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Abstract: This special issue took this opportunity to invite researchers to contribute their latest
original research findings, review articles, and short communications on advances in the state of the
art of mathematical methods, theoretical studies, or experimental studies that extend the bounds of
existing methodologies to new contributions addressing current challenges and engineering problems
on “Recent Advances in Mathematical Aspects of Engineering” to be published in Symmetry.

Keywords: fluid mechanics; optimization; energy; heat transfer; steady and unsteady flow problems;
porosity; nanofluids; particle shape effects; multiphase flow; thermodynamics; magnetohydrody-
namics; electromagnetic; physiological fluid phenomena in biological systems; peristaltic; blood flow

1. Introduction

In response to a call for papers, a total of 25 papers were submitted for possible
publication. After a comprehensive peer review, only 9 papers qualified for acceptance for
final publication; the rest 16 papers could not be accommodated. The submissions may have
been technically correct but were not considered appropriate for the scope of this special
issue. The authors are from 12 geographically distributed countries: the U.S., Mexico,
China, Jordan, Saudi Arabia, Pakistan, Malaysia, Vietnam, Taiwan, Thailand, Egypt, and
India. This reflects the great impact of the proposed topic and the effective organization of
the guest editorial team of this Special Issue. Several theoretical and experimental attempts
have been devoted, and this Special Issue is one of them. We hope that this issue will not
only address the current challenges but also provide an overall picture and up-to-date
findings to readers of the scientific community that ultimately benefits the industrial sector
regarding its specific market niches and end users.

2. Methodologies and Usages

The peristaltic flow of a Johnson–Segalman fluid in a symmetric curved channel with
convective conditions and flexible walls is addressed in [1]. The channel walls are consid-
ered compliant. The main objective of this article is to discuss the effects of a curvilinear
channel and heat/mass convection through boundary conditions. The constitutive equa-
tions for the Johnson–Segalman fluid are modeled and analyzed under the lubrication
approach. The stream function, temperature, and concentration profiles are derived. The
analytical solutions are obtained by using the regular perturbation method for a signifi-
cant number, named the Weissenberg number. The influence of the parameter values on
the physical level of interest is outlined and discussed. A comparison is made between
Johnson–Segalman and Newtonian fluids. It is concluded that the axial velocity of a
Johnson–Segalman fluid is substantially higher than that of a Newtonian fluid.

Symmetry 2021, 13, 811. https://doi.org/10.3390/sym13050811 https://www.mdpi.com/journal/symmetry1
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Bhatti et al. [2] deal with the mass transport phenomena on particle fluid motion
through an annulus. A non-Newtonian fluid propagates through a ciliated annulus in
the presence of two phenomenon, namely (i) endoscopy and (ii) blood clot. The outer
tube is ciliated. To examine the flow behavior, the authors consider the bi-viscosity fluid
model. Mathematical modeling is formulated for a small Reynolds number to examine the
inertia-free flow. The purpose of this assumption is that the wavelength-to-diameter ratio is
maximal, and the pressure can be considerably uniform throughout the entire cross section.
The resulting equations are analytically solved, and exact solutions are given for particle-
and fluid-phase profiles. The computational software Mathematica is used to evaluate
both closed-form and numerical results. The graphical behavior across each parameter is
discussed in detail and presented with graphs. The trapping mechanism is also shown
across each parameter. It is noted clearly that the particle volume fraction and the blood
clot reveal converse behavior on fluid velocity; however, the velocity of the fluid reduces
significantly when the fluid behaves as a Newtonian fluid. Schmidt and Soret numbers
enhance the concentration mechanism. Furthermore, more pressure is required to pass the
fluid when the blood clot appears.

In [3], the problem of finite-time control for nonlinear systems with time-varying
delay and exogenous disturbance is studied. First, by constructing a novel augmented
Lyapunov–Krasovskii functional involving several symmetric positive definite matrices, a
new delay-dependent finite-time boundedness criterion is established for the considered
T-S fuzzy time-delay system by employing an improved reciprocally convex combination
inequality. Then, a memory state feedback controller is designed to guarantee the finite-
time boundness of the closed-loop T-S fuzzy time-delay system, which is in the framework
of linear matrix inequalities (LMIs). Finally, the effectiveness and merits of the proposed
results are shown by a numerical example.

The maldistribution of fluid flow through multi-channels is a critical issue encoun-
tered in many areas, such as multi-channel heat exchangers, electronic device cooling,
refrigeration and cryogenic devices, air separation, and the petrochemical industry. The
uniformity of flow distribution in a printed circuit heat exchanger (PCHE) is investigated
in [4]. The flow distribution and resistance characteristics of a PCHE plate are studied with
numerical models under different flow distribution cases. The results show that a sudden
change in the angle of the fluid at the inlet of the channel can be greatly reduced by using a
spreader plate with an equal inner and outer radius. The flow separation of the fluid at
the inlet of the channel can also be weakened, and the imbalance of flow distribution in
the channel can be reduced. Therefore, flow uniformity can be improved and the pressure
loss between the inlet and outlet of PCHEs can be reduced. The flow maldistribution in
each PCHE channel can be reduced to ±0.2%, and the average flow maldistribution in all
PCHE channels can be reduced to less than 5% when the number of manifolds reaches nine.
The numerical simulation of fluid flow distribution can provide guidance for subsequent
research and the design and development of multi-channel heat exchangers. In summary,
the symmetry of fluid flow in multi-channels for a PCHE is analyzed in this work. This
work presents the frequently encountered problem of maldistribution of fluid flow in
engineering, and the performance promotion leads to symmetrical aspects in both the
structure and the physical process.

The entropy generation on the asymmetric peristaltic propulsion of a non-Newtonian
fluid with convective boundary conditions is presented in [5]. The Williamson fluid model
is considered for the analysis of flow properties. The current fluid model has the ability
to reveal Newtonian and non-Newtonian behavior. The present model is formulated via
momentum, entropy, and energy equations, under the approximation of a small Reynolds
number and a long wavelength of the peristaltic wave. A regular perturbation scheme is
employed to obtain the series solutions up to third-order approximation. All the leading
parameters are discussed with the help of graphs for entropy and temperature profiles.
The irreversibility process is also discussed with the help of a Bejan number. Streamlines
are plotted to examine the trapping phenomena. Results obtained provide an excellent
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benchmark for further study of the entropy production with mass transfer and a peristaltic
pumping mechanism.

In [6], the author examines the unsteady flow over a rotating stretchable disk with de-
celeration. The highly nonlinear partial differential equations of viscous fluid are simplified
by existing similarity transformation. Reduced nonlinear ordinary differential equations
are solved by the homotopy analysis method (HAM). The convergence of HAM solutions
is also obtained. A comparison table between analytical solutions and numerical solutions
is also presented. Finally, the results for useful parameters, i.e., disk stretching parameters
and unsteadiness parameters, are found.

The aim of [7] is to examine the rheological significance of a Maxwell fluid configured
between two isothermal stretching disks. The energy equation is extended by evaluating
the heat source and sink features. The governing partial differential equations (PDEs) are
converted to ordinary differential equations (ODEs) by using appropriate variables. An
analytically based technique is adopted to compute the series solution of the dimensionless
flow problem. The convergence of this series solution is carefully ensured. The physical in-
terpretation of important physical parameters like the Hartmann number, Prandtl number,
Archimedes number, Eckert number, heat source/sink parameter, and activation energy
parameter are presented for velocity, pressure, and temperature profiles. The numerical
values of different involved parameters for the skin friction coefficient and the local Nusselt
number are expressed in tabular and graphical form. Moreover, the significance of an
important parameter, namely Frank–Kamenetskii, is presented in both tabular and graph-
ical form. This particular study reveals that both axial and radial velocity components
decrease by increasing the Frank–Kamenetskii number and stretching the ratio parameter.
The pressure distribution is enhanced with an increasing Frank–Kamenetskii number and
a stretching ratio parameter. It is also observed that the temperature distribution increases
with an increasing Hartmann number, Eckert number, and Archimedes number.

The key objective of the study reported in [8] is to probe the impacts of Brownian
motion and thermophoresis diffusion on Casson nanofluid boundary layer flow over a
nonlinear inclined stretching sheet, with the effect of convective boundaries and thermal
radiations. Nonlinear ordinary differential equations are obtained from governing non-
linear partial differential equations by using compatible similarity transformations. The
quantities associated with engineering aspects, such as skin friction, Sherwood number,
and heat exchange, along with various impacts of material factors on the momentum,
temperature, and concentration, are elucidated and clarified with diagrams. The numerical
solution of the present study is obtained via the Keller-box technique and in limiting sense
is reduced to the published results for accuracy purpose.

The effects of magnetohydrodynamic 3D nanofluid flow due to a rotating disk subject
to Arrhenius activation energy and heat generation/absorption is examined in [9]. Flow is
created due to a rotating disk. Velocity, temperature, and concentration slips at the surface
of the rotating disk are considered. Effects of thermophoresis and Brownian motion are
also accounted. The nonlinear expressions are deduced by the transformation procedure.
The shooting technique is used to construct the numerical solution of the governing system.
Plots are organized just to investigate how yjr velocity, temperature, and concentration
are influenced by various emerging flow parameters. Skin-friction local Nusselt and
Sherwood numbers are also plotted and analyzed. In addition, a symmetry is noticed for
both components of velocity when the Hartman number increases.

3. Future Trends in Fluid Mechanics

The material that advances the state-of-the-art experimental, numerical, and the-
oretical methodologies or extends the bounds of existing methodologies through new
contributions in symmetry is still insufficient, even with the completion of this Special
Issue. The rheological characteristics with thin films under the influence of different
nanoparticles and shapes can help with the development of better applications in industry.
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Abstract: The peristaltic flow of Johnson–Segalman fluid in a symmetric curved channel with
convective conditions and flexible walls is addressed in this article. The channel walls are considered
to be compliant. The main objective of this article is to discuss the effects of curvilinear of the
channel and heat/mass convection through boundary conditions. The constitutive equations for
Johnson–Segalman fluid are modeled and analyzed under lubrication approach. The stream function,
temperature, and concentration profiles are derived. The analytical solutions are obtained by using
regular perturbation method for significant number, named as Weissenberg number. The influence
of the parameter values on the physical level of interest is outlined and discussed. Comparison is
made between Jhonson-Segalman and Newtonian fluid. It is concluded that the axial velocity of
Jhonson-Segalman fluid is substantially higher than that of Newtonian fluid.

Keywords: symmetric curved channel; Johnson-Segalman fluid; convective conditions; compliant walls

1. Introduction

The researchers have great interest in peristaltic transport of fluids due to immense applications
in physiology, biomedical engineering andnindustry. Such motion is caused by a wave of expansion
and contraction that propagates along the channel walls. Peristalsis includes the passage of urine
from kidney to bladder, swallowing of food through oesophagus, the movement of chyme in the
gastrointestinal tract, the vasomotion of small blood vessels, and many others. Blood pumps in the
dialysis and heart lung machine operate on the principle of peristaltic action. The roller and finger
pumps also operate according to this mechanism. In the nuclear industry, toxic materials can be moved
through such a system in order to avoid contaminants from the outside area. Pioneering researches on
the topic are presented by Latham [1], Shapiro et al. [2], and Yin and Fung [3]. Currently, abundant
literature exists on peristaltic flows of viscous and non-Newtonian fluids under different aspects
(see [4–19] and several studies there in). Amongst the several models of non-Newtonian material
there is one fluid model that can describe the “spurt” phenomenon. It is subclass of integral type
non-Newtonian material and is known as the Johnson–Segalman (JS) fluid. The phrase “spurt” is
being used to characterize a significant volume rise to a slight rise in the moving pressure gradient.
The contributions of Hayat et al. [20–22] are fundamental in this direction. Elshahed and Haroun [23]
investigated the peristaltically moving Johnson–Segalman fluid together with the impact of the
magnetism. Wang et al. [24] explored the peristalsis of the Johnson–Segalman fluid across a non-rigid
tube. In reality, the configuration of the most physiological tubes and glandular ducts is curved.

Symmetry 2020, 12, 1475; doi:10.3390/sym12091475 www.mdpi.com/journal/symmetry
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In this context, the effect of curvature appears to be meaningful. This fact gives great motivation
to study peristaltic flow through curved channels. In the first place, Sato et al. [25] addressed the
two-dimensional peristaltic transport of viscous liquid inside a curved channel. Ali et al. [26] revisited
the analysis of Sato et al. [25] in a wave frame. Some more interesting studies for peristalsis in a curved
channel can be consulted through [27–31].

The effect of heat transfer has vast applications in food processing, dilation of blood vessels,
heat conduction in tissues, and its convection due to blood flow from the pores of the tissues.
The impact of both heat and mass transfer plays an essential part in spreading of chemical pollutants in
saturated soil, underground disposal of nuclear waste, thermal insulation, enhanced oil recovery, etc.
The effects of mass transfer arose in diffusion, combustion, and distillation processes, and in
many other industrial processes. Convective heat transfer through boundary conditions is used
in systems, such as steam turbines, nuclear power stations, thermal energy storage, etc. In this context,
Hina and Hayat [32] examined the effects of heat/mass transfer on Johnson-Segalman liquid inducing
peristaltic movement in a compliant curved channel. Mehmood et al. [33], Hayat et al. [34] and
Riaz et al. [35] analyzed the characteristics of heat flux in peristaltic transport with/without compliant
walls. Hayat et al. [36–39] conducted an analysis of non-Newtonian fluids with peristalsis in the
presence of convective constraints. Yasmin et al. [40] discussed the effects of convective conditions in
peristalsis of Johnson–Segalman fluid in an asymmetric channel.

It is noted that the peristalsis of non-Newtonian fluid in a curved channel with convective mass
transfer conditions at the walls is not addressed so far. Even such analysis is not carried out for
viscous fluids. The current research paper varies from the existing results in terms of convective
boundary conditions. The key focus of this paper is the implementation of a novel definition of
convective heat and mass transfer conditions in the theory of Johnson–Segalman fluid transferred via
a peristaltic motion across a curved channel. Hence, in this attempt, the convective conditions for
both heat and mass transfer are considered. An incompressible Johnson–Segalman fluid is considered
in a curved channel. The set of solutions for the small value of Weissenberg number are developed.
The obtained results are visualized and thoroughly analyzed. Impacts reflecting the influence of
pertinent parameters are pointed out physically.

2. Problem Formulation

We anticipate the peristaltic transport of the incompressible Johnson–Segalman fluid in a
symmetric curved half-width (d1) channel clasped in a circular pattern with center O and radius
R∗ (see Figure 1 and Ref. [32]).

Figure 1. Schematic diagram of the problem.

The flow in the channel is stimulated by small amplitude sinusoidal waves that travel along the
compliant walls. The axial direction of the flow is x and r is radial direction. Here, v and u are the
velocity vector components in the radial and axial directions, respectively. The wave shapes at channel
walls are considered symmetric and given by

6
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r = ±η(x, t) = ±
[

d1 + a sin
(

2 π

λ
(x − c t)

)]
, (1)

where c is the wave speed and λ is the wavelength, respectively.
The continuity and momentum equations governing the flow can be written as [32]:

∂[(r + R∗)v]
∂r

+ R∗ ∂u
∂x

= 0, (2)

ρ

(
∂v
∂t

+ v
∂v
∂r

+
R∗u

r + R∗
∂v
∂x

− u2

r + R∗

)
= − ∂p

∂r
+

1
r + R∗

∂

∂r
[(r + R∗)τrr] +

R∗
r + R∗

∂τxr

∂x
− τxx

r + R∗ , (3)

ρ

(
∂u
∂t

+ v
∂u
∂r

+
R∗u

r + R∗
∂u
∂x

+
uv

r + R∗

)
= − R∗

r + R∗
∂p
∂x

+
1

(r + R∗)2
∂

∂r
[(r + R∗)2τrx] +

R∗
r + R∗

∂τxx

∂x
. (4)

The equations for energy and concentration [32] are given by

ρCp

(
∂T
∂t

+ v
∂T
∂r

+
R∗u

r + R∗
∂T
∂x

)
= κ

(
∂2T
∂x2

(
R∗

r + R∗

)2
+

1
r + R∗

∂T
∂r

+
∂2T
∂r2

)
+ (Srr − Sxx)

∂v
∂r

+Sxr

(
∂u
∂r

+
R∗

r + R∗
∂v
∂x

− u
r + R∗

)
, (5)

∂C
∂t

+ v
∂C
∂r

+
R∗u

r + R∗
∂C
∂x

= D

(
∂2C
∂x2

(
R∗

r + R∗

)2
+

1
r + R∗

∂C
∂r

+
∂2C
∂r2

)

+
DKT
Tm

(
∂2T
∂r2 +

1
r + R∗

∂T
∂r

+

(
R∗

r + R∗

)2 ∂2T
∂x2

)
. (6)

For the Johnson-Segalman fluid, the stress tensor ø is

ø = 2μD + S,

in which the extra stress tensor S needs to satisfy the relationship

S + m
(

dS

dt
+ S(W − ξD) + (W − ξD)TS

)
= 2η1D,

where

D =
[(gradV)T + gradV]

2
,

W =
[gradV−(gradV)T ]

2
.

The relations listed above produce the following equations:

Srr + m
[

dSrr

dt
− 2uSrx

r + R∗ + Srx

{
(1 − ξ)

∂u
∂r

− 1 + ξ

r + R∗ [R
∗ ∂v

∂x
− u]

}
− 2ξSrr

∂v
∂r

]
= 2η1

∂v
∂r

, (7)

Srx + m
dSrx

dt
+

mu(Srr − Sxx)

r + R∗ +
mSxx

2

{
(1 − ξ)

∂u
∂r

− 1 + ξ

r + R∗

[
R∗ ∂v

∂x
− u

]}

+
mSrr

2

{
1 − ξ

r + R∗

[
R∗ ∂v

∂x
− u

]
− (1 + ξ)

∂u
∂r

}

= η1

(
∂u
∂r

+
R∗

r + R∗
∂v
∂x

− u
r + R∗

)
, (8)

7
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Sxx + m
[

dSxx

dt
+

2uSrx

r + R∗ − Srx

{
(1 + ξ)

∂u
∂r

− 1 − ξ

r + R∗

[
R∗ ∂v

∂x
− u

]}
+ 2ξSxx

∂v
∂r

]
= −2η1

∂v
∂r

, (9)

where d
dt =

∂
∂t + v ∂

∂r +
R∗u

r+R∗ ∂
∂x represents the material derivative with respect to time, ρ denotes the

fluid density, κ the thermal conductivity of fluid, W and D skew-symmetric and symmetrical parts of
the gradient of velocity, ξ the slip parameter, Cp the fluid specific heat, T and C are the fluid temperature
and concentration, respectively, the thermal diffusion ratio is KT , D the mass diffusivity coefficient,
Tm represents the mean/average temperature, μ and η1 the viscosities, and m the relaxation time.

The appropriate boundary conditions are

u = 0 at r = ±η, (10)

k
∂T
∂r

= −h1(T − T0) at r = +η, (11)

k
∂T
∂r

= −h2(T0 − T) at r = −η, (12)

D
∂C
∂r

= −h3(C − C0) at r = +η, (13)

D
∂C
∂r

= −h4(C0 − C) at r = −η, (14)

R∗[−τ
∂3

∂x3 + m1
∂3

∂x∂t2 + d
∂2

∂t∂x
]η =

1
r + R∗

∂

∂r
{(r + R∗)2τrx}+ R∗ ∂τxx

∂x
− ρ(r + R∗)[

∂u
∂t

+ v
∂u
∂r

+
R∗u

r + R∗
∂u
∂x

+
uv

r + R∗

]
at r = ±η. (15)

Here, the pressure, the time, the fluid density, and the curvature parameters are p, t, ρ, and R∗,
respectively, T0 and C0 the ambient temperature and concentration, h1 and h2 the coefficients of heat
transfer at upper and lower walls, h3 and h4 the coefficients of mass transfer at upper and lower walls,
Srr, Srx, Sxr and Sxx the components of the extra stress tensor S, τ the elastic tension, d the viscous
damping coefficient, and m1 the mass per unit area. Equation (10) is the no slip condition for velocity
profile. Equations (11) and (12) are the convective boundary conditions for heat transfer. Analogues to
the convective heat transfer at the boundary, we also use the mixed condition for the mass transfer as
well (i.e., Equations (13) and (14)).

Employing the aforementioned dimensionless variables

x∗ =
x
λ

, r∗ = r
d1

, u∗ = u
c

, v∗ = v
c

, Ψ∗ = Ψ
cd1

, t∗ = ct
λ

,

η∗ =
η

d1
, k =

R∗

d1
, p∗ =

d2
1 p

cλ(μ + η1)
, ε =

a
d

,δ =
d1

λ
,

θ =
T − T0

T0
, φ =

C − C0

C0
, S∗

ij =
d1Sij

cη1
, We =

mc
d1

,

Equations (7)–(9) become

2
∂v
∂r

= Srr + We
[(

δ
∂

∂t
+ v

∂

∂r
+

ukδ

r + k
∂

∂x

)
Srr − 2uSrx

r + k
− 2ξSrr

∂v
∂r

]

+WeSrx

{
(1 − ξ)

∂u
∂r

− 1 + ξ

r + k

(
kδ

∂v
∂x

− u
)}

, (16)

8
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(
∂u
∂r

+
kδ

r + k
∂v
∂x

− u
r + k

)
= Srx + We

[(
δ

∂

∂t
+ v

∂

∂r
+

ukδ

r + k
∂

∂x

)
Srx +

u(Srr − Sxx)

r + k

]

+
WeSrr

2

{
1 − ξ

r + k

[
kδ

∂v
∂x

− u
]}

− (1 + ξ)
∂u
∂r

+
WeSxx

2

{
(1 − ξ)

∂u
∂r

− 1 + ξ

r + k

[
kδ

∂v
∂x

− u
]}

, (17)

−2
∂v
∂r

= Sxx + We
[(

δ
∂

∂t
+ v

∂

∂r
+

ukδ

r + k
∂

∂x

)
Sxx +

2uSrx

r + k
− 2ξSxx

∂v
∂r

]

+WeSrx

{
1 − ξ

r + k

(
kδ

∂v
∂x

− u
)
− (1 + ξ)

∂u
∂r

}
, (18)

and Equations (4)–(6) are reduced to

Re δ

[
δ

∂v
∂t

+ v
∂v
∂r

+
∂v
∂x

kδu
r + k

− u2

r + k

]
= − η1 + μ

η1

∂p
∂r

+
4δμ

η1(r + k)
∂v
∂r

+
kδ3

r + k
∂Srx

∂x
+ δ

∂Srr

∂r

+
δ(Srr − Sxx)

r + k
+

δμ

η1

∂2v
∂r2 +

δ2kμ

η1(r + k)

× ∂

∂x

(
∂u
∂r

+
kδ

r + k
∂v
∂x

− u
r + k

)
, (19)

Re
[

δ
∂u
∂t

+ v
∂u
∂r

+
kδu

r + k
∂u
∂x

− uv
r + k

]
= − η1 + μ

η1(r + k)
∂p
∂x

+
2Srx

r + k
+

∂Srx

∂r
+

kδ

r + k
∂Sxx

∂x

− 2kδμ

(r + k) η1
× ∂2v

∂r∂x
+

μ

η1

∂

∂x

(
∂u
∂r

+
kδ

r + k
∂v
∂x

− u
r + k

)

+
δμ

η1

∂2v
∂r2 +

δ2kμ

η1(r + k)
× ∂

∂r

(
∂u
∂r

+
kδ

r + k
∂v
∂x

− u
r + k

)

+
2μ

η1(r + k)

(
∂u
∂r

+
∂v
∂x

kδ

r + k
− u

r + k

)
, (20)

Re
[

δ
∂θ

∂t
+ v

∂θ

∂r
+

∂θ

∂x
kδu

r + k

]
= E

[
Sxr

(
∂u
∂r

+
kδ

r + k
∂v
∂x

− u
r + k

)
+ (Srr − Sxx)

∂v
∂r

]

+
1
Pr

[
∂2θ

∂r2 +
1

r + k
∂θ

∂r
+ δ2 ∂2θ

∂x2

]
, (21)

Re
[

δ
∂φ

∂t
+ v

∂φ

∂r
+

kδu
r + k

∂φ

∂x

]
=

1
Sc

[
∂2φ

∂r2 +
1

r + k
∂φ

∂r
+ δ2 ∂2φ

∂x2

]

+Sr
[

∂2θ

∂r2 +
1

r + k
∂θ

∂r
+ δ2 ∂2θ

∂x2

]
, (22)

with
u = 0 at r = ±η, (23)

∂θ

∂r
+ Bi1θ = 0 at r = +η, (24)

∂θ

∂r
− Bi2θ = 0 at r = −η, (25)

∂ϕ

∂r
+ Bi3φ = 0 at r = +η, (26)

∂ϕ

∂r
− Bi4φ = 0 at r = −η, (27)

9
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k[E1
∂3

∂x3 + E2
∂3

∂x∂t2 + E3
∂2

∂t∂x
]η =

η1(r + k)
η1 + μ

[
∂

∂r

(
∂u
∂r

+
kδ

r + k
∂v
∂x

− u
r + k

)
− 2kδ

(r + k)
∂2v

∂r∂x

]

−Reμ(r + k)
η1+μ

[
δ

∂u
∂t

+ v
∂u
∂r

+
kδu

r + k
∂u
∂x

+
uv

r + k

]

+
η1(r + k)

η1 + μ

[
∂Srx

∂r
+

∂Srx

∂x
kδ

r + k
+

2Srx

r + k

]
+

2μ

(η1 + μ)

(
∂u
∂r

+
∂v
∂x

kδ

r + k
− u

r + k

)
at r ± η. (28)

Defining the stream function ψ(x, r, t) by

u = −∂ψ

∂r
, v = δ

k
r + k

∂ψ

∂x
, (29)

Equation (2) is automatically satisfied and Equations (16)–(28) subject to lubrication approach become

0 = Srr + WeSrx

[
− (1 − ξ)ψrr − 1 + ξ

r + k
ψr +

2ψr

r + k

]
, (30)

(
−ψrr +

ψr

r + k

)
= Srx − We

ψr(Srr − Sxx)

r + k

+
WeSrr

2

{
1 − ξ

r + k
ψr + (1 + ξ)ψrr

}

−WeSxx

2

{
1 + ξ

r + k
ψr + (1 − ξ)ψrr

}
, (31)

0 = Sxx + WeSrx

[
(1 + ξ)ψrr +

1 − ξ

r + k
ψr − 2ψr

r + k

]
, (32)

∂p
∂r

= 0, (33)

− k(η1 + μ)

η1 (r + k)
∂p
∂x

+
∂Srx

∂r
+

2Srx

r + k
+

μ

η1

∂

∂r

(
−ψrr +

ψr

r + k

)
+

2μ

η1 (r + k)

(
−ψrr +

ψr

r + k

)
= 0, (34)

[
∂2

∂r2 +
1

k + r
∂

∂r

]
θ = −Br

[
Srx

(
−ψrr +

ψr

k + r

)]
, (35)

[
∂2

∂r2 +
1

k + r
∂

∂r

]
φ = −ScSr

[
∂2

∂r2 +
1

k + r
∂

∂r

]
θ, (36)

ψr = 0 atr = ±η = ± [1 + ε sin 2π(x − t)] , (37)

∂θ

∂r
+ Bi1θ = 0 at r = +η, (38)

∂θ

∂r
− Bi2θ = 0 at r = −η, (39)

∂ϕ

∂r
+ Bi3φ = 0 at r = +η, (40)

∂ϕ

∂r
− Bi4φ = 0 at r = −η, (41)

k
[

E1
∂3

∂x3 + E2
∂3

∂x∂t2 + E3
∂2

∂x∂t

]
η =

η1(r + k)
η1 + μ

[
μ

η1

∂

∂r

(
−ψrr +

ψr

k + r

)]
+

∂Srx

∂r
+

2Srx

r + k

+
2μ

η1 + μ

(
−ψrr +

ψr

r + k

)
at r = ±η, (42)

10
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where the amplitude ratio is represented by ε(= a/d1), δ(= d1/λ) is the wave number,

the dimensionless curvature parameter is k, E1 = − τd3
1

λ3η1c , E2 =
m1cd3

1
λ3η1c , E3 =

dd3
1

λ2η1
the non-dimensional

elasticity parameters, Re = cρd1
η1λ2 the Reynolds number, We = mc/d1 the Weissenberg number,

the Prandtl number is denoted by Pr = μCp/κ, the Eckert number is E = c2/CpT0, the Schmidt
numbers is Sc = μ/ρD, the Soret number is Sr(= ρT0DKT/μTmC0), EPr = Br is the Brinkman
number, and Bi1 = h1d/k, Bi2 = h2d/k, Bi3 = h3d/D and Bi4 = h4d/D the Biot numbers for
heat/mass transfer.

From Equations (30)–(32), one can get

Srx =

(
−ψrr +

ψr

r + k

)[
1 + We2

(
1 − ξ2

)(
−ψrr +

ψr

r + k

)2
]−1

. (43)

Additionally, Equations (33) and (34) give

(r + k)
∂2Srx

∂r2 + 3
∂Srx

∂r
+

(k + r)μ
η1

∂2

∂r2

(
−ψrr +

ψr

r + k

)
+

3μ

η1

∂

∂r

(
−ψrr +

ψr

k + r

)
= 0. (44)

Heat transfer coefficient at the wall is defined by

Z = ηxθy(η). (45)

3. Method of Solution

We have used the standard perturbation approach relying on a small parameter to solve the
strictly nonlinear differential equations, because the exact solution is not achievable. This approach
is helpful in finding an approximate solution to the problem, beginning with an exact solution to a
similar and simplified problem. This approach is more efficient, as it provides a solution in the form
of a converging series. In order to find the series solution of the problem, we expand ψ, p and Srx in
terms of small parameter We2. Therefore, we can write the flow quantities, as follows:

ψ = ψ0 + We2ψ1 + ..., (46)

Srx = S0rx + We2S1rx + ..., (47)

Srr = S0rr + We2S1rr + ..., (48)

Sxx = S0xx + We2S1xx + ..., (49)

θ = θ0 + We2θ1 + ..., (50)

φ = φ0 + We2φ1 + ..., (51)

Z = Z0 + We2Z1 + .... (52)

4. Results

4.1. Zeroth Order System

Using Equations (46)–(52) into Equations (35)–(45) and then equating the coefficients of We0

we have

(k + r)
∂2

∂r2

(
−ψ0rr +

ψ0r

k + r

)
+ 3

∂

∂r

(
−ψ0rr +

ψ0r

k + r

)
= 0, (53)

[
∂2

∂r2 +
1

k + r
∂

∂r

]
θ0 = −Br

[
S0rx

(
−ψ0rr +

ψ0r

k + r

)]
, (54)

[
∂2

∂r2 +
1

k + r
∂

∂r

]
φ0 = −ScSr

[
∂2

∂r2 +
1

k + r
∂

∂r

]
θ0 (55)

11
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ψ0r = 0, at r = ±η, (56)

∂θ0

∂r
+ Bi1θ0 = 0 at r = +η, (57)

∂θ0

∂r
− Bi2θ0 = 0 at r = −η, (58)

∂ϕ0

∂r
+ Bi3φ0 = 0 at r = +η, (59)

∂ϕ0

∂r
− Bi4φ0 = 0 at r = −η, (60)

k
[

E1
∂3η

∂x3 + E2
∂3η

∂x∂t2 + E3
∂2η

∂x∂t

]
= (r + k)

∂

∂r

(
−ψ0rr +

ψ0r
k + r

)
+ 2

(
−ψ0rr +

ψ0r
k + r

)
, at r = ±η, (61)

where

S0rx =

(
−ψ0rr +

ψ0r

r + k

)
.

Solving Equations (53)–(55), we get

ψ0 = C1 + C2 ln(r + k) + C3(r + k)2 + C4(r + k)2 ln(r + k), (62)

θ0 = A1 + A2 ln(r + k) + 4BrC2C4(ln(r + k))2 − Br

(
C4(r + k)2 +

C2
2

(r + k)2

)
, (63)

φ0 = B1 ln(r + k) + B2 +
BrC2

2ScSr
(k + r)2 + BrC2

4(k + r)2ScSr − 4BrC2C4ScSr(ln(r + k))2, (64)

and heat transfer coefficient is given by

Z0 = ηx

(
A2

k + η
+ Br

(
2C2

2

(k + η)3 − 2C2
4 (k + η)

)
+

8BrC2C4 ln(k + η)

k + η

)
, (65)

where
C1 = 0,

C2 = −L(k2 − η2)2(ln(k + η)− ln(k − η)),

C3 =
L(2kη + (k + η)2 ln(k + η)− (k − η)2 ln(k − η))

16kη
,

C4 = − L
4

,

A1 =
BrM1(M10 + M5 − M7 − C2

4 M9)− BrM(M4 + M6 + C2
4 M8 − M11)

M3
,

A2 =
Bi1BrM12 + BrM13 + M14 − 8BrC2C4 ln(k+η)

k+η − 4Bi1BrC2C4 ln(k + η)2

M
,

B1 =
BrScSr(2Bi4Y1 + 4C2C4(Y2 − Y4 + Y5) + 2Bi3(C2

2Y3 + C2
4(η − k(1 + 2Bi4η))))

Y
,

B2 =
BrScSr(M5 + Y9 +

2C2
2

(k+η)3 − Bi3C2
2

(k+η)2 − 2C2
4 (k + η)− Bi3C2

4 (k + η))

Bi3
.

12
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4.2. First Order System

The coefficients of O(We2) form the following expressions:

0 = (r + k)
∂2

∂r2

[(
−ψ1rr +

ψ1r
r + k

)
−

(
1 − ξ2) η1

(η1 + μ)

(
−ψ0rr +

ψ0r

r + k

)3
]

+3
∂

∂r

[(
−ψ1rr +

ψ1r
r + k

)
−

(
1 − ξ2) η1

(η1 + μ)

(
−ψ0rr +

ψ0r

r + k

)3
]

, (66)

[
∂2

∂r2 +
1

k + r
∂

∂r

]
θ1 = −Br

[
S1rx

(
−ψ0rr +

ψ0r

k + r

)
+ S0rx

(
−ψ1rr +

ψ1r
k + r

)]
, (67)

[
∂2

∂r2 +
1

k + r
∂

∂r

]
φ1 = −ScSr

[
∂2

∂r2 +
1

k + r
∂

∂r

]
θ1, (68)

ψ1r = 0, at r = ±η, (69)

∂θ1

∂r
+ Bi1θ1 = 0, at r = +η, (70)

∂θ1

∂r
− Bi2θ1 = 0, at r = −η, (71)

∂φ1

∂r
+ Bi3φ1 = 0, at r = +η, (72)

∂φ1

∂r
− Bi4φ1 = 0, at r = −η, (73)

0 = (r + k)
∂

∂r

[(
−ψ1rr +

ψ1r
r + k

)
−

(
1 − ξ2) η1

(η1 + μ)

(
−ψ0rr +

ψ0r

r + k

)3
]

+2

[(
−ψ1rr +

ψ1r
r + k

)
−

(
1 − ξ2) η1

(η1 + μ)

(
−ψ0rr +

ψ0r

r + k

)3
]

, at r = ±η, (74)

with

S1rx =

(
−ψ1rr +

ψ1r
r + k

)
−

(
1 − ξ2

)(
−ψ0rr +

ψ0r

r + k

)3
. (75)

The results corresponding to the first order are

13
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ψ1 = 1/3(k + r)4(η1 + μ)[C3
2η1(−1 + ξ2)]− 1/(k + r)2(η1 + μ)[3C2

2C4η1(−1 + ξ2)]

+krC12 + 1/2r2C12 − 1/4(k + r)2C13

+C14 + C11 log(k + r) + 1/2[(k + r)2C13 log(k + r)], (76)

θ1 = 1/9(k + r)6(η1 + μ)[4BrC4
2(η1 − μ)(−1 + ξ2)]

−1/(k + r)4(η1 + μ)[4BrC3
2C4(η1 − μ)(−1 + ξ2)]

−BrC4(k + r)2(C13 + 4C3
4(−1 + ξ2))

−1/(k + r)2(η1 + μ)[2BrC2(C11(η1 + μ) + 12C2
4C2μ(−1 + ξ2))]

+A12 + A11 log(k + r)

+2Br(C13C2 + 2C4(C11 + 8C2C2
4(−1 + ξ2))) log(k + r)2, (77)

φ1 = −1/9(k + r)6(η1 + μ)[4BrC4
2ScSr(η1 − μ)(−1 + ξ2)]

+1/(k + r)4(η1 + μ)[4BrC3
2C4ScSr(η1 − μ)(−1 + ξ2)]

+BrC4(k + r)ScSr(C13 + 4C3
4(−1 + ξ2))

+1/(k + r)2(η1 + μ)[2BrC2ScSr(C11(η1 + μ) + 12C2
4C2μ(−1 + ξ2))]

+B12 + B11 log(k + r)

−2BrScSr(C13C2 + 2C4(C11 + 8C2C2
4(−1 + ξ2))) log(k + r)2, (78)

Z1 = ηx(
A11

k + η
− Br

(
2C2

2

(k + η)3 − 2C2
4 (k + η)

)
+

8BrC4
2 (η1 − μ) (ξ2 − 1)

3 (k + η)7 (η1 + μ)

+
16BrC3

2C4 (η1 − μ) (ξ2 − 1)

3 (k + η)5 (η1 + μ)
− 2BrC4 (k + η)

(
C13 + 4C3

4(ξ
2 − 1)

)

+
4BrC2(C11 (η1 + μ) + 12C2C2

4μ(ξ2 − 1))

(k + η)3 (η1 + μ)

+
4Br(C13C2 + 2C4

(
C11 + 8C2C2

4(ξ
2 − 1)) ln(k + η)

)
k + η

, (79)

in which

C11 =
L2(L1 + 2C2

2(−9C4(k2 − η2)2(k2 + η2) + C2(3k2 + η2)(k2 + 3η2)))

(k − η)4 (k + η)4 ,

C12 =
L2(L3 + C2(9C4(k2 − η2)2 − 4C2(k2 + η2)))

(k2 − η2)4 ,

C13 = −4L2C3
4,

C14 = 0,

A11 =
(−Br(Bi2(N1 − N2

(k+η)7(η1+μ)
) + Bi1(

N3
(k−η)7(η1+μ)

− N4)))

9N
,

A12 =

Br(N5 + N6 + N7 − N8 − N9 +
M(Bi1(

N3
(k−η)7(η1+μ)

−N4)+(Bi2(N1− N2
(k+η)7(η1+μ)

))

N − N9

−18Bi1(C13C2 + 2C4(C11 + 8C2C2
4(−1 + ξ2))) ln(k + η)2)

9Bi1
,

B11 =
−BrScSr(Bi3(Z2 − Z1

(k−η)7(η1+μ)
) + Bi4( Z

(k+η)7(η1+μ)
− Z3))

9Y
,

B12 =
BrScSr(N7 + N8 + N9 + Z4 − Z5 + Z6 − Z7 − 36Bi3C3

2C4(η1−μ)(−1+ξ2)

(k+η)4(η1+μ)
+ Z8)

9Bi3
.

