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Preface to ”Landslides in Forests around the World:
Causes and Mitigation”

Landslides are a common natural disaster in forested mountainous regions. Because of the

increased frequency of extreme rainfall events resulting from global warming, the risk of landslides

in forested areas remains high. Forest landslide research has always been of great interest to

scholars. Key areas of research include understanding the interaction between forests and mountain

landslides, assessing the hazard and risk of landslides, and developing rainfall-induced landslide

warning systems in forested areas. In recent years, the development of technologies such as artificial

intelligence, remote sensing (including optical remote sensing, InSAR, LiDAR, and others), and big

data has led to rapid advancements in the detection, monitoring, warning, and risk assessment

of forest landslides. These developments provide reliable solutions for effectively and quickly

responding to potential landslide prevention and mitigation measures in forested areas. To showcase

the latest advancements in this field, we organized 14 papers to form this reprint, named “Landslides

in Forests around the World: Causes and Mitigation”. This reprint covers various topics, such as the

impact mechanism of tree roots on landslide stability, landslide deformation monitoring, landslide

disaster prevention and control engineering technology, the automatic identification of regional

landslides, susceptibility and hazard assessment, and rainfall-induced mass landslide warning. We

are delighted to see that the articles featured in this reprint have contributed new knowledge to the

field of landslides in forests, provided innovative ideas for future development, and opened up new

opportunities for collaboration and innovation. We extend our gratitude to the staff of Forests for

their tremendous support of our Editor Team, as well as their assistance with the review, revision,

and verification process. We also thank all authors for their insightful contributions to this reprint

and all reviewers for their valuable comments and suggestions.

Haijia Wen, Weile Li, Chong Xu, and Hiromu Daimaru

Editors
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1. Introduction

Landslides are a common natural disaster in forested mountainous regions. Because
of the increased frequency of extreme rainfall events resulting from global warming, the
risk of landslides in forested areas remains high. Forest landslide research has always been
of great interest to scholars. Key areas of research include understanding the interaction
between forests and mountain landslides, assessing the hazard and risk of landslides, and
developing rainfall-induced landslide warning systems in forested areas. In recent years,
the development of technologies such as artificial intelligence, remote sensing (including
optical remote sensing, InSAR, LiDAR, and others), and big data has led to rapid advance-
ments in the detection, monitoring, warning, and risk assessment of forest landslides. These
developments provide reliable solutions for effectively and quickly responding to potential
landslide prevention and mitigation measures in forested areas.

To showcase the latest advancements in this field, a Special Issue named “Landslides in
Forests around the World: Causes and Mitigation” has been organized. The issue comprises
14 papers covering various topics such as the impact mechanism of tree roots on landslide
stability, landslide deformation monitoring, landslide disaster prevention and control
engineering technology, automatic identification of regional landslides, susceptibility and
hazard assessment, and rainfall-induced mass landslide warning.

2. Mechanism, Monitoring, and Control of Large-Scale Landslides in Forested Areas

To gain a better understanding of the role that forests play in preventing landslides,
Okada et al. conducted a study on the impact of Japanese cedar roots on the occurrence
of shallow landslides [1]. They continuously monitored changes in root strength over the
course of several years and calculated the safety factor of the slope every five years. The
study revealed that root strength is at its lowest after approximately 10 years, and the risk
of landslide increases between 5 and 15 years. These findings provide valuable insight for
selecting the most appropriate time for forest operations and mitigating the occurrence
of landslide disasters. Another study conducted by P. Li et al. investigated the effects of
root distribution and stress path on the shear strength of root–soil composites using the
consolidated undrained (CU) triaxial test method [2]. The results of this study contribute
to a better understanding of the impact of tree roots on slope stability and provide insight
into prevention and mitigation strategies for forest landslides.

In October 21, 2017, heavy rainfall triggered a significant landslide in Guang’an Vil-
lage, Wuxi County, Chongqing City, China. To investigate the stability of the landslide
accumulation, K. Zhang et al. analyzed the long-term deformation process of the accumu-
lation after sliding using time series InSAR technology and LiDAR data [3]. Their study
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provides valuable insight into preventing the accumulation from sliding again and forming
secondary disasters caused by landslides.

To gain a deeper understanding of the mechanism behind large-scale landslides, Guo
et al. analyzed the formation process and mechanism of the Nuugaatsiaq landslide in
Greenland in 2017 [4]. This was achieved through examining the similarity and amplitude
characteristics of multi-temporal seismic waveforms. Their findings suggest that the land-
slide was likely caused by a series of small earthquakes that accelerated and migrated. This
study provides a credible case study report for analyzing the nucleation process of large
landslides based on seismic waveform data. In another study, Huang et al. investigated the
macroscopic friction fluctuation of the spherical particle system and breccia particles [5].
Their results showed that the friction fluctuation of the spherical particle system is deter-
mined by the friction of the particle surface and the normal stress of the system. Similarly,
for breccia particles, the macroscopic friction fluctuation is determined by particle surface
friction, system normal stress, and shear velocity.

In light of the successful interception of a landslide near the entrance of a railway
tunnel using a flexible barrier to ensure the safety of railway operations, Zhao et al. con-
ducted an analysis of the interaction between the landslide debris and the barrier [6]. Their
analysis was based on the numerical simulation method, and the results were validated
by field measurements. The study analyzed the impact of landslide debris on the flexible
barrier under different impact energy and velocity conditions. The findings suggest that
such a barrier can resist landslide debris with a maximum energy roughly four times that
of resisting rockfall. These results provide valuable support for the prevention and control
of shallow landslide disasters in mountainous regions

3. Automatic Identification and Susceptibility Analysis of Regional Landslides

The automatic identification of landslides plays a vital role in mass landslide inven-
torying. Pang et al. focused on the automatic identification of coseismic landslides using
the example of the Mw6.7 earthquake that occurred in Hokkaido, Japan, on September 6,
2018 [7]. They mapped 4000 landslide label samples and developed a convolution neural
network model based on the YOLOv3 algorithm. The results demonstrated that the model
is efficient, with high recognition accuracy and speedy processing. This research provides a
reference method for rapidly extracting mass landslides.

The majority of papers in this special issue focus on landslide hazard and susceptibility
assessment, highlighting its significance in research. L. Li et al. conducted their study in
Hechuan District, Chongqing, China, utilizing the random forest method to assess landslide
susceptibility based on 754 landslides and the associated impact factors [8]. Furthermore,
by considering natural, social, and ecological factors in the region, they evaluated the
suitability of construction land in mountainous areas. This research may support the spatial
layout of urban land and critical infrastructure in mountainous areas. To compare the
shallow machine learning method with the deep learning method for landslide hazard
and susceptibility assessments, Xu et al. conducted experiments using logistic regression,
random forest, deep fully connected neural network, and long short-term memory neural
networks in the Three Gorges reservoir area of China [9]. The results showed that the
random forest model performs comparably to deep learning models while being more
efficient, making it a valuable reference for selecting a landslide susceptibility assessment
model. W. Zhang et al. investigated how zoning based on qualitative information affects
landslide susceptibility assessment with a machine learning model in Yunyang County,
Chongqing City, China [10]. The results showed that considering zoning in the evaluation
process leads to better accuracy than not taking zoning into account. The combination
of qualitative analysis and a quantitative model demonstrates a promising application
prospect in landslide susceptibility assessment. To assess the impact of forests on landslide
susceptibility, Y. Zhang et al. conducted a study in Bijie City, Guizhou Province, China to
establish a model for evaluating the contribution of forests at different levels to landslide
susceptibility [11]. They also examined the impact of various forest indicators on land-
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slides. The findings indicated that shrub forests have a stronger protection ability against
landslides, while natural forests have a greater inhibitory effect compared with artificial
forests. Additionally, middle-aged and near-mature forests showed better landsliding
control ability. This work provides valuable insights into the impact of different forest types
on landslides.

4. Rainfall-Triggered Landslide Warning

Early warning systems for landslides triggered by rainfall in forested areas have
proven effective in mitigating landslide disasters. Liu et al. focused on Fujian Province,
China, and developed six machine learning models for predicting landslide occurrences
based on geological and meteorological data, as well as other factors affecting land-
slides [12]. The results showed that the random forest model performed the best, providing
a reference for future landslide early warning systems. During 9–11 August 2019, heavy
rainfall resulted in numerous landslides in Ningguo City, Anhui Province, China. Cui et al.
utilized satellite images to identify 414 rainfall-induced landslides and constructed a distri-
bution map of rainfall-induced landslides [13]. They also developed a probability model
for landslide occurrence triggered by rainfall and calculated the absolute probability of
landslides under different rainfall conditions. This study provides support for landslide
assessment and early warning systems under various rainfall scenarios. Taking 1520 land-
slide events in Fengjie County, Chongqing, China in 2016 as samples, Sun et al. developed
a landslide susceptibility model based on the random forest model and a landslide early
warning model based on precipitation [14]. The results showed that the precipitation early
warning model combined with landslide susceptibility, early effective precipitation, and
daily precipitation threshold has a high early warning ability. The results can provide
scientific and technological support for rainfall-triggered landslide disaster prevention and
mitigation triggered by local rainfall.

5. Conclusions and Prospects

We are delighted to see that the articles featured in this Special Issue have contributed
new knowledge to the field of landslides in forests, provided innovative ideas for future
development, and opened up new opportunities for collaboration and innovation. We
extend our gratitude to the staff of Forests for their tremendous support to our Guest Editor
Team in organizing this Special Issue, as well as their assistance with the review, revision,
and verification process. We also thank all authors for their insightful contributions to
this Special Issue and all reviewers for their valuable comments and suggestions on the
submitted manuscripts.

Funding: This study was supported by the National Key Research and Development Program
of China (2021YFB3901205) and the Natural Science Foundation of Chongqing (CSTB2022NSCQ-
MSX0594).
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Article

Changes in Slope Stability over the Growth and Decay of
Japanese Cedar Tree Roots
Yasuhiko Okada 1,*, Fei Cai 2 and Ushio Kurokawa 3
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Organization, Kurokami 4-11-16, Chuo, Kumamoto 860-0862, Kumamoto, Japan

* Correspondence: okada10@affrc.go.jp

Abstract: In Japan, repeated driftwood landslide disasters have become a major issue; thus, studies
are required to better understand forest function to implement appropriate forest management and
prevent such disasters. We investigated the effect of Japanese cedar tree roots on shallow landslide
initiation. To incorporate the effect of roots on the two side-flanks of the shallow landslide, we propose
a new slope-stability analysis method in which the sliding block is simplified as a three-prism model.
The root reinforcement was approximated by the sum of the root pullout forces over a unit area,
incorporating changes in the root strength with the growth of the trees after planting and the decay
of the stumps after cutting. The reinforced root strength after the stump-cutting decreased linearly
with time, with no strength remaining at 9 years. In contrast, the reinforced root strength of the new
plants increased according to a logistic curve with time; thus, the root strength increased only slightly
up to 9 years after planting, and the minimum total reinforced root strength was observed at this
time. The safety factor of the slopes in a forest basin in Ibaraki Prefecture was calculated using the
proposed three-prism method at intervals of 5 years on a 1-metre-resolution digital elevation model.
The number of unstable grids peaked at 10 years, and a higher risk of slope instability was observed
at 5–15 years. Therefore, implementing forest operations for lowering slope instability during this
period should be important to prevent landslide disasters.

Keywords: reinforcement of roots; slope stability; growth and decay; Japanese cedar trees; shal-
low landslides

1. Introduction

In Japan, driftwood landslide disasters are a major concern, owing to the regional
development of residences in mountainous areas and an increase in the number of severe
rainfall events, probably influenced by climate change [1]. In the last quarter century,
debris flows mobilised from shallow landslides or complex earth slides–earth flows [2]
have hit some residential areas, extending to alluvial fans in many places [3–5]. Notably,
in Hiroshima Prefecture, debris flows have severely damaged areas within a short period,
causing 31 and 74 deaths in 1999 and 2014, respectively [6–9].

In July 2018, a large amount of driftwood was observed in landslides induced by
heavy rainfall events over the western part of the main island and Shikoku Island [10]. The
relationship between forests and landslide disasters has received substantial attention from
researchers, engineers, and administrative officers. In particular, the differences in landslide
susceptibility between natural and artificial forests and between coniferous and broadleaf
forests have been examined [11,12]. After an extended period of afforestation from around
the 1950s to the 1970s, the trees have grown large and are ready for harvest [13]; therefore,
the strategies for controlling and managing forests must be carefully considered. Trees are
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hazardous once they are engulfed and become driftwood, but they reinforce slopes through
networking root systems within the subsoil that prevent shallow landslides. In some cases,
trees can capture flows of driftwood and debris to decrease downslope damage [14,15].
Regarding the multifunctional role of forests, the public has been aware of their disaster
prevention function against landslides and erosion for 40 years and now understands that
they help prevent climate change by absorbing greenhouse gases [16]. As of 31 March 2021,
the Forestry Agency of the Ministry of Agriculture, Forestry and Fisheries has designated
areas in the national forest as forest reserves (1.3 × 105 km2) [17]; these forest areas are
expected to prevent soil run-off (2.6 × 104 km2) and landslides (6.0 × 102 km2), thereby
acting as countermeasures against forest disasters.

The ability of tree roots to prevent shallow landslides has been investigated intensively.
For example, the mechanical behaviour of roots crossing a sliding surface during shearing
has been closely examined, and reinforced root strength is known to act as the root cohesion
component (cr) in the Mohr–Coulomb failure equation [18–22]. In addition, root pullout
experiments have revealed that the summation of root pullout strength over a unit area
acts as cr [23,24]. Accordingly, the root bundle model was proposed, in which the root
length, maximum tensile force, and average Young’s modulus were approximated using a
function of the root diameter [25]. The effects of the root distribution, root angles across
the sliding surface, and root diameter have also been examined in triaxial compression
tests [26]. Large-scale, in situ direct shear experiments have been conducted, in which
specimens (about 1 m in both width and length) holding a tree stump were excavated for
direct shearing [27–29], with one such experiment conducted on a steep slope of 32◦ [30].

Analyses of slope stability have been conducted considering cr [31–33]. In this regard,
the two-dimensional (2-D) infinite slope model is commonly employed, given its simplicity,
i.e., the reinforced strength of roots is given only over the bottom surface of an oblique
quadrangular prism; therefore, only the vertical roots penetrating to the bottom of a sliding
surface contribute to reinforcing the slope stability. Considering the importance of lateral
roots, slope models that enable the evaluation of their effects have been developed. The
effects of lateral roots have been considered in the 2-D infinite slope model [34]; however,
only one vertical surface of the oblique quadrangular prism at the upslope side in the
longitudinal direction was considered, and the effects of lateral roots on the vertical surface
at the downslope side and two side-flanks of the prism were not examined. Regarding
the transverse direction, Ueno [35] investigated the effect of widths on landslide initiation
using an infinite slope model in the longitudinal direction but with a transverse trapezium
section; however, the transverse slope of the side-flanks of the trapezium section was
assumed to be constant and equal to 45◦, and cr was not considered.

To evaluate the effects of lateral roots across the side-flanks, a three-dimensional (3-D)
slope model should be used. Indeed, 3-D slope stability has commonly been analysed to
calculate the safety factors related to relatively large, deep-seated landslides for which
the whole sliding surface of the landslide mass could be approximated before the final
failure [36–39]. General and rigorous limit equilibrium methods have been proposed for
performing a 3-D slope-stability analysis [40,41], and recent advances in such analyses were
reviewed by Kumar [42]. However, for most shallow landslides, the length is much greater
than the transverse width, and the side-flanks of the sliding surface cannot be determined
before the failure initiation, making it difficult to apply a 3-D analysis method to shallow
landslides. Thus, changes in the slope stability associated with shallow landslides in
forest basins have been investigated using digital elevation models with the 2-D infinite
slope model [21,43–45]. In such studies, the main focus was the changes in triggering
conditions, such as rainfall infiltration, determined through saturated and unsaturated
seepage flow analysis, which is investigated because rainfall-induced shallow landslides
are frequent disasters.

The focus of the present study was the stability changes in forest slopes over the years
as an important factor in the induction of shallow landslides. The forest growth over time
improves the ability of a forest to prevent shallow landslides, but a forest loses this ability
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after a certain level of cutting is conducted. Accordingly, the yearly changes in the ability
of a forest to prevent shallow landslides are complex. Because yearly changes affect the
induction of shallow landslides, a slope stability evaluation should include the growth
and decay of the trees. Japanese cedars are the most planted trees in Japan, occupying
about 18% of all Japanese forests, as of 31 March 2018 [46]; hence, Japanese cedars were
examined in the present study. We propose a method for assessing slope stability using
three prisms to analyse the effects of the lateral roots. The proposed method was applied to
a forest basin in Ibaraki Prefecture, northeast of Tokyo, Japan, for which the topography
was represented by a 1-metre-resolution digital elevation model. The change in the slope
stability of the forest basin was evaluated over a 50-year period after the stump cutting and
immediate planting of Japanese cedar trees.

2. Materials and Methods
2.1. Root Pullout Experiments

A series of pullout experiments was conducted to investigate the reinforced strength
of Japanese cedar roots, i.e., the root cohesion component (cr) in the Mohr–Coulomb failure
criterion. Half-sphere-shaped trenches with a diameter of 0.3–0.5 m centred in the test
tree trunk were excavated below the trunks. A pullout experiment was conducted on
each root exposed on the trench surface following diameter measurements. In the pullout
experiment, the roots were pinched with a pliers-like tool and pulled manually to measure
the maximum pullout force, using a force gauge (Digital Force Gauge, ZTS-1000N, IMADA
Limited, Aichi, Japan) connected to the pliers-like tool. The diameter of the pulled-out roots
was 2–40 mm. Although broken and unbroken roots were observed during the experiment,
we did not distinguish the measured maximum forces of the broken roots from those
without ruptures. We selected uncut tree trunks to investigate live roots, and those cut
1, 2, 4, 7, and 8 years ago to examine changes following decay. At least two trunks were
examined for each condition.

2.2. Roots on the Sliding Surface

To calculate cr, the number and diameter of roots on a potential sliding surface must
be obtained. Although tree root distributions are generally not simple, we used the root
distribution model for Japanese cedar trees proposed by Abe [22], who excavated a layer
of soil below the test trees to a depth of 10 cm and measured the number and diameter
of all the exposed roots; this excavation process was repeated at 10 cm intervals until no
roots were found. Abe surveyed four locations in Japan, one of which was in Ibaraki
Prefecture [22], where the changes in the slope stability in a forest basin were investigated
in the present study.

Abe [22] proposed a root volume depth-wise distribution of 10 cm, as follows:

V(z) = Vr

∫ zc

zc−10
f (z)dz, (1)

f (z) =
mzm−1

α0
× EXP

[−zm

α0

]
, (2)

m =
2.0

log Zmax − log(0.3522× Zmax − 10.7990)
, (3)

α0 = (0.3522× Zmax − 10.7990)m, (4)

where V(z) is the root volume in a 10-centimetre-thick layer (cm3), Vr is the total root
volume (cm3), z is the depth (cm), Zmax is the maximum root depth (cm), and zc is the
depth parameter varying by 10 cm (zc = 10, 20, . . . , zcmax, e.g., in Equation (1), at zc = 10,
the root volume in the soil layer 0–10 cm deep would be calculated, whereas that at zc = 20
would be calculated in the soil layer 10–20 cm deep, and so on; zcmax is the upper limit of a
10-centimetre-deep class containing Zmax, e.g., at Zmax = 97 cm; zcmax would be 100 cm);
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f (z) is a Weibull probability density function; and m and α0 are the Weibull parameters. The
total root volume, Vr, was calculated using an equation for the total weight [47]:

log Wr = −0.3085 + 0.8216× log
(

DBH2 × H
)
,

Vr=Wr/Gs,
(5)

where H is the height of the tree (cm), DBH is the diameter at breast height (cm), Wr is the
total weight of the roots (gf), and Gs is the unit weight of the roots, set at 0.973 gf/cm3 in
the present study [48].

The soil was divided into three zones: shallow, middle, and deep. The roots were then
classified into 0.5-centimetre-wide classes, and the relative frequencies were calculated for
the shallow, middle, and deep zones before they were expressed using the diameter class:

Yt(Di) = 6.43× Di
−1.53,

Ym(Di) = 4.73× Di
−1.86,

Yb(Di) = 6.04× Di
−1.81,

(6)

where Di is the class mark for the 0.5-centimetre-wide diameter of roots (Di = 0.25, 0.75,
1.25 cm, and so on), and Yt(Di), Ym(Di), and Yb(Di) are the relative frequencies in the topsoil,
middle, and bottom zones, respectively. In addition, the average volume of a root in each
class [Va(Di)] was measured and expressed using the diameter class:

Va(Di) = 7.81× Di
2.14 (7)

Based on these equations, we calculated the number of roots in each diameter class
(0.5-centimetre-wide) on a potential sliding surface in a certain 10-centimetre-thick soil layer
after incorporating DBH, H, and Zmax as the input parameters. The reinforced strength of
the roots was estimated by summing the pullout strengths over a unit area, according to the
calculated number of roots in each diameter class on a potential sliding surface [23,24,49], a
method that has been widely used in other studies [32,50–53]. We calculated the reinforced
strength of the roots in a soil layer at depths of >30 cm (i.e., 30–40 cm, 40–50 cm, etc.), which
were labelled as 35, 45, 55, 65, 75, 85, and 95 cm deep.

2.3. Slope-Stability Analysis

The reinforced strength of the roots (i.e., cr) should be considered when evaluating
slope stability. The 2-D infinite slope model is usually employed, where the reinforced
strength of the roots is assigned on the bottom surface. However, a 2-D infinite slope
model does not consider the reinforcement of the roots on the two transverse sides of the
sliding block, which ought to increase the safety factor of shallow landslide blocks, to some
extent, especially for sliding blocks with smaller widths. Thus, a 3-D slope model should
be used to consider the reinforcement effect of the roots across the flanks on the safety
factor of the sliding blocks. Because the length of shallow landslides is usually much larger
than the transverse width, we assumed an infinite slope in the longitudinal direction to
maintain the simplicity of our slope-stability analysis. Thus, we propose a three-prism
model consisting of an oblique quadrangular prism sandwiched between two oblique
triangular prisms (Figure 1) to evaluate the reinforcement effect of the roots on the flanks
of shallow landslides. In this model, a constant reinforced root strength is assigned to
the bottom surfaces of the central prism and the two side triangular prisms. The variable
transverse slope, β, is determined as the safety factor of the three-prism model, which
takes its lowest value under unsaturated conditions without a water table in the soil. The
results of the three-prism method were compared with those of Hovland’s method [36]
and simplified Janbu’s method [37] because these have generally been employed in Japan
for 3-D examinations. In this fundamental analysis of the grid calculation on a 1-metre-
resolution digital elevation model, the soil depth, D, and longitudinal slope, α, were kept
constant at 0.7 m and 34.5◦, respectively. The wet soil unit weight was 11.12 kN/m3, the
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saturated soil unit weight was 15.09 kN/m3, the angle of internal friction was 34.5◦, and
the soil cohesion was 0 kPa. These parameter values were determined according to the
results of soil tests performed on soil samples taken from a scarp, underlain by biotite
gneiss, in a forest basin in Ibaraki Prefecture. These soil parameters were later incorporated
in the grid calculations on a digital elevation model obtained via airborne laser surveys,
in which four laser points per m2 were measured. Both the cr and the total width of the
three-prism model at the ground surface were changed to investigate their influence on the
slope stability.
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For the three-prism model shown in Figure 1, the safety factor can be expressed by
Equation (8) for Hovland’s method (Fh) and Equation (9) for the 3-D simplified Janbu’s
method (Fj):

Fh =
∑3

i=1

[
(Wi −Ui)/Ji·tan φ

′
+ cr·Ai

]

∑3
i=1 Wi· sin α

, (8)

Fj =
∑3

i=1

[(
Wi −Ui· cos2 α

)
·tan φ

′
+ cr·Ai/Ji

]
/(cos α·mαi)

∑3
i=1 Wi· tan α

, (9)

Wi = 0.5·H2· tan θ·L· cos α·γsat + 0.5·
(

D2 − H2)· tan θ·L· cos α·γt + qi (i = 1, 3),
W2 = B·H·L· cos α·γsat + B·(D− H)·L· cos α·γt + q2,

(10)

Ui = 0.5·H2· tan θ·L· cos α·γw (i = 1, 3); U2 = B·H·L· cos α·γw, (11)

Ai = D·L
√

1− sin2 α + 1/ tan2 β (i = 1, 3); A2 = B·L, (12)

Ji =
√

1 + tan2 α + tan2 β (i = 1, 3); J2 = 1/ cos α, (13)

mαi = 1/Ji + sin α·tan φ
′
/Fj (i = 1, 2, 3), (14)

where W1, W3, and W2 are the soil weights of the two oblique triangular quadrangular
prisms and the central oblique quadrangular prism, respectively; U1, U3, and U2 are the
total water pressures on the bottom of the two oblique triangular quadrangular prisms and
oblique quadrangular prism, respectively; q1, q3, and q2 are the tree surcharges on the two
oblique triangular quadrangular prisms and oblique quadrangular prism, respectively; A1,
A3, and A2 are the bottom areas of the two oblique triangular quadrangular prisms and
oblique quadrangular prism, respectively, on which a constant reinforced root strength is
mobilised; φ’ is the effective angle of internal friction; cr is the root cohesion component;
γt is the unit weight of wet soil (11.12 kN/m3); γsat is the unit weight of saturated soil
(15.09 kN/m3); and γw is the unit weight of water (9.81 kN/m3). As shown in Figure 1,
α and β are the longitudinal and transverse slopes, respectively, θ is the complementary
angle of β (= 90◦ − β), and E, B, H, L, and D define the sizes of the sliding block.

However, both Hovland’s method and the 3-D simplified Janbu’s method have some
weaknesses when applied to the three-prism model, as described in Section 3.3. To resolve
these issues, we proposed a slope-stability analysis method applying the three-prism model
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as follows: the self-weight component was calculated using the self-weight of the oblique
triangular prisms to act as the oblique quadrangular prism with the same volume; hence,
the self-weight component was obtained through the one assumed oblique quadrangular
prism. Meanwhile, the reinforced root strength acted on the flank-surfaces of the oblique
triangular prisms. The safety factor of this proposed three-prism method is given by
Equation (15):

F3p =
∑3

i=1

[
(Wi −Ui)· cos α·tan φ

′
+ cr·Ai

]

∑3
i=1 Wi· sin α

. (15)

Using the forest basin in Ibaraki Prefecture as a case study, the slope stability was
examined using the three-prism method (described in detail in Section 3.3), assuming
that the whole basin was covered with 50-year-old Japanese cedar trees. The changes in
slope stability on a 1-metre-resolution digital elevation model (Figure 2) were analysed,
as 50-year-old trees were clear-cut and new seedlings were immediately planted. The
assumed changes in the number, height, and diameter at breast height of Japanese cedar
trees over 50 years (the second rank of the site index) were determined using the yield
tables of Japanese cedar trees, developed for regions in and around Ibaraki Prefecture [54].
To perform the slope-stability analysis, the soil depth at each grid in the target area must
be obtained. Ideally, several simplified cone penetration tests should be conducted to
obtain the soil depth at Nc = 10 (Nc indicates the number of attempts required for a 5 kg
weight dropped from a height of 0.50 m to drive the cone 0.10 m into the soil; it is generally
assumed that slopes are subject to failure under certain triggering conditions involving Nc
values of <10) [55]. However, conducting such tests in large areas is difficult, owing to time
and cost limitations. In the last decade, some soil depth estimations have been generated
using machine learning [56–59]; however, soil depth data will likely be acquired using this
method in the near future. In the present study, we instead used a soil depth estimation
method in which the slope and transverse angle on each grid were incorporated in the
following equations [60]:

D = 0.9581× EXP[−0.0036× Dbr]× Dbr, (16)

Dbr = −8.30× α− 1.29× δ + 681, (17)

where D is the soil depth (cm), Dbr is the depth above the bedrock surface of Nc = 40 (cm),
α is the slope (degrees), and δ is the transverse angle (degrees). The transverse angle was
obtained following the survey guide for investigations on forest disasters [61], as follows:

A circle (with C set at the centre point) was inscribed in a square grid on a contour map.
Two intersection points of the contour line passing through point C and the inscribed

circle (S1 and S2) were obtained.
The transverse angle, S1CS2, was measured on the downslope side (for the upslope

direction, the angle is smaller on a valley topography and larger on a ridge).
Notably, some grids had soil depths of <30 cm in the area. For these grids, the

reinforced strength of roots (the root cohesion component) calculated on a potential sliding
surface at 35 cm was instead applied. For each grid with a slope and soil depth, the three-
prism slope model was applied to evaluate the slope stability by calculating the safety
factor. The stability analysis was conducted under fully saturated conditions with two
different tree weight conditions, i.e., with and without the aboveground weight of trees.
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3. Results
3.1. Pullout Strength of Roots

The obtained maximum pullout strength of the roots is shown in Figure 3 in relation to
the diameter at a point where the root was pinched with the pliers-like tool. The maximum
pullout strength of the live roots of uncut trunks exhibited the exponent function of the
diameter, as reported in a previous study [24]. Notably, the maximum pullout strength of
the roots of cut trunks had similar characteristics, exhibiting the exponent function of the
diameter, regardless of the time after cutting. The roots of trunks cut 8 years previously
were vulnerable to breakage; thus, we could not conduct pullout experiments on roots with
diameters of about <20 mm because they broke when pinched. Given the same diameter,
the maximum pullout strength was the highest for the living roots of uncut trunks and
decreased as more time elapsed after the trunks were cut.

3.2. Root Strength on the Sliding Surface at Different Depths

In shallow landslides, a sliding surface forms within a soil layer above the bedrock.
The number of tree roots in each diameter class across the sliding surface at different
soil depths was calculated using the root distribution model [22] and is summarized for
Japanese cedar stands at different ages (10–50 years) in Table A1 in Appendix A.

The reinforced strengths of tree roots, calculated as the summation of the maximum
pullout forces of the roots across a unit area sliding surface, are shown in relation to the
elapsed time after new planting in Figure 4a. At each depth of the sliding surface, the
reinforced strength had increased markedly by about 25 years after planting, after which it
remained relatively constant. Although some scatter was observed, the reinforced strength
of the tree roots was approximated using a logistic function of the elapsed time after
planting. Along the curve, the reinforced strength of the roots gradually increased up to
about 5 years, followed by a rapid increase, with the maximum acceleration of strength
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at about 7 years. However, from around 13 years, the rate of reinforcement appeared
to decelerate.
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After clear-cutting, the roots of trees begin to decay, reducing the reinforced strength.
Given that the trees were cut at the age of 50 years, the decreased reinforced strength is
shown according to the elapsed time after cutting in Figure 4b. The reinforced strength of
the roots linearly decreased with the elapsed time after cutting, and no strength appeared
to remain at around 9 years.

3.3. Changes in Slope Stability in the Three-Prism Model

The changes in the risk of shallow landslides were examined using the proposed
three-prism model for slope-stability analysis. Figure 5 shows the relationship between
the transverse slope, β, of the side-oblique triangular prisms and the prism width, and
that between the safety factor, Fh, and the prism width, both determined using Hovland’s
method [36]. Both the β and Fh decreased when the cr was of <0.8 kPa, with smaller
prism widths. This was likely because, in Hovland’s method, the inter-prism force is
approximated to zero, and the total balance of the force and the moment of force are not
satisfied. In this regard, previous studies have revealed that smaller safety factors are
obtained using Hovland’s method for 3-D analyses of sandy soils [62–64].
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Figure 5. Results of slope-stability analysis obtained using Hovland’s method. Changes in (a) the
transverse slope (β) and (b) safety factor, according to prism width.

The safety factor determined using the proposed three-prism method (F3p) was com-
pared with those determined using Hovland’s method and the 3-D simplified Janbu’s
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method (Figure 6). Notably, the 3-D simplified Janbu’s method [37–39] obtained the
smallest safety factor when the side-oblique triangular prisms disappeared (i.e., when the
transverse angle β was 90◦), because the method does not consider the shear strength on
the vertical sides in the 3-D slope-stability analysis [65]. Thus, in the calculation for the 3-D
simplified Janbu’s method, we also used the values of the transverse slope obtained using
the proposed three-prism method.
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Figure 6. Comparison of safety factors according to prism width evaluated using different analysis methods.

The safety factors obtained using Hovland’s method were generally lower than those
obtained using the proposed three-prism method or the 3-D simplified Janbu’s method
when the prism widths were about <10 m. However, the safety factors of the proposed
method and the 3-D simplified Janbu’s method were generally consistent over the range of
prism widths. Notably, the safety factors of the three methods converged when the prism
width was about >15 m. For reference, the results of the simplest 2-D infinite slope model
method are also shown in Figure 6. In this method, the prism width did not affect the safety
factor (expediently plotted at a prism width of 20 m). At a block width of 20 m, a small
difference was observed in the safety factors between the proposed three-prism method
and the 2-D infinite slope model method, in which the difference was up to about 0.07
when the reinforced root strength was 5 kPa.

The widths of most shallow landslides are about 10–15 m according to Kosugi [66]
and 5–20 m according to Okimura [67]. According to these findings and avoiding the
overestimation of tree root effects, the shallow landslide risk was demonstratively evaluated
on a 1-metre-resolution digital elevation model over the forest basin using the newly
proposed three-prism method with a block width of 20 m. For each grid, the longitudinal
slope, α, and soil depth, D, were the inputs, whereas β was estimated. For this estimation,
the value of β with a minimum 3-D safety factor was calculated for various values of α
(15.0◦, 25.0◦, 30.0◦, 34.5◦, 35.0◦, 40.0◦, and 45.0◦) and D (0.3–1.3 m at intervals of 0.1 m). A
multiple regression analysis indicated that β can be estimated using the following regression
equation, where α and D are the two independent variables:

β = 3.538× 10−3α2 − 3.757× 10−2αD + 1.930× 10−2α + 3.397× D + 59.70. (18)

Because the interpretation of 3-D illustrations can be difficult, changes in β versus α
with a constant D and β versus D with a constant α are shown in Figure 7, in which the
curves are plotted using the regression Equation (18).
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4. Discussion

The reinforced root strength is expected to increase and decrease after new planting
and stump cutting, respectively. Given that whole stands of Japanese cedar trees are
harvested at the age of 50 years, and that seedlings are newly planted at the same time, the
total reinforced root strength should be the sum of that of the decaying roots of the old
stumps and the growing roots of the new stumps. Figure 8 shows the change in the total
reinforced root strength at different depths according to the elapsed time up to 50 years.
In the early stage, the decrease in the reinforced strength of decaying roots plays a more
important role than that of the increase in the reinforced strength of growing roots, resulting
in a rapid decrease in the total reinforced root strength, with a minimum strength observed
at about 9 years. Thus, even with prompt planting just after clear-cutting, a considerable
loss of reinforced root strength can occur, reducing the total reinforced root strength to a
fraction of its maximum value. However, total root strength increases from 9 years to about
25 years, after which it remains almost constant up to 50 years.
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Figure 8. Changes in the total reinforced root strength of Japanese cedar according to the time after
stump-cutting and new planting.

Uprooting experiments have revealed changes in the strength of tree stumps [68],
which have been discussed in relation to the effects of forests on shallow landslides in
Japan [69]. In such experiments, the cut stumps of Japanese cedar trees were towed
horizontally using a wire rope attached to a hand winch, and the mobilised maximum
pullout forces when the cut stumps were removed from the ground were evaluated in
relation to the stem volume. Because the sum of the uprooting strength of the decaying
stumps and growing stumps was lowest at about 10 years after clear-cutting and new
planting, these previous results were considered to explain why shallow landslides occur
mostly during 10–15 years after clear-cutting and new planting [68]. Notably, these previous
results are similar to the present findings. However, in these previous studies, the observed
decrease in the uprooting strength of the cut stumps was not linear but rather negatively
exponential according to the time after cutting. Regarding the decrease of strength under
decay, 30% of the initial strength that remained at 10 years after cutting was finally lost
at about 38 years. In addition, the rate of acceleration of the total strength after 10 years
increased more slowly and gradually, continuing to increase up to 50 years. The minimum
total strength at 10 years was about 60% of the initial strength, which was a lower reduction
relative to that observed in our study. These results likely arose because the strength from
the uprooting experiments was mostly related to the stump itself, rather than the roots in
relatively deeper soil layers in which a probable sliding surface could form. Furthermore,
Tsukamoto [70] indicated that the results of uprooting experiments explained the resistance
strength against the uprooting of stumps but did not clarify how that strength was related
to the resistance against sliding as a key factor of shallow landslide prevention. Therefore,
a merit of our study is that the reinforced root strength on a sliding surface was determined
yearly as a factor for preventing shallow landslides.

The newly proposed method for slope-stability analysis using three prisms (with a
central quadrangular prism sandwiched between side triangular prisms) was applied to a
1-metre-resolution digital elevation model in a forest basin in Ibaraki Prefecture (Figure 2).
Specifically, a three-prism model with a width of 20 m was assumed for each grid on the
map to calculate the safety factor, and the effects of Japanese cedar forest dynamics were
examined at intervals of 5 years up to 50 years. The results of the slope-stability analysis,
considering the aboveground weight of the trees, is shown in Figure 9 for three different
times: (a) just after clear-cutting, when the roots of cut trunks are not rotten, (b) 10 years
after clear-cutting and new planting, when the reinforced root strength is almost at its
lowest value, and (c) 20 years after clear-cutting and new planting, when the reinforced
root strength has recovered to a certain degree. As shown in Figure 9, the distribution of
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red grids, indicating a safety factor of <1.0, just after clear-cutting (a), is similar to that o20
years after clear-cutting and immediate new planting (c), whereas markedly more red grids
appear 10 years after clear-cutting and new planting (b), i.e., when the total reinforced root
strength has almost reached its lowest value.
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Figure 9. Changes in unstable grids calculated for the forest basin with 284,204 grids in total under
fully saturated conditions with the weight of stems (a) just after clear-cutting (number of unstable
grids: 163,720), (b) 10 years after clear-cutting and new planting (number of unstable grids: 216,606),
and (c) 20 years after new planting (number of unstable grids: 178,157).

In Figure 10, the number of grids with a safety factor of <1.0 is shown according to the
elapsed time after both clear-cutting and new planting. We found little difference between
the safety factors with and without the aboveground weight of trees. The aboveground
weight of trees is usually obtained by measuring the stem volume directly in situ; how-
ever, new methods incorporating high-density point-cloud data obtained with airborne
or terrestrial laser scanners have been developed to construct 3-D tree models [71,72].
Nevertheless, as the aboveground weight of trees exerted little effect on the safety factor,
we ignored these data in our stability analysis. Notably, in our stability analysis, the effect
of the aboveground weight was investigated using the same ground water table conditions,
i.e., the rainfall interception effect of trees, which diminishes the rainfall input [73], and
the swaying of trees in the wind were not considered. These factors affect water table
formation and groundwater infiltration and are driving forces in the initiation of sliding.
We found that unstable grids rapidly increased for the first 5 years, peaked at 10 years, and
then rapidly decreased from 10 to 20 years. After 30 years, the number of unstable grids
remained almost constant.
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The results of this study indicate that the reinforced strength of Japanese cedar tree
roots decreases considerably between 5 and 15 years after clear-cutting and new planting,
resulting in a rapid increase in slope instability. Thus, implementing forestry practices for
lowering slope instability during this period should be considered important for preventing
shallow landslides.

5. Conclusions

By approximating the sum of the pullout forces of roots over a unit area on a possible
sliding surface, the changes in the reinforcement of roots during the growth of trees after
planting and decay of stumps after cutting were simulated. Our results indicated that
the root reinforcement decreased linearly after clear-cutting, with the minimum resistance
strength against shallow landslides observed at around 9 years. Subsequently, by about
25 years, the root reinforcement increased to a relatively constant value. We proposed a
three-prism method to examine the effect of lateral roots across the side-flanks of shallow
landslides on slope stability. Using this method on a 1-metre-resolution digital elevation
model, a large number of unstable slopes were observed between 5 and 15 years after
clear-cutting and new planting, indicating that appropriate forestry operations should be
implemented during this period to prevent landslide disasters in forests.
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Appendix A

Table A1. Number of roots in each root-diameter class on a sliding surface at different depths and
stand ages.

Depth
(cm)

Stand Age
(Years)

Root-Diameter Class Value (cm)

0.25 0.75 1.25 1.75 2.25 2.75 3.25 3.75 4.25

35

10 20.0 2.6 1.0
15 47.0 6.1 2.4 1.3 0.8
20 85.5 11.1 4.3 2.3 1.4 1.0
25 116.1 15.0 5.8 3.1 2.0 1.3 1.0
30 135.7 17.6 6.8 3.6 2.3 1.6 1.2 0.9
35 173.2 22.4 8.7 4.6 2.9 2.0 1.5 1.1
40 179.9 23.3 9.0 4.8 3.0 2.1 1.5 1.2 0.9
45 205.6 26.6 10.3 5.5 3.5 2.4 1.7 1.3 1.1
50 225.5 29.2 11.3 6.0 3.8 2.6 1.9 1.5 1.2
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Table A1. Cont.

Depth
(cm)

Stand Age
(Years)

Root-Diameter Class Value (cm)

0.25 0.75 1.25 1.75 2.25 2.75 3.25 3.75 4.25

45

10 13.5 1.7 0.7
15 42.0 5.4 2.1 1.1
20 72.6 9.4 3.6 1.9 1.2
25 95.3 12.3 4.8 2.6 1.6 1.1
30 108.5 14.1 5.4 2.9 1.8 1.3 0.9
35 138.4 17.9 6.9 3.7 2.3 1.6 1.2
40 140.9 18.3 7.1 3.8 2.4 1.6 1.2 0.9
45 161.1 20.9 8.1 4.3 2.7 1.9 1.4 1.0
50 176.7 22.9 8.9 4.7 3.0 2.0 1.5 1.1

55

10 9.6 1.2 0.5
15 30.0 3.9 1.5 0.8
20 50.5 6.5 2.5 1.4 0.8
25 68.0 8.8 3.4 1.8 1.1 0.8
30 94.3 12.2 4.7 2.5 1.6 1.1
35 98.9 12.8 5.0 2.6 1.7 1.1 0.8
40 119.3 15.5 6.0 3.2 2.0 1.4 1.0
45 136.4 17.7 6.8 3.7 2.3 1.6 1.2
50 126.2 16.4 6.3 3.4 2.1 1.5 1.1 0.8

65

10 11.6 1.6
15 21.0 2.9 1.1 0.6
20 35.9 4.9 1.9 1.1 0.7
25 59.3 8.1 3.2 1.8 1.1
30 64.6 8.8 3.5 1.9 1.2 0.8
35 82.4 11.3 4.5 2.4 1.5 1.1
40 81.1 11.1 4.4 2.4 1.5 1.1 0.8
45 92.8 12.7 5.0 2.7 1.7 1.2 0.9
50 101.7 13.9 5.5 3.0 1.9 1.3 1.0

75

10 9.0 1.2
15 23.7 3.2 1.3
20 37.3 5.1 2.0 1.1
25 45.9 6.3 2.5 1.4 0.9
30 63.6 8.7 3.5 1.9 1.2
35 63.8 8.7 3.5 1.9 1.2 0.8
40 77.0 10.5 4.2 2.3 1.4 1.0
45 88.0 12.0 4.8 2.6 1.6 1.1
50 78.7 10.8 4.3 2.3 1.5 1.0 0.8

85

10 7.1 1.0
15 18.9 2.6 1.0
20 29.7 4.1 1.6 0.9
25 35.6 5.0 2.0 1.1 0.7
30 50.7 6.9 2.8 1.5 0.9
35 64.6 8.9 3.5 1.9 1.2
40 61.3 8.4 3.3 1.8 1.1 0.8
45 70.1 9.6 3.8 2.1 1.3 0.9
50 76.9 10.5 4.2 2.3 1.4 1.0

95

10 5.8 0.8
15 15.4 2.1 0.8
20 24.2 3.3 1.3 0.7
25 40.0 5.5 2.2 1.2
30 41.3 5.7 2.2 1.2 0.8
35 52.7 7.2 2.9 1.6 1.0
40 63.6 8.7 3.5 1.9 1.2
45 57.2 7.8 3.1 1.7 1.1 0.7
50 62.7 8.6 3.4 1.9 1.2 0.8
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Abstract: This study investigates the effects of root distributions and stress paths on the shear strength
of root-soil composites using a consolidated-undrained (CU) triaxial test. On the basis of the limit
equilibrium, two root reinforcement coefficients (n and m) are proposed for characterizing the effects
of shear strength parameters on the principal stress considering different root distribution angles and
root diameters. Then, n and m are introduced into the conventional limit equilibrium equation to
develop a new limit equilibrium equation for root-soil composites. The results demonstrate that the
root distribution angles (α) and root diameters (d) affect the shear strength of the root-soil composites.
Under a consolidated-undrained condition, the effective cohesion (c′rs) of the rooted soil is high and
decreases in the order of 90◦, 0◦, 30◦ and 60◦. For the same root distribution angle, c′rs increases
with the increasing root diameter. Meanwhile, the effective internal friction angle (ϕ′rs) changes
slightly. The failure principal stress of the root-soil composites is positively correlated with n and
m. Furthermore, the deformation of the samples indicates that the run-through rate of α = 90◦ and
α = 0◦ are both 0. Meanwhile, the lateral deformation rate declines from 17.0% for α = 60◦ to 10.9%
for α = 90◦.

Keywords: root-soil composite; root reinforcement coefficient; shear strength parameters; root
distribution angle; root diameter

1. Introduction

Landsliding is a geological disaster which occurs around the world and poses a great
threat to people’s lives and property [1–7]. Plant roots play an important role in stabiliz-
ing shallow slopes [8,9]. In recent years, vegetation has been widely used in ecological
engineering to prevent soil erosion and stabilize slopes effectively [10–14].

Two mechanisms by which vegetation affects slope stability are recognized: (a) the
mechanical reinforcement of the soil by plant roots and (b) the improvement of the hydro-
logical conditions of slopes [15–18]. Plant transpiration affects soil matric suction [19,20],
while plant roots absorb water and reduce the pore water pressure [21,22], and the mechan-
ical reinforcement of plant roots has been proposed [23]. The most important contribution
of roots is their ability to increase the shear strength of soils. Strong frictional properties of
the root-soil interface improve the stability of the root-soil composites [24]. Additionally,
the reinforcement effect of roots is represented in the increment of the shear strength of root-
soil composites compared with that of unreinforced soil [25]. Many field and laboratory
tests have been conducted and mechanical models of root-soil composites, including the
Wu-Waldron model, modified Wu-Waldron model, root bundle model, and fiber bundle
model, have been developed [26–31]. Rahardjo et al. [32], and Satyanaga and Rahardjo [33]
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investigated the effect of plant roots on slope stability under unsaturated conditions using
undisturbed soil with and without roots. Triaxial tests were conducted to investigate the
mechanical properties of reinforced and unreinforced soils. Zhang et al. [25] carried out a
series of consolidated drained triaxial tests to examine the influence of roots on the shear
strength of soils. Zhou and Wang [34] further showed that the shear strength of root-soil
composites is higher than that of unreinforced soil.

At present, most researchers studied the effect of roots on the shear strength of rooted
soils mainly based on the root content, root distribution pattern (usually horizontal and
vertical), and moisture content [35–38]. Unfortunately, except for the influence of horizontal
and vertical distribution patterns of roots on the strength of rooted soils, the reinforcement
effect of other root distribution angles on root-soil composites has rarely been mentioned.
Plant roots freely grow at an angle in the soils and the diameters of roots constantly
change. Furthermore, the changes in the shear strength influence the failure principal
stress of rooted soils, but the limit equilibrium equation for the failure principal stress of
rooted soils has not been developed. Therefore, it is necessary to analyze the influence of
root distribution angles and root diameters on the shear strength of root-soil composites.
Moreover, the limit equilibrium equation of root-soil composites needs to be developed
to investigate the impact of shear strength parameters on the failure principal stress of
root-soil composites.

This study aims to examine the effect of root distribution angles (α = 0◦, 30◦, 60◦, and
90◦) and root diameters (d = 0.5 mm, 1.0 mm, and 2.0 mm) on the shear strength of soils.
Based on the conventional limit equilibrium equation, two root reinforcement coefficients
(n and m) are proposed to describe the influence of the variations of an effective internal
friction angle and effective cohesion on the failure principal stress of root-soil composites,
respectively. A new limit equilibrium equation of root-soil composites is then developed.
Additionally, the deformation of soil samples is examined to demonstrate the constraint
effect of roots on soils. The results provide a new insight for the analysis of the shear
strength of rooted soils and provide a reference for choosing suitable slope protection
plants.

2. Materials and Experimental Methods
2.1. Experimental Materials

The soils were obtained from Beijing, China (about 40◦28′ N, 115◦58′ E). Sieving
method was used in the particle analysis test. The particle size distribution of the tested
soils is shown in Figure 1 and Table 1. The soil is well-graded sand with clay and gravel
(SW-SC) according to the unified soil classification system (USCS) [39] and its basic physical
properties [40,41] are shown in Table 2.
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Table 1. Particle size distribution of the tested soils.

Particle
Size/mm >10 10–5 5–2 2–1 1–0.5 0.5–0.25 0.25–0.075 ≤0.075

Percentage/% 16.3 12.8 14.2 25.97 13.3 8.23 6.5 2.7

Table 2. Physical properties of the tested soils.

Soil Dry
Density
(kg/m3)

Water
Content

(%)

Plastic
Limit (%)

Liquid
Limit (%)

Plasticity
Index

Specific
Gravity

Unified Soil
Classification
System, USCS

1800 16.5 15.2 30.7 15.5 2.73

Well-graded
sand with clay

and gravel
(SW-SC)

Pyracantha fortuneana (Maxim.) Li, an evergreen shrub, is a commonly used plant
for soil and water conservation and was chosen as the experimental root system. Fifty
Pyracantha fortuneana plants (about 80–90 cm in height) were wholly excavated and the
root diameters and distribution angles were counted. A total of 200 roots were measured
using vernier caliper. The root diameters ranged from 0.5 mm to 4.5 mm and were mainly
distributed within 0.5 mm to 2.0 mm. Moreover, roots were widely distributed in the
depth of 0.5 m below the surface and the distribution angles of roots were 0◦, 30◦, 60◦, and
90◦. Root architecture of Pyracantha fortuneana was horizontal [42]. In the tests, the root
lengths were 30.0 and 60.0 mm and the diameters were 0.5, 1.0, and 2.0 mm, respectively.
In Figure 2a–c, twelve roots with a length of 30.0 mm were set in three layers in a sample,
and four roots were evenly placed in each layer. In Figure 2d, six roots with 60.0 mm length
were evenly distributed in the sample. The root content of all the samples was 0.15%.
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Figure 2. Diagram of the root distribution angles in the triaxial test: (a) 0◦, (b) 30◦, (c) 60◦, (d) 90◦.
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2.2. Experimental Methods

Below the surface depth of 0.5 m, the enhancement effect of roots on the soil strength
will be greatly weakened with the decrease of the number of roots. Therefore, the confining
pressures (50 kPa, 100 kPa, and 150 kPa) were chosen to effectively evaluate the influence of
roots on the soil strength. To study the influence of root distribution angles on soil strength,
four root distribution angles (0◦, 30◦, 60◦, and 90◦, respectively) were employed and the
root distribution patterns are shown in Figure 2.

Slope soils have generally reached a consolidated state under natural conditions. Slope
instability caused by soil erosion is usually represented by the rapid increase of pore water
pressure within a short time, resulting in a great decrease in soil strength under undrained
condition [36]. Therefore, the consolidation undrained (CU) triaxial test was used to
investigate the stress-strain response of soils using the TSZ strain-controlled automatic
triaxial apparatus (control precision is ±1%). The soil samples are saturated by vacuum
saturation method. The dry density and moisture content of the soils are 1800 kg/m3 and
16.5%, respectively. The samples with 16.5% moisture content were prepared using three-
layer compaction method. The samples of the root-soil composites and the unreinforced
soils were 39.1 mm in diameter and 80.0 mm in height.

The range of shearing rate of TSZ was 0.002–4 mm/min ± 10%. The shearing rate of
the triaxial tests was chosen as 0.1 mm/min and the stress was recorded every 0.1% increase
of axial strain. When the strain reached 20%, the test ended. The mean values of the test
results of effective stress were taken as the final values of deviator stress. The maximum
deviator stress was taken as the failure stress. However, when the peak value of deviator
stress was not recorded, the deviator stress corresponding to 15% strain was taken as the
failure stress.

As for unreinforced soils, root-soil composites conform to the Mohr-Coulomb the-
ory [27]. The shear strength of unreinforced soils and root-soil composites is rewritten
as [43]:

τf = c′ + (σ− u) tan ϕ′ = c′ + σ′ tan ϕ′ (1)

where τf is the shear strength (kPa); σ represents the normal stress (kPa); u is the pore
water pressure (kPa); σ′ is the effective stress (kPa); and c′ and ϕ′ represent the effective
cohesion (kPa) and the effective internal friction angle (◦), respectively.

3. Limit Equilibrium Equation of Root-Soil Composites

Previous studies showed that plant roots can reinforce soils [44] and shear strength
parameters of root-soil composites are different from those of unreinforced soils. The limit
equilibrium equations of unreinforced soil and root-soil composite are:

σ1 = σ3Kp + 2c′us

√
Kp (2)

σ1l = σ3Kpl + 2c′rs

√
Kpl (3)

where σ1 and σ1l represent the failure principal stress (kPa) of the unreinforced soil and
root-soil composite under confining pressure σ3, respectively; Kp = tan2(45

◦
+ ϕ′us/2

)
is

the passive earth pressure coefficient of the unreinforced soil; Kpl = tan2(45
◦
+ ϕ′rs/2

)
is

the passive earth pressure coefficient of the root-soil composite; and c′us, ϕ′us, c′rs, and ϕ′rs
are the effective cohesion (kPa) and effective internal frictional angle (◦) of the unreinforced
soil and root-soil composites, respectively.

Under the same confining pressure (σ3), the deviator of the failure principal stress of
the unreinforced soil and root-soil composite is given by:

∆σ1l = σ1l − σ1 (4)

The limit equilibrium equation of the root-soil composite can also be written using the
generalized equivalent confining pressure [37]:
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σ1l =
(
σ3 + ∆σ3g

)
Kp + 2c′us

√
Kp = σ1 + ∆σ3gKp (5)

where ∆σ3g is the generalized equivalent confining pressure (kPa), which means the dif-
ference of confining pressure between unreinforced soil and root-soil composite samples
under the same shear strength.

The generalized equivalent confining pressure is written as:

∆σ3g =
σ1l − σ1

Kp
=

∆σ1l
Kp

(6)

The variations of shear strength parameters in Equation (5) are reflected in the gener-
alized equivalent confining pressure while the variations of the shear strength parameters
of Equation (3) are directly reflected in the limit equilibrium equation. Equations (3) and (5)
are, therefore, equivalent.

Under the same confining pressure (σ3), Equations (3) and (5) can be substituted into
Equation (4) to obtain the deviator of the failure principal stress of the root-soil composite
and the unreinforced soil. ∆σ1l is given by:

∆σ1l = σ3

(
Kpl − Kp

)
+ 2c′us

(√
Kpl −

√
Kp

)
+ 2
(
c′rs − c′us

)√
Kpl (7)

By substituting Equation (7) into Equation (6), we can gain a new expression of ∆σ3g,
which is written as:

∆σ3g =
σ3

(
Kpl − Kp

)
+ 2c′us

(√
Kpl −

√
Kp

)
+ 2(c′rs − c′us)

(√
Kpl −

√
Kp

)

Kp
(8)

Substituting Equation (8) into Equation (5), the failure principal stress of the root-soil
composite is obtained as:

σ1l = σ3Kp
Kpl

Kp
+ 2c′us

√
Kp

(√
Kpl

Kp
+

c′rs − c′us
c′us

√
Kpl

Kp

)
(9)

The parameters in Equation (9) are written as:

n =
Kpl

Kp
(10)

m = 1 +
(

c′rs − c′us
c′us

)
(11)

where n and m are the root reinforcement coefficients of the soil, which represent the
variation of the internal friction angle and cohesion of the rooted soils, respectively.

Equation (9) is, therefore, rewritten as:

σ1l = nσ3Kp + 2c′usm
√

n
√

Kp (12)

Equation (12) is the same as Equation (2) except that the root reinforcement coefficients
are introduced into the limit equilibrium equation of the root-soil composite.

4. Results
4.1. Shear Strength Parameters of Root-Soil Composites

Table 3 lists the effects of the root distribution angles and diameters on the soil shear
strength parameters. Under the condition of d = 0.5 mm, the variations of c′r and ϕ′r were
different from each other. Compared with the unreinforced soil, the effective cohesions
of the root-soil composites slightly increased for α = 30◦ and α = 60◦, while that of α = 0◦

and α = 90◦ significantly increased. Moreover, c′r respectively increased by 11.7% (α = 60◦),
22.2% (α = 30◦), 32.6% (α = 0◦), and 66.4% (α = 90◦). Meanwhile, the variations of ϕ′r were
slight under all root distribution angles. Additionally, the effective internal friction angle of
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the root-soil composites was lower than that of the unreinforced soil. ϕ′r increased from
26.07◦ (α = 0◦) to 26.66◦ (α = 60◦), and then decreased to 26.22◦ (α = 90◦).

Table 3. Strength parameters of unreinforced soils and root-soil composites.

Strength
Parameter

Control Conditions

WR *
0.5 mm Root Diameter 1.0 mm Root Diameter 2.0 mm Root Diameter

0◦ 30◦ 60◦ 90◦ 0◦ 30◦ 60◦ 90◦ 0◦ 30◦ 60◦ 90◦

c′ (kPa) 30.17 40.00 36.88 33.70 50.21 45.43 42.14 38.99 60.27 51.92 48.64 43.03 74.15
∆c′ (kPa) - 9.83 6.71 3.53 20.04 15.26 11.97 8.82 30.10 21.75 18.47 12.86 43.98

ϕ′ (◦) 26.69 26.07 26.12 26.66 26.22 26.96 26.69 26.93 26.77 26.87 27.07 27.26 26.85

* Without root.

Under the condition of d = 1.0 mm, the effective cohesion of the root-soil composites
increased in the order of 60◦, 30◦, 0◦, and 90◦ distribution angles and was greater than
that of the unreinforced soil. c′r increased by 50.6% for α = 0◦ and 99.8% for α = 90◦. What
is more, compared with the unreinforced soil, the effective internal friction angle of the
root-soil composites slightly increased.

