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Preface to “Data/Knowledge-Driven Behaviour
Analysis for Maritime Autonomous Surface Ships”

With the development of artificial intelligence and ICT, ships are expected to be smarter than
traditional ships in the future, as they can autonomously navigate from one point to another point
in the waters. Several studies have developed various systems to achieve such goals. As we can see,
the MASS can handle many tasks with explicit references, such as speed following, course keeping,
path following, etc. However, the MASS does have some limitations in operating some complicated
tasks that need the machine to make decisions and adjust its reference according to the recognized
traffic scene, such as collision avoidance, emergent operations, etc. In this process, we found that
the recognition and prediction of ship behavior are essential for the recognition of traffic scenes,
which will influence the decision outcomes. For instance, when two ships encounter each other,
the give-way ship’s behavior will influence the decision of the stand-on ships. Thus, we believe the
study on ship behavior would benefit the development of MASS.

Recently, the developments of equipment onboard ships enrich our data source to analyze ship
behavior, such as radar, Automatic Identification Systems (AIS), CCTV, etc. These Maritime traffic
data (e.g., radar data, AIS data, CCTV data) provide designers, officers on watch (OOW), and traffic
operators with extensive information about the states of ships at present and in history, which are
a treasure for behavior analysis. Additionally, the development of knowledge analysis tools, e.g.,
Fuzzy systems, knowledge graphs, etc., offer a new insight to analyze the ship’s behavior based on
human knowledge, e.g., navigation rules and regulations. Combining multisource heterogeneous big
data and artificial intelligence techniques inspires innovative and important means for understanding
ship behavior and developing MASS. Thus, under the support of the Key R&D Program of Zhejiang
Province (China) through Grant No. 2021C01010, this reprint collects 12 papers working on
data/knowledge-driven behavior analysis for MASS and its applications, including data-driven
behavior modeling, knowledge-driven behavior modeling, multisource heterogeneous traffic data

fusion, risk analysis and management of MASS, etc.

Yuangiao Wen, Axel Hahn, Osiris Valdez Banda, and Yamin Huang
Editors
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This Special Issue, “Data-/Knowledge-Driven Behavior Analysis of Maritime Au-
tonomous Surface Ships”, includes twelve contributions [1-12] published during 2021-2022.
Maritime traffic data (e.g., radar data, AIS data, and CCTV data) provide designers, officers
on watch, and traffic operators with extensive information about the states of ships at
present and in history, representing a treasure trove for behavior analysis. Additionally,
navigation rules and regulations (i.e., knowledge) offer valuable prior knowledge about
ship manners at sea. Combining multisource heterogeneous big data and artificial in-
telligence techniques inspires innovative and important means for the development of
MASS. Thus, this Special Issue aimed to collect studies that provide new views on data-
/knowledge-driven analytical tools for maritime autonomous surface ships, including
data-driven behavior modeling, knowledge-driven behavior modeling, multisource hetero-
geneous traffic data fusion, risk analysis and management of MASS, etc. A brief overview
of all the contributions, emphasizing the main investigation topics and the outcomes of the
analyses, follows below.

Data-driven behavior modelling methods are powerful tools that can be used to
discover ship manners from large amounts of data. Guo et al. [5] developed a deep convolu-
tional neural network (CNN) for ship trajectory classification. The improved QuickBundle
clustering algorithm was used to preprocess the trajectory data, the trajectory data were
further converted into image data, and then a deep CNN-based trajectory classification
model was developed. Based on the proposed model, the manually annotated dataset
was set as the input for model training. By comparison with the traditional connected
neural network model and SVM model, the proposed method can effectively distinguish
ship trajectories in different waterways. Xu et al. [9] developed a prediction model for
ship traffic flow in wind farms area. Instead of using time series data, a spatiotemporal
dependence feature matrix was developed to predict the ship traffic flow, and a Gated
Recurrent Unit (GRU) of a Recurrent Neural Network (RNN) was used to identify multiple
traffic flow sections from complex waters. By comparison with traditional methods using
traffic data from wind farms in Yancheng City (China), e.g., the Autoregressive Integrated
Moving Average (ARIMA), Support Vector Machine (SVM), and Long Short-Term Memory
(LSTM), the proposed method, based on spatiotemporal dependence, performs better than
the current traffic flow prediction methods.

Knowledge-driven methods offer tools that teach the machine to understand a ship’s
behaviors. Zhong et al. [12] proposed an ontological ship behavior model based on COL-
REGs, which is expected to automatically perform reasoning based on the knowledge
derived from COLREGs. Knowledge graph techniques were employed. The ship behavior
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was viewed as the changes in temporal-spatial attributes of the ship, as described using the
Resource Description Framework (RDF), function mapping, and set expression methods.
Rule 9 (Narrow Channel Article) from COLREGs was inputted into the proposed method
to demonstrate the feasibility of the proposed method. The results show its potential for
the complete machine reasoning of ship behavior knowledge in the future. Song et al. [6]
proposed a semantic model of ship behavior based on the ontology model, which aims
to help the machine to understand ship behavior from ship trajectory data. Multi-scale
features of ship behavior are observed, and the behaviors are divided into four sub-scales
in cognitive space, namely, action, activity, process, and event. As demonstrated in case
studies, some typical behaviors are deduced using a reasoner, such as Pellet, based on
defined axioms and semantic web rule language (SWRL). The proposed model shows
potential for smart maritime management.

Multisource heterogeneous traffic data fusion broadens the range of sources for the
observation of ship behavior, and vision-based sensors have become an important means.
Chen et al. [2] studied ship intention detection and prediction methods based on observed
ship behaviors using radar, cameras, and Automatic Identification Systems and proposed
a vision and Bayesian framework. Traditionally, radar and AIS data have been used for
ship behavior analysis and intention detection, whereas it is still difficult to detect real-time
ship intention due to low data frequency. Thus, the authors proposed the addition of a
vision-based sensor for intention detection and prediction and argued that it could be
used for real-time intention detection and prediction in intersection waters. Specifically, an
algorithm based on the fusion of image sequences and radar information was proposed.
The RANSAC method was used to fit radar and image detection information, and the
YOLOVS detector was used to track ship motions in the image sequence. Wu et al. [8]
developed a multi-sensor hierarchical detection and tracking method for inland waterway
ship chimneys which can be used to monitor the emission behavior of ships in inland
waters. A convolutional neural network was developed to extract the ships from visible
images. Then, the Ostu binarization algorithm and image morphology operation were
employed to obtain the chimney target from the ship image, and an improved DeepSORT
algorithm was developed for ship chimney tracking.

Safety is an important issue for the development of MASS and is also an ultimate goal
of behavior analysis. Five contributions focused on the safety of MASS in the design phase
and operation phase, and one contribution overviewed recent achievements regarding
intelligent algorithms for MASS.

To investigate the safety of MASS in the design phase, Zhang et al. [10] proposed a
hybrid causal logic method for the preliminary hazard analysis of maritime autonomous
surface ships, which is expected to provide a reference for the MASS design and safety
assessment process. Due to limited historical data, it is difficult to conduct comprehensive
hazard analysis of MASS. To overcome this limitation, the authors developed a hybrid
causal logic (HCL). Specifically, the event sequence diagram (ESD) was used for hazardous
scenarios, the fault tree (FT) method was utilized to analyze mechanical events in ESD, the
Bayesian Belief Network (BBN) was applied to analyze the human factors in MASS, and
conventional ship operation data and MASS experiments data were used to determine the
accident probability. As the authors demonstrated, the proposed method can be used to
identify the key influential factors and accident-causing event chains for MASS in the case
of autonomy level III.

To enhance the safety of MASS in the operation phase, Du et al. [3] developed the
onboard available-maneuvering-margin (AMM)-based ship collision alert system (CAS)
that supports the evasive behavior of ships. The AMM is an important factor for avoiding
the types of collisions experienced by human navigators in ship real encounters, and it can
reflect the risk perceived by the navigators. Thus, it can be used for ship collision alerts.
Some typical encounter scenarios from historical AIS data were selected for the demonstra-
tion of the AMM-based CAS, and the results show that the proposed method can be used
for two-ship and multi-ship encounters, providing timing alerts to autonomous systems
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or navigators onboard ships. Gu et al. [4] developed a motion-planning algorithm for
unmanned surface vehicles that considers wind and currents and is based on regularization
trajectory cells. A regularization trajectory cell library incorporating the influences of wind
and current was developed, and the search cost was updated. Through simulation experi-
ments, the authors showed that the proposed method can offer a trackable trajectory for a
USV in some complex environments. Song [1] proposed a collision avoidance algorithm for
USVs based on obstacle classification and fuzzy rules. Specifically, the time to the closest
point of approach (TCPA) was used to determine the priorities of collision avoidance; the
velocity obstacle algorithm was used to determine the safety avoidance strategy; fuzzy
rules were designed to understand the multi-encounter scenario; and the particle swarm
optimization (PSO) algorithm was introduced to identify the optimal solution. The sim-
ulation verified and validated the proposed method’s effectiveness in complex scenarios.
Zhang et al. [11] developed a novel decision support method for ship collision avoidance
based on the deduction of the maneuvering process. A fuzzy-based collision risk indicator,
modified velocity obstacle algorithm, and fuzzy adaptive PID method were proposed to
determine the time required for collision avoidance, identify evasive decisions, execute
the selected evasive decision, and resume sailing operations. The simulation results show
that the proposed method can support ship collision avoidance in some complex encounter
environments.

Tang et al. [7] analyzed and summarized the intelligent algorithms for MASS related
to risk perception, decision making, and execution that have been published in the last five
years. By reviewing the existing achievements, the authors concluded that the establishment
of a risk perception system with digital and visual integration would improve the quality of
risk identification. MASS strongly relies on intelligent algorithms to achieve both safe and
efficient collision avoidance goals in a high-complexity manner, and the speed and accuracy
of ship motion control still require improvement. Lastly, the authors also discussed the
roles of humans and machines based on different autonomy levels.

Conflicts of Interest: The authors declare no conflict of interest.
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Abstract: Formal expression of ship behavior is the basis for developing autonomous navigation
systems, which supports the scene recognition, the intention inference, and the rule-compliant actions
of the systems. The Convention on the International Regulations for Preventing Collisions at Sea
(COLREGsS) offers experience-based expressions of ship behavior for human beings, helping the
humans recognize the scene, infer the intention, and choose rule-compliant actions. However, it is still
a challenge to teach a machine to interpret the COLREGs. This paper proposed an ontological ship
behavior model based on the COLREGs using knowledge graph techniques, which aims at helping
the machine interpret the COLREGs rules. In this paper, the ship is seen as a temporal-spatial object
and its behavior is described as the change of object elements in time spatial scales by using Resource
Description Framework (RDF), function mapping, and set expression methods. To demonstrate
the proposed method, the Narrow Channel article (Rule 9) from COLREGs is introduced, and the
ship objects and the ship behavior expression based on Rule 9 are shown. In brief, this paper lays a
theoretical foundation for further constructing the ship behavior knowledge graph from COLREGs,
which is helpful for the complete machine reasoning of ship behavior knowledge in the future.

Keywords: COLREGs; ship object; ship behavior; formal expression

1. Introduction

Ship behavior refers to the movement of the ship in response to the traffic situation,
which usually reflects the intention of the officer on watch (OOW) at present and influences
the trajectory of the ship in the future. Hence, the recognition of ship behavior is the key
to judging the intention of the OOW and predicting the movement of ships in dangerous
encounters, which benefits the safety and efficiency of autonomous navigation and traffic
management [1]. From the perspective of traffic management, the vessel traffic service
operators (VISO) need to judge the development of the situation based on the analysis of
the ship behavior and identify the near-miss as early as possible; from the perspective of
ship navigation, the OOW or intelligent systems need to infer the intention of other ships
and predict their trajectories based on the observed ship behavior before taking evasive
actions [2]. In brief, to improve the intelligence level of VTS and ships, the study of ship
behavior has become an essential topic.

In order to help the machine understands the behavior of the ship based on COLREGs,
the techniques from the knowledge graph are introduced and the methodology of onto-
logical ship behavior modeling is developed by using Resource Description Framework
(RDF), function mapping, and set expression methods. The concept of ship object and ship
behavior described in COLREGsS rules are incorporated in the proposed method. The ship
is seen as a temporal-spatial object containing attribute elements and relational elements;
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the behavior, then, is described as the changes of the elements in time-spatial scales. Based
on these techniques, the proposed method can be used to identify the intentions of the
ships and their violation behavior, which has the potential of improving the autonomy
level of the ships and decision support system in VTS.

In summary, the main contribution of this paper is developing a knowledge model of
ship behavior according to the rules from COLREGs, which could be used to realize ship be-
havior knowledge expression in the machine. The rest of this paper is organized as follows:
the studies on ship behavior modeling are overviewed in Section 2; Section 3 introduces
the definitions of ship objects, attribute elements, and relational elements, followed by a
conceptual model of ship behavior and the formal expression of ship behaviors according
to the COLREGsS in Section 4; case studies, discussion, and conclusions are addressed in
Sections 5-7, respectively.

2. Literature Review

Studies on ship behavior modeling fall into the following two categories: data-driven
behavior modeling and knowledge-driven behavior modeling. In addition, due to the
recent focus on rule-compliant collision avoidance, many researchers studied ship behavior
in encounters, which are also overviewed.

2.1. Data-Driven Behavior Modelling

Data-driven behavior modeling usually utilizes ship trajectory data to learn the ship’s
behavior. A group of researchers proposed to learn the characteristics of ship behavior from
traffic data from a certain region and use the characteristics to predict the trajectory of the
ship in the future [3]. Specifically, researchers obtained ship motion trajectories from AIS
data [4], analyzed characteristics of trajectory [5], and concluded the distribution of ship
state in history that reflects the characteristics of ship behavior [6]. The characteristics of
ship behavior, then, are used to predict the trajectories of the ships. Some typical methods
to predict the trajectory are Kalman filter [7], Long Short-Term Memory Neural Network
(LSTM) [8], Bayesian networks [9], backpropagation neural network (BP) [10], etc.

Some researchers focus on the identification of abnormal behavior of ships by learning
historical trajectory data. Patroumpas et al. [11] designed a method to identify the flow
of ship events through AIS data, and on this basis, performed cognitive inferences on
abnormal behavior of ships. Zouaoui et al. [12] introduced the Hidden Markov model and
formal language for analyzing the ship movement data in the harbor to get the normal ship
behavior and abnormal ship behavior. Lei et al. [13] proposed the MT-MAD framework,
which can automatically detect abnormal behavior based on the evaluation of the ship’s
historical sub-trajectory data, and defines the ship’s activity space, behavior sequence, and
behavior characteristics.

Another group of researchers concentrates on ship behavior prediction. Zissis et al. [14]
used machine learning, especially artificial neural networks, as a tool to increase the
predictive ability of ship behavior. The developed systems can learn and accurately predict
in real-time the future behavior of any ship, in a relatively low computing time, which
can be used as the basis of prediction for various intelligent systems, e.g., ship collision
prevention, ship route planning, ship operation, etc. Perera et al. [15] proposed a ship
behavior recognition module in autonomous ships using historical ship trajectory data,
which is also used to predict ship trajectory in the future.

In short, the data-driven ship behavior model is usually based on the observed traffic
data, e.g., AIS data, etc., which are used to predict the trajectories of ships based on the
characteristics of the majority and identify “abnormal behaviors” that are different from
the majority. However, it is not easy for these models to infer the behavior of the ship that
is rule-compliant or not (i.e., reasoning the knowledge of ship behavior). In particular, the
machine lacks knowledge about rule-compliant behavior.
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2.2. Knowledge-Driven Behavior Modeling

Knowledge-driven behavior modeling accepts that the ship cannot move freely but
follows certain regulations/rules (i.e., prior knowledge). Thus, researchers intend to gain
knowledge of ship behavior from semantic knowledge. Expert systems [16], expression
logic [17], semantic network [18], the Resource Description Framework (RDF) [19], ontol-
ogy [20], etc. are popular methods to construct knowledge and realize knowledge reasoning.

The semantic network is a popular tool to describe ship behavior in recent years. The
information loss is inevitable when the researchers use trajectory data only for recognizing
ship behavior [21]; thus, some researchers tried to enrich the semantic information of the
trajectory. Parent et al. [22] proposed the semantic modeling method and defined the
semantic model of the ship trajectory.

In addjition, the ontology model of ship behavior becomes popular, which can realize
knowledge expression for machines. Nogueira et al. [23] used ontology tools to combine
the ship’s trajectory motion characteristics, such as velocity and acceleration, to express the
ship’s trajectory. Lamprecht et al. [24] used the ontology’s knowledge organization ability
and reasoning function to realize the cognition of the conceptual modeling of ship behavior.
Wen et al. [25] introduced a dynamic Bayesian network, combined with a semantic network
to carry out dynamic uncertainty reasoning and knowledge expression of ship behavior
in port waters. Huang et al. [26] combined machine learning and semantic behavior for
pattern recognition. Adibi et al. [27] predicted ship behavior, analyzed and discovered
ship behavior at the semantic level, and improved maritime supervisors’ understanding
of water traffic. However, these semantic models lack consideration of the influence of
environmental disturbance and do not fully consider the constraints of COLREGs on
ship behavior.

The knowledge-driven approach presents tools to model behaviors for behavior in-
ference. The reasoning process uses techniques such as rule-based systems, case-based
reasoning, and ontological reasoning to produce activity models. Knowledge-driven ap-
proaches can represent the context of the environments at multiple levels of abstraction to
create generalized and personalized behavior modeling. In particular, ontologies have been
widely used to represent semantic concepts and their relationships in a structural manner.
Advantages of ontologies include the ability to express knowledge in a clearly organized
and structured manner, machine-readable expression, and the expressive power to support
the reasoning process.

2.3. Behavior Modeling of COLREGs

To our best knowledge, traditional methods basically considered some key rules from
COLREGs and designed the rule-based expert system that helps the machine to recognize
the traffic scene and apply certain reaction rules [28].

Some researchers use a question-and-answer method to construct an expert system of
ship collision avoidance and give an avoidance plan in the form of question and answer.
Others focus on quantifying the COLREGs rules. Many descriptions from COLREGs are
ambiguous, vague, and unquantified, which made them difficult for the machine to use
in practice. Thus, many researchers proposed quantification methods that quantified the
conditions for each encounter [29] (e.g., heading, crossing, and overtaking) and addressed
the link between encounters conditions and reaction rules with the help of captains and

v

fuzzy theory [30]. Xu et al. [31] clarified the concepts of “head-on ship”, “give-way ship”,
“overtaking”, “crossing” and “heading” according to COLREGs, set up a corresponding
reward function for each concept and designed the reward function. In the deep learning
algorithm, the optimal collision-avoidance strategy is finally obtained. He et al. [32] put
forward the COLREGs quantitative model by combining the ship domain model and the
ship heading control system based on the four-stage theory of the ship encounter process.
Eriksen H et al. [33] introduced a three-layer hybrid collision-avoidance (COLAV) system

for surface unmanned boats, which complies with Articles 8 and 13 to 17 of the COLREGs.
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The performance of the COLAV system is tested by numerical simulations of three different
challenge scenarios (i.e., heading, crossing, and overtaking).

These studies can be used to develop the MASS that follows the rules inputted by
developers, but it is challenging to enumerate all the possible scenarios and reaction rules.
To develop a practical rule-compliant ship, the developers need to enumerate the scenes that
one ship might encounter and design the reaction rules. However, it is almost impossible
to address all the scenes one ship might encounter. Thus, adding additional reaction rules
become necessary. For example, in a crossing encounter, one ship that is on the portside
of another ship is usually seen as a “give-way” ship, whereas if the first ship is a fishing
ship, the ship becomes the “stand-on” ship. To handle this exception, additional reaction
rules would be needed, which address the special arrangements when the ship encounters
fishing ships. However, it is hard to list the endless exceptions.

In this paper, we propose another way to handle this issue. Instead of humans adding
patches for exceptions, we proposed the ontological knowledge model helping the machine
to deconstruct the conditions and reactions, extract the common concepts, and define the
relationships among concepts. With the help of the ontological model, the machine not
only can perform the reactions based on the explicit rules but also can infer the implicit
rules, i.e., interpretation of rules from COLREGs. It offers a new line of thought to develop
a rule-complaint MASS.

3. Conceptual Modeling of Ship Object from COLREGs

The COLREGs, formulated by the International Maritime Organization (IMO), define
different types of ships, different scenes one ship might encounter, and obligations of
the ship in these scenes [34]. The ship is the core concept, and the formal expression
(i.e., formulaic and structured expression) of the ship object introduced in this section is a
prerequisite for the machine to understand the ship behavior described by COLREGs.

3.1. Conceptual Modeling of Ship Object

Ships usually have many spatiotemporal characteristics, e.g., velocity, course, position,
etc., which implies that the ship is a spatiotemporal object. Thus, in this paper, the ship
object is defined as Definition 1:

Definition 1. Ship object is a spatiotemporal object with the characteristics in time and space
scales, which can be expressed in the form of data, models, rules, logic, or knowledge by computers
in cyberspace.

In general, one ship has many characteristics helping us to distinguish one ship from
another ship, and these characteristics are usually named as an “attribute” of the ship. By
the type and values of the attributes, one can distinguish the ship from different objects.

Among these attributes, the attributes that describe the characteristics of the ship
independent from the surrounding objects, e.g., the ship name, position, velocity, types,
etc., are named as “attribute elements” in this paper, whereas other attributes rely on sur-
rounding objects to express its characteristics, e.g., the bearing of objects, relative distance
between objects and the relative speed, etc., are named as “relational elements”. The formal
definitions of attribute elements and relational elements are shown as Definition 2 and
Definition 3:

Definition 2. The ship’s attribute elements are the expression of the specific characteristics of the
ship object that are independent of other objects., e.g., ship name, velocity, course, flag state, etc.

Definition 3. Ship’s relational elements are to describe the association relationship between objects
(e.g., ship objects and environment objects), e.g., relative velocity, relative heading, relative location
between the ship and the environment or between one ship and another ship, etc.
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In order to facilitate the understanding of the definitions in the paper, we have made
Figure 1 to show that the entities (e.g., ships, channels, etc.) in the physical space are
extracted and modeled in cyberspace, named as objects. Each object has attribute elements
and relational elements that help us distinguish one from another. These elements might
vary as time moves on, such as the course, the velocity of ship A, the relative distance, and
relative bearing from ti—1 to ti+1.
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Figure 1. Abstract schematic diagram of Ship entity.

According to Definitions 1-3, the ship object has attribute elements and relational
elements that might vary as time moves on or with the changes of positions. For instance,
in an encounter scenario, relational elements (e.g., relative distance) of the ship would
change as time moves on; in a curved channel, attribute elements (e.g., course) of the ship
will be diverse according to the curvature of the channel. In brief, the values of attribute
elements and relational elements have a time or spatial “stamp”. Thus, each ship object can
be expressed in the form of a triple-element model:

shipObject = { Attribute elements, Relational elements, Time_Space} (1)

where shipObject represents the ship object, Attribute elements represents the attribute
elements of objects, Relational elements represent the relational elements of objects, and
Time_Space represents the time and space scales.

Each element of the ship object can be formally expressed by a cell containing “Type”,
“Value”, and “t”, named as “Object.parameter” and defined as:

Object.parameter = (Typey;, Valuey;, t;), (i € NT) )

where Object.parameter represents the smallest unit describing the elements of the specific
ship object (say “Object”), “Type” represents the type of attribute elements or relational
elements of the specific ship object; “Value” represents the value of the “Type”, and t
represents the moment when the “Type” has the “Value”.
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Based on these definitions, all characteristics of one object (with attribute elements
and relational elements) can be collected in a set of the Object. Parameter, i.e.,

Object.Parameter = {Object.pammeterl Type, ..., Object.pammeternType} (3)

where Type represents the type of Object.parameters, such as velocity, course, relative dis-
tance, relative bearing, etc. Additionally, the parameters relating to the attribute elements
are collected in Object.Parameter™!¢ and the parameters relating to the relational ele-
ments between Object and Object; are collected in [Object1, Object,]. Parameter” elation  Thyg,
Equation (3) can be expressed as:

Object.Parameter = {Object.ParameterAmib”te, ..., |Objecty, Objectz} .ParameterRel”ti"”} 4)

The Parameter of object can be expressed as Example 1:

Example 1. Take the scene in Figure 1. as an example. The Parameter of ship A can be expressed as
formula as:

shipA.Parameter = {shipA.parameteter3v€l°City, [shipA, shipB}.sparameterg,di“””“’}

[ (velocity, 10, t;_1), (velocity, 15, t;), (velocity, 20, ;1 1), 5)
| (distance,5,t;_1), (distance, 1,t;), (distance, 4, t; 1)

3.2. Expression of Elements of Ship Object
3.2.1. Attribute Elements

According to COLREGsS, the ship object has various attribute elements, and these
attribute elements might influence the role of the ship and its obligations in a certain traffic
scene. According to the feature of these elements, attribute elements can be categorized into
two types, namely static attribute elements and dynamic attribute elements, see Figure 2.

static elements ’— e.g., name, type, size of ship, etc

Attribute elements K

# dynamic elements ’7 e.g., position, heading, speed of ship, etc

Figure 2. Attribute elements of ship entity.

The static attribute elements describe the attributes that are usually relatively invariant,
such as ship name, ship type, ship size, etc., while the dynamic attribute elements are the
attributes that might change over time, such as the ship’s position, heading, velocity, ship’s
draft, etc.

3.2.2. Relational Elements

According to COLREGs and Definition 2, the ship also has many relational elements;
some relational elements, such as the position and relative distance between two ships,
can be used to determine the encounter scene of the two ships (overtaking, crossing, and
heading scenes). Additionally, the obligation of one ship might change as the relational
element changes. For example, when two ships are in a crossing scene, one of the ships has
the obligation to give way to the other ship. When the two ships pass by, this obligation
is relieved.

The relational elements between objects are categorized into three types, namely,
spatial relations, temporal relations, and semantic relations.

(1) Spatial relational elements

The spatial relations among the objects in COLREGs include topological, bearing, and
distance relations. The regional link calculus model [35] has been introduced to describe

10
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the topological relation between objects, e.g., ship object—ship object, ship object— area
object, and area object-area object. The topological relation includes separation, inclusion,
intersection, coincidence, inscribed, and circumscribed, which are shown in Figure 3a—f.

'E1 Ez‘: E1 E2) | E1 .| E2)
(a) separation (b) inclusion (c) intersection

E2 E1) E1 E2) E1 E2)

(d) coincidence (e) circumscribe (f) inscribed

Figure 3. Topological relations of entity elements contains (a—f).

According to the statement from the COLREGs, the topological relation between
two ship objects includes separation and circumscribe. The topological relation between
one ship object and one area object includes the following four types: separation, inclu-
sion, inscribed, circumscribe, and intersection. The topological relation between two area
objects includes the following six types: separation, inclusion, inscribed, circumscribed,
intersection and coincidence.

The bearing relation mainly describes the relative bearing between two ships. This
paper constructs the ship coordinate system, which forms four directional regions by
the intersection of the ship’s headline and the ship’s transverse line. For example, the
coordinate system of ship A and ship B is shown in Figure 4. Ship B is in front of the
starboard transverse 45° of ship A, while ship A is in front of the port side transverse 30°
of ship B.

Figure 4. Bearing relational elements of ship objects.

The distance relation describes the distance between two ship objects, including
quantitative expression and qualitative expression.

The quantitative expression refers to the Euclidean distance between two ship objects,
as shown in Equation (6).

D =/ ((xa - %)+ (y4 — y5)°) (6)

11
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where D represents the distance between ship A and ship B, (xA,yA), (xB,yB) represents the
position coordinates of ship A and ship B.

According to COLREGs (Rule 7, Rule 8, Rule 13, Rule 15), the relative distance is
divided into the following four stages: safety distance, urgent situation, risk of collision,
and collision. The criteria for dividing these stages are depending on the encounter scenes.
For the readers interested in the studies on the quantitative analysis of these criteria, the
readers are encouraged to see the paper [36]. Although the quantitative analysis of the
scenes is not the focus, the qualitative result, i.e., the stage of the encounter, is crucial for the
subsequent deduction. Thus, a qualitative expression of the relative distance is introduced:

safety distance, Dn <D
Df — urgent situation, Dm < D < Dn %
") risk of collision, DI < D < Dm

collision, D < Dm

where D represents the distance between ship objects, D; is a qualitative expression of “D”,
and Dy, Dy, D; are the threshold that defines the distance between ship objects.

(2) Time relational elements

The time relation is the expression of the ship’s behavior and events in the time scales,
which usually contain two forms, namely points and periods. The time point describes a
specific moment. For instance, the time point when the ship performs a left turn, the time
when two ships collide, etc. The time period is a range of time. For instance, when the ship
is anchored at the anchorage, the ship passes through the narrow space, the time of the
ship in the waterway, etc.

In Rule 13 of COLREGs, the definition of the two ships overtaking scene is given as
follows: “A vessel shall be deemed to be overtaking when coming up with another vessel
from a direction more than 22.5 degrees abaft her beam, that is, in such a position with
reference to the vessel she is overtaking, that at night she would be able to see only the
stern light of that vessel but neither of her sidelights.” In this rule, there is actually a time
relationship. For instance, the overtaking “begins at” the moment of catching up with
the previous ship and “ends at” the time when the two ships pass by. In COLREGs, we
can conclude the time-related concepts into five types, namely “earlier than”, “later than”,
“between”, “beginning at”, and “ending at”, which can be described by time points or time
periods. The details see Table 1.

Table 1. Time relational elements of ship objects in COLREGs.

Time Relation Elements Expression Ilustration
earlier than be fgfjeiog :jltz) t o t, T
later than . ff:{ tftrlfztz) t t,t T
between Between (ty, tp) TR T
beginning at Begin with tq o0, 6 T
ending at End with t, 4 O T

(3) Semantic relational elements

Semantic relational elements are used to describe the semantic relational elements
between ship objects. For example, for the message that the name ship A is “007”, there

12
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is a relationship (“hasName”) between ship A and “007”. We call “hasName” is a se-
mantic relational element, ship A is the domain of the semantic relational element, and
“007” is the value range of semantic relational elements. The semantic relationship is
described as a triple structure <domain, relation, range> using the Resource Description
Framework (RDF).

The COLREGSs contain many semantic relations, and some typical semantic relations
from COLREGs are concluded in Table 2.

Table 2. Time relational elements of ship objects in COLREGs.

Domain Relation Range Expression
hasType attribute elements The type of ship
One shi hasName attribute elements The name of a ship
ob'ectp hasVelocity attribute elements The velocity of a ship
) hasCourse attribute elements The course of a ship
hasSize attribute elements The size of a ship
Two ship hasRelative distance relational elements The relative distance
objects hasRelative bearing relational elements The relative bearing

4. Conceptual Modeling of Ship Behavior and Its Expression

Ship behavior is another important concept from the COLREGs. Specifically, COLREGs
address the promoted and non-promoted behavior in different traffic scenes with different
ship objects. According to Section 3, the ship entity in COLREGs is expressed as a ship object,
and its element composition is expressed as attribute elements and relational elements for
the machine. Based on that, ship behavior can be defined as the changes of elements in time
and space scales, and the formal expression of ship behavior is presented in this section.

4.1. Conceptual Modeling of Ship Behavior

In general, “behavior” refers to the activities of spatiotemporal objects caused by
external influences or internal action. In order to clearly classify and model the behavior of
ship objects, and further express and reason about ship behavior, the definition of the ship
behavior is introduced as Definition 4:

Definition 4. Ship behavior refers to the change of the ship object’s attribute elements and relational
elements in time and space scales.

Based on Definition 4, the ship behavior can be defined as ship behavior can be divided
into attribute behavior and relational behavior, the definitions are introduced as Definition
5 and Definition 6 The ship behavior is formulated as:

ObjeCt.Behavior — {BehaviorAttribute, Behﬂ?)iOT’Relation} (8)

Definition 5. Ship’s attribute behavior refers to the change of ship object attribute information,
e.g., ship’s position, course, velocity and light type, denoted as BehaviorAtribute,

Definition 6. Ship’s relational behavior refers to changes in ship relational elements over time,
including spatial relationships, temporal relationships, semantic relationships, also including the
generation, change, and demise of relationships, denoted as BehaviorRelation,

Similarly to Equation (2), each characteristic of ship behavior (either attribute behavior
or relational behavior) can be expressed by a cell, named as “Behavior.parameter”:

Behavior.parameter = (dType,dValue, T) 9)

where “dType” represents types of changes in specific object elements, “dValue” is the
amount of change in the value of the same element at different times, the value of “dValue”

13
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can be calculated by Value;-Value; 1, T represents the period when the “dType” has the
“dValue”, T can be represented by [t;_1, t;].

Similarly to Equation (3), ObjectBehavior.Parameter is a set of Behavior.parameters that
change their values during T, which is formulated as:

ObjectBehavior.Parameter = f(Object.Parameter)
= {(dType,dValue, T;)|dValue # ¢}

where ObjectBehavior.Parameter represents a set of Behavior.parameters, f(-) is the function
that finds the “dType” that “dValue” is non-empty from t;_; to ¢;. Then, the Object.Behavior
can be expressed by the following formula:

(10)

Object.Behavior = g(ObjectBehavior.Parameter)

= (dType, BehaviorSemantic, Ts) (1)

where g(-) is the function that input the “dType” that has non-empty “dValue” and output
the semantical meaning of the behavior (BehaviorSemantic), see Table 3.

Table 3. The semantics of behavior.

Valuey;- .
Elements Type Value,; Behavior Type
>0 accelerate
velocity =0 keep velocity
Attribute <0 decelerate Attribute
elements >0 turn port behavior
course =0 keep course
<0 turn starboard
>0 far away
relative distance =0 keep distance
<0 near
Relational >0 move to stern Relational
elements relative bearing =0 keep bearing behavior
<0 move to bow
topolo >0 sailing in
R —p—l %}’ -1 =0 keep topology
out = % Bin = <0 sailing out

The object.Parameter can be expressed as example 2:

Example 2. Take the scene in Figure 1 as an example. The shipA.Parameter is expressed:
shipA.Parameter = {(velocity,10,t;_1), (velocity,15,t;)} (12)
according to Equation (11), the behavior of ship A can be expressed as:

shipA.Behavior = g(f(shipA.Parameter))

= {(dvelocity, “accelerate”, [t; 1,t;])} (13)

Equation (13) means that the ship A is accelerated from the time t;_q to t;.

4.2. Formal Expression of Ship Behavior

Since the machines can only understand characterized, formulaic, and structured
knowledge, it is necessary to express the knowledge of ship behavior in the way machines
can “read”, and such process is named as “formal expression”. Thus, the definition of
formal expression of ship behavior is shown as Definition 7.

Definition 7. Formal expression of ship behavior is a formulaic and structured expression of ship
behavior using methods, such as functions and sets.

14
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4.2.1. Attribute Behavior

According to Definition 5, attribute behavior is the change of the attribute elements,
which include the changes of ship’s position, velocity, course, and signal, etc. Some typical
attribute behaviors are shown as follows:

- The change of velocity attribute implies the acceleration or deceleration attribute behavior;

- The change of course attribute can be divided into turning left and right steering
attribute behavior;

- The change of signal attribute behavior refers to the signal number, color, and shape
that will be changed in time scales

Based on Equation (11), the attribute behavior can be formulated as:
Object.Behavior A" Vt¢ — o( f(Object. Parametertributey) (14)

Therefore, it is necessary to input multiple attribute element values at different times
for the f(-) function, and Object.Parameter™" "¢ can be formally expressed as:

Object.Parameterribute — {(dTypet/.,dValuetj,tj)}, (jeNT) (15)

where Object. Parameter™!"?t represents the smallest unit describing the attribute elements

of the specific ship object, “Type” represents the type of attribute elements or relational
elements of the specific ship object; “Value” represents the value of the “Type”, t represents
the moment when the “Type” has the “Value”.

4.2.2. Relational Behavior

In COLREG:sS, the relational behavior (e.g., variable relative distance and bearing) of
ship objects are mainly used to determine the criteria of certain scenes and ships obligations.
Some typical relational behaviors are shown as follows:

1. The change of relative distance relation implies the “near” or “far away” relation behavior;
2. The change of relative bearing relation can be divided into the angle of bearing turning
smaller and the angle of bearing turning bigger;

Based on Equation (12), the relational behavior can be formulated as:
Object.BehaviorRelation — o( f([Objecty, Objectz} ParameterRelationy) (16)

It is necessary to input multiple relation element values at different times for the f(-)

function, the Object.Parameter®°™i°" can be formally expressed as:

[Objecty, Object).ParameterRaton = {(dTypey,, dValuey,, ty)}, (k € NT) (17)

where [Object;, Object;] ParameterRelation represents the smallest unit describing the relational

elements of the specific ship object, “Type” represents the type of relational elements of the
specific ship object; “Value” represents the value of the “Type”, t represents the moment
when the “Type” has the “Value”.

5. Case Analysis

In order to demonstrate the proposed models, Rule 9 (the Narrow Channel clause)
from COLREG:sS is introduced (the content of Rule 9 is shown in the Table A1), and the
ontological behavior model based on Rule 9 is used. The Narrow Channel clause (Rule 9)
addresses the promoting or non-promoting behavior when the ship object (e.g., Ospip_in)
enters, leaves, and navigates in a narrow channel.

5.1. Ontological Expression of Ship Object Based on Rule 9

By analyzing the text information from Rule 9, there are two types of objects, namely
the ship object and the waterway object, specifically, sailboats, ships less than 20 m in
length, vessels engaged in fishing, narrow channel, etc., that are shown in Table 4.
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Table 4. Objects under the Narrow Channel clause.

Object Meaning Object Meaning
Ship A set of ships Ship;, A set of ships in the narrow channel
NC Narrow channel Ship <20m A set of ships which length less than 20 m
Shipsaiting Sailboat Shibfishing Engaged in fishing boats

For the ship object, the attribute elements contain static attributes and dynamic at-
tributes, which are listed in Table 5.

Table 5. Attribute elements between water traffic objects in the Narrow Channel clause.

Attribute Elements

Object (Object.parameterAtiribute) Meaning
(Name_Ship,h,t;) “Ship’s name is “h” at t;”
Static (MMSLit;) “Ship call sign is “i” at t;”
attribute (Size,j,t;) “The value of ship size is “j” at t;”
(Type_ship,k,t;) “The value of ship type is “k” at t;”
Ship (Location,a,t;) “Ship’s location is “a” at t;”
Dynamic (Velocity,b,t;) ”“Ship’? Velocity.is””lf’” at t}-,"
b (Course,c,t;) Ship’s course is “c” at t;
attribute (Draft,d t;) “Ship’s draft is “d” at t;”
(Sound,e,t;) “Ship’s sound is “e” at t;”
(Name_NC,Lt;) “The value of Narrow channel name is “I” at ¢;”
Narrow Static (Boundry_NC,m,t;) “The value of boundary position of the narrow channel is “m” at t;”
Channel attribute (Width_NC,n,t;) “The value of navigable water width of the narrow channel is “n” at t;”
. “The value of the center position of each water depth area of the
(NO) (Location_NC,o,t;) - ”
narrow channel is “0” at f;
Dynamic (Visibility,f,t;) “Visibility in narrow channel is “f” at t;”
attribute (Flow velocity,g,t;) “Flow velocity in narrow channel is “g” at t;”

—_

The static attributes include ship’s type, call sign, size, etc.
2. The dynamic attributes include some time-varying attributes, such as position, veloc-
ity, course, draft, sound signal, etc.

For the waterway object, the attribute elements also include static attributes and
dynamic attributes, which are shown in Table 5.

1.  The static attributes of narrow water channels are the name of the narrow water
channel, the center position of each water depth; the width of the navigable water
area; the boundary information of the narrow water channel.

2. The dynamic attributes of narrow water channels are the flow velocity, flow direction,
and visibility of narrow water channels.

According to Section 3.2.2, the relational elements among these objects (ships and the
waterway) can be analyzed from the following three aspects: time, space, and semantic.
Table 6 lists different objects, the relationships between objects, and the semantic expressions
of the relationships.

16



J. Mar. Sci. Eng. 2022, 10, 203

Table 6. Relational elements of objects in the Narrow Channel clause.