14
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The constants appearing in these equations are written in Appendix A.

5. Discussion

The behavior of the axial velocity u(y), temperature θ(y), concentration φ(y), and heat-transfer
coefficient Z(x) with respect to the influential parameters is described in this section.

5.1. Axial Velocity Distribution

Figure 2a–c examines the effect of various parameters on the axial velocity. Figure 2a clearly
shows that the axial velocity increases with an increase in We. Such an increasing trend is due to
increased relaxation time and viscosity decay. The effect of curvature parameter k on u(y) is depicted
in Figure 2b. It is observed that the axial velocity u(y) decreases with an increase in the curvature k
near the lower wall of the channel while the reverse situation is observed near the upper wall of the
channel. Variation in u(y) for the elastic parameters E1, E2, and E3 are shown in Figure 2c. This Figure
indicates that, by increasing E3 (which represents the oscillatory resistance), the velocity u(y) decreases
and the axial velocity u(y) increases by increasing E1and E2.

(a) (b)

(c)

Figure 2. (a) Variation of We on u when E1 = 0.02; E2 = 0.01; E3 = 0.1; ε = 0.2; k = 1.5; ξ = 0.5;
μ = 0.1; η1 = 0.1; t = 0.1; x = −0.2.; (b) Variation of k on u when E1 = 0.02; E2 = 0.01; E3 = 0.1;
ε = 0.2; We = 0.01; ξ = 0.5; μ = 0.1; η1 = 0.1; t = 0.1; x = −0.2.; (c) Variation of E1, E2, E3 on u when
ε = 0.2; We = 0.2; k = 1.5; ξ = 0.5; μ = 0.1; η1 = 0.1; t = 0.1; x = 0.2.

5.2. Temperature Distribution

Figure 3a–g indicates the influence of different parameters on the fluid temperature distribution
θ(y). Figure 3a demonstrates that the magnitude of the temperature profile boosts while increasing the
value of We as Weissenberg number is the ratio of ealstic forces and viscous forces, therefore, an increase
in We dominates the viscosity and enhance the temperature of the fluid. It reveals that temperature
is higher for Johnson–Segalman fluid than that of the viscous fluid temperature. Figure 3b reflects
that when Brinkman number Br increases, the temperature goes up. This increase in the temperature
is due to the viscous dissipation effects. Figure 3c portrays the effects of elastic parameters (E1, E2,
and E3) on the temperature profile θ(y). Increased temperature θ(y) can be seen with an increment in
E1 and E2 and it decreases with increasing in E3. Figure 3d depicts that the temperature falls drastically
towards the lower portion of the channel and continues to rise in the upper portion of the channel
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as the curvature parameter k rises. Figure 3e portrays the slip parameter activity indicating that
temperature declines as the slip parameter rises near the upper channel wall, while it has an opposite
impact close to the lower boundary. Figure 3f illustrates that enhancing the Biot number Bi1 reduces
the temperature profile θ(y) near the upper inlet section but no impact has found in the lower inlet
section. Similarly, Figure 3g reveals that the temperature profile θ(y) for Biot number Bi2 declines near
the lower inlet section and has no noticeable impact near the upper inlet section.

(a) (b)

(c) (d)

(e) (f)

(g)

Figure 3. (a) effect of We on θ when E1 = 0.5; E2 = 0.04; E3 = 0.01; ε = 0.15; k = 10; Br = 1.8; ξ = 1.8;
μ = 0.5; η1 = 0.6; t = 0.1; x = −0.2; Bi1 = 10; Bi2 = 8. (b) variation of Br on θ when E1 = 0.04;
E2 = 0.03; E3 = 0.01; ε = 0.15; k = 1.5; We = 0.01; ξ = 1.9; μ = 0.6; η1 = 0.8; t = 0.1; x = −0.2;
Bi1 = 10; Bi2 = 8. (c) variation of E1, E2, E3 on θ when ε = 0.15; We = 0.01; k = 1.5; Br = 0.5; ξ = 1.9;
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μ = 0.5; η1 = 0.8; t = 0.1; x = −0.2; Bi1 = 10; Bi2 = 8. (d) variation of k on θ when E1 = 0.05;
E2 = 0.04; E3 = 0.01; ε = 0.15; We = 0.01; Br = 1.8; ξ = 2.9; μ = 0.5; η1 = 0.8; t = 0.1; x = −0.2;
Bi1 = 10; Bi2 = 8. (e) variation of ξ on θ when E1 = 0.05; E2 = 0.03; E3 = 0.01; ε = 0.15; We = 0.01;
Br = 1.5; k = 2.9; μ = 0.6; η1 = 0.8; t = 0.1; x = −0.2; Bi1 = 10; Bi2 = 8. (f) Variation of Bi1 on θ

when E1 = 0.04; E2 = 0.03; E3 = 0.01; ε = 0.15; We = 0.01; Br = 2.5; ξ = 1.9; μ = 0.6; η1 = 0.8;
k = 1.5 t = 0.1; x = −0.2; Bi2 = 8. (g) variation of Bi2 on θ when E1 = 0.04; E2 = 0.03; E3 = 0.01;
ε = 0.15; We = 0.01; Br = 2.5; ξ = 1.9; μ = 0.6; η1 = 0.8; k = 1.5 t = 0.1; x = −0.2; Bi1 = 10.

5.3. Concentration Distribution

Figure 4a–h represents the effects of emerging parameters on the fluid concentration distribution
φ(y). Figure 4a depicts that concentration φ(y) increases when We increases due to increase in elasticity
of the fluid as We physically represents the ratio of elastic to viscous forces. Figure 4b demonstrates that
the concentration decreases when the Brinkman number intensifies. The effect of elastic parameters
(E1, E2, and E3) are represented in Figure 4c. Here, with the increase in E1 and E2, the concentration
distribution decreases, while for E3 concentration distribution φ(y) increases. Figure 4d shows the
influence of slip parameter on φ(y). This Figure shows that the concentration decays in the lower half
portion of the channel, while the reverse trend is seen throughout the upper half portion of the channel.
Figure 4e shows that the fluid concentration reduces towards the upper wall of the channel and rises
in the lower portion of the channel as the curvature parameter k rises. Figure 4f indicates that the
concentration declines with an increase in the Schmidt number (Sc) which physically represents the
ratio of momentum diffusivity and mass diffusivity. When we increase the value of Schmidt number,
it actually dominates the mass diffusion and thus concentration of the fluid decays. The mass diffusion
decays through increase in Schmidt number and, hence, concentration distribution φ(y) decreases.
The effects of Biot numbers Bi3 and Bi4 are examined separately for the concentration profile φ(y)
in the Figure 4g,h. It is found that variation of Bi3 has significant effect near the upper wall and it
hardly shows any effect near the lower wall. Similarly, the effects of Bi4 are significant across the lower
wall and the concentration profile φ(y) tends to decrease here. Biot number values are assumed to be
greater than 1 and it indicates the non-uniform concentration fields inside the fluid. Also it reveals that
convection is much quicker than conduction. From a realistic point of view, the parameters chosen are
thus appropriate.

(a) (b)

(c) (d)

Figure 4. Cont.
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(e) (f)

(g) (h)

Figure 4. (a) Variation of We on φ when E1 = 0.5; E2 = 0.04; E3 = 0.01; ε = 0.15; k = 10; Br = 0.5;
ξ = 1.8; μ = 0.5; η1 = 0.6; t = 0.1; x = −0.2; Sc = 1; Sr = 1; Bi1 = 10; Bi2 = 8. (b) Variation of Br on φ

when E1 = 0.04; E2 = 0.03; E3 = 0.01; ε = 0.15; k = 1.5; We = 0.01; ξ = 1.9; Sc = 1; Sr = 1; μ = 0.6;
η1 = 0.8; t = 0.1; x = −0.2; Bi1 = 10; Bi2 = 8. (c) Variation of E1, E2, E3 on φ when ε = 0.15; We = 0.01;
k = 1.5; Br = 0.5; ξ = 1.9; μ = 0.5; η1 = 0.8; t = 0.1; x = −0.2; Sc = 1; Sr = 1; Bi1 = 10; Bi2 = 8.
(d) Variation of ξ on φ when E1 = 0.05; E2 = 0.03; E3 = 0.01; ε = 0.15; We = 0.01; Br = 0.5; k = 2.5;
μ = 0.6; η1 = 0.8; t = 0.1; x = −0.2; Bi1 = 10; Bi2 = 8; Sc = 1; Sr = 1. (e) variation of k on φ when
E1 = 0.05; E2 = 0.04; E3 = 0.01; ε = 0.15; We = 0.01; Br = 1.5; ξ = 2.9; μ = 0.5; η1 = 0.8; t = 0.1;
x = −0.2; Bi1 = 10; Bi2 = 8; Sc = 1; Sr = 1. (f) Variation of Sc on φ when E1 = 0.04; E2 = 0.03;
E3 = 0.01; ε = 0.15; We = 0.01; Br = 1; ξ = 1.9; k = 1.5; Sr = 1; μ = 0.6; η1 = 0.8; t = 0.1; x = −0.2;
Bi1 = 10; Bi2 = 8. (g) Variation of Bi1 on φ when E1 = 0.04; E2 = 0.03; E3 = 0.01; ε = 0.15; We = 0.01;
Br = 0.5; ξ = 1.9; μ = 0.6; η1 = 0.8; k = 1.5; t = 0.1; x = −0.2; Bi2 = 8; Sc = 1; Sr = 1. (h) Variation
of Bi2 on φ when E1 = 0.04; E2 = 0.03; E3 = 0.01; ε = 0.15; We = 0.01; Br = 0.5; ξ = 1.9; μ = 0.6;
η1 = 0.8; k = 1.5; t = 0.1; x = −0.2; Bi1 = 10; Sc = 1; Sr = 1.

5.4. Coefficient of Heat-Transfer

In Figure 5a–e, we noticed the variability of the coefficient of heat transfer Z(x) for We, Br, k,
Bi1, and Bi2. Due to peristalsis, the nature of the heat transfer coefficient is oscillatory. The absolute
value of the coefficient of overall heat transfer Z(x) falls as We increases (see Figure 5a). Figure 5b
illustrates that the coefficient of heat transfer results in an increase when Brinkman number intensifies.
Figure 5c displays the curvature parameter’s behavior. This indicates that the coefficient of heat
transfer Z(x) boosts with an increase in k. Further, Figure 5d,e analyze the effects of Biot numbers on
heat transfer coefficient Z(x). Increasing Bi1 the magnitude of heat transfer coefficient Z(x) increases
and it decreases for Bi2.
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(a) (b)

(c) (d)

(e)

Figure 5. (a) Variation of We on Z when E1 = 0.5; E2 = 0.04; E3 = 0.01; ε = 0.15; k = 10; Br = 0.5;
ξ = 1.8; μ = 0.5; η1 = 0.6; t = 0.1; Bi1 = 10; Bi2 = 8. (b) Variation of Br on Z when E1 = 0.5; E2 = 0.04;
E3 = 0.01; ε = 0.15; k = 10; We = 0.005; ξ = 1.8; μ = 0.5; η1 = 0.6; t = 0.1; Bi1 = 10; Bi2 = 8.
(c) Variation of k on Z when E1 = 0.5; E2 = 0.04; E3 = 0.01; We = 0.005; ε = 0.15; k = 10; Br = 0.5;
ξ = 1.8; μ = 0.5; η1 = 0.6; t = 0.1; Bi1 = 10; Bi2 = 8. (d) Variation of Bi1 on Z when E1 = 0.5; E2 = 0.04;
E3 = 0.01; ε = 0.15; We = 0.005; Br = 0.5; ξ = 1.8; μ = 0.5; η1 = 0.6; k = 10; t = 0.1; x = −0.2; Bi2 = 8.
(e) Variation of Bi2 on Z when E1 = 0.5; E2 = 0.04; E3 = 0.01; ε = 0.15; We = 0.005; Br = 0.5; ξ = 1.8;
μ = 0.5; η1 = 0.6; k = 10; t = 0.1; x = −0.2; Bi1 = 10.

6. Conclusive Remarks

This article addresses the peristalsis of Johnson-Segalman fluid in a circular channel with
walls’ compliance and convective heat and mass transfer conditions. Perturbation solution has been
obtained under the long wave length and low Reynolds number approximation. The axial velocity
of Johnson–Segalman is found to be greater than that of the Newtonian fluid. The velocity profile is
skewed to the left because of curved channel, whereas the concentration and temperature profiles
are inclined towards the right. Further, the velocity profile is not symmetric about the centre line in
curved channel. At a certain level in the curved channel, the fluid approaches maximum velocity,
which decreases in magnitude. The curved channel is transformed into the straight channel with
relatively high value of curvature parameter. The results of this problem in Newtonian fluid model
can be reduced when m = μ = 0.
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Appendix A

The parameters appearing in the solutions are described here.

L1 = k(−8E1π3ε cos(2π(x − t))− 8E2π3ε cos(2π(x − t)) + 4E3π2ε sin(2π(x − t),

L2 =
2η1(−1 + ξ2)

3(η1 + μ)
,

L3 = 3C3
4(−(k − η)2 ln(k − η) + (k + η)2 ln(k + η)),

M =
1

k + η
+ Bi1 ln(k + η),

M1 =
1

k − η
− Bi2 ln(k + η),

M2 =
Bi1

−k + η
+ Bi1Bi2 ln(k − η),

M3 = −Bi2M + M2,

M4 =
8C2C4 ln(k − η)

(k − η)
,

M5 =
8C2C4 ln(k + η)

(k + η)
,

M6 =
C2

2(2 + Bi2(k − η))

(k − η)3 ,

M7 =
C2

2(−2 + Bi1(k + η))

(k + η)3 ,

M8 = (−2 + Bi2(k − η))(k − η),

M9 = (2 + Bi1(k + η))(k + η),

M10 = 4Bi1C2C4 ln(k + η)2,

M11 = 4Bi2C2C4 ln(k − η)2,

M12 =
C2

2
(k + η)

+ C2
4(k + η)2,

M13 = − 2C2
2

(k + η)3 + 2C2
4(k + η),

M14 = Bi1(−BrM1(M10 + M5 − M7 − C2
4 M9) + BM(M4 + M6 + C2

4 M8 − M11),

N =
Bi1

k − η
+

Bi2
k + η

+ Bi1Bi2(− ln(k − η) + ln(k + η)),

N1 =
18(C13C2 + 2C4(C11 + 8C2C2

4(−1 + ξ2))) ln(k + η)(2 + Bi1(k + η)) ln(k + η)

k + η
,

N2 = (18(C11C2(k + η)4(−2 + Bi1(k + η))(η1 + μ)− 4C4
2(−6 + Bi1(k + η))(η1 − μ)(−1 + ξ2)

+36C4C3
2(−4 + Bi1(k + η))(η1 − μ)(−1 + ξ2)

+216C2
2C2

4(k + η)4(−2 + Bi1(k + η))μ(−1 + ξ2)

+9C4(k + η)8(2 + Bi1(k + η))(η1 + μ)(C13 + 4C3
4(−1 + ξ2))),
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N3 = (18(C11C2(k + η)4(2 + Bi2(k − η))(η1 + μ)− 4C4
2(6 + Bi2(k − η))(η1 − μ)(−1 + ξ2)

+36C4C3
2(4 + Bi2(k − η))(k − η)2(η1 − μ)(−1 + ξ2)

+216C2
2C2

4(k − η)4(2 + Bi2(k − η))(k − η)4μ(−1 + ξ2)

+9C4(k − η)8(−2 + Bi2(k − η))(η1 + μ)(C13 + 4C3
4(−1 + ξ2))),

N4 =
18(C13C2 + 2C4(C11 + 8C2C2

4(−1 + ξ2))) ln(k − η)(−2 + Bi2(k − η)) ln(k − η)

k − η
,

N5 =
18Bi1C2(C11(η1 + μ) + 12C2C2

4μ(−1 + ξ2))

(k + η)2(η1 + μ)
+

36Bi1C3
2C4(η1 − μ)(−1 + ξ2)

(k + η)4(η1 + μ)
,

N6 = 18C4(k + η)(C13 + 4C3
4(−1 + ξ2) + 9Bi1C4(k + η)2(C13 + 4C3

4(−1 + ξ2))

+
24C2

2(η1 − μ)(−1 + ξ2)

(k + η)7(η1 + μ)
,

N7 =
36(C13C2 + 2C4(C11 + 8C2C2

4(−1 + ξ2))) ln(k + η)

k + η
,

N8 =
36C2(C11(η1 + μ) + 12C2C2

4μ(−1 + ξ2))

(k + η)3(η1 + μ)
,

N9 =
144C3

2C4(η1 − μ)(−1 + ξ2))

(k + η)5(η1 + μ)
, N10 =

4C4
2(η1 − μ)(−1 + ξ2))

(k + η)6(η1 + μ)
,

Y =
Bi3

k − η
+

Bi4
k + η

+ Bi3Bi4(− ln(k − η) + ln(k + η)),

Y1 =
C2

2
(k + η)3 − C2

4(k + η), Y2 =
2Bi3 ln(k − η)

k − η
,

Y3 =
1

(k − η)3 +
2Bi4kη

(k2 − η2)2 , Y4 = Bi3Bi4 ln(k − η)2,

Y5 = Bi4 ln(k + η)(
2

k + η
+ Bi3 ln(k + η)),

Y6 =
1

(−k + η)3 − 2Bi4kη

(k2 − η2)2 ,

Y7 = 4C2C4(Y4 +
2Bi3 ln(k − η)

−k + η
+ Bi4 ln(k + η)(

−2
k + η

− Bi3 ln(k + η))),

Y8 = Y7 + 2Bi4(
−C2

2
(k + η)3 + C2

4(k + η)) + 2Bi3(C2
2Y6 + C2

4(k − η + 2Bi4kη)),

Y9 = 4Bi3C2C4 ln(k + η)2 +
Y8(

1
k+η + Bi3 ln(k + η))

Y
,

D = (18(C11C2(k + η)4(−2 + Bi3(k + η))(η1 + μ)− 4C4
2(−6 + Bi3(k + η))(η1 − μ)(−1 + ξ2)

+36C4C3
2(k + η)2(−4 + Bi3(k + η))(η1 − μ)(−1 + ξ2)

+216C2
2C2

4(k + η)4(−2 + Bi3(k + η))μ(−1 + ξ2)

+9C4(k + η)8(2 + Bi3(k + η))(η1 + μ)(C13 + 4C3
4(−1 + ξ2))),

D1 = (18(C11C2(k − η)4(2 + Bi4(k − η))(η1 + μ)− 4C4
2(6 + Bi4(k − η))(η1 − μ)(−1 + ξ2)

+36C4C3
2(k − η)2(4 + Bi4(k − η))(η1 − μ)(−1 + ξ2)

+216C2
2C2

4(k − η)4(2 + Bi4(k − η))μ(−1 + ξ2)

+9C4(k − η)8(−2 + Bi4(k − η))(η1 + μ)(C13 + 4C3
4(−1 + ξ2))),

D2 =
18(C13C2 + 2C4(C11 + 8C2C2

4(−1 + ξ2))) ln(k − η)(−2 + Bi4(k − η)) ln(k − η)

k − η
,

D3 =
18(C13C2 + 2C4(C11 + 8C2C2

4(−1 + ξ2))) ln(k + η)(2 + Bi3(k + η)) ln(k + η)

k + η
,

D4 = 18Bi3(C13C2 + 2C4(C11 + 8C2C2
4(−1 + ξ2))) ln(k + η)2,

21



Symmetry 2020, 12, 1475

D5 = 18C4(k + η)(C13 + 4C3
4(−1 + ξ2) + 9Bi3C4(k + η)2(C13 + 4C3

4(−1 + ξ2))

+
24C2

2(η1 − μ)(−1 + ξ2)

(k + η)5(η1 + μ)
,

D6 =
4Bi3C4

2(η1 − μ)(−1 + ξ2)

(k + η)6(η1 + μ)
,

D7 =
18Bi3C2(C11(η1 + μ) + 12C2C2

4μ(−1 + ξ2))

(k + η)2(η1 + μ)
,

D8 =
1
Y
(Bi3(D2 − D1

(k − η)7(η1 + μ)
) + Bi4(

D
(k + η)7(η1 + μ)

− D3))(
1

k + η
+ Bi3 ln(k + η)).
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Abstract: This study deals with the mass transport phenomena on the particle-fluid motion through
an annulus. The non-Newtonian fluid propagates through a ciliated annulus in the presence of two
phenomenon, namely (i) endoscopy, and (ii) blood clot. The outer tube is ciliated. To examine the flow
behavior we consider the bi-viscosity fluid model. The mathematical modeling has been formulated
for small Reynolds number to examine the inertia free flow. The purpose of this assumption is that
wavelength-to-diameter is maximal, and the pressure could be considerably uniform throughout the
entire cross-section. The resulting equations are analytically solved, and exact solutions are given for
particle- and fluid-phase profiles. Computational software Mathematica has been used to evaluate
both the closed-form and numerical results. The graphical behavior across each parameter has been
discussed in detail and presented with graphs. The trapping mechanism is also shown across each
parameter. It is noticed clearly that particle volume fraction and the blood clot reveal converse
behavior on fluid velocity; however, the velocity of the fluid reduced significantly when the fluid
behaves as a Newtonian fluid. Schmidt and Soret numbers enhance the concentration mechanism.
Furthermore, more pressure is required to pass the fluid when the blood clot appears.

Keywords: cilia motion; blood clot; endoscopy; mass transport; particle-fluid

1. Introduction

Flagella and cilia are two distinct names, but are used interchangeably for similar structure
of eukaryotic cells. In animals, cilia, which are hair-like appendages, are prominent in the
digestive system, respiratory system, reproductive tracts of human beings, and the nervous systems.
The movement of cilia plays an essential part in physiological systems, i.e., circulation, respiration,
locomotion, alimentation, spermatic fluid propagation, reproduction, etc. It is well-known that
ciliary and flagellar movements consist of active sliding, similar to the peristaltic flow of fluid in
smooth muscles, whereas flagellar is more complicated. Cilia can be split into two categories, i.e.,
non-motile and motile. When cilia and flagella are close to each other, they manifest a propagation of
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waves on a large scale known as Metachronal waves. Beating cilia produce metachronal waves over
the surface in large numbers, on the ciliated surface of protozoa, and the adjoining activity of cilia
coordinates via the hydrodynamics interactions. It is worth mentioning here that metachronal waves
are self-organized. Cilia produce bending waves to derive single cells through a medium or to push
the fluid over the surface of a fixed cell. The standard form of the ciliary model, motivated by the
cilium structure or axoneme, is known as sliding filament model. As shown in Figure 1, the axoneme
structure has nine microtubule doublets around the outside, and two are located in the center. Most of
the cilia beat at approximately 10–40 Hz, but the form of beating varies. Their length starts from 2 μm
to several millimeters, and their diameters are approximatley 0.2 μm. As a result, a low Reynolds
number (Re→0) approximation can be applied.

Figure 1. Strutcure and size of cilia [1] (a) typical dimension, (b) cross-section, (c) cilia stroking.

Nadeem et al. [2] considered the Carreau fluid model to examine the cilia motion through
a symmetric channel using the perturbation method. Nadeem and Sadaf [3] discussed the cilia
motion of viscous nanofluid through the curvy compliant channel. They used a homotopy analysis
method to examine the closed-form solution against the temperature and velocity profile. Maiti and
Pandey [4] presented a theoretical study on the nonlinear cilia motion using the Power-law fluid
model. Abo-Elkhair et al. [5] used the Adomian decomposition scheme to simluate the cilia motion of
magneto-fluid through a ciliated channel. Bhatti et al. [6] discussed the impact of the magnetic field on
a ciliated channel using the particle-fluid mechanism. Ashraf et al. [7] examined the peristaltic cilia
motion through a human fallopian tube using a Newtonian fluid model. And finally, Ramesh et al. [8]
used the behavior of magnetized couple stress fluid model moving through a ciliated channel

Particles in fluid appear in multifarious applications, including biology, geology,
chemical engineering, and fluid mechanics [9] to name a few. Several industrial processes
include fluidized catalyst beds, pneumatic propagation, and sedimentation. Further, in the biological
systems, it involves the flow of blood in the cardiovascular system. The collisions among the
particles and the fluids may influence the rheological and the viscosity behavior of the suspension.
Particle-wall and particle-particle interactions produce the migration of particles, which causes the
anisotropic particle micro-structures and clusters [10,11]. At the mesoscopic scale, a well-known
example of the particle-fluid interaction is the movement of the red blood cells (RBC). The flow
behavior of the RBC plays a pivotal role in the different pathological and physiological mechanisms.
For instance, the rotation and random transverse propagation of RBC in a shear flow plays an essential
role in thrombogenesis [12]. These types of movements are firmly associated with the interaction of
RBC to RBC and fluid (i.e., plasma) to RBC since one RBC is obstructed by another coming towards it
from below or above. RBC is the essential determinant of the blood characteristics in micro-circulation
due to their large volume fraction in blood and their aggregability. Mekheimer and Abd Elmaboud
[13] investigated the peristaltic motion of fluid having solid particles through different forms of
annulus and showed the exact solutions. Mekheimer and Mohamed [14] presented an application of

26



Symmetry 2020, 12, 532

a clot blood model using particle-fluid flow through an annulus. Further, they considered the pulsatile
flow and obtained analytical solutions. Bhatti et al. [15] discussed the behavior of slip effects using
a non-Newtonian fluid model that contains spherical particles. Bhatti and Zeeshan [16] explained the
blood flow through an annulus filled with particles and fluid in the presence of a variable magnetic
field. Some critical analysis of multiphase simulations are given in the following references [17–21].

Mass transfer with heat on Particle-fluid through fixed and fluidized beds play an essential role
and provide necessary information for the development and design of numerous mass and heat
transfer operation and chemical reactors including a system of particle and fluid. Gireesha et al. [22]
investigated the particle-fluid suspension mechanism through a non-isothermal stretching plate in
the presence of a magnetic field and radiative heat flux. They applied a numerical method to obtain
the solutions. Bhatti et al. [23] presented a mathematical model of particle-fluid motion induced by
a peristaltic wave with thermal radiation and electromagnetohydrodynamics effects. Kumar et al. [24]
considered a particle-fluid motion with a nonlinear Williamson fluid model towards a stretching
sheet with heat transfer effects. Bhatti et al. [25] explored the particle-fluid motion with heat and
mass transfer using Sisko fluid model through a Darcy–Brinkman–Forchheimer porous medium.
Some relevant studies on particle-fluid with mass and heat transfer are given in the references [26–28].

The main goal of the present study is to examine the mass transport on the particle-fluid
suspension through a ciliated annulus with endoscopy and blood clot effects. Endoscopy plays
an essential role in exploring the problems in human organs. In the mentioned studies, mostly work
has been done with endoscopy and blood clot with simple Newtonian and non-Newtonian fluid
models. In contrast, the present study deals with mass transport on particle-fluid motion through
a ciliated annulus under different effects. Cilia motion plays a critical part, i.e., ciliary imperfections
tend to create several human diseases. A genetic change compromises an appropriate function of the
ciliopathies, cilia, which results in chronic disorders, i.e., primary ciliary dyskinesia and Senior–Loken
syndrome or nephronophthisis. Furthermore, a flaw in primary cilium in renal tubule cells causes
polycystic kidney disease. Ectopic pregnancy can occur due to a lack of functional cilia in a fallopian
tube. If the cilia fail to move, then a fertilized ovum is unable to reach the uterus, which results in the
ovum implant in a fallopian tube and tubal pregnancy will occur, which is the most usual type of ectopic
pregnancy [29]. Therefore, the present study is essential to fill this gap and also beneficial to overcome
the difficulties. Bi-viscosity fluid model is considered to examine the flow behavior. The governing
mathematical modeling is performed under low Reynolds number approximation. Exact solutions
are given for the fluid- and particulate-phase. The physical action of all the leading parameters is
discussed against velocity, concentration, temperature profile, and the trapping mechanism is also
presented through streamlines.

2. Problem Formulation

Consider two-dimensional co-axial infinite tubes. The outer tube is ciliated. The cylindrical
coordinate system is selected, i.e., r̃ lies toward the radial direction, and z̃ lies toward the middle of
an inner and the outer tube as given in Figure 2. The inner area between both the tubes is filled with
bi-viscosity fluid. The flow is irrotational and the fluid is incompressible having constant viscosity.
The fluid contains small spherical particles. The stress tensor for bi-viscosity fluid model [30] is
defined as:

χ =

⎧⎨
⎩

2
[
ys/

√
2π + μ̃B

]
ξij, π ≥ πΥ,

2
[
ys/

√
2π + μ̃B

]
ξij, π ≤ πΥ,

(1)

where μ̃B the plastic viscosity, Υ the volume fraction density, ξij the deformation rate of component,
and ys the yield stress, π denotes the second invariant tensor of ξij, πΥ represents the critical value
comprises on the non-Newtonian fluid model.

27



Symmetry 2020, 12, 532

Figure 2. Blood flow structure through an ciliated annulus.

The Mathematical expression for the envelope of the cilia tips reads as [31,32]:

r̃ = h̄1 = f1(t̃, z̃) = b0 + b0φ cos [k(z̃ − ct̃)] , (2)

z̃ = h̄2 = g1(t̃, z̃) = z̃0 + b0αφ sin [k(z̃ − ct̃)] , (3)

where k = 2π/λ, z0 describes the reference location of the cilia, the non-dimensional parameter φ,
which combines with b0 (mean radius of the outer tube) in the form of b0φ and represents the amplitude
of metachronal wave, λ is the metachronal wavelength, c the velocity, and α describes the measure of
the eccentricity of the elliptical motion.

The vertical and axial velocities are evaluated as [31,32]:

ũ =
∂r̃
∂t̃

=
∂ f1

∂t̃
+

∂ f1

∂z̃
∂z̃
∂t̃

=
∂ f1

∂t̃
+

∂ f1

∂z̃
ũ, z̃ = z̃0, (4)

ṽ =
∂z̃
∂t̃

=
∂g1

∂t̃
+

∂g1

∂z̃
∂z̃
∂t̃

=
∂g1

∂t̃
+

∂g1

∂z̃
ũ, z̃ = z̃0, (5)

After some mathematical manipulation, Equations (4) and (5) read as:

ũ = − b0αckφ cos [k(z̃ − ct̃)]
1 − b0αkφ cos [k(z̃ − ct̃)]

, (6)

ṽ =
b0ckφ sin [k(z̃ − ct̃)]

1 − b0αkφ cos [k(z̃ − ct̃)]
. (7)

The above boundary conditions help us to discriminate between the effective stroke and less
effective recovery stroke of the cilia by considering the shortening of the cilia.

In view of above frame work, the mathematical modeling for the fluid- and particulate-phase is
as follows [33]:
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(i) Fluid phase

The continuity and momentum equations are proposed as:

ϕ
∂ṽ f

∂r̃
+ ϕ

ṽ f

r̃
+ ϕ

∂ũ f

∂z̃
= 0, (8)

ϕ
∂ p̃
∂r̃

− CS(ṽp − ṽ f ) = ϕ

[
1
r̃

∂

∂r̃
rχr̃r̃ +

∂

∂z̃
χr̃z̃ − χθ̃θ̃

r̃

]
, (9)

ϕ
∂ p̃
∂z̃

− CS(ũp − ũ f ) = ϕ

[
∂

∂z̃
χz̃z̃ +

1
r̃

∂

∂r̃
r̃χr̃z̃

]
, (10)

The energy equation for the current flow is described as

ϕρ f c̃
[

∂

∂t̃
+ V f · ∇

]
Tf = κϕ∇2Tf + ϕχr̃z̃

[
∂u f

∂r̃

]
+

ρpcpC
ωT

(Tp − Tf ), (11)

The concentration equation for the current flow is described as

ϕ

[
∂

∂t̃
+ V f · ∇

]
K f = Dm ϕ∇2K f +

ρpC
ρ f ωc

(ϕp − ϕ f ) +
Dm

Tm
ϕKT∇2Tf . (12)

where ϕ = 1 − C.

(ii) Particulate phase

The continuity and momentum equation for this case read as

C
∂ṽp

∂r̃
+ C

ṽp

r̃
+ C

∂ũp

∂z̃
= 0, (13)

C
∂ p̃
∂r̃

− SC(ṽ f − ṽp) = 0, (14)

C
∂ p̃
∂z̃

− SC(ũ f − ũp) = 0, (15)

In this case, the energy equation is described as

ρpCcp

[
∂

∂t̃
+ Vp · ∇

]
Tp =

ρpcpC
ωT

(Tf − Tp), (16)

The concentration equation is described as

[
∂

∂t̃
+ Vp · ∇

]
Kp =

1
ωc

(K f − Kp), (17)

where S the drag coefficient, ρ the density of the fluid, C the particle volume fraction density, T the
temperature, ωT the thermal equilibrium time, ωc is the required time period by a particle to regulate
its concentration associated to the fluid, Dm the mass diffusivity coefficient, KT is the thermal diffusion
ratio, Tm the mean temperature, κ the thermal conductivity, cp particle-phase specific heat, and c̃ the
specific heat at constant volume.
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The mathematical form of drag coefficient is expressed as [23]

S =
9
2

μ0

B2
0

Φ(C), Φ(C) =
3C + 4 + [C(8 − 3C)]1/2

(2 − 3C)2 , (18)

where B0 is the radius of each particle, and μo the fluid viscosity. The empirical relation for the viscosity
suspension is expressed as [23]

m̃ = 0.70e[
1107

T e(−1.69C)+2.49C], μs =
μ0

1 − m̃C
, (19)

where μs denotes the viscosity of particle fluid mixture.
It is noted here that the results reduced for dusty-gas flows for small particle volume fraction as

presented by Marble [34].
Defining the following non-dimensional variables

r =
r̃
b0

, u f ,p =
ũ f ,p

c
, z =

z̃
λ

, v f ,p =
λṽ f ,p

b0c
, t =

t̃c
λ

, p =
b2

0
λμ0c

p̃, μ̄ =
μs

μ0
,

v0 =
ṽ0

c
, r1 =

r̃1

b0
, r2 =

r̃2

b0
, θ f ,p =

Tf ,p − T0

T1 − T0
, ϑ f ,p =

K f ,p − K0

K1 − K0
. (20)

Applying Equation (20) in Equations (8)–(18), and applying the approximation of low Reynolds
number and ignoring the inertial forces. The resulting equations are found as

0 =
∂p
∂r

, (21)

∂p
∂z

=
CSb2

0
ϕμ0

(
up − u f

)
+

μ̄

r
η

∂

∂r

(
r

∂u f

∂r

)
. (22)

It is noted here that the results for Newtonian fluid model can be recovered by taking ζ → ∞.
The temperature and concentration equations read as

1
r

∂

∂r

(
r

∂θ f

∂r

)
+ Bnμ̄η

(
∂u f

∂r

)2

= 0, (23)

1
r

∂

∂r

(
r

∂ϑ f

∂r

)
+ ScSr

1
r

∂

∂r

(
r

∂θ f

∂r

)
= 0, (24)

where η = (1 + 1/ζ), Bn the Brinkman number, δ defines the wave number, Sc the Schmidt number,
Pr the Prandtl number, Sr the Soret number, Ec the Eckert number, and ζ the fluid parameter. These
parameters are defined as

Bn = EcPr, Pr =
c̃νρ f

κ
, ζ =

μ̃B
√

2πΥ

ys
, Ec =

c2

c̃(T1 − T0)
, Sc =

ν

Dm
, δ =

b0

λ
,

Sr =
DmKT
νTm

(
θ1 − θ0

ϑ1 − ϑ0

)
. (25)

The particulate-phase equations are found as

∂p
∂z

+
Sb2

0
μ0

(
up − u f

)
= 0, (26)
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θ f = θp, (27)

ϑ f = ϑp. (28)

From Equation (21), it is found that p cannot be the function of r. The relevant boundary conditions
read as

u f (r1) = v0, θ f (r1) = 1, r1 = a(z) = a0 + hce−π2(z−zd−0.5)2
, (29)

u f (r2) = − 2παφδ cos 2πΞ
1 − 2παφδ cos 2πΞ

, θ f (r2) = 0, r2 = 1 +
λΓz
b0

+ φ sin 2πΞ, (30)

where Ξ = (z − t), Γ is a constant which represents the magnitude that relies on the annulus length
and its exit inlet dimensions, maximum height of the clot denoted by hc, v0 typify the velocity of the
inner tube, the axial displacement of the clot is denoted by zd, and the radius of the inner tube which
makes the clot in the appropriate place is denoted by a0. The results for endoscopy can be reduced by
considering hc = 0 in Equation (31) as a particular case of the present study.