Under the condition of d = 2.0 mm, the effective cohesion of the root-soil composites
increased greatly. The maximum increase of effective cohesion was 145.8% for α = 90◦.
c′r respectively increased by 72.1% (α = 0◦), 61.2% (α = 30◦), and 42.6% (α = 60◦). Compared
with the unreinforced soil, ϕ′r increased for all the root distribution angles. Although ϕ′r
increased, the maximum increase among all root distribution angles was only 2.1%.

According to the results, the root distribution angle and root diameter significantly
influence the shear strength of soils. The effects of roots on the soil shear strength are mainly
represented in the increase of the effective cohesion. Furthermore, roots have slight effects
on the effective internal friction angle. The effective cohesion of the root-soil composites
increases with the increase of the root diameter. With the increase of the root distribution
angle, the effective cohesion of the root-soil composites first decreases, and then increases.

4.2. Root Reinforcement Coefficients

According to Equations (10) and (11), the root reinforcement coefficients (n and m)
of the root-soil composites under different root distribution angles and diameters were
obtained from the shear strength parameters of the root-soil composites (Table 3). The
coefficients are listed in Table 4.

Table 4. Root reinforcement coefficients of unreinforced soils and root-soil composites.

Root
Reinforcement

Coefficient

Control Condition

WR *
0.5 mm Root Diameter 1.0 mm Root Diameter 2.0 mm Root Diameter

0◦ 30◦ 60◦ 90◦ 0◦ 30◦ 60◦ 90◦ 0◦ 30◦ 60◦ 90◦

n 1.000 0.976 0.978 0.999 0.982 1.011 1.000 1.010 1.003 1.007 1.015 1.022 1.006
m 1.000 1.326 1.222 1.117 1.664 1.506 1.397 1.292 1.998 1.721 1.612 1.426 2.458

* Without root.

In Table 4, both of the root reinforcement coefficients of the unreinforced soil were
1.000 and the root reinforcement coefficients of the root-soil composites were different from
each other.

The parameter n was less than 1.000 for the 0.5-mm-diameter root in the root-soil
composites. Under the condition of the 1.0-mm-diameter root, n was more than 1.000 for
the root distribution angles of 0◦, 60◦, and 90◦, while n = 1.000 for the root distribution
angle of 30◦. Under the 2.0-mm-diameter root condition, the values of n were all more
than 1.000 for the different root distribution angles. Regardless of diameter, m exceeded
1.000 for all root-soil composites and decreased in the order of 90◦, 0◦, 30◦, and 60◦ of
root distribution angles (α). Moreover, the maximum value of n was 1.022 and that of m
was 2.458.
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n represents the ratio of the passive earth pressure of the root-soil composite to that
of the unreinforced soil. m describes the ratio of the effective cohesion of the root-soil
composite to that of the unreinforced soil. Additionally, m increases with the increase of
the root diameter. With the increase in the root distribution angle, m first decreases and
then increases. However, the variations of n are slight.

4.3. Deformation Characteristics of the Soil Samples

The root had a significant impact on the sample deformation evolutions. Taking
0.5-mm-diameter root composites under a confining pressure of 50 kPa as an example, the
deformation of these rooted soils was shown in Figure 3.
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Figure 3 shows the obvious axial and lateral deformation of all samples. In Figure 3a,d,
there is no clear failure surface in the root-soil composites with obvious lateral deformation
for the root distribution angle of 0◦ and 90◦. Meanwhile, the lateral deformation rate
was 13.1% for α = 0◦ and 10.9% for α = 90◦. In Figure 3b, the failure surface did not run
through the whole sample with the run-through rate of 48.7% when α = 30◦. Additionally,
the main lateral deformation rate was 14.9%. Figure 3c shows an obvious failure surface of
the 60◦-distribution-angle composite with a 79.5% run-through rate and lateral swelling
(17.0% lateral deformation rate) which appeared in the middle of the sample. However,
compared with the unreinforced soil, the development of the failure surface for the rooted
soil samples was greatly restrained.

The addition of roots can significantly affect the deformation characteristics of the
root-soil composites. Owing to the interaction between the roots and the soil particles,
the roots can bear partial shear stress, and restrain the lateral deformation of the rooted
soils. With the addition of the roots, the strength and stiffness of the root-soil composites
increase.
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5. Discussion
5.1. Effects of Root Distribution Angles

Table 3 shows that the shear strength of the root-soil composites was higher than
that of the unreinforced soil, which is consistent with many previous studies [27,38,45,46].
Among the four root distribution angles (0◦, 30◦, 60◦, and 90◦), the shear strength of the
rooted soils decreased in the order of 90◦, 0◦, 30◦, and 60◦. The shear strength of rooted
soils increased by 2.5 times (α = 90◦), 1.7 times (α = 0◦), 1.6 times (α = 30◦), and 1.4 times
(α = 60◦). When α = 90◦, the roots had the strongest effect on the shear strength and were
most conductive to resist the axial pressure of the root-soil composite. Thus, the shear
strength of the rooted soils can be improved by the addition of roots.

According to the Mohr-Coulomb theory, the failure angle is α f = 45
◦
+ ϕ′/2. When

ϕ′ = 26.69◦ for the unreinforced soil, α f = 58.35◦ can be obtained. Therefore, α = 60◦ was
closest to the failure angle of the soils (α f ). Meanwhile, only a small part of the roots passed
through the failure surface of the soils and the soils were most prone to failure and the
shear strength was the lowest. This finding is consistent with the results of Meng et al. [47].
The closer the root distribution angle is to the failure angle, the less the number of roots
passing through the shear failure surface. When the root-soil composites are stressed,
the tensile strength of the roots cannot be fully exerted. Therefore, the shear strength of the
root-soil composites for α = 60◦ cannot be effectively enhanced by roots. When the root
is vertically distributed, the roots can run through the failure surface of the soils, which
can greatly improve the shear strength of the root-soil composites. Additionally, the lateral
deformation of the root-soil composites is smaller than that of the unreinforced soils [48].
The constraint of the roots on the soil deformation depends on the tensile strength of the
roots. The run-through rate and the lateral deformation rate of the root-soil composites
increase in the order of 90◦, 0◦, 30◦, and 60◦ root distribution angles. Moreover, the larger
the run-through rate and lateral deformation rate of the soils are, the smaller the restraint
and the shear strength of the soils are, and the easier the soils fail.

5.2. Effects of Root Diameter on the Root-Soil Composites

In Table 3, under the same root distribution angle, the shear strength of the root-soil
composites increased with the increasing root diameter. When d = 0.5 mm, the shear
strength of the root-soil composites increased by the smallest amount, which is related to
the soil bonding failure and the small area of contact between roots and soils. This result
agrees with the previous studies [47,49]. Additionally, the shear strength of rooted soil was
enhanced by 1.7 times (d = 0.5 mm), 2.0 times (d = 1.0 mm), and 2.5 times (d = 2.0 mm).

The larger the diameter of roots, the greater the shear strength of root-soil composites
and the stronger the effect of roots on the shear strength. Large diameter roots can increase
the root-soil contact area, and a large area of contact between the roots and soils means an
increase in the frictional strength between the root-soil interface [50]. Therefore, the shear
strength of the rooted soils is enhanced. Additionally, the larger the root diameter, the
greater the force required for root fracture [51]. Thus, the large diameter roots are not
easy to fail and the soils can be greatly reinforced. Moreover, the surface of large diameter
roots is rougher than that of small diameter roots. With the increase in the root diameter,
the soils around the roots are subjected to the root radial force and become relatively dense,
which leads to greater friction between the root-soil interface [52]. Meanwhile, the binding
force between the soil particles around the roots increases. Thus, the shear strength of the
root-soil composites increases.

5.3. Variations of the Root Reinforcement Coefficients

Equation (2) is equivalent to Equation (12) when both n and m are 1.000. The result
shows that Equation (12) is a generalized limit equilibrium equation for all kinds of soils.
The limit equilibrium equation for the unreinforced soil is only a particular case.

In Figures 4 and 5, the variation in m is consistent with that of c′, and changes of n
are similar to that of ϕ′. Variations in root reinforcement coefficients directly describe the
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effects of the root distribution angle and root diameter on the shear strength parameters of
the root-soil composites. In Table 3, the main contribution of roots to soil shear strength
was to increase the effective cohesion. The internal friction angle is mainly affected by the
soil particle structure [53]. However, compared with soil mass, the root content (0.15%)
of the root-soil composites is small. Therefore, the effective internal frictional angle of the
rooted soil had a slight change [36,54].
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When the increments of the effective cohesion and the effective internal frictional
angle (∆c′ and ∆ϕ′) were both greater than zero, n and m were greater than 1.000. When
∆c′ was greater than zero, m was more than 1.000. While ∆ϕ′ was less than zero, n was less
than 1.000. Furthermore, n and m were not generally equal to 1.000.

There are two different conditions, as shown in Figure 6. τ and τl denote the shear
strength of the unreinforced soil and the root-soil composites, respectively. Considering the
root distribution angles and the root diameters, there are several shear strength envelope
relationships of the unreinforced soil and the root-soil composites. In Figure 6a, when
m = 1.426 and n = 1.002, meaning that ∆c′ > 0 and ∆ϕ′ > 0, the shear strength envelopes
of the root-soil composites are commonly larger than the shear strength envelope of the
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unreinforced soil. Figure 6a presents the envelopes of the shear strength of α = 60◦ under
d = 2.0 mm. Figure 6b presents the envelopes for a 0.5-mm-diameter-root composite with
α = 0◦. In Figure 6b, when m = 1.326 and n = 0.978 (i.e., ∆c′ > 0 and ∆ϕ′ < 0), the shear
strength envelope of the root-soil composites is smaller than that of the unreinforced soil.
Additionally, Figure 6 demonstrates that the changes of the root reinforcement coefficients
affect the failure principal stress of the root-soil composites. The failure principal stress of
the root-soil composites decreases with decreasing n and m.
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Figure 6. Shear strength envelope diagrams for unreinforced soil and root-soil composites: (a) m = 1.426,
n = 1.002, (b) m = 1.326, n = 0.978.

5.4. Root Reinforcement Mechanism

The interaction between roots and soils can increase the mechanical properties and
shear strength of soils, thus increasing the stability of slopes [36]. The exertion of the
root tensile strength depends on the friction between the root-soil interface. Therefore,
enhancing the friction between the root-soil interface is key to improve the shear strength
of the root-soil composites.

Compared with soils, plant roots have a strong tensile strength, which can offset a part
of the shear stress. Under loading, the deformation of the root-soil composites causes the
relative displacement and mutual dislocation between roots and soils, which can generate
the friction between the root-soil interface. The tensile property of plant roots can be
combined with the compressive property of soils through the friction between the root-soil
interface [52]. Roots can effectively improve the shear strength of soils, and enhance the
capacity of soils to resist the shear failure. On the one hand, the increase of the root diameter
can enlarge the root-soil contact area, root surface roughness, and the compactness of soils
around roots, which is beneficial to improve the friction on the root-soil interface. On the
other hand, the root distribution angle affects the number of plant roots passing through
the shear failure surface of soils, thus impacting the enhancement of roots on the shear
strength of rooted soils. The more the number of roots passing through the shear failure
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surface, the stronger the transmission and dispersion effect of roots on the soil stress, and
the greater the shear strength of the rooted soils.

In general, the greater the shear strength of the rooted soils, the higher the slope
stability [55]. According to the results of this study, the shear strength of the rooted soils
increases with an increasing root diameter, and the vertical root distribution pattern can
greatly enhance the shear strength of root-soil composites. Thus, plants with a larger root
diameter and mainly 90◦ root distribution angle are suggested to reinforce slopes.

6. Conclusions

The following conclusions are drawn from the results of the study.

1. Root distribution angles and root diameters affect the shear strengths of the root-soil
composites and the shear strength of rooted soils is enhanced by 1.1–2.5 times. The
shear strength of the root-soil composites becomes high in the order of 60◦, 30◦, 0◦, and
90◦ distribution angles, and decreases in the order of 2.0 mm, 1.0 mm, and 0.5 mm root
diameters. Moreover, roots mainly affect the effective cohesion of the soils. However,
the effective internal friction angle of the rooted soils changes slightly.

2. The run-through rate and the lateral deformation of the root-soil composites increase in
the order of 90◦, 0◦, 30◦, and 60◦ root distribution angles (α), and the run-through rate
of α = 90◦ and α = 0◦ are both 0. Meanwhile, the lateral deformation rate declines from
17.0% for α = 60◦ to 10.9% for α = 90◦. Roots can effectively restrain the deformation
of the root-soil composites.

3. Two root reinforcement coefficients n and m were proposed to develop the limit equi-
librium equation of the root-soil composites. n and m can be calculated by ϕ′ and
c′. The limit equilibrium of the unreinforced soil is equivalent to that of the root-soil
composite when both n and m are 1.000, which means that the limit equilibrium equa-
tion of the unreinforced soil is only a particular case. Therefore, the limit equilibrium
equation of the root-soil composites has a wide applicability. Additionally, n and
m represent the effects of root distribution angles and root diameters on the failure
principal stress of the root-soil composites, respectively. The failure principal stress of
the root-soil composites is positively correlated with n and m.
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Notation

τf Shear strength
σ Normal stress
u Pore water pressure
σ′ Effective stress
c′ Effective cohesion
ϕ′ Effective internal friction angle
σ3 Confining pressure
σ1 Failure principal stress of the unreinforced soil
σ1l Failure principal stress of the root-soil composite
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Kp Passive earth pressure coefficient of the unreinforced soil
Kpl Passive earth pressure coefficient of the root-soil composite
c′us Effective cohesion of the unreinforced soil
ϕ′us Effective internal frictional angle of the unreinforced soil
c′rs Effective cohesion of the root-soil composite
ϕ′rs Effective internal frictional angle of the root-soil composite
∆σ1l Deviator of the failure principal stress of the unreinforced soil and root-soil composite
∆σ3g Generalized equivalent confining pressure
n, m Root reinforcement coefficients of the soil
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Abstract: On 21 October 2017, days of heavy rainfall triggered a landslide in Guang’an Village,
Wuxi County, Chongqing, China. According to the field investigation after the incident, there is
still a massive accumulation body, which could possibly reactivate the landslide. In this study, to
explore the long-term evolution of the deformation after the initial Guang’an Village Landslide,
a time-series InSAR technique (TS-InSAR) was applied to the 128 ascending Sentinel-1A datasets
spanning from October 2017 to March 2022. A new approach is proposed to enhance the conventional
TS-InSAR method by integrating LiDAR data into the TS-InSAR process chain. The spatial–temporal
evolution of post-event deformation over the Guang’an Village Landslide is analyzed based on
the time-series results. It is found that the post-event deformation can be divided into three main
stages: the post-failure stage, the post-failure and reactivation stage, and the reactivation stage. It is
also suggested that, although the study area is currently under the reactivation stage, there are two
active deformation zones that may become the origin of a secondary landslide triggered by heavy
rainfall in the future. Moreover, the nearby Yaodunzi landslide might also play an important role in
the generation and reactivation of a secondary Guang’an Village Landslide. Therefore, continuous
monitoring for post-event deformation of the Guang’an Village Landslide is important for early
warning of a secondary landslide in the near future.

Keywords: multibaseline InSAR techniques; Guang’an Village Landslide; InSAR; time-series analysis;
post-event deformation mapping

1. Introduction

The Guang’an Village Landslide occurred on 21 October 2017 and was triggered by
continuous rainfall in Wuxi County, Chongqing between September and October of the
same year [1]. The disaster caused nine missing people and serious damage to the roadway
and infrastructure nearby. Over 1000 people were affected by the disaster. According to
the field investigation after the incident, the size of the whole landslide was approximately
1500 m in length and 1300 m in width, with a total volume of up to 3.3 ×108 m3. According
to Wang et al. [1], there is still a massive accumulation body at the middle section of
the landslide, which could form a secondary landslide and cause a serious threat to the
residents nearby. In addition, the potential secondary landslide could block the major river
and form a barrier lake, which could lead to a serious flood disaster. Therefore, continuous
field investigation and monitoring over the affected area of the Guang’an Village Landslide
are essential for early warning of the secondary landslide. However, the elevation of the
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Guang’an Village Landslide region is over 1500 m, with a slope angle of 45–60◦ at the
middle and lower part of the region. As a result, it is very challenging to conduct an on-site
field investigation to evaluate the stability of the middle section of the landslide and to
obtain the comprehensive deformation phenomenon over the area. Satellite interferometric
synthetic aperture radar (InSAR), an active remote sensing technique, can hence play an
important role in monitoring the deformation process of the sliding area at the middle
section of the landslide and providing important information for assessing slope stability.

The InSAR technique, with all-day and all-weather capability, can measure regional
scale deformations of the ground surface with relatively high resolution and accuracy [2–6].
Time-series InSAR (TS-InSAR), an extension of the InSAR technique, utilizes multi-temporal
SAR imagery to enhance the measurement capability of the conventional InSAR technique.
Typical time-series InSAR algorithms include PSInSAR™ [7], SBAS [8,9], SqueeSAR™ [10],
CSI [11], CPT [12,13], GEOS-PSI [14], GEOS-ATSA [15,16], IPTA [17], π-RATE [18,19],
PSP [20], StaMPS [21,22], STUN [23], and TCPInSAR [24,25]. The development of TS-
InSAR allows researchers to monitoring the ground surface deformation of a slow-moving
landslide, which is extremely useful for landslide investigation over remote and inaccessible
regions. TS-InSAR has been successfully applied in many landslide investigation studies,
including landslide detection and identification [26–30], precursory deformation detection
[31,32], pre- and post-failure analysis [33,34], landslide process mechanism inversion [35],
and landslide inventory, susceptibility, and hazard assessment [36,37].

The main objectives of this work are to (1) to investigate the spatial-temporal evolution
of the post-event deformation over the Guang’an Village Landslide area, (2) to analyze the
failure mechanism of the post-event deformation, and (3) to identify the possible origin
of the potential secondary landslide. Following the idea of the TS-InSAR technique, one
hundred and twenty-eight Sentinel-1A TOPS SAR data acquired between 31 October 2017
and 3 March 2022 are utilized to extract the spatial-temporal distribution of the post-event
deformation of the Guang’an Village Landslide. Since the landslide area in this study
is located in mountainous regions covered by relatively heavy vegetation, the presence
of vegetation results in a severe temporal correlation phenomenon. In addition, as the
water vapor issues are very serious, strong atmospheric artifacts are contained in the
interferometric signals. Moreover, the elevation difference of the study area is over 700 m
between the toe and the head of the landslide, which leads to severe geometric distortion
in radar coordinates. To overcome the above problems, a new TS-InSAR approach has
been developed in this study by integrating LiDAR-derived DEM into the conventional
processing chain. The main features of the approach can be summarized as follows: (1)
a multi-looking process is not conducted, which minimizes the effect caused by the loss
of resolution; (2) the latter parts of the TS-InSAR analysis are conducted over the map
coordinates. This allows for the minimizing of the influence of geometric distortion at the
slant-range during the spatial phase unwrapping stage, since the spatial distribution of
measurements is more in line with prior geological prior knowledge in map coordinates.

This paper is arranged as follows. Section 2 introduces the background of the study
area and the datasets used in this work (i.e., Sentinel-1A SAR imagery and LiDAR-derived
DEM). Section 3 describes the processing strategy used in this study. Section 4 provides the
results of deformation measurements and the analysis of the potential mobility and failure
mechanism of the landslide revealed by the results. Section 5 presents the main concluding
remarks of this study.

2. Study Area and Datasets

The Guang’an village is located in Wuxi County in the northeast of Chongqing, China,
with an approximate location at 31.54◦ N, 109.61◦ E. Wuxi County is the most abundant
forest resources region of Chongqing. In 2021, the forest coverage over the county was
larger than 70% where the study area is mainly covered by frutex. The geological structure
of this area is complex and diverse, and the terrain is quite steep (Figure 1a). The Guang’an
Village Landslide is located on the slope at the left bank of the Xixi River, with steep terrain
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at the middle part and relatively terrain gentle at the upper and bottom parts. This whole
slope where the landslide is located has an elevation difference of approximately 925 m,
with an elevation at the top of the slope of about 1200 m and an elevation at the bottom of
about 275 m, at the riverbed of Xixi River (Figure 1b). The slope angle at the upper part
(elevation above 1100 m), the middle part (elevation between 650 m and 1100 m), and the
bottom part (elevation below 650 m) of the slope is about 35◦∼50◦, 45◦∼60◦, and 25◦∼35◦,
respectively. The lithology of the landslide region is complex and is mainly composed
of the Quaternary, Triassic, Permian, and Silurian formations, from top to bottom. The
exposed bedrock is mainly composed of medium-thick- to thick-layered limestone and
thin-layered shale.
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Figure 1. (a) The airborne true color orthoimage covering the Guang’an Village Landslide. (b) The
elevation map at the study area. The white double broken line indicates the boundary between the
base bed and the accumulation body to be used as the defined branch cuts in the phase unwrapping
process. The white arrows indicate the flight direction and radar line-of-sight direction of the Sentinel-
1 data. The three accumulation bodies 1, 2, and 3 are indicated by black ovals marked as A, B, and
C, respectively.

The Guang’an Village Landslide occurred on 21 October 2017. The initial landslide
deposits have caused the riverbed to uplift, which blocked the river channel for about
160 m in distance over the surface and formed a barrier lake. As can be seen in Figure 1a,
the landslide region can be initially classified into two areas based on the morphological
features observed from the recent optical images: base bed and accumulation body.

According to the field investigation and longitudinal profile data provided in [1], the
landslide region can also be divided into two areas based on their failure characteristics:
base bed area and accumulated area. The upper part of the study area is the base bed area
and the lower part is the accumulation area. The initial base bed area has a length of about
550 m and a width of 150∼280 m. The average thickness and the volume of the initial base
bed area are about 30 m and 360 × 104 m3, respectively. The sliding accumulation area is
scraped and thrusted by the based bed, forming an accumulation body of about 1100 m in
length and 300 m in width. The average thickness and volume of the accumulated area are
about 25 m and 825 × 104 m3, respectively. In addition to the analysis above, this study
roughly divided the study area into four areas with the field survey information provided
in [1]: (1) base bed, (2) accumulation body 1, (3) accumulation body 2, and (4) accumulation
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body 3 (the three accumulation bodies are indicated by black ovals marked as A, B, and C
in Figure 1b).

In this study, the analysis is conducted mainly based on three datasets, i.e., the Sentinel-
1 SAR data, LiDAR DEM, and the rainfall data. The average daily rainfall data, recorded
between 1 January 2018 and 1 April 2022, was collected from the locally installed rainfall
gauge near the study area. The ascending track of the C-band Sentinel-1 SAR VV polarized
data acquired in the Terrain Observation by Progressive Scans (TOPS) mode were collected
for time-series InSAR analysis. A total of 128 Sentinel-1 data acquired between 31 October
2017 and 3 March 2022 (Path 84 Frame 100) were selected for analysis. The flight direction
and radar line-of-sight direction (LOS) of the Sentinel-1 data are shown in Figure 1. As can
be seen from this figure, the slope direction of the landslide is almost parallel to the flight
direction of the Sentinel-1 ascending track. The LOS displacement obtained from TS-InSAR
analysis is mainly composed of the landslide displacement in the horizontal and vertical
directions. The airborne LiDAR data used in this work were acquired in 2021 to provide
high-resolution and up-to-date elevation data for this analysis.

As pointed out in [38], rainfall is one of the most important factors triggering landslide
failures. The average daily precipitation data between 1 January and 11 April 2022 were
therefore collected from the nearest locally installed gauge (approximately 1.5 km away
from the study area). In general, flood season lasts from early April to early October in
the study area. According to the rainfall data, the precipitation intensities of 2018, 2019,
2020, and 2021 are 1496.8 mm, 1057.6 mm, 1666.3 mm, and 1712.2 mm, respectively. In total,
6089.2 mm rainfall was recorded during the observation period.

3. Methodology
3.1. Preparation of the Interferogram Stack

In order to generate an image stack for time-series analysis, all Sentinel-1 images have
to be co-registered to the same image grid. A primary image acquired on 19 March 2019
was chosen for the generation of a Sentinel-1 image stack. To generate the SAR image stacks,
all secondary images are coregistered to the image grid of the primary image. Because of
the variations in Doppler centroid frequency in Sentinel-1 TOPS mode, a coregistration
accuracy of 1/1000 pixel is required for the interferometric phase error to be negligible
between bursts. The enhanced spectral diversity (ESD) method, which is able to achieve
such accuracy, was utilized. However, since ESD derives mis-coregistration from the cross-
interferometric phase, a fair amount of high coherence pixels are needed at burst overlaps
area for the ESD process to achieve the required coregistration accuracy [39]. The high ratio
of decorrelated pixels over the landslide region due to the temporal decorrelation could
degrade the achieved accuracy from ESD. To avoid this issue, the whole Sentinel-1 scene
is processed with the one arc-second Shuttle Radar Topography Mission (SRTM) Digital
Elevation Model (DEM) and the Sentinel-1 precise orbits. The purpose of processing the
full scene instead of the sub-scene covering only the landslide and nearby areas is to ensure
that there are enough high coherence pixels for the ESD process.

Once all SAR images are coregistered to the same grid, a differential interferogram
can be formed. In order to ensure an accurate inversion of surface deformation from the
time-series InSAR analysis, it is necessary to ensure that the minimum possible decorrelated
InSAR pairs are selected. An investigation was conducted prior to the selection of inter-
ferometric pairs to obtain the optimal combination of interferometric pairs for time-series
analysis. It was found that temporal decorrelation is the dominating decorrelation source
after analyzing all possible combinations of interferometric pairs over the study area. There
are noticeable outliers that exhibit poor coherence even with a temporal baseline of 24
days. Therefore, the interferometric pairs are selected with the shortest temporal baseline
available to guarantee that coherence is preserved in all the image pairs to some extent. One
hundred and twenty-seven differential interferograms were generated with respect to the
primary image using the conventional two-pass DInSAR approach [40]. A one arc-second
SRTM DEM was used to remove the topography phase from the interferograms.
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Once the differential interferogram stack is formed, a filtering operation can be con-
ducted to enhance the coherence. Since the location of the deformation zone to be monitored
is expected to be small in spatial extent, full-resolution processing is preferred instead of
processing with the multi-looked interferogram. The two-sample Kolmogorov–Smirnov
(KS) test was carried out to determine the adaptive filtering window, i.e., the statistically
homogeneous areas (SHP), for each pixel. The initial searching window of 15× 45 pixels
(approximately 0.07 km2 ) is used here.

3.2. Atmospheric Correction with Masking of the Deforming Area

The differential phase in interferogram k, in the pixel of azimuth and range coordinates
(x, y) from acquired times tB and tA is given by:

∆φk
x,y ≈ −

4π

λ

(
dtA

x,y − dtB
x,y

)
− 4π

λ

(
Bk
⊥x,y∆hx,y

Rx,y sin θx,y

)
+
(

φatmttA
x,y − φatmtx,y

)
+ ∆nk

x,y (1)

where λ is the wavelength of the radar signal and
(

dtA
x,y − dtB

x,y

)
is the LOS displacement

between the acquisition times tB and tA. The second term in Equation (1) is the phase
induced by inaccuracy in the reference DEM. ∆hx,w, B⊥x,y , Rx,y, and θx,y are the DEM error,
mean perpendicular baseline, slant-range distance, and local incidence angle, respectively,
between the pixel (x, y) and the reference point. The third term is induced by the atmo-
spheric inhomogeneities in times tB and tA. The last term, ∆nk

x,y, is induced by many factors,
including thermal noise, mis-coregistration, inaccurate orbit data, decorrelation, etc.

It is worth noting that the post-failure surface deformation of the Guang’an Village
Landslide is highly non-linear, especial within the short time frame. Therefore, the deforma-
tion cannot be accurately estimated using the common linear or the seasonal models. For
this reason, atmospheric correction must be removed before the spatial phase unwrapping
operation to minimize the phase ambiguity problem over the sliding area. In the time-series
InSAR analysis, the atmospheric component in Equation (1) is often assumed to be spatially
correlated and temporally uncorrelated. Since all InSAR pairs are selected with the shortest
possible temporal baseline, the atmospheric phase of each pair can be expressed as:
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where ∆φLPK
x,y

is the spatially correlated phase in interferogram k and φ
atm

tj
x,y

is the atmo-

spheric phase at acquisition time j for the pixel of azimuth and range coordinates (x, y). In
this study, ∆φLP is calculated based on the spatial low pass filtering on the wrapped inter-
ferogram. It is clear that the design matrix in Equation (2) is rank-deficient. The approach
proposed in [41] is adopted here for the atmospheric correction. The interferogram with
minimal variance in the interferogram stacks is first obtained and selected and then the
selected interferogram is used to calibrate the others based on Equation (2).

Since the post-failure surface deformation is correlated in the spatial domain to some
extent, some of the deformation signals can be incorrectly treated as the atmospheric
phase using the procedure above. Therefore, refinement of the preliminary atmospheric
signal is necessary. The refinement procedure used in this work is as follows: (1) spatial
phase unwrapping operation is applied to each interferogram (after the initial atmospheric
correction); (2) the accumulated deformation can be obtained by adding up all of the
unwrapped interferograms; (3) the deformation area is identified and a mask is created
to mask out the sliding area; (4) the atmospheric correction procedure is reapplied with
the masked interferograms to estimate the atmospheric phase component; (5) the spatial
interpolation is applied to estimate the atmospheric phase at the masked area; (6) the
refined atmospheric phases are subtracted from the original differential interferograms.
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3.3. Terrain Correction and Spatial Phase Unwrapping

After the atmospheric correction process, the remaining phase in the interferogram is
expected to be contributed to mainly by the deformation and DEM error. Since the InSAR
pairs are selected with the minimal temporal baseline possible, most pairs are separated
by 12 days. Given that the temporal baseline between each pair is relatively short and
the landslide deformation is non-linear in time, DEM error can be estimated using the
stacking approach [42] without considering the influence of deformation. Once the DEM
error is estimated and corrected, spatial phase unwrapping can be applied to the refined
interferogram stack for deformation analysis.

Unlike many other TS-InSAR studies, the variation of elevation in the study area is
over 700 m within a relatively small spatial extent, i.e., 1.5 km × 0.85 km. The steepness of
the slope is up to ∼60◦. The geometric distortion caused by high elevation and extremely
undulating terrain, such as strong layover and foreshortening effects, can induce strong
phase distortion. This makes the spatial phase unwrapping process challenging without
correcting the terrain effects. Figure 2 shows the amount of geometric distortion observed
using the 1 arc-second STRM DEM. The look-up table for geographic-to-radar coordinate
projection based on the SRTM DEM and the LiDAR have been generated independently.
The amount of geometric distortion is derived by the projected range coordinate difference
between the SRTM and the LIDAR look-up tables. These differences can hence be consid-
ered to be the projection bias of the SRTM look-up table. It can be clearly observed that
largest difference is larger than 20 pixels. Since this study requires processing the data at a
full-resolution scale, such a bias will lead to a relatively large distortion in the geographic
pattern of the interferometric signals. Although the elevation information obtained from
the TS-InSAR analysis can be used to compensate for the DEM error, the variation in the
perpendicular baseline of the Sentinel-1 InSAR stack is too small to obtain the required
accuracy. In order to deal with this issue, an airborne LIDAR DEM with an expected
accuracy of 5 cm is used to assist the phase unwrapping process. The LiDAR DEM with a
much higher resolution (0.5 m × 0.5 m) is able to derive the land feature in more detail,
which allows the defining of the correct branch-cut to correct the phase unwrapping error,
and at the same time provides accurate geolocation information for each pixel. The InSAR
interferograms are resampled to a grid with a resolution of 8 m × 8 m based on the LiDAR
DEM. The reason for choosing such a resolution is because the number of elements from
the map grid and the slant-range grid is approximately the same. Therefore, this allows the
phase information to be retained as much as possible without degrading the coherence.

Once all interferograms are resampled to the map coordinate, the Goldstein filter [43]
is applied to ensure the continuity of the phase data for spatial phase unwrapping. The
pixels with temporal coherence, i.e., the sum of complex coherence throughout the stack,
larger than 0.75 are considered as coherent pixels for phase unwrapping. The minimum cost
network flow phase unwrapping algorithm (MCF) is performed on all the interferograms
to derive the unwrapped phase stack [44]. The costs for each flow are derived from the
coherence obtained from the space adaptive filter (SHP) in the early stage. The phase
unwrapping results are then investigated and the results that contained serious tiling
effects [45,46] are identified. Correction is conducted by adding the defined branch cuts to
the minimum cost flow network to avoid such an issue. With the data resampled into the
map coordinates, branch cuts can be easily defined based on the morphological features
from the LiDAR data and the optical images. Figure 3 shows an example of the unwrapped
phase in map coordinate with and without the correction using the proposed method. As
can be seen in Figure 3a, there is an area with an obvious phase unwrapping error observed
in the phase unwrapping result that is obtained without the defined branch cuts between
the base bed and the accumulation body (highlighted by the black circle in Figure 3). The
phases have integrated from the base bed to the accumulation body at one end and vice
versa at the other end. Figure 3b shows the unwrapped result obtained with the defined
branch cut between the base bed and the accumulation body (see Figure 1a for the defined
branch cut at the boundary). This clearly shows that the phase unwrapping error has
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been corrected and the phases no longer pass the boundary between the base bed and the
accumulation body. This suggests that the proposed method can improve the correctness
of the phase unwrapping results.

109°36'25" 109°36'30" 109°36'35" 109°36'40" 109°36'45" 109°36'50"

31°32'10"

31°32'15"

31°32'20"

31°32'25"

31°32'30"

31°32'35"

31°32'40"

31°32'45"

31°32'50"

0 m 100 m 200 m

−20 −10 0

pixels

Figure 2. The projected range coordinate difference between the 1 arc-second SRTM and the LiDAR
look-up tables.
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Figure 3. Unwrapped phase in map coordinates (a) without and (b) with the correction using the
proposed method. The area with the obvious phase unwrapping error observed is highlighted by the
black circle.

3.4. Time-Series Deformation Analysis

Once the refined interferograms are unwrapped and the DEM error is corrected, net-
work integration in the time domain can be conducted to obtain the time-series deformation
information by solving the linear system:
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where φde f oK
x,y

is the unwrapped deformation phase in refined interferogram k, and D
LOStK

x,y

is the cumulative deformation along the LOS direction at times corresponding to the
acquisition of the secondary images. Finally, a temporal low pass filter with kernel windows
of 96 days is applied to the time-series deformation data to remove the decorrelation noise.

4. Results: Deformation Velocity Measured by Time-Series InSAR Analysis

The LOS displacement time-series obtained from the TS-InSAR processing of the
128 Sentinel-1 data are shown in Figures 4 and 5. Figure 6 represents the accumulated
displacement. The measurement points (MPs) with red color (positive values) indicate that
targets are moving away from the satellite along the LOS direction. On the other hand,
the blue color counterparts (negative values) indicate that targets are moving towards
the satellite. Figures 4 and 5 show that the study area experienced continuous post-event
deformation between 2017 and 2021, after the initial Guang’an Village Landslide in October
2017. Since noticeable deformation is observed in this region, a cumulative deformation
map was generated in order to provide a more comprehensive understanding of the spatial
distribution of the deformation (Figure 6). A total of around 4700 MPs, covering more
than 90% of the landslide area, were obtained. This suggests that single-pixel processing
(without multi-looking processing) can effectively avoid the loss of interference signal and
maximize the number of MPs in this region. In addition, because the TS-InSAR processing
is conducted at the ground distance with the assistance of high-resolution LiDAR DEM, the
MPs are more uniformly distributed in the displacement map. This effectively minimized
the problem of uneven distribution of MPs due to large topographic relief. According to
the TS-InSAR results, it was found that there are two areas, i.e., near the base bed and point
4 (located in accumulation body 2), that experienced strong decorrelation and from which
limited MPs can be obtained. Comparing the deformation map with the SAR intensity
images and the LiDAR data suggests that the decorrelation near the base bed is mainly due
to the strong shortening and layer effect in the region. The main reason for the decorrelation
near point 4 in the accumulation body 2 is expected to be the strong SAR shadowing effect.

As shown in Figure 6, there are five active deformation zones. The maximum cumula-
tive LOS deformations observed at the areas near the five points are approximately 80 mm,
80 mm, −200 mm, 200 mm, and 150 mm, respectively, of which point 2 has the maximum
accumulated LOS deformation. As mentioned in the previous section, the direction of the
flight path is parallel to the main sliding direction. Therefore, all points except for point 2
are experiencing the ground surface moving away from the satellite, where InSAR-derived
deformation in these regions is expected mainly in the vertical direction. On the other hand,
point 2 is experiencing the ground surface moving towards the satellite, suggesting that the
InSAR-derived deformation is expected mainly in horizontal displacement perpendicular
to the flight direction.
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−200 −100 0 100 200
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Figure 4. LOS displacement time-series maps for the Guang’an Village Landslide at the 128 Sentinel-1
acquisition date, referring to the first SAR image acquired on 31 October 2017 (from 31 October
2017 to 26 November 2019). The number at the upper right of each subplot represents the image
acquisition date (in yyyymmdd format).
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−200 −100 0 100 200
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Figure 5. LOS displacement time-series maps for the Guang’an Village Landslide at the 128 Sentinel-1
acquisition date, referring to the first SAR image acquired on 31 October 2017 (from 8 December 2019
to 3 March 2022). The number at the upper right of each subplot represents the image acquisition
date (in yyyymmdd format).

46



Forests 2022, 13, 887

109°36'25" 109°36'30" 109°36'35" 109°36'40" 109°36'45" 109°36'50"

31°32'10"

31°32'15"

31°32'20"

31°32'25"

31°32'30"

31°32'35"

31°32'40"

31°32'45"

31°32'50"

0 m 100 m 200 m

−200 0 200

LOS deformation(mm)

Figure 6. Cumulative LOS displacement between 31 October 2017 and 3 March 2022 for the Guang’an
Village Landslide. The numbers 1 to 5 indicate the five active deformation zones for Figure 7.
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Figure 7. Cont.
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Figure 7. Time-series of the post-event displacement and rainfall for selected MPs from the five
active deformation zones: (a) point 1, (b) point 2, (c) point 3, (d) point 4, (e), and point 5, from the
cumulative displacement map (Figure 6). The three landslide movement stages S1, S2, and S3 in
Figure 8 are highlighted by three-color backgrounds in the time-series plot.
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Figure 8. The cumulative LOS displacement maps of the three landslide movement stages: (a) S1:
post-failure stage, (b) S2: post-failure + reactivation stage, and (c) S3: reactivation stage.

Figure 7 shows the deformation trend of MPs with the highest displacement from each
of the five active deformation zones. It can be seen that all the five MPs have ladder-like
deformation characteristics, but have a different degree of correlation with rainfall.

5. Discussion
5.1. Temporal–Spatial Evolution of the Post-Event Deformation of the Guang’an Village Landslide

In this section, the spatial-temporal evolution of the post-event slope stability at
the active deformation zones are analyzed. As can be seen from the displacement time-
series in Figure 7, during the observation period, point 3 and 4 show an obvious periodic
“acceleration-creep” deformation pattern before and after the flood season every year,
indicating that the deformation trends at these active deformation zones are strongly
correlated with the rainfall in the flood season. Apart from the two points mentioned, the
acceleration of deformation is strongly correlated to the rainfall intensity at point 5 from
2018 to 2020. However, once the accumulated deformation reached its peak after the flood
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season in 2020, the accumulated deformation remained stable even under the action of the
rainfall during the flood season in 2021. Continuous deformation has been observed at
point 1 since the initial landslide incident, but the deformation rate significantly decreased
after the flood season in 2018. Even though the point continues to deform, the acceleration
in deformation observed during flood season rainfall is relatively low and the correlation
between the deformation and rainfall during the flood season is decreased significantly
compared with that in 2018. Compared to the rest of the MPs, point 2 shows a unique
continuous deformation trend with an opposite sign (moving towards the satellite). As
discussed previously, the deformation at point 2 is mainly in horizontal displacement in the
direction perpendicular to the flight direction. Rapid deformation was observed after the
initial landslide incident. However, the rate of deformation decreased significantly along
with the weakening of rainfall after the flood season in 2018. Because the amount of rainfall
in the flood season of 2019 was lower compared to the other years, the deformation rate at
point 2 was relatively stable after the flood season of 2018 until the beginning of the flood
season in 2020. An obvious acceleration in deformation was observed under the action of
rainfall in the flood season of 2020. However, although the peak daily rainfall intensity
was higher during the flood season in 2021 than in 2020, only a small “acceleration-creep”
deformation trend was observed.

According to [47], the landslide movement can be classified into four stages: (1) a
pre-failure stage including a deformation process leading to failure; (2) the onset of failure
characterized by the formation of a continuous shear surface through the entire soil mass;
(3) a post-failure stage starting from failure until the mass stops; (4) a reactivation stage
when sliding occurs on a pre-existing shear surface. By taking the four landslide movement
stages proposed by [47] into account, the temporal evolution of the post-event deformation
at the five selected MPs is classified into three stages here based on correlation analysis
between the change in deformation rate and rainfall: (1) post-failure stage (S1: until 24
March 2018), (2) post-failure and reactivation stage (S2: between 25 March 2018 and 31
March 2019), and (3) reactivation stage (S3: after 31 March 2019). The criteria used for such
a classification can be summarized as follows. (1) The flood season over the Wuxi County
starts from the beginning of April. (2) According to Figure 7, the displacement observed on
each point during 2018 is clearly larger than that observed during 2019, 2020, and 2021. (3)
For the cases of point 1 and point 5, the deformation evaluations generally remain stable
after 2018. The three landslide movement stages S1, S2, and S3 at the five selected MPs are
highlighted in Figure 7.

In order to analyze the spatial distribution of deformations at the three stages, the
cumulative deformation corresponding to the three stages is computed (Figure 8). As can
be seen in Figure 8, the spatial extent of the deformation areas has gradually reduced and
most of the affected area was stabilized from S1 to S3. During stage S1, the deformation was
mainly concentrated in the active deformation zones point 2 and point 4. The non-active
deformation areas were mainly affected by horizontal movement at the active deforma-
tion zones point 2 and by surface movement in slip directions at the active deformation
zone point 4. During stage S2, the deformation was mainly concentrated in the active
deformation zones point 4 and point 5. The deformation in the landslide area tended to be
stable. During stage S3, the front edge of the landslide area tended to be stable. However,
noticeable deformation was observed in the active deformation zones point 2 and point 4,
and the spatial extent of the deformation zones gradually extended from the west boundary
of the landslide to the east boundary.

5.2. Deformation Mechanism Analysis and Risk Evaluation of the Guang’an Village Landslide Area

According to the cumulative displacement at the reactivation stage (Figure 8c), there
are two zones (points 2 and 4) in the study area where intensive deformation was observed,
which may become the potential trigger source for the secondary landslide. Based on
the above analysis, it was found that there is a clear difference between the deformation
phenomenon in active deformation zone point 2 (source area) and the rest of the deforma-
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tion zones. To investigate the reason why the deformation trend was opposite in point
2, the gravity trend direction over the region was computed based on the least square
solution of the eight-neighbor elevation difference from the high-precision LiDAR DEM
(Figure 9). It can be seen that there is a certain angle between the gravity trend direction of
the active deformation zone point 2 and the main sliding direction of the slope. This may
lead to the abnormal deformation trend in the zone. In addition, by analyzing the study
area and its surroundings using the LiDAR data, it was found that there is a long crack
appearing at the north-east of the study area (Figure 10), which suggests that it is highly
likely there is deformation occurring in that area. This finding has been verified with the
field investigation, and the slope instability in that area is named the Yaodunzi Landslide.
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Figure 9. The quiver plot of the gravity trend direction for the Guang’an Village Landslide and
surroundings.

As the Yaodunzi Landslide area moves in the slope direction, it can induce the pres-
sure on the accumulation body in the Guang’an Village Landslide, leading to horizontal
displacement perpendicular to the main sliding direction (moving towards the satellite)
in the active deformation zone (Figure 10). In fact, the active deformation zone where
point 2 is located becomes the main anti-sliding section of the Yaodunzi Landslide. The
anti-sliding force in this area is mainly composed of two parts: (1) the friction between
the accumulation body and the sliding bed in this area; (2) the lower area acting as the
anti-sliding force to this area. According to the profile (see [1]), since the initial Guang’an
Village Landslide, the thickness of the accumulation layer in this area is relatively shallow
and the normal stress of the sliding bed is relatively limited. Therefore, the contribution of
the anti-sliding force from the second part is likely to be larger than the first part.

This can also be observed in the deformation time-series of the active deformation
zones point 3, point 4, and point 5 (Figure 7) that the deformation trends of these zones are
relatively synchronous. However, the InSAR results in Figure 8c show that the cumulative
surface deformation in S3 stage is highest at the accumulation body 2 (where point 4 is
located). Since the sliding direction of the landslide is almost perpendicular to the Sentinel-1
LOS direction, the actual deformation in the accumulation 2 region may be much larger
than the InSAR LOS displacement values. Based on the above analysis, the Guang’an
Village Landslide may have two chain failure modes under extreme rainfall conditions:
(1) rainfall infiltrates from the cracks at the rear edge of the Yaodunzi Landslide under
heavy rainfall, resulting in the reduction of the anti-sliding force from the sliding soil of
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the Yaodunzi Landslide. The anti-sliding force from active deformation zone point 2 then
can no longer maintain the stability of the Yaodunzi landslide, causing a failure of the
slope; (2) the accumulation 2 region continues to deform under the heavy rainfall and the
continuous deformation in this area leads to the slope instability of accumulation 1 region,
and eventually to the slope failure of the Yaodunzi Landslide.
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Figure 10. The effect of the Yaodunzi Landslide on the active deformation zone point 2. The arrow
indicates the force induced by the Yaodunzi landslide. The red and blue arrows represent the indirect
force and direct force, respectively, to the active deformation zone point 2. The white arrows show
the location of the cracks at the rear edge of Yaodunzi landslide.

6. Concluding Remarks

This study developed an approach, based on the conventional TS-InSAR method, to
monitor the post-event deformation of the Guang’an Village Landslide, which integrates
the LiDAR data into the TS-InSAR processing chain. This approach has two main features:
(1) a multi-looking process is not conducted to minimize the loss of interferometric signal
due to the down-sampling issue; (2) TS-InSAR analysis is conducted on the ground distance,
which minimized the influence of geometric distortion in slant-range coordinates on the
geocoded deformation results. This allows the spatial distribution of measurement points
to be in line with prior geological knowledge, and hence prior knowledge can be applied to
assist the spatial phase unwrapping process. A total of 128 Sentinel-1 SAR images, acquired
from October 2017 to March 2022, were analyzed to obtain the long-term evolution of the
post-event deformation of the landslide area. The InSAR-derived deformation information,
LiDAR DEM, and the rainfall data were jointly used to analyze and explore the deformation
characteristics of the study area. It was found that: (1) the study area tends to be stable in
general, but there are two areas that continue to suffer from deformation due to rainfall in
the flood season; (2) the post-event deformation between October 2017 and March 2022
can be divided into three main stages: the post-failure stage (October 2017 to March 2018),
the post-failure and reactivation stage (March 2018 to March 2019), and the reactivation
stage (March 2019 to March 2022); (3) the results show that the study area can be further
divided into four main areas: base bed, accumulation body 1, accumulation body 2, and
accumulation body 3. Among the four areas, it is observed that there are signs of abnormal
accumulation of lateral deformation at the trailing edge of accumulation 1 area. A possible
reason for such deformation is that the upper part of accumulation 1 is suffering from
downward movement and compression from another landslide (Yaodunzi Landslide),
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resulting in lateral deformation occurring at the upper part of the accumulation 1 area; (4)
although the study area is currently in the reactivation stage, active deformation zones
have been found in both accumulation body 1 and accumulation body 2 areas. These active
deformation zones are strongly correlated to rainfall intensity in the flood season. These
two deformation zones may become the origin of a secondary landslide triggered by heavy
rainfall in the future. On-going monitoring of these areas is therefore essential for the
detection and early warning of further failure and for planning an emergency response.
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Abstract: Seismic precursors prior to the failure of rocks are essential for probing the nucleation
process and mitigating hazards. However, such precursory events before large landslides are rarely
reported possibly due to the lack of near-source observations. The 2017 Nuugaatsiaq, Greenland
landslide that was preceded by an abundance of small earthquakes and captured by a local seismic
station is a notable exception and offers us a valuable opportunity to investigate how a large landslide
initiated. Prior work suggests that accelerated creeping plays an important role during the landslide
nucleation process. However, by analyzing the temporal evolution of the waveform similarities,
waveform amplitudes, and inter-event times of the seismic precursors, we find that the Nuugaatsiaq
landslide was very likely triggered by a series of accelerated and migratory small earthquakes
approaching the nucleation area of the upcoming landslide, thus providing important insights into
the failure initiation of massive landslides.

Keywords: nucleation process; landslide; waveform similarity; repeating earthquakes; neighboring
earthquakes

1. Introduction

Precursory signals preceding catastrophic failure of brittle rocks such as earthquakes
and landslides are of great importance in providing critical insights into the nucleation
process and, hence, are essential for hazard prediction and mitigation [1–5]. Although
foreshocks before significant earthquakes are widely reported and well-recognized [1,4,6,7],
seismic precursors prior to a large landslide are rarely documented [8], in part because
these signals are small, and unfortunately near-source observation is typically rare. One
notable exception is the widely studied 2017 Nuugaatsiaq, Greenland landslide (Figure 1)
with abundant seismic precursors (Figure 2) captured by a local seismic station NUUG
(Figure 1), at a ~30 km distance [8,9]. This landslide occurred on the evening of 17 June and
generated the largest documented tsunami wave (runup height ~90 m) in Greenland to
date and caused serious casualties [10].

Although the seismic precursors of the Nuugaatsiaq landslide are of weak amplitudes
(Figure 2), their waveforms are highly similar as revealed by both the conventional match
filtering (MF) method [8,9] and unsupervised deep learning [11]. Based on the similar
waveforms, the seismic precursors are believed to be stick-slip repeating events [8,9,11] and,
hence, are interpreted as the manifestation of aseismic slip on the failure surface responsible
for the occurrence of the massive Nuugaatsiaq landslide, according to an earlier study [9].
However, a growing body of literature suggests that high waveform similarity may only
imply close source areas [1,12–14] and/or similar focal mechanisms [15], but not necessarily
repeated ruptures.
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Figure 2. Seismic waveform. (a) East component (fuchsia line) of station NUUG. The waveform is
normalized and band-pass filtered between 2 and 9 Hz [9]. Colored (lime, white, and blue) vertical
bars denote the seismic precursors. (b) Self-detection (event No. 50). (c) An example of detected
event (No. 55). For both (b,c), the template waveform (event No. 50, red line) is superposed at the
location of the best match according to the MFMC method.

Therefore, we revisit the 2017 Nuugaatsiaq landslide with a recently developed match-
filtering with multi-segment cross-correlation (MFMC) technique [16]. This technique
quantifies the waveform similarity through an averaged cross-correlation coefficient (CC)
by equally incorporating the contributions from various segments of the waveforms (see
Section 2) and, hence, is very sensitive to the spatial difference between closely spaced
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seismic sources [16]. In this study, we first employ the MFMC technique to scan through
the 24 h data of station NUUG (Figure 1) before the landslide to construct a reliable dataset
of seismic precursors. Then we analyze the temporal evolution of the CC values, waveform
amplitudes, and inter-event times of the seismic precursors. Our observations indicate
that the 2017 Nuugaatsiaq landslide was very likely triggered by a cascade process with a
series of small seismic events approaching the nucleation area of the upcoming landslide,
providing important insights into the failure initiation of large landslides.

2. Methods

To identify seismic precursors, we utilize the MFMC technique [16] instead of the
conventional MF method which can be severely biased by the presence of large-amplitude
phases (e.g., S wave and surface waves) [16–19]. Compared with the conventional MF
method with only one segment, the MFMC technique divides the template into a series
of consecutive segments during the cross-correlation process. Such a procedure aims to
mitigate the influence of the large-amplitude phases and essentially assigns more weights
to important low-amplitude phases such as depth phases [20,21] and coda waves [22,23]
which contain additional source location information. Hence, the MFMC technique is more
reliable in differentiating the source location difference between earthquakes with similar
waveforms [16].

In this study, we choose the same template (i.e., event No. 50 in Figure 2b) as a previous
study [9] because this event has relatively high signal-to-noise ratio (SNR) (namely, can be
visually identified) and more importantly it is isolated from other seismic precursors in
the waveform time series [9]. Although the S-P times of the seismic precursors are only
about 4.6 s [9], the precursory signals have long surface wave trains (Figure 2b,c) [9,11]
due to the shallow source depths. Here we set the template window length (Twin) to be
26.5 s covering much of the signal, similar to the choice of prior work [9]. In our MFMC
CC calculation, we first band-pass filter the seismic data between 2 and 9 Hz to mitigate
the impact of noise [9]. Then we split the template waveform into Nseg segments of equal
length where Nseg is determined by the cycles of the longest period wave (1/ fmin) in the
band-pass filtered waveform (i.e., Nseg = Twin × fmin) [16]. Finally, we shift all the segments
together one sample point at a time along the continuous waveform. The cross-correlation
calculation is performed individually for each segment, and the CC value at each sample
point is determined by the average of all segments. Once the computed CC exceeds a
certain threshold, an event is declared.

3. Results

In total, we have identified 72 seismic precursors (Figure 2) with the classical detec-
tion threshold of 8 times the median absolute deviation (MAD) [24–27] with the MFMC
technique. Note the number of identified precursors is slightly fewer than that in prior
work [9] as our method only detects events which are located closely to the template event.
Overall, the CC values of the detected precursors are low mainly because the precursor
signals are of small amplitudes (Figure 2). If we take the template event No. 50 (see
Section 2) as the reference, it is quite interesting to see that both the CC values (i.e., wave-
form similarity) and waveform amplitudes of the seismic precursors initially increase
towards the reference event (Figure 3a,b). Previous studies [8,9] hypothesize that the seis-
mic events are repeating earthquakes repeatedly initiated from the same asperity, yet with
a growing rupture dimension (Figure 4a). Therefore, the increase of waveform similarity
may be due to the rise of signal-to-noise ratio (SNR) [11]. However, this hypothesis does
not hold as the CC values and the waveform amplitudes exhibit obviously contrasting
trends after the reference event (Figure 3a,b).
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Figure 4. Schematic illustration of the hypothetical nucleation models. (a) Aseismic triggering
hypothesis [9]. (b) Accelerated and migratory triggering hypothesis. In both (a,b), colored circles
represent the seismic precursors; red star marks the nucleation point of the landslide.

Notice that the recurrence times of well-studied repeating earthquakes are widely
considered to be on the order of months/years [28–30]. Hence, it is extremally difficult
to imagine that the slip surface can repeatedly fail and heal tens of times within only a
few hours (Figure 2a). Moreover, recurrence times of true repeating events are nearly
constant [28,29] yet the inter-event times of the seismic precursors observed here drop
dramatically towards the occurrence of the large landslide (Figure 3c).

Given the similar seismic waveforms, increasing waveform amplitudes, and extremely
short and obviously decreasing inter-event times (Figure 3), our observations suggest that
the seismic precursors are very likely to be neighboring events progressively triggering
larger weak asperities with barely overlapped source areas (Figure 4b). Thus, the overall

58



Forests 2023, 14, 2

trend of CC changes can be fully explained by the migration of the seismic precursors,
namely that the CC gets higher when the neighboring events migrate towards the reference
event, and vice versa [12,13]. Moreover, both the rising of waveform amplitudes and the
shortening of inter-event times can be explained by the accelerating of the inter-event
triggering of larger asperities before the landslide, as the sliding surface overall is becoming
more and more unstable. Finally, we note that using a detection threshold slightly lower
(7.5 MAD) or higher (8.5 MAD) yields similar results and does not change our conclusion.

4. Discussion and Conclusions

Both repeating and neighboring earthquakes are characterized by highly similar wave-
forms, yet they have totally opposite implications for the nucleation process of catastrophic
failure [1,3,12,13]. To unambiguously differentiate these two kinds of events would require
sufficient near-source observations to precisely locate the seismic source and calculate the
rupture dimension [12,13,31]. With limited data, prior works [8,9,11] have interpretated
the seismic precursors as repeating events simply based on waveform similarity. However,
recent studies have shown that waveform similarity alone is insufficient to identify true
repeating earthquakes [1,12,13] and similar seismic signals with very short inter-event
times are commonly taken as neighboring events [12,32].

Although we cannot resolve the source properties of the seismic precursors (e.g.,
source location, rupture dimension, and stress perturbation) given the single-station wave-
form data with poor SNR, the observed temporal evolution of the CC values, waveform
amplitudes, and inter-event times provides compelling evidence that a series of acceler-
ated and migratory seismic precursors occurred immediately before the 2017 Nuugaatsiaq
landslide inherently suggesting a causal relationship likely through a cascade of stress
perturbation between neighboring asperities. Notice that our inferred cascade of stress
transfer triggering process (Figure 4b) has also been documented to be responsible for some
large earthquakes such as the 1999 Mw 7.6 Izmit (Turkey) [1] and 1999 Mw 7.1 Hector Mine
(USA) [6]. Our findings bring important insights into the nucleation process of landslides,
suggesting that massive landslides may initiate in a similar way as many large earthquakes.
However, we note that whether our hypothesis can be generalized to other landslides
remains to be tested. Finally, our study highlights the significance of near-source obser-
vations in capturing weak precursor signals. Monitoring these tiny signals may not only
improve our understanding of the catastrophic failure initiation process but also contribute
to hazard preparedness.
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Abstract: The damage caused by landslide disasters is very significant. Among them, landslides after
forest fires have been widely concerned by scholars in recent years due to their particular physical and
chemical properties. This large-scale shear flow of particulate matter has similarities to fluid systems.
However, due to the discontinuity of the particle system, its flow process has significant random
characteristics. To investigate the random properties of particle systems, this study conducted a series
of ring shear tests on four particle systems. The effects of the particle shape, normal stress, and shear
velocity on the systems’ shear rheological features were investigated using experimental data. The
particle form has an important effect on the macroscopic properties of the system. In a spherical
particle system, the macroscopic friction fluctuation is determined by the friction of the particle surface
and the system’s normal stress. The shear velocity has a minor effect on this characteristic. Three
elements simultaneously influence the macroscopic friction fluctuation of a breccia particle system:
the particle surface friction, system normal stress, and shear velocity. The origins of macroscopic
frictional fluctuations in particle systems with various shapes are fundamentally distinct. This study
contributes to a better understanding of the causes of particle system fluctuations, and establishes the
theoretical foundation for the future development of disaster prevention technology.