Relational Elements

Objects (Object.parameterRelation) Meaning
(Time.Before,1,t;) “Before the ship enters the narrow channel”
. . (Time.After,—1,t;) “ After the ship enters the narrow channel”
p
Time relational (Time.Between,2, [£: £, 1]) “The time period during which the ship is sailing in the
’ oo irtiel narrow channel”
(Topology.Separation,—1,t;) “The ship is outside the narrow channel”
[Ship, NC] Spatial (Topology.Inclusion,1,t;) “The ship is in the narrow channel”
P topological (Topology.Inclusion giarpoard,12,t;) “The ship is in the narrow channel on its starboard side”
relation (Topology Inclusion 13.4) “The ship is driving in the waters of the elbow of the
poLogy. _elbows L9/t narrow channel”
5 i relafi (Semantic.Avoid anchorings 1/t “Ships avoid anchoring in the narrow channel”
emantic relation —
(Semantic. Avoid _¢yossring,1.;) “Ships avoid crossing narrow channel”
Spatial (Relative bearing,a,t;) “The bearing relation between ship A and ship B”
relation (Relative distance,b,t;) “The distance relation between ship A and ship B”
[S:.zp ]?’ (Semantic.Overtaking pyy,1,t;) “Ship A attempts to overtake the port side of Ship B”
ShipB] . . . . “Ship A attempts to overtake from the starboard side of
Semantic relation  (Semantic.Overtaking sarpoard,2.ti) Ship B”
emantic.Agree Overtakine ki 1 agrees to shi overtakin
(S tic.Agree | ¢ 3/ti) “Ship B ag hip A king”

[Shipsuilingr

“Sailing boats should not impede ships that can only

(Semantic. Avoid_jypege,1,t:) navigate safely in the narrow channel”

“Ships less than 20 m in length should not impede ships

S tic. Avoid jypede 1t . .
(Semantic. Av0id_impeer1,ti) that can only navigate safely in narrow channels”

“Vessels engaged in fishing shall not impede any vessel

tic.Avoid 1,t; 279, .
(Semantic.Avoid_impede1,t:) navigating safely in the narrow channel”

Shipin]
[Shlpl.g 20m, Semantic relation
Sthin]
[Shipﬁshing/
Shlpin]
1.
2.
3.

The time relations between the ship and the narrow water channel include the time
before the ship enters the narrow water channel, after entering the narrow water
channel, and when the ship moves in the narrow water channel.

The spatial topological relationship includes the ship outside the narrow water channel
and the ship in the narrow water channel. Ships are in narrow channel elbow waters
or boundary waters, etc.

The semantic relations include ships avoiding anchoring and crossing in narrow
channels. Specific numerical values express the spatial position relationship and
spatial distance relationship between ships and ships; semantic relations include the
ship attempting to overtake another ship, the other ship agrees or suspects overtaking,
and sailboats and ships less than 20 m in length should not interfere with ships that
can only navigate safely in narrow channels. Vessels engaged in fishing shall not
hinder any ships that navigate safely in narrow channels, etc.

5.2. Formal Expression of Ship Behavior Based on Rule 9

The text information of Rule 9 addresses the attribute and relational elements of objects.

Table 7 lists the attribute elements of one ship at different moments in time. By comparing
the attribute elements at different moments, the ship’s attribute behavior is inferred, and
the attribute behavior is concluded in the last column of the table. Based on Table 7, the
machine can reason about the behavior of the ship by analyzing or comparing the values
of position, velocity, heading, and other ship attributes in a narrow channel at different
moments. Specifically, the machine can judge whether the ship has moved, accelerated,
decelerated, and turned in the period between the two moments.
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Table 7. Relational elements of objects in the Narrow Channel clause.

Obiect Attribute Elements Attribute Behavior
] (Object.ParameterAttribute) (Object.BehaviorAttribute)
{(Location, a, t;),(Location, b, t;.1)},a #b {dLocation, “move”, [ t;, t;;1]}
Ship, {(Velocity, n, t;),(Velocity, m, t;, 1)}, m <n {dVelocity, “decelerate”, [ t;, tiy1]}
n {(Velocity, n, t;),(Velocity, m, t;, 1)}, m >n {dVelocity, “accelerate”, [ t;, t;j 1]}
{(Course, ¢, t;),(Course, d, ti.1)}, c # d {dCourse, “turn course”, [ £;, ti 1]}

Table 8 lists the relational elements of one ship w.r.t. other objects (i.e., the ship and the
waterway). By comparing the relational elements at different moments, the ship’s relational
behavior is inferred, and the relational behavior is expressed semantically. Based on
Table 8, the machine can reason about the behavior of the ship by analyzing the topological
relationship, and the spatial topological behaviors including sailing in, sailing out, and
crossing can be inferred. By analyzing the spatial bearing relationship and spatial distance
relationship between ships, the pursuit and crossing behavior between ships in the narrow
channel can be inferred.

Table 8. Ship relational behaviors in the Narrow Channel clause.

Objects Relational Elements Relation Behavior
{(Topology,—1, t;), (Topology,1, tiy1) } {dTopology, “sailing in”, [ t;, t;,1]}
[Ship, NC] {(Topology,1,t;), (Topology,—1,ti41) } {dTopology, “sailing out”, [ t;, t;111}

{(Course_gyip,a,t;), (Course_ncati),
(Course_ship,a—90,ti+1),
(Course_nc4,ti1)}

{dCourse,”crossing narrow channel”,
[t tial}

If n > m and {dBearing, “keep bearing”,

[ShipA, {(Bearing,M,t;), (Bearing,M,t;, 1), [t;, tis11iN{dDistance, “near”, [t;, t;, 11},
ShipB] (Distance,n,t;), (Distance,m,t;. 1)}, then {dSemantic, “Ship A overtaking
Ship B”, [t;, tiv1]}-

5.3. Reasoning Based on the Proposed Method

Based on the above formal expression of the behavior of ships in the narrow channel
terms of COLREGs, a formal expression of ship behavior can be applied in conjunction
with AIS data and nautical chart data.

In Figure 5, we introduce a scene where two ships encountered in a narrow channel.
Ship B is navigating in the starboard channel and move towards the north; Ship A is
navigating in the port channel and move towards the south.

> Shipa Ship trajectory

C_—> ShipB Narrow channel

Figure 5. Application of formal expression of ship behavior in narrow channel scenarios.
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By analyzing the changes of the attribute elements and relational elements of ship A
and ship B at the moments of time f1,f, and t3, and expressing the attribute behavior and
relational behavior of the ships formally in this way, the machine can finally judge whether
the ship behavior complies with the COLREGs.

According to the above research on the expression of ship objects and ship behavior,
the attribute elements, relational elements of ship objects, and the ship’s attribute behavior
and relational behavior can be expressed as follows:

(a) The expression of the attribute elements of the ship A

velocity course

shipA.parameterrivute — {shipA.pammeter , shipA.parameter

[ (velocity, 10, t1), (velocity, 15, t), (velocity, 20, t3), (18)
o (course,220,t1), (course,220,t,), (course, 150, t3)

(b) The expression of the attribute elements of the ship B

velocity course

shipB.parametertrivute  — {shipB.pammeter , shipB.parameter
| (velocity,18,t1), (velocity,0,t,), (velocity,0, t3), (19)
o (course, 60, t1), (course, 60, t7), (course, 60, t3)

(c) The expression of the relational elements between ship A and ship B

[ship A, shipB].ParameterRelation ) , beari
[shipA, shipB].Parameter’®""8

[shipA, shipB].Parameter?istince }
20
(distance, 18, t1), (distance, 10, t5), (distance, 3, t3), } (20)

(bearing, 050, t1), (bearing, 030, tp), (bearing, 230, t3)

(d) The expression of the relational elements between ship A and Narrow channel

[shipA, Onc].ParameterRetation — — { [shipA, ONC].PammeterT"”OloW} (21)

= {(Topolopy, —1,t1), (Topolopy, 1, t2), (Topolopy,1,t3)}

(e) The expression of the relational elements between ship B and Narrow channel
[shipB, Onc].ParameterRelation — — {[shipB,ONC].ParameterT"’wI"W} (22)

= {(Topolopy,1,t1), (Topolopy, 1,t2), (Topolopy,1,t3)}

(f)  The expression of the attribute behavior of ship A

Attribute Attribute))

ship A.Behavior = g(f (shipA.Parameter
(dvelocity, “accelerate”, [t1, t2]),
(dvelocity, “decelerate”, [to, t3]), (23)
(dcourse, “keep course”, [t1,t2]),

(dcourse, “turn starboard”, [to, t3])

According to the changes of the velocity and course of ship A, the semantics of the ship
behaviors are expressed as “accelerate” and “keep course” from the time #; to t,, “decelerate”
and “turn starboard” from the time t, to t3. From time #, to t3, the course of ship A is
perpendicular to the total flow direction of the narrow channel, which means a spatial
topological behavior of “crossing” between ship A and the narrow channel. Therefore, it
violates the COLREGs rule that “Ships should avoid crossing narrow channel”.

(g) The expression of the attribute behavior of ship B

Attribute  _ Attribute))

<(f(shipB.Parameter
dvelocity, “decelerate”, [t1, t2]),

dvelocity, “keep velocity”, [ty, t3]), (24)
dcourse, “keep course”, [t1, t2]),

dcourse, “keep course”, [ta, t3])

shipB.Behavior

(
_ )
(
(
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According to the changes of the velocity and course of ship B, the semantics of the
ship behaviors are expressed as “decelerate” and “keep course” from the time t; to tp, “keep
velocity” and “keep course” from the time t; to t3. Ship B is “anchored” in the narrow channel
from the time t; to t3. Therefore, it violated the COLREGs stipulation that “ships should
avoid anchoring in the narrow channel”.

(h) The expression of the relational behavior of ship A and ship B

[shipA, shipB].BehaviorRelation  — o( f([ship A, shipB].ParameterRelation))
(ddistance, “near”, 1, 2]),
(ddistance, “near”, [to, t3]), (25)
(dbearing, “move to bow”, [t1, t2]),
(dbearing, “move to bow”, [t2,t3])

According to the changes of the relative distance and relative bearing between ship A
and ship B, the semantics of the ship behaviors are expressed as “near” and “move to bow”
from the time t; to tp, “far away” and “move to stern” from the time t; to t3.

(i) The expression of the relational behavior of ship A and Narrow channel

[ship A, Onc|.BehaviorRelation  — ¢(f([ship A, Onc].Parameter'oPolosy))
[ (dtopology, “sailing in”, [t1, t2]),
B { (dtopology, “keep topology”, [t2, t3]) }
According to the changes of the topology relation between ship A and the narrow
channel, the semantics of the ship behaviors are expressed as “sailing in” from the time ¢; to
ty, “keep topology” in the narrow channel from the time ¢, to t3.

(26)

() The expression of the relational behavior of ship B and Narrow channel

[shipB, Onc].BehaviorRelation  — o( f([shipB, Onc].Parametert©rolosy))
[ (dtopology, “keep topology”, [t1, t2]),
N { (dtopology, “keep topology”, [t2,t3]) }
According to the changes of the topology relation between ship B and the narrow
channel, the semantics of the ship behaviors are expressed as “keep topology” in the narrow
channel from the time #; to tp, “keep topology” in the narrow channel from the time ¢, to t3.
According to the above-mentioned expression of the attribute behavior of ship A and
ship B, and the relational behavior between ship A and ship B, ship A and the narrow channel,
and ship B and the narrow channel at the time from #; to f3. Based on these expressions, we
can clearly judge whether the ship behavior complies with COLREGs, see Table 9.

(27)

Table 9. Behavior of objects in the narrow channel.

Obiect Time Attribute Relational COLREGs-Compliant
) Behavior Behavior (Yes/No)
“accelerate”
ship A [1,42] “keep course” Yes
“decelerate”
[£2,43] “turn starboard” No
“decelerate”
ship B [1,42] “keep course” Yes
[12,43] kfep velocity = 0 No
keep course
“near”
[ship A, ship B] [1,42] “move to bow” Yes
[£2,t3] far away Yes

“mouve to stern”
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Table 9. Cont.

Obiect Time Attribute Relational COLREGs-Compliant
) Behavior Behavior (Yes/No)
. [t1,£2] “sailing in” Yes
[ship A4, Oncl [£2,t3] “keep topology = 1" Yes
. [£1,£2] “keep topology = 1" Yes
[ship B, Oncl [£2,t3] “keep topology = 1" Yes

6. Discussion

With the development of knowledge engineering, knowledge expression has been
widely explored and utilized in multiple knowledge-driven tasks, which significantly
improves their performance. In this section, we first give a summary of this research then
summarize the advantages and disadvantages of the method of this research.

6.1. Discussion on Case Study

In this paper, we provide a broad overview of currently available techniques, including
RDE, function mapping, and set expression methods. The proposed method imitates human
understanding ability, which makes it possible to incorporate prior knowledge to assist
machine recognizing.

In Section 3, we abstractly express the ship objects in COLREGs as attribute elements
and relationship elements, and in Section 4, we express the dynamic changes of the ship
object’s attribute elements and relationship elements over time as ship behavior. The
expression method through RDEF, function and collection is similar to human thinking,
which is more in line with our COLREGs ship behavior ontology knowledge modeling.
Based on the ship behavior ontology method in Sections 3 and 4, we use COLREGs (Rule 9)
for example verification in Section 5, and the results show that our method can formally
express the ship behavior of COLREGs.

However, this research is only the initial work for realizing ship behavior knowledge
reasoning to the machine. Based on this research, in the future, the ship behavior knowledge
graph, COLREGs knowledge graph, and the knowledge graph of water traffic scene can
be further constructed to realize the autonomous recognition of water traffic scenes, judge
water Traffic situation, reason about the violations of COLREGs by ships, and support
decision making of MASS.

6.2. Advantages and Disadvantages of the Proposed Method
(1) Advantages of this method

In this paper, the ship behavior, based on COLREGs, is modeled as the change of entity
elements in time and space scales by using RDF, function mapping, and set expression
methods. The advantages of this method are as follows: first, it can capture hidden semantic
information in COLREGsS; second, it can improve the accuracy of knowledge recognizing
significantly; finally, it can simulate human recognizing ability, which makes it possible to
incorporate prior knowledge to assist in recognizing.

(2) Disadvantages of this method

On the basis of Sections 3-5, we realize the formal expression of the ship behavior
ontology model in COLREGs, but the ontology model still has some deficiencies. The
knowledge model of ship behavior established in this paper is still in the enlightenment
stage in the maritime industry, which has not yet formed a unified industry standard. Its
disadvantage is that it has not solved a series of problems such as dependence on domain
experts and poor generalization ability. On the one hand, this method requires manual
modeling of ship behavior knowledge, and its modeling efficiency is low. On the other
hand, semantic calculation and reasoning methods are still missing.
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6.3. Future Work

The formal expression of ship behavior is the basis for developing autonomous nav-
igation systems that support the scene cognition, the intention inference, and the rule-
compliant actions of the systems. This paper studies the formal expression of ship behavior
based on COLREGs. However, there is still a certain distance for the machine to truly
realize the autonomous recognition of the navigation scene, the autonomous reasoning of
the ship’s intention, and the autonomous judgment of the ship’s behavior in compliance
with the COLREGs rules. Based on the research in this paper, we give several directions for
future research, as follows:

(1) Constructing the ontology of ship behavior

Ontology plays an important role in enriching the semantic information of things
and realizing knowledge sharing. Based on the formal expression of ship objects and
ship behavior in this paper, the ship behavior ontology is further constructed to form a
knowledge base with semantic information, and the custom SWRL rules are input into the
ontology inference engine to realize the machine’s autonomous cognition of ship behavior.

(2) Constructing the ontology of traffic scene

COLREGs are the norms of ship behavior in different traffic scenarios. According to
different traffic scenarios, ships should take corresponding behaviors, the traffic scene ontol-
ogy is constructed based on COLREGs. The custom SWRL rules are input into the ontology
inference engine to realize the machine’s autonomous cognition of traffic scenarios.

(8) Constructing the knowledge graph of ship behavior

Based on the formal expression of ship behavior in this article, and the ship behavior
ontology and traffic scene ontology constructed in future research, the knowledge graph of
ship behavior can be further constructed in the future. Then, the machine can be queried,
and it can be inferred that the actions whether the acctions are COLREGs-compliant or not
in different scenarios.

7. Conclusions

For developing rule-compliant maritime autonomous surface ships (MASS), under-
standing the Convention on the International Regulation for the preventing Collision at Sea
(COLREGs) is the foundation for the machine. The existing expert systems for MASS did
not teach the machine to understand the COLREGs rules but list condition-and-reaction
rules for endless exceptions. To handle this issue, this paper proposed an ontological
method to model the ship behavior and try to build the first step to help the machine to
interpret the COLREGs in a manner of humans.

The attributes of the ship are categorized into “attribute elements” and “relational
elements”, and the ship behaviors then are defined as the changes on “attribute elements”
(i-e., attribute behavior) and “relational elements” (i.e., relational behavior). Based on these
definitions, the attribute elements, relational elements, attribute behavior, and relational
behavior are formally expressed by using the Resource Description Framework (RDEF),
function mapping, and set expression methods. By introducing Rule 9 from COLREGs, this
paper demonstrates the performance of the proposed method, which has laid a theoretical
foundation for structural modeling and semantic understanding of ship behavior.

The proposed method addressed a novel way to develop the rule-compliant machine,
which is promising in the development of MASS. This paper is the first step for the rule-
compliant MASS, and the proposed model is still at the conceptual and logical levels. Thus,
it is necessary to construct the ship behavior ontology further, construct the knowledge
model driven by the ship behavior, and use it in actual cases in the future.
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Appendix A

Table A1. Narrow Channel Provisions Text Information.

Rule 9
Narrow Channel
(a) A vessel proceeding along the course of a narrow channel or fairway shall keep as near to the
outer limit of the channel or fairway which lies on her starboard side as is safe and practicable.

(b) A vessel of less than 20 m in length or a sailing vessel shall not impede the passage of a vessel

which can safely navigate only within a narrow channel or fairway.

(c) A vessel engaged in fishing shall not impede the passage of any other vessel navigating within

a narrow channel or fairway.

(d) A vessel shall not cross a narrow channel or fairway if such crossing impedes the passage of a

vessel which can safely navigate only within such channel or fairway. The latter vessel may use

the sound signal prescribed in Rule 34(d) if in doubt as to the intention of the crossing vessel.

(@)

(i) Inanarrow channel or fairway when overtaking can take place only if the vessel to be
overtaken has to take action to permit safe passing, the vessel intending to overtake shall
indicate her intention by sounding the appropriate signal prescribed in Rule 34(c)(i). The
vessel to be overtaken shall, if in agreement, sound the appropriate signal prescribed in Rule
34(c)(ii) and take steps to permit safe passing. If in doubt she may sound the signals
prescribed in Rule 34(d).

(i) This Rule does not relieve the overtaking vessel of her obligation under Rule 13.

(f) A vessel nearing a bend or an area of a narrow channel or fairway where other vessels may be

obscured by an intervening obstruction shall navigate with particular alertness and caution and

shall sound the appropriate signal prescribed in Rule 34(e).

(g) Any vessel shall, if the circumstances of the case admit, avoid anchoring in a narrow channel.
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Abstract: Ship behavior is the semantic expression of corresponding trajectory in spatial-temporal
space. The intelligent identification of ship behavior is critical for safety supervision in the waterborne
transport. In particular, the complicated behavior reflects the long-term intentions of a ship, but it is
challenging to recognize it automatically for computers without a proper understanding. For this
purpose, this study provides a method to model the behavior for computers from the perspective of
knowledge modeling that is explainable. Based on our previous work, a semantic model for ship
behavior representation is given considering the multi-scale features of ship behavior in cognitive
space. Firstly, the multi-scale features of ship behavior are analyzed in spatial-temporal dimension
and semantic dimension individually. Then, a method for multi-scale behaviors modeling from the
perspective of semantics is determined, which divides the behavior scale into four sub-scales in
cognitive space, considering spatial and temporal dimensions: action, activity, process, and event.
Furthermore, an ontology model is introduced to construct the multi-scale semantic model for ship
behavior, where behaviors with different semantic scales are expressed using the functions of ontology
from a microscopic perspective to a macroscopic perspective consecutively. To validate the model, a
case study is conducted in which ship behavior with different scales occurred in port water areas.
Typical behaviors, which include leveraging the axioms expression and semantic web rule language
(SWRL) of the ontology, are then deduced using a reasoner, such as Pellet. The results show that
the model is reasonable and feasible to represent multi-scale ship behavior in various scenarios and
provides the potential to construct a smart supervision network for maritime authorities.

Keywords: semantic modeling; ship behavior; cognitive space; multi-scale analysis; ontology

1. Introduction

There is a high traffic density in some busy waterways, especially in port areas, where
some severe situations have occurred. It increases the supervision difficulty to vessels
for maritime authorities, such as the Maritime Safety Committee (MSC) and services.
Specifically, the supervision to vessels includes static information inquiry, tracking of one or
more vessels, ship behavior recognition, etc. The fact facilitates the autonomous supervision
to vessels, especially whose behaviors in congestion areas are riskier than in normal areas.
The rapid development of Maritime Autonomous Ships (MASS) in recent years has also
placed a demand on the autonomous recognition and semantic transformation of ship
behavior, which MASS should ideally satisfy to improve the perception of surrounding
ship behavior. As a result, more and more researchers are paying attention to the automatic
recognition and semantic enrichment of ship behavior.
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Ship behavior is the representation of the trajectories of ships enriched with various
types of semantic attributes. It is challenging to recognize ship behavior without any
instructions from the human aspect for computers. In particular, complicated behaviors
comprise a set of simple behaviors enriched with geographic attributes, temporal features,
motion characteristics, etc. For example, the behavior of anchoring implies the place where
the behavior occurred (anchorage), the time duration of the behavior (long-term), and
the motion state (stationary). These behaviors are commonly used in realistic scenarios
currently and require a deeper study. It is challenging to clarify all of the behaviors by
computers without a proper model in which the semantic features of behaviors can be
considered in depth. By contrast, a human expert can quickly and precisely understand
exactly ship behavior. This is due to the excellent capability of processing information
collected from multiple sources in a cognitive space for humans. Such a capability is what
is required for the intelligent computers of MSC or MASS.

The semantic modeling of behaviors in cognitive space is a process of semantic reflec-
tion of the movement of physical objects, which enables computers to understand behaviors
in the same way that humans think. Hence, it is a feasible way to empower a computer to be
capable of recognizing behaviors enriched with rich semantics. However, there are a wide
variety of behaviors with different semantics, as stated above. It is impractical to program
each behavior manually. Thus, a model to extract and collate the semantic characteristics of
ship behavior is desired to be provided to reach the final goal of semantic modeling.

This work is based on the previous work [1,2], focusing on modeling and reasoning
of semantic ship behavior with different scales in multiple dimensions. We propose a
semantic model to extract and recognize multi-scale behaviors automatically in cognitive
space based on historical automatic identification system (AIS) data. In this study, the
features of ship behavior that represent corresponding trajectories are analyzed from the
perspective of spatial-temporal and semantic, respectively. Furthermore, a multi-scale
semantic model is given to depict ship behavior in cognitive space, in which behaviors
with different spatial scales are sorted out and a formalized cognitive model of behavior is
presented. Moreover, by means of the ontology modeling method, multi-scale behaviors
are explored and expressed further. Behaviors with different semantic scales are presented,
leveraging the functions of ontology. Finally, a case study of a ship approaching into and
leaving a port is given to show how the model works.

The remainder of the paper is structured as follows. In Section 2, an overview of
related work is given. The analysis of the multi-dimensional feature is in Section 3. The
model of multi-scale behaviors is proposed in Section 4. Section 5 constructs an ontology
model for multi-scale semantic behaviors. Section 6 presents a case study to validate the
feasibility of the semantic model. In Section 7, the results and discussion of the experiment
are presented. Finally, the conclusion is given in Section 8.

2. Related Work
2.1. Cognitive Modeling

There is extensive literature on the topic of cognition modeling for human behav-
iors, which are influential in ship behavior modeling in cognitive space. A number of
studies have examined the construction method of knowledge base [3-6], and knowledge
reasoning [7] with ontology [8-10], which discusses cognitive modeling and knowledge
reasoning for human activities. [4,6,8] constructed the ontology based on the relationships
between humans and then environment to transform human behaviors from the data
layer to the semantic level, which realized the recognition of human behavior intelligently.
These studies are beneficial to provide some thoughts about how to construct the cognitive
framework of ship behavior.

Currently, there are few works that focus on the research of semantic recognition of
ship behavior. [9] designed a method to identify the ship events using AIS data that records
relevant information about ship movement, such as position, speed, course, etc. [10] tries
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to deduce the complicated behaviors based on the method proposed in [9], providing the
foundation of cognition modeling of complicated ship behavior.

2.2. Semantic Expressions of Trajectory

To address the problem of semantic behaviors recognition for computers, from the
perspective of humans, some recent studies centered on semantic modeling from a human
perspective have proposed semantic computational processing methods [11], using the
same approach that humans use to perform semantic recognition of behaviors. Refs. [12,13]
proposed a semantic computing frame to compute the trajectory generated by moving
objects, such as vehicles, humans, and animals. Based on these efforts, some studies
on ship semantic behaviors have also been carried out. A semantic model of ship be-
havior was proposed in [14], which takes into account the uncertainty of the occurring
behavior; [15] mined the pattern of ship trajectories by means of semantic annotation and
possibility modeling; and [1] constructed the ontology model of ship behavior, consider-
ing the temporal relationships between each other. In addition, some projects work on
the semantic computing of trajectories in the maritime domain. An example of this is
datAcron [10,16,17], a project focusing on the representation of semantic trajectories of
aviation and maritime conceptualizations.

2.3. Ship Behavior Modeling

In order to model ship behavior explicitly, many studies have been focusing on
behavior modeling from trajectory to behavior. There are two kinds of methods used to
analyze it: probabilistic statistics and motion characteristics extracting and modeling. The
former refers to the pattern mining of ship behavior by means of statistics analysis [18-20].
Another approach based on motion characteristics analysis accomplishes this by analyzing
the relationship between the characteristics and behaviors and then modeling. Ref. [21]
considered the motion characteristics of ship trajectories to construct the model. Ref. [14]
proposed a model for ship behavior based the ship basic behaviors, such as turning to port
side, turning to starboard side, and some semantic behavior occurred in the environment.

Few studies on ship behavior undertake basic behavior modeling and prediction,
considering the structural and temporal features of complicated behaviors, which are
necessary for computers to satisfy the requirements to ascertain a desirable understanding
of behaviors. Ref. [2] proposed a framework for ship behavior from a cognitive and semantic
modeling perspective and constructed a semantic model to represent behavior from data to
trajectory to complex behavior, considering its motion data and environmental attributes.

2.4. Multi-Scale Modeling of Trajectory

There are extensive studies focusing on the topic of multi-scale characteristics analysis
in geography [22,23], which have explored in detail about the multi-scale characteristics of
spatial-temporal objects [24-26]. The trajectory, as the representation of the spatial-temporal
characteristics of physical objects, exhibits multi-scale characteristics. Previous studies
provide a benchmark of multi-scale feature analysis for spatial objects and a solid basis for
building a cognitive framework for modeling multi-scale ship behavior. Ref. [27] discussed
the multi-scale representation of battlefield situation. Ref. [28] proposed a multi-level
model to explore the spatial-temporal patterns of crime in different spatial scales of area.
They provide guidance for the construction of cognitive models of ship behavior.

It is necessary to propose a systematic approach to analyze complicated behaviors
by comprehensively considering its various characteristics, such as motion characteristics,
topological relationships with environmental entities, etc. In general, the modeling of
complicated behaviors needs to be considered in different dimensions.

As the semantic representation of ship trajectory, the multi-scale features of ship
trajectory can form the multi-scale features of behaviors in three dimensions, such as time,
space, and semantics. However, few studies have considered the semantic multi-scale
features of ship behavior that are crucial for behavior recognition. The relationship of
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ship behavior between different levels and between different scales of the same level has
not been constructed properly, which limits the development of the modular computing
capability of the autonomous system for the safety supervision of behavior.

To address the problem, Firstly, we characterize ship behavior from the scale of spatial-
temporal and analyze the shortcomings of modeling ship behavior in this dimension.

Secondly, we analyze the way ship managers with different cognitive mindsets per-
ceive ship behavior and propose a cognitive model for ship behavior from the semantic
dimension, dividing ship behavior into four layers of action, activity, process, and event to
describe ship behavior at different spatial-temporal and semantic scales. Finally, the cogni-
tive ontology of ship behavior is constructed, taking the typical behavior of ships in port
areas as an example for ontological modeling and expression, and exploring the mechanism
of multi-scale semantic expression and reasoning of ship behavior in port waters.

3. Multi-Dimensional Characterization of Ship Behavior in Cognitive Space

A ship generates a series of trajectory segments driven by the intention of the seafarer.
That means that the semantics implied by the trajectory reflects the seafarer intention to
navigate. From simple behaviors, such as accelerating and going straight, to advanced
behaviors are the semantics implied by a ship’s trajectory, such as sailing along the fairway,
berthing, etc. In other words, the behavior can be represented as the semantic reflection
implied by the trajectories produced by physical objects in cognitive space where human
operators process information on their own temporal and logical terms. That is, ship
behavior has additional semantic features in addition to the spatial-temporal motion
characteristics of ship trajectories. The semantics implied by trajectories are described
differently within different spatial-temporal dimensions.

3.1. Previous Work for Semantic Modeling of Ship Behavior

For semantic modeling of ship behavior, we have explored in our previous studies [2],
where a framework of semantic behavior generation process from trajectories enriched
with motion semantics and topological environment semantics was given. In this paper,
we proposed several concepts, such as atomic trajectory, atomic behavior, topological
behavior, as well as traffic behavior, representing the semantic behavior with corresponding
semantic features.

Specifically, we first divide the trajectory, generated from AIS data, into atomic tra-
jectories, as trajectory units on the basis of our classification of atomic behavior. Atomic
behavior represents the behavior of maintaining a constant motion state of both speed and
course simultaneously, as shown in Figure 1. That means the trajectory was segmented
according to its motion status instead of sample frequency or spatial grid division with
same size, which is beneficial to reduce its computation complexity. Topological semantic
enrichment is based on the atomic trajectory.

Keep speed
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Figure 1. Classification of ship atomic behaviors adapted with permission from Ref. [2].
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Following this, in order to enrich the semantics of geographical properties for trajectory
unit, we introduced 15 spatial relations for the calculation of two objects involving point,
line, and surface in maritime domain by adapting Dimensionally Extended 9-Intersection
Model (DE-9IM) that is proposed for describing spatial relations of two regions.
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Finally, we presented how traffic behavior, as semantic behavior unit of ships, includ-
ing motion status and topological semantics, are formed through atomic trajectory, atomic
behavior, topological behavior, and environment. Traffic behavior Tj can be represented as
Formula (1) performing as a sentence, where T} represents atomic trajectory as the subject,

T]?’ represents topological behavior as the predicate, 7, represents the environment as the

~A~ A

object, and [B?] refers to the atomic behavior as the gerund of the sentence, respectively.

={zntn 5 nie) 0

This model provides a way to reach the goal of semantic unit formation, supporting
further high-level semantic modeling for complicated behaviors, which can be represented
with a set of traffic behaviors. In addition, we explored the temporal relations preliminarily
within complicated behaviors in [1], where we expected to depict complicated behaviors
through combining simple behaviors.

Previous works present how to enrich semantics from different respects to trajectories,
but there is a lack of extensive analysis on complicated behaviors, especially the relation-
ships between different dimensions. On the basis of these work, we try to propose an
extended semantic model for complicated behaviors combining human cognitive habits.

3.2. Multi-Dimensional Feature Analysis

Based on previous research, we expect to investigate how complicated behaviors can
be represented in terms of basic semantic behaviors. Considering the intrinsic spatial-
temporal and semantic scale features [29] of complex behaviors, we wish to propose a
framework for the analysis of complex behaviors that considers spatial, temporal, and
semantic dimensions. Thus, we analyze behavior in three dimensions.

In terms of the spatial-temporal dimension, ship trajectories as a form of spatial-
temporal representation generated by physical objects, the determination of the spatial-
temporal scale depends on the frequency with which the trajectories are sampled [30].
Therefore, the sampling frequency and granularity of ship trajectories must be determined
when analyzing and modeling ship trajectories at multiple scales purely from the spatial-
temporal dimension.

However, it is challenging to provide a standard method to determine the scale of the
spatial-temporal dimension. Because people with different roles have different concerns
about ship behavior, that is not appropriate. Therefore, the modeling of multi-scale features
of the track also needs to be reworked around different needs for attention, which presents
a higher standard and challenge for the accurate sampling of ship tracks. For example,
mariners are more concerned with short-term vessel behavior, such as analyzing whether
the target vessel around her is performing the maneuvers specified in COLREG. In contrast,
VTS officers are more inclined to obtain a longer range or time interval of behavior, such
as analyzing whether vessels within their jurisdiction are engaging in illegal activities. In
other words, different people have different scales of attention to the behavior of vessels,
involving differences in scale not only in the spatial-temporal dimension but also in the
semantic dimension.

Therefore, the analysis of ship behavior should combine the spatial-temporal dimen-
sion with the semantic dimension. From a semantic point of view, when modeling ship
behavior at multiple scales, we need to describe the behavior semantically in the spatial-
temporal dimension at the same time. They need to obtain a good understanding of
behavior by dividing the semantic space into several appropriate semantic scales, which
are closer to the human habit of perceiving behavior.

4. Multi-Scale Cognitive Modeling of Ship Behavior from Semantic Dimension

Spatial-temporal data are prevalent with multi-level, multi-grain, and multi-resolution
characteristics, and the analysis and extraction of these features is a prerequisite for their
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awareness and modeling. In addition, the model construction based on these features
is also in line with the human cognitive habits of multi-dimensional and multi-features
of spatial-temporal data. Therefore, for the spatial-temporal trajectories corresponding
to ship behavior, we need to consider these multidimensional features mentioned above
and consider the intrinsic relationship of each dimension and the relationship between
them. In view of the cognitive habits of people with different roles in the maritime domain
for ship behavior, ship behavior can be analyzed and modeled from microscopic scale to
macroscopic scale.

4.1. Formalized Cognitive Expression of Ship Behavior

Behavioral cognition is the result of multifaceted description and expression of ship
trajectory. Based on the analysis of cognitive elements, the cognitive expression of ship
behavior, Cog, should be considered as a cognitive set, including four elements: who, what,
when, and where, which can be expressed as Equation (2).

Cog = {ob,t,p} 2

where o denotes the object where the behavior occurs; b is the behavior that occurs at the
object; t represents the time, including instant and interval; and p is the place where the
behavior occurs.

Considering the multi-scale characteristics of spatial-temporal trajectories, this paper
divides the cognition of ship behavior into four layers in the cognitive space: action,
activity, process, and event, according to the expression habit of ship behavior in the
semantic dimension. The division of behavior cognition is based on two aspects, including
motion features and the topological features.

4.2. Multi-Scale Division of Ship Behavior in Cognitive Space
4.2.1. Action

Considering the practical needs of users for ship behavior, when describing and
calculating the microscopic behavior of a ship, this paper avoids the situation that causes
the redundancy of successive division of equal time interval or equal distance interval
trajectories and the complexity of calculating topological relations. In this paper, from
the perspective of behavior semantics, the concept of action is introduced to represent the
cognition results of the micro-semantic behavior features, which is to represent the behavior
that the ship motion characteristic, involving both speed and course, remains unchanged
during the current behavior stage, such as keep course and deceleration (KC_DE), turn left
and deceleration (TL_DE), turn right and deceleration (TR_DE), etc. Action behavior is a
behavior to characterize the basic motion characteristics of the trajectory without additional
semantic information related to environment. The behavior enriched with rich semantic
can be formed based the action behavior.

4.2.2. Activity

Activity is the cognition results of the behavior represented by the trajectory of action
behavior, enriched with topological and geographical semantics, which represents the
behavior based on the topological interaction and geographical semantic enrichment. The
behavior of the activity occurs on the trajectory of action, which interacts with the entities
in the environment, such as anchorage, berth, etc., which is the basic semantic unit of ship
behavior, and complex semantic behavior can be expressed by the combination of a set of
consecutive activity behaviors.

The behavior difference between the activity and the action is that the action only
reflects the semantic of motion characteristics of the trajectory and do not include the
semantics of the interaction between the trajectory and its surroundings. In contrast, the
activity has more semantics than the action but also involves the semantics of spatial
topological calculations and geographic semantic enrichment performed by the action
trajectory with environmental entities.
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4.2.3. Process

A process represents the behavior of a ship in which the spatial topological relationship
between its trajectory and environmental entities remains constant while keeping its speed
or course unchanged. That is, when the characteristics of the speed or course of ships
change or the spatial topological relationship between its trajectory and environmental
entities changes, the current process behavior turns to the next process behavior.

In contrast to activity behaviors, process behaviors are the extension of activity be-
haviors, which describe the interaction behaviors that occur between trajectories with
constant speed and constant course and entities in geographic space, respectively. For
example, the behavior of anchoring preparing can be regarded as a process behavior, which
is usually accompanied by a series of action behaviors of deceleration, while the trajectory
of this behavior keeps the same spatial topology relationship with the geographic entity
of anchorage during this process until the behavior of deceleration is stopped, at which
point the action behavior of the ship changes, which also means that the activity of the ship
changes. Therefore, the process behavior of anchoring preparing indicates that a process
behavior occurs for the ship, and its connection with the next process behavior is made
through the activity behavior of beginning to anchor, and the moment when the act of
beginning to anchor begins is the moment when the behavior of anchoring preparing ends
and the moment when the next process behavior begins.

Similarly, when the spatial topological relationship between the ship trajectory and the
geographic entity changes, it means that the ship experiences an activity behavior, which
indicates the beginning of the next process behavior.

A process behavior tends to have a larger temporal and spatial scope than an activity
behavior, and it represents that the ship is executing a certain task, such as the process
behavior of anchoring represents that a ship is anchoring at anchor, and the activity of
anchoring does not change during this period. In contrast to the activity behavior, the
process behavior does not consider the change or not of the combined motion characteristics
of speed and course, and its focus is on the change of spatial and topological state between
the trajectory that remains constant either on the speed or the course and the surrounding
environment.

The behavior of activity, which can be considered as one of the components of the
behavior of process, is a trigger element condition between different processes and serves
to trigger the end of the previous process and the beginning of the next one.

4.2.4. Event

Event behaviors, which represent the overall behavior of the vessel occurring in the
current observation view or macroscopic behavior relative to the current reference target,
describe the logical and temporal relationships between the behaviors. For example, the
entire behavior of berthing and unberthing can be considered as one event, including the
three process behaviors of decelerating for preparing to berth, berthing, and accelerating for
unberthing. Event behavior can also denote the behavior that occurs in a larger temporal
and spatial context, which is extensible. For example, the behavior of a ship sailing from one
port to another can be regarded as a whole event containing several sub-events, including
the departure event from port A, several subsequent events, and the arrival event at port B.

The event behavior corresponding to the macro behavior is a semantic aggregation of
activities and processes or, alternatively, can represent a semantic aggregation of multiple
events with related relationships. As can be seen from Figure 2, the goal of transforming
from trajectories to multi-scale spatial-temporal semantic behaviors can be achieved and
multi-dimensional modeling and representation of behaviors is realized.
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Figure 2. Representation process and construction model of ship multi-dimensional behavior.

5. Ontology Modeling for Ship Behavior

Based on the analysis of multi-scale behavior, this paper proposes an ontology model
for ship semantic behavior modeling in a cognitive manner. The model introduces several
concepts in cognition to model the cognitive framework of ship behavior, involving ship,
behavior, time, and place, which supports a systematic interpretation of ship behavior
by a computer, as shown in Figure 3. Figure 4 presents the ontology of ship behavior
created according to our cognitive framework of ship behavior. Figures 4a, 4b and 4c
show the class, object properties, and data properties interfaces in the ontology software
Protégé, respectively.
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Figure 3. Ontology model of cognition for ship behavior.
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Figure 4. Display of cognition ontology of ship behavior in port. (a) Classes; (b) Object properties;

(c) Data properties.