3. Solutions of the Proposed Problem

Equations (22)–(24) are solved analytically using a computational software “Mathematica 10.3v”,
and the exact solutions are presented below:

u f = C1 + rC2 + C3r log r, (31)

up = C1 + rC2 + C3r log r − μ0

Sb2
0

dp
dz

, (32)

The solutions for the temperature profile for particulate- and fluid-phase are found as

θ f ,p = θ0 + r2θ1 + r4θ2 + θ3 log r + θ4 log2 r, (33)

The solutions for the concentration profile for particulate- and fluid-phase are found as

ϑ f ,p = ϑ0 + r2ϑ1 + r4ϑ2 + ϑ3 log r + ϑ4 log2 r + ϑ5 log3 r, (34)

and the constants appearing in above Equations (31)–(34) i.e. Cn, θn, ϑn (n = 1, 2 . . . ) are given
Appendix A.

The instantaneous volume flow rate for the present flow read as

Q(t, z) = 2πϕ
∫ r2

r1

ru f dr + 2πC
∫ r2

r1

rupdr. (35)

The pressure gradient can be obtained after solving the above equation.
The pressure rise along the whole ciliated annulus can be determined as

Δp =
∫ L/λ

0
℘dz, (36)

where ℘ represents the pressure gradient.
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4. Graphical Analysis

In thissection, using the obtained numerical results we analyze the behavior of all the physical
parameter. Particularly, we determine the behavior of velocity profile, concentration, and the
temperature profile, against the height of the clot hc, particle volume fraction C, wave number δ,
Soret number Sr, Brinkmann number Bn, Schmidt number Sc, and eccentricity of the elliptic path
of cilia α. Following parametric values [1] are chosen to analyze the graphical performance of all
the leading parameters, i.e., b0 = 1.25 cm, φ = 0.1 − 0.5, C = 0 − 0.6, α = 0.3 − 1, Γ = 3b0/λ,
L = λ = 8.01 cm , δ = 0.05 − 0.2. Furthermore, the results for single-phase model can be recovered by
considering C = 0 in the governing equations (see Equations (21)–(28)). Assume that the instantaneous
volume flow rate is periodic in Ξ, i.e.,

Q
π

= −φ2

2
+

Q̄
π

+ 2φ sin 2πΞ +
2φλz

b0
Γ sin 2πΞ + φ2 sin2 2πΞ, (37)

where Q̄ denotes the average time flow rate over one period of wavelength.
Figure 3 depicts the behavior of blood clots and particle volume fraction on the velocity profile.

We can observe from this figure that an increment in particle volume fraction C significantly suppresses
the velocity profile. The velocity profile shows a decreasing behavior for endoscopic case, i.e., hc = 0,
whereas it increases due to the blood clot hc = 0.15. It can be observed from Figure 4 that both
parameters α and δ cause a positive impact on the velocity profile while its trend becomes reverse
when r > 1.35. Figure 5 shows a plot of velocity profile against numerous values of φ. It can be seen
from this figure that the velocity profile is remarkably suppressed with increments in φ. Furthermore,
we also noticed that as compared with non-Newtonian case ζ = 0.1, the fluid velocity lessen more
when the fluid behaves as a Newtonian model ζ → ∞.

C

hc

hc

r

u
f

Figure 3. Velocity curves for different values of hc and C.

r

u
f

Figure 4. Velocity curves for different values of α and δ. Solid line: δ = 0.05, dashed line: δ = 0.2.
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r

u
f

Figure 5. Velocity curves for different values of φ and ζ.

In Figures 6–8 we see the mechanism of temperature profile plotted against the multiple leading
parameters. From Figure 6, we can see that the temperature profile rises due to the increment in
particle volume fraction C. Further, we noticed that for the blood clot case hc = 0.15, the temperature
profile is increasing and has a higher magnitude as compared with the endoscopic case hc = 0. It is
analyzed from Figure 7 that the parameters α and δ restrain the temperature profile. Unfortunately,
both parameters have small effects, especially when the wavenumber is very small at δ = 0.05. Figure 8
shows plots with multiple values of Brinkman number Bn. Brinkman number represents the product
of Eckert and Prandtl number Ec × Pr. Generally, it is the ratio between heat generated due to viscous
dissipation and transport of heat due to molecular conduction. It can noticed that the temperature
profile remarkably increases for higher values of Brinkman number. However, a similar behavior is
observed against the higher values of φ.

C

hc

hc

r

f,
p

Figure 6. Temperature distribution for different values of hc and C.

r

f,
p

Figure 7. Temperature distribution for different values of α and δ. Solid line: δ = 0.05, dashed line:
δ = 0.2.
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Bn

Bn

r

f,
p

Figure 8. Temperature distribution for different values of φ and Bn.

Figure 9 is illustrated to analyze the mechanisms of Schmidt number Sc and Soret number Sr on
the concentration profile. We can see from this figure that the concentration profile shows a decreasing
mechanism against both parameters and remains uniform throughout the entire region. An increment
in Schmidt number indicates that the viscous diffusion rate is more dominant as compared with the
molecular diffusion rate, whose results tend to decline the concentration profile. Similarly, when the
Soret number increases, the Thermophoresis forces generated, which oppose the concentration profile.

Sc

Sr

Sr

r

f,
p

Figure 9. Concentration distribution for different values of Sc and Sr.

Figures 10–12 depict the variation of pressure rise versus time against different values of emerging
parameters. It can be observed from Figure 10 that by enhancing the particle volume fraction C,
the pressure rise is significantly decreasing, while due to the presence of blood clot, more pressure is
required to pass the fluid. Further, we can see that the pressure rise is maximum in the region when
t ∈ (0.3, 0.7). It is clear from the Figure 11 that both parameters α and δ reveal versatile behavior
on the pressure rise. We can also see that there are two critical points, for instance, at t = 0.4 and
t = 0.9. In the region t ∈ (0.4, 0.9) the pressure rise acts as an increasing function whereas in the other
area it decreases. Similarly, we can observe that the pressure rise increases due to the increment in φ,
as shown in Figure 12.

Trapping mechanism is presented in Figures 13–15 for different values of α, δ and hc. It can be
noticed from Figure 13 that by increasing the values of α, the trapping bolus reduces, and a number
of boluses disappear. Similarly, in Figure 14, we can see that the higher values of δ tend to diminish
the immensity of the trapping bolus, whereas the number of trapping bolus increase and streamlines
increases. It is seen in Figure 15 that when the height of the blood clot increases, then streamlines
shrink , and trapping bolus increase significantly.
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C

hc

hc

t

p

Figure 10. Pressure rise for different values of hc and C.

t

p

Figure 11. Pressure rise for different values of α and δ.

t

p

Figure 12. Pressure rise for different values of φ.

z

r

(a) α = 0.3
z

r

(b) α = 0.6
z

r

(c) α = 0.9

Figure 13. Trapping mechanism for different values of α.
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z

r

(a) δ = 0.05
z

r
(b) δ = 0.1

z

r

(c) δ = 0.2

Figure 14. Trapping mechanism for different values of δ.

z

r

(a) hc = 0
z

r

(b) hc = 0.1
z

r

(c) hc = 0.2

Figure 15. Trapping mechanism for different values of hc.

5. Conclusions

In this study, we explained the behavior of particle-fluid with mass and heat transfer through
a ciliated annulus. The effects of endoscopy and blood clot are also taken into account. To analyze
the behavior of fluid in an annulus, we considered the bi-viscosity fluid model. The mathematical
formulation is undertaken for low Reynolds number approximation. The formulated differential
equations are analytically solved, and closed-form solutions are presented. The main observations of
the present study are followed as:

(i) It is noticed that particle volume strongly opposes the flow, whereas the fluid velocity also
decreases for the endoscopic case as compared with the blot clot case.

(ii) Velocity of the fluid also rises due to the enhancement in α and δ.
(iii) Temperature profile shows a higher magnitude in the presence of solid particles, while similar

behavior is noticed during blood clot.
(iv) Brinkman number shows the dominant behavior on the temperature profile and enhances the

temperature profile remarkably.
(v) Concentration profile reveals a decreasing behavior with the increase in the values of Soret and

Schmidt numbers.
(vi) α and δ depict versatile behavior on the pressure rise profile.
(vii) Particle volume fraction opposes the pressure rise, whereas the blood clot enhances the

pressure rise.
(viii) Trapping mechanism shows that the number of bolus gets bigger, and the streamlines gather as

the height of the blood clot increases.

Furthermore, in this study, several effects have been ignored, i.e., magnetic field, porosity, chemical
reaction and activation energy, respectively, which can be considered in future research.

36



Symmetry 2020, 12, 532

Author Contributions: Investigation, M.M.B.; Methodology & Conceptualization, R.E.; Validation, A.F.E.;
Writing—review & editing, S.M.S. All authors have read and agreed to the published version of the manuscript.

Acknowledgments: Authors thanks to those who are working in front line to save the humanity from corona
pandemic in China and across the globe. We appreciate their devotion and services.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

C1 =
1

4ϕη

dp
dz

, (A1)

C2 =
1

4ϕη

[
dp
dz

(r2
2 − r2

1)− 4ξϕη

]
, , (A2)

C3 =
θ5

4ϕηζ log
r1

r2

, , (A3)

ξ = − 2παεδ cos 2πΞ
1 − 2παεδ cos 2πΞ

. (A4)

θ0 =
1

16θ2
7 log

r1

r2

[
−{16θ2

2 + Bnθ6r2
1(8θ5 + θ6r2

1)η} − 8Bnθ2
5η log r2

1 log r2

+Bnη log r1

(
θ6r2

2(8θ5 + θ6r2
2) + 8θ2

5 log2 r2

)]
, (A5)

θ1 = −8Bnθ5θ6η

16θ2
7

, (A6)

θ2 = −Bnθ2
6η

16θ2
7

, (A7)

θ3 =
1

16θ2
7 log

r1

r2

[
16θ2

7 + Bnθ6(r2
1 − r2

2){8θ5 + θ6(r2
1 + r2

2)}η + 8Bnθ2
5η log2 r1

r2

]
, (A8)

θ4 = −Bnθ2
5η

2θ2
7

, (A9)

θ5 = ζ

(
dp
dz

(r2
1 − r2

2) + (ξ − v0)4ϕη

)
, (A10)

θ6 = 2ζ
dp
dz

log
r2

r1
, (A11)
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θ7 = 4ϕηζ log
r2

r1
. (A12)

ϑ0 =
1

192θ2
7 log

r1

r2

[
3(−64θ2

7 + Bnθ6r2
1(16θ5 + 3θ6r2

1)ScSrη) log r2

+ 96Bnθ2
5ScSrη log2 r1 log r2 + 16Bnθ2

5ScSrη log r3
1 log r2

+ ScSr log r1{−3Bnθ5r2
2(16θ5 + 3θ6r2

2)η + 2 log r2(48θ2
7 + 3Bn

×θ6(r2
1 − r2

2)(8θ5 + θ6(r2
1 + r2

2))η − 8Bnθ2
5η log r2(6 + log r2))}

]
, (A13)

ϑ1 =
BnScSrθ5θ6η

θ2
7

, (A14)

ϑ2 =
3BnScSrθ2

6η

64θ2
7

, (A15)

ϑ3 =
1

192θ2
7 log

r1

r2

[
192θ2

7 − 3Bnθ5(r2
1 − r2

2)(16θ5 + 3θ6(r2
1 + r2

2))ScSrη

+ 2ScSr{log r1(−48θ2
7ζ − 3Bnθ6(r2

1 − r2
2)(8θ5 + θ6(r2

1 + r2
2))η − 8Bn

θ2
5η log r1(6 + log r1))3ζ(16θ2

7 + Bnθ6(r2
1 − r2

2)(8θ5 + θ6(r2
1 + r2

2))η

+ 8Bnθ2
5η log r2

1) log r2 + 24Bnθ2
5η(2 + log r1) log r2

2 + 8Bnθ2
5 η log r3

2}
]

, (A16)

ϑ4 =
1

32θ2
7 log

r1

r2

[
ScSr{16θ2

7 + Bnθ6(r2
1 − r2

2)(8θ5 + θ6(r2
1 + r2

2))η

+8Bnθ2
5η log

r1

r2
(2 + log r1 + log r2)}

]
, (A17)

ϑ5 = −Bnθ2
5ScSr

6θ2
7

η. (A18)
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Abstract: This paper is concerned with the problem of finite-time control for nonlinear systems with
time-varying delay and exogenous disturbance, which can be represented by a Takagi–Sugeno (T-S)
fuzzy model. First, by constructing a novel augmented Lyapunov–Krasovskii functional involving
several symmetric positive definite matrices, a new delay-dependent finite-time boundedness
criterion is established for the considered T-S fuzzy time-delay system by employing an improved
reciprocally convex combination inequality. Then, a memory state feedback controller is designed to
guarantee the finite-time boundness of the closed-loop T-S fuzzy time-delay system, which is in the
framework of linear matrix inequalities (LMIs). Finally, the effectiveness and merits of the proposed
results are shown by a numerical example.

Keywords: finite-time boundedness; T-S fuzzy systems; time-varying delay; Lyapunov–Krasovskii
functional (LKF)

1. Introduction

During the past several decades, the control problem of nonlinear systems has attracted
considerable attention [1–6] as various practical systems are essentially nonlinear and cannot be
easily simplified into a linear model. Up to now, many fuzzy logic control approaches have been
proposed for the control problem of nonlinear systems. In particular, the Takagi–Sugeno (T-S) fuzzy
model, developed in [7], is an important tool to approximate complex nonlinear systems by combining
the fruitful linear system theory and the flexible fuzzy logic approach. Additionally, time-delay is
unavoidably encountered in many dynamic systems, such as power systems, network control systems,
neural networks, etc., which often results in chaos, oscillation, and even instability. Therefore, the study
of T-S fuzzy time-delay systems has become more and more popular in recent years. In particular,
many significant and interesting results on stability analysis and the control synthesis of T-S fuzzy
time-delay systems have been developed in the literature [8–15].

Much attention has been paid to obtain the delay-dependent stability criteria for T-S fuzzy
time-delay systems over the last few decades. It is well-known that the conservativeness of the stability
criteria mainly has two sources: the choice of the Lyapunov–Krasovskii functional (LKF) and the
estimation of its derivative. It is of great importance to construct an appropriate Lyapunov–Krasovskii
functional for deriving less conservative stability conditions. In recent years, delay-partitioning
Lyapunov–Krasovskii functionals and augmented Lyapunov–Krasovskii functionals have been
developed to reduce the conservativeness of simple LKFs and have attracted growing attention.
A delay-partitioning approach was applied to study the Lyapunov asymptotic stability of T-S fuzzy
time-delay systems and some less conservative stability conditions were obtained in [16–18].

In [19], the authors introduced the triple-integral terms into the LKFs to derive the stability
conditions for T-S fuzzy time-delay systems. In addition, various approaches have been proposed
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to estimate the derivatives of LKFs when dealing with stability analysis and control synthesis
of time-delay systems, such as the free weighting matrix approach [20], Jensen inequality
approach [21], Wirtinger-based integral inequality approach [10], reciprocally convex combination
approach [22], auxiliary function-based inequality approach [23], and free-matrix-based integral
inequality approach [24].

By applying the Wirtinger-based integral inequality approach and reciprocally convex
combination approach, Zeng et al. [18] derived some less conservative stability criteria for uncertain
T-S fuzzy systems with time-varying delays. An improved free weighting matrix approach was
employed to obtain several new delay-dependent stability conditions in terms of the linear matrix
inequalities for T-S fuzzy systems with time-varying delays in [25]. In [26], the authors investigated
Lyapunov asymptotic stability analysis problems for T-S fuzzy time-delay systems by constructing
a new augmented Lyapunov–Krasovskii functional and employing the free-matrix-based integral
inequality approach.

The aforementioned results regarding the stability analysis of T-S fuzzy systems mainly focus on
Lyapunov asymptotic stability, in which the states of systems converge asymptotically to equilibrium
in an infinite time interval. However, in many practical engineering applications, the main concern
may be the transient performances of the system trajectory during a specified finite-time interval.
Unlike Lyapunov asymptotic stability, finite-time stability, introduced in [27], is another stability
concept, which requires that the states of dynamical systems do not exceed a certain threshold in
a fixed finite-time interval with a given bound for the initial condition. Up to now, the problem of
finite-time stability, finite-time boundedness, and finite-time stabilization of dynamical systems has
attracted growing attention, and many significant results have been reported in [28–32].

Several results on finite-time stability and stabilization of T-S fuzzy systems can also be found.
The problem of finite-time stability and finite-time stabilization for T-S fuzzy time-delay systems was
investigated in [28]. Sakthivel et al. [31] studied finite-time dissipative based fault-tolerant control
problem for a class of T-S fuzzy systems with a constant delay. However, to the best of our knowledge,
until now there have been few results on finite-time boundedness and finite-time stabilization of
T-S fuzzy systems with time-varying delay and exogenous disturbance. Furthermore, it should be
mentioned that most of the existing works on finite-time control for T-S fuzzy time-delay systems are
fairly conservative. Motivated by the above discussions, in this paper, we deal with the problem of
finite-time control for a class of nonlinear systems with time-varying delay and exogenous disturbance,
which can be described by a T-S fuzzy model.

The main contributions of this paper are summarized as follows. First, a new augmented
Lyapunov–Krasovskii functional is constructed, which makes full use of the information about
time-varying delay. Based on the proposed Lyapunov–Krasovskii functional, a less conservative
finite-time boundedness condition is obtained for T-S fuzzy time-delay systems by utilizing an
improved reciprocally convex combination technique. Second, based on parallel distributed
compensation schemes, a memory state feedback controller is designed to finite-time stabilize the T-S
fuzzy time-delay system, which can be derived by solving a series of linear matrix inequalities (LMIs).
Finally, a numerical example is given to illustrate the advantages and validity of the developed results.

The rest of this paper is organized as follows: the problem statement is given in Section 2.
The main results on the finite-time boundedness and finite-time stabilization of nonlinear systems with
time-varying delay and exogenous disturbance are presented in Section 3. In Section 4, a numerical
example is proposed to show the effectiveness of the developed results. Finally, our conclusions are
drawn in Section 5.

Notations: Throughout this paper, Rn denotes the n-dimensional Euclidean space; Rn×m stands
for the set of all n × m real matrices; the superscripts T and −1 denote the transpose and inverse of a
matrix, respectively; I and 0 represent the identity matrix and zero matrix, respectively, with compatible
dimensions; diag{· · · } denotes a block-diagonal matrix; the notation P > 0(≥ 0) means that the matrix
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P is real symmetric and positive definite (semi-positive definite); ∗ stands for the symmetric terms in a
symmetric matrix; for any matrix X ∈ Rn×n, Sym{X} is defined as X + XT .

2. Problem Formulation

Consider a class of nonlinear systems with time-varying delay and exogenous disturbance, which
can be represented by the following T-S fuzzy model:

Plant Rule i:
IF ξ1(t) is Ni1, · · · , and ξp(t) is Nip,
THEN {

ẋ(t) = Aix(t) + Adix(t − d(t)) + Biu(t) + Giω(t)
x(t) = φ(t), t ∈ [−h, 0]

where i ∈ {1, 2, . . . , r}, r is the number of IF-THEN rules, x(t) ∈ Rn is the state vector, u(t) ∈ Rp

is the control input, ω(t) ∈ Rl is the exogenous disturbance, which satisfies
∫ Tf

0 ω(t)Tω(t)dt ≤ δ;
δ ≥ 0 is a given scalar. Ai, Adi, Bi, and Gi are known constant matrices with appropriate dimensions.
ξ1(t), ξ2(t), . . . , ξp(t) are premise variables, Ni1, Ni2, . . . , Nip are fuzzy sets. The time delay d(t) is a
time-varying function that satisfies

0 ≤ d(t) ≤ h and μ1 ≤ ḋ(t) ≤ μ2 (1)

where h > 0 and μ1, μ2 are constants. The initial condition φ(t) is a continuous vector-valued function
for all t ∈ [−h, 0].

Let ξ(t) = [ξ1(t), ξ2(t), . . . , ξp(t)]T , by employing a singleton fuzzifier, product inference, and
center-average defuzzifer, the input–output form of the above T-S fuzzy time-delay system can be
represented by

ẋ(t) =
r

∑
i=1

ρi(ξ(t)){Aix(t) + Adix(t − d(t)) + Biu(t) + Giω(t)} (2)

where ρi(ξ(t)) = θi(ξ(t))
∑r

i=1 θi(ξ(t))
, θi(ξ(t)) = ∏

p
j=1 Nij(ξ j(t)), Nij(ξ j(t)) is the grade of membership of

ξ j(t) in the fuzzy set Nij. We note that θi(ξ(t)) ≥ 0, ∑r
i=1 θi(ξ(t)) > 0 for all t, and we can obtain

ρi(ξ(t)) ≥ 0, ∑r
i=1 ρi(ξ(t)) = 1.

In this paper, for simplicity, we denote S(t) = ∑r
i=1 ρi(ξ(t))Si for any matrix Si. Therefore, the T-S

fuzzy time-delay system (2) can be rewritten as follows:

ẋ(t) = A(t)x(t) + Ad(t)x(t − d(t)) + B(t)u(t) + G(t)ω(t). (3)

Now, the definition of finite-time boundedness (FTB) for the T-S fuzzy time-delay system (3) with
u(t) ≡ 0 is given as follows:

Definition 1 ([31]). The T-S fuzzy time-delay system (3) with u(t) ≡ 0 is said to be finite-time bounded with
respect to (c1, c2, Tf , R, δ, h), where 0 < c1 < c2, Tf > 0, R ∈Rn×n and R > 0, if

sup−h≤θ≤0{xT(θ)Rx(θ), ẋT(θ)Rẋ(θ)} ≤ c1 ⇒ xT(t)Rx(t) < c2,

∀t ∈ [0, Tf ], ∀ω(t) :
∫ Tf

0 ω(t)Tω(t)dt ≤ δ.
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Based on the parallel distributed compensation scheme, we aim to design the following memory
state feedback controller, which can guarantee the corresponding closed-loop T-S fuzzy time-delay
system finite-time bounded:

u(t) = K1(t)x(t) + K2(t)x(t − d(t)), (4)

where K1(t) = ∑r
j=1 ρj(ξ(t))K1j, K2(t) = ∑r

j=1 ρj(ξ(t))K2j, and K1j, K2j, j = 1, 2, . . . , r are the state
feedback gain matrices to be determined.

By substituting (4) into (3), the corresponding closed-loop T-S fuzzy time-delay system can be
represented as follows:

ẋ(t) = [A(t) + B(t)K1(t)]x(t) + [Ad(t) + B(t)K2(t)]x(t − d(t)) + G(t)ω(t). (5)

In order to derive the main results in this paper, the following lemma, i.e., the improved
reciprocally convex combination inequality approach will be utilized in finite-time boundedness
analysis and controller design of T-S fuzzy time-delay systems.

Lemma 1 ([33]). Let R1, R2 ∈ Rm×m be real symmetric positive definite matrices, �1, �2 ∈ Rm and a scalar
α ∈ (0, 1). Then for any matrices Y1, Y2 ∈ Rm×m, the following inequality holds

1
α

�T
1 R1�1 +

1
1 − α

�T
2 R2�2

≥�T
1 [R1 + (1 − α)(R1 − Y1R−1

2 YT
1 )]�1

+ �T
2 [R2 + α(R2 − YT

2 R−1
1 Y2)]�2

+ 2�T
1 [αY1 + (1 − α)Y2]�2.

3. Main Results

3.1. Finite-Time Boundedness Analysis

In this subsection, our aim is to develop a new delay-dependent finite-time boundedness criterion
for T-S fuzzy systems with time-varying delay and norm-bounded disturbance. Before deriving
the main results, the nomenclature simplifying the representations for matrices and vectors is given
as follows:

ε1(t) =

⎛
⎜⎜⎜⎜⎜⎝

x(t)
x(t − d(t))

x(t − h)
ẋ(t − d(t))

ẋ(t − h)

⎞
⎟⎟⎟⎟⎟⎠ , ε2(t) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
d(t)

∫ t
t−d(t) x(s)ds

1
h−d(t)

∫ t−d(t)
t−h x(s)ds

1
d2(t)

∫ t
t−d(t)

∫ t
θ x(s)dsdθ

1
(h−d(t))2

∫ t−d(t)
t−h

∫ t−d(t)
θ x(s)dsdθ

1
h

∫ t
t−h x(s)ds

1
h2

∫ t
t−h

∫ t
θ x(s)dsdθ

ω(t)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

ε(t) =
[
εT

1 (t) εT
2 (t)

]T
, ε̃(t) =

[
εT

1 (t) εT
2 (t) ẋT(t)

]T
,

ei =
[
0n×(i−1)n In 0n×(12−i)n

]
, i = 1, 2, · · · , 12,
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ẽi =
[
0n×(i−1)n In 0n×(13−i)n

]
, i = 1, 2, · · · , 13.

Theorem 1. For given scalars h > 0 and μ1, μ2, the T-S fuzzy system (3) with u(t) = 0 and a time-varying
delay d(t) satisfying (1) is finite-time bounded with respect to (c1, c2, Tf , R, δ, h), if there exists a scalar β > 0,
symmetric positive definite matrices P ∈ R5n×5n, S1, S2 ∈ R2n×2n, Q1, Q2 ∈ R3n×3n, W, Z, U ∈ Rn×n,
and any matrices Y1, Y2 ∈ R3n×3n, such that the following conditions hold:

(
Σ1i(0, μ1) ΛT

1 Y1

YT
1 Λ1 −W0

)
< 0, i = 1, 2, . . . , r (6)

(
Σ1i(0, μ2) ΛT

1 Y1

YT
1 Λ1 −W0

)
< 0, i = 1, 2, . . . , r (7)

(
Σ1i(h, μ1) ΛT

2 YT
2

Y2Λ2 −W0

)
< 0, i = 1, 2, . . . , r (8)

(
Σ1i(h, μ2) ΛT

2 YT
2

Y2Λ2 −W0

)
< 0, i = 1, 2, . . . , r (9)

c1Π + λ37δ < λ36c2e−βTf , (10)

where

P =

⎛
⎜⎜⎜⎜⎜⎝

P11 P12 P13 P14 P15

∗ P22 P23 P24 P25

∗ ∗ P33 P34 P35

∗ ∗ ∗ P44 P45

∗ ∗ ∗ ∗ P55

⎞
⎟⎟⎟⎟⎟⎠ , Q1 =

⎛
⎜⎝ Q11 Q12 Q13

∗ Q22 Q23

∗ ∗ Q33

⎞
⎟⎠ , Q2 =

⎛
⎜⎝ q11 q12 q13

∗ q22 q23

∗ ∗ q33

⎞
⎟⎠ ,

S1 =

(
S11 S12

∗ S22

)
, S2 =

(
s11 s12

∗ s22

)
,

Σ1i(d(t), ḋ(t)) =Sym{ΞT
1 PΞ2i}+ ḋ(t)ΞT

3 S1Ξ3 − ḋ(t)ΞT
4 S2Ξ4 + Sym(ΞT

3 S1Ξ5i + ΞT
4 S2Ξ6i)

+ Sym(ΞT
7 Q1Ξ8i) + ΞT

9iQ1Ξ9i − (1 − ḋ(t))ΞT
10Q1Ξ10 + Sym(ΞT

11Q2Ξ12)

+ (1 − ḋ(t))ΞT
13Q2Ξ13 − ΞT

14Q2Ξ14 + h2eT
siWesi +

h4

4
eT

siZesi − h2ΞT
15ZΞ15

− 2h2ΞT
16ZΞ16 − eT

12Ue12 + (α − 2)ΛT
1 W0Λ1 − (α + 1)ΛT

2 W0Λ2

− Sym{ΛT
1 [αY1 + (1 − α)Y2]Λ2},

α =
d(t)

h
, W0 = diag{W, 3W, 5W}, Ξ1 =

[
eT

1 eT
2 eT

3 d(t)eT
6 (h − d(t))eT

7

]T
,

Ξ2i = [eT
si (1 − ḋ(t))eT

4 eT
5 eT

1 − (1 − ḋ(t))eT
2 (1 − ḋ(t))eT

2 − eT
3 ]

T ,

Ξ3 =
[
eT

1 eT
6

]T
, Ξ4 =

[
eT

1 eT
7

]T
, Ξ5i =

[
d(t)eT

si − ḋ(t)eT
6 + eT

1 − (1 − ḋ(t))eT
2

]T
,
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Ξ6i =
[
(h − d(t))eT

si ḋ(t)eT
7 + (1 − ḋ(t))eT

2 − eT
3

]T
, Ξ7 =

[
d(t)eT

6 eT
1 − eT

2 d(t)(eT
1 − eT

6 )
]T

,

Ξ8i =
[
0 0 eT

si

]T
, Ξ9i =

[
eT

1 eT
si 0

]T
, Ξ10 =

[
eT

2 eT
4 eT

1 − eT
2

]T
,

Ξ11 = [(h − d(t))eT
7 eT

2 − eT
3 (h − d(t))(eT

2 − eT
7 )]

T , Ξ12 =
[
0 0 (1 − ḋ(t))eT

4

]T
,

Ξ13 =
[
eT

2 eT
4 0

]T
, Ξ14 =

[
eT

3 eT
5 eT

2 − eT
3

]T
, Ξ15 = e1 − e10, Ξ16 = e1 + 2e10 − 6e11,

Λ1 = [eT
1 − eT

2 eT
1 + eT

2 − 2eT
6 eT

1 − eT
2 + 6eT

6 − 12eT
8 ]

T ,

Λ2 = [eT
2 − eT

3 eT
2 + eT

3 − 2eT
7 eT

2 − eT
3 + 6eT

7 − 12eT
9 ]

T ,

esi = Aie1 + Adie2 + Gie12,

Π = λ1 + λ2 + λ3 + h2(λ4 + λ5 + λ26 + λ27 + λ32 + λ33) + 2(λ6 + λ7 + λ10)

+2h(λ8 + λ9 + λ11 + λ12 + λ13 + λ14 + λ18 + λ21 + λ25 + λ31) + 2h2λ15

+h(λ16 + λ17 + λ19 + λ20 + λ22 + λ23 + λ28 + λ29) +
h3

3
(λ24 + λ30)

+
h3

2
λ34 +

h5

12
λ35,

λ1 = λmax(P̄11), λ2 = λmax(P̄22), λ3 = λmax(P̄33), λ4 = λmax(P̄44), λ5 = λmax(P̄55),

λ6 = λmax(P̄12), λ7 = λmax(P̄13), λ8 = λmax(P̄14), λ9 = λmax(P̄15), λ10 = λmax(P̄23),

λ11 = λmax(P̄24), λ12 = λmax(P̄25), λ13 = λmax(P̄34), λ14 = λmax(P̄35), λ15 = λmax(P̄45),

λ16 = λmax(S̄11), λ17 = λmax(S̄22), λ18 = λmax(S̄12), λ19 = λmax(s̄11), λ20 = λmax(s̄22),

λ21 = λmax(s̄12), λ22 = λmax(Q̄11), λ23 = λmax(Q̄22), λ24 = λmax(Q̄33), λ25 = λmax(Q̄12),

λ26 = λmax(Q̄13), λ27 = λmax(Q̄23), λ28 = λmax(q̄11), λ29 = λmax(q̄22), λ30 = λmax(q̄33),

λ31 = λmax(q̄12), λ32 = λmax(q̄13), λ33 = λmax(q̄23), λ34 = λmax(W̄), λ35 = λmax(Z̄),

λ36 = λmin(P̄11), λ37 = λmax(U),

P̄1j = R− 1
2 P1jR− 1

2 , j = 1, 2, 3, 4, 5, P̄2j = R− 1
2 P2jR− 1

2 , j = 2, 3, 4, 5,

P̄3j = R− 1
2 P3jR− 1

2 , j = 3, 4, 5, P̄4j = R− 1
2 P4jR− 1

2 , j = 4, 5, P̄55 = R− 1
2 P55R− 1

2 ,

S̄1j = R− 1
2 S1jR− 1

2 , j = 1, 2, S̄22 = R− 1
2 S22R− 1

2 , s̄1j = R− 1
2 s1jR− 1

2 , j = 1, 2, s̄22 = R− 1
2 s22R− 1

2 ,

Q̄1j = R− 1
2 Q1jR− 1

2 , j = 1, 2, 3, Q̄2j = R− 1
2 Q2jR− 1

2 , j = 2, 3, Q̄33 = R− 1
2 Q33R− 1

2 ,

q̄1j = R− 1
2 q1jR− 1

2 , j = 1, 2, 3, q̄2j = R− 1
2 q2jR− 1

2 , j = 2, 3, q̄33 = R− 1
2 q33R− 1

2 ,

W̄ = R− 1
2 WR− 1

2 , Z̄ = R− 1
2 ZR− 1

2 .

Proof. We construct the following Lyapunov–Krasovskii functional candidate for the T-S fuzzy
time-delay system (3):

V(x(t)) = V1(x(t)) + V2(x(t)) + V3(x(t)) + V4(x(t)) + V5(x(t)) + V6(x(t)), (11)

where

V1(x(t)) = ηT
1 (t)Pη1(t),

V2(x(t)) = d(t)ηT
2 (t)S1η2(t) + (h − d(t))ηT

3 (t)S2η3(t),

V3(x(t)) =
∫ t

t−d(t) ηT
4 (s)Q1η4(s)ds,

V4(x(t)) =
∫ t−d(t)

t−h ηT
5 (s)Q2η5(s)ds,
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V5(x(t)) = h
∫ t

t−h

∫ t
θ ẋT(s)Wẋ(s)dsdθ,

V6(x(t)) = h2

2

∫ t
t−h

∫ t
σ

∫ t
θ ẋT(s)Zẋ(s)dsdθdσ,

and
η1(t) = [xT(t) xT(t − d(t)) xT(t − h)

∫ t
t−d(t) xT(s)ds

∫ t−d(t)
t−h xT(s)ds]T ,

η2(t) = [xT(t) 1
d(t)

∫ t
t−d(t) xT(s)ds]T ,

η3(t) = [xT(t) 1
h−d(t)

∫ t−d(t)
t−h xT(s)ds]T ,

η4(s) = [xT(s) ẋT(s)
∫ t

s ẋT(θ)dθ]T ,

η5(s) = [xT(s) ẋT(s)
∫ t−d(t)

s ẋT(θ)dθ]T .

