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Preface to ”Challenges and Perspectives of

Neurological Disorders”

This Special Issue reprint consists of 11 articles published in Brain Sciences from a call for

papers on the topic of “Challenges and Perspectives of Neurological Disorders“, which welcomed

contributions from various disciplines and perspectives on this important and timely field.

Neurological disorders are one of the most significant issues in medicine and public health today.

They affect a large population worldwide and place a huge burden on society and the economy.

However, there are still many challenges and gaps in the prevention, diagnosis, treatment, and

rehabilitation of neurological disorders. Therefore, there is a need for more information and

knowledge sharing among different disciplines and stakeholders.

The purpose of this Special Issue is to offer a comprehensive and in-depth understanding of

the current situation and future development of neurological disorders. It explores various aspects of

neurological disorders, from basic science to clinical practice, and examines the mechanisms, genetics,

markers, images, surgeries, lifestyle changes, and other topics of neurological disorders.

The target audience for this Special Issue is anyone who is interested in or involved in the field

of neurological disorders. The authors involved in this Special Issue are distinguished experts who

have shared their valuable insights and experiences on various topics of neurological disorders.

We would like to express our sincere gratitude to all the authors, reviewers, and the editorial

team of the journal for their excellent work and cooperation.

Woon-Man Kung and Dina Nur Anggraini Ningrum

Editors
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Neurological disorders pose significant challenges to healthcare systems worldwide.
These conditions can severely impact an individual’s quality of life, leading to physical,
emotional, and cognitive impairments [1]. Managing neurological disorders often requires
specialized care, including access to medical experts, various diagnostic tools, and compli-
cated treatment options. Unfortunately, most real-world scenarios lack sufficient resources
to provide adequate care to patients with neurological disorders. Furthermore, the complex-
ity of these conditions makes diagnosis and treatment difficult, leading to misdiagnosis and
delayed care, which can exacerbate symptoms and increase the burden on patients and care-
givers [2]. Addressing these challenges requires a comprehensive approach that includes
improving access to care, investing in research to advance diagnostic and treatment options,
and increasing public awareness of neurological disorders [3]. The articles contained in this
Special Issue highlight significant advances and encourage further investigational efforts in
this exciting field.

The hereditary etiology of neuronal intranuclear inclusion disease (NIID) and its exis-
tence in other neurodegenerative disorders is an interesting theme. A study by Wan et al.
screened 476 individuals with amyotrophic lateral sclerosis (ALS) and 210 individuals
without ALS for the manifestation of a GGC repeat expansion in the Notch Homolog
2 N-terminal-like C gene (NOTCH2NLC). The outcomes indicated that intermediate
NOTCH2NLC GGC repeat expansion was connected with Chinese patients with ALS [4].

Zhou et al. reported a rare case report of an individual with NIID who presented with
mitochondrial encephalomyopathy, lactic acidosis, and stroke-like (MELAS-like) symptoms,
as well as reversible brain magnetic resonance imaging (MRI) diffusion-weighted imaging
(DWI) hyperintensities. The diagnosis of this presented case was determined through skin
biopsy in addition to genetic testing, in which a steroid treatment resulted in improved
symptoms and neuroimaging. This article emphasizes the importance of distinguishing
NIID from MELAS and the potential for reversible DWI hyperintensities in NIID [5].

Avramouli’s laboratory analyzed the role of proteolipid protein (PLP) 1 missense point
mutations in the pathogenicity of multiple sclerosis (MS). Computational structural biology
methods were applied for the evaluation of these mutation effects on the structural stability
and flexibility of PLP1. This study demonstrated that the vast majority of variants can
change the functionality of protein structures, and in silico genomic methods were likewise
carried out to predict the importance of these mutations related to protein functionality. The
study suggests that a better description of therapeutic applications and clinical strategies in
patients with MS can be achieved by further research into the impact of these mutations [6].

Jiao et al. used radiomics analysis to improve classification accuracy in individuals
with Alzheimer’s disease (AD) and mild cognitive impairment (MCI). They aimed to
identify high-order features from pathological biomarkers and to improve classification
accuracy based on tau positron emission tomography (PET) images. Distinct cohorts were
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used in the study, and the radiomics features of tau PET imaging of AD-related brain
regions were computed for classification using a support vector machine (SVM) model. The
model was trained and validated in the first cohort and tested in the second. The results
showed that Tau PET radiomics analysis offers a perspective to anticipate clinical diagnosis
as well as to figure out risk factors in MCI patients [7].

The study proposed by Jiang et al. features a new machine learning (ML) analytical
method that utilizes electroencephalography (EEG), eye tracking (ET), and neuropsycho-
logical assessments to screen for MCI in the community. The proposed model achieved
high classification accuracy in both training and validation groups and in an independent
test group. The proposed model also provided exceptional classification performances,
advocating its capacity for subsequent use in predicting cognitive decline [8].

Besides the previously mentioned ML approach, this study proposed another novel
model utilizing deep learning radiomics (DLR) by Zhao et al. to differentiate AD, MCI,
and normal control (NC) subjects by tau PET scans. The DLR model performed the
most outstanding classification performance, when compared to traditional models, thus
demonstrating potential clinical value in discriminating AD, MCI, and NC [9].

Notably, the application of a new second-generation tau radiotracer, 18F-Florzolotau,
was investigated to estimate the association of regional tau accumulation and brain func-
tional connectivity (FC) abnormalities in patients with AD and MCI. Additionally, the
proportion loss of functional connectivity strength (PLFCS) was found to be a new indicator
of brain FC alteration. In the research performed by Ju et al., the authors found that PLFCS
and functional connection strength (FCs) were higher in the AD and MCI groups when
compared to the normal control group. The study concludes that brain FC abnormality is
correlated with tau pathology in AD and MCI [10].

In a clinical study, Lee et al. implied that natural killer activity (NKA) was significantly
impaired in glioblastoma patients, but it recovered and was significantly enhanced on post-
operative day (POD) 30, particularly in patients who underwent gross total resection (GTR)
when compared to those who underwent subtotal resection (STR). The impaired NKA
recovery was also associated with an increase in the CD56brightCD16- NK cell subset. There-
fore, the study suggests that GTR may improve NKA and increase the CD56brightCD16-

NK subset, which could be associated with subsequent patient prognosis, and should be
performed when possible [11].

In the following research by Yi et al., the association of residual stenosis severity or
reperfusion status with artery reocclusion following endovascular treatment for patients
with middle cerebral artery (MCA) atherosclerotic ischemic occlusions was inspected. The
authors showed that reperfusion status was significantly associated with intraprocedu-
ral reocclusion, and individuals experiencing effective thrombectomy reperfusion had a
smaller proportion of intraprocedural occlusion regardless of residual stenosis severity.
Moreover, once effective reperfusion was attained, the delayed reocclusion rate was rela-
tively decreased and did not significantly differ between individuals with severe residual
stenosis and patients with mild to moderate residual stenosis [12].

Riso’s team investigated Erdheim–Chester disease (ECD), an unusual clonal disorder
of histiocytic myeloid precursors depicted by multisystem involvement, and its neurological
presentations. They retrospectively collected and described a small number of patients with
ECD, all revealing cerebellar presentations. The ECD clinical neurological manifestation
always includes cerebellar features, demonstrating a subacute or progressive course. The
study suggests that recognizing ECD can be extremely challenging with certain unique
expressions that are beneficial for addressing it [13].

Finally, it is important to notice that the accessibility of virtual reality (VR) technology
for people with neurological disorders has not been explored extensively. An innovative
perspective communication by Moon et al. suggests that future research should focus on
expanding the use of VR technology for diagnostic purposes and studying its potential
benefits in neurological disorders [14].
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In summary, these articles reflect recent advances and explore the use of innovative
technologies and techniques in the field of neurology. We aim to explore an updated ad-
vancement of scientific knowledge to improve patient care. In hope that this collection will
not only stimulate further research studies, we expect researchers and clinicians to facilitate
the importance of making these tools accessible to individuals with neurological disorders.
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the manuscript.
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Abstract: GGC repeat expansions in the 5’ untranslated region (5’UTR) of the Notch Homolog
2 N-terminal-like C gene (NOTCH2NLC) have been reported to be the genetic cause of neuronal
intranuclear inclusion disease (NIID). However, whether they exist in other neurodegenerative disor-
ders remains unclear. To determine whether there is a medium-length amplification of NOTCH2NLC
in patients with amyotrophic lateral sclerosis (ALS), we screened 476 ALS patients and 210 healthy
controls for the presence of a GGC repeat expansion in NOTCH2NLC by using repeat-primed poly-
merase chain reaction (RP-PCR) and fragment analysis. The repeat number in ALS patients was
16.11 ± 5.7 (range 7–46), whereas the repeat number in control subjects was 16.19 ± 3.79 (range
10–29). An intermediate-length GGC repeat expansion was observed in two ALS patients (numbers of
repeats: 45, 46; normal repeat number ≤ 40) but not in the control group. The results suggested that
the intermediate NOTCH2NLC GGC repeat expansion was associated with Chinese ALS patients, and
further functional studies for intermediate-length variation are required to identify the mechanism.

Keywords: amyotrophic lateral sclerosis; NOTCH2NLC; intermediate-length repeats; nucleotide
repeat expansion

1. Introduction

Recently, increasing numbers of repeat-expansion-related genes were identified as the
causes of neurological disease [1]. Among them, a trinucleotide repeat (GGC) abnormal
expansion in the 5′-untranslated region of the Notch Homolog 2 N-Terminal-Like C gene
(NOTCH2NLC) in chromosome 1 attracted substantial attention and was reported as the
cause of neuronal intranuclear inclusion disease (NIID) in Chinese and Japanese studies [2–4].
The NOTCH2NLC gene is one of the three paralogs of the NOTCH2 receptor, which plays
a vital role in human cortex expansion [5]. NIID is a rare disease mainly involving nervous
symptoms and is pathologically characterized by the presence of eosinophilic, p62- and
ubiquitin-positive intranuclear inclusions in cells of the skin, peripheral and central nervous
systems, and other visceral organs [6]. Furthermore, pathogenic expansion can be detected in
a small proportion of patients with other neurological diseases such as dementia, Parkinson’s
syndrome, peripheral neuropathy, myopathy, leukoencephalopathy, and essential tremor.

In addition to finding new repeat-expansion-related genes and new links to various
diseases, researchers have shown interest in the association between the length of repeat
expansion and clinical types. Short repeats in NOTCH2NLC are associated with NIID
Parkinson’s disease dominant subtype (NIID-P), while the intermediate and long expansion
is linked to NIID dementia dominant subtype (NIID-D) and myasthenic dominant subtype
(NIID-M), respectively [7]. Intermediate-length repeat expansion refers to repeat sizes
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between normal and pathogenic ranges and has not previously received enough attention.
Generally, the normal repeat size is less than 40 times in the general population, and the
abnormal repeat size is more than 40 times. The pathogenic repeat expansion mutation is
a repeat size exceeding 60 repeats, and the intermediate length is a repeat size between
40 and 60 repeats [7].

Amyotrophic lateral sclerosis (ALS) is a type of neurodegenerative disease that
presents with insidious muscle weakness and atrophy caused by upper and lower motor
neuron degeneration in the brain and spinal cord [8]. Motor neuron degeneration causes
severe limb weakness, muscle fasciculations, disturbed speech, dysphagia, and death due
to respiratory failure 3–5 years after disease onset. The etiology and risk factors for ALS re-
main unclear. Various genetic and environmental factors have been identified to contribute
to the development of ALS [9]. To date, more than 40 genes have been identified to be
associated with amyotrophic lateral sclerosis, and SOD1, TARDBP, FUS, and C9ORF72 are
the most common pathogenic genes in familial ALS (FALS) [10]. The intermediate-length
(G4C2)n repeat expansion in C9ORF72 and the CAG repeat expansion in ATXN2 are as-
sociated with ALS and increase sporadic ALS(SALS) risk [11,12]. Identifying ALS-related
genes can help to understand the disease’s pathogenesis.

There are many similarities in clinical manifestations and pathological phenotypes
between the NIID-M and ALS. For example, muscle weakness in limbs and ubiquitin- and
p62-positive intranuclear inclusions can be found in NIID-M and ALS [6,13,14]. Further-
more, repeat-expansion-related genes play a vital role in ALS. Therefore, the association
between the intermediate-length expansion of GGC in NOTHCH2NLC and ALS draws
wide attention. In a study with 545 patients in mainland China, intermediate-length
mutations were found [15]. However, in a study in Taiwan with 304 patients, no abnor-
mal GGC expansion was found in ALS patients [16]. Owing to the clinical significance
and current controversial results, further investigation is required to determine whether
intermediate-length expansions specifically affect ALS.

In this study, we detected GGC repeat expansion in the NOTCH2NLC gene in a large
cohort of Chinese ALS patients and investigated the relationship between NOTCH2NLC
GGC repeat expansion and ALS. We found intermediate-length GGC repeat expansions in
two ALS patients. The results suggested that the intermediate-length GGC repeat expansion
in NOTCH2NLC was associated with ALS.

2. Methods

2.1. Subjects

The study included 476 Han Chinese ALS patients and 210 healthy controls from the
Department of Neurology of Peking University Third Hospital between 2017 and 2020. All
ALS cases met diagnostic criteria for ALS (the Escorial criteria [8]), with a diagnostic grade
consistent with probable, suspected, or laboratory support-suspected diagnoses, and FALS
patients with a family history were excluded. The patients had a negative gene screening
test for SOD1, TARDBP, FUS, and C9ORF72. The control cohort was defined as people
without possible neurodegenerative diseases, such as motor neuron disease, Alzheimer’s
disease, and Parkinson’s disease, and a family history of the above diseases was excluded
based on case records. The healthy control subjects were enlisted in the same area between
2017 and 2020. The age, sex, and race of the ALS group and the healthy control group
were matched. The study was approved by the ethics committee of Peking University
Third Hospital, and all participants signed informed consent forms. Study protocols were
approved by the Ethics Committee review boards of Peking University Third Hospital. All
human research in this study was conducted according to the Declaration of Helsinki.

2.2. Demographic and Clinical Data

Clinical data, including age, sex, history, family history, age of onset, and site of
onset, were collected. Neurological examinations were administered by two neurologists
experienced in treating ALS patients. The disease onset site was defined as bulbar onset
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or spinal onset. The Amyotrophic Lateral Sclerosis Functional Rating Scale (ALSFRS-R)
was assessed to evaluate disease severity functional limitations in ALS patients. The Mini-
Mental State Examination (MMSE) score, Edinburgh Cognitive and Behavior ALS Screen
(ECAS), electromyogram (ECG), and cerebral fluid examinations were administered to
some ALS patients. Demographic data in healthy controls, such as sex, age, and place of
origin, were collected.

2.3. Blood Collection and DNA Extraction

Whole peripheral blood from participants was collected in ethylenediaminetetraacetic
acid (EDTA) tubes. Genomic DNA was extracted using whole blood genomic DNA extrac-
tion kits (Aidlab Biotechnologies Co., Ltd, Beijing, China)DNA concentration and purity
were assessed spectrophotometrically at 260 and 280 nm using a Nanodrop 2000. DNA
was diluted to 20-100 ng/μL and used as a working solution.

2.4. Polymerase Chain Reaction Analysis

The NOTCH2NLC GGC repeat size was analyzed as previously described [3] but
with small modifications. We used fragment analysis to identify the size of the frag-
ment and repeat-primed PCR (RP-PCR) to identify whether it had abnormal expan-
sions. For the fragment analysis, the PCR primer mix contained two primers, 0.3 μM
NOTCH2NLC-F( 5′-FAM- CATTTGCGCCTGTGCTTCGGAC-3′) and 0.3 μM NOTCH2NLC-
R (5′-AGAGCGGCGCAGGGCGGGCATCTT-3′). For RP-PCR, the PCR primer mix con-
tained three primers: 0.3 μM NOTCH2NLC-F(5′-FAM- GGCA TTTG CGCC TGTG CTTCGG
ACCGT-3′), 0.3 μM M13-(GGC)4(GGA)2 R (5′- CAGGAAAC AGCT ATGA CCTC CTCC
GCCG CCGCCGCC-3′, and 0.3 μM M13-linker-R(5′-CAGGAAACAGCTATGACC-3′). The
PCR mix contained 0.25 U PrimeSTAR GXL DNA Polymerase, 1× PrimeSTAR GXL Buffer,
200 μM each dNTP Mixture (Takara Biomedical Technology (Beijing) Co., Ltd., Beijing,
China), 5% dimethyl sulfoxide (sigma Aldrich (Shanghai) Trading Co., Ltd. Shanghai,
China), 1 M betaine (Sigma-Aldrich), 0.3 μM each primer mix and 20–100 ng genomic
DNA in a total reaction volume of 10 μL. For the two-primer PCR, the initial denaturation
temperature was set at 98 ◦C for 10 min, then 30 cycles were initiated: 8 ◦C for 30 s, 58 ◦C
for 1 min, and 68 ◦C for 2 min, followed by a final elongation step of 68 ◦C for 10 min. For
the RP_PCR, the cycling conditions were set as follows: 16 cycles of 98 ◦C for 30 s, 72 ◦C for
15 s with a reduction of 0.5 ◦C per cycle, and 68 ◦C for 30 s, and 29 cycles of 98 ◦C for 30 s,
62 ◦C for 15 s and 68 ◦C for 30 s, followed by a final elongation step of 68 ◦C for 10 min. All
PCR products were collected for capillary electrophoresis.

2.5. Capillary Electrophoresis

Electrophoresis was performed on a 3730xl DNA Analyzer (Applied Biosystems Inc,
Foster City, USA) using the 500 LIZ dye Size Standard, and the data were analyzed by
GeneMarker software. For the fragment analysis, the length of the highest signal peak
of two-primer PCR product capillary electrophoresis in two alleles was used to calculate
the repeat GGC size, and the larger one was used as the repeat size of the participants, as
NIID is dominantly inherited. The calculation method was applied according to the results
of first-generation sequencing in a standard patient and reference human genome hg38.
Capillary electrophoresis of the RP-PCR product was used to identify the result, and a
sawtooth tail pattern in the electropherogram was judged as abnormal repeat expansion.

2.6. Statistical Analysis

SPSS 22 was used for data processing. For measurement data, those with a normal
distribution after inspection were expressed as the mean ± standard deviation (x ± s). To
explore the correlation between CSF protein level and GGC repeat size, Spearman’s test
was used. A two-tailed p < 0.05 was considered to demonstrate statistical significance.
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3. Results

3.1. Clinical Data

A total of 476 patients were involved in this cohort, including 324 males and
152 females, and the control participants consisted of 120 males and 90 females. The
mean age of ALS patients was 53.21 ± 11.66, while the age at enrollment for the control
cohort was 52.58 ± 11.73. In total, 389 patients (81.7%) had initial spinal cord involvement,
while 87 ALS patients (18.2%) had bulbar involvement initially. No patient had initial
respiratory muscle involvement. A summary of the clinical features and demographic
information of ALS and control participants is presented in Table 1.

Table 1. Demographic characteristics of ALS patients and healthy controls.

ALS Patients Healthy Controls

Total 476 210
Male 324 (68.07%) 120 (57.14%)

Female 152 (31.93%) 90 (42.86%)
Age at onset
Mean ± SD 53.21 ± 11.66 52.58 ± 11.73 a

Site of onset
Bulbar 87 (18.2%) -
Spinal 389 (81.7%) -

Abbreviations: SD: standard deviation. a Age at enrollment for the control cohort.

3.2. (GGC)n Expansion of NOTCH2NLC

By performing capillary electrophoresis of the two-primer PCR and repeated primer
PCR product, we found that the repeat size was between 7 and 46 in the 476 ALS patients,
and the mean number of repeats was 16.11 ± 5.7. Among them, 2 ALS cases (4.20%) had
more than 40 repeats, and the repeats were 45 times and 46 times. RP-PCR revealed the
sawtooth pattern, which identified abnormal repeat expansion (Figure 1).

Figure 1. Fragment analysis (green) and repeat-primed PCR (blue) for two ALS patients harboring
GGC intermediate-length repeat expansions. Fragment analysis showed the fragment size and the
length of the highest signal peak (arrows). Repeat-primed PCR showed a sawtooth tail pattern of
repeat expansion.

The repeat numbers in the controls were all less than 40 times, the repeat number was
10–29 in the controls, and the mean number of repeats was 16.19 ± 3.79. The distribution of
the repeat sizes for the ALS patients and controls is shown in Figure 2.
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Figure 2. Distribution of the sizes of the NOTCH2NLC GGC repeats in 476 patients with ALS and
210 healthy controls.

3.3. Clinical Features

We summarized the clinical data of two identified ALS patients with intermediate-
length GGC repeat, and the details are listed in Table 2.

Table 2. Clinical characteristics of amyotrophic lateral sclerosis patients with intermediate GGC
repeat expansion.

Patient.No Gender Onset Age (y) Site of Onset
Diagnosis
Delay (mo)

Duration of
Disease (mo)

ALS-FRS
NOTCH2NLC
Repeat Size

1 male 50 Right lower
limb 30 35 34 46

2 female 62 bilateral
upper limbs 6 30 40 45

Abbreviations: ALS-FRS: ALS Functional Rating Scale.

Patient 1 was a 52-year-old male who carried 46 repeats. He initially presented with
muscle weakness in the right foot at 50 years of age. Then, he showed muscle weakness in the
four limbs and dysarthria gradually in the following two years. Neurological examination
showed increased tendon reflexes in all extremities, and the Babinski sign, Hoffmann sign,
abdominal reflex, and Maxillofacial reflex were all positive. Altogether, damage existed in the
four upper motor units of the bulbar, cervical, thoracic and lumbar segments and three lower
motor units of the bulbar, cervical, and lumbar segments. The ECAS score was 83, which is in
the normal range. Brain magnetic resonance imaging (MRI) showed unspecific periventricular
and subcortical white matter lesions (image unavailable). At that time, electromyography
showed abundant and diffuse ongoing denervation (spontaneous potentials) and chronic
reinnervation changes in the cervical, thoracic and lumbar segments. Sensory conduction
studies showed compound muscle action potential (CMAP) reduction in both the ulnar and
right median nerves. Pulmonary function indicated restrictive ventilatory dysfunction, the
residual capacity ratio increased, and forced vital capacity (FVC) was 52%. Cerebrospinal
fluid (CSF) examination showed elevated protein 338 mg/L, and oligoclonal bands were
suspiciously positive both in the CSF and blood. He was clinically diagnosed with definite
ALS in the third stage of KCSS and then died of respiratory failure 35 months after onset.
Systemic examinations on tumor and immunological disease, including immunological index,
tumor marker, and positron emission tomography computer tomography (PET-CT), were
performed to exclude ALS mimics. Besides Riluzole, he had been treated with Intravenous
Immunoglobulin Gamma (IVIG) because of his insistence. Nevertheless, IVIG did not improve
his condition and prognosis.
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Patient 2 was a female with 45 GGC. She complained of muscle weakness in both upper
limbs at the age of 62. In the following two years, she suffered from muscle weakness in
both lower limbs, dysarthria, and dysphagia. The patient was psychologically unstable in
the past, regularly taking risperidone. In addition, she had transient cognitive impairment
and urinary incontinence at the age of 61. Six months after onset, the physical examination
showed damage in the three upper motor units of the bulbar, thoracic, and lumbar segments
and one lower motor unit of the cervical segments. The cognitive function examination
showed an ECAS score of 49 points and an MMSE score of 22 points, indicating cognitive
impairment. Electromyography showed decreased amplitude in both upper extremity nerve
motor conduction and the spontaneous potential of the bulbar and cervical segments. Brain
MRI showed mild white matter lesions and lesions in the right parietal lobe, brain atrophy,
and an enlarged ventricle (shown in Figure 3). According to history and imaging features, the
lesion in the right parietal lobe was malacia due to cerebral infarction in the past.

Figure 3. Brain MRI image in patient 2. (a) T1 weighted image, (b) T2 weighted image,
(c) T2 Fluid-attenuated inversion recovery image. The red arrow shows malacia in the right parietal
lobe, and the white arrow indicates a white matter lesion.

Thorough blood and CSF examinations were completed to exclude ALS mimics and
other similar diseases. Unfortunately, diffusion-weighted image sequencing, which helps
to identify NIID by exhibiting hyperintensities at the corticomedullary junction, was not
performed as a result of the under-recognition of NIID at that time. CSF examination
showed elevated protein 565.0 mg/L↑, and oligoclonal bands were suspiciously positive
both in the CSF and blood, similar to patient 1. Memantine was administered to improve
the patient’s cognitive function. She was conclusively clinically diagnosed with ALS and
then died of respiratory failure at 64 years of age, 30 months after the disease onset.

In summary, clinically, two patients presented with limbal muscle weakness and
gradually developed more severe limb weakness, dysarthria, and dyspnea. Examination
showed upper motor neuron signs in two patients (4 and 3 segments). Additionally, patient
2 presented with cognitive dysfunction, and two patients had mild white matter lesions,
although we do not know if they were related to the intermediate-length expansion. No
obvious abnormalities were identified in blood immunological function, inflammatory
index, or serum tumor markers. No unusual findings were detected by electrocardiography
or chest CT. Elevated protein was identified in the CSF, and suspicious oligoclonal bands
were detected in the CSF and blood.

4. Discussion

In this study, we aimed to study the role of intermediate-length GGC repeat expansion
in NOTCH2NLC in Chinese ALS patients. Therefore, we screened the NOTCH2NLC gene
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in 476 ALS patients and 210 controls and identified 2 intermediate-length GGC repeats
45 and 46 times in ALS patients and none in the control subjects, indicating that intermediate-
length GGC repeat expansion is associated with ALS.

It has been shown that the GGC repeat expansion in NOTCH2NLC is associated
with many neurologic disorders, such as Parkinson’s disease, frontal temporal dementia,
and essential tremor [17]. The GGC repeat size varies in NIID phenotypes and different
neurological diseases [7]. The normal GGC range in NOTCH2NLC was 5–38 in healthy
controls, while a repeat size > 60 indicated pathogenic GGC expansion [2]. More than
200 repetitions may increase susceptibility to NIID-M, and fewer than 100 repetitions may
be associated with Parkinson’s disease [7]. A total of 41-60 GGC repeats in NOTCH2NLC
were defined as intermediate-length repeat expansions [18], which have been identified
in many neurodegenerative diseases, such as Parkinson’s disease, leukoencephalopathy,
and Alzheimer’s disease [2,18–22]. For Parkinson’s disease, they found 11 patients with
41–52 repeats and 7 patients with 41–64 repeats in China and Singapore, respectively [18,19].
Fibroblasts from PD patients harboring intermediate-length repeat expansions revealed
NOTCH2NLC upregulation and autophagic dysfunction, which suggested that medium-
length repeat expansions in NOTCH2NLC were associated with PD [18]. Intermediate-
length GGC repeats 42–58 and 42–47 times were found in patients with Alzheimer’s disease
and leukoencephalopathy, respectively [21,22].

For ALS, Yuan et al. [15] found that the repeat size ranged from 7 to 143 units and
that GGC repeat expansion accounted for approximately 0.73% (4/545) of all ALS patients.
They concluded that ALS was a specific phenotype of NIID or that GGC expansion in
NOTCH2NLC was a modifiable factor for ALS. Similar to this study, intermediate GGC
repeat expansion was also found in 2 ALS patients carrying 44 and 54 repeats. Neverthe-
less, no GGC repeat expansion was found in another study in Taiwan [16]. Our study
provides evidence of the association between GGC repeat expansion and ALS. There
are also other repeat-expansion-related genes linked to ALS risk. Ataxin-2 intermediate-
length polyglutamine expansion is associated with increased ALS risk [12], and C9ORF72
intermediate-length repeat expansion is associated with corticobasal degeneration and
ALS [11,23]. The significance of intermediate duplications, therefore, needs to be em-
phasized, and further studies in larger populations are needed to determine appropriate
thresholds for pathogenic and normal duplications.

There are similarities in ALS patients with abnormal repeat expansion. There were
more than three segments of the upper motor unit and lower motor unit dysfunction
in these two patients with intermediate repeat expansion. The two patients both met
the diagnostic criteria determined by the EI Escorial and Gold coast, and other diseases
mimicking ALS were excluded [24]. We noted cognitive impairment in Patient 2 with
45 GGC repeats, similar to the two patients with 96 and 143 GGC repeat expansions in a
previous study [15], who presented with memory impairment and behavioral impairment.
In addition, a brain MRI showed mild white matter lesions in two patients, although the
change was not specific. Mild leukoencephalopathy was previously found in patients with
54 GGC repeat expansions [15]. NIID patients mainly manifest cognitive dysfunction and
leukoencephalopathy [6]. Another expansion disorder-related gene, C9ORF72, is the most
common cause of familial frontotemporal dementia and ALS [25]. Although the current
evidence is insufficient, these findings suggest that abnormal intermediate-length GGC
repeats may be associated with cognitive impairment and white matter lesions in ALS.

The elevated CSF protein also attracted our attention. However, the literature shows that
elevated CSF protein can be detected in both ALS and NIID [6]. Furthermore, we explored
the correlation between CSF protein level and repeat number using the available CSF protein
data in this ALS cohort. The results showed that the CSF protein level was not related to GGC
repeat size using the Spearman correlation test. A previous study found that the CSF protein
level determines a poor prognosis for spinal amyotrophic lateral sclerosis [26]. The cause
and role of elevated CSF protein levels in ALS remain unclear, and the relationship between
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elevated CSF protein levels and intermediate-length expansion has not been studied. We can
pay more attention to ALS patients with elevated CSF protein levels.

The overlap between NIID and ALS increased the difficulty of making a correct
diagnosis. NOTCH2NLC repeat expansion was not found in the previous Taiwanese ALS
cohort [16]. In addition, there are case reports that NIID may mimic the manifestations
of ALS [27], and GGC repeat expansions in NOTCH2NLC (repeat size 248) lead to lower
motor neuron syndrome [28]. Therefore, we need to be vigilant about whether the clinical
diagnosis of ALS patients with abnormal or intermediate-length GGC expansion found
by us was truly ALS. We can distinguish NIID-M from ALS by the following aspects, as
Yuan et al. previously described [15]. First, ALS is often accompanied by damage in upper
motor neurons, which leads to increased tendon reflexes and positive pathological signs,
such as the Babinski sign and Hoffmann sign. Second, the prognosis of NIID-M is relatively
better than that of ALS, and the disease duration is 16.6 and 3–5 years, respectively. Third,
electromyography and nerve conduction studies provide useful information to make the
correct diagnosis. The fibrillations and positive sharp-wave potentials cannot always
exist in NIID-M patients, especially in the early stages of the disease. However, there are
abundant and diffuse spontaneous potentials in ALS due to denervation. The performance
in the nerve conduction study also differs in the NIID-M and ALS patients. Slow motor
nerve conduction velocity (MCV) and sensory nerve conduction velocity (SCV) are more
common in NIID-M. When considering the diagnosis of our two patients in this study,
NOTCH2NLC can help us. The GGC repeat size in NIID is more than 60 times, and the
repeat size in muscle weakness-dominant NIID is generally more than 200 times [2–4],
while the GGC repeat size in the patients we reported is relatively small and cannot meet
the repeat expansion criteria in NIID. In addition, the NIID case that mimics ALS has
prominent lower motor neuron impairment, and upper motor unit impairment is not
obvious [27], different from our patients, who have a three-regional upper and lower motor
unit impairment. Therefore, enough evidence supports the ALS diagnosis.

The pathogenesis of GGC expansion in the NOTCH2NLC gene is currently unclear,
and researchers have summarized the possible mechanisms, including (1) the toxicity
of polyglycine-containing protein; (2) the toxicity of repeat RNA; (3) the GGC repeat
size of NOTCH2NLC; (4) the size and types of trinucleotide interruption; and (5) the
methylation status of NOTCH2NLC [7]. The current evidence mainly supports the formation
of polyglycine-containing proteins. Recently, it has been certified that GGC trinucleotide
repeats are translated into a polyglycine protein (N2NLCpolyG) through the upstream
reading frame (uORF). N2NLCpolyG is rapidly degraded under normal conditions without
GGC repeat expansion and does not produce aggregation, while the repeat expansion
of GGC carried by the patient increases glycine numbers, which significantly enhances
the stability and spontaneous aggregation of N2NLCpolyG, resulting in the formation of
abnormal inclusion body-like protein aggregation [29,30]. Furthermore, N2NLCpolyG
inclusions formed when GGC repeats expanded beyond 30, which may be one reason for
the pathogenicity of medium-length expansions.

There were some limitations in our study. First, some important examinations were
unavailable as the two patients passed away. Significant intensity signals in the DWI
sequence in the corticomedullary junction and the inclusion body in the nervous system
and skin were powerful cues for NIID diagnosis [6]. Nevertheless, we cannot obtain the two
above examination results to provide more evidence to further distinguish ALS and NIID.
Furthermore, the examination also helps to investigate the pathologic and imaging features
in ALS with intermediate-length GGC expansions. Additionally, the number of control
cases was 210 less than the ALS cohort, as the normal repeat size had been identified in
other studies. Last, we did not perform experimental research to explore the mechanism of
action of intermediate-length GGC repeats in NOTCH2NLC in ALS, and only two patients
with intermediate-length GGC expansion were found, although the number of the cohort is
not small regarding the incidence of ALS. In addition, it has also been reported that patients
carrying intermediate repeat numbers are found in ALS patients [15], and in combination
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with our literature and reports from others, we believe that our speculation is justified. To
identify the clinical features and mechanism, further studies are needed.

5. Conclusions

The present results suggest that intermediate-length GGC repeat expansion in NOTCH2NLC
is associated with ALS. Larger cohorts in different geographic areas are required to further
elucidate the characteristics of ALS with intermediate-length GGC, and basic experiments are
needed to explore the mechanism of function.
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Abstract: Neuronal intranuclear inclusion disease (NIID) is a rare neurodegenerative disease with
highly heterogeneous manifestations. Curvilinear hyperintensity along the corticomedullary junction
on diffusion-weighted images (DWI) is a vital clue for diagnosing NIID. DWI hyperintensity tends
to show an anterior-to-posterior propagation pattern as the disease progresses. The rare cases of
its disappearance may lead to misdiagnosis. Here, we reported a NIID patient with mitochondrial
encephalomyopathy, lactic acidosis and stroke-like (MELAS-like) episode, and reversible DWI hy-
perintensities. A review of the literature on NIID with MELAS-like episodes was conducted. A
69-year-old woman stated to our clinics for recurrent nausea/vomiting, mixed aphasia, altered mental
status, and muscle weakness for 2 weeks. Neurological examination showed impaired mental atten-
tion and reaction capacity, miosis, mixed aphasia, decreased muscle strength in limbs, and reduced
tendon reflex. Blood tests were unremarkable. The serological examination was positive for antibody
against dipeptidyl-peptidase-like protein 6 (DPPX) (1:32). Brain magnetic resonance imaging (MRI)
revealed hyperintensities in the left temporal occipitoparietal lobe on DWI and correspondingly
elevated lactate peak in the identified restricted diffusion area on magnetic resonance spectroscopy,
mimicking the image of MELAS. Skin biopsy and genetic testing confirmed the diagnosis of NIID.
Pulse intravenous methylprednisolone and oral prednisolone were administered, ameliorating her
condition with improved neuroimages. This case highlights the importance of distinguishing NIID
and MELAS, and reversible DWI hyperintensities can be seen in NIID.

Keywords: neuronal intranuclear inclusion disease; NIID; mitochondrial dysfunction; MELAS;
reversible DWI hyperintensities

1. Introduction

Neuronal intranuclear inclusion disease (NIID) is a heterogeneous neurodegenerative
disease, characterized by eosinophilic hyaline nuclear inclusions that are positive for
ubiquitin and related proteins [1]. This disease can be sporadic or of an autosomal dominant
inheritance. Recent research has identified the trinucleotide GGC repeat expansions in the
5′ untranslated region (5′ UTR) of the NOTCH2NLC gene in NIID [2,3].

Recently, Chinese researchers divided NIID into four subgroups based on the patients’
initial and main clinical manifestations: dementia-dominant, movement disorder-dominant,
muscle weakness-dominant, and paroxysmal symptom-dominant types [4]. Previous cases
of paroxysmal symptoms have reported encephalitic episodes, stroke-like episodes, chronic
headache, and mitochondrial encephalomyopathy, lactic acidosis, and stroke-like (MELAS-
like) episode [4–7]. Due to its low incidence and high heterogeneity, diagnosis of NIID is
often delayed or missed in clinical practice.

Fortunately, Sone in 2016 proposed diagnostic criteria for NIID, which mainly include
positive skin biopsy, genetic examination, and typical magnetic resonance imaging (MRI)
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findings [1]. Typical diffusion-weighted imaging (DWI) subcortical lace sign is considered
an imaging marker for NIID with high specificity and sensitivity [8]. It tends to show
an anterior-to-posterior propagation pattern. However, such lesions are more frequent
in patients with dementia and paroxysmal symptoms types than in those with muscle
weakness and movement disorder types [4]. It can also be absent in 10–20% of NIID
patients, especially in the early disease course [8–10]. Reversible DWI hyperintensities
have been reported in two cases in which hyperintense signals disappeared despite disease
progression [11,12].

Reversible DWI hyperintensities can also present in MELAS syndrome, mostly caused
by m.3243 A > G mutation in the MT-TL1 gene encoding the mitochondrial tRNALeu

(UUR) [13]. It is a multi-organ disease with broad manifestations such as stroke-like
episodes, dementia, epilepsy, lactic acidemia, myopathy, recurrent headaches, hearing
impairment, diabetes, and short stature [13]. Patients tend to present stroke-like lesions
inconsistent with vascular territory. These lesions with spontaneous reversibility are
common in the posterior brain regions (i.e., the temporoparietal junction and the parietal
and occipital lobes) [14]. Interestingly, patients with NIID can also present the above
manifestations in MELAS syndrome.

Hitherto, MELAS-like episodes were only identified in two cases of NIID, among
which one patient complained about chronic polyneuropathy and the other suffered recur-
rent migraine-attack [5,15]. Interestingly, reversible DWI hyperintensities were only seen in
the case of polyneuropathy [5]. The other case presented progressed DWI hyperintensi-
ties [15]. Noticeably, several studies have also reported NIID patients with MELAS-like
neuroimages, such as stroke-like lesions in the posterior brain regions (summarized in
Table 1). However, the dynamics of these lesions are rarely observed.

Here, we report a sporadic NIID case mimicking MELAS episode, with detailed
chronological neuroimaging. Different from the semeiology in previous cases, our pa-
tient presented recurrent nausea/vomiting, mixed aphasia, altered mental status, muscle
weakness, and reversible DWI hyperintensities. A literature review is also conducted to
summarize the characteristics of NIID patients with MELAS-like neuroimages, and thus
better differentiate NIID and MELAS syndrome.
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2. Materials and Methods

Clinical, imaging, and pathologic data were obtained from the patient’s case files and
clinical notes. Written informed consent was also obtained.