Keywords: granular flow; ring-shear test; fluctuation characteristics

1. Introduction

Avalanches and landslides are examples of the aggregate movement of an enormous
number of solid materials exhibiting considerable fluid-like qualities in nature. These
ubiquitous particle flow systems can potentially be disastrous. A series of rain-induced
landslides occurred in the Mocoa region on 31 March 2017, and resulted in 333 deaths,
398 injuries, and 76 missing people [1]. On 1 July 2017, a landslide occurred in Ningxiang
County, Hunan, China, and nine people were killed in the process of searching for sur-
vivors [2]. A statistical study considering the Chittagong area in Bangladesh reported that
730 landslides occurred over 17 years, causing enormous economic losses [3].

Abundant vegetation conditions have been shown in several studies to be of great
significance for slowing/suppressing landslides [4,5]. However, forest areas face a very
specific and dangerous risk: post-fire mudslides. Researchers used alluvial stratigraphy to
reconstruct 32 fire-related alluvial events, indirectly demonstrating the prevalence and hazard
of debris flow disasters after major fires [6]. A study on the debris flow after the fire in
Australia pointed out that for the same area, the regional peak flow before and after burning
can differ by more than 30 times, and the sediment concentration increases by three orders
of magnitude [7]. After the fire, the physical and chemical properties of the soil will change
greatly [8,9]. How this change in particle properties affects landslides is unclear.

Particle flow occurs naturally in various situations, including landslides and other
natural calamities [10,11]. Studies have discovered that particle flow exhibits complicated
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random properties in practical engineering [12], and is a classic example of an unstable
system in a flow process. In practical engineering, the unstable properties exacerbate the
difficulty of predicting landslides. Ceccato et al. calculated the impact force of particle flow
on stiff retaining walls and discovered that the impact force fluctuation of a discrete system
is substantially larger than that of a continuous system. Zhang et al. [13] investigated the
flow impact characteristics of several particle systems by conducting an indoor model
experiment and discrete element simulation. They discovered that the temporal history of
the impact force is significantly unstable. The peak difference in the impact force between
two particle systems operating under the same boundary condition may be more than
three-fold. Owing to the uneven nature of the granular system’s flow mechanism, more
precise landslide control is required.

Most recent studies on the flow characteristics of granular systems have focused
on the average macroscopic parameters [14,15]. Numerous particle flow constitutive
models can accurately describe the velocity distribution [16], friction coefficients [17],
blocking circumstances [18], and flow state transitions [19,20] occurring during the system’s
flow process. With the advance of research on particle flow systems in recent years, the
unstable properties of the particle flow systems’ macroscopic motion have been increasingly
receiving attention. Artoni et al. [21] investigated the velocity fluctuation and self-diffusion
impact of particles in dense particle flow through the discrete element simulation of the ring
shear model. They concluded that the fluctuation of a single particle is strongly connected to
the system’s overall velocity. Similar investigations have been conducted by Meng et al. [22],
who established that the boundary effect influences the fluctuation of local particles. Lu
et al. [23] conducted a discrete element simulation of overland flow and demonstrated that
there exists a considerable correlation between the dynamic characteristic fluctuation of the
particle flow system and the system particle size. Huang et al. [24] conducted a series of
ring shear experiments to investigate the relationship between particle fragmentation and
the fluctuations in the macroscopic shear behavior of particle flow systems. However, the
source of the variation in the flow properties of a particle system has not been elucidated to
date, and experimental data are lacking. Therefore, additional experimental studies are
required to fully clarify the variation mechanism.

Most previous studies have established particle flow shear and rheological models
by considering simple spherical particle systems. However, research has revealed that the
breccia system used in actual engineering has significantly different compressibility, shear
friction, and other properties compared with a simple spherical system. Sun et al. [25]
reported that, in non-spherical particle systems, the particle motion is mainly caused by
sliding friction and energy dissipation resulting from the great increase of particle rota-
tion/dislocation. Jiang et al. [26] conducted ring-shear experiments on glass beads/quartz
sand and demonstrated that the volume compressibility, peak strength, shear residual
strength, and other properties of particle systems with varying shapes change significantly
during the shear rheological process. To better guide engineering practice, it is very im-
portant to investigate complex particle systems. A detailed explanation of the effect of the
particle characteristics on the macroscopic features of the system can help in understanding
the sources of the random motion characteristics of particle flows. This study investi-
gated the effect of particle features on the shear wave behavior of macroscopic systems by
conducting 24 groups of annular shear experiments on various materials’ particles with
different shapes.

2. Experimental Design of Ring Shear Test

This study used a GCTS ring shear instrument, which can provide significant shear
distance without affecting the shear area, and is, therefore, ideal for investigating massive
deformation systems. The sample had an exterior diameter of 150 mm, inner diameter of
100 mm, and height of 20 mm to satisfy the H > 10D requirement. Four types of glass beads,
quartz sand, spherical corundum, and brecciated corundum were used to investigate the
effect of the particle form and surface friction on the system’s shear characteristics. Corun-
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dum is a widely used granular industrial abrasive with consistent chemical properties,
high surface roughness, and low cost. Therefore, this unique material was selected to
experimentally investigate the high friction of particles. Each sample was initially screened
to a particle size of 2–2.5 mm. In the ring shear experiment, the normal stress gradient was
adjusted to 100–200–300 kPa, the shear speed was set to 5◦/min–30◦/min–90◦/min, and
the shear distance was set to 360◦. There are few velocity groupings and normal stress
groupings set in this paper. This allows subsequent data analysis to only achieve trend
analysis. In future research, we will use experimental or simulated methods to further
supplement the data set to give more detailed conclusions. Table 1 lists the experimental
groups and their associated numbers. Experimental groups with repeated trials are high-
lighted in the table. The sampling rate was set to 10–100 Hz, depending on the duration of
the experiment. Pre-experiments were conducted to determine the filling quality of each
material and ensure that each sample had the same initial height under a positive pressure
of 100 kPa. Finally, the weight of each group of glass beads and quartz sand samples was
determined as 330 g, whereas the weight of each group of the corundum samples was
determined as 212 g. To ensure consistent filling, the zonal filling approach was adopted.
Figure 1 shows the experimental equipment, materials and zonal filling method. This figure
is modified from a previously published article by the author [24]. After completing the
zonal filling, normal stress was applied to achieve system pre-consolidation and retain
strong particle contact. Shear stress was added after the system volume had stabilized.
Only the stationary shear part of the system was evaluated during data processing.

Table 1. Experimental group summary.

Number Material Normal Force Shear Velocity

G1-3 *
Glass bead

100 kPa 5◦/min–30◦/min–90◦/min
G4-6 200 kPa 5◦/min–30◦/min–90◦/min
G7-9 300 kPa 5◦/min–30◦/min–90◦/min

Q1-3*
Quartz sand

100 kPa 5◦/min–30◦/min–90◦/min
Q4-6 200 kPa 5◦/min–30◦/min–90◦/min
Q7-9 300 kPa 5◦/min–30◦/min–90◦/min

CS1-3
Spherical corundum

100 kPa 5◦/min–30◦/min–90◦/min
CS4-6 200 kPa 5◦/min–30◦/min–90◦/min
CS7-9 300 kPa 5◦/min–30◦/min–90◦/min

CB1-3
Brecciated
corundum

100 kPa 5◦/min–30◦/min–90◦/min
CB4-6 200 kPa 5◦/min–30◦/min–90◦/min
CB7-9 300 kPa 5◦/min–30◦/min–90◦/min

* indicates experimental groups with repeated tests.
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3. Analysis of Shear Flow Characteristics of Different Particle Systems
3.1. Compression Characteristics of the Particle System

Figure 2 illustrates the typical shear compression curves of spherical particle systems
with different friction coefficients. The shearing trend of the spherical particle system is not
substantial, and the overall volume change rate is less than 2%. The compression of the
samples mainly occurred in the pre-shear period. The change rate of the sample volume
gradually decreased as the shear displacement increased. In the later shear period of the
sample with low friction, the volume change rate tends to increase. The particle surface
friction is proportional to the particle system’s volume change rate and steady-state volume.
As the particle surface friction increased, the initial volume changes became slower and the
steady-state volume eventually became smaller.
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the same shear velocity.

Figure 3 shows the typical shear compression curve of the breccia system with varying
friction coefficients. The sample volume changed significantly during the shear process
of the angular particle system, and the total volume change rate is approximately 4%–6%.
Owing to the pre-treatment of samples, significant particle rearrangement did not occur,
and therefore, “early dilatancy—late shear shrinkage” phenomena did not occur. The
system’s continuous shear shrinkage during shearing is linearly proportional to the shear
displacement. For the breccia system, the particle surface friction is proportional to the
system’s volume change rate. The volume change rate of a high-friction system is much
slower than that of a low-friction system.
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Figure 3. Vertical displacement versus shear displacement of quartz sand and brecciated corundum
at the same shear velocity.

According to the particle form, the reasons of shear shrinkage vary, resulting in
a variety of shear shrinkage curves for various particle systems. Owing to the highly
symmetrical shape of a spherical particle, the volume change of the spherical particle
system is governed solely by the particle position distribution. In a complex breccia
system, the particle form is complex and the symmetry is inadequate. The volume change
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of the system is also affected by distribution parameters such as the long axis angle of
the particles. In shear motion, the interaction of particles is more intricate. Hence, it is
considered that the spherical arrangement can more easily achieve extreme compression.
Notably, breccia systems are more prone to particle shear breakage, which results in system
volume loss. In practice, however, it is impossible to avoid the inaccuracy induced by
particle breakage, and additional research into novel granular materials is required to
supplement the experimental results.

3.2. Macroscopic Friction Analysis of Particle System

Ideally, the system boundary conditions should be stable during the investigation of
the shear rheological properties of granular systems. However, owing to the feedback-
adjustment mechanism of the ring shear instrument’s normal stress loading system, the
normal stress cannot be kept constant and exhibits highly random variation. The shear
stress of a system is directly proportional to the normal stress, and the normal stress
fluctuation has a significant effect on the shear stress. In order to avoid such systemic
inaccuracies, the subsequent analysis did not directly address shear stress, but instead
statistically evaluated the system’s macroscopic friction coefficient. Figure 4 shows the
correlation analysis of the stress ratio and shear velocity in the spherical particle system.
Figure 3a shows the experimental result for the glass bead system. The macroscopic friction
coefficient is 0.33–0.39, and has little association with the shear velocity, normal tension,
and other boundary conditions. Moreover, there existed substantial divergence between the
macroscopic friction and the rest of the data in the low-speed shear experiment. Figure 3b
shows the experimental results for the corundum particle system. The macroscopic friction
is 0.385–0.41, which is much larger than that of the glass bead system. In a spherical
particle system, the particle surface friction dominates the macroscopic friction coefficient
because the relationship between macroscopic friction and boundary conditions is weak.
The macroscopic shear friction was not affected by boundary conditions such as the shear
velocity and normal tension.
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Figure 5 shows the correlation analysis of the stress ratio and shear velocity in the
brecciated particle system, where Figure 5a,b correspond to the quartz sand and brown
corundum systems, respectively. There is a modest negative association between the
macroscopic friction and shear velocity in breccia particle systems. The normal stress did
not obviously influence the macroscopic friction. The macroscopic friction coefficients of
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the two distinct granular materials are 0.5–0.55. Therefore, the particle surface friction did
not affect the macroscopic friction in the diagonal gravel system.
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(a) Quartz sand; (b) Brecciated corundum.

The macroscopic friction of a particle system is mainly determined by the particle
form and surface friction, but not by the boundary conditions. The particle form is
complicated, and the poor sphericity of the particles increases the system’s macroscopic
friction. In turn, higher particle surface friction increases the macroscopic friction of a
spherical particle system.

3.3. Analysis of Macroscopic Frictional Fluctuation Characteristics of Particle System

Figure 6 shows the investigation of the correlation of the macroscopic frictional fluctu-
ation and shear velocity in the spherical particle system, where Figure 6a shows the glass
microbead system and Figure 6b shows the brown corundum spherical system. The link
between the shear velocity and the macroscopic fluctuation is low in the spherical system.
The system fluctuation was significantly dampened by the normal stress. The particle
surface friction significantly affects the system’s macroscopic friction fluctuation, which
is substantially smaller in a low-friction particle system compared with a high-friction
particle system.
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Figure 7 shows the correlation analysis of the macroscopic friction fluctuation and
shear velocity in the breccia particle system, where Figure 7a shows a quartz sand particle
system and Figure 7b shows an angular brown corundum particle system. Higher shear
velocity decreases the macroscopic friction fluctuation in breccia systems. Normal stress
has a complex effect on the system’s macroscopic friction. In a low-friction particle
system, the normal stress is inversely proportional to the system’s macroscopic friction
fluctuation. Higher normal stress suppresses the system fluctuation. However, at
V = 30◦/min, aberrant behavior was observed, but the reason behind this phenomenon
is unknown. In high-friction systems, the normal stress is positively correlated with
macroscopic friction fluctuation. Specifically, the normal stress levels increase to the
point where they can no longer restrain the system’s volatility. Comparative investigation
revealed that there exists positive correlation between particle surface friction and the
system’s macroscopic fluctuation. Particles with a rougher surface exhibit greater system
shear fluctuation.
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An additional quantitative investigation revealed that the logarithmic function may be
employed to fit the relationship between the macroscopic variation the and shear velocity
with remarkable precision.

σ2 = Aln(v) + B (1)

where A and B are state parameters related to the particle form, surface friction, and stress
conditions, respectively. When A = 0, the spherical particle system can be considered as a
particular solution. The precise expression form of A/B can be further investigated using
discrete element simulation and other techniques.

4. Analysis of Causes of Fluctuant Features in Particle Systems

The factors influencing the mean value of macroscopic friction and the fluctuation
features of the particle systems were investigated based on the experimental data. The
relevant laws are more complicated owing to the numerous factors involved. To simplify
the discussion in this section, the pertinent laws obtained as described in the previous
section are provided in tabular form. Table 2 summarizes the conclusions drawn for the
spherical particle system.
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Table 2. Conclusions in the spherical particle system.

Particle Surface Friction Normal Stress Shear Velocity

Macroscopic friction + x x

Macroscopic frictional fluctuation + - x

+ indicates a positive correlation, - indicates a negative connection, and x indicates an irrelevant association.

According to previous studies, macroscopic variation is generated by intergranular
split-layer occlusion. The primary cause is thought to be the “particle bite–slip–over–rebite”
process. If this factor is significant in a spherical particle system, the macroscopic fluctuation
will be positive relative to the shear velocity. However, such positive correlation does not
exist in the experimental data obtained by this study. Hence, split-layer occlusion is not
responsible for the macroscopic variation in a spherical particle system.

The mesoscopic mechanism of macro fluctuations may be related to the shift between
rolling and sliding friction. Owing to the high degree of symmetry of spherical particles,
their relative motion is mainly rolling motion. However, sliding friction between particles
may exist under specific boundary conditions. This type of local dislocation increases the
local stress ratio, which in turn results in the fluctuation of the system’s macroscopic friction
coefficient. To verify this hypothesis, discrete element modeling must be carried out to
capture the system’s mesoscopic motion characteristics.

Table 3 summarizes the conclusions drawn for the breccia system.

Table 3. Conclusions in the breccia system.

Particle Surface Friction Normal Stress Shear Velocity

Macroscopic friction x x (-)

Macroscopic frictional fluctuation + (+) -

+ indicates a positive correlation, - indicates a negative connection, x indicates an irrelevant association, and ( )
indicates a weak correlation.

The biting force between particles may be the main factor controlling the macroscopic
friction fluctuation in breccia systems. The system fluctuation increases when the inter-
particle occlusion is tighter. The roughness of the particle surface, which increases in
normal stress and decreases in shear velocity, contribute to the increase in the biting force
between the particles and system fluctuation. This conclusion is strongly supported by
the experimental results. Hence, for the breccia system, the non-stationary “intergranu-
lar occlusal–over–reocclusal” process is the primary cause of the system’s macroscopic
mechanical behavior fluctuation.

This study ignored the influence of particle breakage, which is a limitation of the
investigation presented herein. The experimental conditions considered in this study
cannot ensure that particles are not shattered in a breccia system. Therefore, numerical
tests or the development of new high-strength materials are required to further refine the
experimental conclusions.

5. Conclusions

Particle systems have fluid-like properties and exhibit significant instability during the
flow process. The physical and chemical properties of the soil will change significantly after
forest fires, and the changes in the properties of the particles themselves have an impact on
the macroscopic flow characteristics of the system, such as particle shape, particle surface
friction, shear boundary conditions, and other factors. This study investigated the causes of
fluctuation in four particle systems by conducting a series of ring shear experiments. The
consideration of the random properties of particle flow systems in practical engineering can
assist in the prevention of landslides and other common geological disasters and provides
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a theoretical foundation for the development of relevant engineering technology. The
following main conclusions were drawn from this study:

(1) The shape of the particles has a significant effect on the trend of volume variation
during the system’s shear process. Compression limits exist for spherical particle systems.
The sample volume of a breccia particle system diminishes as the shear distance increases.

(2) For a spherical particle system, the mean value of the macroscopic friction is
independent from the boundary conditions and proportional to the particle surface friction.
The macroscopic friction fluctuation of the system is determined by the particle surface
friction and the system’s normal stress and is completely independent of the shear velocity.

(3) In a breccia system, the mean value of the macroscopic friction is only weakly
connected to the shear velocity. Additionally, three elements affect the macroscopic friction
fluctuation: particle surface friction, system normal stress, and shear velocity.

(4) The fluctuating macroscopic friction of the spherical particle system is a result of
the changing friction mode between particles. The “biting-over-rebiting” mechanism of the
interlayer particles is responsible for the macroscopic friction fluctuation of the system in a
breccia particle system.
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Abstract: Landslides frequently occur in forest areas with a steep hillside, especially when severely
disturbed by human activities. After sustained heavy rainfall, a landslide occurred near the Tianwan
tunnel entrance of the Chongqing-Huaihua railway in China. Fortunately, the landslide debris was
successfully intercepted by a flexible barrier originally installed to stop rockfalls, which is, to date,
the first publicly reported case of landslide debris having been successfully intercepted by a flexible
barrier without any damage, in mainland of China. A field investigation was first conducted, and then
a back analysis of the landslide mobility and the interaction between the landslide and the flexible
barrier was carried out. The back analysis showed that the impact energy was three-times larger than
the rated energy capacity of the flexible barrier. It also showed that the elongation of the brake rings
and the deflection of the flexible barrier from the numerical simulation was comparable to that from
the field measurements. The fact that these brake rings were not elongated to their limit indicated
that the capacity of the flexible barrier still had a surplus. Finally, to investigate the maximum energy
capacity of a flexible rockfall barrier in resisting landslide debris, parametric analyses of a flexible
barrier impacted by landslide debris with different impact energies and velocities were carried out
using a coupled ALE-FEM modeling technique. The results showed that the flexible barrier dissipated
less than 40% of the total energy of the landslide debris. With an increase of impact energy, the energy
dissipation ratio of the flexible barrier decreased linearly. The maximum energy capacity of a flexible
rockfall barrier in resisting landslide debris is four-times that of resisting a rockfall.

Keywords: flexible rockfall barrier; energy capacity; landslide debris; field investigation; coupled
numerical simulation

1. Introduction

Forests play an important role in the ecological environment, and can effectively
improve the stability of slopes and inhibit the occurrence of geological disasters, such
as debris flows and landslides [1–4]. However, with the rapid development of transport
infrastructure in the western mountainous regions of China, forests in these areas have been
severely disturbed, resulting in the frequent occurrence of slope geological hazards, such
as landslides, debris flows, and rockfalls (Figure 1). To make matters worse, destructive
earthquakes occur frequently in this area, such as the M8.0 Wenchuan earthquake, M7.0
Lushan earthquake, etc. The risk of slope geological hazards after earthquakes in this
regions is heightened significantly [5,6]. In addition to traditional rigid barriers [7], such
as rigid walls, reinforced dams, etc., flexible barriers, which benefit from rapid construc-
tion, easy maintenance, environmental sustainability, and economic competitiveness, are
increasingly being considered as a viable measure to deal with slope geological hazards [8].
It can be seen that flexible barriers are capable and help in the implementation of the main
sustainable development goals (SDG) employed by the United Nations (UN) Agenda.
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According to the characteristics of flexible barriers, flexible barriers can be catego-
rized into three types: active flexible barriers, passive flexible barriers, and attenuator
systems [10]. Active flexible barriers consist of three basic elements; namely, anchors,
support cables, and nets, and are used to press the soil from the moment of installation,
thus preventing instabilities [11]. Passive flexible barriers are made of a cable net, structural
steel posts, and special connecting components, and are used to intercept and stop blocks
of rock from bouncing, rolling, and sliding along a slope [12–14]. Attenuator systems are
structures made of flexible wire netting, designed to reduce the kinetic energy of a rockfall
and guide its trajectory [15,16].

Over the past years, after the flexible barriers that were originally installed to intercept
rockfalls were found to have successfully stopped and contained landslide debris [17,18],
researchers and engineers have become interested in studying and adopting flexible barriers
to mitigate debris flow.

Large-scale tests were conducted to investigate the response of flexible barriers to
debris flows. Usually, a varied instrumentation was used to record flow velocities, forces
on cable ropes, debris flow character, and barrier response [19–22]. A full-scale test site
was also built by WSL in Illgraben, one of the most active debris flow torrents in the
Swiss Alps, and V-Barrier systems without any posts were developed and installed in the
channel [7]. Small-scale laboratory tests were also carried out to parametrically study the
performance of flexible barriers subjected to debris impacts, such as the influence of mesh
size, and the gap between the lower barrier edge and the channel’s floor [23–27]. Numerical
tools and methods, divided into static simulation and dynamic simulation, have been
proposed and developed to model flexible barriers under debris impacts. In static models,
impact pressures are applied quasi-statically. Due to the large-sliding, large-nonlinear
characteristic of flexible barriers, specially developed software, namely FARO [28] and
NIDA-MNN [29], are available for capturing the response of flexible barriers. In dynamic
models, coupled methods are adopted to simulate the interaction between flexible barriers
and debris flows. Useful coupled methods include CFD-DEM [30,31], FEM-DEM-LBM [32],
ALE-FEM [33–35], DEM-MPM [36,37], etc.

Benefiting from the above studies, two design methods, namely the force approach
and energy approach, have been proposed to design flexible barriers against debris flows.
The force approach is the traditional method in the design of structures, which means the
structure members are checked and optimized after calculating the internal forces of the
structure under specific loads. The core of the force approach lies in the determination
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of the load, including the distribution and magnitude of the load. Thus, a load model to
calculate the loads acting on a flexible barrier has been a research focus [20,22,26,28,38].
However, the value of the dynamic pressure coefficient is empirical and varies greatly, from
0.6 to 5.5 [39]. The energy approach, similar to the design of flexible rockfall barriers, means
the barrier is only required to dissipate a certain amount of impact energy [40–42]. The
design method was proposed by Wartmann and Salzmann [43] and described in detail by
Roth et al. [44]. Compared to the force approach, the energy approach is much simpler and
was also adopted in guidelines in Hong Kong [45]. Due to a lack of knowledge, a scaling
factor of not exceeding 75% is adopted to reduce the energy capacity of a flexible barrier
established by full-scale rockfall tests, in the case of resisting debris flows. However, Song
pointed out that less than 10% of the debris impact energy was absorbed by the flexible
barrier, and over 90% of the energy was dissipated through the internal and boundary
shearing [46].

Due to the difference in material properties and load modes, the energy transforma-
tion and dissipation characteristics of a flexible barrier will be significantly different in
resisting rockfalls and landslide debris, and it is not sufficient to evaluate the capacity of
a flexible barrier in resisting landslide debris just by the ratio of energy dissipated by the
flexible barrier, as mentioned above. To date, the technical and scientific knowledge of the
assessment of a flexible barrier subjected to a rockfall is relatively mature, and assessment
documents have been published and accepted widely [47]. Several test sites have also
been built, and a large number of tests have been conducted [40,48,49]. For evaluating
the capacity of a flexible barrier established using a full-scale rockfall test in the case of
resisting landslide debris conveniently, it is worth revealing the relationship between the
energy capacity of a flexible barrier in resisting rockfalls and debris.

In this paper, a field investigation of landslide debris successfully intercepted by a
flexible barrier was first conducted. Then, a back analysis of the landslide mobility and the
interaction between the landslide and the flexible barrier were carried out. The elongation
of the brake rings and deflection of the flexible barrier from field measurements were
used to verify the numerical simulation. Finally, parametric analyses of the flexible barrier
impacted by landslide debris with different impact energies and velocities were carried
out, to reveal its ultimate energy capacity.

2. Open Hillside Landslide in Chongqing, China
2.1. Field Investigation

The open hillside landslide occurred on terrain above a cut soil slope, which was
formed to become a tunnel entrance of the Chongqing-Huaihua railway (Figure 2). A
retaining wall was constructed to increase the stability of the slope. A flexible barrier with
a total length of about 100 m was installed behind the retaining wall, to mitigate rockfalls
from the hillside. The type of flexible barrier is a RXI-075, which is rated with an energy
of 750 kJ. The flexible barrier is divided into ten functional modules by eleven steel posts,
and the spacing of the adjacent two posts is 10 m. The height of the posts is 5 m. The posts
were made of H-shape steel, with a section of 150 × 150 × 6 × 10 mm, and connected to
foundations by pins. The main nets were composed of 300-mm opening rings formed by
nine windings of 3-mm diameter steel wires. A twisted hexagonal wire mesh with openings
of about 60 mm was attached to the ring nets, to capture small rock pieces.

The landslide occurred on the morning of 13 June 2020, due to heavy rainfall for
days. After the finding of the landslide, an investigation and maintenance were carried out
immediately. A realistic 3D model of the terrain was built using an DJI unmanned aerial
vehicle (UAV) combined with 3D real-scene modeling software named ContextCapture. By
comparing the terrain before and after the landslides, the total volume of the landslide was
found to be approximately 70 m3, and this was in accordance with the volume measured
during maintenance. Figure 3 shows the plan view of the locations of the posts of the whole
flexible barrier and the slide area of the landslide. The debris material was almost totally
retained by the flexible barrier. No signs were found to show that the debris overflowed the
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barrier or passed through the net. In addition to the expected elongations of braking rings,
rotations of the posts P5 and P6, and the deformation of nets, no failures of the flexible
barrier were found, even for post P5, which was directly struck by the debris. In other
words, the flexible barrier intercepted the landslide debris very successfully.
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The cross-section along the centerline of the landslide is shown in Figure 4. The land-
slide started on a steeply inclined scarp covered with unconsolidated sediments. The upper
portion of the source area comprises vegetated terrain and is steeply inclined (>45◦), while
the lower portion comprises predominately matrix-supported debris overlying saprolite.
The debris was saturated. The stacking angle of the stopped debris was about 15◦. The
stacking angle did not represent the internal friction angle of the debris, because it was
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intercepted by the flexible barrier. Obviously, the internal friction angle of the debris was
less than 15◦.
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After the finding of the landslide, multiple measures were adopted to maintain the
flexible barrier. Most of the debris material was removed. A drainage ditch along the
centerline of the landslide was excavated, to improve the drainage. Several waterproof
geomembranes were layered on the top and side of the landslide-affected area, to reduce
the infiltration of rainwater into the soil. The elongated braking rings and the impacted
nets of the flexible barrier were replaced. The landslide site after maintenance is shown in
Figure 5, and the repaired flexible barrier is shown in Figure 6.
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Figure 6. A front view of the impacted flexible barrier after maintenance.

2.2. Back-Analysis of the Landslide and Flexible Barrier Interaction

LS-DYNA, which has been successfully used to simulate debris mobility, the dynamic
response of flexible barriers impacted by rockfalls, as well as debris and barrier interactions,
was adopted to back analyze the interaction of the landslide and the flexible barrier.

2.2.1. Modeling of the Landslide Debris

The elastoplastic Drucker-Prager model [50], which has been successfully adopted to
simulate the internal rheology of debris material [33,35], was also used here to simulate the
landslide mass. The yield surface is shown in Equation (1):

f =
√

J2 − αI1 − k = 0 (1)

where I1 and J2 are the first and second invariants of deviatoric stress tensor, respectively.
Material constants α and k are related to the internal friction angle ϕ and cohesive strength
c of the material, and they can be calculated using Equations (2) and (3), respectively:

α =
2 sin ϕ√

3(3 + sin ϕ)
(2)

k =
6c cos ϕ√

3(3 + sin ϕ)
(3)

As the landslide mass was saturated and moved like a flow, it was greatly deformed
during the movement process. To avoid mesh distortion when simulating large deformation
by the Lagrangian method, the arbitrary Lagrangian–Eulerian (ALE) formulation was
adopted. In the formulations, the nodes of the computational mesh could be moved with
the continuum in normal Lagrangian fashion, or be held fixed in the Eulerian manner
or moved in some arbitrarily specified way, to give a continuous rezoning capability.
Thus, greater distortions of the continuum could be handled than that allowed by a purely
Lagrangian method, with more resolution than that afforded by a purely Eulerian approach.

The key parameters of the landslide mass are summarized in Table 1. The density was
measured in the field to be roughly 1800 kg/m3. The shear modulus and bulk modulus
were assumed to be 500 kPa and 1000 kPa, respectively. As the stacking angle of the debris
intercepted by the flexible barrier was about 15◦, which was obviously much bigger than
the internal friction angle of the debris. Therefore, the internal friction angle was assumed
to be 5◦. The friction coefficient between the landslide mass and the slope was assumed to
be 0.4, referring to Ref. [35].
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Table 1. Key parameters adopted to simulate the landslide mass.

Material Property Adopted Value Remarks

Density, ρ 1800 kg/m3
Roughly measured in the field

Internal friction angle, ϕ 5◦

Shear modulus, G 500 kPa
By trial-and-error analysis

(Evaluated according to the
deformation of the barrier)

Bulk modulus, K 1000 kPa
Cohesive strength, c 2 kPa
Friction coefficient, µ 0.4

2.2.2. Modeling of the Flexible Barrier

To save computational costs, only three functional modules of the flexible barrier,
spanning across posts P4 to P7, were built in the model. The barrier is a proprietary product
characterized by its ease of repair, as energy dissipating devices are designed as indepen-
dent and replaceable units to attach to steel-wire ropes. By contacting the manufacturer of
the barrier, the structural properties of the different components were confirmed.

The steel-wire ropes were modeled using discrete cable elements, which only have
stiffness in axial tension. Beam elements using the plastic kinematic material model were
adopted to model the posts. Energy dissipating devices were modeled using plastic tension
only, as well as translational spring elements with a tri-linear load-displacement curve.
Each steel-wire ring was modeled using sixteen beam elements, with a piecewise elastic-
plastic stress-strain curve. The sliding characteristics between rings was explicitly modeled
by the general contact algorithm. Seatbelt slip-ring elements, which work as a cable-and-
pulley system, were adopted to model the sliding of support ropes on post ends. The
loose connections between the edging rings and ropes with shackles were also explicitly
modeled using simplified shackles, combined with a guided cable contact algorithm. The
configuration and modeling method of the flexible barrier are summarized in Table 2.
Generally speaking, the nonlinear and large deformation characteristics of the flexible
barrier were effectively simulated in the model.

Table 2. Configuration and modeling method of the flexible barrier.

Components Specification Modeling Method

Post HW 150 × 150 × 6 × 10 (Q235) Beam elements with plastic
kinematic material

Steel-wire ring net R9/3/300 Beam elements with piecewise
linear plastic material

Upper support rope 1 × 24

Discrete cable element

Lower support rope 1 × 24
Upslope anchor rope 1 × 18

Bypass rope 1 × 18
Lateral support rope 1 × 18
Lateral anchor rope 1 × 18

Energy dissipating device attached to
upper/lower support rope 2 GS-8002 brake rings in parallel Plastic tension only, translational

spring elements
Energy dissipating device attached to

upslope anchor rope 1 GS-8002 brake ring

2.2.3. Modeling of the Interaction

In the model, a special penalty-based coupling algorithm named “Constrained_
lagrange_in_solid” was adopted, to recreate the interaction between the landslide and
the flexible barrier, as well as the landslide and the slope. The coupling algorithm, es-
sentially, is equivalent to placing a series of springs between the slave surface and the
master surface, to limit the penetration. As this command can only represent the interaction
between the Lagrangian shell and/or solid structures and the fluids modeled by ALE for-
mulation, additional membranes modeled by shell elements with a null-type material [51]
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were introduced to cover the steel-wire meshes, to achieve the expected interaction. The
introduced membranes could only transmit the interaction force and could not contribute
any stiffness to the flexible barrier. It is worth noting that the additional membrane is
impermeable, so the landslide mass could not penetrate the barrier. In fact, no signs of
penetration of landslide from the flexible barrier were found in the field.

An efficient two-stage coupled modeling technique, developed by the authors [35],
was adopted to build a three-dimensional model based on the rebuilt terrain, to investigate
the landslide mobility and the landslide and flexible barrier interaction (Figure 7). In the
first stage, only the movement of the landslide mass was simulated and the flexible barrier
was totally constrained. Thus, a relatively large time step of 5 × 10−4 was sufficient to
ensure the stability of the simulation. When the landslide was about to impact the barrier,
the simulation of the first stage was ended and a binary file storing the model information
of the last step was created. After removing the additional constraints of the barrier, the
full restart technology was applied to initialize the state of the landslide with the binary file.
Then, the coupled numerical simulation was launched with resetting to a much smaller
time-step of 2 × 10−5, to ensure the stability of the simulation.
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2.3. Mobility of the Landslide

Under gravity, the landslide mass started to slide along the main inclined scarp, from
being static till interception by the flexible barrier. Some typical moments of the interception
process are shown in Figure 8. The velocity of the landslide at the barrier location and the
kinetic energy of the landslide during the sliding are shown in Figure 9. It can be seen that
when t = 2.5 s, the landslide impacted the flexible barrier with a maximum frontal velocity
of around 9 m/s. After the peak value, the impact velocity dropped to zero within 2 s. The
maximum kinetic energy was about 3200 kJ when t = 2.6 s, which is much bigger than the
rated energy of the flexible barrier of 750 kJ, assessed using a rockfall impact. The reason
for this may lie in the different processes in intercepting a rockfall or debris. The former
is only a first impact and the kinetic energy is almost dissipated by the flexible barrier.
The latter is successive impacts and the stopped debris may form a “dam” to dissipate the
subsequent impact energy. With the development of the interaction, the kinetic energy
of the landslide decreased rapidly. The interception process lasted about 2.5 s, and when
t = 5.0 s, the landslide was totally stopped. The landslide mass was mainly accumulated in
the middle functional span of the flexible barrier, which is generally consistent with the
site observations.
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Figure 9. Moving characteristics of the landslide debris.

2.4. Response of the Flexible Barrier
2.4.1. Internal Forces of the Ropes

The ring nets were directly subjected to the impact of the landslide. Then, the impact
force was transmitted to the lower support rope (LSR), upper support rope (USR), and
upslope anchor ropes (UAR) in sequence. The internal forces of the ropes are shown in
Figure 10. This demonstrates that the lower support rope was the first tensioned among
these ropes. When t = 2.6 s, the internal force of the lower support rope increased rapidly,
from zero to about 100 kN, which is the ideal activated force of the attached brake rings.
Then, with the elongation of the attached brake rings, the internal force increased gently to
the maximum value of 113 kN at t = 3.7 s. Then, the internal force decreased to a stable
value of 53 kN, when the landslide mass was totally stopped. The internal force history of
the upper support rope was almost consistent with the lower support rope. The differences
mainly lie in the following two aspects: One is that the upper support rope was tensioned
about 0.1 s later than the lower support rope; the other, was that the maximum value
of the upper support rope was 108 kN, which was a little smaller than that of the lower
support rope.
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The upslope anchor ropes were tensioned further and later than the upper support
rope. The internal forces of the upslope anchor ropes connected to the middle posts P4 and
P5 (Figure 7) were greater than for the other ropes, especially the upslope anchor ropes 4#
and 5#, which were located at the impacted span. The maximum forces of UAR 4# and
UAR 5# were close to 55 kN. As a part of the landslide mass impacted the left span of the
flexible barrier, the internal force of UAS 3#, which connected the post P4 and anchored to
the left span, was slightly smaller than that of UAR 4# and UAR 5#. The internal forces of
other ropes were smaller than 30 kN. In particular, UAR 7# always remained loose during
the interception process.

2.4.2. Elongation of Brake Rings

The elongation histories of the brake rings from the numerical simulation are shown
in Figure 11. When t = 2.6 s, the brake rings attached to the left and right sides of the lower
support rope began to elongate and were stable at 59 cm and 50 cm, respectively, at t = 3.6 s.
When t = 2.7 s, the brake rings attached to the left and right sides of the upper support
rope began to elongate and were stable at 38 cm and 15 cm, respectively, at t = 3.8 s. The
elongations of brake rings attached to the support ropes were unsymmetrical, mainly due
to the unsymmetrical impact of the landslide debris on the flexible barrier. In addition to
the brake ring attached to the #4 upslope anchor rope, the elongations of other brake rings
on the upslope anchor ropes were generally less than 10 cm. The brake ring attached to the
#4 upslope anchor rope had the maximum elongation of 25 cm, due to the landslide mass
directly impacting post P5, which the #4 upslope anchor rope was connected to.

The deflection of the flexible barrier and the elongation of the brake rings in the field
were measured using tape before removing the landslide mass and are summarized with
the simulated results in Table 3. It can be seen that the elongations derived from the
numerical simulation are comparable to those from the field measurement. The deflection
of the flexible barrier was 336 cm and 352 cm in the field and simulation, respectively. The
difference was only 4.8%. The larger difference in the elongation of the brake rings attached
to the support rope was due to the fact that the numerical model simplified the system to
three functional modules, and the propagation effect of the internal force of the support
rope was reduced by factors such as friction.
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Table 3. Deflection of the flexible barrier and elongation of the brake rings.

Components Position
Deflection/Elongations (cm)

Field Simulation

Flexible barrier - 336 352

Brake rings

Upper support rope (Left/Right) 0/12 4/16
Lower support rope (Left/Right) 43/38 59/50

Upslope anchor rope

1# 7 8
2# 2 2
3# 9 10
4# 25 23
5# 8 9
6# 7 6
7# 0 1
8# 3 4

The energy dissipating devices attached to the lower and upper support ropes were
two GS-8002 brake rings in parallel, with an ultimate working force of 120 kN. The energy
dissipating device attached to the upper slope anchor ropes was a GS-8002 brake ring,
with an ultimate working force of 60 kN. The ultimate elongations of the brake rings
were all 110 cm. The maximum internal forces of the lower and upper support ropes, as
well as the upslope anchor ropes, were all smaller than the ultimate working force of the
attached brake rings. This indicates that the brake rings did not all travel to their maximum
elongation. In other words, even if the kinetic energy of the landslide of 3200 kJ was three
times bigger than the rated energy of the flexible rockfall barrier of 750 kJ, the flexible
barrier could intercept the landslide debris successfully, without any damage.

3. Numerical Parametric Study of the Flexible Barrier Subjected to Landslide Debris
3.1. Model Description

After investigation of the dynamic behavior of the flexible barrier impacted by rockfall
and verification of the numerical simulation model, a series of simulations were carried out,
to study the performance of the same flexible barrier impacted by landslide debris with
different impact energies, ranging from 750 to 3000 kJ. Impact velocities ranging from 4 to
10 m/s were also investigated. A total number of 20 simulation cases are summarized in
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Table 4. The coupled model of the landslide and the flexible barrier is shown in Figure 12.
The angle of the slope was fixed to 15◦. The width of the slope was 10 m, which is the
post spacing of the flexible barrier. The thickness was also fixed to a common value, in
practice of 1.0 m. The density was consistent with the measured value of 1800 kg/m3 in the
field investigation. In practice, flexible barriers are commonly installed vertically or sub-
vertically on slopes to stop rockfalls or landslides. In the model, the flexible barrier was also
set vertically at the end of the slope and in front of the landslide to save computational cost.

Table 4. Simulation schedule for a parametric study.

Case No. Impact Velocity
(m/s)

Landslide
Volume (m3)

Landslide
Mass (kg)

Impact Energy
(kJ)

Gravitation Potential
Energy (kJ)

Total Energy
(kJ)

1

4

52.1 9.4 × 104 750 537.1 1287.1
2 69.4 1.3 × 105 1000 852.6 1852.6
3 104.2 1.9 × 105 1500 1612.6 3112.6
4 138.9 2.5 × 105 2000 2496.0 4496.0
5 208.3 3.8 × 105 3000 6114.7 9114.7

6

6

23.1 4.2 × 104 750 156.1 906.1
7 30.9 5.6 × 104 1000 243.8 1243.8
8 46.3 8.3 × 104 1500 458.3 1958.3
9 61.7 1.1 × 105 2000 761.8 2761.8

10 92.6 1.7 × 105 3000 1560.2 4560.2

11

8

13.0 2.3 × 104 750 75.9 825.9
12 17.4 3.1 × 104 1000 110.4 1110.4
13 26.0 4.7 × 104 1500 205.6 1705.6
14 34.7 6.3 × 104 2000 305.2 2305.2
15 52.1 9.4 × 104 3000 593.6 3593.6

16

10

8.3 1.5 × 104 750 46.4 796.4
17 11.1 2.0 × 104 1000 65.6 1065.6
18 16.7 3.0 × 104 1500 112.1 1612.1
19 22.2 4.0 × 104 2000 174.1 2174.1
20 33.3 6.0 × 104 3000 330.6 3330.6
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3.2. Results of the Parametric Study
3.2.1. Elongation of the Brake Rings

The energy dissipation ratio denoted as ηs is defined as the ratio of the energy dissi-
pated by the flexible barrier to the impact energy of the landslide mass, as follows:

ηs =
Es

ET
(4)
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where Es is the energy dissipated by the flexible barrier, and ET is the total energy of the
landslide mass, including the initial kinetic energy and the gravitation potential energy.

Figure 13 shows the energy dissipation ratio of the flexible barrier subjected to land-
slide mass with different total energies and impact velocities. It can be seen that ηs of these
cases all are less than 0.4, which means that the flexible barrier was not the main source
of energy dissipation. Under the condition of a certain total energy, ηs will increase with
the increase of the impact velocity. Under the condition of certain impact velocity, ηs will
decrease linearly with the increase of the total energy, as shown in Equations (5)–(7):

ηs = kET + b (5)

k = (−6.55v + 5.07)× 10−6 (6)

b = 0.044v− 0.043 (7)

where a, b, and c are factors related to the impact velocity.
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Figure 13. Energy dissipation ratio of the flexible barrier.

In particular, the ηs of the case with a total energy of 796.4 kJ and the impact velocity
of 10 m/s was the biggest, and the case with a total energy of 9114.7 kJ and the impact
velocity of 4 m/s was the smallest. This can be understood as follows: with the increase
of total energy and the decrease of impact velocity, the volume and mass of the debris
will increase, so the energy dissipated through the internal and boundary shearing will
increase. It should be noted that for the cases with a total velocity of 4 m/s, the above linear
decreased relationship of ηs and the total energy is not ideal. When the total energy is less
than 4496.0 kJ, the ηs decrease quickly with the increase of total energy. However, the ηs of
9114.7 kJ is almost consistent with that of 4496.0 kJ. This means ηs is stable at 0.03 when the
total energy is bigger than 4496.0 kJ, which is in good agreement with Song et al. [46].

3.2.2. Energy Dissipating Distribution

The energy dissipation ratio denoted as η is defined as follows:

ηs =
Es

ET
(8)

where Edis is the energy dissipated by each part, including the brake rings, friction energy,
internal energy of landslide, and other components of the flexible barrier, in addition to the
brake rings.
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Figure 14 shows the distribution of the energy dissipation ratio. It can be seen that
the proportion of energy dissipation, ranging from large to small, is the internal energy of
landslide, friction energy, brake rings, and other components of the flexible barrier (ring net,
steel posts, steel-wire ropes, etc.). The energy dissipated by other components of the flexible
barrier in addition to the brake rings was less affected by the impact velocity and impact
energy, and was stable at about 5%. The energy dissipated by the brake rings, friction, and
internal energy ranged from 1.2% to 26.7%, 25.9 to 46.2%, and 19.2% to 74.2%, respectively.
They were all significantly affected by the impact velocity and impact energy. The energy
was mainly dissipated by the friction and internal energy.
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3.2.3. Energy Dissipation Ratio of the Brake Rings

The energy dissipation ratio of the brake rings denoted as ηb was defined, to de-
scribe the ratio of the actual energy dissipated by the brake rings to the designed energy
dissipation capacity of the brake rings, as follows:

ηb =
Eb
ET

(9)

where Eb is the actual energy dissipation of the brake rings.
Figures 15a and 16a show the energy dissipation ratio and elongation of the brake

rings attached to the upper support rope, respectively. When the impact velocity was 4m/s,
the energy dissipation was stable and less than 1%. When the impact velocity was 6~8 m/s,
the energy dissipation ratio declined and the elongation increased sharply with the increase
of total energy. For case 15, with an impact energy of 3000 kJ and impact velocity of 8 m/s,
the elongation of the brake rings was the greatest, with a value of 1.80 m. Considering
the fact that, in design practice, the elongation should be limited to 80% [41], the flexible
barrier of the above cases was identified at its limit state.

Figures 15b and 16b show the energy dissipation ratio and elongation of the brake rings
attached to the lower support rope, respectively. For the impact velocity of 6 m/s~10 m/s,
with an increase of total energy, the ηb declined quickly and the elongation increased
sharply. When the total energy was larger than 2500 kJ, the elongation tended to be stable.
When the impact velocity was 4 m/s, the energy dissipation ratio was less than 5%; and
with the increase of total energy, the energy dissipation ratio declined and the elongation
increased slightly. In particular, for the two cases of 10 m/s with the impact energies of
2000 kJ and 3000 kJ, the elongation of the brake rings was greatest, with a value of 2.2 m.
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Figure 15. Energy dissipation ratio of brake rings.
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4. Conclusions 
Landslide debris was successfully intercepted by a flexible rockfall barrier, without 

any damage at the Tianwan tunnel entrance of the Chongqing-Huaihua railway in China. 
Back analysis of the landslide mobility showed that the impact energy was much bigger 
than the rated energy capacity of the flexible rockfall barrier. To investigate the maximum 
energy capacity of the flexible rockfall barrier in resisting the landslide debris, parametric 
analyses of the flexible barrier impacted by landslide debris with different impact energies 
and velocities were carried out using a coupled modeling technique. The following con-
clusions can be drawn from this paper: 
1. The total energy of landslide debris dissipated by a flexible barrier is less than 40%, 

most of the energy is dissipated by friction and internal energy. 
2. The energy dissipation ratio of a flexible barrier decreases linearly with the increase 

of the impact energy. 
3. The maximum energy capacity of a flexible barrier subjected to landslide debris is 

controlled by the lower support rope. The maximum energy capacity of a flexible 
rockfall barrier in resisting landslide debris is four-times that of resisting a rockfall. 
In addition, with the decrease of impact velocity, the maximum energy capacity will 

increase further. Thus, it seems to be conservative to adopt a scaling factor not exceeding 
75%, as required in the guidelines in Hong Kong [45], to reduce the energy capacity of a 
flexible barrier established for a rockfall, in the case of resisting debris flows. 

Therefore, this research revealed the relationship of the maximum capability of a 
flexible barrier in intercepting a rockfall and landslide debris, in terms of energy. The con-
clusions will hopefully be helpful for engineers to select suitable flexible barriers rated by 
rockfall impact for landslide debris interception. 

However, it should be noted that the findings pertain only to the particular type of 
flexible barrier, i.e., RXI-075, modeled and the particular impact scenarios in this study. 
Other impact cases and types of flexible barriers might be worth investigating in further 
studies. Furthermore, full-scale tests are urgently needed to investigate the behavior of 
flexible barriers impacted by rockfalls and landslide debris, respectively. 
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Figure 16. Elongation of brake rings.

The energy dissipation ratio of the brake rings attached to the lower support rope
was larger than that of the upper support rope, so the maximum intercepted capacity of
the flexible barrier subjected to debris was controlled by the lower support rope, which
is consistent with that when subjected to boulders [42]. From the energy dissipation ratio
of the brake rings attached to the lower support rope, it can be seen that the flexible
barrier can withstand a landslide debris impact with an initial impact energy of 3000 kJ,
which is four-times the rated energy of a rockfall impact. In addition, with the decrease of
impact velocity, the maximum capacity will increase further. Authors should discuss these
results and how they can be interpreted from the perspective of previous studies and of
the working hypotheses. The findings and their implications should be discussed in the
broadest context possible. Future research directions may also be highlighted.

4. Conclusions

Landslide debris was successfully intercepted by a flexible rockfall barrier, without any
damage at the Tianwan tunnel entrance of the Chongqing-Huaihua railway in China. Back
analysis of the landslide mobility showed that the impact energy was much bigger than the
rated energy capacity of the flexible rockfall barrier. To investigate the maximum energy
capacity of the flexible rockfall barrier in resisting the landslide debris, parametric analyses
of the flexible barrier impacted by landslide debris with different impact energies and
velocities were carried out using a coupled modeling technique. The following conclusions
can be drawn from this paper:

1. The total energy of landslide debris dissipated by a flexible barrier is less than 40%,
most of the energy is dissipated by friction and internal energy.
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2. The energy dissipation ratio of a flexible barrier decreases linearly with the increase
of the impact energy.

3. The maximum energy capacity of a flexible barrier subjected to landslide debris is
controlled by the lower support rope. The maximum energy capacity of a flexible
rockfall barrier in resisting landslide debris is four-times that of resisting a rockfall.

In addition, with the decrease of impact velocity, the maximum energy capacity will
increase further. Thus, it seems to be conservative to adopt a scaling factor not exceeding
75%, as required in the guidelines in Hong Kong [45], to reduce the energy capacity of a
flexible barrier established for a rockfall, in the case of resisting debris flows.

Therefore, this research revealed the relationship of the maximum capability of a
flexible barrier in intercepting a rockfall and landslide debris, in terms of energy. The
conclusions will hopefully be helpful for engineers to select suitable flexible barriers rated
by rockfall impact for landslide debris interception.

However, it should be noted that the findings pertain only to the particular type of
flexible barrier, i.e., RXI-075, modeled and the particular impact scenarios in this study.
Other impact cases and types of flexible barriers might be worth investigating in further
studies. Furthermore, full-scale tests are urgently needed to investigate the behavior of
flexible barriers impacted by rockfalls and landslide debris, respectively.
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Abstract: Rapid and accurate extraction of landslide areas triggered by earthquakes has far-reaching
significance for geological disaster risk assessment and emergency rescue. At present, visual inter-
pretation and field survey are still the most-commonly used methods for landslide identification,
but these methods are often time-consuming and costly. For this reason, this paper tackles the
problem of co-seismic landslide identification and the fact that there is little sample information in
existing studies on landslide. A landslide sample dataset with 4000 tags was produced. With the
YOLOv3 algorithm as the core, a convolutional neural network model with landslide characteristics
was established to automatically recognize co-seismic landslides in satellite remote sensing images.
By comparing it with the graphical interpretation results of remote sensing images, we found that
the remote sensing for landslide recognition model constructed in this paper demonstrated high
recognition accuracy and fast speed. The F1 value was 0.93, indicating that the constructed model
was stable. The research results can provide reference for emergency rescue and disaster investigation
of the same co-seismic landslide disaster.

Keywords: YOLOv3; deep learning; automatic landslide identification; remote sensing image

1. Introduction

Co-seismic landslides [1] are secondary hazards triggered by earthquakes in mountain-
ous regions and often account for a very substantial proportion of earthquake hazards [2].
Landslides are generally catastrophic, resulting in loss of life, destroying infrastructure
and houses and exerting a significant impact on the global economy [3]. For example, on
31 May 1970, Peru was struck by a 7.7 magnitude earthquake, triggering an avalanche that
buried the city of Yongai and killed an estimated 23,000 people [4]. The 2008 Wenchuan
earthquake triggered a landslide that directly killed nearly 30,000 people, accounting for
roughly 30% of the population killed by the earthquake [5]. Therefore, the ability to obtain
the information quickly and accurately about location, degree and scale of co-seismic land-
slides is of great significance for guiding earthquake emergency rescue and disaster risk
assessment [6]. Hence, the research on remote sensing for landslides has become the main
project to be addressed by various experts and scholars. In 1992, Wang [7] investigated
and monitored landslides by combining the advantages of remote sensing and proposed
to study and establish a landslide and debris flow information system, including the re-
search and establishment of database and a series of application models, such as landslide
and debris flow identification model, development model, impact evaluation model on
engineering, disaster relief model and other concepts. Combining the interferometer radar
and TM imagery, V. Singhroy et al. from Canada accurately extracted information about
landslides in the lower Rocky Mountain watershed and used such information to assess
the risk of the impacted area in 1995 [8]. In 2003, Wasowski [9] from Canada analyzed
the opportunities brought by the development of remote sensing technology for studying
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landslide hazards and discussed the feasibility of using radars, ETM+, RADARASAT-1 and
GPS and other multi-source data to observe landslides. In 2013, Wang [10] also proposed
that if the relationship between the surface landslide wall and the landslide body with the
ground slide surface and the slide bed could be determined, their spectral characteristics
could be understood and a computational model could be built, and that the landslide
patterns could be recognized by remote sensing technology. In 2016, Casagli et al. [11] used
optical remote sensing, InSAR data and target-based means to extract landslide hazards.
Gore et al. [12] proposed to extract mapping glacier features using hyperspectral remote
sensing images. Based on the surface characteristics of spectral reflection characteristics,
glaciers are divided into accumulation zone and ablation zone to make identification much
simpler. At present, remote sensing-based technology for landslide information extraction
is mainly through high-resolution, multispectral images on the texture, shape, hue and
other shallow features to build extraction models [13]. Although the visual interpretation
accuracy is somewhat high through this means, it is very dependent on the experience
of professionals, slow identification speed and it is difficult to meet the requirements of
emergency rescue, disaster timely assessment. In recent years, with the development of
artificial intelligence, deep learning has been introduced into various disciplines [14], and
it has been widely used in the field of remote sensing, providing a reliable solution to the
identification of co-seismic landslides.

Deep learning has become a mainstream research tool in the fields of speech recog-
nition, image recognition, image classification, target detection, etc. [15,16]. Song et al.
proposed a method to transform spectral information into images and extract texture
features for recognition and classification using CNN [17]. The reference [18] recognized
and classified spectral features by calculating the value of the cost function through a
5-layer neural network. The reference [13] used mask region-based convolutional net-
works (Mask R-CNN) target detection module for automatic landslide identification.
Liu et al. [19] classified frozen landslides on the Tibetan Plateau by applying migration
learning. Arabameri et al. [20] created a landslide inventory map using GPS points, high-
resolution satellite images, topographic maps, and historical records obtained from various
machine learning methods and field analysis. Then, they compared the applicability of
FLDA, RF, and ADTree models for establishing LSM in the Gallicash River basin in northern
Iran near the Caspian Sea and succeeded in further applying deep learning in the field of
landslide identification. Chen et al. [21] obtained a landslide sensitivity map based on the
evidence confidence function model by using the slope element of hydrologic analysis and
the slope element based on curvature watershed. After that, they calculated the success
rate and prediction rate of the landslide susceptibility map. More and more advanced
algorithms are used in landslide research, such as C5.0 decision tree (DT) model and K-
means clustering algorithm, which can generate regional landslide susceptibility maps
well [22]. With the development of computer vision technology [23], there are numerous
algorithms for image recognition using deep learning methods, whose main objective is to
pinpoint the class and location of various targets in an image or sequence of images [24].
Girshick et al. [25] proposed R-CNN convolutional neural network in 2013 for target detec-
tion using a deep convolutional neural network. Joseph Redmon, Ali Farhadi et al. [26]
proposed the YOLO algorithm in 2015, a target detection system based on a single neural
network. With modeling detection as a regression problem, it directly obtains the coordi-
nates of the bounding box, the confidence of the objects contained in the bounding box
and the class probability from all pixels of the whole picture, which effectively improves
detection and recognition efficiency. At present, many experts and scholars have applied
deep learning to the study of co-seismic landslide recognition. However, according to the
most cutting-edge research results, few scholars can automatically recognize co-seismic
landslide by deep learning, and many of the existing studies are about co-seismic automatic
landslide extraction based on traditional machine learning or deep learning.

For the purpose of landslide recognition, this paper adopted the popular object detec-
tion algorithm YOLOv3 based on deep learning to build a convolutional neural network
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for co-seismic landslide recognition. TensorFlow [27] platform was used to construct the
convolutional neural network, and YOLOv3 convolutional neural network to train the
sample set. The convolutional neural network model with landslide characteristics was
obtained, and then the landslide detection and recognition of satellite remote sensing
images of co-seismic landslides were achieved. The recognition accuracy was close to that
of visual interpretation in the experimental area with much faster recognition speed.