Then, the time derivatives of Vi(x(t))(i = 1, 2, 3, 4, 5, 6) along the trajectory of the T-S fuzzy system (3)
are obtained as follows:

V̇1(x(t)) = 2

⎛
⎜⎜⎜⎜⎜⎜⎝

x(t)
x(t − d(t))

x(t − h)∫ t
t−d(t) x(s)ds∫ t−d(t)
t−h x(s)ds

⎞
⎟⎟⎟⎟⎟⎟⎠

T

P

⎛
⎜⎜⎜⎜⎜⎝

ẋ(t)
(1 − ḋ(t))ẋ(t − d(t))

ẋ(t − h)
x(t)− (1 − ḋ(t))x(t − d(t))

(1 − ḋ(t))x(t − d(t))− x(t − h)

⎞
⎟⎟⎟⎟⎟⎠

=
r

∑
i=1

ρi(ξ(t))εT(t)[Sym(ΞT
1 PΞ2i)]ε(t).

(12)

Similarly, we can also obtain

V̇2(x(t)) =
r

∑
i=1

ρi(ξ(t))εT(t)[ḋ(t)ΞT
3 S1Ξ3 − ḋ(t)ΞT

4 S2Ξ4 + Sym(ΞT
3 S1Ξ5i + ΞT

4 S2Ξ6i)]ε(t), (13)

V̇3(x(t)) =
r

∑
i=1

ρi(ξ(t))εT(t)[Sym(ΞT
7 Q1Ξ8i) + ΞT

9iQ1Ξ9i − (1 − ḋ(t))ΞT
10Q1Ξ10]ε(t), (14)

V̇4(x(t)) =
r

∑
i=1

ρi(ξ(t))εT(t)[Sym(ΞT
11Q2Ξ12) + (1 − ḋ(t))ΞT

13Q2Ξ13 − ΞT
14Q2Ξ14]ε(t), (15)

V̇5(x(t)) = h2 ẋT(t)Wẋ(t)− h
∫ t

t−h
ẋT(s)Wẋ(s)ds

=
r

∑
i=1

ρi(ξ(t))εT(t)(h2eT
siWesi)ε(t)

− h
∫ t

t−h
ẋT(s)Wẋ(s)ds,

(16)

V̇6(x(t)) =
h4

4
ẋT(t)Zẋ(t)− h2

2

∫ t

t−h

∫ t

θ
ẋT(s)Zẋ(s)dsdθ

=
r

∑
i=1

ρi(ξ(t))εT(t)(
h4

4
eT

siZesi)ε(t)

− h2

2

∫ t

t−h

∫ t

θ
ẋT(s)Zẋ(s)dsdθ.

(17)

Now, we split−h
∫ t

t−h ẋT(s)Wẋ(s)ds into two integrals, i.e.,−h
∫ t

t−h ẋT(s)Wẋ(s)ds =−h
∫ t

t−d(t) ẋT(s)Wẋ(s)ds
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−h
∫ t−d(t)

t−h ẋT(s)Wẋ(s)ds. Then, utilizing the integral inequality (24) in Lemma 5.1 of [23] for each of
them yields

−h
∫ t

t−d(t)
ẋT(s)Wẋ(s)ds ≤ − h

d(t)
εT(t)ΛT

1 W0Λ1ε(t) (18)

and

−h
∫ t−d(t)

t−h
ẋT(s)Wẋ(s)ds ≤ − h

h − d(t)
εT(t)ΛT

2 W0Λ2ε(t), (19)

where W0 = diag{W, 3W, 5W}, Λ1 =

⎛
⎜⎝ e1 − e2

e1 + e2 − 2e6

e1 − e2 + 6e6 − 12e8

⎞
⎟⎠ and Λ2 =

⎛
⎜⎝ e2 − e3

e2 + e3 − 2e7

e2 − e3 + 6e7 − 12e9

⎞
⎟⎠.

According to Lemma 1, let α = d(t)
h , R1 = R2 = W0, �1 = Λ1ε(t), �2 = Λ2ε(t), from

inequalities (18) and (19), then we can obtain

− h
∫ t

t−d(t)
ẋT(s)Wẋ(s)ds − h

∫ t−d(t)

t−h
ẋT(s)Wẋ(s)ds

≤εT(t)[(α − 2)ΛT
1 W0Λ1 − (α + 1)ΛT

2 W0Λ2 − Sym{ΛT
1 [αY1 + (1 − α)Y2]Λ2}

+ (1 − α)ΛT
1 Y1W−1

0 YT
1 Λ1 + αΛT

2 YT
2 W−1

0 Y2Λ2]ε(t).

(20)

Applying the integral inequality (25) in Lemma 5.1 of [23] to the double integral
− h2

2

∫ t
t−h

∫ t
θ ẋT(s)Zẋ(s)dsdθ in inequality (17) leads to

− h2

2

∫ t

t−h

∫ t

θ
ẋT(s)Zẋ(s)dsdθ ≤ ε(t)T(−h2ΞT

15ZΞ15 − 2h2ΞT
16ZΞ16)ε(t), (21)

where Ξ15 = e1 − e10, Ξ16 = e1 + 2e10 − 6e11.
Notice that ∑r

i=1 ρi(ξ(t)) = 1, and we can derive the following result from (12)–(17), (20) and (21):

V̇(x(t)) ≤
r

∑
i=1

ρi(ξ(t))εT(t)Σi(d(t), ḋ(t))ε(t) + ωT(t)Uω(t), (22)

where Σi(d(t), ḋ(t)) = Σ1i(d(t), ḋ(t)) + Σ2(d(t)),

Σ1i(d(t), ḋ(t)) =Sym{ΞT
1 PΞ2i}+ ḋ(t)ΞT

3 S1Ξ3 − ḋ(t)ΞT
4 S2Ξ4 + Sym(ΞT

3 S1Ξ5i + ΞT
4 S2Ξ6i)

+ Sym(ΞT
7 Q1Ξ8i) + ΞT

9iQ1Ξ9i − (1 − ḋ(t))ΞT
10Q1Ξ10 + Sym(ΞT

11Q2Ξ12)

+ (1 − ḋ(t))ΞT
13Q2Ξ13 − ΞT

14Q2Ξ14 + h2eT
siWesi +

h4

4
eT

siZesi − h2ΞT
15ZΞ15

− 2h2ΞT
16ZΞ16 − eT

12Ue12 + (α − 2)ΛT
1 W0Λ1 − (α + 1)ΛT

2 W0Λ2

− Sym{ΛT
1 [αY1 + (1 − α)Y2]Λ2},

Σ2(d(t)) = (1 − α)ΛT
1 Y1W−1

0 YT
1 Λ1 + αΛT

2 YT
2 W−1

0 Y2Λ2.

Assuming Σi(d(t), ḋ(t)) < 0 for i = 1, 2, · · · , r, we have

V̇(x(t)) < βV(x(t)) + ωT(t)Uω(t), (23)

where β > 0 is a constant.
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However, Σi(d(t), ḋ(t)) depends on the time-varying delay d(t) and its derivative ḋ(t). Therefore,
Σi(d(t), ḋ(t)) < 0 cannot be solved directly by applying an LMI tool. Noting that Σi(d(t), ḋ(t)) is a
linear function of d(t) and ḋ(t), it is obvious that Σi(d(t), ḋ(t)) < 0 can be satisfied if the following
inequalities (24)–(27) hold,

Σi(0, μ1) < 0, (24)

Σi(0, μ2) < 0, (25)

Σi(h, μ1) < 0, (26)

Σi(h, μ2) < 0. (27)

According to Schur complement lemma, the inequalities (24)–(27) are equivalent to inequalities (6)–(9),
respectively. Thus, the inequalities (6)–(9) can ensure Σi(d(t), ḋ(t)) < 0 holds. Furthermore, the
inequalities (6)–(9) can also guarantee that the inequality (23) holds.

Multiplying (23) by e−βt, we can obtain

e−βtV̇(x(t))− βe−βtV(x(t)) < e−βtωT(t)Uω(t),

i.e.,

d
dt
(e−βtV(x(t))) < e−βtωT(t)Uω(t). (28)

Integrating (28) from 0 to t with t ∈ [0, Tf ], we have

e−βtV(x(t))− V(x(0)) <
∫ t

0
e−βsωT(s)Uω(s)ds.

Noting that β > 0, we can derive

V(x(t)) < eβtV(x(0)) + eβt
∫ t

0
e−βsωT(s)Uω(s)ds

≤ eβtV(x(0)) + eβtλmax(U)
∫ t

0
ωT(s)ω(s)ds.

Therefore, we have

V(x(t)) < eβTf [V(x(0)) + λmax(U)δ] . (29)

In addition, it can be easily obtained that

V(x(t)) ≥ xT(t)P11x(t) = xT(t)R
1
2 P̄11R

1
2 x(t) ≥ λmin(P̄11)xT(t)Rx(t) = λ36xT(t)Rx(t),

V(x(0)) = ηT
1 (0)Pη1(0) + d(0)ηT

2 (0)S1η2(0) + (h − d(0))ηT
3 (0)S2η3(0) +

∫ 0

−d(0)
ηT

4 (s)Q1η4(s)ds

+
∫ −d(0)

−h
ηT

5 (s)Q2η5(s)ds + h
∫ 0

−h

∫ 0

θ
ẋT(s)Wẋ(s)dsdθ +

h2

2

∫ 0

−h

∫ 0

σ

∫ 0

θ
ẋT(s)Zẋ(s)dsdθdσ

≤ [λmax(P̄11) + λmax(P̄22) + λmax(P̄33) + h2λmax(P̄44) + h2λmax(P̄55) + 2λmax(P̄12)

+ 2λmax(P̄13) + 2hλmax(P̄14) + 2hλmax(P̄15) + 2λmax(P̄23) + 2hλmax(P̄24) + 2hλmax(P̄25)

49



Symmetry 2020, 12, 447

+ 2hλmax(P̄34) + 2hλmax(P̄35) + 2h2λmax(P̄45) + hλmax(S̄11) + hλmax(S̄22) + 2hλmax(S̄12)

+ hλmax(s̄11) + hλmax(s̄22) + 2hλmax(s̄12) + hλmax(Q̄11) + hλmax(Q̄22) +
h3

3
λmax(Q̄33)

+ 2hλmax(Q̄12) + h2λmax(Q̄13) + h2λmax(Q̄23) + hλmax(q̄11) + hλmax(q̄22) +
h3

3
λmax(q̄33)

+ 2hλmax(q̄12) + h2λmax(q̄13) + h2λmax(q̄23) +
h3

2
λmax(W̄) +

h5

12
λmax(Z̄)]

× sup−h≤θ≤0{xT(θ)Rx(θ), ẋT(θ)Rẋ(θ)}
≤[λ1 + λ2 + λ3 + h2(λ4 + λ5 + λ26 + λ27 + λ32 + λ33) + 2(λ6 + λ7 + λ10) + 2h(λ8 + λ9

+ λ11 + λ12 + λ13 + λ14 + λ18 + λ21 + λ25 + λ31) + 2h2λ15 + h(λ16 + λ17 + λ19 + λ20

+ λ22 + λ23 + λ28 + λ29) +
h3

3
(λ24 + λ30) +

h3

2
λ34 +

h5

12
λ35]c1.

We substitute the above two inequalities into (29) and assume the inequality (10) holds, we can
easily derive that xT(t)Rx(t) ≤ c2 for all t ∈ [0, Tf ]. Thus, the proof is completed.

Remark 1. The novel augmented Lyapunov–Krasovskii functional constructed in (11) takes advantage of
information regarding the time-varying delay, which can make the obtained new finite-time boundedness
condition less conservative. In addition, the Lyapunov–Krasovskii functional (11) is more general due
to the introduction of several augmented vectors and two delay-product-type terms, such as η1(t),
η4(s), η5(s), d(t)ηT

2 (t)S1η2(t) and (h − d(t))ηT
3 (t)S2η3(t). When several subblocks of the partitioned

matrices P, S1, S2, Q1, Q2 are zero matrices with appropriate dimensions and W = 0, Z = 0,
the augmented Lyapunov–Krasovskii functional V(x(t)) reduces to the simpler Lyapunov functions in some
literature [24,26,34]. Additionally, to the best of our knowledge, the chosen Lyapunov–Krasovskii functional
is a simple LKF instead of an augmented LKF in most existing studies regarding finite-time boundedness
of dynamical systems, which is because the augmented LKF increases the difficulty of deriving finite-time
boundedness criteria in terms of LMIs. However, this problem has been successfully solved in Theorem 1.

Remark 2. In Theorem 1, the improved reciprocally convex combination inequality and the auxiliary
function-based integral inequalities are utilized to estimate the bound of the derivative of the constructed
LKF. The auxiliary function-based integral inequalities are more general, as they can reduce to some other
integral inequalities by appropriately choosing the auxiliary functions [23], such as the Jensen inequality,
Bessel–Legendre inequality and Wirtinger-based integral inequality. In addition, the improved reciprocally
convex combination inequality can provide a maximum lower bound with less slack matrix variables for several
reciprocally convex combinations, which plays a critical role in reducing the conservativeness and the calculation
complexity of the delay-dependent finite-time boundedness conditions for T-S fuzzy systems with time-varying
delay and norm-bounded disturbance.

3.2. Controller Design

Based on the delay-dependent finite-time boundedness criterion proposed in Theorem 1,
we develop a memory state feedback controller to ensure the finite-time boundness of the resulting
closed-loop T-S fuzzy time-delay system in the following theorem, which can be derived by solving a
feasibility problem in terms of the linear matrix inequalities.

Theorem 2. For the given scalars h > 0, μ1, and μ2, the T-S fuzzy system (5) with a time-varying delay d(t)
satisfying (1) is finite-time bounded with respect to (c1, c2, Tf , R, δ, h), if there exist scalars β > 0, γ, symmetric
positive definite matrices P̃ ∈ R5n×5n, S̃1, S̃2 ∈ R2n×2n, Q̃1, Q̃2 ∈ R3n×3n, W̃, Z̃, Ũ ∈ Rn×n, any matrices
Ỹ1, Ỹ2 ∈ R3n×3n, X ∈ Rn×n and L1j, L2j ∈ Rp×n(j = 1, 2, . . . , r), such that the following conditions hold:
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(
Σ̃ii(0, μ1) Λ̃T

1 Ỹ1

ỸT
1 Λ̃1 −W̃0

)
< 0, i = 1, 2, . . . , r (30)

(
Σ̃ii(0, μ2) Λ̃T

1 Ỹ1

ỸT
1 Λ̃1 −W̃0

)
< 0, i = 1, 2, . . . , r (31)

(
Σ̃ii(h, μ1) Λ̃T

2 ỸT
2

Ỹ2Λ̃2 −W̃0

)
< 0, i = 1, 2, . . . , r (32)

(
Σ̃ii(h, μ2) Λ̃T

2 ỸT
2

Ỹ2Λ̃2 −W̃0

)
< 0, i = 1, 2, . . . , r (33)

(
Ψ̃ij(0, μ1) Λ̃T

1 Ỹ1

ỸT
1 Λ̃1

1−r
r W̃0

)
< 0, i, j = 1, 2, . . . , r, i �= j (34)

(
Ψ̃ij(0, μ2) Λ̃T

1 Ỹ1

ỸT
1 Λ̃1

1−r
r W̃0

)
< 0, i, j = 1, 2, . . . , r, i �= j (35)

(
Ψ̃ij(h, μ1) Λ̃T

2 ỸT
2

Ỹ2Λ̃2
1−r

r W̃0

)
< 0, i, j = 1, 2, . . . , r, i �= j (36)

(
Ψ̃ij(h, μ2) Λ̃T

2 ỸT
2

Ỹ2Λ̃2
1−r

r W̃0

)
< 0, i, j = 1, 2, . . . , r, i �= j (37)

c1Π̃ + λ̃37δ < λ̃36c2e−βTf , (38)

where

P̃ =

⎛
⎜⎜⎜⎜⎜⎝

P̃11 P̃12 P̃13 P̃14 P̃15

∗ P̃22 P̃23 P̃24 P̃25

∗ ∗ P̃33 P̃34 P̃35

∗ ∗ ∗ P̃44 P̃45

∗ ∗ ∗ ∗ P̃55

⎞
⎟⎟⎟⎟⎟⎠ , Q̃1 =

⎛
⎜⎝ Q̃11 Q̃12 Q̃13

∗ Q̃22 Q̃23

∗ ∗ Q̃33

⎞
⎟⎠ , Q̃2 =

⎛
⎜⎝ q̃11 q̃12 q̃13

∗ q̃22 q̃23

∗ ∗ q̃33

⎞
⎟⎠ ,

S̃1 =

(
S̃11 S̃12

∗ S̃22

)
, S̃2 =

(
s̃11 s̃12

∗ s̃22

)
,

Σ̃ij(d(t), ḋ(t)) =Sym{Ξ̃T
1 P̃Ξ̃2}+ ḋ(t)Ξ̃T

3 S̃1Ξ̃3 − ḋ(t)Ξ̃T
4 S̃2Ξ̃4 + Sym(Ξ̃T

3 S̃1Ξ̃5 + Ξ̃T
4 S̃2Ξ̃6)

+ Sym(Ξ̃T
7 Q̃1Ξ̃8) + Ξ̃T

9 Q̃1Ξ̃9 − (1 − ḋ(t))Ξ̃T
10Q̃1Ξ̃10 + Sym(Ξ̃T

11Q̃2Ξ̃12)
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+ (1 − ḋ(t))Ξ̃T
13Q̃2Ξ̃13 − Ξ̃T

14Q̃2Ξ̃14 + h2 ẽT
13W̃ẽ13 +

h4

4
ẽT

13Z̃ẽ13 − h2Ξ̃T
15Z̃Ξ̃15

− 2h2Ξ̃T
16Z̃Ξ̃16 − ẽT

12Ũẽ12 + (α − 2)Λ̃T
1 W̃0Λ̃1 − (α + 1)Λ̃T

2 W̃0Λ̃2

− Sym{Λ̃T
1 [αỸ1 + (1 − α)Ỹ2]Λ̃2}+ Sym{(ẽT

1 + γẽT
13)[AiXẽ1 + BiL1j ẽ1

+ AdiXẽ2 + BiL2j ẽ2 + GiXẽ12 − Xẽ13]},

Ψ̃ij(d(t), ḋ(t)) =
1

r − 1
Σ̃ii(d(t), ḋ(t)) +

1
2

Σ̃ij(d(t), ḋ(t)) +
1
2

Σ̃ji(d(t), ḋ(t)),

α =
d(t)

h
, W̃0 = diag{W̃, 3W̃, 5W̃}, Ξ̃1 =

[
ẽT

1 ẽT
2 ẽT

3 d(t)ẽT
6 (h − d(t))ẽT

7

]T
,

Ξ̃2 = [ẽT
13 (1 − ḋ(t))ẽT

4 ẽT
5 ẽT

1 − (1 − ḋ(t))ẽT
2 (1 − ḋ(t))ẽT

2 − ẽT
3 ]

T ,

Ξ̃3 =
[
ẽT

1 ẽT
6

]T
, Ξ̃4 =

[
ẽT

1 ẽT
7

]T
, Ξ̃5 =

[
d(t)ẽT

13 − ḋ(t)ẽT
6 + ẽT

1 − (1 − ḋ(t))ẽT
2

]T
,

Ξ̃6 =
[
(h − d(t))ẽT

13 ḋ(t)ẽT
7 + (1 − ḋ(t))ẽT

2 − ẽT
3

]T
, Ξ̃7 =

[
d(t)ẽT

6 ẽT
1 − ẽT

2 d(t)(ẽT
1 − ẽT

6 )
]T

,

Ξ̃8 =
[
0 0 ẽT

13

]T
, Ξ̃9 =

[
ẽT

1 ẽT
13 0

]T
, Ξ̃10 =

[
ẽT

2 ẽT
4 ẽT

1 − ẽT
2

]T
,

Ξ̃11 = [(h − d(t))ẽT
7 ẽT

2 − ẽT
3 (h − d(t))(ẽT

2 − ẽT
7 )]

T , Ξ̃12 =
[
0 0 (1 − ḋ(t))ẽT

4

]T
,

Ξ̃13 =
[
ẽT

2 ẽT
4 0

]T
, Ξ̃14 =

[
ẽT

3 ẽT
5 ẽT

2 − ẽT
3

]T
, Ξ̃15 = ẽ1 − ẽ10, Ξ̃16 = ẽ1 + 2ẽ10 − 6ẽ11,

Λ̃1 = [ẽT
1 − ẽT

2 ẽT
1 + ẽT

2 − 2ẽT
6 ẽT

1 − ẽT
2 + 6ẽT

6 − 12ẽT
8 ]

T ,

Λ̃2 = [ẽT
2 − ẽT

3 ẽT
2 + ẽT

3 − 2ẽT
7 ẽT

2 − ẽT
3 + 6ẽT

7 − 12ẽT
9 ]

T ,

Π̃ = λ̃1 + λ̃2 + λ̃3 + h2(λ̃4 + λ̃5 + λ̃26 + λ̃27 + λ̃32 + λ̃33) + 2(λ̃6 + λ̃7 + λ̃10)

+2h(λ̃8 + λ̃9 + λ̃11 + λ̃12 + λ̃13 + λ̃14 + λ̃18 + λ̃21 + λ̃25 + λ̃31) + 2h2λ̃15

+h(λ̃16 + λ̃17 + λ̃19 + λ̃20 + λ̃22 + λ̃23 + λ̃28 + λ̃29) +
h3

3
(λ̃24 + λ̃30)

+
h3

2
λ̃34 +

h5

12
λ̃35,

λ̃1 = λmax(P̂11), λ̃2 = λmax(P̂22), λ̃3 = λmax(P̂33), λ̃4 = λmax(P̂44), λ̃5 = λmax(P̂55),

λ̃6 = λmax(P̂12), λ̃7 = λmax(P̂13), λ̃8 = λmax(P̂14), λ̃9 = λmax(P̂15), λ̃10 = λmax(P̂23),

λ̃11 = λmax(P̂24), λ̃12 = λmax(P̂25), λ̃13 = λmax(P̂34), λ̃14 = λmax(P̂35), λ̃15 = λmax(P̂45),

λ̃16 = λmax(Ŝ11), λ̃17 = λmax(Ŝ22), λ̃18 = λmax(Ŝ12), λ̃19 = λmax(ŝ11), λ̃20 = λmax(ŝ22),

λ̃21 = λmax(ŝ12), λ̃22 = λmax(Q̂11), λ̃23 = λmax(Q̂22), λ̃24 = λmax(Q̂33), λ̃25 = λmax(Q̂12),

λ̃26 = λmax(Q̂13), λ̃27 = λmax(Q̂23), λ̃28 = λmax(q̂11), λ̃29 = λmax(q̂22), λ̃30 = λmax(q̂33),

λ̃31 = λmax(q̂12), λ̃32 = λmax(q̂13), λ̃33 = λmax(q̂23), λ̃34 = λmax(Ŵ), λ̃35 = λmax(Ẑ),

λ̃36 = λmin(P̂11), λ̃37 = λmax(Û),

P̂1j = R− 1
2 XP̃1jX−1R− 1

2 , j = 1, 2, 3, 4, 5, P̂2j = R− 1
2 XP̃2jX−1R− 1

2 , j = 2, 3, 4, 5,

P̂3j = R− 1
2 XP̃3jX−1R− 1

2 , j = 3, 4, 5, P̂4j = R− 1
2 XP̃4jX−1R− 1

2 , j = 4, 5, P̂55 = R− 1
2 XP̃55X−1R− 1

2 ,

Ŝ1j = R− 1
2 XS̃1jX−1R− 1

2 , j = 1, 2, Ŝ22 = R− 1
2 XS̃22X−1R− 1

2 , ŝ1j = R− 1
2 Xs̃1jX−1R− 1

2 , j = 1, 2,

ŝ22 = R− 1
2 Xs̃22X−1R− 1

2 , Q̂1j = R− 1
2 XQ̃1jX−1R− 1

2 , j = 1, 2, 3, Q̂2j = R− 1
2 XQ̃2jX−1R− 1

2 , j = 2, 3,

Q̂33 = R− 1
2 XQ̃33X−1R− 1

2 , q̂1j = R− 1
2 Xq̃1jX−1R− 1

2 , j = 1, 2, 3, q̂2j = R− 1
2 Xq̃2jX−1R− 1

2 , j = 2, 3,

q̂33 = R− 1
2 Xq̃33X−1R− 1

2 , Ŵ = R− 1
2 XW̃X−1R− 1

2 , Ẑ = R− 1
2 XZ̃X−1R− 1

2 , Û = XŨX−1.
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In this case, the memory state feedback controller gains are given by K1j = L1jX−1, K2j = L2jX−1, j =

1, 2, . . . , r.

Proof. Choose the Lyapunov–Krasovskii functional candidate (11) again for the resulting closed-loop
T-S fuzzy time-delay system (5).

From the proof of Theorem 1, we obtain the inequality (22):

V̇(x(t)) ≤
r

∑
i=1

ρi(ξ(t))εT(t)Σi(d(t), ḋ(t))ε(t) + ωT(t)Uω(t).

Furthermore, it can be easily obtained that

V̇(x(t)) ≤ ε̃T(t)Σ̂(d(t), ḋ(t))ε̃(t) + ωT(t)Uω(t), (39)

where Σ̂(d(t), ḋ(t)) = Σ̂1(d(t), ḋ(t)) + Σ̂2(d(t)),

Σ̂1(d(t), ḋ(t)) =Sym{Ξ̃T
1 PΞ̃2}+ ḋ(t)Ξ̃T

3 S1Ξ̃3 − ḋ(t)Ξ̃T
4 S2Ξ̃4 + Sym(Ξ̃T

3 S1Ξ̃5 + Ξ̃T
4 S2Ξ̃6)

+ Sym(Ξ̃T
7 Q1Ξ̃8) + Ξ̃T

9 Q1Ξ̃9 − (1 − ḋ(t))Ξ̃T
10Q1Ξ̃10 + Sym(Ξ̃T

11Q2Ξ̃12)

+ (1 − ḋ(t))Ξ̃T
13Q2Ξ̃13 − Ξ̃T

14Q2Ξ̃14 + h2 ẽT
13Wẽ13 +

h4

4
ẽT

13Zẽ13 − h2Ξ̃T
15ZΞ̃15

− 2h2Ξ̃T
16ZΞ̃16 − ẽT

12Uẽ12 + (α − 2)Λ̃T
1 W0Λ̃1 − (α + 1)Λ̃T

2 W0Λ̃2

− Sym{Λ̃T
1 [αY1 + (1 − α)Y2]Λ̃2},

Σ̂2(d(t)) = (1 − α)Λ̃T
1 Y1W−1

0 YT
1 Λ̃1 + αΛ̃T

2 YT
2 W−1

0 Y2Λ̃2.

According to the inequality (39), we have V̇(x(t)) < βV(x(t)) + ωT(t)Uω(t), if the following
inequality holds,

ε̃T(t)Σ̂(d(t), ḋ(t))ε̃(t) < 0. (40)

Then, similar to Theorem 1, if the inequalities (10) and (40) hold, we can easily obtain that the
closed-loop T-S fuzzy time-delay system (5) is finite-time bounded with respect to (c1, c2, Tf , R, δ, h).

Now, the closed-loop T-S fuzzy time-delay system (5) can be rewritten as:

Θ(t)ε̃(t) = 0, (41)

where Θ(t) = [A(t) + B(t)K1(t) Ad(t) + B(t)K2(t) 0 0 0 0 0 0 0 0 0 G(t) − I].
According to Finsler lemma, from (40) and (41), it can be obtained that the closed-loop T-S fuzzy

time-delay system (5) is finite-time bounded with respect to (c1, c2, Tf , R, δ, h) if there exists a matrix
Φ ∈ R13n×n, such that:

Σ̂(d(t), ḋ(t)) + Sym{ΦΘ(t)} < 0. (42)

Let Φ = [X−1 0 0 0 0 0 0 0 0 0 0 0 γX−1]T , where γ is an arbitrary scalar. Then, we
have the inequality (42) is equivalent to

Σ̂(d(t), ḋ(t)) + Sym{(ẽT
1 X−T + γẽT

13X−T)[A(t)ẽ1 + B(t)K1(t)ẽ1

+ Ad(t)ẽ2 + B(t)K2(t)ẽ2 + G(t)ẽ12 − ẽ13]} < 0.
(43)

Let Γ1 = diag(X, X, X, X, X, X, X, X, X, X, X, X, X). Multiplying (43) left by ΓT
1 and right by Γ1, we can

obtain the equivalent condition of (43) as follows:
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ΓT
1 Σ̂(d(t), ḋ(t))Γ1 + Sym{(ẽT

1 + γẽT
13)[A(t)Xẽ1 + B(t)K1(t)Xẽ1

+ Ad(t)Xẽ2 + B(t)K2(t)Xẽ2 + G(t)Xẽ12 − Xẽ13]} < 0.

Let Γ2 = diag(X, X, X, X, X), Γ3 = diag(X, X), Γ4 = diag(X, X, X), P̃ = ΓT
2 PΓ2, S̃1 = ΓT

3 S1Γ3, S̃2 =

ΓT
3 S2Γ3, Q̃1 = ΓT

4 Q1Γ4, Q̃2 = ΓT
4 Q2Γ4, W̃ = XTWX, Z̃ = XTZX, Ũ = XTUX, W̃0 = ΓT

4 W0Γ4,
Ỹ1 = ΓT

4 Y1Γ4, Ỹ2 = ΓT
4 Y2Γ4. It can be easily derived that ΓT

1 Σ̂(d(t), ḋ(t))Γ1 = Σ̃1(d(t), ḋ(t)) + Σ̃2(d(t)),
where

Σ̃1(d(t), ḋ(t)) =Sym{Ξ̃T
1 P̃Ξ̃2}+ ḋ(t)Ξ̃T

3 S̃1Ξ̃3 − ḋ(t)Ξ̃T
4 S̃2Ξ̃4 + Sym(Ξ̃T

3 S̃1Ξ̃5 + Ξ̃T
4 S̃2Ξ̃6)

+ Sym(Ξ̃T
7 Q̃1Ξ̃8) + Ξ̃T

9 Q̃1Ξ̃9 − (1 − ḋ(t))Ξ̃T
10Q̃1Ξ̃10 + Sym(Ξ̃T

11Q̃2Ξ̃12)

+ (1 − ḋ(t))Ξ̃T
13Q̃2Ξ̃13 − Ξ̃T

14Q̃2Ξ̃14 + h2 ẽT
13W̃ẽ13 +

h4

4
ẽT

13Z̃ẽ13 − h2Ξ̃T
15Z̃Ξ̃15

− 2h2Ξ̃T
16Z̃Ξ̃16 − ẽT

12Ũẽ12 + (α − 2)Λ̃T
1 W̃0Λ̃1 − (α + 1)Λ̃T

2 W̃0Λ̃2

− Sym{Λ̃T
1 [αỸ1 + (1 − α)Ỹ2]Λ̃2},

Σ̃2(d(t)) = (1 − α)Λ̃T
1 Ỹ1W̃−1

0 ỸT
1 Λ̃1 + αΛ̃T

2 ỸT
2 W̃−1

0 Ỹ2Λ̃2.

Now, let L1j = K1jX, L2j = K2jX, j = 1, 2, . . . , r, then we can easily derive that (42) is equivalent
to Σ̃ij(d(t), ḋ(t)) + Σ̃2(d(t)) < 0, where Σ̃ij(d(t), ḋ(t)) = Σ̃1(d(t), ḋ(t)) + Sym{(ẽT

1 + γẽT
13)[AiXẽ1 +

BiL1j ẽ1 + AdiXẽ2 + BiL2j ẽ2 + GiXẽ12 − Xẽ13]}, i, j = 1, 2, . . . , r. Additionally, it is clear that the
condition (38) is the equivalent condition of (10).

According to the Schur complement lemma and Lemma 2 in [35], similar to the proof of Theorem 1,
the conditions (30)–(38) can ensure the closed-loop T-S fuzzy time-delay system (5) finite-time bounded
with respect to (c1, c2, Tf , R, δ, h), and we can obtain the memory state feedback controller gains
K1j = L1jX−1, K2j = L2jX−1, j = 1, 2, . . . , r. Thus, this completes the proof of the theorem.

Remark 3. It is well known that the concept of finite-time boundedness reduces to the concept of finite-time
stability when ω(t) = 0. Thus, finite-time stability is a special case of finite-time boundedness. The authors
in [28] discuss the problem of finite-time stability and stabilization for a class of T-S fuzzy systems with
time-varying delay. However, this paper is concerned with finite-time boundness analysis and the finite-time
stabilization problem for T-S fuzzy systems with a time-varying delay and norm-bounded disturbance. Therefore,
the developed results in this paper are more general.

Remark 4. The Finsler lemma is employed to design the memory state feedback controller for a T-S fuzzy
time-delay system in the proof of Theorem 2. In order to derive a finite-time stabilization condition in the
form of LMIs, the matrix Φ = [X−1 0 0 0 0 0 0 0 0 0 0 0 γX−1]T is defined, which may
introduce some conservativeness. However, it should be mentioned that this is indeed an effective approach
to obtain a finite-time stabilization criterion. To reduce the aforementioned conservativeness, an appropriate
parameter γ can be obtained by applying several powerful optimization algorithms.

Remark 5. Based on the parallel distributed compensation scheme, the memory state feedback controller is
designed to ensure finite-time boundness of the corresponding closed-loop T-S fuzzy time-delay system in
Theorem 2. For fixed (c1, c2, Tf , R, δ, h), the optimal minimum values of c2 for guaranteeing the closed-loop T-S
fuzzy system finite-time bounded can be obtained by solving a series of LMIs, namely,

min
(30)−(38)

c2.

The memory state feedback controller gains are given by K1j = L1jX−1, K2j = L2jX−1, j = 1, 2, . . . , r.
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4. Numerical Example

In this section, a numerical example is given to illustrate the effectiveness of the proposed results.
This example deals with a truck-trailer system with time-varying delay. The dynamic model is

described as follows:⎧⎪⎨
⎪⎩

ẋ1(t) = −a vt̄
Lt0

x1(t)− (1 − a) vt̄
Lt0

x1(t − d(t)) + vt̄
lt0

u(t) + ω1(t)
ẋ2(t) = a vt̄

Lt0
x1(t) + (1 − a) vt̄

Lt0
x1(t − d(t))

ẋ3(t) = vt̄
t0

sin[x2(t) + a vt̄
L x1(t) + (1 − a) vt̄

2L x1(t − d(t))]

where x1(t) is the angle difference between the truck and the trailer, x2(t) is the angle of the trailer,
x3(t) represents the vertical position of the rear end of the trailer, u(t) denotes the steering angle,
ω(t) =

(
ωT

1 (t) ωT
2 (t) ωT

3 (t)
)T is the exogenous disturbance.

Let σ(t) = x2(t) + a vt̄
L x1(t) + (1 − a) vt̄

2L x1(t − d(t)), the T-S fuzzy time-delay system that
represents the above truck-tailer model is as follows:
Plant Rule 1: If σ(t) is about 0, then

ẋ(t) = A1x(t) + Ad1x(t − d(t)) + B1u(t) + Bω1ω(t);

Plant Rule 2: If σ(t) is about ±π, then

ẋ(t) = A2x(t) + Ad2x(t − d(t)) + B2u(t) + Bω2ω(t),

where

A1 =

⎛
⎜⎝

−a vt̄
Lt0

0 0
a vt̄

Lt0
0 0

a v2 t̄2

2Lt0
vt̄
t0

0

⎞
⎟⎠ , Ad1 =

⎛
⎜⎝

−b vt̄
Lt0

0 0
b vt̄

Lt0
0 0

b v2 t̄2

2Lt0
0 0

⎞
⎟⎠ ,

A2 =

⎛
⎜⎝

−a vt̄
Lt0

0 0
a vt̄

Lt0
0 0

a dv2 t̄2

2Lt0
dvt̄
t0

0

⎞
⎟⎠ , Ad2 =

⎛
⎜⎝

−b vt̄
Lt0

0 0
b vt̄

Lt0
0 0

b dv2 t̄2

2Lt0
0 0

⎞
⎟⎠ ,

B1 = B2 =

⎛
⎜⎝

vt̄
lt0

0
0

⎞
⎟⎠ , Bω1 = Bω2 =

⎛
⎜⎝ 1 0 0

0 0 0
0 0 0

⎞
⎟⎠ ,

with a + b = 1.
In order to illustrate the developed results, we borrow the model parameters from [36], such as

a = 0.7, v = −1.0, L = 5.5, l = 2.8, t̄ = 2.0, t0 = 0.5, and d = 10t0/π. The membership functions
are defined as ρ1(x(t)) = 1/ (1 + exp(x1(t) + 0.5)), ρ2(x(t)) = 1 − ρ1(x(t)). Additionally, the other
parameters involved in the simulation are chosen as c1 = 1, δ = 0.3, β = 0.01, γ = 0.8, Tf = 10, R = I,
μ1 = −0.1, μ2 = 0.1, and h = 0.6. We aim to design a memory state feedback controller such that the
resulting closed-loop T-S fuzzy time-delay system is finite-time bounded. By solving the LMI-based
finite-time stabilization criterion proposed in Theorem 2 using the Matlab LMI toolbox, we can derive
the feasible solutions for the optimal minimum value of c2 = 2.8830. Furthermore, all the control gain
matrices are obtained as follows:

K11 = L11X−1 =
(

6.9875 −13.5452 1.4041
)

, K12 = L12X−1 =
(

6.9871 −13.7540 1.3966
)

,
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K21 = L21X−1 =
(

0.3679 0.0085 −0.0010
)

, K22 = L22X−1 =
(

0.3861 −0.0013 0.0001
)

.

