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Computational Aspects of

Dam Analysis and Design

Italian Committee

on Large Dams

Rome

Italy

Juan Mata

National Laboratory for Civil

(LNEC)

Lisbon

Portugal

Editorial Office

MDPI

St. Alban-Anlage 66

4052 Basel, Switzerland

This is a reprint of articles from the Special Issue published online in the open access journal Water

(ISSN 2073-4441) (available at: www.mdpi.com/journal/water/special issues/SCML).

For citation purposes, cite each article independently as indicated on the article page online and as

indicated below:

LastName, A.A.; LastName, B.B.; LastName, C.C. Article Title. Journal Name Year, Volume Number,

Page Range.

ISBN 978-3-0365-7579-7 (Hbk)

ISBN 978-3-0365-7578-0 (PDF)

Cover image courtesy of Mohammad Amin Hariri-Ardebili

© 2023 by the authors. Articles in this book are Open Access and distributed under the Creative

Commons Attribution (CC BY) license, which allows users to download, copy and build upon

published articles, as long as the author and publisher are properly credited, which ensures maximum

dissemination and a wider impact of our publications.

The book as a whole is distributed by MDPI under the terms and conditions of the Creative Commons

license CC BY-NC-ND.

www.mdpi.com/journal/water/special_issues/SCML


Contents

Preface to ”Soft Computing and Machine Learning in Dam Engineering” . . . . . . . . . . . . vii

Mohammad Amin Hariri-Ardebili, Fernando Salazar, Farhad Pourkamali-Anaraki, Guido
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Preface to ”Soft Computing and Machine Learning in
Dam Engineering”

On behalf of the International Commission on Large Dams (ICOLD), I am honored to provide

an opening dialog for this Special Issue of Water, “Soft Computing and Machine Learning in Dam

Engineering”. I have been fortunate to be part of the ICOLD for more than 20 years, which is

an international organization founded on and committed to the premise that society is best served

when nations communicate and collaborate for the safety and service of dams and levees. For

almost 100 years, the ICOLD has encouraged collaborations over political division, as it now has 104

member nations with more than 15,000 individual members from around the world. The ICOLD

has relentlessly dedicated itself as an organization to working across geographical and political

boundaries to support individuals and nations by fostering a commitment to mutual support and

collaboration for safety in dam engineering.

Water and dams have provided many challenges to engineers throughout the ages,

demonstrating great success as critical infrastructure for providing sustenance and improving quality

of life for billions of people around the globe. Unfortunately, there have also been great failures of

dams and levees due to engineering, operational, or other unfortunate sequences of realized failure

modes, many of which can be traced to deficient learning and training. In many situations, education

and training can be a key differentiator between success or failure in dam safety, with precious lives

and significant investments weighing in the balance as owners and regulators look to protect lives

and investments.

Dam safety is the common theme and focus of many organizations, conferences, groups,

societies, and individuals around the world. In the best cases, dam safety by intentional design that

considers future functions and environmental conditions provides engineers with the critical insights

into lifecycle influences of change that envelop risk as projects progress through planning, design,

construction, and operation. As engineers, we must always be open to learning from the lessons of

the past and to be educated on new technologies of the future.

The dam engineering industry has seen the growth of risk-informed decision making (RIDM)

in the last few decades as engineers and owners have learned to pivot their focus of design based

on historically developed guidelines to consider modes and sequences of events at dams that could

potentially lead to failure. The future of RIDM combined with machine learning offers an intriguing

path for engineers to consider as we combine the power of computing machines with the critical

thinking of the human mind to work towards a better understanding of risk and the elimination of

catastrophic dam failures.

I am thankful for MDPI’s journal Water for its initiative in preparing this Special Issue focusing on

the important technological areas of “Soft Computing and Machine Learning in Dam Engineering”.

The editors and authors of this collection have provided great insights into the growing field of

dam engineering, which is of great importance to all of us as engineers and scientists that focus

on dams. This Special Issue highlights the emerging thinking of these authors in the legacy field of

civil engineering for dams. The technology of computer science is evolving in its applications from

traditional numerical methods to computational techniques that mimic human-like problem-solving

behavior, which will significantly change our industry.

vii



Soft computing techniques have been developing in several different areas of engineering

applications for many years. The application of these technologies in civil engineering comes with a

vast potential number of applications for dams and levee projects. The papers in this Special Issue

address the development and evolution of these new learning techniques for engineers and their

computational machines. The findings outlined provide important information for dam engineers

and scientists around the world. I am hopeful that this Special Issue leads to additional creative

development and critical thinking by man and machine on the topics provided herein.

Dam safety must continue to be an emotional driver for engineers in our profession, and

continual learning and training is the hallmark of our commitment to safety. Water and organizations

such as the ICOLD represent the global comradery of the engineering profession regarding education

and training on dams and levees. On behalf of the ICOLD, I am thankful for this opportunity to

develop a partnership with MDPI to support and recognize “Soft Computing and Machine Learning

in Dam Engineering”, which provides a glimpse into the future of dam engineering.

By Michael F. Rogers, Honorary President, International Commission of Large Dams.

M. Amin Hariri-Ardebili, Fernando Salazar, Farhad Pourkamali-Anaraki, Guido Mazzà, and

Juan Mata

Editors

viii
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1. Introduction and Overview

Dams have played a vital role in human civilization for thousands of years, providing
vital resources such as water and electricity, and performing important functions such as
flood control. The scale and complexity of dam projects have increased in recent years,
making their safety evaluation even more challenging. Therefore, it is crucial that dam
engineers consider all potential risks and take appropriate measures to ensure the safety
and stability of these structures [1]. The nature and existence of dams are highly coupled
with concepts such as population growth, climate change, global warming, and water
security [2]. According to the International Commission on Large Dams’s (ICOLD) [3]
most recent update in April 2020, there are about 58,700 registered large dams in the world.
Figure 1 illustrates the global distribution of these large dams.

Figure 1. Global distribution of large dams as of 2020.

Traditional dam safety methods, based on visual inspections and manual monitoring,
have long been the standard for ensuring the stability and safety of dams. However, as
the scale and complexity of dam projects have increased, these methods have become
increasingly insufficient. Major limitations of traditional dam safety methods are the
existence of deficient observation plans and the potential for human error. Inspectors
may miss crucial signs of deterioration or failure, and manual monitoring can be prone to
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inaccuracies. In addition, as the number of (aged and new) dams continues to increase,
it becomes increasingly difficult and resource-intensive to manually inspect and monitor
each one. Another limitation of traditional dam safety methods is that they are typically
reactive rather than proactive. They focus on identifying and addressing problems after
they have already occurred, rather than predicting and preventing them.

In contrast, modern techniques such as remote sensing, drones, and sensor networks
can provide more accurate, real-time data on dam conditions. They can also be used to
continuously monitor dams, providing an early warning of potential problems. Artificial
Intelligence (AI) can be applied to the data collected from these modern techniques for
identifying patterns and anomalies that may indicate a potential problem. AI algorithms
can be used in the decision-making process for dam safety by providing accurate and
updated risk analysis.

2. Soft Computing in Dam Engineering

Soft computing is a collection of techniques in computer science that aim to provide
solutions to problems that are difficult or impossible to solve using traditional, “hard”
methods of computation. Soft computing encompasses various computational techniques
that are designed to replicate human-like problem-solving behavior. It includes a variety
of techniques such as fuzzy logic, neural networks, genetic algorithms, and probabilistic
reasoning, which are used to solve problems that are too complicated for traditional, rule-
based approaches [4]. Soft computing has a wide range of applications in engineering,
including control systems, signal processing, pattern recognition, and optimization. For
example, in signal processing, neural networks and genetic algorithms can be used to
improve the accuracy of signal classification and feature extraction. In optimization, genetic
algorithms and probabilistic reasoning can be used to solve complex optimization problems.

The use of soft computing techniques, such as fuzzy logic and neural networks, in dam
engineering began to gain popularity in the late 1990s and early 2000s. The first application
of these techniques for modeling dam behavior is arguably the work by Bossoney [5],
closely followed by Hattingh L.C. [6]. The main purpose was to overcome the limitations
of the traditional Hydrostatic-Season-Time (HST) model [7] in terms of the identification
of nonlinear behavior and consideration of complex phenomena. This has been the main
application of soft computing in dam engineering to date, favored by the development
of new algorithms and the increase in available monitoring data due to the installation of
automatic data acquisition systems (ADAS). In this line, the ICOLD Benchmark Workshop
held in 2001 was a milestone, since for the first time solutions were presented with methods
such as K-nearest neighbors [8] or nonlinear autoregressive exogenous models (NARX) [9].

