultralow power consumption, if effective data
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were acquired every two hours, a single-battery power supply could work for more than
3 years without considering natural attenuation, thus meeting the requirements of general
applications. Additionally, flame-retardant epoxy resin could be used for integral molding
and pouring; this would make the system more compact as a whole, with high mechanical
strength, strong heat resistance, and easy deployment, as well as being maintenance-free,
waterproof, and anti-corrosion.

Table 2. Energy consumption of each main state of the system.

ADC Sampling
Battery Voltage

Sensor Work
Data Sending
and Receiving

Low Power Mode

Voltage(V) 3.3 12 3.3 3.3
Current (mA) 15.4 40.9 168.3 4.3 × 10−3

Duration (s) 6 3 2 T-11

5.2. Channel Characteristics and Gateway Capacity Analysis

The key parameter settings of the node are shown in Table 3. When setting the
parameters of radio device, on the basis of meeting the radio management specifications,
we optimized the LoRa modulation and demodulation technology through designing
the key parameters, such as modulation spread factor, modulation bandwidth, and error
correction coding rate, to make the system reach an optimal state, as far as possible [30,31].
The spread spectrum LoRa modulation is performed by representing each bit of the payload
information using multiple chips of information. The rate at which the spread information
is sent is referred to as the symbol rate; while, the ratio between the nominal symbol rate
and chip rate is the spreading factor and represents the number of symbols sent per bit of
information. Spread spectrum transmission can reduce the bit error rate; that is, the SNR,
as shown in Table 4. Under the condition of a negative signal-to-noise ratio, the signal
can be received normally, which improves the sensitivity, link budget, and coverage of the
LoRa receiver, but reduces the actual data that can be transmitted under the condition of
the same amount of data [32]. Therefore, the larger the spread spectrum factor, the smaller
the number rate (bit rate) of the transmitted data. In this paper, we set the spreading factor
(SF) as 12 to maximize the signal coverage, under the condition of meeting the transmission
rate. The LoRa modem employs cyclic error coding to perform forward error detection and
correction. Such error coding incurs a transmission overhead, but it can further improve
the robustness of the link. Therefore, we set the coding rate (CR) as 4/5. An increase
in signal bandwidth (BW) permits the use of a higher effective data rate; thus, reducing
transmission time at the expense of a reduced sensitivity improvement [33]. Apparently,
there are regulatory constraints in most countries on the permissible occupied bandwidth.
As it is stipulated in China that the power in 470~−510 mHz frequency band shall not
exceed 50 mW (17 dBm (ERP)) and the occupied bandwidth shall not exceed 200k [34],
we set the bandwidth to 125 k; considering the cable loss and air path loss, we set the
transmission power of the node to 20 dBm. In short, these parameters were closely related
to the range and robustness of radio communication links. Changing the BW, SF, and CR
would change the link budget and transmission time. It was necessary to have a trade-off
between battery life and distance.

For large-scale LoRa connection applications, gateway capacity is an important char-
acteristic [35,36], especially in a typical suburban farming environment; and whether the
gateway is sufficient for the determined number of nodes is an important concern. In the
same application scenario, for a certain gateway, the maximum number of packets that can
be received per day is also determined. However, different packet forms and sending rates
will change the total number of packets. The LoRa standard data frame format is shown
in Figure 9.
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Table 3. The key parameter settings of the node.

TFREQ RFREQ POW BW TSF RSF CR

475.5 MHz 506.5 MHz 20 dBm 125 kHz 12 12 4/5

Table 4. Range of spreading factors.

Spreading Factor 7 8 9 10 11 12

Demodulator SNR −7.5 dB −10 dB −12.5 dB −15 dB −17.5 dB −20 dB
Note that the spreading factor must be known in advance on both transmit and receive sides of the link, as
different spreading factors are orthogonal to each other.

Figure 9. LoRa packet structure.

The data frame includes a preamble byte, a header byte, a payload, and an op-
tional CRC byte for synchronization. Although the number of preamble bytes can be
programmable, the number of remaining bytes depends on the coding rate and spread-
ing factor used in other parameters. The number of preamble symbols is generally set
to Mpreamble = 4.25 + Nprog, where Nprog is the programmed preamble length. The total
number of bytes of the physical layer data frame is calculated using Equation (2) [37].

M =
[

Mpreamble + 8 + MSF ∗ (CR + 4)] (2)

MSF = max
([

8PL − 4SF + 28 + 16CRC − 20IH
4(SF − 3DE)

]
, 0
)

(3)

Equation (3) gives MSF, which mainly gives the number of payload symbols, where
CR ∈ {1, 2, 3, 4} represents the coding rate of 4/(CR + 4); PL is the MAC layer, including
MAC header and application data payload (in bytes); SF is the spread spectrum factor. If
the optional function CRC is enabled, CRC = 1; IH = 1 indicates that the implicit header
function is enabled (i.e., the physical layer header is not transmitted); and DE = 1 indicates
that the data optimization function is activated. For a given combination of spreading factor
(SF), coding rate (CR), and signal bandwidth (BW) the total on-the-air (ToA) transmission
time of a LoRa packet can be calculated using Equation (4), where Ts is the transmission
time of one symbol, which is calculated using Equation (5).

ToA = Ts ∗ M (4)

Ts = 2SF/BW (5)

For a LoRa gateway with eight channels, Equation (6) calculates the channel capacity
(i.e., number of nodes) without LBT (listen before talk) [38].

S = 8T/(2e ∗ ToA) (6)

where 8 represents eight channels, T represents the transmission interval, which is related
to the packet length and rate. While, 1/2e is the maximum throughput of the basic Aloha
algorithm and e is a constant, equal to 2.718. Under the premise of 10-byte preload, the
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relationship between different SF and BW and their theoretical gateway capacity are shown
in Figures 10 and 11.

 
Figure 10. When BW = 125 kHz, T = 3600 s, the gateway capacity at different SF.