A review of the literature was conducted on PubMed and Web of Sciences (WOS),
using the following research terms-” (NIID) OR (neuronal intranuclear inclusion disease)”
and the features of MELAS neuroimage including” (MELAS) OR (occipital) OR (temporal)
OR (cerebral edema) OR (leukoencephalopathy) OR (hyperperfusion) OR (cortical enhance-
ment)”. Fifties-six articles in PubMed and 64 articles in WOS have been identified. After
deleting duplicates, 79 articles were scrutinized. All papers were screened by title, abstract,
neuroimages, and main text. We selected papers in English reporting at least one case of
NIID with MELAS-like images or episodes. Finally, eight articles have been found. For each
case report/case series, the following information was attained: age, sex, NOTCH2NLC
GGC repeats, initial symptoms, clinical manifestations, electroencephalograph (EEG); nerve
conduction, episode, images, and treatment.

3. Results

The patient was a 69-year-old female farmer presenting with mild memory loss in the
past two years, which did not hamper her social activity or farming. On 2 November 2021,
she had a sudden visual hallucination, which resolved hours later. In the next few days,
she developed headaches, recurrent vomiting, cognitive impairment, speech difficulty, and
generalized weakness. She was admitted to the local hospital on November 6th, and her
symptoms peaked three days after being hospitalized when she was completely bedridden.
There were not any prodromal symptoms of fever. She had a ten-year history of diabetes
and diabetic retinopathy, which were controlled by acarbose, gliclazide, and metformin.

Brain MRI in the local hospital one week after disease onset revealed symmetrical
periventricular hyperintense signals on T2-weighted images, with diffuse brain atrophy
and cerebral ventricle dilation (Figure 1). The lesions were unenhanced. Cerebrospinal fluid
(CSF) examination indicated normal white blood cell count. Elevated protein (796 mg/L)
and glucose (5.9 mmol/L) levels were observed in CSF. The testing of antibodies associated
with autoimmune encephalitis and paraneoplastic syndrome revealed positive antibody
against dipeptidyl-peptidase-like protein 6 (DPPX, titer 1:32) in the blood, while it was
not found in CSF. Encephalitis was initially suspected. A follow-up MRI on November
11th found restricted diffusion in the left temporal occipitoparietal corticomedullary junc-
tion on DWI images and correspondingly elevated lactate peak on magnetic resonance
spectroscopy (MRS), suggesting the possibility of MELAS. Pulse intravenous methylpred-
nisolone (1 g) was given daily for three days and gradually tapered and replaced with
oral prednisone. Her vomiting was alleviated, and muscle strength gradually improved.
Cognitive disturbance was nevertheless persistent. She was referred to our hospital on
22 November.

Upon admission to our hospital, physical examination revealed normal vital signs.
Neurological examination showed impaired mental attention and reaction capacity, miosis,
mixed aphasia, decreased muscle strength in limbs generalized with MRC grading 4,
and reduced tendon reflex. She could not cooperate with the examination of the muscle
tone, brain nerve, ataxia, and sensory system. By then, she was unable to complete
the mini-mental state examination (MMSE) scale and the Montreal cognitive assessment
scale (MoCA).

Laboratory investigation revealed an elevated neutrophil percentage of 88.1 with a nor-
mal cell count. Blood glucose and glycated hemoglobin levels were elevated (11.43 mmol/L
and 7.4%, respectively). Her serum creatine kinase, lactic acid, ketone, homocysteine,
immunoglobulin, sex hormone, and cortisol level were all normal.

Electroencephalogram demonstrated diffuse slow waves (1.5–7 c/s) on the left hemi-
sphere and limited sharp waves, especially on the frontotemporal lobe. Nerve conduction
study was consistent with demyelinating polyneuropathy predominantly involving the
motor nerves. The patient’s bilateral median (left, 35.2 m/s and right, 42.3 m/s) and ulnar
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nerves (38.8 m/s on both sides) showed slow velocity. Motor conduction velocity of her
bilateral tibial and peroneal nerves was also reduced to 30 m/s on average. Gynecological
Sonography was normal. Repeated MRI on November 23rd showed restricted diffusion
signals along the temporal occipitoparietal juxtacortex, and stenosis of M2 segments of the
right middle cerebral artery and bilateral posterior cerebral arteries. Perfusion-weighted
imaging (PWI) showed prominent hyperperfusion in the left occipitotemporal cortex
(Figure 2). Faint DWI hyperintensity in the corticomedullary junction and high-intensity
signals in the paravermis area were retrospectively recognized, suggesting the possibility
of NIID.

Figure 1. Chronological series of T2-weighted and diffusion-weighted images (DWI) images of the
patient’s brain. (A) Seven days after the disease onset when she had cognitive impairment, mixed
aphasia, and muscle weakness, DWI showed curvilinear periventricular hyperintensity, while the
T2-weighted image showed diffuse brain atrophy. (B) Two days after her symptoms exacerbated
when she could be only bedridden, curvilinear lesions had transformed into confluent high-intensity
lesions on DWI along the cortex in the temporal occipitoparietal lobe (in B1), where severe en-
cephalopathy was also observed on the T2-weighted images. However, curvilinear hyperintensity
in A3 disappeared. (C) Half a month after the peak and the treatment of pulse intravenous methyl-
prednisolone, most high-intensity signals on DWI were eliminated but leukoencephalopathy and
cortical edema on the T2-weighted scan were exacerbated. (D) Four months after the symptoms
onset, high-intensity signals on DWI have vanished, while hyperintensity reduced with improved
brain edema on T2-weighted images.
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Figure 2. (A) FLAIR sequence on November 23rd (in A1) showed hyperintensity and edematous
areas in the left temporal and occipital lobes, while such lesions improved 4 months later with
reduced hyperintensity and less edema shown in A2. (B) PWI on November 23rd (in B1) showed
prominent hyperperfusion in accordance with the lesion, but such phenomenon did not present
after 4 months with symmetrical blood flow in bilateral temporal lobes shown in B2. (C) FLAIR
sequence on November 23rd showed hyperintensity on the paravermis area (in C1), which remained
the same after 4 months shown in C2. (D) MRA on November 23rd (in D1) showed the stenosis of
M2 segments of the right middle cerebral artery, which was also presented after 4 months in D2.
(E) The arrow refers to high-intensity areas in the corticomedullary junction on DWI on November
8th. (G) Electron microscopy of mechanocyte showed dense filamentous materials without limiting
membrane. (H) MRS focusing on the temporal lesion (in (F)) showed the lactate peak appearance
(shown by arrow). (I) RP-PCR showed GGC expansion in the patient. (FLAIR, fluid-attenuated
inversion recovery; PWI, perfusion-weighted image; DWI, diffusion-weighted image; MRA, mag-
netic resonance angiography; MRS, magnetic resonance spectroscopy; RP-PCR, repeat-primed PCR;
Lac, lactate).
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Skin biopsy samples were obtained 10 cm above the patient’s ankle. Electron mi-
croscopy showed round-shaped intranuclear inclusions, composed of dense filamentous
materials without membrane structure. However, eosinophilic ubiquitin-positive and
p62-positive intranuclear inclusions were not found. Repeat-primed PCR confirmed the
diagnosis of adult-onset NIID (>66 repeats of GGC in the 5′UTR of the NOTCH2NLC gene).
Her family history was unremarkable. Our patient and her brother were entrusted to their
relatives since childhood, and they soon lost contact with their parents. Her brother with
diabetes did not suffer from migraine, stroke, or deafness. Her offspring are healthy. No
DNAs of other family members were available.

During hospitalization, oral prednisolone was gradually tapered. Her cognitive
deficiency was gradually alleviated, and she could briefly communicate when she was
discharged. After returning home, the patient had recurrent vomiting for a week but
resolved spontaneously.

On follow-up three months after discharge, she had pupils of diameters within normal
range. She was ambulant and alert. MMSE score was 18 and MOCA was 8, indicating
moderate cognitive impairment. A follow-up brain MRI revealed the DWI high intensity of
the occipitotemporal lobe had largely resolved, while brain atrophy progressed.

4. Discussion

Here we report a patient with NIID presenting with an acute MELAS-like episode
and neuroimaging. She had insidious onset of cognitive impairment, and the disease
was exacerbated by a MELAS-like episode. Brain imaging showed diffuse white matter
hyperintensity, brain atrophy, and a largely reversible parietooccipital lesion. Despite the
positive anti-DPPX antibody, the diagnosis of autoimmune encephalitis was dismissed as
the clinical picture did not conform to the phenotype associated with anti-DPPX encephali-
tis [19]. Lactate peak on MRS and hyperperfusion in the lesion have been reported in both
MELAS and NIID [5]. Nevertheless, no muscle volume reduction or myogenic changes on
electromyography (EMG) have been detected. The late onset age and lack of any family
history of muscle weakness or stroke-like episodes made the diagnosis of mitochondrial
disease very unlikely. The faint corticomedullary lesion on DWI highly suggestive of NIID
resolved as the MELAS-like episode ended, but hyperintensity of the paravermis area
persisted. Such neuroimages suggested the possibility of NIID.

Corticomedullary hyperintensity on DWI is a strong image marker for NIID with an
anterior-to-posterior propagation pattern [8]. Previous literature has also identified high
DWI signals in the corpus callosum, severe leukoencephalopathy involving the corpus
callosum, middle cerebellar peduncle, paravermis area, and cortical edema with gadolinium
enhancement as useful clues. Cerebral atrophy and lateral ventricle enlargement were often
observed in the late stages [4].

Interestingly, Sone reported that 21% of adult-onset NIIDs experienced a subacute
encephalitic episode with characteristic symptoms including fever, headache, vomiting,
and loss of consciousness [1]. NIID patients with encephalopathy tend to have cortical
hyperintensity distributed in the parietal-occipital lobes, in contrast to curvilinear DWI
hyperintensity preferentially located in the frontoparietal region [8]. These lesions are not
distributed following vascular supply [8]. One-fifth of encephalitis-like NIID cases could
have FLAIR hyperintense lesions with edematous changes and contrast enhancement [8].
Okubo reported a NIID patient with focal hypoperfusion at the acute stage of encephalitis-
like episode and rebound hyperperfusion several days later [16]. Ataka and Ishihara
reported hyperperfusion in the abnormal cortices [5,20]. The increased peak of lactate point
on MRS can also be observed in NIID [5].

Similar to the encephalopathy of NIID, cortical swelling and hyperperfusion can also
present in MELAS. Therefore, it can easily be confused with the neuroimaging of MELAS.

To summarize the characteristics of NIID with MELAS-like neuroimaging, we re-
viewed the literature and found another 11 cases with MELAS-like neuroimages (Table 1).
All patients with MELAS-like neuroimages experienced encephalitis-like episodes. A third
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of the patients used to have migraine. They tend to present headaches (83.3%), altered
mental status (66.7%), memory decline (58.3%), and nausea/vomiting (50.0%) during an
episode. All patients who received examination of electroencephalograph presented slow
waves. Myelin damages (60%) were more frequent than axonal damages (20%). All patients
have brain edema and cortical lesions. Cortical enhancement and DWI corticomedullary
hyperintensities have been shown in most cases.

Interestingly, the aforementioned manifestations can also be present in MELAS syn-
drome, except corticomedullary hyperintensities on DWI. Thus, curvilinear hyperintensity
along the corticomedullary junction on DWI is a useful tool for differential diagnosis.

Unlike previous cases with cortical enhancement, which is purposed as a brain image
marker for the differential diagnosis between MELAS and NIID with MELAS-like episodes,
our patient did not present such enhancement. In fact, such enhancement can also be seen
in MELAS due to hyperemia or luxury perfusion [13]. Furthermore, our case showed the
disappearance of DWI hyperintensities as the episode ended, reversed to the common
idea that this signal would not fade away once appeared. Skin biopsy, with a high degree
of consistency with NOTCH2NLC gene detection, can reveal eosinophilic intranuclear
inclusions, immunopositive for ubiquitin and p62, composed of fibrous materials with-
out membranous structures [21]. However, fibrous materials without membranes were
identified in mechanocyte nucleus under electron microscope, while immunofluorescence
staining was negative in our patient.

Eosinophilic intranuclear inclusions are valuable diagnostic clues. It can be detected
more than 10 years before the onset of the symptoms and found in morphologically intact
neurons without obvious neuronal loss. Previous literature demonstrated the positive rate
of electron microscopy was lower than that of immunostaining due to limitations in the
sampling and observation scope [21,22]. However, it is exactly opposite in our patient.
Cao also reported two patients with negative pathological findings [22]. Though the
underlying mechanism is unclear, the loss of p62/SQSTM1 has been reportedly associated
with accelerating aging and age-related pathologies [23]. Moreover, eosinophilic ubiquitin-
positive inclusions can also be observed in fragile X-associated tremor/ataxia syndrome
(FXTAS) in neurons, glial cells, and somatic cells, though no skin pathological or electron
microscopic findings of intranuclear inclusions have been identified in FXTAS [1]. NIID
and FXTAS shared similar clinical manifestations. Thus, it is difficult to distinguish NIID
from FXTAS with only the histopathological findings. For this reason, gene tests should be
performed. NIID is diagnosed based on abnormal repeat expansion of GGC (>65 repeats)
within the 5′ UTR of the NOTCH2NLC gene [4].

Though curvilinear hyperintensity along the corticomedullary junction is a useful tool
to differentiate MELAS and NIID with MELAS episode, it can be absent or reversible in
rare cases. Some researchers observed such hyperintensities were absent at the onset but
presented in the corticomedullary junction area 6 years later, and ultimately disappeared
8 years after onset in a NIID patient [24]. Researchers suspected the pathological spongiotic
changes in subcortical white matter proximal to U-fibers may be the culprit of DWI hyper-
intensities [11,25]. Subsequent edema withdrawal, neuronal loss, and gliosis may account
for the disappearance of DWI hyperintensities and the widening of cerebral sulci [11].
Moreover, patients with MELAS can present spontaneous reversibility in both neurological
symptoms and neuroimages [14]. Once such curvilinear hyperintensities disappear, it is
easily misdiagnosed.

To distinguish between NIID with MELAS-like episodes and MELAS syndrome,
we should consider the following conditions. For clinical features, most patients with
confirmed MELAS have a maternal genetic history and present between 2 and 40 years
of age, mostly before age 15. They had systemic symptoms including loss of hearing,
growth failure, and diabetes, which are distinguished from phenotypes of NIID [14]. For
auxiliary examination, an electrophysiological study might aid the differentiation. Nerve
conduction studies of MELAS patients typically show an axonal or mixed axonal and
demyelinating neuropathy, similar to NIID in which demyelination is more frequent than
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axonal damage [1,13]. EMGs of MELAS patients tend to show myogenic changes. In
addition to corticomedullary hyperintensities on DWI, basal ganglia calcification and iron
deposition can be frequently seen in MELAS, while they can also be presented in the
elders [13]. High intensity in the paravermis area might be a useful indicator to distinguish
NIID as it is rarely reported in other patients with leukoencephalopathies [4]. Muscle and
skin biopsy, as well as gene testing aid the confirmative diagnosis.

Bearing many commonalities in clinical and imaging characteristics, NIID is suspected
to have similar pathogenesis to MELAS. Noticeably, previous researchers also identified
abnormal mitochondrial inclusions in patients with NIID [26]. Yu et al., recently developed
a fly model of CGG repeat expansion in NOTCH2NLC, recapitulated key pathological
and clinical features of NIID, and characterized the mitochondrial dysfunction in these
model organisms, human samples, and cellular models [27]. Here, we proposed three
possible mechanisms linking NIID to mitochondrial dysfunction. First, large CGG repeats
may stall the replication fork leading to a double-strand break and chromosome fragility,
which further affects mitochondrial homeostasis [28]. Second, expanded CGG repeats may
sequester specific RNA binding proteins resulting in altered splicing and decreased miRNA
biogenesis. Decreased expression of miRNAs leads to their altered translocation to the
mitochondria [29]. Lastly, polyG forms intranuclear inclusion may affect the transport of
miRNA/mRNAs and nuclear-encoded mitochondrial proteins to the mitochondria. These
effects can finally result in bioenergetic crisis, elevated reactive oxygen species, and cell
death [29]. The secondary mitochondrial abnormalities may at least partly explain the
overlapping presentations and neuroimages of NIID and MELAS.

5. Conclusions

This case report portrays a patient with NIID who presented MELAS-like episode
and reversible DWI hyperintensities. Patients with MELAS-like neuroimaging tend to
present headaches, altered mental status, memory decline, and nausea/vomiting during an
episode. DWI curvilinear hyperintensity could aid the differentiation between NIID and
MELAS, but its disappearance might lead to misdiagnosis. To distinguish between NIID
with MELAS-like episodes and MELAS syndrome, we should consider some special clinical
manifestations, EMG, and neuroimaging. High DWI signals in the corpus callosum and
severe leukoencephalopathy involving the corpus callosum, middle cerebellar peduncle,
and paravermis area can help the diagnosis of NIID. Muscle and skin biopsy, as well as
gene testing aid the confirmative diagnosis.
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Abstract: The X chromosome gene PLP1 encodes myelin proteolipid protein (PLP), the most prevalent
protein in the myelin sheath surrounding the central nervous system. X-linked dysmyelinating disor-
ders such as Pelizaeus–Merzbacher disease (PMD) or spastic paraplegia type 2 (SPG2) are typically
caused by point mutations in PLP1. Nevertheless, numerous case reports have shown individuals
with PLP1 missense point mutations which also presented clinical symptoms and indications that
were consistent with the diagnostic criteria of multiple sclerosis (MS), a disabling disease of the brain
and spinal cord with no current cure. Computational structural biology methods were used to assess
the impact of these mutations on the stability and flexibility of PLP structure in order to determine the
role of PLP1 mutations in MS pathogenicity. The analysis showed that most of the variants can alter
the functionality of the protein structure such as R137W variants which results in loss of helix and
H140Y which alters the ordered protein interface. In silico genomic methods were also performed to
predict the significance of these mutations associated with impairments in protein functionality and
could suggest a better definition for therapeutic strategies and clinical application in MS patients.

Keywords: myelin proteolipid protein; protein structure prediction; functional analysis; multiple sclerosis

1. Introduction

Myelination is an important process of the CNS that provides electrical insulation to
axons and facilitates the transmission of nerve impulses. This protective layer is formed
by Schwann cells in the peripheral nervous system, while oligodendrocytes form the
sheath in the CNS [1]. The myelin sheath is a multi-layered membrane composed of
proteins and lipids (approximately 30% and 70%, respectively). The lipid composition
contains high amounts of cholesterol, phospholipids and glycolipids [2]. PLP is one of the
major myelin proteins which, together with the DM20 isoform resulting from alternative
splicing, constitutes 50% of the total protein. PLP plays a crucial role in the formation and
maintenance of proper myelin structure and stability in the CNS [3]. It is a transmembrane
and hydrophobic protein, with 48% of its sequence being non-polar or aromatic amino acids
including 14 cysteine residues, which either undergo post-translational modifications and
bind to fatty acids or are involved in intramolecular disulfide bonds. It has been observed
that patients suffering from MS have an increased population of T-cells specific for PLP
peptides and increased levels of anti- PLP181–230 specific antibodies were found in serum
levels compared to healthy individuals and patients with other neurological diseases [4].
Human and rodent PLP share several epitopes that are recognized by T cells [5]. Other main
counterparts are myelin basic protein (MBP), which constitutes 30% of the total myelin
protein in the CNS, myelin oligodendrocyte glycoprotein (MOG) and myelin-associated
glycoprotein (MAG) [6–8]. Smaller percentage is occupied by alpha-beta crystallin, a small
heat shock protein [9].

Multiple sclerosis (MS) is a chronic demyelinating inflammatory condition affecting the
human central nervous system (CNS) [10]. It is unclear whether MS begins in the periphery,
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through activation of immune cells that then penetrate the CNS and cause damage, or
within the CNS through primary damage to myelin or oligodendrocyte [11,12]. This could
be the result of mutations in molecules encoding essential myelin or oligodendrocyte
components, even though genome-wide association studies have not indicated substantial
associations with any of these in MS [13]. However, the possibility that mutations in
genes encoding these components are present in some proportions of MS patients remains
under consideration. To that end, missense mutations in PLP1 gene have been described
in patients with clinical symptoms consistent with an MS diagnosis, such as an amino
acid substitution at residue 31 of PLP (L31V) in a female patient with primary progressive
MS [14]. Mutations can largely affect protein functionality, hence analysis of potential
alterations in protein tertiary structure can reveal new evidence for their effect on phenotype.
A novel mutation in PLP1 exon 2 that changed leucine to arginine (L31R) was reported in a
mother and her son through sequencing of the PLP1 gene [15]. In a recent study, a mother
and daughter with a preliminary diagnosis of primary progressive MS carried a nonsense
mutation at codon 210 T > G [16]. Moreover, a L31P mutation was also associated with
severe PMD [17]. The transmembrane portion of PLP1/DM20 proteins could be disrupted
by both mutations, affecting intracellular trafficking. Neuroinflammation and axonal
neurodegeneration was also reported in mice carrying the R137W and L31R mutations by
one year of age [18].

The structure and function of the native protein may be significantly altered by mis-
sense mutations, particularly those in the coding area that modify the amino acid con-
figuration. In order to determine the impact of each nonsynonymous single nucleotide
polymorphism (nsSNP) in a related protein, it is common practice to functionally compare
mutant proteins with their wild-type counterparts associated with specific traits in vitro [19].
However, the experimental design for each mutational modification is time- and labor-
intensive. Thus, it is feasible and cost-effective to perform data mining for mutational
analysis and functional prediction on protein properties using computational methods [20].
The three-dimensional (3D) structure of a protein has a pivotal role in protein’s functional
characterization. There are many efficient structural biology algorithms for predicting
tertiary protein structures based on their amino acid sequences. Therefore, considering
the role of the PLP1 gene in spontaneous myelin and axonal damage, we retrieved all
mutations in the PLP1 gene related to MS. Using in silico structural and functional analyses,
this study aimed to describe potential disease-associated variants of the PLP1 gene.

2. Materials and Methods

A variety of different computational approaches was used to screen out the functional
effects of the variants in the PLP1 gene related to MS. The methodology we followed is
divided into four distinct levels, including (i) primary data collection, (ii) creation of the
3D protein structures, (iii) 3D protein structure comparison process (iv) variant functional
analysis. A baseline method raised from pure bioinformatics approaches was utilized as a
benchmark for validation.

2.1. Summary of Variants

Five variants of PLP1 gene and specifically the association of three of them with
multiple sclerosis were analyzed in our study. The transcript sequence and the protein
encoded by the PLP1 gene were retrieved from the Ensembl database [21]. Then, the
UniProt ID for the amino acid (P60201–MYPR_HUMAN) was obtained from UniProt
Protein Database.

2.2. In Silico Methods for Predicting Mutation Significance

dbNSFP database was used for functional prediction and annotation of potential
non-synonymous single-nucleotide variants (nsSNVs). The current version of this high-
performance variant annotation tool can be queried to extract prediction scores from
38 algorithms [22,23]. dbNSFP also provides conservation scores and supplementary
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data, such as allele frequencies, functional gene descriptions, gene expression and gene
interaction data, etc. MutPred2 machine learning-based approach was implemented to
predict the pathogenicity of amino acid substitutions and their molecular mechanisms [24].

Further computational tools such as ANNOVAR (https://annovar.openbioinformatics.
org/en/latest/, accessed on 16 September 2022), KGGSeq (http://pmglab.top/kggseq/,
accessed on 16 September 2022), VarSome (https://varsome.com, accessed on 16 Septem-
ber 2022), UCSC Genome Browser’s Variant Annotation Integrator (http://genome.ucsc.
edu/cgi-bin/hgVai, accessed on 19 September 2022), Ensembl Variant Effect Predictor
(http://www.ensembl.org/info/docs/tools/vep/index.html, accessed on 20 September
2022), SnpSift (https://pcingola.github.io/SnpEff/, accessed on 20 September 2022) and
HGMD (https://www.hgmd.cf.ac.uk/ac/index.php, accessed on 22 September 2022) were
used to strengthen the analysis, and the outcomes were validated using each platform
separately. The algorithms utilized in this study are publicly accessible for all academic,
non-commercial uses.

2.3. Protein Stability Correlation Analysis

The correlation between mutations and protein stability was analyzed based on a
lesser decrease in free energy (ΔG or dG). Alterations in protein stability are determined by
differences in free energy (ΔΔG or ddG) between wild-type and mutant proteins [25]. The
DynaMut server was used to assess the effect of a single point mutation on protein stability,
conformation, and flexibility, and to visualize protein dynamics [26]. DynaMut provides
more accurate (p-value < 0.001) assessments of the effects of single mutations on protein
stability than other well-established methods. In addition, the DynaMut server defines
ΔΔG ≥ 0 as stabilizing and ΔΔG < 0 for comparison purposes. In addition, Site Directed
Mutator (SDM) server was used to estimate the change in protein stability following
mutation [27].

2.4. Analysis of Protein Structural Conformation and Conservation

ConSurf server (http://consurf.tau.ac.il/, accessed on 7 October 2022) was utilized to
identify highly conserved functional areas of the PLP1 gene-encoded protein [28].

2.5. Prediction of the Secondary Structure

Using the PSIPRED server (http://bioinf.cs.ucl.ac.uk/psipred/, accessed on 10 Octo-
ber 2022), the secondary structure of PLP1 was predicted [29]. It is based on a two-stage
neural network with position-specific scoring matrices derived from PSI-BLAST to predict
the available secondary structures of a protein.

2.6. Homology Modeling

SWISS-MODEL was utilized to determine the three-dimensional structure of PLP1.
The CAMEO system determines the precision of the generated model. SWISS-MODEL
is based on evolutionary information and searches a high-throughput template library
(SMTL) for the optimum sequence–template alignment to construct the model [30]. Phyre-2
server was used to predict the homology-based three-dimensional structure of the query
amino acid sequence [31]. I-TASSER was selected for protein structure prediction and
structure-based function annotation [32–34]. Initially, structural templates from the PDB
are discovered using LOMETS, a multithreaded algorithm. With the templates as guides,
full-length atomic models are then constructed using simulations of fragment assembly
iterations. The 3D models are re-run through the BioLiP database of protein functions
to gain insight into the target’s function. C-I-TASSER, an enhanced version of I-TASSER
designed to accurately predict protein structures and functions was used to generate inter-
residue contact maps beginning with a query sequence [34]. The structural templates of
the PDB are derived by the multithreaded method LOMETS, and their full-length atomic
models are constructed using contact maps and replica exchange Monte Carlo simulations.
Finally, COFACTOR uses the structural model to deduce the protein’s biological functions.
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C-I-TASSER produces significantly more accurate models than I-TASSER in large-scale
benchmark tests.

2.7. Mutated Structure Prediction

Once the mutations were identified, the construction protein-based structures in
PDB format were followed. I-TASSER and DynaMut servers were used to perform the
transformation of the amino acid sequences to 3D protein models. Then, for each model,
structural alignment was carried out and the structural similarity score was calculated. The
TM-align and TM-score algorithms were selected for the alignment and the similarity score
calculation, respectively [35].

2.8. Protein Three-Dimensional Model Verification

Three-dimensional structures were validated using Ramachandran plot analysis (http:
//molprobity.biochem.duke.edu, accessed on 19 October 2022). It provides the number
of residues that are located in the allowed, favored, and outlier regions. If a significant
fraction of residues resides in the allowed and favored region, it is projected that the model
is accurate [36].

3. Results

3.1. PLP1 Variants Associated with MS

PLP consists of 276 amino acid residues and four hydrophobic transmembrane do-
mains, and its expression is restricted to oligodendrocyte cells. The area of the PLP1 gene
that encodes residue 31 appears to be a hotspot for mutation, since it has been described in
MS patients (L31R and L31V mutation) [14]. In cases of severe PMD, the L31P mutation
has also been documented [14]. The idea of mutation hotspots in PLP1 has been previously
characterized in PMD patients, and numerous mutations have been detected in a number of
amino acids [37]. R137W mutation has also been described in MS patients, while the H140Y
one was selected because it is the closest known mutation to residue 137 [14]. Detailed
information about the variants analyzed in the current study is shown in Table 1.

Table 1. PLP1 variants. This mutation was selected as the closest mutation to residue 137 known for PLP1.

Location Codon Change Amino Acid Position Amino Acid Alteration Description 1

X:103785668 CTG/GTG 31 L/V MS- like disease mutation
X:103785669 CTG/CCG 31 L/P Severe PMD mutation
X:103785669 CTG/CGG 31 L/R MS- like disease mutation
X 103786682 CGG/TGG 137 R/W MS- like disease mutation
X 103786691 CAT/TAT 140 H/Y Mild SPG2 mutation

1 MS: multiple sclerosis; PLP: myelin proteolipid protein; PMD: Pelizaeus–Merzbacher disease; SPG2: spastic
paraplegia type 2.

3.2. Variant Functional Analysis

There are numerous assessment strategies for missense variants and recent databases
include results from a variety of techniques to assist the evaluation of the impact of vari-
ations predicted to modify the peptide sequence of a gene. Herein, using dbNSFP, we
investigated the functional consequences of missense SNPs, including whether they are
normal, disease-causing, or effective by chance. As Table 2 shows, functional analysis
revealed that R137W, L31P, L31V, L31R are damaging from the most prediction tools with a
high score, while the results for H140Y were different across the different methods.
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Table 2. Functional analysis of PLP variants using dbNSFP.

Variant L31P L31V L31R R137W H140Y
Range (Low to

Damaging)

Polyphen2_HDIV_score 0.999 0.997 0.999 0.999 0.015 0.03061 to 0.91137
LRT_converted_rankscore 0.8433 0.8433 0.8433 0.4496 0.53742 0.00162 to 0.8433

MutationTaster_score 1 0.999999 1 0.627105 0.281663 0 to 1
MutationTaster_converted_rankscore 0.81001 0.58761 0.81001 0.81001 0.81001 0.08979 to 0.81001

MutationAssessor_score 2.71 2.36 2.71 1.24 0.69 −5.17 to 6.49
MetaLR_score 0.9794 0.9771 0.9794 0.9547 0.9047 0 to 1

MetaRNN_score 0.988245 0.946438 0.98141 0.892939 0.962404 0 to 1
MutPred_score 0.932 0.813 0.887 0.663 0.779 0 to 1

DEOGEN2_score 0.994664 0.910984 0.994756 0.707527 0.697598 0 to 1
ClinPred_score 0.996376 0.982601 0.997494 0.958003 0.509568 0 to 1

We strengthened our analysis using further computational tools such as ANNOVAR,
KGGSeq and VarSome and the outcomes were validated using each platform separately.

The results of MutPred2 demonstrated that these variants may alter the function of
protein structures (Table S1). MutPred2 provides a general score which represents the
average of all neural network scores based on a ranked list of specific molecular alterations
potentially affecting the phenotype, and therefore, this number indicates the probability
that the amino acid substitution could be harmful. A score threshold of 0.50, if considered
as a probability, could reveal pathogenicity. However, a threshold of 0.68 results in a false
positive rate (fpr) of 10%, whereas a threshold of 0.80 results in an fpr of 5%. In our case,
L31P (score 0.973), L31V (score 0.854), and L31R (score 0.972) mutations may result in an
altered transmembrane protein (Table S1). The R137W variant (score 0.684) may lead to
a loss of helix, whereas the H140Y variant (score 0.556) may result in a changed ordered
interface or transmembrane protein.

3.3. Conformational Analysis and Alteration of Protein Stability upon Amino Acid Substitution

DynaMut predicts the change in stability by calculating the changes in unfolding Gibbs
free energy (ΔΔG), as summarized in Table 3. For comparison, ΔΔG predictions based on
protein structure were also displayed including dinstinct approaches and assumptions.
Parallel analysis was performed using Site Directed Mutator (SDM) computational methods
to verify the molecular effect of the five variants (Table S2). Three of them (L31V, L31P L31R)
revealed a diminution in stability by increasing the molecular flexibility of the wild-type
proteins (Tables 3 and S2). On the contrary, H140Y variant enhanced the stability of the
PLP1 protein. R137W variant revealed conflicting results. DynaMut demonstrated that the
amino acid changes in R137W decrease stability, while SDM exhibited elevated stability
(Table S2). ENCoM analysis was executed to calculate the vibrational entropy difference
(ΔS) between wild-type and mutant structures as well as to explore protein conformational
space and the effect of mutations on protein function and stability. As Figure 1 illustrates,
the mutation causes a change in the vibrational entropy of the amino acid.

Table 3. Conformational Analysis of Protein’s Stability Change upon Amino Acid Substitution.

Variant
ΔΔG

(kcal/mol)
Outcome

ΔΔSVibENCoM
(kcal.mol−1.K−1)

Outcome 1

L31V −0.133 Destabilizing 0.083 Increase
L31P −1.011 Destabilizing 0.413 Increase
L31R −0.256 Destabilizing 0.231 Increase

R137W −0.400 Destabilizing 0.111 Increase
H140Y 0.519 Stabilizing −0.063 Decrease

1 Molecule flexibility.
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Figure 1. Protein flexible conformation based on the Vibrational Entropy difference (ΔΔS) between
wild-type and mutant structures on the structure of PLP1. A visual representation of the chain in
which the mutation occurs is also mapped. Amino acids colored according to the vibrational entropy
change upon mutation. Blue represents a rigidification of the structure and red represents a gain in
flexibility. (A) Normal PLP1; (B) L31P mutant; (C) L31R mutant; (D) L31V mutant; (E) R137W mutant;
(F) H140Y mutant. The image is illustrated by DynaMut. The positions of the point mutations are 31,
137 and 140. Abbreviations: L is leucine; P is proline; R is arginine; V is valine; W is tryptophan; H is
histidine; Y is tyrosine.

3.4. Analysis of the Structural Conformation and Conservation of PLP1

According to ConSurf analysis, the variants located at position 31 (L31V, L31P, and
L31R) were found in a highly conserved region with a conservation score of 9 (Figure 2).
Based on this indication, we can estimate that these nsSNPs play a functional role on the
protein conformation. On the contrary, R137 and H140 displayed a conservation score of 1
(Figure S1).

Figure 2. ConSurf analysis of conserved functional areas of the structural model of PLP1 gene-
encoded protein. Amino acid at positions 31 (leucine) and 137 (arginine) are highlighted. Leucine in
position 31 is a highly conserved region. Conservation score is presented in Figure S1.
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3.5. PLP1 Protein Secondary Structure Prediction

The alpha helix, beta sheet distribution and coils for PLP1 were calculated according
to PSIPRED protein structure prediction server. Among the exposed secondary structures,
the highest in percentage was alpha helix (65%) followed by coils (30%) and no beta-sheet
(0.0%) (Figure S2).

3.6. Prediction Software Benchmarking and Creation of Tertiary Protein Structures

Using four distinct homology modeling techniques, the three-dimensional (3D) struc-
tures of the PLP1-encoded protein were reconstructed. Since only 3% of residues 45–53 is
represented on the protein data bank (https://www.ebi.ac.uk/pdbe/pdbe-kb/, accessed
on 10 October 2022), there was no known crystal data of this protein of the appropriate
length. Once the mutations were identified, the next step was to construct protein-based
structures to represent these variants. Since the 3D protein feature view was not determined
through experimental methodologies, established computational tools and databases such
as Uniprot (UniProt Consortium, London, UK, 2015), Swiss-Model, Phyre-2, I-TASSER,
C-I-Tasser, PDBeFold and Dynamut were evaluated for predicting the mutated structures
and calculated the effect of these domain mutations on the 3D protein structure.

Based on the Hidden Markov approach, the Phyre-2 server was implemented to
predict the homology-based three-dimensional structure of the query amino acid sequence.
It incorporates five phases to construct a model: (1) collection of homologous sequences,
(2) screening of fold library, (3) modeling of loops, (4) ab initio folding simulation Poing
for multiple template modeling, and (5) placement of side chains [31]. Tertiary protein
structures were formed based on the available structure prediction tools. Out of an extensive
benchmarking of the structural predictive tools, we selected to retrieve the PLP1 target
structure from the AlphaFold database. Comparison results revealed that AlphaFold
reached the highest accuracy between predicted and experimental structure. In Figure 3,
the visualization of the predicted 3D model of PLP1 protein is presented as performed by
AlphaFold, Phyre-2, I-TASSER and C-I-Tasser, respectively, as these servers exhibited the
highest accuracy in predicting the experimental structure. The model–template alignment
by Swiss Model retrieved structures that did not include amino acids involved in the
present outcomes.

Figure 3. Protein structure prediction models of PLP1 calculated by different computational method-
ologies. AlphaFold model presented high confidence for the residue of the protein at position 31
(pLDDT > 90), but limited confidence for the PLP1 residue at position 137 (pLDDT < 50). Model 1
showed the highest C- score (−3.95) in I-TASSER and C-I-Tasser (−3.89) servers. Phyre2 model 12
with a confidence of 16.98% was the only one that included the residues analyzed in this study.

3.7. Variant Tertiary Protein Structures

The next step in our pipeline was to construct the structures for these mutations using
I-TASSER and DynaMut [26]. The DynaMut provides a comprehensive evaluation and
visualization of protein mobility and flexibility using two independent, well-established
normal mode approaches to analyze protein dynamics by sampling conformations. In
parallel, assessment of the effect of mutations on protein dynamics and stability due
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to changes in vibrational entropy can be executed. The server combines graph-based
signatures with normal mode dynamics to predict the influence of a selected mutation on
protein stability. The predicted models were compared against the corresponding AphaFold
structure through the TM-align algorithm and a benchmarking of the structural predictive
tools was accomplished. Comparative results revealed that DynaMut reached the highest
accuracy between the predicted and experimental structure and was also used to verify the
impact of mutations on protein conformation, flexibility and stability as well as to visualize
protein dynamics. The TM-score is the metric that will lead to the selection of the ideal
approach for producing the potential tertiary structures of a protein. TM-align generates
an optimal residue-to-residue alignment based on structural similarity utilizing dynamic
programming iterations for two protein structures of uncertain equivalence [38]. TM-score
for the five mutated structures shows that they were approximately in the same fold with
the normal protein. Figure 4 presents the predicted interatomic interactions calculated for
the wild-type protein and the single point mutations. Both wild-type and mutant residues
are colored in light green and depicted as sticks, along with domains participating in any
interactions surrounding them.