5.1. Classes
e  Ship

(c) Data properties

The ship is the generator of trajectory and the occurrence object of behavior. Therefore,
it is necessary to identify the object of trajectory in behavior cognition. As a unique code
for the ship, the number of the Maritime Mobile Service Identity (MMSI) can be used to
determine the object that generates the behavior.

e  Behavior

The class of behavior is one of core classes of the cognitive ontology. Based on previ-
ous work [2], ship semantic behaviors are divided into four categories, including atomic
behaviors, topological behaviors, traffic behaviors, and advanced semantic behaviors. For a
better understanding, The class of atomic behavior proposed in [2] are extended to refined
divisions, including first-order and second-order atomic behaviors. The second-order

33



J. Mar. Sci. Eng. 2022, 10, 1347

atomic behavior corresponds to action, including 10 categories, while the first-order atomic
behavior corresponds to the process where either the speed or the course keeps ships
maintaining constant, as can be seen in Figure 2.

As the unit of semantic behavior, the traffic behavior is the basic element to describe
advanced semantic behaviors, corresponding to the behavior of activity.

The advanced semantic behavior refers to high-level behaviors, such as the behavior
of process and event, that can be formed combining multiple consecutive sort of traffic
behaviors in specific application scenarios.

° Environment

The class of environment represents the set of surrounding spatial objects existing in
the form of physical or virtual entities, such as anchorages, channels, control areas, and
infrastructure.

° Time

In order to represent the temporal relationship of behaviors, we introduce an existed
time ontology to our work, which is available online: http:/ /www.w3.0rg/2006/time#
(accessed on 27 September 2020), that includes both instant and interval that can fulfill the
temporal functions, which is beneficial to describe complex behaviors that are temporal
and logical. Specifically, the class of instant is to describe the transient state of behavior,
and time interval represents the time quantum, which lasts for a certain period, including
start time and end time to express the duration of behaviors.

According to the theory of interval algebra proposed by Allen [31], basic time rela-
tionship includes before, after, and equal. Furthermore, 10 types of relationships between
instant and interval can be depicted with 3 kinds of basic relationships. It is the temporal
and logic features of ship behavior that can be depicted in this way.

Besides the abovementioned, we connect them with their relationships to link this
network. There are three kinds of arrows for that, including solid arrow, dashed arrow,
and solid arrow with empty end. As for solid arrow, it refers to the relationship between
two classes either same classes or different classes. For example, there is the relationship
of “occur object” that has the domain—"traffic behavior” and the range—"ship”. For the
second one, it means what the own data properties the entity have. An example can be
taken to illustrate that the dashed arrow pointing to “Atomic Trajectory” from “Position”
represents that the former one has the data of the latter one. The final one means there is
the relationship of parent—subclass relationship, such as the arrows of the three behaviors
in the top yellow round box pointing to “Advanced Semantic Behavior”.

Now that we have extracted the different classes, the next step is to connect them to
form knowledge graph. For that reason, we then need to add the relationship properties
with each other to them.

5.2. Property-Constrained Axiom

e The class of Atomic Behavior

Atomic behavior can be recognized and annotated by pre-processing and calculation of
trajectories. Therefore, we import atomic behavior as instances of ship behavior directly into
the ontology via its interface. On this basis, first-order atomic behavior can be expressed by
second-order atomic behavior. For example, several instances can be illustrated using the
property-constrained axiom as follows.

acceleration = (KC_AC or TL_AC or TR_AC)

keepSpeed = (KC_KS or TL_KS or TR_KS)

stop= stay

Furthermore, since the move behavior is one of the general behaviors, including all
the first-order atomic behaviors, we likewise use the axiomatic expression of the property
constraint to define the move behavior, which indicates that the ship is in the move state,
including all the second-order atomic behaviors, which can be expressed as follows.
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move = (reflects value KC_AC) or (reflects value KC_DE) or (reflects value KC_KS) or
(reflects value TL_AC) or (reflects value TL_DE) or (reflects value TL_KS) or (reflects value
TR_AC) or (reflects value TR_DE) or (reflects value TR_KS)

e  The class of Topological Behavior

According to definition and semantic computing results for topological behavior, each
topological behavior can be expressed with ontology via axiomatic expression method of
attribute constraint. For example, Topol represents the topological relationships between
trajectory and navigation environment, which can be expressed with spatial topological
relationships as follows:

Topol = PL1 some trafficRule

e The class of Traffic behavior and Advanced Semantic behavior

The traffic behavior class corresponds to the activity behavior. The traffic behavior
in port water areas can be divided into nine types of activity behavior, and the advanced
semantic behavior can be divided into five types of process behavior and three types of
event behavior, which can be seen in Figure 5.

trafficBehavior

@ Anchor
@ Approach_pier
@ Berth_activity

@ Cross_into_lane

@ Cross_outof_lane
@ Lecave_pier

@ Cross_into_anchorage

L J Cross_outof_anchorage

@ sail_alongwith_fairway

ASB
ASB
@ anchor_preparing
@ anchoring
@ berthing ® anchoring_event

®leaving_anchorage

@ berth_unberth_event
@ sailing_alongwith_fairway

@ sail_at_fairway

Figure 5. Results of ship semantic behavior in port water traffic areas.

Representation of behaviors with different semantic scales in the port water traffic
areas can be done in different ways using ontology. Simple behaviors, such as active
behaviors, can be expressed using property-constrained axioms based on atomic and
topological behaviors.

Taking the behavior of Entering the Fairway as an example, the sufficient and necessary
conditions for cross_into_lane should be as follows:

Trajectory T intersects with the line of fairway or the line between end points of the
former, resulting in an intersection point located on an atomic trajectory AT which belongs
to T. The beginning point of AT is located on the inside of the fairway and the endpoint is
located on the outside of the fairway.. Likewise, the behavior of approach_pier can also be
presented in a same way. The activity behavior of cross_into_lane and approach_pier can
be represented as Figure 6.
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Equivalent To
(LA4 some fairway) move
and (hasBeginPoint some (PA2 some fairway)) and (LA4 some pier)
and (hasEndPoint some (PA1 some fairway}) and (hasBeginPoint some (PA2 some pier))
and (reflects some move) and (hasEndPoint some (PA1 some pier))

Figure 6. Knowledge representation of activity behaviors.

5.3. Complicated Behavior Expressions Using SWRL

Complicated behaviors, such as process behaviors and event behaviors, are difficult to
express directly with property-constrained axioms due to complex intrinsic behavioral logic.
For this reason, we introduce Allen’s algebraic theory to model the temporal relationship of
behaviors and express their complex behavioral intrinsic logical relations leveraging SWRL.
Specifically, advanced semantic behaviors, such as event behaviors, consist of ordered
specific activities and process behaviors, and as these behaviors occur, it can be triggered
and inferred whether the advanced semantic behavior occurs or not. As shown in Figure 7,
the event behavior of Anchor is explicitly temporal and logical, in which behaviors of the
blue rectangular box and the gray arrow box make up the Anchor event.

F AR
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. anchorage | - O /

~ Anchor event
Figure 7. Anchor event of ship occurred in anchorage.

For an explicit explanation, the process of the Anchor preparing process is selected to
illustrate how to formalize the behavior, which is described below.

Anchor preparing process: The behavior from the instant the ship enters the anchorage
until the start of anchoring, it consists of a series of activities in preparing to anchor. It is based
on the existing knowledge to infer the advanced behavior, but the activity of preparing to
anchor is not easily identified. Therefore, we do not use it to deduce the process. However,
it is also worth noting that the trajectory corresponding to the behavior of the process
contains a series of trajectories of the activity behavior, i.e., from the trajectory reflecting
the cross_into_anchorage behavior to the trajectory reflecting the activity of the first anchor
activity. Since these two behaviors can be obtained computationally from the AIS-based
preprocessing module, it is possible to determine whether the process occurs by judging
whether the two behaviors occur sequentially, which can be expressed in SWRL as:

Anchor preparing process = cognition2:ship (?s) * cognition2:trajectory (?t) * cog-
nition2:hasTraj (?s, ?t) * cognition2:metaTraj (?stra) ~ cognition2:comprises (?t, ?stra) *
cognition2:Point (?p1) " cognition2:Point (?p2) " cognition2:hasBeginPoint (?stra, ?p1) *
cognition2:hasEndPoint (?stra, ?p2) " cognition2:LA5 (?stra, ?p) " cognition2:anchorage
(?p) * cognition2:hasSpeed (?p2, ?x) ~ swrlb:lessThanOrEqual (?x, “0.5” ** xsd:float) —
cognition2:hasBehavior (?s, cognition2:anchor_preparing)

36



J. Mar. Sci. Eng. 2022, 10, 1347

Similarly, other behaviors occurring in port areas can be stated in the same way, as

shown in Table 1.

Table 1. Selected SWRL rules for reasoning about advanced behavior.

Number

SWRL Rules

Description

1

hasTraj(?s, ?t) " ship(?s) " reflects(?t, ?b) " behavior(?b) — hasBehavior(?s, ?b)

HasBehavior

ship(?s) " trajectory(?t) * metaTraj(?stra) * comprises(?t, ?stra) " hasTraj(?s, ?t) *

2 approach_pier(?stra) — hasBehavior(?s, Approach_pier) Behavior of approaching pier
trajectory(?t) ~ hasBeginPoint(?t, ?p1) ~ hasEndPoint(?t, ?p2) " Point(?p1) " Point(?p2) * L .

3 Instant(?t1) ~ Instant(?t2) " hasInstant(?p1, ?t1) * hasInstant(?p2, ?t2) — occursEnd(?t, ?t2) The occur begin time of trajectory
ship(?s) " trajectory(?t) ~ hasTraj(?s, ?t) * comprises(?t, ?straj) ~ metaTraj(?straj) . . .

4 leave_pier(?straj) " LA4(?straj, ?p) * pier(?p) — leavePier(?s, ?p) Behavior of leaving pier

5 ship(?s) " trajectory(?t) ~ hasTraj(?s, ?t) " berth_activity(?t) — hasBehavior(?s, berthing) Berthing
ship(?s) “ hasTraj(?s, ?t) " trajectory(?t) " cross_outof_anchorage(?subtra) " comprises(?t, ?subtra) . .

6 " metaTraj(?subtra) — hasBehavior(?s, Cross_outof_anchorage) Behavior of crossing out of anchorage

7 ship(?s) " trajectory(?t) ~ hasTraj(?s, ?t) * comprises(?t, ?straj) " metaTraj(?straj) Object properties for cross out
cross_outof_anchorage(?straj) “ anchorage(?p) " LA4(?straj, ?p) — crossOutofAnchorage(?s, ?p) of anchorage
ship(?s) " trajectory(?t) " hasTraj(?s, ?t)  metaTraj(?strai) " metaTraj(?straj) ~ comprises(?t, ?straj)

8 " comprises(?t, ?strai) " LA4(?strai, ?p) " LA4(?straj, ?p) " fairway(?p) " cross_into_lane(?strai) ©  Behavior of sailing along with fairway
cross_outof_lane(?straj) — hasBehavior(?s, sailing_alongwith_fairway)

9 Instant(?i1) " Instant(?i2) " inXSDDateTimeStamp(?i1, ?it1) " inXSDDateTimeStamp(?i2, ?it2) * Ti d
swrlb:lessThan(?it1, ?it2) — before(?il, ?i2) 1me order
ship(?s) " trajectory(?t) ~ hasTraj(?s, ?t) * metaTraj(?stra) " comprises(?t, ?stra) * Point(?p1) "

int(?p2) * inPoint(? p1)” int(? p2)* ? )" ?
10 Point(?p2) " hasBeginPoint(?stra, ?p1) ~ hasEndPoint(?stra, ?p2) " LA5(?stra, ?p) " anchorage(?p) Behavior of preparing to anchor

"~ hasSpeed(?p2, ?x) " swrlb:lessThanOrEqual(?x, 0.5) * deceleration(?a) " reflects(?stra, ?a) —
hasBehavior(?s, anchor_preparing)

6. Case Study

In order to investigate the feasibility of the cognitive model, we take the scenario as
the experiment case where ship behavior, such as arrival and departure events, occurred in a
port to show how complicated behaviors can be deduced in a cognitive way:.

Firstly, based on the navigational experience of seafarers in port traffic areas, the most
common ship behaviors occurring in order in these areas can be divided into three layers
in which they occur, as shown in Figure 8. The overall behavior can be considered as an
event of ship arrival-departure, in which the event of anchoring, entering fairway, berthing
and unberthing, and departure are most commonly occur in an orderly manner. Likewise,
the process layer and the activity layer can be extracted and depicted as follows.

6.1. Data Processing

The paper uses the AIS data and geographic data from Xiamen port for March and
April 2016, including ship trajectory, fairways, anchorages, and piers. First, we pre-process
ship trajectories, including data sorting and interpolation. Then, the dynamic AIS data are
matched with the ship name, MMSI, and ship type in the static database to achieve the
acquisition of ship attributes. Furthermore, the name, functional attributes, and location
information of geographical objects can be obtained from www.chinaports.com (accessed
on 18 September 2020).

Protégé is an ontology modeling tool [32] and is used here to construct an ontology
model of ship behavior perception. We use version 5.5.0 of the software, version 2.2.0 of the
Pellet reasoner and version 2.0.9 of SWRL. In addition, the model imports the time ontology
abovementioned to support reasoning about complex behavioral temporal relationships.
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Figure 8. Cognition graph of the behavior of ship arriving and leaving the port.

6.2. Trajectory Segments and Semantic Annotation

In order to reduce the computational complexity and improve the ontological rea-
soning efficiency, 20,000 AIS data of ships are extracted for validation in this experiment.
Firstly, the trajectories of different ships are sorted out in order to obtain the trajectories of
each ship. Secondly, the trajectories are divided into “moving-stop” segments based on
the recognition of stopping points to realize the labeling of moving trajectories. On this
basis, we separate the moving trajectory from the stop trajectory to complete the annotation
of atomic trajectory and the further recognition of atomic behavior. Finally, the start and
end points of the trajectory are marked according to the stop, start, and end points of the
atomic trajectory.

In order to calculate the spatial topological relationship between trajectories and
the environment, the paper introduces a library for topology calculation based on Python
programming language—Shapely. Firstly, various geographical objects and ship trajectories
are converted into the format of spatial data. Then, the topological relationships of these
converted objects are calculated to obtain the DE-9IM metrics of the relationships between
trajectories and geographic objects. Finally, the computed results are mapped with the
corresponding trajectories to prepare for the semantic annotation of ship behavior.

After the data level preparation is completed, the semantic information needs to be
added to the ontology. In order to realize the combination of data and semantic information
in the Python environment, the paper introduces Owlready?2, a python-oriented ontology
programming module that adds the already computed semantic information to the data
layer and can load and save ontology files for modification and inference.

Figure 9 shows the overall process of behavioral cognitive computation, semantic
reasoning and querying, which can support knowledge queries of behaviors with different
semantic scales.

6.3. Semanticization of Ship Behavior

After importing the data related to ship behavior cognition into the ontology, including
the ship, its trajectory segments, and the relationship between them, ship behavior can be
clearly depicted. Figure 10 shows the importing results of ship RENLONG and the details
of its trajectory segments, such as the place and time of occurrence.
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Figure 10. The importing result of ship behavior. (a) The trajectories occurred by RENLONG; (b) The
sub-trajectories and key points of trajectory RENLONG_100; (c) The spatial topological relationships
with surroundings for RENLONG_10010135_begin_point; (d) The spatial topological relationships
with surroundings for RENLONG_100_9851; (e) The instant properties of RENLONG_100_interval;
(f) The XSD date timestamp property corresponding to the moment 1460149090.

39



J. Mar. Sci. Eng. 2022, 10, 1347

Specifically, Figure 10a shows the movement and stationary trajectory segmentation
identified for the ship RENLONG based on the “move-stop” trajectory segmentation
method. Figure 10b shows the different atomic trajectory segments contained in the motion
trajectory segmentation RENLONG_100 and the end point of this trajectory. Figure 10c
shows the topological and temporal properties of RENLONG_ 10010135_begin_point as
the starting point of RENLONG_10010135, in relation to the geographic region. Figure 10d
represents the topological properties of the RENLONG_100_9851 atomic trajectory segment
with respect to the geographic region around it, as well as its beginning and end points.
Figure 10e shows the temporal properties of the time period in which the RENLONG_100
trajectory segment occurs, where the property of “has beginning” indicates that the begin-
ning point of the trajectory segment occurred at the moment 1460149090. Figure 10f shows
the XSD date timestamp property corresponding to the moment 1460149090.

As mentioned in the previous section, the atomic and topological behaviors can be
stated based on the property-constrained axioms. The first-order atomic and topological
behaviors are defined in terms of sufficient and necessary conditional constraint axioms.
When the second-order behavior or topological features satisfy the definition of the class
of the corresponding behavior, they will be automatically derived and classified to the
corresponding first-order atomic behavior. As shown in Figure 11, the trajectory segment
XINHAIXIU_49_3699 is classified as the class of cross_into_lane. On the basis of simple
semantic behaviors, complicated behaviors, such as behaviors of process and event, can be
further deduced based on the rules stated using SWRL, as described in Section 5.3.

(LA4 some fairway)

and (hasBeginPoint some (PA2 some fairway))
and (hasEndPoint some (PA1 some fairway))
and (reflects some move)

activity
metaTraj
Topo14

LA4 some trafficRule

@ XINHAIXIU_49_3699

Figure 11. The reasoning results of activity behavior cross_into_lane.

For an intuitive comprehension of deduced behaviors shown in Figure 11, the tra-
jectory marked with corresponding behavior is visualized in Figure 12 that shows ship
semantic behaviors after trajectory segmentation, spatial topology calculation, and semantic
annotation. Figure 12a,c,d show the ship’s semantic behavior at anchorage, fairway, and
berth, respectively, while Figure 12b is a zoomed-in view of the behavior in Figure 12a. The
segmented ship trajectory segments can be clearly identified in these images, as well as the
annotated advanced ship semantic behavior, such as the ship’s approach to the anchorage,
the ship’s exit from the anchorage, the ship’s approach to the channel, etc.
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Figure 12. The visualization of the ship trajectories marked with corresponding behaviors. (Note: in
order to facilitate the identification of ship behavior at the pier, a rectangular area of the pier in the
port was extracted roughly from the ship berthing behaviors.). (a) Ship’s semantic behavior occurring
at anchorage; (b) Zoomed-in view ship’s semantic behavior occurring at anchorage in (a); (c) Ship’s
semantic behavior occurring at fairway; (d) Ship’s semantic behavior occurring at pier.

7. Results
7.1. Semantic Query

Based on this ontology model, users can execute semantic queries on behavior cogni-
tion, such as ship trajectory, behavior, occurrence time, and occurrence place. In addition,
the behavior of changing speed, changing course, stopping, and so on can be obtained
based on the query. The SPARQL language of the query is shown below, and the results of
the query can be seen in Figure 13.

PREFIX rdf: <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#>

PREFIX owl: <http://www.w3.0rg/2002/07 /owl#>

PREFIX rdfs: <http://www.w3.0rg/2000/01/rdf-schema#>
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PREFIX xsd: <http://www.w3.0org/2001/XMLSchema#>

PREFIX cog: <http://www.semanticweb.org/song/cognition2#>

SELECT ?ship ?behavior ?trajectory ?metatraj WHERE { ?ship cog:hasTraj ?trajectory.
optional {?trajectory cog:reflects ?behavior. ?trajectory cog:comprises ?metatraj.}}

ship behavior trajectory metatraj
XINHALXIU stay XINHAIXIU_49 XINHAIXIU_49_3808
XINHAIXIU stay XINHAIXIU_49 XINHAIXIU_49 3699

Figure 13. The SPARQL query results of ship behavior.

7.2. Semantic Reasoning

Semantic reasoning is the process of acquiring implicit knowledge by driving the
reasoning function of an ontology. Figure 14 shows an example of semantic reasoning
about the behavior of a ship at anchorage. The attributes with yellow background of
RENLONG are based on the inference results, including the implicit behaviors generated
by RENLONG, its trajectory segments, and the place where and the time when these
behaviors took place.
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™ hasTraj RENLONG_100
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™ crossIntoAnchorage anchorage3
M hasTraj RENLONG_98
™ hasTraj RENLONG_100
M hasTraj RENLONG_93
™ hasTraj RENLONG_84
™ hasTraj RENLONG_S52
™= crossOutofAnchorage anchorage3
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™= hasBehavior
== hasBehavior

== hasBehavior

leaving_anchorage
stay

Cross_outof_anchorage
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Property assertions: Cross_into_anchorage

ct property assertions

= reflectTime 1458938714
= reflectTime 1458938703
™ reflectBegin 1458938703
M reflectEnd 1458938714

(b)

Figure 14. Reasoning results of behavior occurred in anchorage. (a) Deduced behaviors occurred by
RENLONG; (b) The time of occurrence of the behavior Cross_into_anchorage, involving begin and
end moments.

The result of the inference shows that RENLONG has the behavior of an anchor event.
The start time is the beginning moment of the cross_into_anchorage behavior, and the end
time is the end moment of the cross_out_of_anchorage behavior. Likewise, the behaviors
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occurring in the fairway and the pier of the ship can be reasoned out like the reasoning
process of ship behavior in the anchorage.

As can be seen in Figure 13, the value of the object property of RENLONG has behavior
is cross_into_anchorage, Anchor, and anchoring_event, but it cannot be deduced to the
scale to which the behavior specifically belongs, such as activity and event. For this reason,
the ontology sets different scales of behavior for object properties describing the scale of
ship behavior, such as the properties of leave_pier and crossIntoAnchorage, which can
provide a computational basis for reasoning about complicated behaviors.

7.3. Discussion

The behaviors of ships navigating around anchorages, fairways, and piers are selected
for property-constrained axiom-based reasoning with SWRL for complicated behavioral
reasoning, respectively. The results show that desired semantic behaviors can be recognized,
leveraging the inference mechanism of behavior ontology, including from simple semantic
behaviors, such as atomic behavior to large scale ship behavior, such as event in port waters.
Key information of ship behavior cognition can be characterized, proving the advantage and
effectiveness of the model in recognizing ship semantic behaviors, especially complicated
temporal behaviors.

In addition, the behavior of a ship can be expressed by the object property ‘has behav-
ior’, and the behavior with different scales can be characterized by setting the corresponding
object property to achieve the multi-scale behavior of the ship. On this basis, the SWRL
rule can be used to achieve the progressive reasoning of behavior between different scales,
which is in line with the human habit of behavior cognition. However, such an approach is
too cumbersome and all the rules need to be added manually by the people with expert
knowledge, which consumes a lot of resources.

8. Conclusions

To enable autonomous objects in waterborne transport systems to have the capability
of reasoning about and recognize historical complicated ship behavior semantically based
on the historical AIS trajectory data, this paper proposes a framework for constructing
semantic models of multi-scale ship behavior in cognitive space to achieve automatic
extraction of semantic behavior of ships from the data layer to the semantic layer. On the
basis of multi-scale characteristics of ship behavior reflected in ship trajectories, combined
with the logical way humans perceive complicated behaviors, the cognition of ship behavior
by an intelligent supervision system can be seen as an all-encompassing cognition involving
the object, time, place, and behavior of the occurrence of ship behavior. Therefore, based on
our previous work, this paper introduces a multi-scale behavioral semantic representation
model to support the intelligent supervisory system’s cognition of ship behavior in a multi-
dimensional and multi-scale space. Using the logical reasoning capabilities of the ontology
and the temporal ontology’s modelling basis for time, ship behavior, including both simple
and complex behaviors, can be accessed driven by the knowledge representation and
logical reasoning capabilities of ontology. This suggests that it is feasible and reasonable to
model the behavior of ships at multiple scales in a human cognitive manner.

However, there are some points that need further improvement. First, the model
relies heavily on domain knowledge and needs to be constructed by domain experts,
leading to inefficient application in practical scenarios. In addition, the paper does not
consider the probability of ship behavior, especially in the continuous process, which limits
the effectiveness of behavior implementation. In addition, there are various navigation
scenarios where infrastructure exists that needs to be identified by the autonomous objects
themselves or be considered as variables for human operator input for further analysis,
which also needs to be addressed or clarified in the future. What needs to be done in the
future is how to quickly extract and transform the textual information obtained from the
website for various navigation scenarios, such as navigation modes, mooring information,
etc., into knowledge that can be processed and understood by the autonomous system and
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expand it into a knowledge base with some scenario migration capability to make it highly
reusable in different scenarios.

Future work can focus on the following points: firstly, online modelling, and identi-
fication of ship semantic behavior based on ship trajectory data; secondly, based on the
semantic annotation results of historical ship trajectory data, combined with data mining
algorithms, further mining of ship behavior at different semantic scales in port waters
from the semantic layer to obtain implicit knowledge of high level ship behavior semantics.
Finally, extending the individual semantic behavior model to interactive behaviors between
two or more vessels can support the safety supervision of the waterborne transport system.
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Abstract: With the aim of solving the problems of ship trajectory classification and channel iden-
tification, a ship trajectory classification method based on deep a convolutional neural network is
proposed. First, the ship trajectory data are preprocessed using the improved QuickBundle clustering
algorithm. Then, data are converted into ship trajectory image data, a dataset is established, a
deep convolutional neural network-based ship trajectory classification model is constructed, and the
manually annotated dataset is used for training. The fully connected neural network model and SVM
model with latitude and longitude data as input are selected for comparative analysis. The results
show that the ship trajectory classification model based on a deep convolutional neural network
can effectively distinguish ship trajectories in different waterways, and the proposed method is an
effective ship trajectory classification method.

Keywords: inland waterway transportation; AIS data; trajectory classification; clustering; deep
convolutional neural network

1. Introduction

A ship automatic identification system (AIS) is an open data transmission system
widely used in the fields of ship traffic information collection and analysis, ship navigation
monitoring, and water traffic planning. The ship trajectory data collected by AIS has the
advantages of massiveness and large geographical scope, but the data time interval is
too large, and the quality is not high, which introduces challenges to the classification of
ship trajectory.

At present, the specific application scenarios of ship trajectory classification methods
at home and abroad mainly include the identification of ship types and the classification
of ship motion patterns. The realization process is divided into three parts: feature ex-
traction, transformation of ship trajectory data, and modeling of classification models.
Chen et al. [1] realized the classification of AIS ship trajectory based on the sparse repre-
sentation classification algorithm and conducted experiments in the waters of the Yangtze
River. The cubic spline method is used to approximate the trajectory of a ship, which
may destroy the characteristics of the trajectory of the ship. Kraus et al. [2] used the
random forest algorithm to classify ship type by extracting geographic features (navi-
gation route, stay area, etc.) and behavior features (heading, speed, etc.) of the ship’s
trajectory and achieved 97.51% recognition accuracy. Based on the AIS ship trajectory,
Sanchez et al. [3-7] used SVM and a decision tree to achieve binary classification of fishing
boats and preprocessed the trajectory by data cleaning, data filtering, trajectory segmen-
tation, feature extraction and other methods to improve the accuracy of classification.
Liu et al. [8] used a semi-supervised deep learning model (SCEDN) for classification in
the case of ship encounters, which used an encoder-decoder convolutional structure with
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four channels (distance, speed to approach point) for each segment time (TCPA) and dis-
tance to approach point (DCPA)). Sheng et al. [9-15] divided the ship’s trajectory into
three motion modes: anchoring, going straight, and turning. According to factors such
as speed and heading, the behavior characteristics of the three modes were extracted,
and the ship trajectory feature classification model was established by logistic regression.
Cui Tong et al. [16-22] combined LSTM and CNN to establish a hybrid classification model,
which is characterized by speed, acceleration, heading and curvature, with feature vectors
as inputs and ship shape as output. In this method, CNN is used to extract the spatial
features of the trajectory data, and LSTM is used to extract the temporal features of the
trajectory data. Because ship trajectory data belong to spatial data, in this paper, we refer to
some methods for trajectory image classification.

However, with respect to the relevant research results at home and abroad, the follow-
ing research trends and directions are observed. Research on ship trajectory clustering is
gradually developing towards efficient execution and extraction of diversified trajectory
data features, and research on trajectory classification is gradually developing towards
accurate feature extraction and the establishment of mathematical models based on deep
learning. Combined with the main research objects of this paper, the current research has
the following shortcomings:

1.  Most of the current ship trajectory clustering methods are based on the density
clustering algorithm of DBSCAN. Although the algorithm complexity is high, there
is room for improvement in execution efficiency, and it is difficult to select the dual
parameters of DBSCAN.

2. When domestic and foreign scholars use supervised algorithms for ship trajectory
classification, there is still room for improvement in the use of ship trajectory spatial
feature information and the process of extracting features, such as ship trajectory
heading and speed.

The main work of this paper:

In this paper, we take ship trajectory data as the research object and investigate a fast,
efficient and accurate ship trajectory clustering method for waters with dense and complex
traffic flow that obtains the ship trajectory data of various clusters in the water area. In
this paper, we use the clustered ship trajectory data as the basis to study ship trajectory
anomaly detection a channel classification so as to provide decision support for intelligent
risk management and control of ship traffic control departments. Specifically, the main
research work of this paper is as follows:

The main task of ship trajectory preprocessing is to eliminate interference trajectories
by eliminating ship trajectories that are concentrated in a small area of water with little
movement or ship trajectories with a sampling interval that is too long to characterize
continuous motion characteristics, eliminating the interference of ship anchor points in
trajectory analysis of moving ships, and reducing the complexity of ship trajectories. Under
the premise of ship trajectory preprocessing, in this paper, we use the QuickBundles
algorithm as a basic method to carry out ship trajectory clustering research. First, we
analyze the performance of three trajectory similarity measurement methods, MDF [23],
DTW [24], and Hausdorff [25]. Then, aiming at the problem of insufficient sampling of
local features of ship trajectory by the QuickBundles algorithm, a sampling method based
on heading is used to improve it, and an improved QuickBundles ship trajectory clustering
algorithm is proposed. We use the improved QuickBundles algorithm [26] to establish
a clustering model of ship trajectories, determine appropriate thresholds according to a
variety of evaluation indicators, complete the task of ship trajectory clustering, and conduct
comparative experiments with the improved QuickBundles algorithm and the traditional
DBSCAN [27] algorithm.

In view of the problem of ship trajectory classification based on latitude and longitude
data, the spatial characteristics of the data are not obvious, and the classification effect is
not ideal. In this paper, we propose a ship trajectory classification method based on a deep
convolutional neural network to classify the channel to which a ship trajectory belongs,

48



J. Mar. Sci. Eng. 2022, 10, 568

achieving the recognition of ship trajectories and waterways. Based on the clustering results,
the latitude and longitude coordinates are mapped to the image pixel coordinates according
to the scale, the spatial characteristics of the ship trajectory data are extracted, and the ship
trajectory image dataset is established. The ship trajectory classification model based on a
deep convolutional neural network is established according to on the ResNet50 [28] model,
using the training set to train the model. On the test set, the fully connected neural network
and multi-class SVM classifier [29] with latitude and longitude data as input are used for
comparison with the deep convolution model with trajectory image data as input.
The main contributions include:

An improved QuickBundles ship trajectory clustering algorithm is proposed.

A method of ship trajectory classification based on a deep convolutional neural net-
work is proposed that realizes the classification and identification of the waterway to
which a ship trajectory belongs.

The contents of this paper are organized as follows: Section 2 provides details of the
proposed scheme, the result analysis is shown in Section 3, and conclusions are presented
in Section 4.

2. Methods

The working process of the proposed methodology is shown in Figure 1. This method
takes specific ship trajectory AIS data as the research object and focuses on ship trajectory
clustering, ship trajectory anomaly detection, and channel identification of ship trajectories
in dense-traffic waters. Through the identification of abnormal trajectories and the clas-
sification of the channel to which a trajectory belongs, the ship supervision department
provides technical support for targeted ship trajectory data analysis. Ship trajectory cluster-
ing research is carried out based on the QuickBundles clustering algorithm. The sampling
method of QuickBundles is improved according to the local heading changes of the ship
trajectory, and a fast, accurate, and efficient ship trajectory clustering method is proposed.
Ship trajectory clustering research also provides cluster quantity parameters for anomaly
detection models and data support for ship trajectory classification.

Simuilarity measure E
comparison : ‘ Ship trajectory image data
:
Sampling method Provide category
based on heading hyperparameter K -
> v
. Ship trajectory classification model
QuickBundle P tra) Y .
. . based on deep convolutional neural
clustering algorithm
network
¥
D A L
H —
Ship trajectory A 4
clustering model based Analysis of the channel category to
on improved which the ship's trajectory belongs
QuickBundle algorithm

Provide training data | }

Ship trajectory
clustering results

wmsa e
Improve the QuickBundle
algorithm module

Figure 1. The working process of the proposed methodology.
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2.1. The Improved QuickBundles Algorithm Module

The trajectory of a ship can be of any length. Before the task of clustering the trajectory
of the ship, data need to be divided and filtered so that the subtrajectory segments with
similar motion characteristics can be retained and some important information can be ob-
tained; therefore, it is very important to properly divide the original trajectory. Commonly
used methods of ship trajectory division are based on time interval and speed changes.

The data used in this paper come from the US Coastal AIS Vessel Traffic Data
(https:/ /marinecadastre.gov/ais/, accessed on 1 March 2022), which are collected by
the US Coast Guard through on-board navigation and positioning equipment to monitor
the location of large ships in the United States, as well as characteristics of coastal waters.
In this section, we take the AIS dataset from January to March 2019 as the experimental
object and use two methods to process ship trajectory data. The specific parameter settings
are shown in Table 1, and the processing results are shown in Table 2.

Table 1. Division and filtering threshold settings.

Threshold Type Default Value

Time threshold 600

Speed threshold 1
Track-point capacity threshold 20

Table 2. Division and filtering results.

Ship MMSI Number Total Tracks Total Track Points
Before dividing and screening 871 / 263,149
After dividing and filtering 868 3120 144,438

The QuickBundles algorithm was originally designed for use with nerve bundles in
the medical field. The local changes of nerve bundles are not complicated. Therefore, the
QuickBundles algorithm uses only simple linear interpolation as the sampling method.
However, if the clustering object is a ship trajectory with moving characteristics and the
local heading changes are more complicated, then the characteristic changes of these local
headings cannot be ignored, e.g., the 20 ship trajectory points shown in Figure 2a,b. In the
original trajectory, the ship’s course changes considerably due to reasons such as avoidance,
and the changed trajectory is curved and smooth. After sampling by the QuickBundles
algorithm, the local features of this heading change are replaced by simple polylines; the
ship in the original trajectory in Figure 2c has a short, straight line at the turn. After being
sampled by the QuickBundles algorithm, this short straight line is ignored.

In order to overcome the above shortcomings, we improve the sampling method of
the QuickBundles algorithm. First, the ship’s trajectory is compressed, with the heading as
a factor, and the key position points of the ship’s trajectory are extracted. Then, the ship
trajectory is interpolated based on the distance between the trajectory points.
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Figure 2. Three different types of original and sampled trajectories. (a,b) the 20 ship trajectory points;
(c) the ship in the original trajectory.

e  Ship trajectory compression considering heading

There are two purposes for ship trajectory compression in this paper: one is to reduce
the number of trajectory points of all ship trajectories so as to more conveniently achieve the
unification of the number of trajectory points in the future; the other is to reduce the number
of trajectory points to improve the similarity between trajectories and calculate efficiency.

The course can indicate the direction of a ship’s trajectory and the trend of a ship’s
movement. Figure 3 shows the difference in heading angle. The heading angle difference
(AD) represents the difference in the direction angle of the adjacent ship trajectory segment,
which can more clearly illustrate the change in the current trajectory segment compared to
the previous trajectory segment. Through the calculation of the heading angle difference,
the key position points in the trajectory of a ship can be accurately obtained, and the
compression of the trajectory of the ship can be determined. The detailed calculation
process is shown in Figure 4. The input is the angle threshold and the ship trajectory. The
heading angle difference between the current trajectory point and the previous trajectory
point is calculated. If the heading angle difference is greater than the threshold, the current
trajectory point is retained; otherwise, the current trajectory point is deleted.

Figure 3. Heading angle difference.
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Figure 4. Ship trajectory compression.

e  Subsection interpolation based on the distance between track points

The QuickBundles clustering algorithm requires that the trajectories to be clustered
have the same number of trajectory points. After compressing the ship’s trajectory, in order
to meet this requirement, in this section, we adopt the segmented interpolation method
based on the distance between the trajectory points to unify the number of ship trajectory
points. The specific process is shown in Figure 5. First, the number of track points to be
inserted is obtained, and then the distance between each adjacent track point is calculated.
According to the ratio between the distances, the number of inserted track points to the
track to be inserted in each segment is allocated a corresponding number of points.

52



J. Mar. Sci. Eng. 2022, 10, 568

Ship
trajectory
data
Initialize M=N,
Number of g :
. Segment the trajectory used to record
track points Jd ooe . P .
to be »| with adjacent trajectory |« the number of
: points as the smallest unit remaining track
inserted N .
v points

Calculate the length of /
each trajectory section
and the total length L of
all trajectory sections. and
arrange the set of
trajectory sections in
descending order of the
trajectory section length

¥

Traverse the collection of |
trajectory segments

¥

Calculate the number of
interpolation points
n=min([N/L],M),
Update the number of
points M=M-n

¥

Linear interpolation of
trajectory segments

Output the
trajectory after
plecewise
mterpolation

h 4

( End '

Figure 5. Low chart of segmented interpolation.

2.2. Ship Trajectory Classification Module

In the key monitoring areas of ports, seaports, and other regulatory agencies, as
the flow of ships increases, an efficient ship trajectory classification algorithm is needed
to classify ships in the jurisdiction, improve the level of intelligent management and
supervision efficiency, and reduce busy waters. There is a risk of major and catastrophic
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traffic accidents. In this section, we use the trajectory clustering results as the training
dataset to investigate the classification of ship trajectories and propose a ship trajectory
classification method based on deep convolutional neural networks.

2.2.1. Longitude and Latitude Mapping and Coordinate Conversion

The latitude range of the water area where the experimental data in this article are
located is 48 degrees 9 min 7.28 s north latitude to 49 degrees 6 min 44.28 s north latitude,
and the longitude range is 123 degrees 3 min 43.33 s west longitude to 123 degrees 42 min
2.71 s west longitude, as shown in Figure 6. In this section, we assume that the area is the
key monitoring area of the ship supervision department, model the area and convert the
latitude and longitude data into image data according to the length and width ratio of the
water area where the experimental data are located.

(-123. 42, 49. 06) =™

(-123. 03, 48. 90)

Figure 6. Longitude and latitude information of the water area where the experimental data
are located.

2.2.2. Calculation of the Aspect Ratio of the Water Area

The water area where the experimental data are located is a rectangular area, and the
aspect ratio is obtained by calculating the distance between the two sides of the rectangular
area to determine the image resolution using the Haversine formula [30] to calculate the
distance between two longitude and latitude coordinate points. Formula (1) introduces the
method for calculating the distance between two longitude and latitude coordinate points
when two longitude and latitude coordinate points are known. R is the radius of the earth,
and the average value is 6371 km. ¢; and ¢, represent the latitude of the two points, and
AA represents the difference between the longitudes of the two points. According to this
calculation, the length of the experimental area is 28.41 km, the width is 17.82 km, and the
approximate ratio is 14:9.

haver sin (g) = haver sin(¢1 — ¢2) + cos @1 cos prhaver sin(AN) (1)
haver sin(#) = sin? (g) — ﬂ_czﬂ

The higher the image resolution, the higher the computational cost and the lower the
computational efficiency of the deep convolutional neural network. Considering the above
problems, in this paper, we set the resolution to 112 % 72, keeping the ratio of the image
unchanged at 14:9 so that the latitude value of (49.06, 48.90) is mapped to the range of the
pixel point (0, 71) inside, the longitude value of (—123.42, —123.03) is mapped to the pixel
point (0, 111) range, as shown in Figure 7.
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Figure 7. Schematic diagram of image pixels of latitude and longitude mapping.

Figure 8 shows the ship trajectory image data after the latitude and longitude data
of the ship trajectory are converted. According to the clustering results in Section 3, there
are five types of ship trajectories in the waters where the experimental data are located
based on the channel category division, so the label of the dataset is set to 0, 1, 2, 3, 4. The
resolution of each ship trajectory image is 112 % 72, which corresponds to the latitude and
longitude range of the water area. The specific dataset details, as well as the division of
training set and test set are shown in Table 3.
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Figure 8. Trajectory image data display diagram.
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Table 3. Dataset details.