For the simulation framework, the exogenous disturbance is selected as ω(t) = (0.06 sin t 0 0)T ,
and the time-varying delay is assumed to be d(t) = 0.25 + 0.25 sin(0.3t). For the initial condition
x(0) = (0.8 − 0.5 0.2)T , the state response of the corresponding closed-loop T-S fuzzy time-delay
system is depicted in Figure 1, and the evolution of xT(t)Rx(t) is shown in Figure 2. From the
simulation results, it is obvious that the closed-loop T-S fuzzy time-delay system is finite-time bounded
with respect to (1, 2.8830, 10, I, 0.3, 0.6) via the above memory state feedback controller. In addition,
for different h, the optimal minimum values of c2 for ensuring the closed-loop T-S fuzzy system
finite-time bounded are summarized in Table 1. This proves the effectiveness of our developed results
in Theorem 2.

Figure 1. The state response of the closed-loop Takagi–Sugeno fuzzy system.

Figure 2. The time history of xT(t)Rx(t).

Table 1. The optimum bound values of c2 for different h.

h 0.6 0.8 1.0 1.2 1.4

c2 2.8830 3.6111 4.5002 5.7103 6.7601

5. Conclusions

In this paper, the problem of finite-time boundedness and finite-time stabilization for a class
of T-S fuzzy time-delay systems was discussed. First, based on a new augmented LKF and by
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applying an improved reciprocally convex combination technique, a novel delay-dependent finite-time
boundedness sufficient condition has been derived for an open-loop T-S fuzzy time-delay system.
Secondly, a memory state feedback controller has been developed to ensure the finite-time boundedness
of the corresponding closed-loop T-S fuzzy time-delay system. Finally, the effectiveness and advantages
of the presented methods were demonstrated by a numerical example. Our future research work will
focus on the problem of robust finite-time control for uncertain T-S fuzzy systems with time-varying
delay and exogenous disturbance.
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Abstract: The maldistribution of fluid flow through multi-channels is a critical issue encountered
in many areas, such as multi-channel heat exchangers, electronic device cooling, refrigeration and
cryogenic devices, air separation and the petrochemical industry. In this paper, the uniformity of flow
distribution in a printed circuit heat exchanger (PCHE) is investigated. The flow distribution and
resistance characteristics of a PCHE plate are studied with numerical models under different flow
distribution cases. The results show that the sudden change in the angle of the fluid at the inlet of
the channel can be greatly reduced by using a spreader plate with an equal inner and outer radius.
The flow separation of the fluid at the inlet of the channel can also be weakened and the imbalance of
flow distribution in the channel can be reduced. Therefore, the flow uniformity can be improved and
the pressure loss between the inlet and outlet of PCHEs can be reduced. The flow maldistribution
in each PCHE channel can be reduced to ± 0.2%, and the average flow maldistribution in all PCHE
channels can be reduced to less than 5% when the number of manifolds reaches nine. The numerical
simulation of fluid flow distribution can provide guidance for the subsequent research and the design
and development of multi-channel heat exchangers. In summary, the symmetry of the fluid flow in
multi-channels for PCHE was analyzed in this work. This work presents the frequently encountered
problem of maldistribution of fluid flow in engineering, and the performance promotion leads to
symmetrical aspects in both the structure and the physical process.

Keywords: flow distribution; maldistribution; numerical modeling; symmetry; printed circuit
heat exchanger

1. Introduction

A heat exchanger is a device used to transfer heat from a hot fluid to a cold fluid to meet
specified process requirements, which is an industrial application of convection heat transfer and heat
conduction [1]. The heat exchanger is an important piece of ship power system equipment, because the
efficiency and cost of the ship power system are both significantly affected by the thermal-hydraulic
performance of the intermediate heat exchanger [2]. The ship power system has a large amount of
heat generation, in which its internal high heat flux electronic equipment has a large demand for heat
dissipation, so it needs to adopt efficient cooling and heat dissipation technology in a limited space.
It is necessary to develop a highly efficient heat exchanger with a high temperature and high pressure
for the ship power system.

Double-pipe heat exchangers are the simplest exchangers used in industry. On one hand, these heat
exchangers are cheap for both design and maintenance, making them a good choice for small industries.
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On the other hand, their low efficiency, coupled with the large amount of space they occupy in large
scales, has led modern industries to use more efficient heat exchangers, such as shell-and-tube or
plate [3]. Considering the special nature of the marine environment, the traditional shell-and-tube
heat exchangers are widely used as ship heat exchangers, which highly satisfy the requirements of
the power system [4]. However, with the development of ship power systems in the direction of
integration, miniaturization and high reliability, the traditional shell-and-tube heat exchanger has
gradually exposed the problems of its large volume, heavy weight and high safety risk in a long-term,
high-pressure environment. So, the investigation of a new compact structure and technology that
possesses a high reliability of heat transfer is an inevitable developmental trend in the ship power
system [5].

As a new type of highly efficient compact heat exchanger, the printed circuit heat exchanger
(PCHE) is composed of many micro-channel plates, which can be chemically etched to generate a
variety of channels [6]. Following this, the hot and cold plates are alternately superimposed with
diffusion welding to create a compact heat transfer unit, which has the advantages of high-pressure
resistance, heat exchange efficiency and compactness [7].

Generally, the channel diameter of PCHE is about 0.1 to 2.0 mm and the density of the heat transfer
area can be as high as 2500 m2/m3 [8]. The working conditions can be different depending on the range
of applications. The maximum temperature can reach 900 ◦C, the working pressure can reach 60 MPa
and the design life can even reach 30–60 years. Under the same heat transfer power, the volume of
PCHE is only about 1/5 of the shell-and-tube heat exchangers [9]. Therefore, PCHE provides a new
heat transfer method to achieve the future of the ship power system with characteristics of integration,
miniaturization and high reliability.

However, due to geometry design features or operating conditions, flow maldistribution is a
common problem that can significantly reduce the desired heat exchanger performance. Therefore,
finding a way to improve flow uniformity in PCHEs, so as to reduce the heat exchanger size, design
margins or achieve the desired production rate, is of vital importance [10].

The effects of non-uniform flow on the heat exchanger performance have been well investigated
over the decades. Jiao et al. [11] proved that the performance of the flow distribution in the heat
exchanger is effectively improved by the optimum design of the second header installation by
experimental studies. The results indicate that the flow distribution becomes more uniform when the
ratio of outlet pipe diameter to inlet pipe diameter of the two headers of the heat exchanger are equal.
Bobbili et al. [12] carried out experimental investigations to find the flow and pressure difference across
the port to the channel in plate heat exchangers for a wide range of Reynolds numbers. The results
indicated that the flow maldistribution increases with the increasing overall pressure drop in the
plate heat exchangers. Zhang et al. [13] used various distributor configurations with a plate-fin heat
exchanger under different operating conditions to assess the resultant change in its flow distribution
and thermal performance. The results showed that the effect of the inlet angle of distributor on the flow
distribution is significant and flow maldistribution in the lateral and gross flow directions is different.

However, the experimental research has some shortcomings, such as the large number data
errors and the failure to cover all heat exchanger conditions. Therefore, the numerical simulation of
non-uniform flow is particularly important. Zhang et al. [14] used the CFD method to predict the fluid
flow distribution in plate-fin heat exchangers, which was simulated according to the configuration of
the plate-fin heat exchanger currently used in industry. Wen et al. [15] characterized the turbulent flow
structure inside the entrance of the plate-fin heat exchanger by CFD simulation under similar conditions.
The numerical results indicate that the performance of fluid maldistribution in conventional entrance
deteriorated, while the improved configuration, with a punched baffle, can effectively improve the
performance in both radial and axial direction. Sheik et al. [16] performed a numerical study of the flow
patterns of compact plate-fin heat exchangers because air (gas) flow maldistribution in the headers
affects the exchanger performance. Three typical compact plate-fin heat exchangers were analyzed
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using Fluent software for the quantification of the flow maldistribution effects with ideal and real cases
in their study.

When studying the pressure and flow characteristics or the heat transfer in arbitrary fluid
conditions, symmetry is a necessary consideration. Wei et al. [17] studied the pressure fluctuation and
flow characteristics in a two-stage, double-suction centrifugal pump based on CFD analysis. Monitor
points were arranged in the full flow channel from the inlet to the outlet of the pump in order to show
all the pressure fluctuation characteristics of the pump. Due to some parts of the pump rotating, as well
as the whole shape being axially symmetric, the monitor points were set to rotate with the impeller
in the rotation parts. Afridi et al. [18] carried out an irreversibility analysis of hybrid nanofluid flow
over a thin needle with the effects of energy dissipation. When conducting the theoretical study of
the heat transfer and entropy generation in the flow of dissipative hybrid nanofluid, the coordinate
system and the geometry of the physical flow model are only shown for half of the thin needle, because
of its symmetry, which simplified the calculation process of this study. Therefore, it is necessary to
analyze the symmetry of the heat exchanger, including its structure central symmetry, channel flow
field symmetry and adjacent channel structure symmetry.

However, the multi-channel PCHE plate shows an obvious maldistribution effect in practical
applications, which produces a great limitation in the performance promotion of the PCHE plate.
This aspect was rarely investigated in the available literature. To this end, this paper aims to present the
flow distribution and resistance characteristics of the PCHE plate, which was studied with numerical
models under different flow distribution cases; the numerical simulation of fluid flow distribution
can provide guidance for subsequent research and the design and development of multi-channel
heat exchangers.

2. Physical Problems and Mathematical Model

2.1. Physical Problems

Due to the limitations of the processing technology and conditions, it is difficult to process
large-sized PCHEs. Presently, the use of square plates is an effective way to improve the heat transfer
power of a single heat exchanger unit. However, the inlet and outlet parts occupy a large heat transfer
area in the nearly square plate using the traditional single-in and single-out flow, resulting in the area of
the counter-current heat transfer part in the middle being very limited, as shown in Figure 1, and greatly
influencing the heat transfer efficiency of PCHE. The use of a collecting flow in the inlet and outlet
will greatly reduce the space occupied by the inlet and outlet parts which, in turn, will maximize the
length of the counter-current heat transfer part, as shown in Figure 2. The flow distribution was very
inhomogeneous on the heat exchanger plate between the inlet and outlet, due to the different pressures
of the different channels, which will lead to a significant decrease in the heat transfer efficiency of
PCHE and an increase in the flow resistance [19].

Therefore, the uniformity of flow distribution is a key factor affecting the performance of
PCHE [20]. In this paper, a PCHE numerical model was established. The flow distribution and
resistance characteristics of a PCHE with collecting flow plates at the inlet and outlet were studied by
using different flow distribution cases.

The calculation model is shown in Figure 3, combining the existing problems, and the heat
exchanger plate was set with a collecting flow at the inlet and outlet. Some spreader plates were
placed in the inlet and outlet parts to improve the uniformity of flow distribution within the channels.
The width between the inlet and outlet is B, the width between spreader plates is b, and the radius of
spreader plates are r1, r2, r3, r4, r5 respectively.
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Figure 1. Heat exchanger plate with single inlet and outlet.

Figure 2. Heat exchanger plate with collecting flow at the inlet and outlet.
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Figure 3. Calculation model for the multi-channel heat exchanger.

2.2. Assumptions

In order to facilitate the study of the computational model, the following assumptions must
be defined:

(1) Flow is steady and isothermal, and fluid properties are independent of time;
(2) Fluid density is dependent on the local temperature only, or is treated as a constant;
(3) Fluid slip at the solid-fluid interfaces is neglected;
(4) Thermo-physical properties of fluid are independent of temperature variations;
(5) Body forces are caused only by gravity (i.e., magnetic, electrical, and other fields do not contribute

to the body forces);
(6) Newtonian fluid, incompressible flow and turbulent flow.

2.3. Governing Equations

The governing equations describe the operation of fluid flow inside the channel. When the
governing equations were used to directly model the flow, it was necessary to use small time and
space steps to distinguish the detailed spatial structure and the time-varying temporal characteristics
in turbulence. However, this requires a large amount of memory space and a very high CPU operating
speed. Therefore, the direct numerical calculation of the governing equation is still difficult to use
in engineering calculations. However, if the turbulence models in FLUENT (like the k-ε model) are
introduced to simplify the N-S equation, it can be applied to engineering calculations. The general
form of all the governing equations in the fluid domain for the present steady-state problem is shown
as follows:

div
(
ρ
→
Vφ

)
= div[Γ · grad(φ)] + S (1)

63



Symmetry 2020, 12, 314

It should be noted that the above equation can be used for describing the equations of continuity,
momentum, turbulent dissipation rate and turbulence energy.

For the equation of continuity:
φ = 1, Γ = 0, S = 0 (2)

For the equations of momentum (u, v, w):

u : φ = u, Γ = ηe f f , S = −∂p
∂x

+ ηe f f

(
∂2u
∂x2 +

∂2v
∂x∂y

+
∂2w
∂x∂z

)
(3a)

v : φ = v, Γ = ηe f f , S = −∂p
∂y

+ ηe f f

(
∂2u
∂y∂x

+
∂2v
∂y2 +

∂2w
∂y∂z

)
(3b)

w : φ = w, Γ = ηe f f , S = −∂p
∂z

+ ηe f f

(
∂2u
∂z∂x

+
∂2v
∂z∂y

+
∂2w
∂z2

)
(3c)

For the equation of turbulent dissipation rate (k):

ρuj
∂k
∂xj

=
∂
∂xj

[(
η+
ηt

σk

)
∂k
∂xj

]
+ ηt
∂ui
∂xj

(
∂ui
∂xj

+
∂uj

∂xi

)
− ρε (4)

For the equation of turbulence energy (k):

ρuk
∂ε
∂xk

=
∂
∂xk

[(
η+
ηt

σε

)
∂ε
∂xk

]
+

c1ε
k
ηt
∂ui
∂xj

(
∂ui
∂xj

+
∂uj

∂xi

)
− c2ρ

ε2

k
(5)

ηt can be written as ηt = c′μρk
1
2 l =

(
c′μcD

)
ρk2 1

cDk
3
2 /l

= cμρk2/ε. In the above equations,

the parameter ρmeans the density of the fluid, S represents the source item; l means the characteristic
length of the turbulent channel; k means the turbulence energy; εmeans the turbulent dissipation rate;
CD, C1, C2 means the empirical constant.

2.4. Boundary Conditions

Inlet: Velocity Inlet Boundary Condition
In the velocity inlet boundary condition, the stagnation point parameters of the inlet boundary in

the flow field are not fixed. In order to satisfy the velocity condition at the inlet, the stagnation point
parameter will fluctuate within a certain range.

Outlet: Outflow Outlet Boundary Condition
The boundary condition of free outflow is subject to the assumption of fully developed turbulence.

Fully developed flow means that the flow field variables do not change in the flow direction, that is,
the diffusion flux of all flow variables is equal to zero in the normal direction of the outlet boundary.

2.5. Numerical Details

The viscosity in the solid domain is considered infinite. The thermo-physical properties of the
working fluid can be calculated based on its temperature and pressure, as shown in Table 1. In this
table, some of the permanent parameters in the numerical simulation are clearly presented, including
channel type, number of channels, plate size, channel size, channel spacing, the width of the inlet and
the outlet, the working fluid, pressure, and inlet velocity.
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Table 1. PCHE parameters.

Parameter Value

Channel type Square straight channel
Number of channels 33

Plate size 300 mm × 200 mm
Channel size 2 mm × 1 mm

Channel spacing 1 mm
Inlet and outlet width 50 mm

Working fluid water
Pressure 0.3 MPa

Inlet velocity 0–40 m/s

3. Results and Discussion

3.1. Grid Independence Check

For the grid-independence verification, five numerical calculation steps with 1, 0.5, 0.3, 0.2 and
0.1 mm were carried out in this paper. As shown in Section 2, the numerical model had 33 channels in
the counter-current section. Figure 4 shows the flow rate variations of two representative channels
(1 and 33). It can be seen that, when the grid number reached 80,850 with a step size of 0.2 mm,
the results changed a little (<1%) with the increase in the grid number, which means a step size of
0.2mm was small enough for this numerical model. Therefore, a step size of 0.2 mm was used in the
subsequent calculations.
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Figure 4. Validation of grid independence.

3.2. Analysis of Flow Maldistribution

In order to evaluate the flow distribution characteristics within the channels, 33 channels were
numbered from bottom to top along the flow direction from the inlet. In order to compare the flow
distribution uniformity of 33 channels under different flow rates, two parameters, i.e., flow distribution
nonuniformity in each PCHE channel Ei and the average flow distribution nonuniformity in all PCHE
channels S are defined as follows:

Ei =
mi −ma∑n

i=1 mi
(6)

S =

√√
1

n− 1

n∑
i=1

(mi
ma
− 1

)2
(7)
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where, Ei is used to characterize the flow distribution nonuniformity between different channels, S is
used to characterize the total flow distribution nonuniformity of the heat exchanger, mi is the flow rate
in the ith channel, ma is the average flow rate for one single channel and n is the number of channels.

3.3. Flow Distribution Case

In order to improve the uniformity of traffic distribution in the channel, this paper studied the flow
distribution characteristics in different cases, as shown in Figure 5. The parameters of the different cases
are shown in Table 2. Case 1 used no spreader plate. Case 2 used the spreader plate with an increase in
the inner and outer radius. Case 3 used the spreader plate with an equal inner and outer radius. Case
4 used the spreader plate with an equal inner and outer radius, also with a large bending radius.

Figure 5. Configurations of different cases.
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Table 2. Parameters of PCHE plates for flow distribution.

Cases Parameters

1 No spreader plate
2 r1 = 0, r2 = b, r3 = 2b, r4 = 3b, r5 = 4b
3 r1 = r2 = r3 = r4 =r5 = b
4 r1 = r2 = r3 = r4 = r5 = 4b

Inlet velocity 0–40 m/s

Figure 6 shows the streamlines for the different cases with an inlet velocity of 40 m/s. It was
observed that, when the spreader plate is not used (Case 1), the angle of the fluid was large when fluid
flowed into the channel, which caused a clear flow separation and a strong eddy current at the inlet
of the channel. The flow separation area occupied the largest section. When the spreader plates in
Cases 2 and 3 were used, the flow separation at the inlet of the channel gradually improved, and the
flow separation and vortex area were greatly reduced. When the spreader plate in Cases 4 was used,
the radius of the spreader plate was greatly increased, but the angle of the fluid was greatly reduced,
which meant there was basically no flow separation in the channel.

Figure 6. Streamlines of different cases.

Figure 7 shows the flow distribution in the channel for the different cases with an inlet velocity of
40 m/s. Compared with Figure 6, it can be seen the flow distribution in different channel was very
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inhomogeneous due to the violent flow separation at the inlet of the channel in Case 1. The flow at
the inlet of the channel in Case 2 and 3 improved gradually, but the flow separation and vortex area
greatly decreased, and the imbalance of flow distribution of the channel greatly improved. There was
barely any flow separation phenomenon at the inlet of the channel in Case 4, and the imbalance of the
flow distribution was also decreased with ±0.8%.
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Figure 7. Imbalance of flow distribution for different cases.

Figure 8 shows the nonuniformity variation in the total flow distribution with the different inlet
velocity. It was observed that the nonuniformity of flow distribution decreased from Case 1 to Case
4, which indicates that the uniform flow distribution corresponded with the smaller flow rate and
dispersion of the average flow in the channel. With an increase in the inlet velocity, the nonuniformity
of the flow distribution of each case increased. In the inlet velocity range, as shown in Figure 8,
the nonuniformity of the flow distribution was within 9%, indicating that the uniformity of the flow
distribution was good.
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Figure 8. Nonuniformity of flow distribution for different cases.
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Figure 9 shows the variation in pressure drop between the inlet and outlet with different velocities.
Compared with Figures 6, 8 and 9, the pressure drop was great in Case 1 due to a very serious flow
separation, which caused an inhomogeneous flow distribution. When the spreader plate was added in
Cases 2 and 3, the flow separation improved and the flow distribution was more uniform, so the flow
resistance was greatly reduced. There was barely any flow separation phenomenon in Case 4. The flow
distribution uniformity in this case was the best. Therefore, the flow resistance was also the minimum.
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Figure 9. Variation in the pressure drop with different velocities.

3.4. Numbers of Spreader Plate

In order to improve the uniformity of the flow distribution in the channel further, the flow
distribution characteristics of different spreader plates were studied based on Case 4, as shown in
Figure 10. The radius of the spreader plate was set as r1 = r2 = r3 = r4 = r5 = 4b.

Figure 10. Different numbers of spreader plates.

Figure 11 shows the flow distribution in the channel with different numbers of spreader plates.
It was shown that with an increase in the spreader plates and partitions, the imbalance of the flow
distribution in the channel was greatly improved. When the number of spreader plates reached nine,
the imbalance of the flow distribution was reduced to ±0.2%.
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Figure 11. Imbalance of flow distribution for different numbers of spreader plates.

Figure 12 shows the nonuniformity variation in the total flow distribution with the inlet velocity
under different spreader plates. With an increase in the number of spreader plates, the nonuniformity
of the flow distribution decreased, indicating that the uniform flow distribution corresponded with
the smaller flow rate and dispersion of the average flow in the channel. With an increase in the inlet
flow rate, the nonuniformity of the flow distribution of each model increased. The nonuniformity
of the flow distribution with no spreader plates and three spreader plates varied greatly with the
velocity, but with five and nine spreader plates it only varied slightly. When the number of spreader
plates reached nine, the flow distribution in the channel was less than 5%, indicating that the flow
distribution was very uniform.
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Figure 12. Nonuniformity of flow distribution for different numbers of spreader plates.

Figure 13 shows the variation in pressure drop between the inlet and outlet with velocities under
different spreader plates. Compared with Figures 9 and 13, the pressure drop was large when there
were no spreader plates. When the spreader plates were added, the flow resistance was largely
decreased. It was also observed that the pressure loss of nine spreader plates was larger than that of
three and five spreader plates. It can be explained that, when the number of spreader plates increased,
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the flow cross-sectional area at the inlet and outlet increased, the flow velocity increased, and the
pressure loss increased. This indicated that the number of spreader plates could not increase without
limitation, which should comply with the integrated uniformity of the flow distribution, flow resistance
and heat transfer efficiency.
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Figure 13. Variation in the pressure drop with different numbers of spreader plates.

3.5. Analysis of the Symmetry

3.5.1. Structure Central Symmetry

The whole structure of PCHE shows central symmetry. The flow distribution and resistance
characteristics of a PCHE plate were studied with numerical models under different flow distribution
cases. Although only the inlet part of the heat exchanger was considered and modeled in this paper,
the conclusions of this paper are also applicable to the outlet part of the heat exchanger. The results
show that the sudden change in the angle of the fluid at the inlet of the channel can be greatly reduced
by using the spreader plate with equal inner and outer radius.

3.5.2. Channel Flow Field Symmetry

The streamlines of the flow field in the PCHE channel presents symmetry. As Figure 6 shows,
there was barely any flow separation phenomenon at the inlet of the channel in Case 4 (the spreader
plate with an equal inner and outer radius, also with a large bending radius), and the imbalance of the
flow distribution was also decreased by ±0.8%. For the flow field at the outlet of the heat exchanger,
the streamlines of the flow field exhibited the same characteristics as the inlet.

3.5.3. Adjacent Channel Structure Symmetry

The geometry of each channel of the PCHE presents structural symmetry. Therefore, the velocity
field and temperature field of each channel also exhibit certain symmetric characteristics. Improving
the symmetry of the adjacent channels can diminish the flow rates in adjacent channels. One goal
of this study was to improve the symmetry of the structures of adjacent channels and thus ensure
the symmetry of the fluid flow in adjacent channels, in order to diminish the flow rates in adjacent
channels and, especially, to prevent maldistribution in the channels near the side walls of the device.
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3.6. Discussion

This paper aims to present the flow distribution and resistance characteristics of PCHE plates,
which were studied with numerical models under different flow distribution cases; the numerical
simulation of fluid flow distribution can provide guidance for subsequent research and the design and
development of multi-channel heat exchangers.

The multi-channel PCHE plate showed an obvious maldistribution effect in the practical
application, which produced a great limitation in the performance promotion of the PCHE plate.
This aspect was rarely investigated in the available literature. This paper analyzes the symmetry of the
heat exchanger in three aspects: structure central symmetry, channel flow field symmetry and adjacent
channel structure symmetry.

The results show that the sudden change in the angle of the fluid at the inlet of the channel can be
greatly reduced by using the spreader plate with an equal inner and outer radius. The flow separation
of the fluid at the inlet of the channel can also be weakened and the imbalance of flow distribution in the
channel can be reduced. The numerical simulation of the fluid flow distribution can provide guidance
for the subsequent research and the design and development of multi-channel heat exchangers.

4. Conclusions

In this study, different flow distribution cases were designed and theoretically studied in order to
improve the uniformity of the fluid flow distribution, and the resistance characteristics at the inlet and
outlet of the PCHE channel were numerically modeled and analyzed in detail. Our conclusions can be
drawn as follows:

(1) With the use of the spreader plate with an equal inner and outer radius, the sudden change in
the angle of the fluid at the inlet of the channel can be greatly reduced. The flow separation of the fluid
at the inlet of the channel can also be weakened and the imbalance of flow distribution in the channel
can be reduced. So, the flow uniformity can be improved and the pressure loss between the inlet and
outlet of the PCHE can be reduced;

(2) With the use of nine spreader plates, the imbalance of flow distribution in the channel is
basically reduced to ±0.2%, and the total flow distribution is within 5%, which indicates a good flow
distribution uniformity;

(3) The uniformity of the flow distribution increases with the increase in spreader plates. However,
with the increase in the number of spreader plates, the flow cross-sectional area at the inlet and outlet
increases, the flow velocity increases, and the pressure loss increases. Therefore, the number of spreader
plates cannot increase without limitation, which should comply with the integrated uniformity of the
flow distribution, flow resistance and heat transfer efficiency.

Author Contributions: H.K. and H.X. led the writing of the paper. H.K., Y.L., Z.K., Q.X., Z.W., K.C. and H.X.
developed the numerical model. H.K., Y.L., Z.K., Q.X., Z.W., K.C. and H.X. performed the data analysis. The first
version was drafted by H.K. and H.X. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by National Natural Science Foundation of China (Nos. 51876146, 51876118),
Open Fund of Science and Technology on Thermal Energy and Power Laboratory (No. TPL2018B03), and Shanghai
International Science and Technology Cooperation Fund (No. 18160743800).

Acknowledgments: Chenqian Wu in Shanghai Jiao Tong University is acknowledged for some helpful discussion
and useful information in improving the quality of this paper.

Conflicts of Interest: There is no conflict of interest.

References

1. Shah, R.K.; Sekulic, D.P. Fundamentals of Heat Exchanger Design; John Wiley & Sons: Hoboken, NJ, USA, 2003.
2. Ezgi, C.; Özbalta, N.; Girgin, I. Thermohydraulic and thermoeconomic performance of a marine heat

exchanger on a naval surface ship. Appl. Therm. Eng. 2014, 64, 413–421. [CrossRef]

72



Symmetry 2020, 12, 314

3. Kakaç, S.; Liu, H.; Pramuanjaroenkij, A. Heat Exchangers: Selection, Rating, and Thermal Design; CRC Press:
New York, NY, USA, 2002.

4. Farajollahi, B.; Etemad, S.G.; Hojjat, M. Heat transfer of nanofluids in a shell and tube heat exchanger. Int. J.
Heat Mass Transf. 2010, 53, 12–17. [CrossRef]

5. Tsuzuki, N.; Kato, Y.; Ishiduka, T. High performance printed circuit heat exchanger. Appl. Therm. Eng. 2007,
27, 1702–1707. [CrossRef]

6. Sabharwall, P.; Kim, E.S.; McKellar, M.; Anderson, N. Process Heat Exchanger Options for the Advanced High
Temperature Reactor; Idaho National Laboratory (INL): Idaho Falls, 2011.

7. Bartel, N.; Chen, M.; Utgikar, V.; Sun, X.; Kim, I.-H.; Christensen, R.; Sabharwall, P. Comparative analysis of
compact heat exchangers for application as the intermediate heat exchanger for advanced nuclear reactors.
Ann. Nucl. Energy. 2015, 81, 143–149. [CrossRef]

8. Shin, C.W.; No, H.C. Experimental study for pressure drop and flow instability of two-phase flow in the
PCHE-type steam generator for SMRs. Nucl. Eng. Des. 2017, 318, 109–118. [CrossRef]

9. Ma, T.; Li, L.; Xu, X.-Y.; Chen, Y.-T.; Wang, Q.-W. Study on local thermal–hydraulic performance and
optimization of zigzag-type printed circuit heat exchanger at high temperature. Energy Convers. Manag.
2015, 104, 55–66. [CrossRef]

10. Yang, H.; Wen, J.; Gu, X.; Liu, Y.; Wang, S.; Cai, W.; Li, Y. A mathematical model for flow maldistribution
study in a parallel plate-fin heat exchanger. Appl. Therm. Eng. 2017, 121, 462–472. [CrossRef]

11. Jiao, A.; Zhang, R.; Jeong, S. Experimental investigation of header configuration on flow maldistribution in
plate-fin heat exchanger. Appl. Therm. Eng. 2003, 23, 1235–1246. [CrossRef]

12. Bobbili, P.R.; Sunden, B.; Das, S.K. An experimental investigation of the port flow maldistribution in small
and large plate package heat exchangers. Appl. Therm. Eng. 2006, 26, 1919–1926. [CrossRef]

13. Zhang, Z.; Mehendale, S.; Tian, J.; Li, Y. Experimental investigation of distributor configuration on flow
maldistribution in plate-fin heat exchangers. Appl. Therm. Eng. 2015, 85, 111–123. [CrossRef]

14. Zhang, Z.; Li, Y. CFD simulation on inlet configuration of plate-fin heat exchangers. Cryogenics 2003, 43,
673–678. [CrossRef]

15. Wen, J.; Li, Y.; Zhou, A.; Zhang, K. An experimental and numerical investigation of flow patterns in the
entrance of plate-fin heat exchanger. Int. J. Heat Mass Transf. 2006, 49, 1667–1678. [CrossRef]

16. Sheik Ismail, L.; Ranganayakulu, C.; Shah, R.K. Numerical study of flow patterns of compact plate-fin
heat exchangers and generation of design data for offset and wavy fins. Int. J. Heat Mass Transf. 2009, 52,
3972–3983. [CrossRef]

17. Wei, Z.; Yang, W.; Xiao, R. Pressure Fluctuation and Flow Characteristics in a Two-Stage Double-Suction
Centrifugal Pump. Symmetry 2019, 11, 65. [CrossRef]

18. Afridi, M.I.; Tlili, I.; Goodarzi, M.; Osman, M.; Khan, N.A. Irreversibility analysis of hybrid nanofluid flow
over a thin needle with effects of energy dissipation. Symmetry 2019, 11, 663. [CrossRef]

19. Shi, H.-N.; Ma, T.; Chu, W.-X.; Wang, Q.-W. Optimization of inlet part of a microchannel ceramic heat
exchanger using surrogate model coupled with genetic algorithm. Energy Convers. Manag. 2017, 149, 988–996.
[CrossRef]

20. Koo, G.-W.; Lee, S.-M.; Kim, K.-Y. Shape optimization of inlet part of a printed circuit heat exchanger using
surrogate modeling. Appl. Therm. Eng. 2014, 72, 90–96. [CrossRef]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

73





symmetryS S

Article

Mathematical Analysis on an Asymmetrical Wavy
Motion of Blood under the Influence Entropy
Generation with Convective Boundary Conditions

Arshad Riaz 1, Muhammad Mubashir Bhatti 2, Rahmat Ellahi 3,4,∗, Ahmed Zeeshan 3

and Sadiq M. Sait 5

1 Department of Mathematics, Division of Science and Technology, University of Education,
Lahore 54770, Pakistan; arshad-riaz@ue.edu.pk

2 College of Mathematics and Systems Science, Shandong University of Science and Technology,
Qingdao 266590, China; mmbhatti@sdust.edu.cn

3 Department of Mathematics & Statistics, Faculty of Basic and Applied Sciences (FBAS), International Islamic
University (IIUI), Islamabad 44000, Pakistan; ahmad.zeeshan@iiu.edu.pk

4 Fulbright Fellow Department of Mechanical Engineering, University of California Riverside,
Riverside, CA 92521, USA

5 Center for Communications and IT Research, Research Institute, King Fahd University of Petroleum &
Minerals, Dhahran 31261, Saudi Arabia; sadiq@kfupm.edu.sa

* Correspondence: rellahi@alumni.ucr.edu or rahmatellahi@yahoo.com

Received: 13 December 2019; Accepted: 3 January 2020; Published: 6 January 2020

Abstract: In this article, we discuss the entropy generation on the asymmetric peristaltic propulsion
of non-Newtonian fluid with convective boundary conditions. The Williamson fluid model is
considered for the analysis of flow properties. The current fluid model has the ability to reveal
Newtonian and non-Newtonian behavior. The present model is formulated via momentum, entropy,
and energy equations, under the approximation of small Reynolds number and long wavelength of
the peristaltic wave. A regular perturbation scheme is employed to obtain the series solutions up
to third-order approximation. All the leading parameters are discussed with the help of graphs for
entropy and temperature profiles. The irreversibility process is also discussed with the help of Bejan
number. Streamlines are plotted to examine the trapping phenomena. Results obtained provide an
excellent benchmark for further study on the entropy production with mass transfer and peristaltic
pumping mechanism.

Keywords: convection; entropy production; heat transfer engineering; blood flow

1. Introduction

In our daily life, living organisms require energy to do physical work and keep the body
temperature under the influence of heat exchange to the environment, as well as to generate,
replace, and propagate molecules to the relevant constituents. Such type of energy comes from the
oxidation process of organic substances i.e., amino acids, fats, and carbohydrates fed to the organisms.
As compared to the other heat engines (i.e., in which the chemical energy gets transformed to the
thermal energy, and then is transformed to mechanical work), living organisms can transform the
nutrient’s chemical energy into work. It happens due to the oxidation of nutrients located internally in
the organisms i.e., metabolism, pass through different steps, which helps to hold some energy from
ATP (adenosine triphosphate). The ATP utilized entirely by all beings for the direct transformation of
mechanical energy and also actively supports other biological reactions [1]. In recent years, various
authors [2–6] have examined the heat production of mammals via calorimetry, and presented that for
the given nutrients, both combustion and animal metabolism expends the same amount of oxygen.
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According to previous research [7], it is found that living things can produce thermal energy via fat,
and combustion of carbohydrates in the living body, and is identical to the oxidation of heat of these
elements. As a result, the amount of nutrients digested by a living being, and hence its input energy,
can be determined by the chemical composition of food intake and the measurements of breathing
i.e., CO2 and O2.

Hershey [8] and Hershey and Wang [9] examined the entropy production during the lifespan of a
human being. They found that when the human body is in a state of rest, mostly the output energy
due to the nutrient’s metabolism occurs as a heat. They also reinforced the calorimeter to examine
the heat transfer rate to the environment and verified that with the help of BMR (basal metabolic).
According to their results, it was found that entropy generated over a lifespan was 10,678 KJ/kg·K
for females, and 10,025 KJ/kg·K for males. Rahman [10] discussed the entropy generation for forced
and free convection using a new mathematical model. He discussed forced and free convection at
distinct mass influx, outflux (i.e., waste, air, food, and water, etc.), level of physical activity, clothing
effects, and airspeeds. His results are similar to those from Hershey [8] and Aoki [11] but one order of
magnitude higher in general. Annamalai and Puri [12] utilized the first law of thermodynamics to
achieve the metabolic scaling for a biological system. They also used the second law of thermodynamics
to determine the entropy generation in humans and prognosticate the lifespan of 77 years by assuming
the maximal entropy generation as 10,000 KJ/kg·K. Bejan [13,14] introduced a constructal design
principle and presented optimal geometric types scales to the power of their associated size and
showed that different natural structures (i.e., lightening, river deltas, tree branches, and vascularized
tissue) are periodic in nature. Rashidi et al. [15] discussed the entropy generation with magnetic effects
and slip boundary conditions propagating among an infinite porous disk having variable features.
According to their results, they observed that the disk is an essential root of entropy generation.
Komurgoz et al. [16] examined the entropy generation through an inclined porous channel with
magnetic effects. According to their results, they found that maximal entropy production can be gained
in the absence of porosity and magnetic field.