 

Figure 4. Interatomic interactions for wild-type and mutant PLP1. Both wild-type and mutant
residues are colored in light green and depicted as sticks, along with domains participating in
any interactions surrounding them. Leucine at position 31 is hydrophobic and highly conserved:
(A) wild-type residue at position 31; (B) L31V (hydrophobic); (C) L31P (nonpolar); (D) L31R (polar).
Arginine at position 137 and histidine at position 140 are polar: (E) wild-type residue at position
137; (F) R137W (aromatic); (G) wild-type residue at position 140; (H) H140Y (aromatic). The image
is illustrated by DynaMut. A scale of color definition for each type of interaction is provided by
software: red depicts hydrogen bonds; slight red depicts water-mediated hydrogen bonds; blue
depicts halogen bonds; gold depicts ionic interactions; purple depicts metal complex interactions;
light blue depicts aromatic contacts; green depicts hydrophobic contacts; pink depicts carbonyl
contacts. The positions of the point mutations are 31, 137 and 140. Abbreviations: L is leucine; P is
proline; R is arginine; V is valine; W is tryptophan; H is histidine; Y is tyrosine.
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3.8. Validation of the Predicted Structures

The Ramachandran plot was used to examine the conformation of the protein’s back-
bone. It represents an x-y plot of the phi/psi dihedral angles between NC-alpha and
Calpha-C bonds. The Ramachandran plot of the wild-type protein in the AlphaFold model
revealed 259 residues (94.2%) in the favored regions, 268 (97.5%) in the allowed regions
and seven residues in the outlier region (Figure S3). The mutant protein structures ob-
tained by DynaMut demonstrated the same results with wild-type PLP1. On the contrary,
I-TASSER structure prediction models display poor Ramachandran plots compared to other
algorithms. I-TASSER generates a model by reassembling structural parts from various
templates, hence the model occasionally features unfavorable Ramachandran plot regions
(Figure S4). The homology models indicated that PLP1 protein models obtained by Dy-
naMut were accurate and they are useful for conducting additional studies and gaining a
deeper understanding of the biological activity of the studied protein.

4. Discussion

In this study, the majority of tools indicated that MS-associated PLP1 mutations
would have a significant impact on the protein structure, stability and function. Our
analysis employed several computational approaches to predict the effects of the PLP1
gene variants, and important results were obtained. Examination of the modified protein
structure revealed a destabilizing effect and an increase in flexibility. Loss of protein
thermodynamic stability can reduce the ability of its structure to perform normal functions.
Furthermore, precise analysis using MutPred2 revealed that these variants may affect
protein functionality and structure. We used this machine learning-based approach to
integrate data to reason probabilistically about the pathogenicity of amino acid substitutions.
The resulted predictions for L31P, L31V and L31R indicated that these mutations may lead
to an altered transmembrane protein. The R137W variant may also cause loss of helix, while
the H140Y variant may alter the ordered interface of transmembrane protein. The findings
of this study provide important insights for future investigations aimed at determining the
role of PLP1 in MS.

Missense mutations have a substantial effect on protein functionality. A comprehen-
sive computational examination of the phenotypic characteristics associated with specific
variants can reveal the vulnerabilities that interfere with the normal protein activity. This
study suggests that mutations in myelin-related genes may play a role in the development
of MS. There are two putative PLP1-related MS mechanisms: PLP1 mutations could dam-
age oligodendrocytes [39], generating an inside-out disease process, or they could cause
the expression of neoantigens that the immune system could target [14]. Both can occur
concurrently, so PLP1 should be investigated further. Previous studies showed that a wide
variety of PLP1 genetic alterations have been identified as the underlying causes of PMD
and SPG2 [40,41]. Understanding the pathophysiology of the disorders illustrated by a
genotype–phenotype correlation requires an understanding of their cellular and metabolic
impacts. The consequences of pathological modifications of PLP1 gene were better under-
stood than the physiological functions of the PLP1 protein [37]. After more than 50 years
of research, most of the intracellular mechanisms related to PLP1 functionality are still
unknown, although the remarkable level of sequence conservation suggests that many
mutations could cause severe implications, including MS [14].

In the present study, for most of the known variants, the 3D structures of the proteins
are not experimentally known, so there is a clear lack of experimental evaluations of variant
effects. Prediction methods can help close the sequence-annotation gap, but with respect
to deep annotations of function, in silico methods remain limited. These methods are
mainly oriented towards intrinsically disordered proteins and clustered data are based
on sequence identity thresholds, retaining a single representative sequence from each
group. This approach results in models that resemble having learned a concept instead of
a probability distribution. Well-defined theoretical support for this situation is an open
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problem that will formalize and improve understanding of this long-standing practice in
computational biology.

MS is a persistent autoimmune inflammatory disease of the human central nervous
system (CNS). It is characterized by loss of motor and sensory function resulting from
immune-mediated inflammation, demyelination and sequelae destruction of nerve axons.
Along the axon, there are intermittent points that are not surrounded by myelin and are
called junctions of Ranvier [42]. MS shows great diversity both at the point of disease onset
and at the stage of developmental progression. Four main types of the disease are distin-
guished: Relapsing–Remitting MS (RRMS) that is characterized by clearly defined relapses
of increased disease activity and the worsening of symptoms; Secondary Progressive MS
(SPMS), the next step of the RRMS progress for the majority of patients; Primary Progressive
MS (PPMS), presenting with symptoms that have been steadily worsening since onset of
the disease, without relapses or remissions; and finally Progressive Relapsing MS (PRMS)
that is progressive from onset with continuous worsening between relapses [43,44]. Myelin
proteins are considered potential targets of the immune system in MS, and activated T-cells
recognize specific myelin epitopes at sites of extensive demyelination. According to clinical,
pathologic, imaging and electrophysiologic studies, it is not yet understood whether MS is
beginning in the periphery, by stimulation of immune cells that thereafter penetrate the
CNS and cause damage, or within the CNS through primary myelin or oligodendrocyte
injury [45]. This could be the result of mutations in molecules encoding critical components
of myelin or oligodendrocytes despite the fact that genome-wide association studies have
not found significant links between them and multiple sclerosis. However, it remains
possible that mutations in genes encoding these components may be present in a subset of
MS patients. In this regard, missense mutations in PLP1 have been identified in patients
exhibiting clinical symptoms consistent with a diagnosis of multiple sclerosis [14].

Although the pathogenesis of MS remains unclear, multiple genes, generally of poor
penetrance, have been related to MS susceptibility, and their nature suggests autoimmu-
nity causes disease development in most cases [46]. MS is a serious autoimmune disease,
unfortunately without a cure; however, over the last three decades, there has been a rapid
expansion of therapeutic approaches for the disorder including immunoprotective strate-
gies, shingosine-1-phoshate receptor modulators and cell-based therapies [47]. Emphasis
should be placed on early identification of risk factors for early therapeutic interventions.
The disease has a different pathogenetic factor in each patient. PLP1 mutations L31V,
L31R and R137W could impair PLP trafficking out of the ER and induce the unfolded
protein response (UPR). The data imply that PLP1 mutations could have a harmful effect on
oligodendrocyte functionality and consequently cause MS [14]. This is confirmed by recent
finding in mice carrying the L31R and R137W mutations: they showed neuroinflammation,
axonal degeneration, neuronal loss, and brain shrinkage by one year [18]. The same muta-
tions and the loss of function of glial PLP1 gene indicated a clinical scenario similar to MS
in humans. The area of PLP1 gene encoding residue 31 appears to be a hotspot for mutation
as L31P has been linked to severe PMD. The L31V mutation shows the least effects on
PLP expression, trafficking, or UPR induction is a conservative mutation, as we already
stressed [14]. It is not expected to have a significant impact on the hydrophobicity of the first
transmembrane region in which it is located, as L and V are hydrophobic amino acids with
similar structures and neutral side chains. An L31R mutation in the first transmembrane
domain of PLP could affect the overall charge, hydrophobicity, and/or secondary structure
of the transmembrane helix, disrupting PLP structure. The L31P mutation would force a
stiff bend on the polypeptide and damage the transmembrane helix. R137W occurs in exon
3B, which is deleted in PLP DM20. DM20 is expressed before PLP during ontogenesis and
may play a role in the development of new oligodendrocytes [48]. Several L31V-mutated
peptides were expected to bind with higher affinity to some of the patient’s HLA molecules
than the native peptide, producing de novo epitopes and potentially inducing/activating
a new group of autoreactive T cells [14,49]. Such responses depend on the presence of
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proteases that can digest peptides and T cells that can recognize novel epitopes in the
patient’s T cell repertoire.

5. Conclusions

PLP1 plays an important role in myelin structure and stability, an insulating lipoprotein
which helps transmit nerve impulses. Numerous computational tools were utilized in the
present in silico analysis, which demonstrated that the amino acid changes L31V, L31R,
and R137W of the PLP1 protein are functionally detrimental. The L31V and L31R variants
of PLP1 reside in the conserved domain of the protein. To examine the stability of mutant
and wild-type PLP1 proteins, we also calculated the changes in their free energies. Our
findings provide evidence for the functional role of these three variations, which facilitates
the establishment of accurate insights for drug targeting and future clinical application
in patients with multiple sclerosis. Alteration of overall cellular activity often arises as
a consequence of altered function of one or more individual proteins. Identification of
more variants as specific targets may provide a better understanding of conformational
dynamics for future studies, while molecular recognition specific to mutated proteins will
play an important role in broadening the scope of intracellular mechanisms involved in
inflammatory demyelinating diseases.

Key Points

1. The majority of computational tools indicated that MS-associated PLP1 mutations
would have a significant impact on the protein structure, stability and function.

2. Loss of protein thermodynamic stability can reduce the ability of its structure to
perform normal functions.

3. The resulted predictions for L31P, L31V and L31R indicated that these mutations may
lead to an altered transmembrane protein.

4. The R137W variant may also cause loss of helix, while the H140Y variant may alter
the ordered interface of transmembrane protein.
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Abstract: Alzheimer’s Disease (AD) and Mild Cognitive Impairment (MCI) are closely associated
with Tau proteins accumulation. In this study, we aimed to implement radiomics analysis to discover
high-order features from pathological biomarker and improve the classification accuracy based on
Tau PET images. Two cross-racial independent cohorts from the ADNI database (121 AD patients,
197 MCI patients and 211 normal control (NC) subjects) and Huashan hospital (44 AD patients, 33
MCI patients and 36 NC subjects) were enrolled. The radiomics features of Tau PET imaging of
AD related brain regions were computed for classification using a support vector machine (SVM)
model. The radiomics model was trained and validated in the ADNI cohort and tested in the
Huashan hospital cohort. The standard uptake value ratio (SUVR) and clinical scores model were
also performed to compared with radiomics analysis. Additionally, we explored the possibility of
using Tau PET radiomics features as a good biomarker to make binary identification of Tau-negative
MCI versus Tau-positive MCI or apolipoprotein E (ApoE) ε4 carrier versus ApoE ε4 non-carrier.
We found that the radiomics model demonstrated best classification performance in differentiating
AD/MCI patients and NC in comparison to SUVR and clinical scores models, with an accuracy of
84.8 ± 4.5%, 73.1 ± 3.6% in the ANDI cohort. Moreover, the radiomics model also demonstrated
greater performance in diagnosing AD than other methods in the Huashan hospital cohort, with an
accuracy of 81.9 ± 6.1%. In addition, the radiomics model also showed the satisfactory classification
performance in the MCI-tau subgroup experiment (72.3 ± 3.5%, 71.9 ± 3.6% and 63.7 ± 5.9%) and
in the MCI-ApoE subgroup experiment (73.5 ± 4.3%, 70.1 ± 3.9% and 62.5 ± 5.4%). In conclusion,
our study showed that based on Tau PET radiomics analysis has the potential to guide and facilitate
clinical diagnosis, further providing evidence for identifying the risk factors in MCI patients.

Keywords: Tau PET; radiomics; Alzheimer’s Disease; Mild Cognitive Impairment

1. Introduction

Alzheimer’s Disease (AD) is a common neurodegenerative disease marked by chronic
primary progressive memory decline and cognitive impairment, which is one of the most
serious diseases threatening the elderly [1]. At present, the early identification and ac-
curate diagnosis for prodromal AD are crucial for clinical decision-making and future
development of treatments. Mild Cognitive Impairment (MCI), as a prodromal stage of
AD, remains the most common underlying AD pathology or mixed pathology [2]. In line
with the latest A-T-N framework, pathologic Tau is closely associated with neurodegen-
eration and necessary for AD-related downstream events [3–5]. Quantifiable tau loads
and its corresponding increase may be a relevant target engagement marker for clinical
disease-modifying interventions in anti-Tau agents.
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Positron emission tomography (PET) offers the opportunity for non-invasively detect-
ing regional distribution of Tau pathology at early stages of neurodegenerative disorders.
First-generation Tau PET ligands have been developed as a highly credible biomarker
of 3R/4R Tau deposits [6]. For instance, 18F-flortaucipir (known as 18F-AV-1451) PET
pattern in AD/MCI specifically targets the clinically affected brain regions (e.g., medial
temporal and lateral temporoparietal regions) and shows a strong regional association with
domain-specific neuropsychological tests [7]. New Tau PET ligands (e.g., 18F-MK-6240,
18F-PI-2620 and 18F-Florzolotau (also known as 18F-APN-1607 and 18F-PM-PBB3) overcome
the off-target binding of the first-generation products and provide fresh insight on the time
course of Tau accumulation related to other biomarkers and clinical manifestation [8,9].
The application of qualitative and quantitative measure of Tau PET imaging, on the other
hand, is in its early stages. The existing PET biomarker and corresponding “defined cutoffs”
may not always reflect the presence or absence of pathology. One Tau-negative study esti-
mate that 27.5% of MCI or dementia due to AD in those >75 years of age might be Tau-PET
negative [10]. At this time, it is unknown how much pathologic Tau can be present in the
brain below the in vivo Tau PET detectable threshold. As the most popular qualitative
and quantitative analysis for PET imaging, visual reading and standard uptake value ratio
(SUVR) may necessitate the sacrifice for complete information in relation to underlying
regional Tau protein deposition. We anticipate that minimal neurofibrillary changes that
are detectable by neuropathology examination can also be identified by Tau PET. Moreover,
some studies have confirmed that brain Tau PET signal changes with age in cognitively
unimpaired individuals and AD patients [11–13]. Tau pathology accumulates early in aging
and relentlessly progresses in the course of AD. These limitations bring challenges to the
clinical utilization of Tau PET imaging.

Radiomics analysis can be applied to explore previously unrecognized signs and
patterns of disease evolution and progression by transforming image data into high-
throughput features that are difficult to detect by the visual system or intensity-based
metrics [14]. Until now, it has been applied to a variety of neuropsychiatric diseases includ-
ing AD/MCI. Previous studies including MRI, 18F- fluoro-2-deoxyglucose (18F-FDG) PET
and Amyloid β-protein (Aβ) PET have shown that radiomics features and classification
models have potential as biomarkers for the diagnosis of AD and MCI [15–18]. These pro-
vide important imaging information for the heterogeneity distribution of microstructure,
metabolism and pathological Aβ in AD or MCI. However, there is no similar research to
deeply explore Tau neuropathological profile. It is also debatable whether radiomics analy-
sis can be employed in Tau-negative PET images. The apolipoprotein E (ApoE) ε4 gene
has been identified as a significant genetic risk factor for AD/MCI [19]. Previous results
found associations between the gene expression and the deposition of Tau for AD [19].
The relationships between Tau PET radiomics features and genetic expression are not well
understood.

Considering the important role of Tau deposits in clinical symptoms and pathological
revelations [20] and the ability of radiomics in high-throughput mining of image features,
we hypothesizes that based on Tau PET radiomics analysis may also be dynamic in the
classification of AD and MCI patients. Furthermore, we anticipate that this method will be
used as neuroimaging biomarkers to differentiate patients with risk factors. Hence, the first
objective of this study is to propose and validate Tau-based radiomics features model for
diagnosing AD/MCI patients by different cohorts (Alzheimer Disease Neuroimaging Initia-
tive (ADNI)-Huashan hospital) and different Tau PET tracers (18F-AV1451-18F-Florzolotau).
Additionally, we explored the possibility of using radiomics features as a good biomarker to
make binary identification of Tau-negative MCI versus Tau-positive MCI or ApoE ε4 carrier
versus ApoE ε4 non-carrier, which is of significant importance, but limited for clinical tests.
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2. Materials and Methods

Figure 1 shows the overall workflow of Tau PET radiomics analysis, namely, (A) col-
lection of images and division of subgroups, (B) image preprocessing, (C) identification
regions of interest (ROIs), (D) feature extraction and selection and (E) SVM classification.

Figure 1. The main workflow for Tau PET radiomics analysis comprised five sections: subjects,
subgroups, preprocessing, regions of interest and classification. SVM: support vector machine.

2.1. Subjects

All subjects were collected from two different cohorts: ADNI database and Huashan
hospital, Fudan university. (1) For ADNI cohort, 121 AD patients, 197 MCI patients
and 211 normal control (NC) subjects were enrolled from ADNI-1, ADNI-2, ADNI-3
and ANDI GO. Detailed subject inclusion information for ADNI cohort can be found at
http://adni.loni.usc.edu (accessed on 3 May 2022). (2) For Huashan hospital cohort, 44
AD patients, 33 MCI patients and 36 NC subjects were enrolled. AD or MCI patients from
Huashan hospital were clinically evaluated and judged by senior neurologists of cognitive
disorders based on the current diagnostic guidelines [21,22]. NC subjects had no history
for neurologic and psychiatric disorders, and no abnormal neurological examination.

For ADNI and Huashan hospital cohort, age, gender, years of education and Mini-
Mental State Examination (MMSE) score were recorded. Imaging data, including 18F-
flortaucipir (ADNI only) PET, 18F-florzolotau PET (Huashan hospital only) and T1-weighted
structural MRI were collected. Table 1 shows the basic characteristics of all the subjects.

Table 1. Demographic, clinical characteristics for ANDI cohort and Huashan hospital subjects.

Age
(Years)

Sex
(Male/Female)

Education
(Years)

MMSE

ANDI cohort
AD (n = 121) 72.1 ± 7.5 * 55/66 * 15.5 ± 2.6 * 24.0 ± 3.3 *
MCI (n = 197) 71.1 ± 7.4 † 108/89 † 16.4 ± 2.5 † 27.9 ± 1.9 †‡

NC (n = 211) 71.2 ± 6.4 79/132 16.7 ± 2.3 29.1 ± 1.2
Huashan hospital

AD (n = 44) 58.2 ± 9.6 17/27 9.8 ± 4.2 * 16.6 ± 6.9 *
MCI (n = 33) 69.4 ± 8.4 †‡ 10/23 10.4 ± 3.2 † 25.6 ± 1.8 †‡

NC (n = 36) 58.5 ± 8.2 18/20 10.1 ± 2.1 27.2 ± 2.5

Data are given as numbers or mean ± standard deviation (SD) values. * p < 0.05 AD vs. NC. † p < 0.05 MCI vs.
NC. ‡ p < 0.05 AD vs. MCI. MMSE: Mini-Mental State Examination.
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The ADNI cohort was approved by the institutional review board at each site and all
the participants provided their written consent. The institutional review board of Huashan
Hospital (HIRB) granted ethics approval for Huashan hospital cohort (No. 2018-363).
All patients from Huashan hospital provided written informed consent.

2.2. Radiomics Model

Image Acquisition and preprocessing
Subjects in ADNI and Huashan cohort were scanned by structural T1 MRI and Tau

PET. Detailed information about the ANDI acquisition protocol is described on the website
(http://adni.loni.usc.edu/ accessed on 3 May 2022). Participants from Huashan hospital
underwent a 3.0-T anatomical MRI (Discovery MR750; GE Medical Systems, Milwaukee,
WI, USA) with FOV = 25.6 cm, matrix = 256 × 256 × 152, slice thickness = 1 mm, repetition
time (TR) = 8.2 ms, echo time (TE) = 3.2 ms, flip angle= 12◦. 18F-Florzolotau PET were
acquired on a Siemens mCT Flow PET/CT scanner (Siemens, Erlangen, Germany) in three-
dimensional (3D) mode over a 20 min acquisition time (90–110 min) and reconstructed by
the ordered subset expectation maximization (OSEM) method. The detailed acquisition
protocol for Huanshan hospital has been reported in our previous study [23].

All PET images preprocessing were performed in MATLAB R2018a (MathWorks, Nat-
ick, MA, USA) using the Statistical Parametric Mapping toolbox (version 12; http://www.
fil.ion.ucl.ac.uk/spm/software/spm12/ accessed on 9 May 2022). Frist, PET images were
co-registered with corresponding T1-weighted MRI images. Second, co-registered PET
images were normalized to the Montreal Neurological Institute (MNI) space using the for-
ward the spatial transformation matrix. Third, normalized PET images were subsequently
smoothed with a Gaussian kernel with a full width at half maximum of 8 mm to blur image
edges and improve the signal-to-noise ratio.

Definition of ROIs
For Tau PET, we concentrated on brain areas associated with AD-related Tau protein

deposition, and defined these ROIs to obtain more detailed radiomics features. Namely,
a group comparison using a two-sample t test between AD and NC from ANDI training
datasets (including 85 AD patients and 148 NC subjects) were performed to define the ROIs
with significant differences (FDR corrected, p < 0.01 and cluster size > 500). These ROIs
were mapped to Automated Anatomical Labeling (AAL) for localization by xjView9.6 (http:
//www.alivelearn.net/xjview accessed on 23 May 2022). As MCI remains the most common
underlying AD pathology or mixed pathology, we assume that these ROIs overlap MCI-
related brain areas and can also be used to extract MCI radiomics features. Furthermore,
the AD related regions were considered as ROIs to maintain consistency of radiomics
analysis in subsequent studies.

Radiomics Feature Extraction and Selection
For each subject, radiomics features from each AD related ROIs were computed by

a MATLAB toolkit for radiomics analysis (https://github.com/mvallieres/radiomics/
accessed on 6 June 2022). First, the Lloyd-Max quantization algorithm was applied to
normalize the preprocessed PET images for isotropic resampling. Second, radiomics
features were calculated from quantized PET images. Finally, 3 features from first-order
histogram, 9 features from the Gray-Level Co-occurrence Matrix (GLCM), 13 features
from the Gray-Level Run-Length Matrix (GLRLM), 13 features from the Gray-Level Size
Zone Matrix (GLSZM) and 5 features from the Neighborhood Gray-Tone Difference Matrix
(NGTDM) were extracted. Global features were extracted from the intensity histogram
of the ROIs, whereas GLCM, GLRLM, GLSZM and NGTDM textures are matrix-based
features. The detailed mathematical definition of the radiomics matrices were previously
reported [18].

After feature extraction, two steps were performed for features selection: (1) Correla-
tion analysis was first performed to reduce the dimensionality. If the correlation coefficient
of two feature columns exceeded 0.1, we removed one of them randomly. (2) Second,
a two-sample student’s t test between AD and NC from ANDI training datasets (including
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85 AD patients and 148 NC subjects) were used to further select the features with significant
differences (p < 0.005).

Classification
The subjects from ADNI data were randomly assigned to training and validation

datasets at proportions of 0.7 and 0.3, respectively. The SVM was applied to construct the
classification models of the AD-NC and MCI-NC groups based on the selected features with
five-fold cross-validation 100 times in training datasets and the validation dataset was used
to verify the robustness of our radiomics model. Then, the data from Huashan hospital
were used as independent external test sets to validate the reliability and robustness of the
corresponding models. In addition, age and sex had been treated as the covariates for SVM
classification. Receiver operating characteristic (ROC) curves and the corresponding areas
under the curve (AUC) were used to evaluate the diagnostic capabilities of the radiomics
features.

2.3. Comparative Models

To verify the superiority of radiomics model, two comparative models were performed
as the followed: (1) SUVR model: the SUVR value of each ROI was calculated by a reference
region (cerebellum) and used as the input of the classifier. (2) Clinical scores model: MMSE
scores, as the inputs, were construct the clinical prediction model. The SVM with a linear
kernel function was also used as the classifier in the comparative experiment.

2.4. Radiomics Model in MCI Subgroups

To explore the performance of radiomics model on the identification of Tau-negative
MCI vs. Tau-positive MCI or MCI ApoE ε4 carrier vs. ApoE ε4 non-carrier, MCI patients
were further divided into subgroups. (1) For Tau-negative MCI vs. Tau-positive MCI(MCI-
tau (+)/MCI-tau(-)), MCI Tau PET images were visually interpreted by two experienced
neuroimaging specialist who were blinded to clinical information and made positive or
negative decisions based global cortical binding. The final binary decision was based
on the consensus of two independent assessors. (2) For ApoE ε4 carrier vs. ApoE ε4
non-carrier (MCI-ApoE(+)/MCI-ApoE(-)), ApoE gene expression was recorded only in 171
MCI patients from ANDI cohort. The ApoE status was determined by the ApoE ε4 gene
expression or not. Radiomics model was treated with the same method as above.

2.5. Statistical Analysis

Statistical analyses were performed using SPSS software 26.0 (IBM Corporation, Ar-
monk, NY, USA). For categorical and continuous variables, the demographic information
was collected as numbers or means ± SD. The chi-squared tests for categorical variables
(sex) and one-way ANOVA test between AD, MCI and NC groups was performed. Values
were considered significant for p < 0.05.

3. Results

3.1. Demographic and Clinical Characteristics

The demographic and clinical characteristics of the ANDI cohort and Huashan hospital
subjects are presented in Table 1. (1) For the ANDI cohort, there was a significant difference
in age, sex, years of education and MMSE between AD and NC or MCI and NC group
(p < 0.05) and the AD group is different from MCI group in MMSE scores (p < 0.05). There
is no difference in age, sex or years of education between AD and MCI group. (2) For
Huashan hospital cohort, a difference in age, years of education and MMSE between MCI
and NC group (p < 0.05) and a difference in years of education and MMSE between AD and
NC group (p < 0.05) and there was a difference in age and MMSE between AD and MCI
group (p < 0.05). There is no age difference between AD and MCI group. No difference was
found in sex among the AD, MCI and NC group.
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3.2. The Defined ROIs and Selected Features

In final, 60 ROIs based on AAL atlas were obtained from the above method (Table S1).
The result showed that majority of the ROIs were found in the frontal, temporal and
occipital lobe (Figure 2).

 

Figure 2. The ROIs related brain regions defined by a two-sample t test between AD and NC from
ANDI training datasets. Color bars represent t value. ROIs: Regions of interest.

The total amount of features extracted from ROIs was 2580 ((3 + 40) × 60 = 2580).
After the features selection, 31 features mainly from GLSZM and NGTDM were left in the
frontal, temporal and occipital lobe. The details of these features provided in Table S2.

3.3. Tau PET Radiomics Model for the Diagnosis AD/MCI

For the identification of AD from NC, we obtained an accuracy of 84.8 ± 4.5% with
the ADNI validation dataset by radiomics model and an accuracy of 81.9 ± 6.1% with the
Huashan hospital as the independent external test data. The performances of the SUVR and
Clinical scores model were poorer than radiomics model with accuracies of 80.3 ± 1.4% and
70.5 ± 5.2%, respectively, in the ADNI validation dataset and 75.1 ± 3.5% and 66.4 ± 10.2%,
respectively, in the Huashan hospital cohort (Table 2).

Table 2. The classification results for AD vs. NC subjects.

Model
Accuracy

(%)
Sensibility

(%)
Specificity

(%)

Radiomics
Validation 84.8 ± 4.5 76.1 ± 5.1 88.7 ± 2.9

Test 81.9 ± 6.1 83.8 ± 4.9 78.6 ± 7.3
SUVR

Validation 80.3 ± 1.4 61.5 ± 3.5 87.0 ± 5.0
Test 75.1 ± 3.5 60.8 ± 7.8 79.1 ± 1.5

Clinical scores
Validation 70.5 ± 5.2 58.2 ± 13.9 79.9 ± 12.0

Test 66.4 ± 10.2 53.3 ± 6.5 70.2 ± 11.7

For the identification of MCI from NC, we obtained an accuracy of 73.1 ± 3.6%
with the ADNI validation dataset. The performances of the SUVR and Clinical scores
model were poorer than radiomics model with accuracies of 70.8 ± 2.7% and 65.1 ± 5.2%,
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respectively, in ADNI validation dataset. The accuracy with the Huashan hospital as the
independent external test data was 63.5 ± 8.7%. The performances of Clinical scores model
(accuracy: 63.1 ± 11.0%) were very similar to radiomics model in the Huashan hospital.
However, the performances of the SUVR model (accuracy: 68.7 ± 5.5%) were not poorer
than radiomics model (Table 3).

Table 3. The classification results for MCI vs. NC subjects.

Model
Accuracy

(%)
Sensibility

(%)
Specificity

(%)

Radiomics
Validation 73.1 ± 3.6 71.3 ± 6.1 75.0 ± 5.5

Test 63.5 ± 8.7 65.7 ± 8.8 60.6 ± 5.8
SUVR

Validation 70.8 ± 2.7 58.5 ± 14.8 88.4 ± 9.8
Test 68.7 ± 5.5 53.8 ± 14.4 86.7 ± 8.7

Clinical scores
Validation 65.1 ± 5.2 42.5 ± 13.9 87.5 ± 12.0

Test 63.1 ± 11.0 49.8 ± 9.6 80.5 ± 21.5

Compared to SUVR or Clinical scores model, the median AUC of the radiomics model
reached 0.906/0.850 and achieved the best performance for diagnosis AD/MCI from NC
(Figure 3).

Figure 3. Receiver operating characteristic (ROC) curves in classification of AD vs. NC [AUC: SUVR
0.873 (0.847–0.913), Clinical score 0.839 (0.796–0.962), Radiomics 0.906 (0.850–0.933)] and MCI vs.
NC [AUC: SUVR 0.833 (0.797–0.859), Clinical score 0.782 (0.729–0.851), Radiomics 0.850 (0.802–0.911)].
Data are given as median (interquartile range). TPR: True Positive Rate; FPR: False Positive Rate;
AUC: Areas under the curve.

3.4. Tau PET Radiomics Model for the Diagnosis MCI Subgroups

With the MCI-tau(+) vs. NC classification, we obtained an accuracy of 93.5 ± 2.7%
and 72.3 ± 3.5% for the ADNI training data and validation data, respectively. With the
MCI-tau(-) vs. NC classification, the accuracy in the training data and validation data was
91.7 ± 0.9% and 71.9 ± 3.6%, respectively. The performance of the MCI-tau(+) vs. MCI-
tau(-) classification was also excellent with the accuracies of 83.4 ± 5.2% and 63.7 ± 5.9% in
ADNI training data and validation data, respectively (Table 4.). The AUC for MCI-tau(+)
vs. NC, MCI-tau(-) vs. NC and MCI-tau(+) and MCI-tau(-) were 0.918 (0.829–0.955), 0.820
(0.752–0.907) and 0.711 (0.668–0.805), respectively (Figure 4).

For the identification of MCI-ApoE(+) from NC, we obtained an accuracy of 92.7 ± 1.1%
and 73.5 ± 4.3% with the ADNI training data and validation data, respectively. For the
identification of MCI-ApoE(-) from NC, we obtained an accuracy of 92.5 ± 2.9% and
70.1 ± 3.9% with the ADNI training data and validation data, respectively. In addition,
we obtained an accuracy of 87.1 ± 8.9% and 62.5 ± 5.4% for the classification of MCI-
ApoE(+) vs. MCI-ApoE(-) (Table 5). The AUC for MCI-ApoE(+) vs. NC, MCI-ApoE(-) vs.
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NC and MCI-ApoE(+) and MCI-ApoE(-) were 0.910 (0.861–0.937), 0.826 (0.788–0.853) and
0.701 (0.632–0.747), respectively (Figure 4).

Table 4. The classification results for MCI-tau subgroups.

Accuracy
(%)

Sensibility
(%)

Specificity
(%)

MCI-tau(+) vs. NC
Train 93.5 ± 2.7 92.0 ± 2.2 94.1 ± 3.6

Validation 72.3 ± 3.5 70.4 ± 5.9 74.0 ± 5.8
MCI-tau(-) vs. NC

Train 91.7 ± 0.9 91.0 ± 1.2 92.0 ± 3.4
Validation 71.9 ± 3.6 70.1 ± 6.0 73.5 ± 5.1

MCI-tau(+) vs. MCI-tau(+)
Train 83.4 ± 5.2 88.5 ± 7.3 80.1 ± 4.5

Validation 63.7 ± 5.9 69.4 ± 6.6 53.2 ± 8.0

Table 5. The classification results for MCI-ApoE subgroups.

Accuracy
(%)

Sensibility
(%)

Specificity
(%)

MCI-ApoE(+) vs. NC
Train 92.7 ± 1.1 92.7 ± 2.1 93.8 ± 1.8

Validation 73.5 ± 4.3 68.0 ± 3.8 76.6 ± 4.6
MCI-ApoE(-) vs. NC

Train 92.5 ± 2.9 91.0 ± 3.3 92.9 ± 2.0
Validation 70.1 ± 3.9 68.0 ± 3.0 72.8 ± 5.1

MCI-ApoE(+) vs. MCI-ApoE(-)
Train 87.1 ± 8.9 90.3 ± 10.5 83.6 ± 5.7

Validation 62.5 ± 5.4 71.6 ± 7.2 51.6 ± 11.0

Figure 4. Receiver operating characteristic (ROC) curves in classification of MCI-tau subgroups
and MCI-ApoE subgroups. [MCI-tau(+)-MCI-tau(-) AUC: 0.711 (0.668–0.805), MCI-tau(-)-NC AUC:
0.820 (0.752–0.907), MCI-tau(+)-NC AUC: 0.918 (0.829–0.955)]; [MCI-ApoE(+)-MCI-ApoE(-) AUC:
0.701 (0.632–0.747), MCI-ApoE(-)-NC AUC: 0.826 (0.788–0.853) and MCI-ApoE(+)-NC AUC: 0.910
(0.861–0.937)]. Data are given as median (interquartile range). TPR: True Positive Rate; FPR: False
Positive Rate; AUC: Areas under the curve.

4. Discussion

So far, few studies had investigated the use of artificial intelligence on Tau PET images
for the assessment of neurodegenerative diseases. In this paper, we proposed Tau PET-based
radiomics analysis as a novel biomarker to apply to AD/MCI. Meanwhile, we selected
two cross-racial independent cohorts with different PET scanners, two imaging tracers,
to prove the stability and generalization of the method. We find that this radiomics model
has the potential of improving the diagnostic accuracy for AD/MCI, even contributing to
the identification of MCI with negative or positive Tau PET. Moreover, we evaluated this
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model could predict the ApoE4 carrier results of MCI patients, which is an important risk
factor predicting progression to dementia.

Radiomics seeks to extract high-throughput quantitative information from medical
images, especially those that are difficult for the human eyes to recognize or quantify [14].
Prior studies offered solid evidence that AD/MCI patients had Tau deposition in the
frontal, temporal, parietal and occipital lobes [24,25]. In our study, AD-related ROIs were
characterized by SPM analysis in frontal, temporal and occipital lobe, which is consistent
with those reported in the above literature. Eventually, 31 radiomics features, mainly
from GLSZM and NGTDM, in the temporal, parietal, occipital lobes and cingulate gyrus
were left. The GLSZM-derived features assess the variability of gray-level intensity values
and the distribution of large area size zones in the image [26]. The NGTDM-derived
features mainly reflect the difference between a gray value and the average gray value
of its neighbors [26]. These radiomics features were usually difficult to detect by manual
inspection, but computer-aided technology scan effectively identified them. Significant
differences on the above features showed the highest inter-patient variability within the
distributions of voxel values. Additionally, it provided multidimensional evidence that Tau
deposit occurred in specific brain regions.

Currently, more evidence highlighted the possibility that radiomics can be employed
as imaging biomarkers for AD and MCI [27,28]. T1-weighted Magnetic Resonance Imaging
(MRI) radiomics methods were first used to distinguish AD/MCI from NC. Other MRI
sequences, including Voxel-Based Morphometry (VBM), Susceptibility-Weighted Imaging
(SWI) and Diffusion Tensor Imaging (DTI), were used in detecting the brain structural and
functional changes of AD and MCI [27]. For example, Feng et al., performed the logistic
analysis with a classification accuracy of 0.9 for AD vs. NC, an accuracy of 0.81 for AD vs.
MCI and an accuracy of 0.75 for MCI vs. NC [29]. For FDG PET, radiomics features pro-
vided the best performance with classification accuracy of 0.77 vary to 0.94on MCI/NC and
AD/NC [18,30]. As the common Aβ neurobiological biomarkers, the high-order features of
Aβ PET also achieved an accuracy of 0.87 for AD vs. NC classification [31]. Compared with
above studies, our Tau PET radiomics model achieved similar to classification accuracy.
Additionally, the classification accuracy remained slightly lower in independent external
test dataset from the Huashan hospital cohort. Notably, the Tau PET tracer in Huashan
hospital cohort is different from ANDI cohort. Thus, we can conclude that the high accu-
racy achieved was a consequence of the robustness of the radiomics classification model.
According to our results of the comparative experiment, the performance of this model
outperformed SUVR or Clinical scores model. For Tau PET, SUVR typically defined as the
ratio of average activity in brain ROI relative to reference (usually in cerebellum). However,
the reference in cerebellum has some disadvantages including small size, low signal detec-
tion sensitivity and the partial volume effect (PVE) [32]. For MMSE scores, it has shown
not to be adequate in detecting MCI and clinical signs of dementia due to the ceiling or the
floor effect and higher subjectivity [33]. Hence, the incomplete characteristics of the SUVR,
limitation of the neuropsychological scales may lead to the comparative results [34].

Variations in the types, amounts and distribution of concomitant AD or non-AD
pathologies may account for the Tau ‘positivity’ or ‘negativity’ of MCI [35]. Previous
studies showed that these Tau negativity individuals were less likely to have AD-related
clinical features and that the majority did not develop dementia over at least 5 years of
follow-up [36]. Early in vivo diagnosis of MCI with Tau positivity, which may evolve
into AD, is critical for accurate patient management. In our study, the radiomics models
exhibited satisfactory performance in automated detection of MCI with Tau-negative or
Tau-positive cases with mean accuracy of 72.3% or 71.9% from NC. This method could be
helpful to identify and eventually treat patients as early as possible in the disease process.
It also could be applied to overcome obvious shortcomings of traditional assessment, such
as manual operations of image intensity and inter-reader variability of visual interpretation.

The APOE ε4 genotype expression is related to higher risk of AD/MCI [37]. The associ-
ations between the genetic phenotypes and AD-associated Tau deposition had been proven
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and light the genetic basis for Tau deposition [38]. Considering the toxicity, identification
of APOE ε4 carriers and blocking its action may delay or stop the development of AD [39].
As expected, our study showed that radiomics features was also affected by the ApoE ε4
genotype. This radiomics model showed the high accuracy for the identification of APOE
ε4 carrier or non-carrier from NC. It is meaningful that Tau radiomics features had been
confirmed to have genetic significance and were helpful for identifying MCI with risk
genetic factor.