Type Quantity Number of Various Types of Trajectories

The first category: 321
The second category: 380

Total dataset 2624 The third category: 248
The fourth category: 747

The fifth category: 928

The first category: 256
The second category: 304

Train set 2099 The third category: 198
The fourth category: 608

The fifth category: 733

The first category: 65
The second category: 76

Test set 525 The third category: 50
The fourth category: 139

The fifth category: 195

2.2.3. Deep Convolutional Network Model Construction

ResNet (residual network) residual network [31] is widely used in target classification
and other fields. It is a part of the classic backbone neural network for computer vision
tasks. Typical networks include ResNet50, ResNet101, etc. The ResNet network proves that
convolutional neural networks can develop more deeply (including more hidden layers)
and verifies that deep convolutional neural networks have better performance.

ResNet50 has a unique residual structure, as shown in Figure 9. One of the core
technologies of the residual structure is the use of a shortcut connection. There are two
main reasons for the disappearance of the gradient. When the number of network layers
is very deep and the layer where the current parameter is located is close to the input of
the network, the derivation chain is very long; if some of the intermediate results have a
low value, after chain accumulation, the final gradient value will be close to zero, resulting
in the parameters not being updated. The input is directly added to the output obtained
through the convolution operation, which can avoid the problem of the disappearance of
the gradient and can capture small perturbations. In addition, the first and last ends of
the residual structure use convolution to reduce and restore data dimensions. The time
complexity of the two structures is similar, but it deepens the number of network layers
and structures and resolves network degradation and training process performance. As
shown in Figures 10 and 11, in the actual processing step, jump connections are divided
into two types according to the size of the input and output of the residual block. One is
the identity block (ID BLOCK) when the input and output are consistent, and the other
is the convolutional block (CONV BLOCK) when the input and output are inconsistent.
The jump connection is processed by convolution calculation to achieve unity of input
and output dimensions. ResNet50 adopts small-size convolution kernels and uses batch
normalization [32] technology. In this paper, we build a ship trajectory and channel
classification model based on ResNet50 as a deep convolutional neural network framework.
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Figure 11. CONV BLOCK structure.

2.2.4. Model Building

The ship trajectory classification network structure proposed in this paper is shown
in Figure 12 and Table 4. The structure is composed of five convolution blocks stacked in
sequence. Each convolution block contains the residual network substructure shown in
Figure 11. The residual network substructure in different convolution blocks has different
numbers of convolution kernels. The input layer dimension parameter of the network
model is set to 112 x 72 x 3, the mini batch size is set to 64, and the output layer category is
set to 5.
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Figure 12. Ship trajectory classification network architecture.

Table 4. Ship trajectory classification network structure.

Layer Name Output Size Layer Structure
7 X 7,64, stride =2

Convl 12> 112 3 x 3 max pool, stride = 2
1x1 , 64
Conv2_x 56 x 56 3x3 . 64 %3
1x1 , 256
1x1 , 128
Conv3_x 28 x 28 3x3 . 128 | x4
1x1 , 512
1x1 , 256
Conv4_x 14 x 14 3x3 . 256 <6
1x1 , 1024
1x1 , 512
Convb_x 7x7 3x3 . 512 %3
1x1 , 2048
Output layer 1x1 Average pool, 1000-d fc, softmax
3. Results

3.1. Model Training

Assuming that the ship trajectory image data point is X, because the pixel values of
the image data are in the range of (0, 255), each data point is normalized before model
training, as shown in formula (2), and the data format is converted to the float32 data type

in the tensorflow framework.
X = fl — 2
f oat (255) @

3.1.1. Experimental Environment and Hyperparameters

This experiment runs on the tensorflow deep learning framework and uses a GTX1060
graphics card for training. The hyperparameter settings are shown in Table 5.
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Table 5. Hyperparameters.

Type Parameter
Mini batch size 64
Learning rate 0.001
Number of iterations 20
Number of training sets 2099
Number of test sets 520
Label format One-hot
Shuffle True

3.1.2. Optimizer and Loss Function

In this paper, we use Radam as the optimizer. Radam is a deep learning optimizer
proposed by Chinese doctoral student Liu Yiyuan in 2019. It is designed to solve the
problem that SGD has good convergence effect but slow speed, whereas Adam converges
quickly, it is not easy to converge to the local optimal solution. Based on variance dispersion,
Radam dynamically turns on and off the adaptive learning rate and realizes a method that
does not need to warm up the learning rate in the adjustable parameters.

It has the advantages of both Adam and SGD, which can ensure fast convergence
speed and does easily fall into the local optimal solution. In the case of a high learning rate,
the accuracy of Radam is better than that of SGD. In addition, for the multi-classification
problem, the cross-entropy loss function and the Softmax activation function are used.

3.1.3. Training Effect Analysis

In this paper, we use the Tensorboard data analysis visualization tool in Tensorflow
to analyze the model training effect. Figure 13 shows the change in loss value during the
training process, with the number of iterations set to 20. With the increase in the number of
iterations, the loss curve of the ship trajectory classification model shows a convergence
trend as a whole, with a small fluctuation between the fourth and eighth iterations but
finally converging around 0.04. The training results show that the model has learned the
data features of the ship trajectory images and the model training has achieved the expected
effect. Figure 14 is a graph of the accuracy rate of the validation set during the model
training process. With the increase in training time, the accuracy rate of the model on the
validation set classification increases rapidly. After the number of iterations reaches 10, the
accuracy rate remains around 98.90%. This also shows that the model already has excellent
classification ability for the training set.
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Figure 13. Loss curve.
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Figure 14. Accuracy graph.
3.2. Results of the Improved QuickBundles Clustering Algorithm

In order to further verify the clustering ability of the improved QuickBundles clus-
tering algorithm for ship trajectory, in this paper, we compare and analyze the clustering
effect and execution efficiency of the improved QuickBundles clustering algorithm, the
QuickBundles clustering algorithm, and the DBSCAN algorithm. In the experiment, the
thresholds of the three clustering algorithms are the best clustering thresholds obtained in
Section 3.1.

The comparison results of the contour coefficients of the three clustering algorithms
are shown in Figure 15a. The contour coefficient of DBSCAN is 0.5568, the contour coef-
ficient of the QuickBundles clustering algorithm is 0.6173, and the contour coefficient of
the improved QuickBundles clustering algorithm is 0.6380. The QuickBundle clustering
algorithm surpasses the other two algorithms according to various metrics. Figure 16 shows
the statistics of the three clustering algorithms. The distribution of contour coefficients of
all trajectory data, the mean, upper quartile, median, and lower quartile of the improved
QuickBundles clustering algorithm in the figure are higher than those of the QuickBundles
clustering algorithm and the DBSCAN algorithm. The CHI comparison results of the three
algorithms are shown in Figure 15b. The CHI of the improved QuickBundles clustering
algorithm is 3769.2168, which is significantly higher than the other two comparison al-
gorithms. Figure 15c shows the DBI comparison results of the three algorithms. For the
ship trajectory data, the improved QuickBundles clustering algorithm is better than the
other two algorithms. In terms of algorithm execution efficiency, as shown in Figure 15d,
the improved QuickBundles clustering algorithm is only 305 milliseconds slower than the
QuickBundles clustering algorithm, and the execution time of DBSCAN is less than 20.9 s.

The comparison results show that the QuickBundles clustering algorithm has im-
proved the clustering effect of the DBSCAN ship trajectory clustering algorithm on the ship
trajectory dataset. In terms of various indicators, the improved QuickBundles clustering
algorithm has improved performance compared with the pre-improved QuickBundles
algorithm and is more suitable for the clustering of ship trajectory data. In terms of algo-
rithm execution efficiency, the improved sampling method does not significantly affect the
algorithm. The improved QuickBundles algorithm is only 305 milliseconds slower than the
QuickBundles algorithm, which is slower than DBSCAN’s 20.9 s.
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Figure 16. Box diagram of ship trajectory profile coefficients in the three algorithms.

In this section, we take the complete ship trajectories in complex waters as the research
object, focusing on the characteristics of ship trajectories and headings in order to achieve
fast and accurate clustering based on MDF distance and the QuickBundles clustering
algorithm. A ship trajectory clustering method based on the improved QuickBundles
algorithm is presented. In this section, first we compare the MDF distance with two
classical trajectory metrics and analyze their advantages and disadvantages. We propose
a sampling method based on the difference of the heading angle of the ship trajectory,
improving the sampling method of the QuickBundles algorithm. Finally, a ship trajectory
clustering experiment based on the improved QuickBundles algorithm is carried out, and
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the rationality and reliability of the research method presented in this section are analyzed
by comparison with the DBSCAN algorithm on the public American coastal AIS ship
trajectory dataset.

The experimental results show that the method proposed in this section can reasonably
cluster the ship trajectories of various waterways and that the improved QuickBundles
clustering algorithm has better clustering performance. In addition, using the dataset and
without considering the trajectory noise, the improved QuickBundles clustering algorithm
is slightly better than the traditional DBSCAN trajectory clustering algorithm in terms of
accuracy and algorithm execution efficiency. The ship trajectory clustering results in this
section will be used as the basis for subsequent ship trajectory anomaly detection research
and ship trajectory classification research.

3.3. Ship Trajectory Classification Network Model Test Set Analysis

After the training of the ship trajectory classification network model, we use the test
set to verify the model’s channel trajectory classification effect. Table 6 is the confusion
matrix of the classification results of the test set. Among them, the classification accuracy
of the first, second, and third categories is 100%. Among the 334 samples of the fourth and
fiftth categories, there are six misidentified samples. Figure 17 is a comparison chart of the
trajectories of the fourth and fifth types of ships in the water area where the experimental
data are located. It can be seen that in the fourth and fifth types of ship trajectories, a
very small part of the ships did not travel in the corresponding channel but sailed in the
separation zone between the two channels, which violated the “General Provisions for Ship
Routing System” and also led to misclassification of ship trajectories. In spite of this, the
ship trajectory classification model presented in this paper still achieves an accuracy of
98.85% on the test set, achieving accurate classification of ship trajectory categories in the
analyzed waters.

Table 6. Confusion matrix of ship trajectory image test set.

Actual Value/Predictive Value  First Category = Second Category  Third Category  Fourth Category Fifth Category

First category 65 0 0 0 0
Second category 0 76 0 0 0

Third category 0 0 50 0 0
Fourth category 0 0 0 136 3

Fifth category 0 0 0 3 192

The fifth category

Figure 17. The fourth- and fifth-type channel information map of the water area where the experi-
mental data are located.
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3.4. Cross-Validation Comparative Analysis

In order to further verify the classification ability of the ship trajectory classification
network model, we select the fully connected neural network model and the multi-category
SVM model [33] with the longitude and latitude data format as input as a comparison to
carry out comparative analysis. The parameter information of the fully connected neural
network comparison model selected in this paper is shown in Table 7. Among them, the
fully connected neural network requires a unified data input format, so in this paper, we
draw on the method of Chen [34] and others; using cubic spline interpolation, each ship
trajectory data are sampled as 50 points.

Table 7. Fully connected neural network model parameters.

Layer Name Layer Structure Activation Function
Input layer 50 * 2 none
Fully connected 1 64 relu
Fully connected 2 128 relu
Fully connected 2 256 relu
Fully connected 2 512 relu
Output layer 5 softmax

The input data format of the fully connected neural network participating in the
comparison is an array of 50 * 2, where 2 is the longitude and latitude of the ship’s trajectory
data, and 50 is the trajectory data length after sampling for each trajectory. The input data
format of the SVM model participating in the comparison is an array of 100 * 1; 100 is
the result of flattening the above 50 x 2 data, and the kernel function is RBE. All models
have undergone 10-fold cross-validation. Figure 18 shows the results of the ten-fold cross-
validation of the three models, and Table 8 shows the average accuracy of the three models’
10-fold cross-validation. It can be seen from the experimental comparison results that for
the dataset used in this paper, the proposed ship trajectory classification network model
achieves 98.72% accuracy, which is higher than the 93.53% accuracy of the fully connected
neural network model and the 91.73% accuracy of the SVM model. The superiority of the
ship trajectory and waterway classification model in the performance of ship trajectory
classification is verified.

Figure 18. Ten-fold cross-validation results of the three models.
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Table 8. The age accuracy of the three models’ ten-fold cross-validation.

Model Average Accuracy
Deep convolutional neural network (DCNN) 98.72%
Fully connected neural network (FC) 93.53%
Support vector machines (SVM) 91.73%

In this section, the ship trajectory classification research fails to use the ship trajectory
spatial feature information, and the process of extracting features such as ship trajectory
heading and speed is too cumbersome. We propose a ship trajectory classification method
based on a deep convolutional neural network. First, based on the clustering results in
Section 3, the trajectory longitude and latitude data are converted into high-dimensional
trajectory image data, and the spatial characteristics of the ship trajectory are extracted.
Then, the ship trajectory classification model is constructed based on the principle of a
residual network [35], and ship trajectory classification is realized. Finally, using the latitude
and longitude data of the ship trajectory as input, a fully connected neural network model
and SVM model are constructed as comparison models, and a comparison experiment with
the model proposed in this section is carried out. The experimental results show that for
the dataset used in this article, the accuracy of this model on the test set is 98.85%, and the
accuracy of the ten-fold cross-validation is 98.72%, which is higher than the 93.53% of the
fully connected neural network and the 91.73% of the SVM.

According to the above comparison results, the ship trajectory is converted into image
data while retaining its ability to express spatial features, simplifying the data feature
extraction work and improving the efficiency of data processing. The deep convolutional
neural network used to complete the trajectory classification task can make full use of the
spatial characteristics of the trajectory data. Compared with the fully connected neural
network model and the SVM model, the method proposed in this section has higher
classification accuracy of the ship trajectory and provides support for the identification of
the channel category. The research results of this section can provide auxiliary support
for the intelligent decision making of the ship supervision department. The results of this
study can provide support for the intelligent decision making for the ship navigation safety
monitoring [36,37] department.

4. Conclusions
The main research work of this paper can be summarized by the following two points:

e Aiming at the problem of invalid trajectories in the original ship trajectory data,
a set of ship trajectory preprocessing methods based on time interval and speed
changes are summarized. In order to improve the accuracy and execution efficiency
of ship trajectory clustering, research on ship trajectory clustering based on MDF
distance and QuickBundles clustering algorithm is carried out. Aiming at the problem
that the sampling method of the QuickBundles algorithm does not consider the of
local characteristics of ship trajectory, a new method is proposed. Considering the
sampling method of heading, the QuickBundles clustering algorithm is improved, and
the purpose is to analyze the characteristics of water traffic and ship motion in the
water area.

e Inorder to extract the spatial characteristics of the ship trajectory, complete the research
of ship trajectory classification, convert the ship trajectory longitude and latitude
data into ship trajectory image data, build a deep convolutional neural network
ship trajectory classification model, and propose a deep convolution based on ship
trajectory classification model, the neural network-based ship trajectory classification
method analyzes the accuracy and reliability of the proposed method through real
ship trajectory data and aims to solve the problem of classification of the waterway to
which a ship’s trajectory belongs.

Future research will be carried out considering the following directions:
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e In ship trajectory clustering research, the problem of ship trajectory clusters that
contain a large amount of noise data has not been considered. In the future, it is
necessary to conduct research on the noise characteristics of ship trajectory data to
extract valuable ship trajectory information from: it.

e In this paper, we use deep convolutional neural networks to classify ship trajectories.
With the rapid development of graph neural networks, the next step can be to consider
using graph neural networks to complete ship trajectory classification tasks and
compare different algorithms.
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Abstract: To analyze the changing characteristics of ship traffic flow in wind farms water area, and to
improve the accuracy of ship traffic flow prediction, a Gated Recurrent Unit (GRU) of a Recurrent
Neural Network (RNN) was established to analyze multiple traffic flow sections in complex waters
based on their traffic flow structure. Herein, we construct a spatiotemporal dependence feature
matrix to predict ship traffic flow instead of the traditional ship traffic flow time series as the input of
the neural network. The model was used to predict the ship traffic flow in the water area of wind
farms in Yancheng city, Jiangsu Province. Autoregressive Integrated Moving Average (ARIMA),
Support-Vector Machine (SVM) and Long Short-Term Memory (LSTM) were chosen as the control
tests. The GRU method based on the spatiotemporal dependence is more accurate than the current
mainstream ship traffic flow prediction methods. The results verify the reliability and validity of the
GRU method.

Keywords: complex waters; ship traffic flow; spatiotemporal dependence; gate recurrent unit

1. Introduction

Marine wind energy is a green renewable resource that has the advantages of clean-
liness, low development cost, and abundant reserves [1,2]. The development of marine
wind energy under the background of encouraging sustainable economic development is
conducive to alleviating the energy crisis and preventing climate change. With the develop-
ment of offshore wind power technology, offshore wind farm construction has gradually
become a key development field [3]. However, the offshore wind farm needs to occupy a
large area of water in the process of construction, and some ship traffic inevitably flows
through the wind farm. With the increasing frequency of offshore wind power construction,
the risk assessment of ship navigation in wind farms water area has also attracted the
attention of scholars at home and abroad [4].

In the water area of the wind farm, ships need to be in close contact with the wind
turbine, and the working frequency is very high. Compared with ships in other water areas,
the collision probability of ships in the water area of a wind farm is greater [5,6]. Especially
in severe weather—such as strong winds, large waves, and dense fog—the maneuverability
of the ship is limited, the visibility in the water area is reduced, and the risk of collision
between the ships and the wind turbines is further exacerbated [7]. With the increase in
offshore wind power construction, the safety of ship navigation in the waters of offshore
wind farms has gradually attracted the extensive attention of relevant scholars. At present,
the research on ship navigation safety in the water area of wind farms mainly focuses on
exploring the variation law of collision risk between ships and offshore wind turbines [8,9].

However, the impact of wind farm characteristics and ship traffic flow characteristics
is not fully considered, and the established collision risk model often cannot reflect the
actual situation of ship/wind turbine collisions. Therefore, it is necessary to analyze
the ship traffic flow in the wind farms water area as the basis of ship navigation risk
assessment [10,11]. By analyzing the variation in characteristics of ship traffic flow, mining
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the potential regularity of traffic flow data, and predicting the traffic flow state in the future,
we can provide a theoretical basis for the formulation of traffic control measures in the
wind farms water area.

Therefore, we propose a method to predict the traffic volume in wind farm areas based
on spatiotemporal dependence. A feature matrix is constructed to represent the spatial
relationship of traffic flow based on Pearson’s Correlation Coefficient (PCC), and then GRU
is established to predict the ship traffic flow. The construction in this paper has two folders:
Firstly, the spatial effects of traffic flow on different routes are considered. Secondly, the
matrix is used as the input of the neural network instead of a single value. The method
proposed in this paper can support the construction of safety supervision in wind farms
water area.

The remainder of this paper is organized as follows: Section 2 reviews research
related to the research and safety of wind farm water and traffic flow prediction. Section 3
elaborates on the framework construction and methodological development, followed
by case studies in Section 4. Finally, Section 5 discusses the major findings and potential
research improvements, and conclusions are summarized in Section 5

2. Literature Review

Traffic flow prediction is an important topic in maritime traffic research. Recently,
the study of ship traffic flow prediction can be divided into statistical methods and
data-driven methods.

Several statistical models have been applied extensively in traffic flow prediction,
including linear regression, ARIMA, Kalman filtering, Bayesian networks, Markov mod-
els, etc. Sun et al. (2003) introduced local linear regression into traffic flow prediction
research [12]. Williams and Hoel (2003) adopted the seasonal ARIMA process to forecast ve-
hicular traffic flow [13]. Getahun (2021) modeled a time series of road traffic accidents based
on ARIMA [14]. Guo et al. (2014) developed an adaptive Kalman filter method for stochas-
tic traffic flow rate prediction [15], while Xie et al. (2007) researched traffic flow prediction
using a Kalman filter with discrete wavelet decomposition [16]. Saeedmanesh et al. (2021)
developed an extended Kalman filter approach for real-time state estimation in multiregion
MEFD urban networks [17]. Smith et al. (1997, 2002) proposed a nonparametric method
for traffic flow forecasting, and compared parametric and nonparametric models [18,19].
Zheng and Su (2014) researched traffic flow forecasting using a constrained linearly sewing
principal component algorithm [20]. Wang et al. (2021) proposed a non-parametric model
with an optimized training strategy for vehicle traffic flow prediction [21]. Castillo et al.
(2008) introduced a Bayesian network for traffic flow prediction [22]. Wang et al. (2014)
designed an architecture for traffic flow prediction using a new Bayesian combination
method [23]. Afrin et al. (2021) estimated traffic congestion based on a Bayesian net-
work [24]. Qi and Ishak (2014) developed a hidden Markov model for the prediction of
traffic flow on freeways [25]. Rajawat et al. (2021) developed a comprehensive framework
for the prediction of human mobility patterns based on a hidden Markov model [26].

In recent years, data-driven methods have been widely used in traffic flow prediction.
The advantage of these methods is their ability to predict future traffic flow directly from
the given big data without modeling the traffic flow phenomenon. Many researchers have
applied SVM regression models to traffic flow prediction and achieved good results [27-29].
Some improved SVM methods are also widely used [30,31]. Yao et al. (2014) developed
a framework in multistep-ahead prediction for rock displacement surrounding a tunnel,
using an improved SVM [32]. Toan et al. (2021) applied an SVM for short-term traffic flow
prediction [33].

Another widely used method is the K-nearest neighbor model, which is easy to
implement because the processes of training data and estimating parameters are simple.
Hong et al. (2015) developed a hybrid multimetric K-nearest neighbor regression model for
traffic flow prediction [34]. Akbari et al. (2011) applied the K-nearest neighbor algorithm
for daily inflow forecasting [35]. Yu et al. (2016) designed a prediction model for multiple-
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I Data preparation

timestep prediction of traffic conditions [36]. Another very important method is machine
learning. Many kinds of research for traffic prediction based on machine learning have
been published [37-42]. Li (2016) applied dynamic fuzzy neural networks for traffic flow
prediction [43]. Huang et al. (2014) proposed a Deep Belief Network (DBN) for traffic
flow prediction, which is a deep architecture [44]. Yang et al. (2016) designed a type
of unsupervised learning architecture of the neural network approach for traffic flow
prediction using the Taguchi method [45]. Lu et al. (2021) proposed a combined method
for short-term traffic flow prediction based on a recurrent neural network [46].

In summary, many researchers have made great progress in the research of traffic flow
prediction, but the assumption that the model parameterization performs relatively badly
in variable traffic conditions affects the majority of statistical models. On the other hand,
data-driven models such as deep learning techniques are often used to make predictions.
Although the accuracy of the deep learning method is higher than that of other algorithms,
the training time is much longer than that of other algorithms. The GRU has fewer param-
eters than other models, reducing the risk of overfitting, and has a shorter training time.
Additionally, the GRU can simultaneously consider the influence of features and historical
time series. At present, GRU networks are mainly used in classification, regression, and
time-series prediction problems. Therefore, a GRU was established to predict the ship
traffic flow in this research.

Several studies have emerged over recent years covering many aspects of wind farms,
such as site selection [47,48], operation and maintenance [49-51], and wildlife impact [52,53],
among others. However, research on traffic flow prediction in the water area of wind farms
is rare at present, and most such studies take a single port or channel section as their research
object, not considering the spatiotemporal dependence of ship traffic flow. Therefore, taking
the supervision of maritime traffic safety in complex waters as the starting point, the water
area of Yancheng wind farms was selected as the research object to predict ship traffic flow
in different routes in the water area of the wind farms.

3. Methodology

The logical framework for the prediction of ship traffic flow in wind farm waters is
depicted in Figure 1; it consists of three components: data preparation, spatial relationship
analysis, and time-series prediction model.

Spatial relationship Time series prediction

4 :(91__1391__23"'91;) I
|

q, = (gz,lﬂgz__zﬂ"'qﬂ) I:h

|
grrr = (q”r:l‘({rrr::'"-q”::}—) I
—— | W _ __ |

analysis
> y > I model >|

| Calculation of | | Construction of GRU
| correlation coefficient || | model

\ i th Y

Construction of || Model performance
correlation matrix | | analysis

Figure 1. Logical framework in this study.

3.1. Data Preparation

As of December 2004, the International Maritime Organization (IMO) required all
vessels over 299 GT to install an Automatic Identification System (AIS) transponder on
board [54]. The increasing number of ships equipped with AISs provides a lot of basic data
for traffic flow prediction research. AIS data are received as a series of messages following
a nonstandard pattern of irregular time intervals. Since there is a lot of noise in the raw AIS
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data, it is necessary to preprocess the data. Firstly, the data of ship position abnormality,
speed abnormality, and course abnormality in the experimental dataset are removed based
on the algorithm proposed by [55]. Then, the linear interpolation method should be used
to interpolate the ship’s AIS data per 10 s.

3.2. Analysis of Spatial Dependence of Ship Traffic Flow

For complex waters, such as wind farms water areas, the ship traffic flow may be
affected by the traffic conditions of adjacent routes. Therefore, considering the spatial
ship traffic flow dependence, Pearson’s Correlation Coefficient (PCC) method was used to
calculate the correlation coefficient between the traffic flows of adjacent routes [56,57]. PCC
is the covariance of the two variables divided by the product of their standard deviations.

Adding the route information with high correlation to the prediction model improves
the accuracy of the marine traffic flow prediction model. If the traffic flow sequence of
section x and section y is as follows:

qx = (¢7x,1, qx2, " 'Qx,T)/ (1)

‘7y = (‘Jy,lr qy,Z/ ce qy/T), (2)

then the correlation coefficient of the two sections is given by:

Dy = Zszl (Qx,i - ‘TX) (qy,i - @)
o ) __ 2
\/ZiTzl (9y,i — qy) \/ZiT:1 (9y,i — Ty)

where pyy, is the degree of correction between x and y, referred to as the correlation coeffi-
cient, while T represents the length of the time series. The closer Pxy is to 1, the greater the
correlation between the target section and the adjacent section. When p,, = 0, there is no
correlation between the target section and adjacent sections. When 0 < p, < 0.5, this indi-
cates that the correlation between the target section and adjacent sections is low. To ensure
the prediction accuracy of the model, 0.5 < p,,, <1 was set as the spatial threshold range.

’ ®)

3.3. Time-Series Prediction Model Based on an Improved Recurrent Neural Network

A GRU can be used to mine the time characteristics of traffic flow and capture the
time dependence of ship traffic flow [58-60]. Cho et al. introduced a GRU as a gating
mechanism in recurrent neural networks [61]. The GRU's functions are similar to those of a
Long Short-Term Memory (LSTM) network with a forget gate, but with fewer parameters.
The GRU outperformed LSTM on certain tasks, such as polyphonic music modeling, speech
signal modeling, and natural language processing. The GRU also uses only two parameters,
which can help to reduce the risk of overfitting. The basic structure of the GRU is shown in
Figure 2.
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Figure 2. Diagram of the model structure used in this research: (a) Whole structure of the model.
(b) Basic structure of the GRU.
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X(y) represents the input signal vector of the current node; h; _ 1) represents the hidden
state vector passed down from the previous node, h is the output vector, and h’( t) is
candidate activation vector; 7y is the reset gate vector, z( is the update gate vector, while o
represents the original function, and is a sigmoid function. The GRU uses x(; and h _ 1) to

obtain two gating states; the functions of the reset gate and update gate are as follows:
r(t) = Sigmoid_l(W,(h(t_l),x(t))), (4)

Z(t) = Sigmoid_z(wz(h(t_l)/x(t)))’ (5)

where W, is the weight matrix of reset gate, while W, is the weight matrix of the update
gate. After obtaining the gating signal, use h’( 1) =T © h(;_1) to reset the data, then

splice h’( 1) and x(;. The activation function tanh is used to standardize the data to obtain

h’( 0y the calculation formula is as follows:

Wy = tanh (W (h_n) @ 7, x(0)) ), ©)

where the operator © denotes the Hadamard product, W, is the weight matrix of candidate
activation in the GRU, and h’( H mainly contains the current input x(;), which adds h’( p to
the current hidden state and effectively remembers the current state.

In the last memory update stage, forgetting and memorizing steps are both used, as is

the previously obtained update gate z; the update expression is as follows:
hwy =2 © hy + (1= 2()) © iy, @)

where /1 ,, represents the output of the network at the moment t and z(;) € (0,1). The input
of each layer of the GRU considers the output of the previous layer of the GRU, so as to
capture the timing relationship of ship traffic flow. After constructing a GRU, it is used as
the basic unit from sequence to sequence as a model to generate the final prediction result.

The ship traffic flow in an area is related not only to the actual traffic flow in the given
moments, but also to the spatially related route. Therefore, compared with the traditional
ship traffic flow prediction method, a PCC algorithm can be introduced to calculate the
correlation of traffic flow between different routes. This method can screen the areas with
high correlation and reconstruct the spatiotemporal dependence matrix, in order to improve
the input of the GRU model and to predict the ship traffic flow in complex waters more
accurately. The algorithm flow is as follows:

(1) According to the characteristics of traffic flow structure in complex waters, the
temporal and spatial characteristic matrix of multiple observation sections is defined as Q.

q1 qi1 912 - quT
qz 421 422 - 42T

e=1| . |=| T S ®
qm Am1 9m2 - 9m,T

where g,, is the time series of the observation section, and g, r is the traffic volume of
observation section m at the moment T;

(2) Calculate the correlation coefficient between the traffic flow at the observation
section of two routes, constructing a spatial correlation matrix as follows:

P11 P12 - Pim
P21 P22 - P2m

Pxy = . . . ; (9)
Pm1 Pm2 - Pmm
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(3) Rank traffic flow correlation between sections. Select the sections to be predicted
and sort the other sections by correlation;

(4) Set the correlation threshold 6. The sections with a correlation greater than ¢ are
reconstructed into a new spatiotemporally dependent characteristic matrix;

(5) Build the GRU model. The input of the GRU model is improved by using the
reconstructed spatiotemporal dependence characteristic matrix, and the improved GRU is
used to predict ship traffic flow;

(6) Calculate the Mean Absolute Percentage Error (MAPE); taking the minimum MAPE
as the final optimization goal of the model, the optimal spatial threshold is determined;

(7) Results and analysis: To quantitatively analyze the prediction results and the
performance of the model, the Mean Absolute Error (MAE), Root-Mean-Square Error
(RMSE), Mean Absolute Percentage Error (MAPE), and R? are used as prediction and
evaluation indicators. The calculation method is as follows:

1
MAE = EZﬁpi — x|, (10)
1
RMSE = /=Y (pi = x:)’, (11)
_ 1 n |pi — xil
MAPE = —) ) T (12)
no(n )2

RE =1 Zi P x) (13)

Y1 (xi—x)

where p; is the predicted value obtained by PCC-GRU and by SVM, LSTM, and ARIMA
in the control experiment; x; is the actual value; X; is the average of the actual flow
section values.

4. Case Study
4.1. Research Area and Data

Due to the influence of meteorological and hydrological conditions, construction con-
ditions, and water area location, the water area traffic environment of wind farms presents
complex temporal and spatial characteristics. Based on AIS data, real-time prediction of
ship traffic flow changes in different stages of wind farm groups can provide an effec-
tive means for daily maintenance of wind farms and safety monitoring in the process
of construction.

To verify the effectiveness and feasibility of the model, the wind farm water area in
Jiangsu Province was selected as the research object, as shown in Figure 3. The cross-section
flow statistics of complex routes in the region were evaluated. The routes observed in this
research were routes recommended in nautical charts, and the observation section was set
in these routes. If a ship passes through the observation section, the traffic volume increases
by 1.
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Figure 3. Schematic diagram of the observation section in the Yancheng wind farm area.

The cross-sectional diagram is shown in Figure 3. The location information of the
section is shown in Table 1. The traffic flow time series from 1 to 29 March 2021 was selected
as the training data, and the traffic flow data on 30 March were used as the verification
set. The ship traffic flow data of sections H1-H11 were collected in hours, and the ship
traffic flow data for one day were obtained, as shown in Table 2. q1—411 represent the traffic
volume through sections H1-H11, respectively. Traffic volume is measured as the number
of ships in the section during the given time.

Taking section H5 as an example, the model proposed in this paper was used to
predict ship traffic flow. Spatial state variables and temporal state variables were the
two input parameters of the model. The spatial state variable is a matrix formed by the
correlation coefficients between sections, while the time state variable refers to the time
interval adopted by the spatial matrix. When the neural network model was built, the
recurrent neural network of each layer of encoder and decoder had several GRUs. The
number of GRUs is always a multiple of 2—generally between 16 and 128; if it is too large,
it will increase the computational complexity and make the training time too long; if it
is too small, it will also affect the performance of the model. Figure 4 provides the MEA
and RMSE of the experiments using different numbers of GRUs. The GRU number of 64
obtained the lowest error. Therefore, we set the number of GRUs to 64 in our experiments.
The validation set loss of the experiment using different batch sizes is shown in Figure 5.
The batch size of 8 yielded the lowest error. As a result, the batch size of our model was set
to 8. When a complete dataset passes through the neural network and returns, the process
is called an epoch; we set the number of epochs to 100. Table 3 shows the hyperparameters
used by PCC-GRU in the experiment. All experiments were conducted in Keras on a laptop
with an NVIDIA 2080ti GPU, an Intel Core 19-9900KF CPU (3.6 GHz), 16 GB RAM, and the
Windows 10 operating system.
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Table 1. Coordinates of the observation section.

Sections P P,
H1 120.06495° E 34.75165° N 120.13086° E 34.96235° N
H2 120.02375° E 34.69723° N 119.96195° E 34.42275° N
H3 120.35502° E 34.76512° N 120.27413° E 34.64402° N
H4 120.26468° E 34.49281° N 120.20728° E 34.42028° N
H5 120.57021° E 34.48273° N 120.47371° E 34.43313° N
Hé6 120.47302° E 34.35673° N 120.57023° E 34.30368° N
H7 121.30618° E 34.65731° N 121.08612° E 34.45872° N
H8 121.04723° E 34.20372° N 120.93305° E 34.15846° N
H9 120.88817° E 34.13275° N 120.77619° E 34.08367° N
H10 120.72357° E 34.06888° N 120.78652° E 33.81706° N
H11 121.32603° E 33.78164° N 121.21804° E 33.26723° N

Table 2. Ship traffic flow per hour on 30 March 2021.
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Table 3. Hyperparameters used in PCC-GRU.

Hyperparameter Value
Epochs 100
Dropout Rate Rate
Learning Rate 0.0005
Batch Size 8
Hidden Unit 64
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Figure 4. MAE and RMSE with the same number of GRUs: (a) MAE of the experiment. (b) RMSE of
the experiment.
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Figure 5. The loss of different batch sizes.

4.2. Results and Analysis

The data of four sections (H3, H5, H9, and H11) were selected to verify the method
proposed in this research. In order to set the optimal threshold of PCC and time steps in
the GRUs, many experiments were carried out in this research. Indicators for evaluating
the experimental results can be calculated using Equations (10)—(13). In these equations,
x; is the temporary ship traffic volume value measured on 30 March 2021, while p; is the
predicted value by PCC-GRU, calculated with different parameters.

To study the influence of spatiotemporal state variables on prediction accuracy and
determine the optimal parameters, the thresholds of PCC were set as 0.8, 0.7, 0.6, and 0.5,
because when the threshold is greater than or equal to 0.8, there is no section related to H3,
H5, H9, or H11 in space. To improve the prediction accuracy, the PCC algorithm was used
to select spatial characteristic variables. From the position of each observation section, it
can be seen that the sections with a large correlation and with the target section are located
in the water area around the target, indicating that the traffic flow of the surrounding
water area has a great impact on the target section. According to the actual situation,
the effectiveness of the PCC algorithm in spatial feature variable selection was verified.
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Timesteps are an import parameter in neural networks. If the number of timesteps is 7,
that means that we think that each value is related to n values in front of it. If the timestep
used in prediction is too large, it will lead to time information redundancy and affect the
accuracy of the prediction results. If the timestep is too small, it will lead to overfitting of
the model. The performance of the model can be seen in Tables 4-7, where the timestep of
7 obtains the lowest error. Therefore, we set the timestep to 7 in our experiments.

Table 4. Prediction performance of different thresholds in H3.

Section Time

2
Threshold p 000 H  Steps MAE RMSE MAPE R

3 1.61207 175961 4258056  0.16006

4 1.16523 138184 3499692 048199

0.8 / 5 0.69115 082319 1832865 071491
6 0.67851 0.80884  19.62209 081716

7 0.65454 078254 1845094  0.82826

3 1.47985 169798 4162103 0.15091

4 1.16954 138582 3364929 047622

0.7 Hl 5 0.70286 0.88204 20.64433 0.82194
H5 6 0.66256 083853  19.73351 0.80314

7 0.65273 074592 1875563  0.81522

3 1.31057 168343 3971651  0.13742

H1 4 1.20977 130272 3635331 0.45431

0.6 H5 5 0.66667 081497 2085102 081914
H8 6 0.66667 076497  19.59404  0.88914

7 0.53453 068563  10.65256  0.90365

3 1.31057 168343 39.71651 013742

H1 4 1.20977 130272 3635331 045431

0.5 H5 5 0.66667 081497 2085102  0.81914
HS 6 0.66667 076497  19.59404  0.88914

7 0.53453 068563  10.65256  0.90365

Table 5. Prediction performance of different thresholds in H5.

Section Time 2
Threshold Related to H5 Steps MAE RMSE MAPE R

3 1.58275 1.76979 38.51897 0.22023

4 1.21120 1.41877 30.82569 0.49887

0.8 / 5 0.67241 0.82000 16.96503 0.83260
6 0.66235 0.81385 16.22976 0.83510

7 0.64080 0.80765 16.31632 0.83760

3 1.41724 1.75878 38.06598 0.39443

4 1.16666 1.39777 29.46423 0.51568

0.7 H3 5 0.66816 0.81505 16.21954 0.83117
H8 6 0.63662 0.79003 15.56588 0.84225

7 0.63345 0.72873 15.60616 0.85674

3 1.39669 1.69558 36.73457 0.32426

Hi1 4 1.16373 1.33858 28.51531 0.59998

0.6 H3 5 0.66104 0.80524 15.78878 0.82455
HS8 6 0.64689 0.78769 13.30716 0.89652

7 0.62234 0.71074 9.47337 0.91359

3 1.39669 1.69558 36.73457 0.32426

H1 4 1.16373 1.33858 28.51531 0.59998

0.5 H3 5 0.66104 0.80524 15.78878 0.82455
HS8 6 0.64689 0.78769 13.30716 0.89652

7 0.62234 0.71074 9.47337 0.91359
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Table 6. Prediction performance of different thresholds in H9.

Section

Time

2
Threshold p ™10 Steps MAE RMSE MAPE R
3 1.48127 1.86125 30.61857 0.23653
4 1.22701 1.42535 25.32567 0.30146
0.8 / 5 0.68241 0.83008 14.76454 0.76802
6 0.67965 0.82055 13.19848 0.77274
7 0.66523 0.81516 1253072 0.78172
3 1.46275 1.85476 29.59729 0.25606
4 1.12356 1.37632 23.55022 0.34897
0.7 Hé 5 0.66839 0.82769 13.284 0.77004
6 0.61092 0.82319 13.10851 0.78238
7 0.60939 0.80334 12.46232 0.79934
3 1.45873 1.80834 3170823 0272437
4 1.10492 1.37089 2386203  0.367155
0.6 Fi4 5 0.63366 0.82304 14.44496 0.81392
Heé 6 0.61264 0.82218 14.5587 0.83497
7 0.60034 0.80091 1153072 0.85034
3 1.42701 1.76694 30.44643 0.27749
H2 4 110471 1.36167 24.53903 0.36465
05 H4 5 0.62425 0.78569 12.67354 0.84606
Hé6 6 0.58977 0.77932 11.04543 0.89926
7 0.56942 0.75345 9.59432 0.92342
Table 7. Prediction performance of different thresholds in H11.
Threshold Section Related  Time MAE RMSE MAPE R2
to H11 Steps
3 1.51585 1.78957 21.30284 0.39355
4 1.21831 1.42137 16.93147 0.58054
0.8 / 5 0.67381 0.82084 10.42556 0.69343
6 0.64799 0.80493 9.12566 0.79752
7 0.62345 0.79238 8.70294 0.80071
3 1.50861 1.77856 21.14639 0.45469
4 1.17674 1.39735 16.42899 0.61225
0.7 HS 5 0.68965 0.81455 10.25764 0.79094
6 0.66667 0.80497 9.05628 0.74576
7 0.61225 0.75934 8.57453 0.83634
3 1.48741 1.74551 20.91039 0.48333
4 112575 1.33582 15.97794 0.67957
0.6 H8 5 0.65062 0.80676 10.17630 0.79775
H3 6 0.62077 0.79132 8.80699 0.83894
7 0.60225 0.76385 8.53494 0.85846
3 1.42989 1.76357 18.58104 0.56642
H5 4 1.06954 1.31858 13.15588 0.69508
05 Hs 5 0.61793 0.76473 9.267573 0.85563
HY 6 0.58345 0.72785 8.238327 0.89162
7 0.52425 0.68346 7.33485 0.92125

Further analysis of the impact of timestep on prediction accuracy shows that the
selection of different parameter combinations will change the prediction accuracy of the
model. Within a certain range, the prediction accuracy is positively correlated with the
timestep. In a certain range, with the decrease in the spatial threshold, the spatial correlation
between observation sections is lower. In the case of a high threshold, too little information
on other sections leads to a poor prediction effect. In the case of a low threshold, too
much irrelevant information is added to interfere with the prediction effect. Based on the
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prediction performance of different thresholds in Tables 4-7, the threshold was set to 0.5,
0.5, 0.6, and 0.6, respectively. The predicted and true values of observation sections H3, H5,
H9, and H11 in the training dataset are shown in Figure 6; the predicted results are in good
agreement with the actual values, indicating that the PCC-GRU model is feasible in the

actual traffic scenario.
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Figure 6. Prediction results of the PCC-GRU model: (a) Training data in H3. (b) Training data in H5.
(c) Training data in H9. (d) Training data in H11.