2. Study Area and Data
2.1. Study Area

The study area of this paper is in the Hokkaido region of Japan, as shown in Figure 1.
Hokkaido, the largest island in Japan other than Honshu, lies between latitude 40 degrees
33′ and 45 degrees 33′ north, and longitude 139 degrees 20′ and 148 degrees 53′ east, and
is bounded by Honshu Island in the south by the Tsugaru Strait and by the Soya Strait
in the north by the Kuril Islands. It covers a large area, accounting for about 22% of the
total area of Japan. At least 70% of the island is covered by forests. The vegetation consists
mainly of bright coniferous forests and grasslands. The terrain is high in the center and low
in the surroundings with volcanoes. There are mountains and ranges in the central part
of Hokkaido, so the terrain is generally undulating, while the surrounding area is a vast
plain. The co-seismic landslide is the major threat to people’s lives and development. A
6.7 magnitude earthquake hit Hokkaido, Japan, at 3:08 am local time on 6 September 2018,
with an epicenter at 42.671 N, 141.933 E, and a source depth of 35 km. The earthquake, with
a maximum observed intensity of magnitude 7, was the highest magnitude earthquake
observed in Hokkaido, Japan, by the Japan Meteorological Agency since 1923 [28]. During
the earthquake, 44 people were killed, 32 houses were completely damaged and 18 were
partially damaged. The casualties and house damage were mainly caused by lare landslides
and liquefied ground settlement and seismic subsidence [29]. The disaster damage caused
by some of the co-seismic landslides is shown in Figure 2.
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2.2. Data

The satellite remote sensing images in this paper were downloaded from Planet
satellite (https://www.planet.com/explorer/ (accessed on 18 September 2018)), with a
resolution of 3 m taken on 18 September 2018. Planet’s SuperDove image, which went
online in April 2020, features a 3-m resolution and eight spectral bands (temporarily open
red, green, blue, near infrared and red-edge bands), integrating the advantages of PL
small satellite clusters with a 3-m resolution, and RapidEye red-edge bands. ENVI 5.6
software was used to enhance the recognition of co-seismic landslides through image
true-color synthesis. Finally, orthophotos were generated by combining the images of the
co-seismic landslide affected area with red, green and blue bands. The image-covered
area after splicing was the whole landslide region with many landslides of small scale. To
provide better training samples, images were cut into 800 m × 800 m images in ArcGIS,
and 120 images with the dense landslide area were selected to make data sets as training
samples, including 100 as training sets and 20 as test sets. The satellite remote sensing
images were transformed into image samples and XML format label samples using the
LablImg label production platform and then interpreted by the experts in this field from
the State Key Laboratory of Geological Hazard Prevention and Geological Environment
Protection. In this paper, we use the open YOLOv3 algorithm to recognize the co-seismic
landslides. The open YOLOv3 algorithm is a public algorithm, which is one of the most
widely used deep learning-based object detection methods and uses the K-means cluster
method to estimate the initial width and height of the predicted bounding boxes. According
to the open YOLOv3 algorithm, the parameters of YOLOv3 algorithm were adjusted to
make it more suitable for co-seismic landslides. Figure 3 shows some of the orthophotos of
the study area and the co-seismic landslide area mapped by visual interpretation.
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3. Methodology
3.1. Research Design

The main design of the experimental study of this paper is shown in Figure 4. Firstly,
the data were preprocessed as shown in Section 2.2; thus, the preprocessed data were
obtained for landslide identification. With YOLOv3 algorithm as the core, a convolutional
neural network was constructed using TensorFlow framework to train and validate the
sample set. The convolutional neural network model with the characteristics of co-seismic
landslides was obtained by constantly adjusting the parameters. Satellite remote sensing
images of landslides were analyzed, tested and identified, and then the experimental results
were compared with the visual interpretation results of the experts.

3.2. Procedure and Recognition Principle of YOLOv3 Convolutional Neural Network

Recently, with the rapid development of artificial intelligence, great breakthroughs
have been made in target detection algorithms. According to detection ideas, common
target detection algorithms based on deep learning can be divided into two categories.
One is two-stage target detection algorithms based on candidate region and one-stage
target detection algorithms based on regression [30]. The typical two-stage target detection
algorithms include R-CNN [31] system algorithms based on region proposal, such as R-
CNN, Fast R-CNN, and Faster R-CNN. The other is one-stage algorithm, such as YOLO
and SSD, among which YOLO is based on an end-to-end idea. The principle of this
algorithm is to model detection as a regression problem, and directly obtain the boundary
box coordinates of the detection target, the confidence degree of the object contained in the
boundary box and the category probability of the object from all the pixels of the image.
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Figure 4. Design of experimental study.

Compared with other deep learning target detection algorithms, YOLO is character-
ized by fast detection speed. It solves object detection as a regression problem, dividing
an image into S×S grid cells. If the center of an object falls in the grid, the grid will be
responsible for predicting the object, and each grid for predicting B bounding boxes and C
categories. In addition to returning to its own position, each bounding box should also be
accompanied with a confidence value of five values, so the output tensor is S×S× (5B+C);
Figure 5 shows a bounding box with scale and position prediction. YOLO detection is very
fast. The standard version of YOLO can reach 45 FPS on TrainX’s GPU. However, YOLO
also has the disadvantages of low recall rate, low position accuracy, and poor detection ef-
fect for small objects. To overcome the above disadvantages, researchers proposed YOLOv2
and YOLOv3 [32]. YOLOv3 improves both detection accuracy and speed, demonstrating a
new detection and classification network that is superior to other algorithms. According to
the literature, in particular reference [31], M40 or TrainX can be detected by the same GPU
(graphic processing unit), and the running speed of YOLOv3 is obviously faster than other
detection methods with similar performance [33].

96



Forests 2022, 13, 1213

Forests 2022, 13, x FOR PEER REVIEW 7 of 16 
 

 

effect for small objects. To overcome the above disadvantages, researchers proposed 
YOLOv2 and YOLOv3 [32]. YOLOv3 improves both detection accuracy and speed, 
demonstrating a new detection and classification network that is superior to other algo-
rithms. According to the literature, in particular reference [31], M40 or TrainX can be de-
tected by the same GPU (graphic processing unit), and the running speed of YOLOv3 is 
obviously faster than other detection methods with similar performance [33]. 

The total square error was still used for calculation in the network training process 
of YOLOv3, and binary cross entropy was used for the loss function of parts other than w 
(the width of the bounding box) and h (the height of the bounding box). If the ground 
truth predicted by a coordinate is �̂�∗, the gradient is the ground truth minus our prediction, 
i.e., �̂�∗ െ 𝑡∗. This ground truth value could be easily calculated by inverting the above 
equation. The width and height of the bounding box were then predicted as offsets from 
the target center coordinates, and the position of the center coordinates of the box relative 
to the filter was predicted using the sigmoid function. Dimension clusters were used to 
fix the anchor box frame in the convolutional neural network, and four coordinates of each 
boundary frame were predicted, namely 𝑡௫, 𝑡௬, 𝑡, 𝑡௪. If the predicted bounding box at 
the upper left corner of the image is offset by(𝑐௫,𝑐௬), and the predicted width and height 
of the target box are 𝑝௪, 𝑝, then the predicted value of the target is as follows: 𝑏௫ = 𝜎ሺ𝑡௫ሻ + 𝑐௫ (1)𝑏௬ = 𝜎൫𝑡௬൯ + 𝑐௬ (2)𝑏௪ = 𝑝௪𝑒௧ೢ (3)𝑏 = 𝑝𝑒௧ (4)

 
Figure 5. Bounding box with scale grid (scale 13/26/52) and location prediction. 

The YOLOv3 convolutional neural network uses the Darknet-53 network as the base 
network for feature extraction throughout YOLOv3. The Darknet-53 network achieved 
the highest measurement floating point operations per second, which allowed the net-
work structure to make better use of the GPU, thus making its evaluation more efficient 
and faster. The base network has a total of 53 convolutional layers, with no fully connected 

Figure 5. Bounding box with scale grid (scale 13/26/52) and location prediction.

The total square error was still used for calculation in the network training process of
YOLOv3, and binary cross entropy was used for the loss function of parts other than w (the
width of the bounding box) and h (the height of the bounding box). If the ground truth
predicted by a coordinate is t̂∗, the gradient is the ground truth minus our prediction, i.e.,
t̂∗ − t∗. This ground truth value could be easily calculated by inverting the above equation.
The width and height of the bounding box were then predicted as offsets from the target
center coordinates, and the position of the center coordinates of the box relative to the filter
was predicted using the sigmoid function. Dimension clusters were used to fix the anchor
box frame in the convolutional neural network, and four coordinates of each boundary
frame were predicted, namely tx, ty, th, tw. If the predicted bounding box at the upper left
corner of the image is offset by (cx,cy), and the predicted width and height of the target box
are pw, ph, then the predicted value of the target is as follows:

bx = σ(tx) + cx (1)

by = σ
(
ty
)
+ cy (2)

bw = pwetw (3)

bh = pheth (4)

The YOLOv3 convolutional neural network uses the Darknet-53 network as the base
network for feature extraction throughout YOLOv3. The Darknet-53 network achieved the
highest measurement floating point operations per second, which allowed the network
structure to make better use of the GPU, thus making its evaluation more efficient and
faster. The base network has a total of 53 convolutional layers, with no fully connected
layers. The tensor size was achieved by the step size of the convolution kernel. The
whole network was a fully convolutional network, which made use of the residual module
hop layer connections to reduce the negative effects of pooling gradient by removing
pooling layer. In the network structure, a convolution of step size of 2 was used for down
sampling. The total square error was used for the loss function of w, h and binary cross
entropy for the loss function of the other parts. To enhance the detection accuracy of the
YOLOv3 algorithm, the algorithm uses a complementary and fusion approach similar to
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FPN, providing 3 scales of prediction frames that are divided into 3 prediction output
branches, i.e., 13, 26, and 52 scales, and the structure used in the three prediction output
branches is also fully convolutional, and the tensor obtained for each branch is as follows:

S× S× [3× (4 + 1 + N)] (5)

where S represents different grid scales, 3 represents three predicted target boxes in each
grid cell, 4 represents four coordinate values of each bounding box, 1 is the confidence
value of each box, and N is the number of categories predicted by training.

3.3. Construction of YOLOv3 Convolutional Neural Network Structure for Landslide Satellite
Remote Sensing Image Features

In this paper, a landslide was taken as the identification object, and the identification
target was single, so there was no need to consider the category problem, thus making
network construction less difficult. According to the characteristics of image data, the
network model adjusted the image format of all the images involved in the training to
416 × 416 × 3 by means of down sampling before entering the training. Meanwhile, we
adopted regularization to prevent overfitting by adjusting the parameters of momentum
coefficient and weight attenuation regularization. Due to the difficulty in obtaining land-
slide data and the lack of samples, the saturation and exposure of images were adjusted
to increase sample diversity. Figure 6 shows the structure of the YOLOv3 convolutional
neural network for landslide satellite remote sensing image features, i.e., the target category
is 1, and the number of convolutional kernels in the last convolutional layer is 18.

3× (4 + 1 + 1) = 18 (6)

Taking the scale of 52× 52 as an example, according to Formulas (5) and (6), the tensor
of landslide data set at this scale is 52 × 52 × 18.

3.4. Accuracy Evaluation Index

The evaluation metrics of the model are generally accuracy, recall, mean average
precision, IOU (intersection over union), F1 score, etc. The F1 score is a measure of the
accuracy of the binary classification model, which considers the accuracy and recall of the
classification model and can be regarded as a weighted average of the accuracy and recall
of the model. It can be expressed as follows:

Precision =
Tp

TP + FP
× 100% (7)

Recall =
TP

TP + FN
× 100% (8)

mAP =
1
C

N

∑
i=1

Precision(i)∆Recall(i) (9)

IOU =
Detection Result∩Ground Truth
Detection Result∪Ground Truth

(10)

F1 score =
2Precision·Recall

(Precision + Recall)
(11)

In the above formula,
Precision: Accuracy
Recall: Recall rate
mAP: Average precision mean
IOU: Intersection ratio union
F1 score: The F1 score is an indicator of the accuracy of the dichotomous model
TP: The number of samples that are correctly classified as targets
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FP: The number of samples wrongly classified as the target
FN : The number of samples incorrectly classified as non-target objects
C: Number of target categories. The category of this paper is only landslide, so C = 1
Detection result: The predicted bounding box
Ground truth: Real bounding box
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4. Experiments and Results
4.1. Network Model Training

The orthophotos after correction and stitching were segmented into 800 m × 800 m
image maps in ArcGIS, and 120 images with more landslide coverage were selected to
create the sample dataset for network training, and the samples were created using labeling,
a tool specialized in labeling, to convert the satellite remote sensing images into image
samples and label samples in XML format. The detailed experimental platform is shown in
Tables 1 and 2.

Table 1. Hardware configuration for the experiment.

Type Parameter

CPU Intel (R) Core (TM) i9-10900K CPU @ 3.70 GHz
Memory 64 GB
GPU NVIDIA GeForce RTX 3090
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Table 2. Test all software environments.

Type Parameter

System Windows10 (Pro_×64. From the Redmond, WA, USA)
Operation platform CUDA9.0 + cuDNN7
Development of language Python3.7
Sample data enhancement Python3.7 + OpenCV4.5.5
Sample label making LablImg

Platforms and frameworks Platforms: ENVI 5.6, ArcGIS10.2
Deep learning framework: TensorFlow2.0

A landslide, characterized by large area and monotonous features, was used as the
research object in the experiment. Therefore, it was necessary to adjust the setting of some
parameters and find out the most reasonable parameter values to train the sample set by
comparing the training results for several times in the process of network training. In this
training, the training times were set as 6000 times, the learning rate as 0.001, the change
point of the learning rate as 500, and as 64 batches. After 64 samples were accumulated
each time, the forward propagation was carried out once, and the sub batch was set as
16, that is, a batch of images were divided into 16 sub batches to complete the forward
propagation of the network. The momentum coefficient was set to 0.9 and the weight decay
regularization term to 0.0005 regularization in case of the change in weight. The saturation
and exposure parameters were set to 1.5 and used to increase sample diversity and generate
more training samples. The change in the loss value of the model training is shown in
Figure 7, from which the loss value decreased sharply at the beginning of 500 training
sessions, slowed down from 500 to 2500 sessions, and stabilized after 3500 training sessions,
and finally decreased to 0.97 at 6000 sessions. As can be observed from the training log,
64 samples were processed in the first training, and 320,000 samples were processed in the
6000th training. This effect of reducing training loss was quite ideal, which was in line with
the purpose of the experiment.
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4.2. Accuracy Evaluation of the Network Model

According to the accuracy evaluation indexes in Section 3.3 above, in this paper, recall,
IOU and F1 are selected as the accuracy evaluation indexes of the model. Recall was used
as an indicator to evaluate the accuracy of the training model. The validation set data was
60 images, and the average IOU and recall of the samples were recorded when the training
model was used to verify 60 images. Each image measured was recorded once, as shown
in Figure 8.
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It can be observed from Figure 8 that as the number of tested samples increased, the
accuracy of recognition always fluctuated in a fixed area and was relatively stable. The IOU
and recall of the first two images in the test were relatively high because the cumulative
number of samples contained in the detected images was averaged and they were recorded
only by the number of images. With the increase in sample size, the average crossover ratio
and average recall rate tended to be stable. After testing 60 images, IOU was balanced at
80% and recall at 90%, which were ideal results.

4.3. Network Model Test

When the training part of the network was completed and the verification accuracy
met the requirements, we started to test the network model for proving the usefulness of
the network by randomly selecting several satellite remote sensing images in the study area
that were not involved in the training for landslide recognition. The recognition results are
shown in Figure 9, in which red boxes are the recognized landslides. It can be observed
from the figure that good recognition results were achieved.

4.4. Analysis of Experimental Results

The experimental results show that the YOLOv3 convolutional neural network built
in this paper performs well in detecting and identifying landslides. The comparison
results between the network proposed in this paper and visual interpretation are shown in
Figure 10.
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landslide. The red box shows the landslide area).
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Figure 10. Comparison between landslide identification results of YOLOv3 network model and
visual interpretation results. (a,b) are landslide recognition results of YOLOv3 network model, and
(c,d) are the corresponding visual interpretation results. The red parts in (c,d) are the landslide areas
interpreted visually by experts from the State Key Laboratory of Geological Hazard Prevention and
Geological Environment Protection. The yellow parts in a and b are the unrecognized co-seismic
landslide area.
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As can be observed from the Figure 10, the overall effect of YOLOv3 recognition on
landslides was better than visual interpretation, with only 11 landslides with small areas
and light colors failing to be recognized, as shown in yellow in Figure 10. The average
recall was calculated as 0.88, and the average precision as 0.98 by Equations (7), (8) and (11),
as shown in Figure 10a,b. The YOLOv3 network model recognized F1 was 0.93, indicating
that the experiment met the research needs.

5. Discussion

The method adopted in this paper was to transform the landslide identification prob-
lem into an image processing problem. Thus, the method proposed can effectively reduce
the difficulty of co-seismic landslide research, making it easier for related researchers to
understand the disaster caused by co-seismic landslides. This method belongs to the cat-
egory of artificial intelligence. The purpose is to solve the tedious manual interpretation
problem. Therefore, it has more outstanding superiority in large-scale seismic landslide
research. Furthermore, the YOLOv3 algorithm proved to have outstanding advantages in
image recognition. Ref. [34] applied a neural network built by the YOLOv3 algorithm to
recognize surface objects using remote sensing images and verified the efficiency of the
algorithm in remote sensing image identification. In this study, the YOLOv3 algorithm was
applied to satellite image recognition, and successfully identified the co-seismic landslide.
The Planet image adopted in this paper is a remote sensing image with a resolution of 3 m.
In addition, this method is more inclusive to different image categories, even in satellite
images with different resolutions. Although the texture, color and other characteristics
of the co-seismic landslide area are different, we need to build on the network model by
transfer learning. By adding images of different seismic landslide features as new samples,
we can identify co-seismic landslides from different satellite images.

The identification results have met the experimental requirements, and this network
can quickly and accurately identify seismic landslides. There are still some small landslides
that cannot be identified. The failure to identify those small landslides may be caused by the
insufficient number of samples, because more images with obvious landslide characteristics
in the large area were selected when making sample labels. While some parts of the
YOLOv3 network were unrecognizable, YOLOv3 could identify images within seconds,
while visual interpretation required professionals to manually label images based on their
experience and expertise, which is a more time-consuming and costly process. Therefore,
the research in this paper helps to achieve the rapid identification of landslides in the
internal industry and improve the identification efficiency, which provides reference for
disaster emergency rescue and investigation of co-seismic landslides. In the meanwhile, it
is of great significance to the emergency rescue of landslide disasters after earthquakes.

This research realizes fast and accurate automatic recognition of co-seismic landslides.
Due to the complexity of landslide remote sensing identification, there are still many
problems that need to be further studied. The following are some thoughts on the research
of deep learning identification of co-seismic landslides.

(1) Production of sample data sets. Training neural networks with large amounts of data
can ensure that the reliability and stability of recognition results are guaranteed.

(2) Optimization of convolutional neural networks. A co-seismic landslide recognition
model with less dependence on samples, higher intelligence, higher accuracy in the
future and faster speed will be constructed. Although The OLOv3 algorithm has a fast
speed and strong credibility of automatic recognition, the characteristics of co-seismic
landslides are complex and diverse. So, it would be better to combine more network
models to realize the identification of co-seismic landslides.

6. Conclusions

In this paper, the YOLOv3 algorithm was used to build a neural network model
oriented to landslide identification from remote sensing satellite image features, train
samples and automatically identify co-seismic landslides. In the model test, the IOU was
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balanced at 80% and the recall at 90%, which showed that the model had good stability. In
the meantime, for the co-seismic landslide identification experiment in Hokkaido, Japan,
the experimental results showed that the average recall was calculated as 0.88, and the
average precision as 0.98 and the F1 as 0.93. The results also showed that the YOLOv3
network model was relatively simple to build and easy to adjust and optimize parameters
with high precision and fast speed, it had excellent identification effect and could play
an important role in landslide identification. Compared with expert visual interpretation
results, the model adopted in this paper has a very fast speed in co-seismic landslide
identification. The research in this paper effectively overcame the deficiencies of visual
interpretation, such as more required time, high cost and low efficiency. In this paper, a
landslide sample dataset with 4000 tags was produced. It provides data support for deep
learning to identify seismic landslides.

In the future, other landslide databases caused by geological disasters can be used
to train the network model to improve its accuracy. We can also extend the constructed
network model for the identification of geological disasters, such as loess and rain-fall
induced landslides.
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Abstract: The aim of the present study was to assess the suitability of mountainous areas for con-
struction land on the basis of landslide susceptibility, to obtain the spatial distribution pattern of said
suitability and to improve the existing theories and methods used to ascertain said suitability. Taking
Hechuan District in Chongqing as the research area and using data relating to 754 historical landslide
sites from 2000 to 2016, we selected 22 factors that influence landslides. The factors were classified into
five types, namely topography and geomorphology, geological structure, meteorology and hydrology,
environmental conditions and human activities. A landslide susceptibility model was constructed
using the random forest algorithm, and safety factors of construction land suitability were established
according to the results of landslide susceptibility, with the suitability of land for construction in
mountainous areas assessed by combining the key factors (natural, social and ecological factors). The
weights of the factors were determined through the use of expert approaches to classify the suitability
of land for construction in the research area into five levels: prohibited, unsuitable, basically suitable,
more suitable and most suitable. The results of the study show that: (1) The average accuracy of
the tenfold cross-validation training set data of landslides reached 0.978; the accuracy of the test set
reached 0.913; the accuracy of the confusion matrix reached 97.2%; and the area under curve (AUC)
values of the training set, test set and all samples were 0.999, 0.756 and 0.989, respectively. Historical
landslide events were found to be mostly concentrated in highly susceptible areas, and the landslide
risk level in Hechuan District was mostly low or very low (accounting for 76.26% of the study area),
although there was also a small proportion with either a high or very high risk level (9.25%). The high
landslide susceptibility areas are primarily concentrated in the southern and southeastern ridge, in
the valley and near water systems, with landslides occurring less frequently in the gentle hilly basin.
(2) The suitability of land for construction in mountainous areas was strongly influenced by landslide
susceptibility, distance from roads and distance from built-up areas; among such parameters, rainfall,
elevation and lithology significantly influenced landslides in the region. (3) The land suitable for
construction in the study area was highly distributed, mainly in urban areas where the three rivers
meet and around small towns, with a spatial distribution pattern of high in the middle and low
on both sides. Furthermore, the suitability of land for construction in Hechuan District was found
to be primarily at the most suitable and more suitable levels (accounting for 84.66% of the study
area), although a small proportion qualified for either the prohibited or unsuitable level (accounting
for 15.72%). The present study can be extended and applied to similar mountainous areas. The
landslide susceptibility map and construction land suitability map can support the spatial planning
of mountainous towns, and the assessment results can assist with the development direction of
mountainous towns, the layout of construction land and the siting of major infrastructure.

Keywords: landslide susceptibility; land-use suitability; random forest model; Hechuan District
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1. Introduction

Due to the special topography, the exploitation of resources and economic develop-
ment in mountainous areas have been limited by the fragile ecological environment [1]. The
unreasonable exploitation of resources and the environment has led to an incompatibility
between people and mountainous areas. As urban construction in China continues to
expand, the state has increased efforts to protect cultivated land, resulting in difficulties
in balancing development and protection [2]. There is a need to assess the suitability of
mountainous areas to be used as construction land and to identify the spatial distribution
of land suitable for construction and land which is not to allow for the expansion of urban
development spaces and identification of high-quality cultivated land [3]. Through such
means, a foundation can be laid for the spatial control of national land resources, the
sustainable utilization of land resources and agricultural production. Evaluation indicators
and research methods regarding the suitability of land for construction in mountainous
areas are regarded as highly significant by relevant scholars. The assessment factors vary
slightly depending on the research field and focus and can be divided into two main
categories. The first category is assessment of the suitability of the land for construction
based on key factors. For instance, Bagheri [4] combined ArcGIS and the D-AHP model to
identify the risk zone of Kuala Terengganu, an eastern coastal city of Peninsular Malaysia,
and constructed a land-use suitability map for disaster management. The other is the
exploration of the suitability of land for construction based on selected factors, such as
natural factors, ecological factors, social traffic, economic development and population
density [5,6]. As an example, Ustaoglu [5] used ArcGIS and multicriteria assessment (MCA)
to assess the suitability of land for urban construction in Pendik in eastern Istanbul, Turkey
based on indicators such as geophysical features, accessibility, built-up areas and infras-
tructure, vegetation and other green and blue facilities. The focus of existing research has
largely been on the evaluation of the suitability of land for construction in mountainous
areas, with the aim of improving the evaluation method and enriching evaluation cases.
However, the application value of suitability evaluation has not been fully explored. There-
fore, continuous improvement of evaluation indicator systems and methods regarding the
suitability of land for construction is worthy of additional attention, in addition to further
expansion of the application field.

As one of the most common and threatening geological hazards, landslides primarily
occur in mountainous areas due to the complex terrain, geological conditions and human
engineering activities [7]. Landslides easily cause significant losses to towns because of
the high susceptibility, frequency and speed thereof [7]. According to statistics, during the
period from 2014 to 2018, landslides killed 4914 people, rendering 27,110 people homeless
and resulting in asset losses totaling approximately USD 2.1 billion [8]. As a typical area in
the Three Gorges reservoir area, Hechuan District in Chongqing is characterized by a large
number of mountains and hills, with frequent landslides as the main geological disaster [9].
A series of explorations of landslide prediction methods have been conducted by scholars in
the Three Gorges reservoir area [10]. As reported by the Hechuan District Land Resources
and Housing Administration, new landslide sites develop in the area every year, none of
which is within the original key monitoring areas. Thus, the exploration of machine learning
methods based on landslide susceptibility in fragile ecological and geological environments
will facilitate accurate identification of disaster sites and highly disaster-prone areas and
is of considerable significance for the safety of local residents, development of national
land and ecological protection. Landslide susceptibility based on machine learning has
been extensively adopted in research on disaster prevention and mitigation in urban areas
and towns. Several examples include random forest (RF) [11], logistic regression (LR) [12]
and artificial neural network (ANN) models [13,14]. Such methods possess significant
advantages over conventional methods in terms of assessment, verification and prediction
of landslide susceptibility [9]. Among the methods, random forest is highly accurate and
efficient and can process high-dimensional data while maintaining a high level of data
accuracy, even if features are missing or unbalanced [8]. Depending on the geographical

108



Forests 2022, 13, 1621

location, climatic conditions and the amount of available data on the researched area,
an appropriate model should be selected to obtain satisfactory evaluation results. The
modelling of landslide susceptibility has been widely used due to the generalization
ability thereof. Analytical hierarchy process (AHP) analysis, which is used to evaluate the
suitability of land for construction, is also a common weight evaluation model and was
found to be applicable to the present study [15].

In summary, scholars have conducted a series of studies on landslide susceptibility
and the suitability of land for construction. However, there has been a scarcity of research
on the suitability of land for construction in mountainous areas with frequent disasters
based on the foregoing two aspects. Thus, empirical research with in-depth and extensive
discussion is needed, with a particular focus on determining how to evaluate the suitability
of land for construction in mountainous areas from the perspective of disasters, as well
as key problems, such as the improvement of evaluation indicator systems, evaluation
criteria and technical methods concerning the suitability of land for construction from the
perspective of disasters in mountainous areas.

As such, the Hechuan District of Chongqing was investigated, and random forest
and AHP were adopted to explore the suitability of land for construction in mountainous
areas from the perspective of landslide susceptibility. First, 754 historical landslide sites
were sampled in the Hechuan District according to the theoretical method of landslide
susceptibility assessment, and a landslide susceptibility model was established based on the
RF model of Hechuan District; then, on the basis of the disaster safety model, an evaluation
model of the suitability of land for construction in mountainous areas was established,
considering social, ecological and economic factors.

Finally, the suitability for construction of different areas was rated, and the spatial
distribution of land suitable for construction was revealed, providing a scientific basis
for the evaluation of the suitability of land for construction in Hechuan District and
constructing an accurate, operatable and generalizable evaluation model. By constructing
an accurate, operatable and generalizable evaluation indicator system and research method,
the present study provides a scientific basis for evaluation of the suitability of land for
construction in Hechuan District, offering a reference for planning and construction of
other mountainous areas with frequent disasters.

2. Area of Research and Data Source
2.1. Study Area

Located at 105◦58′37′′–106◦40′37′′ east and 29◦51′02′′–30◦22′24′′ north, Hechuan Dis-
trict measures 69 km in length east to west and 58 km in width north to south and is
situated northwest of Chongqing [16]. The area includes 23 towns and seven subdistrict
offices. In 2019, the urban population in Hechuan District was 1.43 million. The area covers
a total of 2375.61 km2, and the construction land area is 232.55 km2, accounting for 9.92%
of the total area, with approximately 7% forest land coverage.

Hechuan District is situated at a junction of hills between the hilly Sichuan Basin and
the valley province of Chuandong; therefore, the terrain is roughly divided into parallel
ridges and gentle hills. Situated in a transition zone between gentle hills and mountains in
the basin, there are numerous slopes and deposits in the piedmont belt in the southeast
(see Figure 1). The area marks the convergence of the Jialing River, the Fujiang River and
the Qujiang River in the territory. The Jialing River is the largest river in the area, with
well-developed water systems, abundant water resources and ample rainfall [17]. The
strata in Hechuan District mainly include Paleozoic Permian (P), Mesozoic Triassic (T),
Jurassic (J) and Cenozoic Quaternary (Q). At the axes of the local anticline mountains are
several active Quaternary or Cenozoic faults, largely distributed in the Yunwushan area of a
branch of Huaying Mountain (Line 1 of Shuangfeng-Yanjing and Sanhui-Qingping-eastern
Tuchang) (Figure 1).
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2.2. Data Sources

The data used in this research were derived from 754 historical landslides in Hechuan
District (2000–2016), including: DEM raster data with a 30 m spatial resolution; geological
raster data with an accuracy of 1:200,000; land-use and administrative division vector
data with an accuracy of 1:100,000; satellite imagery raster data with a 30 m resolution
on a geospatial data cloud platform; 1:100,000 vector data via river network 1 from the
Chongqing Water Resources Bureau; a multiyear rainfall data table with an accuracy of
30 m; 1:100,000 road data from the Chongqing Municipal Transportation Commission;
Chongqing POI data obtained by web crawlers; data on rural residential areas, urban built-
up areas, nature reserves, ecological red lines, etc.; rural settlement data from the Land
Change Investigation Database; raster data with a 30 m resolution from urban built-up
areas, which were extracted from a geographical information database; and ecological red
line (natural reserves and water conservation areas) statistics from Chongqing’s Ministry
of Natural Resources. The raster data were converted to a raster corresponding to a
DEM resolution of 30 m, owing to the varied spacings and scales of the elements. Due
to the restricted land conditions in Chongqing, the standard setting of urban and rural
construction land areas could be adopted according to its own situation with floating
coefficients. Based on the delineation standard of the resolution of districts and counties in
Chongqing and in prior research [18,19], a spatial resolution of 30 m was determined in this
research, which allowed for the spatial characteristics of landslides and construction land
to be captured while reducing the complexity of the calculation. Additionally, continuous
factors were classified for further classification and assignment of values (Table 1). Based on
field surveys, expert experience and the relevant literature, the natural breakpoint method
was used to determine the threshold values for each factor and subsequently adjusted to
regional conditions to meet the requirements of the actual situation.
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Table 1. Data and data sources for landslide susceptibility zoning.

Data Source Type Accuracy

Historical landslide Chongqing Geological Monitoring Station Data table
DEM Aster satellite Raster data 30 m

Geological National Geological Archives Data Center Raster data 1:200,000
Land use Geographical Information Monitoring Cloud Platform Vector 1:100,000

Administrative Geographical Information Monitoring Cloud Platform Vector 1:100,000
River network Chongqing Water Resources Bureau Vector 1:100,000

Yearly average rainfall Geographical Information Monitoring Cloud Platform Raster data 30 m
Road Resource and Environment Science and Data Center Vector 1:100,000

Satellite image Geospatial Data Cloud Platform Raster data 30 m
POI Web crawlers Data table

Rural settlements Land Change Investigation Database Raster data 30 m
Urban built-up area Geographical Information Database Raster data 30 m

Ecological red line area Chongqing Ministry of Natural Resources Raster data 30 m

3. Development of Indicator System and Research Methodology
3.1. Indicator System for Landslide Susceptibility Assessment

Landslides are closely associated with the stratigraphy and geomorphology of moun-
tains [20], representing one of the main geological hazards in Hechuan with respect to
the safety of the area. Therefore, landslide hazards were selected in this research for the
construction of a safety index system for Hechuan District. In Reichenbach’s [21] study,
landslide factors were classified into five major categories: geology, hydrology, land cover,
landform and others. In this research, human activities were incorporated into the assess-
ment factors through field investigations and by synthesizing the realities of the densely
populated and mountainous land limitations of Hechuan District. The safety assessment
factors of landslide susceptibility in Hechuan District were established as follows: to-
pography and geomorphology (elevation, slope, degree of relief, aspect, slope position,
micro-landform, synthetic curvature, profile curvature, plan curvature, terrain roughness
index (TRI) and topographic wetness index (TWI)); geological conditions (slope type, dis-
tance from fault and lithology); environmental conditions (distance from rivers, rainfall,
land cover and NDVI); meteorological and hydrological conditions (sediment transport
index (STI) and stream power index (SPI)); and human activities (distance from roads and
POI kernel density). Furthermore, to provide a basis to evaluate the suitability of land
for construction in mountainous areas, a geospatial database was created and combined
with historical landslide data, a random forest algorithm was used to delineate landslide
susceptibility zones and a safety zone model based on RF was constructed (Table 2).

The raw data were further processed in ENVI and ArcGIS 10.6 to obtain the factor
data, and the 22 processed impact factors were reclassified according to the classification
thresholds presented in Table 2.

3.2. Indicator System and Data on the Suitability of Land for Construction

The assessment of the suitably of land for construction is affected by a variety of
factors. In this research, we referred to relevant studies, Hechuan District in Chongqing
was taken as the study area and factors were selected at four levels, namely natural, social,
ecological and safety, so as to construct an index system for the assessment of the suitability
of mountainous areas for construction. Hechuan District is located at the confluence of
three rivers in a mountainous area. Safety has emerged as a significant influencing factor
on construction land, owing to the complexity and variability of the environment. The
safety factor consists of the results of the landslide susceptibility assessment. The differing
climatic environments and production conditions in the region have influenced the living
habits and residential choices of residents. Eight indicators (elevation, slope, degree of
relief, aspect, land cover, NDVI, distance from rivers and distance to roads) were selected
to build a natural factor index system that supports scientific criteria for the applicability
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of construction land. Location conditions affect socioeconomic development, access to
information and the convenience of residents. The central city is the main supplier of
major public services, whereas rural settlements are built-up areas. In this research, social
factors were characterized in terms of distance from built-up areas and distance from rural
settlements. The ecological red line is a spatial boundary of the national territory that is
specially protected to maintain ecological Safety and ecosystem integrity [22], representing
an area where development and construction are strictly prohibited. The ecological factors
(nature reserves and important water-conservation areas) were restricted and designated
as non-construction zones (Table 3).

Table 2. Classification of factors influencing landslide susceptibility.

Type Impact Factor Number of
Classifications Classification Thresholds or Criteria

Terrain topography

Elevation (m) 10 1. <241; 2. 241~279; 3. 279~316; 4. 316~355; 5. 355~398;
6. 398~461; 7. 461~545; 8. 545~679; 9. 679~902; 10. >902

Slope (◦) 9 1. <5; 2. 5~10; 3. 10~15; 4. 15~20; 5. 20~25; 6. 25~30;
7. 30~35; 8. 35~40; 9. >40

Degree of relief (m) 7 1. <20; 2. 20~30; 3. 30~40; 4. 40~50; 5. 50~80; 6. 80~120;
7. >120

Aspect 9 1. south; 2 southwest; southeast; 3. east; west; northwest;
northeast; 4. north; 5. none

Slope position 6 1. ridge; 2. upper slope/cliff edge; 3. mid-slope; 4. flats slope;
5. down slope/cliff base; 6. valley floor

Micro landform 10

1. canyons, deeply incised streams; 2. mid-slope drainages,
shallow valleys; 3. upland drainages, headwaters; 4. U-shaped

valleys; 5. plains; 6. open slopes; 7. upper slopes, mesas; 8. local
ridges, hills in valleys;

9. mid-slope ridges, small hills in plains;
10. mountain tops, high narrow ridges

Synthetic curvature 6 1. <−1; 2. −1~−0.5; 3. −0.5~0; 4. 0~0.5; 5. 0.5~1; 6. >1
Profile curvature 6 1. <−1; 2. −1~−0.5; 3. −0.5~0; 4. 0~0.5; 5. 0.5~1; 6. >1
Plan curvature 6 1. <−1; 2. −1~−0.5; 3. −0.5~0; 4. 0~0.5; 5. 0.5~1; 6. >1

TRI 5 1. <1.05; 2. 1.05~1.1; 3. 1.1~1.15; 4. 1.15~1.2; 5. >1.2
TWI 5 1. <4; 2. 4~6; 3. 6~8; 4. 8~10; 5. >10

Geological conditions

Slope type 7
1. type I antegrade/inclined slope; 2. oblique slope;
3. oblique slopes; 4. cross slopes; 5. reverse slope;
6. type II forward/outward slopes; 7. flat slopes

Distance from fault (m) 7 1. <500; 2. 500~1000; 3. 1000~1500; 4. 1500~2000;
5. 2000~2500; 6. 2500~3000; 7. >3000

Lithology 8 1. Tlf-j; 2. P; 3. T21; 4. T3xj; 5. Jlz-2x; 6. J3sn; 7. Qp; 8. J2s

Environmental
conditions

Distance from rivers (m) 7 1. <100; 2. 100~200; 3. 200~300; 4. 300~400; 5. 400~500;
6. 500~600; 7. >600

Rainfall (mm) 8 1. <1131; 2. 1131~1160; 3. 1160~1186; 4. 1186~1210;
5. 1210~1233; 6. 1233~1266; 7. 1266~1316; 8. >1316

Land cover 9

1. woodland; 2. cultivated land; 3. water area and water
conservancy facilities land; 4. woodland; 5. industrial and mining

storage land; 6. garden plot; 7. other land;
8. land used for construction; 9. transportation land use

NDVI 6 1. <0.10; 2. 0.10~0.15; 3. 0.15~0.20; 4. 0.20~0.25;
5. 0.25~0.30; 6. >0.30

Meteorological
hydrology

STI 6 1. <20; 2. 20~40; 3. 40~70; 4. 70~100; 5. 100~200; 6. >200

SPI 7 1. <15; 2. 15~30; 3. 30~45; 4. 45~60; 5. 60~100;
6. 100~1000; 7. >1000

Human activity Distance from roads (m) 7 1. <100; 2. 100~200; 3. 200~300; 4. 300~400; 5. 400~500;
6. 500~600; 7. >600

POI kernel density 7 1. <1; 2. 1~2; 3. 2~3; 4. 3~4; 5. 4~5; 6. 5~10; 7. >10
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Table 3. Classification of contributing elements for construction land suitability evaluation.

Factor Impact Number
of Levels

Classification Threshold
or Criteria Reasons for Classification Remarks

Safety Landslide
susceptibility 5

1. very low; 2. low;
3. medium; 4. high;

5. very high
Expert experience (A)

The results of the landslide
susceptibility assessment were

combined with five levels of
classification with reference to

previous studies [23].

Nature

Elevation (m) 5
1. <270; 2. 270~335;

3. 335~447; 4. 447~709;
5. 709~1370

Natural breakpoints (B)

The natural breakpoint method
maximises the difference between

classes, and the breakpoint itself is a
suitable boundary for grading [24].

Slope (◦) 5 1. <3; 2. 3~8; 3. 8~15;
4. 15~25; 5. >25 Expert experience (A)

Slope classification with reference to
Principles of Urban Planning (3rd

edition) and previous studies [5].
Degree of relief

(m) 5 1. 11; 2. 11~20; 3. 20~31;
4. 31~46; 5. 46~125 Natural breakpoints (B) Ibid.

Aspect (◦) 5

1. south; 2. southwest,
southeast; 3. east, west,
northwest, northeast;

4. north; 5. none

Proprietary classification (C) None

Distance from
rivers (m) 5

1. <300; 2. 300~500;
3. 500~1000; 4. 1000~1500;

5. >1500
Expert experience (A)

Classification based on expert
experience and

relevant research [25].

Land cover 5

1. lands for construction;
2. grassland and unused
lands; 3. shrub; 4. forest
land and cultivated land;
5. waters, beaches, and

basic farmland

Proprietary classification (C) None

Distance from
roads (m) 5

1. <200; 2. 200~400;
3. 400~500; 4. 500~600;

5. >600
Natural breakpoints (B)

The distance of the road from the
built-up area was taken into account
on the basis of natural breakpoints.

NDVI 5
1. <0.10; 2. 0.10~0.15;

3. 0.15~0.20; 4.0.20~0.30;
5. >0.30

Natural breakpoints (B)

As aboved,
NDVI = 0 indicates rocky or bare

soil that is not suitable for building.
NDVI is graded less than 0.1 for
bare land, NDVI less than 0.3 for
low vegetation cover and suitable
for building, and between 0.1 and
0.3 according to the percentage of

area in each zone.

Society

Distance from
rural

settlements (m)
5

1. <500; 2. 500~1000;
3. 1000~2000; 4. 2000~3000;

5. >3000
Natural breakpoints (B)

The classification is based on the
spatial distribution of the

percentage of patches in rural
settlements combined with natural

breakpoints.

Distance from
built-up areas (m) 5

1. <500; 2. 500~1000;
3. 1000~2000; 4. 2000~3000;

5. >3000
Natural breakpoints (B)

On the basis of known patch sizes
of built-up land, combined with

natural breakpoints for delineation.

Ecology

Ecological red line
area (nature

reserve/important
water-conservation

sites)

1 constructive expansion
prohibited zone Proprietary classification (C) Designated as a no-build zone.

Considering the specific characteristics of Hechuan District, an expert scoring method
was adopted to comprehensively determine the grading standard value of each factor. The
indicators were classified into five levels according to accepted standards established in
previous studies [25]. The evaluation factors were classified as: the most suitable level,
with an optimal value of “1”; medium suitability, with a value of “2”; basic suitability, with
a value of “3”; unsuitable, with a value of “4”; and prohibited construction, with a value of
“5”. Additionally, the Mi weight values of indices at different levels were calculated; the
specific grading criteria are shown in Table 3.
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3.3. Research Methodology
3.3.1. Research Steps

The present research was conducted in seven steps: (1) preparation of a data inventory
for the landslide and construction land suitability assessment and generation of a geospatial
database in ArcGIS 10.6 software; (2) construction of an indicator system for landslide
susceptibility and calculation of the weights of landslide hazard impact factors using the
average Gini coefficient; (3) assessment and ranking of landslide susceptibility; (4) receiver
operating characteristic (ROC) curve analysis for accuracy and model validation to verify
the performance of the susceptibility assessment; (5) construction of an index system for
construction site suitability assessment using the results of the landslide susceptibility
assessment and the natural, social and ecological factors; (6) construction of a judgement
matrix for the development of site suitability and calculation of the rankings of the variables
using the AHP method; (7) and assignment of construction site suitability ratings according
to the weights (Figure 2).

3.3.2. Random Forest

In 2001, Breiman [26] developed the random forest model as a modern classification
and regression technique to collect data for learning and processing. Multiple samples
were obtained from the original samples after resampling by bootstrapping. RF randomly
samples the samples and features, thereby providing improved stability and accuracy
relative to traditional landslide prediction methods [22]. The output of RF is based on
multiple decision trees voting on the judgement results. The samples are trained to obtain
each classification model (u1(X), u2(X), . . . , uk(X)1–2) and by n independent decisions
(u(X,θk; K = 1,2, . . . N)) to form the RF model [22,27]. RF is tolerant of outliers and noise,
does not overfit and achieves high prediction accuracy and stability. The categorization
models are then used to build the RF model. Such an approach has been adopted in a
variety of fields, such as clustering, regression, discrimination and survival analysis, in
which variable evaluation is viral [22]. The RF in this research was composed of two trees
(positive and negative cells), each with 22 random characteristics (22 landslide condition
factors). See Equation (1) for details:

H(x) = arg maxy

k

∑
i=1

I(hi(x)) = Y (1)

where H(x) is the output classification result, hi refers to a classifier of a single decision-
making tree, Y represents the output variable and I(hi(x)) denotes the indicator function.

The random forest model was constructed using the R language package “randomFor-
est”, and ROC curves were plotted using the R package “pROC”. The landslide suscepti-
bility results constructed by the RF model were assessed using ROC curve analysis. The
area under the ROC curve can be used to quantify the accuracy of the model prediction;
the closer the ROC curve to the top left, the higher the accuracy of the model. The area
under the curve (the AUC value) refers to the area covered by the ROC curve, which can
be used to quantify the accuracy of the model. The AUC value is in the range of [0, 1], with
a higher value indicating higher model accuracy. See Equation (2).

AUC =
∑n0

i=1 ri − n0 × (n0 + 1)/2
n0 × n1

(2)

where the n0 and n1 distributions represent the number of counter and positive cases,
respectively, and the ri distribution is the ranking of the i th counter case in the overall
test sample.

The construction of the random forest model consists of the following main steps
(Figure 3).
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Figure 3. Schematic diagram of the RF algorithm.

A random forest model is constructed on the basis of N decision trees, and a decision
tree is constructed using each subset combination. Within the constructed decision trees,
node partitioning is performed using the CART algorithm. CART is based on the principle
of minimizing the Gini coefficient and randomly selecting objects to be assigned to class I
at node t based on the probability (p(i|t)). The estimated probability that an object actually
belongs to class j is p(j|t). See Equation (3) for details:

Gini =
J

∑
i 6=i

(p( i|t)p(j|t)) (3)

The random forest package within R was use to implement the random forest tech-
nique. The 754 historical landslide points were used as positive samples, the 500 m buffer
zone of the landslide points and the river area were removed as non-landslide areas and
7540 non-landslide points were randomly selected as negative samples in a ratio of 1:10 to
form the entire dataset. The training and test sets were divided into a ratio of 7:3, and for
historical slippage points, there were 5806 training sets and 2488 test sets. To determine
the accuracy of the ROC curve analysis, the RF model was trained and validated using the
tenfold cross-validation method.

The confusion matrix is the basis for ROC curves; it is represented in a standard format
for accuracy evaluation. This means of number of observations in the wrong class and the
wrong class of the classification model are counted separately, and the results are presented
in a table, which is shown below (Tables 4 and 5).
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Table 4. Table of confusion matrices.

Models
True Value Accuracy

Landslide (1) Non-Landslide (0)

Predicted value
Landslide (1) TP FP Accuracy

Non-landslide (2) TN FN Accuracy
Recall rate Recall rate Total accuracy

Table 5. Formulae.

Formula Significance

Accuracy ACC Accuracy = TP+TN
TP+TN+FP+FN

Share of all correctly judged results of the classification
model among the total number of observations

Accuracy PPV Precision = TP
TP+FP

Of all the results for which the model prediction is positive,
the proportion of model predictions that are correct

Sensitivity TPR Sensitivity = Rec = TP
TP+FN

Weight of model prediction pairs among all results for
which the true value is positive

Specificity TNR Specificity = TN
TN+FP

The proportion of model predictions that are correct among
all results for which the true value is negative

3.3.3. AHP Research Method

As proposed by Professor Saaty [28] (1980), the analytical hierarchy process (AHP)
method, in which multiple criteria are selected to make decisions, is a simple, adaptable
and practical approach to quantitatively analyze qualitative issues. The method can split a
complex problem into a number of levels and factors, thereby allowing for a comparison
between two indicators to be made to determine the degree of importance and to establish
a judgement matrix. In the AHP method, a hierarchical relationship is established between
all the elements, and the evaluation procedure is simple and easy to operate [21]. The AHP
method is used to determine the weight values of the indicators, judge the importance of
each factor, conduct comparative analysis and construct a judgement matrix. The expert
scoring approach determines the relative significance of the evaluation indicators, and a
two-by-two judgement matrix is created to compare indicators between the layers, with
the consistency of the judgement matrix then checked to ensure that there is no bias in the
two-by-two comparison process. Considering that the ecological factor is incorporated
into the no-construction zone, only a hierarchical structure model of safety, nature and
society was constructed. In the model, each evaluation factor was normalized, the relative
significance of each variable was assessed, the weight values of the three categories of
factors were identified using the AHP method and further judgements on the weights of
various factors within the two categories of nature and society were made, whereas the
weight of the safety factor was determined through the average Gini coefficient of RF. The
weight values of the indicator layer for the criterion and target layers were calculated using
YAAHP software [28,29]. By overlaying the weight maps of the influencing factors obtained
using ArcGIS10.6 with the AHP method, a geospatial data-based model of the suitability
of land for construction in mountainous areas affected by landslides is constructed. See
Equation (4).

T =
n

∑
i=1

Mi × Ri (4)

where T is the comprehensive assessment value of the suitability of the assessment unit for
construction land, Mi represents the weight value of factor i, derived via the hierarchical
analysis method, Ri denotes the i-th single factor score corresponding to the assessment
unit and n refers to the total number of factors.
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4. Results
4.1. Safety Level

The q-value of the mean Gini coefficient in the random forest explains the contribution
of the factor, that is, the degree of influence of the degree factor on the landslide. The results
show that the three factors of average multiyear rainfall, elevation and lithology had the
greatest influence on landslides (Figure 8).

Landslides are a typical dichotomous problem, and the confusion matrix can be used
to analyze the accuracy of the model. Table 6 shows the confusion matrix of the entire data
set of the random forest model. According to the confusion matrix, the constructed random
forest model exhibited a high degree of accuracy and high predictive value (Table 6).

Table 6. Confusion matrix of RF.

RF Predicted Value
True Value

Accuracy
Landslides Non-Landslide

Landslides 528 0 Accuracy: 1
Non-landslide 226 7507 Accuracy: 0.971

Recall rate: 0.700 Recall rate: 1 Accuracy: 0.972

In addition, the landslide susceptibility results constructed by the RF model were
assessed by means of ROC analysis. In this research, ROC curve analysis was performed
in R Studio software using the R language. The AUC values for the training, test and all
samples were 0.999, 0.756 and 0.989, respectively (Figure 4). The test AUC values were
greater than 0.7, indicating that the model prediction accuracy was high and stable.
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To evaluate the likelihood of landslides in the study area, a random forest model was
applied to each grid in the area. The results of the random forest model were imported
into ArcGIS 10.6, classified using the natural breakpoint method and adjusted according to
the procedures described in prior research [8,22]. Landslide susceptibility was classified
into the following five levels: extremely low, low, medium, high and extremely high
susceptibility areas (Figure 5 and Table 7).
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Table 7. Statistical table of landslide susceptibility classification.

Probability
of Landslide

Susceptibility
Level Grids Area Ratio

% Landslides Landslide Ratio
%

Landslide
Density/(Pcs/km2)

<0.06 Extremely low 1,175,389 45.91 41 5.44 0.039
0.06~0.14 Low 791,083 30.67 74 9.81 0.104
0.14~0.24 Medium 373,736 14.41 80 10.61 0.238
0.24~0.38 High 174,718 6.53 91 12.07 0.579

>0.38 Extremely high 63,634 2.47 468 62.07 8.172

The majority of the regions in Hechuan District were found to have an extremely
low or low landslide risk level. High-susceptibility zones are primarily situated in the
northeast and near water systems. Landslides are rare in hilly basins with gentle terrain,
and historical landslide areas correlate with the landslide susceptibility zones. With an
enhancement in landslide susceptibility, the proportion of areas at each level, except the
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extremely high level, decreased. The number of landslides increased gradually, with the
density strengthened, and there were a total of 753 landslide spots. The combined region of
low and very low susceptibility accounts for 76.58% of Hechuan District’s land area. The
total landslides occurred in 15.25% of the total area. Landslides were possible in 74.14%
of the land area, but regions of high and extremely high susceptibility accounted for only
9.01% of the land area.

As a crucial measure, extremely high-susceptibility areas should be largely concen-
trated along river valleys and mountains, which, to a considerable extent, affect urban
development. The area of high or extremely high susceptibility spans 208.47 km2, account-
ing for 9.01% of the total area, mainly distributed along the Qujiang and Jialing Rivers,
including Xianglong Town, Shuanghuai Town, Xiaomian Town, Shitan Town, Guandu
Town, Yunmen Subdistrict, Shuangfeng Town, Tongxi Town, Yanjing Street and Laitan
Town. Such areas are strongly affected by surface water and rainfall. The rise and fall of
river levels can result in landslide disasters during heavy rain. Landslide disasters in such
areas induce changes in the courses of rivers; endanger infrastructure, residential areas and
arable land; and have significant social impacts. The area of medium susceptibility spanned
333.62 km2, accounting for 14.41% of the total area. Here, landslide disasters endanger
infrastructure, residential areas and arable land, in addition to producing significant social
impacts. The low-susceptibility area occupies 709.95 km2, accounting for 30.67% of the
total area, whereas the extremely low-susceptibility area spans 1062.88 km2, accounting
for 45.91% of the total area. Landslide disasters in such areas mainly threaten general
facilities, residential areas and cultivated land, with a low level of risk. Differing from
high- and extremely high =0susceptibility areas, low- and extremely low-susceptibility
zones are extensively spread at lower altitudes in riverbank basins and around central
metropolitan areas.

4.2. Suitability Evaluation of Construction Lands
4.2.1. Analysis of Evaluation Results

Given the complexity of mountainous areas, there are difficulties associated with
determining the weights of evaluation factors using a quantitative assignment method.
Although the judgement of expert experience has a certain degree of flexibility, the sub-
jective assignment method can effectively adjust the weights for the land conditions of
different regions, making the regional evaluation results more relevant and reliable. The
safety factor in this research had a considerable impact in mountainous areas and was
delineated as 33.377%. The natural factor, as the resource endowment of mountainous
towns, involved more factors and had the highest weight. The social factor gradually
emerged as a significant factor for evaluation. A veto system was adopted for the influ-
ence range indicator of the ecological factor, and the area to which it belongs was directly
classified as a non-construction zone. Therefore, only the weight was calculated with the
indicators using the hierarchical analysis method. The weighting values for the indicators
of suitability of land for construction in mountainous areas were obtained with reference to
previous studies

There are two types of indices for a judgement matrix: an index of consistency (CI)
and a random consistency index (RI). The value ratios of the suitability, nature and society
factors of construction land with respect to the consistency of the matrix were calculated to
be 0.052, 0.097 and 0.000, respectively. All of the values were less than 0.1, thereby passing
the consistency test and demonstrating that the results of the evaluation index weighting
were reasonable (Tables 8–11).
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Table 8. Construction land suitability index factor weights.

Index Weight

Landslide 0.33377
Distance to built-up areas 0.09437

Distance to rural settlements 0.04719
Slope 0.09307

Distance from rivers 0.09232
Distance to roads 0.12069

NDVI 0.08149
Land cover 0.06794

Relief degree 0.02743
Aspect 0.02493

Elevation 0.01682

Table 9. Results of hierarchy analysis of suitability of construction land.

Item Eigenvector Weight Value Maximum Eigenvalue CI Value

Safety 1.001 33.377%
3.054 0.027Nature 1.574 52.468%

Society 0.425 14.156%

Table 10. AHP results for social factors.

Item Eigenvector Weight Value Maximum Eigenvalue CI Value

Elevation 0.257 3.206%

8.959 0.137

Relief degree 0.418 5.227%
Aspect 0.38 4.751%

Distance from rivers 1.408 17.596%
Land cover 1.036 12.949%

NDVI 1.242 15.531%
Distance to roads 1.84 23.002%

Slope 1.419 17.738%

Table 11. AHP results for natural factors.

Items Eigenvector Weight Value Maximum Eigenvalue CI Value

Distance to rural settlements 0.667 33.333%
2 0Distance to built-up areas 1.333 66.667%

According to the calculated weight results, as well as the classification and assignment
of each index, ArcGIS was applied to superimpose a raster layer of each factor and to
remove ecological red line space, thereby allowing for five levels of suitability for con-
struction land in Hechuan District to be obtained: the most suitable area (1), more suitable
area (2), basically suitable area (3), unsuitable area (4) and prohibited construction area (5)
(Figure 6).
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4.2.2. Suitability Zoning of Construction Lands

Using the ArcGIS10.6 platform, the aforementioned landslide susceptibility results
and natural, social and ecological factors were superimposed and calculated according to
Equation (3), with the results divided into the following zones according to the natural
breakpoint method: prohibited construction, unsuitable, basically suitable, more suitable
and the most suitable [2,30]. The ecological red line space was superimposed and divided
into prohibited construction zones, and the final results of the suitability assessment of
construction land in Hechuan District were obtained.

The suitability for construction was found to be good in Hechuan District. The suitable
area spanned 2002.07 km2, accounting for 84.28% of the total area, and the most suitable
land was distributed in urban areas, where the three rivers meet or around small towns.
The most suitable area spanned 637.18 km2, accounting for 26.82% of the total area, and
was mainly distributed in valley areas along the Jialing and Fujiang Rivers. Located at the
confluence of many rivers, Yunmen Subdistrict has a low elevation and flat terrain, with
sufficient water sources and convenient transportation. The more suitable area spanned
812.25 km2, representing 34.19% of the total area. Such areas were divided into tracts in
Zhongyunmen Subdistrict, Qiantang Town, Dashi Subdistrict, Heyangcheng Subdistrict
and wide, hilly areas in Nanjin Town and Caojie Subdistrict. Most of the areas that
cover such land are 220 m–350 m above sea level. The urban construction lands with
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basic suitability occupied 552.64 km2, accounting for 23.26% of the total area, and were
primarily found in the hilly regions outside the Huaying and Longduo Mountains. The
less suitable areas spanned 241.90 km2, accounting for 10.18% of the total area, scattered in
the mountains with high elevations and were evenly distributed between Sanmiao Town,
Yanwo Town, Sanlang Town, Longfeng Town, Taihe Town, Shayu Town, Guandu Town,
Xianglong Town and Shuanghuai Town. The prohibited construction land covered an
area of 131.65 km2, accounting for 5.54% of the total area, and mainly distributed in the
southeast area, the Huaying mountainous area and in regions in the ecological red line
area, where there is the highest forest coverage.