For this study, we draw attention to some limitations. First, the diagnosis of AD/MCI
was not confirmed by the autopsy. AD is a significant heterogeneous disease with various
forms clinical presentation, which is now referred to as the Alzheimer spectrum [40].
We strictly adopted the standardized clinical diagnostic criteria to classify patients into
AD and MCI. Second, we divided MCI subjects into MCI-tau(+) and MCI-tau(-) group by
visual interpretation. Considering subjectivity of the naked eye, a reliable strategy for tau
PET analysis is desired to be developed in the future. Third, we did not use the scale for
related exclusion study. Whether the bias of the scale has an impact on the results needs
further discussion. Fourth, we only employed single independent external cohorts with
relatively small the number of subjects. A larger cohort and a multicenter study is required
for stronger verification in future research. Finally, the study is its retrospective nature.
Ongoing longitudinal observational studies in the model will be explored to validate these
results.

5. Conclusions

In conclusion, we explored radiomics model for the classification of AD/MCI based on
Tau deposition. Our results demonstrated that this model could acquire high-level evidence
for clinical practice and accurately and stably identify AD/MCI from NC. In addition,
we also find that these radiomics features can identify the risk factors in MCI patients,
i.e., deposition of Tau and APOE ε4 gene expression. These findings show that Tau PET
radionics can serve as new neuroimaging biomarker for clinical aided classification, further
providing evidence that advanced machine learning methods may contribute to clarify the
neuropathological mechanism for AD from a new perspective.
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Abstract: Background: Mild cognitive impairment (MCI) is a transitional stage between normal
aging and probable Alzheimer’s disease. It is of great value to screen for MCI in the community.
A novel machine learning (ML) model is composed of electroencephalography (EEG), eye tracking
(ET), and neuropsychological assessments. This study has been proposed to identify MCI subjects
from normal controls (NC). Methods: Two cohorts were used in this study. Cohort 1 as the training
and validation group, includes184 MCI patients and 152 NC subjects. Cohort 2 as an independent
test group, includes 44 MCI and 48 NC individuals. EEG, ET, Neuropsychological Tests Battery
(NTB), and clinical variables with age, gender, educational level, MoCA-B, and ACE-R were selected
for all subjects. Receiver operating characteristic (ROC) curves were adopted to evaluate the capa-
bilities of this tool to classify MCI from NC. The clinical model, the EEG and ET model, and the
neuropsychological model were compared. Results: We found that the classification accuracy of
the proposed model achieved 84.5 ± 4.43% and 88.8 ± 3.59% in Cohort 1 and Cohort 2, respectively.
The area under curve (AUC) of the proposed tool achieved 0.941 (0.893–0.982) in Cohort 1 and 0.966
(0.921–0.988) in Cohort 2, respectively. Conclusions: The proposed model incorporation of EEG, ET,
and neuropsychological assessments yielded excellent classification performances, suggesting its
potential for future application in cognitive decline prediction.

Keywords: mild cognitive impairment; neuropsychological tests battery; machine learning; screening
tool

1. Introduction

Alzheimer’s disease (AD) is the most common neurodegenerative brain disease that
affects 50–70% of patients with cognitive impairments over the age of 65 [1]. AD pathology
leads to an irreversible deterioration in cognitive functions such as loss of memory, execu-
tive dysfunction, and attention disorders [2–4]. Mild cognitive impairment (MCI) refers
to the intermediate period between the typical cognitive decline of normal aging and the
more severe decline associated with dementia (e.g., AD) [5–7]. Because of the irreversibility
of AD, it is of great value to screen MCI subjects at the community level [5,8,9].

Currently, biochemical tests (e.g., Cerebrospinal Fluid and Blood) and neuroimaging
tests (e.g., Magnetic Resonance Imaging,) were considered efficient screening tools for
MCI [10–12]. However, these techniques were usually invasive and expensive, restricting
large-scale screening applications in the community [13,14]. Therefore, an effective and
low-cost detectable approach to cognitive decline in MCI is urgently required.

Recently, MCI screening has attracted immersive interests. A Neuropsychological
Tests Battery (NTB) is well recognized in the diagnostic pipelines of preclinical AD [15].
Multiple preclinical neuropsychological measures significantly predicted progression to
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AD from MCI and detected changes in patients in verbal and visual memory, visuospatial
processing, error control, and subjective neuropsychological complaints [16]. Paul et. al.
confirmed that neuropsychological tests quick-MCI to assess cognitive status in 3–5 min
and can discriminate MCI accurately in primary care [17]. Neuropsychological tests were
clearly appropriate for MCI community screening, as are emerging cognitive assessments
such as electroencephalogram (EEG) and eye tracking (ET) to monitor cognitive function.
Murty et al. found that stimulus-induced gamma rhythms from EEG were significantly
lower in MCI/AD subjects compared to their age- and gender-matched controls, suggest-
ing that gamma of EEG could be used as a potential screening tool for MCI or AD in
humans [18]. Oyama et al. developed a brief cognitive assessment utilizing an eye-tracking
technology that can enable quantitative scoring and the sensitive detection of cognitive
impairment in patients with mild cognitive impairment and dementia [19]. Nie et al.
found that eye movement parameters are stable indicators to distinguish patients with
MCI and cognitively normal subjects and are not affected by different testing versions
and numbers [20]. The incorporation of neuropsychological tests and physiological mea-
surements warrants further study as a practical and cost-effective method for wide-scale
screening for identifying older adults who may be at risk for pathological cognitive de-
cline. Neuropsychological tests might be limited in their effectiveness in MCI screening
while acknowledging that neuropsychological tests are inadequate for making a definitive
diagnosis. To increase the precision and sensitivity of MCI screening, several researchers
incorporated NTB into objective physiological measures, such as prefrontal EEG [21] and
ET [22]. For instance, our previous work validated the feasibility of physiological mea-
sures using EEG and ET in distinguishing MCI from HC, with a classification accuracy of
81.5% [23].

In addition, with the development of artificial intelligence techniques, machine learn-
ing (ML) methods have been widely used for the differential diagnosis of MCI [15,23–25].
For example, Lin et al. developed non-invasive clinical variables and ML classifiers, in-
cluding Support Vector Machine (SVM), Logistic Regression (LR), and Random Forest
(RF), to achieve over 75% classification accuracy to classify subjects who converted to
MCI from normal within four years [25]. Yim et al. proposed a ML algorithm to identify
cognitive dysfunction based on neuropsychological tests including the Montreal Cogni-
tive Assessment (MoCA). The results showed a good classification performance between
cognitive impairment and normal subjects [15]. However, there were few models using
neuropsychological tests, physiological tests, and ML algorithms in the previous studies.

This study aims to propose and validate a novel and low-cost screening model consist-
ing of neuropsychological tests, physiological tests, and ML algorithms. Importantly, to
evaluate the robustness of the model, two independent cohorts were used in this study.

2. MCI Prediction Algorithms

Figure 1 shows the flowchart of the proposed model, which was composed of four
steps: data collection, data preprocessing, feature extraction and selection, and classification
based on ML classifiers. These steps were described in detail as the following:
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Figure 1. The flowchart of the proposed model.

2.1. Data Collection

EEG, ET, neuropsychological test (Table S1), and demographic data (age, gender, and ed-
ucation) were selected as the inputs of the model. Details of the data collection step were de-
scribed in our previous study [23] and provided in the Figure S1 of Supplementary Material.

2.2. Data Preprocessing

This model included an automatic data preprocessing step for EEG, ET, and NTB.

2.2.1. EEG Preprocessing

Invalid EEG data was first removed according to whether the EEG electrode was
offset. Next, the power frequency noise, electromyogram signal, electrocardiogram signal,
and other external noises were removed using a band stop filter and a band pass filter.
Simple second-order Butterworth filtering was applied with a passband of 0.5–30 Hz.
Finally, we overlapped 60% of the EEG data by applying a 5 s moving window, provid-
ing 15 overlapping segments for each subject. The EEG signal was preprocessing using
EEGLAB toolbox implemented in MATLAB 2018a (Math Works Inc., Sherborn, MA, USA).
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2.2.2. ET Preprocessing

First, excessive noise from ET data was eliminated. Next, the gaze position signal was
normalized to the display coordinates to avoid the interpolation bias. Finally, a low pass
Butterworth filter with a cut-off frequency of 5 Hz was implemented in MATLAB 2018a
(Math Works Inc., Sherborn, MA, USA).

2.2.3. NTB Data Preprocessing

NTB data were cleaned, and all abnormal values were eliminated. Finally, neuropsy-
chological test scores were normalized into 0–1.

2.3. Feature Extraction
2.3.1. EEG Data

Frequency-domain and spectral-domain features of the EEG signal were extracted.
A Fourier transform of the autocorrelation function was employed to transform the EEG
signal from time-domain to frequency-domain to get the power spectral density. Four EEG
frequency bands (delta 0.5–4 Hz, theta 4–8 Hz, alpha 8–13 Hz, and beta 13–30 Hz) were
filtered in this study. The power spectrum of each frequency band and specific spectral
power ratios like the alpha/theta power ratio was computed. The extracted linear features
of the EEG were consistent with our preliminary work [23]. Nonlinear features of the EEG,
including approximate entropy (ApEn) [26], Multiscale entropy (MsEn) [27], and Lempel
Ziv complexity (LZC) were calculated [28]. The calculation formulas of the EEG features
were described in the section of Feature extraction and selection of Supplementary Material.

2.3.2. ET Data

ET data was divided into saccade data and gaze data. The association of gazes and
saccades with specific regions on visual stimuli was examined. Then, visual scan parameters
such as blink frequency, blink time, fixation time, and sustained attention duration were
calculated. The nonlinear features of ET were extracted by LZC.

2.3.3. NTB Data

NTB data, which are numerical, included subtest scores, total test scores, and re-
sponse time. Meaningful numerical features were subsequently converted to z-scores using
Z transformation.

2.4. Feature Selection

The Minimum Redundancy-Maximum Relevance (MRMR) algorithm was used for
feature selection [29]. In the MRMR algorithm, the correlation between different feature
subsets is modeled as:

Θ =
1
|Ω|∑m ∑

fi∈Ω
M( fi, m) (1)

where the feature subset Ω is from the feature set F and F = { f1, . . . , fD}. In this tool,
m = {+1,−1} represents HC and MCI respectively and M is the mutual information
between the feature subset and the target classes which is given by

M(X, Y) = ∑
X

∑
Y

p(X, Y) log2

(
p(X, Y)

p(X)p(Y)

)
(2)

where p(X), p(Y), p(X, Y) are the marginal probability distributions and joint probability
distributions of variable X, Y respectively. Clearly, the mutual information comes to
zero when p(X, Y) = p(X)p(Y), which states that the feature is independent with the
target classes.

The redundancy between the feature fi and other features can be modeled as:
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ΔΩ, fi
=

1

|Ω|2 ∑
f j⊂Ω, fi 	= f j

M
(

fi, f j
)

(3)

Thus, the feature meeting the minimum redundancy-maximum correlation principle
can be obtained via:

f ∗i = argmax
fi⊂Ω

Θ
ΔΩ, fi

(4)

In the above equation, the optimal features can be obtained by maximizing the corre-
lation between the features and the target classification and minimizing the redundancy
between the features. By performing similar operations on different feature subsets, mul-
tiple optimal features can be found to reduce the complexity and improve the algorithm
decision performance.

2.5. Classification

A support vector machine (SVM) was used as the ML classifier with Anaconda
Spyder 3.7 (Anaconda Inc., Austin, TX, USA). As a classic supervised learning method,
SVM has been widely used in statistical classification and regression analysis due to its
ability to map vectors linearly to a higher dimensional space that creates a maximum
margin hyperplane to achieve high classification performance.

wTx + b = 0 (5)

Support vectors maximize the margin of the classifier by changing the position and
orientation of the hyperplane. Kernel functions of SVM or “kernel trick” by SVM were
applied to remedy the issue that the points are not separable linearly due to the position
of the data. Kernel trick involves the transformation of the existing algorithm from a
lower-dimensional data set to a higher one. The amount of information remains the same,
but in this higher dimensional space, it is possible to create a linear classifier. Several K
kernels are assigned to each point which then helps determine the best fit hyperplane
for the newly transformed feature space. With enough K functions, it is possible to get
precise separation.

Linear SVM classifier with hard margin:

W(α) = −
l

∑
i=1

αi +
1
2

l

∑
i=1

l

∑
j=1

yiyjαiαjXiXj (6)

Kernel trick equation minimizing W subject to:

l

∑
i=1

yiαi = 0 0 ≤ αi ≤ C (7)

3. Materials and Methods

3.1. Subjects

We recruited two cohorts for this study. Cohort 1 was composed of 336 subjects
from four communities in Jiading district, Shanghai, China, including 152 MCI patients
and 184 normal controls (NC) subjects. Cohort 2 was composed of 44 MCI patients and
48 NC subjects from one community in Baoshan district, Shanghai, China. All subjects
also underwent a battery of cognitive evaluations, including Addenbrooke’s Cognitive
Examination-revised (ACE-R) and Montreal cognitive assessment-basic (MoCA-B). The per-
mission of MoCA-B in the study was received via https://www.mocatest.org/permission
(accessed on 28 June 2017).

All subjects signed an informed consent before the examinations. This study has
been approved by the ethics committee of Long Hua Hospital in Shanghai University of
Traditional Chinese Medicine (Ethical number: 2017LCSY345) and conducted in accordance
with the principles of the Declaration of Helsinki. In this study, Cohort 1 was used as
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the training and validation group to train the SVM classifier. Cohort 2 was used as an
independent test group to verify the robustness of the classification results.

MCI was defined by an actuarial neuropsychological strategy proposed by Jak and
Bondi [30], subjects were considered to have MCI if they met any of the following three
criteria and neglected to meet the criteria for dementia. The inclusion criteria for MCI
were as follows [31,32]: (1) right-handed, and Mandarin-speaking subjects; (2) a subjec-
tive memory complaint; (3) memory impairment relative to age and education-matched
healthy elderly individuals confirmed by performance on neuropsychological assessments
(below 1.5 standard deviations); (4) intact general cognitive function confirmed by MoCA-B
scores ≥ 26; (5) intact activities of daily living; and (6) without dementia confirmed by
a physician.

Exclusion criteria of MCI were as follows: (1) other neurological diseases including
cerebrovascular disease, brain trauma, Parkinson’s syndrome, brain tumor, and epilepsy;
(2) current major psychiatric disease such as severe depression and anxiety; (3) other neuro-
logical conditions that could cause cognitive decline (e.g., brain tumors, Parkinson’s disease,
encephalitis, or epilepsy) rather than AD spectrum disorders; (4) systemic diseases that
may lead to cognitive decline (thyroid dysfunction, severe anemia, syphilis, or HIV, etc.);
(5) other conditions such as a history of CO poisoning and general anesthesia; (6) severe
visual or hearing impairment; (7) contraindication for MRI.

The inclusion criteria for NC included the following: (1) no subjective or informant-
reported memory decline; (2) non-clinical depression (Geriatric Depression Scale scores < 6);
(3) normal age-adjusted, gender-adjusted, and education-adjusted performance on stan-
dardized cognitive tests.

3.2. Data Acquisition

All data were selected from 1 September 2017 to 31 August 2018 in the communities,
Shanghai, China. The data selection protocol has been introduced in the Supplementary Material.

3.3. Validation Experiments for Optimal Parameters of the Classifier

We adjusted the hyper-parameters for the SVM classifier such as kernel function,
penalty factor C, and coefficient of kernel function gamma with good classification perfor-
mance by 5-fold cross-validation. Different kernels, including linear, polynomial, and RBF
were compared in this study. Cohort 1 was used to train these parameters.

3.4. Discriminative Analysis

The classification results from four models were compared by using the SVM classifier,
including (1) the clinical model (clinical variables including age, gender, educational level,
MoCA-B, ACE-R), (2) the single neuropsychological test model (20 subtests of NTB showed
in the Supplementary Material), (3) the single physiological test model (EEG and ET), and
(4) the proposed tool model. We used the 5-fold cross-validation method to calculate the
classification results.

3.5. Statistical Analysis

Differences in demographic and cognitive performance between the NC group and
the MCI group were evaluated by two sample t-tests or chi-square (χ2) tests of Statistical
Package V24 for Social Sciences (SPSS Inc., Chicago, IL, USA). The significance level was
set as p < 0.05. Receiver operating characteristic (ROC) curves were used to evaluate the
capabilities of the tool in distinguishing MCI from NC. The areas under the curves (AUCs)
with 95% confidence intervals (CIs) were calculated.

4. Results

4.1. Demographic and Clinical Characteristics

The detailed demographic and clinical characteristics were reported in Table 1. The
results showed that the scores of MoCA-B and ACE-R from MCI patients were significantly
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lower than NC’s scores (p < 0.001, two-sample t-test). There were no significant differences
in age (p = 0.875; two-sample t-test), gender (p = 0.541; chi-square test) or years of education
(p = 0.071; Wilcoxon rank-sum test) of cohort 1. There were no significant differences in
age (p = 0.783; two-sample t-test), gender (p = 0.492; chi-square test) or years of education
(p = 0.068; Wilcoxon rank-sum test) of cohort 2 either.

Table 1. Demographic and clinical characteristics of subjects.

Cohort 1 Cohort 2

NC (184) MCI (152) p Value NC (48) MCI (44) p Value

Age (years) 71.7 ± 4.66 71.6 ± 4.15 0.875 b 69.3 ± 17.0 76.5 ± 11.3 0.783 b

Education (years) 9.36 ± 3.47 8.16 ± 3.74 0.541 a 13.0 ± 3.87 10.8 ± 5.66 0.492 a

Gender (male/female) 101/83 78/74 0.071 c 18/30 16/28 0.068 c

MoCA-B 28.3 ± 0.95 23.2 ± 3.40 <0.001 b * 23.8 ± 3.28 16.4 ± 3.84 <0.001 b *
ACE-R 72.1 ± 7.79 63.7 ± 8.53 <0.001 b * 71.0 ± 24.9 64.2 ± 8.28 <0.001 b *

Note: Data are presented as mean ± standard deviation. * Indicates a statistical difference between groups,
p < 0.05; a: the p value was obtained by χ2 test, b: the p value was obtained by two-sample t tests, c: the p value
was obtained by Wilcoxon rank-sum test. Abbreviations: NC, normal control; MCI, Mild Cognitive Impairment;
MoCA-B, Montreal cognitive assessment-basic; ACE-R, Addenbrooke’s Cognitive Examination Revised.

4.2. Validation Experiments for Optimal Parameters of Classifier

The best classification performance was obtained under the specific parameters
(C = 1.1, GAMMA = 0.001) while the kernel function was set to RBF. Table 2 shows the
detailed performance of different kernel functions and corresponding parameters.

Table 2. The optimized hyper-parameters of SVM in test dataset.

Kernel Function C GAMMA Accuracy (%) Sensitivity (%) Specificity (%) AUC (95% CI)

Linear 4.0 / 84.3 ± 4.05 83.1 ± 7.70 85.5 ± 4.97 0.906 (0.841–0.969)
Poly 20.0 0.02 78.1 ± 9.90 83.6 ± 10.6 71.3 ± 13.6 0.851 (0.747–0.954)
RBF 1.1 0.001 84.5 ± 4.34 82.4 ± 7.36 86.5 ± 6.51 0.934 (0.878–0.977)

Sigmoid 17.0 0.01 82.1 ± 6.08 90.9 ± 8.13 71.3 ± 11.7 0.851 (0.838–0.964)

C represents the regularization coefficient, gamma represents the kernel function coefficient, AUC represents the
area under the ROC curve, the bold part in the table is the optimal value of each column, and the values in the
table are the mean and standard deviation after five cross-validations.

4.3. Discriminative Analysis

Tables 3 and 4 showed comparison results of four models in Cohort 1 and 2, re-
spectively. Classification results showed that the performance of the proposed tool was
better than other models (Accuracy: 84.5 ± 4.43%; Sensitivity: 81.9 ± 7.88%; Specificity:
86.8 ± 6.19%; AUC: 0.942 (0.893–0.982)) in Cohort 1. Classification results also showed that
the performance of the proposed tool was better than other models (Accuracy: 88.8 ± 3.59%;
Sensitivity: 86.2 ± 6.46%; Specificity: 91.0 ± 5.39%; AUC: 0.966 (0.921–0.988)) in Cohort 2.
Figures 2 and 3 showed the ROC results of the four models in both cohorts.

Table 3. The classification results of four models in cohort 1.

Comparative Model Accuracy (%) Sensitivity (%) Specificity (%) AUC (95% CI)

The clinical model 62.6 ± 5.19 54.7 ± 6.81 71.4 ± 5.56 0.653 (0.541–0.783)

Single neuropsychological test model 75.6 ± 4.60 55.7 ± 8.15 71.2 ± 4.72 0.8014 (0.700–0.885)

Single physiological test model 81.4 ± 4.66 72.1 ± 8.25 89.2 ± 5.42 0.9045 (0.819–0.961)

The proposed tool model 84.5 ± 4.43 81.9± 7.88 86.8 ± 6.19 0.9415 (0.893–0.982)
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Table 4. The classification results of four models in cohort 2.

Comparative Model Accuracy (%) Sensitivity (%) Specificity (%) AUC (95% CI)

The clinical model 65.7 ± 4.93 43.3 ± 10.6 90.1 ± 7.94 0.660 (0.543–0.789)
Single neuropsychological test model 75.0 ± 5.22 54.1 ± 8.63 91.5 ± 4.73 0.803 (0.681–0.889)

Single physiological test model 87.0 ± 4.27 82.4 ± 7.94 90.6 ± 5.05 0.937 (0.867–0.985)
The proposed tool model 88.8 ± 3.59 86.2 ± 6.46 91.0 ± 5.39 0.966 (0.921–0.988)

Figure 2. The receiver operating curves of four models in cohort 1.

Figure 3. The receiver operating curves of four models in cohort 2.

5. Discussion

Cognitive decline remains highly underdiagnosed in the community despite extensive
efforts to find novel approaches to detect MCI and find objective screening methods for
cognitive decline could improve early MCI diagnosis. MCI screening in the community
has become a hot topic nowadays. In light of their excellent performance in detecting a
cognitive decline in MCI patients, multimodal detection approaches have been commonly
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used in computer-aided disease diagnostic fields of community screening. In this study,
we proposed a ML model based on EEG, eye movement, and neuropsychological tests for
MCI screening at the community level. In contrast to other traditional models, such as the
EEG-based model, ET-based model, and NTB-based model, the classification results of our
model outperformed other traditional models.

So far, a lot of studies have focused on the classification of NC and MCI by using
machine learning models for screening in primary care. For instance, Siuly et al. performed
a Piecewise Aggregate Approximation (PAA) technique for compressing massive volumes
of EEG data for reliable analysis and developed a model based on Extreme Learning
Machine (ELM) with permutation entropy (PE) and auto-regressive (AR) model features to
achieve the highest MCI classification accuracy (98.8%) [33]; Lagun et al. applied a SVM
based machine learning model to reach the accuracy of 87% to detect MCI by modeling
eye movement characteristics such as fixations, saccades, and refixations during the Visual
Paired Comparison (VPC) task [34]; Yim et al. developed a screening model based on a
gradient boosting (GB) algorithm to identify MCI by neuropsychological test results and
reached the classification accuracy of 93.5% [15]; and, Wang et al. developed a Random
Forest (RF)-based model to optimize the content of cognitive evaluation and achieved an
accuracy of 68% in the classification of MCI and NC [35].

Notably, our classification results were similar to previous studies, indicating the
reliability of our results. As shown in Table 5, although previous studies based on EEG
analysis performed powerful discrimination for MCI detection (ACC = 98.8% in Siuly’s
model), it is worth noting that these studies based on expensive and long-term physiological
signal collection devices are seldom used in primary care. By contrast, the wearable EEG
device used in our approach was more suitable for large-scale MCI screening. In contrast
to earlier studies based on ET and NTB, our method achieved better accuracy. Additionally,
the advantages of our method were also summarized as follows:

Table 5. The performance of analogous MCI detection methods in the literature.

Detection Tools Modality Subject Method Classifier Accuracy

EEG based Siuly, 2020 [33]
EEG (19 Electrodes) 27 EEG features ELM 98.8%

ET based Lagun, 2011 [34]
ET Test 174 ET features SVM 87%

Neuropsychological
test based Yim, 2020 [15] 614 The mean total scores of

neuropsychological test GB 93.5%

NTB based Wang, 2022 [35]
Neuropsychological tests battery 241 NTB scores RF 68%

Proposed Method
NTB, EEG and
Eye tracking

EEG (1 electrode) & ET &
Neuropsychological test battery 336 EEG & ET features &

NTB scores SVM 88.8%

(1) In terms of feature extraction, the linear and nonlinear feature analysis has been
successfully used to identify the powerful biomarkers of neurophysiological diseases,
such as Alzheimer’s disease (AD). In this study, we applied both linear and nonlinear
methods to extract EEG and eye movement features. For EEG, complexity analysis
as a nonlinear dynamic method can represent the rate of new patterns appearing
in a time series, and to a certain extent, details of the signal can be presented in the
binarized sequence.

(2) In terms of feature selection and classification, the SVM model was selected. As a ML
model, the SVM is suitable for classifying the features obtained from neuropsycholog-
ical assessments.

(3) In terms of the clinical setting, we depicted a machine learning framework for auto-
mated cognitive assessment data analysis for the precise classification of healthy and
mild cognitive impairment individuals. Our work opens the possibility for automated
assessment of cognitive function in community screening.
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Although our proposed method achieved a good classification of screening MCI and
NC, several limitations still exist. First, the whole experiment is time-consuming and
thus leads to a decrease in the degree of completion and cooperation of patients. Second,
the de-noising algorithm may influence the results of feature extraction and classification.
Third, the sample size of NC and MCI individuals was limited, and increasing the sample
size in future studies should be taken into consideration. Longitudinal imaging studies
are still absent. In the subsequent research, ongoing follow-up observational studies of
individuals will facilitate the investigation and validation of our results. Finally, SVM was
only used as the classifier in this study. If alternative classifiers such as using extreme
learning machines or deep learning models were developed, better classification results
will be obtained.

6. Conclusions

In this study, an automatic and non-invasive MCI detection model was proposed,
which integrated EEG, Eye movement techniques, and a neuropsychological test battery.
The results indicated the potential application for MCI detection and guided referral for a
more comprehensive evaluation to ultimately facilitate early intervention in primary care.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/brainsci12091149/s1. Figure S1. Data collection in this study. Table S1.
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Abstract: Objective: We explored a novel model based on deep learning radiomics (DLR) to differ-
entiate Alzheimer’s disease (AD) patients, mild cognitive impairment (MCI) patients and normal
control (NC) subjects. This model was validated in an exploratory study using tau positron emission
tomography (tau-PET) scans. Methods: In this study, we selected tau-PET scans from the Alzheimer’s
Disease Neuroimaging Initiative database (ADNI), which included a total of 211 NC, 197 MCI, and
117 AD subjects. The dataset was divided into one training/validation group and one separate exter-
nal group for testing. The proposed DLR model contained the following three steps: (1) pre-training
of candidate deep learning models; (2) extraction and selection of DLR features; (3) classification
based on support vector machine (SVM). In the comparative experiments, we compared the DLR
model with three traditional models, including the SUVR model, traditional radiomics model, and
a clinical model. Ten-fold cross-validation was carried out 200 times in the experiments. Results:
Compared with other models, the DLR model achieved the best classification performance, with an
accuracy of 90.76% ± 2.15% in NC vs. MCI, 88.43% ± 2.32% in MCI vs. AD, and 99.92% ± 0.51% in
NC vs. AD. Conclusions: Our proposed DLR model had the potential clinical value to discriminate
AD, MCI and NC.

Keywords: Alzheimer’s disease; mild cognitive impairment; tau positron emission tomography;
deep learning radiomics

1. Introduction

Alzheimer’s disease (AD) is the most prevalent cause of dementia and the most signifi-
cant disease threatening the health of the elderly [1]. In the early stages of AD, patients often
exhibit mild cognitive damage, i.e., mild memory loss mild executive function decrements
(e.g., amyloid and tau pathological mechanism), and visuospatial impairment [2,3]. Mild
cognitive impairment (MCI) is an intermediate step between normal aging and demen-
tia [4], where patients start to appear memory impairment or other cognitive abnormalities,
but have not reached the severity of dementia. Mild cognitive impairment subjects are at
high-risk step for dementia [5]. Therefore, it is important to discriminate AD, MCI and
normal control (NC) individuals [6,7].

tau positron emission tomography (tau-PET) imaging technology has become increas-
ingly popular for the clinical diagnosis of AD and MCI [8–10]. The degree of brain tau
accumulation, as an objective biomarker, is strongly correlated with the severity of AD.
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Johnson et al. found that abnormally high cortical tau binding in the inferior temporal
gyrus was associated with clinical impairment [11]. Zhao et al. found that typical deposits
of tau appeared in the amygdala, entorhinal cortex, fusiform and parahippocampus in AD
brains [12]. La Joie et al. included 28 AD patients and 25 patients with a non-AD clinical
neurodegenerative diagnosis and found that tau-PET standard uptake value (SUVR) in the
whole brain showed excellent discrimination power (area under curve (AUC) = 0.92–0.94)
for diagnosing AD and MCI [13]. Sun et al. proposed a random forest diagnostic model for
the classification of NC, MCI and AD and achieved an accuracy of 81.6% [14]. However,
existing diagnosis models still have shortcomings, such as the need to manually extract
features from the region of interest (ROI) and to encode the extracted features, which often
requires tedious processes. Thus, an alternative approach is needed.

Deep learning radiomics (DLR) methods may be the alternative approach. DLR tech-
niques are able to learn high-dimensional features from medical images autonomously
and overcome shortcomings such as the cumbersome manual coding in traditional meth-
ods [15,16]. In recent years, DLR models have been used in AD studies [17,18]. For instance,
Basaia et al. used a deep neural network to classify AD and MCI based on cross-sectional
structural resonance imaging (MRI) images. The classification accuracy between AD and
NC was 98.2%, and the accuracy of progression from MCI to AD was 74.9% [19]. Lee et al.
employed a DLR model for AD classification based on MRI images and achieved an ac-
curacy of 95.35% [20]. Pan et al. proposed a novel convolutional neural network (CNN)
architecture called a multi-view separable pyramid network (MiSePyNet) and achieved
a classification accuracy of 83.05% in predicting the progression from MCI to AD [21].
Lu et al. used multiscale neural networks to identify subjects with pre-symptomatic AD
and achieved an accuracy of 82.51% based on 18F-fluorodeoxyglucose positron emission
tomography (FDG-PET) images [22]. The above results showed the feasibility of DLR
models for diagnosing AD and MCI. However, whether DLR models could be used to
analyze tau-PET images is still unknown. Therefore, in this study, we assumed that the
DLR technique was also feasible for application to tau-PET images and would be useful
for the diagnosis of AD and MCI. To test the above hypothesis, we employed a novel DLR
model and validated it in an exploratory study.

2. Methods and Materials

Figure 1 shows the whole experimental process of this study, which includes the
following six steps: (1) subject enrollment; (2) tau-PET image preprocessing, including
registration, smoothing, and numerical normalization; (3) deep learning (DL) model pre-
training. During this session, several classical CNN models were selected and compared,
and the best one was finally selected for the next step; (4) extraction of DLR features;
(5) classification; (6) comparative experiments.

2.1. Subjects

The data used in this study were obtained from the ADNI cohort, which was jointly
funded by the National Institutes of Health and the National Institute on Aging in 2004.
ADNI is currently the definitive data center for AD-related disease research. In order to
obtain the pathogenesis of AD and find treatments, ADNI aims to study the pathogenesis
of AD and discover clinical, imaging, genetic and biochemical biomarkers that can be
used for the early detection of AD by collecting and organizing longitudinal data from
AD patients; the database currently has more than 2000 neuroimaging data. Specific
information is available on ADNI’s official website: http://adni.loni.usc.edu/about/,
accessed on 12 November 2021.

In this study, a total of 211 NC subjects and 197 MCI and 117 AD patients were
collected. All acquired subjects had both T1-weighted MRI images and tau-PET images. Of
these, 189 NC subjects and 173 MCI and 101 AD patients were used to train and validate
the DLR model. A separate 20 NC subjects and 18 MCI and 12 AD patients were used as
an independent external test group. The remaining 2 NC subjects and 6 MCI and 4 AD
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patients were not included in the training or testing groups because images were found to be
mutilated during pre-processing inspections. Demographic information (including gender,
age and education) and T1-weighted MRI and tau-PET (AV 1451) images were collected
for all participants. All subjects were also screened with the following neuropsychological
examinations: the Clinical Dementia Rating-Sum of Boxes (CDR-SB), the MMSE, the MoCA-
B, the 11-item and 13-item AD assessment cognitive scale (Alzheimer’s disease assessment
scale-cognitive, ADAS) and the ADAS delayed word recall (ADASQ4) subscale. Figure 2
shows the flow chart of the data inclusion/exclusion criteria.

Figure 1. The whole experimental process in this study.

 
Figure 2. The flow chart of the data inclusion/exclusion criteria.

The inclusion criteria of MCI were according to the criteria proposed by Jak and Bondi
in 2014 [5]: (1) Scores obtained in at least one cognitive domain (memory, language or speed,
executive function) were below the standard deviation of the age/education corrected
normative mean; (2) scores in each of the three cognitive domains of memory, language
and speed/executive function were found to be impaired; (3) Scores on the Functional
Activities Questionnaire (FAQ) ≥ 9. The diagnosis of AD was primarily based on guidelines
provided by the National Institute on Aging (NIA) and the Alzheimer’s Association (AA)
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working group. The ADNI institutional review board reviewed and approved the ADNI
data collection protocol [7].

2.2. Images Acquisition and Preprocessing

The image acquisition process is described on the ADNI website at http://adni.
loni.usc.edu/about/, accessed on 1 June 2021. All tau-PET images were preprocessed
using SPM12 software (https://www.fil.ion.ucl.auk/spm/software/spm12/, accessed
on 20 September 2021.) implemented in MATLAB 2019b. The preprocessing steps were
as follows.

First, the DICOM images were uniformly converted to NIFTI format (.nii) using an
image conversion tool for subsequent processing. The converted images were 3D image
data with spatial structure information of the brain and retained the characteristic informa-
tion between tissue structures. Second, since subjects might have some head tilt problems
during tau-PET image acquisition, the original correction function in SPM12 was used
in this experiment reduce external differences. Furthermore, the T1 MRI images were
used to align the tau-PET images so that the corresponding points at spatially uniform
locations in the two types of images corresponded to each other. Smoothing and numerical
normalization were performed in the next step. After completing the above processing,
the images were smoothed to suppress the noise, and the numerical normalization could
eliminate the differences between different instruments and reduce the number of sub-
sequent calculations. In this experiment, the images were normalized according to the
tau-PET precipitated area in the cerebellar cortex region. After the above processing, 3D
image data with a size of 91 × 109 × 91 voxels in the standard space were obtained. To
speed up the training time of the DLR models, all images were further normalized to
−1 to 1 interval. In the unidirectional slicing condition, the 3D images were axially sliced
into 91 single-channel images of size of 91 × 109 voxels, and the slices were filled and
resampled to 224 × 224 voxels using linear interpolation due to the need to retain as much
information as possible and to satisfy the model input conditions.

2.3. The Proposed DLR Model

The proposed DLR model is depicted in Figure 3. The model consists of the following
steps: (1) DLR model pre-training. Five classical CNN networks were used for model
pre-training. After comparison, we aimed to select the model with the best classification
performance; (2) DLR feature extraction and fusion. Based on the pre-trained model, DLR
features were extracted before the final maximum pooling layer and combined with clinical
features; (3) classifiers: based on the features extracted above, support vector machine
(SVM) was employed as the final classifier to obtain the classification results. The details of
the model will be illustrated in the next sections.

2.3.1. DLR Model Pre-Training

In recent years, CNN models have been increasingly applied to medical imaging
data and shown great potential in the classification tasks. In this study, we pre-trained
five common CNN models, including AlexNet, ZF-Net, ResNet18, ResNet34, and Incep-
tionV3 models.

(1) AlexNet demonstrates the excellent performance of deep CNN models. ReLU is
used as the activation function for its network structure, which employs interleaved
pooling in CNN models [23].

(2) ZF-Net is an improved CNN model based on AlexNet. Deconvolution is used to
analyze feature behavior and then to improve classification performance [24].

(3) The Inception models have more complex network structures and unique network
characteristics in comparison with AlexNet and ZF-Net. The Inception structure
is designed to use multiple convolutional or pooling operations to form a network
module. Inception V3, as the classic version of the Inception series, uses convolutional
decomposition and regularization to enhance the classification performance [25].
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(4) The ResNet framework introduces the residual network structure to solve the gradient
disappearance or gradient explosion problem [26]. Different ResNet models, such
as ResNet18, ResNet34, ResNet50 and ResNet101, are depending on the number of
hidden layers. Figure 4 shows the structures of ResNet18 and ResNet34.

Figure 3. The framework of the proposed DLR model.

Figure 4. The fundamental structure of ResNet18 and ResNet34. “7 × 7” and “3 × 3” indicate the
size of the convolution kernel, “conv” indicates convolution, “Avg Pool” indicates average pooling,
and “FC” indicates fully connected layer. “64”, “128”, “128”, “256” and “512” represent the numbers
of channels, and “/2” means stride of 2.
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The whole model pre-training process was divided into two parts: forward propaga-
tion and backward propagation. Before building the model, all tau-PET images were sliced
and tiled into two-dimensional images and adjusted to 224 × 224 pixels. Then, all data
were labeled using unique thermal coding. In the model pre-training step, all data were
passed into the network and then converged using the stochastic gradient descent (SGD)
algorithm and back propagated to update the model parameters. The final output of the
model pre-training process was used as the classification result.

In the model pre-training step, we set the learning rate to 1 × 10−2 and updated
the model parameters using an SGD optimizer with a batch size of 8. The number of
training iterations was set to 100. In addition, we performed data enhancement in the
training/validation group by flipping the images horizontally and adding Gaussian noise
to the input images to prevent the overfitting problem. The above experiments were per-
formed on GPU (graphics processing unit, RTX3090 accelerated by PyCharm 3.6 (JetBrains
from the Czech Republic, website: https://www.jetbrains.com/pycharm/, accessed on
17 February 2022)).