 

Figure 11. When SF = 12, T = 3600 s, the gateway capacity at different bandwidths.

If different algorithms are adopted, this will also lead to a change of maximum
throughput, resulting in a change of theoretical capacity. For example, if the precondition
is modified so that each node has a LBT function and the slot Aloha algorithm is used
instead of the previous basic Aloha algorithm, the maximum throughput is different, due
to different algorithms. At this time, the maximum throughput is 1/e, so the theoretical
capacity of the channel will be doubled. It can be seen that under the condition of setting
parameters as shown in Table 3, a single LoRa gateway can theoretically connect 5345 nodes.
In practical applications, the gateway can receive SF7–SF12 signal data at the same time.
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Due to the limited demodulation and coverage capacity of a single gateway, in reality, it is
actually difficult to meet the requirements of the theoretical capacity, but it can be deployed
with multiple gateways to maximize the network capacity.

5.3. Communication Test and Discussion

In principle, a wireless communication gateway should be deployed at the highest
possible position, such as a communication operator’s iron tower or the roof of a high-rise
building, to improve the communication distance and signal quality. In practical applica-
tions, the site environment, operating conditions, economic cost, and other factors need
to be fully considered [39]. This test took the farms around the Red Azalea Agricultural
Ecological Park (RAAEP) in the Baguazhou area as the test site, to evaluate the commu-
nication distance and signal coverage between the gateway and the nodes in a typical
suburban natural farmland environment. No tower or high-rise building was available
for the operators in the area, no advantageous terrain was available, and certain obstacles
were contained in the communication space. The test took the RAAEP as the starting point,
and considering the implementation difficulty and cost control, the LoRa gateway device
was deployed on a billboard approximately 2.5 m above the ground (Figure 12c), while the
mobile power supply was used to power the LoRa gateway (Figure 12b). A communication
test route diagram is shown in Figure 13. The AHS was specially programmed for the
data transmission test as a terminal node (Figure 12a). We drove along the lane with
the terminal node for the communication test, and several test points were placed in the
southwest direction. Tall and dense trees were located on both sides of the road, but there
were relatively open road areas at 450–500 m and 750–800 m in front of the starting point.
The system started to enter a village at 1000 m, passed through the village at 1100 m, and
entered woods on the two sides of the road at the same time. A highway bridge was located
at 2200 m, and the test route crossed under the highway bridge.

   
(a) (b) (c) 

Figure 12. Communication test: the LoRa gateway was placed on a billboard 2.5 m above the ground.
(a) LoRa terminal node; (b) LoRa gateway with the DTU; (c) Gateway placement location.

At each test location, the terminal node sent a group of sequentially numbered data
every 3 s, for a total of no less than 20 groups. The gateway received the data, printed the
received signal strength indication (RSSI) and signal-to-noise ratio (SNR) information of
the data, and uploaded this information to the cloud through a data transfer unit (DTU).
We calculated the average RSSI and SNR of the test points at the same distance, which are
shown in Figure 14.
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Figure 13. Communication test route for each designated test location, and the node used to send
data in the simulations. The red star symbol indicates the starting point of the test.

 

Figure 14. RSSI and SNR values.

Figure 15 shows the data packet loss rate. As seen from the figure, with the increase
in the communication distance, the RSSI and SNR gradually decreased, and the packet
loss rate gradually increased. At 500 m and 800 m from the test point, the area was
relatively open, the influence of tree shielding was small, and the received signal improved.
Although signals were still received at 1100 m, the packet loss rate was too high, and the
communication accuracy was lost. Therefore, in practical applications, the communication
quality evaluation should focus on more than the RSSI, and the packet loss rate was the
prerequisite for the evaluation of communication quality.
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Figure 15. Packet loss rate.

In a communication system, if the signal power value in the communication link is
equal to, or greater than, the sensitivity of the receiver, the receiver can normally obtain
the information contained in the transmitted signal; the communication is successful. On
the contrary, if the signal power is lower than the sensitivity, the quality of information
obtained will be far lower than the specified requirements [40].

Figure 16 shows the obtained signal strength distribution. We selected a set of test
data under relatively poor test conditions (such as antennas without enhanced gain),
where the analyzed system performance would have more redundancy space. There were
135 received signal strength data points in total. During the test, the distance between the
node and the gateway ranged from 300 m to 1300 m. Among the valid data points obtained,
there were 18 at 300 m, 22 at 500 m, 19 at 650 m, 26 at 800 m, 19 at 1000 m, 5 at 1100 m, and
26 at 1300 m. The signal strength of these data ranged from −142.5 dBm to −119.8 dBm,
including 1 data point greater than −120 dBm, 57 data points less than −120 dBm and
greater than −130 dBm, 66 data points less than −130 dBm and greater than −140 dBm,
and 11 data points less than or equal to −140 dBm. From the signal strength analysis, 92%
of the test signals were greater than −140 dBm, while the received signal sensitivity of
LoRa gateway was −142 dBm. Therefore, the RSSI of this test was within the acceptable
range. However, when combined with the packet loss rate data analysis, the coverage
radius of a single gateway should not exceed 1100 m.

 

Figure 16. Signal strength distribution.
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Compared with the theoretical parameters, the actual test data parameters, especially the
communication distance, had large gaps. Many factors restrict wireless communication distance.