To verify the prediction performance of the PCC-GRU model, comparative experi-
ments were set up in this study. LSTM, SVM, and ARIMA were used to predict the traffic
flow of H3, H5, H9, and H11. These methods are commonly used in maritime traffic flow
prediction [62-64]; therefore, these methods were used as benchmarking methods. After
many experiments, the parameters of each model in the experiment were determined, as
shown in Table 8. The prediction results of the ship traffic flow of each model are shown in

Figure 7.

Table 8. Parameter setting of models.

Model Parameter
Neuron 12
LSTM Timesteps 5
Number of Iterations 300
Kernel Function Radial Basis Function
SVM Penalty Factor 0.8
Number of Iterations 500
Autoregressive Terms 2
ARIMA Moving average Terms 6
Difference Items 1
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Figure 7. Comparison of prediction results of different models: (a) Prediction results in H3. (b) Pre-
diction results in H5. (c) Prediction results in H9. (d) Prediction results in H11.

It can be seen from Table 9 that different models have different results in the traffic flow
prediction experiment in the wind farms water area. In our case study, the LSTM model
did not take into account the spatial information in the data, so its prediction accuracy was
lower than that of the PCC-GRU model, and the time taken to train the LSTM model was
too long for real-time prediction of maritime traffic flow. The machine learning algorithm
SVM is suitable for short-term traffic forecasting, but the output of the SVM model will
oscillate as the training data and the forecasting time increase. Meanwhile, the linear
model ARIMA is unable to identify the randomness and nonlinearity in the data, making
it difficult to make accurate predictions of random changes in traffic. The MAE of the
PCC-GRU model in the prediction experiments of the four sections (H3, H5, H9, and H11)
was 0.3333, 0.3750, 0.3333, and 0.3333, respectively; the RMSE of the PCC-GRU model of
the four sections was 0.5774, 0.6124, 0.5774, and 5774, respectively, while the MAPE was
8.1597, 7.0006, 10.7639, and 5.1403, respectively, which is the smallest in the comparative
analysis of the models. R? is usually used to describe the fitting degree of the data; the
closer it is to 1, the better the fitting degree, and the smaller the deviation between the
fitted curve and the original data points. The R? of the PCC-GRU model was 0.8799, 0.9116,
0.9063, and 0.9521, respectively, which was greater than that of other models. The bar
chart of the error analysis indicators can be seen in Figure 8. In conclusion, the prediction
results of the PCC-GRU model are closer to the observed values, and the performance of
its algorithm is better than that of other traditional traffic flow prediction methods. The
analysis of vessel traffic flow is the basis for evaluating the safety of vessel navigation in a
given area of water. By predicting the ship traffic flow in the wind farms water area and
maintaining real-time monitoring, it is possible to predict the business of vessel navigation
and to control the traffic flow to avoid close-quarters situations.
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Table 9. Performance comparison of different models.

Evaluation Indexes

Models
MAE RMSE MAPE R?
PCC-GRU 0.3333 0.5774 8.1597 0.8799
ARIMA 0.8750 1.0992 242411 0.5647
H3 SVM 0.5833 0.7638 165972 0.7899
LSTM 1.3333 1.5275 36.9792 0.1595
PCC-GRU 0.3750 0.6124 7.0006 09116
ARIMA 0.9167 1.0801 21.6402 0.7250
H5 SVM 0.6667 0.8165 17.3247 0.8429
LSTM 1.1250 1.3385 27.1957 0.5774
PCC-GRU 0.3333 0.5774 10.7639 0.9063
ARIMA 0.8333 1.0000 26.6022 0.7188
H9 SVM 0.7083 0.8416 24.2640 0.8008
LSTM 1.0417 1.3385 34,2758 0.4961
PCC-GRU 0.3333 0.5774 5.1403 0.9521
ARIMA 0.9167 1.1902 14.7058 0.7964
HI1 SVM 0.7083 0.8416 11.9562 0.8982
LSTM 1.3750 1.5679 22.7626 0.6466

B PCC-GRU

MAPE

(@)

Figure 8. Bar chart of the error analysis indicators: (a) MAE of five prediction results. (b) RMSE of
five prediction results. (c) R? of five prediction results. (d) MASE of five prediction results.
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References

5. Conclusions

According to the needs of traffic characteristic analysis and traffic supervision in com-
plex waters, this study introduced the spatial correlation of ship traffic flow structure into
machine learning based on the variant GRU of the recurrent neural network, constructing a
spatiotemporal dependence characteristic matrix of ship traffic flow, and improving the
prediction accuracy of the ship traffic flow by the neural network. The PCC algorithm is
simple to implement and fast to compute, taking into account the degree of correlation of
time series at different times, and it is suitable for determining correlation between random
variables. The GRU uses a unique memory module instead of implicit nodes, which in-
creases the robustness of the model and can effectively compensate for the shortcomings
of traditional neural networks that cannot effectively process long time series. Taking the
water area of the wind farm in the Yancheng sea area of Jiangsu Province as an example,
the traffic flow in this area was predicted. Compared to results of the commonly used ship
traffic flow prediction models ARIMA, SVM, and LSTM, the GRU method’s prediction
was proven to be effective. The machine learning algorithm SVM is suitable for short-term
prediction of traffic flows, but as the prediction time increases, the output of the SVM model
will oscillate. The linear model ARIMA cannot identify the randomness and nonlinearity in
the data, making it difficult to accurately predict the random changes in traffic. The LSTM
model does not take into account the spatial information in the data, and therefore has a
lower prediction accuracy than the PCC-GRU model.

By predicting the ship traffic flow and analyzing the temporal and spatial characteris-
tics of traffic flow in complex waters, the marine traffic situation can be evaluated in real
time, providing a theoretical basis for the risk evaluation and navigation safety guarantee
of complex waters—especially the waters in wind farms with multi-route intersection—and
reduces the risks of navigation and operation in the waters. Modelling the spatiotemporal
dependence of ship traffic flow is a key area of future research. There are many factors
affecting traffic flow prediction that have not been fully considered in this paper. The model
proposed in this paper learns static spatial dependencies; however, the dependencies be-
tween locations may change over time. In subsequent research, dynamic structures should
be considered in order to further improve the prediction performance.
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Abstract: Due to the high error frequency of the existing methods in identifying a ship’s navigational
intention, accidents frequently occur at intersections. Therefore, it is urgent to improve the ability to
perceive ship intention at intersections. In this paper, we propose an algorithm based on the fusion of
image sequence and radar information to identify the navigation intention of ships at intersections.
Some existing algorithms generally use the Automatic Identification System (AIS) to identify ship
intentions but ignore the problems of AIS delay and data loss, resulting in unsatisfactory effectiveness
and accuracy of intention recognition. Firstly, to obtain the relationship between radar and image, a
cooperative target composed of a group of concentric circles and a central positioning radar angle
reflector is designed. Secondly, the corresponding relationship of radar and image characteristic
matrix is obtained after employing the RANSAC method to fit radar and image detection information;
then, the homographic matrix is solved to realize radar and image data matching. Thirdly, the
YOLOVS detector is used to track the ship motion in the image sequence. The visual measurement
model based on continuous object tracking is established to extract the ship motion parameters.
Finally, the motion intention of the ship is predicted by integrating the extracted ship motion features
with the position information of the shallow layer using a Bayesian framework. Many experiments
on real data sets show that our proposed method is superior to the most advanced method for ship
intention identification at intersections.

Keywords: ship intention identification; AIS; RANSAC; Bayesian framework; YOLO; intersection

1. Introduction

Due to the combination of information technology and ship technology, ship safety
has experienced rapid developments. Although a variety of water situation awareness and
intelligent collision avoidance technologies have been developed, ship collision accidents
still occur frequently in ports and other complex waters, resulting in severe economic losses
and environmental pollution. According to the Shanghai Maritime Safety Administration
report, 47% of ship collisions occurred at waterway intersections (Shanghai Maritime Court,
Shanghai, China, 2018). These accidents occur mainly because the seafarers are unable to
correctly identify or predict the motion intentions of other ships in the intersections. There-
fore, it is of significance to study the vessel intention perception methods at intersections
and channels.

Although intention prediction has received increasing research in the field of road
traffic in recent years, there has been little research on the intention prediction of maritime
safety of ships. Moreover, the existing research on the prediction of ground vehicle driving
intention cannot be directly applied to ships. For example, ships can travel over relatively
wide areas without being restricted by roads. In addition, there is no fixed channel to
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separate ships with different maneuvers, which increases the uncertainty of the ship’s
trajectory, thus increasing the difficulty of ship navigation prediction. Beyond that, the
movement of ships is susceptible to environmental conditions (such as wind, waves, and
ocean currents) and surrounding ships in waterways. As a result, ships may exhibit
different motion patterns even if they travel along the same route, further complicating
the prediction of ship intentions. Most importantly, ships cannot perform maneuvering
operations such as sudden stops, turns, or reversals unlike ground vehicle movements.
Furthermore, it takes more time and space for a ship to transition from one state of motion
to another. Therefore, the intention prediction method of ground vehicles cannot correctly
describe the long-distance movement of ships.

In order to solve the problem of rapid identification of ship intentions, we propose a
scheme to update and predict ship intentions based on channel video surveillance and radar
data under the Bayesian framework. Firstly, a cooperative target composed of a group of
concentric circles and a centrally positioned radar angle reflector was designed to obtain the
relationship between radar and image data in this paper. Secondly, the RANSAC method
was used to fit the radar and the image detection information, and then the homographic
matrix from the radar coordinate system to the image coordinate system was obtained.
Thirdly, a visual measurement model based on continuous object tracking was established
to extract the motion parameters of the ship. Finally, the motion intention of the ship was
predicted by integrating the extracted ship motion features with the position information
of the shallow layer using the Bayesian framework. The main contributions of this work
are threefold:

1. A ship motion model based on monocular vision is established, which can extract
ship motion parameters real-time and is not affected by AIS delay;

2. The accuracy of ship intention prediction can be further improved by using the
environmental information of the channel effectively;

3. A dynamic Bayesian model is established that can accurately identify the ship’s intention.

The remainder of this paper is organized as follows. Some related works are introduced
in Section 2. In Section 3, we will discuss the methodology of our algorithm. Experimental
and model prediction performances are reported in Section 4. Finally, the work is concluded
in Section 5.

2. Related Work

There are several relevant studies in the literature on the navigational intention pre-
diction of ships. For example, Tang Huang et al. [1] from Dalian Maritime University
found that there were field errors and obvious noise in the original AIS track data set
of ships and that these data were often irregular timing data. Therefore, they proposed
an improved trajectory similarity measure with a directional resolution to improve the
accuracy of trajectory clustering. On this basis, they used the Long Short-Term Memory
(LSTM) neural network to accurately predict ship behavior. Steidel et al. [2] believe that
traditional maritime abnormal behavior detection and the prediction of a ship’s naviga-
tional intention mainly focus on the development of methods to extract typical ship motion
patterns from historical traffic data without considering contextual information. Therefore,
he proposed a method to predict a ship’s intention by combining historical ship traffic
data with information about shipping routes. Later, Pietrzykowski used AIS online data
to analyze if the ship’s operation and identification behavior were potentially risky [3].
Based on this, Zhang Hong used a data mining method to analyze the AIS data of tuna
purse-seine fishing ships to identify the operation state of tuna purse-seine fishing ships [4].
In addition, Gao et al., for example, constructed a Bi-LSTM-RNN model, which can be
used for AIS date and time series feature extraction and online parameter adjustment to
realize online real-time prediction of ship behavior. This algorithm enhanced the correlation
between historical data and future data, thus improving the prediction accuracy [5]. Later,
Kawamura used a GPU SPH simulator to predict the motion of a 6-dOF ship in harsh
water transport conditions [6]. The study of Murray et al. deconstructed ship behaviors

86



J. Mar. Sci. Eng. 2022, 10, 639

into clusters according to specific regions, and each cluster contained similar trajectory
behavior characteristics. A deep learning framework was used to predict ship behavior for
each specific cluster. This algorithm believes that the future navigation trajectory of a ship
can be predicted by inputting the past trajectory of a ship in a specific area. However, the
influence of environmental factors was not considered in this method, which is somewhat
different from the actual situation of ship navigation [7].

Ma et al. conducted two valuable studies [8,9]. First, they proposed to extract the
mutual behavior between ships from AIS tracking data to capture the spatial dependence
between ships that meet and then predicted the ship’s intention and collision risk based
on a LSTM network. Later, they devised a data-driven approach that linked movement
behavior to future and early risks, and predicted a ship’s collision risk by classifying
behavior into appropriate risk levels. In reference [10], it was assumed that all ships in
the scene could not share the same motive and decision of motion, and the observation-
inference-prediction-decision (OIPD) model was proposed to avoid collisions by repeatedly
iterating the difference between observation and prediction information. Tang [11] used a
grid-based method to discretize the historical AIS data into track segments and established
a probabilistic directed graph model. Through this model, the state characteristics of each
node ship can be counted, and the navigation state of the ship can be detected by the
probability graph obtained.

Some recent studies include, for example, [12] a proposed a new spatial-temporal
geographic method to solve the risk behavior of multi-ship collision based on ship move-
ment. The direction-constrained space-time prism was used to characterize the possibility
of the ship’s interaction, which enabled the assessment of the ship’s potential collision risk.
Suo proposed a modeling method based on a cellular automata simulation to analyze and
evaluate maritime traffic risks in a port environment in real-time [13]. Then, Alvarellos
et al. established a deep neural network to predict the damage to ships anchored in ports
caused by environmental effects within 72 h by considering the influence of ship size,
sea state, and weather conditions on ship motion [14]. Based on the above work, Xue
proposed a knowledge learning model under multienvironment constraints to analyze ship
risks in port waters and improve the decision-making basis for autonomous navigation of
intelligent ships [15].

Some other works are also of great research value in predicting ship intentions. Al-
izadeh proposed a point-based and track-based model, considering the constant distance
between the target and the sample trajectory. The LSTM method was then used to mea-
sure the dynamic distance between the target and the sample trajectory, and predict the
short-term and long-term trajectory of the ship [16]. Subsequently, Praczyk et al. extracted
spatial direction (Euler Angle) from the inertial navigation system and used an improved
neural network to predict ship behavior [17]. Zissis used an artificial neural network to
predict the future position, speed, and heading behaviors of ships on a large scale based on
historical AIS data [18].

Mining-related behavior characteristics from AIS data is a general method to study
ship behavior. However, due to the large ship flow in inland river confluence waters, AIS
data bandwidth is insufficient, and uploading is not timely, which leads to the low real-
time prediction of ship navigation intention. It is easy to miss the best decision time and
increase the risk of ship collision. In this paper, the motion intention of ships is predicted
by combining visual and radar data based on the Bayesian framework, and the problem
of accuracy and real-time intention prediction is successfully solved. Firstly, to obtain
the relationship between radar and image, a cooperative target composed of a group of
concentric circles and a central positioning radar angle reflector is designed. Secondly, the
corresponding relationship of radar and image characteristic matrix was obtained after
employing the RANSAC method to fit the radar and the image detection information.
Then, the homography matrix was solved to realize the radar and the image data matching.
Thirdly, the extended YOLO detector was used to track the ship motion in the image
sequence, and the visual measurement model based on continuous object tracking was
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established to extract the ship motion parameters. Finally, the motion intention of the
ship was predicted by integrating the ship motion features extracted with the position
information of the shallow layer using the Bayesian framework. At the same time, in order
to verify the feasibility of the proposed method, experimental scenarios were designed
according to the scene characteristics of the intersection area of Wuhan Yangtze River and
Han River, and the ship intention recognition algorithm was verified successfully.

3. Methodology

The proposed method takes a dynamic Bayesian algorithm as the main framework
and introduces a new image measurement method to extract the motion characteristics of
the ship. To better introduce the idea of the proposed algorithm, this section is divided
into three sub-sections. In Section 3.1, we will describe how to process sequential images
to measure ship speed and angular velocity, in which the measurement model will also
be introduced in detail. In Section 3.2, we will discuss how to map an object in the image
sequence to an electronic chart. In Section 3.3, how to use a dynamic Bayesian algorithm to
estimate the navigation intention will be introduced in detail. The overall description of
our algorithm is shown in Figure 1.

Targetrecognition ______,f |mage preprocessing

network
Y i
Visual radar Extractlon. of ship’s
h A motion
calibration

characteristics

Y
Electronic chart Static feature
R

mapping marking

Y
Identification of

ship's intention

Bayesian framework ——f

Figure 1. Framework based on vision and Bayesian framework for intent prediction of vessels.

3.1. Radar and Vision Fusion Calibration

Monocular vision and millimeter-wave radar signal have their own characteristics; for
example, monocular vision has the advantages of simple structure and strong robustness,
while millimeter-wave radar has the advantages of accurate positioning, etc. [19]. Compared
with the measurement results of a single sensor, radar and vision fusion measurements
can obtain more ship attitude and motion information [20]. However, this method usually
requires calibrating radar and visual measurement results first. Therefore, it is necessary to
design a cooperative objective for calibration that meets the following requirements:

1. Visual signals are sensitive and easy to accurately detect the position of fixed points;
2. The radar echo signals are strong and easy to accurately detect the position of the
fixed point;

Therefore, we creatively designed a radar and vision cooperative target, as shown in
Figure 2. The cooperative target consists of a set of concentric circles and a centrally located
radar reflector. In order to obtain the sub-pixel coordinates of the center projection point,
a recursive algorithm based on harmonic relation was proposed. Then, the radar points
and image points were fitted to obtain the linear correspondence to accurately obtain the
homographic matrix of radar coordinates to image coordinates.
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Figure 2. Radar-Vision cooperative target.

Millimeter-wave radar is the main component of the surface target information ac-
quisition system. The millimeter-wave radar used in this paper is the ARS300 series radar
provided by Continental, Germany, which operated at 77 GHz and can detect up to 40 tar-
gets simultaneously, and is equipped with a special controller. This millimeter-wave radar
has the characteristics of small size, strong anti-interference ability, and stable detection. Its
performance indicators are shown in Table 1.

Table 1. Radar performance indicators.

Indicators Detection Distance Working Frequency Range Accuracy Speed Range Detection Range

Performance

2 km 77 GHz 0.5m 265 km/h near 60° far 20°

The millimeter wave radar detection is divided into short-range wave and long-range
wave ranges. The long-range wave mainly captures distant targets and improves detection
distance; The short-range wave mainly expands the radar perspective and reduces the dead
detection zone. The millimeter-wave radar detection range is shown in Figure 3.

1km/60° ./ 2km/£20°

Figure 3. Radar detection range.

Assuming that the homogeneous coordinate of a point on the radar detection plane
is pr = (X1, Y1, 1)T, and the homogeneous coordinate of a point on the image plane is
pi = (u,v, 1)T, Equation (1) indicates the conversion relationship from the radar coordinate
system to the image coordinate system.

sp; = Hpy 1)

where, s is a scalar and H is a 3 x 3 reversible homography matrix with 8 degrees of
freedom. The purpose of calibration is to estimate the homography matrix H. After moving
linearly in the common field of vision of the camera and radar during calibration, a series
of radar and image points can be captured, and then the image sequence was processed
to extract the coordinates of the concentric circles in each image. It should be emphasized
here that the concentric circle center coordinates corresponded to the center of the image
coordinates of the radar reflector. Finally, the least-squares method was used to fit the
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image point sequence and the radar point sequence. It was assumed that the connection
line of the continuous image center point is  and that of the radar detection point is L,
which has the following relationship:

Tp; =0, LTp, =0 2

Combined with Equations (1) and (2), the relationship between the straight lines in
the image plane and the radar plane is shown in Equation (3):

sL=HTl 3)

Solving Equation (3) requires at least four sets of corresponding lines. We found
that there was no need to align the time stamp of the radar data and the single frame
of the video series, and the linear motion of the calibrated target can be easily captured
by the radar due to the motion prediction algorithm adopted when the radar tracks the
target. Therefore, the homographic matrix H can be calculated by using the linear-based
homographic estimation method.

Figure 4 is the result of calibration using the method proposed in this section, where
the blue dot represents the radar detected target and the red dot represents the pixel
coordinates, which are consistent with the position of the ship detected in the image to
achieve the radar and visual fusion calibration.
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Figure 4. Radar and visual calibration results.

3.2. Object Detection

The purpose of image preprocessing is to capture every frame of the video and detect
the moving ships after removing the random noise from the images. At present, the
common object detection methods include the frame difference method [21], the motion
modeling method [22], and the deep learning method [23]. These methods are simple
and fast. However, in contrast, the frame difference and motion modeling methods are
susceptible to environmental changes such as light changes and noise.

Through experiments, we found that the You Only Look Once (YOLO) series methods
based on deep learning had the best detection results. Therefore, in the following paper,
we employed a YOLO v5 network to extract moving ships in images [24]. YOLO v5
detection network is a typical object detection network, which has been widely used in
many detection tasks and can meet the requirements of real-time detection of moving ships.
Although this method is faced with the challenge of long training times, we can train the
network offline in the actual ship detection task, so the training time cost is acceptable for
the ship detection task.

This study uses a method based on supervised learning to detect the ship. Specifically,
the ship detector based on YOLO is built, and a foreground recognition module is inserted
into the detector to ensure that for each detected ship object, the detector would output its
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specific position in the image coordinate system (usually represented by a rectangular box).
In the training process, the YOLO detector model was firstly pre-trained on a public object
detection dataset [20], which provided ship-bounding boxes (1000 training samples in
total). The parameters of the detector model were fine-tuned by our collected ship dataset
(manually annotating ship location) to adapt to the specific scene of intersecting waters.

As shown in Figure 5, the trained detector can successfully detect the moving ship
from the images collected by the shore-based camera and give the specific detection bound-
ing box.

Figure 5. Moving ships’ detection results.

3.3. Visual Measurement Model of Ship Attitude

The position and speed of ships are physical quantities used to describe a ship’s
motion state. At the same time, combined with the relationship between static traffic
environment and ship position as well as the change of speed, the ship’s future motion
intention can be effectively predicted. The posture and motion features of ships can be
extracted from vision sensors and radar sensors. Compared with the two-dimensional
motion features, images often contain more information. Considering that shore-based
sensors collect the data in this study, we only extracted the attitude characteristics of the
ship from the images collected by a monocular camera. The measurement model of the
ship’s motion characteristics is shown in Figure 6.

Xt=[xt: Yt Uxs Vy"r]
radial velocity

~

V'r \
(.d.'f.. ut=[ﬂxT: ay‘l']

<

Optical

center word
plane coordinate 7
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Figure 6. Measurement model of ship motion characteristics. (a) Three-dimensional model of ship
image coordinate system to world coordinate system transformation. (b) The measurement model of
ship motion parameters.

Assuming the ship is a cuboid, we built a visual measurement model on this basis.
Considering that a cuboid has three visible sides, we defined three coordinate systems,
namely a physical coordinate system oxyz, a camera coordinate system o'x’y’z’, an im-
age coordinate system, XOY. Suppose (x,y,z), (x/,y/,2z) and (x,y) are the coordinates

91



J. Mar. Sci. Eng. 2022, 10, 639

of a point in the object coordinate system, camera coordinate system and image point
respectively, then:

~

XH Fouo 1| %

YH | =] 0Fvo0 || Y, (4)
Z

H 0010 .

Suppose that the coordinates of the origin of the camera coordinate system in the
physical coordinate system are (X., Y, Z.), then the transformation of coordinate points
from the physical coordinate system to the camera coordinate system is:

(x"y 2 1)T:A(xyzl)T (5)
where T indicates transpose,
abcp
A = Ry(8)Ry(2)R. (@)D = Zi{j ©)
0001

Rx(8), Ry(®), and Rz(¢) are matrices for rotation around the x, y, and z axes, respec-
tively. While 0, @, and ¢ are corresponding rotations, D is a translation matrix with a
translation of —(x¢, Y., zc) and meets the following requirements:

—n<o<m —

<o< 5, 0<50<2n (7)

N A

e
2

Substituting Equation (5) into Equation (4), the following relation can be obtained:

(XHYHH)" =T(xyz1)" 8)
where,
aF + gu bF + hu cF + iu pF + ru tin ti2 tiz tig
T= dF + gv eF + hv fF +iv gF + rv = | o t2 f3 o, 9)
§ h i v f31 32 t3z t3

In short, the problem to be solved was given a group of known physical coordinates
of the object to obtain the camera coordinate parameters: XC, YC, ZC, U, V, and F, and the
coordinates of the object were converted from the physical coordinate system to the image
coordinate system. Assuming that the height of the ship remained constant, then z = 0,
0=0,0=0.

3.4. Static Environmental Parameter Measurement Based on Environmental Message

In this study, ships, channel obstacles, and intersection corners were labeled with
rectangular boxes to show each object's relative and absolute positions.

The information of the traffic environment layer affects and restricts a ship’s path
choice, which can be divided into the static environment and dynamic environment features.
The static environment features refer to the relative position relationship between ships and
static environment space, such as channel structure and static obstacles on the water surface,
which mainly affect the long-term trajectory planning of ships. The short-term behavior of
ships is also affected by the behavior of dynamic objects in the traffic environment, such as
other ships, other moving obstacles, etc., which are called dynamic environment features.
Both static environment characteristics and dynamic environment characteristics affect the
behavior of ships. When identifying the intention of the ship in the intersection area, it is
considered that the static environment feature that affects the intention mainly refers to
whether the ship arrives at the intersection area. Only when arriving at the intersection
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area, the possibility of turning will occur. The minimum relative longitudinal distance
between the ship and other ships was selected for a dynamic environment feature, which
is used to judge whether the ship is in danger and whether it will choose to turn at this
moment. In addition, the relationship between the ship and other static environment
features, such as channel structure and static obstacles on the channel, will be taken into
account in predicting the ship’s future path.

In order to obtain the information from a forward channel structure, ships mainly rely
on the electronic chart and an automatic ship identification system to locate. As the research
scene selected in this study is a fixed water area, the electronic chart can be used to obtain
map information. The shape of the intersection area can be described by map information,
and then the relative position relationship between the ship and the intersection area can
be obtained by combining the position relationship between the ship and each corner of
the intersection area marked by millimeter-wave radar data. That is, the ship's position
in the global coordinate system with the intersection center as the origin was determined,
and the 2 km range of the channel at the intersection is the intersection area. Therefore,
the longitudinal distance between the ships entering the intersection area from different
directions and the red dotted line in the corresponding intersection area can be used as an
observation variable to represent the relative position relationship between the ships and
the intersection area. In addition, the areas on the water that are not allowed to pass by
ships, such as stationary ships or obstacles in the channel, can also be determined in the
established 2D map model.

In this study, only ships were considered as traffic participants in the traffic environ-
ment. Therefore, the relationship between the ship and the dynamic traffic environment
can be considered as the relative relationship between the target ship and other ships. Here,
we considered the minimum distance between the target ship and other ships, that is, the
minimum distance between the target ship and other ships continuing at their current
speed. According to the relative position relationship between the target ship and other
ships, and the speed information of the ship collected by millimeter-wave radar, it was
used to represent the danger degree of the current situation, that is, whether there was a
potential collision risk between the target ship and other ships.

3.5. Ship Intention Identification Based on Static and Dynamic Parameters

In Section 3.1, we extracted the multiple features of ships and determined the factors
that affect the intentions of ships. On this basis, this paper proposes a basic idea to build an
intention recognition model framework from the three levels (dynamic environment, static
environment, and object factors), constructs a dynamic Bayesian network, and describes
the intention inference algorithm in detail, which can be used for the intention recognition
of ships in confluence waters of inland rivers.

The Bayesian Network (BN) is also called the Belief Network or Directed Acyclic
Graph Model (DAGM). Since ship intention needs to be inferred by combining the factors
related to ship intention, each node in the Bayesian network corresponds to intent-related
factors, observation quantity, and ship intention, respectively. The probability distribution
of each variable was inferred by establishing the probability relationship between nodes to
realize the ship intention identification.

Figure 7 shows a dynamic Bayesian network where the rectangular nodes represent
discrete variables and hidden variables. The shaded rectangular nodes represent intention
variables, and the unshaded rectangular nodes represent intent-related factor variables.
The circular nodes are continuous variables, i.e., observed quantities. In this network,
the probability distribution values of variables were updated by receiving observations at
each moment, and the conditional probability relationship between observation nodes and
intent-related factor nodes was obtained by prior knowledge and sample data training.
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Figure 7. Dynamic Bayesian networks for intention recognition.

Variables in the dynamic Bayesian network mainly included the conditional variable
set H and observation variable set O. Conditional variables are all discrete variables that
satisfy the Markov hypothesis, and the same node has transition probability relationships
at adjacent moments.

The transition probability relation of all nodes in the set of conditional variables can
be expressed as:

P(Ht Htfl) — P(thyn Htfldyn) *P(Htsmt Htilstat) *P(Htactc Ht,1HCtC)

(10)

According to the fitting results of the sample data, the probability distribution of the
minimum distance D,,;, between the target ship and other ships conformed to the gamma
distribution under the condition of dynamic environmental state H%. This is shown in
Figure 8 in a static environment state.
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Figure 8. Probability distribution of environmental state quantity. (a) Conditional probability distri-

(a)

bution of ship turning intention and shoreline angle. Negative probability indicates the probability
that the ship turns in the opposite direction. (b) Conditional probability distribution of ship turning
intention and distance to the intersection.

H*" condition, the probability distribution of the longitudinal distance between the
target ship and the intersection area conformed to a Gaussian distribution. Under the
condition of continuous object state H*", the orientation of the target ship 6 conformed to
the Weibull distribution.

The dynamic Bayesian network can be regarded as a forward-filtering process, and
the probability distribution of each variable can be updated when the observed variables
are received so as to realize the process of intention inference. In the process of intention
inference, the assumed density filtering is adopted as the inference tool. The process of
intention inference can be divided into prediction and update.
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1.  Prediction

The prediction process is to predict the prior distribution of the current moment
through the posterior distribution of the previous moment and the fixed transition prob-
ability. Based on the joint posterior distribution of the previous moment, the prior joint
distribution of the current moment can be calculated according to the transfer probability,
and the edge distribution can be obtained by adding, as shown in Equations (11) and (12).

P(Gt, Gi—1,He, Hi_1) = P(G¢|Gy—1, Hp) * P(H¢|Hi—1) % Pr_1(Gy—1, Heo1) (11)

ﬁ(th Ht) - Z Z ﬁ(Gt/ Gt—er’t/ Ht—l) (12)
Gi—1 He

2. Update

The updating process is to update the posterior distribution of the current moment
according to the observed variables of the current moment. Based on the joint prior
distribution obtained in the prediction step, the joint posterior distribution at the current
moment can be calculated and added according to the observation variables and conditional
probability relationship. The posterior distribution of the nodes obtained is shown in
Equations (13) and (14).

P(Gt, Hi) o P (O¢|He) % P+(Gy, Hy) (13)
Pi(Gy) =) P(Gy, Hy) (14)
Ht

4. Experiment and Result

This section includes the following parts: (1) experimental scenario design; (2) data set
introduction; (3) simulation results; (4) real ships experiments; (5) model evaluation.

4.1. Experimental Scenario Design

In the experiment, the ship traffic scene at the intersection of the Hanjiang River
and Yangtze River in Wuhan was selected as the experiment scene. This region covers
longitudes 114°260'-114°301" E and latitudes 30°538'-30°590" N, as shown in Figure 9.
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Figure 9. Schematic diagram of experimental data acquisition environment.

In the above inland river intersection scenario, the behaviors of ships were divided
into three categories: straight, turn left, and turn right. In addition, combined with the
intersection channel structure, it can be divided into up-straight, up-right turn, down-
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straight, down-left, left-up, and left-down, respectively, corresponding to the situation
when ships enter the intersection area from the three different directions of the intersection.
According to the above classification method, the collected data can be divided into six
scenarios, and the schematic diagram of each scenario is shown in Figure 10. The specific
definition of each scenario is as follows:
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Figure 10. Schematic diagram of ship navigation traffic scene. Scenario (a): The ship enters the
intersection area from the lower reaches of the Yangtze River, and the ship goes straight up. Scenario
(b): The ship enters the intersection area from the lower reaches of the Yangtze River, and the ship
turns right. Scenario (c): The ship enters the intersection area from the upper reaches of the Yangtze
River, and the ship goes straight down. Scenario (d): The ship enters the intersection area from
the upper reaches of the Yangtze River, and the ship turns left. Scenario (e): The ship enters the
intersection area from the Han River, and the ship turns right, across the river, berthing. Scenario (f):
The ship enters the intersection area from the Han River, and the ship turns right.

4.2. Data Set Introduction

Currently, the available ship datasets contain fewer scenarios, and the sampling
frequency is usually low. The data set of this study is from the surveillance video of the
intersection between the Yangtze River and the Han River, and the video data of 86 groups
of ships were established. Each set of data recorded a ship that was close to the intersection
area and intended to cross the intersection. The longest time of each set of data series
was 5 min, and the shortest time was 1 min. After the data was processed by the frame
difference method, there were a total of 800 images with a resolution of 1280 x 720. We
randomly selected 600 of them as the training set and the remaining 200 as the test set. In
the training set, we labeled the ships in it. We used this labeled training set to train the
YOLO model and optimize the parameters of the network. When the video was fed into
our detection system, the image was first obtained and preprocessed at a certain frame rate.
Then, these images were inputted into the YOLO object detection network. Through this
detection network, we can extract the target ship from each frame and obtain the position
and motion parameters. Thus, the results of the detection and location of the ship in the
video were obtained.

4.3. Simulation Results

In order to verify the feasibility of the algorithm proposed in this paper, two scenarios
of the ship turning right and the ship going straight were simulated before the actual ship
experiment. The simulation results are shown in Figures 11-13.
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Figure 11. Simulation intention prediction results of rightward ship. (a) Simulation of ship movement
trajectory. (b) Ship speed and direction.
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Figure 13. Simulation intention prediction results of direct ship. (a) The turning probability of ship1.
(b) The turning probability of ship3.
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Assuming that the speed of the ship remains stable when passing through the inter-
section area, Figure 11a shows that the ship traveled along a straight line. At this time, the
included angle between the ship and the observation point gradually decreased, so the
radial speed of the ship in Figure 11b gradually increased. Figure 12a shows that the ship
turned right, and the included angle between the ship and the observation point first grad-
ually decreased and then remained unchanged. Therefore, the radial velocity of the ship in
Figure 12b first gradually increased and then changed smoothly. As shown in Figure 13,
the conclusion obtained by calculating the turning probability of the ship is that the turning
probability of the target in Figure 11 is 0.34, and it was determined that the turning will
not occur. The turning probability of the target in Figure 12 is 0.81 and it was determined
that the turning would occur. Therefore, from the simulation results, the ship intention
recognition results were in line with the scene designed by the simulation experiment.

4.4. Real Ship Experiments

In order to more accurately reflect the actual ship navigation, several sets of real ship
tests were carried out to evaluate the accuracy of the proposed model for predicting ship
intentions in cross channels. We obtained radar and video data collected by monitoring
equipment at the Yangtze River and Han River intersections from September 2020 to
October 2020. The intersection and dense traffic flow make the study area a highly complex
cross-channel, and after data preprocessing and sampling, 500 pieces of data containing
moving ships were obtained. We illustrate the prediction results of ship sailing intention in
typical scenarios.

The testing process of each trajectory is divided into the following three steps.

1.  Target detection and tracking. The ships in the 0-2 km region from the intersection area
are detected, and the pixel coordinates and radar coordinates of the ships are output.

2. Track segmentation. The 0-2 km area is divided into 10 track segments, and the length
of each track segment is 0.2 km.

3.  Predicted intent. The observed trajectory sequences are input to the HMM, LSTM,
and the Ours models, and the predicted intent labels and probabilities for each intent
class are determined. Return to step 2.

In Figure 14, the black line represents that the ship does not change speed and direction
during navigation at the intersection, the green line represents the ship is turning right, and
the red line represents the ship is turning left. Next, we analyzed the ship movement process
in the scenario. We found that Ship 1 would turn right when entering the monitoring area,
and the speed and direction would remain unchanged after turning, while Ship 2 and Ship
3 maintained their original speed and direction. The predicted results of our algorithm
are consistent with the actual results (we can obtain the actual sailing results from the
surveillance videos in advance by eye).

Figure 15 shows the movement process in this scenario, found that Ship 1 and Ship 2
kept their original speed and direction to move. Ship 3 first maintained speed and direction
after entering the monitoring area and then turned right after arriving at the intersection
area. After turning right, Ship 3 maintained its speed and direction for the rest of the
voyage. The actual results are also consistent with the predicted results of the algorithm.

4.5. Model Evaluation

We conducted numerical experiments on HMM, LSTM, and the Ours ship intention
identification method to predict the intent classes of the 500 tested trajectories. To quanti-
tatively evaluate the prediction performance of the three models, we used accuracy and
mean square error (MSE) as measures. The mean and variance of the accuracy and MSE at
different distances to the precautionary area are listed in Table 2.
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Figure 14. Prediction results of ship navigational intention in typical scenarios of intersection channel.
(@) Ships detection results. (b) Intention identification probability of Ship 1. (c) Intention identification
probability of Ship 2. (d) Intention identification probability of Ship 3.
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Figure 15. Prediction results of ship navigational intention in typical scenarios of the intersection
channel. (a) Ships detection results. (b) Intention identification probability of Ship 1. (c¢) Intention
identification probability of Ship 2. (d) Intention identification probability of Ship 3.

Table 2 shows the accuracy of the intention prediction of the three models. Each test
takes into account three different distances (0, 1, and 2 km) from the intersection area. The
proposed model is better than the LSTM model and HMM model. For example, when
d = 0 km, the accuracy of our model is about 30% higher than HMM model and 10% higher
than the LSTM model. Atd =1 km, the accuracy of our model is about 12% higher than
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HMM and 14% higher than the LSTM model. When the distance from the intersection area
increased to 2 km, the preparation rate of the three models decreased. This is an expected
result because early prediction is more challenging than later prediction. According to
the regulations of the People’s Republic of China on river collision prevention, the safety
distance of ships with a length of more than 30 m is 2 km, and that of ships with a length of
less than 30 m is not less than 1 km. Therefore, our algorithm can effectively avoid collision
by predicting the ship's intention within 2 km.

Table 2. Mean (variance) accuracy and MSE of intent prediction models at different distances to
precautionary area.

Model Measure d=2.0km d=1.0km d =0.0 km
Accuracy 0.522 0.619 0.612
HMM MSE 0.592 0.445 0.421
Accuracy 0.446 0.594 0.814
LST™M MSE 0.636 0.508 0.206
o Accuracy 0.652 0.734 0.912
urs MSE 0.541 0.343 0.016

5. Conclusions

The intention prediction of ships at intersections can effectively reduce the occurrence
of ship collisions. However, the prediction accuracy of ship intention is easily affected by
the validity and real-time data. In this paper, we propose an intention prediction model
based on the fusion of video and radar data by using the Bayesian framework, and the
model is verified on the real channel data at the intersection of the Yangtze River and
the Han River. It was found that the ship motion intention is highly correlated with ship
motion parameters and environmental factors. In order to effectively utilize this finding,
we introduced a Bayesian framework and finally calculated the probability of ship motion
intention by reasonably assuming the probability distribution of different factors. Due to
the high acquisition frequency of an image and radar monitoring data, ship motion can
be stably tracked, which accurately predicts ship intention and improves the real-time
decision-making, thus effectively solving the problem of poor real-time prediction of ship
intention caused by the data delay of other sensors.