2.3.2. DLR Feature Extraction and Fusion

In contrast to traditional methods relying on manually ROI segmentation, DLR meth-
ods can automatically leverage tau-PET images to obtain high-dimensional DLR features
through supervised learning. After obtaining the best DL pre-trained model, we replaced
the final maximum pooling layer and fully connected layer with the SVM as the final classi-
fier. We extracted features from the last convolutional layer of each convolutional network.
These features were treated as DLR features. Then, the clinical information (gender, age,
education, CDR-SB, MoCA-B, MMSE, etc.) and the DLR features were combined as the
input for the SVM classifier.

2.3.3. Classifier

SVM was used as the classifier in this study. SVM is essentially a linear classifier that
maximizes intervals in feature space and is a binary classification model that has been
widely used with statistical and regression analysis species [27]. We used a linear kernel as
the kernel function.

2.4. Comparative Experiments

To demonstrate the superiority of the proposed DLR model, we compared the DLR
model with three existing models, including: (1) The clinical model. This model includes
demographic information and neuropsychological cognitive assessment tests as features
for classification; (2) the standard uptake value ratio (SUVR) model. We calculated SUVR
values of 10 tau-PET Meta ROIs as features for classification. The ten ROIs included in-
ferior temporal lobe, lingual gyrus, middle temporal lobe, occipital lobe, parietal lobe,
hippocampus, parahippocampus, posterior cingu late gyrus, precuneus and fusiform [28];
(3) the radiomics model. The radiomics features of the above 10 tau-PET Meta ROIs
were extracted as features for classification. In this experiment, we used the Radiomics
Toolkit (https://github.com/mvallieres/radiomics, accessed on 17 February 2022) to ex-
tract radiomics features. The feature extraction steps included wavelet band-pass filtering,
isotropic resampling, Lloyd–Max quantization, feature computation, and so on [29,30]. In
the comparison experiments, each model was with 10-fold cross-validation 200 times.

2.5. Statistical Analysis

In this study, chi-square tests and nonparametric rank sum tests were introduced
to compare differences in demographic characteristics between the training/validation
group and the test group. We used SPSS version 25.0 software (SPSS Inc., Chicago, IL,
USA) for all statistical analyses. Statistical results with p values < 0.05 were considered
significantly different.
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3. Results

3.1. Subject Demographics

Table 1 shows the demographic results. There were differences in MoCA-B (p = 0.042)
and age (p = 0.03) in the NC group; ADAS11 (p = 0.020), ADAS13 (p = 0.034) and ADASQ4
(p = 0.044) in the MCI group and no significant differences in the AD group.

Table 1. Demographic information in this study.

NC Groups MCI Groups AD Groups

NC1 (Train) NC2 (Test) MCI1 (Train) MCI2 (Test) AD1 (Train) AD2 (Test)

Gender (M/F) 69/121 10/11 95/83 13/6 62/43 5/7
Age (year) 73.17 ± 7.64 76.76 ± 6.85 a 73.88 ± 7.46 70.93 ± 8.21 75.39 ± 7.94 76.76 ± 9.38
Education 16.66 ± 2.34 17.10 ± 2.04 16.39 ± 2.56 16.05 ± 2.37 15.49 ± 2.59 15.33 ± 2.61

MMSE 29.11 ± 1.23 29.14 ± 1.06 27.78 ± 2.21 27.37 ± 2.31 21.36 ± 4.98 21.58 ± 3.55
MoCA-B 26.36 ± 2.55 25.00 ± 2.73 a 23.24 ± 3.54 23.68 ± 3.16 16.15 ± 5.03 16.20 ± 4.64
CDR-SB 0.06 ± 0.23 0.10 ± 0.20 1.45 ± 1.03 2.37 ± 1.88 5.92 ± 3.32 5.13 ± 2.22
ADAS11 8.69 ± 2.57 8.93 ± 1.86 12.59 ± 4.11 14.25 ± 3.08 a 22.10 ± 7.29 25.03 ± 5.98
ADAS13 12.46 ± 4.12 13.25 ± 2.99 19.01 ± 6.11 21.51 ± 5.10 a 32.57 ± 8.64 36.11 ± 7.20
ADASQ4 2.51 ± 1.72 3.25 ± 2.00 4.77 ± 2.26 5.89 ± 2.35 a 8.06 ± 1.32 8.25 ± 1.76

a indicated that the p value was less than 0.05 in comparison results between the training/validation and test
groups under the same label.

All data are expressed as mean ± standard deviation. MMSE, Mini-mental State
Examination; MoCA-B, Montreal cognitive assessment-basic; CDR-SB, clinical dementia
rating sum of boxes; ADAS11 and ADAS13, the 11-item and 13-item AD assessment scale
cognitive; ADASQ4, the ADAS delayed word recall subscale.

For age, education, MMSE, MoCA-B, CDR-SB, ADAS11, ADAS13 and ADASQ4, a
nonparametric rank sum test was performed to compare differences in demographic and
clinical characteristics between the training/validation and test groups under each label,
i.e., NC, MCI and AD; gender was tested by chi-square between the two groups under
each label.

3.2. Pre-Training Results of Candidate DL Models

Tables 2–4 present the classification performance of the five candidate DL models. The
performance evaluation metrics include accuracy, sensitivity and specificity. ResNet18 had
the highest classification performance in NC vs. MCI, while ResNet34 had the highest
classification performance in MCI vs. AD and NC vs. AD. Therefore, ResNet34 was selected
to extract the corresponding DLR features.

Table 2. Classification performance in NC vs. MCI.

Model Accuracy (%) Sensitivity (%) Specificity (%)

Training/Validation Groups

AlexNet 94.26 ± 2.60 93.80 ± 2.92 94.70 ± 4.34

ZF-Net 94.28 ± 3.99 94.97 ± 3.64 93.66 ± 7.46

ResNet18 95.78 ± 2.50 94.99 ± 4.70 96.51 ± 2.98

ResNet34 95.32 ± 2.62 94.06 ± 3.74 96.49 ± 4.55

InceptionV3 93.82 ± 3.94 93.02 ± 4.93 94.54 ± 6.39

Test Group

AlexNet 81.25 ± 3.06 7947 ± 2.86 82.86 ± 3.83
ZF-Net 83.14 ± 3.24 78.37 ± 3.89 86.67 ± 5.95

ResNet18 87.25 ± 2.21 87.37 ± 2.24 87.14 ± 2.32
ResNet34 87.00 ± 2.14 85.79 ± 2.12 88.10 ± 2.52

InceptionV3 80.50 ± 3.58 77.89 ± 4.24 82.86 ± 5.79
The bold means this model performed best among others.
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Table 3. Classification performance in MCI vs. AD.

Model Accuracy (%) Sensitivity (%) Specificity (%)

Training/Validation Groups

AlexNet 93.18 ± 4.36 89.33 ± 10.55 95.41 ± 3.59

ZF-Net 93.55 ± 5.19 91.37 ± 7.20 94.77 ± 5.16

ResNet18 93.72 ± 3.40 90.47 ± 8.16 95.63 ± 4.22

ResNet34 95.28 ± 2.50 94.76 ± 4.96 95.59 ± 3.03

InceptionV3 97.45 ± 2.78 95.26 ± 6.77 98.75 ± 2.64

Test Group

AlexNet 79.68 ± 5.12 64.17 ± 7.32 89.47 ± 4.81
ZF-Net 79.68 ± 2.40 62.50 ± 3.78 90.52 ± 2.34

ResNet18 82.26 ± 1.78 73.33 ± 2.72 87.89 ± 2.14
ResNet34 82.26 ± 1.54 77.50 ± 2.48 85.26 ± 2.12

InceptionV3 79.68 ± 2.14 74.17 ± 3.32 83.16 ± 3.48
The bold means this model performed best among others.

Table 4. Classification performance in NC vs. AD.

Model Accuracy (%) Sensitivity (%) Specificity (%)

Training/Validation Groups

AlexNet 97.36 ± 2.98 95.67 ± 7.25 98.27 ± 2.44

ZF-Net 98.30 ± 2.42 97.89 ± 5.09 98.53 ± 2.08

ResNet18 97.17 ± 2.05 96.87 ± 4.42 97.32 ± 2.60

ResNet34 98.10 ± 1.81 96.14 ± 5.87 99.14 ± 1.38

InceptionV3 94.37 ± 3.53 91.29 ± 8.66 96.16 ± 3.13

Test Group

AlexNet 94.24 ± 0.96 84.17 ± 2.63 100.0 ± 0.00
ZF-Net 93.64 ± 2.65 82.57 ± 7.34 100.0 ± 0.00

ResNet18 96.97 ± 2.91 91.70 ± 3.50 100.0 ± 0.00
ResNet34 96.97 ± 2.16 91.70 ± 2.83 100.0 ± 0.00

InceptionV3 95.08 ± 3.14 89.58 ± 5.30 98.21 ± 0.96
The bold means this model performed best among others.

3.3. Comparative Experiments
3.3.1. NC vs. MCI

Table 5 shows the classification results of the four models in NC vs. MCI. The DLR
model performed the best classification performance, with an accuracy of 90.76% ± 2.15%,
sensitivity of 94.17% ± 1.81% and specificity of 87.74% ± 2.54% in the test group. The
remaining three models performed obviously lower than the DLR model with accuracy
of 75.68% ± 2.63%, 72.02% ± 4.12% and 81.61% ± 3.23%; sensitivity of 62.32% ± 4.52%,
68.95% ± 9.22% and 83.11% ± 3.14%; and specificity of 86.67% ± 2.92%, 74.76% ± 7.11%
and 80.31% ± 6.38%.

Figure 5 provides the ROC curves of the four models. The AUC (mean ± SD) for the
DLR model reached 0.922 ± 0.021 and achieved the best performance among these models.

3.3.2. MCI vs. AD

Table 6 shows the classification performance of the four models in MCI vs. AD.
The DLR model showed accuracy of 88.43% ± 2.32%, sensitivity of 91.25% ± 2.05% and
specificity of 86.56% ± 2.86% in the test group. The remaining three models performed
obviously lower than the DLR model with accuracy of 78.33% ± 4.27%, 79.68% ± 5.72%
and 77.16% ± 2.95%; sensitivity of 62.67% ± 9.12%, 65.63% ± 10.97% and 88.17% ± 9.25%;
and specificity of 86.67% ± 2.92%, 88.95% ± 2.99% and 68.91% ± 7.64%, respectively.
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Table 5. The classification performance in NC vs. MCI.

Model Accuracy (%) Sensitivity (%) Specificity (%)

Training/Validation Groups

SUVR model 69.36 ± 7.94 63.53 ± 12.03 74.73 ± 10.74

Traditional radiomics model 69.05 ± 7.22 63.34 ± 13.34 74.28 ± 7.07

Clinical model 74.84 ± 8.48 80.13 ± 14.16 71.58 ± 12.05

DLR model 98.46 ± 1.71 98.47 ± 1.66 98.44 ± 1.76

Test Group

SUVR model 75.68 ± 2.63 62.32 ± 4.52 86.67 ± 2.92
Traditional radiomics model 72.02 ± 4.12 68.95 ± 9.22 74.76 ± 7.11

Clinical model 81.61 ± 3.23 83.11 ± 3.14 80.31 ± 6.38
DLR model 90.76 ± 2.15 94.74 ± 1. 81 87.74 ± 2.54

The bold means this model performed best among others.

Figure 5. ROC curves for the four models in NC vs. MCI.

Table 6. The classification performance in MCI vs. AD.

Model Accuracy (%) Sensitivity (%) Specificity (%)

Training/Validation Groups

SUVR model 74.41 ± 8.15 55.39 ± 15.64 86.06 ± 8.88

Traditional radiomics model 70.20 ± 7.83 57.79 ± 13.64 81.58 ± 9.83

Clinical model 90.84 ± 4.95 84.59 ± 11.04 94.45 ± 5.00

DLR model 96.27 ± 1.16 94.90 ± 4.81 97.89 ± 2.11

Test Group

SUVR model 78.33 ± 4.27 62.67 ± 9.12 86.67 ± 2.92
Traditional radiomics model 79.68 ± 5.72 65.63 ± 10.97 88.95 ± 2.99

Clinical model 77.16 ± 2.95 88.17 ± 9.25 68.91 ± 7.64
DLR model 88.43 ± 2.32 91.25 ± 2.05 86.56 ± 2.86

The bold means this model performed best among others.
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Figure 6 provided the ROC curves of these four models. The AUC (mean ± SD) for the
DLR model reached 0.928 ± 0.024 and achieved the best performance among these models.

Figure 6. ROC curves for the four models in MCI vs. AD.

3.3.3. NC vs. AD

Table 7 shows the classification performance of the four models in MCI vs. AD. The
DLR model showed an accuracy of 99.92% ± 0.51%, sensitivity of 99.78% ± 0.13%, and
specificity of 99.99% ± 0.14% in the test group. The remaining three models performed
obviously lower than the DLR model with accuracy of 90.66% ± 0.85%, 87.58% ± 3.63%
and 96.98% ± 0.21%; sensitivity of 74.96% ± 0.59%, 74.17% ± 9.43% and 92.78% ± 3.13%;
and specificity of 99.63% ± 1.33%, 95.24% ± 3.17% and 99.56% ± 2.17%.

Table 7. The classification performance in NC vs. AD.

Model Accuracy (%) Sensitivity (%) Specificity (%)

Training/Validation Groups

SUVR model 86.06 ± 6.18 73.43 ± 14.21 93.04 ± 6.06

Traditional radiomics model 78.65 ± 0.08 57.67 ± 16.64 87.06 ± 8.80

Clinical model 91.96 ± 5.44 99.06 ± 2.98 86.65 ± 8.04

DLR model 99.31 ± 1.50 98.00 ±4.43 100.0 ± 0.00

Test Group

SUVR model 90.66 ± 0.85 74.96 ± 0.59 99.63 ± 1.33
Traditional radiomics model 85.58 ± 3.63 74.17 ± 9.43 95.24 ± 3.17

Clinical model 96.98 ± 0.21 92.78 ± 3.13 99.56 ± 2.17
DLR model 99.92 ± 0.51 99.78 ± 0. 13 99.99 ± 0.14

The bold means this model performed best among others.

Figure 7 provided the ROC curves of these four models. The AUC (mean ± SD) for the
DLR model reached 0.996 ± 0.002 and achieved the best performance among these models.
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Figure 7. ROC curves for the four models in NC vs. AD.

4. Discussion

DLR has been becoming a hot topic nowadays. Because of its excellent performance in
image recognition and processing, DLR models have been commonly used in computer-
aided disease diagnostic fields such lesion detection, quantitative lesion diagnosis, treat-
ment decision and prognosis expectation. In this study, we proposed a DLR model based
on tau-PET images to distinguish NC, MCI and AD. In contrast with other traditional
models, such as the SUVR model, the traditional radiomics model and the clinical model,
the DLR model achieved the best classification results.

To date, many studies have focused on the classification among NC, MCI and AD
using machine learning or DL models. For instance, Lange et al. performed a voxel-based
statistical analysis using FDG-PET images and achieved an AUC of 0.728 in the classification
of AD and NC [31]. Zhou et al. fused MRI and FDG-PET images and used radiomics
analysis to achieve an accuracy of 0.733 in the classification of MCI and NC [32]. Shu et al.
used radiomics features based on MRI images to classify MCI and AD and achieved an
accuracy of 0.807 [33].

Compared with previous studies, our proposed DLR model achieved superior clas-
sification results (90.76% ± 2.15% in NC vs. MCI, 88.43% ± 2.32% in MCI vs. AD, and
99.92% ± 0.51% in NC vs. AD). The reasons may be as follows: (1) The DLR model is able
to extract deeper image feature information from the pre-processed tau-PET images. As it
does not require an additional ROI segmentation step, it decreases errors and biases caused
by ROI segmentation; (2) the DLR model is subject to unavoidable external influences
such as individual differences and different parameters of imaging acquisition. In our
experiment, the DLR features and clinical information were combined together, so bias
caused by individual heterogeneities may be eliminated.

Although the DLR model achieved good classification results, several limitations
still exist. First, more supporting data are needed to verify the stability of our proposed
DLR model. In this research, all data were obtained from the ADNI database. It is worth
exploring whether our model works well with other databases. We only used the ADNI
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database, and the robustness of the results needs to be further verified. In the future, we
plan to incorporate other ethnic group data to further verify the effectiveness of our model.

Second, we only adopted five classical deep convolutional networks to obtain the final
DLR model. Although the ResNet models performed well in this classification experiment,
there may be other more suitable models that can be applied. Moreover, we used whole-
brain tau-PET images to train the model, and it remains to be explored whether extracting
ROIs would yield better results. In addition to this, in this experiment, the 3D tau-PET
images were segmented and sliced according to the axial direction. Whether better results
can be obtained using 3D images and convolutional networks at the 3D level requires
further validation and experiments. Finally, the model is trained on tau-PET images.
Combining with other modalities, such as amyloid PET, MRI and FDG-PET images may
improve the classification accuracy. In summary, the DLR model we proposed in this study
provides a certain help with the clinical diagnosis and differentiation of NC, MCI and AD.
Through this tau-Pet image-based DLR-assisted diagnosis of MCI, early intervention can be
carried out for the MCI population, which can improve the cognitive function of patients,
allow for early treatment and delay the conversion to dementia.

5. Conclusions

In this study, we developed a tau-PET-based DLR method for the subgroup diagnosis
of NC, MCI and AD. This study shows that the proposed DLR method can improve the
diagnostic performance of MCI and AD patients and provide the possibility of MCI-to-AD
conversion prediction. In the future, the DLR method will propose practical applications
for the computer-aided diagnosis of MCI and AD. We believe that more image modalities
based on our proposed DLR method will be applied in the differential diagnosis of NC,
MCI and AD.
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Abstract: Purpose: 18F-Florzolotau is a novel second-generation tau radiotracer that shows higher
binding affinity and selectivity and no off-target binding. The proportion loss of functional connectiv-
ity strength (PLFCS) is a new indicator for representing brain functional connectivity (FC) alteration.
This study aims to estimate the relationship between the regional tau accumulation and brain FC
abnormality in Alzheimer’s disease (AD) and mild cognitive impairment (MCI) patients based on
Florzolotau PET and fMRI. Methods: 22 NC (normal control), 31 MCI and 42 AD patients who have
already been scanned with 18F-Florzolotau PET were recruited in this study. (We calculated the
PLFCS and standardized uptake value ratio (SUVR) of each node based on the Brainnetome atlas
(BNA) template. The SUVR of 246 brain regions was calculated with the cerebellum as the reference
region. Further functional connection strength (FCs), PLFCS and SUVR of each brain region were
obtained in three groups for comparison.) For each patient, PLFCS and standardized uptake value
ratio (SUVR) were calculated based on the Brainnetome atlas (BNA) template. These results, as well
as functional connection strength (FCs), were then compared between different groups. Multiple
permutation tests were used to determine the target nodes between NC and cognitive impairment
(CI) groups (MCI and AD). The relationship between PLFCS and neuropsychological scores or cortical
tau deposit was investigated via Pearson correlation analysis. Results: Higher PLFCS and FCs in AD
and MCI groups were found compared to the NC group. The PLFCS of 129 brain regions were found
to be different between NC and CI groups, and 8 of them were correlated with tau SUVR, including
superior parietal lobule (MCI: r = 0.4360, p = 0.0260, AD: r = −0.3663, p = 0.0280), middle frontal gyrus
(AD: MFG_R_7_2: r = 0.4106, p = 0.0129; MFG_R_7_5: r = 0.4239, p = 0.0100), inferior frontal gyrus
(AD: IFG_R_6_2: r = 0.3589, p = 0.0316), precentral gyrus (AD: PrG_R_6_6: r = 0.3493, p = 0.0368),
insular gyrus (AD: INS_R_6_3: r = 0.3496, p = 0.0366) and lateral occipital cortex (AD: LOcC _L_4_3:
r = −0.3433, p = 0.0404). Noteworthily, the opposing relationship was found in the superior pari-
etal lobule in the MCI and AD groups. Conclusions: Brain functional connectivity abnormality is
correlated with tau pathology in AD and MCI.

Keywords: Florzolotau PET; functional connectivity; mild cognitive impairment; Alzheimer’s disease

1. Introduction

Alzheimer’s disease (AD) is an irreversible, devastating neurodegenerative disorder
characterized by the aberrant accumulation and aggregation of amyloid plaques and
neurofibrillary tangles in the brain [1]. Mild Cognitive Impairment (MCI) is identified as a
prodromal phase of AD, with 10–15% conversion to dementia per year [2]. While as the
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most common dementia, available treatments of AD can only relieve clinical symptoms,
none of the interventions are able to slow down its development. Therefore, the pathological
mechanism and early diagnosis of AD have attracted increasing interest. Tau deposition and
spreading are major factors of AD, which exist early in the cascade of AD etiopathogenesis
and result in neuronal loss and cognitive decline [3]. Thus, it is considered an ideal target
for diagnosis and novel treatments. To evaluate the pathological tau burden in vivo, a
wide variety of tracers were developed based on the diverse binding targets of tau-paired
helical filaments(PHFs), including quinoline derivatives and benzimidazole pyrimidine
derivatives [4–8]. Since the first tau radioligand, 18F-FDDNP, was developed, a variety
of tracers have been synthesized and have demonstrated promising results in the clinical
evaluation of tau deposition. However, the first-generation tau tracers showed several
limitations, including high binding affinity in the deep brain nucleus, where pathological
studies did not show a high density of tangles in AD and “off-target” binding to monoamine
oxidase B (MAO-B). Compared with them, the second-generation tau tracers showed
lower “off-target” binding and improved affinity and selectivity in tau aggregates [9],
which enhanced the detection of the affected subregions in the early phase of AD. Several
clinical trials have verified that the distribution of tau tracers is related to post-mortem
neuropathology in primary tauopathies [10], and the binding of tracers is associated with
cognitive performance in AD patients [10]. Moreover, tau PET imaging can contribute to
further elaboration on the relationship between tau accumulation and other biomarkers or
clinical symptoms.

Brain functional connectivity (FC) is able to evaluate the spatiotemporal association
between distinct cerebral cortical regions, which can offer novel perspectives on functional
brain disruption and other abnormalities caused by neuropathies [11]. In several neurode-
generative diseases, neuropathology and atrophy are most prominent in nodes with dense
connections (usually referred to as ‘hubs’) [12], both at the structural [13] and functional
levels [14]. Abnormal functional connectivity strength (FCs) in AD and its preclinical stages
have been estimated via resting-state functional magnetic resonance imaging (rs-fMRI) in
previous studies [15,16]. Several studies were launched to evaluate the correlation between
functional abnormality and tau deposition in AD and its preclinical stages [17–20]. Com-
bined with tau positron emission tomography (PET) scan, studies provided evidence that
tau toxicity can influence neuronal activity and synaptic plasticity and lead to the disrup-
tion of FC. For instance, Hansson et al. proposed that there were spatial correspondences
between major functional networks and regional pathological tau accumulation [21,22].
Cope et al. has demonstrated that tau burden is correlated with a higher graph theoretical
index of functional connectivity evaluated in AD [22]. Specifically, the proportion loss of
functional connectivity strength (PLFCS) was assessed, which ensured that the results did
not issue from the bias introduced by proportionate thresholding. This index is associated
with weighted degree, while it is more subject to fMRI signal-to-noise ratio limitations
in comparison to traditional FC metrics. Previous studies showed that the PLFCS is a
relatively new index of research, and it holds possibilities in revealing the brain function
change in AD and other neurodegenerative diseases [23–25]. However, all these studies
were launched with the use of first-generation tau tracers.

In this study, we used the second-generation tau radiotracer 18F-Florzolotau to evalu-
ate the relationship between the abnormal FC (including functional connection strength
and PLFCS) and tau deposition, as well as neuropsychological scores in AD and MCI,
and further explored the role of tau accumulation in the FC abnormality during AD
disease progression.

2. Materials and Methods

2.1. Participants

We prospectively recruited 36 AD patients, 26 MCI patients and 22 NC subjects who
underwent Florzolotau PET scanning in Huashan Hospital affiliated with Fudan University
in this study. Besides Florzolotau PET, T1-weighted structural MRI and fMRI scanning
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was also needed for each subject. All participants needed to be over 55 years and fulfill
the following research criteria: (1) AD patients have completed an 18F-AV45 PET scan and
been characterized as amyloid PET-positive; (2) subjects have conducted The Mini-Mental
State Examination (MMSE) and Clinical Dementia Rating–Sum of Boxes (CDR-SB) test by
experienced neurologists from Huashan hospital; (3) NCs had an MMSE score of 24 or
greater, and no history of cognitive impairment, mental disorders, neurological diseases or
brain trauma. Clinically probable AD was diagnosed with the 2011 NIA-AA guidelines [24],
and the diagnosis of MCI required to meet Petersen’s criteria [26]; (4) dementia caused by
other reasons needs to be excluded.

This study was approved by the Institutional Review Board of Huashan Hospital
(HIRB) (no. 2018-363). All subjects or a legally responsible relative gave written informed
consent before the study.

2.2. Acquisition Protocol

All subjects withdrew cognitive enhancing and psychotropic medicine for at least
12 h before clinical assessment and each imaging acquisition. Participants underwent T1-
weighted structural MRI and rs-fMRI on a 3.0T horizontal magnet (Discovery MR750; GE
Medical Systems, Milwaukee, WI) and a T1 MRI image was acquired with FOV = 25.6 cm,
matrix = 256 × 256 × 152, slice thickness = 1 mm, repetition time (TR) = 8.2 ms, echo time
(TE) = 3.2 ms, flip angle= 12◦. The Rs-fMRI scans were performed with the following pa-
rameters: FOV = 24 cm, slice thickness = 3 mm, TR = 8800 ms, TE = 145 ms, flip angle = 77◦.
PET data were obtained by the use of a Siemens mCT Flow PET/CT (Siemens, Erlangen,
Germany) in a PET center, Huashan Hospital, in the three-dimensional (3D) mode. 18F-
Florzolotau PET imaging was performed for 20 minutes, 90–110 minutes after 370 MBq
18F-Florzolotau was intravenously injected. Images were corrected by the mode of CT
attenuation correction, and the reconstruction was performed with the ordered subset
expectation maximization (OSEM) method.

2.3. Data Pre-Processing

Rs-fMRI data were processed with the use of DPARSF (http://www.rfmri.org/DPARSF,
accessed on 10 January 2022). First, in order to stabilize the initial signal and allow indi-
viduals to acclimate to the environment, the first 10 volumes were discarded. Volumes
remaining according to acquisition time were corrected and realigned to the head move-
ment of the first volume, and mean signals from white matter (WM), cerebrospinal fluid
(CSF) and Friston-24 head motion parameters were regressed out. Then, the T1 images
were registered with the fMRI at the individual level. The segmented T1 images were
spatially normalized based on the standard Montreal Neurological Institute (MNI) brain
space. All images were resampled into 3 × 3 × 3 mm3 voxels. Finally, the linear drift and
corrections for white matter, CSF signals, six head movement parameters and band-pass
filters (0.01–0.08 Hz) of the fMRI data were removed. Smoothing was based on a 4 mm
full-width half-height (EWHM) filter.

PET data were processed using Statistical Parametric Mapping 12 (the Wellcome
Department of Neurology, London, UK) package. First, PET images were registered based
on the T1 images of the corresponding subjects. Second, the gray matter (GM) tissue
probability map from segmented T1 images was registered. Then, based on the MNI
standard space, the GM map was registered using nonlinear transformation parameters.
The registered PET images were also spatially normalized using the same transformation
parameters and were then resampled into 2 × 2 × 2 mm3 voxels. Finally, PET was smoothed
based on an 8 mm full-width half-height filter.
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2.4. Brain Network Analysis
2.4.1. Functional Connection Strength

The Brainnetome atlas (BNA) contains 246 brain regions of the bilateral hemispheres
(available at http://atlas.brainnetome.org/, last accessed on 31 August 2022). Each brain
region was treated as a node used for network analysis based on Pearson’s correlation to es-
timate time-resolved fMRI connectivity. Thus, each subject obtained a 246 × 246 association
matrix and Fisher z-transform. The individual connection strength of each node was quan-
tified by the sum of the absolute values of the associated value between the node and other
nodes, then the connection strength of the node was defined as the average value of the
individual connection strength for each diagnostic group.

2.4.2. Proportional Loss of Connectional Strength

The individual-level PLFCS in the disease group was defined as the difference in
connectivity strength from the normal control group and was scaled based on the baseline
group. The value of PLFCS was calculated as equation (1):

Lossi =
μi − σ

σ
(1)

where μi is the connection strength of each node. σ is the average connection strength of all
nodes in the baseline [23,27].

2.5. Semi-Quantitative ROI-Based PET Analyses

The entire cerebellum was selected as the reference region for calculating the normal-
ized uptake value ratios (SUVRs) in 246 brain regions based on PET images. Then, for
comparison with functional connection strength, the group-averaged SUVR of each brain
region was obtained.

2.6. Comparison of PLFCS along AD Spectrum

Except for these three groups, we define the cognitive impairment (CI) group as the
sum total of AD and MCI patients. To determine robust PLFCS biomarkers, we performed
a two-sample t-test for PLFCS in the 246 brain regions of the NC and the CI group. We
considered brain regions with significant differences (p < 0.05) as potential biomarkers and
presented them using boxplots.

2.7. Correlation between Proportional Loss and Clinical Scales

We first checked the relationship between the PLFCS and functional connection
strength (un-transformed) of 246 brain regions in the disease groups to evaluate whether
brain regions with high connection strength were vulnerable to the effect of neuropathology,
based on our hypotheses that the proportionate vulnerability of these regions can reflect
the progression of neurodegeneration. It was expected that regions with relatively higher
connection strength tend to lose more. Therefore, we performed a correlation analysis
between the averaged proportional loss of hub regions and cognitive level in the disease
groups, where the cognitive level was reflected by clinical scales of MMSE and CDR-SB.

2.8. Statistical Analysis

A two-sample t-test was performed for continuous variables comparison, and the
χ test was used for the between-group differences of categorical variables. Correlations
between fMRI data and tau levels and clinical scales were assessed for each diagnostic
group based on Pearson correlation. We analyzed differences of clinical variates among
three groups with the use of univariate analysis of variance (ANOVA) and Bonferroni’s post
hoc analysis or Dunn’s multiple test on account of homogeneity of variance. All statistical
analyses were performed on the SPSS 19.0 platform, and p < 0.05 was considered significant.
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3. Results

3.1. Demographic

The subject’s demographics and scores of cognitive examination are displayed in
Table 1. The average age of the MCI group was older than NC and AD, whereas the
difference between NC and AD subjects was not statistically significant (p = 0.226). Lower
MMSE and higher CDR-SB scores were observed in AD and MCI than NC group. No
differences in education years were found among the three groups.

Table 1. Demographic information and scores of cognitive examinations.

Group Number Gender (Male/Female) Age of Scanning Education MMSE CDR-SB

NC 22 8/14 56.95 ± 7.01 11.27 ± 3.92 28.23 ± 1.41 0.00 ± 0.00
MCI 26 6/20 70.38 ± 8.47 10.27 ± 3.29 25.53 ± 1.70 4.46 ± 1.46
AD 36 14/22 60.94 ± 10.13 9.86 ± 3.86 16.00 ± 6.29 8.68 ± 3.96

p - 0.217 a <0.001 b 0.358 b <0.001 c <0.001 b

a Chi-square test. b One-way ANOVA test with Bonferroni’s multiple comparison test. c ANOVA test with Dunn’s
multiple comparison test. p < 0.05 was considered as significant. p-values are given for the comparisons among
the three groups. Data are presented as mean ± standard deviation. AD, Alzheimer’s disease; CDR-SB, Clinical
Dementia Rating–Sum of Boxes; NC, normal control subjects; MCI, patients with mild cognitive impairment;
MMSE, Mini-Mental State Examination.

3.2. Results of PLFCS and Tau Level

Higher FCs and PLFCS were found in the MCI and AD groups than in the NC group,
and differences were not found between the AD and MCI groups (FCs: p = 0.971, Figure 1a;
PLFCS: p = 0.652, Figure 1b). Higher globally averaged tau SUVR was found in the AD
group than in the MCI and NC groups, and differences were not found between the NC
and MCI groups (p = 0.887, Figure 1c).

  
(a) (b) (c) 

Figure 1. Comparison of connection strength, PLFCS and tau SUVR between the three groups. (a) The
global FCs of NC, MCI and AD groups. (b) The comparison of global PLFCS between NC, MCI
and AD groups. (c) The comparison of global tau SUVR between the NC, MCI and AD groups.
Abbreviations: NC, normal control; MCI, mild cognitive impairment; AD, Alzheimer’s disease.

We found differences in the PLFCS level between the NC and CI groups in 129 brain
regions and further analyzed the correlation between PLFCS and tau SUVR in these regions.
Brain regions with significant correlation are shown in Table 2 and Figure 2, including supe-
rior parietal lobule (MCI: r = 0.4360, p = 0.0260, AD: r = −0.3663, p = 0.0280), middle frontal
gyrus (AD: MFG_R_7_2: r = 0.4106, p = 0.0129; MFG_R_7_5: r = 0.4239, p = 0.0100), inferior
frontal gyrus (AD: IFG_R_6_2: r = 0.3589, p = 0.0316), precentral gyrus (AD: PrG_R_6_6:
r = 0.3493, p = 0.0368), insular gyrus (AD: INS_R_6_3: r = 0.3496, p = 0.0366) and lateral
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occipital cortex (AD: LOcC_L_4_3: r = −0.3433, p= 0.0404). Noteworthily, the inverse
relationship was found in the superior parietal lobule in the MCI and AD groups. Further,
we analyzed the relationship between SUVR/PLFCS and clinical scores, and no significant
correlation was found.

  

(a) (b) 

Figure 2. Detailed brain regions with significant correlation of FCs/PLFCS and tau SUVR. (a) Brain
regions with significant correlation of FCs/PLFCS and tau SUVR in the MCI group. (b) Brain regions
with significant correlation of FCs/PLFCS and tau SUVR in the AD group.

3.3. Correlation of FC and PLFCS

The correlation between the group-averaged FCs and PLFCS of the cerebral cortex
of the MCI and AD groups with that of the NC group are shown in Figure 2. We found
that brain regions with higher functional connectivity in normal control subjects lost the
larger proportion of connection strength in MCI (r = −0.7736, p < 0.0001, Figure 3a) and
AD (r = −0.7999, p < 0.0001, Figure 3b).

 

(a) (b) 

Figure 3. Scatterplots illustrating the relationship between the connectional strength in normal
controls and PLFCS in disease groups. (a) The correlation between the connectional strength in
normal controls and the PLFCS in MCI subjects. (b) The correlation between the connectional
strength in normal controls and PLFCS in AD subjects.
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4. Discussion

The study aimed to investigate the neurophysiological FC abnormality in AD and MCI
and its relationship with tau burden. We found higher PLFCS and functional connection
strength in the AD and MCI groups compared to NCs. Global tau SUVR of the AD group
was higher than that of the NC group, but no difference was found between the AD and
MCI groups. Significant relationships between the FCs of NC groups and the PLFCS
of disease groups were observed, which strongly supported the hypotheses that brain
regions with relatively higher functional connectivity would be more vulnerable to tau
accumulation in neurodegeneration [28]. PLFCS of several brain regions were found to be
different between the NC and CI groups, and some of them were correlated with tau SUVR,
including superior parietal lobule, middle frontal gyrus, inferior frontal gyrus, precentral
gyrus, insular gyrus and lateral occipital cortex. Notably, relationships were found in the
superior parietal lobule in both MCI and AD groups.

Consistent with our results, Cho et al. found that 18F-flortaucipir SUVR increased in
the superior parietal cortex, and the change was correlated with the progression of diffuse
volume atrophy during a 2-year-follow-up in the MCI group, and the correlation pattern
with clinical scores was not included [29]. The cortical thickness of the superior parietal
lobule was found to be associated with mild symptoms and signs of cognitive impairment
in AD [30], indicating that the functional and structural abnormality in the superior parietal
lobule were correlated with disease progression but did not directly influence the cognitive
performance of patients. Strikingly, in the AD group, we found that PLFCS was negatively
correlated with tau SUVR, and in MCI, this relationship was inversed, with the value of
PLFCS increasing in line with the tau level. This may be a compensatory phenomenon.
The cognitive function of healthy aging depends on maintaining connectivity within and
between large-scale networks [31], which can increase the fault tolerance of the network to
disease [32]. By the time AD pathology is sufficiently advanced to trigger the clinical signs
of MCI, tau has generally already emerged to some degree throughout the neocortex [33],
thus the functional connections of some nodes are strengthened to balance the weakening
of those strongest functional connections, which are caused by tau pathology [34].

We found a negative relationship between FCs/PLFCS and the tau level in the occipital
and parietal lobes and a positive relationship in the frontal lobe; however, both tau and
FCs/PLFCS were not associated with cognitive function (evaluated by MMSE and CDR-SB)
in these brain regions. Several studies have reported the same fronto-occipital functional
alteration pattern and demonstrated that this change was associated with cognition and tau
level [33–36], suggesting a reconstructed brain network, including further disconnection
and isolation in parietal and occipital nodes and compensatory frontal network with
the progression of AD. Our PLFCS findings not only consolidated those results but also
indicated that the local tau accumulation might be a reason for the network’s alteration
in AD progression, and there was no interactive effect of the tau burden with functional
connectivity alteration on cognitive function. To our knowledge, this is the first time these
have been verified with a second tau PET tracer, and the results are consistent with previous
studies, which show convincing evidence of the value of second-generation tau tracers
Florzolotau in studies on AD continuum.

Though the average level of PLFCS in AD subjects was prominently higher than that
of NCs, the PLFCS value cannot distinguish AD from MCI. Considering that both aging
and neurodegeneration contribute to the disruption of the functional network, the higher
PLFCS level in the MCI group may result from their older age [37]. A previous study found
that it was age-related that the connectivity in the MCI group was significantly stronger
than that in the NC group [38]. During the aging and memory deficit process, an evident
reduction in the connection strength was demonstrated as attributed to factors such as the
massive loss of neurons and synapses during the development of aging and AD [9].

Besides the regions shown in the current study, several studies have also reported that
regional connectivity alteration might be a potential biomarker of the AD continuum and
relate to proteinopathies. Li et al. found that FCs decreased in the left MTG of MCI patients,
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particularly in the vascular MCI (VaMCI) [39]. Our previous study performed individually
specified PLFCS to quantitatively characterize the decrease degree and the PLFCS of the left
middle temporal gyrus that yielded a powerful diagnostic efficacy of 80% for categorizing
SCD from NC. Moreover, significant gray matter volume reductions, altered FC pattern
and density, together with severely decreased amplitude of low-frequency fluctuation
in the left MTG have been reported in previous studies on MCI [40–43]. These findings
indicated that the MTG was a crucial network node with rich connections, and it could be
a promising target in studies of the AD continuum. In addition to MTG, other regional
connectome alterations such as hippocampal connectivity [17] and frontoparietal control
network hubs [43] were also reported on MCI and AD, and some were proven to be related
to tau pathology in disease progression [44]. Therefore, other FC assessments would be
used to estimate the functional abnormality and its relationship with tau burden, and
additional regional connectome influenced by cognition impairment-related pathological
alterations would be analyzed in further studies, which might offer new insights into the
pathological interpretation of the relationship between tau accumulation and the functional
connectivity and find more potential biomarkers in the AD continuum.