In an ideal environment, wireless communication satisfies the Friis transmission
equation [41,42]. After considering the loss of the free space path, the Friis transmission
equation can be transformed into the following Equation (7):

Pt − Pr + Gt + Gr = 20lg
4π f d

c
+ Lc + L0 (7)

where Pt is the transmission power of the transmitter, Pr is the sensitivity of the receiver,
Gt is the transmitter antenna gain, Gr is the receiver antenna gain, f is the carrier frequency,
d is the distance between the receiver and transmitter antennas, c is the speed of light, Lc is
the feeder loss of the transmitter antenna at the base station, and L0 is the air propagation
loss. Here, π and c are constants; therefore, Equation (7) can be easily converted into the
following Equation (8):

Pt − Pr + Gt + Gr = 20lg( f ) + 20lg(d) + Lc + L0 − 147.56(dB) (8)

Equation (8) can be converted to Equation (9) to calculate the distance:

d = 10
Pt−Pr+Gt+Gr−20lg( f )−Lc−L0+147.56(dB)

20 (9)

Therefore, according to the theoretical calculation formula, the factors affecting the
wireless communication distance include the system’s own factors, such as receiving sensi-
tivity, transmission power, transmitter, and receiver antenna gain, as well as environmental
conditions such as obstacles, transmitter and receiver antenna height, electromagnetic
interference and weather influence. In the system parameter setting designed in this pa-
per, considering the data transmission rate and battery life, we set the maximum SF and
transmission power to maximize the sensitivity of the node. Therefore, the main factors
affecting the communication distance of the system came from the antenna gain and the
air propagation loss caused by the obstacles between the sensor node and the gateway.
In our system, we chose an antenna with high gain as much as possible; however, due
to the consideration of the overall waterproof and anti-corrosion properties of the sensor
node, the transmitting antenna was encapsulated inside the node, which led to increased
propagation loss. As mentioned in the previous communication test section, the LoRa
gateway was deployed on a billboard about 2.5 m above the ground. The sensor node
test location passed through the village, and there were tall and dense trees on both sides
of the test route. These test conditions well simulated the low-cost deployment mode in
a typical suburban farming environment, but objectively caused the propagation loss of
wireless communication and greatly reduced the wireless communication distance. Due
to the implementation environmental conditions, deployment difficulty, and cost, we did
not deploy the LoRa gateway at a higher position for testing, but from the calculation
formula, we could show that by deploying the gateway at a commanding height over
the environment, we could reduce the obstacles between communications, reduce the air
propagation loss, and improve the communication distance exponentially.

Overall, when a sensor device is designed as the node of an LPWAN, the transmis-
sion power, reception sensitivity, and carrier frequency are subject to the node power
consumption and chip performance factors. In practical applications, considering the im-
plementation environmental conditions, economic cost, and deployment and maintenance
difficulty, we cannot blindly pursue the ideal communication transmission distance; thus,
we need to find a balance and deploy the network reasonably [43].

6. Conclusions

With the idea of saving resources and costs, this paper applied LPWAN technologies
to an inventoried proximal soil sensor device by designing an attachment hardware system
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(AHS) and realized technical upgrades. Compared with conventional sensors based on
wired communication technologies (such as RS-485 and SDI-12), mobile cellular technolo-
gies (such as 2G, 3G, 4G, etc.), and short-range wireless communication technologies (such
as Bluetooth, ZigBee, etc.), it not only retained the original mature sensing technology
of the sensor device but also exhibited ultralow power consumption and long-distance
transmission, while having the advantages of an LPWAN. At experimental level, it can
be seen from the actual energy consumption test and analysis that a single-battery power
supply could work for more than 3 years without natural attenuation; thus, meeting the
requirements of general applications. Additionally, flame-retardant epoxy resin can be
used for integral molding and pouring, and this would make the system more compact
as a whole, with high mechanical strength, strong heat resistance, and easy deployment,
as well as being maintenance-free, waterproof, and anti-corrosion. However, traditional
sensors need to be powered by mains power supply, which were troublesome to deploy
in applications and required a lot of maintenance in the later stages. Even if some used
a battery power supply, the sensor devices were still based on the traditional application
design, and their power consumption could not use a long-term battery power supply, and
were troublesome to maintain. Furthermore, through the communication distance test,
signal coverage test, and gateway capacity analysis, it was shown that in a typical suburban
farming environment, a single gateway could carry more than 5000 nodes within 1100 m,
which could easily and quickly deploy a large-scale wireless sensor network; whereas, the
traditional types would require a huge cost to achieve a large-scale sensor network. Finally,
the sensor designed in this paper could obtain data remotely in real time, while the latter
needed to obtain data manually on site.

The technical means to instantly obtain various soil physicochemical parameters in a
field is not only an important research direction in soil science but also an important techni-
cal support tool for the development of conventional laboratory-based physicochemical
soil testing and analysis procedures for field-based measurements [2]. The development
and application of LPWAN technology has enabled low-cost, low-power, wide-coverage,
and real-time soil field monitoring. In this paper, an AHS with LPWAN technology based
on LoRa was designed and applied to an inventoried soil moisture sensor, to upgrade the
technology so that it, not only retained the performance, accuracy, and reliability of the
original sensor, but also had the ultralow power consumption and long-distance wireless
transmission function of an LPWAN. After loading the AHS, the sensor device could be
built and deployed as a node in a wireless sensor network in an economical, flexible,
and convenient manner; this not only expanded the applicability of the LPWAN, but
also prevented the elimination of inventoried soil moisture sensors, due to their outdated
technology. It is further concluded that not only soil moisture sensors, but also other
inventoried proximal soil sensor devices based on conventional communication methods
(such as RS-485, SDI-12 and other data communication methods) or devices whose outputs
are standard voltages or currents could be designed with, or adopt, AHSs with technical
designs that require ultralow power consumption; in this way, they can not only possess the
technical advantages and application capacities of an LPWAN, but also retain their original
mature sensing technology and give full play to the application value and economic value
of inventoried proximal soil sensor devices, to avoid a waste of resources.

Author Contributions: The contributions to this manuscript were as follows: conceptualization: Y.T.;
methodology: W.H.; hardware and software development: Y.T. and H.T.; data analysis: Y.T.; field
trials: Y.T.; writing: Y.T.; review and editing: H.T.; supervision: W.H. All authors have read and
agreed to the published version of the manuscript.