5. Discussion and Conclusions
5.1. Discussion
5.1.1. Assessment of Significant Factors under Regional Characteristics

An assessment of the suitability of land for construction in mountainous areas is
particularly significant for the development of towns and cities. Ying [31], Yi [32] and
Peng [19] considered the impact of geological hazards on construction land and the safety
of human life in the assessment of construction suitability in mountainous areas. Figure 7
shows the ranking of the importance of the factors in the suitability assessment of building
sites (Figure 7).The top three factors for construction land suitability in this research area
were identified using the AHP method, namely landslide susceptibility, distance from roads
and distance from built-up areas (Figure 7). Among such factors, landslide susceptibility, as
a geological hazard, is a significant indicator for assessment of the suitability of construction
land and for the assessment of fragile ecological and geological environments, which is of
considerable significance for the safety of regional residents, economic development and
ecological protection. In this research, landslide susceptibility was incorporated into the
construction land suitability assessment system from the perspective of hazards. Using
the average Gini index module of the “randomForest” package, an importance ranking
of the 22 factors of landslide susceptibility was achieved (Figure 8). According to the
observation results, the three factors of multiyear average rainfall, elevation and lithology
had the greatest influence on landslides (Figure 8). Landslides occur more often when
rainfall is in the range of 1160 mm to 1266 mm. Several studies have shown [30,31,33]
that the influence of rainfall on landslides depends largely on the amount of rainfall, in
addition to the length of rainfall, and that landslides are more likely to occur in areas of
prolonged heavy rainfall. Such parameters were all higher in the study area and were
basically consistent. Landslides are also more likely to occur when the elevation is between
241 m and 461 m, which can be attributed to such an elevation range being conducive to
human survival and a large number of human activities leading to changes in the geological
environment, thereby increasing the probability of landslides [33]. The influence of the
lithology of the strata on landslides mainly depends on the hardness, weathering and
permeability of the rocks therein. The distance from the road and the distance from built-up
areas show the significant role of geographical location with respect to the suitability of land
for construction. Hechuan District is situated in a typical mountainous region with hillsides
and limited land resources; thus, the convenience of road access becomes a significant factor
that affects the development of mountainous areas. The distance from the road indicates
road accessibility, with a greater road accessibility indicating a higher grade of construction
land suitability. Built-up areas, such as mature town development areas, have relatively
complete public service facilities and infrastructure, the economic benefits of which radiate
to the surrounding areas; thus. the distance from built-up areas is a significant indicator
in assessing the land value of construction land. As such, the importance of such factors
can serve as the foundation for the development and construction of mountainous areas.
However, at present, the safety level delineated by the random forest model is still subject
to limitations in terms of data, and the misjudgments caused by the over-representation of
non-landslides cannot yet be excluded [34]. As the survey research becomes more in-depth
and the quality of data improves, a spatial database of multiple hazards, such as landslides,
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debris flows and floods, can be constructed. Furthermore, the zoning of such hazards
should be refined in the future to clarify the inter-relationships between them to obtain
more comprehensive safety zone assessment results and to improve the accuracy of the
assessment of the suitability of land for construction in mountainous areas.
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5.1.2. Optimization of Disaster Prediction Models

Previous studies on the suitability of land for construction have mostly included
statistical listings of existing disaster prevention results, whereas the integration of planning
with geological hazard prevention and control has been neglected, thereby diminishing
the guiding value of such studies in practice. Due to management problems and a lack of
data, there is a scarcity of disaster prevention and control research. The results of previous
studies mainly apply to geological hazard prevention and control, land-use planning and
disaster prevention and mitigation. In this study, the random forest model was applied
to the case study area. Moreover, the results demonstrate that the AUC value of the ROC
curve in the training dataset was the highest, followed by the regional simulation and
the validation dataset, at 0.999, 0.756 and 0.989, respectively. The RF model exhibited
high reliability and stability. By selecting the optimal samples through 10-fold cross-
validation and screening analysis of dominant condition factors, a more efficient and
accurate random forest landslide susceptibility assessment model could be built with fewer
dominant condition factors. The construction of a landslide susceptibility prediction model
through the random forest model was the focus of the present study. The results show
that the introduction of the RF model could improve the accuracy and precision of hazard
prediction and that the RF model could be used in regions or countries with the same
topography and geological conditions. Furthermore, the RF model could contribute to
the hazard assessment of construction sites in mountainous areas, thereby reducing the
workload and improving efficiency in practice.

5.1.3. Suitability of Construction Land vs. Non-Construction Land

Construction land and non-construction land, as two types of land, have a significant
influence on the development of towns and cities. A suitability assessment of construction
land is used to classify and secure land requirements for urban development and to
balance the development costs. A random forest model was utilized in this research to
construct five levels of landslide susceptibility, to determine the safety class of the study
area and to explore the suitability of construction land on the basis of hazard assessment.
The high- and very high-susceptibility areas for landslide prediction were found to be
significant components of non-construction land, primarily belonging to the production
and mostly ecological areas. To maintain the overall ecological safety of the area, the
regional scope of the non-construction land that needs to be protected is clarified from a
“counter-planning” perspective [35]. By analyzing and investigating ecological processes,
Yu [36] used an ecological safety pattern approach to calculate the spatial extent of non-
construction land in order to delineate the ecological safety pattern level of the study area.
The prohibited areas and the unsuitable areas in the suitability assessment of construction
land in this research were mostly non-construction areas, whereas the basically suitable
areas could be incorporated into construction land or non-construction land, which needs
to be comprehensively delineated according to geological conditions. The more suitable
areas and the most suitable areas were found to be the main components of construction
land. The basic starting points for determining the suitability of construction land and
non-construction land are considerably different. The suitability of non-construction land
is assessed from the perspectives of ecological safety and economy, whereas the suitability
of construction land is assessed from the viewpoints of urban development, the impact of
natural disasters and social and economic influences on the land.

6. Conclusions

In this research, the suitability of land for construction in mountainous areas was
evaluated based on landslide susceptibility, and an indicator system was constructed that
considers the four dimensions of safety, nature, society and ecology. In response to the
drawbacks of existing methods, an attempt was made to identity the factors of landslide
susceptibility using machine algorithms based on the number and spatial location of
each indicator. Through such means, the rating of suitability of land for construction in
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mountainous areas was explored. The case study of the foregoing evaluation framework
and method was conducted in the Hechuan District of Chongqing. The research results
were as follows:

(1) The average accuracy of the tenfold cross-validation training set landslide data
reached 0.978; the accuracy of the test set reached 0.913; the accuracy of the con-
fusion matrix reached 97.2%; and the AUC values of the training test and all samples
were 0.999, 0.756 and 0.989 respectively. The historical landslide sites in Hechuan
District were mostly concentrated in highly susceptible areas, where the spatial areas
of land with high landslide susceptibility and very high landslide susceptibility were
1.98 km2 and 2.22 km2, respectively, accounting for 2.47‰ and 6.53‰ of the study
area. The areas with high landslide susceptibility were mainly concentrated in the
south and southeast valleys and near the water system, whereas landslides were less
frequent in the gentle hilly basin.

(2) The suitability of land for construction in mountainous areas was found to be most
influenced by landslide susceptibility, the distance from roads and the distance from
built-up areas. Furthermore, the annual average rainfall, elevation and lithological
factors were significant factors influencing landslides in such areas. The suitability
of land for construction in mountainous areas near the main city was promoted by
locational advantages and restricted by disasters.

(3) Under the constraints of landslide susceptibility, the Hechuan District has considerable
potential land reserves for construction in terms of more suitable areas and the most
suitable areas (accounting for 61.01% of the study area) for construction. In terms
of space, the more suitable and most suitable areas for construction were mainly
distributed in the urban area, where the three rivers converge and the surrounding
areas of small towns, showing a spatial distribution pattern characterized by a high
central part and two low sides. The basically suitable areas for construction were
mainly distributed at the buffer space on the periphery of the more suitable areas
for construction.

Compared with existing research, the proposed evaluation indicator system and
method with respect to the suitability of land for construction represent clear academic
concepts, reflecting the essence and practical value of the suitability of land for construction
in mountainous areas. The indicator system is simple and clearly structured with complete
coverage, providing a basis for research and practice concerning the suitability of land for
construction in other mountainous areas. The evaluation method is precise, easy, flexible
and practical. In exploring a more accurate and convenient evaluation framework and
method and extending the application scope of suitability evaluation in mountainous
areas, the present study overcomes the issues encountered in previous research related
to the suitability of land for construction in mountainous areas based on the perspective
of disasters. However, the presented indicator system and evaluation method are only
applicable to towns in mountainous areas with frequent disasters, and the validity thereof
in other types of land and areas should be further verified.
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Abstract: A landslide is a type of geological disaster that poses a threat to human lives and property.
Landslide susceptibility assessment (LSA) is a crucial tool for landslide prevention. This paper’s
primary objective is to compare the performances of conventional shallow machine learning methods
and deep learning methods in LSA based on imbalanced data to evaluate the applicability of the two
types of LSA models when class-weighted strategies are applied. In this article, logistic regression
(LR), random forest (RF), deep fully connected neural network (DFCNN), and long short-term
memory (LSTM) neural networks were employed for modeling in the Zigui-Badong area of the Three
Gorges Reservoir area, China. Eighteen landslide influence factors were introduced to compare the
performance of four models under a class balanced strategy versus a class imbalanced strategy. The
Spearman rank correlation coefficient (SRCC) was applied for factor correlation analysis. The results
reveal that the elevation and distance to rivers play a dominant role in LSA tasks. It was observed
that DFCNN (AUC = 0.87, F1-score = 0.60) and LSTM (AUC = 0.89, F1-score = 0.61) significantly
outperformed LR (AUC = 0.89, F1-score = 0.50) and RF (AUC = 0.88, F1-score = 0.50) under the class
imbalanced strategy. The RF model achieved comparable outcomes (AUC = 0.90, F1-score = 0.61)
to deep learning models under the class balanced strategy and ran at a faster training speed (up
to 63 times faster than deep learning models). The LR model performance was inferior to that of
the other three models under the balanced strategy. Meanwhile, the deep learning models and the
shallow machine learning models showed significant differences in susceptibility spatial patterns.
This paper’s findings will aid researchers in selecting appropriate LSA models. It is also valuable for
land management policy making and disaster prevention and mitigation.

Keywords: landslide susceptibility assessment; deep learning; machine learning; Three Gorges
Reservoir area

1. Introduction

A landslide is one of the most destructive geological disasters around the world.
Landslides are widely distributed in mountainous and reservoir bank areas, which seriously
threaten people’s lives and property safety. Landslide susceptibility assessment (LSA)
evaluates potential landslides spatially, which is an important tool for landslide prevention.
LSA selects a series of landslide influence factors and estimates the probability of landslide
occurrence. The LSA models typically work with the geographic information system (GIS)
frameworks [1,2] and are grouped into two categories: model-driven and data-driven
models. Model-driven LSA models can be expressed by mathematical formulas and are
driven by physical theories; for instance, the shallow landslide stability model (SHALTAB)
model assumes that the intensity of rainfalls remains constant and the rain seeps into the
ground completely [3,4]. For model-driven LSA models, specific geotechnical parameters
are necessary [5–7].
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According to the literature review, data-driven models are the most common methods
for LSA. The data-driven models are classified into two groups: knowledge-based models
and machine learning models. For knowledge-based models [8], domain expertise is
requested from the experts; they need to assign weights to landslide influence factors based
on their expertise or available literature [9].

Machine learning techniques play a crucial role in data-driven models, and they
are the most widely used approaches for LSA [10]. In general, machine learning ap-
proaches consist of two phases: training and testing. During the training phase, the
input features and the targets are sent into the models, and the inner parameters of the
models are fine-tuned according to some specified rules. The targets are predicted based
on the trained models during the testing phase. The representative machine learning
approaches involve frequency ratio [11], logistic regression (LR) [12,13], support vector ma-
chine (SVM) [14], Bayesian network (BN) [15], random forest (RF) [16,17], back propagation
network (BP) [18,19], and ensemble learning techniques [20,21]. These models are the so-
called shallow machine learning methods, which have the ability to handle more complex
data than knowledge-based approaches [22]. These models can be integrated with other
models to provide better performance [23]. Furthermore, it is observed that combining
data-driven machine learning methods with qualitative analysis can improve the reliability
of LSA models [24].

In recent years, deep learning approaches have demonstrated surprising feature
extraction and data fitting capabilities and they are applied in the fields of computer
vision [25], natural language processing [26], autopiloting [27], and intelligent medicine [28].
Recent literature describes deep learning approaches as a potent tool for LSA, attracting the
interest of numerous researchers [29–32]. Prior research has demonstrated that LSA models
based on deep learning techniques outperform LSA models based on shallow machine
learning techniques [33,34]. The convolutional neural network (CNN) is the most widely
used deep learning algorithm [33]. The authors of [35] applied CNN to Jiuzhaigou, Sichuan
province, China, and verified that CNN achieved better performance compared with multi-
layer perceptron (MLP). The authors of [36] developed a 1D-CNN with a high dropout
rate to evaluate landslide susceptibility in South Korea. The results showed that 1D-CNN
outperformed the artificial neural networks (ANN) and SVM because of its sophisticated
architecture. Other deep learning approaches, including deep belief networks (DBN) and
recurrent neural networks (RNNs), were also applied for LSA and achieved promising
performances [30,32].

In the real world, the number of non-landslide samples is far more than the num-
ber of landslide samples. Many researchers have examined various LSA models, and
most of them have utilized a balanced sampling technique in the training stage, which
involves selecting an equal number of data from both landslide and non-landslide oc-
currences at random [37]. Without a doubt, this sampling technique is quite useful and
effective [38,39]. However, the sampling technique introduces additional complexity to
LSA models. A class-weighted strategy is a simple and effective solution to address the
problem of imbalanced data in LSA [40]. The class-weighted strategies are mainly dis-
cussed in conventional machine learning LSA models and rarely reported in deep learning
LSA models. Are the class-weighted strategies still effective for the deep learning LSA
models? Additionally, in the scenario of extremely imbalanced data, do the deep learning
LSA models outperform conventional shallow machine learning LSA models? To bridge
this gap, the real-world matched imbalanced data were used as the training dataset to
compare the landslide and the non-landslide evaluation performances based on shallow
LSA models and deep LSA models. The Three Gorges reservoir area was chosen as the
study area in this paper, which then employed the SRCC approach to assess the correlation
between various landslide influence factors, and finally selected the informative factors to
build LSA models. Two conventional shallow machine learning models, LR and RF, and
two typical deep learning models, DFCNN and LSTM, were employed as LSA models. The
performances of these models were assessed using the area under curve (AUC) and the
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F1-score for various landslide to non-landslide class-weight ratios. Finally, this research con-
cludes with some insightful recommendations for the selection of LSA models based on the
experimental findings.

2. Materials
2.1. Study Area

The study area is located in the Zigui-Badong section of the Three Gorges Reservoir
area, Hubei Province, China, with a longitude between 110◦15′51′′ E and 110◦52′33′′ E
and a latitude between 30◦51′21′′ N and 31◦5′1′′ N (Figure 1). There are a large number
of mountains, valleys, and hills in the study area, with a total area of 662.671 km2 and
a maximum altitude of 2004 m. The main stream of the Yangtze River flows through
the whole area. Landslides are mainly distributed on both sides of the main stream and
tributaries of the Yangtze River. According to the field survey data, there have been
332 identified slides (stable and unstable), with a total area of about 4210 m2. These
historical landslides include soil landslides, rock landslides, rock and soil mixed landslides,
and other types of landslides, which accounted for 53%, 37%, 2%, and 8% of the total
area, respectively.
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Figure 1. Location of the study area and the landslides’ distribution.

The study area is mainly located in the pre-Nanhua metamorphic basement area
at the core of the Huangling dome and the surrounding sedimentary cover area in the
south, which belongs to the Yangtze Craton core area in South China. The strata in the
study area are well developed and gradually new from east to west. The strata are mainly
composed of the Badong Formation. The principal composition of the Badong Formation is
an argillaceous rock with low mechanical strength and weak weathering resistance, which
makes the formation prone to geological disasters. The Badong Formation in the study area
belongs to the middle Triassic (Figure 2). The overlying strata are the Xujiahe Formation,
Jiuligang Formation, and Shazhenxi Formation of the Upper Triassic, and the underlying
strata are the Jialingjiang Formation of the Lower Triassic.
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Figure 2. Geological map of the study area.

The study area has abundant rainfall, and the monthly average rainfall can exceed
1000 mm. Heavy rainfall leads to a considerable increase of water content in soil, which is a
key influence factor inducing landslides. Meanwhile, the Xiannvshan fault, the Niukou
fault, and other small faults are also located in the study area. The rock stratum along the
fault zone is squeezed and stretched, and the stratum instability increases, which controls
the generation of landslides around the fault zone.

2.2. Data Source

In this research, Landsat 8 OLI remote sensing images (2013) were used to extract the
land cover factor, and a 1:50,000 geological map was utilized to derive the geological and
hydrological related factors. Elevation data were derived from an ASTER GDEM V2 image,
and rainfall data were collected from Climate Hazards Group InfraRed Precipitation with
Station data (CHIRPS) (2013). Seismic data were collected from 1978 to 2013. In addition,
landslide inventory data from field surveys were available. On the basis of the original
data, all influence factors were vectorized, rasterized, and converted into raster layers prior
to model computation. All the influence raster layers were resampled to 30 × 30 m using
the nearest neighbor sampling technique to match the resolution of elevation data and
Landsat images.

3. Methodology

In the present study, the LSA modeling involves four principal steps (Figure 3):
(1) collecting the raw data, (2) data preparation, which includes landslide influence fac-
tors generation, factors standardization, factor correlation analysis and data splitting,
(3) modeling based on two shallow machine learning models and two deep learning
models, (4) performance evaluation and landslide susceptibility zoning of the study areas.
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3.1. Landslide Susceptibility Models
3.1.1. Logistic Regression

Logistic regression (LR) has been widely used in landslide susceptibility assess-
ment [41–43]. In general, y = w1x1 + w2x2 + . . . + wnxn + b is used for the linear fitting of
data. Landslide susceptibility assessment is a nonlinear binary classification problem. Thus,
a nonlinear mapping is required to be applied to y. The sigmoid function is generally used
to add nonlinear characteristics to y. The sigmoid function is defined as Equation (1) [44].

g(y) =
1

1 + e−y =
1

1 + e−(w1x1+w2x2+...+wnxn)
(1)

The above equation will make the model’s output range from 0 to 1. An output value
close to 0 means samples are classified as non-landslide. An output value close to 1 means
samples are classified as landslides. To facilitate calculation, the logarithm of the above
equation is usually taken.

3.1.2. Random Forest

Random forest (RF) [45–47] is an ensemble learning model that integrates multiple
weak decision tree models to form a robust classification model. RF picks the input samples
and features randomly, so it can avoid over-fitting problems to a certain extent and has
good anti-noise abilities. The RF construction processes are summarized as following steps:

(1) Random sample selection. Assume that the total number of samples is N and there are
m decision trees in RF; to create subset Ns, select s samples from N samples randomly;
a total of m sample subsets are constructed.
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(2) Random feature selection. Assume that the total number of features is F, and h
features are selected from the F to form a feature subset Fh. The optimal feature is
generated from the feature subset Fh when the decision tree splits each time.

(3) Classifier voting. m decision trees produce a total number of m classification results.
The class with the highest votes is used as the final prediction class.

3.1.3. Deep Fully Connected Neural Network

Conventional shallow neural networks generally consist of three layers, which are the
input layer, the hidden layer, and the output layer [48]. There are connections between
the nodes of the previous layer and those of the following layer. The data fitting ability of
a three-layer neural network is limited due to its shallow structure in practice. The deep
fully connected neural network (DFCNN) builds a deeper structure by adding extra hidden
layers to the basic three-layer structure. The structure of the DFCNN is shown in Figure 4.
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Figure 4. Architecture of DFCNN.

The input of the network is [x1, x2, · · ·, xn], and the weights w and the bias b are
generally applied to the inputs. To make the neurons have nonlinear mapping capabilities,
it is common to send the outputs of the neurons to an activation function, σ. The process
can be expressed by the following Equation (2) [49].

h = δ

(
n

∑
i=1

wixi + b

)
(2)

The commonly used activation functions are the sigmoid function, the tanh function,
and the rectified linear units (ReLU) [50] function. Since the sigmoid function and tanh
function have the problem of gradient vanishing, the ReLU function was adopted in this
article. The derivative of ReLU is 1 while the inputs are greater than 0, which maintains the
gradient without decay. The ReLU function alleviates the gradient vanishing problem to a
certain extent. The definition of the ReLU function is indicated by Equation (3).

f (x) =
{

x, x > 0
0, x < 0

(3)

Since landslide susceptibility assessment is a binary classification problem, the last
output layer is connected to a sigmoid function that outputs the probability value for
each class.

3.1.4. Long Short-Term Memory Neural Network

A long short-term memory (LSTM) neural network [51] is a special recurrent neural
network (RNN) [52]. An RNN has a loop in the hidden layer, which sends the information
from the previous hidden layer into the current hidden layer. It represents that there exists
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a connection between the nodes at different time points. However, for long sequences, a
RNN still has the gradient vanishing problem. To address this problem, LSTM adopts a
gating mechanism to control the state of information flow, which is called “memory block”.
There are three types of gating units in the memory block: input gate, forget gate, and
output gate. The input gate selectively retains the essential information, the forget gate
filters the irrelevant or interfering information, and the output gate integrates information
together and outputs them. The architecture of the memory block is indicated in Figure 5.
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In Figure 5, xt represents the original input at time step t, ht−1 is the hidden layer
state transmitted from time step t− 1, and Ct−1 is the memory block state transmitted at
time step t− 1. After passing through the memory block, three results, yt, ht and Ct, are
generated, which are the class output at time step t, the hidden layer output at time step t,
and the memory block state output at time step t, respectively. Sigmoid and tanh activation
functions are used in memory blocks to obtain nonlinear mapping abilities.

3.2. Landslide Influence Factors

This paper adopted six types of landslide influence factors based on prior
research [53,54] and the real situation of the study area. These include land cover, ge-
ography, hydrology, geology, earthquakes, and rainfall. The extraction of factors was
conducted using GDAL, SAGA, QGIS, and ArcGIS (Table 1).

• Land cover includes land use and vegetation coverage in this study. Land use is an
indicator of the intensity of human activity. In regions where human activities are
violent, slope instability rises. Land uses are exacted by pixel classifications from
Landsat 8 OLI images and they are then validated by a public dataset [55]. The overall
validation accuracy of land use is 89.8%. To make the land use results more reliable,
visual interpretation is used to correct misclassifications. Plant roots hold soil and rock
in place, and absorb water in the soil at the same time. It usually exerts a positive
effect on landslides [56]. The vegetation coverage is computed based on the dimidiate
pixel model and normalized difference vegetation index (NDVI).

• Topography is an essential condition to control the development of landslides [56].
The slope, aspect, slope form, terrain surface texture, terrain ruggedness index, and to-
pographic curvature are derived from the elevation. It must be noted that the bedding
structures are a combination of topographic conditions and geological conditions. The
bedding structures are classified into six types according to the previous literature [57].

• Hydrological conditions are also an important factor influencing the occurrence of
landslides in the study area [58]. The rivers erode the riverbed on both sides, making
the slope unstable. Thus, the landslides in the study area are mainly distributed on
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both sides of the river. Drainage area, flow path length, stream power index, and
distance to rivers are used for LSA modeling.

• Geological conditions play a decisive role in the development of landslides and are
important internal controlling factors. The faults destroy rock formations and affect
their stability [59]. The closer to the faults, the greater impact on the rock formation.
The geological factors including the lithology and the faults are mainly exacted from
geological maps by vectorization.

• Earthquakes squeeze and stretch the formation, causing huge deformations of the
formation and resulting in drastic changes in the geological environment, and finally
affect the stability of the slope [60]. The earthquake data were collected from earth-
quake monitoring sites and then imported into GIS software for further processing.

• Rainfall affects the water content in the soil and it is one of the main factors that
trigger landslides [61,62]. Short-term heavy rainfall may lead to soil erosion, an
increase in surface runoff, and a reduction in the soil’s and rock’s absorption capacity.
Simultaneously, the rainfall causes fluctuations in reservoir water levels, and the static
and dynamic water pressures vary accordingly, aggravating the slope further.

Different factors, regardless of whether the original data source is a raster layer or
a vector layer, were converted into 30 × 30 m raster layers eventually. The influence
raster layers are shown in Figure 6. The river area is masked from the original layers.
The influence factor layers and the landslide inventory layer were aligned and stacked
by geographical location in GIS software. It must be noted that each landslide influence
factor with continuous values was reclassified into several classes in most of the previous
literature [16,63]. However, the continuous landslide influence factors were not reclassified
in this study and they were directly fed to the LSA models. Thus, the reclassification
processes of factors were performed implicitly by the LSA models.

Table 1. Landslide influence factors, the exaction tools used, and their variable types.

Data Source Type Exaction Tools Variable Type Influence Factor

Landsat images Land cover

Preprocessing, vegetation coverage
estimation based on dimidiate
pixel models, and implemented
using python in ArcGIS

Continuous Vegetation coverage

Preprocessing, pixel classification
in QGIS Discrete Land use

DEM Topography

Direct utilization Continuous Elevation

Model calculation based on the
terrain analysis tool of GDAL Continuous Slope

Model calculation based on the
terrain analysis tool of GDAL Continuous Aspect

Model calculation using curvature
tools of SAGA Discrete Slope form

Model calculation using the terrain
analysis tool of SAGA Continuous Terrain surface texture

Model calculation using the terrain
analysis tool of SAGA Continuous Terrain ruggedness index

Model calculation using curvature
tools of SAGA Continuous Topographic curvature

Vectorization, rasterization, and
calculation based on slope and
aspect in QGIS

Discrete Bedding structure
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Table 1. Cont.

Data Source Type Exaction Tools Variable Type Influence Factor

DEM
Landsat image Hydrological

Model calculation using terrain
analysis—hydrology tool of SAGA Continuous Drainage area

Model calculation using terrain
analysis—hydrology tool of SAGA Continuous Flow path length

Model calculation using terrain
analysis—hydrology tool of SAGA Continuous Stream power index

Model calculation based on
proximity (Raster distance) tool
of QGIS

Continuous Distance to rivers

Geological map Geological

Vectorization, rasterization, and
reclassifying in QGIS Discrete Lithology

Vectorization, rasterization, and
model calculation based on the
proximity (raster distance) tool
of QGIS

Continuous Distance to faults

Earthquake
monitoring sites Earthquake Model calculation using TIN

interpolation in QGIS Continuous Earthquake magnitude

Rainfall data Rainfall Direct utilization Continuous Rainfall
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3.3. Spearman Rank Correlation Coefficient 

The Pearson correlation coefficient (PCC) is usually used to measure the linear cor-

relations of different datasets [64]. However, landslide influence factors have intricate 

nonlinear relationships with each other. To eliminate redundant features and reduce 

noises, the Spearman rank correlation coefficient (SRCC) is employed to select the influ-

ence factors with strong predictive ability in LSA. SRCC can be applied to both continuous 

factors and discrete factors. The computation of SRCC is similar to the computation of 

PCC. The difference is that the SRCC calculations use rank factors rather than raw factors 

[65]. The SRCC is defined as Equation (4). 
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(e) aspect, (f) slope form, (g) terrain surface texture, (h) terrain ruggedness index, (i) topographic
curvature, (j) bedding structure, (k) drainage area, (l) flow path length, (m) stream power index,
(n) distance to rivers, (o) lithology, (p) distance to faults, (q) earthquake magnitude, (r) rainfall.

3.3. Spearman Rank Correlation Coefficient

The Pearson correlation coefficient (PCC) is usually used to measure the linear cor-
relations of different datasets [64]. However, landslide influence factors have intricate
nonlinear relationships with each other. To eliminate redundant features and reduce noises,
the Spearman rank correlation coefficient (SRCC) is employed to select the influence factors
with strong predictive ability in LSA. SRCC can be applied to both continuous factors
and discrete factors. The computation of SRCC is similar to the computation of PCC. The
difference is that the SRCC calculations use rank factors rather than raw factors [65]. The
SRCC is defined as Equation (4).

SRCCX,Y =
cov(R(X), R(Y))

σR(X)σR(Y)
=

E
[(

R(X)− µR(X)

)(
R(Y)− µR(Y)

)]

σR(X)σR(Y)
(4)

where the cov(R(X), R(Y)) is the covariance of the two variables, the σR(X) and σR(Y) are
the standard deviations of the two variables, whereas µR(X) and µR(Y) are the mean values
of the two variables. The absolute value of SRCC ranges from 0 to 1, whereas 0 corresponds
to a weak linear correlation and 1 corresponds to a strong linear correlation.

3.4. Performance Evaluation

Since the proportion of landslide area was relatively small compared with the whole
study area, the landslide susceptibility assessment is a typical class imbalanced classification
task. The non-landslide area was much larger than the landslide area. The ratio of non-
landslide to landslide in the study area was up to 15:1. Consequently, using the accuracy
to evaluate the landslide susceptibility performance would result in the model preferring
to identify the samples as non-landslide zones. Non-landslide samples were defined as
the negative class, and landslide samples were defined as the positive class. Four types of
prediction results were defined for landslide and non-landslide events. TP (true positive)
denotes the landslide sample is classified as the landslide, and the prediction is correct.
FP (false positive) denotes the non-landslide sample is classified as the landslide, and the
prediction is incorrect. TN (true negative) denotes the non-landslide sample is classified as
the non-landslide, and the prediction is correct. FN (false negative) denotes the landslide
sample is classified as the non-landslide, and the prediction is incorrect.
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1. F1-score

Recall =
TP

TP + FN
(5)

Precision =
TP

TP + FP
(6)

F1 = 2× Precision× Recall
Precision + Recall

(7)

Recall is the proportion of correctly predicted landslides relative to the actual land-
slides (Equation (5) [66]). Precision is the proportion of correctly predicted landslides
among all the data predicted as landslides (Equation (6) [66]). The cost caused by the
misclassification of landslides is relatively larger than that of the misclassification of non-
landslide. Thus, the recall value can be used to measure whether the landslide prediction is
comprehensive. However, recall as the evaluation criterion will make the model tend to
predict more samples as landslides, resulting in a high false positives rate. The F1-score is
the harmonic average of recall and precision to avoid the model being completely inclined
to a certain class, as shown in Equation (7) [67]. Therefore, the F1-scores were used as the
evaluation criteria for LSA results.

2. Receiver operating characteristic curve

The x-axis of the receiver operating characteristic curve (ROC) [68] is the false positive
rate (FPR), and the y-axis is the true positive rate (TPR). FPR and TPR are defined in
Equations (8) and (9), respectively.

FPR =
FP

FP + TN
(8)

TPR =
TP

TP + FN
(9)

When the sample distribution changes, the ROC curve remains stable. Therefore, it is
objective to measure the results of landslide susceptibility with dramatic changes in sample
distributions. To quantify the ROC curve, the area under curve (AUC) is used to evaluate
the performance of the LSA models. The value of AUC ranged from 0 to 1. A high AUC
value corresponds to superior model performance, whereas a low AUC value corresponds
to inferior model performance. In general, the AUC value of the model was greater than
0.5. The prediction result of the model was worse than that of a random guess when the
AUC value was less than 0.5.

3.5. Assessment Units

The common assessment units for LSA can be summarized into three types: raster
pixel units, grid units, and slope units [69,70]. In this paper, raster pixel units were chosen
as the assessment units. Each raster pixel unit represents a vector [x1, x2, · · · , xn, y], where
xi denotes the value of a landslide influence factor and y denotes the target value at a
specified pixel, respectively. Since raster layers cannot be fed directly to a model, the
combined raster layer (including the influence factor layers and landslide inventory layer)
was exported to a two-dimensional table. The conversion process was as follows: (1) Create
a polygon and convert it into a raster layer (called Ls) with the same extent as the study
area. (2) Convert the Ls into a point layer Lp. (3) Exact the pixel values of the combined
raster layer (called Lc) into the attribute table of the point layer Lp. The rows of the attribute
table represent landslide samples, and the columns of the attribute table represent different
landslide features.
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3.6. Factors Standardization

Different factors have different dimensions, and their values vary widely. Some
influence factors are discrete values, whereas other influence factors are continuous values.
The discrete factors were mapped to numeric values. In order to reduce the impacts of
dimensions on model performances, all factors were normalized by Equation (10) [71].

z =
x− x

σ
(10)

where x is the value of the given factor, x is the mean value of the given factor and σ is the
standard deviation of the given factor.

3.7. Class Weighted Strategy

For the class imbalanced problem, the LSA models tended to predict the minority
class (non-landslide) as the majority class (non-landslide) to obtain better overall accu-
racy. This dramatically diminished the reliability of the LSA models. The class-weighted
strategy assigns different penalty weights for the majority class and the minority class,
respectively [40]. For example, the class weight ratio (non-landslides vs. landslides) of
1:4 means that the penalty intensity for incorrectly predicting landslides is four times
higher than that for incorrectly predicting non-landslides. This mechanism can correct the
prediction preferences of the LSA model. Since there was a high ratio of non-landslide
samples to landslide samples in the study area, two training strategies were employed:
(1) A class balanced strategy; that is, the weights of landslides were greater than the weights
of non-landslides. A high weight ratio means the model tends to classify more samples as
landslide-prone zones. A low weight ratio leads to the number of misclassified landslide
samples increasing. In order to find out the best class weight, the weight ratio of landslides
to non-landslides was set at a range of 1 to 15. (2) A class imbalanced strategy; that is, the
weights of landslide and non-landslide were handled by the model itself. Generally, the
weight ratio was 1:1, which indicated the majority class (non-landslide) and the minority
class (landslide) had identical class weights. The model tended to predict more samples
as non-landslide to achieve better accuracy. However, it was easy to miss detecting some
landslide areas. The two training strategies were compared using the evaluation criteria.

3.8. Experiment Setup

A total of 636,190 pixel-based units were generated and they were used as the entire
dataset. The study area was divided into ten parts. Parts 1~6 was the training dataset, parts
7~8 was the validation dataset, and the rest of parts 9 ~10 was the testing dataset (Figure 7).
The experiment adopted the class balanced strategy and the class imbalanced strategy. The
training device was a personal computer with an AMD 5800 CPU, 32GB of memory, and
GeForce RTX3060 12GB GPU. LR and RF were trained on the CPU with parallel settings.
For DFCNN and LSTM, the GPU was also used to accelerate the training process. The
LR and RF were implemented using the scikit-learn 0.24.2. LR was implemented using
LogisticRegression that was built in scikit-learn and newton-cg was used to optimize the
algorithm parameters. The maximum iteration of LR was set to 100. RF was implemented
using RandomForestClassifier that was built in scikit-learn. Since the distribution of the
testing data and the training data may have been quite dissimilar and large tree depths are
prone to overfitting, a tiny subset of the study area with significant changes was employed
in the pre-testing. The pre-testing results demonstrated that a small tree depth could
effectively avoid overfitting and achieve better performances. Thus, the maximum depth
of the RF trees was set to 10 based on the outcomes of the preliminary test. The DFCNN
was implemented with 4 hidden layers using Keras 2.6.0. Each hidden layer consisted of
8 nodes and was connected to the ReLU activation function. LSTM consisted of 6 LSTM
layers and a fully connected layer. The ReLU activation function also was employed for the
hidden layer. Both LSTM and DFCNN were trained 200 times.
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4. Results
4.1. Performances of Different Class Weights

Different class weights lead to changes in model performances. Figure 8 denotes
that with the change of class weights, the AUC and F1-score of deep learning models
(DFCNN and LSTM) fluctuated without any obvious upward or downward trend. The
AUC values of LR remained stable and nearly constant under different class weights. The
F1-scores of LR achieved the best performance at class weights of 1:4 and 1:5, and then the
performances decreased substantially and gradually. The AUC values of RF fluctuated
slightly with different class weights, while F1-scores climbed gradually with increasing
class weights, reaching a maximum at class weights of 1:4 and 1:5, and then maintaining
small fluctuations. The class weight of 1:4 was chosen to construct the prediction model
under the balanced strategy, while the class weight of 1:1 was used to build the prediction
model under the imbalanced strategy.
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4.2. Correlations of Influence Factors

SRCC was employed to establish the most related landslide influence factors. Figure 9
suggests that the stream power index and the drainage area (SRCC = 0.92), the stream
power index and the slope form (SRCC = −0.51), the slope form and the drainage area
(SRCC = −0.58), the distance to rivers and the elevation (SRCC = 0.80), the terrain rugged-
ness index and the slope (SRCC = 0.67), the rainfall and the earthquake magnitude
(SRCC = 0.61) were highly correlated, with the absolute SRCC values greater than 0.5.
This implies that there may have existed redundant information in these paired landslide
influence factors. To explore whether these highly correlated landslide influence factors
would affect the performances of the LSA models, these paired influences were first re-
moved separately and then removed simultaneously. Thus, there were 15 scenarios in total,
which are shown in Table 2.

Forests 2022, 13, x FOR PEER REVIEW 20 of 33 
 

 

 

Figure 9. SRCC between landslide influence factors and the landslides. 

Figure 10 illustrates the performance of these 14 scenarios under a class balanced 

strategy (class weight ratio is 1:1) and a class imbalanced strategy (class weight ratio is 

1:4). In most scenarios, removing some influence factors in the highly correlated factor 

pairs did not result in significant losses of model performances. However, there were 

some exceptions. In scenario C-, the AUC values of the four models decreased signifi-

cantly. Similarly, the F1-scores of four models also dropped dramatically in scenario C-. 

This demonstrates that the influence factors involved in scenario C- exerted a considerable 

influence on the occurrence of landslides. They were indispensable in the modeling pro-

cess. 

Figure 9. SRCC between landslide influence factors and the landslides.

147



Forests 2022, 13, 1908

Table 2. Scenarios of removing highly correlated influence factors.

Scenario Influence Factors Removed

Base All factors are used
A Stream power index
A* Drainage area
A- Stream power index, drainage area
B Slope form
B- Slope form, drainage area
C Distance to rivers
C* Elevation
C- Distance to rivers, elevation
D Terrain ruggedness index
D* Slope
D- Terrain ruggedness index, slope
E Rainfall
E* Earthquake magnitude
E- Rainfall, earthquake magnitude

Figure 10 illustrates the performance of these 15 scenarios under a class balanced
strategy (class weight ratio is 1:1) and a class imbalanced strategy (class weight ratio is
1:4). In most scenarios, removing some influence factors in the highly correlated factor
pairs did not result in significant losses of model performances. However, there were some
exceptions. In scenario C-, the AUC values of the four models decreased significantly.
Similarly, the F1-scores of four models also dropped dramatically in scenario C-. This
demonstrates that the influence factors involved in scenario C- exerted a considerable
influence on the occurrence of landslides. They were indispensable in the modeling process.Forests 2022, 13, x FOR PEER REVIEW 21 of 33 
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4.3. Landslide Susceptibility Results

The above experimental results show that the most stable results could be achieved
by using the original influence factors. Therefore, the original landslide influence factors
were finally used to compare the performances of the four models under the balanced
strategy and the imbalanced strategy. Their performances are shown in Table 3. All models
achieved high AUC values under two distinct strategies in Figure 11. Therefore, it was not
reliable to evaluate the performances of LSA models using the AUC values alone. Under
the class imbalanced strategy, the F1-scores of the deep learning models were significantly
better than that of the shallow models, while no significant performance differences were
observed between the two shallow models. Similarly, no noticeable performance differences
were observed between the two deep learning models. Compared with the performances
under the class imbalanced strategy, the AUC and F1-score performances of the deep
learning models under the class balanced strategy did not change significantly, while the
F1-score performances of the shallow models had huge improvements. The improvement
of the RF model was more pronounced relative to the LR (up to 0.11).

Table 3. Performances of four models under the imbalanced strategy and balanced strategy.

Model
AUC F1-Score

Imbalanced Balanced Imbalanced Balanced

LR 0.89 0.89 0.50 0.58
RF 0.88 0.90 0.50 0.61

DFCNN 0.87 0.89 0.60 0.62
LSTM 0.89 0.89 0.61 0.61
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The evaluation results of the models were classified into four susceptibility classes us-
ing an equal intervals scheme; namely, very low (<0.25), low (0.25~0.5), moderate (0.5~0.75),
and high (>0.75). The experimental results of the four models were connected to the raster
pixel unit layer to produce susceptibility images and were compared with historical land-
slide data for validation. The results of the landslide susceptibility based on the testing
dataset are indicated in Figures 12 and 13. The high-risk areas predicted by RF, DFCNN,
and LSTM models were distributed on both banks of the river, which is consistent with
reality. For the shallow machine learning models, the area of high-risk and moderate-risk
regions predicted under the class balanced strategy was significantly higher than those
predicted under the class imbalanced strategy. For the deep learning models, the area of
high-risk and moderate-risk regions predicted under two different class weighting strate-
gies was nearly identical. Compared with the landslide distribution predicted by deep
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learning models, the shallow machine learning models predicted wider distributions of
landslides and more differentiated hazard hierarchies. It can be found that there was a
significant difference in the susceptibility patterns between the deep learning models and
shallow machine learning models.
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5. Discussion
5.1. Comparison of Performances

Figure 12 demonstrates the high-risk areas predicted by the deep models had a higher
overlap with the historical landslides, and this is consistent with those demonstrated by the
performance evaluation metrics in Table 3. The AUC values of the shallow models slightly
outperformed the deep learning model under the class imbalanced strategy. However,
the F1-scores of the deep learning models outperformed the shallow machine learning
models by an increase of 0.10 to 0.11. These results have some commonalities with those
reported in previous studies. Deep learning models do not always outperform shallow
models in AUC performances; this is especially the case with the RF model among the
various shallow models, which is reported to be superior to the deep learning models in
terms of AUC values in some cases [72]. Meanwhile, the deep learning models generally
achieve better F1-score performances compared to the shallow models [73]. Thus, the deep
learning models still outperformed shallow models in terms of the overall performances.
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It is worth mentioning that in previous research, sampling techniques were often used to
obtain roughly equal numbers of landslide and non-landslide samples [74]. In this study,
no sampling techniques were used and the performances of deep learning models were
still similar to those in previous studies. It might be required to investigate the necessity of
sampling techniques in deep learning LSA models in the future.

When the class balanced strategy was applied, the F1-scores of LR and RF rose rapidly,
which indicates a substantial improvement in predicting high-risk regions. The proportion
of moderate-risk predicted by LR increased from 1.57% to 6.81%, and the proportion of high-
risk predicted by LR increased from 0.23% to 2.32%. Meanwhile, the proportion of low-risk
decreased significantly from 92.10% to 78.26% (Figure 14). Similar trends were observed
in the results of the RF. These phenomena verify the effectiveness of the class-weighted
strategy for shallow machine learning models. When the class balanced strategy was
adopted, the proportion of very low-risk, low-risk, and moderate-risk predicted by DFCNN
and LSTM varied slightly and the overall performances of deep learning models were not
significantly improved compared with the class imbalanced strategy. This phenomenon
reveals that the two deep learning models were more robust to varying class weights than
the conventional shallow machine learning methods. This is because deep learning models
have more intricate connections between nodes in different layers, which can represent
more complex mapping relations, and have stronger anti-interference abilities. However,
the deep learning model also has some shortcomings. It is evident that the deep learning
model predicted a small area of low-risk zones and moderate-risk zones, and had a weak
predictive power for potential landslides, which may lead it to miss detection of landslides
and cause problems for disaster management and decision making. Compared with deep
learning models, LR and RF had powerful abilities to explore unknown regions while
reliably predicting high-risk areas.
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5.2. Susceptibility Spatial Patterns

The susceptibility spatial patterns of shallow models (LR and RF) and deep learning
models (DFCNN and LSTM) were different. In the cases of deep learning models, high-risk
areas were surrounded by pure very low-risk areas, and the proportion of the moderate-
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risk regions was quite low. However, in the case of shallow models, high-risk areas were
surrounded by a much larger proportion of moderate-risk and low-risk areas compared to
the deep learning models, and the deep learning models obtained more accurate results in
high-risk landslide areas. The results of shallow models had richer hierarchies than deep
learning models. This indicates the shallow models are suitable for scenarios requiring
hierarchical emergency response. The deep learning models generated more accurate pre-
dictions of high-risk landslide areas, which represents that deep learning models are more
suitable for scenarios that need precise investigations and specified treatments. However,
neither the deep learning models nor the shallow models can completely predicted all
landslide zones, and all of these models missed some potentially dangerous landslides.
It is worth noting that there were also some regions (red rectangle in Figures 12 and 13)
that were predicted as risk zones by two models (LR and RF), but these regions are not
marked in the historical landslide survey data. These parts may be future high-risk zones
that require some precautions by decision makers.

5.3. Influences of Class Weights

Since LSA is a problem of imbalanced data classification, it is usually considered
that class weights can improve the reliability of the evaluation results. Figure 8 illustrates
that class weights had a negligible impact on deep learning models. In contrast, class
weights had a tremendous impact on the shallow models and can substantially improve the
balanced performances between landslides and non-landslides. However, with the class
weights increase of the minority class, the F1-score values of the shallow models (LR and
RF) first increased and then decreased. This is due to the fact that with the change of class
weights, the shallow model can predict landslides more accurately. When a certain limit is
exceeded, it leads to a decrease in the performance of the predicted non-landslides, thus
reducing the overall performance. It can be concluded that determining the appropriate
class weights is critical for shallow models when faced with LSA problems in unknown
zones. The optimal class weight reported by [40] differs from this study. This implies that
the optimal class weights vary with the dataset and the class weighted strategy usually
exerts a positive effect on the shallow machine learning models. Typically, the optimal class
weight is determined by conducting numerous tests on existing historical data. However,
this way of obtaining the optimal class weights becomes less reliable when the disparities
between the known area and the evaluated area are too large. This difficulty is an important
reason that prevents the widespread use of class-weighted strategies in LSA. In scenarios
where the training data and test data are very different, it is preferable to employ a well-
trained deep learning model.

5.4. Model Evaluation and Factors Processing

The AUC value of each model did not vary tremendously under the two strategies.
This suggests that AUC is not feasible as a single evaluation metric for LSA models. It is
necessary to use multiple model evaluation metrics. We employed the F1-score as the main
metric for evaluating the model performances. Nevertheless, high F1-score values prefer to
predict more samples as landslide areas, which may raise the cost of landslide prevention.
Determining the appropriate F1-score is a tricky problem to be solved, which is related to
our practical needs and the cost we are willing to pay to prevent landslides.

Figure 10 illustrates that removing the distance to rivers and elevation greatly affected
the performances of the models while removing the distance to rivers or elevation alone did
not significantly reduce the performance. This suggests that these two factors are the most
critical factors affecting LSA modeling. However, the most important landslide influence
factors vary across the literature [19,75–77]. It is important to note that various studies
in the literature adopt diverse factor analysis methods, which may lead to different key
factors being observed. However, even if the same factor analysis method is used, the
importance rankings of landslide influence factors observed in different study areas are
different [33]. This indicates that there is no constant pattern in the relationship between
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landslide influence factors and landslide occurrences. Thus, it is necessary to perform factor
analysis to select the appropriate landslide influence factor in data-driven LSA modeling.
It also reveals that the relationships between influencing factors are complicated, and the
joint action of the influence factors affects the final prediction ability of the models.

5.5. Training Time Consumed

The average time consumed by shallow machine learning methods and deep learning
methods in the training stage is illustrated in Table 4. The training time required by
deep learning models was up to 765 times longer than that required by shallow machine
learning models. In the shallow models, RF achieved pretty good performances with a
very low time overhead. DFCNN and LSTM achieved the best performances and stable
results at the cost of the enormous time overhead. As it is reported in [78], the training
time consumed is a necessary consideration when choosing a suitable LSA model. Deep
learning models require faster computing devices, and the model building processes are
more complicated [33]. Since deep learning models generally require GPUs to accelerate
the computation, in the absence of high-performance computing cards, rapid landslide
susceptibility mapping cannot be accomplished using deep learning methods. The model
structures and hyperparameters need to be fine-tuned in the training stage [22] and these
activities are generally not counted in the consumption time. Nevertheless, the time cost of
designing network structures and adjusting hyperparameters cannot be ignored in actual
disaster prevention. Therefore, RF is still an attractive option to build the LSA model
quickly and obtain acceptable prediction results. Deep learning methods are preferable for
achieving more consistent results.

Table 4. Average time consumed by different LSA models.

Model
Average Time Consumed (s)

Class Balanced Class Imbalanced

LR 1 1
RF 12 11

DFCNN 418 405
LSTM 765 761

6. Conclusions

In this study, eighteen landslide influence factors were selected for landslide suscepti-
bility assessment. LR, RF, DFCNN, and LSTM were employed as the assessment models
and their performances were compared. In general, the AUC values of the four models
were greater than 0.8 under the class balanced strategy and the class imbalanced strategy,
which implies they could be used as credible LSA models. RF performed best in shallow
machine learning models, which can balance the training time and the performance. The
deep learning models (DFCNN and LSTM) achieved better overall performances and
greater robustness than shallow models at the cost of the more significant time overhead.
The shallow models were more sensitive to class weights, while the deep learning mod-
els were relatively insensitive. It is verified that removing a single or a few landslide
influence factors did not substantially affect the accuracy of LSA results except distance
to rivers and elevation in this study. The evaluation results of the shallow models had
richer landslide susceptibility hierarchies, whereas the deep learning models identified
the high-risk landslide zones better. However, whether most shallow machine learning
models and deep learning models have the same benefits and drawbacks requires further
experimental validation. To ensure the LSA models’ stability across various imbalanced
landslide datasets, more robust methods for estimating class weights must be developed in
the future.

In conclusion, the class balanced strategy must be adopted when using LR and RF for
LSA modeling. The deep learning models (DFCNN and LSTM) have superior adaptability
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and can be used in an imbalanced dataset. The findings presented in this research can serve
as a reference for model selection in LSA and further provide decision support for land
management and disaster prevention and mitigation.
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Abstract: Machine learning-based methods are commonly used for landslide susceptibility mapping.
Most of the recent publications focused on quantitative analysis, i.e., improving data processing
methods, comparing and perfecting the data-driven model itself, but rarely taking the qualitative
aspects of the local landslide occurrences into consideration and the further analysis of the key
features was always lacking. This study aims to combine qualitative and quantitative analysis and
examine its effect on mapping accuracy; based on the feature importance ranks and the related
literature, the key features for identifying landslide/non-landslide points of different sub-zones were
further analyzed. Before modeling, the study area Yunyang County, Chongqing City, China, was
manually divided into four sub-zones based on the information from geological hazards exploration
in Chongqing, including the mechanism of landslide formation and sliding failure and geomorphic
unit characteristics. Upon the qualitative analysis basis, five grid searches tuned random forest models
(one for the whole region and four for the sub-zones independently) were established by 1654 data
points and 20 conditioning features. Compared with the conventional data-driven method, the
integrated quantitative evaluation based on the qualitative analysis results showed higher reliability,
which not only improved the mapping accuracy but also increased the AUC values of all four sub-
models, which were 8.8%, 2.3%, 1.9% and 9.1% higher than that of the parent model. Moreover,
the quantitative evaluation based on the qualitative analysis revealed the key factors affecting local
landslide formation. Therefore, qualitative analysis is recommended in future landslide susceptibility
modeling with the additional combination of data-driven methods.

Keywords: landslide susceptibility mapping; random forest model; qualitative analysis; quantitative
evaluation; Yunyang County

1. Introduction

Landslides are one of the most destructive geological hazards, which not only cause
enormous damage to houses and infrastructure, such as bridges and roads, but also lead
to loss of life [1]. According to the World Health Organization, approximately 4.8 million
people were affected, and more than 18,000 deaths were caused by landslides between
1998 and 2017. Specifically, as one of the countries with a high incidence of landslides,
China suffered severe loss of life [2,3]. The China Statistical Yearbook indicates that during
2000 to 2015, 373,630 landslides occurred in this country, killing 10,996 people, which is
approximately 690 landslide-related deaths per year [4]. To mitigate the serious social
impact caused by landslides, constructive and productive activities should be avoided in
areas with high susceptibility to landslides. Therefore, developing an efficient method
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to distinguish landslide-prone zones is an essential need for both local governments and
research institutes [5]. Landslide susceptibility describes the likelihood that a landslide
will occur in a certain area based on local terrain conditions [6]. Landslide susceptibility
mapping (LSM) is one of the most widely used assessment methods, it visualizes the
spatial distribution of zones with different probabilities of occurrence of landslides in a
certain area.

Various methods such as probabilistic analysis, statistical analysis, analytic process,
and weighted overlay were widely applied to LSM by researchers in the early stages. With
the development of Artificial Intelligence (AI) and Geographic Information System (GIS),
machine learning-based methods, with the capability of solving complex nonlinear prob-
lems, are becoming increasingly popular compared to opinion-driven models and statistical
learning, making the accuracy and precision of susceptibility models evolve rapidly [7,8].
Huang et al. [9] adopted logic regression (LR), support vector machine (SVM), and random
forest (RF) on LSM for model comparison. He et al. [10] used RF in the global assessment
of earthquake-induced landslide susceptibility. Sun et al. [11] applied the Bayes algorithm
to optimize the hyper-parameters of the RF model for LSM. Smith et al. [12] compared
the effect of landslide inventories assembled by different methods on the performance
of RF and LF for LSM. Lim et al. [13] applied the RF model to estimate the probability
of a landslide. Nhu et al. [14] investigated and compared the Logistic Model Tree, LR,
NBTress, Artificial Neural Network (ANN), and SVM in the shallow landslide susceptibility
mapping for Bijar City in Kurdistan City. Zhang et al. [15] used the predictive performance
of RF, XGBoost, SVM, and LR on landslide susceptibility mapping in Yunyang County.
Hu et al. [16] compared the effect of different non-landslide sampling methods on the
performance of SVM and NB for LSM. Zhou et al. [17] applied GeoDetector and RFE for
factor optimization and then used the selected factors as inputs to train an RF model to
obtain the LSM of Wuxi County. Sun et al. [18] proposed a hybrid landslide warning
model based on RF susceptibility zoning and precipitation. Zhou et al. [19] constructed an
interpretable model for the susceptibility to rainfall-induced shallow landslides based on
SHAP and XGBoost.

Among those methods, RF is the most commonly used method in large-scale mapping
and classification [20–22] due to its characteristics of low computational cost, low data
requirement, convenience of hyper-parameters tuning, and robustness in solving complex
nonlinear problems [23]. Previous work usually focused on quantitative analysis, such as
the selection and improvement of models and input features, but rarely took into account
the qualitative analysis of landslide areas. Actually, as one of the major geological haz-
ards, landslides are highly area dependent, the mechanism of landslide formation and its
corresponding triggering factors are undoubtedly different in distinct areas. The frequent
fluctuation of reservoir water seriously reduces the stability of the slopes in the reservoir
area, making them prone to landslides [24]. For mountainous areas, however, rainfall is the
major triggering factor for the occurrence of landslides [25]. With increased population,
human activities have become the major issue that accelerates landslide formation in areas
with high population density. Therefore, manually dividing a relatively large region into
different sub-zones according to the qualitative analysis of the landslide formation and geo-
morphic unit characteristics will theoretically improve mapping accuracy. This paper aims
to use the 827 historical landslide data points in Yunyang County and the 20 conditioning
factors to build 5 RF models, including an RF model (referred to as the parent model
below) for the whole region and four RF models for the divided four sub-zones (referred
to as sub-model one to sub-model four below). Then, the feature importance and the
performances of the parent model and the four sub-models are analyzed and compared to
verify the effectiveness of applying experience-based zonation before modeling.

2. Study Area

Chongqing City is located in the mountainous area around the eastern Sichuan basin
and the slope area of the basin margin. It spans two tectonic units, namely the Yangtze

162



Forests 2022, 13, 1055

quasi-platform and the Qinling fold system. The landscape of Chongqing City is mainly
mountains and hills, which make up 92% of its total area. There are many adverse geologi-
cal conditions accelerating the formation of landslides, dangerous rock collapse, ground
collapse, debris flow, and other geological disasters, including developed surface water
networks, strongly cut terrain, complex rock and soil structure, and geological structure,
making it one of the cities with the highest geological disaster frequency in the country.

The spatial distribution of geological hazards in Chongqing City shows a certain
degree of concentration and can be concluded as a striped distribution and vertical zonal
distribution; moreover, its temporal distribution presents a seasonal cluster pattern. Accord-
ing to the statistics, there are currently 14,926 geological hazard-prone points in Chongqing
City, of which 5776 (38.7%) are located in the 7 districts and counties of northeast Chongqing
City (Wanzhou, Kaizhou, Chengkou, Wuxi, Wushan, Fengjie, Yunyang), 1864 (12.49%)
are in the 5 districts and counties of southeastern Chongqing City (Wulong, Youyang,
Qianjiang, Pengshui, Xiushan), and 1320 (8.84%) are in the 11 districts of the main city.
Therefore, northeast Chongqing City is the key area with a high probability of potential
geological disasters.

As one of the seven districts and counties in the northeast of Chongqing City (Figure 1),
Yunyang County (spans 108◦24′37′′–109◦14′47′′ E and 30◦34′59′′–31◦26′28′′ N) is located
in the middle of the Three Gorges Reservoir Project area, being the important hub of the
ecological and economic zone along the Yangtze River. According to the announcement of
the Chongqing Forest Bureau, while the forest area of Chongqing city reaches 54.5%, that of
Yunyang County exceeds 58.5%, making it one of the greenest counties in China. Based on
the Seventh National Census of China, there were 929,034 long-term residents (48% of them
are urban residents) in this area in the year 2020. Yunyang County is crossed by twelve
major folds, namely Changdianfang Syncline (1), Macaoba Anticline (2), Qvmahe Syncline
(3), Tiefengshan Anticline (4), Yangliuwan Syncline (5), Dongcun Anticline (6), Xinchang
Anticline (7), Huangpoxi Syncline (8), Guling Syncline (9), Fangdoushan Anticline (10),
Ganchang Syncline (11), and Longjukan Syncline (12). Under the subtropical monsoon
climate, Yunyang County has an average annual rainfall of 1123.7 to 1264.8 mm and an
average annual temperature from 10.2 to 18.5 ◦C.

Mountainous areas are generally susceptible to mass movements due to preparatory
and triggering causal factors [26]; not only the weathering effects but anthropogenic
activities in the region also commonly accelerate the formation of unstable areas on both
the earth material and on hill slopes [27]. As a part of Chongqing City, Yunyang County
has always been a significant hotspot for landslide occurrences. There are a total of
836 historical landslides recorded in the dataset; 827 data points are left after data cleaning.
A total of 28.2% of them are small landslides, 51.8% are medium landslides, and 20% are
large landslides. Among them, trust-load-caused landslides accounted for 53.7%, and
loosen-caused landslides and multi-caused landslides accounted for 14.5% and 31.8%,
respectively. To build sub-models, we manually divided the study area into four different
sub-zones (Figure 2) based on the information from the exploration of geological hazards
in Chongqing City, such as the mechanism of landslide formation and sliding failure and
the geomorphic unit characteristics. Among the four sub-zones, sub-zone II contains all the
strip-distributing landslides along the mainstream of the Yangtze River, so it can also be
called the Yangtze River mainstream zone. From a larger scope, a part of Yunyang County
belongs to the low-hills section that crosses Yunyang, Fengjie, and Kaizhou; this area is
classified as sub-zone IV. Sub-zone I (south of sub-zone II) is crossed by the main highway
called S305, and the main area of sub-zone III (between sub-zone II and IV) is crossed by
the S103 and S305. Similarly, the density of the road network is also at a high stage in the
other two parts of sub-zone III. The landslides that occurred in these two sub-zones are
found to be mainly along the roads (Figure 3). After zonation, 89 landslides are located in
sub-zone I, 285 of them are in sub-zone II, sub-zone III contains 44 landslides, and with the
largest area, 408 of the historical landslides occurred in sub-zone IV.
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Figure 1. Location, landslide distribution and tectonic map of the study area. (1) Changdianfang
Syncline, (2) Macaoba Anticline, (3) Qvmahe Syncline, (4) Tiefengshan Anticline, (5) Yangliuwan
Syncline, (6) Dongcun Anticline, (7) Xinchang Anticline, (8) Huangpoxi Syncline, (9) Guling Syncline,
(10) Fangdoushan Anticline, (11) Ganchang Syncline, and (12) Longjukan Syncline.