Later on, and in parallel with the aforementioned application, soft computing began
to be used as a surrogate for finite element models in analyses with high computational
costs. The typical example is the study of the probability of failure with Monte Carlo-type
methods, which requires executing a extremely high number of numerical simulations [10].
More recently, the use of these techniques in dam engineering has grown significantly,
as specific libraries have become available in different programming languages, which
are easier to implement and apply [11–14]. Today, soft computing is used in a variety of
applications related to dam engineering, such as:

• Early warning systems for dam failure [15];
• Real-time monitoring and control of dam systems [16];
• Predictive maintenance and condition monitoring of dam structures [17,18];
• Hydrological and meteorological forecasting [19];
• Risk assessment and decision making related to dam safety [20];
• Management of dam operation, energy production, and water management [21];
• Dam shape optimization and life cycle cost analysis [22,23];
• Probabilistic safety assessment and uncertainty quantification [24,25];
• Predicting the failure modes under multi-hazard scenarios [26,27].
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With all the above-discussed advantages, the soft computing methods have several
limitations in dam engineering problems. Machine learning models require a large amount
of data to be trained and tested, which can be a limitation in dam engineering, where
data collection can be difficult and expensive. Data availability can be the main obstacle
to the application of machine learning models in numerical simulation of large-scale
dams [28]. The quality of the data used to train and test machine learning models is crucial
for the accuracy and reliability of the models. Data in dam engineering can be noisy,
incomplete (e.g., missing sensor) or biased, which can negatively impact the performance
of the models [29]. Complex machine learning models can be difficult to interpret and
understand [30], which can be a limitation when trying to explain the results of the models
to non-experts. It is important to validate the models using independent data sets, but
this can be difficult and time consuming in dam engineering. Dam systems are dynamic
and subject to change. Machine learning models may not be able to adapt to changing
conditions, which could lead to poor predictions. Dam engineering is a critical field
that affects the safety of human lives, property and the environment. Therefore, the
reliability and safety of the machine learning models used in dam engineering need to be
carefully evaluated.

The challenges are increasingly complex. The differences among dam owners in terms
of financial and human resources is a crucial aspect to consider. The investment is different
between the dam owners and between the dams since new surveillance in old dams are
many times more difficult to carry out than in new dams. Adopting adequate monitoring
plans is mandatory, as is the promotion of surveillance activities by expert engineers. The
constitution of multidisciplinary teams and the exploitation of the possibilities of soft
computing and machine learning techniques are essential to adequately respond to dam
surveillance activities’ needs. Sharing knowledge between scientists and practitioners is
also a key element for improving surveillance activities.

3. About the Special Issue

In May 2020, a team of guest editors specialized in different aspects of dam engineering
and machine learning proposed to launch a Special Issue “Soft Computing and Machine
Learning in Dam Engineering ” to the journal of “Water”. This Special Issue aimed to
capture the recent increase in research activity at the interface of dam engineering and
machine learning methods.

In this Special Issue, we solicited high-quality original research articles focused on
state-of-the-art techniques and methods employed in the design and analysis of dams.
We welcomed both theoretical and application papers of high technical standards across
various disciplines, thus facilitating an awareness of techniques and methods in one area
that may apply to other areas.

This book includes ten contributions to this Special Issue published between 2020 and
2023. The acceptance rate was less than 50%, which is an acceptable rate for a technical
Special Issue, where nearly all the submissions were by invitation. The overall aim of the
collection is to improve our understanding from applications of soft computing in dam
engineering including its challenges.

Figure 2 shows a “word cloud” data-mined from all accepted papers, indicating repe-
tition of relevant keywords. The accepted papers cover a wide range of dam engineering-
related topics. In a very broad classification, one may identify the following major cate-
gories: (1) probabilistic simulations, (2) risk-based methods, (3) stochastic input motion,
(4) uncertainty quantification, and (5) applied machine learning including validation.
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Figure 2. Word cloud from all the accepted papers in this Special Issue journal.

4. Contributions to Current Special Issue

Deterministic analysis never provides a comprehensive performance assessment of
structural systems. Therefore, probabilistic methods have emerged as a promising alterna-
tive. However, such methods, in addition to being computationally expensive, can produce
very different solutions, depending on the input parameters, which can greatly influence
the decision making. The importance of probabilistic methods in dam engineering has
been discussed previously in [31–33]. In the paper by Segura et al. [34], “Accounting for
Uncertainties in the Safety Assessment of Concrete Gravity Dams: A Probabilistic Approach
with Sample Optimization”, the authors proposed a probabilistic-based methodology for
assessing the safety of dams under usual, unusual, and extreme loading conditions. This al-
lows the analysis to be updated while avoiding unnecessary simulation runs by classifying
the load cases according to the annual probability of exceedance and by using an efficient
progressive sampling strategy. They also conducted a variance-based global sensitivity
analysis to identify the most influencing parameters affecting the dam response.

While the probabilistic simulations can be used to extract the structural capacity of
dams, it is not always possible to perform hundreds of simulations for highly nonlinear
systems. The alternative is to use the approximate methods such as endurance time
analysis (ETA) [35]. ETA is a dynamic pushover procedure that evaluates the structural
performance of a system from the linear to nonlinear range using single simulations. In a
paper by Alegre et al. [36], “Seismic Safety Assessment of Arch Dams Using an ETA-Based
Method with Control of Tensile and Compressive Damage”, the authors present an ETA-
based method for seismic safety assessments of arch dams using tensile and compressive
damage models. The seismic performance is evaluated by controlling the evolution of
the damage state of the dam, according to predefined performance criteria, to estimate
acceleration endurance limits for tensile and compressive damage. They evaluated the
dam response at two seismic hazard levels, i.e., Operating Basis Earthquake and Safety
Evaluation Earthquake.

The probabilistic seismic performance of dams typically results in fragility curves
or capacity functions that are useful for the engineers [33,37,38]. However, they do not
provide a direct connection between the failure probability at different seismic hazard
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provide a direct connection between the failure probability at different seismic hazard
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levels and the associated risk for downstream population and properties. In a paper by
Ferguson [39], “Risk-Informed Design of RCC Dams under Extreme Seismic Loading”,
the author proposed a practical framework for risk-informed design of concrete dams.
The results of 2D and 3D numerical simulations were used to drive the risk metrics and
feasibility level design.

The machine learning techniques can be used to process the results of numerical simula-
tions. They can be used for both “analysis” and “design” purposes. In a paper by Shahzadi
and Soulaïmani [40], “Deep Neural Network and Polynomial Chaos Expansion-Based
Surrogate Models for Sensitivity and Uncertainty Propagation: An Application to a Rockfill
Dam”, the authors used two machine learning techniques to build a surrogate model of
a rockfill dam considering the uncertainties in constitutive soil parameters. Furthermore,
they found that shear modulus and the Poisson coefficient are the parameters that play the
most significant role in the dam’s behavior.

In a separate study by Hariri-Ardebili and Pourkamali-Anaraki [41], “An Automated
Machine Learning Engine with Inverse Analysis for Seismic Design of Dams”, the authors
used automated machine learning (AutoML) for the design of new dams. They first
developed a large database of about 24,000 simulations in which the uncertainties associated
with shape, material properties, water level, and ground motion records are incorporated.
Next, AutoML is used to generate a surrogate model of dam response as a function of input
variables. A simple yet robust inverse analysis method is coupled with a multi-output
surrogate model to design the new dams in which only part of the data are available. The
design shape from the inverse analysis is in good agreement with the design objectives and
also the finite element simulations.

Aside from the application of soft computing methods in regression and classification
of data, they can be used for the sensitivity analysis of dams too. In a paper by Hariri-
Ardebili et al. [42], “An RF-PCE Hybrid Surrogate Model for Sensitivity Analysis of Dams”,
the authors proposed two techniques for the sensitivity assessment of concrete dams with
heterogeneous concrete, i.e., a polynomial chaos expansion and random forest. They used
these techniques to identify the areas of dam in which the variation of material properties
have the highest impact on the vibration response. Their findings can improve the process
of system identification for old dams.

Another complex aspect, which is seldom analyzed, is the effect of ice loads on dam
displacements. This, which obviously affects dams in cold regions, was studied with
an innovative approach in a paper by Hellgren et al. [43], “Estimating the Ice Loads on
Concrete Dams Based on Their Structural Response”. The authors estimated the magnitude
of ice loads on five dams in Sweden, four concrete buttress dams and one arch dam. The
results suggested that the estimates of ice loads from measurement sensors and from design
guidelines are over-conservative.

Soft computing techniques are also capable of jointly analyzing a set of monitoring
records. In a paper by Salazar et al. [44] “Anomaly Detection in Dam Behaviour with Ma-
chine Learning Classification Models”, machine learning classifiers based on support vector
machines and random forests are tested for detecting anomalies in a double-curvature
arch dam. Results show the potential of this approach as a robust procedure for novelty
detection. The main limitation, also identified, is the need for high-quality monitoring data.

The dissemination of machine learning techniques has promoted the development of
new models for dam behavior prediction. However, validating these models based on the
dam engineer’s knowledge is fundamental for their adequate use. This issue is tackled in
the paper by Mata et al. [45] “Validation of Machine Learning Models for Structural Dam
Behaviour Interpretation and Prediction”. The authors present a methodology based on
several validation techniques, including historical data validation, sensitivity analysis, and
predictive validation for the practical application of data-based models for structural dam
behavior prediction in daily dam surveillance activities.

Finally, in a paper by Mata et al. [46] “Characterization of Relative Movements between
Blocks Observed in a Concrete Dam and Definition of Thresholds for Novelty Identification
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Based on Machine Learning Models”, the authors present a methodology for the earlier
detection of novelties through the analysis of the residuals of prediction models, taking
into account the evolution of the records over time and the simultaneity of the structural
responses measured in a concrete dam, namely through the threshold definition based on a
singular record, a moving time period, and multivariate records.