It is undeniable that there are still some shortcomings in the algorithm. For example,
it is necessary to integrate the environmental data, video, and radar data of specific areas
to identify the ship’s intention, which is difficult to be transplanted into the monitoring
equipment of mobile ships. In future work, the cross-domain adaptive scene understanding
method based on radar and video research will be considered. Then, the ship’s intention
recognition can be based on the results of dynamic scene understanding, which can be
transplanted to mobile ships without static environment data fusion. This will provide a
decision-making basis for intelligent ship collision avoidance.

Author Contributions: Conceptualization, Q.C. and C.X.; methodology, Q.C. and C.X.; software,
Q.C,; validation, Q.C.; formal analysis, Q.C.; investigation, Q.C.; resources, Y.W.; data curation, Q.C.
and M.T; writing—original draft preparation, Q.C.; writing—review and editing, Q.C.; visualization,
Q.C. and M.T;; supervision, Y.W.; project administration, W.Z.; funding acquisition, C.X. and Y.W. All
authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by the Natural Science Foundation of Shandong Province under
Grant ZR2020KE029; by the National Natural Science Foundation of China under Grant 52001241; by
the 111 Project(B21008); by the Zhejiang Key Research Program under Grant 2021C01010.

Institutional Review Board Statement: Not applicable.
Informed Consent Statement: Not applicable.

Data Availability Statement: No public data sets were used in the study.

100



J. Mar. Sci. Eng. 2022, 10, 639

Conflicts of Interest: The authors declare that they have no known competing financial interests or
personal relationships that could have appeared to influence the work reported in this paper.

References

1.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

Tang, H. Intelligent Analysis and Research on Behavior Characteristics of Inbound and Outbound Ships; Dalian Maritime University:
Dalian, China, 2020.

Steidel, M.; Mentjes, J.; Hahn, A. Context-Sensitive Prediction of Vessel Behavior. |. Mar. Sci. Eng. 2020, 8, 987. [CrossRef]
Pietrzykowski, Z.; Wielgosz, M.; Breitsprecher, M. Navigators’ behavior analysis using data mining. J. Mar. Sci. Eng. 2020, 8, 50.
[CrossRef]

Zhang, H.; Yang, S.L.; Fan, W.; Shi, H.M.; Yuan, S.L. Spatial analysis of the fishing behaviour of tuna purse seiners in the western
and central Pacific based on vessel trajectory date. J. Mar. Sci. Eng. 2021, 9, 322. [CrossRef]

Gao, M,; Shi, G.; Li, S. Online prediction of ship behavior with automatic identification system sensor data using bidirectional
long short-term memory recurrent neural network. Sensors 2018, 18, 4211. [CrossRef]

Ma, J.; Li, W,; Jia, C.; Zhang, C.W.; Zhang, Y. Risk prediction for ship encounter situation awareness using long short-term
memory based deep learning on intership behaviors. J. Adv. Transp. 2020, 2020, 8897700. [CrossRef]

Tang, H.; Wei, L.; Yin, Y.; Shen, H.; Qi, Y. Detection of abnormal vessel behaviour based on probabilistic directed graph model. J.
Navig. 2020, 73, 1014-1035. [CrossRef]

Zissis, D.; Xidias, E.K.; Lekkas, D. A cloud based architecture capable of perceiving and predicting multiple vessel behaviour.
Appl. Soft Comput. 2015, 35, 652-661. [CrossRef]

Ma, J.; Jia, C.; Yang, X.; Cheng, X.; Li, W.; Zhang, C. A data-driven approach for collision risk early warning in vessel encounter
situations using attention-BiLSTM. IEEE Access 2020, 8, 188771-188783. [CrossRef]

Xue, J.; Chen, Z.; Papadimitriou, E.; Wu, C.; Gelder, P.V. Influence of environmental factors on human-like decision-making for
intelligent ship. Ocean Eng. 2019, 186, 106060. [CrossRef]

Alizadeh, D.; Alesheikh, A.A.; Sharif, M. Vessel trajectory prediction using historical automatic identification system data. J.
Navig. 2021, 74, 156-174. [CrossRef]

Yu, H.; Fang, Z.; Murray, A.T.; Peng, G. A direction-constrained space-time prism-based approach for quantifying possible
multi-ship collision risks. IEEE Trans. Intell. Transp. Syst. 2019, 22, 131-141. [CrossRef]

Suo, Y.; Sun, Z.; Claramunt, C.; Yang, S. A Dynamic Risk Appraisal Model and Its Application in VTS Based on a Cellular
Automata Simulation Prediction. Sensors 2021, 21, 4741. [CrossRef]

Alvarellos, A.; Figuero, A.; Sande, ].; Pefia, E.; Rabuial, J. Deep Learning Based Ship Movement Prediction System Architecture.
In Advances in Computational Intelligence; Springer: Cham, Switzerland, 2019; pp. 844-855.

Wang, T.; Wu, Q.; Zhang, J.; Wu, B.; Wang, Y. Autonomous decision-making scheme for multi-ship collision avoidance with
iterative observation and inference. Ocean Eng. 2020, 197, 106873. [CrossRef]

Kawamura, K.; Hashimoto, H.; Matsuda, A.; Terada, D. SPH simulation of ship behaviour in severe water-shipping situations.
Ocean Eng. 2016, 120, 220-229. [CrossRef]

Praczyk, T. Using evolutionary neural networks to predict spatial orientation of a ship. Neurocomputing 2015, 166, 229-243.
[CrossRef]

Murray, B.; Perera, L.P. An AlS-based deep learning framework for regional ship behavior prediction. Reliab. Eng. Syst. Saf. 2021,
215,107819. [CrossRef]

Giubilato, R.; Chiodini, S.; Pertile, M.; Debei, S. Minivo: Minimalistic range enhanced monocular system for scale correct pose
estimation. IEEE Sens. J. 2020, 20, 11874-11886. [CrossRef]

Guo, S.; Zhao, Q.; Cui, G.; Li, S.; Kong, L.; Yang, X. Behind corner targets location using small aperture millimeter wave radar in
NLOS urban environment. IEEE |. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 460—470. [CrossRef]

Ding, X.; Huang, Y,; Li, Y.; He, J. Forgery detection of motion compensation interpolated frames based on discontinuity of optical
flow. Multimed. Tools Appl. 2020, 79, 28729-28754. [CrossRef]

Chen, C.; Ma, E; Xu, X.; Chen, Y.; Wang, J. A novel ship collision avoidance awareness approach for cooperating ships using
multi-agent deep reinforcement learning. J. Mar. Sci. Eng. 2021, 9, 1056. [CrossRef]

Ranjan, R.; Patel, V.M.; Chellappa, R. Hyperface: A deep multi-task learning framework for face detection, landmark localization,
pose estimation, and gender recognition. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 41, 121-135. [CrossRef]

Wu, J.W,; Cai, W,; Yu, S.M.; Xu, Z.L. Optimized visual recognition algorithm in service robots. Int. J. Adv. Robot. Syst. 2020, 17,
1729881420925308. [CrossRef]

101






Journal of

Marine Science
and Engineering

Article

Multi-Sensor-Based Hierarchical Detection and Tracking
Method for Inland Waterway Ship Chimneys

Fumin Wu !, Qianqian Chen "*, Yuanqiao Wen -3, Changshi Xiao !

Citation: Wu, F,; Chen, Q.; Wen, Y.;
Xiao, C.; Zeng, F. Multi-Sensor-Based
Hierarchical Detection and Tracking
Method for Inland Waterway Ship
Chimneys. J. Mar. Sci. Eng. 2022, 10,
809. https://doi.org/10.3390/
jmse10060809

Academic Editor: Rafael Morales

Received: 18 March 2022
Accepted: 12 May 2022
Published: 13 June 2022

Publisher’s Note: MDPI stays neutral
with regard to jurisdictional claims in
published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

340 and Feier Zeng !

School of Navigation, Wuhan University of Technology, Wuhan 430063, China;

wfm19970@whut.edu.cn (EW.); cs_xiao@hotmail.com (C.X.); 304716@whut.edu.cn (F.Z.)

Intelligent Transportation Systems Research Center, Wuhan University of Technology, Wuhan 430063, China;
yqwen@whut.edu.cn

National Engineering Research Center for Water Transport Safety, Wuhan 430063, China

Institute of Ocean Information Technology, Shandong Jiaotong University, Weihai 264200, China

*  Correspondence: chenqg@whut.edu.cn

Abstract: In the field of automatic detection of ship exhaust behavior, a deep learning-based multi-
sensor hierarchical detection method for tracking inland river ship chimneys is proposed to locate
the ship exhaust behavior detection area quickly and accurately. Firstly, the primary detection uses a
target detector based on a convolutional neural network to extract the shipping area in the visible
image, and the secondary detection applies the Ostu binarization algorithm and image morphology
operation, based on the infrared image and the primary detection results to obtain the chimney target
by combining the location and area features; further, the improved DeepSORT algorithm is applied
to achieve the ship chimney tracking. The results show that the multi-sensor-based hierarchical
detection and tracking method can achieve real-time detection and tracking of ship chimneys, and
can provide technical reference for the automatic detection of ship exhaust behavior.

Keywords: ship exhaust behavior; detection and tracking; multi-sensor; deep learning; morphologi-
cal operation

1. Introduction

The construction of the Yangtze River Economic Belt is one of the key strategies of the
national cross-regional coordinated development, and both the “Yangtze River Protection”
and the “Yangtze River Green Ecological Corridor” are the top priorities of the construction
of the Yangtze River Economic Belt. The International Maritime Organization (IMO) has
mandated a gradual reduction of nitrogen oxide and other types of gas emissions [1], and a
regulation on sulfur emissions from ships sailing in global waters has been in effect since
1 January 2020 [2]. In addition, the design of ships” intake ports and the exhaust ports of
the exhaust gas is being modified in accordance with the requirements of the International
Maritime Organization (IMO) [3]. However, the detection of ship exhaust depends on
high-sensitivity gas sensors, and it is difficult to obtain evidence. The Pankratova NV study
showed that ship exhaust emission data are correlated with ship chimneys [4]; therefore,
the method of tracking ship chimney detection based on computer technology is one of the
most important tools for scientific and efficient regulation.

Ship chimney detection is the core research content of this paper, and ship detection
is the prerequisite and a key technical point of ship chimney detection. Since the ship
chimney has small target and inconspicuous features, and the known chimney dataset is
very small, it is very difficult to detect the ship chimney directly; on the contrary, the ship
has relatively large target and obvious features compared with the chimney, and the dataset
is relatively large.

However, currently there are still difficulties and challenges in the field of computer
vision for small target detection. In terms of visible images, both traditional manually
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designed feature operator-based target detection and deep learning-based target detection
methods have yet to improve the detection accuracy of small targets. In addition to the
characteristics of small targets, the detection of inland river ship chimneys is also affected
by the small feature information of ship chimneys. In terms of infrared images, the infrared
camera has a small field of view, and the acquired image information is not rich. Although
the infrared camera is more sensitive to the target in high temperature regions and the
ship chimney is also a high temperature object, the simple use of an infrared camera to
detect the chimney is less robust due to the high temperature of the ship itself or the ship’s
cargo exposed to the sun, as well as the influence of the background buildings and water
reflections in the inland river.

Based on the above problems, we found that, on the visible band image, although the
ship chimney target is small, the ship target is relatively large and rich in information, and
the deep learning technique can be used to detect the ship on the visible band image first,
with the aim of narrowing down the detection range of the ship chimney. Then, since the
visible band is more sensitive to high temperature regions, the difficulty of detecting the
chimney in a small area will be greatly reduced. Therefore, the detection of ship chimneys
can eventually be achieved by combining the characteristics of different sensor images,
thereby bringing convenience to the subsequent tracking.

The remainder of this paper is organized as follows. Some related works are introduced
in Section 2. In Section 3, we will discuss the whole methodology of our algorithm. The
experiment and model prediction performance is reported in Section 4. Finally, the work is
concluded in Section 5.

2. Related Work

A large number of scholars have also conducted research on ship detection based on
computer vision techniques. According to the type of technology used, this research can
be divided into traditional-based methods and deep learning-based methods. Most of the
traditional methods are designed to detect or recognize a specific scene. Arshad [5] et al.
first processed the ship background image using morphological operations, and then
used the Sobel operator to perform edge detection of the ship to discriminate it from its
background, but it is not effective in the case of complex textures, which have more noise.
Zhang X designed a rotated Gaussian mask to model the ship, and, at the same time,
contextual information was used to enhance the perception of the ship [6]. Wang Y. [7] et al.
proposed a ship detection algorithm based on a background difference method, but the
algorithm was aimed at ship detection under a static background, and did not identify,
classify, and track targets. Tang Y. [8] et al. adopted the fusion technology of multi-vision
to analyze and detect ship targets by monitoring through local entropy and a connected
domain, requiring two scans of images, which was inefficient, and the threshold had a great
influence on the final effect. Shi W. et al. [9] proposed morphology with multiple structural
elements to extract the edge features of ships by using different structural elements, which
can fully retain various details of ships while filtering out background noises such as waves,
but it is difficult to detect small targets.

In addition to the traditional vision technology-based methods mentioned above, deep
learning technology-based methods are the mainstream ship detection methods at present.
Excellent target detection methods based on deep learning are the R-CNN series, YOLO
series, and SSD series. Cui ZY used a pyramidal structure to connect the convolutional block
attention module (CBAM) closely with each feature map connected from top to bottom of
the pyramidal network in order to extract rich features containing resolution and semantic
information for multi-scale ship detection [10]. Subsequently, Cui ZY proposed a center
net-based large SAR image ship detection method for locating the centroid of the target
by key point estimation, which can effectively avoid the missed detection of small target
ships [11]. Differently, Chen XQ used a convolutional neural network in the YOLO model to
extract multi-scale ship features from the input ship images. Then, multiple bounding boxes
(i.e., potential ship positions) were generated based on the target confidence, and, finally,
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the background surround box interference was suppressed to obtain the ship positions
in each ship image. Finally, Chen XQ analyzed the spatio—temporal behavior of ships in
continuous ocean images based on the ship’s kinematic information [12]. Shao ZF used
the CNN framework based on depth features, saliency maps, and coastline prior. This
work integrated ship discriminative features to detect ship class and location [13]. Yang X
proposed a dense feature pyramid network to detect ships in different scenarios, including
in the ocean and at ports, in order to solve the problem caused by narrow ship width [14].

In recent years, deep learning methods have been successfully applied to ship detection
in synthetic aperture radar (SAR) images. Wei S] proposed a high-resolution ship detection
network based on high-resolution and low-resolution convolutional feature mapping for
ship detection in high-resolution SAR images [15]. Similarly, Lin Z, et al. proposed a
new fast R-CNN-based network structure based on high-resolution SAR images to further
improve ship detection performance by using a squeeze excitation mechanism [16,17].
Jin L., et al. used the SSD model and added a feature fusion module to the shallow
feature layer to optimize the feature extraction capability for small objects, and then added
the squeeze and excitation network (SE) module to each feature layer to introduce an
attention mechanism for the network to achieve small-scale ship detection in remote sensing
images [18,19]. Wang Y combined single-shot multibox detector (SSD) with migration
learning to solve the ship detection problem in complex environments, such as oceans
and islands [20]. Sun ], based on the SSD model, integrated expansion convolution with a
multiscale feature fusion to improve small target detection accuracy [21]. Not coincidentally,
Chen P, to improve the small target detection accuracy, embedded the elemental pyramid
model into the traditional RPN, and then mapped it to a new elemental space for object
recognition [22]. The detection of multiscale SAR ships remains a great challenge due to
the strong interference and wide variation of scales in the offshore background.

This paper proposes a multi-sensor hierarchical detection tracking algorithm based
on deep learning to detect and track ship chimneys. Firstly, the first level detection uses
a visible light image input deep-learning target detector to detect the ship target, so as to
greatly reduce the target detection range and solve the problem of background interference.
Then, in view of the problem that the chimney target is too small to be identified, infrared
imaging is adopted for the second-level detection, with the first-level detection result used
as the input of the second-level detection. The image is extracted through a two-step Ostu
binarization algorithm, image corrosion, and expansion operation. Finally, according to the
prior knowledge of the chimney orientation, the candidate area is bisecting to further reduce
the detection range and extract the final chimney target, combined with area characteristics.
The improved DeepSORT tracking algorithm is used to track the ship chimney, which
provides some help for the ship exhaust monitoring.

3. Algorithm Design
3.1. Algorithmic Framework

The framework of the multi-sensor hierarchical detection and tracking algorithm is
shown in Figure 1, which is divided into four parts, namely data input, detection, tracking,
and data output. Among them, the input data are an infrared camera and a visible camera,
and the detection stage is divided into primary detection and secondary detection. The
primary detection uses the improved YOLOV3 which was proposed by Joseph Redmon in
2018 as the ship detector, which is improved from two aspects: the design of the a priori
frame, and the output of the feature pyramid. The second level detection splits the ship
area in the infrared camera according to the first level detection result, and then filters the
background by Gaussian filtering and adaptive threshold selection algorithm to obtain
the candidate area of the chimney, according to the a priori knowledge. It is known that
the chimney detected in this paper is located above the ship area, so the area equalization
method is used to narrow the detection range again. Finally, the maximum value of the
contour area is calculated as the final detection result.
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Figure 1. General framework of ship chimney detection and tracking algorithm.

The tracking is performed using the improved DeepSORT [23] algorithm, which
mainly consists of a target detection module and a data association module. DeepSORT
is used in the real-time target tracking process to first extract the depth features of the
target, and then uses Kalman filtering to make predictions, correlate the sequence data, and
perform the target matching. Mainly from the calculation of the cost matrix and association,
the algorithm is improved. The main steps of the improved DeepSORT tracking are
as follows:

(1) Create Tracks according to the results detected in the first frame, and initialize the
Kalman filter. Tracks are initially in Unconfirmed state and can be converted to Confirmed
state only if they are tracked successfully three times in a row.

(2) Calculate the cost matrix between the tracked target in Tracks and the detected
target in the current frame using the improved GIOU.

(3) The cost matrix in Step (2) is input to the improved data association algorithm KM,
and three kinds of matching results are obtained: the first category Matched Tracks is the
traces matched to the detection results, indicating that the current frame tracks the target in
the previous frame, and the values in Tracks are subsequently updated according to Kalman
filtering. The second type, Unmatched Detections, is the detection result of unmatched
tracks, which means that the target detected in the current frame is a newly appeared target,
which is not related to the previous detection result, so a new tracking track needs to be
added. The third type, Unmatched Tracks, is the trajectory with unmatched detections,
which means that the trajectory existing in the previous frame is lost in the current frame,
and if it is an Unconfirmed stable state, the trajectory is deleted directly. If it is a Confirmed
stable state, the number of followed traces max_age is increased by 1. When the number
of followed traces reaches 30 times, the Confirmed state is converted to an Unconfirmed
non-stable state.

(4) For the Confirmed state, Tracks and Detections will use cascade matching to
calculate the cost matrix. Cascade matching uses the appearance feature vector to calculate
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the cosine similarity, and uses the Marxist distance to exclude the targets between frames
that are far away from each other, where the appearance feature vector saves the feature
vector of this target in the first 100 frames by default.

(5) There are also three types of cascade matching results: for the Unmatched Tracks
and Unmatched Detections states, the algorithm re-calculates these two states together
with the Unconfirmed state in Tracks using the GIOU association algorithm. For Matched
Tracks states, the variable information in Tracks is updated by Kalman.

(6) The cost matrix in (5) is input into the KM algorithm, and the processing result is
similar to step (3).

(7) Loop (4) to (6) steps until the end of the video frame.

3.2. Improved YOLOw3-Based Ship Detection Network
3.2.1. Anchor Improvements

A large number of experiments have shown that the selection and design of Anchor
has had a large impact on the results of detection. Through the analysis of our own ship
dataset, we know that the ship targets are larger, and the ship lengths and widths are more
similar with horizontal orientation. By comparing the characteristics of the COCO dataset,
we can see that the default Anchor of YOLOV3 does not meet our actual needs. Based
on the above characteristics of the actual ship dataset, we made a specific design for the
Anchor of the ship target, aiming to improve the speed and accuracy of ship detection.

In YOLO detection algorithm, the input image is divided into S x S grids, and each
grid is called a Grid Cell. Each Grid Cell is responsible for detecting a target on which the
center of the object falls. Each Grid Cell has a prediction box, which we call Anchor, and
the number of Anchor for each Grid Cell is different in different versions. In YOLOV1, the
image is divided into 7 X 7 size, and each grid is fixed with only two Anchors with different
aspect ratios. Each Grid Cell can predict only one category, so the detection accuracy is low
in scenes with dense targets. In YOLOV2, the authors used clustering to cluster the real
target aspect ratios of the dataset into five classes by default, thus introducing five Anchors
for each Grid Cell, and improving the detection capability for dense objects. In YOLOV3,
the authors reduce the number of Anchors for each Grid Cell to three different scales, and
introduce the concept of multi-scale feature map fusion to detect targets at different scales
with three different scales, so the number of Anchor for each Grid Cell increases to nine.

The targets detected in this paper are ships, which generally have an aspect ratio
greater than 1, i.e., the detection frame rectangle is longer than wide, as shown in Figure 2,
where the upper left corner shows the distribution of the number of ship types, the upper
right corner shows the distribution of the rectangular frame of the ship training set, and the
lower left corner shows the distribution of the target center x and y, where the horizontal
and vertical coordinates are the ratio of x and y to the actual width and height of the
image. The same is true for the lower right corner, where the original width of the image
is 1920 pixels and the height is 1080 pixels. From the statistical results, we can see that
most of the ship widths are distributed around 0.1~0.3, i.e., 192~576 pixels wide, and the
heights are distributed around 0.02~0.1, i.e., 22~108 pixels high. In order to make our
designed Anchor aspect ratio closer to the actual ship detection application, the number
of each Grid Cell was reduced from three to two, and we kept the default Feature Map
with two different scales due to the “small and large” characteristics in inland waters. As a
result, the number of Anchors was reduced from the default nine to four. In order to make
our designed Anchor aspect ratio closer to the actual ship detection application, we first
clustered the aspect of the Bounding Box of the dataset, where there are multiple clustering
methods. We borrowed the idea from the YOLOV2 authors, and used k-means algorithm
to cluster the data into two classes, and obtained the original dimensions of Anchor for
each Grid Cell as (384, 54) and (1152, 216).
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Figure 2. Distribution of Anchor information of a ship dataset. (a) Number of ships by class.
(b) Statistics of Anchor shape. (c) Statistics of anchor X y center coordinates (d) Statistics of Anchor
width height.

3.2.2. Improvement of Feature Pyramids

In YOLOV?3, in order to make the detection of objects of different sizes, after the feature
extraction network, the features of different feature extraction layers were fused to form
new feature maps through Concat and upsampling operations. These different feature
maps have the same depth, but different sizes. Fresh feature maps of different sizes, as well
as the network structure in YOLOV3, are shown in Figure 3.

The light yellow part of the figure is for the three different scales of 13 x 13,26 x 26,
and 52 x 52. In these different scales, the size of each Cell is inversely proportional to the
size of the scale, and for the large scale of 52 x 52, the corresponding size of each Cell is
small, while for the small scale of 13 x 13, the size of each Cell is large. The small-scale
Cell contains less information, and is therefore more suitable for detecting small objects,
while the large-scale Cell incorporates more information, and is therefore more suitable for
detecting larger objects, as shown in Figure 4. For the large ship in the bottom corner, a
13 x 13 feature map is generally available, while for the small target ship in the middle, a
26 x 26 feature map is generally available.
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Figure 3. The network structure of YOLOV3.

Figure 4. Output diagram of different sizes. (a) 13 x 13 grid cell. (b) 26 x 26 grid cell. (c) 52 x 52 grid cell.

Through analyzing the self-collected ship dataset in this paper, we can see that, in
terms of species, the species of ships is much smaller than the open source generic dataset;
in terms of scenarios, the river channel in inland waters is limited, and ships can only travel
in the area. With the shore camera as the reference point, the width of the river channel
greatly limits the size variation of ships, and most of the ships in inland waters are larger
in size and belong to large targets, so we can delete the 52 x 52 feature maps used to detect
small targets. Just keep the 13 x 13 and 26 x 26 feature maps. This optimization can
reduce the parameters for network training, as well as speed up the training of the network.
In addition, since the number of feature maps is reduced from three to two, the number
of Anchor corresponding to each feature map is also reduced from three to two, so the
original 3 x 3 =9 frames to be detected is reduced to 2 x 2 = 4 frames to be detected when
calculating the detection frames. This will greatly reduce the amount of calculation, as well
as improve the detection speed of the ship. To sum up, the complete network structure
after the improvement designed in this paper is shown in Figure 5.
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Figure 5. Improved YOLOv3 network.

As shown in Figure 5, the input size of the image is 416 x 416 pixels, and after
five down-sampling calculations, a feature layer of size 13 x 13 is obtained, which detects
large targets. Ship targets are relatively large targets, so a 52 x 52 feature layer will increase
the number of parameters of the model and reduce the detection speed. Therefore, only
two output layers of 13 x 13 and 26 x 26 are considered for retention. The goal of reducing
the number of parameters and operations is achieved by reducing the number of feature
layers to improve the network detection speed.

3.3. Chimney Detection with Fused Infrared Images
3.3.1. Threshold Processing

The video saved by the infrared heat-sensing camera used in this paper was later
processed and saved locally as an RGB three-channel image as well. In order to facilitate
the subsequent thresholding, the RGB image needed to be converted to a grayscale image.
The conversion of RGB to gray scale image is represented by Equation (1)

Gray = R x 0299 + G x 0578 + B x 0.114 1)

After the grayscale processing, a bimodal image can be obtained by counting the
individual grayscale values, and due to the processing of bimodal images, this subsection
uses Otsu’s algorithm, which attempts to find a threshold that minimizes the weighted
intra-class variance given by the relation:

o = wy - (1 — po)* +wa - (2 — po)” 2)

where ¢ is the interclass variance of foreground and background, w; and w, represent the
proportion of background and foreground pixels in the total image, #; and y; represent
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the average grayscale of background and foreground, respectively, and yg represents the
average grayscale of the whole image. Expanding Equation (2) yields:

2

_ 2 2
0° =wp-p) w2y

3
—2(wr - 1+ wy - fa) - po + 13 )

According to the mathematical definition formula of expectation E(X) = Y. x - p,
k=1

we can deduce that:
Ho = w1 1+ wy -t 4)

Bringing (4) into (3), 0% = wy - u3 + w; - u5 — pf is again replaced using the relationship
between Equation (4) and w; = 1 — wy:

2
24 (Ho—wip)” _ 2 5)

Using Equation (5), we only need to count the pixels before the current iteration of
grayscale, which greatly improves the efficiency of the program.

As can be seen in Figure 6, some background noise points can be effectively removed
after Gaussian filtering. Compared with a fixed threshold, the Ostu algorithm is more likely
to try to find a threshold to reasonably separate the foreground and background.

Histogram

Original Noisy Image Global Thresholding (v=127)

e e ‘

Histogram

Original Noisy Image

Otsu's Thresholding

-

Histogram

Gaussian filtered Image Otsu's Thresholding

[ o "‘.

(a) (b) (c)

Figure 6. Comparison of infrared image binarization. (a) input images. (b) histogram. (c) Processing
results of thresholds.

3.3.2. Coordinate Fusion

In order to collect experimental data, we have independently developed a set of
experimental systems, which consists of a visible camera, an infrared camera and a gimbal
that can be rotated coaxially, which can locate and track the target in real time. The visible
camera has a resolution of 1920 x 1080, and the thermal imaging camera is a custom
thermal imaging camera from Golder Infrared with a resolution of 640 x 512 resolution
and a rotation angle of —120-120° for the gimbal. The multi-sensor coaxial rotation system
is shown in Figure 7.
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Figure 7. Multi-sensor coaxial rotation system.

Therefore, the coordinates of the same object in different cameras in the same frame
are represented differently, as shown in Figure 8.

_ X

X2 = 1g55 X 640 (6)
o

¥2 = Jogg ¥ 512 @)

(a) (b)

Figure 8. Schematic diagram of the same ship position in different coordinate systems. (a) Detec-
tion results in the visible light camera coordinate system. (b) Detection results in infrared camera
coordinate system.

Therefore, this paper needs to convert the coordinates to ensure the accuracy of the
search area of the ship’s chimney. For different size images, the size is different, but the
position of each coordinate point relative to the upper left corner (zero point) is the same
after conversion to a right-angle coordinate system, so the coordinates can be converted
using the scale relationship. For the image, the coordinate system is two-dimensional, so it
needs to be converted separately in the x and y directions. Supposing that the coordinates of
the same object P (x1, y1) on the 1920 x 1080 resolution image and (xy, y»), the specific value
of x, y of (x2, i2) should be as shown in the operation of Equation (6), according to the image
scale. By using the above-mentioned coordinate conversion equation after corresponding
the visible image to the infrared band image, it aims to ensure that the location of the ship’s
chimney is found accurately, rather than deviations due to coordinate conversion.
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3.4. Improving DeepSORT Algorithm
3.4.1. GIOU Loss Function

IOU (Intersection over Union), also known as intersection and merge ratio, is a measure
of the accuracy of detecting the corresponding object in a given dataset. DeepSORT (Deep
Simple Online and Realtime Tracking) uses the IOU of the detection frame and tracking
frame as the loss matrix in the correlation algorithm. The input IOU ranges between [0, 1]
with scale invariance, and the equation is shown in Equation (8):

_SAOSB

I =
oU S54USp

®)
where S4 is the area of the predicted box, and Sg is the area of the real box. If IOU is used
as a measure of the overlap between boxes, the following problems will occur:

(1) IOU is always 0 when there is no overlap between the prediction box and the real
box, as shown in Figure 9, state 1, where the red prediction box and the blue real box have
no intersection, and the value of IOU is 0.

(b)

Figure 9. Schematic diagram of different overlapping shapes of IOU. (a) status1: IOU = 0. (b) sta-
tus2: IOU = 0.38. (c) status3: IOU = 0.38.

(2) When the IOUs intersect and have the same value, it is impossible to distinguish
the various cases of IOUs. There can be many kinds of overlapping shapes for the same
IOU value, and they are different in effect. As shown in Figure 9 state 2 and state 3, the
IOUs of both the prediction box and the real box in state 2 and state 3 are equal to 0.38, but
state 2 is an up-and-down intersection, and state 3 is a horizontal intersection.

In order to solve the above problem, this paper uses GIOU (Generalized Intersection
over Union) to replace IOU in the DeepSORT algorithm. GIOU loss focuses not only on
overlapping regions, but also on non-overlapping regions, which distinguishes the cases
with the same IOU but different forms of overlap, and solves the problem that there can
be no gap between non overlapping frames. The value range of GIOU is [-1, 1] with the
following formula.

[C—(AUB)|
C]

where C is the smallest outer rectangle of the prediction frame and the target frame, as
shown in the left of Figure 10. In Equation (8) is the difference set, as shown in the blue
part in Figure 10.

As shown in Figure 11, suppose A is the ship target at frame n and B and C are the
ship targets at frame n + 1, where the IOUs of A and B are 4/28 ~ 0.14, and the IOUs of
A and C are also 4/28 ~ 0.14. Since their IOU values are equal, the difference cannot be
measured if IOUs are used. However, the GIOU of A and Bis 4/28 — (36 — 28)/36 ~ —0.08,
while the GIOU of A and Cis 4/28 — (28 — 28)/28 a2 0.14, which shows that the correlation
between A and C will be greater than that between A and B. Therefore, in the ship tracking
task, we prefer to consider ship C as the target position of ship A in the next frame, which

GIOU= IOU— )
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is also consistent with the fact that inland ships travel slowly and have low deformation in
the video sequence.

(a) (b)

Figure 10. Schematic diagram of GIOU. (a) C is Minimum Enclosing Rectangle. (b) The areas of
C-AUB.

Figure 11. Schematic diagram of ship intersection between simulated frames. A is detection of n
frame. B and C are detections of n + 1 frame.

3.4.2. KM Association Algorithm

In multi-target tracking tasks, the main purpose of data association is to perform
matching of multiple targets between frames, including emerging targets, the disappear-
ance of old targets, and the ID matching problem between the previous frame and the
current frame. The DeepSORT default data association algorithm uses the Hungarian
algorithm, and the core idea is to find the maximum matching algorithm of the augmented
path for the bipartite graph. As shown in Table 1.

Table 1. Inter-frame target matching.

n + 1 Frame

N1 N2 N3 N4
n Frame GIOU
M1 0.8 0.6 0 0
M2 0 0.6 0.9 0
M3 0.9 0.8 0.5 0
M4 0 0 0 0

M1~M4 are the four tracked targets in the nth frame, N1~N4 are the four newly
detected targets in the nth + 1 frame, and the association degree index between the targets
is measured by the GIOU loss function in the previous section. Since M4 is not associated
with any detected targets in the new frames, M4 is the old target tracking loss case; N4 is
the detected targets in the new frames, which belong to the new target emergence case and
will be assigned new IDs to track. The association algorithm discussed in this section then
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solves the matching problem between M1~M3 and N1~N3. If the Hungarian algorithm
with no weight value is used, the matching results are generally: M1 matches with N1,
M2 matches with N2, and M3 matches with N3 when the threshold value is taken as 0.5.
The Hungarian algorithm considers both to be correlated as long as it is greater than the
specified threshold, that is, it considers that M2 and N2 and N3 are matched while ignoring
the fact that M2 is more correlated with N3. It is this matching method, which is regarded
as leveling, that leads to low tracking accuracy.

The KM algorithm is an improvement of the Hungarian algorithm, in which the
weights of the edge values are increased to achieve optimal weight matching based on the
Hungarian algorithm. The steps to solve the target tracking problem involve using the KM
algorithm [11]. The results detected in the nth and nth + 1 frames are used as vertices to
form the point set M and the point set N, respectively, the GIOU of the detection frame
and the prediction frame is used as the edge value connected between the two points, with
the ID of each vertex in M set to M, the initial weight set to the maximum edge value W
of the edge connected to that point, and each point in the point set N set to N;j, with the
initial weight set 0. If the point set M is satisfied M; + N; = Wj;, then the M; and N; will be
matched; if not satisfied, then the point set M in the conflict will be minus d, and the point
set N in the conflict will be plus d, here set to 0.1. The specific process is shown in Figure 12.
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Figure 12. Schematic diagram of KM algorithm. (a) Initialize W, d. (b) Resolve conflict.

In Figure 11a, the KM algorithm assigns the initial value of W in the target M1~M3
from the maximum weight edge, and the initial value of d in the target N1~N3 is 0. After
initialization, it is found that M1 and M3 are matched with N1, and try to change the edge
weights of M1 and M3 to other values, but they do not satisfy M; + N; = Wj;. As such, a
conflict arises. In order to resolve the conflict, the KM algorithm subtracts 0.1 from the W
value of M1 and M3, and adds 0.1 to the d value of N1. At this point, M3 and N2 satisfy
0.8 + 0 = 0.8, and M1 and N1 also satisfy 0.7 + 0.1 = 0.8. The matching results obtained
using the KM algorithm are: M1 matches N1, M2 matches N3, and M3 matches N2. The
KM algorithm (total weight 0.8 + 0.9 + 0.8 = 2.5) is better than the Hungarian algorithm
(total weight 0.8 + 0.6 + 0.5 = 1.9). 0.5 = 1.9) at matching yields with greater correlations.

4. Experimental Results and Analysis
4.1. Network Training Experiments

Due to the complex conditions of inland waters, the changeable weather, and the
diversity of inland vessel types, datasets also require a large number of data sources. There
are four main ways through which data sources were collected in this section: (1) ship
images were collected and screened through search engines such as Baidu, Google, and
Bing [24]; (2) high-definition surveillance cameras were built at fixed locations next to
both banks of the Wuhan basin of the Yangtze River, which captured images cropped
from the videos of ship navigation between 11 June 2019 and 17 November 2019; (3) the
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image of the ship was captured with a digital camera in the Changjiang River Basin of
Wuhan City, such as: erqi River Bank, Tianxingzhou Ferry Port, Hankou River Bank at a
frequency of one per second, from 21 July 2020 to 26 November 2020. In this paper, data
were collected from many locations and over a large time span, so the collected ship dataset
meets the requirements of large data volume and sample types. The number of data sources
is summarized as shown in Table 2. The ship types are divided into six categories as shown
in Figure 13, and the statistical information of ship image data is shown in Table 3.

Table 2. Statistics of the number of data sources.

Source Quantity (Sheets) Percentage (%)
Search Engine 416 59
Field shooting 2061 29.4
Surveillance video data 4523 64.6

(a) (b) (c) (d) (o) (£)

Figure 13. Vessel classification. (a) ore carrier. (b) bulk cargo carrier. (c) general cargo ship. (d) con-
tainer ship. (e) fishing boat. (f) passenger ship.

Table 3. Number and proportion of ship types.

Ship Type Quantity (Sheets) Percentage (%)
Ore Ships 1751 25.0
Bulk Carrier 1498 214
Miscellaneous Cargo Ships 1149 16.4
Container ship 702 10.0
Fishing boats 1597 22.8
Passenger Ship 303 4.3

The ratio of the training set, validation set, and test set was 16:3:1. In order to ensure
the objectivity of the experimental results, the hyper-parameter settings were consistent for
different models, and some of the hyper-parameter settings related to the experiments are
shown in Table 4.

Table 4. Hyper-parameter settings.

Hyper-Parameter Name Numerical Value
Batch Size 64
Weight Decay 0.0005
Momentum 0.937

10U Threshold 0.2
Loss Gain 21.35
Epoch 100
Learning Rate 0.002324

4.2. Chimney Inspection Experiments

The graded detection results are shown in Figure 14 below, where each column
represents a set of data. The first and second rows show the raw data from the visible and
infrared cameras, respectively; the third row shows the first-level detection, i.e., the result
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of detection by the deep learning detector; the fourth row passes the first-level detection
result and uses the two-step Ostu binarization algorithm to obtain the region with higher
temperature, and further filters the non-chimney highlighted region by leveling the upper
and lower regions; the fifth row filters the noise points through the image erosion operation,
and expands the chimney candidate region through the expansion operation to expand
the chimney candidate area; and the sixth row calculates the maximum value of the area
of the chimney candidate area, and draws the contour of the maximum value as the final
chimney detection area. After the first-level detection to narrow the range, the background
interference can be reduced, and the accuracy of ship chimney detection can be improved.

Figure 14. Chimney inspection. (a) Visible light input diagram. (b) Infrared camera input diagram.
(c) First-level test results. (d) Optimization of detection range. (e) Secondary test results. (f) The
results are displayed in the original image.
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4.3. Model Evaluation
4.3.1. Evaluation Index of Ship Detection Model

We conducted numerical experiments on YOLOV3 [10] and our ship detection method.
To evaluate the performance of the two models, we used the evaluation metrics, mainly
Precision (accuracy), Recall (recall), mAP (mean average precision), and F1 (F1-Measure),
and the calculation formula is as in Equation (9), where AP is the area value under the
curve calculated by integration after the P-R curve is smoothed, and mAP is the mean value
of AP for all categories.
precision = TpTifpp

recall = TPE—% (10)

Fl = 2 x precision x recall
~ precision + recall

where TP means the sample is marked as positive, FP means the sample is marked as
positive by error, TN means the sample is marked as negative by correct, and FN means
the sample is marked as negative by error.

After 100 rounds of iterative training using the migration study methodology, the
training results are shown in Figure 15. The abscissa represents the number of training
iterations, and the ordinate indicates accuracy, average recall, average accuracy and F1,
respectively. As can be seen from the result graph, after the number of iterations reaches
40 rounds, the four basic parameters are stable at about 92%.
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Figure 15. Results after 100 iterations. (a) Accuracy results. (b) Recall results. (c¢) mAP results.
(d) F1 results.

In order to illustrate the effectiveness of our model, we carried out experiments in
the same software and hardware environment, and the specific parameters are shown in
Table 5. The calculation times of YOLOV3 model and our model were counted. To ensure
the fairness of time cost, our calculation time was divided into two parts: training time,
and verification time. The time consumed by each epoch is calculated in Table 4.
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Precision

Table 5. Computational cost (SECOND).