Funding: This research was funded by the National Key Research and Development Project of China
(Grant No. 2017YFF0108201), the Open Project of the State Key Laboratory of Soil and Sustainable
Agriculture (Institute of Soil Science, Chinese Academy of Sciences (Grant number Y20160005),
and the Nanjing Science and Technology project of China (Grant No. 2020011002), and the Youth
Innovation Promotion Association of the Chinese Academy of Sciences (Grant No. 2019312).

366



Sensors 2022, 22, 4333

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

IoT Internet of Things
LPWAN Low-Power Wide-Area Network
AHS Attachment Hardware System
ECa apparent Electrical Conductivity
ISEs Ion Selective Electrodes
ISFETs Ion Sensitive Field Effect Transistors
MCU Microcontroller Unit
PaaS Platform as a Service
VWC Volumetric Water Content
MQTT Message Queuing Telemetry Transport
RAAEP Red Azalea Agricultural Ecological Park
RSSI Received Signal Strength Indication
SNR Signal-to-Noise Ratio
DTU Data Transfer Unit
ERP Effective Radiated Power
BW Band Width
SF Spreading Factor
CR Coding Rate
LBT Listen Before Talk
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Abstract: In this paper, we develop innovative digital twins of cattle status that are powered by
artificial intelligence (AI). The work is built on a farm IoT system that remotely monitors and tracks
the state of cattle. A digital twin model of cattle based on Deep Learning (DL) is generated using the
sensor data acquired from the farm IoT system. The physiological cycle of cattle can be monitored in
real time, and the state of the next physiological cycle of cattle can be anticipated using this model.
The basis of this work is the vast amount of data that is required to validate the legitimacy of the
digital twins model. In terms of behavioural state, this digital twin model has high accuracy, and the
loss error of training reach about 0.580 and the loss error of predicting the next behaviour state of
cattle is about 5.197 after optimization. The digital twins model developed in this work can be used
to forecast the cattle’s future time budget.

Keywords: digital twin; AI; deep learning; LSTM model

1. Introduction

Digital twins are virtual digital representations of physical objects, in which the
physical object and its corresponding virtual digital representation interact remotely in
real time [1]. A digital twin model incorporates multi-disciplinary, multi-physical quantity,
multi-scale, and multi-probability simulation processes and fully utilises physical models,
sensor updates, operation histories, and other data [2]. In addition, digital twins complete
the mapping in virtual space so that the full life cycle process of associated entity equipment
is reflected [3]. Digital twins are a transcendental idea that can be regarded as one or more
crucial and interdependent digital mapping systems for the actual object [4,5].

Connectivity, modularity, and autonomy between virtual and actual items can all be
realised with digital twins. It can be accomplished across the whole production process
from product design through product system engineering to production planning, imple-
mentation and intelligence, resulting in a self-optimizing closed loop [6]. To put it another
way, by connecting the actual object with the virtual number, the real object may offer
real information to optimise the digital model, and the digital model can foresee potential
situations to alter the real object. The two complement each other to create a self-closing
optimisation mechanism [7]. Nowadays, digital twins have been increasingly employed in
a variety of industries, including product design, product manufacturing, medical analysis,
engineering construction and other areas [8]. As a result, digital twins can be seen as a
major force behind the intelligent manufacturing paradigm [9]. Digital twins have recently
been deployed in a variety of fields, including livestock farming [10,11].

Deep learning (DL) is a new direction in machine learning that is being introduced to
bring it closer to the goal of AI and has made tremendous progress in solving issues that
were previously unsolvable in AI. It has proven to be so effective in detecting complicated
structures in high-dimensional data that it might be used in a wide range of scientific,
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business and government applications [12–14]. The long short-term memory network
(LSTM) is a type of cyclic neural network and one of the deep learning algorithms that can
analyse and forecast critical time with very long intervals and delays in time series [15,16].
In a long time series, the LSTM neural network algorithm can determine which information
should be stored and which should be discarded [17]. The development of digital twins
relies heavily on accurate time series prediction. Internal and external disruptions might
result in time series that are exceedingly nonlinear and random. Complex object time
series prediction may be employed at any stage of their life cycle, which is also a major
component of the digital twin model [18,19]. Therefore, it is extremely dependable to use
the LSTM model to build digital twins.

This research is primarily focused on the direction of intelligent livestock monitoring
in the agricultural environment. For a long time, Australia has been a major producer of
animal husbandry, and milk and beef production and export have also been at the forefront
of the global [20]. Cattle statuses may be monitored in real time to enable breeders better
determine their cattle’s health and enhance meat and milk output correspondingly [21]. As
a result, agriculture’s evolution toward intelligence is a critical stage of growth [22]. This
project aims to create a digital twin model for each individual bovine, which will allow
for improved monitoring of cattle status at the digital and information levels, as well as
the advancement of Australian animal husbandry. The main contribution of this study is
that it developed an intelligent digital twins approach using an LSTM neural network to
give a range of behavioural detection and prediction of cattle’s state, such as impending
physiological cycles, among other things. The digital twins model is significantly based on
massive volumes of data reflecting cattle location, movement and free grazing time, etc,
collected by the farm IoT monitoring system. The digital twin model has some limitations;
for example, when the amount of sampled data is inadequate, the model’s accuracy is
unsatisfactory. As a result, this model needs a considerable amount of sample data.

The outline of the paper is given below. First in Section 2, the current related work
of digital twin is summarized. After that, in Section 3, necessary data mining and data
analysing for the IoT system are carried out. In this part, most of the data processing
work is accomplished with the help of MATLAB. In Section 4, cattle’s behaviour states are
modelled by training the LSTM neural network in the digital twin model and cattle’s states
in the next cycle are predicted by using this deep learning technique. In Section 5, The
accuracy of the trained LSTM model is discussed and verified. Finally, Section 6 deduces a
proper conclusion.

2. Related Work

The concept of digital twins can be applied in many areas. For example, for wind
power plants, cloud-based technology integrates technological and commercial data into a
single digital twin through augmented reality (AR) and applies to multiple wind power
plants to realize real-time monitoring of power plants [3]. In manufacturing, Schleich
et al. [2] propose a conceptual integrated reference model for design and manufacturing
that provides the first theoretical framework for digital twins in industrial applications [2].
In addition, digital twins are also used for product prediction and health management. This
method effectively utilizes the interaction mechanism and fusion data of digital twins [8].