5. Future Research Directions

The dissemination and implementation of the scientific and technological advances
achieved in the dam surveillance area during the last decade are not yet effective for most
dam owners, even for large dams. The trend towards the installation and use of ADAS,
recommended in monitoring plans of new large dams, is a great opportunity to assess safety
conditions in real time, but it requires tools to process big data sets. Machine learning and
deep learning provide dam safety engineers with essential functionalities for an efficient
and effective enhancement of these tools, in order to adequately satisfy the needs resulting
from dam surveillance activities. Some of the future advances in this area to fill existing
gaps may include the development of methodologies and tools for:

• The validation of manual measurements in real-time, allowing manual record errors
to be immediately identified (resulting from human error or defects in measuring
devices). This enables the technicians, in-situ and in real-time, to have the opportunity
to repeat the measurement before making the final record.

• The validation of the automated measurements from ADAS taking advantage of the
multi-dimensionality of the measurements carried out.

• The definition/confirmation of the best location of the measurement devices that
better identify potential failure scenarios, enhancing the definition of subsystems of
devices that allow the confirmation of scenarios.

• The construction of advanced predictive models of physical quantities that present
a nonlinear behavior, such as seepage and leakage, uplift pressures, and joint move-
ments, among others.

• Multivariate and simultaneous analysis of quasi-static and dynamic quantities for
interpreting observed behavior.

• The short-term prediction of the structural behavior under extreme flood scenarios,
taking into account the short-term evolution of water level.

• The development of key operational indicators to assess the performance of the
observed structural behavior. For example, to assess the efficiency of the waterproofing
concrete curtain.

• The development of dashboards that allow, in an easy way for the end user, to assess
the quality of the forecast models adopted (including the quantification of the effect of
each of the main actions in the final response through sensitivity analyses).

• The identification of potential failure scenarios based on monitoring data.
• Validation, verification, and uncertainty quantification of probabilistic numerical

simulations that are used in soft computing models.

We hope that this Special Issue would shed light on the recent advances and devel-
opments in the area of soft computing and dam engineering, and attract attention by the
scientific community to pursue further research and studies on simulation and modeling of
dams and appurtenant structures.
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Abstract: Quantification of structural vibration characteristics is an essential task prior to perform any
dynamic health monitoring and system identification. Anatomy of vibration in concrete arch dams
(especially tall dams with un-symmetry shape) is very complicated and requires special techniques
to solve the eigenvalue problem. The situation becomes even more complicated if the material
distribution is assumed to be heterogeneous within the dam body (as opposed to conventional
isotropic homogeneous relationship). This paper proposes a hybrid Random Field (RF)–Polynomial
Chaos Expansion (PCE) surrogate model for uncertainty quantification and sensitivity assessment
of dams. For different vibration modes, the most sensitive spatial locations within dam body are
identified using both Sobol’s indices and correlation rank methods. Results of the proposed hybrid
model is further validated using the classical random forest regression method. The outcome of this
study can improve the results of system identification and dynamic analysis by properly determining
the vibration characteristics.

Keywords: dams; Polynomial Chaos Expansion; random fields; random forest; vibration analysis

1. Introduction

Determination of the vibration characteristics in concrete dams (especially the un-
symmetrical tall arch dams) is an essential task prior to perform any nonlinear seismic
analysis [1], dynamic health monitoring [2,3], and system identification [4,5]. This research
topic has received a lot of recognition in the past few years [6] and several advanced tech-
niques have been developed such the one by Sevieri and De Falco [7] based on Bayesian
interface model. Among many assumptions to formulate the numerical model, the most
fundamental one is isotropic homogeneous concrete (or at least zoned concrete) material
distribution within the dam body [8]. While this assumption can be valid for new dams or
those without (visible or hidden) physical damage, it cannot be used widely for damaged
or aged dams. In fact, several recent research shows that macro-scale heterogeneity [9]
might have a great influence on the dynamic characteristics of large concrete structures
(i.e., concrete dams [10] and nuclear containment buildings [11]).

The main objective in this paper is to solve the heterogeneous vibration analysis
and dynamic identification of arch dams using surrogate modeling. Polynomial chaos
expansion (PCE) is used in conjunction with Latin Hypercube sampling (LHS) and random
fields (RF) theory. The hybrid RF-PCE surrogate model is then used to identify the most
sensitive regions of two (symmetry and un-symmetry) arch dams at different vibration
modes. Such a hybrid meta-model has not been used before for dams in any level. The
findings of this study will help to identify the locations of dams (and any other infra-
structure) which most contribute to various vibration frequencies. This will be later used
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to perform a successful transient analysis for large-scale heterogeneous structures and can
greatly improve the model validation and verification.

First, a comprehensive literature review is provided in Section 1.1, followed by a brief
review on theory of random fields, polynomial chaos expansion and introducing the hybrid
model in Section 2. The case study dams are explained in Section 3, and the results are
discussed in Section 4. Finally, the PCE-based sensitivity analysis is validated by classical
random forest method in Section 5.

1.1. Literature Review

This section provides a literature review on the application of PCE meta-model for
dams and some other infra-structures.

Guo et al. [12] investigated the reliability analysis of an embankment dam by sparse
PCE, as well as identification of the most important random variables (RVs) by Sobol
indices. Two different deterministic approaches were compared to probabilistic method.
The results showed that deterministic approaches lead to similar reliability results in terms
of the failure probability, Pf , distribution of the first order second moment (FOSM), and
sensitivity index for each RV. They reported that soil dry density, effective cohesion, and
friction angle have the most dominant effect on the sliding stability assessment of the
embankment dam. Sevieri et al. [13] proposed a framework for post-earthquake safety as-
sessment of the existing dams. The Bayesian updating technique was applied to reduce the
uncertainties related to modeling procedure, material properties and geometry definition of
gravity dams. The finite element (FE) model response related to water level variation was
approximated via PCE method, and used for calibration. Hariri-Ardebili and Sudret [14]
investigated the application of PCE meta-model in uncertainty quantification (UQ) of
different implicit and explicit dam engineering problems. They found that PCE can de-
velop a surrogate model with a very limited number of initial simulations and reduce the
computational time considerably. Even the sample size as low as 5% of the initial database
can provide an acceptable engineering result. They performed a comprehensive paramet-
ric study on the impact of different sample sizes, quantity of interests (QoIs), statistical
parameters (e.g., mean, variance, error), sampling methods (e.g., LHS, Halton, Sobol), and
spatial variability.

Aside from dam engineering problems, the PCE has been practiced in some other
engineering fields, too. Kim [15] performed a comparative study on the capability of
meta-models in UQ of building energy model. To bypass the inherent high computational
cost of building performance simulation tools, PCE method along with Gaussian process
emulator (GPE) were applied. The results on total energy consumption of a real case study
demonstrated that both meta-models can be used as an alternative to crude Monte Carlo
simulation (MCS). They reported that GPE lead to more reliable outputs than PCE on
which number of sampling is increased. Wei et al. [16] implemented PCE-based UQ of
mechanical properties in dynamic analysis of fiber reinforced polymer (FRP). Longitudinal
elastic, transverse elastic, shear, and Young’s modulus were considered as RVs, while the
QoIs were assumed to be natural frequencies, modal mass and absolute peak acceleration
at the mid mid-span of the bridge. They found the RVs have more impact of natural
frequencies compared to modal mass. Slot et al. [17] applied PCE and Kriging meta-
models to perform fatigue reliability assessment of a wind turbine with wind direction,
wind speed, turbulence, wind shear, air density, and flow inclination as RV. Overall, they
reported that Kriging meta-model leads to more accurate results compared to PCE for the
studied turbine. Ni et al. [18] performed a PCE-aided UQ of bridge structures including:
eigenvalue analysis, dynamic analysis of a linear bridge-vehicle system, and probabilistic
nonlinear seismic structural analysis of a bridge. Surrogate-assisted results were compared
and contrasted with crude MCS and FOSM approaches. It has been shown that PCE-
assisted UQ demonstrates a better performance in terms of accuracy and efficiency. As an
application of using meta-models in the context of nuclear engineering, Bouhjiti et al. [19]
applied PCE method to develop a global stochastic FE method to predict the uncertainty
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propagation in a thermo-hydro-mechanical leakage (THM-L) model. It is a framework to
simulate the behavior of large reinforced and pre-stressed structures under uncertainties
due to material and loading. The PCE-assisted UQ reduces the RVs and facilitates the
probabilistic representation of the THM-L model through a cost-effective reliability analysis.

In connection with random fields, Dubreuil et al. [20] developed an adaptive RF
representation dedicated to the approximation of extreme value statistics. The proposed
approach was based on a discretization of RF by hybrid PCE-Kriging approaches and
could provide an accurate presentation of the global extremum for any realization. This
framework benefits from partial least square and sparse PCE algorithms in the Kriging
and PCE meta-models, respectively. It was concluded that hybrid application of PCE and
Kriging methods could play an important role in terms of RF discretization. Guo et al. [21]
performed a RF-RV reliability analysis of an earth dam in terms of sliding stability con-
sidering the soil uncertainties. Performance assessment of different reliability approaches
such as crude MCS, subset simulation (SS), moment method (MM), hybrid sparse PCE-
global sensitivity analysis (SPCE/GSA), and coupled sparse PCE-sliced inverse regression
(SPCE/SIR), were investigated. Results indicated that the most accurate and efficient meth-
ods are SPCE/GSA and SS. In addition, they reported that efficiency of surrogate-aided
approaches mainly relies on the number of input RVs. Then, in a SPCE/GSA-based sta-
bility study, Guo et al. [22] focused on the effect of cross-correlation dependency between
effective cohesion and friction angle considering RF representation of soil parameters
via Karhunen-Loève expansion. QoIs were assumed be PDF, model response statistical
parameters, failure probability and Sobol index of each RV. It has been concluded that ap-
plying spatial variability for embankment dams leads to lower Pf estimation and disperse
safety factor values. Furthermore, the Pf is increased with increasing the auto-correlation
distance, cross-correlation and coefficient of variation (COV). Mishra et al. [23] proposed a
PCE-assisted reliability based life-cycle management framework for buried pipelines under
time-variant corrosion damage. After developing the PCE meta-model, an optimization
algorithm was proposed to address the life-cycle management of buried pipelines. They
concluded that PCE-based RF development facilitates the probabilistic configuration and
temporal correlation of corrosion depth.