Method YOLOV3 OURS
Category Train Val Train Val
Time 9.46 5.48 6.83 3.52

From the data in Table 4, we can see that the average calculation time of each epoch
of YOLOV3 is 9.46, while the time of our model is lower, at 6.83. Compared with the
calculation time of the validation model, our model is also faster. Therefore, our model
has a good effect on real-time tasks, such as the detection and tracking of ship chimneys in

inland rivers.

Under the same hyper-parameters, dataset, and the same experimental environment,
the improved network and the original YOLOV3 network were compared experimentally,
and the experimental results for each category are shown in Figure 16. The horizontal
coordinates are the confidence values, and the vertical coordinates are the values of each

metric at the current confidence level, and the overall values are shown in Table 6.
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Table 6. Overall index results on the test set.

Evaluation Indicators Ours YOLOV3
Precise 0.95 0.93
recall 1.00 0.99
mAP 0.980 0.957
F1 0.95 0.91
FPS 36 28

From the experimental results, our model can reach an accuracy of 1 when the confi-
dence level is taken as 0.784, while the original model needs to be taken as 0.861 to reach 1.
We can also see from the confusion matrix that the improved model has significantly less
false detections than the original model, and the detector in this paper outperforms the
YOLOV3 model in terms of accuracy, recall, mAP, and F1 indexes, especially in terms of
detection speed, which is significantly higher than in the original model. The visualization
of detection results is shown in Figure 17.

4.3.2. Ship Tracking Model Evaluation Index

In this paper, three metrics were chosen to evaluate the effectiveness of multiple object
tracking: (1) ID switch indicates the number of times the target label is changed in a tracking
track, and the smaller the value, the better; (2) multiple object tracking accuracy (MOTA)
mainly considers the matching errors of all objects in the tracking process, mainly the FP,
EN, and ID switch. MOTA gives a very intuitive measure of the performance of the tracking
algorithm in detecting objects and maintaining the trajectory, independent of the progress
of target detection. A larger MOTA value indicates a better performance of the model.
MOTA is calculated as:

Y. (Arp+Arn + Ap)
Y At

(11)

Mota =1—
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where App is the number of false positive cases, Apy is the number of false negative cases,
Moty is the multi-target tracking accuracy, Ajp is the number of ID switches, and Agr is the
number of labeled targets; (3) FPS, the number of image frames per second processed by
the model—the larger the value, the better the processing effect. To verify the performance
of the method in this paper in chimney tracking, the test was conducted on the video
surveillance data of the Yangtze River Bridge, and the test results are shown in Figure 18.
The results are also shown in Table 5.
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Figure 18. Vessel tracking visualization.

Among them, the blue box is the box detected by the deep learning detector, and the
yellow box is the final box after the Kalman filter update. From the experimental results,
it can be seen that the ID jump frequency decreases when the target is occluded, and the
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accuracy rate increases by 0.04. The specific experimental results evaluation index is shown
in the Table 7.

Table 7. Results of tracking metrics in the test set.

Evaluation Indicators Ours DeepSORT
Multi-target tracking accuracy 0.75 0.71
Number of target marker changes 4 6
Frame rate 6.1 7.4

5. Conclusions

In this paper, we propose a deep learning-based multi-sensor hierarchical detection
and tracking method for inland river ship chimneys, which makes full use of the image
characteristics of different sensors, and combines the hierarchical idea to solve the problems
encountered in practical engineering problems. The method uses visible images with
rich feature information, combining deep neural networks to detect inland river ships,
filtering irrelevant background information, and using the infrared camera’s sensitivity to
temperature to locate ship chimneys to ensure high accuracy of detection results under
inland river waters with complex backgrounds. The reliability and practicality of the
method are proved by field experiments. It makes a certain contribution to assisting the
monitoring of automatic air pollution.
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N o a

Abstract: Recently, the safety issue of maritime autonomous surface ships (MASS) has become a hot
topic. Preliminary hazard analysis of MASS can assist autonomous ship design and ensure safe and
reliable operation. However, since MASS technology is still at its early stage, there are not enough
data for comprehensive hazard analysis. Hence, this paper attempts to combine conventional ship
data and MASS experiments to conduct a preliminary hazard analysis for autonomy level Il MASS
using the hybrid causal logic (HCL) method. Firstly, the hazardous scenario of autonomy level III
MASS is developed using the event sequence diagram (ESD). Furthermore, the fault tree (FT) method
is utilized to analyze mechanical events in ESD. The events involving human factors and related to
MASS in the ESD are analyzed using Bayesian Belief Network (BBN). Finally, the accident probability
of autonomy level IIl MASS is calculated in practice through historical data and a test ship with both
an autonomous and a remote navigation mode in Wuhan and Nanjing, China. Moreover, the key
influence factors are found, and the accident-causing event chains are identified, thus providing a
reference for MASS design and safety assessment process. This process is applied to the preliminary
hazard analysis of the test ship.

Keywords: maritime autonomous surface ships; hybrid causal logic; preliminary hazard analysis;
risk assessment; hazard identification

1. Introduction

Thanks to the rapid development of the artificial intelligence and 5G technology,
autonomous ships will become one of the key transportation vehicles in the future [1-3].
Nowadays, several companies and organizations have performed research on MASS.
The vehicle ferry Falco successfully navigated autonomously during its voyage between
Parainen and Nauvo, and its return journey was conducted under remote control [4].
Wartsild successfully tested such innovative technology into a voyage, during which a
vessel was automatically controlled by a software, while manual intervention and control
was still possible at any time [5]. YARA and Kongsberg are building a ship named “YARA
Birkeland”, which will be the world’s first fully electric and autonomous container vessel
upon completion [6]. DNV GL built a 1:20 scale model of MASS to investigate sensor
fusion and collision avoidance [7]. The AAWA project aimed to produce the preliminary
specifications for the next generation of advanced ship solutions [8]. Finally, the MUNIN
research project developed a technical concept for the operation of an unmanned merchant
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ship and assessed its technical, economic and legal feasibility [9]. In order to clarify the
definition of autonomous ships, the International Maritime Organization (IMO) defines
autonomous ships as maritime autonomous surface ships (MASS). MASS is classified into
four degrees according to their autonomy level, as follows [10,11]. Note that, during the
navigation of MASS, the MASS can change the autonomy level according to the scenario:

e  Autonomy level I: Ship with automated processes and decision support: Seafarers are
on board to operate and control shipboard systems and functions. Some operations
may be automated;

e Autonomy level II: Remotely controlled ship with seafarers on board: The ship is
controlled and operated from another location, but seafarers are on board;

e  Autonomy level III: Remotely controlled ship without seafarers on board: The ship is
controlled and operated from another location. There are no seafarers on board;

e  Autonomy level IV: Fully autonomous ship: The operating system of the ship is able
to make decisions and determine actions by itself.

The safety of MASS will become a key issue for autonomous ship operations. MASS
should have the desired level of safety, i.e., at least the same safety level as conventional
ships [12]. Researchers believe that, compared to conventional ships, MASS are more
economical and safer due to the reduction in crew on board [13,14]. Moreover, changed
technologies, systems and procedures also bring new influence factors [15-17]. Thus, there
is an urgent need for a risk assessment of MASS to assist MASS design.

Maritime risk assessments are considered a hotspot for MASS [18-20]. Due to com-
plexity and novelty of MASS, several studies were performed for hazard identification,
which is the basis for risk assessment. Fan et al. proposed a framework for the identification
of factors that influence the navigational risk of remotely controlled MASS without crew
on board [21]. It classifies a total of 55 influence factors into ship-related, human-related,
environment-related and technology-related factors. More in detail, failure of onboard
equipment may result in the degradation or failure of functions related to propulsion. At
the same time, the results show that the majority of these influence factors are related to
human error. Kretschmann et al. [22] found 23 identified hazards with acceptable risk
based on a formal safety assessment (FSA). These hazards are related to various influence
factors such as weather, equipment and cyber security. Human errors may be related to
remote monitoring, control and maintenance. At the same time, this study shows that
a failure of the power and propulsion system will lead to unacceptable consequences.
Wrdbel et al. [19] reviewed a hundred maritime accident reports, analyzing various safety
hazards that lead to accidents for conventional ships based on what-if and human factors
analysis and classification system for marine accident (HFACS-MA) methods, and consid-
ering the impact of these safety hazards on MASS. The results show the existence of the
human factor in unmanned systems’ operation, as long as people are involved in operation.
In summary, almost all studies on MASS hazard identification mentioned the complexity
and diversity of MASS influencing factors, as well as the significant influence of mechanical
failure and human error.

Based on hazard identification, some studies have been conducted to analyze equip-
ment failure and human error. In relation to the human error in SCC, Ramos et al. [23]
divided the possible human error process into four stages, and established an event tree
model of the MASS. Moreover, they classified the influencing factors, describing their differ-
ences across various human factor reliability analysis methods and the shortcomings of the
current behavior influencing factor set, simulating the human-machine interaction process
and proposing an avoidance based on hierarchical task analysis. Man et al. [24] invited
six participants to conduct a scenario-based simulation as proposed operators in the SCC.
Their conclusions suggest that human factor issues, such as psychophysical and perceptual
limitations of operators, decision-making latencies and automation bias, may remain in
systems assembled by assumed reliable technological components. Zhang et al. [11] pre-
sented a model based on the Technique for Human Error Rate Prediction (THERP) and on
Bayesian Network, which can depict the causal relationship focused on human-autonomy
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collaboration and perform a quantitative assessment. Unlike for human errors, research
on equipment failure focuses mainly on power and propulsion systems. Bolbot et al. [25]
analyzed the hazards related to the electric propulsion system based on the System theoretic
process analysis (STPA) method. In addition, Bolbot et al. [26] combined event tree analysis
(ETA), fault tree and STPA method to analyze a simplified diesel electric propulsion system
and identify the hazardous scenarios leading to a blackout. Wang et al. [27] determined the
weakness of the ship power system and put forward a design of the ship power plant. These
studies provided a reference for MASS designers in case of human error or equipment
failure. However, they overlooked the influence of individual factors on the safety of the
entire MASS, and often neglected the mutual influence of different factors.

The hazard scenario of MASS usually gradually evolves from a hazard event. Different
outputs of safety barriers in this process will lead to different end states. The interaction
among influence factors needs to be taken into consideration in this complex process [28].
Thieme et al. [29] formulated nine criteria and used them to assess 64 relevant ship risk
models since 2005. The results show that none of them are suitable to be directly used for
MASS risk assessment. In fact, MASS risk assessment should comprehensively include
various influence factors, instead of only analyzing specific factors. Accordingly, new
methods have been applied for MASS risk assessment. The STPA method has been applied
to MASS, as it can analyze the interactions between its components. Valdez Banda et al. [30]
applied the STPA to analyze the safety hazards in the foreseen functioning of two concepts
of autonomous ferries operating in urban waterways in, and near, the city of Turku in
Finland. Employing the STPA, a safety-controlled structure and hazard list has been created
for the system to ensure that remotely controlled ships do not have a negative impact on
maritime safety [18]. Wrobel et al. [31] applied the STPA to identify the hazards, formulate
hazard mitigation and improve the safety performance of autonomous ships. In addition,
Utne et al. [16] proposed a framework combining STPA and Bayesian Belief Networks
to establish an online risk model for autonomous ships. In parallel, Ramos et al. [32]
proposed the human-system interaction in autonomy (H-SIA) method, which consists of
an event sequence diagram (ESD) and concurrent task analysis (CoTA), to analyze the
system as a whole and focus on the interactions between sub-systems. At the same time,
Ramos et al. [28] extended the H-SIA to include the paths to failure through the Fault Tree
(FT). However, these approaches can only be used in qualitative analyses, and are not
suitable to perform quantitative analyses. The relationship of potential hazards of MASS
can be easily described by these qualitative methods. However, the failure probability and
sensitivity of potential hazards cannot be obtained. The results have limited contribution
to the safety design of MASS.

Since MASS is still in the experimental stage and concept stage rather than the op-
eration stage, there are insufficient data to quantitatively analyze the risk of MASS. A
preliminary risk analysis should take place to evaluate the ability of the MASS to operate
safely and reliably during the concept and experimental stages [12]. In this study, we want
to develop a model which can perform a preliminary hazard analysis of MASS. For the
function during concept stage, the historical data such as failure rate are used for qualita-
tive analysis. For the function during the experimental stage, the experimental data of the
MASS model are used to develop the quantitative model. This result will be used to further
improve the performance of MASS experiment. At the same time, the data can assist in
judging whether these concepts of MASS are suitable or not and help develop the function
which is still in the concept stage.

The shift from conventional ships to autonomous ships is a gradual process [21]. Com-
pared with conventional ships, the MASS will be equipped with an autonomous system
(AS) that may help or replace human decision-making and action. At the highest level of
autonomy, MASS can be controlled by AS completely. Given the current development of
MASS technology, in the near future, MASS will have a constrained autonomy, and their
operation will be supervised or controlled by a shore control center (SCC) [33]. Autonomy
level III MASS will be an important stage with the participation of AS and operators in
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SCC. According to the elaboration of autonomy level III, MASS are equipped with AS,
an advanced sensor module, a SCC, a satellite communication equipment, alarm devices,
other facilities and without anyone onboard. Various sensors will provide sufficient data
for AS system and SCC to identify the navigation status and environment. The AS system
can control navigation according to the surrounding environment and ship condition; in
case of hazardous events, it will propose strategies to guarantee the safety of MASS. At the
same, the operator in SCC will supervise the operation of MASS, including the operating
environment, decision proposed by AS, etc. The remote operator has the highest right to
take over the control of MASS at any time. In case the AS system cannot propose effective
measures or a situation develops in a particularly difficult direction, the SCC can take
over the control of the MASS and dispatch a professional team to deal with problems [34].
Above all, the autonomy level IIl MASS is a suitable object to conduct a preliminary hazards
analysis for MASS.

The hybrid causal logic (HCL) methodology provides a vehicle for the identification
and communication of cause-effect relations including those associated with human, orga-
nization and system hardware and software, and the physical and regulatory environment
of the system [35]. The HCL method uses ESD as the first layer to describe system be-
havior, and then provides a more detailed picture of the contributing causes by using
FTs. Fault tree analysis is the one of the popular techniques used for reliability studies
for a complicated system [36]. Fault trees are widely used in mechanical systems with
obvious structure and causal logic such as the aviation industry and offshore systems.
Mohaghegh et al. [37] applied the HCL method to include the organizational roots of risk.
Groth et al. [38] introduced a software platform for the HCL method and applied it to
analyze a type of aviation accidents. Reed et al. [39] discussed the applicability of HCL to
the offshore industry and its relationships with the barrier and operational risk analysis
project (BORA). Sklet et al. [40] applied the HCL to analyze the installation-specific factors
with respect to technical systems, operational conditions, and human and organizational
factors. Thus, the HCL method is a suitable tool to analyze MASS, as it includes various
influence factors.

Based on these considerations, this article hopes to introduce the HCL method into
MASS to assist the early design of MASS. Taking contact hazards as an example, this paper
applies the experimental MASS model and historical data to conduct hazard analysis on
MASS. The ESD was applied to define the hazard scenario, focusing on the interaction
between AS and operators in the SCC. For non-human-related events (such as mechanical
failure) that can be decomposed into the equipment level, we applied the FT to develop
a branch model to analyze in detail the influence factors. The concept of the mechanical
system of MASS and the failure data of conventional ships were used to conduct a prelimi-
nary analysis. As for human- and organization-related events, due to their uncertainties,
we applied the Bayesian Belief Network (BBN) to analyze in detail the influence factors
based on the experimental statistics This process was applied to demonstrate a case study
of a test ship, equipped with an autonomous navigation mode and a remote navigation
mode in Wuhan and Nanjing, China.

The rest of this paper is organized as follows. Section 2 describes the HCL methodology
used to develop the model. Section 3 presents the MASS hazard scenarios. Section 4
introduces the quantitative case study of contact scenario. Finally, Section 5 presents the
conclusions of this study and the future work.

2. Methodology

HCL methodology is a powerful modeling tool for developing hazards scenarios and
search the more detail potential hazards. Figure 1 presents the main framework and the
flowchart of the HCL method. The application of HCL can be divided into 4 steps and
described in detail below.
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Figure 1. Framework and flowchart of the HCL method.

Step 1: Development of a MASS hazard scenario using ESD. ESDs are used to define
the system hazard scenarios. The ESD presents a temporal sequence of events, from an
initiating event to various end states. The initiating event (IE) is commonly a hazardous
event or a source of risk. Once a hazardous event occurs, some safety barriers, regarded
as pivotal events in ESD, should be adopted to prevent or mitigate the hazard. The
output of safety barriers (i.e., normal or failure of operation) determines whether or not
the hazardous event evolves into an accident. Different pivotal events and their output
will lead to different end states, such as safe or accident states. In order to determine the
probability of each end state, the probability of each pivotal event output (i.e., normal or
failure of operation) must be obtained. According to the characteristics of pivotal events,
their detailed influence factors can be analyzed using FT and BBN. In this study, the
equipment events were analyzed using FT, as shown in Step 2. The events involving
human factors were analyzed using BBN, as shown in Step 3.

Step 2: Analysis of mechanical events using FT. The FT is used to develop a branch
model to quantitative analyze mechanical events in ESD. Fault tree analysis is the one
of popular techniques used for reliability studies for a complicated system. The system
failure event is regarded as top event. The subsystem failure events which may cause
the top events are identified and linked to top event through logical connective function
(such as AND/OR gate) [36]. Fault trees are widely used in mechanical systems with
obvious structure and causal logic such as the aviation industry and offshore systems. The
quantitative analysis of the fault tree first needs to convert the logical structure established
by it into an equivalent probability expression. Once the failure rate and operation time
are obtained, the failure probability of the basic event can be calculated. Thus, according
to the equivalent probability expression, the failure probability of the top event can also
be obtained.

Step 3: Analysis of events related to human factors using BBN. Unlike for mechanical
events, the events related to human factors are non-deterministic and uncertain, and can be
effectively analyzed using BBN. The BBN network consists of nodes and directed arcs. The
events involving human factors in ESD are regarded as target nodes in the BBN network.
The detailed influence factors of the events involving human factors are regarded as sub-
nodes. The nodes are divided into various states according to their characteristics and
requirements, while the arcs between nodes represent the direct influences. Similar to
FT, the BBN also allows us to quantify the probability of events in the ESD when the
probability of root nodes and conditional probability table are obtained (see further details
in Section 3.3).

Step 4: Quantification of the failure probability. The probability of events in ESD are
calculated in Steps 2 and 3. This way, we obtain the occurrence of various end states by
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logics. At the same time, the hazard scenario can be expressed by the accident-causing
events. These chains of events can be ranked according to their probabilities. In addition,
important measures are adopted to provide information about the criticality of basic
events according to their contribution to the overall system performance (see Section 4 for
further details).

3. HCL Model for the Hazard Scenario for Mass

The preliminary hazards analysis for MASS should at least cover the relevant hazards
such as collision/contact, grounding, unable to detect, etc. [12,41-43]. In this section, we
take contact with foreign objects/obstacles (non-detected and detected) as an example.
Contact refers to ships striking or being struck by an external object include floating object,
fixed object or flying object. According to the definition of the contact scenario, several
experiments were carried out in the Tangxun Lake in Wuhan and in the Qinhuai River in
Nanjing, China [44]. Through the experiments and historical database, the hazard model
for contact scenarios of MASS is developed.

3.1. Develop a MASS Hazard Scenario Using ESD

It is important to understand the entire process of MASS contact scenarios. Once an
external object occurs, the AS and the operators in the SCC have a responsibility to detect it
and avoid [28]. The MASS will strike or be struck by an external object if the course/speed
of the vessels does not change.

To assist in the analysis of the contact scenarios for MASS, the ESD is used to develop
a model. IE usually refers to potentially hazardous events that may lead to accidents. In
the contact scenario, the initiating event (IE) is commonly an external object appears on
the planned sailing route. For a better description, several pivotal events and end states
of the contact scenario are classified into three stages: (1) hazardous event perception; (2)
decision-making; and (3) execution based on the experimental situation combined with
experts’ knowledge [21,28,45]. They are described as follows:

e  APerception stage: In this stage, the external object is perceived by the MASS; ac-
cordingly, information should be acquired based on sensors and human perceptions.
Through the analysis of information, the MASS can detect the external object in two
ways [12]. The first way mainly relies on sensing devices and AS and is labeled as
‘detection by AS’ (P1). Accordingly, the MASS is equipped with various sensing de-
vices that ensure a timely perception of hazardous events. The second way is labeled
as ‘detection by SCC” (P2), where operators in SCC should monitor the MASS in case
the external object is not perceived by the sensing devices. A failure in the perception
stage will directly lead to an accident.

e  ADecision-making stage: In this stage, an agent (either the AS or the operators in the
SCC) should propose an effective strategy to prevent contact with external objects
according to the data and information gathered at the perception stage. This covers sit-
uation assessment, diagnosis and response planning [28]. In this stage, the AS should
control the ship and propose a strategy to avoid the external events, an occurrence
labeled as ‘control by AS’ (P3). If the AS cannot propose an effective strategy, the
operators in the SCC should take over the control of MASS, an occurrence labeled as
‘remote control by the SCC” (P4).

e AExecution stage: In this stage, the MASS should successfully execute the strategy
selected at the decision-making stage. More in detail, the actuators will operate a
control system to change the course/speed according to the strategy [12]. In this study,
the execution system mainly includes the ‘steering system’ (P5) and the ‘power and
propulsion system’ (P6).

The normality or failure of operation of pivotal events will lead to different end states.

In this study, four end states were determined. In the ‘normal navigation’ (E1) end state, the

MASS successfully avoid the objects and has the ability to continue navigation. In “accident

due to perception failure” (E2), the MASS does not recognize external objects and struck
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with them. In "accident due to decision-making failure” (E3), the MASS does not propose
effective strategies to avoid the external object. Finally, in "accident due to execution failure’
(E4), the MASS does not adjust the speed and course lead in a timely manner due to a
mechanical failure resulting in a contact accident.

The description of the pivotal events and of the end states in the contact scenario is
presented in Table 1. At the same time, the ESD model for the MASS contact scenario was
elaborated and is shown in Figure 2.

Table 1. Description of the nodes in the proposed ESD model.

Stage

Label

Event

Description

Reference

Perception stage

P1

P2

Detection by AS

Detection by SCC

During the navigation of MASS,
equipment such as sensors, laser and
range finder should detect navigational
hazards or abnormal operational
conditions all the time.

During navigation, the MASS should
transmit images and sounds to the SCC,
so that the operators may detect the
hazardous event.

[34]

(28]

Decision-making stage

P3

P4

Control by AS

Remote control
by SCC

The AS should choose the optimal
maneuver to stop the hazardous event
according to the information gathered.
When the situation requires navigational
operation from the SCC, the operators in
the SCC will go into the situation
handling room to handle the risk.

(28]

[46]

Execution stage

P5

P6

Steer system

Power and propulsion
system

The steer system has the responsibility to
actuate ship motion. The MASS should
control the direction to avoid the
hazardous event.

The power and propulsion system has the
responsibility to actuate ship motion. The
MASS should control the speed to avoid
the hazardous event.

[16]

[47]

End state

El

E2

E3

E4

Normal navigation

Accident due to
perception failure
Accident due to
decision-making failure

Accident due to
execution failure

The MASS successfully handles the
hazardous event and continues
navigation.

MASS does not recognize external objects
and struck with it.

MASS does not propose an effective
strategy to avoid the object.

MASS does not timely adjust the speed
and course lead due to a mechanical
failure resulting in a contact accident.

(28]

(11]

(11]

(48]
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Figure 2. ESD model of the MASS contact scenario.

3.2. Analysis of Mechanical Events Using FT

In order to prevent the contact accident, MASS needs to adjust the course and speed
which mainly relied on steer system and power and propulsion system. In this study, we
developed a model for the MASS power and propulsion system using the FT method as
an example.

Since there is no MASS in operation, its mechanical system structure and failure data
cannot be obtained. In the current study, the researchers usually use the failure data of
conventional ships to continue the research about the MASS [49]. Thus, in this section, we
will develop a FT for the mechanical events of MASS based on the MUNIN report and
DNV GL guideline.

In conventional ships, machinery problems have a very high frequency of causing
minor incidents which, however, will be more severe in MASS without maintenance [22].
The power and propulsion system of a conventional ship, which includes the main engine,
the propeller and the auxiliary system, is considered to be the cause of major ship technical
failures. Thus, the normal operation of the mechanical system is key for MASS navigation.
There are different opinions about the MASS power and propulsion system. Some projects,
such as the AAWA project and the ReVolt project, selected batteries as power source because
they have a good efficiency and can ensure zero emissions [8]. In the MUNIN project, the
diesel engine propulsion line was selected as the propulsion system [22]. Although the
forms of power and propulsion are different, it is commonly accepted that MASS should
be purposely built with redundant energy propulsion systems. In this study, we adopted
the requirement that MASS should be arranged with a minimum of two independent
propulsion lines, as proposed by DNV GL. In parallel, each propulsion line should have a
sufficient capacity to meet the specifications for normal operation [12]. This arrangement
has two advantages: (i) the two propulsion lines are redundant; and (ii) two independent
propulsion lines can prevent common cause failures. In this study, considering that the
energy provided by the battery is not enough to support long-term sailing, the diesel
electric propulsion was selected as the power and propulsion system. The equipment in
the power and propulsion system is shown in Table 2.
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Table 2. Description of the components of the power and propulsion system.

Event Description References

Bus bar The bus dispatching power according to the load. [50]

Transformer The transformer has the responsibility to obtain different [50]
voltage levels and sometimes also to phase shift.

Converter The freque.ncy converter has the responsibility to control [51]
the shaft line speed.

. The electrical motor is the commonly used device for the

Electric motor . . . . [50]
conversion of electrical power into mechanical power.

Diesel generator Diesel engines supply power to the electric [52]
generator shaft.

Propeller The electric propulsion motor drives the propeller to [51]

provide propulsion.

According to the FT logic and to the equipment of diesel electric propulsion, we
established the FT of diesel electric propulsion systems for MASS. The failure of operation
of the ‘power and propulsion system’ (P6) was regarded as the top event and was labeled as
F1. A failure of both the first diesel electric propulsion line (F2) and the second diesel electric
propulsion line (F3) will lead to propulsion loss (F1). The second diesel electric propulsion
line (F2) has the same arrangement as, and is independent from, the first diesel electric
propulsion line (F1). We took the first propulsion line as an example. The single diesel
electric propulsion line can be decomposed into three elements: power plant, distribution
and loads. The power plant (F5) includes three diesel generators (F16, F17 and F18), two of
which can provide sufficient power. Multiple diesel generator sets feed a fixed-frequency
high-voltage electrical bus (F6), upon which the distribution depends to dispatch power
according to the load. In this section, we only consider the load of the propulsion. This
bus feeds the electrical propulsion motor drive, in most cases through a transformer (F7).
The electric propulsion motor (F9) drives a frequency converter (F8) to control the shaft
line speed and the propeller (F10) to provide propulsion to the MASS [51]. The propulsion
system failure was modeled by using FT, as shown in Figure 3. The nodes in the FT are
shown in Table 3.

F1

a
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L
PEOEE ®6666 06

[\ [\
@ @ @ O @

Figure 3. FT of the power and propulsion system.
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Table 3. Nodes in the FT of the power and propulsion system.

Node Event

F1 Power and propulsion system

F2 Diesel electric propulsion 1st line
F3 Diesel electric propulsion 2nd line
F4, F15 Propeller

F5, F14 Power plants

F6, F13 Bus bar

F7,F12 Transformer

F8, F11 Converter

F9, F10 Electric motor

F16, F17, F18, F19, F20, F21

Diesel generator

3.3. Analysis of Events Related to Human Factors Using BBN

Although autonomy level III MASS have no crew on board, the human error in the
SCC can still lead to contact, especially in the remote driving mode. In this step, we used
BBN to develop a branch model for the ‘remote control by the SCC’ (P4), which was defined
as the target node of the BBN model (C1). The influence of the detailed variables on the
‘remote control by the SCC’ (C1) is mainly reflected in the form of the various nodes in the
network. We first investigate the historical literature to obtain potential influence factors
with their associated definitions and descriptions. After that, develop and apply contact
scenarios in Tanxun Lake and Qinhuai River, and remotely control MASS ships to conduct
contact avoidance experiments. After experimentation and expert judgment, 15 influence
factors that influence the ‘remote control by SCC” (C1) are regarded as sub-nodes, as shown
in Table 4. The process employed is as follows:

Table 4. The influence factors of remote control.

Label Node Description References
The MASS switches into remote control. The operators

c1 Remote control in the SCC should send updated route information or (32]

by SCC directly control the MASS and propose a strategy to

handle hazardous events.

Cc2 Operators’ performance Operators’ performance during remote control. [53]
The various technical aspects of the ship condition,

C3 Ship condition including, but not limited to, communication and [54]
engine conditions.

C4 Operating environment Weather conditions and traffic density. [13]
Although more advanced technology can reduce

C5 Fatigue operators’ fatigue, a long work schedule may still lead ~ [11]
to fatigue.
The operators should ensure an appropriate situation

Cé6 Situational awareness awareness of the MASS, despite the physical distance [9]
with the crew and vessel.
The operators should have the theoretical knowledge of

c7 Experience and experience in remote control in a virtual [11]
environment.
The SCC is articulated into specific roles (e.g.,

cs Communication and supervisor, captain and engineer), which need to [46]

collaboration

communicate and collaborate with each other to handle
hazardous events.
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Table 4. Cont.

Label Node Description References
The MASS should establish a two-way communication
C9 Ship’s feedback with the SCC. The ship’s feedback means that the [31]
information is transferred from the ship to the SCC.
The onboard software decides the operation of the
€10 Software performance MASS and the communication with the SCC. [55]
The MASS should establish a two-way communication
C11 SCC’s feedback with the SCC. The ship’s feedback means that the [31]
information is transferred from the SCC to the ship.
c12 Communication quality tC}Q\l;asl;:cl}; of the communication between the SCC and [33]
C13 Communication bandwidth Available communication bandwidth during operations.  [12]
Weather Heavy weather conditions may push the ability to
Cl4 ... control the ship to the limit, while at the same time [30]
conditions . ..
affecting communication.
. . Traffic density could be specified based on the relevance
C15 Traffic density of potential accident risks in the area. [13]
(1) Determination of BBN nodes
The ‘remote control by the SCC” (C1) is influenced not only by the operators’ per-
formance, but also by the ship condition and operating environment. Different from the
‘remote control by SCC’ (C1), which is a binary node, these influence factors have multiple
states. The sub-nodes are classified into multiple states according to the criteria presented
in Table 5.
Table 5. Multiple states and description of the sub-nodes in BBN.
Label Node State Description
Good (a) The operators are able to operate the ship and to handle
hazardous events.
2 Operators’ performance Medium (b) Thg operators are able to fulfil basic requirements for
ship operation.
Bad (c) Failure by the operators to operate the ship as required.
The automated function can assist the operator to
Good (a) .
drive well.
c3 Ship’s condition Medium (b) The e.automated function can meet the basic driving
requirements.
Bad () The automated function cannot meet the driving
requirements.
Good (a) The environment has no impact on remote driving.
. . Medium (b) The environment has a slight impact on remote driving.
C4 Operating environment Th . h . .
Bad () e environment has a serious impact on remote
driving.
Good (a) The operator does not feel tired at all.
C5 Fatigue Medium (b) The operator is slightly tired.
Bad (c) The operator feels tired after a long time of operation.
Good (a) The operator can clearly judge the situation.
C6 Situational awareness Medium (b) The operator can basically judge the situation.
Bad (c) The operator cannot accurately judge the situation.
Good (a) Operators have sufficient remote driving experience.
Cc7 Experience Medium (b) Operators have some remote driving experience.
Bad (c) Operators do not have remote driving experience.
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Table 5. Cont.

Label State Description

Good (a) Communication is performed as required, obtaining
C icati d useful results.
ommunication an . .. . .
Cs8 ) . Communication meets basic information delivery
collaboration Medium (b) requirements.

Bad (c) Failure to communicate and collaborate as required.
Good (a) The ship can feedback sufficient information.

C9 Ship’s feedback Medium (b) The ship can feedback information related to driving.
Bad (c) The ship gives no feedback on the ship’s situation.
Good (a) The software can meet the driving requirements well.

C10 Software performance Medium (b) The software can meet the basic driving requirements.
Bad (c) The software cannot meet the driving requirements.
Good (a) The SCC has a timely response to the ship.

C11 SCC’s feedback Medium (b) The SCC can feedback information related to driving.
Bad (c) The SCC does not respond to the ship in time.
Good (a) Information can be transmitted well between the ship

and the SCC.

C12 Communication quality Medium (b) ér;fs:lplete information is transmitted, but sufficient to
Bad (c) Sufficient information cannot be transmitted.
Good (a) Approaching the maximum value.

C13 Communication bandwidth Medium (b) Within the normal range of communication equipment.
Bad (c) Only a small amount of information can transmit.
Good (a) Have almost no effect on ships.

Cl4 Medium (b) Have a certain impact on ships.
Bad (c) Have a greater impact on ship control.
Good (a) More than three ships.

C15 Traffic density Medium (b) The ship encounters other ships.
Bad (c) No ships around when the ship is sailing.

a, b, c represent the abbreviations for the good, medium and bad states, respectively.

(2) Analysis of BBN nodes

The label C1 refers to a situation where the operators in the SCC remotely control
the ship and handle the hazardous events. This node is mainly related to three aspects:
‘operators’ performance’ (C2); ‘ship’s condition” (C3); and ‘operating environment’ (C4).

The label C2 refers to the operators’ performance during the remote control of MASS in
the contact scenario. During the remote driving mode, the SCC will assign a group of people
including a supervisor, an engineer and a captain to remotely drive the MASS. After a long
work schedule, the operators may be in a state of ‘fatigue’ (C5). ‘Situational awareness’ (C6)
refers to operators’ awareness of the current emergency situation of MASS. ‘experience’ (C7),
‘communication and collaboration” (C8) and ‘ship’s feedback (C9) influence the ‘situational
awareness’ (C6). In terms of ‘experience’ (C7), the crew group should not only master the
ability of remote driving, but also have experience in handling various hazardous events.
‘Communication and collaboration” (C8) means that the crew group needs to exchange
information and collaborate to propose effective strategies.

The SCC operators cannot handle hazardous events without the support of ship’s
function. The label C3 refers to whether or not the ship can capture and deliver the
necessary information needed by the SCC, which depends on ‘software performance’ (C10),
'SCC’s feedback’ (C11) and ‘operating environment” (C4). ‘Ship’s feedback’ (C9) and ‘SCC’s
feedback’ (C11) refer to the quality of the data and information transferred between the ship
and the SCC, which depends on ‘software performance’ (C10) and ‘communication quality’
(C12). In turn, ‘communication quality’ (C12) is related to ‘communication bandwidth’ (C13)
and “operating environment” (C4), and determines the sufficient and timely delivery of
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information. In case of insufficient communication between the ship and the SCC, ‘software
performance’ (C10) should give priority to providing the urgently needed information,
which affects both the “ship’s feedback’ (C9) and ‘SCC’s feedback’ (C11).

The label C4 refers to the surrounding environment of MASS, it includes ‘weather
conditions’ (C14) and ‘traffic density’ (C15), which will affect the difficulty of remote
driving. After determining the nodes, and according to the relationship between them, a
model of remote control error was developed, as shown in Figure 4.

Figure 4. BBN model for MASS remote control.

4. Case Study

A case study of preliminary hazard analysis of MASS contact scenario based on
experimental data, historical data and experts’ judgement is presented. According to the
definition of the contact scenario, several experiments were carried out in the Tangxun
Lake in Wuhan and in the Qinhuai River in Nanjing, China [44]. The experimental ship
employed is a 1:7 scale MASS model with three operation modes, namely remote driving,
crew maneuvering and autonomous driving [45,48,56]. It weighs 5.5 ton and is about 7.2 m
in length. Its profile and propeller rudder are consistent with MASS. The ship is equipped
with various sensors, a laser radar, cameras and other hardware, which allow us to obtain
the surrounding weather, traffic and other navigation environment information in a timely
manner. In this quantitative analysis, the events related to the autonomous navigation are
all obtained from experimental data. The mechanical systems of MASS are determined
through the quantitative analysis of historical data.

4.1. Quantification of the Nodes of the FT Model

Quantitative analysis of the FT consists of transforming its logical structure into an
equivalent probability expression by “minimal cut set” method at first [36]. Take the F2
FT as an example, the logical structure of F2 is transformed into equivalent probability
expression in Equation (1).

P(F2) = P(F4) + P(F6) + P(F7) + P(F8) + P(F9) + P(F16) x P(F17) + P(F16) x P(F18) + P(F17) x P(F18) (1)

In order to quantify the failure of top events, the failure probability of basic events
(equipment) in FT had to be obtained. Because the MASS power and propulsion line is the
same as conventional ships, the existing failure data on the power and propulsion system
of conventional ships and other industries could be used to estimate the failure probability
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of the power and propulsion system. The failure rate of each component in FT is shown in
Table 6.

Table 6. Equipment failure rate data in the FT model.

Label Equipment Failure Rate (hour) References
112;8: IEZ’ F18, F19, Diesel generator 7.59 x 107° [57]
F6, F13 Electric bus 150 x 10~ [58]
F9, F10 Electric motor 6.74 x 10~° [57]
F7, F12 Main transformer 6.47 x 10~7 [58]
F8, F11 Converter 2.66 x 107° [58]
F4, F15 Propeller 5.00 x 10~ [59]

In this study, the following assumptions were made in the development of the FT to
calculate the failure probability of the propulsion system:

AThe failure rate of each component is a constant value.
ADuring MASS navigation, no maintenance and repair activities are performed. In
this study, the voyage of the MASS was considered to last 30 days, or 720 h.

e  AWhile the MASS is in the port, the SCC should dispatch engineers to repair and
maintain the system. This is a perfect-repair process, which means that the power and
propulsion system can be the same as the new equipment.

e  AFailure processes are modeled with an exponential distribution.

The probability of failure P was calculated based on the fact that the equipment’s
failure rate A and the period per hour t were known, as follows [60]:

P(t)y=1—¢M )

Using Equation (2), failure probabilities of the basic events (the failure probability of
equipment) in the power and propulsion system could be obtained. Based on the equivalent
probability expression and failure probability of basic events, the failure probability of the
diesel electric propulsion 1st line (F2) was calculated as equal to 7.36 x 1072, as shown in
in Equation (3).

(F4) + P(F6) + P(F7) 4+ P(F8) 4+ P(F9) + P(F16) x P(F17) 4+ P(F16) x P(F18) + P(F17) x P(F18)
1— 671.50><10*6><24><30 +(1- 676.74><10*5><24><30 +(1- 676.47><10’7><24><30 + (1 _ 672.66><10’5 ><24><30)

1— e—5.00><10’6><24><30) +3x (1 o e—5.00><10*5><24><30) % (1 o e—5.00><10’6><24><30>

®)

Similar to the diesel electric propulsion 1st line (F2), the failure probability of the

propulsion system (F1) is 5.41 x 1073, Compared to conventional ships, which only

have one propulsion line, the failure probability of the MASS propulsion system is lower.

Moreover, the value of the normal operation of the “‘power and propulsion system’ (P6)
is 0.9946.

4.2. Quantification of the Nodes in BBN Model

Based on the proposed BBN model and on the multiple states of nodes, experiments
were conducted from October 2019 to November 2019 in a section of the Qinhuai River
in Nanjing, to simulate the MASS contact scenario. Conventional ships include mainly
passenger cruise ships, cleaning boats, patrol boats and others. Ferries and docks are
present on both sides of the riverbank; there are several bridges above the water area,
and the river channel is narrow. The experimental MASS model and the surrounding
environment are shown in Figure 5. We selected some representative risk scenarios in the
experiment, simultaneously recording all the information on the MASS model. In parallel,
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we determined the current states of related risk factors and the conditional probability
distribution of the intermediate variables according to interviews and observations.

Figure 5. The Shore Control Center, several models of ships and the MASS model.