In the field of agriculture, more and more farmers are committed to the establishment
of intelligent farms. The concept of intelligent agriculture mainly includes sensors, tracking
systems, innovative digital technologies, data analysis and so on. The application of
modern digital technology to farms can improve the efficiency of farm management [9,10].
More specifically, Yang et al. [7] come up with a digital farm management system that can
effectively track production. In particular, this system uses smartphones to collect data,
this is an efficient solution for precise vegetable farm management [7]

However, digital twins are rarely used on farms, there are only a few isolated cases.
Digital twins are already being used in innovative internet-based applications, and digital
twins can influence farm management [4]. A digital disease management system for dairy
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cows has been established, which realizes the digital management of dairy cows, systematic
management of basic information of dairy cows, health assessment, electronic medical
records and disease prevention. This system can effectively manage the disease of cows
on the dairy farm [23]. In [13], Wagner et al. [13] use machine learning to detect the
health of cows and predict when they would behave. They use different algorithms in
machine learning to predict the activity duration of cows, including the K-neighborhood
algorithm, the LSTM algorithm, the H-24 algorithm, and so on. The K-nearest neighbour
algorithm performs the best after analysis and comparison. However, their study needs to
be based on a much larger data set and needs to take into account the circadian nature of
activity rhythms.

In addition, the application of an LSTM neural network to the establishment of the
digital twin model used on a farm is also rare, but it’s been used in many other ways and
has been very successful. Hu et al. [18] propose a hybrid time series prediction model based
on global empirical mode decomposition, LSTM neural network and Bayesian optimization,
and apply it to the establishment of the digital twin model. They use their digital twin
models to predict wind speeds in wind turbines and wave heights in ocean structures. The
results show that the proposed model can obtain accurate time series prediction [18]

Although the application of digital twins in farm management is still in the early stage
of development, it is not impossible to establish digital twins for each cow on this bovine
disease digital management system. With the establishment of digital twins, the cattle farm
can become an autonomous, adaptive system in which intelligent digital twins can operate,
decide and even learn without human on-site or remote intervention [4].

3. Data Mining and Analysing

This section primarily discusses the processing method of the data sets, i.e., the original
data measured by sensors of the farm’s IoT system. This data set is systematically treated in
preparation for future use of the modelling. Particularly, the data sets of the cattle’s states
are analysed, and a digital twin model of the cattle is produced using these data sets. A
vast amount of data may be used to evaluate the model’s correctness, and the state of the
cattle can then be predicted.

3.1. Data Processing

The raw data set for the sensor contains 98 cattle of various breeds and genders. There
are eight categories used to classify cattle’s status: Resting, Rumination, High Activity,
Medium Activity, Panting (Heavy Breathing), Grazing and Walking. Detailed descriptions
for different cattle states are shown in Table 1. Each sensor takes a minute-by-minute
reading of the cows’ real-time status, with each cow having 74,455 data points collected
between AU_time 8:06 a.m. on August 10 and 1:01 a.m. on 1 October 2019. Five cattle
breeds are represented in the data sets: Angus, Brahman, Brangus, Charolais and Crossbred.
This section focuses on the systematic processing of these data, including data segmentation,
data cleaning, and data calculating.
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Table 1. The explanation of the state.

State Description

Rest Standing still, lying, and transition between these 2 events, while lying, allowed
to do any kind of movement with head/neck/legs (e.g., tongue rolling).

Rumination Rhythmic circular/side-to-side movements of the jaw not associated with eating
or medium activity, interrupted by brief (<5 s) pauses during the time that bolus
is swallowed, followed by a continuation of rhythmic jaw movements.

Panting
(Heavy
Breathing)

Fast and shallow movement of thorax visible when looking animal from side,
along with forward heaving movement of body while breathing. May or may not
have open mouth, salivation, and/or extended tongue.

High
Activity

Includes any combination of running, mounting, head-butting, repetitive
head-weaving/tossing, leaping, buck-kicking, rearing and head tossing.

Eating Muzzle/tongue physically contacts and manipulates feed, often but not always
followed by visible chewing.

Grazing Eating (see above definition) growing grass and pasture, while either standing in
place or moving at slow, even or uneven pace between patches.

Walking Slow movement, limb movement, except running.

Medium
Activity

Any activity other than the above states.

3.1.1. Data Segmentation

The first step in data processing is the segmentation. The data are grouped by cattle of
the same sex and breed. Because the original data are massive, we segment the data using
RStudio and R programming language. Table 2 shows the number of cows segmented and
integrated. A vast amount of data facilitates the analysis of overall data characteristics
and avoid errors caused by individual and particular data. As a result, the resting state of
Brahman’s Female is used to demonstrate data processing and prediction.

Table 2. The number of cattle of different breeds and genders.

Category Number

Angus Female 13

Angus Male 14

Brahman Female 14

Brahman Male 5

Brangus Female 10

Brangus Male 0

Charolais Female 3

Charolais Male 1

crossbred Female 38

crossbred Male 0

Total number 98

3.1.2. Data Cleaning

When the sensor detects and transmits the status of the cow, it also sends a lot of
invalid data. The accuracy of the original data will be considerably influenced if using
these data directly. Therefore, the initial step is to clear up the corrupted data.

Because the data returned by the sensor represents the cattle’s states at a specific point
in time, quantifying that state is critical for further design. In this work, the time of various
states each hour in minutes is taken as the research object. Because corrupted or invalid
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data usually aggregate, identifying the point at which incorrect data arrives as 0 is not
precise. For example, if there is a large amount of damage data in an hour, the rest state
of the cattle for that hour will be marked as 0 min, which will affect the calculation of the
average single period. Therefore, deleting corrupted data and the corresponding time serial
number, to ensure that they are not included in the calculation of the average period.