Blood is an essential part of the human body, which comprises 7% of the total body weight.
The leading role of blood is molecular oxygen for cellular metabolism and carry the nutrients as
well as a significant role in thermoregulatory. Blood performs as a non-Newtonian fluid. The blood
viscosity changes due to the shear rate. The viscosity of the blood can be analyzed by the hematocrit,
plasma (constitute 54.3% of the whole blood) viscosity, and the mechanical features of red blood cells
(constitute 45% of the whole blood). The human blood is a heterogeneous solution that contain
multiple kinds of cells (known as corpuscles or formed elements), which consist of leukocytes,
thrombocytes, and erythrocytes. In view of such importance, different authors discussed the entropy
generation in blood. For instance, Rashidi et al. [17] discussed the magnetic effects on the blood
flow propagating through a porous medium with a filtration and control process. Akbar et al. [18]
examined the thermal conductivity on the peristaltic propulsion of H2+Cu nanofluids with entropy
production. Rashidi et al. [19] obtained the series solution for the entropy generation of the blood
flow of a nanofluid in the presence of a magnetic field. Endoscopic effect and entropy production on
peristaltic nanofluid flow, having a thermal conductivity of 2 HO were investigated by Akbar et al. [20].
Abbas et al. [21] presented a detailed analysis of the peristaltic flow with nanofluids and entropy
production through a finite channel with compliant walls. Bhatti et al. [22] considered the Casson
blood flow to examine the entropy process with peristaltic movement under the uniform magnetic
field. Ranjit and Shit [23] examined the entropy production on the electroosmotic flow under uniform
magnetic field with peristaltic pumping. More studies on the blood flow and entropy generation can
be found from the references [24–28].

According to the above survey, it is found that less attention has been given to the entropy
production asymmetric peristaltic propulsion of blood flow with heat transfer. Therefore, in the
present analysis, we discuss the entropy generation with convection on the asymmetric propulsion
of the peristaltic blood of nonlinear Williamson fluid. An assumption of long peristaltic wavelength
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is taken into account and Reynolds number is considered to be very small (Re ≈ 0). A regular
perturbation method is used to obtain series solutions. The novelty of all the leading parameters
is discussed and illustrated. The trapping mechanism is also examined to determine the nonlinear
asymmetric peristaltic motion.

2. Governing Equations

In this section we analyze the incompressible peristaltic propulsion of Williamson fluid in a
two-dimensional channel with a width d1 + d2. The flow is initialized by a sinusoidal wave propagating
with a constant speed c along the layout of channel (see Figure 1). The addition here is the extra
equations of energy and entropy generation. It is assumed that the temperature at the upper wall
of the channel is T1 and lower wall has the temperature T0 such that T0 < T1. It depicts the physical
reasoning that heat will transfer from lower to upper wall. The wall surfaces are suggested as:

Y =

{
Hi = di + ai cos [2πω] , i = 1,

Hj = −dj − bi cos [2πω + φ] , j = 2,
(1)

and

ω =
X − ct

λ
, (2)

where a1 and b1 are the wave amplitudes, λ the wave length, t the time, c the velocity of the propagation,
and X is the direction of wave propagation. The phase difference φ has the range 0 ≤ φ ≤ π i.e., waves
out of phase φ = 0 associated to the symmetric channel, and φ = π associated to the waves are in
phase. Moreover, ai, bi, di, dj, and φ satisfy the condition:

ai
2 + bi

2
+ 2aibi cos φ ≤

(
di + dj

)2
. (3)

The equations of momentum in component forms are described as:

ρ
[
Dt + UDX + VDY

]
U = −DXP + DXSXX + DYSXY, (4)

where Dt =
∂
∂t , DX = ∂

∂X
, DY = ∂

∂Y
.

ρ
[
Dt + UDX + VDY

]
V = DYP + DXSYX + DYSYY. (5)

The stress tensor for the Williamson fluid model reads as:

S =
[
μ∞ − (μ∞ − μ0)

(
1 − Γ

.
γ
)−1

] .
γ, (6)

where μ∞, μ0 the infinite and zero shear rate viscosity, Γ the time constant, and
.
γ reads as:

.
γ =

(
1
2 ∑

m
∑
n

.
γmn

.
γnm

) 1
2
=

(
1
2

St

) 1
2

, (7)

where St is the second invariant strain tensor. For the present flow problem, we considered μ∞ = 0
(the infinite shear rate viscosity is very small as compared to zero shear rate viscosity) and Γ

.
γ < i i.e.

i = 1. Then, Equation (6) takes the following form:

S = μ0
(
1 − Γ

.
γ
)−1 .

γ. (8)
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The energy equation to represent the heat exchange in the channel is as stated below. The law of
conservation of energy in the dimensional mathematical pattern is given by:

Sh
[
Dt + UDX + VDY

]
T =

K
ρ

[
DXXT + DYYT

]
+

SXY
ρ

DYU. (9)

In the above equation, Sh is the specific heat coefficient, K the thermal conductivity, and ρ the
density of the governing fluid.

Introducing wave frame coordinates transformations with propagation velocity c away from the
fixed frame read as:

{x + ct, u + c, y, v, P(x)} = {X, U, Y, V, P
(
X, t

)} (10)

Defining the dimensionless quantities as:

x =
x
λ

, y =
y
di

, u =
u
λ

, v =
v
λ

, Sxx =
λ

μ0c
SXX , Sxy =

di
μ0c

SXY, Syy =
di

μ0c
SYY,

θ =
T − T0

Ti − T0
, p =

di
2

cλμ0
P,

.
γ =

.
γd1

c
, a =

ai

di
, b =

bi

di
, d =

dj

di
, hi,j =

Hi,j

di
, (11)

where θ is the dimensionless temperature profile.
By invoking the above transformations in Equations (4)–(6), we arrive at (after ignoring the bars):

Re
[
δuDxu + vDyu

]
= −Dx p + DxSxx + DySxy, (12)

Reδ
[
δuDxv + vDyv

]
= −Dy p + DySyy + δ2DxSyx, (13)

PrRe
[
δuDxθ + δvDyθ

]
=

[
−δ2Dxxθ + Dyyθ

]
+ BrSxyDyuθ, (14)

and
Sxy = −

(
1 + We

·
γ
) (

Dyu + δDxv
)

, (15)

where,

δ =
d1

λ
, Re =

ρcd1

μ0
, We =

Γc
di

, Br = PrEc, Pr =
vShρ

K
, Ec =

c2

Sh (Ti − T0)
. (16)

In the above equation, We the Weissenberg number, Ec is the Eckert number, Pr the Prandlt
number, Re the Reynolds number, and Br the Brinkman number. Under the assumptions of long
wavelength and low Reynolds numbers (δ ≈ 1, Re ≈ 0), Equations (12)–(14) take the form:

Dx p = Dy
[(

1 + WeDyu
)

Dyu
]

, (17)

Dy p = 0, (18)

Dyyθ = −Br

[(
Dyu

)2
+ We

(
Dyu

)3
]

. (19)

This equation implies that p �= p(y) so ∂p/∂x can be written as dp/dx. At We = 0, the above
equation turns into viscous fluid flow. The associated no slip and convective boundary conditions
selected for the problem read as:

u = −1, θ′ − Biθ = −Bi at y = hi (x) = 1 + a cos 2xπ,

u = −1, θ = 0 at y = hj (x) = −d − b cos (φ + 2πx) . (20)

where Bi is the Biot number.
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Figure 1. Flow structure.

3. Entropy Generation Analysis

According to the theory of thermodynamics, the physical process can be divided in to two types:
Irreversible and reversible process. The characterization of such kind of procedures is associated with
the change of entropy. Particularly, we say that the process is reversible if there is no change in the
entropy, whereas, if the change occurs i.e., entropy is not zero, it shows that the process is irreversible.
Therefore, the production of entropy is the measure of the irreversibility of a process. All the processes
that arise in nature are irreversible and this reveals a significant obstacle in the study of that process.

The entropy generation in the dimensional form can be defined as:

S′
gen =

K
T2

0

(
DYT

)2
+

SXY
T0

DYU. (21)

Here we define some new dimensionless quantities in addition to those used above:

S′
g =

K (Ti − T0)

T2
0 d2

i

, Δ =
T0

K (Ti − T0)
. (22)

Using Equation (22) in Equation (21), we get the dimensionless form of entropy generation:

N =
S′

gen

S′
g

=
(

Dyθ
)2

+ ΔBr
[−1 + WeDyu

] (
Dyu

)2 . (23)

In the above expression, Δ shows the entropy production characteristics and temperature
difference parameter. Equation (23) is divided into two parts. The first is due to the finite temperature
difference whereas the second part defines the fluid frictional irreversibility.

The Bejan number is describe as the entropy production ratio because of heat transfer irreversibility
to the total entropy production:

Be =

(
Dyθ

)2(
Dyθ

)2
+ ΔBr

[−1 + WeDyu
] (

Dyu
)2 . (24)

Bejan number lies between 0 to 1. Be < 1 represents that the total entropy production dominates
the total entropy production due to heat transfer. Be = 1 represents when the total entropy production
is equal to entropy production due to heat transfer irreversibility.
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4. Series Solution

Since Equation (17) is non linear, its exact solution may not be possible, therefore, we employ
the regular perturbation method to find the solution. For perturbation solution, we expand u, F and
dp/dx as:

u =
∞

∑
n=0

Wenun, (25)

F =
∞

∑
n=0

WenFn, (26)

dp
dx

=
∞

∑
n=0

Wen dpn

dx
, (27)

Substituting above expression in Equation (17) and their boundary conditions in Equation (20)
and comparing the coefficients of powers of We we get the zeroth and first order systems which can be
manipulated easily by a mathematical computing tool Mathematica and are conclusively stated as:

u =
1
2!

[
−2 + C1h1h2 − C1C3y + C1y2

]
+

1
3!

We
[
C2h1h2 + C2

1C3h1h2

−C2 (C3 + y) y + C2
1

(
h2

1 − 4h1h2 − h2
2

)
y + C2

1(3C3 − 2y)y
]
+ O(We2), (28)

dp
dx

= 12C1 + 12WeC2 + O(We2), (29)

where the constant are defined as:

C1 =
12 (1 + d − h1 + h2 − Q)

(h1 − h2)
3 , (30)

C2 =
36 (1 + d − Q)

(h1 − h2)
3 , (31)

C3 = h1 + h2, (32)

C4 = C2
3 + h1h2, (33)

C5 = 17C2
3 + 4h1h2, (34)

C6 = 7C2
3 + 2h1h2. (35)

The solution for velocity u obtained by above perturbation method can be used in Equation (19).
The final solution for θ can be obtained by integrating Equation (19) along with their associated
boundary conditions (See Equation (20)) and can be written as:

θ = θ1 + θ2y + θ3y2 + θ4y3 + θ5y4 + θ6y5 + θ7y6 + θ8y7 + θ9y8, (36)
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where constants of integration θ1 and θ2 can be evaluated by using boundary conditions defined
in Equation (20) and the expression obtained are very large and therefore are not presented here.
The remaining constants are defined as:

θ3 =
Br
√

C3

432

[
3

dp0

dx
+

(
C3

(
dp0

dx

)2
+ 3

dp1

dx

)
We

]2

×
[
−6 + 3C3We

dp0

dx
+ C3

(
C3

(
dp0

dx

)2
+ 3

dp1

dx

)
We2

]
, (37)

θ4 = −BrC3

72

(
dp0

dx
+ C3We

(
dp0

dx

)2
+

dp1

dx

)

×
[

3
dp0

dx
+

(
C3

(
dp0

dx

)2
+ 3

dp1

dx

)
We

]

×
[
−4 + 3C3We

dp0

dx
+ C3

(
C3

(
dp0

dx

)2
+ 3

dp1

dx

)
We2

]
, (38)

θ5 =
Br

12

[
−12

(
dp0

dx

)2
− 6

dp0

dx

(
3C3

(
dp0

dx

)2
+ 4

dp1

dx

)

+

(
(7h1 + 5h2)(5h1 + 7h2)

(
dp0

dx

)4
+ 18C3

(
dp0

dx

)2 dp1

dx
− 12

(
dp1

dx

)2
)

We2

+ 6
dp0

dx

(
6C3C4

(
dp0

dx

)4
+ C5

(
dp0

dx

)2 dp1

dx
+ 9C3

(
dp1

dx

)2
)

+C3

(
C3

(
dp0

dx

)2
+ 3

dp1

dx

)(
C6

(
dp0

dx

)4
+ 15C3

(
dp0

dx

)2 dp1

dx
+ 6

(
dp1

dx

)2
)

We4

]
, (39)

θ6 = −BrWe
20

(
dp0

dx
+ C3

(
dp0

dx

)2
+ We

dp1

dx

)

×
[
−

(
dp0

dx

)2
+

dp0

dx
We

(
5C3

(
dp0

dx

)2
+ 2

dp1

dx

)
We

+

(
2C4

(
dp0

dx

)4
+ 5C3

(
dp0

dx

)2 dp1

dx
+

(
dp1

dx

)2
)

We2

]
, (40)

θ7 =
BrWe2

60

(
dp0

dx

)2
[

4
(

dp0

dx

)4
+ 3

dp0

dx

(
5C3

(
dp0

dx

)2
+ 4

dp1

dx

)
We

+

(
C6

(
dp0

dx

)4
+ 15C3

(
dp0

dx

)2 dp1

dx
+ 6

(
dp1

dx

)2
)

We2

]
, (41)

θ8 = −BrWe3

14

(
dp0

dx

)4
[

dp0

dx
+ C3We

(
dp0

dx

)2
+ We

dp1

dx

]
, (42)
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θ9 =
1

56
BrWe4

(
dp0

dx

)6
. (43)

The dimensionless mean flow reads as:

F = d + 1 − Q. (44)

and

F =

h1∫
h2

udy. (45)

The expression for entropy generation and Bejan number can be easily obtained by incorporating
value of u and θ in Equation (24).

5. Discussion

In this section, we present our results by varying the quantities under the variation of several
factors. Figures of temperature profile θ, entropy generation coefficient N, and streamlines are
illustrated below. Figures 2–5 reflect the behavior of θ for some useful parameters. Entropy generation
graphs are given in Figures 6–11. The streamlines conducting the flow samples are depicted in
Figures 12 and 13.

Figure 2 shows the impact of parameters a and b on temperature profile θ. It can be observed
from this plot that temperature is getting increased for both parameters from the lower wall to the
upper wall. Figure 3 shows the mechanism of the Biot number and Brinkman number. Biot number is
an important mechanism to determine the heat transfer. It can be visualized from this figure that an
enhancement in Biot number tends to boost the temperature profile while the contrary behavior has
been observed with the Brinkman number. Brinkman number is the product of Eckert and Prandtl
numbers Br = PrEc, or it is the ratio of the heat generated by viscous dissipation and propagation of
heat by molecular conduction, such as, the ratio of the viscous heat production to extrinsic heating.
Therefore, the enhancement of Brinkman’s number tends to increase the temperature profile. It can be
seen in Figure 4 that the volumetric flow rate significantly enhances the temperature profile. It can
also be noticed that the temperature profile has a lower magnitude for smaller values of d whereas the
behavior is converse for higher values. It can be viewed from Figure 5 that the Weissenberg number
causes a remarkable resistance for higher values. By enhancing the Weissenberg number, the elastic
forces are more dominant, which diminishes the temperature profile. However, the phase difference φ

also produces a significant resistance in the temperature profile.
Figures 6–9 are presented for entropy profiles against the leading parameters. It can be viewed

from Figure 6 that an increment in a and b tends to boost the entropy profile whereas the entropy
profile is increasing along the whole channel. Figure 7 shows that by increasing the Brinkman number,
the entropy profile rises, and it decreases by increasing the Weissenberg number. However, the entropy
remains positive and growing along the entire channel. It is seen from Figure 8 that the Biot number
enhances the entropy profile. It can be seen that at the lower wall, the entropy profile is maximum and
minimum at the upper wall, whereas it is uniform in the middle of the channel. The entropy profile
for various values of Δ is presented in Figure 9. It is noticed in this figure that the entropy profile is
uniform, and no change occurs in the middle of the channel i.e., y ∈ (0, 0.5). Although it shows a
decreasing pattern, but it rises along the upper wall of the channel and remains positive.

Figures 10 and 11 are plotted for the Bejan number profile against the governing parameters. It is
observed from Figure 10 that the Bejan number profile diminishes for higher values of the Brinkman
number and shows a converse behavior for the Weissenberg number. In Figure 11, we can see that the
phase difference shows versatile behavior for higher values on the Bejan number profile. When Bejan
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number rises, then the phase difference’s effects are negligible for the domain y ∈ (0, 1.3), while when
the Bejan number is small, it decreases in a similar area.

The most interesting and useful phenomena of peristaltic motion are trapping, which is plotted
in Figures 12 and 13 via streamlines. It was found that by enhancing the phase difference parameter,
the effects are negligible on the trapping bolus despite the fact that an unusual movement in the
magnitude of the bolus is noticed. Furthermore, we can see in Figure 13 that an increment in the
Weissenberg number profile tends to diminish the width of the trapping bolus. The number of boluses
disappeared more quickly in the lower region as compared with the upper one.

b

b

a

y

Figure 2. Temperature distribution for different values of a and b. Solid line: a = 0.1, dashed line:
a = 0.15 and dot-dashed line: a = 0.2.

Br

Br

Bi

y

Figure 3. Temperature distribution for different values of Bi and Br. Solid line: Bi = 0.1, dashed line:
Bi = 0.25 and dot-dashed line: Bi = 0.3.
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Q

d

d

y

Figure 4. Temperature distribution for different values of Q and d. Solid line: Q = 1.0, dashed line:
Q = 1.2 and dot-dashed line: Q = 1.4.

We

We

y

Figure 5. Temperature distribution for different values of φ and We. Solid line: φ = 0.1, dashed line:
φ = 0.5 and dot-dashed line: φ = 0.9.

a

bb

y

N

Figure 6. Entropy profile for different values of a and b. Solid line: a = 0.1, dashed line: a = 0.15,
and dot-dashed line: a = 0.2.
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BrWe

We

y

N

Figure 7. Entropy profile for different values of We and Br. Solid line: Br = 1.0, dashed line: Br = 1.2,
and dot-dashed line: Br = 1.4.

Bi

Br

Br

y

N

Figure 8. Entropy profile for different values of Bi and Br. Solid line: Bi = 0.1, dashed line: Bi = 0.25,
and dot-dashed line: Bi = 0.3.

y

N

Figure 9. Entropy profile for different values of Δ. Solid line: Δ = 0.1, dashed line: Δ = 0.2, dot-dashed
line: Δ = 0.3, and dot-dashed line: Δ = 0.4.
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Br

We

We

y

B
e

Figure 10. Bejan number for different values of We and Br. Solid line: Br = 1.0, dashed line: Br = 1.2,
and dot-dashed line: Br = 1.4.

Bi

Bi

y

B
e

Figure 11. Bejan number for different values of φ and Bi. Solid line: φ = 0.1, dashed line: φ = 0.5,
and dot-dashed line: φ = 0.9.
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(a) φ = 0.01
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(b) φ = 0.2
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(c) φ = 0.5

Figure 12. Trapping mechanism for different values of φ.
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(a) We = 0.01

x

y
(b) We = 0.05

x

y

(c) We = 0.1

Figure 13. Trapping mechanism for different values of We.

6. Conclusions

In this study, we analyzed the entropy generation on the asymmetric peristaltic propulsion
of non-Newtonian fluid with convective boundary conditions. The Williamson fluid model was
considered to examine the entropy profile. The mathematical modeling was performed under the
approximation of small Reynolds number and long wavelength of the peristaltic wave. A regular
perturbation method was employed to get the series solutions up to third-order approximation.
The significant results of the governing flow problem are summarized below:

(i) It was noticed that the temperature profile revealed an increasing behavior by increasing the
amplitude in the upper and lower region;

(ii) The Biot number and Brinkman number significantly enhanced the temperature profile, whereas
the behavior is converse for the phase difference parameter and Weissenberg number;

(iii) Entropy profile represented an increment profile for higher values of Brinkmann number and
Biot number, and a decrement behavior for the Weissenberg number;

(iv) The Weissenberg number boosedt the Bejan number profile, whereas it decreased due to the Biot
number and Brinkman number;

(v) Trapping mechanism showed that the phase difference parameter affected the magnitude of the
trapped bolus, while the Weissenberg number not only affected the magnitude of the trapped
bolus and the number of trapped boluses reduced in the lower region;

(vi) The non-Newtonian results in the present study could be reduced to Newtonian fluid flow by
taking We = 0.

The present results provide an excellent benchmark for further study on the entropy production
with mass transfer and peristaltic pumping mechanism. The mass transfer phenomena with magnetic
and porosity effects that were not covered in this paper is a topic for future research.
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Nomenclature

d1, d2 channel width
T temperature
c wave speed
t time
X, Y coordinate system
U, V velocity components
S stress tensor
Sh specific heat
K thermal conductivity
P pressure
a, b wave amplitude
Re Reynold’s number
Ec Eckert number
Pr Prandtl number
Br Brinkmann number
Bi Biot number
We Weissenberg number
Be Bejan number
S
′
gen entropy

Greek Symbol

φ phase difference
ρ density
λ wavelength
μ viscosity
Γ time constant
δ wave number
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Abstract: In this article, the author has examined the unsteady flow over a rotating stretchable disk
with deceleration. The highly nonlinear partial differential equations of viscous fluid are simplified by
existing similarity transformation. Reduced nonlinear ordinary differential equations are solved by
homotopy analysis method (HAM). The convergence of HAM solutions is also obtained. A comparison
table between analytical solutions and numerical solutions is also presented. Finally, the results for
useful parameters, i.e., disk stretching parameters and unsteadiness parameters, are found.

Keywords: homotopy analysis method; rotating stretchable disk; newtonian fluid; axisymmetric flow

1. Introduction

Recently, due to the massive practical application in the scientific and technical field, the study of
the rotating stretchable disk has become significant, such as thermal power generation system, medical
equipment’s, computer storage devices, rotating machinery, gas turbine routers, air cleaning machines,
crystal growth process, and in aerodynamic applications [1]. Initially, von Kármán [2] conducted
a study on rotating disk. Several researchers then illustrated the different aspects of this important
analysis. Fang and Zhang [3] have highlighted the flow between two stretchable disks and found the
exact solutions. The parameters analysis and optimization of entropy generation in unsteady magneto
hydrodynamics flow over a rotating stretchable flow over a rotating disk using artificial neural network
and practical swarm optimization algorithm was presented by Rashidi et al. [4]. Recently, Fang and
Tao [5] wrote about the unsteady flow over a rotating stretchable disk with deceleration. After using
the similarity analysis, they found the numerical solutions.

In many situations, exact solutions are very difficult and in most of the cases exact solutions are
impossible. Therefore, series solutions are more useful if they satisfy the given initial and boundary
value problems. Nevertheless, there are various analytical approaches, and each approach has certain
limitations. However, homotopy analysis method (HAM) has many advantages over many analytical
methods. Liao [6] introduced the idea of HAM, which is used by many researchers effectively. Some
useful studies are cited in [7–15]. The purpose of this article is to illustrate the application of HAM
for unsteady Newtonian fluid flow over a rotating stretchable disk with declaration. Tables provide
a correlation between current HAM solution and Fang and Tao’s [5] numerical solution.

2. Formulation of the Problem

Let us consider an incompressible, laminar, and unsteady flow of a viscous fluid or Newtonian
fluid over a stretchable disk, which is rotating about the z-axis with time dependent angular velocity
Ω′(t) = Ω

1−bt , where Ω is constant angular speed of the disk and ‘b’ is the measure of unsteadiness.
Flow is due to the rotation of the stretchable disk and is axisymmetric about the z-axis. Figure 1 describe

Symmetry 2020, 12, 96; doi:10.3390/sym12010096 www.mdpi.com/journal/symmetry
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the geometry of the proposed problem. The governing equations for an unsteady three-dimensional
flow of viscous fluid in cylindrical coordinates are shown below.

1
r
∂
∂r

(ru) +
∂w
∂z

= 0, (1)

∂u
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+ u
∂u
∂r
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= − 1
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+ v
(
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∂
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)
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(
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r
∂
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(rτrz) +
∂
∂z

(τzz)

)
, (4)

where r is along the radial direction, θ is along the azimuthal direction, and z is in normal direction
to the axis. Here, Equation (1) is the continuity equation and Equations (2) and (4) represent the
momentum equation for incompressible flow.

Figure 1. Geometry of the problem.

Where u, v, and w are the velocities along r,θ, and z directions, ρ is the density of fluid, p is the
pressure, v is the kinematic viscosity, and τrr, τrθ, τzr, τzθ, τzz are the stress which are defined as
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τθr τθθ τθz
τzr τzθ τzz
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⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2∂u∂r
∂v
∂r − v

r
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2u
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∂v
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∂u
∂u + ∂w

∂r
∂v
∂z 2∂w∂z

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦. (5)

The proposed boundary conditions are specified in accordance with the geometry of the problem as

u(r,θ, 0) = aΩr
1−bt , v(r,θ, 0) = Ωr

1−bt , w(r,θ, 0) = 0,

u(r, θ, ∞) = v(r,θ,∞) = 0,
(6)

where ‘a’ is the disk stretching parameter.
Introducing, the similarity transformation used in [5] are

u = Ωr
1−bt f ′(η), v = Ωr

1−bt g(η), w = −2
√

Ωv√
1−bt

f (η),

p =
ρvΩ
1−bt P(η), and η =

√
Ω
v

z√
1−bt

.
(7)
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Applying these similarities into the above equations, following non-dimensional equations along
with boundary conditions can be obtained as

f ′′′ + 2 f f ′′ − f ′2 + g2 = S
(η

2
f ′′ + f ′

)
, (8)

g′′ − 2 f ′g− 2 f g′ = S
(η

2
g′+ g

)
, (9)

P′ = 2 f ′′ + 4 f f ′′ − S(η f ′ + f ), (10)

f (0) = 0, f ′(0) = a, g(0) = 1, f ′ → 0 and g→ 0, as η→∞, (11)

where S = b/Ω is the unsteadiness parameter.

3. Homotopy Analysis Method

Homotopy Analysis Method (HAM) [6–15] is used to find an analytical solution to Equations (8)
and (11). The velocity distribution f (η) and g(η) can be expressed by a set of base functions{

ηnexp(−mη)
∣∣∣m, n ≥ 0

}
(12)

in the form

f (η) = a0
0,0 +

∞∑
n=0
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k=0

ak
m,nη

n exp(−mη), (13)

g(η) = b0
0,0 +

∞∑
n=0

∞∑
k=0

bk
m,nη

n exp(−mη) (14)

in which ak
m,n and bk

m,n are the coefficients, the initial guesses f0 and g0 can be selected on the basis of
the law of the solution expressions and of the boundary conditions:

f0(η) = a(1− exp−η), (15)

g0(η) = exp−η . (16)

The auxiliary linear operators are

L1 =
d3

dη3 +
d2

dη2 , (17)

L2 =
d2

dη2 +
d

dη
, (18)

which satisfy
L1[C1 + C2 exp−η+C3η] = 0, (19)

L2[C4 exp−η+C5] = 0, (20)

where Ci(i = 1− 5) are integral constants.

3.1. Zeroth-Order Deformation Equation

If q ∈ [0, 1] denote an embedding parameter, � f and �g indicate the non zero auxiliary parameters
for f (η) and g(η), the zeroth-order deformations for the given problem are

(1− q) f

[
f̂ (η; q) − f0(η)

]
= q� f N f

[
f̂ (η; q), ĝ(η; q)

]
, (21)

(1− q)g[ĝ(η; q) − g0(η)] = q�gNg
[
ĝ(η; q), f̂ (η; q)

]
, (22)
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f̂ (0; q) = 0, f̂ ′ (0; q) = a, ĝ(0; q) = 1 f̂ ′ (∞; q) = ĝ(∞; q) = 0. (23)

Defining the nonlinear operators for the above problem as
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For q = 0 and q = 1, one can have

f̂ (η; 0) = f0(η), f̂ (η : 1) = f (η), (26)

ĝ(η; 0) = g0(η), ĝ(η : 1) = g(η). (27)

By Taylor’s theorem
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and
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3.2. Mth-Order Deformation

Differentiating the zeorth-order deformation Equations (21) and (23) with respect to q, then setting
q = 0, and finally dividing them by m!, the mth-order deformation equations can be obtained as
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in which fm(η) and gm(η) denote the special solutions of Equations (32) and (33) and the Ci(i = 1− 5)
integral constants are calculated by the (34) boundary conditions. Equations (32) and (34) can be solved
using Mathematica for m = 1, 2, 3 . . . .

4. Convergence of the HAM Solution

The homotopy analysis method includes the regulating parameter h, which controls the region
of convergence and HAM solution approximation. To ensure that the solutions converge within the
admissible spectrum of auxiliary parameter values and h f and hg, h− curves were sketched for 15th-order
approximation. The h− curves are plotted in Figures 2 and 3. The admissible ranges of values of h f and
hg are −1.5 ≤ h f < −0.3 and− 1.5 ≤ hg < −0.3, these ranges vary with the change in parameters.

Figure 2. 15th-order g′(0) for a = 1 and S = −1.

Figure 3. 15th-order f ′′ (0) for a = 1 and S = −1.

5. Results and Discussion

To solve Equations (8) and (9) homotopy analysis method (HAM) is applied as a subject to the
boundary conditions (11). Homotopy analysis method is a strong analytical technique which is applied
to obtain the convergent series solution of nonlinear differential equations. The convergence region for
HAM through h− curves are sketched and analyzed in Figures 3 and 4. Homotopy analysis method
provides great freedom to obtain the convergent result. The convergence region varies for different
values of a and S. Tables 1–4 represent the convergence of solution for different values of parameters.
The error analysis of the obtained approximated results is as follows.

Em =

∫ ∞

0
e2

m(t)dt, (38)
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where em(t) is the residual error of Equations (8) and (9) at the mth-order approximation. It is observed
that 10th-order approximation is in good agreement with the numerical result.

Figure 4. Comparison of convergence of g(η) when � = −0.333, a = 1 and S = −1 (line: 10th-order,
dots: 5th-order).

Table 1. Comparison of the numerical result [5] with homotopy analysis method (HAM) convergent
result when a = 1, S = −1 and � f = −1/3, �g = −1/4.

Order f”(0) g
′
(0) error f error g

2nd −0.7673 −1.196 0.311 0.044
4th −0.6945 −1.246 0.021 0.0067
6th −0.6681 −1.264 0.0046 0.0021
8th −0.6581 −1.270 0.00091 0.000715

10th −0.6543 −1.271 0.00014 0.00023

Numerical result [5] f′′ (0) = −0.6520, g′(0) = −1.2716.

Table 2. Comparison of the numerical result [5] with HAM convergent result when a = 1, S = −1/10
and � f = −1/3, �g = −1/4.

Order f”(0) g
′
(0) error f error g

2nd −0.9642 −1.3321 0.031 0.379
4th −0.9374 −1.4162 0.0047 0.0055
6th −0.9262 −1.446 0.00075 0.00091
8th −0.9217 −1.458 0.00012 0.00016

10th −0.9200 −1.4627 0.000018 0.000033

Numerical result [5] f′′ (0) = −0.9189, g′(0) = −1.4656.

Table 3. Comparison of the numerical result [5] with HAM convergent result when a = 2, S = −1/10
and �g = � f = −1/5.

Order f”(0) g
′
(0) error f error g

2nd −2.779 −1.658 0.408 0.543
4th −2.9729 −1.847 0.0876 0.136
6th −3.044 −1.924 0.0234 0.0437
8th −3.072 −1.953 0.0071 0.018

10th −3.082 −1.958 0.0024 0.012

Numerical result [5] f′′ (0) = −3.1178, g′(0) = −2.0530.
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Table 4. Comparison of the numerical result [5] with HAM convergent result when a = 1, S = −1/2
and �g = � f = −1/4.

Order f”(0) g
′
(0) error f error g

2nd −0.9062 −1.2760 0.1051 0.0221
4th −0.8592 −1.3424 0.0283 0.0037
6th −0.8319 −1.3654 0.0077 0.00082
8th −0.8172 −1.3741 0.0021 0.00021

10th −0.8093 −1.3774 0.00058 0.00006

Numerical result [5] f′′ (0) = −0.8007, g′(0) = −1.3797.

The convergence control parameter plays an important role. In Tables 5 and 6, the effect of � on
convergence is shown. Tables 5 and 6 show that the convergence of the solution depends strongly on �.
It can be seen easily that for one set of � the convergence is faster than the other.

Table 5. The Convergence analysis of f ′′ (0) for different � when a = 1, and S = −1/2.

Order h̄f=−1/4,h̄g=−1/5 Err h̄f=−1/5,h̄g=−1/4 Err

2nd −0.9007 0.1062 −0.9243 0.1405
4th −0.8535 0.0283 −0.8826 0.0514
6th −0.8282 0.0076 −0.8658 0.0312
8th −0.8149 0.0021 −0.8325 0.0069

10th −0.8080 0.0005 −0.8201 0.0025

Numerical result [5] f′′ (0) = −0.8007.

Table 6. The Convergence analysis of g′(0) for different � when a = 1, and S = −1/2.

Order h̄f=−1/4,h̄g=−1/5 Err h̄f=−1/5,h̄g=−1/4 Err

2nd −1.2345 0.03718 −1.2786 0.022
4th −1.3157 0.0087 −1.3445 0.0036
6th −1.3502 0.0024 −1.3578 0.0016
8th −1.366 0.0007 −1.3737 0.00021

10th −1.3734 0.0002 −1.3768 0.00006

Numerical result [5] g′(0) = 1.3797.

In Figures 5 and 6, the comparison of 5th-order approximation with 10th-order approximation is
shown, which again provide the facts for convergence. The Mathematica software is used to compute
the results for higher-order approximation. As the given problem is highly nonlinear, the computation
time increases if higher-order approximation is computed or increases the value of the parameters.
For a = 1 and S = 0, the given problem becomes a special case as mentioned in the numerical
paper [5]. Table 7 provides the convergence result for this special case as well. The results obtained in
the present research for this special case are also in very good agreement with the numerical result.
This shows the strength of homotopy analysis methods. It is found that for small S, f ′′ (0) decreases
with the increase of ‘a’ as shown in Tables 2 and 3. Figure 7 represents the velocity distribution for
different values of a. It is observed that with the increase in disk stretching parameter the velocity
decreases. Figures 8 and 9 show that with the decrease in the unsteadiness parameter, both tangential
and radial velocities increase.
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Figure 5. Comparison of convergence of f (η) when � = −0.333, a = 1 and S = −1 (line: 10th-order,
dots: 5th-order).

Figure 6. For S = −1/2 solid line: a = 1, Dashed line: a = 2 10th order HAM approximation for f ′(η).

Table 7. Comparison of the numerical result [5] with HAM convergent result for special case when
analysis = 1, S = 0, and � f = −28/100, �g = −1/3.

Order f” g
′ error f error g

5th −1.1785 −1.44639 0.00044518 0.00019581
10th −1.1751 −1.45359 0.00001437 8.13 × 10−7

15th −1.1739 −1.45402 3.86 × 10−7 1.15 × 10−8

20th −1.1737 −1.45406 2.02 × 10−8 6.42 × 10−10

Numerical result [5] f ′′ (0) = −1.1737 , g′(0) = −1.4541.
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Figure 7. For S = −1/10 10th-order HAM approximation for f ′′ (η).

Figure 8. Variation of f ′(η) for different values of unsteadiness parameter for a = 1.

Figure 9. Variation of g(η) for different values of unsteadiness parameter for a = 1.

6. Conclusions

In this research, viscous axisymmetric flow is studied on a stretchable rotating disk with
deceleration. It is found that Navier–Stokes equation admits a similarity solution, which depends on
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non-dimensionalized parameters S and a measuring unsteadiness and disk stretching, respectively.
The resulting group of nonlinear ordinary differential equations is then solved analytically using
homotopy analysis method (HAM). In numerical paper [5] it is mentioned that there are two solution
branches. The upper solution branch is physically feasible, but the lower solution branch may not be
practically possible. Here, the author has discussed and evaluated the outcome for a physical solution
from the upper field.