2. Background Theory
2.1. Polynomial Chaos Expansion

The computational model of an structural system can be represented byM as a func-
tion of M input parameters which are modeled by a M dimensional X = {X1, X2, ..., XM},
and marginal probability density functions fXi , i = 1, ..., M. The scalar QoI resulted from
this system is a RV, denoted Y =M(X), and can be represented as a PCE [24] with limited
to a finite sum:

YPCE =MPCE(X) = ∑
α∈A

yαΨα(X), (1)

where Ψα(X) are the multi-variate polynomials orthonormal with respect to fX , yα are the
expansion coefficients, α are multi-indices that identify the components of the multi-variate
polynomials, and A is the truncation set of multi-indices of cardinality P. This format of
PCE is typically used for simulation-based uncertainty quantification problems.

There are two main truncation schemes, i.e., standard [25] and hyperbolic [26]. The
hyperbolic truncation is a modification to the standard version (which is based on selection
of all polynomials in M input RVs of total degree not exceeding p), and uses the parametric
q-norm to define the truncation (for q = 1, the hyperbolic truncation is identical to the
standard one):

AM,p,q =
{

α ∈ AM,p : ‖α‖q ≤ p
}

, ‖α‖q =

(
M

∑
i=1

α
q
i

)1/q

. (2)

11



Water 2021, 13, 302

The main objective in PCE framework is to determine the expansion coefficients [14].
In this paper, a non-intrusive approach is adopted which relies on post-processing the
outputs resulted from simulation-based methods [27]. According to the least angle regres-
sion (LAR), only the polynomials with large impact on the QoIs are retained, while the
other are wiped. The LAR method is based on determination of coefficients y to minimize
the mean square error (MSE) including a penalty term of the form λ‖y‖1 as discussed by
Efron et al. [28]:

ŷ = arg min
y∈RP

E
[(

yTΨ(X)−M(X)
)2
]
+ λ‖y‖1, (3)

where ‖ŷ‖1 = ∑α|yα| is the regularization term that forces the minimization to favor sparse
solutions [26].

In the LAR algorithm, first initialize the parameters, yα = 0; candidate set of Ψα,
active set of 0, and set the residuals equal to the vector of observations y. Second, find the
vector Ψαj which is most correlated with the current residual. Move yα from zero towards
their least-square value until their regressors Ψαj are equally correlated to the residual as
some other regressor in the candidate set. Next, compute the leave-one-out (LOO) error,
Errj

LOO for the current iteration, update all the active coefficients, and move Ψαj from
candidate set to the active set. Finally, continue this step until the size of the active step
becomes min(N − 1, P). The LOO cross validation technique is intended to overcome the
over-fitting [29] based on the following relationship:

ErrLOO =

∑N
i=1

(
M(x(i))−MPCE(x(i))

1−diag
(

A(AT A)
−1

AT
)

)2

∑N
i=1

(
M
(
x(i)
)
− 1

N ∑N
i=1M

(
x(i)
))2 , (4)

where AN×P is the information matrix, which contains evaluations of all base polynomials
at all points of the DOE.

2.2. Random Fields

In structural engineering, the random fields are typically used for characterizing the
spatial variability in the material properties or modeling in various micro to macro-level
heterogeneity [11]. Different random fields are formulated based on the nature of the
uncertainty within the studied stochastic environment [30]. Detailed formulation of the
random fields and their validation is beyond this paper and only the fundamental equations
are provided (details can be found in Reference [31]). A random field is formulated in a
general form of:

H(x) = µ(x) + η(x), (5)

where µ, η, and x are mean function, random function (with zero mean and an auto-
covariance of Caa), and position vector, respectively. The auto-covariance function is
defined as:

Caa(ξ, σ0) = σ2
0 ρaa(ξ), (6)

where ξ = |x− x′| is the distance between any two arbitrary points, σ0 is standard deviation,
and ρaa(ξ) refers to the auto-correlation function, and is defined as:

ρaa(ξ) = exp

(
−
(

ξ

lcorr

)2
)

, (7)

where lcorr is the correlation length.
In this paper, the random fields generation is based on covariance matrix decomposi-

tion. In addition, a simple midpoint discretization technique [32] is used to transfer the
continuous nature of random fields into the finite element mesh. A sample 2D random
fields is shown in Figure 1 including its finite element discretization with three types of
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meshes: coarse, medium, and non-uniform medium-fine. The non-uniform discretization
is used in cases where the local response is sensitive to the property distribution in that
area (e.g., local fracture). There is a direct relation between the correlation length, lcorr, and
the size of the optimal mesh. The smaller the lcorr, the finer the mesh should be to properly
capture the random fields transition. The number of realizations/samples is typically
optimized using the LHS technique [33].

Random Fields Coarse Mesh Medium Mesh
Non-uniform Medium-

Fine Mesh

Finite Element Discretization 

Figure 1. Sample random fields generation and its finite element discretization.

2.3. Lanczos Algorithm for Eigenvalue Problems

Since the hybrid RF-PCE is applied on the frequency response of the coupled system,
a brief review is provided for the readers interested in direct implementation. Frequency
analysis is performed beginning with a free vibration linear equation of motion and
neglecting the damping term as M{ü}+ K{u} = 0, where M and K are global mass and
stiffness matrices, and {u} is the displacement vector. Let us assume a harmonic motion
for the displacement, u = {φ}i sin(ωit + θi), where {φ}i and ω2

i = λi are eigenvectors
and eigenvalues, respectively. Substituting u into the equation of motion leads to the
following non-trivial solution: det(K− λiM) = 0. This is a so-called eigenvalue problem
that may be solved for up to n eigenvalues, where n is the number of degrees of freedoms
(DOF). The number of unknowns is one more than the number of equations; therefore,
an additional equation is needed to solve the problem. Two methods are available to
provide such an additional equation, namely: (1) mode shape normalization to mass
matrix, {φ}T

i M{φ}i = 1; and (2) mode shape normalization to unity, where the largest
vector component {φ}i is set to a value of one.

Many techniques can be used to solve this equation, some of which are listed in
Reference [34]. The direct block Lanczos algorithm is a computationally efficient and
easy-to-implement technique for solving eigenvalue problems. Originally proposed by
Lanczos [35] and based on an extension of the power method, this technique was numeri-
cally unstable and wound up being modified by Newman and Ojalvo [36] using a method
for purifying vectors in order to stabilize the solution. A detailed theoretical formulation of
Lanczos’ algorithm can be found in Reference [37,38].

Given a square matrix S, the values of {φ}i (eigenvector) and λi (eigenvalues) are
of interest in the form of: S{φ}i = λi{φ}i. Lanczos’ algorithm provides a tri-diagonal
matrix, T, at the end of any step, in which its extreme eigenvalues approximate the extreme
eigenvalues of matrix S. To determine these eigenvalues, let us suppose that q1 is a
random vector with |q1| = 1. Next, let us compute the δ and β values from Algorithm 1.
Then, develop matrix T and identify the eigenvalues. Being tri-diagonal facilitates the
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eigen-decomposition of the matrix when using the power method. Note that qi should be
orthogonal to all other q vectors.

T =




δ1 β2
β2 δ2 β3

β3
. . . . . .
. . . . . . . . .

. . . δm−1 βm
βm δm




. (8)

Algorithm 1 Computation of δ and β.
1: q0 = 0 and β1 = 0

2: for i = 1, . . . , m do

3: w = Sqi − βi

4: qi−1

5: δi = w.qi

6: w = w− δiqi

7: βi+1 = |w|
8: qi+1 = w/βi+1

9: end for

2.4. Hybrid Method

The objective of this paper was to combine the random fields concept with PCE to
quantify the uncertainties in the heterogeneous dam models. Moreover, the developed sur-
rogate model will be used for sensitivity analysis of the most important regions within dam
body. The initial framework of the uncertainty quantification introduced by Sudret [39]
and used by Hariri-Ardebili and Sudret [14] for RV-based assessment of dam structures is
expanded in this paper to incorporate the impact of spatial correlation. This framework
has three main elements as illustrated in Figure 2:

Moments

Frequencies 

Response PDF

STEP “A” STEP “C”STEP “B”

Quantification of various 
uncertainty sources 

Model(s) of the system
Assessment criteria 

Uncertainty propagation

Iteration 
(Sensitivity analysis 
on spatial location)

Random variables

R
andom

 fi
eld

s
1

i

N

...

Computational model

Figure 2. A framework for uncertainty quantification with random fields; adapted from Reference [40]
and expanded.

• Step A: Develop a computational model (i.e., a dam finite element model) which has a
role of black-box in the form of Y =M(X) (and connects inputs to outputs).