The flow chart of data cleaning is shown in Figure 1. Data cleaning mainly focuses
on the segmented data to clean and organize and finally obtains the cleaned data and
its corresponding time series. This step primarily calculates the resting time of cattle in
each hour. If it exists any corrupted data during the calculated hour, that hour’s data will
be destroyed.

Figure 1. Process flow chart of data cleaning.

3.2. The State of Cattle throughout the Sampling Period

Acquiring the cattle’s state changes across the sample period needs to average one
group’s data of cows due to large amount of discrete and lost data from a single cow.
For example, averaging the resting time per hour of 14 Brahman females can determine
variations in the resting state of Brahman treated during the sample period. The time
series after data cleaning are different between each cattle’s data set, since invalid data
collected by sensors in the farm’s IoT system is usually a random process. Therefore, the
data processing in this step is to average the state data of the cattle with the same time
serial number and obtain the state curve of the cattle in the whole cycle. The process flow
chart of an average state time for several cattle can be found in Figure 2.

Figure 2. Process flow chart of average state times for multiple cattle.
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The state diagram of cattle in the entire cycle can be obtained after the program has
been executed. Figure 3 shows the calculated hourly rest time of the cattle in the whole
cycle (Brahman Female). The number on the abscissa corresponds to the corresponding
day, which includes all 24 h. The ordinate represents the rest time corresponding to this
hour in minutes.

Figure 3. The resting time of Brahman Female during the whole sample period.

Figure 4 is a detailed zoomed-in part of Figure 3 and located between days 16 and
20. It is obvious that the rest time of cattle varies periodically with a cycle of one day. The
peaks of the daily rest time can be found in both early morning and late-night while the
valleys can usually be identified at forenoon and afternoon hours.

Figure 4. The enlarge vision shown 4 days.

3.3. The Average 24 h State of Cattle

The averaged single rest cycle data result (which is 24 h) of a single cattle is plotted in
Figure 5. The entire sampling cycle is approximately 52 days as shown in Figure 3. The
abscissa refers to the o’clock, i.e., from 0:00 to 23:59, and the ordinate relates to the rest
period in minutes at this hour (Brahman Female). The average period’s plot is flatter than
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a single period’s plot. However, the trend and structure of these two are nearly identical,
and a single cycle has more individual points and noises.

Figure 5. The average of one resting period for cattle(i.e., 24 h a day).

3.4. Fitting Curve for the Average State Period (24 h)

Curve fitting is commonly used to obtain the data relationship for such irregular
curves. Typical fitting methods include minimum binomial fitting, exponential function
fitting, power function fitting, and hyperbola fitting. Different fitting approaches are
compared in this section to obtain the most ideal mathematical model [24,25].

Table 3. The results of different fitting methods.

Fitting Method The Best Number of Items Variance

Gaussian Fitting 8 3.0037

Sum of sine 8 20.1288

Polynomial 9 245.3264

Fourier 8 25.4590

Four fitting approaches are utilized to fit the 24-h average rest duration of cattle: Gaus-
sian fitting, Sum of Sine fitting, Polynomial fitting, and Fourier fitting. The independent
variable is the time, and the dependent variable is the rest period of cattle corresponding to
that time while fitting the curve. The relationship between the time and the associated rest
time can be established, and the curve of the cattle’s rest period throughout the day can
be obtained. As indicated in Table 3, Gaussian (item number 8) fitting is found to be the
most accurate model among all candidates in terms of the fitting variance result. The error
variance of Gaussian fitting is only 3.0037, which is much smaller than that of other fitting
methods. The fitted curve shape is depicted in Figure 6, it is basically consistent with that
of the average period in Figure 5.

The formula of the fitting curve (Gauss eight-term) formula is:

f (x) =51.29e(−
x−2.823

2.957 )2
+ 44.42e(−

x−24.19
3.936 )2

+ 1.378 × 1014e(−
x+40.24

7.546 )2
+ 19.29e(−

x−13.55
3.22 )2

+ 16.18e(−
x−19.06
0.9367 )2

+ 19.25e(−
x−4.588
0.5802 )2

+ 29.29e(−
x−20.39

1.802 )2
+ 20.45e(−

x−9.812
2.834 )2

(1)

In Equation (1), x is the clock of a day, while f (x) denotes the rest time within one
hour of that clock. Regarding the low standard deviation and variance of this fitting result,
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this model is considered to be the proper candidate to describe the resting time of cattle in a
day for Brahman Females. The models for other breeds, genders and states can be obtained
in the same way.

Figure 6. The Gaussian Fitting for one average period.

3.5. Noise Reduction Using Low-Pass Finite Impulse Response (FIR) Filter

Throughout the sample period, the cattle’s condition varies on daily basis. The plot of
the entire activity cycle contains noise and outliers in Figure 3. Therefore, denoising the
sampled data is required.

FIR andInfinite Impulse Response (IIR) are two types of digital filters that are ex-
tensively employed. In theory, an IIR function’s filtering effect is superior to that of an
FIR function of the same order, but divergence can occur. The IIR digital filter has a high
precision for amplitude-frequency characteristics, and with a non-linear phase, it is suited
for audio signals that are insensitive to phase information. FIR digital filters have lesser
amplitude-frequency precision than IIR digital filters. However, the phase is linear, mean-
ing the time difference between signals of various frequency components remains unaltered
after going through the FIR filter. In addition, the calculation time delay is relatively tiny, it
is suited for real-time signal processing [26,26]. Because the state of the cattle is time-series
data, it is critical to ensure that the filtered phase remains constant. Therefore, in this work,
we use the FIR low-pass filter for denoising.