This study had several shortcomings. First, the sample size was relatively small
and statistical differences in age and MMSE scores were found between groups, which
limited our interpretation of causality. Secondly, the AD group included patients with
different severity, which might influence the uptake levels of Florzolotau in brain regions
and further result in different relationships with PLFCS. Meanwhile, only the MMSE and
CDR-SB scores were used to estimate the cognitive function of AD and MCI patients. More
subdomain evaluations, such as memory, executive function and others, are needed so that
we can evaluate the cognitive changes in AD patients more accurately.

5. Conclusions

In summary, we have shown the negative relationship between FCs/PLFCS and tau
level in the occipital and parietal lobes and a positive relationship in the frontal lobe,
suggesting that the local tau accumulation might be a reason for the functional alteration
and network reconstruction during the AD progression. An inverse relationship between
PLFCS and tau SUVR in SPL was found in the MCI and AD groups, indicating that a
compensatory functional strengthening may exist in some nodes in response to the regional
tau toxicity. These findings provide preliminary evidence that brain FC alteration is
associated with tau pathology in AD and its prodromal stage and motivates the exploration
of AD physiopathology with the combination of rs-fMRI and PET imaging with a second-
generation tau tracer.

Author Contributions: Conceptualization, H.Z. and J.J.; Data Curation, Z.J. and Z.L.; Writing—
Original Draft Preparation, Z.J., Z.L., J.L., F.J., H.L., W.B., M.L., Q.Z., J.J. and H.Z.; Writing—Review
and Editing, Z.J., Z.L., J.L., F.J., H.L., W.B., M.L., P.W., Y.G., Q.Z., J.J., H.Z. and C.Z.; Supervision, H.Z.,
J.J. and C.Z.; Figures, Z.J. and Z.L.; Funding Acquisition, H.Z., J.J. and C.Z.; All authors have read
and agreed to the published version of the manuscript.

Funding: This work is supported by National Natural Science Foundation of China (81901367,
82021002, 81971641 and 81671239), the Open Program of Nuclear Medicine and Molecular Imaging
Key Laboratory of Sichuan Province (HYX21002), the Research project of Shanghai Health Com-
mission (2020YJZX0111), the Clinical Research Plan of SHDC (SHDC2020CR1038B), Science and
Technology Innovation 2030 Major Projects (2022ZD0211600) and the Shanghai Medical Center New
Star Young Medical Talents Training Funding Program.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

89



Brain Sci. 2022, 12, 1355

Acknowledgments: We thank all the patients and family members who participated in the study. We
are grateful to APRINOIA Therapeutics for the provision of the 18F-Florzolotau precursor.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the
study’s design, in the collection, analyses, or interpretation of data, in the writing of the manuscript,
or in the decision to publish the results.

References

1. Zhang, Z.; Yang, X.; Song, Y.Q.; Tu, J. Autophagy in Alzheimer’s disease pathogenesis: Therapeutic potential and future
perspectives. Ageing Res. Rev. 2021, 72, 101464. [CrossRef] [PubMed]

2. Risacher, S.L.; Saykin, A.J. Neuroimaging in aging and neurologic diseases. Handb. Clin. Neurol. 2019, 167, 191–227.
3. Jack, C.R., Jr.; Knopman, D.S.; Jagust, W.J.; Shaw, L.M.; Aisen, P.S.; Weiner, M.W.; Petersen, R.C.; Trojanowski, J.Q. Hypothetical

model of dynamic biomarkers of the Alzheimer’s pathological cascade. Lancet Neurol. 2010, 9, 119–128. [CrossRef]
4. Kang, J.M.; Lee, S.Y.; Seo, S.; Jeong, H.J.; Woo, S.H.; Lee, H.; Lee, Y.B.; Yeon, B.K.; Shin, D.H.; Park, K.H.; et al. Tau positron

emission tomography using [18F]THK5351 and cerebral glucose hypometabolism in Alzheimer’s disease. Neurobiol. Aging 2017,
59, 210–219. [CrossRef] [PubMed]

5. Kitamura, S.; Shimada, H.; Niwa, F.; Endo, H.; Shinotoh, H.; Takahata, K.; Kubota, M.; Takado, Y.; Hirano, S.; Kimura, Y.; et al.
Tau-induced focal neurotoxicity and network disruption related to apathy in Alzheimer’s disease. J. Neurol. Neurosurg. Psychiatry
2018, 89, 1208–1214. [CrossRef] [PubMed]

6. Landau, S.M.; Fero, A.; Baker, S.L.; Koeppe, R.; Mintun, M.; Chen, K.; Reiman, E.M.; Jagust, W.J. Measurement of longitudinal
β-amyloid change with 18F-florbetapir PET and standardized uptake value ratios. J. Nucl. Med. 2015, 56, 567–574. [CrossRef]
[PubMed]

7. Leuzy, A.; Chiotis, K.; Lemoine, L.; Gillberg, P.G.; Almkvist, O.; Rodriguez-Vieitez, E.; Nordberg, A. Tau PET imaging in
neurodegenerative tauopathies-still a challenge. Mol. Psychiatry 2019, 24, 1112–1134. [CrossRef] [PubMed]

8. Lohith, T.G.; Bennacef, I.; Vandenberghe, R.; Vandenbulcke, M.; Salinas, C.A.; Declercq, R.; Reynders, T.; Telan-Choing, N.F.;
Riffel, K.; Celen, S.; et al. Brain imaging of Alzheimer dementia patients and elderly controls with 18F-MK-6240, a PET tracer
targeting neurofibrillary tangles. J. Nucl. Med. 2019, 60, 107–114. [CrossRef]

9. Lu, J.; Bao, W.; Li, M.; Li, L.; Zhang, Z.; Alberts, I.; Brendel, M.; Cumming, P.; Lu, H.; Xiao, Z.; et al. Associations of [18F]-APN-1607
Tau PET Binding in the Brain of Alzheimer’s Disease Patients With Cognition and Glucose Metabolism. Front. Neurosci. 2020,
14, 604. [CrossRef] [PubMed]

10. Smith, R.; Puschmann, A.; Schöll, M.; Ohlsson, T.; van Swieten, J.; Honer, M.; Englund, E.; Hansson, O. 18F-AV-1451 tau PET
imaging correlates strongly with tau neuropathology in MAPT mutation carriers. Brain 2016, 139, 2372–2379. [CrossRef]

11. Buckner, R.L.; Sepulcre, J.; Talukdar, T.; Krienen, F.M.; Liu, H.; Hedden, T.; Andrews-Hanna, J.R.; Sperling, R.A.; Johnson, K.A.
Cortical hubs revealed by intrinsic functional connectivity: Mapping, assessment of stability, and relation to Alzheimer’s disease.
J. Neurosci. 2009, 29, 1860–1873. [CrossRef]

12. Crossley, N.A.; Mechelli, A.; Scott, J.; Carletti, F.; Fox, P.T.; McGuire, P.; Bullmore, E.T. The hubs of the human connectome are
generally implicated in the anatomy of brain disorders. Brain 2014, 137 Pt 8, 2382–2395. [CrossRef] [PubMed]

13. Dai, Z.; Yan, C.; Li, K.; Wang, Z.; Wang, J.; Cao, M.; Lin, Q.; Shu, N.; Xia, M.; Bi, Y.; et al. Identifying and mapping connectivity
patterns of brain network hubs in Alzheimer’s disease. Cereb. Cortex 2015, 25, 3723–3742. [CrossRef]

14. Li, H.; Gao, S.; Jia, X.; Jiang, T.; Li, K. Distinctive Alterations of Functional Connectivity Strength between Vascular and Amnestic
Mild Cognitive Impairment. Neural Plast. 2021, 2021, 8812490. [CrossRef] [PubMed]

15. Zhu, Q.; Wang, Y.; Zhuo, C.; Xu, Q.; Yao, Y.; Liu, Z.; Li, Y.; Sun, Z.; Wang, J.; Lv, M.; et al. Classification of Alzheimer’s Disease
Based on Abnormal Hippocampal Functional Connectivity and Machine Learning. Front. Aging Neurosci. 2022, 14, 754334.
[CrossRef] [PubMed]

16. Fu, L.; Zhou, Z.; Liu, L.; Zhang, J.; Xie, H.; Zhang, X.; Zhu, M.; Wang, R. Functional Abnormality Associated with Tau Deposition
in Alzheimer’s Disease—A Hybrid Positron Emission Tomography/MRI Study. Front. Aging Neurosci. 2021, 13, 758053. [CrossRef]
[PubMed]

17. Adams, J.N.; Maass, A.; Harrison, T.M.; Baker, S.L.; Jagust, W.J. Cortical tau deposition follows patterns of entorhinal functional
connectivity in aging. eLife 2019, 8, e49132. [CrossRef] [PubMed]

18. Hansson, O.; Grothe, M.J.; Strandberg, T.O.; Ohlsson, T.; Hägerström, D.; Jögi, J.; Smith, R.; Schöll, M. Tau Pathology Distribution
in Alzheimer’s disease Corresponds Differentially to Cognition-Relevant Functional Brain Networks. Front. Neurosci. 2017,
11, 167. [CrossRef] [PubMed]

19. Hoenig, M.C.; Bischof, G.N.; Seemiller, J.; Hammes, J.; Kukolja, J.; Onur, Ö.A.; Jessen, F.; Fliessbach, K.; Neumaier, B.; Fink, G.R.;
et al. Networks of tau distribution in Alzheimer’s disease. Brain 2018, 141, 568–581. [CrossRef] [PubMed]

20. Franzmeier, N.; Neitzel, J.; Rubinski, A.; Smith, R.; Strandberg, O.; Ossenkoppele, R.; Hansson, O.; Ewers, M.; Alzheimer’s Disease
Neuroimaging Initiative (ADNI). Functional brain architecture is associated with the rate of tau accumulation in Alzheimer’s
disease. Nat. Commun. 2020, 11, 347. [CrossRef] [PubMed]

90



Brain Sci. 2022, 12, 1355

21. Franzmeier, N.; Rubinski, A.; Neitzel, J.; Kim, Y.; Damm, A.; Na, D.L.; Kim, H.J.; Lyoo, C.H.; Cho, H.; Finsterwalder, S.; et al.
Functional connectivity associated with tau levels in ageing. Alzheimer’s, and small vessel disease. Brain 2019, 142, 1093–1107.
[CrossRef]

22. Cope, T.E.; Rittman, T.; Borchert, R.J.; Jones, P.S.; Vatansever, D.; Allinson, K.; Passamonti, L.; Rodriguez, P.V.; Bevan-Jones, W.R.;
O’Brien, J.T.; et al. Tau burden and the functional connectome in Alzheimer’s disease and progressive supranuclear palsy. Brain
2018, 141, 550–567. [CrossRef] [PubMed]

23. Achard, S.; Delon-Martin, C.; Vértes, P.E.; Renard, F.; Schenck, M.; Schneider, F.; Heinrich, C.; Kremer, S.; Bullmore, E.T. Hubs
of brain functional networks are radically reorganized in comatose patients. Proc. Natl. Acad. Sci. USA 2012, 109, 20608–20613.
[CrossRef] [PubMed]

24. Petersen, R.C. Mild cognitive impairment as a diagnostic entity. J. Intern. Med. 2004, 256, 183–194. [CrossRef] [PubMed]
25. McKhann, G.M.; Knopman, D.S.; Chertkow, H.; Hyman, B.T.; Jack, C.R., Jr.; Kawas, C.H.; Klunk, W.E.; Koroshetz, W.J.; Manly,

J.J.; Mayeux, R.; et al. The diagnosis of dementia due to Alzheimer’sdisease: Recommendations from the National Institute
on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimer’s Dement. 2011, 7,
263–269. [CrossRef] [PubMed]

26. Rittman, T.; Rubinov, M.; Vértes, P.E.; Patel, A.X.; Ginestet, C.E.; Ghosh, B.C.P.; Barker, R.A.; Spillantini, M.G.; Bullmore, E.T.;
Rowe, J.B. Regional expression of the MAPT gene is associated with loss of hubs in brain networks and cognitive impairment in
Parkinson disease and progressive supranuclear palsy. Neurobiol. Aging 2016, 48, 153–160. [CrossRef]

27. Cho, H.; Choi, J.Y.; Lee, H.S.; Lee, J.H.; Ryu, Y.H.; Lee, M.S.; Jack, C.R., Jr.; Lyoo, C.H. Progressive Tau Accumulation in Alzheimer
Disease: 2-Year Follow-up Study. J. Nucl. Med. 2019, 60, 1611–1621. [CrossRef] [PubMed]

28. Bakkour, A.; Morris, J.C.; Dickerson, B.C. The cortical signature of prodromal AD: Regional thinning predicts mild AD dementia.
Neurology 2009, 72, 1048–1055. [CrossRef] [PubMed]

29. Tsvetanov, K.A.; Henson, R.N.; Tyler, L.K.; Razi, A.; Geerligs, L.; Ham, T.E.; Rowe, J.B.; Cambridge Centre for Ageing and
Neuroscience. Extrinsic and Intrinsic Brain Network Connectivity Maintains Cognition across the Lifespan Despite Accelerated
Decay of Regional Brain Activation. J. Neurosci. 2016, 36, 3115–3126. [CrossRef] [PubMed]

30. Strogatz, S.H. Exploring complex networks. Nature 2001, 410, 268–276. [CrossRef]
31. Markesbery, W.R. Neuropathologic alterations in mild cognitive impairment: A review. J. Alzheimer’s Dis. 2010, 19, 221–228.

[CrossRef] [PubMed]
32. Adriaanse, S.M.; Wink, A.M.; Tijms, B.M.; Ossenkoppele, R.; Verfaillie, S.C.; Lammertsma, A.A.; Boellaard, R.; Scheltens, P.; van

Berckel, B.N.; Barkhof, F. The Association of Glucose Metabolism and Eigenvector Centrality in Alzheimer’s Disease. Brain
Connect. 2016, 6, 1–8. [CrossRef] [PubMed]

33. Luo, X.; Qiu, T.; Jia, Y.; Huang, P.; Xu, X.; Yu, X.; Shen, Z.; Jiaerken, Y.; Guan, X.; Zhou, J.; et al. ADNI Intrinsic functional
connectivity alterations in cognitively intact elderly APOE ε4 carriers measured by eigenvector centrality mapping are related to
cognition and CSF biomarkers: A preliminary study. Brain Imaging Behav. 2017, 11, 1290–1301. [CrossRef] [PubMed]

34. Ossenkoppele, R.; van der Flier, W.M.; Zwan, M.D.; Adriaanse, S.F.; Boellaard, R.; Windhorst, A.D.; Barkhof, F.; Lammertsma,
A.A.; Scheltens, P.; van Berckel, B.N. Differential effect of APOE genotype on amyloid load and glucose metabolism in AD
dementia. Neurology 2013, 80, 359–365. [CrossRef]

35. Binnewijzend, M.A.; Adriaanse, S.M.; Van der Flier, W.M.; Teunissen, C.E.; de Munck, J.C.; Stam, C.J.; Scheltens, P.; van Berckel,
B.N.; Barkhof, F.; Wink, A.M. Brain network alterations in Alzheimer’s disease measured by eigenvector centrality in fMRI are
related to cognition and CSF biomarkers. Hum. Brain Mapp. 2014, 35, 2383–2393. [CrossRef] [PubMed]

36. Courtney, S.M.; Hinault, T. When the time is right: Temporal dynamics of brain activity in healthy aging and dementia. Prog.
Neurobiol. 2021, 203, 102076. [CrossRef] [PubMed]

37. Yang, Z.; Caldwell, J.Z.K.; Cummings, J.L.; Ritter, A.; Kinney, J.W.; Cordes, D. Alzheimer’s Disease Neuroimaging Initiative
(ADNI). Sex Modulates the Pathological Aging Effect on Caudate Functional Connectivity in Mild Cognitive Impairment. Front.
Psychiatry 2022, 13, 804168. [PubMed]

38. Li, M.; Zheng, G.; Zheng, Y.; Xiong, Z.; Xia, R.; Zhou, W.; Wang, Q.; Liang, S.; Tao, J.; Chen, L. Alterations in resting-state
functional connectivity of the default mode network in amnestic mild cognitive impairment: An fMRI study. BMC Med. Imaging
2017, 17, 48. [CrossRef]

39. Stebbins, G.T.; Nyenhuis, D.L.; Wang, C.; Cox, J.L.; Freels, S.; Bangen, K.; deToledo-Morrell, L.; Sripathirathan, K.; Moseley, M.;
Turner, D.A.; et al. Gray matter atrophy in patients with ischemic stroke with cognitive impairment. Stroke 2008, 39, 785–793.
[CrossRef]

40. Li, K.; Chan, W.; Doody, R.S.; Quinn, J.; Luo, S.; Alzheimer’s Disease Neuroimaging Initiative. Prediction of Conversion to
Alzheimer’s Disease with Longitudinal Measures and Time-To-Event Data. J. Alzheimer’s Dis. 2017, 58, 361–371. [CrossRef]

41. Xue, C.; Yuan, B.; Yue, Y.; Xu, J.; Wang, S.; Wu, M.; Ji, N.; Zhou, X.; Zhao, Y.; Rao, J.; et al. Distinct Disruptive Patterns of Default
Mode Subnetwork Connectivity Across the Spectrum of Preclinical Alzheimer’s Disease. Front. Aging Neurosci. 2019, 11, 307.
[CrossRef] [PubMed]

42. Li, C.; Yang, J.; Yin, X.; Liu, C.; Zhang, L.; Zhang, X.; Gui, L.; Wang, J. Abnormal intrinsic brain activity patterns in leukoaraiosis
with and without cognitive impairment. Behav. Brain Res. 2015, 292, 409–413. [CrossRef] [PubMed]

91



Brain Sci. 2022, 12, 1355

43. Frontzkowski, L.; Ewers, M.; Brendel, M.; Biel, D.; Ossenkoppele, R.; Hager, P.; Steward, A.; Dewenter, A.; Römer, S.; Rubinski, A.;
et al. Earlier Alzheimer’s disease onset is associated with tau pathology in brain hub regions and facilitated tau spreading. Nat.
Commun. 2022, 13, 4899. [CrossRef] [PubMed]

44. King-Robson, J.; Wilson, H.; Politis, M.; Alzheimer’s Disease Neuroimaging Initiative. Associations Between Amyloid and Tau
Pathology, and Connectome Alterations, in Alzheimer’s Disease and Mild Cognitive Impairment. J. Alzheimer’s Dis. 2021, 82,
541–560. [CrossRef] [PubMed]

92



Citation: Lee, C.-C.; You, J.-F.; Wang,

Y.-C.; Lan, S.-W.; Wei, K.-C.; Chen,

K.-T.; Huang, Y.-C.; Wu, T.-W.E.;

Huang, A.P.-H. Gross Total Resection

Promotes Subsequent Recovery and

Further Enhancement of Impaired

Natural Killer Cell Activity in

Glioblastoma Patients. Brain Sci.

2022, 12, 1144. https://doi.org/

10.3390/brainsci12091144

Academic Editor: Swapan K. Ray

Received: 3 July 2022

Accepted: 24 August 2022

Published: 27 August 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

brain
sciences

Article

Gross Total Resection Promotes Subsequent Recovery and
Further Enhancement of Impaired Natural Killer Cell Activity
in Glioblastoma Patients

Cheng-Chi Lee 1,2, Jeng-Fu You 2,3, Yu-Chi Wang 1,2, Shao-Wei Lan 1, Kuo-Chen Wei 1,2,4 , Ko-Ting Chen 1,2 ,

Yin-Cheng Huang 1,2, Tai-Wei Erich Wu 1 and Abel Po-Hao Huang 5,6,*

1 Department of Neurosurgery, Chang Gung Memorial Hospital, Linkou, Taoyuan City 33305, Taiwan
2 College of Medicine, Chang Gung University, Taoyuan City 33302, Taiwan
3 Department of Colon and Rectal Surgery, Chang Gung Memorial Hospital, Linkou,

Taoyuan City 33305, Taiwan
4 Department of Neurosurgery, New Taipei Municipal TuCheng Hospital, New Taipei City 236027, Taiwan
5 Institute of Polymer Science and Engineering, National Taiwan University, Taipei City 10663, Taiwan
6 Department of Surgery, College of Medicine, National Taiwan University Hospital, Taipei City 100229, Taiwan
* Correspondence: how.how0622@gmail.com

Highlights:

1. Natural killer cell activity is dramatically impaired in patients with glioblastoma.
2. Surgical resection of glioblastoma promotes redistribution of NK cell subsets and increases NK

cell activity 30 days after surgery.
3. Gross total resection rather than subtotal resection significantly recovers and further increases

the impaired NK cell activity in patients with glioblastoma.

Abstract: Glioblastoma is the most common primary malignant brain tumor, and median survival is
relatively short despite aggressive standard treatment. Natural killer (NK) cell dysfunction is strongly
associated with tumor recurrence and metastasis but is unclear in glioblastoma. NK activity (NKA)
represents NK cell-secreted interferon-γ (IFN-γ), which modulates immunity and inhibits cancer
progression. This study aimed to analyze NKA in glioblastoma patients to obtain a clearer overview
of immunity surveillance. From 2020 to 2021, a total of 20 patients and six healthy controls were
recruited. Peripheral blood samples were collected preoperatively and on postoperative days (POD)
3 and 30. Then, NKA was measured using the NK VUE kit. Although NKA decreased on POD3, it
recovered and further significantly enhanced on POD30, with a nearly five-fold increase compared to
baseline (p = 0.004). Furthermore, the percentage of CD56brightCD16− NK cells decreased significantly
on POD3 (p = 0.022) and further recovered on PO30. Subgroup analysis of extent surgical resection
further revealed that the recovery of impaired NKA was attributable to gross total resection (GTR)
rather than subtotal resection (STR). In conclusion, NKA is significantly impaired in glioblastoma,
and GTR has demonstrated superior benefit in improving the suppressed NKA and increased
CD56brightCD16− NK subset in glioblastoma patients, which may be associated with subsequent
patients’ prognosis. Therefore, the goal of performing GTR for glioblastoma should be achieved
when possible since it appears to increase NKA cell immunity.

Keywords: glioblastoma; natural killer cells; immune function; interferon; gross total resection

1. Introduction

Natural killer (NK) cells are granular lymphocytes of the innate immune system,
and possess both innate and adaptive immune features [1,2]. Two main biological func-
tions of NK cells for eliminating stressed, virus-infected, or malignant cells are direct NK

93



Brain Sci. 2022, 12, 1144

cell-mediated cytotoxicity and indirect secretion of cytokines, such as interferon gamma
(IFN-γ) [3–5]. In humans, NK cells are defined as CD3−CD56+ and/or CD3−CD16+ cells.
In addition, NK cells can be further classified into two main subsets based on the ex-
pression level of CD16 and the cell surface density of CD56: the CD56brightCD16− and
CD56dimCD16− NK cell subsets [6,7]. CD56dimCD16+ NK cells are the major circulating
NK cell subset, comprising at least 90% of all peripheral blood NK cells, whereas approxi-
mately 10% of NK cells are CD56brightCD16− subset [8]. CD56brightCD16− NK cells have
the capacity to secrete high amounts of cytokines such as IFN-γ but have less cytolytic
activity. In contrast, CD56dimCD16+ NK cells possess significantly higher cytotoxic activity
by producing much more perforin, granzymes and cytolytic granules. Although NK cell
subsets can be determined based on their surface molecule repertoire under normal and
different pathological conditions [9–11], the distribution of NK cell subsets in glioblastoma
patients is still unclear.

Glioblastoma is the most common primary malignant brain tumor, accounting for
14.3% of all tumors and 49.1% of malignant central nervous system tumors [12,13]. The
current standard of care for patients with glioblastoma is surgery, followed by a combination
of radiation and chemotherapy. However, this aggressive therapeutic strategy has achieved
only limited success, with a median overall survival (OS) of approximately 15 months and
a median progression-free survival (PFS) of only approximately 6.2–7.5 months [14,15].
The dysfunction of immune cells, such as T cells and NK cells, has been recorded in
association with physical trauma, such as thermal injury and surgery [16–19]. Moreover,
evidence suggests that the immune dysfunction after surgery may be implicated in disease
recurrence, metastasis and death [20]. It is still unknown, however, whether cranial surgery
for glioblastoma affects the distribution of NK cell subtypes and their activity.

Many studies have demonstrated that NK cells are regarded as the major IFN-γ
producer among peripheral blood mononuclear cells (PBMCs) for innate and adaptive
immune responses [21,22]. NK cell-secreted IFN-γ is not only associated with cancer cell
growth, apoptosis and tumor suppression, but is also correlates strongly with NK cell
cytotoxicity [23–25]. In recent years, NK cell activity (NKA) has been widely measured by
detecting secreted IFN-γ from NK cells in the ex vivo stimulated PBMC [26–28]. Therefore,
the aim of this study was to investigate the influences of cranial surgical resection of
glioblastoma on NKA and the distribution of NK cell subsets. Given the superior benefit of
gross total resection (GTR) compared to subtotal resection (STR) in improving the survival
outcomes [29,30], the impact of GTR or STR on NKA and NK cell subsets redistribution
was also investigated.

2. Materials and Methods

2.1. Patients

This prospective study recruited 20 patients with histologically confirmed primary or
recurrent glioblastoma treated in our institution between January 2020 and May 2021 and
enrolled 6 healthy volunteers from our healthy center. The cancer types were determined
according to the 2016 World Health Organization Classification of Tumors of the Central
Nervous System [31]. Medical records of all participants were reviewed retrospectively, in-
cluding tumor type, gender, age, and laboratory findings. The inclusion criteria for patients
with glioblastoma in this study were (1) aged 20 or older; (2) patients with pathologically
confirmed newly diagnosed or recurrent glioblastoma; and (3) receiving surgical resection
of tumor. Patients with concomitant autoimmune disease, infectious, inflammatory process
and/or with other second or occult tumors were excluded from this study. For healthy
subjects, the inclusion criteria were (1) aged 20 years or older at the time of obtaining the
informed consent; (2) medically healthy with no significant abnormal screening results
clinically, such as vital signs, physical examination, electrocardiograms, and laboratory
data; (3) no glioblastoma or other occult tumors; (4) no medical history of tumors; and
(5) no previous or concurrent immune disease, infectious process or inflammatory state.
Any subjects who did not fulfill the inclusion criteria were excluded.
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2.2. Ethical Considerations and Surgical Resection of Glioblastoma

This study protocol was approved by the Institutional Review Board of Chang Gung
Memorial Hospital (CGMH), Linkou, Taiwan (Number: 201900979B0) and conducted in
accordance with the Helsinki Declaration. All included patients and healthy subjects pro-
vided signed informed consent to participate. The treatment decision for each patient was
evaluated by a multidisciplinary team, including neurosurgeons, radiation oncologists,
medical oncologists, neuroradiologists, and neuropathologists. Treatment decisions for
each patient were evaluated by a multidisciplinary team including neuropathologists, neu-
rooncologist, neurosurgeons, radiation oncologists, and medical oncologists. All patients
underwent cranial surgical resection of glioblastoma. Surgical resection was performed to
maximally remove the tumor mass and preserve as much functionally intact brain tissues
as possible within the tumor boundaries. All patients received intravenous dexamethasone
(Standard Chem & Pharm Co., Ltd., Tainan City, Taiwan) perioperatively (5 mg, q6h). The
extent of resection was classified as GTR and STR based percentage of evaluable surgical
removal, where GTR was defined as large than 95% resection, while STR was defined as
90–95% resection rate [32]. Peripheral blood samples were collected from glioblastoma
patients preoperatively and on postoperative day (POD) 3 and 30.

2.3. Blood Sampling and Processing

Venous blood of patients and healthy controls was drawn into BD Vacutainer® Heparin
Tubes coated with sodium heparin (BD Biosciences, Becton Dickinson, Franklin Lakes,
NJ, USA). One milliliter of whole blood was transferred into NK VUE tube (NKMAX,
Seongnam-si, Korea), and then the tube contents were gently mixed. After 20–24 h of
incubation at 37 ◦C, the plasma was collected by centrifugation at 1200× g for 4 min
and stored at −20 ◦C. The remaining whole blood was used to isolate peripheral blood
mononuclear cells (PBMCs) using Ficoll-Pague® (Cytiva, Marlborough, MA, USA) density
gradient centrifugation. The isolated PBMCs were cryopreserved for later analysis.

2.4. Determination of NKA and Absolute NK Cell Counts

NKA was determined by measuring the secreted IFN-γ released by NK cells using the
NK VUE Kit (NKMAX, Seongnam-si, Korea) according to the manufacturer’s instructions.
Briefly, cryopreserved plasma samples were thawed and centrifuged at 11,500× g for 1 min
at room temperature. Then, the supernatants were transferred into the diluent-loaded
ELISA wells, and the mixtures were incubated for 1 h at room temperature. After washing
away unbound material, IFN-γ was determined by anti-IFN-γ antibody conjugated to
horseradish peroxidase (HRP). Subsequently, tetramethyl benzidine solution was aliquoted
and incubated for 30 min following a wash to remove the unbound antibody-HRP complex.
Finally, absorbance at 450 nm was measured and the amount of NK cell-secreted IFN-γ was
quantitated. Absolute NK cell counts were determined from the peripheral blood of the
patients and calculated using the formula WBC (cells/l) * Lymphocytes (%) * CD3−CD56+

and/or CD3−CD16+ cells (%).

2.5. Flow Cytometery Analysis

Cryopreserved PBMCs were thawed in a 37 ◦C water bath, and then transferred to
a 15 mL centrifuge tube containing 5 mL of PBS. Then, PBMCs were incubated at 37 ◦C
for 5 min, followed by centrifugation at 300× g for 10 min. Next, the supernatants were
discarded, and PBMCs were resuspended by adding 1 mL of PBS. After 1 h incubation
at 37 ◦C, PBMCs were centrifuged at 300× g for 10 min. Subsequently, PBMCs were
resuspended and stained by the following monoclonal antibodies (mAbs) for 1 h: anti-CD3-
PerCp-Cy5.5 (Catalog No. 560835), anti-CD4-APC (Catalog No. 555349), anti-CD8-FITC
(Catalog No. 555366), anti-CD56-PE (Catalog No. 555516) and anti-CD16-BV421 (Catalog
No. 562874). All mAbs were purchased from BD Biosciences (Becton Dickinson, Franklin
Lakes, NJ, USA). Finally, stained PBMCs were analyzed using BD Fortessa flow cytometer
(BD Biosciences, Becton Dickinson, Franklin Lakes, NJ, USA). Figure S1 shows the gating
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strategy for the analysis of NK cell and T cell phenotypes in single live lymphocytes by
multiparametric flow cytometry.

2.6. Statistical Analysis

Statistical analyses were performed using SPSS software version 22 (IBM Corp., Ar-
monk, NY, USA). Continuous data are presented as median with interquartile range, and
categorical data are presented as frequency and percentage. The comparison between
healthy controls and glioblastoma patients was statistically analyzed using a two-tailed
Mann–Whitney U test. Intergroup comparisons were assessed with the Kruskal–Wallis test,
followed by the two-tailed Wilcoxon matched-pairs signed-rank test. p values of less than
0.05 were considered statistically significant.

3. Results

3.1. Baseline Demographic and Clinical Characteristics of Patients with Glioblastoma

Table 1 shows the baseline demographic and clinical characteristics of glioblastoma
patients. The median age of these patients was 61.5 years, ranging from 22 to 73 years
(mean age: 58.4 ± 13.8 years). Most tumors were recurrent glioblastoma (75%) and located
at frontal lobe (55%), parietal lobe (45%), and temporal lobe (20%). Diabetes (25%) was the
most common comorbidity. Among them, 11 patients (55%) received gross total resection
(GTR) and nine patients (45%) received subtotal resection (STR).

Table 1. Baseline demographic and clinical characteristics of glioblastoma patients (N = 20).

Variable Glioblastoma Patients

Age, years, median (IQR) 61.5 (52.3–68.8)
Sex

Male 9 (45.0%)
Female 11 (55.0%)

Glioblastoma
Primary 5 (25.0%)
Recurrent 15 (75.0%)

Extent of resection
GTR 11 (55.0%)
STR 9 (45.0%)

Tumor location
Frontal lobe 11 (55.0%)
Parietal lobe 6 (30.0%)
Temporal lobe 4 (20.0%)
Insular 1 (5.0%)
Cerebellum 1 (5.0%)

Comorbidity
Diabetes 5 (25.0%)
Dyslipidemia 3 (15.0%)
Hypertension 3 (15.0%)
Asthma 1 (5.0%)
Polyovarian syndrome 1 (5.0%)
CSDH 1 (5.0%)
Gout 1 (5.0%)
HBV Carrier 1 (5.0%)
Hepatitis C 1 (5.0%)
Thyroid goiters 1 (5.0%)

Time points of blood samples
Baseline 20 (100%)
POD3 20 (100%)
POD30 14 (70.0%)

Continuous data are presented as median with interquartile range, and categorical data are presented as frequency
and percentage. Abbreviations: GTR, gross total resection; CSDH, chronic subdural hematomas; HBV, hepatitis B
virus; STR, subtotal resection; POD, postoperative days.
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3.2. Impaired NKA Recovered 30 Days after Surgical Resection of Glioblastoma

In order to understand whether NKA is impaired in glioblastoma patients, we further
recruited healthy subjects and compared the NKA status between glioblastoma patients
and healthy control. As shown in Figure S2, glioblastoma patients had a significantly lower
NKA than healthy subjects (21.8 pg/mL vs. 874.0 pg/mL, p < 0.001), suggesting that NKA
is severely impaired in glioblastoma patients.

Next, we analyzed whether surgical resection of glioblastoma affects NKA status.
Table 2 shows the NKA, NK count, and distribution of NK-cell and T-cell subsets in
glioblastoma patients before surgical resection (baseline) and 3 days (POD3) and 30 days
(POD30) after surgery. There were no statistically significant differences in the absolute NK
counts and distribution of NK-cell and T-cell subsets between baseline, POD3, and POD30
(p > 0.05). However, NKA significantly differs between the baseline, POD3, and POD30
(21.8 pg/mL vs. 7.0 pg/mL vs. 107.6 pg/mL, p = 0.001). Figure 1A further shows the
statistical analysis between baseline, POD3, and POD30. NKA was significantly decreased
three days after surgical resection of glioblastoma (baseline vs. POD3, p = 0.002), but was
significantly increased 30 days after surgery (baseline vs. POD30, p = 0.002). Notably, NKA
at POD30 increased nearly five-fold compared with baseline (21.8 pg/mL vs. 107.6 pg/mL,
p = 0.004), suggesting that surgical resection recovered the impaired NKA in glioblastoma
patients. To clarify whether increased NKA after surgery was due to the increase of NK
cell number, absolute NK cell counts from peripheral blood were analyzed. As shown in
Figure 1B, there were no significant differences in absolute NK cell counts between baseline,
POD3, and POD30 (p > 0.05).

Table 2. NKA status and distribution of NK cell and T cell subsets in patients with glioblastoma
before and after surgical resection.

Baseline POD3 POD30 p-Value †

NKA (pg/mL) 21.8 (4.9, 76.5) 7.0 (1.9, 14.2) 107.6 (34.7, 457.9) 0.001
Absolute NK counts (cells/l) 160.99 (83.7, 325.36) 138.85 (62.39, 276.13) 192 (129.06, 262.89) 0.652

NK cell subset (n)
CD56brightCD16− NK cell (%) 1 (0.7, 3) 0.5 (0.3, 1.6) 0.7 (0.5, 1.2) 0.095
CD56dimCD16+ NK cell (%) 1 (0.7, 3) 0.5 (0.3, 1.6) 0.7 (0.5, 1.2) 0.095

T cell subset (n)
CD4+CD8− T cell (%) 41.3 (32.3, 57) 43.4 (29.8, 57.1) 39.5 (29.2, 68.6) 0.704
CD4−CD8+ T cell (%) 5.4 (3.1, 16.6) 7.5 (3.1, 16.8) 5.4 (2.6, 22.3) 0.382

CD56+ T cell (%) 50 (30.7, 55.5) 46.2 (33.2, 59.4) 48.7 (26.7, 56.1) 0.342

Data are presented as median with IQR. † p-value was calculated using the Kruskal-Wallis H-test. Abbreviation:
NKA, NK cell activity; NK cells, natural killer cells; POD, postoperative days; STR, subtotal resection; GTR, gross
total resection.

3.3. Redistribution of NK Cell Subsets but Not T Cell Subsets after Cranial Surgery

Given the pleiotropic roles of different NK subsets on tumor immunity [33], we next
examined whether surgical resection of glioblastoma affects the distribution of NK cell
subsets as well as T cell subset. As shown in Figure 2A, the CD56brightCD16− NK subset
was significantly decreased on POD3 (median: 1.1% vs. 0.5%, p = 0.022, compared with
baseline). Moreover, the CD56brightCD16− NK subset was instead increased on POD30
(median: 0.5% vs. 0.7%, compared with POD3), although it did not reach statistical
significance (p > 0.05). Conversely, CD56dimCD16+ NK subset was significantly increased
on POD3 (median: 85.3% vs. 87.5%, p = 0.04, compared with baseline; Figure 2B), but
further returned to baseline levels on POD30 (median: 85.3% vs. 84.7%, p > 0.05). On
the other hand, the CD4+CD8−, CD4−CD8+, and CD56+ T cell populations did not differ
significantly between baseline, POD3, and POD30, suggesting that T cell subsets did not
redistribute after surgery (All p > 0.05, Figure S3).
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Figure 1. Impaired NKA recovered after surgical resection of glioblastoma on POD30. (A) NKA was
measured before (baseline) and after surgical resection of glioblastoma on POD3 and POD30. NKA
was determined by measuring the NK-released IFN-γ using the NK VUE kit. Data were presented as
scatter plot, and differences between groups were statistically analyzed using the two-tailed Wilcoxon
matched-pairs signed-rank test. Differences were found to be statistically significant at * p < 0.05
and ** p < 0.01. Solid line indicates the median. (B) Absolute NK cell counts were determined from
patients before and after surgical resection of glioblastoma. Data were presented as scatter plot and
median, and differences between groups were statistically analyzed using the two-tailed Wilcoxon
matched-pairs signed-rank test. NS denotes no statistically significant difference. Abbreviation: NKA,
natural killer cell activity; POD3, postoperative day 3; POD30, postoperative day 30.