• Step B: Quantify the uncertainty in the input parameters, X, either in the form of
random variables (correlated or uncorrelated) or random fields.
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• Step C: Perform an uncertainty analysis that combines the input uncertainties with
the computational model, and quantifies characteristics of the stochastic system. The
PCE meta-model,MPCE, will be used for this purpose.

The final goal in this paper (as discussed in Section 4) is to answer this important ques-
tion: “Is it possible to use the PCE-assisted surrogate model for sensitivity and uncertainty
quantification of heterogeneous concrete dam models?” Moreover, the findings will be
verified by classical random forest method (as discussed in Section 5).

3. Case Study Dams

In order to evaluate the capability of PCE in conjunction with random fields in dam
engineering problems, two case study dams are studied in this paper. Those two case
studies have different number of random variables. Each random variable is indeed a
region/element within the dam which reflects the spatial variability of material properties.
In both dams, only the concrete modulus of elasticity is assumed to be random variable
(due to potential aging and, therefore, reduction of elasticity), while all other material
properties are kept in their mean value. One may note that concrete strength is also random
(and typically is reduced due to aging); however, it is not used during modal analysis.

In the first one, a coarse mesh is used to reduce the number of input parameters in
the PCE meta-model. This symmetry model (hereafter Dam-1) includes only 72 random
variables. This example is representative of dams which are constructed with different types
of cement (and/or concrete strength) at different locations (typically various concreting
regions). Modulus of elasticity, mass density, and Poisson’s ratio of dam body are 25 GPa,
2450 kg/m3, and 0.17, respectively.

The second example is an un-symmetry dam (hereafter Dam-2) with finer mesh
(316 input parameters). This example challenges the capability of the developed meta-
model for high-dimensional problems, and can be representative of a dam suffering from
non-uniform aging/deterioration. Modulus of elasticity, mass density, and Poisson’s ratio
of dam body are 19 GPa, 2450 kg/m3, and 0.18, respectively. Finite element models of the
case study dams are illustrated in Figure 3. The slenderness coefficient of Dam-2 is 13.8
compared to 9.9 in Dam-1. Figure A1 illustrates the first ten vibration modes in both dams.

168 m

225 m

384 m

510 m

thickness 

32.0 m

7.85 m

thickness 
35.7 m

4.51 m

 N = 180
 E = 72  N = 552

 E = 316

Figure 3. Finite element model of the case study dams with main dimensions (not to scale).

4. Results: Correlation-Based vs. Variance-Based Decomposition

This section will discuss the results of implementation of PCE surrogate model to
quantify the sensitivity of the spatial location in arch dams for various vibration modes.

4.1. Dam 1

PCE meta-models are developed based on LAR method. A fixed truncation strategy
along with a degree-adaptive sparse PCE option are applied. Hence, q−norms equal to 0.75,
and polynomial degrees p set to <2:5>. Three QoIs are evaluated: frequency of vibration,
effective mass, and participation factor.

Different DOEs (with 100 to 1000 points) are used to evaluate the sensitivity and
accuracy of the prediction. Figure 4 compares the response prediction via PCE and the
corresponding expansion coefficients. Five initial (and deterministic) design of experiment
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(DOE) values are considered, i.e., 100, 200, 400, 800, and 1000. Clearly, increasing the
initial sample size, increases the accuracy of PCE meta-model. In addition, it increases
the number of expansion coefficients required for the meta-modeling. Qualitatively, the
performance of the PCE for frequency response is very similar to the effective mass. The
results of participation factor are not shown as they are very similar to other two responses.
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Figure 4. Dam-1; Polynomial Chaos Expansion (PCE)-based surrogate models for varying number of
initial DOEs = 100, 200, 400, 800, and 1000 (left to right).

Figure 4 only studied the 1st vibration mode. Next, the effects of higher-modes are
evaluated. A batch with 800 initial DOEs is considered to be the pilot Dam-1 model, and
the results are expanded for 20 modes. In each case, a similar PCE model as of mode
#1 is implemented. To reduce the uncertainties due to initial random selection of DOE
points, a total of 20 replications is performed. Therefore, the developed meta-models have
a probabilistic nature; see Figure 5.

According to Figure 5a,b the mean and variance increase as a function of frequency.
While the mean frequency has a quite uniform form, there are some nonlinear variations
for the frequency variance (with some spikes). Based on Figure 5c, the non-zero coefficients
is constant for the first 4 modes (and about 280), then it drops to about 180 at mode #8
and keeps a nearly constant trend. There is a considerable probabilistic dispersion in the
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non-zero (NnZ) value depending on the initial sampling batch. Finally, the LOO error has
an increasing trend with some big spikes and small dispersion; see Figure 5d.

As opposed to frequency response, there is not a clear trend for the effective mass
in the case of mean and variance response; see Figure 5e,f. Moreover, the NnZ has a
fluctuating pattern and from mode #1 to #20 decreases from about 270 to 220; see Figure 5g.
The LOO error has an oppose behavior with respect to NnZ and increases with a fluctuating
fashion; see Figure 5h.
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Figure 5. Dam-1; Probabilistic PCE-based surrogate models for different vibration frequencies and
quantity of interests (QoIs) all with 800 DOE; ω: frequency.

Finally, the impact of the DOE size on the quality of meta-model is studied in Figure 6
(only for the frequency response). The mean (not shown here) of different sample sizes
are practically identical. The variance values have also similar trend for DOEs from 200 to
1000, while the model with DOE = 100 has different pattern; see Figure 6a. Increasing the
DOE size, increases the number of NnZ coefficients; see Figure 6b. Finally, the LOO error
decreases with an increase in the DOE size.

0 5 10 15 20

0.005

0.01

0.015

0.02

0.025

0.03

0.035

(a) Variance

0 5 10 15 20

50

100

150

200

250

300

350

400

(b) Non-zero coefficients

0 5 10 15 20

10
-3

10
-2

10
-1

(c) LOO error

Figure 6. Dam-1; impact of DOE size on the PCE-based surrogate models for frequency response.

Next, the sensitivity of QoIs are computed with respect to the input RVs. The linear
correlation is the simplest method to evaluate the sensitivity; however, it might be inaccu-
rate in the presence of strongly nonlinear dependence between RVs. The Spearman’s rank
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correlation index, ρS, is a stable version which accounts for monotonicity instead of the
linearity of the dependence between RVs. First, all the input and outputs are transformed
into their rank-equivalents:

Ri =
{

r(j)
i ∈ {1, ..., N} : r(j)

i > r(k)i ⇔ x(j)
i > x(k)i ∀j, k ∈ {1, ..., N}

}
. (9)

In the same way, the rank-transformed model response is RY =
{

r(1)Y , r(2)Y , ..., r(N)
Y

}
.

Finally, the Spearman’s rank correlation indices are:

ρSi = ρ(Ri, RY) =
E
[
(Ri − µi)

(
Y− µRY

)]

σiσRY

, (10)

where µ is expectation of that quantity, and σ refers to its standard deviation.
On the other hand, a direct outcome of a PCE-based surrogate model is to use the

Sobol indices as a metric for sensitivity analysis. Decomposition of variance provides the
sensitivity measures in the form of Si1,...,is which represent the relative contribution of each
group of RVs

{
Xi1 , ..., Xis

}
to the total variance. The first order Sobol index is derived with

respect to one RV Xi (and its interaction with other RVs is neglected – which is referred to
as high-order Sobol indices). In the functional form the sensitivity index is:

Si1,...,is =
Di1,...,is

D
, (11)

where the partial variances are:

Di1,...,is =
∫

...
∫

f 2
i1,...,is

(
xi1 , ..., xis

)
dxi1 ...dxis 1 ≤ i1 ≤ ... ≤ is ≤ M; s = 1, ..., M, (12)

where f (X) presents the Sobol decomposition
Figure 7 illustrates both the “Correlation Rank” and first order Sobol index for 10 fre-

quencies and 72 RVs (which corresponds to spatial locations). As seen in this figure, the
variation of colors which corresponds to sensitivity index is much higher in correlation rank
method compared to first order Sobol index. Moreover, the correlation rank method has
higher relative values. Estimation of the high sensitive RVs (locations) in both methods is
close. It seems that the Sobol index filters more the RVs compared to correlation rank. Since
each vibration mode is analyzed independent from others, the relative sensitivity index
from one mode should not be compared to other modes (only the pattern is important).
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Figure 7. Dam-1; comparison of sensitivity indices for two methods and 10 modes.

Figure 8 compares the spatial distribution of sensitivity indices for two methods and
only first six modes of vibration. The main observations are as follows:

• In general, Correlation Rank provides a fair estimation of most sensitive locations
compared to Sobol indices.

• Dam-1 is a symmetry dam with symmetry mesh, and it is expected the results of
sensitivity analysis reflect this fact. However, the Correlation Rank method provides a
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non-uniform distribution of the sensitivity index within dam body. The results from
Sobol index are quite symmetry.

• According to these figures, the regions of the dam in vicinity of abutments are most
sensitive locations for the modes #1, #3, and #6. On the other hand, the middle regions
located at the upper one-half are most sensitive for modes #2, #4, and #5. The lower
half part of dam is not sensitive at all in its overall vibration characteristics.