The main results are summarized as

• Results obtained by homotopy analysis method are in good agreement with existing
numerical results;

• All the velocity profiles decrease with an increase in unsteadiness parameter S;
• Radial and axial velocity of the flow increases with the increase in disk stretching parameter a,

whereas tangential velocity shows a decreasing trend with an increase in a;
• Variation trend decays with faster velocity to the ambient for fast deceleration as compared to the

slow deceleration of the disk.
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Abstract: The aim of this current contribution is to examine the rheological significance of Maxwell
fluid configured between two isothermal stretching disks. The energy equation is also extended by
evaluating the heat source and sink features. The governing partial differential equations (PDEs)
are converted into the ordinary differential equations (ODEs) by using appropriate variables. An
analytically-based technique is adopted to compute the series solution of the dimensionless flow
problem. The convergence of this series solution is carefully ensured. The physical interpretation of
important physical parameters like the Hartmann number, Prandtl number, Archimedes number,
Eckert number, heat source/sink parameter and the activation energy parameter are presented for
velocity, pressure and temperature profiles. The numerical values of different involved parameters
for skin friction coefficient and local Nusselt number are expressed in tabular and graphical forms.
Moreover, the significance of an important parameter, namely Frank-Kamenetskii, is presented both
in tabular and graphical form. This particular study reveals that both axial and radial velocity
components decrease by increasing the Frank–Kamenetskii number and stretching the ratio parameter.
The pressure distribution is enhanced with an increasing Frank–Kamenetskii number and stretching
ratio parameter. It is also observed that thetemperature distribution increases with the increasing
Hartmann number, Eckert number and Archimedes number.

Keywords: maxwellfluid; mixed convection; isothermal stretching disks; homotopy analysis method

1. Introduction

The mixed convection flow is the combination of both coupled free and forced convection, and is
a topic of particular interest from an engineering (aerospace and chemical engineering) point of view
in the past few years. A diverse significance of such a phenomenon may appear in various electronic
devices, nuclear reactors, food industries, energy storage, era of astrophysics, lubrication phenomenon,
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fire control, chemical metallurgical, etc. The phenomenon of free convection is resulted due to the
temperature difference in fluid particles associated with isothermal stretching disks.

The involvement of magnetic force in the heat transfer processes between stretching disks is
termed as forced convection. In a mixed convection flow, the Archimedes number represents the
comparative contribution of natural to forced convection. It is a well justified fact that the phenomenon
of free convection becomes more prevailing over forced convection when the Archimedes number is
larger than unity. In the modern era of science, the flows caused by heat supplied in the presence of
transport processes which occurred due to chemical reactions gained the attention of investigators due
to numerous applications in several industrial processes. Arrhenius kinetics is adopted for modeling
such reactions, where the flow is thermally obsessed by exothermic surface reaction. Maleque [1]
studied the effects of exothermic/endothermic chemical reactions in the presence of energy activation
over a porous flat plate. The impact of nonlinear thermal radiation and activation energy in the flow of
Cross nanofluid has been reported by Khan et al. [2]. Shafique et al. [3] examined the flow of Maxwell
fluid along with activation energy features in a rotating frame. A numerically-based continuation for
viscous fluid flow in the presence of activation energy and slip factors has been pointed out by Awad
et al. [4]. Another interesting contribution on the flow of viscoelastic fluid in presence of activation
energy was investigated by Hsiao [5]. According to this study, the obtained observations can be used to
enhance the manufacturing and thermal extrusion systems. The mixed convection flow on chemically
reactive surfaces for external flow in the presence of porous medium was investigated by Merkin
and Mahmood [6]. Similar studies were also performed by Minto et al. [7] for a vertical surface. We
also acknowledge the interesting study presented by Chou and Tsern [8], in which they presented
experimentally-based results regarding mixed convection flow in a horizontal channel with constant
heat flux conditions.

In recent years, the stretched flows of electrically conducting materials under the influence of
magnetic force have attained attention due to diverse engineering and medical applications. Some
valuable applications of this phenomenon may include nuclear reactors, fission and fusion reactions,
plasma, metallurgical processes, the exploration of oil, thermal conductors, magnetohydrodynamic
(MHD) generators, etc. The MHD flow passing in arteries is important because of diverse physiological
processes. For example, the flow of blood can be effectively controlled via an addition of the mixing
of samples, heat transportation and interaction of the magnetic field. Many authors performed
an extensive analysis regarding the MHD flow of various fluid models with different geometries.
Nadeem et al. [9] investigated the impact of magnetic force in viscous nanofluid flow configured by
a curved surface. Ahmed et al. [10] performed some numerical computations while explaining the
thermophysical consequences in nanofluid flow subjected to magnetic force. Khan et al. [11] successfully
obtained the dual solution for the combined heat and mass flow of magnetized nanoparticles over a
curved surface. The oscillatory flow of micropolar nanofluid subjected to magnetic force has been
numerically inspected by Sadiq et al. [12].

The study of non-Newtonian fluids is important due to their wide range of applications in
engineering, physiology, the chemical and petroleum industries. The non-Newtonian fluid models
capture a nonlinear relationship between shear stress and deformation rate in contrast to the viscous
materials. The traditional examples of such fluids include paints, blood, paste, jell, apple source, etc.
The non-Newtonian boundary layer flow due to stretching surfaces has been paid a great attention by
scientists due to interesting industrial and engineering applications like glass fiber manufacturing,
paper production, plastic films, crystal growing and in the processing of cooling bath of metallic
sheets. In order to study the physical properties of non-Newtonian fluids, various models have been
introduced in the literature. The classification of non-Newtonian models can be referred as rate type,
differential type and integral type fluids. In the category of rate type, Maxwell fluid is considered
as a subclass of rate type liquids which accomplishes the relaxation time features. The examples of
Maxwell fluid include crude oil, toluene, polymer solution, etc. Haris [13] suggested the boundary
layer equations for two-dimensional flow of Maxwell fluid. After that the analysis of boundary layer
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flow and heat transfer over a stretching surface by using the constitutive equation of Maxwell fluid
was carried out by several researchers. For instance, Hayat et al. [14] discussed the series solution of
upper-convected Maxwell fluid over a porous stretching plate.

The effects of thermal radiation on the MHD flow of a Maxwell fluid over a stretching surface were
examined by Aliakbar et al. [15]. Two-dimensional stagnation-point flow of upper-convected Maxwell
fluid (UCM) over a stretching sheet has been determined by Hayat et al. [16]. They used the homotopy
analysis method (HAM) to solve the resulting nonlinear differential equations. Prasad et al. [17]
discussed the effects of temperature-dependent viscosity, thermal conductivity and internal heat
generation/absorption features in the MHD flow of upper-convected Maxwell fluid configured by a
stretched surface. Khan et al. [18] examined the flow of Maxwell fluid in a channel with oscillating
walls under the action of a magnetic field. The analysis for Maxwell fluid in the presence of a heat
transfer phenomenon over coaxially rotating disks has been depicted by Ahmed et al. [19].

The fluid flow encountered by a rotating and stretching disk has gained serious importance in the
last years due to a large number of physical applications for both physical and theoretical aspects. Some
emerging applications of such flows includes a rotor-stator system, MHD generators, turbine engines,
aircraft engines, spin coating, centrifugal pumps, flow-through swept wings, shrouded-disks rotation,
rotating electrodes, centrifuges, hydraulic press, boilers, condensers, etc. Merkin and Chaudhary [20]
investigated the flow of viscous fluid induced by stretching a disk in the presence of an exothermic
surface reaction. Gorder et al. [21] reported the analytical solution for flow encountered by stretching
disks. Khan et al. [22] studied the mixed convection flow induced by exothermal and isothermal
stretching disks analytically.

In the present analysis, we study an incompressible mixed convection flow of Maxwell fluid
between infinite isothermal stretching disks in the presence of heat absorption/generation, activation
energy and chemical reaction features. In fact, this work is the extension of Gorder et al. [21] in three
directions: Firstly, by considering Maxwell fluid, secondly by including activation energy consequences,
and lastly by taking heat source and sink features. Considering the literature survey, it is noted that this
present analysis has not been investigated yet and presented for the first time in literature. The study
of the mixed convection flow of non-Newtonian fluid encountered enormous applications in nuclear
engineering, chemical engineering and petroleum industries. The considered flow problem contained
the impact of activation energy, which includes diverse industrial and engineering significance, like
oil emulsion, food processing, chemical processes and geothermal reservoirs. The problem is solved
analytically via the homotopy analysis method, and the results are discussed through pictorial and
tabular representations.

2. Mathematical Formulation

In the current analysis, a non-Newtonian fluid is configured between two infinite stretching disks.
It is assumed that flow is axisymmetric and steady. The rheological aspects of non-Newtonian material
have been deliberated by using the famous Maxwell fluid model which occupies the space 0 < z < d.
The disks are separated distance d from each other as shown in Figure 1. The flow is generated due to
the stretching of both disks in the radial direction. It is assumed that both (upper and lower) disks are
isothermal in nature at temperatures T1 and T2, respectively. The analysis is performed by opting for
cylindrical coordinates (r,θ, z). All the involved expressions are independent of θ due to axisymmetry.
Following Merkin et al. [20], the expressions for first order non-isothermal reaction are represented in
following form

A→ B + heat, rate = k0a0e−E/R1T. (1)

These above relations are known as Arrhenius kinetics, where E signifies the activation energy, B
is a product species, R1 is the gas constant, k0 is the chemical reaction, a0 the reactant concentration
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and T is the fluid temperature. The flow equations for the axisymmetric flow of Maxwell fluid can be
expressed as [20–22]:
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in which u and w are velocity components in the r and z directions, λ1 is the relaxation time, p is the
fluid pressure, ρ is the characteristic density, ν is the kinematic viscosity, KT is the thermal conductivity
of the fluid, T0 the reference temperature given by T0 = T1+T2

2 , β denotes the thermal expansion
coefficient, Q0 denotes the heat generation/absorption coefficient while Q stands for the exothermicity
factor. The imposed boundary conditions associated with the current flow problem are:

u = ar, w = 0, p =
aμβr2

4d2 , at z = 0
u = cr, w = 0, p = 0, at z = d,
T = T1 at z = 0, T = T2, at z = d.

(6)

In order to obtain the dimensionless form of above equations, we introduce the following similarity
variables [21,22]:

u = arF(η), w = adH(η), η = z
d
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d
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The above transformations lead to the following system:
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H(0) = 0, H(1) = 0, H′(0) = −2, H′(1) = −2γ,
θ(0) = RT , θ(1) = −RT, P(0) = 0.

}
(11)

where the stretching rate constant is γ, the Reynolds number R, the Hartmann number is M,
Grashoff number Gr, heat source/sink parameter α, the Prandtl number Pr, Eckert number Ec, the
Frank–Kamenetskii number K, constant temperature parameter RT, activation energy parameter ε, the
Archimedes number Ar and the dimensionless distance δ are defined as:
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By differentiating Equation (8) with respect to similarity variable η, we have

H(iv) −RHH′′′ = λR
(
HH′H′′′ + H2H(iv) −H′2H′′ −HH′′ 2

)
−MR [H′′ + λ(H′H′′ + HH′′′ )]
+RArε
δ4 [2θ′ + λ(3H′θ′ + 2Hθ′′ + H′′θ)].

(13)

where λ = λ1a, is the Deborah number. First of all, we solve Equation (12) subject to the boundary
conditions (11) and then β can be evaluated by using Equation (8).

Figure 1. Geometry of the problem.

2.1. Skin Friction Coefficient

The expression for shear stress τw on the surface of the stretching disk is defined as [21,22]:

τw = τrz| z=0, (14)

The skin friction coefficients RC1 f and RC2 f at the lower and upper disks are:

C1 f =
τw

1
2ρ(δr)

2 =
τrz| z=0
1
2ρ(δr)

2 = −R−1H′′ (0), (15)
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2.2. Local Nusselt Number

The mathematical expressions for the local Nusselt number is represented as:
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0

Ed
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The dimensionless form of this local Nusselt number at both (lower and upper) disks is [21,22]:
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3. HomotopyAnalysis Method

In our modern era of scientific research, many physical and engineering problems are modeled in
the form of highly nonlinear differential equations which always remain challenging for mathematicians
to suggest the analytical or numerical solutions. Among different analytical techniques, thehomotopy
analysis method is one which can be used to compute the analytic solution of such problems with
excellent convergence. This technique is free of a complicated discretization procedure like numerical
methods. This analytical technique is free of any small or large parameter constraints. This method was
originally introduced by Liao [23], and later on many researchers used this method for their solutions
of various problems [24–36]. The initial guesses for H(η) and θ(η) are given by:

H0(η) = 2η(1− η)((1 + γ)η− 1), (20)

θ0(η) = η, (21)

Defining auxiliary linear operators

LH[y] =
d4y
dη4

, (22)

Lθ[y] =
d2y
dη2 , (23)

Satisfying
LH

[
C1 + C2η+ C3η

2 + C4η
3
]
= 0, (24)

Lθ[C5 + C6η] = 0, (25)

where Ci(i = 1− 6) are constants.

4. Convergence of Obtained Solution

It is a well-established fact that the convergence rate of HAM solutions is strictly based on
non-zero auxiliary parameters �H and �θ. The suitable selection of these parameters is quite useful for
adjusting and controlling the obtained solution. The admissible range of these auxiliary parameters,
the �−curves for velocity and temperature distributions, is displayed in Figure 2a,b. These figures
clearly demonstrate that the suitable values of �H and �θ can be selected from −2.0 ≤ �H ≤ −0.1 and
−1.8 ≤ �θ ≤ −0.3. For present computations, the optimal values of �H and �θ are taken �H = −1
and �θ = −1.08. The accuracy of obtained solution against various values of emerging parameters is
shown in Table 1. It is seen that the accuracy of the HAM solution is obtained at the twentieth order
of approximations.

Table 1. The convergence analysis of the homotopic solution with R = 5, γ = 0.5, M = 0.5, λ = 0.2,
Ar = 2, δ = 3, Ec = 1, Pr = 1, α = 0.5, K = 0.01, RT = 2, ε = 0.5, �H = −1 and �θ = −1.08.

Order of Approximation H”(0) θ
′
(0)

11 9.79594 −1.91738
14 9.79619 −1.91686
16 9.79643 −1.91634
18 9.79667 −1.91582
20 9.79717 −1.91461
25 9.79717 −1.91461
30 9.79717 −1.91461
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(a) (b) 

Figure 2. The h-curve for (a) velocity profile, (b) temperature profile when R = 5, γ = 0.5, M = 0.5,
λ = 0.2, Ar = 2, δ = 0.5, Ec = 1, Pr = 1, α = 0.5, K = 0.001, RT = 2 andε = 0.5.

5. Validation of Solution

Before performing detailed graphical computations for flow parameters, we first compare our
results with Gorder et al. [21] as a limiting case in Table 2. It is noted that an excellent accuracy of our
results has been noted with these reported studies. Also Figure 3 shows the comparison of present
results for the velocity profile computed via the homotopy analysis method for various values of
the stretching ratio parameter with Gorder et al. [21]. It is found that present results have shown a
convincible accuracy with Gorder et al. [21].

Table 2. Comparison of H(η) and H′(η) for different values of ηwith λ = 0, R = 0 and M = 0.

η Gorder et al. [21] Present Result (HAM)

H(η) H
′
(η) H(η) H

′
(η)

0.0 0.000 −2.00 0.000 −2.00
0.2 −0.224 −0.360 −0.224 −0.360
0.4 −0.192 0.560 −0.192 0.560
0.6 −0.048 0.760 −0.048 0.760
0.8 0.064 0.240 0.064 0.240
1.0 0.000 −1.00 0.000 −1.000

  
Figure 3. Comparison of velocity components H(η) and H′(η) for different values of stretching
parameter γ, dotted red lines represents the HAM solution while blue lines denotes the solution by
Gorder et al. [21].
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6. Results and Discussion

The formulated ordinary differential equations are targeted analytically via the homotopy analysis
scheme. The aim of this section is to examine the physical significance of each physical parameter on
velocity, pressure and temperature distributions.

6.1. Velocity Distribution

Figures 4–6 are plotted to capture the influence of various parameters like the stretching ratio γ,
Deborah number λ, Reynolds number R, Prandtl number Pr, heat source/sink parameter α, constant
temperature parameter RT, the Eckert number Ec, activation energy parameter ε, Frank–Kamenetskii
number K, Hartmann number M and the Archimedes number Ar on the r−velocity component H′(η)
and z−direction velocity component H(η). Figure 4a–f presents the effect of the Deborah number λ,
stretching ratio γ, Eckert number Ec, Prandtl number Pr, dimensionless distance parameter δ and
the Frank–Kamenetskii number K on ther- and z-components of velocity. Figure 3a prescribed the
outcomes of the Deborah number λ on thez component of velocity. It is observed that the r-component
of velocity increases up to a certain range and later on decreases slightly. It can be justified physically,
as the Deborah number is directly proportional to the relaxation time. In fact, it is the associated with
the fluid relaxation time to the observation time. The smaller values of the Deborah number represent
the viscous nature of fluid while a material having a higher Deborah number represents the solid
nature of fluid. The effects of the stretching ratio γ, Eckert number Ec, dimensionless distance δ and
the Frank–Kamenetskii number K on H(η) and H′(η) has been expressed in Figure 4b–e. From all
these figures, it is noted that both H(η) and H′(η) are enhanced by varying these parameters. Figure 4f
manifested the influence of the Hartmann number on the z component of velocity. A decay in the z
component of velocity is observed for intensifying values of the Hartmann number. Physically, the
larger values of this Hartmann number attributed strong drag force which resists the amplitude of
flow.Figure 4g–h determined the effects of the Archimedes number Ar and Reynolds number R on
axial and radial velocities. A retarded distribution of both components has been resulted with the
variation of all these parameters. Since the Reynolds number represents the ratio of inertial force to
viscous, therefore higher values of R become associated with larger inertial force which decay the
velocity distribution effectively.

6.2. Pressure Distribution

The variation in pressure distribution P(η) for various values of the stretching ratio parameter
γ, dimensionless distance δ, Reynolds number R, Archimedes number Ar, constant temperature
parameter RT, activation energy parameter ε, Deborah number λ, Hartmann number M and the
Frank–Kamenetskii number K is discussed in Figure 5a–h. Figure 5a,b show the change in P(η) for
diverse values of γ and δ. It is noted that pressure is an increasing function of γ and δ up to a specific
height, and later on decreases gradually. However, a decreasing trend has been observed for maximum
values of the Reynolds number R and the Archimedes number Ar (Figure 5c,d). The graphical
explanation for the Deborah number λ and the Hartmann number M is presented in Figure 5e,f.
The Deborah number specified the relaxation time to the observation time ratio which means that
maximum values of λ correspond to larger relaxation time due to which the pressure distribution
declined. Similarly, a decreasing trend in the pressure distribution is due to the fact that the Hartmann
number is associated with Lorentz force, which efficiently controls the pressure distribution in the
whole domain. Figure 5g determines the influence of the Frank–Kamenetskii number K on pressure
distribution P(η). A retarded pressure distribution has been examined with the variation of K. With
the increase of K, the pressure distribution decreases up to maximum level.
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(a) Influence of Deborah number ߣ (b) Influence of stretching ratio ߛ 

  
(c) Influence of Eckert number ܿܧ. (d) Influence of dimensionless distance ߜ 

  
(e) Influence of Frank-Kamenetskii number ܭ. (f) Influence of Hartmann number ܯ. 

  
(g) Influence of Archimedes number ܣ௥ (h) Influence of Reynolds number ܴ 

Figure 4. In r and z components of velocities when γ = 0.5, �H = −1, M = 0.5, λ = 0.2, Ec = 1, Pr = 1,
α = 0.5, R = 5, δ = 1.5, ε = 0.5, Ar = 50, K = 0.5 and RT = 1.
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(a) Influence of stretching ratio ߛ (b) Influence of dimensionless distance ߜ 

  
(c) Influence of Reynolds number R (d) Influence of Archimedes number ܣ௥ 

  
(e) Influence of Deborah numberߣ (f) Influence of Hartmann number M 

 
(g) Influence of Frank-Kamenetskii number ܭ. 

Figure 5. Pressure distribution for different parameters withγ = 0.5, �H = −1, M = 0.5, λ = 0.5, Ec = 1,
Pr = 1, α = 0.9, δ = 1.5, R = 5, ε = 0.5, Ar = 2, K = 0.5 and RT = 2.
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(a) Influence of Hartmann number M (b) Influence of Eckert number ܿܧ 

  
(c) Influence of Archimedes number ܣ௥ (d) Influence of activation energy parameter ߳ 

  
(e) Influence of heat source/sink parameter ߙ (f) Influence of dimensionless distance ߜ 

 
(g) Influence of Reynolds number R 

Figure 6. Temperature profile forγ = 0.5, �H = −1, �θ = −1.08, M = 1, λ = 0.2, Ec = 1, R = 5, Pr = 1,
α = 0.5, δ = 0.5, ε = 0.5, Ar = 5, K = 0.01 and RT = 1.

6.3. Temperature Distribution

In order to examine the impact of the Hartmann number M, heat source/sink parameter α, Eckert
number Ec, stretching ratio parameter γ, Archimedes number Ar, dimensionless distance δ and the
Reynolds number R on temperature distribution θ(η), Figure 6a–g are prepared. Figure 6a captured
the consequences of the Hartmann number M on temperature distribution θ(η). As expected, an
enhanced temperature distribution is observed for larger values of M due to the interaction of Lorentz
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force. From Figure 6b, again an increment in temperature distribution has been noted for maximum
values of the Eckert number Ec. The physical consequences of such trend may be attributed as heat
due to viscous dissipation of fluid enhanced, due to which results an increment in θ(η). Figure 6c,d
portrayed the impact Archimedes number Ar and activation energy parameter ε on θ(η). It is seen
that temperature distribution enlarges with increasing both parameters. The activation energy plays
a significant role in enhancement of many reaction processes. Figure 6e reports the influence of the
heat source/sink constant on θ(η). It is noted that θ(η) increases in the case of heat source case (α > 0),
while the opposite trend is noted for the heat sink case (α < 0). The physical aspect of such a trend may
attribute, as in the case of heat source, more heat is added to the system, due to which the temperature
distribution improved. On the contrary, due to the heat sink, heat is removed from the whole system
which turns down the temperature distribution efficiently. From Figure 6f,g, a declining temperature
distribution has been observed with maximum variation of dimensionless distance δ and Reynolds
number R.

6.4. Physical Quantities of Interests

Figure 7a–c show the effect of different parameters like the stretching ratio parameter γ, Deborah
number λ and Hartmann number M on the skin friction coefficient at upper and lower disks. From
Figure 7a, a decreasing variation in this skin friction coefficient is examined with increasing γ.
On contrary, the skin friction coefficient at both level disks is increased for maximum values of the
Deborah number λ (Figure 7b). Figure 7c reveals that the wall shear stress for different values of the
Hartmann number M is maximum at the upper level of the disk as compared to the lower level.

  
(a) (b) 

 
(c) 

Figure 7. (a–c) The in skin friction coefficients at both disks for various values of γ,λ and M with
γ = 0.5,�H = −1, �θ = −1.08, M = 1, λ = 2, Ec = 1, Pr = 1, α = 0.5, δ = 1.2, ε = 0.5, Ar = 50,
K = 0.01 and RT = 1.
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Figure 8a,b show the effects of Hartmann number M and Eckert number Ec on the local Nusselt
number at lower and upper disks. The variation in local Nusselt number at the upper disk is larger for
both parameters.

  
(a) (b) 

Figure 8. (a,b) The variation in Nusselt number at both disks for various values of M and Ec whenγ = 0.5,
�H = −1, �θ = −1.08, M = 1, λ = 2, Ec = 1, Pr = 1, α = 0.5, δ = 1.2, ε = 0.5, Ar = 50, K = 0.01
and RT = 1.

The numerical iteration in the wall shear stress at the upper level of the disk RC1 f and lower
level RC2 f are discussed in Table 3. The wall shear stress gets minimum values for stretching rate
constant γ, Reynolds number R, and Hartmann number M. It is noted that rate of wall shear
stress is relatively slower at the lower portion of the disk for all parameters. The variation for
various parameters on the local Nusselt number is portrayed in Table 4. Again, the continuations
are performed at both surfaces (upper surface N1u and lower surface N2u). This physical quantity
increases with Pr and Ec. Finally, the numerical values of Frank–Kamenetskii against different values
of γ, M, λ, R, Pr, Ec, δ, α, ε, Ar and RT is shown in Table 5. The variation in Frank–Kamenetskii
constant is slower for λ and Ar.

Table 3. Numerical variation in wall shear stress at both surfaces of moving disk.

γ M R Pr Ec λ δ α ε Ar RT K Lower Disk Upper Disk

0.2 01 05 1.0 1.0 0.2 0.5 0.5 0.5 02 2.0 0.1 −116.204 −252.335
0.4 01 05 1.0 1.0 0.2 0.5 0.5 0.5 02 2.0 0.1 −129.404 −262.989
0.6 01 05 1.0 1.0 0.2 0.5 0.5 0.5 02 2.0 0.1 −142.249 −272.563

0.5 1.0 05 1.0 1.0 0.2 0.5 0.5 0.5 02 2.0 0.1 −135.869 −267.915
0.5 1.5 05 1.0 1.0 0.2 0.5 0.5 0.5 02 2.0 0.1 −149.413 −273.824
0.5 2.0 05 1.0 1.0 0.2 0.5 0.5 0.5 02 2.0 0.1 −162.905 −281.867

0.5 01 1.0 1.0 1.0 0.2 0.5 0.5 0.5 02 2.0 0.1 −1.63619 −38.7856
0.5 01 2.0 1.0 1.0 0.2 0.5 0.5 0.5 02 2.0 0.1 −22.2454 −67.5845
0.5 01 3.0 1.0 1.0 0.2 0.5 0.5 0.5 02 2.0 0.1 −44.9617 −108.970

0.5 01 05 1.0 1.0 0.2 0.5 0.5 0.5 02 2.0 0.1 −135.869 −267.915
0.5 01 05 2.0 1.0 0.2 0.5 0.5 0.5 02 2.0 0.1 −102.816 −437.258
0.5 01 05 3.0 1.0 0.2 0.5 0.5 0.5 02 2.0 0.1 −69.7624 −606.601

0.5 01 05 1.0 1.0 0.2 0.5 0.5 0.5 02 2.0 0.1 −135.869 −267.915
0.5 01 05 1.0 1.5 0.2 0.5 0.5 0.5 02 2.0 0.1 115.683 −430.368
0.5 01 05 1.0 2.0 0.2 0.5 0.5 0.5 02 2.0 0.1 367.236 −592.821

0.5 01 05 1.0 1.0 0.2 0.5 0.5 0.5 02 2.0 0.1 −135.869 −267.915
0.5 01 05 1.0 1.0 0.4 0.5 0.5 0.5 02 2.0 0.1 −195.891 −369.982
0.5 01 05 1.0 1.0 0.6 0.5 0.5 0.5 02 2.0 0.1 −255.476 −472.018

0.5 01 05 1.0 1.0 0.2 0.5 0.5 0.5 02 2.0 0.1 −135.869 −267.915
0.5 01 05 1.0 1.0 0.2 0.6 0.5 0.5 02 2.0 0.1 −62.2384 −77.8090
0.5 01 05 1.0 1.0 0.2 0.7 0.5 0.5 02 2.0 0.1 −23.2608 −44.7235

0.5 01 05 1.0 1.0 0.2 0.5 0.1 0.5 02 2.0 0.1 −130.344 −270.583
0.5 01 05 1.0 1.0 0.2 0.5 0.3 0.5 02 2.0 0.1 −133.108 −269.244
0.5 01 05 1.0 1.0 0.2 0.5 0.5 0.5 02 2.0 0.1 −135.869 −267.915
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Table 3. Cont.

γ M R Pr Ec λ δ α ε Ar RT K Lower Disk Upper Disk

0.5 01 05 1.0 1.0 0.2 0.5 0.5 0.1 02 2.0 0.1 −14.4518 −37.1367
0.5 01 05 1.0 1.0 0.2 0.5 0.5 0.3 02 2.0 0.1 −52.1849 −61.3395
0.5 01 05 1.0 1.0 0.2 0.5 0.5 0.5 02 2.0 0.1 −89.1381 −99.7870

0.5 01 05 1.0 1.0 0.2 0.5 0.5 0.5 3.5 2.0 0.1 24.7854 −1205.14
0.5 01 05 1.0 1.0 0.2 0.5 0.5 0.5 4.0 2.0 0.1 195.575 −1786.25
0.5 01 05 1.0 1.0 0.2 0.5 0.5 0.5 4.5 2.0 0.1 445.195 −2541.17

0.5 01 05 1.0 1.0 0.2 0.5 0.5 0.5 02 2.0 0.1 −135.869 −267.915
0.5 01 05 1.0 1.0 0.2 0.5 0.5 0.5 02 2.3 0.1 −185.374 −345.966
0.5 01 05 1.0 1.0 0.2 0.5 0.5 0.5 02 2.6 0.1 −247.552 −440.297

0.5 01 05 1.0 1.0 0.2 0.5 0.5 0.5 02 2.0 0.1 −155.783 −257.838
0.5 01 05 1.0 1.0 0.2 0.5 0.5 0.5 02 2.0 0.2 −154.907 −257.367
0.5 01 05 1.0 1.0 0.2 0.5 0.5 0.5 02 2.0 0.3 −154.003 −256.903

Table 4. Numerical variation in local Nusselt number at both surfaces of moving disk.

γ M R Pr Ec λ δ α ε Ar RT K Lower Disk Upper Disk

0.2 01 05 1.0 1.0 0.2 0.5 0.5 0.5 02 2.0 0.1 −43.2173 62.2902
0.4 01 05 1.0 1.0 0.2 0.5 0.5 0.5 02 2.0 0.1 −43.1456 64.2379
0.6 01 05 1.0 1.0 0.2 0.5 0.5 0.5 02 2.0 0.1 −43.1225 66.2978

0.5 1.0 05 1.0 1.0 0.2 0.5 0.5 0.5 02 2.0 0.1 −43.1714 65.2526
0.5 1.5 05 1.0 1.0 0.2 0.5 0.5 0.5 02 2.0 0.1 −49.2164 71.3174
0.5 2.0 05 1.0 1.0 0.2 0.5 0.5 0.5 02 2.0 0.1 −55.2913 77.3855

0.5 01 2.0 1.0 1.0 0.2 0.5 0.5 0.5 02 2.0 0.1 −1.93260 10.9702
0.5 01 3.0 1.0 1.0 0.2 0.5 0.5 0.5 02 2.0 0.1 −9.76591 20.5937
0.5 01 4.0 1.0 1.0 0.2 0.5 0.5 0.5 02 2.0 0.1 −20.8434 35.8615

0.5 01 05 1.0 1.0 0.2 0.5 0.5 0.5 02 2.0 0.1 −34.5174 58.1590
0.5 01 05 2.0 1.0 0.2 0.5 0.5 0.5 02 2.0 0.1 −59.2591 126.626
0.5 01 05 3.0 1.0 0.2 0.5 0.5 0.5 02 2.0 0.1 −70.4176 209.251

0.5 01 05 1.0 1.0 0.2 0.5 0.5 0.5 02 2.0 0.1 −34.5174 58.1590
0.5 01 05 1.0 1.5 0.2 0.5 0.5 0.5 02 2.0 0.1 −65.0929 88.3373
0.5 01 05 1.0 2.0 0.2 0.5 0.5 0.5 02 2.0 0.1 −95.5317 118.241

0.5 01 05 1.0 1.0 0.2 0.5 0.5 0.5 02 2.0 0.1 −37.1562 59.1911
0.5 01 05 1.0 1.0 0.4 0.5 0.5 0.5 02 2.0 0.1 −35.3967 58.5028
0.5 01 05 1.0 1.0 0.6 0.5 0.5 0.5 02 2.0 0.1 −33.6384 57.8153

0.5 01 05 1.0 1.0 0.2 0.5 0.5 0.5 02 2.0 0.1 −34.5174 58.1590
0.5 01 05 1.0 1.0 0.2 0.6 0.5 0.5 02 2.0 0.1 −4.57816 17.6285
0.5 01 05 1.0 1.0 0.2 0.7 0.5 0.5 02 2.0 0.1 −2.16759 8.23666

0.5 01 05 1.0 1.0 0.2 0.5 0.1 0.5 02 2.0 0.1 −32.5620 56.3592
0.5 01 05 1.0 1.0 0.2 0.5 0.3 0.5 02 2.0 0.1 −33.5476 57.2673
0.5 01 05 1.0 1.0 0.2 0.5 0.5 0.5 02 2.0 0.1 −34.5174 58.1590

0.5 01 05 1.0 1.0 0.2 0.5 0.5 0.1 02 1.0 0.1 −4.03154 4.78376
0.5 01 05 1.0 1.0 0.2 0.5 0.5 0.3 02 1.0 0.1 −7.31547 21.5100
0.5 01 05 1.0 1.0 0.2 0.5 0.5 0.5 02 1.0 0.1 −34.5174 58.1590

0.5 01 05 1.0 1.0 0.2 0.5 0.5 0.5 3.5 1.0 0.1 −128.255 180.574
0.5 01 05 1.0 1.0 0.2 0.5 0.5 0.5 4.0 1.0 0.1 −171.887 236.943
0.5 01 05 1.0 1.0 0.2 0.5 0.5 0.5 4.5 1.0 0.1 −221.713 301.095

0.5 01 05 1.0 1.0 0.2 0.5 0.5 0.5 02 2.0 0.1 −34.5174 58.1590
0.5 01 05 1.0 1.0 0.2 0.5 0.5 0.5 02 2.3 0.1 −43.9555 76.6222
0.5 01 05 1.0 1.0 0.2 0.5 0.5 0.5 02 2.6 0.1 −53.7965 97.8575

0.5 01 05 1.0 1.0 0.2 0.5 0.5 0.5 02 1.0 0.1 −35.1337 58.7998
0.5 01 05 1.0 1.0 0.2 0.5 0.5 0.5 02 1.0 0.2 −35.8183 59.5099
0.5 01 05 1.0 1.0 0.2 0.5 0.5 0.5 02 1.0 0.3 −36.5027 60.2180
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Table 5. The numerical values of Critical Frank–Kamenetskii number for various parameters.

γ M R Pr Ec δ α ε Ar RT λ Kc

0.3 01 05 01 01 0.5 0.5 0.01 02 2.0 1.2 −10.8144
0.5 01 05 01 01 0.5 0.5 0.01 02 2.0 1.2 −10.8151
0.7 01 05 01 01 0.5 0.5 0.01 02 2.0 1.2 −10.8170

0.5 01 05 01 01 0.5 0.5 0.01 02 2.0 1.2 −10.8151
0.5 03 05 01 01 0.5 0.5 0.01 02 2.0 1.2 −10.7897
0.5 05 05 01 01 0.5 0.5 0.01 02 2.0 1.2 −10.7400

0.5 01 01 01 01 0.5 0.5 0.01 02 2.0 1.2 −10.6770
0.5 01 02 01 01 0.5 0.5 0.01 02 2.0 1.2 −10.6946
0.5 01 03 01 01 0.5 0.5 0.01 02 2.0 1.2 −10.7235

0.5 01 05 01 01 0.5 0.5 0.01 02 2.0 1.2 −10.8151
0.5 01 05 02 01 0.5 0.5 0.01 02 2.0 1.2 −10.9559
0.5 01 05 03 01 0.5 0.5 0.01 02 2.0 1.2 −11.0960

0.5 01 05 01 01 0.5 0.5 0.01 02 2.0 1.2 −10.8151
0.5 01 05 01 02 0.5 0.5 0.01 02 2.0 1.2 −10.8064
0.5 01 05 01 03 0.5 0.5 0.01 02 2.0 1.2 −10.7978

0.5 01 05 01 01 2.0 0.5 0.01 02 2.0 1.2 −10.5643
0.5 01 05 01 01 2.5 0.5 0.01 02 2.0 1.2 −10.4735
0.5 01 05 01 01 3.0 0.5 0.01 02 2.0 1.2 −10.3631

0.5 01 05 01 01 0.5 0.3 0.01 02 2.0 1.2 −10.6729
0.5 01 05 01 01 0.5 0.5 0.01 02 2.0 1.2 −10.8151
0.5 01 05 01 01 0.5 0.7 0.01 02 2.0 1.2 −10.9575

0.5 01 05 01 01 0.5 0.5 0.1 02 2.0 1.2 −12.1179
0.5 01 05 01 01 0.5 0.5 0.2 02 2.0 1.2 −14.0721
0.5 01 05 01 01 0.5 0.5 0.3 02 2.0 1.2 −16.1551

0.5 01 05 01 01 0.5 0.5 0.01 10 2.0 1.2 −11.3132
0.5 01 05 01 01 0.5 0.5 0.01 50 2.0 1.2 −15.1132
0.5 01 05 01 01 0.5 0.5 0.01 100 2.0 1.2 −20.1335

0.5 01 05 01 01 0.5 0.5 0.01 02 01 1.2 −10.4104
0.5 01 05 01 01 0.5 0.5 0.01 02 02 1.2 −10.3151
0.5 01 05 01 01 0.5 0.5 0.01 02 03 1.2 −11.2584

0.5 01 05 01 01 0.5 0.5 0.01 02 2.0 0.5 −10.8071
0.5 01 05 01 01 0.5 0.5 0.01 02 2.0 1.0 −10.8127
0.5 01 05 01 01 0.5 0.5 0.01 02 2.0 1.5 −10.8189

7. Conclusions

The axisymmetric flow of Maxwell fluid between two isothermal stretching disks is discussed in
presence of source/sink and activation energy features. The mixed convection effects are implemented
in the momentum equation. Analytical results are discussed by using the homotopy analysis method.
The following observations are furnished:

• The wall shear stress decreases by increasing stretching parameter, Hartmann number,
Reynolds number, Deborah number, activation energy parameter and constant temperature
parameter. It means that tangential stresses increase by increasing stretching the ratio parameter,
Hartmann number and Reynolds number. While the behavior of dimensionless distance and
Frank–Kamenetskii number are quite the opposite.