Figure 2. NK cell subsets were redistributed after cranial surgery. (A) Distribution of
CD56brightCD16− NK subsets before and after surgery. Surface expression of CD56 and CD16
were classified by flow cytometric analysis. (B) Distribution of CD56dimCD16+ NK subsets before and
after surgery. Data were presented as scatter plot and median, and differences between groups were
statistically analyzed using two-tailed Wilcoxon matched-pairs signed-rank test and. Differences
were found to be statistically significant at * p < 0.05. NS indicates no statistically significant difference.
Abbreviation: NK, natural killer; POD3, postoperative day 3; POD30, postoperative day 30.

3.4. NKA Is Significantly Increased on POD30 Compared with Baseline in Patients Receiving
Gross Total Resection

Extent surgical resection is known to be independently associated with survival
outcomes of patients with glioblastoma [34]. Therefore, we next investigated the impact of
GTR or STR on NKA, absolute NK cell counts, and distribution of NK and T cell subsets.
Table 3 shows the subgroup analysis of extent surgical resection using GTR and STR.
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Regardless of GTR or STR subgroup, there were no significant differences in the absolute
NK cell count and the distribution of NK- and T-cell subsets between baseline, POD3, and
POD30 (all p > 0.05). However, NKA significantly differed between the baseline, POD3,
and POD30 in glioblastoma patients who underwent GTR (7.7 vs. 5.0 vs. 153.5 pg/mL,
p = 0.001). No significant differences were observed in NKA before and after STR (47.3
vs. 11.4 vs. 51.2 pg/mL, p = 0.316). Figure 3 further shows the statistical analysis between
baseline, POD3 and POD30. There was no significant difference in NKA between patients
before and 3 days after GTR (median: 7,7 vs. 5.0 pg/mL, p = 0.155, compared baseline
with POD3). Notably, patients receiving GTR resulted in a substantial increase in NKA
on POD30 (median: 7.7 vs. 153.5 pg/mL, p = 0.015, compared baseline with POD30). In
contrast, NKA in patients who received STR was significantly decreased on POD3 (median:
47.3 vs. 11.4, p = 0.008, compared baseline with POD3), but returned to baseline on POD30
(median: 47.3 vs. 51.2 pg/mL, p = 0.893), suggesting that GTR rather than STR can recover
the impaired NKA in patients with glioblastoma.

Table 3. NKA and NK cells in glioblastoma patients before and after GTR and STR.

GTR (n = 11) STR (n = 9)

Baseline POD3 POD30 p-Value † Baseline POD3 POD30 p-Value †

NKA (pg/mL) 7.7 (3, 37.8) 5.0 (1.8, 11.2) 153.5 (45.9, 482.4) 0.001 47.3 (9.4, 250.2) 11.4 (2.5, 45.2) 51.2 (7.7, 1156.8) 0.316
Absolute NK count

(cells/mL) 222.2 (83.2, 426.2) 105.7 (62.4, 270.7) 166.1 (117.4, 205.1) 0.619 160.3 (84.2, 296.5) 163.8 (77.3, 310.8) 262.9 (192.0, 266.4) 0.836

NK cell subset
CD56brightCD16−

NK cell (%) 1.0 (0.5, 1.9) 0.5 (0.3, 1.8) 0.7 (0.6, 1.4) 0.260 1.4 (0.8, 3.9) 0.5 (0.4, 2.6) 0.4 (0.3, 1.6) 0.160

CD56dimCD16+ NK
cell (%) 88.5 (74.2, 92.7) 89.4 (83, 93.3) 84.9 (82.0, 87.0) 0.478 80.9 (69.9, 90.4) 85.1 (73.2, 91.8) 75.4 (50.6, 89) 0.600

T cell subset
CD4+CD8− T

cell (%) 42.8 (30.6, 72.5) 42.7 (22.9, 67.3) 39.8 (34.2, 69.3) 0.984 39.8 (33.9, 54.5) 44.1 (29.9, 52.1) 36.4 (29.2, 52.0) 0.956

CD4−CD8+ T
cell (%) 47.7 (25.6, 54.5) 40.8 (30.1, 51.1) 46.8 (26.7, 55.7) 0.946 52.7 (36.2, 62.3) 50.6 (42, 60.7) 55.2 (43.2, 57.9) 0.998

CD56+ T cell (%) 7.4 (3, 23.3) 8.2 (3.2, 19.4) 10.9 (4.6, 23.9) 0.886 3.5 (3.1, 10.3) 3.9 (2.2, 12.4) 2.6 (2.5, 3.5) 0.664

Abbreviation: GTR, gross total resection; STR, subtotal resection; NK, natural killer; NKA, natural killer cell
activity; POD3, postoperative day 3; POD30, postoperative day 30. † p-value was calculated using Kruskal-
Wallis test.

Figure 3. GTR rather than STR significantly recovered the impaired NKA at POD30. NKA of
glioblastoma patients before (baseline) and after receiving GTR (A) or STR (B) on POD3 and POD30.
Data were presented as scatter plot with median (solid line), and differences between groups were
analyzed using two-tailed Mann-Whitney U test. * p < 0.05 was considered statistically significance
between groups, while NS denotes no statistically significant difference. Abbreviation: NKA, NK
cell activity; GTR, gross total resection; STR, subtotal resection; POD3, postoperative day 3; POD30,
postoperative day 30.
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4. Discussion

In this prospective study, we assessed NKA, NK cell counts, and the distribution of NK-
and T-cell subsets in glioblastoma patients before and after surgery. Our results showed
that glioblastoma patients have extremely low NKA compared with healthy subjects,
indicating NK cell dysfunction in glioblastoma patients. Furthermore, surgical resection of
glioblastoma not only redistributed NK cell subsets, but also greatly recovered the impaired
NKA in glioblastoma patients 30 days after surgery. Stratified analysis further showed
that the recovery of impaired NKA was attributable to GTR rather than STR. Therefore,
the results of this study suggest that glioblastoma may have a negative impact on NK cell
immunity, and that GTR is of great benefit in the recovery of impaired NKA in glioblastoma
patients (Figure 4).

Figure 4. Schematic illustration of GTR in the recovery of the glioblastoma-suppressed natural killer
cell activity with further enhancement.

Results of the present study found that NKA was further suppressed three days after
cranial surgical resection of glioblastoma but recovered and further dramatically increased
30 days after surgery. Early postoperative NKA reduction is thought to be primarily
attributable to the physiological response to surgical stress and a cascade of inflammatory
responses, such as compensatory anti-inflammatory response [20,35]. Moreover, NK cell
suppression after tumor surgery is considered to be a major driver of cancer metastasis
and recurrence and is associated with poor survival outcomes [36]. In this study, early NK
dysfunction after surgical resection of glioblastoma is also consistent with other studies
of tumor resection. A study by Angka et al. [24] showed that NKA was dramatically
reduced by 83.1% on POD1 in patients with colorectal cancer and gradually recovered after
surgery. In a study of 24 pancreatic cancer patients, NK cell cytotoxicity was found to be
significantly downregulated following pancreaticoduodenectomy on POD7 and return to
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baseline on POD30 [37]. Similar findings were also observed in Velasquez’s study showing
that NK function is significantly impaired after surgery for malignant bone tumors without
significant changes in NK cell numbers [38]. It is worth noting that NKA in this study
was significantly increased on POD30, even higher than baseline values, suggesting that a
significant tumor burden had been resected, which may contribute to the gradual recovery
of impaired NKA due to the suppression from glioblastoma. In addition, absolute NK cell
numbers were not significantly different after surgery. Moreover, the recovery of impaired
NKA was not due to an increase in NK cell numbers after surgery. Instead, it may be
associated with changes in the redistribution of NK subsets or the quality of NK cells.

In this study, flow cytometric analysis was conducted to investigate whether impaired
NKA stemmed from downregulation of CD56brightCD16− NK cells, which is a subset of
NK cells expressing the largest amount of IFN-γ. As expected, CD56brightCD16− NK cells
were significantly decreased on POD3, whereas CD56dimCD16+ NK cells were significantly
increased. Although a previous study reported that CD56dim NK cells also expressed IFN-γ
within 4 h after triggering NK cell activation, CD56bright NK cells produced the major IFN-γ
after 16 h of stimulation [39]. Thus, we speculate that the major IFN-γ production in this
study is from CD56bright rather than CD56dim NK cells. In other words, cranial surgery led
to a redistribution of NK cell subsets from CD56brightCD16− to CD56dimCD16+ within three
days, which in turn lead to NKA downregulation. In addition to cell subset redistribution
as a possible cause, the quality of NK cells may also have an impact on NKA. This is because
that NKA dramatically increased nearly five-fold at POD30 compared with baseline, but
the numbers of CD56brightCD16− NK cells did not even return to baseline levels. Despite
the current findings, more studies are needed to directly validate whether impaired NKA is
due to redistribution and quality of NK cell subsets. On the other hand, several studies have
demonstrated that T cells also express IFN- after specific stimulation [40–42]. Therefore, we
further investigated whether surgical resection of glioblastoma could redistribute T cell
subsets. Our data indicated that T cell subsets (CD4+CD8−, CD4−CD8+, CD56+ T cell) were
not affected after cranial surgery, i.e., T cells were not associated with NKA downregulation
as a result of surgery.

In terms of potential therapeutics, steroids are often used in combination with cranial
surgery, radiation therapy, and palliative care to reduce treatment-related toxicity [43].
Moreover, the use of steroid is known to suppress NK cell functions [44]. An immunophe-
notyping study by Chitadze et al. found that CD56bright NK cells were significantly down-
regulated in glioblastoma patients treated with steroids, whereas steroid had no apparent
impact on CD56dim NK cells [45]. Vitale further indicated that the surface density of
various activating NK receptors declined during methylprednisolone treatment, which is
recognized as NK cell dysfunction, and then returned to normal levels shortly after steroid
discontinuation or low-dose use [46]. Therefore, in this study, the decline of NKA and
CD56bright NK cells on POD3 after surgical removal glioblastoma may not be or slightly
due to the steroid use. Nevertheless, in this study, the steroid was stopped about five days
after the operation. This suggests that significant increase NKA and recovery of CD56bright

NK cells on POD30 may be mainly due to the evacuation of tumor cells, which eliminated
the immune inhibition effect, and partly due to cessation of steroid usage.

In a recent comprehensive meta-analysis by Tang et al., GTR is superior to STR in terms
of recurrence, survival rates, and functional outcomes in glioma patients [30]. It is generally
believed that residual brain tumor cells closed to the resection border may remain alive and
eventually reproliferate, leading to rapid recurrence. However, NK cells also play a key role
in preventing tumor progression and metastasis through their direct cytotoxic activity and
secreted cytokines [47]. Recent studies have shown that low NKA is significantly associated
with a higher risk of various cancers, such as hepatocellular carcinoma [36], colorectal
cancer [48], head and neck squamous cell carcinoma [49], lung cancer [50], and pancreatic
cancer [51]. Jun’s study showed that NKA is progressively impaired during tumor devel-
opment, and its dysfunction is associated with recurrence and survival outcomes [52]. In
this glioblastoma clinical study, we further found that glioblastoma was associated with
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lower NKA, and tumor resection facilitated NKA recovery, which was mainly attributable
to GTR rather than STR. Importantly, during the recovery period after surgery, NKA rises,
even above preoperative baseline levels, particularly in patients who received GTR. These
results indicate that glioblastoma definitely had a negative impact on the immune system
and that the goal of GTR should be achieved when it is possible in order to attain better
immune rejuvenation and patient outcomes.

This study has several limitations, including the limited number of cases, which
limits further identification of potential confounders associated with impaired NKA in
glioblastoma and postoperative NKA recovery. The study was also conducted in a single
institution and results may not be generalized to other populations. Some data were
reviewed retrospectively from the medical records of prospectively included patients,
which may preclude inferences of causality and may also limit long-term follow-up. Longer
follow-up of NKA is necessary after completion of concurrent chemoradiation therapy and
following treatment. In addition, although we recruited healthy volunteers to examine
the NKA levels, incomplete demographic data of healthy subjects on variables may be
considered a limitation of this study. Future prospective studies with a large sample size
and healthy control are needed to further validate the finding of this study and improve
the limitations associated with this study.

5. Conclusions

Glioblastoma progression has a great negative impact on the distribution of NK
cell subtypes and their activity. NKA is significantly impaired in glioblastoma patients
compared with healthy controls. During the recovery period after surgery, GTR rather than
STR greatly restored the impaired NKA levels, even several folds higher than preoperative
baseline levels. The unsatisfactory effect of STR may be due to continued inhibition of the
activity of NK cells by residual tumor closed to the resection border. Therefore, the goal
of performing GTR for glioblastoma should be achieved when possible since it appears
to increase NK cell immunity. Further investigations are warranted to verify the role and
function of these recovered NK cells after GTR in glioblastoma patients and to explore
potential confounding factors affecting impaired NKA and GTR-dependent NKA recovery.
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Abstract: Background and Purpose: Previous studies showed that acute reocclusion after endovas-
cular therapy is related to residual stenosis. However, we observed that reperfusion status but not
residual stenosis severity is related to acute reocclusion. This study aimed to assess which factor
mention above is more likely to be associated with artery reocclusion after endovascular treatment.
Methods: This study included 86 acute ischemic stroke patients who had middle cerebral artery
(MCA) atherosclerotic occlusions and received endovascular treatment within 24 h of a stroke. The
primary outcomes included intraprocedural reocclusion assessed during endovascular treatment
and delayed reocclusion assessed through follow-up angiography. Results: Of the 86 patients, the
intraprocedural reocclusion rate was 7.0% (6/86) and the delayed reocclusion rate was 2.3% (2/86).
Regarding intraprocedural occlusion, for patients with severe residual stenosis, patients with success-
ful thrombectomy reperfusion showed a significantly lower rate than unsuccessful thrombectomy
reperfusion (0/30 vs. 6/31, p = 0.003); on the other hand, for patients with successful thrombectomy
reperfusion, patients with severe residual stenosis showed no difference from those with mild to
moderate residual stenosis in terms of intraprocedural occlusion (0/30 vs. 0/25, p = 1.00). In addition,
after endovascular treatment, all patients achieved successful reperfusion. There was no significant
difference in the delayed reocclusion rate between patients with severe residual stenosis and those
with mild to moderate residual stenosis (2/25 vs. 0/61, p = 0.085). Conclusion: Reperfusion status
rather than residual stenosis severity is associated with artery reocclusion after endovascular treat-
ment. Once successful reperfusion was achieved, the reocclusion occurrence was fairly low in MCA
atherosclerosis stroke patients, even with severe residual stenosis.

Keywords: atherosclerotic; residual stenosis; reocclusion; endovascular treatment

1. Introduction

Endovascular therapy (EVT) has become a routine practice for acute ischemic stroke
caused by large vessel occlusion in highly specialized centers with dedicated stroke
units [1,2]. However, EVT procedures do not always lead to good clinical outcomes.
One of the reasons is reocclusion of the targeted artery after procedure. The incidence of
postoperative acute reocclusion of treated arteries has been reported to range from 3 to
9% [3], and the incidence has been shown to be higher in cases of intracranial atheroscle-
rosis (ICAS)-related occlusion, especially in cases with high residual stenosis [4], because
insufficient blood flow caused by high residual stenosis through the target artery leads to
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acute thrombus formation [4–6]. Therefore, if there is sufficient blood flow through the
occluded artery affected by ICAS, the incidence of acute thrombosis after endovascular
therapy can be relatively low. Furthermore, in our clinical practice, we observed that
unsuccessful reperfusion as defined by mTICI < 2b rather than residual stenosis severity
was related to artery reocclusion in ICAS patients. We hypothesized that the incidence of
acute target arterial reocclusion would be low if mTICI ≥ 2b reperfusion was achieved
in patients with MCA ICAS-related occlusion even with high degree of residual stenosis
after endovascular therapy. Therefore, our study aimed to assess whether reocclusion was
determined by reperfusion status or residual stenosis severity in ICAS patients.

2. Methods

2.1. Study Design

This retrospective study included the following two-step analysis: (1) Step 1: intrapro-
cedural reocclusion analysis during EVT; (2) Step 2: delayed reocclusion analysis through
follow-up angiographic images. Intraprocedural reocclusion was defined as reocclusion
during the EVT procedure. Delayed reocclusion was assessed by examining follow-up
(2–7 days) angiographic images, which was defined as a sudden cutoff without a distal
flow void in magnetic resonance angiography or without the presence of distal flow in
computed topography angiography. Reocclusion were evaluated by 2 independent raters
(Z.A.L. and L.Y.M).

For Step 1 (analysis of intraprocedural reocclusion), the patients were divided into
3 groups based on the angiographic results during the thrombectomy procedure: Group 1a:
successful thrombectomy reperfusion (TICI 2b or 3) + mild to moderate stenosis; Group 2a:
successful thrombectomy reperfusion + severe stenosis; and Group 3a: no successful
thrombectomy reperfusion + severe stenosis. For Step 2 (analysis of delayed reocclusion),
the patients were divided into two groups based on the final angiographic result at the
end of the EVT: Group 1b: successful reperfusion + mild-to-moderate stenosis; Group 2b:
successful reperfusion + severe stenosis.

2.2. Patients

From our prospective registry database, acute ischemic stroke patients admitted
between January 2015 and July 2019 were retrospectively reviewed. Patients with anterior
circulation stroke and who received EVT within 24 h of stroke onset were selected. Further
inclusion criteria were as follows: (1) middle cerebral artery occlusion (tandem occlusion
was not included); (2) a diagnosis of ICAS; (3) successful reperfusion that was characterized
by a modified thrombolysis in cerebral ischemia (mTICI) Grade 2b to 3 at the end of EVT.
Patients with arterial fibrillation that could easily cause cardiac embolism [7] were excluded
from this study. Further exclusion criteria were as follows: (1) partial baseline occlusion,
(2) no follow-up imaging, and (3) poor imaging quality. The study was approved by the
institution’s ethical committee.

2.3. Endovascular Procedures

Thrombectomy with stent retrieval was the first endovascular strategy, with emer-
gent angioplasty and/or a stent as a rescue treatment after 1–2 passes of thrombectomy.
If successful thrombectomy reperfusion was achieved and could be maintained for more
than 20 min, the endovascular therapy was terminated.

2.4. Tirofiban Administration and Antiplatelet Regime

A loading dose (10 μg/kg) of a glycoprotein IIb/IIIa inhibitor (tirofiban) was adminis-
tered intravenously for 3 min once ICAS was considered as the cause of the stroke during
the EVT procedure (prior to attempting thrombectomy), then an infusion of tirofiban at
0.1–0.15 μg/kg/min was administered, and this infusion was continued for 12–36 h after
the EVT operation [8]. If no brain hemorrhages were detected by the CT scan performed
at least 12 h after the operation, a loading dose of aspirin (100 mg/day) plus clopidogrel
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(300 mg/day), followed by a dose of aspirin (100 mg/day) plus clopidogrel (75 mg/day)
for at least 3 months was administered to both patients who received stenting and those
who did not.

2.5. Definitions of ICAS

ICAS was suspected once the following signs were observed on the first run of DSA: the
appearance of a tapered sign [9] or/and significant fixed focal stenosis (>50%) at the site of
occlusion during endovascular treatment [10] or/and the phenomenon of “microcrater first-
pass effect” [11], or/and a positive stent-unsheathed effect [12]. In addition, a subgroup of
patients was scanned by follow-up high-resolution magnetic resonance imaging to confirm
the definition.

2.6. Evaluation of Angiographic Images

All angiographic classifications, including the grade of collateral flow, the degree of
residual stenosis, and the reperfusion score, were evaluated by the two independent raters
who rated the reocclusion status (Z.A.L. and L.Y.M). Interobserver disagreements were
resolved by consensus.

The baseline grade of collateral flow was evaluated according to the American Society
of Interventional and Therapeutic Neuroradiology/Society of Interventional Radiology
Collateral Flow Grading System (ASTRIN) through pretreatment angiography. According
to this angiographic scale, collateral flow can be classified into Grades 0 to 4 according to
the completeness and rapidity of collateral filling in a retrograde manner [13].

The reperfusion statuses was measured using the Thrombolysis in Cerebral Infarction
(TICI) scale [13]. An mTICI of 2b-3 was classified as successful reperfusion.

The degree of stenosis was measured by the Warfarin–Aspirin Symptomatic Intracra-
nial Disease Study (WASID) method. The degree of stenosis was classified as mild to
moderate (<70%) or high (70–99%) [14].

2.7. Outcomes

The primary outcome for Step 1 of the analysis was intraprocedural reocclusion. The
primary outcome for Step 2 of the analysis was delayed reocclusion. The secondary out-
comes included 3-month favorable outcome defined by a modified Rankin score (mRS) of
0–2, and symptomatic intracranial hemorrhage (sICH), defined as any type of hemorrhage
associated with an increase in the National Institutes of Health Stroke Scale (NIHSS) score
by ≥4 points within 72 h.

2.8. Statistical Analysis

Statistical analysis was performed using the SPSS statistical package (version 20.0,
Chicago, IL, USA). For the comparison between two groups, a χ2 test was performed for
categorical variables, Student’s t-test was performed for continuous variables with a normal
distribution, and Mann–Whitney’s U-test was performed for continuous variables without
a normal distribution or ordinal variables. ANOVA was performed for the comparison
among three groups, followed by Bonferroni correction for pairwise comparison.

3. Results

3.1. Patients

This study included 855 acute anterior circulation stroke patients, of whom 394 had
an occlusion on the middle cerebral artery. Of the 394 patients, 107 were included with a
diagnosis of ICAS, and 103 out of the 107 patients were further included with successful
reperfusion after EVT. Next, 17 out of the 103 patients were excluded due to partial baseline
occlusion (N = 12), no follow-up imaging (N = 3), or poor imaging quality (N = 2). Therefore,
a total of 86 patients were selected for the study. All patients received tirofiban treatment.
No patients received endarterectomy, which is one treatment for carotid artery stenosis [15]
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in this cohort. The patient selection process is detailed in Figure 1 and a detailed decision-
making flow chart is depicted in Figure 2.

Figure 1. Patient selection and exclusion flow chart.

Figure 2. Decision-making flow chart. EVT, endovascular therapy; MCA, middle cerebral artery;
mTICI, modified thrombolysis in cerebral infarction; CTA, computed tomography angiography;
MRA, magnetic resonance angiography.
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3.2. ICAS Classification Validation

Twenty-two patients underwent high-resolution magnetic resonance imaging, and
acentric plaques could be observed in all these cases, which confirmed the diagnosis of ICAS.

3.2.1. Step 1 Analysis: Intraprocedural Reocclusion

The intraprocedural reocclusion rate of the whole cohort was 7.0% (6/86), with a
significant difference among the three groups (p = 0.003, Table 1). Pairwise comparison
showed that for the patients with successful thrombectomy reperfusion, those with severe
residual stenosis showed no difference from those with mild to moderate residual stenosis
in terms of the intraprocedural reocclusion rate (Group 2a vs. Group 1a, 0/30 vs. 0/25,
p = 1.0); on the other hand, for patients with severe residual stenosis, those with successful
thrombectomy reperfusion showed a significantly lower intraprocedural reocclusion rate
compared with no successful thrombectomy reperfusion (Group 2a vs. Group 3a, 0/30 vs.
6/31, p = 0.007).

Table 1. Baseline characteristics and clinical outcomes of patients in Step 1 of the analysis.

Group 1a: mTICI ≥ 2b +
Stenosis < 70% (N = 25)

Group 2a: mTICI ≥ 2b +
Stenosis ≥ 70% (N = 30)

Group 3a: mTICI < 2b +
Stenosis ≥ 70% (N = 31)

p-Value

Male Sex, N (%) 18 (72%) 22 (73.3%) 22 (71.0%) 0.979
Age (mean, years) 64 ± 15 66 ± 10 62 ± 12 0.497

Smoker 10 (40%) 16 (51.6%) 17 (56.7%) 0.457
Hypertension, N (%) 16 (72.7%) 24 (80.0%) 26 (86.7%) 0.454

DM N (%) 7 (28.0%) 8 (26.7%) 9 (29.0%) 0.979
Atrial fibrillation N (%) 0 (0%) 1 (3.3%) 0 (0%) 0.389

TIA N (%) 1 (4.0%) 1 (3.3%) 0 (0%) 0.554
Admission NIHSS (median, IQR) 14 (11,18) 13(11,17) 14 (11,18) 0.332

Onset-to-puncture time N (%) 0.022
Within 8 h 18 (72%) 20 (66.7%) 12 (38.7%)

8–24 h 7 (28%) 10 (33.3%) 19 (61.3%)
Good collateral flow, N (%)

ASITN ≥ 3 14 (56.0%) 24 (77.4%) 15 (50.0%) 0.070
Instant reocclusion 0 (0%) 0 (0%) 6 (19.4%) 0.03

mTICI, modified thrombolysis in cerebral infarction; TIA, transient ischemic attack; DM, diabetes mellitus; NIHSS,
National Institutes of Health Stroke Scale; IQR, interquartile range; ASITN, American Society of Interventional
and Therapeutic Neuroradiology collateral grading system.

The clinical and angiography characteristics of the three groups are summarized in
Table 1. The baseline characteristics were similar among the three groups except for onset-
to-groin puncture time. Group 3a (patients with severe residual stenosis but successful
thrombectomy reperfusion) had more patients receiving thrombectomy beyond 8 h of onset
compared with the other two groups (61.3% vs. 33.3% vs. 28%, p = 0.022).

3.2.2. Step 2 Analysis: Delayed Occlusion

Moreover, for the group of patients with no successful thrombectomy reperfusion
(N = 31, Group 3a from Step 1), the intraprocedural reocclusion rate was 19.4% (6/31);
however, after successful reperfusion with the rescue treatment, this group of patients had
a lower intraprocedural reocclusion rate (0/31 vs. 6/31, p = 0.032).

At the end of the EVT procedure, after rescue treatment of angioplasty and/or a stent,
all patients achieved successful reperfusion after the EVT procedure. For the whole cohort,
the delayed reocclusion rate was 2.3% (2/86), the rate of sICH was 1.2% (1/86), and the
rate of good prognosis was 66.3% (57/86).

Sixty-one patients had mild to moderate residual stenosis (Group 1b), whereas 25 patients
had severe residual stenosis (Group 2b, a typical case is illustrated in Figure 3). The
two groups showed no significant difference regarding the reocclusion rate on follow-up
angioplasty (0/61 vs. 2/25, p = 0.082). The two groups showed no significant difference in
sICH (0/61 vs. 1/25, p = 0.298) or favorable functional outcome prognosis rate (41/61 vs.
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16/25, p = 0.808, Table 2). The clinical and angiography characteristics of the three groups
are summarized in Table 2.

Figure 3. An ICAS case with a high degree of residual stenosis. An elderly patient presented with
left limb weakness for 16 h, and the NIHSS score was 14. (A) The first run of DSA showed occlusion
of the right MCA. (B) The anterior–posterior view of DSA showed a high degree of stenosis (black
arrow) located at the right MCA after one pass of stent retrieval and emergent angioplasty via a
2.0–15 mm Maverick balloon; as the figure on the bottom right shows, the residual stenosis was
81.2% according to the WASID criteria. (C) Lateral view of the DSA showed that reperfusion with an
mTICI of ≥2b was achieved and it was maintained for more than 20 min. (D). TOF-MRA performed
6 days after the operation showed a high degree of stenosis in the right MCA (black arrow). The
high-resolution MRI scan on the bottom left showed an eccentric plaque (arrowhead) with enhanced
stenosis that was observed at the right MCA. ICAS, intracranial atherosclerosis; NIHSS, National
Institutes of Health Stroke Scale; DSA, digital subtraction angiography; MCA, middle cerebral artery;
mTICI, modified thrombolysis in cerebral infarction; TOF-MRA, time of flight for magnetic resonance
angiography; MRI, magnetic resonance imaging.

Table 2. Baseline characteristics and clinical outcomes of patients in Step 2 of the analysis.

Group 1b: mTICI ≥ 2b + Stenosis < 70%
(N = 61)

Group 2b: mTICI ≥ 2b + Stenosis ≥ 70%
(N = 25)

p-Value

Male Sex N (%) 45 (73.8%) 17 (68.0%) 0.588
Age (mean, years) 63 ± 13 65 ± 12 0.434

Smoker N (%) 30 (50.8%) 12 (48.0%) 0.811
Hypertension, N (%) 45 (78.9%) 21 (84.0%) 0.595

DM N (%) 17 (29.3%) 7 (28.0%) 0.904
Atrial fibrillation N (%) 0 (0%) 1 (4.0%) 0.291

TIA N (%) 1 (1.6%) 1 (4.0%) 0.499
Admission NIHSS (median, IQR) 14 (11,17) 14 (10,20) 0.681

Onset-to-puncture time N (%) 0.982
Within 8 h 35 (57.4%) 15 (60.0%)

8–24 h 26 (42.6%) 10 (40.0%)
Good collateral flow, N (%) 0.627

ASITN ≥ 3 35 (58.3%) 16 (64.0%)
sICH N (%) 0 (0%) 1 (4.0%) 0.298

Good prognosis N (%) 41 (67.2%) 16 (64.0%) 0.805
Mortality N (%) 0 (0%) 1 (4.0%) 0.291

Delayed reocclusion N (%) 0 (0%) 2 (8.0%) 0.082

mTICI, modified thrombolysis in cerebral infarction; DM, diabetes mellitus; TIA, transient ischemic attack; NIHSS,
National Institutes of Health Stroke Scale; IQR, interquartile range; ASITN, American Society of Interventional
and Therapeutic Neuroradiology collateral grading system; sICH, symptomatic intracranial hemorrhage.
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3.3. Subgroup Analysis

In addition, in the group of patients who had successful thrombectomy reperfusion
but severe stenosis (n = 30, Group 2a from Step 1), 13 patients received the rescue treatment
and 12 out of the 13 patients resulted in mild to moderate residual stenosis afterwards,
whereas 17 patients did not receive any rescue treatment and remained with severe residual
stenosis after the EVT procedure. If we compare the 12 patients with residual stenosis
management with the 17 patients without any management, the delayed reocclusion rate
showed no significant difference (0/12 vs. 2/17, p = 0.510) and the favorable functional
outcome rate showed no significant difference (6/12 vs. 12/17, p = 0.461).

4. Discussion

The main finding of this study is that reocclusion of the treated artery is fairly low in
MCA ICAS-related occlusion patients with successful reperfusion through endovascular
therapy, even with a high degree of residual stenosis after endovascular therapy. The
reocclusion occurrence of ICAS patients is related to unsuccessful reperfusion rather than
the severity of residual stenosis.

The findings of this study are consistent with a previous study on a Korean population [16].
In the previous study, within ICAS patients, the reocclusion rate was not found to be related
to residual stenosis severity, but was influenced by reperfusion status. For patients with
successful reperfusion, the reocclusion rate was much lower than that for patients without
successful reperfusion (6.6% vs. 30.8%). In addition, for patients with residual stenosis, both
the Korean study and this study showed a very much lower reocclusion rate after successful
reperfusion. One possible explanation is the use of tirofiban. Studies [5,17] have shown that
tirofiban, when delivered intra-arterially during a procedure, could dramatically reduce
instant reocclusion during an endovascular procedure (85.7% reduction) as well as delayed
reclusion on follow-up imaging (>70% reduction). Compared with the previous study, our
study shows an even lower reocclusion rate with successful reperfusion. In this study,
the tirofiban treatment was intravenously administered earlier, before the endovascular
procedure, and its antiplatelet efficacy might be further improved [17]. The intravenous
administration of tirofiban might also explain the low intracranial hemorrhagic rate in this
study [18]. In summary, this study indicates that intravenous tirofiban treatment might be
an effective treatment to prevent reocclusion and improve the success rate of endovascular
treatment in ICAS patients.

The findings of our study support the use of rescue strategies, including stenting
and/or angioplasty, in order to achieve successful reperfusion. However, stenting or
angioplasty should be performed with caution if the aim is to address residual stenosis. It is
still controversial whether stenting or angioplasty should be performed to address residual
stenosis, according to the findings from previous studies [19–21]. The results of this study
indicate that when successful reperfusion has been achieved, it might not be necessary to
further perform stenting or angioplasty, even for patients with severe residual stenosis. It
might not bring benefits but cause the following harms instead: (1) the procedure-related
complication rate might increase with more endovascular operations [21,22], including
the increased risk of perforating branch occlusions through emergent angioplasty; (2) the
intracranial hemorrhage rate might increase with more endovascular operations [21,22],
resulting from ischemic and reperfusion injuries to brain tissues [23,24], also result from
intensive antiplatelet therapy after acute cerebral ischemia [25]. Furthermore, emergent
angioplasty does not lower the reocclusion rate of the recanalized vessel [16,26–28] and does
not improve patients’ functional outcome [29]. Certainly, in light of the high reocclusion
rate in the context of acute stroke with ICAS, especially in cases of high residual stenosis,
we should take sufficient time to observe the blood flow changes in the target artery. In our
study, the observation time was no shorter than 20 min.

The limitations of our study include the following. First, this is a retrospective single-
center study with relatively small number of patients. The baseline characteristics were
balanced among groups, except for the onset-to-groin puncture time. The onset-to-puncture
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time might be related to reocclusion rate. This confounding factor needs to be further ex-
plored in future studies. Second, the definition of ICAS might include patients with residual
stenosis due to dissection or residual thrombi. Therefore, in this study, high-resolution
magnetic resonance imaging was performed to confirm the diagnosis of ICAS. However,
only a subgroup of patients underwent high-resolution magnetic resonance imaging. Third,
the findings of this study are probably more applicable to an Asian population with a high
prevalence of ICAS and are limited to middle cerebral artery occlusion.

5. Conclusions

For acute ischemic stroke resulting from intracranial artery ICAS-related occlusion,
endovascular treatment should focus on increasing successful reperfusion rather than
recanalization of residual stenosis.
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Abstract: Neurological involvement is relatively common in Erdheim–Chester disease (ECD), a rare
clonal disorder of histiocytic myeloid precursors characterized by multisystem involvement. In
ECD patients, neurological symptoms can occur either at onset or during the disease course and
may lead to various degrees of neurological disability or affect patients’ life expectancy. The clinical
neurological presentation of ECD often consists of cerebellar symptoms, showing either a subacute or
progressive course. In this latter case, patients manifest with a slowly progressive cerebellar ataxia,
variably associated with other non-specific neurological signs, infratentorial leukoencephalopathy,
and cerebellar atrophy, possibly mimicking either adult-onset degenerative or immune-mediated
ataxia. In such cases, diagnosis of ECD may be particularly challenging, yet some peculiar features
are helpful to address it. Here, we retrospectively describe four novel ECD patients, all manifesting
cerebellar symptoms at onset. In two cases, slow disease progression and associated brain MRI
features simulated a degenerative cerebellar ataxia. Three patients received a definite diagnosis of
histiocytosis, whereas one case lacked histology confirmation, although clinical diagnostic features
were strongly suggestive. Our findings regarding existing literature data focused on neurological
ECD will be also discussed to highlight those diagnostic clues helpful to address diagnosis.

Keywords: Erdheim–Chester disease; histiocytosis; neurohistiocytosis; cerebellar ataxia

1. Introduction

The term histiocytosis refers to rare, clonal neoplasms derived from macrophage/
dendritic cell lineages, giving rise to mutated monocytes [1]: according to the currently
proposed pathogenic model, these cells are released in the bloodstream, and then reach the
peripheral tissues, where they differentiate into foamy histiocytes eventually causing organ dam-
age, either directly by colonization or indirectly by triggering a pro-inflammatory cascade [2].

Histiocytoses usually affect various tissues and organs, including the bone, the kidney
and related retroperitoneal space, the lung, the skin, and the cardiocirculatory and the
central nervous systems [1–3]. They can either affect children or adults, with differences in
individual tissue involvement and histological subtype [4]. According to the most recent
classification, five different main forms of histiocytosis are known: (1) Langerhans-related,
(2) cutaneous and mucocutaneous, (3) malignant histiocytosis, (4) Rosai–Dorfman disease,
and (5) hemophagocytic lymphohistiocytosis and macrophage activation syndrome [2].
Of note, the first group includes both Langerhans cell histiocytosis (LCH) and Erdheim–
Chester disease (ECD), previously recognized as distinct entities; nearly 20% of ECD pa-
tients also present LCH lesions, and both forms are often associated with clonal pathogenic
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variants in genes of the MAPK pathway [2–7]. LCH mostly occurs in young patients, and
ECD in adults; both affect similar brain areas manifesting with related symptomatology [4].

The clinical spectrum of ECD is heterogeneous, ranging from organ-limited (i.e.,
asymptomatic bone involvement) to disseminated, life-threatening forms; infiltrative le-
sions commonly involve the long bones determining areas of osteosclerosis, skin
(xanthelasma-like lesions), retroperitoneum (peri-renal fat infiltration), cardiovascular
system (peri-aortic infiltration, right atrium pseudotumor), orbits (exophthalmos), lungs,
hypothalamic–pituitary involvement (diabetes insipidus), and the brain [8–12].

In most retrospective studies, clinical signs or symptoms of CNS involvement have
been reported in about 40% of ECD patients [13], and in about 25% of the cases they
represent the onset and/or the only clinical manifestation of ECD. Overall, brain MRI
lesions are detected in more than two-thirds of patients [11], and their prevalence increases
to 92% when considering ECD patients with neurological symptoms [13,14]. The clinical
presentation of neurological ECD depends both on the site and the type of lesion, but
progressive cerebellar and pyramidal symptoms are the most frequent, as CNS lesions
in ECD more often affect the cerebellum and the brainstem. Three distinct brain MRI
patterns have been recognized in ECD [15]: (i) an infiltrative pattern, with widespread
lesions, nodules, or intracerebral masses, mainly involving both cerebellar and brainstem
white matter, often without edema or contrast enhancement, (ii) a meningeal pattern
with pseudo-granulomatous lesions involving the dura or meningioma-like lesions, and
(iii) a composite pattern. Infiltrative lesions of the skull or the pituitary region, and variable
signs of atrophy or iron deposition are also not infrequent [13–16]. Overall, addressing a
diagnosis of neurological ECD may be challenging, particularly in patients with isolated
CNS involvement manifesting with degenerative-like ataxia phenotypes: therefore, in order
to dissect this topic, we describe the results of a retrospective study on a series of four novel
neurological ECD patients diagnosed at our Neurological Center between 2009 and 2018.
All of them presented with either subacute or chronic cerebellar symptoms associated with
prominent infratentorial lesions classified as of unknown etiology. Results will be also
discussed in view of available literature.