Cattle monitoring data are sampled once every 60 s in this study, resulting in a
sampling frequency of around 0.0167 Hz. This is a low-frequency sampling signal, and the
noise is present between each sampling. Noise frequency is more extensive than sampling
frequency, so the signal between 0 and 0.0167 Hz is kept while the signal above 0.0167 Hz
is eliminated. In Figure 7, the filter length is set to 5, and the filter’s shape corresponds to
its frequency. The filtered result is depicted in Figure 8, which uses the resting time of a
Brahman Female’s cow as an example.

Figure 7. The shape of the FIR filter and the frequency response.
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(a)

(b)

Figure 8. The resting time of cattle during the whole period after using the FIR filter. (a) The whole
sample period. (b) The enlarge vision shown 4 days.

Figure 8b is a local detailed version of Figure 8a, focusing on the comparison of
before using FIR filtering and after using FIR filtering from the 16th to the 20th day.
Data performance is optimized after the introduction of the FIR filter for smooth signal
processing, and the data trend can be clearly identified.

After going through the FIR filter, Figure 9 provides an image of a single rest period
(one day, Day 17). In comparison to Figure 5, it exhibits the same trend, i.e., one day’s
rest time after filtering is nearly the same as one day’s typical rest time. This feature
demonstrates that the cattle’s condition changes on a regular basis. It also indicates that the
FIR filtered signal is effective and precise. The FIR filter effectively minimizes noise and
eliminates outliers and gross inaccuracy. As a result, the signal filtered by the FIR filter can
be used for subsequent modelling and prediction.
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Figure 9. The single resting cycle after the FIR filter.

4. Prediction Based on LSTM Model

In DL, the LSTM network is a unique RNN model. Its unique structural design allows
it to avoid long-term reliance. The default nature of LSTM is to remember information
from a long time ago [12,17,27,28]. In this section, we employ the LSTM model to forecast
the status of cattle based on the above research content. To be more explicit, the structure
and properties of LSTM and how to construct an LSTM model are first discussed. Second,
using the LSTM model, the cattle status is modelled and forecasted. Finally, the model is
optimized in order to improve its accuracy.

4.1. Build the LSTM Model of the Cattle State

The program flow chart for establishing the LSTM model is shown in Figure 10. First,
import the data previously filtered by the FIR filter, and divide it into a test set and a training
set. Second, the LSTM model is created. Setting parameters: the number of input neurons,
output neurons, hidden neurons, learning rate, batch size, epoch size (i.e., the number of
training cycles) and the number of LSTM layers [29,30]. The loss error is chosen as the
mean square error, and the LSTM neural network is trained using the Adam optimisation
technique [31]. The cycle ends when the number of training times is reached, and the
lowest loss error will be the output.

Figure 10. The code process of building the LSTM model.
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4.2. Using the LSTM Model to Predict the State of Cattle

It is critical to determine the input, output, and time series before using the constructed
LSTM model for cattle state prediction. The cattle’s state must be presented as the output,
and the number of the independent variable hours must be seen as a time series, according
to the characteristics of the data sets. As a result, determining input variables is a chal-
lenging aspect of this approach. Because the output variable must be data with periodic
changes, the input must be a known fixed periodic function. Time series as a fixed periodic
function can be used as input. To be more specific, given that the state cycle of cattle is one
day, it is appropriate to determine the input variable as the number of hours on the clock
each day. The input and output variables, as well as the time series, for the resting time of
Brahman Female’s cattle are as follows:
Input: The number of hours on the clock each day (24 h).
Output: The resting time during this hour (e.g., The resting time at 7:00 means that the
resting time during one hour from 7:00 to 7:59).
Time series t: The sequence number of this hour (e.g., 0:00 a.m. on the first day is the first
hour, and t is 1. So on, 0:00am on the second day is the 25th h, and t is 25) [30,32].

• Training:
Both the input and output data are periodicities. The distinction is that the input in
this cycle has a set value and trend, whereas the output in each cycle has a varied
value. For example, the input is 0 at 0:00 a.m. on Day 17th and 0:00 a.m. on Day
24th, as shown by the two red lines in Figure 11, but the output is different. In other
words, the same input might result in multiple outcomes regardless of time. Although
the input is the same, the input’s matching time series is not. As a result, when a
single input correlates to numerous outputs in a time series, the LSTM model can
successfully handle the problem.

Figure 11. The input and output based on the LSTM model.

• Testing and prediction:
In total, 90% of the data is used for training, and 10% for prediction and testing. For
example, the input data sets for training are inputt1 through inputt90 , while the data
sets for testing are inputt91 through inputt100 . The training outcomes are depicted in
Figure 12.
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Figure 12. The predictive results after training and testing.

The predict and actual results are similarly shown in Figure 12. This means the digital
twin model for individual cattle is basically established. The training loss reduces during
the training process, showing that the model is converged and practical in Figure 13.
However, the prediction results’ error is relatively significant, which indicates further
requirements of the parameter optimization in the model.

Figure 13. The training loss.

4.3. Parameter Optimization

For optimization and comparison purposes, the number of hidden units, LSTM layers,
the batch size, and the epoch size were all modified [29,30].
Hidden units size: 4, 8, 16, 32, 64, 128, 256.
The number of LSTM layers: 1, 2, 3, 4, 5, 6, 7.
The batch size: 3, 6, 12, 24, 48, 96.
The epoch size: 100, 500, 1000, 2000, 5000, 10,000, 20,000.

• Selection of the number of LSTM layers
The number of hidden units is 16, the batch size is 24, and the epoch size is 2000, all
of which are randomly chosen. Only the number of layers in the LSTM is modified
with the other parameters fixed: 1, 2, 3, 4, 5, 6, 7. The box diagram for the mean square
deviation in the model learning process is shown in Figure 14.
The top line and bottom line represent the edge’s maximum and minimum values,
respectively. The upper quartile is represented by the box’s upper edge, while the
box’s lower edge represents the lower quartile. The orange line represents the median.
Comparing the seven box charts, increasing the number of layers has a minor impact
on the mean square error of model training [33].When the number of layers is 5, 6
and 7, the error of the LSTM model will be stabilized to a fixed value immediately
after a short training. As shown in Figure 14, the box plot has many outliers (that is,
large outliers, black circles in the figure), and the median, upper quartile, and lower
quartile overlap. However, in terms of model performance, using more LSTM layers,
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the running speed will be slower and it becomes more complex, and the result of the
model operation is affected [34,35]. The loss error of the test set is positively correlated
with that of the training set, and it is the smallest when the number of layers is 2. As a
result, two layers of LSTM are best for this model.