• The pressure distribution is increased with variation of theFrank–Kamenetskii number and
stretching ratio parameter.

• When the Deborah number λ and Hartmann number increases, the wall shear stress at the lower
disk increases while an opposite trend is found at the upper disk.

• It is observed that the surface heat transfer increases by increasing the stretching parameter and
heat source/sink parameter.

• The rate of heat transfer decreases at the lower disk and increases at the upper disk by increasing
the Hartmann number, Reynolds number, Archimedes number and activation energy parameter.
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Nomenclature

(r,θ, z) cylindrical coordinate
(u, w) velocity components
T1 upper disk temperature
E activation energy
R1 gas constant
a0 reactant concentration
ρ characteristic density
ν is the kinematic viscosity
KT thermal conductivity of fluid
Q exothermicity factor
γ stretching rate constant
M Hartmann number
α heat source/sink parameter
Ec Eckert number
RT constant temperature parameter
Ar Archimedes number
τw shear stress

d distance
T is the fluid temperature
T2 lower disk temperature
B product species
k0 is chemical reaction
λ1 is the relaxation time
p is the fluid pressure
T0 isreference temperature
β denotes the thermal expansion
Q0 heat generation/absorption coefficient
R Reynolds number
Gr Grashoff number
Pr Prandtl number
K Frank–Kamenetskii number
ε activation energy parameter
δ dimensionless distance
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Abstract: The key objective of the study under concern is to probe the impacts of Brownian motion
and thermophoresis diffusion on Casson nanofluid boundary layer flow over a nonlinear inclined
stretching sheet, with the effect of convective boundaries and thermal radiations. Nonlinear ordinary
differential equations are obtained from governing nonlinear partial differential equations by using
compatible similarity transformations. The quantities associated with engineering aspects, such as
skin friction, Sherwood number, and heat exchange along with various impacts of material factors
on the momentum, temperature, and concentration, are elucidated and clarified with diagrams.
The numerical solution of the present study is obtained via the Keller-box technique and in limiting
sense are reduced to the published results for accuracy purpose.

Keywords: Keller-box technique; Casson nanofluid; MHD; Power law fluid; Convective boundaries;
Radiation effect; Inclined surface

1. Introduction

Brownian motion and thermophoresis diffusions are the key notions of abnormal improvement
in thermal conductivity by using binary fluids (base fluid along with nanoparticles). The influence
of Brownian motion and thermophoresis is focused in the Buongiorno model. This model supports
engineers and scholars through its utilization in the field of science and technology. It is also pointed
out that nanoparticles occupying Brownian motion and thermophoresis effects cause improvement
of thermal conductivity. The Brownian motion principle along thermophoresis particle installation
supports, in manufacturing, germanium dioxide optical fibers and, in communication engineering,
silicon. The impacts of Brownian motion and thermophoresis diffusion on Casson nanofluid flow on a
stretching sheet were discussed by Anwar et al. [1]. Afify [2] scrutinized the Brownian movement and
thermophosis impact on Casson nanofluid flow with convective boundaries. The impacts of radiations
on Casson nanofluid flow with Brownian motion and thermophoresis influence were studied by
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Souayeh et al. [3]. Rashidi et al. [4] discussed heat exchange and particle motion by considering the
discrete phase model (DPM). Bhatti et al. [5] examined electro-magnetohydrodynmaic (MHD) flow
with heat exchange by incorporating the thermal radiations effect. Ellahi et al. [6] investigated a shiny
thin film with metallic tactile covering nanoparticles through a rotating disk. Numerous scholars [7–12]
considered the Buongiorno model to investigate flow characteristics.

The most significant concerns of a creator and craftsman in the construction of different items,
in the pursuit of excellence, is the lessening of expenses and time. The role of heat and fluids
in industries is undeniable. Discovering approaches towards the advancement of procedures and
the quantity of energy exchange has consistently been a concern for researchers and specialists
from the earlier times to the current era. The discovery of nanoparticles and the advancement in
nanotechnology is viewed as a tremendous change in innovation and science. Choi [13] was the
initiator of the nanofluid concept. A mixture of a base fluid (water, ethylene glycol and so on)
with nano-scale particles called nanoparticles is termed as a nanofluid. Nanofluids have a higher
thermal conductivity as compared to base fluids, due to which the energy exchange procedure
is enhanced. The radiation effects on Casson nanofluid flow on a nonlinear slanted sheet were
investigated by Ghadikolaei et al. [14]. The effect of a magnetic field on the flow of a nanofluid over
an inclined sheet was studied by Suriyakumar and Devi [15]. Khan et al. [16] examined the flow of a
Jeffery nanofluid over a slanted sheet. Thumma et al. [17] discussed the flow of a nanofluid over a
nonlinear inclined stretching sheet. Parkash et al. [18] discussed the nanofluid flow through a channel
analytically. Zeeshan et al. [19] examined the flow of titanium dioxide-water base nanofluid because of
entropy generation. Shehzad et al. [20] calculated the silver-water base nanofluid flow in a porous
medium because of entropy generation. Hussain et al. [21] studied multiphase flow synthesis with
nano-size hafnium particles with the effect of electro-hydrodynamic effect. Ellahi et al. [22] discussed
the thermally charged MHD bi-phase flow coating with non-Newtonian nanofluid along slipper walls.
Recently, many scholars discussed nanofluid flow by incorporating different impacts [23–26].

Non-Newtonian fluids have gained considerable attention from scientists and engineers because of
their key role in the field of industry and engineering. The study under concern has direct noteworthy
use in association with non-Newtonian fluids, such as Casson fluids (honey, human blood etc.),
power law fluids and nanofluids etc. Reddy [27] investigated the movement of Casson liquid over
a slanted sheet. Hakeem et al. [28] investigated the inclined Lorentz force on Casson fluid flow
on an extended sheet. Rawi et al. [29] studied the unsteady flow of Casson fluid through a slanted
sheet. Casson fluid flow on an inclined sheet with multiple impacts was discussed by Jain and
Parmar [30]. Ellahi et al. [31] discussed the two-phase Couette flow of couple stress by incorporating
the magnetic field impacts. Ellahi et al. [32] investigated the blood flow of couple stress fluid with
chemical reaction effects. For further detailed literature related to non-Newtonian fluid flow on inclined
sheets, see [33–40].

Heat exchange due to thermal radiations has become an active area of research due to its vast
range of applications in the field of nuclear power plants, missiles, satellites and in nanotechnology.
Moreover, it is significant that thermal radiation is not suitable for the engineering of thermal tools with
large variations in temperature [41]. The thermal radiation impact on flow and heat exchange is a key
factor to design advanced energy conversion systems [42]. Recently, Ghadikolaei et al. [43] investigated
the flow of Casson nanofluid on a porous inclined sheet numerically. Saidulu [44] discussed the
radiation impacts on the flow of a nanofluid over an exponential inclined surface.

To the best of the authors’ knowledge, no study on Casson nanofluid flow over an inclined
nonlinear stretching sheet along with radiation effects and convective boundaries has been reported
yet. Besides, the fact that a lot of work has already been done on non-Newtonian fluids with different
geometries, but due to the growing applications of non-Newtonian fluids in the field of industry,
the authors choose this study on an inclined sheet. The non-Newtonian fluid flow on an inclined sheet
plays a vital role in MHD generators, gas turbines, and extrusion of plastic sheets. The numerical
solution of the current problem is obtained using the Keller-box method.
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2. Problem Formulation

Suppose two-dimensional incompressible Casson nanofluid flow over a nonlinear inclined
stretching sheet slanted at γ, where uw(x) = axm is the extending speed and u∞(x) = 0 is free stream
speed, in which x is the coordinate stated towards the extending sheet and ‘a’ is considered as constant.
The transverse magnetic field ‘B0’ is taken as normal to the track of flow. The Brownian motion
and thermophoresis effects are considered. The temperature T and nanoparticle fraction C take the
values Tw and Cw at the wall. The thermal radiation impact is incorporated with a convective heating
procedure considered by the temperature T f and heat exchange factor h f , which is proportional to x−1.
Meanwhile, the encompassing structures for nanofluid temperature and mass divisions T∞ and C∞ are
achieved as y keeps an eye on infinity, as displayed in Figure 1.

Figure 1. Physical geometry with coordinate system.

The flow equations for this study are given by
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∂v
∂y

= 0, (1)
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Here, the Rosseland estimation (for radiation flux) is characterized as

qr = −4σ∗
3k∗
∂T4

∂y
(5)
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where the Stephen-Boltzmann coefficient is given by σ∗ and the mean absorption constant is represented
by k∗. Meanwhile, the temperature changes between the local temperature T and free steam T∞ are
very small, by ignoring higher order terms in the expansion of T4 in Taylor succession about T∞ for:

T4 � 4T3∞T − 3T4∞. (6)

By using Equations (5) and (6), the Equation (3) is converted into

u
∂T
∂x

+ v
∂T
∂y

=

⎛⎜⎜⎜⎜⎝α+ 16σ∗T3∞
3k∗(δc) f

⎞⎟⎟⎟⎟⎠∂2T
∂y2 + τ

⎡⎢⎢⎢⎢⎣DB
∂C
∂y
∂T
∂y

+
DT

T∞

(
∂T
∂y

)2⎤⎥⎥⎥⎥⎦, (7)

where in the directions x and y, the velocity constituents are u and v, individually, g is the gravitational
acceleration, the strength of the magnetic field is defined by B0, σ is the electrical conductivity,
viscosity is given by μ, the density of conventional fluid is given by ρ f , the density of the nanoparticle is
given by ρp, β is the Casson parameter, the thermal expansion factor is denoted by βt, the concentration
expansion constant is given by βc, DB denotes the Brownian dissemination factor and DT represents
the thermophoresis dispersion factor. The thermal conductivity is given by k, the heat capacity of
the nanoparticles symbolically is given as (ρc)p, the heat capacity of the conventional liquid is given

by (ρc) f ,α = k
(ρc) f

denotes the thermal diffusivity parameter, and the symbolic representation of the

relation among the current heat capacity of the nanoparticle and the liquid is τ =
(ρc)p

(ρc) f
.

In this problem, boundary conditions are considered as

u = uw(x) = axm, v = 0 , −k ∂T∂y = h f
(
T f − T

)
, C = Cw at y = 0,

u→ u∞(x) = 0, v→ 0 , T→ T∞ , C→ C∞ at y→∞ (8)

For the conversion of the Equations (2), (4) and (7) into ordinary differential equations, we use
ψ = ψ(x, y), called the stream function, characterized as

u =
∂ψ

∂y
, v = −∂ψ

∂x
. (9)

The similarity transformations are considered as
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By using Equations (9) and (10), Equation (1) is fulfilled indistinguishably. Besides, Equations (2),
(4) and (7) are transformed to the following(
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Here, primes signify the differentiation concerning η, λ is the buoyancy parameter, δ is the solutal
buoyancy parameter, the magnetic constraint is given by M, ν denotes the kinematic viscosity of the
liquid, the Prandtl number is given as Pr, the Lewis number is given by Le, Nb denotes the Brownian
motion parameter, Nt indicates the thermophoresis factor and N denotes the radiation factor.

The resultant boundary settings are

f (η) = 0, f ′(η) = 1, θ′(0) = −γ1(1− θ(0)), φ(η) = 1 at η = 0,
f ′(η)→ 0, θ(η)→ 0, φ(η)→ 0 as η→∞.

(15)

Here, γ1 = n
k
√

Rex
is the convective parameter termed as Biot number.

The skin friction, Sherwood number and Nusselt number for the current study are regarded as
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The related terms of dimensionless reduced Nusselt number −θ′(0), reduced Sherwood number
−φ′(0) and skin friction coefficient C f x =

(
1 + 1
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)
f ′′ (0) are defined as
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2 Rex

,−φ′(0) = Shx√
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, C f x = C f

√
2
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where Rex = uwx
ν , is the local Reynolds number.

The converted nonlinear differential Equations (11)–(13) with the boundary settings (15)
are elucidated by a Keller-box scheme consisting of the steps as finite-differences scheme,
Newton’s technique and block elimination process, clearly explained by Anwar et al. [7]. The Keller-box
technique has been widely applied because it is the most flexible as compared to other approaches.
It is informal to practice, much quicker, friendly to program and effective.

3. Results and Discussion

In this part of the study, the numerical outcomes of the converted nonlinear ordinary differential
Equations (11)–(13) with boundary settings (15) are elucidated by the Keller-box method. For the
numerical results of physical parameters of our concern, namely, Brownian motion denoted by Nb,
thermophoresis given by Nt, magnetic factor M, buoyancy factor λ, solutal buoyancy constraint δ,
inclination factor γ, Prandtl number Pr, Lewis number Le, radiation factor N, Casson fluid parameter β,
Biot number γ1 and parameter m, several figures and tables are prepared. In Table 1, in the deficiency
of λ, δ, M, and N, and taking factor m = 1, with γ = 90◦ and β→∞ , the outcomes of −θ′(0), −φ′(0)
(reduced Nusselt number, reduced Sherwood number) are equated with the results of Khan and
Pop [45]. The magnitudes are established as brilliant settlement. The effects on −θ′(0), −φ′(0) and
C f x(0) against several values of involved physical parameters Nb, β, Nt, M, N, λ, δ, γ, Pr, Le, γ1

and m are presented in Table 2. It is noted that −θ′(0) drops when increasing the values of Nb, Pr, β, N,
Le, m, and γ1, and it increased by enhancing the numerical values of γ, λ, δ, M and Nt. Moreover, it is
perceived that −φ′(0) is enhanced with larger values of Nb, Pr, N, Le, λ, and δ, and drops for bigger
values of m, M, β, γ, γ1 and Nt. Physically, by enhancing the Brownian motion impact, the thermal
boundary layer thickness increases, and it effects a large amount of the fluid. Moreover, the Sherwood
number increases and the Nusselt number decreases as we boost the thermophoresis effect; this is
due to the fact that the thermal boundary layer turns thicker due to deeper diffusion penetration into
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the fluid. On the other hand, C f x(0) rises with the growing values of Nb, Pr, Le, β, M, N,γ, and m,
and drops with the higher values of Nt, λ, δ, γ1 and Pr.

Table 1. Contrast of the reduced Nusselt number −θ′(0) and the reduced Sherwood number −φ′(0)
against γ = 90◦, γ1 →∞ , β→∞ , M, N,λ, δ = 0, with m = 1, and Pr = Le = 10.

Nb Nt Khan and Pop [45] Present Results

−θ′ (0) −φ′ (0) −θ′ (0) −φ′ (0)

0.1 0.1 0.9524 2.1294 0.9524 2.1294
0.2 0.2 0.3654 2.5152 0.3654 2.5152
0.3 0.3 0.1355 2.6088 0.1355 2.6088
0.4 0.4 0.0495 2.6038 0.0495 2.6038
0.5 0.5 0.0179 2.5731 0.0179 2.5731

Table 2. Values of the reduced Nusselt number −θ′(0), the reduced Sherwood number −φ′(0) and the
skin friction coefficient C f x(0).

Nb Nt Pr Le M N β λ δ γ1 m γ −θ′ (0) −φ′ (0) Cfx(0)

0.1 0.1 6.5 5.0 0.1 1.0 1.0 0.1 0.9 0.1 0.5 45◦ 0.0936 1.6159 0.5417
0.5 0.1 6.5 5.0 0.1 1.0 1.0 0.1 0.9 0.1 0.5 45◦ 0.0447 1.6541 0.5449
0.1 0.13 6.5 5.0 0.1 1.0 1.0 0.1 0.9 0.1 0.5 45◦ 0.0961 1.6038 0.5406
0.1 0.1 10.0 5.0 0.1 1.0 1.0 0.1 0.9 0.1 0.5 45◦ 0.0563 1.7133 0.6235
0.1 0.1 6.5 10.0 0.1 1.0 1.0 0.1 0.9 0.1 0.5 45◦ 0.0919 2.3622 0.5785
0.1 0.1 6.5 5.0 0.3 1.0 1.0 0.1 0.9 0.1 0.5 45◦ 0.0957 1.5958 0.6332
0.1 0.1 6.5 5.0 0.1 5.0 1.0 0.1 0.9 0.1 0.5 45◦ 0.0527 1.6374 0.5421
0.1 0.1 6.5 5.0 0.1 1.0 5.0 0.1 0.9 0.1 0.5 45◦ 0.0916 1.5833 0.6563
0.1 0.1 6.5 5.0 0.1 1.0 1.0 1.0 0.9 0.1 0.5 45◦ 0.0952 1.6184 0.5250
0.1 0.1 6.5 5.0 0.1 1.0 1.0 0.1 2.0 0.1 0.5 45◦ 0.0949 1.6376 0.3809
0.1 0.1 6.5 5.0 0.1 1.0 1.0 0.1 0.9 0.2 0.5 45◦ 0.1779 1.5828 0.5363
0.1 0.1 6.5 5.0 0.1 1.0 1.0 0.1 0.9 0.1 1.5 45◦ 0.1253 1.5763 0.6968
0.1 0.1 6.5 5.0 0.1 1.0 1.0 0.1 0.9 0.1 0.5 60◦ 0.0968 1.6098 0.5818

Figure 2 demonstrates the velocity profile against the magnetic effect. It is observed that the
magnetic parameter produces Lorentz force, due to which the velocity of the fluid retards and the
velocity profile drops for higher values of the magnetic parameter. Moreover, Figure 3 shows that the
temperature contour is enhanced by upgrading the magnetic parameter, and the reason behind this
is that the Lorentz force boosts the temperature. Consequently, the thickness of the boundary layer
upturns with the increasing of the magnetic parameter. Besides, a different effect of magnetic field on
concentration is noticed in Figure 4.

The influence of the nonlinear parameter on the velocity profile is shown in Figure 5. It is noted
that the velocity field is not much pronounced in the case of a linear or nonlinear stretching sheet as
compared to a uniformly moving surface. Similar behavior is shown in Figure 6 for the temperature
profile. Moreover, an opposite effect is shown in Figure 7 for the concentration profile. Figure 8
represents the Casson effect suppressed the velocity of the fluid. It is meaningful because β reduces the
yield stress in the Casson fluid. Physically, an enhancement in the Casson parameter tends to reduce
the yield stress, which implies that the plastic dynamic viscosity of the liquid is enhanced and the
momentum boundary layer becomes thicker [46].
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Figure 2. Variations in velocity profile for several values of M.

Figure 3. Variations in temperature profile for several values of M.

Figure 9 indicates that the buoyancy force parameter λ has a directly proportional relation
with the velocity profile. Physically, an increment in the buoyancy force causes a reduction of the
viscous force, due to which the fluid particles move faster. In summary, the enhancement in buoyancy
force tends to enhance the velocity profile. Figure 10 reveals the effect of solutal buoyancy impact
on the velocity profile. The concentration difference, length and viscosity of the fluid affected the
solutal buoyancy parameter. Therefore, as we enhance the solutal buoyancy parameter, the viscosity
declines and the concentration increases, due to which the velocity of the fluid increases [47]. Figure 11
reflects the impact of inclination factor γ on the velocity profile. It is observed in Figure 11 that the
velocity contour runs down by improving the values of γ. Moreover, the conditions specify that the
maximum gravitational force acts on the flow in the case of γ = 0, because in this state the sheet will
be vertical. On the other hand, for γ = 90

◦
, the sheet will be horizontal, which causes a drop in

velocity profile as the power of the bouncy forces drop. Figure 12 represents the impact of radiations
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on the temperature profile. It reveals that the temperature profile increases with large values of
thermal radiation parameter; the reason behind this is that the heat exchange is enhanced and the
boundary layer thickness declines [48]. Figure 13 indicates that the temperature profile is enhanced
near the boundary layer by improving the values of the Biot number. A similar behavior in the case of
concentration outline against higher values of the Biot number is seen in Figure 14.

Figure 4. Variations in concentration profile for several values of M.

Figure 5. Variations in velocity profile for several values of m.
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Figure 6. Variations in temperature profile for several values of m.

Figure 7. Variations in concentration profile for several values of m.
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Figure 8. Variations in velocity profile for several values of β.

Figure 9. Variations in velocity profile for several values of λ.
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Figure 10. Variations in velocity profile for several values of δ.

Figure 11. Variations in velocity profile for several values of γ.
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Figure 12. Variations in temperature profile for several values of N.

Figure 13. Variations in temperature profile for several values of γ1.
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Figure 14. Variations in concentration profile for several values of γ1.

Figure 15 represents that the temperature profile drops by improving the parameter Pr. This is
because the bigger values of Pr cause improvement in viscosity and decline in the thermal boundary layer
thickness. Figure 16 shows the result of Lewis number Le on the concentration profile. The boundary
layer viscosity reduces by enhancing the values of Lewis number Le.

Figure 15. Variations in temperature profile for several values of Pr.
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Figure 16. Variations in concentration profile for several values of Le.

Figures 17 and 18 show the effect of Brownian motion on the temperature and concentration profiles,
respectively. The temperature profile upturns with improving Nb; on the other hand, concentration
distribution has the opposite impact. Physically, the boundary layer heats up due to the development
in Brownian motion, which accelerates the nanoparticles from the extending sheet to the stationary
fluid. Therefore, the concentration of nanoparticles reduces. Figures 19 and 20 reveal the impact of Nt
on temperature and concentration profile for altered values. It is observed that both temperature and
concentration contours are directly proportional to the Nt.

Figure 17. Variations in temperature profile for several values of Nb.
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Figure 18. Variations in concentration profile for several values of Nb.

Figure 19. Variations in temperature profile for several values of Nt.
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Figure 20. Variations in concentration profile for several values of Nt.

4. Conclusions

In the article under study, we investigate the heat and mass transfer of Casson nanofluid flow
over an inclined sheet, with convective boundaries and thermal radiation effects taken in account.
The numerical results are elucidated with the Keller-box method. We found an excellent agreement
between the current outcomes and already published results. The core findings of the problem under
concern are the following:

� The temperature profile increases near the boundary layer by improving the Biot number.
� The velocity and temperature profiles drop by improving the nonlinear power index.
� The heat exchange improved upon improving the radiation parameter.
� The velocity distribution retards by increasing the Casson parameter.
� The Nuselt number decreases by increasing the Casson parameter.
� The skin friction declines by improving the Biot number.
� The velocity profile shows an inverse relation with the inclination factor.
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Abstract: This article examines magnetohydrodynamic 3D nanofluid flow due to a rotating disk
subject to Arrhenius activation energy and heat generation/absorption. Flow is created due to a
rotating disk. Velocity, temperature and concentration slips at the surface of the rotating disk are
considered. Effects of thermophoresis and Brownian motion are also accounted. The nonlinear
expressions have been deduced by transformation procedure. Shooting technique is used to construct
the numerical solution of governing system. Plots are organized just to investigate how velocities,
temperature and concentration are influenced by various emerging flow parameters. Skin-friction
Local Nusselt and Sherwood numbers are also plotted and analyzed. In addition, a symmetry is
noticed for both components of velocity when Hartman number enhances.

Keywords: rotating disk; Arrhenius activation energy; nanoparticles; binary chemical reaction; MHD;
heat generation/absorption; slip effects; numerical solution

1. Introduction

Low thermal efficiency of working liquids is a principle issue for a few heat transport components
in the designing of applications. Therefore a few scientists are occupied with the request to build
up an imaginative route for development of thermal productivity of working liquids. Different
components have been proposed by specialists to improve the thermal productivity of liquids.
Therefore, the inclusion of nanomaterial in working liquid termed as nanofluid is very alluring
component. Recent examinations on nanofluid have uncovered that working fluid has various
highlights with nanomaterial blend. This is on the grounds that the thermal proficiency of working
fluid is weaker than nanofluid thermal productivity. Nanofluid is a recently perceived group of liquids
containing working liquid with the particles of nano measure. Such nanomaterials are employed
in MHD control generators, oil stores, cooling of atomic reactors, malignancy treatment, vehicle
transformer and several others [1–5]. The word nanofluid was first used by Choi [6] to explain the
thermal conductivity of ordinary liquids. From the perspective of exploring how thermal conductivity
is expanded, various examinations are introduced by him. Further attempts on nanofluids can be cited
through investigations [7–20].

Analysts are presently much occupied by exploring fluid flow via rotating disk. It is because of its
numerous applications in various fields of technology, for example, design branches and aeronautical
science such as gem development forms, electronic gadgets, pivoting hardware, PC stockpiling gadgets,
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thermal power producing systems, gas turbine rotors, air cleaning machines, restorative gear and
several others [21–23]. Von Karman [24] provided pioneering work with fluid flow via rotating disk.
He examined the subsequent issue diagnostically. Cochran [25] proved an asymptotic answer for the
von Karman issue. Millsaps and Pohlhansen [26] examined the issue of heat transfer for the isothermal
plate. Ackroyd [27] thought about suction/infusion impacts in the Von Karman issue and he created a
solution by exponentially rotting coefficients. Miclavcic and Wang [28] broadened the Von Karman
issue for circumstances where a rotating disk concedes partial slip attributes. Attia [29] examined
fluid flow because of a rotating disk inundated in a permeable space by using the Wrench Nicolson
technique. Flow of viscous fluid by permeable disk subject to pivoting casing and heat/mass exchange
was analyzed by Turkyilmazoglu and Senel [30]. They processed numeric consequences of governing
flow issue. Rashidi et al. [31] analyzed impacts of entropy generation in MHD flow of viscous fluid
by rotating disk. Hatami et al. [32] talked about laminar flow of nanofluids instigated by turning
contracting disk. Mustafa et al. [33] investigated the flow of nanoliquid initiated by a rotating disk.
They inferred that uniform extension of a disk is a significant factor for decreasing boundary-layer
thickness. Sheikholeslami et al. [34] accounted for nanofluid flow incited by a slanted rotating plate.
Hayat et al. [35] examined flow by a rotating disk through a magnetic field, slip and nanoparticle
impact. Flow of MHD nanoliquid by rotating disk subject to slip was explored by Mustafa [36]. Darcy
Forchheimer flow of carbon nanotubes incited by a rotating disk was examined by Hayat et al. [37].
Further relevant attempts regarding rotating disks can be seen through investigations [38–40].

Propelled by the above articles, the goal here is to look at the combined impacts of Arrhenius
activation energy and binary chemical reactions in hydromagnetic 3D flow of nanofluid by rotating
disk with heat generation/absorption and slip impacts. The random movement and thermophoretic
dispersion phenomena occur because of the nanoparticles. Velocity, thermal and concentration slips
are considered. The governing system is solved numerically by shooting procedure. Velocities,
temperature, concentration and local Sherwood and Nusselt numbers are additionally discussed
through curves.

2. Statement

We analyze MHD steady three-dimensional flow of nanoliquid by rotating disk with thermal
generation/absorption and slip impacts. Arrhenius activation energy and binary chemical reaction
impacts are additionally present. Disk at z = 0 pivots with constant angular velocity Ω. Brownian
dispersion and thermophoretic impacts are also present. Magnetic field of strength B0 acts in
z−direction (see Figure 1). The velocity components (u, v, w) are in the directions of expanding
(r, ϕ, z) respectively. Resulting boundary-layer expressions are
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u → 0, v → 0, T → T∞, C → C∞ when z → ∞. (8)

Here u, v and w represent velocities in directions of r, ϕ and z while ρ f , ν
(
= μ/ρ f

)
and μ show

density, kinematic and dynamic viscosities, respectively, L1 the velocity slip factor, (ρc)p the effective
heat capacity of nanoparticles, Ea the activation energy, (ρc) f heat capacity of liquid, L2 the thermal
slip factor, σ the electrical conductivity, C the concentration, n the fitted rate constant, C∞ the ambient
concentration, DT the thermophoretic factor, αm = k/(ρc) f and k the thermal diffusivity and thermal
conductivity respectively, T the fluid temperature, kr the reaction rate, DB the Brownian factor, L3 the
concentration slip factor, Q the heat generation/absorption factor, κ the Boltzmann constant and T∞

the ambient temperature. Selecting
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Continuity Equation (1) is trivially verified while Equations (2)–(8) yield
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f (0) = 0, f ′(0) = α f ′′(0), g(0) = 1 + αg′(0), θ(0) = 1 + βθ′ (0) , φ(0) = 1 + γφ′ (0) , (14)

f ′(∞) → 0, g(∞) → 0, θ(∞) → 0, φ(∞) → 0. (15)

Here Nt stands for the thermophoresis parameter, α for velocity slip parameter, Ha for Hartman
number, σ for chemical reaction parameter, Nb for Brownian parameter, β for thermal slip parameter, δ

for temperature difference parameter, Pr for Prandtl number, γ for concentration slip parameter, δ1 for
heat absorption/generation parameter, Sc for Schmidt number and E for nondimensional activation
energy. Nondimensional variables are defined by
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The coefficients of skin-friction and local Nusselt and Sherwood expressions are

Re1/2
r Cf = f ′′(0), Re1/2

r Cg = g′(0),
Re−1/2

r Nu = −θ′(0), Re−1/2
r Sh = −φ′(0),

}
(17)

where Rer = 2(Ωr)r/ν represents the local rotational Reynolds number.
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Figure 1. Flow configuration.

3. Solution Methodology

By using appropriate boundary conditions on a system of equations, a numerical solution is
provided considering NDSolve in Mathematica. Shooting technique is used via NDSolve. This
technique is very helpful in the case of small step-sizes featuring negligible error. Consequently, both r
and z varied uniformly by a step-size of 0.01.

4. Results and Discussion

This segment outlines the commitment of various relevant parameters including Prandtl number
Pr, Hartman number Ha, thermophoresis parameter Nt, chemical reaction parameter σ, velocity
slip parameter α, Schmidt number Sc, temperature difference parameter δ, Brownian parameter Nb,
thermal slip parameter β, activation energy E, heat generation/absorption parameter δ1, concentration
slip parameter γ on velocities f ′(ζ) and g(ζ), concentration φ(ζ) and temperature θ (ζ) distributions.
Figure 2 demonstrates the variety in velocity field f ′(ζ) for shifting Hartman parameter Ha. An
addition in Hartman parameter Ha relates to bringing down velocity field f ′(ζ). Here Ha=0 yields
hydromagnetic flow circumstance and Ha=0 speaks to hydro-dynamic flow case. Figure 3 portrays
adjustment in velocity field f ′(ζ) for differing estimations of velocity slip parameter α. Velocity
field and related layer are diminished for higher α. Figure 4 shows adjustment in velocity field
g(ζ) for fluctuating Hartman parameter Ha. Here we examined that velocity field diminishes when
Hartman parameter Ha increments. Figure 5 is portrayed to look at that how velocity field g(ζ) is
influenced with variety of velocity slip α. For increasing estimations of α, velocity field g(ζ) indicates
diminishing pattern. Figure 6 showcases the impact of Hartman parameter Ha on temperature
θ (ζ). Obviously, temperature and the related thermal layer are upgraded for increasing Ha. Effect
of thermal slip β on temperature dissemination θ (ζ) is delineated in Figure 7. Improvement in
β depicts diminishing conduct for θ (ζ) and the related thermal layer. Figure 8 shows how heat
generation/absorption number δ1 influences temperature dispersion θ (ζ). Here δ1 > 0 portrays heat
generation and δ1 < 0 for heat absorption. Both temperature θ (ζ) and thermal layer are upgraded for
increasing δ1. Figure 9 introduces a variety in temperature field θ (ζ) for differing Prandtl parameter
Pr. Here θ (ζ) is diminished through Pr. Proportion of momentum diffusivity to thermal diffusivity
is termed as Prandtl parameter Pr. Higher estimations of Pr yield more fragile thermal diffusivity
which compares to a reduction in thermal layer. Effect of Nt on temperature profile θ (ζ) is depicted in
Figure 10. Addition in Nt relates to stronger temperature field θ (ζ) and more thermal layer. Figure 11
delineates variety in temperature field θ (ζ) for unmistakable estimations of Brownian movement Nb.
Physically, a sporadic movement of nanoparticles improves by expanding Brownian movement Nb
because of which impact of particles happens. As a result, dynamic vitality is changed into warmth
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vitality which shows an upgrade in temperature profile and the related layer. Figure 12 demonstrates
that how Hartman parameter Ha influences concentration φ(ζ). By expanding Hartman parameter
Ha, both concentration and concentration layers are improved. Figure 13 shows that concentration
dispersion φ(ζ) is weaker for bigger concentration slip. From Figure 14, we saw that bigger Schmidt
parameter Sc demonstrates a rot in concentration field φ(ζ). Schmidt parameter is conversely relative to
Brownian diffusivity. Increasing Schmidt parameter Sc yields a more fragile Brownian diffusivity. This
more fragile Brownian diffusivity prompts lower concentration field φ(ζ). Figure 15 demonstrates that
how thermophoresis Nt influences concentration profile φ(ζ). By improving thermophoresis parameter
Nt, the concentration field φ(ζ) and related layer are expanded. Figure 16 portrays effect of Brownian
movement Nb on concentration φ(ζ). It is obviously observed that a more fragile concentration φ(ζ)

is produced by using higher Brownian movement parameter Nb. Figure 17 explains the impact of
nondimensional activation energy E on concentration φ(ζ). An improvement in activation energy

E rots altered Arrhenius work
(

T
T∞

)n
exp

(
− Ea

κT

)
. This inevitably builds up the generative synthetic

response because of which concentration φ(ζ) upgrades. Figure 18 introduces an improvement in
compound response parameter σ shows a rot in concentration φ(ζ) and its related layer. Figure 19
explains the impact of δ on φ(ζ). Here φ(ζ) is seen as a diminishing capacity of δ. Figure 20 depicts
the concentration φ(ζ) for evolving n. By improving n, infiltration profundity of φ(ζ) closures become
slenderer. Figures 21 and 22 display the effects of Nt and Nb on Re−1/2

r Nu. From these figures, it has
been noticed that Re−1/2

r Nu reduces for higher Nt and Nb. Features of Nt and Nb on Re−1/2
r Sh are

disclosed through Figures 23 and 24. Interestingly, Re−1/2
r Sh is an increasing function of Nt while it is

a decreasing function of Nb.

Figure 2. Sketch of f ′(ζ) for Ha.

Figure 3. Sketch of f ′(ζ) for α.
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Figure 4. Sketch of g(ζ) for Ha.

Figure 5. Sketch of g(ζ) for α.

Figure 6. Sketch of θ(ζ) for Ha.
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Figure 7. Sketch of θ(ζ) for β.

Figure 8. Sketch of θ(ζ) for δ1.

Figure 9. Sketch of θ(ζ) for Pr.
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Figure 10. Sketch of θ(ζ) for Nt.

Figure 11. Sketch of θ(ζ) for Nb.

Figure 12. Sketch of φ(ζ) for Ha.
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Figure 13. Sketch of φ(ζ) for γ.

Figure 14. Sketch of φ(ζ) for Sc.

Figure 15. Sketch of φ(ζ) for Nt.
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Figure 16. Sketch of φ(ζ) for Nb.

Figure 17. Sketch of φ(ζ) for E.

Figure 18. Sketch of φ(ζ) for σ.

148



Symmetry 2019, 11, 1282

Figure 19. Sketch of φ(ζ) for δ.

Figure 20. Sketch of φ(ζ) for n.

Figure 21. Sketch of Re−1/2
r Nu for Nt.
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Figure 22. Sketch of Re−1/2
r Nu for Nb.

Figure 23. Sketch of Re−1/2
r Sh for Nt.

Figure 24. Sketch of Re−1/2
r Sh for Nb.
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5. Conclusions

Magnetohydrodynamic viscous nanoliquid 3D flow by rotating disk with heat
absorption/generation, binary chemical reaction and Arrhenius activation energy is examined.
Major results are given as follows:

• Larger velocity slip α and Hartman number Ha show decreasing trend for both velocities f ′(ζ)
and g(ζ).

• Both concentration and temperature depict increasing trend for increasing Ha.
• Higher Pr corresponds to weaker temperature while the reverse behavior is seen for δ1.
• Stronger temperature distribution is seen for Nb and Nt.
• Higher γ exhibits a decreasing trend for the concentration field.
• Higher activation energy E shows stronger concentration φ(ζ).
• Concentration φ(ζ) depicts decreasing behavior for larger δ and σ.
• Both concentration φ(ζ) is a decreasing factor of higher Sc.
• Concentration φ(ζ) displays reverse behavior for Nb and Nt.
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