As one of the typical landslides in the Three Gorges Reservoir area, the Jiuxianping
landslide (in sub-zone II) is located on the left bank of the Yangtze River (Figure 2b). After
the Three Gorges Reservoir project, the fluctuation of the Three Gorges Reservoir water
level restarted the displacement and deformation of the ancient landslide, making this area
more prone to geological hazards. A subsidence of about one meter occurred on a roadway
in the middle of the landslide body after heavy rain in 2003 and 2004, causing the roadway
to be abandoned. With the impact of continuous heavy rain, landslides occurred in the back
accumulation of Jiuxianping on 19 and 22 June 2007, causing the houses of the villagers
to collapse, and the mountain body cracked. On 9 June 2009, the back-accumulation of
Jiuxianping deformed again under the impact of heavy rain, causing cracks on both the
accumulation body and the houses of the villagers. Recently, under the continuous effect of
the Three Gorges Reservoir, this area has been in the overall creep deformation stage for
years, especially the cliffs near the river, which often suffer from local collapse and damage.
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Figure 2. Zonation and typical landslides: (a) Longjiao Landslide, (b) Jiuxianping Landslide,
(c) Mawangmiao Landslide, (d) Tuantan Landslide.

The continuous heavy rains from 30 August to 1 September 2014 made the accumu-
lated rainfall in Jiangkou Town more than 300 mm. The day after that, the Tuantan landslide
(Figure 2d) occurred on the back mountain and on the left side of the Yongfa Coal Mine staff
dormitory in Tuantan village, Jiangkou Town, Yunyang County (in sub-zone IV). Although
the employees were notified to evacuate from the area subjected to the massive landslide,
twelve of them were buried on the spot. Unfortunately, only one of the twelve was saved.

Typically, in sub-zone I, under the impact of rainfall, a landslide occurred on the S202
Highway in the direction from Longjiao to Rucao (Figure 2a) on 13 July 2021. Similarly,
there was a 10,000 cubic-meter landslide triggered by heavy rainfall in the area of Mawang
Temple (Figure 2c), which trapped two four-wheel cars and a motorcycle, and blocked the
highway section for five days.
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3. Method Explanation
3.1. Random Forest

As one of the most popular classification methods, RF was first proposed by Breiman [28]
and Cutler [29]. During its training process, different data subsets obtained by random
sampling are used to train multiple decision trees as independent estimators; each of them
is only allowed to fit the data based on the part of the input features, and the final output
of the RF model is based on the voting results of the constructed estimators. With the
double randomness, those estimators will be trained as distinct ones, and such a special
structure makes RF less sensitive to noise and outliers, less likely to overfit and has a
lower dependency on feature selection, but more robust and can provide more accurate
predictions compared with the other machine learning models.

The RF training process can be concluded as the flowing three simple steps (Figure 4):
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Bootstrapping: To build M decision trees (estimators), M subsets will be generated as
training sets from the original dataset by sampling with replacement.

Modeling: Each subset obtained by bagging is used to train the corresponding esti-
mator. Similarly, for the purpose of getting estimators as distinct as possible, the available
features for each estimator are also randomly chosen from the entire feature list.

Voting: Each estimator will output a result independently, then the final result of the
model will be generated based on the voting results (Equation (1)).

f(x) =
1
M ∑M

m=1 fm(x) (1)

where f(x) represents the final output, and fm(x) means the output of the mth tree.

3.2. Grid Search

As pre-set parameters, hyper-parameters play a crucial role in model performance,
and there are rare algorithms that are hyper-parameter-free [30]. Therefore, proper hyper-
parameter tuning is essential for improving model performance. Grid search, as one of the
conventional automatic hyper-parameter tuning methods, is widely used because of its
simple operation. Its basic idea is to choose the best hyper-parameter combination by enu-
merating and iterating over all possible combinations. Although it is computationally ex-
pensive because of the exhaustive search process, grid search suits random forest very well,
as random forest is a hyper-parameter tuning friendly model; only two hyper-parameters
are to be tuned in our case.

3.3. Performance Measure

For classification problems, accurate-oriented modeling sometimes ends up with
“rabid” models that tend to classify all samples as a certain type, especially for unbalanced
datasets. Therefore, the confusion matrix is introduced in this case (Table 1).
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Table 1. Confusion matrix.

Predicted Values Actual Values

Positive Negative
Positive True Positive (TP) False Positive (FP)
Negative False Negative (FN) True Negative (TN)

According to Table 1, the true positive rate, also called the recall, is defined as
TPR = TP/(TP + FN), and the false positive rate is defined as FPR = FP/(FP + TN). Af-
ter model establishment, its corresponding TPR versus FPR at different cutoff values can
be plotted, which is called as receiver operation characteristic (ROC) curve and can be used
to represent the predictive ability of the model. The area under the ROC curve (AUC) is
commonly used as an index that represents the true classification accuracy of the model.

4. Methodology
4.1. Data Collection and Preparation

Data collection and data cleaning are of the top importance in machine learning
applications; high-quality data is the foundation of accurate prediction models. Model
perfection also plays a vital role; choosing appropriate hyper-parameters will help models
to extract useful information from input data more effectively and precisely. In this section,
we will introduce the procedure for data preparation and model establishment. The analysis
of the performance and the factor importance of different models will be presented in the
following sections. The flowchart for this study is shown in Figure 5.
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Triggered by the joint effects of natural factors and human activities, the mechanism
of the occurrence of landslides is very complex [5]. Based on the assumption that future
landslides will occur under the same conditions as past landslides [31], evaluating these
factors and analyzing their relationships with historically recorded landslides can contribute
to forming the basis for the prediction of future landslides in an area [32,33]. However,
after reviewing the studies related to the evaluation of landslide sensitivity from 1983
to 2016, Reichenbach et al. [34] found that there was a total of 596 different factors that
affected landslide formation, considering all of them will be laborious and time-consuming.
According to previous articles, topography, hydrology, geology, land cover, and natural
and human-related factors are generally used for landslide susceptibility analysis [14,17].
Therefore, in this study, topographical factors (aspect, elevation, plane curvature, profile
curvature, relief amplitude, slope), hydrological factors (aridity, distance from rivers, index
of moisture (IM), and topographic wetness index (TWI)), geological factors (lithology,
distance from anticline axis, distance from syncline axis), factors related to land cover
(namely land use and normalized difference vegetation index (NDVI)), human factors (such
as human activity intensity of land surface (HAILS), distance from road, and population),
and natural factors (average annual temperature, average annual rainfall) are all considered
(Figure 6).
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As the grid data layers cannot be directly used for model training, the Yunyang County
fishnet with a cell size of 25 × 25 m was created for the purpose of data extraction for
model training and measuring the distances from specific structures/natural sources, the
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total number of cells is 5,831,382. The secondary data includes aspect, plane curvature,
profile curvature, relief amplitude, slope, distance from rivers, TWI, distance from anticline
axis, distance from syncline axis, and distance from road. Among them, TWI, aspect,
plane curvature, profile curvature, relief amplitude, and slope were obtained by ArcGIS
processing of DEM. The characteristics associated with distances (i.e., distance from rivers,
distance from anticline axis, and distance from syncline axis) were obtained by applying
the near function of ArcGIS to the corresponding primary data (i.e., the river network
of Chongqing City, the road network of Chongqing City, and the geological structure of
Yunyang County) and the created fishnet of Yunyang County. The ranges and categories of
the 20 characteristics are summarized in Table 2.

Table 2. (a) Categories of conditioning factors. (b) Ranges of conditioning factors.

Feature ID Feature Name # of Classes Class Name

(a)

1 lithology 37

1. T1d3; 2. T1d4; 3. J2s2; 4. Ss; 5. T1J4;
6. T1j1; 7. T1j2; 8. J2s1; 9. J2x; 10. J1z1da;
11. J1z1m; 12. J1z1d; 13. J1z; 14. T1j3; 15.
T2b2; 16. T2b3; 17. T2b2; 18. T2b1; 19.
T3xj; 20. J1zlm; 21. J1zld; 22. J3sn; 23.
J3p2; 24. J3p; 25. T3xj3; 26. T3xj2; 27.
T3xj1; 28. J1zlda; 29. J1z1; 30. J2sn; 31.
T1d2; 32. T1d; 33. P3w2; 34. P3d; 35.
P2m− g; 36. P3wl; 37. P2q

2 landuse 15

1. Paddy filed; 2. Dry land; 3.
Forestland; 4. Shrub land; 5. Sparse
woods; 6. Other woods; 7. Grassland
with high coverage; 8. Grassland with
medium coverage; 9. Grassland with
low coverage; 10. Cannel; 11. Reservoir;
12. Urban land use; 13. Rural
settlements; 14. Other types of building;
15. Marshland

(b)

Feature ID Feature Name Value Range

3 Slope (◦) 0–67.0356
4 Average Annual Temperature (◦C) 10.2–18.5
5 Average Annual Rainfall (mm) 1123.7–1264.8
6 Aridity 0.698–0.952
7 IM 14.5–53.47
8 Population 88.8744–695.201
9 HAILS 0–78.2
10 NDVI −0.1372–0.8837
11 Distance from Syncline Axis (m) 0–19,026.1
12 Distance from Anticline Axis (m) 0–16,958.8
13 Distance from Road (m) 0–5994.47
14 Distance from Rivers (m) 0–17,236.8
15 Elevation (m) 76.0774–1794.29
16 Profile Curvature 0–44.2457
17 Aspect (◦) 0–360
18 Plane Curvature 0–360
19 TWI −0.82–30.1
20 Relief Amplitude 0–148.865

All 20 factors were visualized by ArcGIS with a resolution of 25 m (Figure 7). Then the
corresponding classes and rating values of the 20 factors were assigned to each cell of the
prepared fishnet.
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After obtaining the 827 historical landslide cells in the study area as positive samples
(1), the same number of non-landslide cells were randomly extracted from the landslide-free
areas as negative samples (0) [35,36]. To make sure that the sub-models can be constructed
with the same data as the parent model, the number of negative samples selected from
each sub-zone was determined by the number of the positive samples in the sub-zone (i.e.,
89 for sub-zone I, 286 for sub-zone II, 44 for sub-zone III, and 408 for sub-zone IV). Thus
the five sample datasets were formed (Table 3). Based on previous research [14,37], 80% of
each dataset was randomly selected to train the corresponding statistical model, and the
remaining 20% was used for validation purposes.

Table 3. The number of data points in different zonation and datasets.

Sub-Zone # of Possitive Samples # of Negative Samples Total Percentage of
Trainning Set # of Training Samples

I 89 89 178 80% 142
II 286 286 572 80% 457
III 44 44 88 80% 70
IV 408 408 816 80% 652

Whole
Region 827 827 1654 80% 1323

4.2. Model Development and Application

Five independent random forest-based models were established and validated based
on the sample datasets constructed before. The hyper-parameters of each model were tuned
by the grid search method. Being considered as the most straightforward optimization
method [38], the grid search method needs to iterate over the entire interval of each
hyper-parameter. Therefore, the number and the iterating interval of the tuned hyper-
parameters have an obvious impact on its search efficiency. The number of estimators
determines the stability of a random forest model, and adding more estimators will lower
its mean squared prediction delta (MSPD) and hence improve model stability [39], but will
increase computational cost [40]. The maximum depth of a tree controls the stability of a
random forest model in a different way. The stability will decrease as depth increases since
increasing the depth will make the model tend to just memorize the training data, but if
the forest is too shallow, the model will underfit, resulting in low AUC [39]. In this case,
the number of estimators and the maximum depth of a tree are the two hyper-parameters
to be tuned; the results are shown in Table 4.

Table 4. Hyper-parameters of models.

Model Number of Estimators Maximum Depth of a Tree

Parent Model 175 21
Sub-Model One 10 6
Sub-Model Two 95 12

Sub-Model Three 10 4
Sub-Model Four 100 12

After obtaining well-trained models, we used all 5,831,382 cells prepared in Section 4.1
as input to generate the landslide susceptibility maps for the study area.

5. Results

The landslide susceptibility maps generated by the parent model and sub-models
are displayed in Figure 8, where Figure 8a represents the map outputted by the parent
model, and Figure 8b is the map produced by sub-models, Figure 8c,d are the detailed
scopes for the part of both maps. The entire region is divided and classified into five zones
of susceptibility to different levels of landslides (very low, low, moderate, high, and very
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high) by the method of natural breaks method. From the result of the parent model in
Table 5, 14.6% of the whole area is classified as a very low landslide-prone zone, 22.8% as a
low landslide-prone zone, 25.23% as a moderate landslide-prone zone, 21.47% as a high
landslide-prone zone, and 15.90% as a very high landslide-prone zone. From the result of
the sub-models, their ratios are 16.42%, 20.81%, 22.56%, 21.54%, and 18.67%, respectively.
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Figure 8. Comparison between the landslide susceptibility mapping of the parent model and sub-
models: (a) Landslide susceptibility map generated by the parent model, (b) Landslide susceptibility
map generated by the sub-models, (c) Detailed view of landslide susceptibility map generated by the
sub-models, (d) Detailed view of landslide susceptibility map generated by the parent model.

Table 5. Statistic results of landslide susceptibility in different levels of different models.

Model Landslides
Susceptibility Level

Landslides Susceptibility
Threshold

Landslides
Ratio Area Ratio Landslides/Area

Ratio

Parent Model

Very Low 0.000–0.239 0.24% 14.60% 0.016
Low 0.239–0.408 2.18% 22.80% 0.096

Moderate 0.408–0.573 6.05% 25.23% 0.248
High 0.573–0.741 19.22% 21.47% 0.895

Very High 0.741–1.000 72.31% 15.90% 4.548

Sub-Models

Very Low - 0.12% 16.42% 0.007
Low - 1.21% 20.81% 0.058

Moderate - 4.48% 22.56% 0.199
High - 18.55% 21.54% 0.861

Very High - 75.64% 18.67% 4.051

Sub-Model
One

Very Low 0.000–0.235 0.00% 20.22% 0.000
Low 0.235–0.435 0.00% 23.88% 0.000

Moderate 0.435–0.631 8.99% 22.36% 0.402
High 0.631–0.831 25.84% 18.64% 1.386

Very High 0.831–1.000 65.17% 14.90% 4.374

Sub-Model
Two

Very Low 0.000–0.278 0.35% 15.14% 0.023
Low 0.278–0.435 2..46% 22.03% 0.112

Moderate 0.435–0.588 4.56% 24.99% 0.182
High 0.588–0.749 13.33% 22.45% 0.594

Very High 0.749–1.000 79.30% 15.39% 5.153
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Table 5. Cont.

Model Landslides
Susceptibility Level

Landslides Susceptibility
Threshold

Landslides
Ratio Area Ratio Landslides/Area

Ratio

Sub-Model
Three

Very Low 0.000–0.303 0.00% 13.68% 0.000
Low 0.303–0.421 0.00% 24.81% 0.000

Moderate 0.421–0.536 9.10% 25.78% 0.353
High 0.536–0.662 31.81% 22.06% 1.442

Very High 0.662–1.000 59.09% 13.67% 4.323

Sub-Model
Four

Very Low 0.000–0.227 0.00% 16.59% 0.000
Low 0.227–0.427 0.74% 16.20% 0.0457

Moderate 0.427–0.612 2.94% 19.38% 0.152
High 0.612–0.792 19.12% 22.26% 0.859

Very High 0.792–1.000 77.20% 25.57% 3.020

Logically, the landslides/area ratio should increase from a very low landslide-prone
zone to a very high landslide-prone zone, which is exactly what our models indicate.
According to the results of the parent model, the landslides/area ratio increases from 0.016
to 4.548, from a very low landslide-prone zone to a very high landslide-prone zone, and
that also increases from 0.007 to 4.051 from the results of the sub-models. Figure 9 displays
such a tendency, and it can be seen that the outputs of the sub-models have more obvious
gaps between the very low landslide-prone zone and the very high landslide prone-zone,
which reflects another merit of the sub-models compared with the parent model.

Forests 2022, 13, x FOR PEER REVIEW 16 of 22 
 

 

Very High 0.662–1.000 59.09% 13.67% 4.323 

Sub-Model Four 

Very Low 0.000–0.227 0.00% 16.59% 0.000 

Low 0.227–0.427 0.74% 16.20% 0.0457 

Moderate 0.427–0.612 2.94% 19.38% 0.152 

High 0.612–0.792 19.12% 22.26% 0.859 

Very High 0.792–1.000 77.20% 25.57% 3.020 

 

Figure 9. Landslides/area ratio. 

The validation AUC values of the five models are shown in Figure 10; the AUC value 

of the parent model is 0.872, while that of sub-model one to sub-model four are 0.949, 

0.892, 0.889, and 0.951, respectively. All of the sub-models outperformed the parent 

model, which proved the aforementioned hypothesis. However, the increases are not at 

the same level; sub-model four achieved the highest improvement (9.1%), while the lowest 

improvement is 1.9%, which was obtained by sub-model two. 

The importance of features generally represents how much a specific feature contrib-

utes to the decision-making process of a model. In this case, the most important features 

can be the key factors in identifying landslide/non-landslide points. As shown in Table 6 

and Figure 11, the distance from syncline axis, aridity, elevation, distance from rivers, and 

average annual temperature are of the highest importance for the parent model. NDVI, 

average annual rainfall, distance from road, and elevation are the main features that are 

associated with the formation of landslides in sub-zone I. For sub-model two, elevation is 

the most important feature, which is followed by average annual rainfall, distance from 

rivers, distance from anticline axis, and average annual temperature. Distance from road, 

HAILS, elevation, plane curvature, and average annual temperature are the top features 

for sub-model three. Last but not least, distance from syncline axis, average annual tem-

perature, elevation, aridity, and average annual rainfall play important roles during the 

predicting process of sub-model four. 

Very Low Low Moderate High Very High

0.01

0.1

1

 Parent Model
 Sub-Models

Landslide susceptibility

L
a
n
d
sl

id
e
/a

re
a
 r

a
tio

0.01

0.1

1

Very Low Low Moderate High Very High

L
an

d
sl

id
e/

ar
ea

 r
at

io

Landslide susceptibility

Figure 9. Landslides/area ratio.

The validation AUC values of the five models are shown in Figure 10; the AUC value
of the parent model is 0.872, while that of sub-model one to sub-model four are 0.949, 0.892,
0.889, and 0.951, respectively. All of the sub-models outperformed the parent model, which
proved the aforementioned hypothesis. However, the increases are not at the same level;
sub-model four achieved the highest improvement (9.1%), while the lowest improvement
is 1.9%, which was obtained by sub-model two.
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Figure 10. Validation AUC values of different models.

The importance of features generally represents how much a specific feature con-
tributes to the decision-making process of a model. In this case, the most important features
can be the key factors in identifying landslide/non-landslide points. As shown in Table 6
and Figure 11, the distance from syncline axis, aridity, elevation, distance from rivers, and
average annual temperature are of the highest importance for the parent model. NDVI,
average annual rainfall, distance from road, and elevation are the main features that are
associated with the formation of landslides in sub-zone I. For sub-model two, elevation is
the most important feature, which is followed by average annual rainfall, distance from
rivers, distance from anticline axis, and average annual temperature. Distance from road,
HAILS, elevation, plane curvature, and average annual temperature are the top features
for sub-model three. Last but not least, distance from syncline axis, average annual tem-
perature, elevation, aridity, and average annual rainfall play important roles during the
predicting process of sub-model four.

Table 6. Top five important factors in different sub-zones.

Zone
Feature Importance Rank

1st 2nd 3rd 4th 5th

Whole Region Distance from
syncline axis (m) Aridity Elevation (m) Distance from

rivers (m)
Average Annual

Temperature (◦C)

Sub-Zone I Distance from
syncline axis (m) NDVI Average Annual

Rainfall (mm)
Distance from

Road (m) Elevation (m)

Sub-Zone II Elevation (m) Average Annual
Rainfall (mm)

Distance from
rivers (m)

Distance from
anticline axis (m)

Average Annual
Temperature (◦C)

Sub-Zone III Distance From
Road (m) HAILS Elevation (m) Plane Curvature Average Annual

Temperature (◦C)

Sub-Zone IV Distance from
syncline axis (m)

Average Annual
Temperature (◦C) Elevation (m) Aridity Average Annual

Rainfall (mm)
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Figure 11. Top five important factors of different models. AAT: Average annual temperature; AAR:
Average annual rainfall; DFSA: Distance from syncline axis; DFAA: Distance from anticline axis;
DFRD: Distance from road; DFRS: Distance from rivers.

6. Discussion
6.1. Feature Importance Analysis

As indicated in Table 6, the distance from syncline axis is at the dominant place among
the twenty factors for the parent model, sub-model one, and sub-model four. Factors
associated with water, such as average annual rainfall and the distance from rivers, are
also important places. The triggering factors of shallow landslides are highly dependent
on the rainfall water infiltration and its further redistribution [41]. Due to its softening
effect and long-term erosion effect, the distance from rivers has a significant influence
on the development of landslides [42]. Temperature has a remarkable effect on landslide
formation; experimental results indicated that the shear strength of slip surface soils
reduces with decreasing temperature, which will negatively affect slope instability [43].
Therefore, obtained by the accumulated temperature and rainfall, aridity is also of great
importance. Although different plants generally have a different contribution of rainfall
to soil water [44], which will affect slope stability differently, on average, the effect of
water uptake from the plant cover makes the vegetated slopes averagely 12.84% drier,
and matric suctions three times higher than the fallow slope, which contributes to slope
stability [45]; so NDVI is taken as one of the main considerations. Unlike vegetation
cover, human-made land covers usually have negative influences on slope stability. The
development of new building areas can potentially increase susceptibility to landslides [46].
Road networks not only directly destabilize existing slopes by disturbing their original
structures during construction processes, but transport activities also have negative effects
on slope stability. Similarly, HAILS is another influential factor. For topological factors, the
two most important factors, in this case, are elevation and plane curvature.
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6.2. Model Comparison
6.2.1. Parent Model

When dealing with the whole region, the model tends to capture information that
is more general, and thus its feature importance has a higher universality. In our case,
six major synclines are lying in the whole domain, and their generally dominant effects
on identifying landslide/non-landslide points are successfully captured by the parent
model. Aridity, distance from rivers, and average annual temperature affect the formation
of landslides in meteorological and hydrological aspects. Although ranked fourth as the
most important one, elevation is the most important topological factor in the research area.

6.2.2. Sub-Models

After dividing the whole region into different sub-zones, the models will have the
chance to learn the knowledge that is specifically right for each sub-zone. Thus their
performances will be improved.

Sub-model One. Located in the south of Yunyang County, sub-zone I occupies 741.7 square
kilometers, which is only 20% of the entire research area. Nevertheless, it is crossed
by two of the six major synclines, which makes the syncline effect more obvious, and,
therefore, the distance from the syncline axis is still the most important factor for sub-zone I.
Similarly, the landslide susceptibility in sub-zone I is also affected by both hydrological and
topological factors, namely average annual rainfall and elevation. However, specifically, as
it is crossed by the major highway S305, land cover (NDVI) and human activities (distance
from road) are the other two main influential factors.

Sub-model Two. As we discussed before, sub-zone II is the most special sub-zone since
it is crossed by the Three Gorges Reservoir area, most of the landslides in Yunyang County
were impacted by water occurred here. Therefore, theoretically, the landslide formation
in sub-zone II is sensitive to hydrological factors. In this case, the average annual rainfall
and the distance from rivers are ranked as the second and the third-most important factors.
The reason why elevation is of the greatest importance is that lower places are usually
prone to the influence of the periodic variation of reservoir water level. Statistically, 76%
of the landslides impacted by water in sub-zone II occurred below the elevation of 249 m.
The tectonic action and natural factors also contribute a lot to the landslide formation in
sub-zone II; the distance from anticline axis and the average annual temperature are ranked
in fourth and fifth place, respectively.

Sub-model Three. For sub-zone III, specifically, its data points are relatively far away
from the major synclines, which mitigates the importance of the feature. Instead, as an area
crossed by major highways and dense road networks, human activities, including distance
from road and HAILS, are the two most important factors that have the main contribution
to the landslide formation of the sub-zone. Topographical factors, namely elevation and
plane curvature, are ranked in third and fourth place, respectively, and the average annual
rainfall is evaluated as the fifth-most important factor.

Sub-model Four. Crossed by three major synclines, the landslide identification in sub-
zone IV is also significantly dependent on the distance from the syncline axis. Furthermore,
since it is part of the low hills section crossing Yunyang, Fengjie, and Kaizhou, the formation
of landslides in this area is primarily influenced by the factors associated with the stability
of mountain bodies, such as the average annual temperature, elevation, aridity, and the
average annual rainfall.

7. Conclusions

In this study, Yunyang County is manually zoned into four parts based on the qualita-
tive analysis of geological hazards exploration in Chongqing City, including the mechanism
of landslide formation and sliding failure and geomorphic unit characteristics. Based
on the qualitative analysis result, five random forest landslide susceptibility models are
constructed using historical landslides data points and twenty relating factors for the fol-
lowing quantity analysis. These models, including a parent model and four sub-models,
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are optimized by the grid search method individually. A comparison between the parent
model and the combination of the sub-models is conducted. The following conclusions
are drawn:

The AUC value of the parent model achieves 0.872, which shows that the traditional
RF with the hyper-parameters tuned by the grid search method has a reliable performance
on landslide susceptibility mapping. In this study, synclines have the most important
effects on the formation of landslides in Yunyang County, followed by aridity, elevation,
distance from rivers, and average annual temperature.

However, more general information extracted from “mainstream” landslides would
usually cover that of the “minority” landslides when treating a large region equally, re-
sulting in low information utility and the inability to identify potential landslides under
special geological conditions. With enough data points, experience-based zoning before
modeling is proved to be an effective solution to the issue; the qualitative analysis serves the
purpose of pre-classification based on the information from geological hazards exploration,
which groups the landslides that occurred under similar geological conditions, and thus
enables the models to obtain the specific knowledge under each condition. Therefore,
in our case, while the traditional RF obtained the general prediction skill for the entire
region of Yunyang County, all the sub-models have become “experts” in their respective
sub-areas. The test AUC values of sub-model one to four are 8.8%, 2.3%, 1.9%, and 9.1%
higher than those of the parent model. Furthermore, the proposed method also contributes
to further revealing the key factors that include local landslide instability under specific
geological conditions, which can be used by planners and policymakers for a more specific
and accurate landslide control in certain areas, thus further improving the safety of life and
public property.

For sub-zone I, the top five conditioning factors are distance from syncline axis, NDVI,
average annual rainfall, distance from road, and elevation. For sub-zone III, without
the influence of major synclines, its top factors are distance from road, HAILS, elevation,
plane curvature, and average annual temperature. For sub-zone IV, the distance from
syncline axis becomes the most important factor again, and it is followed by average annual
temperature, elevation, aridity, and average annual rainfall.

Sub-zone II is crossed by the Three Gorges Reservoir area. Suffered by periodic
variation in reservoir water level and the impacts of other factors related to the reservoir
band, the modified method based on general conditioning factors has relatively less effect
on improving the accuracy of the mapping. The effect of more specific factors on the
formation of landslides on the banks of the reservoir will be analyzed in further research. In
the case of this paper, the results of sub-model two point out that elevation, average annual
rainfall, distance from rivers, distance from anticline axis, and average annual temperature
are the top five conditioning factors among the existing twenty factors for sub-zone II.
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Abstract: Forests are an important part of the ecological environment, and changes in forests not only
affect the ecological environment of the region but are also an important factor causing landslide
disasters. In order to correctly evaluate the impact of forest cover on landslide susceptibility, in this
paper, we build an evaluation model for the contribution of forests to the landslide susceptibility of
different grades based on survey data for forest land change in Bijie City and landslide susceptibility
data, and discuss the effects of forest land type, origin, age group, and dominant tree species on
landslide susceptibility. We find that forests play a certain role in regulating landslide susceptibility:
compared with woodland, the landslide protection ability of shrubland is stronger. Furthermore,
natural forests have a greater inhibitory effect on landslides than artificial forests, and compared with
young forest, mature forest and over-mature forest, middle-aged forest and near-mature forest have
stronger landslide protection abilities. In addition, the dominant tree species in different regions have
different impacts on landslides. Coniferous forests such as Chinese fir and Cryptomeria fortunei in
Qixingguan and Dafang County have a low ability to prevent landslides. Moreover, the soft broad
tree species found in Qianxi County, Zhijin County, Nayong County and Jinsha County are likely
to cause landslides and deserve further research attention. Additionally, a greater focus should be
placed on the landslide protection of walnut economic forests in Hezhang County and Weining
County. Simultaneously, greater attention should be paid to the Cyclobalanopsis glauca tree species
in Weining County because the area where this tree species is located is prone to landslides. Aiming
at addressing the landslide susceptibility existing in different forests, we propose forest management
strategies for the ecological prevention and control of landslides in Bijie City, which can be used as a
reference for landslide susceptibility prevention and control.

Keywords: landslide; susceptibility; tree species; age group; woodland type; forest origin

1. Introduction

Geological disasters are widely encountered by human society and cause significant
suffering [1]. They are among the most prevalent natural disasters, causing thousands
of deaths and billions of dollars of property damage each year [2,3]. China is one of
the countries that is most severely affected by geological disasters in the world, and the
intensity and frequency of disasters are increasing year by year [4]. A total of 4772 geological
disasters have occurred in China, resulting in 80 deaths and 11 missing people, as well as
direct economic losses of 3.2 billion yuan. Among these, landslide disasters occurred most
frequently and had the widest impact in 2021. A total of 2335 landslides have occurred
in total nationwide and landslides have accounted for 49% of all geological disasters this
year [5].
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Forests can play a useful role with respect to water retention, which is extremely
important for the stability of slopes [6–8] and can effectively inhibit the occurrence of
geological disasters such as debris flows and landslides [9,10], reducing their degree of
harm [11]. In recent years, increasing attention has been paid to the role of forests in
landslides, and relevant studies have shown that forests have a huge inhibitory effect on
the occurrence of landslides. Hwang et al. found that characteristics of forests such as
composition and spatial distribution can greatly affect slope stability [12]. Nelson et al.
analyzed landslide events in Colombia and pointed out that the landslide susceptibility in
non-forest areas is much higher than that in forest areas [8]. Installation and maintenance
costs for implementing technical measures for landslide risk prevention tend to be lower
in locations with forested areas [13]. Huang et al. studied the effect of plant roots on
landslides and found that plant roots can be anchored to deeper soil layers to enhance
their integrity with the topsoil, thereby generating additional shear forces and reducing the
possibility of landslides [14,15]. Peduzzi et al. found that plants can reduce soil moisture to
maintain high shear, thereby increasing the threshold for triggering landslides [16].

However, different types of vegetation have different root depths and hydrophilic
properties [17,18], resulting in different types of forests with different inhibitory effects
on landslides [19,20]. The root system of an arbor has a good effect on the shear strength
of the surface soil [21,22], but it is not very useful for the control of deep landslides [23].
The root system of shrubland can improve soil physical properties and inhibit shallow
landslides [8,24]. Similarly, different forest origins have different effects on landslides [25].
Natural forests have stronger soil fixation effects than planted forests, and higher soil
porosity allows better penetration of rainfall and affects other landslide factors [26]. For
the same forest, different age groups of trees have different impacts on landslides. For
example, in a single shallow-rooted coniferous forest, the slope stability increases first and
then decreases after planting from young forest to mature forest [27]. Therefore, reasonable
forest management can enhance the geotechnical stability and reduce the susceptibility to
landslides to a certain extent [28–30], thereby realizing the ecological control of landslides.

In recent years, with the implementation of the Chinese government’s policy of “Grain
for Green”, the forest coverage rate has increased significantly, but Grain for Green is
dominated by a single tree species [31], ignoring the impact on landslides. It is therefore
necessary to conduct research on the degree of landslide impact of different forest stand
structures to reduce landslide susceptibility while planting trees. In this study, we took Bijie
City, Guizhou Province, a high-susceptibility area with respect to geological disasters, as
the research area. Based on the contribution model, the impact of different forest types on
landslide susceptibility was analyzed in order to provide a reference for local governments
to formulate disaster-prevention strategies and regional forest-management systems.

2. Materials and Methods
2.1. Study Area

Bijie City (103◦36′–106◦43′ E, 26◦21′–27◦46′ N) is located in southwest China, north-
west of Guizhou Province. The terrain fluctuates greatly and is high in the west and low
in the east [32]. Simultaneously, it is the highest elevation area in Guizhou Province. The
mountains are high and steep, the peaks are densely overlapped, the ravines are vertical
and horizontal, the river valleys are deep, and the land is damaged in these locations due to
mining activities and other human factors. At the same time, plateaus, mountains, basins,
valleys, flat dams, peak clusters, troughs, depressions, karst lakes, and other landforms are
intertwined [33]. Karst landforms are extremely developed and diverse in shape. Most of
the western part of the territory is characterized by plateaus, karsts, gentle hills, and basins.
The middle part comprises mostly peaks, valleys, hills, and depressions. The east and south
comprise mostly valleys, peak clusters, gentle hills, and depressions [34]. A total of 93.3% of
its area comprises plateaus and mountains, and there is abundant rainfall, with an average
annual rainfall of 1200 mm in Bijie. At the same time, the spatial and temporal distribution
of precipitation is uneven. About 75% of the precipitation is concentrated in the period
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from April to September, and most precipitation comprises heavy rains and rainstorms,
which can easily cause landslide disasters. Bijie is one of the five high-incidence areas of
geological disasters in Guizhou Province [35,36]. According to the material division of
landslide proposed by Varnes et al. [37,38]. The landslide types in the study area can be
divided into bedrock, debris and earth. The types of landslides are mainly earth, followed
by debris; they mainly occur in the shallow surface.

2.2. Data Sources
2.2.1. Geological Condition

The tectonic structure of Bijie City is located at the junction of the two global megatec-
tonic domains, the Tethys-Himalaya and the marginal-Pacific tectonic system, and belongs
to the southwestern margin of the Upper Yangtze Block within the first-level tectonic unit
of the Yangtze Block. There are NE-trending, NW-trending, near-EW-trending faults, folds
and other secondary faults (Figure 1). Its geomorphological manifestations are mainly
linear boundaries of intermountain basins, fault triangles, linear valleys, etc. They are
clearly visible in fault-controlled valleys, fault triangles and fault cliffs. The peak accel-
eration of ground motion in Bijie generally shows a decreasing trend from southwest to
northeast, with 0.10 g on the southwest side and 0.05 g on the northeast side. In recent
years, earthquakes of different magnitudes have occurred in Weining County, Hezhang
County, Nayong County, Qixingguan and other places, causing a series of landslides.
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According to field reconnaissance and comprehensive analysis of regional geological
data, as well as rock and soil hardness, structure, and physical and mechanical properties,
the rock formations in the study area are divided into four types: hard rock, hard rock
sandwiched with soft rock, soft rock and loose rock (Figure 1). Hard rocks mainly include
medium-thickness limestone, dolomitic limestone, dolomite, sandstone, etc. These rock
formations are distributed in all counties and districts of Bijie City. These rocks are compact
and hard in structure, with high mechanical strength of intact rocks, good engineering
mechanical properties, and relatively low landslide susceptibility. Hard rock sandwiched
with soft rock mainly includes carbonate rock sandwiched with mudstone, sandstone,
shale, sandstone sandwiched with mudstone, etc. This type of rock formation is distributed
in the entire area of Bijie City. The mechanical strength of this type of rock mass varies
greatly, and most of them have weak interlayers. Under the condition of poor combination
of strata, structure and terrain, it is easy to produce geological disasters such as landslides.
Mudstones and shales, including sandstones, conglomerates, marls, etc., are mainly dis-
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tributed in the central region. This rock group has weak weathering resistance, and the
shallow parts of the surface are severely weathered, which can provide a large amount
of material sources for landslides. Loose rocks are mainly clay, loam, sandy soil, loamy
soil, and gravel soil. This rock group has a complex structure, loose, large porosity, strong
water permeability and low strength. In areas such as inter-mountain valleys and riverbeds
where the terrain is gentle, there are few geological disasters; in slope areas, under the
influence of groundwater, rainfall, and human engineering activities, slope instability can
easily occur, resulting in landslides and other geological disasters. Due to the complex
geological conditions, rich mineral resources and intense human activities in the study area,
landslides and other geological disasters frequently occur.

2.2.2. Forestry Change Data

The forestry change data provided by the Forestry Bureau of Bijie City show that in
recent years, the tree-planting area in Bijie City has continued to expand, and the forest
coverage rate has increased from 49.02% in Guizhou Province in 2016 to 54.19% in 2018.
As shown in Figure 2, the forest structure comprises mostly woodland and shrubland,
and the woodland stand structure is single, with an area of 770,782.36 hm2, accounting
for 55.79% of the total forest area. The areas of other types of forest land, such as sparse
forest land, undeveloped forest land, suitable forest land, nursery land, and forest land
without standing trees, are small and scattered. The arbor forests in Bijie City are mainly
plantations, which are artificially planted coniferous pure forests with simple hierarchies,
poor biodiversity, unstable ecosystems, and a higher occurrence of natural disasters such
as landslides [39].
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2.2.3. Landslide Susceptibility Mapping

The landslide susceptibility data for Bijie City were provided by the Guizhou Provin-
cial Mountain Geological Hazard Prevention Engineering Technology Research Center.
These data originate from a database of hidden landslide danger points surveyed on the
ground. According to a grid of 100 m × 100 m, the Bijie area can be divided into 2,394,053
cells, and the various influencing factors in the geographic information database can be
rasterized and corresponding influencing factors can be assigned to each surface unit. In
order to analyze the comprehensive superposition effect of geological conditions, rainfall,
river distribution and other influencing factors on landslide susceptibility, influencing fac-
tors are selected based on the comprehensive consideration of natural and human factors.
Human engineering activities include roads, mining areas, and land use, while geological
environmental conditions include elevation, slope, plane curvature, slope aspect, profile
curvature, lithology, rivers, rainfall, and fault zones. Then, the ArcGIS spatial overlay
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function is used to calculate the distribution density of hidden danger points of landslides
with different influencing factors, and the information model is employed to calculate the
information value of each influencing factor, and the information values are normalized to
form a regional distribution map of various types of influencing factors. Two out of three
sets of landslide hidden danger points identified in the field are selected as the training
dataset, and the remaining set of landslide hidden danger points is selected as the verifica-
tion dataset. The support vector machine (SVM) model in Python’s scikit-learn library is
then called upon to calculate the weights of the 12 influencing factors. Using the obtained
weights, grid algebra calculations are performed on the information about all influencing
factors, the landslide susceptibility index of each surface unit in the study area is calculated,
the results are obtained and drawn in ArcGIS, and an initial susceptibility evaluation of the
study area is generated. The higher the value of the grid, the higher the susceptibility of
the unit to landslides. Using the natural breakpoint method commonly used in statistics,
the evaluation results were divided into four categories: low-susceptibility areas, medium-
susceptibility areas, high-susceptibility areas, and extremely high-susceptibility areas. The
middle-grade landslide-prone areas in Bijie City account for 30.21% of the city’s total area
and the high-grade areas account for 41.30% of the city’s total area.

According to relevant research, among the 12 factors selected, the one with the greatest
impact on landslide susceptibility is mining activities, and the other factors with a greater
impact are the slope, rainfall, and distance to a river [40,41]. Among them, from Figure 3a,d,
it can be seen that the distribution of slopes is consistent with the landslide-prone areas,
and the slopes with low landslide-prone areas are generally not high. The distribution
of rivers in Bijie is relatively uniform, and there is no obvious difference between east
and west, but the annual rainfall in the east is greater (Figure 3b), which makes the east
more susceptible to landslides. At the same time, coal mines in the eastern region are
more widely distributed and mining activities are more intensive (Figure 3c). Under the
combined effect of these factors, geological landslide disasters are more intensive in the
eastern region. During the plant growth period, in the stratum with developed fissures,
the growth of root system can lead to fissure expansion and root splitting. In clastic rock
regions, root growth can mechanically break up the rock surrounding the roots, providing
soil and nutrients. In the windy and rainy season, the tall trees have a loosening effect on
the rock and soil at the root due to the dynamic action of the wind, which easily increases
the susceptibility to landslides. At the same time, the root system of vegetation has the effect
of strengthening the stability of the soil and slope. Therefore, whether vegetation factors
can inhibit or promote landslides in the area remains to be studied. Geological conditions
are the main factors affecting landslide susceptibility, while vegetation has less of an effect
on landslides. However, the geological conditions are difficult to change in the natural state
and can only be transformed through engineering activities. In contrast, vegetation is more
plastic, and China is implementing afforestation activities. Quantifying the contribution of
vegetation to landslides and selecting reasonable tree species and methods for afforestation
can improve landslide susceptibility while restoring forests.
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2.3. Methods
2.3.1. Contribution Evaluation Model

Plant roots are closely related to soil shock resistance and shear strength [42,43]. At
the same time, different forests have different interception effects on atmospheric precip-
itation. In order to eliminate the impact of differences in forest areas, we quantitatively
evaluated the relationship between forests and landslide susceptibility considering the
aspects of forest land type, forest origin, age group, and dominant tree species. This paper
is based on previous research results [44,45]. A normalized contribution evaluation model
is constructed:

P(i, y) = 1/(1 + e(1 − (ALSM(i, y)/TALSM(i))/(ASEA(y)/TAREA))) (1)

In the formula, i is the landslide susceptibility grade; y is the forest type; P(i, y) is the
contribution of the i grade susceptibility to the y-type forest in the region, and the value
varies from 0 to 1; ALSM(i, y) is the area of the y-type forest with the i-level vulnerability;
TALSM(i) is the sum of the i-level vulnerability area in all forests in the region; ASEA(y) is
the area of the y-type forest, and TAREA is the sum of the areas of all types of forests in
the region.

When P(i, y) is closer to 1, the y-type forest contributes more to the i-level susceptibility;
that is, the protection ability of this type of forest with respect to landslides is weaker. When
P(i, y) is closer to 0.5, this indicates that the regional y-type forest does not contribute much
to the i-level susceptibility. When P(i, y) is closer to 0, this indicates that the regional y-type
forest contributes little to the i-level susceptibility; that is, this type of forest has a protective
effect with respect to landslides.

2.3.2. Spatial Pattern Analysis

We collected the forestry change survey database information for eight districts and
counties in Bijie City in 2019 from the Forestry Bureau of Bijie City and collected the land-
slide susceptibility evaluation results for Bijie City from the Guizhou Provincial Geological
Disaster Emergency Technical Guidance Center. The ArcGIS spatial analysis module was
used to extract the forest land type, forest origin, age group, and spatial location infor-
mation of dominant tree species, and a spatial overlay analysis was performed using the
landslide susceptibility data. Formula (1) was used to calculate the contribution of different
types of forests to landslide susceptibility of different grades We quantitatively evaluated
the relationship between forests and landslide susceptibility. Landslide susceptibility was
divided into four levels: low, medium, high, and extremely high. Considering that land-
slides are less likely to occur for the low-susceptibility level, it is impossible to compare the
contribution of different forest types. Therefore, we only analyzed the relationship between
different forest types and medium and high levels, and extremely high-grade landslide
susceptibility.

3. Results
3.1. Influence of Woodland Types on Landslide Susceptibility

Woodland and shrub forest land account for 98.49% of the total forest land area, and
other types of forest land are small and scattered in Bijie City. Therefore, the contribution
of woodland and shrubland to the landslide susceptibility of different grades is mainly
discussed. The distribution of the landslide susceptibility of each grade in different forest
land types is shown in Table 1 and Figure 4.
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Table 1. Relationship between forest land types and landslide susceptibility in Bijie City.

Forest land Use

Landslide Susceptibility This Type of
Forest Contribution

Medium High Extremely High
Area
(hm2)

Ratio
(%) Medium High Extremely

HighArea
(hm2)

Ratio
(%)

Area
(hm2)

Ratio
(%)

Area
(hm2)

Ratio
(%)

Woodland 195,589 52.94 297,205 56.42 221,121 60.12 770,782 55.79 0.49 0.50 0.52
Sparse forest 122.74 0.03 129.44 0.02 87.77 0.02 372.26 0.03 0.57 0.49 0.48

Shrubland 148,250 40.13 219,637 41.69 144,049 39.17 582,091 42.7 0.50 0.51 0.49

Note: “Medium” refers to the medium-susceptibility area, “High” refers to the high-susceptibility area, and
“Extremely High” refers to the extremely high-susceptibility area.
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More than 50% of the forest land in Bijie City is woodland, with an area of 770,782 hm2.
The landslide-prone areas of medium susceptibility, high susceptibility, and extremely
high-susceptibility grades are 195,589 hm2, 297,205 hm2, and 221,121 hm2, and account
for 52.94%, 56.42%, and 60.12%, of area of the corresponding landslide susceptibility
grades, respectively (Table 1). The extremely high-grade landslide-prone areas are mainly
distributed in the eastern part of Bijie, the high-grade landslide-prone areas are mainly in
the central and eastern parts, and the medium-grade landslide-prone areas are most widely
distributed in the western part (Figure 4a). In addition, the woodland has the greatest
impact on the susceptibility of extremely high-grade landslide areas, with a contribution of
0.52. The contribution of the susceptibility of high-grade landslide areas is 0.50, and the
impact on medium-grade landslide susceptibility is the smallest, with a contribution of 0.49
(Table 1). On the whole, the impact of woodland on the susceptibility to landslides of high
susceptibility and extremely high-susceptibility grade areas is up to 0.5, which indicates an
area prone to landslides.

The landslide-prone areas of high susceptibility and extremely high-susceptibility
grades within the shrubland range were 219,637 hm2 and 144,049 hm2, accounting for 42%
and 39% of area of the corresponding landslide susceptibility grades, respectively, mainly
in the eastern part of Bijie City (Figure 4b); the landslide-prone areas of medium suscepti-
bility grades were 148,250 hm2, mainly distributed in the central area. The contribution
of shrubland to extremely high-grade susceptibility is 0.49, which is lower than that of
woodland, indicating that the landslide susceptibility of shrubland is smaller than that of
woodland; however, the contribution to high-grade landslide susceptibility is 0.51, which
is higher than 0.5, indicating that the landslide protection ability is still not high.

3.2. Forest Origin and Landslide Susceptibility

It can be seen from Table 2 and Figure 5 that the area ratio of natural forest to plantation
forest in Bijie City is 3:2, and the natural forests with high and extremely high landslide
susceptibility are mainly distributed in the central and eastern parts of Bijie City (Figure 5a).
Plantation forests are mainly in medium-susceptibility areas and are less distributed in
the west (Figure 5b). The landslide-prone area of high and extremely high grades within
the natural forest land comprises 538,509 hm2, accounting for 62.28% of all natural forest
land. The sum of the landslide-prone areas of high and extremely high grades within the
plantation forest is 384,263 hm2, accounting for 66.62% of the total plantation area. The
contributions of high- and extremely high-grade landslide susceptibility in the plantation
forest are 0.52 and 0.51, respectively; the contributions for natural forest are 0.49 and 0.51,
respectively, which are closer to 0.5. This shows that the plantation forest has weaker
protection ability against landslides, while the landslide protection ability of natural forest
is better than that of plantation forest.

Table 2. Relationship between forest origin and landslide susceptibility in Bijie City.

Forest Origin

Landslide Susceptibility This Type of
Forest Contribution

Medium High Extremely High
Area
(hm2)

Ratio
(%) Medium High Extremely

HighArea
(hm2)

Ratio
(%)

Area
(hm2)

Ratio
(%)

Area
(hm2)

Ratio
(%)

Natural 221,323 61.9 323,311 57.77 215,198 59.27 864,556 59.92 0.50 0.49 0.50
Artificial 136,210 38.1 236,364 42.23 147,899 40.73 576,821 40.08 0.49 0.52 0.51

Note: “Medium” refers to the medium-susceptibility area, “High” refers to the high-susceptibility area, and
“Extremely High” refers to the extremely high-susceptibility area.
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3.3. Forest Age Group and Landslide Susceptibility

It can be seen from Table 3 and Figure 6 that the areas of young- and medium-aged
forests are the largest, accounting for 43.36% and 33.53%, respectively. Near-mature forests
and mature forests account for 16.11% and 6.54%, respectively, and over-mature forests
account for only 0.57%. The distribution of young-aged forests (Figure 6a) and medium-
aged forests (Figure 6b) is similar, with high- and extremely high-landslide-susceptibility
areas mainly distributed in the central and eastern areas, and the western areas being
mainly medium-susceptibility areas. The medium-susceptibility areas of near-mature
forests (Figure 6c) and mature forests (Figure 6d) are mainly concentrated in the western
region, while high- and extremely high-susceptibility areas are scattered sporadically.
Over-mature forests (Figure 6e) are small in area and are scattered in distribution. The
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contributions of young forest to high and extremely high landslide susceptibility are both
0.53, and the protection ability with respect to landslides is the weakest.

Table 3. Relationship between forest age groups and landslide susceptibility in Bijie City.

Age Group

landslide Susceptibility This Type of
Forest Contribution

Medium High Extremely High
Area
(hm2)

Ratio
(%) Medium High Extremely

HighArea
(hm2)

Ratio
(%)

Area
(hm2)

Ratio
(%)

Area
(hm2)

Ratio
(%)

Young forest 73,380 37.52 142,055 47.8 89,794 47.82 334,187 43.36 0.47 0.53 0.53
Medium aged forest 71,280 36.45 91,323 30.73 60,353 32.14 258,411 33.53 0.52 0.48 0.49
Near mature forest 36,896 18.86 42,438 14.28 25,115 13.38 124,144 16.11 0.54 0.47 0.46

Mature forest 13,037 6.67 19,290 6.49 11,533 6.14 49,612 6.44 0.51 0.50 0.49
Over mature forest 992 0.51 2098 0.71 966 0.51 4429 0.57 0.47 0.56 0.47

Note: “Medium” refers to the medium-susceptibility area, “High” refers to the high-susceptibility area, and
“Extremely High” refers to the extremely high-susceptibility area.
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3.4. Dominant Tree Species and Landslide Susceptibility

Considering that Bijie City is located in the slope transition zone from the Yunnan
Plateau to the Guizhou Plateau, the terrain is high in the west and low in the east. The
natural geographical environment, such as the altitude, varies greatly among districts and
counties [42]. Large differences and diverse geographical environments lead to different
dominant tree species constituting arbor forest land in most districts and counties, and
their forestry management strategies are also different. In order to improve the pertinence
of the analysis of the impact of dominant tree species in arbor forest land on landslides
and to guide the operability of forest management, in this paper, we used forestry change
survey data to calculate the top-five dominant tree species in each county. We took a
county as a unit (Table 4) to analyze the relationship between dominant tree species and
landslide susceptibility, and to provide a reference for the region to formulate precise
afforestation plans.
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3.4.1. Dominant Tree Species and Landslide Susceptibility in Qixingguan District

It can be seen from Table 4 and Figure 7 that the top-five dominant tree species in
the forests of Qixingguan District are Birch, Walnut, Chinese fir, Cryptomeria fortunei,
and Pinus yunnanensis. The sums of high- and extremely high-grade landslide-prone
areas for the various tree species are 11,451 hm2, 9706 hm2, 9690 hm2, 5903 hm2, and
5018 hm2, respectively, accounting for 79.8%, 79.9%, 79.8%, 74.9%, and 81% of the total
areas of these tree species. Among the dominant tree species, Birch has the largest area, but
it is less distributed in the southwest and northeast regions (Figure 7a); the areas with high
and extremely high landslide susceptibility for Walnut are mainly in the southern region
(Figure 7b); Chinese fir is more concentrated and is mainly distributed in the northern
region (Figure 7c); Cryptomeria fortunei is scattered in a sporadic distribution (Figure 7d);
Pinus yunnanensis has the smallest area and is distributed in sheets almost only in the
south (Figure 7e).
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guan District.

Chinese fir makes the largest contribution to the susceptibility of extremely high-grade
landslides, which is 0.55. The extremely high-susceptibility area is 4171 hm2, accounting
for 34.4% of its own area, and the protection ability with respect to landslides is the
lowest. The contributions of Walnut and Pinus yunnanensis to extremely high-grade
landslide susceptibility are 0.51 and 0.51, indicating that Pinus yunnanensis and Walnut
have low protection ability with respect to landslides. The contributions of Birch to high-
grade landslide susceptibility are 0.53 and 0.52, and the protection ability with respect to
landslides is not high. Chinese fir, Walnut, and Pinus yunnanensis have an impact greater
than 0.5 on the susceptibility to extremely high grades, and the landslide protection ability
is not as good as that of Birch and Cryptomeria fortunei.
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3.4.2. Dominant Tree Species and Landslide Susceptibility in Dafang County

From Table 4 and Figure 8, it can be seen that the top-five dominant tree species in
Dafang County are Birch, Walnut, Cryptomeria fortunei, Chinese fir, and poplar, and the
sums of the high- and extremely high-grade landslide-prone areas of various tree species
are 15,739 hm2, 11,024 hm2, 9588 hm2, 8182 hm2, and 5592 hm2, respectively, accounting
for 79.9%, 79.4%, 79.4%, 81.6%, and 83.3% of the areas of these tree species. Among the
dominant tree species, Birch is less distributed in the southeast and north (Figure 8a);
Walnut is mainly distributed in the central area and the south (Figure 8b); Cryptomeria
fortunei (Figure 8c) and Chinese fir (Figure 8d) are mainly concentrated in the west and
north; poplar is less distributed in the north, and its extremely high-susceptibility area is
mainly in the center (Figure 8e).
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Dafang County.

Poplar has the smallest area, accounting for 3.39%. Its contribution to extremely
high-grade landslide susceptibility reaches 0.59, and it is the only tree species with an
extremely high-grade landslide susceptibility of more than 0.5, indicating that poplar has
the weakest landslide protection ability compared with other tree species. The areas of Birch
and Walnut are the largest, accounting for 8.26% and 6.71%, respectively; their contribution
to high-grade landslide susceptibility is the largest (0.52), and their protection ability with
respect to landslides is not high. Cryptomeria fortunei and Chinese fir contribute 0.5 and
0.51 to the high-grade landslide susceptibility and are also prone to landslide. Except for
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Cryptomeria fortunei, the impact of other tree species on high- and extremely high-grade
landslide susceptibility is more than 0.5. Relatively speaking, Cryptomeria fortunei has the
lowest possibility of landslide.

3.4.3. Dominant Tree Species and Landslide Susceptibility in Qianxi County

It can be seen from Table 4 and Figure 9 that the top-five dominant tree species in the
forests of Qianxi County are Osmanthus trees, Masson pine, other soft broad tree species,
Cedarwood, and Broad-leaved mixed tree species. The sums of high- and extremely
high-grade landslide-prone areas are 35,402 hm2, 13,582 hm2, 9823 hm2, 8182 hm2, and
6771 hm2, accounting for 79.4%, 76.1%, 78.4%, 81.6%, and 76.2% of the areas of these
tree species, respectively. The area of Osmanthus is much larger than that of other tree
species, and the extremely high-grade landslide susceptibility area is more obvious in
the marginal zone (Figure 9a); Masson pine is mainly concentrated in the central and
northeastern parts (Figure 9b); other soft and broad tree species (Figure 9c), Cedarwood
(Figure 9d), and broad-leaved mixed tree species (Figure 9e) are relatively small in area and
are sporadically distributed.
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Among the dominant tree species, the contribution of Osmanthus trees to the extremely
high-grade landslide susceptibility is 0.55, and it is the only dominant tree species with an
extremely high landslide susceptibility value greater than 0.5. Its extremely high-grade
landslide-prone area comprises 14,409 hm2, accounting for 55.1% of the total extremely
high-grade landslide-prone area, and its proportion is high, indicating that the Osmanthus
has the lowest ability to protect against landslides. The contribution of other soft broad
tree species and broad-leaved mixed tree species to high-grade landslide susceptibility is
greater than 0.5, indicating that these tree species have poor protection ability with respect
to landslides. Masson pine and Cedarwood species account for the lowest proportion of
landslide-prone areas at high and extremely high grades, and their contribution to high
and extremely high landslide susceptibility is relatively low, both less than 0.5, indicating
that they provide relatively good protection against landslides.

3.4.4. Dominant Tree Species and Landslide Susceptibility in Jinsha County

It can be seen from Table 4 and Figure 10 that the top-five dominant tree species
in Jinsha County’s forests are other soft broad tree species, Masson pine, Quercus fabri,
Cedarwood, and Chinese fir. The sums of the landslide prone areas of various tree species
with high and extremely high grades are 20,641 hm2, 14,606 hm2, 12,308 hm2, 10,188 hm2,
and 9234 hm2, respectively, accounting for 84.6%, 80.6%, 79.3%, 85.4%, and 81.6% of the
areas of these tree species. Other soft and broad tree species with the largest area have
a large distribution in the whole county (Figure 10a); Masson pine is rare in the south,
while the high-susceptibility area is most obvious in the west (Figure 10b); Quercus fabri is
less distributed in the east (Figure 10c); Cedarwood is mainly found in the west and east
(Figure 10d); fir is more abundant in the center, and the extremely high-susceptibility areas
are also mostly in the center (Figure 10e).
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Among the dominant tree species, the extremely high-susceptibility area of other soft
and broad tree species makes the largest contribution of 0.54, and its extremely high-grade
landslide-prone area is 9488 hm2, accounting for 35.1% of the total extremely highly prone
landslide area; the landslide protection ability is the lowest. The contribution of Cedarwood
to the landslide susceptibility of high and extremely high grades is 0.51, accounting for
8.92% and 8.94% of the total landslide susceptibility area of high and extremely high grades,
respectively, and the landslide susceptibility is second only to other soft and broad tree
species. The contribution of Masson pine and Quercus fabri to the high-grade landslide
susceptibility is greater than 0.5, indicating that these tree species have low protection ability
with respect to landslides. The area proportion of Chinese fir tree species in the landslide-
prone area of high and extremely high grades is relatively low, and the contribution to the
landslide susceptibility of high and extremely high grades is relatively low; it is not greater
than 0.5. This shows that compared with other tree species, Chinese fir has relatively better
protection ability against landslides.