4.2.1. Prior Probability Determination of Each Root Node

By analyzing the record of the experiments, we regarded the frequency of occurrence
of each root node as the prior probability. For objective factors, such as communication
bandwidth, the communication bandwidth is recorded and classified in every experiment.
In the experiment, the percentage of the number of times in which the communication
bandwidth state is good, medium or bad is regarded as the prior probability. Subjective
data that reflect the operators’ performance, such as experience and fatigue, were evaluated
through interviews. Taking the experience node as an example, an operator who has no
remote control experience, has undergone remote control training and has sufficient remote
control experience will be the experimental personnel. The percentage of the total number
of experiments performed by these three types of people is regarded as the prior probability.
The prior probability of each root node is shown in Table 7.

Table 7. Prior probability of each root node.

Node Name Good (a) Medium (b) Bad (¢)

C5 Fatigue 0.8802 0.1030 0.0168

c7 Experience 0.6593 0.2201 0.1206
Communication

C8 and 0.8264 0.1220 0.0516
collaboration

C10 Software 0.3407 0.4396 0.2198
performance
Communication

C13 bandwidth 0.4286 0.1538 0.4176

Cl4 Weather 0.8021 0.1429 0.0549
conditions

C15 Traffic density 0.7033 0.1978 0.0989

a, b, c represent the abbreviations for the good, medium and bad states, respectively.

4.2.2. Conditional Probability Table (CPT) Estimation

Both the arcs and the CPTs in the BBN reflect the causal relationship between the
nodes. For the BBN, there are large number of CPTs that need to be determined. At the
same time, it is difficult to accurately quantify the limited experimental data. Therefore, we
adopted the method proposed by Reed et al. [39] to allocate CPTs. This method provides a
structured way to derive the CPTs, thereby making it relatively less time-consuming. It
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is structured as follows. At the same time, this article provides a suitable way to convert
experimental statistics into CPT:

e  Determination of the relative importance weights between parent nodes and child node.

First, different parent nodes affecting the same child node have different degrees of
importance, which can be addressed by assigning a weight w; for each parent i through
expert judgement. The sum of the weight of all parent nodes should be equal to 1. To this
end, we adopted the interval type-2 fuzzy analytic hierarchy process (IT2FAHP) method
proposed by Hu et al. [61]. The linguistic terms for importance as shown in Table 8. Based
on the experimental certainty of the MASS model in the Qinhuai River in Nanjing, China,
and the previously established BBN, a questionnaire on the importance of the parent nodes
was designed and used to query three experts. To achieve a single view on the importance of
parent nodes, we used the TIT2-WAA operation to aggregate the fuzzy judgment proposed
by three experts. After TIT2-WAA operation, the fuzzy weight of each parent node was
obtained. Finally, the fuzzy weights were defuzzified and normalized to obtain the relative
weights of each parent node. The rationality of the result was further corrected through
expert opinions. Taking the “operator performance” node as an example, the hierarchical
structure is shown in the Figure 6. Three MASS remote operators gave a judgment on the
relative importance of the two nodes, as shown in Table 9. After TIT2-WAA operation and
defuzzification, the relative weights of fatigue ‘C5’ and situation awareness 'Cé’ are 0.4 and
0.6. The more detailed method and equation are in Hu et al. [61]. The relative weights of all
nodes in the BBN are shown in Table 10.

Table 8. Linguistic terms for importance.

Linguistic Variable Trapezoidal Interval Type-2 Fuzzy Sets
Absolutely Strong (AS) ((7,8,9,9;,1,1),(7.2,8.2,8.8,9.0;0.8,0.8))

Very Strong (VS) ((5,6,8,91,1),(5.2,6.2,7.8,8.8;0.8,0.8))
Fairly Strong (FS) ((34,6,7,1,1),(3.2,4.2,5.8,6.8;0.8,0.8))
Slightly Strong (SS) ((1,2,4,51,1),(1.2,2.2,3.8,4.8,0.8,0.8))
Equal (E) (111,1,1,1),(1,1.1,1,1,1,1))

If candidate I has one of the above linguistic

variables assigned to it when compared with
candidate j, then j has reciprocal value when

compared with i.

Reciprocals of above

Operators performance (C2)

Fatigue (C5) Situation awareness (C6)

Figure 6. The hierarchical structure of C2 node.
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Table 9. The relative importance of C5 and C6 nodes.

Operator 1st Operator 2nd Operator 3rd

C5 Coé C5 Ceé C5 Ceé
C5 E E E 1/SS E E
Cé 1/E E SS E E E

Table 10. Relative weight of the parent nodes.

Parent Node Child Node Relative Weight
Weather conditions (C14) . . 0.6
Traffic density (C15) Operating environment (C4) 0.4
Communication bandwidth (C13) o . 0.64
Operating environment (C4) Communication quality (C12) g 3¢
Communication quality (C12) 0.42
Ship’s feedback (C9) Ship’s condition (C3) 0.16
Software performance (C10) 0.42
Communication quality (C12) , 0.48
Software performance (C10) SCC’s feedback (C11) 0.52
Software performance (C10) ., 0.55
Communication quality (C12) Ship’s feedback (C9) 0.45
Ship’s feedback (C9) 0.43
Experience (C7) Situation awareness (C6) 0.21
Communication and collaboration (C8) 0.36
Fatigue (C5) , 0.4
Situation awareness (C6) Operators’ performance (C2) 0.6
Operators’ performance (C2) 0.215
Ship’s condition (C3) Remote control 0.215
Operating environment (C4) by SCC(CT) 0.57

e  Determination of the weight distance between the parent node state and the child state.

After that, the distance between the parent node state and the child node state should
be determined. The distance represents the difference between the parent node state and
the child node state. The probability of a state of a child node is close to or equal to the state
of its parent node. Therefore, if the parent node is in a ‘good’ state, the probability that the
child node is in a good state should be greater than a medium state than a bad state. Taking
the node ‘communication quality” (C12) as an example, if ‘operating environment’ (C4) and
‘communication bandwidth’ (C13) are in a good state, the probability that ‘communication
quality’ will be in a good state is bigger than that in a medium and bad state. Reed et al. [39]
argued that no matter how large the difference between the state of the parent node and
the child node, the relative distance can be reflected by obtaining the absolute value of
distance. However, Li et al. [62] contended that the state of the child node, i.e., whether it
is better or worse than the state of the parent node, influences the distance. The change
in a different direction should be recorded with different importance. This means that the
positive distance and the negative distance can be weighted, and then they cancel each
other. In this study, we adopted the method proposed by Li et al. [62]. The good, medium
and bad states of each node are marked as a, b and ¢, respectively. The formula to calculate
the weighted distance is shown in Equation (4):

D] = ,D]' S [0, 2] (4)

n
Z D,‘j X wj
i=1
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where i,j € {a,b,c} and Dj; refers to the distance between the state of the parent node i and
the state of the child node j. If the parent node is in a “good (a)” state, and the child node
is in a “medium (b)” state, then the corresponding distance value is 1.  is the number of
parent nodes corresponding to the child node and w; represents the relative weight value
of the corresponding parent nodes.

We took the node ‘communication quality’ (C12) as an example, as shown in Figure 7.
C12 has two parent nodes, i.e., ‘operating environment’ (C4) and ‘communication band-
width” (C13). We assumed that the parent nodes C4 and C13 are in a “good (a)” and
“medium (b)” state, respectively. At the same time, assuming that C12 node is in a “good
(a)” state, the distance between C12 and C4 is 0; correspondingly, the distance between
C12 and C13 is —1. As shown in Table 8, the weights of C4 and C13 are w4 = 0.36 and
wcis = 0.64, respectively, and its weighted distance is. D, = |we X 04 w3 X —1] =
|0.36 x 0+ 0.64 x —1| = 0.64 Similarly, D, = 0.36 and D, = 1.36.

Figure 7. Relationship between C4, C13 and C12.

e  Determination of the CPTs of the child nodes.

The CPTs of the child nodes were determined based on experimental statistics, follow-
ing Reed et al. [39], who calculated it using Equation (5). The good, medium and bad states
of each node were marked as a, b and ¢, respectively.

¢~ RDj
b= ro, B €101 ®)
1=a

In Equation (5), the numerator represents the probability distribution in each state,
where j € {a,b,c} and R refers to the modified index value. The higher the R index, the
lower the probability that the child node in focus is in a state derived from its parents’ states.

The R value was determined using the statistical data of the MASS model experiment.
First, we selected representative statistical data in the record as the basis. For example,
when the C12 is obtained, C4 is in a “good (a)” state and C13 is in a “medium (b)” state.
Second, the upper limits and the “medium (b)” state of the data’s probability distribution
were used to calculate the value of R When C4 is in a “good (a)” state, C13 is in a “medium
(b)” state; in this case, there are 33 sets of data selected by the experiment, 9 of which are
for C4in a “good (a)” state, and the other 24 for C4 in a “medium (b)” state, with 0 groups
for C4 in a “bad (c)” state. Therefore, the upper limit probability value of 0.27 and the
intermediate state probability value of 0.73 could be used for calculation. The calculation
process of the R value of the C12 node is shown in Equations (6) and (7) as follows:

e—RDg1
e 027
P,/P, = ’ejRiDbl = 073 =037 (6)
Z?ZI e—RDj
P,/ P, = e 064R /p7036R — 37 - R =355 ?)

The values of D,, Dy, D, were calculated according to Equation (4). For example, when
the parent node C13 is in a “good (a)” state, C4 is in a “good (a)” state and the weighted
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distance among the “good (a)”, “moderate (b)” and “bad (c)” states of the C12 node are
D, =0,D, =1,D, = 2, respectively. After obtaining the D and R values, the conditional
probability distribution of this child node could be obtained as shown in Equations (8)—(10):

e~ RPa e OR o—0%355
Ptl = 23 1 eiRD]v - e—OR + e*lR ¥+ 672R = 670X3~55 T 871X3‘55 T 672><3.55 — 09713 (8)
j=
e kD e IR o~ 1x355
Py = 2}3—1 e RDj - e~ OR 4 ¢—1IR 4 p—2R = ¢—0x355 }_ o—1x355 | ,—2x355 =0.02790 (9)
—RD —2R —2x355
e e e .
& - = 0.0008 (10)

- 213:1 o—RD; — p=O0R L o=1R | p—2R ~ ,—0x355 | p—1x355 | ,—2x3.55

The CPT of “communication quality” (C12) is shown in Table 11. Similarly, we
obtained other weighted distances for each combination of any state of the parent that
pushes the child node in different states. The BBN model can be quantified by inputting
the obtained CPTs and the prior probability of the collected root node.

Table 11. CPT of ‘communication quality” (C12).

Node State and Probability
C13 a b C
Cc4 a b C a b c a b c
a 0.9714 0.7244 0.1692 0.2645 0.0204 0.0204 0.02315 0.0077 0.0008
C12 b 0.0278 0.2679 0.8076 0.7150 0.7150 0.7150 0.8076 0.2679 0.0278

0.0008 0.0077 0.0231 0.0204 0.2644 0.2645 0.1692 0.7243 0.9714

a, b, c represent the abbreviations for the good, medium and bad states, respectively.

4.2.3. Failure Probability Quantification of Remote Control Errors

The ‘remote control by the SCC’ (C1) is a binary node (success, failure), as such,
it is completely different from the other nodes, which have multiple states. Thus, the
‘remote control by the SCC” (C1) cannot be calculated using the aforementioned method.
Roed et al. [39] proposed applying the barrier and operational risk analysis (BORA) method
to calculate the probability of a binary node. This method is articulated in three steps.

First, the basic probability of the event in focus is assigned through the use of historical
genetic data combined with a model. Then, the maximum deviation from the basic error
probability of the target node, by considering the worst and best states of its parent node, is
determined. The values of the adjustment factors proposed by Reed were adopted [39], as
shown in Table 12.

Table 12. Adjustment factors for the basis error probabilities.

State of the Parent Node Adjustment Factor Q
Good (a) 0.1
Medium (b) 1.0
Bad (c) 10

a, b, c represent the abbreviations for the good, medium and bad states, respectively.

Finally, the conditional probability of the target node is determined. Accordingly,
the CPTs were calculated based on the parent node states and the adjustment factors
Q; as follows:

n c
Pj = Pyasis ) w; Y PxQikP; € [0,1] (11)
i=1 k=a
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where Py is the probability of each parent i to be in each state k = a,b,¢; Qj is the
corresponding adjustment factor according to Table 10; and w; is the weight of the parent
nodes i, whose sum is 1. The index j indicates the possible states of the event we are
considering (i.e., success or failure).

According to experiment statistics and literature review, the basic probability of the
remote control error is 8.58 x 1073 [11]. The ‘remote control by the SCC’” (C1) has three
parent nodes, i.e., ‘operators’ performance’ (C2), ‘ship’s condition” (C3) and ‘operating
environment’ (C4). When the weights and the probability distributions of three parent
nodes are known, the ‘remote control by the SCC” (C1) can be calculated, as shown in
Table 13. After calculation, the failure probability of the ‘remote control by the SCC” (C1) is
7.722 x 1073, Therefore, the success probability of ‘remote control by SCC” is 0.9923.

Table 13. Probability of the ‘remote control by the SCC’ (C1) and its parent node.

Node State Probability
Good (a) 0.5206
Operators’ performance (C2) Medium (b) 0.4489
Bad (c) 0.0304
Good (a) 0.3416
Ship’s condition (C3) Medium (b) 0.5629
Bad (c) 0.0955
Good (a) 0.7000
Operating environment (C4) Medium (b) 0.2585
Bad (c) 0.0415
Success 0.9923

Remote control by the SCC (C1) Failure 0.0077

a, b, c represent the abbreviations for the good, medium and bad states, respectively.

4.3. Failure Probability Quantification of the MASS Contact Scenario

Once the normal operation and failure probability of pivotal events are calculated,
several end states probability in the MASS contact scenario are obtained. As shown in
Sections 4.2 and 4.3, the probability of several events in ESD was calculated. The probability
that the “power and propulsion system’ (P6) works normally, calculated by using the FT
model in Section 4.2, is 0.9946. The probability of success of the ‘remote control by the
SCC’ (P4), calculated by using the BBN model in Section 4.3, is 0.9923. In the same way, the
normal operation and failure probability of other pivotal events was calculated according to
the experiment and historical data. Different outputs of pivotal events will lead to different
end states, such as safe or accident states, with different probabilities. After calculating the
probability of each pivotal event in ESD, we could obtain the probability of each end state
in the MASS hazard scenarios, according to the following steps:

e Calculation of the end states’ probability of the MASS contact scenario.

The probability of each end state was obtained according to the HCL quantitative
calculation method. The probability values of all end states are listed in Table 14.

Table 14. Failure probability of the end states.

End State End State Type Probability
El Normal navigation 9.45 x 107!
E2 Contact due to perception stage failure 3.67 x 1072
E3 Contact due to decision-making stage failure  1.68 x 1073
E4 Contact due to execution stage failure 1.66 x 1072

As shown in Table 14, the probability of MASS avoiding the external events and
continuing operation is 9.45 x 10~!. According to the Table 14, the failure of perception
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stage and execution stage is the main cause of contact accidents. Thus, the perception
stage of MASS is the first safety barrier of hazard scenario. It is necessary to ensure that
the sensor equipment and the perception of the operator can perceive the risk and ensure
that the risk will be detected immediately. For the execution stage of MASS, although the
MASS is equipped with a redundant system, it is still very likely to cause an accident. The
probability of the contact scenario can be mitigated by shortening the sailing time.

e  Calculation of the accident-causing event chains.

In the HCL method, through the combination of the ESD model, the FT model and
the BBN model, the events in the ESD model were extended to the FT and the BBN, and
then different accident-causing event chains and their probability could be obtained. We
selected the five accident-causing event chains with the highest risk and they are shown in
Table 15.

Table 15. Five accident-causing event chains with the highest risk.

No. Accident-Causing Event Chains * Probability

1 IE-P1(0)-P2(0)-End 2 3.676 x 1072
2 IE-P1(0)-P2(1)-P4(0)-End 3 1.671 x 1073
3 IE-P1(1)-P3(1)-P5(1)-P6(0): F8,F11-End 4 1.795 x 10~*
4 IE-P1(1)-P3(1)-P5(0)-End 4 1.234 x 10~*
5 IE-P1(1)-P3(1)-P5(1)-P6(0): F9,F11-End 4 8.421 x 107°

* The normal functioning of the pivotal event is marked as 1; its failure is marked as 0.

As shown in Table 15, the accident-causing event chain with the highest risk is the
one that leads to accident end state, due to the failure to perceive the danger (E2). This
shows that the perception stage is the most important stage in the MASS hazard scenarios.
Secondly, the second main cause of accident-causing event chains is that the operators
in the SCC did not propose an effective strategy which leads to accident end state (E3).
Thus, it is necessary to train remote operators and maintain the equipment, while at the
same time MASS should avoid sailing in bad environmental conditions. Thirdly, most of
the occurrences in all accident-causing event chains relate to the failure of the mechanical
system (E4), which is the last guarantee for the safe navigation of the MASS. Before
the voyage, detailed planning and preparation work should be carried out. Reasonable
remedial measures are an important way to effectively improve the safety of the MASS.
Finally, the third, fourth and fifth accident-causing event chains involved the failure of
operation of the steering system and of the propulsion system. Therefore, in order to
guarantee the safety of MASS, it is necessary to design a redundant steering and propulsion
system, as well as to propose a maintenance plan for the mechanical system. Through
appropriate technical solutions, the MASS risk can be reduced to an acceptable level.

e  Identification of the influence factors in the power and propulsion system leading to a
failure of the MASS emergency response process (E4).

The reliability of the propulsion system has relatively the largest impact on MASS
navigation accidents. In order to support the future design of the MASS power and
propulsion system, it is necessary to identify the most influencing equipment in the power
and propulsion system. Using the existing evaluation indicators comprehensively, the basic
events or risk factors with the highest impact on risk can be identified for improvement.
The Fussell-Vesely (VF) importance measure is an evaluation criterion that represents the
impact of components on the total failure probability of a system [63]:

P(S-e)  P(Sle)P(e)

VE(S,e) = P(e|S) = PGE) —  P(S) (12)

When the MASS has an accident, we selected E4 to measure the importance factors. As
shown in Table 16, the failure of the converter, failure of the diesel generator and failure of
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the electric motor are the most important factors. Therefore, priority should be given to the
maintenance of this equipment. In the future design, a more reasonable redundancy design
and maintenance plan will improve propulsion reliability, especially of the converter, the
diesel generator and the electric motor.

Table 16. The VF of the power and propulsion system equipment across accident end states.

Label Component VF

F8, F11 Converter 0.02651
F16, F17, F18, F19, F20, F21 Diesel generator 0.01445
F9, F10 Electric motor 0.01243
F6, F13 Bus bar 0.00151
F7,F12 Transformer 0.00104
F4, F15 Propeller 0.00046

e Identification of the influence factors in the remote driving mode.

In order to analyze the influence of each factor contributing to the failure of remote
driving, the sensitivity of the BN model of remote driving is analyzed in this section. First,
the probability of each parent node is assigned the value of one. Then, the probability
variation table of target node is obtained. Take the weather condition (C14) as an example,
set the probability of being in a “good” state to 100%, obtain the probability of C2, C3
and C4. Based on the Equation (11), the failure probability of “remote driving” is 0.00619.
Similarly, the other nodes in BN are assessed. Figure 8 shows the probability change in
“remote driving” after adjusting each node. The sensitivity of the nodes affecting remote
driving is ranked as follows: C10 > C14 > C7 > C15 > C13 > C8 > C5.

Sensitivity analysis
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0.0025

0.0020

178841073

0.0015
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]

[ 3 c1s

Figure 8. Sensitivity analysis of remote driving mode.

Based on the result, “software performance” (C10) is the most sensitivity node. During
the remote driving, the software should be more attention. At the same time, the exter-
nal influence factors such as “weather condition” (C14) and “traffic density” (C15) will
significantly affect the failure probability of remote driving. Among the influence factors
related to the operator, “experience” (C7) is the most important factor. In summary, the
software in SCC should be updated in time to ensure high availability and quality. The SCC
should strengthen the training about contact scenarios in case the operator is unfamiliar
with remote driving or does not understand external object avoidance rules.
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References

5. Conclusions and Future Work

With the increase in the use of automation technology in the maritime industry, MASS
risk influence factors are increasingly various and complex. This paper is an attempt to
conduct a preliminary hazard analysis of MASS in the design and experimental stages
based on the conceptual design of MASS, historical data and experiments of conventional
ships. The applicability of the HCL method to MASS was demonstrated through a case
study of a contact scenario for a MASS model ship. Key conclusions can be summarized
as follows:

e  The use of the HCL method allows a clear classification of the pivotal events of the
hazard scenarios.

e  The paper established a branch model to analyze the events in the ESD and used
FT and BBN to analyze influence factors in a more detailed way according to their
characteristics.

e  The importance of more detailed influencing factors is quantified based on the FT and
BBN method.

e  The HCL method provides a quantitative calculation result of the MASS hazardous
scenario and presents a way to verify whether the conceptual design of MASS is
reasonable and can help find the weak links in the MASS experiment.

Based on the analysis and test ship, redundant design for MASS is necessary. For
example, the operators in the SCC can perceive the risk in case of AS system failure.
In relation to the power and propulsion system, at least two independent power and
propulsion lines can mitigate the failure probability. However, the development of MASS
is still in an early phase. With the development of technology, more risk influence factors
will arise and the cooperation between AS and the operators in the SCC will be further
discussed. For example, the control priority between the operators in the SCC and AS
may change with the development of technology. Moreover, this paper analyzed in detail
both mechanical and human events, while overlooking software events. In the future, an
important problem to address is how to include software events in risk assessments. The
failure probability and the conclusions of the present study can be used as references for
the design of MASS.
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Abstract: The timing of a ship taking evasive maneuvers is crucial for the success of collision
avoidance, which is affected by the perceived risk by the navigator. Therefore, we propose a collision
alert system (CAS) based on the perceived risk by the navigator to trigger a ship’s evasive maneuvers
in a timely manner to avoid close-quarters situations. The available maneuvering margins (AMM)
with ship stability guarantees are selected as a proxy to reflect the perceived risk of a navigator;
hence, the proposed CAS is referred to as an AMM-based CAS. Considering the dynamic nature
of ship operations, the non-linear velocity obstacle method is utilized to identify the presence of
collision risk to further activate this AMM-based CAS. The AMM of a ship are measured based on
ship maneuverability and stability models, and the degree to which they violate the risk-perception-
based ship domain determines the level of collision alert. Several typical encounter scenarios are
selected from AIS data to demonstrate the feasibility of this AMM-based CAS. The promising results
suggest that this proposed AMM-based CAS is applicable in both ship pair encounter and multi-
vessel encounter scenarios. Collision risk can be accurately detected, and then a collision alert
consistent with the risk severity is issued. This proposed AMM-based CAS has the potential to assist
autonomous ships in understanding the risk level of the encounter situation and determining the
timing for evasive maneuvers. The advantages and limitation of this proposed method are discussed.

Keywords: collision alert system (CAS); available maneuvering margins (AMM); ship domain; ship
stability; maritime safety

1. Introduction

Although many advanced methods and technologies have been applied in the mar-
itime field, ship collisions still occur frequently, posing a threat to maritime transportation
safety [1-5]. Ship collision alert systems (CAS) are widely applied to prevent ship collision
by alerting the navigators to take evasive maneuvers in a timely manner to eliminate the
existing collision risk [6-15]. Some limitations or simplifications of these methods make
it challenging to put them into practical use. One is the inadequate consideration paid to
the dynamic nature of ship maneuvers. This can be proven by the most widely used blind
sailing hypothesis that when there is a risk of collision, the ship is assumed to sail in a
straight line with a constant speed. As a matter of fact, the ship will normally take evasive
maneuvers for collision avoidance [16,17]. The second limitation is the neglect of the risk
resolution. The existing research mainly utilized the danger level of approaching ships
as a basis to quantify risk severity. The risk resolution of a ship reflects her capability to
eliminate the existing danger, which is critical to the success of collision avoidance. Under
the same circumstances, a ship with a higher risk resolution is more likely to eliminate the
risk, so the risk is relatively low. Therefore, risk measures independent of conflict resolution
may lead to inaccurate detection of actual danger [18]. Third, these methods are mainly
designed for ship pair encounters without considering traffic conditions [10]. The traffic
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complexity increases the likelihood of serious encounters [19-21], so the applicability of
these methods in complicated multi-vessel encounters has not been confirmed.

Many methods have been proposed to alert the navigator of imminent danger, includ-
ing the last time to maneuver [22], the minimum distance to collision [23], the last line of
defense [16] and critical safety area [24]. A projected collision can still be avoided if the
navigator takes evasive maneuvers before reaching the critical condition. “Action too late”
is the primary cause of collisions [25]. However, these methods cannot provide an optimal
solution for starting evasive maneuvers to avoid serious encounters, such as close-quarters
situations and imminent danger.

Our previous work proposes a risk-perception-based ship domain [26]. This ship
domain reveals the general strategy of a ship determining the timing for taking evasive
maneuvers. The boundary of the risk-perception-based ship domain is quantified by
statistically analyzing the perceived risk of a navigator when the first evasive maneuvers
started over a large sample of vessel encounters taken from AIS data. A non-linear velocity
obstacle (NLVO) algorithm is adopted to detect collision risk with the dynamic nature of
ship maneuvers considered. Available maneuvering margins (AMM) are utilized as a proxy
to measure the perceived collision risk by the navigator, so the risk resolution of a ship is
considered. Although this risk-perception-based ship domain considers the dynamic nature
of ship operations and risk resolution, this risk-perception-based ship domain cannot be
directly used to define when a ship should maneuver for collision avoidance in practical
applications. The constraint of ship stability is not considered. Some drastic maneuvers
leading to the success of collision avoidance can create risk of the ship capsizing. The
neglect of ship stability leads to an inaccurate estimation of ship’s capability to eliminate
the collision risk.

Therefore, the principal aim of this work is to construct a CAS based on the perceived
risk by the navigator, which is applicable in encounter scenarios with various traffic com-
plexities, including both ship pair encounters and multi-vessel encounters. The available
maneuvering margins (AMM) with ship stability guarantees are selected as a proxy to
reflect the perceived risk of a navigator, hence this proposed CAS is referred to as AMM-
based CAS. The existence of collision risk activates this AMM-based CAS, whereas the
degree of the violation of this risk-perception-based ship domain determines the level
of collision alert. To be clear, our work alerts the ship of a collision in a timely manner
and supports in determining the timing for taking evasive maneuvers rather than directly
proposing collision avoidance maneuvers. This ship collision alert system intends to further
contribute to the development of maritime autonomous surface ships (MASS), particularly
in assisting their strategizing for collision avoidance.

The remainder of this paper is organized as follows. Section 2 reviews the related
literature. Section 3 focuses on the proposal of the AMM-based CAS, including framework
construction and methodology development. Section 4 presents the case study to demon-
strate the feasibility of this proposed method. Discussion and conclusions are addressed
in Section 5.

2. Related Work

The CAS proposed in this work alerts users to the presence of hazards with specific risk
levels and reminds them to be prepared for the response rather than providing them with
solutions. Two important components in establishing CAS are collision risk identification
and risk level quantification. A large amount of research work has been conducted on these
two topics [27].

For ship collision risk identification, distance to closest point of approach (DCPA) and
time to closest point of approach (TCPA) are two typical risk indicators [28]. Collision risk
is evaluated based on the combination of DCPA and TCPA to assess the collision risk in
the Yangtze River [29] and in the Madura Strait [30]. Another popular approach is based
on ship domain theory, originally intended to determine the capacity of waterways and
further developed to support collision avoidance [31]. The shapes and dimensions of the
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ship domain have been significantly modified and developed to suit various application
scenarios, see a detailed review in [32]. Additonally, the concepts of probability of colli-
sion [33], collision threat parameter area (CTPA) [34], velocity obstacle (VO) [35] and fuzzy
collision danger domain are introduced to detect collision risk [36]. With the development
of methods for collision risk identification, more and more scholars have realized that
ignoring the dynamic nature of ship behavior reduces the accuracy of risk detection [37].
For instance, the non-linear velocity of obstacle method has been introduced and developed
to accurately detect the presence of collision risk [18].

For risk level quantification, Zhang et al. developed vessel conflict ranking operator
(VCRO) to divide the risk severity of near misses into three levels [38,39]. The frequency or
probability of ship collision is adopted to separate the serious encounter with non-serious
encounters. The degree of domain violation (DDV) and time to domain violation (TDV)
are proposed to quantify risk severity to further support real-time collision avoidance
decision [40]. Weng et al. proposed an ordered probit model to analyze the severity of
two-ship collisions and found that ship size and visibility affect the probability of serious
accidents [41]. A risk hierarchy prewarning (RHP) model based on the violation detection
of a ship domain is proposed to determine risk level [42]. These methods help to enhance
the understanding of the evolution of collision risk and provide a reference for a ship
deciding her maneuvering strategy for collision avoidance in real time. However, most
existing collision risk measures are independent of conflict resolution, so a high risk does
not indicate whether a collision is inevitable or not. This could over/under-estimate the
collision risk [27]. Our previous work introduced the concept of available maneuvering
margins (AMM) to measure risk resolution when determining the risk level, but as the ship
stability constraint is not considered, the risk resolution of a ship is overestimated [14]. In
addition, these methods are mainly designed for ship pair encounters without considering
traffic conditions [10]. A very limited number of methods consider multi-vessel encoun-
ters but divide them into several ship pair encounters. This simplified division ignores
the interactions between ship behaviors, leading to an underestimation of the collision
risk levels.

Several typical works related to CAS published in recent years are listed in Table 1.
Goerlandt et al. proposed a risk-informed CAS based on fuzzy expert rules to divide
the alert level into safe, caution, warning, and alarm in accordance with IMO recommen-
dations [8]. The dynamic nature of ship actions and ship resolution are considered by
adopting proximity indicators, such as reaction time and turning action, but this method
is only applied in ship pair encounters. Baldauf. et al. focused specifically on the critical
last phase of an encounter [16]. The last line of defense has been defined and indicates
that the available maneuvers leading to the success of collision avoidance are extremely
limited. The ship resolution is considered when calculating the last line of defense. Cheng
et al. proposed an early warning system based on coordinated collision avoidance actions
and applied it in inland waters [43]. DCPA, TCPA, and the coordination degree of collision
avoidance actions of the two considered ships are the risk indicators, and this method could
effectively reduce false alerts. Du et al. proposed a ship collision alert system for a stand-on
ship by quantifying the action obligation of a stand-on ship as specified in the International
Regulations for Preventing Collisions at Sea (COLREG) [14]. The non-linear velocity obsta-
cle is employed to detect collision risk, and the available maneuvering margins of a ship are
introduced to measure her risk resolution. When measuring the risk resolution of a ship,
the impact of traffic complexity is considered, and the constraint of ship stability is ignored.
Szlapczynski and Szlapczynska proposed a collision alert system based on five parameters
derived from the ship domain concept [10]. The impact of late maneuvers and surrounding
traffic are considered. However, one limitation is that the maneuverability of the ship is
not available from the AIS data, so the risk resolution of a ship cannot be measured, which
makes it difficult to directly inform the timing of the ship’s evasive maneuvers to avoid
a collision. Qin et al. proposed a risk hierarchy prewarning (RHP) model based on the
violation detection of a ship domain [42]. Two layers of protection are constructed based on
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the ship domain and the possible collision domain (PCD), and the violation of each of them
will activate the lower and higher alarms, respectively. The violation of inner protective
layer PCD means the collision between this ship pair cannot be avoided by any maneuvers.
The traffic conditions and the dynamic nature of ship actions must be considered to increase
the adaptability of this model in different waters.

Table 1. Several typical works related to CAS published in recent years.

I denIt{ilfsilc(ation Risk Level Quantification
Research Work Action Ship Traffic Ship
Dynamics Resolution Condition Stability
Goerlandt et al., 2015 + + — _
Baldauf et al., 2017 - + — _
Cheng et al., 2020 + - — —
Du et al., 2020 + + + _
Szlapczynski and . - . B
Szlapczynska, 2021

Qin et al., 2021 — + — _

3. Methodology
3.1. Conceptual Framework

When two ships are approaching each other, a collision risk analysis will be conducted
at the onset of the encounter. If there is no collision risk, both involved ships shall carefully
check and remain vigilant until the other ships have passed safely. If collision risk occurs,
the ship must prepare for evasive maneuvers based on the actual encounter. The deter-
mination of timing for taking evasive maneuvers is one crucial step. COLREGs provides
guidance. A give-way ship should take early and substantial action to keep well clear
if possible, see Rule 16. A stand-on ship is permitted to take evasive maneuvers if the
give-way ship is evidently not maneuvering properly and effectively, as specified in Rule
17. In addition to these rules in COLREGs, the ship resolution that reflects the capability of
a ship to eliminate the existing collision directly affects a navigator’s decision regarding
the timing to perform evasive maneuvers for collision avoidance. Our previous work has
observed that the maneuvering timing is affected by a ship’s COLREGs identity (a give-way
ship or a stand-on ship) and her risk resolution [26].

Based on this collision avoidance process, an AMM-based CAS for ship collision
avoidance is proposed to help determine the timing for a ship taking evasive maneuvers,
which contains three main steps (see Figure 1), including the collision candidate detection
(Step I), determination of timing for evasive maneuvers (Step II), and collision alert based
on timing for evasive maneuvers (Step III). Specifically, collision candidate detection is to
check whether the collision risk exists between this targeted ship pair. If a collision risk
exists, Step II and Step III are activated to determine the alert level. The determination
of the timing for evasive maneuvers is to quantify when the ship should take evasive
maneuvers (Step II). The difference of a ship with a different COLREGs identity (a give-way
ship or a stand-on ship) in determining the action timing is reflected based on the proposed
risk-perception-based ship domain. Last is to determine the collision alert level based
on the degree of violation of this risk perception-based ship domain (Step III). Here, we
consider the ship risk resolution and ship stability limit. The methodologies for measuring
these three steps are elaborated upon in Section 3.2 respectively.
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Figure 1. The conceptual framework of AMM-based ship collision alert system.

3.2. Methods Development
3.2.1. Collision Candidate Detection

To consider the dynamic nature of ship maneuvers during collision avoidance, the
NLVO algorithm is adopted for collision risk detection [37], which is Step I for the construc-
tion of this AMM-based CAS, see Figure 1. By utilizing the NLVO algorithm, the collision
risk for each ship pair can be detected by checking whether one ship’s velocity falls into
the velocity obstacle zone (Sy1_vo), see Figure 2.

IC(t) _ { (1): ZICSZTS(t) ﬁSNL_VO(ﬂ 7& %) (1)

where is the index of ship conflict. Vrg is the velocity of the target ship (TS). Sn1_vo is the
collection of all conflicting velocities that lead to ship collision. In Figure 2, collision risk
exists for Vg1, while there is no collision risk for Vrgs.

velocity

obstacle zone
S NL_VO

V)

0 T u
Figure 2. Ship collision risk detection based on NLVO algorithm.

3.2.2. Determination of Timing for Evasive Maneuvers

Step Il is to determine the timing for evasive maneuvers, which is affected by ship
COLREGs identity and the risk perceived by the navigator.

COLREGs identity is the identity of the ship during the collision avoidance process as
specified in the COLREGs. It is classified as a stand-on ship (SO) or a give-way ship (GW)
in terms of its action obligation for collision avoidance. As specified in Rules 16 and 17
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in COLREGsS, a ship with a different COLREGs identity has a diverse strategy. The ship’s
COLREGs identity can be determined based on their relative heading and relative bearing.

The timing of a ship taking evasive maneuvers is primarily affected by the risk per-
ceived by the navigator [44]. AMM is selected as a proxy to reflect the risk perceived by the
navigator [26]. AMM is measured based on the proportion of maneuvers of all the available
maneuvers by which a ship can eliminate potential conflicts. The assumption that a ship
only changes her course to avoid collision is adopted. Therefore, AMM is determined by
its turning ability.

AMM(t) = 530, if 3V (8) € RV(8:(8), tar) V (£) N Sni_vo(t) = 2

t,p, = max(TCPA,5)

@

where AMM is the value of AMM when the ship maneuvers at time t. Js is the adopted
rudder angle that can eliminate the existing collision risk. J, is all the available rudder
angles of a ship. RV is the OS’s reachable velocity after steering with a demanded rudder
angle. @ is an empty set. t,;, is the observation time window, which is determined by the
time to the closest point of approach (TCPA).

Next, the risk-perception-based ship domain is defined to determine the timing for
evasive maneuvers. Specifically, by statistically analyzing when ships started to take evasive
maneuvers under different encounter situations over a large sample of ship encounters
from AIS data, the general practice of determining the timing for a ship taking evasive
maneuvers is obtained in [45], see Table 2. The lengths of small-size ships, medium-size
ships, and large-size ships are 100 m or less, 100 m to 200 m, and 200 m or more, respectively.
AMM; and AMM,; are the upper limit and lower limit of AMM, respectively.

Table 2. The value of AMM at the boundary of risk-perception-based ship domain.

Ship Type COLREGs AMM Threshold (AMM7/AMM,)

Status Small-Size Medium-Size Large-Size
Passenger Ship GW 0.986/0.586 0.914/0.486 0.814/0.343
SO 0.943/0.443 0.786,/0.314 0.729/0.229

GW 0.871/0.471 0.829/0.314 0.8/0.229
Tanker SO 0.857/0.371 0.629/0.214 0.486/0.186
Cargo Ship GW 0.9/0.4 0.886,/0.343 0.871/0.257
SO 0.729/0.314 0.5/0.243 0.486/0.157

3.2.3. Collision Alert Level Quantification

The final step, Step III, is quantifying the collision alert level (Figure 1). The collision
alert will be activated if collision risk exists and the degree of the violation of risk-perception-
based ship domain determines the alert level. Violation of this risk-perception-based ship
domain means that the ship’s behavior is abnormal and may lead to a danger, as most
ships (about 90% of ships sailing in this area) would maneuver before this moment. The
degree of the violation of risk-perception-based ship domain can be measured based on
ship risk resolution.

The risk resolution of a ship AMMSs can be measured by her available maneuvering
margins with stability guarantees. A ship will heel to the opposite direction of course
change when turning for collision avoidance. If the ship’s heeling angle ¢ exceeds its
threshold value 6., the ship will be in danger of capsizing. The ship’s heeling angle can be

expressed as:

V-r-GB
tanG—W 3)

where 6 is the ship’s heeling angle. V' is the ship speed. r is the yaw rate of ship steering.
GB is the distance between the center of ship gravity and the center of ship buoyancy. GM
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is metacentric height, a vertical distance from the center of gravity to the metacenter. g is
gravitational acceleration.
The yaw rate of ship steering r can be measured based on Nomoto model when the
rudder angle is determined.
r=Ks(1—e T (4)

where ¢ is the rudder angle. Turning ability index K and turning lag index T vary with ship
length and velocity.
Then, the ship risk resolution AMMs can be modeled as follows:

AMM(t) = E50)if 3V (1) € RV(86(1), ) :V (H) N Sni_vo(t) = @

tanf.-g-GM
Is(t) = YRGB (e 7Ty ®)

top = max(TCPA,5)

In terms of the degree of violation of this risk-perception-based ship domain, the
collision alert is divided into three levels, ranging from low risk to medium risk and
high risk.

L,if IC(t) = 1&AMMSs(t) > AMM;
CAL(t) =4 M, if IC(t) = 1&AMM,; > AMMs(t) > AMM, (6)
H, if IC(t) = 1&AMMSs(t) < AMM,

where CAL is collision alert level. CAL is low if collision risk exists but the AMMs of a
ship is higher than the upper limit AMM;j. When collision risk exists and the AMMs of
a ship is lower than the lower limit AMMj,, CAL is in the high level. For other situations
when the risk exists, CAL is medium. AMM; and AMM, mean that 90% and 99% of the
ship starts an evasive action with a higher AMM than this, respectively [19].

4. Case Study

Three typical encounter scenarios are selected from AIS data to demonstrate the
feasibility of this proposed AMM-based CAS. Specifically, the first two scenarios are ship
pair encounters, and the last one is a multi-vessel encounter. The ship attributes are shown
in Table 3. The encounter process lasts for 30 min. A maritime mobile service identity
(MMSI) uniquely identifies ship stations and is masked in Table 3 to ensure vessel can be
anonymous. The encounter processes are illustrated in Figures 3-10.

Table 3. Ship attributes in two typical encounter scenarios.

Encounter Ship Length Width
Scenarios Identity MMSI Type (m) (m)
. (O3] 27335XXXX Cargo ship 84 15
Scenario 1 TS 27343XXXX Tanker 126 16
. oS 27333XXXX Passenger ship 56 11
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