2. Materials and Methods

2.1. Patients

We retrospectively reviewed clinical, radiological, and laboratory data of four adult
ECD patients (Pts #1–4, age range 52–66 years) diagnosed at the Neurological Unit of
Fondazione Policlinico A. Gemelli IRCCS, Rome (Italy) between January 2009 and Novem-
ber 2018. The study was carried out in compliance with the Declaration of Helsinki and
approved by the local ethics committee; all patients gave a written informed consent
authorizing the storage and use of clinical data also for research studies.

In all patients, neurological ECD manifested with symptoms of cerebellar and/or
brainstem involvement and related structural brain MRI lesions of undefined nature. An
extensive diagnostic assessment documented typical extra-neurological features of ECD
in all patients, and diagnosis of neurological ECD was confirmed in three patients by
histopathology studies, whereas based on available clinical and diagnostic findings, the
fourth patient was strongly suspected to have ECD.

2.2. Radiological Assessment

All patients underwent at least one conventional brain MR imaging study with contrast
medium (gadolinium) on a 1.5 Tesla. All patients also underwent whole skeletal X-rays
of upper and lower limbs. Three patients also received technetium 99-metastable (99mTc)
bone scintigraphy and thoraco-abdominal CT scans with and without contrast medium,
and two of them also underwent whole-body (18F)-fluorodeoxyglucose (FDG) PET.
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2.3. Laboratory Assessment

All patients underwent blood cell count, electrolytes, liver and kidney function tests,
serum and urine osmolality, FSH, LH, testosterone/estradiol, ACTH, cortisol, TSH, fT4,
prolactin, IGF-1, C-reactive protein (CRP), erythrocyte sedimentation rate (ESR), and serum
electrophoresis. CSF examination included chemical, microbiological, and cytology anal-
yses. All patients with more progressive forms also performed an extensive screening
for systemic autoimmune markers (including ANA, ENA screen, anti-dsDNA, rheuma-
toid factor, p-ANCA, and c-ANCA), antigliadin, and anti-onconeural antibodies. Finally,
molecular testing for SCA1, 2, and FXTAS was performed in the two patients with a slowly
progressive course (Pts 3 and 4).

2.4. Other Neurological Diagnostic Tests

Cognitive functions were assessed by the Mini-Mental State Examination [17] and by
the Mental Deterioration Battery [18]. For three out of four patients, upper and lower limb
somatosensory (SSEP) and motor evoked potentials (MEP), electromyography, and nerve
conduction studies were performed.

2.5. Histopathology

Three patients (Pts 1–3) underwent diagnostic tissue biopsies from femoral, cerebellar
and tibial lesions respectively, under general anesthesia: formalin-fixed paraffin-embedded
tissues samples were then processed for diagnostic histopathology, including immunohisto-
chemistry for S100, SMA, CK, AE1/AE3, CD45, CD68, CD1a, CD117, CD207, CD21, CD23,
MPO, GFAP, desmin, EMA, and OLIG2, and reviewed by experienced pathologists. Iliac
crest bone marrow needle aspiration and biopsy were also performed in Pts 1 and 2.

3. Results

3.1. Clinical Features

Demographic, clinical, and diagnostic data of the four ECD patients are summarized
in Table 1. All patients were Caucasian; 75% were male. The median age at the onset of
symptoms was 60.2 years (range 52–66 years). The mean follow-up duration was 4.62 years
(standard deviation 3.51 years, range 1–8 years).

All patients manifested with either subacute or slowly progressive cerebellar symp-
toms mainly consisting of gait ataxia and dysarthria; three patients (75%), had also upper
limb dysmetria and gaze-evoked nystagmus, and instability for subjective vertigo and
ophthalmoparesis were evident in one patient (25%).

Pyramidal signs were also present in one patient (25%) who showed a mild right
brachiocrural hemiparesis, and two patients (50%) had brisk deep tendon reflexes, and
showed presented variable signs of involvement of cranial nerves (VII, VIII, and X).

Extrapyramidal signs were evident in two patients (50%).
Cognitive impairment in the form of attention/dysexecutive deficit was evident in

one patient (25%) at the onset of symptoms.
Notably, pseudobulbar affect appeared very early in the clinical course of all three

patients with more progressive symptoms.
Two patients (Pts 1 and 4) were lost to long-term follow-up, although Pt 1, who was

treated by conventional chemotherapy after diagnosis of ECD, was noted to be neurologi-
cally stable after two years.

Patient 2 is currently in follow-up. He is now not able to maintain either standing or
sitting positions and recently manifested seizures that were controlled by levetiracetam.
His last neurological examination documented severe spastic ataxia, with marked right
hemiparesis, axial, and appendicular ataxia, nystagmus, and cerebellar dysarthria, par-
tially due to neurological sequelae after a diagnosis of cerebellar histiocytic sarcoma and
related treatment.

119



Brain Sci. 2023, 13, 26

Table 1. Summary of the demographic, main clinical, and diagnostic features documented in our
case series and related treatment strategies.

Pt#,
Sex

AAO AE Neurological

Other
Neurological
Findings

Skeletal
Involvement

Brain MRI Hystopathology Treatment Follow-Up

1,M 52 52

Dysarthria,
gait ataxia,
subjective
dizziness

Parkinsonism,
right
lateropulsion in
Romberg test,
gaze-evoked
horizontal
nystagmus,
eyelids ptosis,
pseudobulbar
affect

Area of os-
teosclerosis
in diaphyseal
bones with
diffuse
18-FDG
uptake

Infiltrative
pattern:
T2/FLAIR
hyperintensity
in MCP, pons,
DN and GP
without CE.
Iron deposits in
GP, DN and SN
bilaterally.

Left tibia biopsy:
Fibrosis with
numerous
macrophages,
some of them
foamy, and
lymphocytes
CD68+/CD45+,
S100-, CD1a-,
CD117-, CD207-.
Immunochemistry
for BRAFV600E-.

Subcutaneous
Cladribine.

2 years,
stable. Then
lost at the
follow-up.

2,M 60 60 Dysarthria,
gait ataxia

Right
lateropulsion in
Romberg
position, gaze-
evoked
rotational
nystagmus,
bilateral
dysmetria,
right
hemiparesis

Diffuse os-
teosclerosis
(vertebral
body D10,
left fifth rib
and femur
heads) with
diffuse 18-
FDG uptake

Composite
pattern:
T2/FLAIR
hyperintensity
in cerebellar
hemispheres,
MCP, left SCP,
pons, bulb,
posterior arm
of IC. Two
nodular areas
in right
cerebellar
hemisphere
with
hypointensity
in long-TR scan
and with CE.
Small areas of
CE in the pons
and in the right
MCP

Cerebellar biopsy:
Numerous
histiocytes often
multinucleated
and with
cytoplasmic
vacuolation. CD
68+, S100-, CD
207-, CD1a-.
Fibrosis with
CD45+
lymphocytes.
Conclusions:
histiocytic
sarcoma.

Temozolomide,
autologous
stem cells
transplanta-
tion (FEAM
protocol)

4 years,
stable. Last
PET-TC
negative.

3,M 63 64

Dysarthria,
gait
imbalance,
cognitive
impairment

Trunkal ataxia,
ophthalmo-
paresis, gaze-
evoked
nystagmus,
brisk deep
tendon reflexes,
bilateral
dysmetria,
upper limbs
dystonia,
pseudobulbar
affect.

Areas of os-
teosclerosis
in diaphyseal
bones of the 4
limbs, and II
rib. Frontal
sinus
osteoma.
Bone uptake
in Tc99m
scintigraphy.

Infiltrative
pattern:
T2/FLAIR
hyperintensity
in pons and
midbrain with
CE. T1
hyperintensity
of pallidus
nuclei.
Cerebellar
atrophy and
iron deposits in
striatal nuclei.
Empty sella.

Femur biopsy:
numerous
macrophages/
histiocytes CD68+
and PGM1+,
S100-, SMA-.

High-dose
steroid pulse
therapy
followed by
oral
maintenance
therapy

6 years,
worsening of
ataxia and
cognition,
dysphagia.
Death for
respiratory
complica-
tions.

4,F 66 76

Dysarthria,
dysphonia,
progressive
right facial
nerve
peripheral
palsy. Gait
ataxia later

Slowing of
saccadic
movements,
brisk deep
tendon reflexes,
bilateral
dysmetria,
pseudobulbar
affect.

None

Infiltrative
pattern:
T2/FLAIR
hyperintensity
in pons,
midbrain,
cerebellum,
periaqueductal
and parahip-
pocampal areas
without CE.
Iron deposits in
GP.

Not done. None

10 years, then
lost. During
follow-up:
dysphagia.

Abbreviations: AAO = age at onset; AE = age at the first neurological examination; MCP = middle cerebellar
peduncles; SCP = superior cerebellar peduncle; DN = dentate nuclei; GP = globus pallidus; SN = substantia nigra;
CE = contrast enhancement; IC = internal capsule.

Patient 3 manifested during the follow-up a mild worsening of cerebellar ataxia and
cognitive functions at neuropsychological tests. He eventually died of pneumonia six years
after the onset of symptoms.
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Patient 4, who had the longest period of follow-up (8 years), had moderate swal-
lowing disturbances eight years after the initial assessment postulating a diagnosis of
neurological ECD.

3.2. Laboratory Examinations

Cell blood count was normal in all patients, as well as electrolytes, liver, and renal
function tests, except for slight elevated creatinine level in Pt 1, who also had increased
blood IgE (506 UI/mL) and low-titer positive anti-ANA antibodies (1:160 dilution). Pitu-
itary function and other immunological tests were normal in all cases. The CSF examination
revealed slightly increased protein levels only in Pts 3 and 4, while other chemical param-
eters, microbiological and immunological analyses were otherwise unremarkable in all
patients (Table 1).

3.3. Neuroimaging

Brain MRI showed T2/FLAIR hyperintense signal alterations without contrast en-
hancement variably involving the white matter of cerebellar hemispheres, middle cerebellar
peduncles, dentate nuclei, pons, and midbrain and cerebral peduncles in all cases (Figure 1).
Three patients (Pts 1, 2, 4) also presented similar supratentorial T2/FLAIR hyperintensities
variably involving the paratrigonal area, posterior arm of the internal capsule, globus pal-
lidus, peri-aqueductal, and parahippocampal areas, with evidence of gadolinium contrast
enhancement in the paratrigonal area not shown in Pt 3. Moreover, signs of cerebellar
atrophy and bilateral hypointense signal abnormalities in basal ganglia on SWI sequences,
suggestive of iron deposition, were evident in Pts 1, 3, and 4 (Figure 1). Of note, in Pt
2 manifesting a subacute neurological outcome, MRI also showed two nodular lesions
(30 × 20 × 20 mm3) in the right cerebellar hemisphere with contrast enhancement (Fig-
ure 2) and elevated levels of r-CBV (regional cerebral blood volume) on the perfusion study
and DWI-restriction, indicative of hypercellularity. Finally, Pt 3, affected by diabetes in-
sipidus, also presented an empty sella. Signs of paranasal sinuses or mastoid inflammation
were evident in three patients (Pts 1, 2, and 3). Spinal cord MRI was normal in all patients.

3.4. Neurophysiology

SEP and MEP documented damage of both central sensory and motor pathways in all
patients. Electromyography and nerve conduction studies were normal in two out of three
patients assessed, whereas in the other patient (Pt 2), also affected by diabetes mellitus type
2, documented a mild predominantly demyelinating lower limb polyneuropathy.

3.5. Cognitive Studies

Regarding cognition, initial diagnostic evaluation in Pt 1 manifested impairment in
attention, executive, memory, and language (verbal fluency); similarly, Pt 4 presented a
mild impairment in the same cognitive domains. In Pts 3 and 4, cognitive test were initially
normal, and a serial evaluation three years later documented only in Pt 3 a moderate
worsening in attention, and executive, memory, and language functions (verbal fluency).
Finally, Pt 2 showed a mild defect only in one test assessing verbal fluency at the initial
cognitive assessment.

3.6. Systemic Involvement

In the differential diagnosis for ECD, all patients underwent whole-body skeletal
X-ray, which showed multiple areas of bone osteosclerosis, mainly involving the diaphyseal
sections of upper and lower limb long bones, ribs, and the thoracic vertebrae in three
patients (Pts 1, 2, and 3) (Table 1).
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Figure 1. Panel showing brain MRI of Pt #1 (A–C), Pt #3 (D–F), and Pt #4 (G–I). (A) Transverse
FLAIR scan (pons level) of Pt #1 showing mild hyperintensity of the pons, both MCPs, dentate nuclei.
(B) Transverse SWAN scan (mesencephalon level) of Pt #1 showing marked hypointense signal (metal
deposits) of bilateral substantia nigra. (C) Sagittal T2-weighted scan of Pt #1 showing slight vermian
cerebellar atrophy. (D) Transverse FLAIR scan (pons level) of Pt #3 showing hyperintensity of the pons
and dentate nuclei. (E) Transverse SWAN scan (thalami level) of Pt #3 showing marked hypointense
signal (metal deposits) of putamina and globi pallidi. (F) Sagittal T2-weighted scan of Pt #3 showing
vermian cerebellar atrophy. (G) Transverse FLAIR scan (pons level) of Pt #4 showing hyperintensity
of the pons and both MCPs. (H) Transverse FLAIR scan (mesencephalon level) of Pt #4 showing
hyperintensity of the mesencephalon and parahippocampal cortices. (I) Coronal T2-weighted scan
of Pt #4 showing hyperintensity of the pons, both SCPs and MCPs. Abbreviations: Flair: fluid-
attenuated inversion recovery; MCP: middle cerebellar peduncle; SWAN: susceptibility-weighted
angiography; SCP: superior cerebellar peduncle.
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Figure 2. Panel showing brain MRI of Patient #2. (A) Sagittal T2-weighted scan showing one nodular
lesion along with extensive hyperintensity of the white matter of the RCH, the ipsilateral MCP, and
the pons. (B) Transverse T2-weighted scan (pons level) showing the same nodular hypointense
lesion with hyperintensity of the white matter of the RCH, both MCPs and the pons. (C) Transverse
T1-weighted scan (pons level) showing marked, homogeneous contrast enhancement of the RCH
nodular lesion. Abbreviations: RCH: right cerebellar hemisphere; MCP: middle cerebellar peduncle.

These patients underwent further nuclear imaging studies (either 18-FDG CT-PET or
Tc99m bone scintigraphy), all of which documented pathological uptake of the radiotracers
in correspondence of the osteosclerotic lesions. Notably, increased tracer uptake was
detectable in other bone sites (jaw, hip bone, vertebral column, heels) that were apparently
unaffected at X-ray examination.

As previously pointed out, one patient (Pt 3) had a history of diabetes insipidus and
was receiving treatment with nasal desmopressin: laboratory findings showed normal
values of plasmatic and urinary osmolarity, with otherwise conserved function of the
hypothalamus–hypophysis axis. Another patient (Pt 2) was affected by diabetes mellitus
type 2 and treated with oral glucose-lowering agents.

A chest CT scan showed imaging features of bronchiolitis in Pt 3, while Pts 1 and
2 had a “ground glass” appearance in the lungs, also associated with slight bilateral
pleural effusion and apical pleural thickening in Pt 1. Two patients (Pts 1 and 3) showed
retroperitoneal fibrosis with “hairy kidney” aspect at the abdominal CT scan, although with
conserved renal function. Another patient (Pt 2) had small cortical cysts bilaterally with
edema of perinephric bridging septa (Table 1). An abdominal echoscan was also normal in
Pt 4. Aortic parietal calcium deposits were documented in all patients.

Echocardiography was normal in all patients. Finally, eyelid xanthelasmas were
evident in Pt 4.

3.7. Histopathology Data

Biopsy sites were the cerebellum in Pt 2 and the long bones in Pts 1 and 3 (tibia and
femur, respectively). In all samples, numerous histiocytes were found, either multinucle-
ated or with foamy or vacuolated cytoplasm identifiable by their immunohistochemical
expression of CD68 and absence of S-100 and CD1a, which was associated with the presence
of abundant fibrotic tissue or lymphoplasmacellular infiltration with positive anti-CD45
immunoreactivity. Histiocytes from Pt 1 also showed CD117 and CD207 immunoreactivity,
which was instead absent in the cerebellar sample from Pt 2: in this case, mitosis and
an increased proliferative index (MIB 1 = 10–15%) were also evident. According to its
histopathology features, the cerebellar nodule was diagnosed as a histiocytic sarcoma.

Histochemistry for BRAFV600E was negative in the bone biopsy of Pt 1. Results of
molecular testing for the BRAFV600E mutation were not available from medical records in
Pt 2, while testing was negative in whole leukocytes DNA from Pt 3.
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3.8. Management and Follow-Up

Following diagnosis, both Pts 1 and 2 were referred to the Division of Haematology
of our Centre for Therapeutic Management and Follow-up. Pt 1 was initially treated with
oral steroids without any clinical improvement and then treated with chemotherapy by
subcutaneous cladribine (5 injections/month for 4–5 months). Serial PET FDG studies
showed persistent reduced uptake of the radioligand in correspondence of the bone lesions
during two years of follow-up.

Pt 2, diagnosed with histiocytic sarcoma, was treated with radiotherapy and chemother-
apy (temozolomide 150 mg for 3 months) with poor response; thus, he underwent an autol-
ogous peripheral stem cell transplantation, preceded by a FEAM (fotemustine/aracytine/
etoposide/melphalan) protocol as conditioning therapy. Serial MRI and scans showed
good response to treatment, with no evidence of disease recurrence at both MRI and global
PET CT scan two years after treatment.

According to their clinical histories and the results of the diagnostic work-up, both
Pts 3 and 4 were diagnosed with neurodegenerative ECD. Based on the evidence of con-
trast enhanced lesions in the brain MRI, Pt 3 underwent a cycle of steroid pulse therapy
(1 g/day for 5 days) followed by a maintenance therapy with oral corticosteroids (starting
dose of prednisone 50 mg/day), which produced a temporary, partial clinical benefit on
gait balance problems, with a concomitant disappearance of contrast enhancement in the
brain MRI (data not shown). However, his cerebellar ataxia thereafter returned to slowly
progressive despite this treatment, so steroids were tapered until suspension, without
registering any significant clinical and neuroimaging worsening. Patient 4 had a very
mild disease progression. In consideration of the relatively benign course, and of the
potential side effects of conventional therapies, no further treatment was performed for
either patient.

4. Discussion

This case series illustrates the occurrence of Erdheim–Chester disease presenting
exclusively with neurological manifestations. This issue now appears important, as CNS
involvement may affect the life expectancy of ECD patients [19], and recent research
indicates there is a significant response of CNS symptoms to novel drugs specifically
targeting the MAPK pathway [14,20], the dysregulation of which plays a main role in
the pathogenesis of ECD. The relevance of CNS involvement in ECD is underlined by
different systematic literature reviews, regarding both the high prevalence of neurological
involvement and also of neurological presentation of ECD.

Of note, in our small ECD cohort neurological involvement remained the only clinical
manifestation of ECD, consisting of subacute or progressive cerebellar and brainstem symp-
toms associated with prominent involvement of the infratentorial white matter on the brain
MRI. A similar presentation was previously highlighted in a previous case series [21], and
our findings actually support that patients with exclusive neurological ECD might represent
a specific subgroup, distinct from ECD, characterized by extraneurological presentation.

According to the literature, we observed a similar male prevalence in our cohort
(3M, 1F). In addition to cerebellar symptoms, the pseudobulbar effect was another common
clinical feature in our ECD cohort; accordingly, in a recent review of 30 ECD patients with
prominent neurological involvement, Bathia and colleagues [14] reported the presence of
bulbar affect in about 30% of cases, supporting that this symptom might represent a “red
flag” to suspect neurological ECD when combined with ataxia and the presence of peculiar
infratentorial neuroimaging lesions.

Other neurological manifestations, such as cranial nerves involvement or diplopia,
similarly occurred at a relatively low prevalence in our small ECD cohort. In addition, 50%
of our patients showed clinical pyramidal signs, and in all of them, motor and sensory
evoked potential documented an involvement of both long descending and ascending
central pathways, likely related to the widespread white matter brainstem involvement.
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A high prevalence of cognitive impairment was also documented in our cohort of
neurological ECD patients, mainly affecting verbal fluency, memory, and executive func-
tions. These findings are in agreement with those of Boyd et al. [16], who reported a
similar prevalence and pattern of cognitive involvement in a cohort of 15 ECD patients
assessed by a detailed neuropsychological battery. In this study, voxel-based morphometry
documented significantly reduced brain volumes in ECD patients vs. healthy controls, with
specific loss of grey matter in the right frontal and parietal cortex, and routine brain MRI
from a larger cohort of 62 ECD patients documented signs of brain atrophy in about 20–30%
of cases. These results suggest the occurrence of neurodegenerative damage in ECD brains.
Accordingly, brain MRI showed both cerebellar atrophy and signs of iron deposition both
in the basal ganglia and cerebellar nuclei in Pts 1, 3, and 4 with a progressive neurological
disease course.

Regarding brain MRI, all our neurological ECD patients had a suggestive “infiltrative
pattern”, characterized by T2/FLAIR hyperintense white matter lesions mainly involving
the brainstem and the cerebellum, usually without contrast enhancement. Some of them
showed similar alterations also in the supratentorial compartment, in one case with focal
areas of contrast enhancement. Overall, our data support those of previous reports indicat-
ing that the characteristic brain MRI findings in “pure “neurological ECD patients consists
of a diffuse, exclusive, or prominent involvement of the infratentorial compartment mainly
involving the cerebellum, the brainstem, and the cerebellar peduncles, usually without
contrast enhancement [13–16,21] and with no evidence of meningeal involvement. As an
additional diagnostic hint for ECD, diabetes insipidus had occurred in Pt 3 many years
before the onset of ataxia. Such a condition is relatively frequent in ECD, being reported
in 30–48% of patients, and it may occur, as in our patient, many years before the onset of
neurological symptoms. A long-lasting history of diabetes insipidus associated with thick-
ening and contrast enhancement of the pituitary stalk, in the presence of unspecific brain,
meningeal, or retro-orbital lesions might also imply a differential diagnosis of IgG4-related
disease, sarcoidosis, tuberculosis, or lymphocytic infundibulo-neurohypophysitis. Yet, the
association with diffuse signs of long bone involvement is highly suggestive for a diagnosis
of neuro-ECD, as discussed shortly after in this section. Finally, two large tumoral nodular
lesions in the right cerebellar hemisphere with contrast enhancement were also present in
Pt 2, who accordingly manifested rapidly evolving symptoms due to its mass effect in the
posterior fossa.

Another diagnostic clue for neurological ECD might be represented by the presence
of signs of sinusitis and/or mastoiditis on the brain MRI, as subclinical systemic disease
manifestations, reported in about 30% of ECD patients characterized by neurohystiocitic
involvement [14,21]. In this regard, however, the most suggestive extraneurological feature
of ECD present in three of our patients was the presence of multiple areas of bone os-
teosclerosis, mainly involving the diaphyseal sections of long bones, ribs, and the thoracic
vertebrae, and characterized by more widespread pathological uptake of the radiotracers
at nuclear imaging studies. Asymptomatic bone lesions are reported with a very high
prevalence (80–100%) in neuro-ECD cohorts [14,21,22]. However, their absence does not
rule out an ECD diagnosis, as about 20–26% of ECD patients may not present signs of
bone involvement [8,11].

Other typical subclinical systemic ECD signs were detected in Pts 1, 2, and 3 through
thoraco-abdominal CT scans: these included signs of renal and retroperitoneal infiltration
characterized by hairy kidney and ground glass appearance of lungs or pleural effusion.
Moreover, eyelid xanthelasma-like lesions were detected in Pt 4. Conversely, none of our
patients presented signs of periaortitis, or heart involvement.

A definite diagnosis of ECD, according to current diagnostic criteria for ECD [20]
requiring histology confirmation, was reached in three patients of our cohort: in partic-
ular in Pt 2, one nodular lesion configured a histiocytic sarcoma. Histiocytic sarcoma, a
malignant proliferation of cells showing signs of histiocytic differentiation, often occurring
in the skin, the lymph nodes, and the intestinal tract, while primary peripheral or CNS
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involvement is very rare [23,24]. It has often poor prognosis, but patients with localized
histiocytic sarcoma may survive years after the initial diagnosis followed by aggressive
clinical management. Data from single case reports have suggested efficacy for high-dose
chemotherapy and autologous/allogeneic stem cell transplantation; indeed, our patient,
treated by autologous peripheral stem-cell transplantation preceded by FEAM (fotemus-
tine/aracytine/etoposide/melphalan) protocol as conditioning therapy, shows no signs
of active disease at the last CT-PET after 4 years of follow-up. In Pt 2, the presence of
systemic bone manifestations, and the evidence of diffuse infratentorial brainstem and
cerebellar alterations with only limited contrast enhancement at the brain MRI are both
features suggestive of ECD. Thus, we suggest that both ECD and histiocytic sarcoma may
coexist in this patient, originating from a common neoplastic precursor, as such disorders
may share the same oncogene background [2,6,7,25,26].

In both Pts 1 and 3, bone histology confirmed ECD diagnosis. Following hematological
evaluation, Pt 1 was treated by conventional chemotherapy, and we could observe a
substantial neurological stability after two years of follow up; then, the patient was lost.
After steroids, in agreement with hematologists, Pt 3 was not treated with further drugs,
in consideration of his isolated and slowly progressive neurological involvement and
the potential serious side effects of other immunosuppressive or chemotherapy drugs.
Unfortunately, we did not reach a definite histological confirmation of ECD in Pt 4, yet
we believe that her clinical and brain MRI features, together with the presence of skin
manifestations, would strongly support an ECD diagnosis also in this case.

ECD has been associated with mutations in genes involved either in the MAPK and the
P13K-AKT signaling pathways, which eventually activate cell proliferation, survival, and
angiogenesis; in particular, more than 50% of the ECD patients carry somatic BRAF (V600E)
gene mutation in affected tissues, that sometimes can be detected also on DNA from
peripheral blood. In our retrospective data analysis, histochemical staining for BRAFV600E
was reported to be negative in bone tissue biopsy of Pt 1, and molecular testing, performed
only in blood DNA, was also negative in Pt 3. No molecular data regarding Pt 1 and Pt 4
were available from medical records.

Currently, molecular characterization of ECD lesions may allow the establishment of
more effective chemotherapies specifically targeting the dysfunctional pathway, i.e., BRAF
inhibitors vemurafenib or dabrafenib for BRAF-mutated ECD patients, and recent studies
indicate that these drugs would be also successful on CNS involvement.

However, the pathogenesis of neurological damage in ECD still needs clarification:
indeed, signs of cortical brain atrophy have also been documented in ECD patients without
corresponding supratentorial lesions [16,27]. Further studies are needed to better clarify
the pathogenesis of neurodegeneration in ECD patients, which might be either triggered
by systemic inflammation secondary to histiocytic infiltration in other tissues, or by other
still unknown mechanisms [2].
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Abstract: Since the emergence of Virtual Reality technology, it has been adopted in the field of
neurology. While Virtual Reality has contributed to various rehabilitation approaches, its potential
advantages, especially in diagnosis, have not yet been fully utilized. Moreover, new tides of the
Metaverse are approaching rapidly, which will again boost public and research interest and the
importance of immersive Virtual Reality technology. Nevertheless, accessibility to such technology
for people with neurological disorders has been critically underexplored. Through this perspective
paper, we will briefly look over the current state of the technology in neurological studies and then
propose future research directions, which hopefully facilitate beneficial Virtual Reality studies on a
wider range of topics in neurology.
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1. Introduction: Present of Virtual Reality

In the mid-2010s, with the launches of several commercial products, Virtual Reality
(VR) technology attracted significant public and research attention (although, surprisingly,
the origin of the technology dates back to the 1980s) [1,2]. Thanks to its immersive system,
including head-mounted displays (HMDs), it has an outstanding capability to simulate
lifelike experiences from the first-person perspective (1 PP). Thus, VR has been introduced
to the field of psychiatric disorders, for instance, as therapy for phobias, anxiety disorders,
and post-traumatic stress [3–5]. Likewise, VR has been utilized in the rehabilitation of
patients with neurological disorders, motivating them to be more actively engaged and
immersed via fun and game-like methods (for a review [6,7]). While VR technology has
been shown to facilitate recovery and enhance motor or cognitive functions in patients
with Alzheimer’s disease (AD), Parkinson’s disease (PD), or stroke, it has rarely been used
for the diagnosis of such diseases or the evaluation of the related cognitive impairments,
where it has many advantages over conventional methods. In contrast to the exaggerated
expectations of the time when it first appeared, the era of VR (replacing other traditional
displays) has not immediately arrived due to many obstacles: lack of affordable consumer
products and enjoyable content, difficulties in dedicated software development, limited
hardware performance (e.g., insufficient computing power and display resolutions, usage
with bulky cables, or limited battery time), limited sensory modalities, and cybersickness
(nausea, vomiting, dizziness, or fatigue) [8,9]. Along with public trends, it has also become
less actively adopted in research than before, including the field of neurology. However,
those obstacles are decreasing thanks to the continuous development of better and more
affordable VR systems, and, at last, the recent rise of the Metaverse is about to bring the
second golden age of VR technology (Figure 1).
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Figure 1. The results of Google Trends for ‘Metaverse’ and ‘Virtual Reality’ over time (2013 to 2022).
The trends show the Virtual Reality boom in the mid-2010s and the recent emergence of the Metaverse.

At this very critical moment, through this short communication, we would like to
propose ways to better utilize advanced VR technology for patients with neurological
disorders (focusing on diagnosis and evaluation) and would also like to suggest future
research avenues necessary for such patients to fully enjoy the era of the Metaverse together.
Hopefully, this can facilitate various VR studies to benefit neurological patients. Of note,
in this manuscript, VR refers to immersive VR with a stereo HMD [2], rather than the too
broad definition of ‘a computer-generated world’.

2. Possibility for Diagnosis or Assessment of Cognitive Impairments

Many neurological diseases accompany a wide range of cognitive impairments, which
can lead to mild cognitive impairment (MCI) and even to dementia at later stages [10,11].
AD is the most common cause of dementia, and there are also other neurological diseases
that can significantly impair cognitive functions, such as stroke, PD, and dementia with
Lewy bodies. Various kinds of tests (for instance, the Mini-Mental State Examination
(MMSE), the Montreal Cognitive Assessment (MoCA), and Mini-Cog) are currently used to
assess cognitive impairments and screen such diseases [12,13]. However, those tests are
often not straightforward to interpret: their results are affected by education level, language,
and race/ethnicity [12,14]. Moreover, there can be ceiling or floor effects for scoring an
individual category of cognitive functions, and the summed binary or ordinal score data
are often analyzed as metric data, which might lead to statistically incorrect results [15].
Due to such issues, it is difficult for such tests to be used generally to diagnose various
diseases and to distinguish different stages of their progression (e.g., MCI from dementia).

Hopefully, VR-based tests can serve as better assessment tools for cognitive impair-
ments (Figure 2). First, VR can simulate situations that may occur in our daily lives (e.g.,
buying a list of products at the market or navigating to specific places in town) and assess
the relevant cognitive abilities (e.g., working memory, executive function, spatial naviga-
tion, spatial memory, and cognitive planning) as a VR-based cognitive test. The results of
such tasks can directly indicate whether subjects can adequately perform the specific tasks
in their lives (so that they can request support if needed). Notably, the likely situations
are shown in the 1PP through VR systems (including HMDs and sound systems), which
dramatically boosts immersion in the virtual scenario (i.e., the cognitive test) and, arguably,
makes the test results even more reliable.
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Figure 2. Cognitive assessment tools for neurological disorders will hopefully evolve from paper-
based tests into next-generation VR-based tests with advances in VR technology.

In addition, not only the mere binary results of the task (i.e., success or failure) but
also many detailed parameters, which might contain much richer information regarding
one’s cognitive functions, can be acquired during VR-based tasks. For instance, Kunz
and colleagues [16] reported navigation pattern changes (i.e., a tendency to navigate
closer to arena boundaries) during a spatial navigation memory task in a group with a
genetic risk of AD, while their spatial memory precision did not differ from the healthy
control group (arguably due to the compensatory mechanisms of intact brain regions).
Likewise, many other parameters of VR tasks (e.g., navigation distance or trial time [17])
may convey information about disease-related cognitive impairments that could be missing
from conventional tests.

Importantly, VR-based tests can provide unbiased and more objective test results than
conventional methods (especially those using traditional displays). In VR paradigms, a
virtual experimenter instead of a human instructor can give instructions, reducing any
influence or bias possibly introduced by different experimenters and improving double-
blind or multi-center experimental designs [18]. In addition, VR can fully control visual
inputs, on which human beings largely depend [19]. HMDs can mask other visual inputs to
minimize possible distractions during tests. Moreover, the size of any text or object shown
to participants can be precisely controlled by stereoscopic HMDs (whereas for traditional
displays, diverse screen sizes and the distance from the screen can critically affect those
parameters). The control of visual input will be even more critical if cognitive tests are
combined with neuroimaging since differences in visual information can significantly
affect one’s brain activity [20]. This can help standardize multi-center research or even
allow home-based tracking of patients’ cognitive abilities, which will likely promote the
neurorehabilitation of life-relevant functions through repetitions of such VR tasks [6,7].
Additionally, VR with HMDs can be used to detect decreased stereopsis in PD patients [21],
providing more standardized and controlled assessment methods.

3. Next-Generation VR Systems

More advanced VR systems combined with technologies from other fields (for instance,
robotics, neuroscience, or materials) are promising candidates for next-generation VR
paradigms that can benefit patients with neurological disorders. A recently published
study by Alberts and colleagues integrated a VR system with an omnidirectional treadmill
and implemented a VR grocery shopping task [22], which allowed them to assess patients’
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cognitive-motor functions (beyond just cognitive ones) with various detailed behavioral
parameters during the task (e.g., the occurrence of freezing of gait). This study showed
significant progress toward ideal VR-based testing. Such a paradigm can further assess the
dual-task (or multiple-task) abilities of patients [23]. It has been shown that performing
physical and cognitive tasks simultaneously (as is usually required in our daily lives)
can significantly worsen individual task performance, especially when each demands a
high level of attention. As expected, decreased postural control or gait performance has
been reported in the elderly when presented with dual-task situations (who need to pay
more attention than the young population when performing such physical tasks, as do
patients with neurological disorders) [24]. Hence, such VR-motor paradigms can more
accurately evaluate a patient’s real-life abilities. However, despite the advantages of the
VR-motor platform, the cost of the omnidirectional treadmill used in the study (Infinadeck,
starting at USD 40 K according to the manufacturer’s website) is not easily affordable
for many clinics or research institutes (and even by individuals who can benefit from
home-based VR approaches). There are also alternative omnidirectional VR treadmills with
more affordable prices (USD 1~2 K), such as KAT VR or Omni One. Thus, more studies
should follow to investigate whether those devices (which seem to target young people
playing VR games) can also be applied to elderly individuals, especially those with various
neurological conditions, in terms of usability and safety.

To develop and establish a next-generation VR-based cognitive assessment, it is first
necessary to design an appropriate VR-based task based on the real-life necessary abilities
or cognitive (or cognitive-motor) functions to be tested. Importantly, as mentioned above,
the task parameters should be standardized as much as possible through VR systems so that
the data from various studies can be integrated without problems. Then, using a VR-based
task, enough data should be collected from diverse populations with different ethnicities,
races, sexes/genders, and diseases (necessarily through international collaborations). The
collected data should be analyzed to establish appropriate methods to quantify each
category of cognitive functions. Along the way, the quantified VR task results should also
be compared with other tests currently used in clinics (e.g., the MMSE and the MoCA) to
validate their utility and whether they can replace conventional tests at some point (after a
broad consensus is formed).

Notably, there are novel VR-based neuroscience approaches that experimentally induce
hallucinations similar to psychiatric symptoms, such as out-of-body experiences [25–27].
Importantly, a recent study by Bernasconi and colleagues demonstrated that a robot-based
experimental induction of a psychiatric symptom could tell whether a PD patient was
experiencing such a symptom in one’s daily life; presence hallucinations (from which up
to 60% of PD patients suffer [28]) were more easily induced in the lab for patients with
the same symptoms [29]. Such approaches combining VR and cognitive neuroscience
can be further applied to diagnose neurological diseases with psychiatric symptoms (e.g.,
hallucinations and delusions) and to predict related prognoses.

4. The Metaverse for Patients with Neurological Disorders

We are now seeing the rise of the Metaverse (Figure 1). The term ‘Metaverse’ was first
introduced in the science fiction novel Snow Crash (1992) as an immersive virtual world that
users can access via a VR system [30]. Importantly, in the Metaverse, people can live as an
avatar (computer-generated body, which does not necessarily resemble one’s physical body)
and interact with others (i.e., avatars of other people) [31]. Thanks to the advent of the
internet and advanced VR systems, the Metaverse, which was only imagined three decades
ago, is now about to be realized. Public and research interest in it is rapidly increasing.
The Metaverse is often linked to immersive experience in virtual worlds. Accordingly,
interest in VR systems that could provide a more realistic and diverse sensory experience
than conventional devices is also growing again. Of note, the Metaverse can be especially
beneficial for patients with neurological disorders, allowing them to freely move around
and communicate with others in the virtual world, unlike in the real world. This can benefit
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not only patients’ social/mental health (as most of us experienced during the COVID-19
pandemic [32]) but also their cognitive functions [33]. However, the digital divide, which
exists now for the use of digital devices or online/internet services [34,35] and will probably
become more critical for VR devices and the Metaverse, needs to be addressed so that the
elderly and especially patients with neurological diseases do not fall behind. Such patients
likely have brain mechanisms or functions that differ from those of the healthy population.
Hence, it should be investigated whether they can access immersive VR and the Metaverse
without suffering from severe cybersickness or fatigue. Furthermore, studies on how to
prevent or ameliorate such VR-induced side effects, such as whether continued exposure to
an immersive VR experience may alleviate or exacerbate them or whether physiological
stimulation (e.g., on the vestibular system or brain) can help, should also be followed.

5. Conclusions

When VR was first introduced in the field of neurology, it was expected to open a
new stage of clinical research. However, the advantages of VR have yet to be fully utilized.
While the rapidly approaching tides of the Metaverse can benefit patients with neurological
disorders, they will, at the same time, require them to be prepared and adapted to life
in the new era, which can be even more challenging for these patients than for a healthy
population. Hopefully, this paper will facilitate many future VR studies that benefit patients,
providing better tools for assessing their cognitive impairments and enabling them to enjoy
freer and happier lives in the Metaverse.
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