(a) Rank Correlation; #1 (b) Rank Correlation; #2 (c) Rank Correlation; #3

(d) Rank Correlation; #4 (e) Rank Correlation; #5 (f) Rank Correlation; #6

(g) First order Sobol Index; #1 (h) First order Sobol Index; #2 (i) First order Sobol Index; #3

(j) First order Sobol Index; #4 (k) First order Sobol Index; #5 (l) First order Sobol Index; #6

Figure 8. Dam-1; Spatial distribution of sensitive location for different vibration modes.

4.2. Dam 2

A similar method as of Dam-1 is used for Dam-2. Figure 9 compares the response
prediction via PCE (while the expansion coefficients will be omitted). Four initial (and
deterministic) DOE values are considered, i.e., 500, 1000, 2000, and 3000. Aging, increasing
the initial sample size, increases the accuracy of PCE meta-model, as well as the number
of expansion coefficients. However, compared to Dam-1, the Dam-2 requires much more
DOE to provide a good prediction. In addition, the performance of the PCE for frequency
response seems to be better than effective mass (this was not the case in Dam-1).

Figure 9 only studied the 1st vibration mode. Therefore, the higher-modes effects will
be evaluated by analyzing first 20 modes. A batch with 2000 initial DOEs is considered to
be the pilot Dam-2 model. In each case, a similar PCE model as of mode #1 is generated;
however with 20 replications (to reduce the potential uncertainty due to random selection
of DOEs); see Figure 10.
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(b) Mode 1 effective mass; Predicted vs. FE results

Figure 9. Dam-2; PCE-based surrogate models for varying number of initial DOEs.
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Figure 10. Dam-2; Probabilistic PCE-based surrogate models for different vibration frequencies and
QoIs all with 2000 DOE.

According to Figure 10a,b, the mean and variance increase as a function of frequency
(this response is similar to Dam-1). While the mean frequency has a quite uniform form,
there are some nonlinear variations for the frequency variance (with some spikes). Based
on Figure 10c, the non-zero coefficients are increased from initial about 340 to about 420 in
mode #8. Then, it has a fluctuating behavior around 360 NnZ (this observation is different
from Dam-1). Finally, the LOO error has also a non-uniform and non-constant pattern (as
opposed to Dam-1); see Figure 10d.

Similar to Dam-1, in Dam-2, also, there is not a clear trend for the effective mass in the
case of mean and variance response; see Figure 10e,f. Both the NnZ and LOO error have
also a non-uniform pattern.
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Finally, the impact of the DOE size on the quality of meta-model is studied in Figure 11
(only for the frequency response). The variance values have a similar trend for DOEs from
1000 to 3000, while the model with DOE = 500 is a bit different; see Figure 11a. Increasing
the DOE size, increases the number of NnZ coefficients; see Figure 11b (as opposed to
Dam-1, the variation of NnZ is nearly constant). Finally, the LOO error decreases with an
increase in the DOE size (similar to Dam-1).

Figure 12 compares both the Correlation Rank and 1st Sobol index for 10 frequencies
and 316 RVs (which corresponds to spatial locations). Again, variation of color contour is
much more for Correlation Rank method compared to 1st Sobol index (which highlights
only a few locations). Qualitatively, the predicted sensitive locations are different in
two methods.
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Figure 11. Dam-2; impact of DOE size on the PCE-based surrogate models for frequency response.
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Figure 12. Dam-2; comparison of sensitivity indices for two methods and 10 modes.

Figure 13 compares the spatial distribution of sensitivity indices for two methods
using the first six modes of vibration. As opposed to Dam-1 in which there was only one
layer of element withing the thickness, Dam-2 has two layers of elements. This provides
the opportunity to investigate the curvature of mode shapes; thus, the sensitivity of the
upstream and downstream side elements for various modes. The main observations are as
follows:

• For this un-symmetry dam, the Correlation Rank method provides a good estimation
of the most sensitive locations compared to the Sobol indices. For all six mode of
vibrations, the most sensitive location is identical in two methods.

• It is observed that for some of the vibration modes, the estimated sensitive location
at the upstream and downstream faces are different (modes #1, #2, and #5). For
those modes, the First order Sobol indices are also illustrated on the downstream face
(see Figure 13m–o). In modes #1 and #2, a central sensitive region in upstream face
corresponds to two sensitive side areas in downstream face, and vice versa. This type
of response is consistent with the nature of mode shapes in the shell-type structures.

• According to these figures, the upper central regions of upstream/downstream face
(not in the vicinity of the crest), as well as the left bank, are the most sensitive locations.
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(a) Rank Correlation; #1 (b) Rank Correlation; #2 (c) Rank Correlation; #3

(d) Rank Correlation; #4 (e) Rank Correlation; #5 (f) Rank Correlation; #6

(g) First order Sobol Index; #1 (h) First order Sobol Index; #2 (i) First order Sobol Index; #3

(j) First order Sobol Index; #4 (k) First order Sobol Index; #5 (l) First order Sobol Index; #6

(m) First order Sobol Index; #1 DS (n) First order Sobol Index; #2 DS (o) First order Sobol Index; #5 DS

Figure 13. Dam-2; Spatial distribution of sensitive location for different vibration modes.

4.3. Spectrum of Sensitivity Indices

The summation of Sobol indices for all random variables is equal to one. Figure 14
summarizes the most important observations in this paper which is the spectrum of
cumulative first order Sobol indices for the first 10 modes for each dam. Any sharp jump
in these curves or a very steep slope indicate the importance of that particular random
variable (i.e., location). These curves helps to identify the sensitive locations in dam for
further inspection and potential instrumentation.
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Figure 14. Spectrum of cumulative first order Sobol indices along number of random variables, NRV ,
for various modes.

5. Results: Random Forest-Based Ensemble Regression

Random forest [41] is an ensemble method that builds a large collection of de-
correlated trees, and then averages them [42]. Random forest is one of the base and standard
methods in machine learning which is used in this section to validate further the results
from PCE. Aside from random forest applications in classification and regression problems,
it has a variable importance feature too. It is founded on the Out-of-Bag (OOB) data concept
which refers to the samples that are not selected in bootstrapping in the random forest
procedure. Error is then calculated by calculating random forest model with OOB data.
Mathematically, the importance score (IS) is described as:

IS =
1

Nt

B

∑
j=1

(
Ej − E∗j

)
, (13)

where Nt is the number of trees in the model, and Ej and E∗j are the errors of each tree
applied on OOB and perturbed OOB data, respectively. This method has been implemented
on the data from both dams using the “randomForest” function [43] available in R with
“ntree = 500”.

Figure 15 presents the estimated variable importance by random forest method for
two dams. In general, the random forest pattern is similar to PCE rather than Correlation
Rank. In addition, it seems that random forest assigns higher weight to some RVs (regions)
and, thus, filters less important variables. In random forest, the local variable importance
is shown graphically shown using tress. Tree can be shown either based on absolute or
relative values. Figure A2 presents trees for first six modes of Dam-1 and Dam-2 based on
the normalized modulus of elasticity value (which has a heterogeneous distribution). At
any regression tree, the value of the random variable (in this case, 1 to 72 for Dam-1 and 1
to 316 for Dam-2 in the form of RV∗ ∗ ∗) is checked, and depending of the (binary) answer,
the tree grows to the left or right sub-branch. Once a tree reaches to any of its leaves, the
estimated value (in this case, the vibration frequency) is obtained. As opposed to linear
or polynomial regression, which are global models (the meta-model is supposed to hold
in the entire data space), trees partition the data space into small enough parts where one
may apply a simple different model on each part.

Figure 16 illustrates the spatial distribution of variable importance for both dams
based on random forest method. In general, random forest provides the spatial distribution
in a very similar way to first order Sobol index. The only difference is that first order Sobol
index provided a complete symmetry sensitivity prediction for Dam-1, while random forest
exhibits small un-symmetry behavior (in any case is un-symmetry level is much less that
Correlation Rank estimation). In the case of Dam-2, it seems that random forest filters even
more the insensitive RVs (regions) and strictly focuses on few highly important RVs.
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Figure 15. Estimation of variable importance using random forest for two dams and 10 modes.

(a) Dam-1; #1 (b) Dam-1; #2 (c) Dam-1; #3

(d) Dam-1; #4 (e) Dam-1; #5 (f) Dam-1; #6

(g) Dam-2; #1 (h) Dam-2; #2 (i) Dam-2; #3

(j) Dam-2; #4 (k) Dam-2; #5 (l) Dam-2; #6

Figure 16. Random forest-based spatial distribution of sensitive location for different vibration modes
in Dam-1 and Dam-2.

Finally, Figure 17 compares the relative importance of RVs (72 RVs in Dam-1 and
316 RVs in Dam-2) from random forest (horizontal axis) with correlation Rank (left vertical
axis) and PCE-based first order Sobol index (right vertical axis). As seen, there is a high
correlation between random forest and PCE and coefficient of determination (R2) of 0.99
for Dam-1 and 0.95 for Dam-2. On the other hand, the random forest is less correlated with
Correlation Rank method and the average of R2 is about 0.85 for Dam-1 and 0.70 for Dam-2.
The reported goodness-of-fit metrics are based on a fitted power-form equation, axb + c,
which shows a completely nonlinear relation between Correlation Rank and random forest,
and a semi-linear one between PCE and random forest.
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Figure 17. Correlation among three sensitivity metrics for various vibration modes.