(a) (b)

Figure 14. The mean square error with different numbers of LSTM layers. (a) The training error with
different number of LSTM layers. (b) The test error with different number of LSTM layers.

• Selection of the hidden units size
To determine the size of the hidden units, we keep the batch size and epoch size
unchanged and run the LSTM model with different hidden units size, i.e., 4, 8, 16, 32,
64, 128, 256. The box diagram of the mean square is shown in Figure 15. In terms of
error size and ultimate training effect, the choice of 128 hidden units is the best for
training the data, with the majority of the mean square error values falling below 25,
and the loss error of the test set is the smallest.

(a) (b)

Figure 15. The mean square error with different hidden units size. (a) The training error with different
hidden units size. (b) The test error with different hidden units size.

• Selection of the batch size
The batch size, which can be 3, 6, 12, 24, 48, or 96, is altered when using two layers of
LSTM with 128 hidden units. The box diagram is shown in Figure 16. The batch size
refers to the number of samples fed into the model at once and divides the original
data set into batch size data sets for independent training. This method helps to
speed up training while also consuming less memory [36]. To some extent, batch size
training can help to prevent the problem of overfitting [37]. As a result, when building
the model, an acceptable batch size should be chosen. When the batch size is 24, the
minimum value of the produced mean square deviation data set is the smallest in
terms of minimum value and median, as well as the test error value.
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(a) (b)

Figure 16. The mean square error with different batch sizes. (a) The training error with different
batch sizes. (b) The test error with different batch sizes.

• Selection of the epoch size
Select two layers of LSTM with 128 hidden units and the batch size is 24, but the epoch
size can be any of 100, 500, 1000, 2000, 5000, 10,000, or 20,000. Figure 17 shows a box
diagram for the mean square deviation in the model learning process.

(a) (b)

Figure 17. The mean square error with different epoch sizes. (a) The training error with different
epoch sizes. (b) The test error with different epoch size.

The epoch size is the number of times the learning algorithm works in the entire
training data set. An epoch means that each sample in the training data set has the
opportunity to update internal model parameters [38]. In theory, the more training
sessions there are, the better the fit and the lower the error. In practice, however,
overfitting occurs when the epoch size exceeds a specific threshold, causing the
training outcomes to deteriorate [39]. The epoch size of 100, 500, 1000, 2000, 5000,
10,000, and 20,000 is chosen in Figure 17. The inaccuracy rapidly decreases and
approaches zero as the epoch size increases from 100 to 10,000. When the epoch size
increases to 20,000, the error is still tiny, but it is greater than when the epoch size is
10,000, indicating an overfitting occurrence. Therefore, the model with a 10,000 epoch
size has the best effect.

Figure 18 shows the training and prediction outcomes after optimizing model parame-
ters, while Figure 19 shows the loss value after optimizing parameters. The best parameters
for the LSTM model are shown in Table 4. The LSTM model has a good prediction of
the resting state of cattle, which largely adheres to the periodic changes in cattle state
and has a modest error. Therefore, the digital twin model for cattle has been established
and optimized.
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Figure 18. The training and prediction after optimizing model parameters.

Figure 19. The training loss after optimizing model parameters.

Table 4. The best parameters for the LSTM model.

Hidden Neurons 128

Batch size 24

Epoch size 10,000

LSTM layers 2

Loss-train 0.57953376

Loss-test 5.197178

5. Results and Analysis

Figure 20 depict the LSTM model’s training and prediction on different sexes, breeds,
and states, respectively. This shows the applicability of this model, which can be used to
predict various states of different cattle.

The trend of the results predicted by this LSTM model is nearly identical to the actual
data. The model for Brahman males performs relatively poorly, which can be attributed to
their relatively random rest state, poor cycle regularity, and other external environmental
factors. It is possible that increasing the size of the data collection may result in improved
predictions. Overall, the LSTM-based model for the cattle state cycle is accurate and
effective, and it can accurately predict the dynamic trend of the next cattle state cycle.
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In this way, the digital twin model can effectively predict the future time budget of
cattle, which is conducive to efficient cattle breeding. Predict the future behaviour of cattle
in advance so that appropriate preventive measures can be prepared.

(a)

(b)

(c)

Figure 20. Applicability of the model. (a) Brahman Male cattle (Rest). (b) Angus Female cattle (Rest).
(c) Brahman Female cattle (Pant).

386



Sensors 2022, 22, 7118

6. Conclusions

The construction of a smart digital twin model of the state of cattle is primarily
achieved in this work. It is primarily built on a farm IoT system to collect the state data of
cattle under various combined treatments, with data cleaning and calculating. The average
data of 24 h are fitted, and the data of the whole sampling period are de-noised. In addition,
a deep learning-based LSTM model for cattle state dynamics is developed using the data
after noise reduction, and the model can predict the state change of cattle in the next cycle.
The model’s accuracy and effectiveness are demonstrated when the prediction results are
compared to the actual results. After optimization, the loss error of the training set is
reduced to about 0.580, and the loss error of the prediction set is about 5.197. Using this
digital twin model, the future time budget of cattle can be predicted quickly and accurately.

This model has certain limits as well, it requires a large quantity of data to learn, and a
little amount of data will cause the model to be inaccurate. Furthermore, encapsulating
the entire research into one system is a critical step toward commercializing digital twins
in the future. In addition, estimating the time budget of cattle in advance necessitates
human prediction of cow health conditions. Fully automated cow feeding and real-time
monitoring of cattle condition and health are desirable in the future.
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