3.4.5. Dominant Tree Species and Landslide Susceptibility in Zhijin County

From Table 4 and Figure 11, it can be seen that the top-five dominant tree species in
Zhijin County are Cryptomeria fortunei, Chinese fir, Birch, other soft broad tree species,
and Walnut. The sums of the landslide prone areas of various tree species with high and
extremely high grades are 20,641 hm2, 14,606 hm2, 12,308 hm2, 10,188 hm2, and 9234 hm2,
accounting for 80.7%, 81.1%, 81%, 82.5%, and 84.1% of the areas of these tree species,
respectively. The distribution of Cryptomeria fortunei is relatively concentrated, with fewer
areas in the north, and the high- and extremely high-susceptibility areas are mainly in the
center (Figure 11a); Chinese fir (Figure 11b) and Birch (Figure 11c) are less distributed in
parts of the north and northeast; other soft and broad tree species are more concentrated
in the central aera of south (Figure 11d); Walnut has the smallest area and a scattered
distribution (Figure 11e).

Forests 2022, 13, 1136 18 of 26 
 

 

center (Figure 11a); Chinese fir (Figure 11b) and Birch (Figure 11c) are less distributed in 
parts of the north and northeast; other soft and broad tree species are more concentrated 
in the central aera of south (Figure 11d); Walnut has the smallest area and a scattered 
distribution (Figure 11e). 

 
Figure 11. Spatial distribution map of landslide susceptibility of dominant tree species in Zhijin 
County. 

Among the dominant tree species, the extremely high-grade landslide-prone area of 
Walnut tree species comprises 3186 hm2, accounting for 42.2% of the area of this tree spe-
cies. The contribution of Walnut to extremely high-grade landslide susceptibility is the 
largest, with a maximum contribution of 0.54 and the lowest landslide protection ability. 
Chinese fir and other soft broad tree species contribute 0.51 to extremely high-grade land-
slide susceptibility, with areas of 17,575 hm2 and 11,188 hm2, respectively. These tree spe-
cies have low landslide protection ability. The influence of Cryptomeria fortunei and Birch 
on the high-grade landslide susceptibility is 0.51, which is higher than 0.5, indicating that 
the landslide protection ability of these tree species is not high, but they are more effective 
than the other three tree species.  

  

Figure 11. Cont.

198



Forests 2022, 13, 1136

Forests 2022, 13, 1136 18 of 26 
 

 

center (Figure 11a); Chinese fir (Figure 11b) and Birch (Figure 11c) are less distributed in 
parts of the north and northeast; other soft and broad tree species are more concentrated 
in the central aera of south (Figure 11d); Walnut has the smallest area and a scattered 
distribution (Figure 11e). 

 
Figure 11. Spatial distribution map of landslide susceptibility of dominant tree species in Zhijin 
County. 

Among the dominant tree species, the extremely high-grade landslide-prone area of 
Walnut tree species comprises 3186 hm2, accounting for 42.2% of the area of this tree spe-
cies. The contribution of Walnut to extremely high-grade landslide susceptibility is the 
largest, with a maximum contribution of 0.54 and the lowest landslide protection ability. 
Chinese fir and other soft broad tree species contribute 0.51 to extremely high-grade land-
slide susceptibility, with areas of 17,575 hm2 and 11,188 hm2, respectively. These tree spe-
cies have low landslide protection ability. The influence of Cryptomeria fortunei and Birch 
on the high-grade landslide susceptibility is 0.51, which is higher than 0.5, indicating that 
the landslide protection ability of these tree species is not high, but they are more effective 
than the other three tree species.  

  

Figure 11. Spatial distribution map of landslide susceptibility of dominant tree species in Zhijin County.

Among the dominant tree species, the extremely high-grade landslide-prone area of
Walnut tree species comprises 3186 hm2, accounting for 42.2% of the area of this tree species.
The contribution of Walnut to extremely high-grade landslide susceptibility is the largest,
with a maximum contribution of 0.54 and the lowest landslide protection ability. Chinese
fir and other soft broad tree species contribute 0.51 to extremely high-grade landslide
susceptibility, with areas of 17,575 hm2 and 11,188 hm2, respectively. These tree species
have low landslide protection ability. The influence of Cryptomeria fortunei and Birch on
the high-grade landslide susceptibility is 0.51, which is higher than 0.5, indicating that the
landslide protection ability of these tree species is not high, but they are more effective than
the other three tree species.

3.4.6. Dominant Tree Species and Landslide Susceptibility in Nayong County

It can be seen from Table 4 and Figure 12 that the top-five dominant tree species in the
forests of Nayong County are Birch, Cryptomeria fortunei, Chinese fir, Peach, and other soft
and broad tree species. The sums of the landslide-prone areas for various tree species with
high and extremely high grades are 15,529 hm2, 11,992 hm2, 10,277 hm2, 5146 hm2, and
4703 hm2, respectively, accounting for 82.3%, 74%, 81%, 82.4%, and 76.6% of the areas of
these tree species. Birch is widely distributed in the whole county (Figure 12a); Cryptomeria
fortunei is mainly distributed in the central and southern areas (Figure 12b); Chinese fir is
not as dense as in other areas in the west (Figure 12c); Peach (Figure 12d) and other soft
broad tree species (Figure 12e) have the lowest area and a more sporadic distribution.

Among the dominant tree species in Nayong County, Peach makes the highest con-
tribution to the landslide susceptibility of high and extremely high grades, being 0.53
and 0.51, respectively. The landslide protection ability is the worst, but its area is not
large, accounting for only 4.61%. In addition, Chinese fir contributes 0.5 and 0.51 to the
landslide susceptibility of high and extremely high grades, respectively, indicating that it
is prone to landslides, and its ability to stop landslides is only better than that of Peach.
The contribution of Cryptomeria fortunei and other soft and broad tree species to the
extremely high-grade landslide susceptibility is 0.51, and the landslide protection ability is
poor. The largest area of Birch species is 18,875 hm2, but its contribution to high landslide
susceptibility is 0.53, and the landslide protection ability is not high; however, it is better
than other tree species.
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3.4.7. Dominant Tree Species and Landslide Susceptibility in Hezhang County

It can be seen from Table 4 and Figure 13 that the top-five dominant tree species
in Hezhang County are Pinus armandi, Walnut, Pinus yunnanensis, Quercus fabri, and
Chinese fir. The sums of the landslide-prone areas of the various tree species with high
and extremely high grades are 14,786 hm2, 12,422 hm2, 7859 hm2, 4163 hm2, and 2223 hm2,
respectively, accounting for 32.6%, 61.4%, 55.5%, 34.7%, and 60% of the areas of these
tree species. The dominant tree species, Pinus armandi, has the largest area, is evenly
distributed, and is mainly found in the medium-susceptibility area (Figure 13a). Walnut is
mainly distributed in the central area (Figure 13b); Pinus yunnanensis is mainly distributed
in the northwest (Figure 13c); Quercus fabri is small in area but concentrated in the south
(Figure 13d); Chinese fir is scattered (Figure 13e).
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The area of Walnut comes second, accounting for 10.2%, and the highest contributions
to the susceptibility to landslides of high and extremely high grades are 0.63 and 0.68,
respectively, indicating that its landslide susceptibility is the greatest. Pinus yunnanensis
and Chinese fir contribute 0.57 and 0.56 to extremely high-grade landslide susceptibility,
respectively, and contribute 0.62 and 0.60 to high-grade landslide susceptibility, indicating
that their landslide protection capabilities are also poor. The contributions of Pinus armandi
and Quercus fabri to the susceptibility to landslides of high and extremely high grades are
lower than 0.5, indicating that their landslide susceptibility is low; at the same time, the
area of Pinus armandi is 45,373 hm2, and the proportion reaches 22.87%. In general, the
influence of Walnut, Pinus yunnanensis, and Chinese fir on the susceptibility to landslides
of high and extremely high grades is much greater than 0.5, and the possibility of landslide
events is high.

3.4.8. Dominant Tree Species and Landslide Susceptibility in Weining County

It can be seen from Table 4 and Figure 14 that the top-five dominant tree species in
Weining County’s forests are Pinus yunnanensis, Pinus armandi, Sawtooth oak, Cyclobal-
anopsis glauca, and other soft broad tree species. The sums of the landslide-prone areas
for the various tree species with high and extremely high grades are 24,153 hm2, 6376 hm2,
2194 hm2, 3235 hm2, and 1231 hm2, accounting for 24.3%, 13.2%, 21%, 73.8%, and 33.4%
of the areas of these tree species, respectively. Pinus yunnanensis is concentrated in the
southwest region (Figure 14a); Pinus armandi is less distributed in the west (Figure 14b);
Sawtooth oak (Figure 14c) and Cyclobalanopsis glauca (Figure 14d) are small in area, and

201



Forests 2022, 13, 1136

both are concentrated in parts of the north; the distribution of other soft broad species is
sporadic (Figure 14e).
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ing County.

Among the dominant tree species, the area of Cyclobalanopsis glauca is 4381 hm2,
accounting for 1.7%. Its contribution to extremely high-grade landslide susceptibility is
0.96, and it is the only tree species with a contribution close to 1 in all regions. It has
the lowest protection ability against landslides and may even promote landslides. The
contributions of other soft and broad tree species to the landslide susceptibility of high and
extremely high grades are 0.56 and 0.57, indicating that the landslide protection ability is
poor, but the tree species has the smallest area, 509 hm2, and the lowest proportion is 1.43%.
Pinus yunnanensis has a large area with a proportion of 38.55%, which is larger than the
sum of the other four tree species, and contributes 0.5 to high-grade landslide susceptibility.
Its landslide protection ability is not high but is better than Cyclobalanopsis glauca and
Pinus yunnanensis. The contributions of Pinus armandi and Sawtooth oak to the landslide
susceptibility of medium, high, and extremely high grades is low, and neither exceed 0.5,
indicating that their landslide protection ability is the best and is worthy of promotion.

4. Discussion

At present, research on the impact of forests on landslide susceptibility mostly focuses
on the forest land type, origin, and forest root system, and concentrates on a single influenc-
ing factor. Few systematic studies have been conducted on forests, and the specific impacts
of forests have not been quantified. By constructing a contribution model and combining
the landslide susceptibility data in Bijie, we have quantified the contributions of forest
type, origin, age, and dominant tree species to landslide susceptibility for the first time and
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deeply analyzed the impact of forests on landslides. We found that different forest types,
origins, ages, and dominant tree species have different landslide susceptibilities.

4.1. Forest Types

Woodland has a higher landslide susceptibility than shrubland. Bijie City has a large
proportion of coniferous forests represented by Pinus armandi and Pinus yunnanensis in
the woodland. These kinds of trees have short root systems, single-tree stand structures,
unstable ecosystems, thick soil layers for the growth of the forest, rich material sources for
landslides, high centers of gravity, and easy lodging under the influence of rainfall and
wind. These factors make the woodland more prone to landslides, which is contrary to
the findings of Sun et al. [46]. This is because the soil layer in the karst area is thin and
shrubland sites have a thin soil layer, less landslide material sources, and a low shrub
height. Compared with tall trees, shrubland has a lower center of gravity, is less affected by
rainfall and wind, and is less prone to lodging. Moreover, according to Li et al. [47], the soil
moisture content can affect the runoff and slope stability. The distribution of water content
in soil is also affected by plant species and root systems. Shrub roots can increase the water
content and porosity in the rhizosphere soil; fine and medium roots provide the main
channels for the formation of soil runoff, enhancing soil porosity and infiltration. Most of
the fine roots of shrubs are on the soil surface, which can provide more water channels,
promote infiltration, reduce surface soil moisture, and make the soil shear strength higher,
which is conducive to slope stability. Therefore, the landslide protection ability of shrubland
is relatively strong.

4.2. Forest Origin

The landslide susceptibility for artificial forests is greater than that of natural forests.
According to forestry survey data, artificial forests include shallow-root arbor forests
such as Pinus armandi and Pinus yunnanensis, and economic forests such as Walnut.
Compared with natural forests, the stand structure of artificial forests is relatively simple,
more disturbed by human activity, and less stable. The economic benefits are higher, but
the ecological benefits of artificial forests are lower than those of natural forests. Under
severe meteorological conditions such as heavy rain, plantations face a greater susceptibility
of landslides; natural forests have a stronger soil fixation effect, and higher soil porosity
enables them to better absorb rainfall and cope with other landslide factors; this is confirmed
by Wang et al. [48]. This is because the root biomass per unit of soil in natural forests is
much larger than that in artificial forests, and a large number of roots will be lost during
transplanting, with some roots dying after transplanting. This will cause rainwater to fail
to infiltrate in time when it rains, increase the soil moisture, soften the soil, reduce the
adhesion and friction of soil particles, reduce the shear strength of the soil, and increase
the susceptibility of landslides. At the same time, the soil will be turned over during the
transplanting process, breaking the natural soil crust, making the surface moisture increase
faster during rainfall, and reducing the adhesion of the soil. According to research results
for soil samples collected from plantations and natural forests by relevant scholars, the
proportions of soil aggregates in natural forests and plantations were 43.22% and 23.01%,
respectively, indicating that the influence of natural vegetation on the aggregation of the
soil structure is greater than that of plantations [28]. Therefore, the landslide protection
ability of a plantation forest is reduced. As a result, in the establishment of plantations, the
stand structure should be optimized, mixed forests should be planted, the combination of
arbor and shrub should be reasonable, and plantation and ecological restoration should be
carried out on the principle of imitating natural plant communities.

4.3. Forest Age

The landslide protection ability of forests in different age groups showed a trend of
increasing first and then decreasing. Young forests have lower comprehensive efficiency,
lower plant canopy density, fewer root systems, and fewer soil and water conservation
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functions. Under the influence of heavy rainfall, landslides are likely to occur and the
protection ability with respect to landslides is weak. The protection ability of medium-
aged forests against landslides is strong. This is because with the change from young
forests to medium-aged forests, the stability of the forest land increases, the root system
begins to develop gradually, the soil adhesion is stronger, and landslides cannot easily
occur. The contribution was less than 0.5, which is consistent with the research results of
Šilhán et al. and Sati et al. [49,50]. Near-mature forests provide the strongest protection
against landslides. At this time, plant roots are developed, leaves are dense, respiration
and transpiration are strong, roots absorb water from soil quickly, and infiltration of soil
surface water is also faster, all of which can effectively reduce soil surface moisture, increase
the soil shear strength, and reduce the landslide susceptibility. When the forest grows
into mature forest and over-mature forest, the center of gravity of tall trees with dense
canopies is higher than for the ground. Against the background of heavy rainfall and other
extreme weather conditions, mature and over-mature forests are prone to lodging, thereby
uprooting, and the soil stability declines. The protection ability with respect to landslides is
weaker than that of near-mature forests, so the contribution of mature and over-mature
forests is greater than 0.5, and their ability to prevent landslides is poor.

4.4. Dominant Tree Species

In terms of the impact of dominant tree species, artificial forests such as economic
forests, other soft broad tree species, and shallow-rooted coniferous forests have limited
inhibitory effects on landslides. Compared with near-mature forests, the slope stability of
mature forests and over-mature forests in shallow-rooted arbor forests such as Chinese fir is
reduced, and the probability of landslides is high. The dominant tree species in Qixingguan
and Dafang are Chinese fir, Cryptomeria fortunei, and other coniferous species. Thus,
the forest structure should be optimized and deep-rooted shrubs should be planted in
steep-slope and high landslide-prone areas to increase the slope stability. Walnut, as a
characteristic economic forest planted on a large scale in the process of poverty alleviation,
has high economic benefits. However, due to frequent human activity and loose soil
created in the process of economic forest management, it is easily affected by heavy rainfall
and is prone to landslides. The dominant tree species in Hezhang and Weining counties
is mainly Walnut. When planning and developing Walnut economic forests, attention
should be paid to avoiding areas that are prone to landslides. Other soft broad tree species
are widely planted in Qianxi County, Zhijin County, Nayong County, and Jinsha County.
Compared with coniferous forests such as Chinese fir and Cedarwood, other soft broad
tree species contribute more in extremely high landslide-prone areas and have weaker
landslide protection capabilities. Consistent with the results of Bordoni et al. [23], this is
because the average tensile strength of the roots of broad-leaved tree species is weak, and
the enhancement effect on the soil shear strength is relatively poor. In particular, the area of
soft broad tree species in Jinsha County is 24,385 hm2, a large proportion, covering 17.53%
of the area. The extremely high-grade landslide susceptibility contributes the most, and
landslides occur frequently, which should arouse the attention of the forestry department.
It is notable that Cyclobalanopsis glauca trees are widely planted in Weining County, and
most of them are distributed in mountainous areas with more gravel. The soil erosion is
serious and, coupled with the steep terrain and abundant sources of weathered materials
and other factors, the susceptibility of landslides is extremely high, which should arouse
great attention from the forestry department.

4.5. Forest Management Strategy

In forestry planning and design and afforestation, landslide factors should be com-
prehensively considered, and the potential for landslide protection in the process of forest
management should be brought into play. It is necessary to strengthen the protection
and restoration of natural forests, gradually restore natural forests with high slopes and
broken soils in areas prone to landslides, enhance the ability of natural forests to store
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water and soil, control soil erosion, reduce vegetation damage, protect the stability of
the original ecosystem, and improve the landslide protection ability. This can be carried
out by optimizing the plantation stand structure and following the principle of imitating
natural plant communities in the process of afforestation, planting mixed forests, paying
attention to the combination of arbor and shrub, and improving the diversity of plantation
stands. For existing pure plantations, this should be based on the dominant tree species
in different regions, combined with the distribution of landslide susceptibility. The forest
stand structure should be transformed, plants that can stabilize the slope and prevent
landslides should be added, the soil’s shear resistance should be improved, and ecosystem
stability should be enhanced. When planting economic forests, it is necessary to avoid
areas with high landslide susceptibility and pay attention to soil and water conservation.

5. Conclusions

We investigated the contributions of the woodland type, forest origin, forest age
group, and dominant tree species to landslide susceptibility, and the results show that
forests play a role in regulating landslide susceptibility. In general, natural forests have
significantly stronger landslide protection capabilities than artificial forests, shrubland has
stronger landslide protection capabilities than woodland, near-mature forests have stronger
landslide protection capabilities than young forests and mature forests, and the dominant
tree species in different regions have different effects on landslides. Among the dominant
tree species in each county, the shallow-rooted coniferous forests represented by Chinese fir
and Pinus yunnanensis, as well as the economic forests represented by Walnut, Peach, and
Osmanthus, have a single stand structure, and most of them are plantations and young
forests, which are highly susceptible to landslides. In forest management, it is necessary to
optimize the stand structure according to the distribution of landslide susceptibility and
take into account the organic unity of economic, social, and ecological benefits.
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Abstract: China’s landslide disasters are serious, and regional landslide disaster early-warning is
one of the important means of disaster prevention and mitigation. The traditional regional landslide
disaster early-warning model, however, is limited by the complex landslide induction mechanism,
limited data accumulation, and insufficient big data analysis methods, and has problems such as
limited early-warning accuracy and insufficient refinement. In this paper, a machine learning method
was introduced into the field of regional landslide disaster warning. From the model construction
process of training sample-set construction, sample learning and training, model parameter optimiza-
tion, model preservation, warning output, and so on, a method for constructing a regional landslide
early-warning model based on machine learning was systematically proposed. In the sample learning
and training, 80% of the training sample-set was used as the training set, and 20% was used as the
test set for five-fold cross validation. The Bayesian Optimization algorithm was used to optimize
the model parameters, and the accuracy, ROC curve, and AUC value were used to verify the model
accuracy and model generalization ability. With China’s Fujian province as an example, based
on nine years of geological and meteorological data (2010–2018), geological environment factors,
factors of hazard-affected bodies and historical disaster situations, and rainfall-induced factors in
four categories, a total of 26 indicators were used as input characteristic parameters. Six machine
learning algorithms were adopted to improve model training; the results showed that the Random
Forest algorithm performed the best, giving an accuracy of 92.3%, and was the model with the best
generalization ability (AUC was 0.955). The second best was the Artificial Neural Network model,
with an accuracy of 0.937 and an AUC of 0.935. Next were the Nearest Neighbor model, the Logistic
Regression model, and the Support Vector Machine; the poorest results were from the Decision Tree
model. Finally, the typical rainfall-type landslide disaster process in Fujian Province was selected as
an example to verify the Random Forest algorithm model. The results showed that compared with
the early-warning results of the original explicit statistical model, the hit rate of the new model was
6 times, or equal to that of the original model, and the landslide density in the early-warning area of
the new model was 1.6–1.7 times that of the original model. Preliminary verification showed that
the new model based on the Random Forest method has obvious advantages, a higher hit rate and a
smaller warning area, and can achieve more accurate warnings. The follow-up will continue to track
the new landslide disaster situation in the study area and carry out model verification and correction.

Keywords: landslide; early-warning model; machine learning; Random Forest; model study

1. Introduction

China is one of the countries with the most widespread and serious geological disasters
in the world. Geological disasters spread throughout the country’s mountainous and
highland areas, with nearly one million known locations, causing hundreds of deaths and
billions of yuan of direct economic losses every year (according to the National Geological
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Disaster Bulletin issued by the Ministry of Natural Resources). More than 20 countries or
regions in the world, including Hong Kong, China, the United States, Italy, Brazil, Japan,
etc., have also performed or are carrying out regional geological disaster early-warning and
mitigation services to varying degrees [1]. Since 2003, the Chinese mainland has carried
out a meteorological early-warning for regional geological disasters and achieved good
results in disaster prevention and mitigation [2–10]. Additionally, in the monitoring and
early-warning demonstration area [11,12], the Three Gorges Reservoir Area [2], Wenchuan
earthquake disaster area [13], and other key regions, extensive research and practice have
also been carried out. According to statistics, since 2003, owing to the efforts of various
parties, the number of deaths and missing caused by geological disasters has decreased
from about 1000 per year during the Tenth Five-Year Plan period to about 500 since the
Twelfth Five-Year Plan period, which indicates that important contributions have been
made to meteorological early-warning and prediction of geological disasters [3,4].

The model study is the basic scientific problem of regional landslide early-warning. A
large number of scholars have carried out long-term and unremitting research on it. The
first and most widely used model is the statistics-based critical rainfall threshold model,
which was systematically studied in Hong Kong, China, and the United States [14,15], and
has been widely used as a reference in other countries or regions due to its advantages of
simplicity and ease of generalization [16–19]. Based on the statistical principle, the explicit
statistical early-warning model proposed by Liu Chuanzheng et al. [2] has been deeply
explored and applied at all levels of early-warning, key research areas, and monitoring and
early-warning areas in mainland China [4–7,9,11,12]. A regional dynamic early-warning
model based on the mechanism process analysis of rainfall–seepage and disaster occurrence
has been continuously studied. By coupling slope stability analysis with a hydrogeological
model, the critical rainfall index for landslide initiation has been determined [20–23], and
the physical significance of the dynamic early-warning model is clear, but due to the
complex parameter input and uncertainty in the model, this method is mostly used in the
small-scale research process, and its practical operation is also limited.

In recent years, with the rapid development of artificial intelligence technology, ma-
chine learning and deep learning algorithms based on artificial intelligence have become
increasingly mature and widely used in various industries. In the field of geological disaster
prevention and control, a variety of machine learning algorithms have been widely used
in landslide spatial evaluation and prediction in recent years, such as Artificial Neural
Networks, Decision Trees, Support Vector Machines, Random Forests, etc. [24–29]. Most
of the above-mentioned studies introduce machine learning algorithms into landslide
spatial evaluation and prediction to evaluate regional landslide sensitivity or susceptibility.
After the spatial evaluation is completed, the critical precipitation threshold is determined
by traditional statistical methods [30]. However, there are few related achievements of
realizing spatial and temporal warning for regional landslide disasters based directly on a
machine learning algorithm.

Aiming at the problems that exist in the traditional regional landslide early-warning
models, such as complex landslide-inducing mechanisms, limited data accumulation, and
insufficient data analysis methods, past results lead to limited warning accuracy and a
lack of indicator precision. Through the training sample-set construction, comparative
analysis of various machine learning methods could improve the precision of early-warning
models and other aspects of the research to solve these problems. This paper systematically
expounded on the construction method for a regional landslide disaster early-warning
model based on crucial components of machine learning algorithms: training sample-
set construction, model training, optimization evaluation, and early-warning modeling.
Taking Fujian Province of China as an example, the Random Forest algorithm and Near-
est Neighbor algorithm were applied, and Support Vector Machine, Logistic Regression,
Decision Tree, Artificial Neural Network, and other algorithms, based on the geological
and meteorological data from 2010 to 2018, were used to construct a regional landslide
disaster early-warning model for Fujian Province. We selected two typical rainfall-induced
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landslide disasters in Fujian Province in 2019. Taking the process as an example, we carried
out the live operation and application verification of the early-warning model.

2. Geological Background of the Study Area

Fujian Province is located in a mountainous highland area along the southeast coast of
mainland China. It is one of the provinces with complex terrain, abundant rainfall, and
frequent landslide disasters. At the present, the forest coverage rate of Fujian Province rate
has reached 66.8 percent, ranking first in China for 43 consecutive years. The highlands and
mountainous areas of the study area account for about 80% of the total area, mainly in the
central and western regions of Fujian Province. The terrain of Fujian Province is generally
high in the northwest and low in the southeast. Under the control of the New Cathaysia
tectonic system, the western Min-Dashan belt and the middle Min-Dashan belt are formed
in the west and central part of Fujian Province, and there are disconnecting valleys and
basins between the two belts. There are many river systems in Fujian Province, and their
flow direction is mostly from west to east. The rivers are mostly mountainous rivers
with abundant water volume, great seasonal changes, and rapid flow. The province has a
subtropical humid monsoon climate, with an average annual rainfall of 1000~1900 mm,
abundant rainfall, strong monsoon circulation, and a remarkable monsoon climate. There-
fore, Fujian is an area prone to natural disasters, frequently-occurring areas, and worst-hit
areas, especially landslide disasters are most widely distributed (Figure 1). The residual
slope soil layer in the study area is widely developed. The slope gradient is generally
0~30◦, locally greater than 30◦. Due to the poor geological environment conditions, most of
the villages in the mountainous area were built on the slopes, forming a large number of
high and steep slopes in front of or behind the houses. During the flood season, sudden
geological disasters such as collapses and landslides occur frequently. Although the scale
of landslides is small, most of them occur in front of or behind residents’ houses, which
can easily cause casualties and property losses. The occurrence of landslide disasters in
Fujian Province is closely related to the terrain and induced by heavy rainfall and human
engineering activities. The disaster-vulnerable terrain is prone to occur on gradients with a
slope of more than 20◦; generally, the hazards are liable to happen during the heavy rainfall
period from May to June and the typhoon and rainy period from July to September, and
they usually take place in front of and behind houses sections such as the cutting slopes,
planting economic forests, and spoiling soil along the slopes [31].
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3. Determination of Evaluation Index and Selection of Algorithm
3.1. Extraction of Evaluation Indexes

Landslide disasters are influenced and affected by the combination of topography,
geological conditions, environmental conditions, and human engineering. Analyzing
influence factors of landslide disasters is the basis for carrying out mechanism research,
early warning and forecasting, and disaster prevention and mitigation. According to the
existing survey and monitoring data in the study area, as well as the development and
distribution of regional landslide disasters and the analysis of influencing factors [31–33],
the input features of influencing factors are extracted from four aspects: geological envi-
ronment factors, hazard-affected body factors, historical disasters, and rainfall-induced
factors. Geological environment factors are the geological environment background factors
of landslide disasters in the study area, which determine the potential susceptibility degree
of landslide disaster in this area. Hazard-affected body factors are the evaluation indexes of
the hazard-affected body that may be caused when a landslide occurs. Historical disasters
refer to the number of historical landslide disasters in the study area. Rainfall-induced
factors are the direct rainfall-inducing factors of landslides in the forecast period. These
four categories cover all the geological environment aspects that influence the prediction of
the possibility and risk of landslides disaster in this study area.

The extracted geological environment factors mainly include grade, geomorphic type,
stratigraphic lithology, annual rainfall, vegetation type, water system influence, etc. Based
on the 1:200,000 and 1:500,000 geological environment and geological disaster survey
database of Fujian Province, the hourly precipitation data of Fujian Province from 2010
to 2018 (nearly 2000 stations), and the grid precipitation Real-time (QPE) data of Fujian
Province in 2021 (grid scale: 5 km × 5 km), the correlation analysis between these six
geo-environmental factors evaluation indexes and the spatial distribution of landslide
hazards in the region was carried out. According to the results of correlation analysis,
the grade factors were classified into five categories: 0~15◦, 15~25◦, 25~35◦, 35~50◦, ≥50◦

(Figure 2a); the geomorphic types were classified into five categories: plains, hills, low
mountains, medium mountains, and high mountains (Figure 2b). The lithological factors of
the formation were classified into a massive hard granite rock group, hard-harder diorite
rock group, massive hard-harder tuff lava rock group, medium-thick layer, and relatively
hard sandstone rock group, thin layer soft mudstone, shale rock group, medium-thick hard
quartz gneiss rock group, medium-thick hard carbonate rock group, and loose sandy clay
soil layer (Figure 2c). The annual average rainfall types were classified into 13 categories
such as 1400–1450 mm, 1450–1500 mm, and so on, up to >2000 mm (Figure 2d). Vegetation
affects landslides through coverage, density, abundance, height, underground biomass, leaf
area index, and aboveground biomass. According to the correlation between the spatial
distribution of landslides and the distribution of vegetation types, the vegetation types
were classified into six types (Figure 2e); the water system was classified into two categories
based on whether the impact distance is greater than 500 meters (Figure 2f). Detailed
information is shown in Table 1.

The main indicators of hazard-affected body factors extracted are roads, houses, and
population density. The road distribution layer was extracted from 1:250,000 DLG data,
and the distance from the road 0~500 m and ≥500 m were classified into two categories
and quantified separately (Figure 3a). The house distribution layer was extracted from
1:250,000 DLG data, and the distances from the house 0~500 m and ≥500 m were classified
into two categories and quantified separately (Figure 3b). According to the data of the
sixth National Population Census, the population density (unit: pieces /km2) types were
classified into seven categories, 50–100, 100–150, 150–300, 300–450, 450–600, 600–750, >750,
and quantified, respectively (Figure 3c). The specific content is shown in Table 1.
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Figure 2. Geological environment factor index of the study area: (a) grade, (b) geomorphic type,
(c) formation lithology, (d) annual rainfall, (e) vegetation type, (f) water system.

Table 1. Input features and parameters of the training sample set.

Category Serial Number The Input
Features Characteristic Parameters Data Sources and

Processing Methods

Geological
environment factors

1 Grade/(◦) 1© 0~15; 2© 15~25; 3© 25~35; 4© 35~50; 5© ≥50

1:100,000 grade map of
Fujian Province,
classification and
quantification

2 Geomorphic type
1© plains; 2© hills; 3© low mountains; 4© medium

mountains; 5© high mountains

1:200,000 geomorphic type
map of Fujian Province,
classification and
quantification

3 Stratigraphic
lithology

1© massive hard granite rock group; 2©
hard-harder diorite rock group; 3© massive
hard-harder tuff, tuff lava rock group; 4©
medium-thick layer and relatively hard
sandstone rock group; 5© Thin layer soft
mudstone, shale rock group; 6© medium-thick
hard quartz gneiss rock group; 7© medium-thick
hard carbonate rock group; 8© loose sandy clay
soil layer

1:200,000 stratigraphic
lithology map of Fujian
Province, classified and
quantified

4 Annual
rainfall/(mm)

1© 1400–1450; 2© 1450–1500; 3© 1500–1550; 4©
1550–1600; 5© 1600–1650; 6© 1650–1700; 7©
1700–1750; 8© 1750–1800; 9© 1800–1850;
10© 1850–1900; 11© 1900–1950;
12© 1950–2000; 13© >2000

1:500,000 geological
disaster survey and
zoning reports in Fujian
Province, vectorization
acquisition, classification,
and quantification

5 Vegetation type

1© South subtropical rainforest area in the east of
Daiyun Mountain; 2© Daiyun Mountain Yijiufeng
Mountain Range; 3© Evergreen
mulberry-semi-evergreen oak forest area; 4©
South subtropical rainforest area in southeastern
Pingling; 5© Coastal South Subtropical Rainforest
Area; 6© Evergreen mulberry tree leaf forest area

1:500,000 vegetation type
map of Fujian Province,
classification and
quantification

6 Water system
influence/(m)

1© 0~500; 2© ≥500

1:500,000 water system
distribution map of Fujian
Province, calculation
buffer classification
quantification
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Table 1. Cont.

Category Serial Number The Input
Features Characteristic Parameters Data Sources and

Processing Methods

Hazard-affected
body factors

7 The distance from
road/(m)

1© 0~500; 2© ≥500

The road distribution
layer was extracted from
1:250,000 DLG data, and
the buffer classification
quantization was
calculated

8 The distance from
house/(m)

1© 0~500; 2© ≥500

The house distribution
layer was extracted from
1:250,000 DLG data, and
the buffer classification
and quantification were
calculated

9
Density of

population/
(pieces/km2)

1© 50–100; 2© 100–150; 3© 150–300; 4© 300–450;
5© 450–600; 6© 600–750; 7© >750

The sixth national
population census data,
classification and
quantification

Historical disaster
factors 10 Historical

disaster/(pieces)
the number of historical damage points of each
grid cell/10

Potential points of
landslides in 1:500,000
geological disaster survey
data in the study area,
National Geological
Disaster Database
(2010–2018), with a
scaled range

Rainfall-inducing
factors

11 Rainfall of that
day/(mm) actual rainfall value/10

The data of meteorological
and water conservancy
hourly precipitation
stations from 2010 to 2018
were interpolated and the
range was scaled

12
Rainfall in the
previous
day/(mm)

actual rainfall value/10

13 Rainfall in the last
two days/(mm) actual rainfall value/10

... ... actual rainfall value/10

26 Rainfall in the last
15 days/(mm) actual rainfall value/10
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Figure 3. Hazard-affected body factors: (a) distance from the road, (b) distance from the house,
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The historical landslides samples were extracted from the 1:500,000 geological disaster
survey data of the study area and the national geological disaster database (2010–2008),
and the scope was scaled by ten times of reduction (Figure 1).

The extracted index of rainfall-inducing factors mainly considers the rainfall of the
current day and the daily rainfall of the previous 15 days. According to the data of
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meteorological and water conservancy hourly precipitation stations from 2010 to 2018,
the index of rainfall-inducing factors of each grid cell were extracted, and the range was
realized by reducing it ten times.

Through the above analysis, the twenty-six input characteristics of four categories of
input characteristic factor indexes (geological environment factor, hazard-affected body
factor, historical disaster situation, and rainfall-inducing factor) in Fujian Province were
obtained. Among them, nine input characteristics of two categories of geological environ-
ment factors and hazard-affected body factors were classified and quantified. Data range
scaling was carried out for seventeen input features of two categories: historical disaster
conditions and precipitation-inducing factors, as shown in Table 1.

3.2. Selection of Machine Learning Algorithms

Commonly used machine learning algorithms mainly solve three major problems of
regression, clustering, and classification. The prediction data of the regression algorithm is
continuous numerical data, mainly including linear regression, logistic regression, etc., in
which logistic regression can also solve the classification problem. The prediction data of the
clustering algorithm is categorical, and the category is unknown, which is mainly a K-means
clustering algorithm. The prediction data of the classification algorithm is classified data,
and the category is known. The main algorithms include the Nearest Neighbor algorithm,
Support Vector Machine, Artificial Neural Network, Logistic Regression, Decision Tree,
and Random Forest. For regional landslide disaster warning problems, the machine
learning classification algorithm is mainly used. In this paper, six algorithms, including
the Random Forest algorithm, Nearest Neighbor algorithm, Support Vector Machine,
Logistic Regression, Decision Tree, and Artificial Neural Network were selected to establish
a landslide early-warning model. The comparative analysis of algorithms is shown in
Table 2.

Table 2. Comparison and analysis of commonly used machine learning classification algorithms.

Commonly Algorithm Principle Advantages Disadvantages

Logistic Regression

Based on the existing data, a
regression formula (the
best-fitting parameter set) was
established for the
classification boundary.

1© The calculation is small
and the speed is fast;
2© It has a good probability

explanation;
3© Can easily update the

model.

1© It is easy to under-fit and
the accuracy is limited;
2© It can only deal with two

classification problems, and it
must be linearly separable.

Nearest Neighbor algorithm
Classification is carried out by
measuring the distance
between different eigenvalues.

1© Suitable for multiple
classification problems;
2© High accuracy;
3© It is not sensitive to

abnormal points.

1© Large amount of
calculation, poor
comprehension;
2© When the training data is

highly dependent and the
samples are unbalanced, the
prediction accuracy of rare
categories is low.

Decision Tree

The tree structure is used to
establish the decision model
according to the
data attribute.

1© Easy to explain and explain,
good at dealing with the
interaction between features;
2© Suitable for analyzing

discrete data;
3© Small-scale data sets are

effective.

1© Poor treatment of
continuous variables;
2© Online learning is not

supported, and the Decision
Tree needs to be reconstructed
when there are new samples.
3© Easy to overfit.
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Table 2. Cont.

Commonly Algorithm Principle Advantages Disadvantages

Artificial Neural Network

Simulating biological neural
networks, a class of
pattern-matching algorithms
is a huge branch of machine
learning with hundreds of
different algorithms.

1© High classification
accuracy;
2© Strong learning ability.

1© A large number of
parameters are required;
2© Unable to observe the

learning process, the results
are difficult to interpret;
3© The study time is long.

Support Vector Machine

To find the optimal
hyperplane, the data can be
divided into two parts, each
part of the data belongs to the
same class.

1© It can solve nonlinear
classification;
2© The idea of classification

is simple.

1© Large memory
consumption, difficult to
implement for large-scale
training samples;
2© It is difficult to solve the

multi-classification problem;
3© Difficult to explain,

complex to run and optimize.

Random Forest algorithm

A forest is built randomly. The
forest is composed of many
independent Decision Trees,
and finally, the optimal
classification result is obtained
comprehensively.

1© The limited sample can be
fully applied;
2© It has the advantages of

diversity and accuracy.

It will overfit on some
noisy problems.

The quality of a machine learning model depends on its evaluation accuracy and
model generalization ability. Several common parameters for model evaluation include
the following:

(1) Accuracy (ACC), which expresses the model evaluation accuracy. The accuracy of the
model is the ratio of the number of samples correctly predicted by the model to the
total number of samples. In addition, there are metrics such as precision, recall, and
F1 value.

(2) The ROC curve and AUC value express the generalization ability of the model. ROC
(Receiver Operating Characteristic) curve refers to the receiver operating characteristic
curve, which is a comprehensive index reflecting the continuous variables of sensi-
tivity and specificity. Its main analysis tool is a curve drawn on a two-dimensional
plane; AUC (Area Under roc Cure) value is the area under the ROC curve. Usually,
the value of AUC is between 0.5 and 1.0, and the larger the AUC value, the better the
performance of the model.

(3) Learning curve, which describes the model fitting problem and judges whether the
model is over-fitting or under-fitting.

4. Regional Landslide Early-Warning Model Method Based on Machine Learning
4.1. Construction of Training Sample-Set

The accurate construction of the training sample-set is the foundation of the machine-
learning regional landslide disaster warning model, and it directly determines the accuracy
and generalization ability of the warning model to a certain extent. The occurrence of
regional landslide hazards is controlled by the coupling effect of geological environmental
conditions and rainfall conditions. From the perspective of input features, machine learning
samples include attributes of three aspects: geographic location, geological environmental
conditions, and precipitation conditions. Geographical location refers to the spatial geo-
graphic coordinates of the point where the sample is located; geological environmental
conditions refer to the geological environmental background conditions of the sample;
precipitation conditions refer to the induced rainfall factors of the sample. From the per-
spective of output features, the training sample-set includes positive samples (landslide
points, generally denoted as one) and negative samples (non-landslide points, generally
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denoted as zero). The balance of the number of positive and negative samples should be
considered when sampling positive and negative samples.

The construction process of the training sample-set is shown in Figure 4, which mainly
includes three steps: geological environment and rainfall factor feature library construction,
positive and negative sample sampling, and sample feature attribute extraction.
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Figure 4. Training sample-set construction flowchart.

4.1.1. Construction of Characteristic Database of Geological Environment and
Rainfall Factors

The construction of the geological environment characteristic database and rainfall
factor characteristic database is completed based on the analysis of regional landslide
disaster distribution patterns and influencing factors in the study area. The geological
environmental factors affecting the occurrence of regional landslides generally include
topography, strata lithology, human activities, etc.; the rainfall-inducing factors affecting
the occurrence of regional landslides generally include daily rainfall, previous rainfall,
previous effective rainfall, etc.

The geological environment factors and rainfall-inducing factors are overlaid with
the warning grid profiling unit respectively (Figure 5), and the geological environment
characteristic library and rainfall factor characteristic library of the early-warning grid unit
are obtained. The geological environment characteristic library contains the characteristics
attributes of each geological environment influencing factor of each early-warning grid unit;
the rainfall factor characteristic library contains the daily rainfall characteristic attribute or
effective rainfall characteristic attribute of each early-warning grid unit.

The early-warning grid unit is determined according to the size of the study area
and the actual need for early-warning. It is generally a uniform grid unit, which can be
determined by referring to the early-warning space accuracy in the relevant early-warning
standards (Table 3).
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Table 3. Precision division of early-warning space (reproduced from [34]).

Warning Grading Recommended Early-Warning Accuracy

At the national level 1:500,000–1:1,000,000

At the provincial level 1:100,000–1:500,000

The municipal 1:50,000–1:100,000

At the county level 1:10,000–1:50,000

Thematic early-warning area 1:2000–1:10,000

4.1.2. Sampling Method of Positive and Negative Samples

Positive samples refer to the points where landslides occur, and the sampling of
positive samples is generally based on historical landslide data. The screening requires that
landslides should have both definite spatial geographic coordinates (the specific accuracy
is determined by the specific conditions of the study area) and time coordinates (generally
accurate to the day in the 24-h early-warning). Generally speaking, the sampling accuracy
of positive samples is higher.

Negative samples refer to points where landslides do not occur, which cannot be
obtained directly. In this paper, the negative samples were sampled in two aspects based on
the method of “random sampling under space-time constraints” [35,36]: first, the size of the
buffer radius was corrected; secondly, in addition to random sampling outside the positive
sample buffer, sampling was supplemented in the grid where the positive sample is located,
that is, the negative samples were completed in two parts. The schematic diagram is shown
in Figure 6.
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(1) Collect negative samples outside the positive samples buffer
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Determination of the spatial location of the negative samples, random sampling in
the space outside a certain buffer zone of positive samples, and the determination of the
radius of the buffer zone should take into account the minimum early-warning grid cell
size in the study area and the distribution of historical landslide points. In this paper, the
buffer radius was used as the warning grid unit size to ensure the balance of positive and
negative samples; the number of negative samples collected was two times that of the
positive samples.

Time attribute assignment of negative samples: under the constraints of a certain
period (according to the completeness of rainfall data in the study area, it is generally the
whole period of the multi-year flood season), the random function is adopted for sampling.
The random function is as follows:

T = RAND (T1, T2) (1)

Description:
T, time acquired randomly;
T1, the lower limit of the time range of random acquisition time;
T2, the upper limit of the time range of random acquisition time.

(2) Negative samples are collected in the grid where positive samples are located

For the determination of the spatial location of negative samples, random sampling
was performed in the grid where the positive samples are located. The number of negative
samples collected was about equal to the number of positive samples.

Time attribute assignment of the negative sample also uses the random function shown
in Equation (1), with the additional constraint that the negative sample time property
sampled should be different from the positive sample.

4.1.3. Feature Attribute Extraction and Data Screening

The positive and negative samples are spatially overlaid with the geological envi-
ronment feature database to extract the geological environment feature attributes of the
positive and negative samples. Based on the temporal attributes of the positive and nega-
tive samples, and the rainfall factor feature attributes of the positive and negative samples
were extracted by the query. At this point, the construction of the whole training sample-set
was completed. In addition, data cleaning is particularly important throughout the training
sample-set construction process, and the model evaluation accuracy is higher using the
cleaned data set. Data cleaning generally consists of two categories:

(1) Handling data errors: for example, manual errors, data transmission errors, equip-
ment failures, and ambiguity of geological information can affect the original data
set, these errors data must be processed and cleaned in advance. In general, this type
of data cleaning refers to the imputation or elimination of missing values and the
identification of outliers in the data.

(2) Feature attribute preprocessing: considering the dimension difference of the input
features of the training samples, it is necessary to perform uniform normalization
or feature scaling on the input features of the samples. Different machine learning
algorithms differ in their sensitivity to the difference of input feature scales, and
the requirements for input feature attribute preprocessing are also different. It is
recommended that the input features of the training samples be uniformly normalized
or scaled before model training. Generally, the range of input features of the samples
should be at least not much different; otherwise, it will directly affect the accuracy of
the model.

In summary, the above-mentioned training sample-set construction method was used
to complete the positive and negative samples in Fujian Province, and the sample-set covers
15,589 samples in the past nine years (2010–2018). Among them, there are 3562 positive
samples and 12,027 negative samples, and the ratio of positive and negative samples is
about 1:3.4. The spatial distribution of positive and negative samples is shown in Figure 7.
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The positive and negative sample attributes determine the output features of the final
training sample-set. The output features of positive samples were taken as one, and the
output features of negative samples were taken as zero.
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4.2. Optimization of Model Parameters

The selection of model parameters has a significant impact on model accuracy, and
model optimization is crucial in model construction. The most commonly used model
parameter optimization methods include traditional methods and hyperparametric Op-
timization algorithms. The traditional parameter optimization method is the grid search
method, whose optimization accuracy is inversely proportional to its speed. In order to
optimize parameters more efficiently, the Bayesian Optimization algorithm has gradually
emerged [37,38]. The Bayesian Optimization algorithm adopts the Gaussian process to fit
the distribution of the objective function by increasing the number of samples, and the
objective function is optimized by cross-verifying the accuracy. Each iteration outputs
a hyperparameter, and the hyperparameter is optimized in the process of finding the
optimal value.

4.3. Model Saving and Early-Warning Output

The model trained by machine learning can be saved by calling the DUMP function in
the python environment. The model is generally saved as a .pkl format file.

When the actual early-warning is running, the trained early-warning model is directly
called by the LOAD function to output the probability of possible landslide disasters.
According to the probability, the warning level is determined by classification. The setting of
graded breakpoints can refer to the classification table of geological disaster meteorological
risk early-warning grades (according to the geological disaster regional meteorological risk
early-warning standard (trial) (T/CAGHP 039-2018)), and can also be fine-tuned according
to the specific conditions of the study area. Considering that the output threshold was set
to 0.5 in the machine learning algorithm, the geohazard meteorological warning probability
class classification was adjusted in conjunction with the specific conditions of the study
area. That is, when the output probability P ≥ 50% and P < 60%, the yellow warning of
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landslide disaster is issued; when the output probability P ≥ 60% and P < 80%, the orange
warning of landslide disaster is issued; when the output probability P ≥ 80%, a red warning
of landslide disasters is issued, as shown in Table 4.

Table 4. Division of early-warning levels.

The Warning Level The Risk of Landslides Output Probability/P

Red alert highest risk P ≥ 80%

Orange alert higher risk 60% ≤ P < 80%

Yellow warning high risk 50% ≤ P < 60%

5. Result and Verification
5.1. Model Parameter Optimization Training and Effect Evaluation

The training sample-set of regional landslide early-warning in Fujian Province was
divided into the training test sets in the ratio of 4:1. The parameters were optimized
by a Bayesian Optimization algorithm and five-fold cross-validation. The six commonly
used machine learning classification models were compared and evaluated to compare
the accuracy and model generalization ability indexes of each model. The optimization
parameters and effect evaluation comparison of the six models is shown in Table 5 and
Figure 8.

Table 5. Comparison of partial hyperparameter optimization and model evaluation of six machine
learning algorithms.

Machine Learning
Model Accuracy Model Generalization

Ability Hyperparameter Hyperparameter
Value

Random Forest
algorithm

0.923 0.955
n_estimators 118

max_depths 10

min_samples_split 3

Nearest Neighbor
algorithm 0.932 0.924 n_neighbors 10

Decision Tree 0.937 0.904 max_depths 4

Support Vector
Machine

0.932 0.920
C 3

gamma 0.003

Logistic Regression 0.940 0.922 C 5

Artificial Neural
Network

0.937 0.935
hidden_layer_sizes (6,7)

max_iter 1680

According to the calculation results of the six machine learning algorithms (Table 5),
it can be seen that the Random Forest model had the best performance; its accuracy rate
was 0.923, the model generalization ability was the best (AUC = 0.955), and the model
had no overfitting phenomenon; the learning and ROC curves are shown in Figure 9. The
second is the Artificial Neural Network model, with an accuracy rate of 0.937 and an AUC
of 0.935, followed by the Nearest Neighbor model, Logistic Regression model, and Support
Vector Machine model, with AUCs of 0.924, 0.922, and 0.920, respectively; the worst was
decision-making tree, its AUC value being 0.904 and its accuracy 0.937.
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5.2. Model Early-Warning Verification—Taking the Random Forest Algorithm as an Example

On two days, 22 June and 28 June 2021, six and four landslide disasters occurred in
Youxi County and Shaowu City, Fujian Province, respectively, all of which were small-scale
landslide disasters caused by local rainstorms.

Based on the actual precipitation data in Fujian Province (5 km × 5 km QPE data
from China Meteorological Administration), the new model based on Random Forest and
the original explicit statistical model was used to simulate the early-warning. Then, the
objective forecast results of the model on 22 June and 28 were compared with the actual
occurrence of landslide disasters, as shown in Table 6 and Figures 10 and 11.

According to the comparison on 22 June 2021 (Table 6, Figure 10), the six actual
landslide disasters all fell in the early-warning area of the Random Forest model (one
in the yellow early-warning area and six in the orange early-warning area), with a hit
rate of 100%; one landslide disaster fell in the early-warning area (yellow early-warning
area) of the explicit statistical model, with a hit rate of 16.7%. The landslide densities in
the early-warning areas of the two models were 6.2 and 3.8 per 1000 square kilometers,
respectively. The actual landslide density in the early-warning area of the Random Forest
model was 1.6 times that of the explicit statistical model.

222



Forests 2022, 13, 2182

Table 6. Comparison between the Random Forest model and explicit statistical early-warning model.

Actual Landslide (Number)

22 June 2021
Results of Different Models

28 June 2021
Results of Different Models

Explicit Statistical
Models

Random Forest
Model

Explicit Statistical
Models

Random Forest
Model

6 4

All warning area

Accuracy (%) 16.7 100.0 100.0 100.0

Number of
landslides 1 6 4 4

Area of warning
area (km2) 262.2 971.9 4119.1 2359.8

Landslide density
(amount of per

1000 km2)
3.8 6.2 1.0 1.7

Yellow Alert area

Number of
landslides 1 1 2 0

Area of warning
area (km2) 262.2 576.0 3051.3 1631.9

Landslide density
(amount of per

1000 km2)
3.8 1.7 0.7 0.0

Orange Alert area

Number of
landslides 0 5 2 4

Area of warning
area (km2) 0 396.0 1067.8 728.0

Landslide density
(amount of per

1000 km2)
/ 12.6 1.9 5.5

According to the comparison on 28 June 2021 (Table 6, Figure 11), four landslide
disasters all fell in the early-warning area (orange warning area) of the Random Forest
model, with a hit rate of 100%; four landslides fell in the warning zone of the explicit
statistical model (two yellow warning areas), the hit rate is also 100%. The landslide
densities in the early-warning areas of the two models were 1.7 and 1.0 per 1000 square
kilometers, respectively. The actual landslide density in the early-warning area of the
Random Forest model was 1.7 times that of the explicit statistical model.

By comparing the results of the two models, it can be seen that the hit rate of the
new model based on the Random Forest was six times that of the original model (22 June)
or equivalent (28 June), and the landslide density in the early-warning area of the new
model was 1.6–1.7 times that of the original. Meanwhile, it can be seen from Figure 11
that no landslide occurred in WuYiShanshi area (upper right corner of the figure frame).
There is no warning area in the warning results of the Random Forest model, and there is a
certain range of yellow warning areas in the warning results of the explicit statistical model
warning results. The preliminary verification shows that the new model based on the
Random Forest has obvious advantages with a higher hit rate, smaller warning area, and
more accurate warning. Since there are few new landslide disasters in the study area, the
current model verification work is relatively weak, and we will continue to track the new
landslide disasters in the study area and strengthen the model validation and correction.
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6. Conclusions

This paper proposed a method and process for building a regional landslide disasters
early-warning model based on machine learning. Taking Fujian Province as the geological
background, the landslide disaster early-warning based on machine learning in this region
was carried out. Six machine learning algorithms were selected, including the Random
Forest algorithm, Nearest Neighbor algorithm, Support Vector Machine, Logistic Regres-
sion, Decision Tree, Artificial Neural Network, etc. According to the topography, geological
conditions, environmental conditions, human engineering activities, and other influencing
factors of Fujian Province, evaluation indexes such as grade, geomorphic type, lithology,
historical disasters, vegetation type, water system influence, annual rainfall, distance from
house, distance from road, density of population, daily rainfall, and daily rainfall from
the previous 1 to 15 days were selected. The sample data set of the early-warning model
was constructed by including 27 disaster-influencing factors, and the establishment of the
geological disaster early-warning model was realized through several key steps such as the
construction of the sample-set, the model training and parameter adjustment optimization,
and the classification of the model early-warning level. The results of the early-warning
model showed that the Random Forest algorithm performed better. This algorithm has
the advantages of fully applying limited samples, diversity, and accuracy; and it has the
disadvantage of overfitting on certain noisy problems. In this early-warning model, the
Random Forest algorithm accuracy rate was the highest (92.3%), and the model generaliza-
tion ability was the best (AUC is 0.955); the second best was the Artificial Neural Network
model, which has the advantages of high classification accuracy and strong learning ability,
but because it is the disadvantage of requiring a large number of parameters in this model,
the accuracy rate was slightly lower than that of the Random Forest model, being 0.937,
and the AUC was 0.935. Contrary, the Nearest Neighbor model, Logistic Regression model,
and support vector machine model have problems such as difficulty in solving multi-
classification problems and requiring a large amount of training data, their AUC values
being 0.924, 0.922, and 0.920, respectively. The worst model was the Decision Tree model,
which has problems such as poor handling of continuous variables and easy overfitting, its
AUC value being 0.904 and the accuracy 0.937. For the selection of the typical rainfall-type
landslide disaster process in Fujian Province from 2019 to 2021 and for the verification of
the Random Forest algorithm model, the results showed that the early-warning hit rate
of the model was 100%. Compared with the early-warning results of the original explicit
statistical model, the hit rate of the new model is higher than that of the original one, since,
the landslide density in the early-warning area of the new model was 1.6–1.7 times higher
than that of the original model. The preliminary verification showed that the new model
based on the Random Forest had obvious advantages with a higher hit rate and smaller
warning area, which can achieve more accurate warnings.

Research on the regional geological disasters early-warning model based on machine
learning is relatively complex. Through the research in this paper, the problems of in-
sufficient samples, limited methods, and insufficient precision in the traditional regional
landslide early-warning model were solved to a certain extent. For the geological disasters
early-warning model constructed by machine learning, the larger the sample data set, the
higher the accuracy of the trained model, and the follow-up will increase the amount of
data to optimize and improve the early-warning models.
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Abstract: From 9 to 11 August 2019, the southeast coastal areas of China were hit by Typhoon
Lekima, which caused a large number of shallow landslides. The typhoon resulted in a maximum
rainfall of 402 mm during 3 days in Ningguo City. In this study, satellite images were acquired
before and after the rainfall and visual interpretation was used to identify 414 shallow landslides in
Ningguo City, and a complete database of shallow landslides caused by the typhoon-induced rainfall
in Ningguo City was created. Nine landslide-influencing factors were selected—elevation, slope,
aspect, strata, distance to faults, distance to rivers, distance to roads, normalized vegetation difference
index, and rainfall—and the relationships between the rainfall-induced landslide distribution and the
influencing factors were analyzed. The Bayesian probability method was combined with a logistic
regression model to establish a landslide probability map for the study area. The real probabilities of
landslide occurrence in the study area under five different rainfall conditions were calculated, and
probability maps of landslide occurrence were drawn. The results of this study provide a reference
for disaster prevention and reduction of typhoon rainstorm landslides in the southeast coastal areas
of China and a future basis for decision making by the Ningguo government departments before a
typhoon rainstorm occurs.

Keywords: shallow landslide; probability of occurrence; typhoon; data-driven model; Ningguo City

1. Introduction

The southeast coastal areas of China are frequently hit by typhoons. According to
the statistics, from 1949 to 2018, a total of 493 typhoons landed in China, an average of
7 typhoons create landfall every year, making China one of the countries with the most
frequent typhoon landfalls and suffering the most severe typhoon damage in the world [1].
The more developed the regional economy and the greater the population density, the
more serious the casualties and economic losses a typhoon produces [2,3]. The southeast
coastal areas of China have a fragile geological environment, hilly mountains, and undergo
frequent engineering activities. Under the influence of typhoons and rainstorms, geological
disasters are extremely prone to occur, including the largest number of landslides and the
most serious damage. For example, in 2004, Typhoon Rananim caused a large number of
mudslides and landslides in Yongjia, Yueqing, and other counties in Zhejiang Province,
resulting in 28 deaths [4,5]. In 2015, Typhoon Soudelor caused 81 geological disasters,
including collapses, landslides, and mudslides in Taishun County, Zhejiang Province,
resulting in six casualties and a direct economic loss of 41.18 million yuan [6]. In 2019,
Typhoon Lekima caused a landslide in Shanzao Village, Yongjia County, Zhejiang Province.
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The landslide blocked the river and quickly formed a barrier lake, resulting in a dam burst.
This landslide-barrier-lake disaster chain of events resulted in 32 deaths [7]. Moreover, the
typhoon and rainstorm affected 100,000 people and killed 8 people in Ningguo City, Anhui
Province, resulting in a direct economic loss of 2594 billion yuan [8]. The heavy casualties
and huge economic losses caused by typhoon rainstorms and the geological disasters
they induce make it necessary to research the spatial prediction of typhoon rainstorm-
induced landslides in the southeast coastal area of China, which can provide a reference for
government decision-making and disaster prevention and mitigation of such landslides
before typhoons and heavy rainstorms.