6. Connection to the System Identification and Dynamic Analysis

Arch dams are three-dimensional shell-type structures with a large degree of inde-
terminacy. Anatomy of vibration in concrete arch dams is complex and requires special
techniques to solve the eigenvalue problems. Typically, the material properties in concrete
are assumed to be isotropic and homogeneous which facilitates the coupled modal analysis.
However, it is well-accepted that the material properties within the dams (and in general
any the large-scale infra-structures) is not quite homogeneous.

The structural-level heterogeneity might be due to differences in concreting in large
scale, or deterioration/aging over the time. The latter one is typically observed in dams due
to alkali aggregate reaction. The concrete heterogeneity will alter the vibration nature of
the structure (compared to the homogeneous one) [44]. The U.S. bureau of reclamation [9]
conducted a series of seismic tomography tests on Seminoe Dam, located in Wyoming,
which is suffering from ASR. While the lower parts of the dam have a modulus of elasticity
of about 20 GPa, it reduces to only 9 GPa in the vicinity of crest with a highly heterogeneous
pattern. Custódio et al. [45] studied the performance of 80 m high Miranda buttress dam.
Evidences of AAR has been found due to progressive vertical displacements upwards, as
well as vertical sliding on the central contraction joints. The cylindrical test results, show
that there is a great variability on the condition of the concrete sampled throughout the
structure. Compressive strength is ranging from 20 to 48 MPa; tensile splitting test from 1.7
to 4.1 MPa; and stiffness damage test from 23 to 37 GPa.

The outcome of this study can improve the results of dynamic analysis in different
aspects. During the model calibration (e.g., based on forced vibration test), the results of
sensitivity analysis help to minimize the computational time for system identification by
mainly focusing on the most important regions. In this approach, instead of assigning
thousands potential heterogeneous patterns to the dam body, the calibration is only con-
ducted by searching the right material properties in the sensitive regions for that particular
vibration mode.

Next, the outcome is used in dynamic analysis. Two widely used finite element
dynamic analysis techniques for concrete dams are: response spectrum analysis and time
integration method.

• In the response spectrum analysis technique, the response of the coupled system (i.e.,
displacement and stress) is separately computed for each vibration mode, and then are
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combined to calculate the total system level response. Using a proper heterogeneous
model with exact effective mass and participation factor improves the accuracy of
total calculations. In addition, it is important to identify the most effective vibration
modes which contribute most to the dynamic response of the system. The number of
effective modes (which might be different in heterogeneous models compared to the
homogeneous ones) is typically selected to reach at least 90% total accuracy.

• In the time-integration time history analysis, the heterogeneous dam assumption
alters the stiffness matrix and damping values of at different modes.

7. Summary and Conclusions

Quantification of structural vibration characteristics is an essential task prior to per-
form any dynamic health monitoring, and system identification. Most of the finite element
models are validated based on the vibration characteristics of the dam, thus ignoring
concrete heterogeneity may lead to poor/wrong model validation.

This paper proposed a hybrid random field—polynomial chaos expansion surrogate
model for uncertainty quantification and sensitivity assessment of dam structures. First, an
efficient random fields model is developed and the concrete heterogeneity is simulated.
Next, two dam models (symmetry and un-symmetry) are selected and a large number
of eigenvalue analyses were performed on the models. From the analyses, the vibration
characteristics (i.e., frequencies, effective masses, and participation factors) were extracted.
This large database is used to develop a PCE-based surrogate model. A natural outcome
of such a meta-model is to quantify the Sobol indices in various random variables (in this
case, different locations). This is a great metric to identify the most sensitive dam locations
for different vibration modes.

Another important conclusion in this figure is that the general trend of a symmetry
dam is different from a un-symmetry one because in the former one the modes are well-
separated, while, in the latter case, the modes are interacting. Comparing the PCE-based
sensitivity analysis with correlation rank method showed that the latter one does not
provide a reliable estimate of the important random variables. Furthermore, the results
of the proposed hybrid model is validated using the classical random forest regression
method, and a good consistency has been reported.
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Appendix A. Dam Mode Shapes

1 2 3 4 5

6 7 8 9 10

(a) Dam-1

1 2 3 4 5

6 7 8 9 10

(b) Dam-2

Figure A1. First ten mode shapes of the studied dams with homogeneous model.

Appendix B. Detailed Regression Trees

(a) Dam-1; mode #1 (b) Dam-1; mode #2 (c) Dam-1; mode #3

(d) Dam-1; mode #4 (e) Dam-1; mode #5 (f) Dam-1; mode #6

(g) Dam-2; mode #1 (h) Dam-2; mode #2 (i) Dam-2; mode #3

(j) Dam-2; mode #4 (k) Dam-2; mode #5 (l) Dam-2; mode #6

Figure A2. Regression trees to identify the important random variables (RVs) (i.e., locations) at different vibration modes in
Dam-1 and Dam-2.
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Abstract: Important advances have been made in the methodologies for assessing the safety of
dams, resulting in the review and modification of design guidelines. Many existing dams fail to
meet these revised criteria, and structural rehabilitation to achieve the updated standards may be
costly and difficult. To this end, probabilistic methods have emerged as a promising alternative and
constitute the basis of more adequate procedures of design and assessment. However, such methods,
in addition to being computationally expensive, can produce very different solutions, depending on
the input parameters, which can greatly influence the final results. Addressing the existing challenges
of these procedures to analyze the stability of concrete dams, this study proposes a probabilistic-based
methodology for assessing the safety of dams under usual, unusual, and extreme loading conditions.
The proposed procedure allows the analysis to be updated while avoiding unnecessary simulation
runs by classifying the load cases according to the annual probability of exceedance and by using an
efficient progressive sampling strategy. In addition, a variance-based global sensitivity analysis is
performed to identify the parameters most affecting the dam stability, and the parameter ranges that
meet the safety guidelines are formulated. It is observed that the proposed methodology is more
robust, more computationally efficient, and more easily interpretable than conventional methods.

Keywords: gravity dams; safety assessment; probabilistic analysis; parameter uncertainty; sample
optimization; variance-based sensitivity analysis

1. Introduction

Dams are a vital part of the nation’s infrastructure, providing economic, environmen-
tal, and social benefits. The benefits of dams, however, are countered by the risks they can
present [1]. The structural stability of major dams needs to be re-evaluated every 5–10 years
according to hazard classification systems (HCSs), most often within the legal framework
of a governmental regulatory agency [2]. Requirements for the stability of concrete dams
in the current regulations are based on simplifications, which, in many cases, are very
conservative. Concrete dams in Canada, as in most of the world, are designed and assessed
based on a deterministic framework using safety factors (SFs). Although the failure rate of
gravity dams is low, the deterministic approach suffers from several problems, including
the equal treatment of loads and the identical consideration of strength and capacity un-
certainties, which are combined into a single safety factor. As a consequence, unnecessary
rehabilitation works may be carried out on dams that are safe but do not meet the safety
requirements. When safety is re-evaluated, it is important that this evaluation is based on
modern safety concepts, such as a probabilistic analysis, to support decision-making [3].

In contrast to the deterministic approach, the probabilistic approach requires the treat-
ment of each parameter as a continuous function that associates a probability of occurrence
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to the distribution. This probability density function (PDF) allows variables to be treated as
uncertain inputs by directly incorporating uncertainties into the model evaluation process [4].
The uncertainties are propagated through the system to obtain a quantitative estimate of
the probability of exceeding a specific loading scenario or system configuration. Although
probabilistic methods have been considered as a promising alternative for the safety assess-
ment of dams, such methods often require a large number of simulations. Moreover, in the
context of a probabilistic analysis, new information gained through laboratory tests, in situ
tests, empirical observations, etc., could update the prior knowledge assumed for different
variables in the PDFs. However, this is frequently overlooked given the costly re-evaluation
of these simulations. Innovations, such as the use of machine learning techniques [5–7], have
been proposed to overcome these drawbacks. However, such procedures can be subject to
misinterpretation if not applied correctly due to their complexity. Thus, there is a need to
develop simplified and more expeditious methods for analyzing the safety of dams within a
probabilistic framework.

To further encourage the applicability of these methods, the main objective of this
study is to develop a probabilistic-based methodology to assess the safety of dams that
allows analysis updating in light of new information, preventing the need for the re-
evaluation of the system simulations. Additionally, an efficient progressive sampling
strategy that sequentially generates sample points while progressively preserving the dis-
tributional properties of interest is used to optimize the sample size and avoid unnecessary
simulation runs. As a result, after the final number of simulation runs is established, varia-
tions in the loading conditions are considered by modifying the parameter’s cumulative
density function defining the annual probability of exceedance. In this manner, there is no
need to re-run simulations when the system’s loading parameters vary. These simulations
are then used to estimate the probability of exceeding a target monitored response for
a given loading scenario. In the same way, variance-based global sensitivity analyses
with progressive complexity are performed to identify the parameters most affecting the
dam stability, and ranges of values that satisfy the SFs provided by safety guidelines are
formulated. The proposed methodology is applied to a case study gravity dam located in
north-eastern Canada.