At present, there are two methods for the spatial prediction of regional landslides:
deterministic and statistical [9–11]. The deterministic method combines a hydrological
model, surface runoff model, and slope stability model to evaluate the stability of each
grid in the region, after which the spatial prediction of landslides in a region under the
action of rainfall is carried out, such as the landslide susceptibility, landslide risk, and
landslide probability maps. The statistical methods are mainly divided into two types.
One is to determine the statistics of the rainfall factors influencing landslides in specific
regions, to determine the rainfall threshold, and to carry out the spatial prediction of
regional landslides under the action of rainfall. This method only considers the rainfall
factors [12–14]. The other is to use a regression model, machine learning, and other methods
to determine the impacts of various geomorphic, geological, road, and rainfall factors on
the landslide; these factors are used to evaluate the landslide risk under future rainfall
in the region and predict the landslide area [15–17]. The deterministic method requires
knowledge of the hydraulic conductivity and the physical-mechanical parameters of the
rock and soil mass. Although probabilistic methods such as the Monte Carlo method can
be used to deal with the uncertainties of these parameters, using this method in the spatial
prediction of landslides in a wide range of areas is still limited [12,18]. Statistical analysis
methods based on regression models and machine learning require a large number of
landslide cases and a large amount of data on the various landslide impact factors. With the
development of computer technology, geographic information system (GISs), and remote
sensing technology, these data have become easier to obtain and process. Although this
method does not consider the physical and mechanical mechanisms of landslide occurrence,
a few studies have shown that statistical analysis methods have high prediction accuracies
in terms of the spatial prediction of landslides [19–21].

In this study, the landslides in Ningguo City caused by Typhoon Lekima in the south-
east coastal areas of China in 2019 were taken as an example (1) to establish a complete
database of the landslides induced by Typhoon Lekima in Ningguo City based on satellite
images; (2) to analyze the relationships between the landslide distribution and the elevation,
slope, aspect, strata, distance to faults, distance to rivers, distance to roads, normalized veg-
etation difference index (NDVI), and rainfall and explore the landslide development; (3) to
use a logistic regression model to classify the typhoon rainstorm landslide susceptibility in
the study area based on the above 9 factors; and (4) to calculate the probability of landslide
occurrence under different rainfall conditions based on the Bayesian probability method
and a logistic regression model and create a landslide hazard zoning map.

2. Geological Background

The study area (118◦38′–119◦17′ E, 30◦43′–30◦42′ N) is located in Ningguo City, Anhui
Province, China, with slightly different local boundaries. The total area is 3002 km2. The
geomorphology of the area is mountainous and hilly; the southeastern and southwestern
regions are mountainous and the central and northern regions are hilly. The overall terrain
is high in the south and low in the north. The highest elevation is 1444 m, and the lowest
elevation is 12 m (Figure 1). The strata in the study area are the characteristic strata in the
Yangtze region, and the exposed strata include Silurian (S), Cambrian (∈), Ordovician (O),
Sinian (Z), Triassic (T), Jurassic (J), Quaternary (Qp), Devonian (D), Permian (P), Cretaceous
(K), Carboniferous (C), granite porphyry (γπ), and a small number of unknown strata
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(using NONE as its code). Among them, the Silurian and Cambrian strata are the most
commonly exposed (Figure 2). The study area is located in the Jiangnan uplift belt in the
southeastern part of the Yangtze region. The geological structure is relatively complex.
The main body of the structure is NW-trending, and the NW-trending faults are also well-
developed (Figure 2). The neotectonic movement in the region has been characterized by
intermittent slow uplift and local uplift. The seismic activity in the study area is low, the
magnitude is small, and there are no active fractures [22]. The study area has a humid
subtropical monsoon climate zone in the northern midlatitude region, with four distinct
seasons, a mild climate, and abundant rainfall. In the hydrologic regionalization of China,
it is located in the wet zone and has abundant water and the hydrogeological conditions
are relatively simple. The main rivers in the region are the Shuiyang, Dongjin, Zhongjin,
and Xijin rivers. Figure 3 shows the annual average rainfall in Ningguo City. It can be seen
from the figure that the average annual rainfall in Ningguo City is more than 1000 mm. In
particular, in 2016, the annual average rainfall reached 2267.9 mm.
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Figure 2. Topography and geomorphology. F1: Zhufengpu fault; F2: Zhangcun fault; F3: Xiyusucun-
Pawandian fault; F4: Longzhishan thrust; F5: Jixi-Houkengwu thrust; F6: Jikengkou-Hulesi thrust;
F7: Tangjiawan fault; F8: Taohuayuan fault.
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Figure 3. Average rainfall in Ningguo City from 1989 to 2018.

3. Data and Methods
3.1. Data

Artificial visual interpretation of the landslides was carried out based on 3 m resolution
planet satellite images. Satellite images acquired on 2 August, 5 August, and 6 August
2019 were selected to represent the area before the landslides occurred in the study area,
and satellite images acquired on 17 August and 27 August 2019, were selected to represent
the area after the landslides occurred in the study area. The elevation, slope, and aspect
were extracted from a 12.5 m resolution digital elevation model (DEM) downloaded from
the Advanced Land Observing Satellites (ALOSs) (earth observation satellites of Japan)
(https://search.asf.alaska.edu, accessed on 10 January 2022). The faults and rivers are from
Deng Qidong’s Active Tectonic map of China. The strata were extracted by vectorization of
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a 1:500,000 geological map in ArcGIS, and the roads were extracted from national roads data
(https://malagis.com/, accessed on 10 January 2022). The NDVI data were downloaded
from the Geospatial Data Cloud (http://www.gscloud.cn/search, accessed on 10 January
2022); the selected product was a composite of 1–5 August 2019, i.e., corresponding to the
date of the landslides. The rainfall data were collected by six meteorological stations in the
study area (http://data.cma.cn, accessed on 10 January 2022) and the distances from these
meteorological stations to the center of the study area are 56.55 km, 46.85 km, 11.95 km,
59.19 km, 58.07 km, and 72.71 km.

3.2. Methods

Using the latitude and longitude grid in the ArcGIS platform, the study area was
divided into several small areas. Then, the satellite images acquired before and after
the landslides were compared one by one, mainly including a comparison of the tonal
changes of the images, which are caused by the destruction of surface vegetation induced by
landslides. The white areas in the images represent vegetation destruction and valley areas,
and the green areas in the images represent vegetation coverage areas. If one small area is
green before the typhoon and turns white after the typhoon, then this area was affected
by a landslide. A complete landslide inventory for the study area was then obtained.
Typical landslide examples are shown in Figure 4. Figure 4a is an image acquired before
the landslides occurred, and Figure 4b is an image acquired after the landslides occurred.
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The relationships between the spatial distribution of the landslides and the various
influencing factors were analyzed based on the established landslide database. The real
probability of landslide occurrence under different rainfall conditions was calculated by
combining the Bayesian probability method with a logistic regression model [23]. The
sample points were selected to be uniformly distributed throughout the entire study area.
The size of the study area was 3002.3 km2, and 50 points per square kilometer were evenly
selected, i.e., 150,100 points in total. To avoid repeated points in each grid, the minimum
distance between sample points was set to 30 m. The obtained random points within a
landslide area were defined as landslide samples, and those within non-landslide areas
were defined as non-landslide samples. Finally, 72 landslide samples and 15,028 non-
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landslide samples were obtained. The state quantity of landslide occurrence was defined
as 1, and the state quantity of non-occurrence was defined as 0.

4. Results and Analysis
4.1. Landslide Database

The landslide database established through artificial visual interpretation contains
414 landslides. The total landslide area was 1.42 km2, of which the smallest landslide
area was 235 m2 and the largest landslide area was 49,826 m2. The number and area
proportion of the landslides in different zones are presented in Table 1. The largest number
of landslides had areas of 0–2000 m2, accounting for 47.6% (197) of the total number of
landslides. Those with areas of 2000–5000 m2 accounted for 31.7% of the total landslide
area, i.e., 0.45 km2. This indicates that the landslides induced by the typhoon rainstorm
were mostly small.

Table 1. Number of landslides and proportion of landslide area.

Landslide Area Zones (m2) 0–2000 2000–5000 5000–10,000 10,000–20,000 20,000–50,000

Number of landslides 197 149 50 11 7
Proportion of landslides (%) 47.6 36 12.1 2.6 1.7

Landslide area (km2) 0.25 0.45 0.34 0.14 0.24
Proportion of landslide area (%) 17.6 31.7 23.9 9.9 16.9

4.2. Analysis of Factors Influencing the Landslides

Based on previous studies [24–26] and the actual situation of these typhoon rainstorm-
induced landslides, nine influencing factors were selected for the landslide analysis: eleva-
tion, slope, aspect, strata, distance to faults, distance to rivers, distance to roads, NDVI, and
rainfall (Figure 5). All factor layers were transformed into 30 m × 30 m grid layers, and the
landslide surface was converted into a point. The landslide point was extracted into each
factor layer. The relationships between the landslide and each factor are shown in Figure 6.
To intuitively analyze the relationships between the spatial distribution of the landslides
and the influencing factors, the influencing factors were reclassified (Table 2) [24–26]. The
slope direction and strata were classified as classification factors, and the other factors were
classified as continuous factors.

Table 2. Classification of influencing factors.

Influencing Factors Classification Standard Type

Elevation (m) 1. 12–250; 2. 250–500; 3. 500–750; 4. 750–1000; 5. 1000–1250; 6. 1250–1444 Continuous

Slope (◦) 1. 0–10; 2. 10–20; 3. 20–30; 4. 30–40; 5. 40–50; 6. 50–80 Continuous

Aspect 1. N (0–22.5, 337.5–360); 2. NE (22.5–67.5); 3. E (67.5–112.5); 4.SE (112.5–157.5); 5. S
(157.5–202.5); 6. SW (202.5–247.5); 7. W (247.5–292.5); 8. NW (292.5–337.5); 9. Flat (−1) Classification

Distance to faults (m) 1. 0–1000; 2. 1000–2000; 3. 2000–3000; 4. 3000–4000; 5. 4000–5000; 6. 5000–10,000 Continuous

Strata
1. unknown strata; 2. Ordovician (O); 3. Cambrian (∈); 4. Triassic (T); 5. Sinian (Z); 6.
Silurian (S); 7. Jurassic (J); 8. Cretaceous (K); 9. Quaternary (Qp); 10. Permian (P); 11.
Devonian (D); 12. Carboniferous (C); 13. granite porphyry (γπ)

Classification

Distance to rivers (m) 1. 0–1500; 2. 1500–3000; 3. 3000–4500; 4. 4500–6000; 5. 6000–7500; 6. 7500–9000; 7.
9000–31,000 Continuous

Distance to roads (m) 1. 0–2500; 2. 2500–5000; 3. 5000–7500; 4. 7500–10,000; 5. 10,000–12,500; 6.
12,500–15,000; 7. 15,000–36,000 Continuous

NDVI 1. 0.35–0.5; 2. 0.5–0.6; 3. 0.6–0.7; 4. 0.7–0.8; 5. 0.8–0.9; 6. 0.9–0.98 Continuous

3 days rainfall (mm) 1. 175–200; 2. 200–250; 3. 250–300; 4. 300–350; 5. 350–402 Continuous
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The classified area and its relationship with LND and LAP are shown in Figure 6. As
can be seen in Figure 6, the largest proportion of landslides occurred in the elevation range of
750–1000 m; when the elevation was greater than 250 m, the number of landslides decreased
(Figure 6a). In the slope range of 30–40◦, the distribution of landslides was more concentrated,
and when the slope was greater than 50◦ or less than 10◦, almost no landslides occurred
(Figure 6b). The occurrence probability of landslides was the largest in the southeast slope
direction (Figure 6c). The landslides were concentrated at distances of 7500–12,500 m from
the roads (Figure 6d). The occurrence probability of landslides was the highest in the Sinian
strata, and almost no landslides occurred in the Cretaceous, Quaternary, Permian, Devonian,
Carboniferous, and granite porphyry strata (Figure 6e). The probability of landslide occurrence
was the largest for distances to rivers of 6000–9000 m (Figure 6f). Most of the landslides were
concentrated at distances of 3000–4000 m from the faults (Figure 6g). The landslide distribution
was concentrated in the NDVI range of 0.8–0.98 (Figure 6h). The landslide distribution was
most concentrated in the rainfall range of 300–350 mm (Figure 6i).

4.3. Calculation of Landslide Probability

The landslide samples and non-landslide samples were extracted into each factor
layer and substituted into the SPSS software to calculate the regression coefficient of each
factor. Finally, an absolute probability index graph was obtained through superposition
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of each factor layer. By importing the nine factors into the SPSS software for logistic
regression analysis and by classifying the factors for classification covariable processing,
the regression coefficient of the first range was set to zero. If the regression coefficients
of the other ranges are positive, it is more conducive to the occurrence of landslides than
the first range. For the continuous factors, if the weight value is positive, the probability
of landslide occurrence is positively correlated with the factor, and if the weight value is
negative, the probability of landslide occurrence is negatively correlated with the factor.
The weights of each continuous variable and the regression coefficients of the different
intervals for the classification variables were obtained. The results are presented in Table 3.
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Figure 6. Relationships between landslide distribution and influencing factors. CA: classification area;
LND: landslide number density; LAP: landslide area percentage. (a) Elevation; (b) Slope; (c) Aspect;
(d) Distance to faults; (e) Strata; (f) Distance to rivers; (g) Distance to roads; (h) NDVI; (i) 3 days rainfall.

It can be seen in Table 3 that the weights of elevation, slope, rainfall, distance to faults,
distance to rivers, and distance to roads are positive, so they are positively correlated with
the occurrence of landslides. The NDVI weight is negative, so it is negatively correlated
with the occurrence of landslides. The weight values of the strata and slope greatly differ in
each interval of the classification because there are no landslides in some of the classification
ranges; there are many landslides in other classification ranges, and different categories
have large differences for rainfall-induced landslides. Based on the logistic regression
model, each layer was superimposed in ArcGIS to obtain a landslide occurrence probability
model and the accuracy of the model was verified using the receiver operating characteristic
(ROC) curve. The area under the curve (AUC) refers to the area under the ROC curve.
When the AUC is greater than 0.7, the model has a high accuracy [15,23]. The research
results are shown in Figure 7. It can be seen in Figure 7 that the AUC = 0.886, indicating
that the accuracy of the model is very high and the results are reliable.

4.4. Probability of Landslides under Different Rainfall Conditions

Based on the constructed model, the real probabilities of landslide occurrence in the
study area under five different rainfall conditions of 175–200 mm, 200–250 mm, 250–300 mm,
300–350 mm, and 350–402 mm were predicted to be 0.001%, 0.01%, 0.1%, and 1%, which are
discontinuous values that divide the study area into five grades (Figure 8). The prediction
results can be used to quickly assess the risk of landslide occurrence in the region according
to the real rainfall, and they provide a reference for subsequent disaster prevention and
mitigation and post-disaster reconstruction. Under different rainfall conditions, the areas
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with different probabilities of landslide occurrence in the study area are shown in Figure 9.
It can be seen in Figure 9 that as the rainfall increases, the areas with a high probability
of landslide occurrence become larger, and the areas with a low probability of landslide
occurrence become smaller. This demonstrates that rainfall is positively correlated with the
occurrence of landslides and landslides are more likely to occur under higher rainfall.

Table 3. Weights of each factor.

Factors Type Classification Weights

Elevation Continuous 0.166
Slope Continuous 0.195

Rainfall Continuous 0.211
NDVI Continuous −0.274

Distance to faults Continuous 0.134
Distance to rivers Continuous 0.05
Distance to roads Continuous 0.486

Aspect Classification

1 0
2 0.931
3 1.004
4 1.402
5 1.014
6 1.201
7 0.926
8 0.186
9 −11.167

Strata Classification

1 0
2 −13.156
3 −0.141
4 −0.232
5 1.448
6 −2.043
7 0.41
8 −13.589
9 −13.821
10 −14.688
11 −14.631
12 −14.861
13 −14.328
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5. Discussion
5.1. Landslide Interpretation

In this study, a complete database of shallow landslides in Ningguo City caused by
Typhoon Lekima was obtained using visual interpretation of remote sensing images. Then,
the Bayesian probability method was combined with a logistic regression model to establish
a landslide probability map for the study area. The rationality test using ROC curve shows
that the accuracy of the prediction model is very high and the results are reliable. Based on
the above results, the real probabilities of landslide occurrence in the study area under five
different rainfall conditions of 175–200 mm, 200–250 mm, 250–300 mm, 300–350 mm, and
350–402 mm were predicted.

In recent years, with the popularization of high-precision images and the development
of remote sensing technology, new progress has been made in the interpretation and
research of landslides caused by extreme rainfall. For example: from 19 to 20 October
2004, Shikoku experienced extreme events of Typhoon Tokage rainfall and 201 small-scale
slides in the Moriyuki catchment and 142 in the Monnyu catchment were noticed [27]; from
14 to 16 July 2006, Typhoon Bilis swept over Southern China and, in analyzing the pre-
and post-event images of QuickBird and CBERS, a total of 2407 landslide sites in the area
around the Dongjiang Reservoir in Hunan Province were inventoried [28]; on 16 October
2013, Typhoon Wipha struck the Izuo-Oshima Volcanic Island, causing torrential rainfall
there in a short time, and 44 landslides based on aerial images were interpreted [17]. In this
study, satellite images were acquired before and after the rainfall and identified 414 shallow
landslides in Ningguo City. Compared with other rainfall landslide sites, Ningguo City
is a mountainous and hilly area in southeastern Anhui with complex topography and
landforms. Heavy rains have caused floods and triggered massive landslides. In addition,
the local lack of adequate defense measures and lack of rescue experience are important
reasons for the severe disaster.

5.2. Research on Real Probability Based on the Bayesian Method

Due to the influence of the sampling ratio, the landslide probability obtained using
a logistic regression model deviates greatly from the actual landslide probability. In the
past, the ratio of landslide sample to non-landslide sample was 1:1 [15,29] and the results
obtained by this sampling method are often much larger than the actual landslide probabil-
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ity. In this study, the Bayesian probability method was combined with a logistic regression
model. The sample points were selected to be uniformly distributed throughout the entire
study area. The size of the study area was 3002.3 km2, and the total landslide area was
1.42 km2. A total of 150,100 points were selected. The obtained random points within a land-
slide area were defined as landslide samples, and those within non-landslide areas were
defined as non-landslide samples. Finally, 72 landslide samples and 15,028 non-landslide
samples were obtained.

Based on the Bayesian method, the predicted landslide area AP using the logistic
regression model is:

AP = ∑m
i=1 ∑n

j=1 Pi,j A (1)

where Pi,j is the landslide probability of row i and column j of the grid, m is the number of
rows, n is the number of columns, and A is the area of the unit grid (900 m2).

According to the results, the predicted landslide area AP is 1.45 km2.
The relative difference between the predicted landslide area AP and the actual land-

slide area Aa (1.42 km2) is expressed as:

Di f f erent =
∣∣∣∣

Ap − Aa

Aa
× 100%

∣∣∣∣ (2)

The relative difference between the predicted landslide area and the actual landslide
area is 2.1%, the error is small, the predicted landslide area is close to the actual landslide
area, and the prediction result is reliable.

The landslide prediction probability is not only affected by the sampling ratio, but
also by various aspects such as grid resolution. The spatial distribution of predicted
probability at different resolutions is different [29]. Ways to improve the accuracy of
landslide prediction should be further discussed in future research.

6. Conclusions

Based on the landslides in Ningguo City induced by Typhoon Lekima, in this study,
414 landslides were identified via artificial visual interpretation and a rainfall landslide
database was established. To analyze the relationships between the factors and the land-
slide distribution, nine influencing factors were selected: elevation, slope, aspect, distance
to faults, strata, distance to rivers, distance to roads, NDVI, and rainfall. The Bayesian prob-
ability method and a logistic regression model were used to establish a landslide occurrence
probability model for the study area and to predict the probabilities of landslide occur-
rence under five different rainfall conditions, i.e., 175–200 mm, 200–250 mm, 250–300 mm,
300–350 mm, and 350–402 mm. The results show that elevation, slope, rainfall, distance
to faults, distance to rivers, and distance to roads positively correlate with the occurrence
of rainfall-induced landslides, and the NDVI negatively correlates with the occurrence of
rainfall-induced landslides.

Landslides were caused by Typhoon Lekima’s rainstorm, and many geological disas-
ters were induced by the typhoon’s landfall. Ningguo City was only one of the areas that
experienced serious geological disasters. If images of the entire typhoon transit area were
collected and a large-scale landslide interpretation was performed, a complete database
of landslides caused by Typhoon Lekima’s rainstorm in the southeast coastal area could
be constructed; in addition, similar analysis and landslide prediction could be conducted,
which would be of great significance to the disaster prevention and reduction of typhoon
rainstorm-induced landslides in the southeast coastal area. This work will be carried out in
a future study.
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Abstract: Landslides are one of the most severe and common geological hazards in the world. The
purpose of this research is to establish a coupled landslide warning model based on random forest
susceptibility zoning and precipitation. The 1520 landslide events in Fengjie County, Chongqing,
China, before 2016 are taken as research cases. We adapt the random forest model to build a landslide
susceptibility model. The antecedent effective precipitation model, based on the fractal relationship, is
used to calculate the antecedent effective precipitation in the 10 days before the landslide event. Based
on different susceptibility zones, the effective precipitation corresponding to different cumulative
frequencies is counted as the threshold, and the threshold is adjusted according to the fitted curve.
Finally, according to the daily precipitation, the rain warning levels in susceptibility zones are further
adjusted, and the final prewarning model of the susceptibility zoning and precipitation coupling is
obtained. The results show that the random forest model has good prediction ability for landslide
susceptibility zoning, and the precipitation warning model that couples landslide susceptibility,
antecedent effective precipitation, and the daily precipitation threshold has high early warning ability.
At the same time, it was found that the precipitation warning model coupled with antecedent effective
precipitation and the daily precipitation threshold has more accurate precipitation warning ability
than the precipitation warning model coupled with the antecedent effective precipitation only; the
coupling of the two can complement each other to better characterize the occurrence of landslides
triggered by rainfall. The proposed coupled landslide early warning model based on random forest
susceptibility and rainfall inducing factors can provide scientific guidance for landslide early warning
and prediction, and improve the manageability of landslide risk.

Keywords: landslide susceptibility; antecedent effective precipitation; daily precipitation; hybrid
landslide warning model

1. Introduction

A landslide is a geological disaster with further impact, and threatens the safety and
property of human life to a certain extent [1]. According to the China Statistical Yearbook,
from 2000 to 2019, a total of 320,000 natural disasters occurred, causing a total economic
loss of 9.894 billion dollars. Of these, 220,000 landslide disasters occurred, accounting
for 70.2% of the total. Chongqing is one of the four major geological disaster areas in
China. Geological disasters cause about 40–60 deaths and direct economic losses of about
300–400 million yuan per year, accounting for more than 20% of the city’s natural disaster
losses. Among them, the Longjing landslide in Shizhu County, Chongqing, had a scale
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of about 142.83 × 104 m3, directly threatening 2864 residents and 1630 pupils in primary
schools, as well as roads, pipelines, and other urban infrastructure. According to the World
Health Organization (WHO) report, between 1998 and 2017, the population affected by
landslides was 4.8 million, and they caused more than 18,000 deaths. The main impacts of
landslides include the destruction of houses and roads, damage to water storage facilities,
and the blockage of rivers, causing huge casualties and economic losses [2]. Therefore, it
is necessary to conduct a geological disaster investigation and an assessment of potential
landslide occurrence areas, and take corresponding preventive measures to reduce the
economic losses and casualties caused by landslides.

Landslide susceptibility is an effective method to prevent landslide disasters. It
is based on local geological environment factors to evaluate the spatial distribution of
landslide occurrence probability in specific areas; it is also an important means to study
the occurrence of landslides [3]. The evaluation of landslide susceptibility began in the
mid-1970s. Carrara [4] used a large number of data on landslides, topography, landforms,
field surveys, etc., based on expert experience and other methods, to evaluate landslide
susceptibility in the Columbia area. Many scholars divide landslide susceptibility modeling
methods into two categories, qualitative and quantitative. Qualitative methods use prior
knowledge to assess the occurrence of landslides [5,6]. This method is based on expert
experience, and has the disadvantage of being subjective, which makes the differences
between the models more significant. Quantitative methods use mathematical–statistical
models to evaluate landslides [7–9]. The accuracy and completeness of the input landslide
data have a greater impact on the statistical model. This model has higher requirements for
data collection. With the development of GIS and machine learning, many scholars use
machine learning methods to conduct landslide susceptibility evaluation studies in different
research areas [10–14]. Sun et al. (2020) used an optimized random forest model to establish
a landslide susceptibility model in Fengjie County, Chongqing City, and applied the model
to Wushan County, Chongqing City, to discuss the generalization ability of the model based
on random forest. The results show that the model had high susceptibility simulation
ability and a good generalization effect [15]. At the same time, they compared the accuracy
of different machine learning methods. Many scholars chose multiple machine learning
algorithms—for example, logical model trees, random forest, classification regression trees,
XGBoost, etc.—to build a landslide susceptibility model. Moayedi et al. used the artificial
neural network model optimized by particle swarm to predict the landslide susceptibility
in the Layleh valley area, and achieved good prediction results [16]. Pourghasemi et al.
used 10 machine learning algorithms, such as artificial neural network (ANN), boosted
regression trees (BRT), and random forest (RF), to model landslide susceptibility in the
Ghaemshahr region of Iran, and found that RF (AUC = 83.7%) had the best prediction
performance [17]. Zhou et al. developed a novel interpretable model based on SHAP and
XGBoost, which provided 0.75 accuracy and 0.83 AUC value for the test sets [18]. Research
has shown that the predictive ability of the random forest model is more significant in
general [19–22].

Rainfall is the most important factor inducing landslides. At present, there are two
main rainfall threshold models, a physical rainfall threshold and an empirical rainfall
threshold [23–25]; the empirical threshold is based on the relationship between a large
number of landslides and rainfall data, and is currently the most commonly used rainfall
threshold model. Rainfall intensity and accumulation are the two main aspects that affect
the rainfall threshold. There are many studies on this [26–28]. At present, there are two
main types of precipitation threshold statistical models for studying landslides at home and
abroad: daily precipitation [29] and antecedent effective precipitation [30,31]. However,
research on the impact of precipitation on landslides is lagging [32,33], and threshold
research cannot be conducted solely from the daily precipitation or antecedent effective
precipitation accumulation. Therefore, it is necessary to adjust the existing precipitation
threshold model according to the situation of the study area.
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The occurrence of landslides is the result of the combined effects of natural conditions
and human activities, in which rainfall triggers the occurrence of landslides. In high-
susceptibility areas, relatively low precipitation can trigger the occurrence of landslides.
The occurrence of landslides is related to the susceptibility of the area where the landslide
is located, and also to the precipitation in the area. The study of landslide-inducing factors
mainly considers the daily precipitation or the antecedent effective precipitation. There are
few studies based on the susceptibility of landslides that consider multiple precipitation-
inducing factors [34,35]. In this paper, the random forest model is used to evaluate the
susceptible zones in the study area, and a landslide space–time joint early warning and
forecast model is constructed according to the antecedent effective precipitation and the
daily precipitation.

2. Materials and Methods
2.1. Methodology

Based on 16 evaluation factors and the random forest model, the landslide suscep-
tibility zoning was established. Subsequently, based on the previous effective rainfall
and the rainfall on the day of the landslide, rainfall-induced landslide early warning and
forecasting was carried out. Based on the rainfall in the first 10 days of the landslide, the
attenuation coefficient of the rainfall in the early stage of the landslide was calculated, and
the threshold of the effective rainfall in the early stage of the landslide was constructed
according to the frequency of landslide occurrence in each susceptibility zone. At the same
time, the landslide warning and forecasting model was adjusted based on the rainfall that
day. The specific steps are shown in Figure 1.
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2.2. Study Area

Fengjie County is in the north of Chongqing (Figure 2). Fengjie County is located at
the junction of the Daba Mountains Arc fold fault zone, the Eastern Sichuan Arc concave
fold zone, and the Sichuan, Hunan, and Guizhou Uplift fold zones. Figure 3 shows the
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distribution of faults. The tectonic stress field is mainly characterized by near north–south
compression, and the tectonic form is mainly folded. The direction of the tectonic line is
northeast–east, and the anticline and syncline are parallel. In the whole study area, the main
development consists of the Damuya anticline, Qumahe syncline, Soling syncline, Catch-
up syncline, Qiyaoshan anticline, Wushan syncline, Hengshi anticline, and the Guandu
syncline (Figure 3). It has mountainous landforms. The northeast and southeast regions of
Fengjie are higher, and the central and western parts are relatively low-altitude. Its strata are
mainly Quaternary (Q), Jurassic (J), Triassic (T), Permian (P), Carboniferous (C), Devonian
(D), and Silurian (S). The geological conditions of Fengjie County are complex; most of the
areas are mountainous areas, and geological disasters are frequent, large in scale, diverse
in variety, and wide in scope, causing great loss of life and property. According to the
Köppen–Geiger climate classification [36], the study area has a subtropical humid climate
with abundant rainfall and long sunshine duration. The average annual temperature is
18.1 ◦C, the average annual relative humidity is 71.2%, the average annual precipitation is
1132 mm, and the annual sunshine hours are 1639 h.
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Fengjie County has a subtropical monsoon climate with an average annual rainfall
of 1132 mm. Most of the landslides in Fengjie County occur from May to October, and
the flood season, especially periods of concentrated rainfall, is a time of high incidences
of landslide disasters in Fengjie County. Fengjie belongs to the Three Gorges Reservoir
Area. The occurrence of landslides is closely related to the reservoir area. The periodic
rise and fall of the water level in the reservoir area will cause landslide activity near the
reservoir area to show unstable periodicity. The periodical change in reservoir water level
will lead to instability of the slope around the reservoir area. In the normal or dry season,
the slope is stable or primarily stable. In the flood season or rainstorm period, the slope is
saturated, the stability is poor, and the area is prone to landslides [37]. The types and main
triggering factors of 1520 historical landslides in Fengjie County from 2001 to 2016 were
statistically analyzed (Figure 4). In terms of type, small/shallow/soil landslides account
for 82% of the total number of landslides, and large/deep/clay landslides account for only
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18%. From the perspective of main triggering factors, rainfall-induced landslides accounted
for the majority (75.88%), whereas groundwater (pore water) and human activity-induced
landslides accounted for 10.05% and 2.01%, respectively.
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As shown in Figure 5, where the average annual rainfall is high (annual average
rainfall over 1060 mm), the historical landslides are also densely distributed. According
to statistics on historical rainfall-type landslides in Fengjie, the proportion of landslides
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occurring in the rainy season (May to October) is more than 90%. This is in good agreement
with the concentrated rainfall in Fengjie, and shows that the landslides in this area are
positively correlated to precipitation.
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Figure 5. Average rainfall over the years and historical landslides.

The rainfall is extremely uneven and tends to be concentrated in one or several peaks
of rainfall intensity, while the rainfall intensity in most other periods is very low or zero.
Rainfall pattern analysis was performed on the first four days (96 h) of the occurrence
of some rainfall-type landslides in the study area. The 96 h was divided into eight time
periods, each of 12 h, and the rainfall in each period was accumulated. Figure 6 shows
four typical rainfall patterns in the statistical rainfall-induced landslide data. The following
criteria were used to distinguish rainfall patterns. When the peak rainfall occurs in the
period 1–2, it is determined to be of the decreasing type; when the peak rainfall occurs
in the period 3–6, it is considered to be of the mid-peak type; when it occurs within the
7–8 period, it is considered to be of the increasing type; when there are three or more peak
rainfalls, and the difference between them is within 10 mm, it is considered to be of the
average type.

According to this standard, of the 284 cases of rainfall-induced landslides, there were
186 cases of increasing rainfall, accounting for 65.5% of the total; 64 cases of mid-peak
rainfall, accounting for 22.5% of the total; 19 cases of decreasing rainfall, accounting for
6.7% of the total; and 15 cases of average rainfall, accounting for 5.3% of the total (Figure 7).
It can be seen that there was a strong correlation between rainfall and landslides. The
impact of rainfall on landslides is not only seen on the day the landslides occur, but also
has a certain lag effect on the occurrence of landslides. Therefore, both the rainfall of the
day and the previous rainfall have a strong impact on the occurrence of landslides; hence,
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the threshold for the occurrence of landslides caused by rainfall is divided according to
these two aspects.
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2.3. Susceptibility Zoning
2.3.1. Selection of Influencing Factors

Landslides are affected by both natural and human conditions. Based on existing
research [38,39] and Fengjie County’s landslide development characteristics, this paper
selects 16 evaluation factors under the influence of four aspects: topography (elevation,
slope, aspect, slope position, profile curvature, landforms, topographic wetness index
(TWI)), geology (lithology, distance from fault, combination reclassification of stratum dip
direction and slope aspect (CRDS)), environmental conditions (normalized vegetation index
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(NDVI), distance from rivers, annual average rainfall, land cover), and human activities
(the distance from roads and from buildings). The specific meanings as shown in Table 1.

Table 1. Meanings of influencing factors.

Influencing Factor Meaning

Elevation The distance from a point along the vertical line to the base surface
Slope The degree of steepness of the surface unit

Aspect The direction of the projection of the slope normal on the horizontal plane
Slope position The landform part of the slope

Landforms Relatively small-scale landforms, such as hills, valleys, terraces, etc.
Profile curvature The rate of change of the surface slope at any point on the ground

TWI The influence of regional topography on runoff flow direction and accumulation
Lithology Some attributes that reflect the characteristics of the rock

Distance from faults The distance to the nearest fault
CRDS The relationship between rock inclination and slope aspect
NDVI Percentage of vegetation area to the total statistical area

Distance from rivers Distance to the nearest river
Land cover Ways the land is used

Distance from roads Distance to the nearest road
Distance from buildings Distance to the nearest house
Annual average rainfall Average annual rainfall over multiple years

2.3.2. Treatment of Influencing Factors

To reduce the influence of different dimensions, the reclassified data are normalized
so that the value is between 0 and 1:

X =
X′ − Xmin

Xmax − Xmin
(1)

where X is the normalized result, X’ is the original data of each factor, Xmin is the minimum
value of each factor, and Xmax is the maximum value of each factor.

The influencing factors are reclassified, as shown in Table 2.

Table 2. Influencing factor categories of landslides.

Influencing Factor Grade Classification Standard

Elevation/(m) 7 1. <340; 2. 340~595; 3. 595~850; 4. 850~1105; 5. 1105~1360; 6. 1360~1615; 7. >1615
Slope/(◦) 6 1. <10◦; 2. 10~20◦; 3. 20~30◦; 4. 30~40◦; 5. 40~50◦; 6. >50◦

Aspect/(◦) 9 1. Flat; 2. North; 3. Northeast; 4. East; 5. Southeast; 6. South; 7. Southwest; 8. West;
9. Northwest

Slope position 6 1. Valleys; 2. Lower slope; 3. Flat slope; 4. Middle slope; 5. Upper slope; 6. Ridge

Landforms 10

1. Canyons, Deeply incised streams; 2. Mid-slope drainages, shallow valleys; 3. Upland
drainages, headwaters; 4. U-shape valleys; 5. Plains; 6. Open slopes; 7. Upper slopes,
mesas; 8. Local ridges, hills in valleys; 9. Mid-slope ridges, small hills in plains; 10.
Mountain tops, high narrow ridges

Profile curvature 7 1. −1.0; 2. −1~0.5; 3. −0.5~0; 4. 0~0.5; 5. 0.5~1.0; 6. 1.0~1.5; 7. >1.5
TWI 7 1. <10; 2. 10~12; 3. 12~14; 4. 14~16; 5. 16~18; 6. 18~20; 7. >20
Lithology 7 1. TJx; 2. T1j; 3. D; 4. T1d-j; 5. J2s, J1z-2x, J3sn, J3p; 6. T1d, T3xj, T2b; 7. P, P3
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Table 2. Cont.

Influencing Factor Grade Classification Standard

Distance from
faults/(m): 11 1. <100; 2. 100~200; 3. 200~300; 4. 300~400; 5. 400~500; 6. 500~600; 7. 600~700; 8.

700~800; 9. 800~900; 10. 900~1000; 11. >1000

CRDS 6 1. Bedding slope; 2. Skewed slope; 3. Inclined slope; 4. Horizontal; 5. Reverse slope;
6. Flat

NDVI 7 1. <0.10; 2. 0.10~0.20; 3. 0.20~0.30; 4. 0.30~0.40; 5. 0.40~0.50; 6. 0.50~0.60; 7. >0.60
Distance from
rivers/(m) 7 1. <100; 2. 100~200; 3. 200~300; 4. 300~400; 5. 400~500; 6. 500~600; 7. >600

Land cover 6 1. Cultivated land; 2. Woodland; 3. Meadow; 4. Land used for building; 5. Water area; 6.
Unused land

Distance from
roads/(m) 7 1. <100; 2. 100~200; 3. 200~300; 4. 300~400; 5. 400~500; 6. 500~600; 7. >600

Distance from
buildings/(m) 7 1. <100; 2. 100~200; 3. 200~300; 4. 300~400; 5. 400~500; 6. 500~600; 7. >600

Annual average
rainfall/(mm) 5 1. <990; 2. 990~1040; 3. 1040~1100; 4. 1100~1160; 5. >1160

2.3.3. Random Forest

Random forest is a classifier that uses multiple decision trees to train and predict
samples. When using data subsets to construct a decision tree, elements of different data
subsets can be repeated (that is, sampling with replacement). The random forest can reduce
the one-sidedness and inaccuracy problems of single decision tree prediction, and prevent
the judgment result of a single decision tree from overfitting, resulting in lower prediction
accuracy. The remaining samples can be used as a test set to judge the error rate of the
model prediction:

Y(x)= arg
max

z

k

∑
i=1

I(y i(x)= Z) (2)

where Y(x) represents the judgment result of the RF model, yi(x) represents a single-course
DT (decision tree), and Z represents the variable.

2.3.4. Accuracy Verification

The accuracy of the model prediction results can be determined by the receiver op-
erating curve (ROC). The curve is obtained by setting a probability threshold to obtain a
series of different binary classification results, and is then compared with the actual results.
The closer the ROC is to the upper left, the higher the accuracy of the model. The point
of the ROC closest to the upper left corner is the best threshold with the fewest errors, as
well as the lowest total number of false positives and false negatives. The area under the
curve (AUC) value is the area covered by the ROC, which can quantitatively determine the
accuracy of the model. The AUC value is between 0 and 1, and the larger the value, the
higher the model accuracy.

The accuracy of the model is verified; with the AUC value of the model training set to
0.95 and the AUC value of the test set to 0.87, the overall accuracy is 0.93 (Figure 8). The
three values are all greater than 0.85, indicating the accuracy of the model. Higher accuracy
means a better predictive ability, such that it can be used for landslide research.
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2.4. Fractal Model of Antecedent Effective Precipitation

The triggering of landslides is not only related to the precipitation on the day, but
also to the effective precipitation of the previous period. Existing studies [40,41] have
shown that the cumulative precipitation of the previous period is positively correlated
with the frequency of landslides. The greater the accumulated precipitation, the greater
the probability of landslides. Due to the effects of interception, evaporation, and seepage,
the previous rainfall does not directly act on the slope. In this paper, the precipitation after
the attenuation of the previous cumulative rainfall is used as an important parameter for
landslide warning and prediction. The effective precipitation of the previous period is the
weighted sum of the daily precipitation of the previous period. The weight here is the
attenuation coefficient β. The formula for the calculation of the fractal relationship is:

β =
m

∑
n=1

(
1 −

(
n

n + 1

)α)
(3)

where n represents the number of days before the occurrence of the landslide; m represents
the number of days; and α is the scale index, determined by the formula Rn = C(n + 1)a,
where C is the coefficient and the formula is the cumulative precipitation threshold fractal
curve, which can be studied by analyzing the regional landslide. The relationship between
the occurrence and the cumulative precipitation threshold is derived.

2.5. Hybrid Model of the Antecedent Effective Precipitation and the Daily Precipitation under the
Susceptibility Zoning
2.5.1. Threshold Model Based on Susceptibility Zoning and Antecedent
Effective Precipitation

According to the China Geological Hazard Meteorological Forecast and Early Warning
Implementation Plan [42], the geological hazard weather forecast is divided into four levels:
blue, yellow, orange, and red. We sorted the effective precipitation in the five different
susceptibility regions in the study area, from very low to very high, and formed a first-order
matrix. When the cumulative frequency of landslides in each landslide-prone area reached
25%, 40%, and 55%, the corresponding effective precipitation was used as the effective
precipitation threshold for the yellow, orange, and red warnings.

Yi =





0, (J < Yyellow)
1, (Yyellow ≤ J < Yorange)

2, (Yorange ≤ J < Yred)
3, (Yred ≤ J)

(4)
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where Yyellow is a yellow warning value with a cumulative frequency of 25%, Yorange is an
orange warning value with a cumulative frequency of 40%, Yred is a red warning value
with a cumulative frequency of 55%, and Yi is the actual antecedent effective precipitation.

Ym = Xfm (5)

where Ym is the early warning threshold; Xfm is the effective precipitation when the
cumulative frequency of the landslide reaches a certain amount, which is expressed in
matrix form, and the internal size is arranged from small to large; m is yellow, orange, or
red; and fm is the cumulative frequency of landslides corresponding to the serial number.

fm =[li∗n] (6)

where fm is the serial number corresponding to the cumulative frequency of the landslides;
i = yellow, orange, or red; lyellow = 25%, lorange = 40%, and lred = 55%; n is the total number
of landslides in each group; and [] refers to an integer.

2.5.2. Analysis of Early Warning and Forecast of Landslide Coupled with Daily
Precipitation

The effect of the antecedent effective precipitation on the occurrence of landslides is
a cumulative process, while daily precipitation has a triggering effect. Therefore, accord-
ing to the zoning of landslide susceptibility, mathematical statistics and data mining are
performed based on the cumulative amount of 24 h precipitation and the frequency of
landslides, and the results are adjusted. The specific process is shown in Figure 9.
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Figure 9. Specific flow chart4. Results and Discussion.

Based on the susceptibility zone and rainfall data, the rainfall data of the 10 days before
the landslide in each zone were sorted, the attenuation coefficient of the previous rainfall
was calculated, and the rainfall was corrected by this coefficient. We chose yellow, orange,
and red as the three warning levels. The rainfall values corresponding to the first 25%, 40%,
and 55% of landslide occurrence frequencies in each susceptibility zone were calculated
as the thresholds for different grades of previous effective rainfall. When coupling the
daily rainfall, we added a blue color to the warning level. The coupling followed certain
rules: if the daily rainfall is less than a certain level, no adjustment will be made; when the
daily rainfall is greater than a certain level, the warning level needs to be increased; the
improvement may be of one level or multiple levels; the daily rainfall thresholds, adjusted
by the warning levels of different susceptibility zones, are different.
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3. Result
3.1. Random Forest Susceptibility Evaluation

The accuracy of the model prediction results can be determined by the ROC. The
closer the curve is to the upper left, the higher the accuracy of the model. The AUC value is
the area covered by the ROC curve, which can be quantified to judge the accuracy of the
model; the AUC value is between 0 and 1, and the larger the value, the higher the accuracy
of the model.

The accuracy of the model is verified; with the AUC value of the model training set to
0.95 and the AUC value of the test set to 0.87, the overall accuracy is 0.93 (Figure 8). These
three values are all greater than 0.85, indicating the high accuracy of the model. A model
with this level of predictive ability can be used for landslide research.

The random forest model was used to evaluate the landslide susceptibility of the
study area, and the range was graded by the results of the natural breakpoint method.
After grading, the Landslide Susceptibility Mapping (LSM) result was obtained. As shown
in Figure 10, the majority of study areas are in regions with low or very low landslide
susceptibility, and are concentrated in the south and southeast; highly prone areas are
concentrated on both banks of the Yangtze River and its tributaries, mainly in the north
and central regions of Fengjie.
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Figure 10. Landslide susceptibility zoning map.

3.2. Antecedent Effective Precipitation Model

Based on 1520 landslides with clear occurrence dates and coordinate records induced
by precipitation in the Fengjie area from 2003 to 2016, and the daily precipitation data of
the 10 days before the landslide (the day, the day before, the first three, five, and ten days
of each landslide, and five other periods of cumulative precipitation), sorted by cumulative
precipitation from small to large, we calculated the cumulative precipitation corresponding
to 75% and 90% of the cumulative frequency of landslides, and took this as the cumulative
precipitation threshold for different landslide occurrence probabilities (Table 3).
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Table 3. Influencing factor categories of landslides.

Cumulative
Frequency of
Landslides/%

Precipitation/mm
The Landslide

Day

From the Day of
the Landslide to

3 Days before

From the Day of
the Landslide to

5 Days before

From the Day of
the Landslide to
10 Days before

75 69.9 146.4 252.9 273.4
90 92.7 233.2 330.7 372.3

Difference 22.8 86.8 77.8 98.9

Figure 11 uses the observation period (days) as the abscissa and the cumulative
precipitation threshold as the ordinate to display the cumulative precipitation threshold for
each observation period. The accumulated precipitation is the power exponential function
of the observation period (n), and values of α can be calculated by fitting, which were
found to be 0.609 (75% landslide probability) and 0.603 (90% landslide probability).
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Figure 11. The relationship between the cumulative precipitation threshold and the number of days
of the observation period.

Substituting α into Equation (3), we calculated the attenuation coefficient of the
daily precipitation in the 10 days prior to the landslide. Table 4 presents the attenuation
coefficients of the previous precipitation events, corresponding to 90% of the cumulative
frequency of the landslide.

Table 4. Antecedent rain attenuation coefficient.

1 Day
before

2 Days
before

3 Days
before

4 Days
before

5 Days
before

6 Days
before

7 Days
before

8 Days
before

9 Days
before

10 Days
before

90% 0.344 0.219 0.161 0.127 0.105 0.090 0.078 0.069 0.062 0.056

3.3. Calculation and Adjustment of Antecedent Effective Precipitation Threshold Based on
Susceptibility Zoning
3.3.1. Threshold Model Based on Susceptibility Zoning and Antecedent
Effective Precipitation

According to the antecedent effective precipitation model and susceptibility zoning,
the precipitation thresholds of historical landslides were counted. The results are shown in
Table 5. The expressions of the three fitting lines of yellow, orange, and red warning levels
are: Y = –6.1687x + 134.03, Y = –14.283x + 132.09, and Y = –18.954x + 108.83 (x = 1, 2, 3, 4,
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or 5, corresponding to very low areas, low areas, moderate areas, high areas, or very high
areas, respectively).

Table 5. Effective precipitation thresholds in the first 10 days of different susceptibility zones and
different warning levels.

Susceptibility
Zoning

Frequency of
Landslides

Effective
Precipitation in the
First 10 Days (mm)

Warning Level

Very low
25% 96 Yellow
40% 129 Orange
55% 137 Red

Low
25% 58 Yellow
40% 87 Orange
55% 114 Red

Moderate
25% 51 Yellow
40% 87 Orange
55% 109 Red

High
25% 49 Yellow
40% 87 Orange
55% 109 Red

Very high
25% 6 Yellow
40% 58 Orange
55% 109 Red

The original precipitation threshold was adjusted according to the trend line; the
optimized precipitation thresholds of each level after calculation are shown in Table 6.

Table 6. Thresholds after adjustment of the effective precipitation in the early stage of different
susceptibility zones and different warning levels.

Warning
Level

Very Low
Areas
(mm)

Low Areas
(mm)

Moderate
Areas
(mm)

High Areas
(mm)

Very High
Areas
(mm)

Yellow 90 71 52 33 14
Orange 118 104 89 75 61

Red 128 122 116 109 103

3.3.2. Warning Model Coupled with Daily Precipitation

We performed statistical analysis on the daily precipitation data of 1520 landslides,
and obtained the specific adjustment methods of the coupled day’s precipitation threshold
model, as follows: (1) We counted the cumulative frequency of landslide occurrence,
from small to large, unaffected to landslide-prone areas. (2) The cumulative frequency of
landslides was less than 0.4. The corresponding daily precipitation type and warning level
was not adjusted. For the daily precipitation type corresponding to a cumulative frequency
greater than 0.4 and less than 0.7, the warning level was raised by one level; for the daily
precipitation type corresponding to a cumulative frequency greater than 0.7, the warning
level was raised by 2. (3) We increased the level until the red warning level. Table 7 shows
the relationship between the original forecast level and the adjusted level.
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Table 7. Forecast level adjustment based on the precipitation of the day.

Original
Warning Level Very Low Areas Low Areas Moderate Areas High Areas Very High Areas

Blue Blue Blue Blue Yellow (Light rain) Orange (Light rain)
Yellow Yellow Yellow Yellow Orange (Heavy rain) Orange (Light rain)
Orange Red (rainstorm) Red (Heavy rain) Red (Heavy rain) Red (Heavy rain) Red (Heavy rain)

Red Red Red Red Red Red

3.4. Instance Verification
3.4.1. Regional Verification Analysis

Figure 12a is a landslide warning map generated based on the antecedent effective
precipitation data and landslide susceptibility zoning data of various weather stations on
30 June 2018. Figure 12b is a landslide warning map based on the antecedent effective
precipitation data of each weather station on 30 June 2018, and the daily precipitation data,
combined with the landslide susceptibility zoning.
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Figure 12. Early warning map of landslide area: (a) early warning results based on susceptibil-
ity zoning and antecedent effective precipitation; (b) early warning results based on a coupled
day precipitation.

Most of the study areas were in the warning range, while Fengjie County was mainly
in the safe area. Compared with the single early precipitation landslide warning, the
coupled precipitation landslide warning model has an orange warning. What is more, in
the single landslide warning model, most of the yellow warning areas are replaced by
orange warnings, and the yellow warnings in the coupled warning model are attached to
the orange warnings.

3.4.2. Monomer Verification Analysis

The rainfall-induced catastrophic deformation of the above five typical landslides
can be summarized, as shown in Table 8 below, and their spatial locations are shown in
Figure 13. The final analysis results of the five typical cases are yellow to red warnings. All
five landslides on the site experienced large deformations due to rainfall, but there was no
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overall instability damage. Therefore, the overall early warning result is consistent with
the actual situation on the ground.

Table 8. Summary table of early warning analysis of typical cases of precipitation-induced landslides
in 2017.

Number Name Susceptibility
Zoning

Antecedent
Precipitation

(mm)

Daily
Precipitation

(mm)

Warning Level
Actual

CatastropheAntecedent
Precipitation

Daily
Precipitation

Adjusted
Level

1 Damian Very high 47.6 85.86 Safe Yellow Yellow
Continuous
deformation
Continuous
deformation

2 Hejiawan Very high 12.32 147.5 Safe Red Red Small area collapse
New deformation crack

3 Huoshitan Very high 88.38 0 Orange Blue Orange
Continuous
deformation

Multiple cracks

4 Zhakou High 93.8 1.4 Orange Blue Orange
Continuous
deformation

Multiple cracks
5 Xinpu High 52.26 0 Yellow Blue Yellow Local deformation

Forests 2022, 13, 827 17 of 21 
 

 

 
Figure 13. Distribution map of 5 landslide cases in 2017. 

Table 8. Summary table of early warning analysis of typical cases of precipitation-induced land-
slides in 2017. 

Number Name Susceptibility  
Zoning 

Antecedent  
Precipitation 

(mm) 

Daily  
Precipita-
tion (mm) 

Warning Level 
Actual  

Catastrophe 
Antecedent 
Precipita-

tion 

Daily  
Precipitation 

Adjusted  
Level 

1 Damian Very high 47.6 85.86 Safe Yellow Yellow 

Continuous de-
formation  

Continuous de-
formation 

2 Hejiawan Very high 12.32 147.5 Safe Red Red 

Small area col-
lapse 

New defor-
mation crack 

3 Huoshitan Very high 88.38 0 Orange Blue Orange 
Continuous de-

formation 
Multiple cracks 

4 Zhakou High 93.8 1.4 Orange Blue Orange 
Continuous de-

formation 
Multiple cracks 

5 Xinpu High 52.26 0 Yellow Blue Yellow 
Local defor-

mation 

The established landslide warning model with the coupling of susceptibility zoning 
and precipitation was applied to the newly occurring precipitation-induced landslides in 
the study area and obtained a good verification effect, which is primarily in line with the 
actual situation. 

  

Figure 13. Distribution map of 5 landslide cases in 2017.

The established landslide warning model with the coupling of susceptibility zoning
and precipitation was applied to the newly occurring precipitation-induced landslides in
the study area and obtained a good verification effect, which is primarily in line with the
actual situation.

4. Discussion
4.1. The Importance and Influence of Factors

The contributions of factors to landslides are different. The detection of landslide-
inducing factors can provide an important reference for landslide disaster prediction. In
this paper, the importance of 16 factors in the model is detected using the reduced Gini
index in the random forest model (Figure 14). The highest contributors to landslides are
annual average rainfall and elevation.
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Figure 14. Importance of landslide influencing factors.

The statistical distributions of landslide density based on these two factors are pre-
sented in Figure 15. Annual average rainfall is the most important factor. According to
the statistics of annual average rainfall and landslide density, the landslide density first
increases and then decreases with the increase in annual average rainfall. Because the sur-
face runoff formed by rainfall takes away the unstable soil particles on the slope, the slope
is eroded. Rainfall also promotes the growth of local vegetation, thereby inhibiting soil
erosion and landslides. Landslide density is negatively correlated with elevation because,
usually, in low altitude areas, population agglomeration and human activities easily change
the local geological environment, destroy the stability of the slope toe, and lead to a high
probability of landslide occurrence.

Forests 2022, 13, 827 18 of 21 
 

 

4. Discussion 
4.1. The Importance and Influence of Factors 

The contributions of factors to landslides are different. The detection of landslide-
inducing factors can provide an important reference for landslide disaster prediction. In 
this paper, the importance of 16 factors in the model is detected using the reduced Gini 
index in the random forest model (Figure 14). The highest contributors to landslides are 
annual average rainfall and elevation. 

The statistical distributions of landslide density based on these two factors are pre-
sented in Figure 15. Annual average rainfall is the most important factor. According to the 
statistics of annual average rainfall and landslide density, the landslide density first in-
creases and then decreases with the increase in annual average rainfall. Because the sur-
face runoff formed by rainfall takes away the unstable soil particles on the slope, the slope 
is eroded. Rainfall also promotes the growth of local vegetation, thereby inhibiting soil 
erosion and landslides. Landslide density is negatively correlated with elevation because, 
usually, in low altitude areas, population agglomeration and human activities easily 
change the local geological environment, destroy the stability of the slope toe, and lead to 
a high probability of landslide occurrence. 

 
Figure 14. Importance of landslide influencing factors. 

  
(a) (b) 

Figure 15. Partial effects on landslide susceptibility of typical conditioning factors: (a) annual aver-
age rainfall, (b) elevation. 

  

Figure 15. Partial effects on landslide susceptibility of typical conditioning factors: (a) annual average
rainfall, (b) elevation.

4.2. Effectiveness of Antecedent Rainfall

Early rainfall can reduce the adsorption capacity, and increase the pore pressure, of soil,
thereby reducing the stability of slope, which is an important factor in terms of inducing
landslides. The force of early rainfall on the slope is greatly affected by seasonality. Rainfall
and evapotranspiration are also different in different seasons. In the rainy season, large
amounts of rainfall and low evaporation rates lead to poor slope stability. However, the
increase in evapotranspiration from late spring to early autumn resulted in the decrease
in soil pressure and the increase in slope stability. Therefore, this paper accounted for the
rainfall 10 days before the landslide, referred to as the effective rainfall in the early stage,
so as to avoid invalid rainfall, such as evapotranspiration, being included in the model.
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4.3. Practical Application of Coupling Model of Susceptibility Zoning and Precipitation

The influence of rainfall on landslide has hysteresis and effectiveness, which cannot
only be studied from the antecedent effective precipitation threshold or the daily precipita-
tion threshold. Therefore, the author proposes a model coupling the antecedent effective
precipitation and the daily precipitation, in which the antecedent effective precipitation
and the daily precipitation complement each other. Based on the landslide susceptibility
zoning, we use the coupling method of the antecedent effective precipitation and the daily
precipitation to improve the warning ability of the rainfall threshold model. It was found
that the warning level of the coupling model is higher than that of the single model, and
the warning range is more realistic. Firstly, according to the landslide susceptibility zoning,
the antecedent effective precipitation thresholds of three warning levels (yellow, orange,
and red) are given. The antecedent effective precipitation alone is not enough to reflect
the real-time impact of rainfall on landslides. Therefore, the actual effect of rainfall on
landslides is reflected by coupling the daily precipitation with the antecedent effective
precipitation threshold.

According to the example verification (Table 8), the susceptibility area of Hejiawan
is divided into middle–high susceptibility areas. After the superposition of antecedent
effective precipitation of 47.6 mm, the antecedent effective precipitation warning level is
‘safe’, but combined with the daily precipitation of 85.89 mm, the warning level of Hejiawan
landslide is ‘red’, which is consistent with the actual situation of small-area landslides.
The daily precipitation of Huoshitan and Xinpu landslides is 0, and the possibility of
landslide occurrence is low. However, combined with the antecedent effective precipitation,
the forecast grades of these two places are ‘orange’ and ‘yellow’. The results show that
the coupling model of the antecedent effective and the daily precipitation can avoid the
occurrence, and reduce the risk, of landslides.

5. Conclusions

In this study, we propose a new precipitation warning model that couples landslide
susceptibility, antecedent effective precipitation, and the daily precipitation threshold. We
applied the model to actual landslide cases and verified it to explain the practicality and
accuracy of the model. Our conclusions are as follows:

(1) The evaluation results of the landslide susceptibility model in Fengjie County based on
RF are accurate and reasonable. The AUC value of the test set is 0.87, and the annual
average rainfall and elevation are the factors that contribute the most to the model.

(2) The early warning model of landslide susceptibility, the antecedent effective precip-
itation, and the daily precipitation coupling has higher accuracy than the model of
landslide susceptibility and the antecedent effective precipitation coupling, and it can
better characterize the mechanism of rainfall-induced landslides.

(3) The landslide warning model based on random forest coupling of rainfall-inducing
factors in landslide susceptibility zoning has high warning accuracy, which can pro-
vide a reference for areas with the same geological conditions and climatic conditions.
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