2. Related Works

In recent decades, the knowledge in the evaluation of natural hazards has evolved
considerably, making it necessary to reassess the stability of dams under usual, unusual,
and extreme loading. As mentioned above, methods for analyzing the structural stability of
a dam system rely on deterministic or probabilistic approaches. Deterministic analysis has
traditionally been used to assess the stability of dams [8–11]. Nevertheless, these methods
are often considered overly conservative or even unsafe in some cases because they neglect
the different sources of uncertainty and because of the use of extreme load cases with very
low probabilities of occurrence [12–14]. Thus, there is interest in moving towards more
refined methods for considering uncertainties. For these reasons, probabilistic assessment
has emerged as a useful tool in dam safety, and the results have been found to be promising
by recent studies [2,3,15–19]. However, the use of probabilistic methods for dams within a
normative framework is not well developed, but increasing scrutiny is being applied to
this field. The most recent guidelines for the design and assessment of gravity dams are
now including probabilistic notions for the assessment of these structures [4,14,20–24].

For a reliable probabilistic analysis, the emphasis must be placed on the quality of the
input parameters and in particular the uncertainties. However, probabilistic assessment,
no matter how sophisticated, can still lead to very different solutions for a given problem
because of the complex choices of random variables (RVs), characteristic values, PDFs, and
bounds, which can largely influence final results [25–27]. Consequently, the analysis is
generally not updated in light of new information due to the time-consuming re-evaluation
and the lack of flexibility in the methods regarding including modified PDFs and bounds.
Indeed, although the information contained in the probabilistic results is far-reaching, it is
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still currently difficult to carry out an in-depth study to assess the safety of dams according
to all scenarios. Accordingly, together with the probabilistic approach, the deterministic
method can be used to complement the safety assessment [28]. To this end, a preliminary
RV selection phase or sensitivity is sometimes proposed prior to probabilistic analyses.
Tornado diagrams (TDs) [29] are an example of the deterministic (or semideterministic
if the input variables are PDFs) sensitivity methods that have been widely used for the
efficient selection of leading variables [30–33]. Similarly, more refined methods, such as
analysis of variance (ANOVA) and Sobol’s method [34], have been used for assessing the
significance of each modeling parameter on the structural responses of dams [17,35,36].

3. Methodology

Probabilistic analysis identifies the uncertainties that are key for safety and attempts
to include all plausible scenarios, their likelihood and their consequences. It yields more
comprehensive estimates than deterministic analysis due to the range associated with the
input variables. However, it is undeniable that deterministic analysis, in terms of SFs, is
still the most widely used method for design and assessment in the dam industry [37].
With this in mind, the two approaches are combined in this study to provide a better
understanding of the output of a probabilistic analysis in terms of practical considerations.

The main steps of the proposed methodology are shown in Figure 1; the methodology
is divided into three stages: (i) pre-processing (steps 1–3), (ii) processing (steps 4–6), and
(iii) post-processing (steps 6–9). In the pre-processing stage, the load and resistance input
parameters that can be considered RVs and their respective PDFs are defined. Next, a
prescreening of the model parameter sensitivity is performed by generating TDs to define
the final set of RV, PDFs, and maximum and minimum bounds. Then, to optimize the
computational resources, a progressive design of experiments (DOE) strategy based on the
the progressive Latin hypercube sampling (PLHS) [38] technique is employed. Concerning
the processing stage, a numerical model of the system is developed. Subgroups of the
total number of simulations are analyzed sequentially, and the error in each iteration is
compared to a specific tolerance, which when satisfied, determines the final sample size.
Finally, in the post-processing stage, safety recommendations are formulated by evaluating
the system output, the probability of exceeding a target performance indicator conditioned
on a load combination (LC) is estimated, and ANOVA is performed to assess the global
parameter significance while Sobol’s indices are estimated to quantify their importance. In
the next sections, each of these steps is explained in detail.

1) Inputs: X1,...,XN, 
PDFs assignment

2) Model parameters
 prescreening: TD

3) DOE strategy:
 progressive LHS

4) Numerical model 
simulations

5) E< Tolerance

6) Final sample size

7) System output: safety
 formulations

8) Conditioned 
probability estimation

9)

Pre-processing Processing Post-processing

yes

no

Parameter significance:
ANOVA + Sobol's index

Figure 1. Probabilistic-based procedure.
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3.1. Sampling Strategy

An efficient sampling strategy that scales with the size of the problem and compu-
tational resources is essential for various sampling-based analyses, such as sensitivity
and uncertainty analyses. To this end, as the sample size increases, PLHS [38], which
sequentially generates sample points while progressively preserving the distributional
properties of interest (Latin hypercube properties, space-filling, etc.), is used. PLHS gen-
erates a series of smaller subsets (slices) such that (i) the first slice is a Latin hypercube,
(ii) the progressive union of slices remains a Latin hypercube and achieves maximum
stratification in any one-dimensional projection, and, as such, (iii) the entire sample set
is a Latin hypercube. To optimize the sampling size, a maximum number of permitted
simulations, Ns, is established. The total number of permitted simulations is then divided
into n slices, each containing ns = Ns/n samples. The simulations are run iteratively, one
slice at a time, and the results for each iteration are cumulatively saved. To define the final
sample size, the algorithm starts with one slice. In the next step, another slice is added, and
the convergence of the algorithm is measured by calculating the relative errors presented
in Equations (1)–(3) and comparing them to a tolerance of 1× 10−3.

Eµ−SSF =

∣∣∣∣∣∣∣∣∣∣

1−
∑
(n−1)×ns
i=1 SSFi

(n− 1)× ns

∑n×ns
i=1 SSFi

n× ns

∣∣∣∣∣∣∣∣∣∣

, (1)

Eσ−SSF =

∣∣∣∣∣∣∣∣∣∣∣∣

1−

√√√√∑
(n−1)×ns
i=1 (SSFi − µSSF(n−1))

2

(n− 2)× ns√
∑n×ns

i=1 (SSFi − µSSFn)
2

(n− 1)× ns

∣∣∣∣∣∣∣∣∣∣∣∣

, (2)

ESSF3 =

∣∣∣∣∣∣∣∣∣∣

1−
∑
(n−1)×ns
i=1 Id3,i

(n− 1)× ns

∑n×ns
i=1 Id3,i

n× ns

∣∣∣∣∣∣∣∣∣∣

. (3)

where SSF is the sliding safety factor for the normal load case, ns is the number of samples
per slice, µSSF(n−1) and µSSFn are the mean safety factors calculated with n− 1 and n slices,
respectively, and Id3 is an indicator function, where Id3,i = 1 if SFFi < 3, and Id3,i = 0
otherwise. The considered stopping conditions concern the statistics (mean and standard
deviation) of the model response in Equations (1) and (2) and the probability of presenting
a SSF lower than a given value in Equation (3). It should be noted that in Equation (3), a
threshold of 3 is used because the SFs from the usual load case are considered, as will be
explained later in Section 4.2. Usually, the convergence of the SSF probability is slower
than that of the statistical moments, such that the obtained results could be accurate for the
mean and standard deviation, but not for the SSF probability, especially for low probabilities.
Therefore, Equations (1)–(3) are used together to evaluate the convergence of the algorithm.

3.2. Sensitivity Analysis

After the selection of the initial set of model parameters that can be considered to
be RVs in the analysis, a prescreening is performed by generating TDs to determine the
final set. This semideterministic analysis is used to evaluate a broad scenario trade space
and narrow the set of options to those that are viable, given the performance, cost, and
safety constraints. Because deterministic analysis requires a relatively short computational
time, it is possible to rapidly iterate through possible scenarios at this low level of fidelity.
However, it is difficult for TDs to evaluate the effect of simultaneous variation in a large
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number of input parameters on the model output results. To this end, after the simulations,
the analysis is expanded, and ANOVA is performed to understand the global parameter
significance and to draw inferences about the effect of the joint variation of the parameters
on the target output.

3.2.1. Tornado Diagrams

TDs quantify the impact of single RV variations on the target output results. It is
also very useful tool to identify which variables are worth resource investment regarding
reducing uncertainties. A TD is composed of horizontal bars with widths given by the
sensitivity of a specific RV. These bars are sorted vertically from the most influential at
the top of the diagram, to the least sensitive at the bottom; thus, the diagram looks like a
tornado. Figure 2 presents the methodology, which can be explained as follows: (i) for each
RV, the mean value and the 5–95% confidence interval (CI) are determined; (ii) numerical
simulations are carried out considering the CI bounds of a single parameter while keeping
the remaining parameters at their mean value, i.e., for N input RV, 2N+1 analyses are
performed; (iii) the difference in the results of the two extreme values of an RV gives the
absolute value of variation. Next, the TD is constructed by sorting the parameters from the
greatest to the lowest variation.

RV CI (5-95%)

X1

X2

X3

.

.

.
XN

[X1,05-X1,95]
[X2,05-X2,95]
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 .
 .
 .
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X2,X3,...,XN

X1,X3,...,XN
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.
 .
 .
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mean output

sorting

RV at means Variation TD
mean output
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XN

.

.

.
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Figure 2. Tornado diagram (TD) methodology.

3.2.2. Variance-Based Global Sensitivity Analysis

Even though TDs are easily interpretable and visually explicit, they can consider only
variation in one parameter at a time, providing only a local sensitivity for each parameter.
The concept of using the variance as an indicator of the importance of an input parameter
is the basis for many variance-based global sensitivity analysis methods [39]. With this in
mind, to evaluate the global significance of each parameter in the structure response by
considering their joint variation, a sensitivity study using ANOVA is performed. ANOVA
includes hypothesis tests that verify the significance of varying each parameter on the
variance of the measured responses [40]. The results of the hypothesis tests are given in
terms of a p-value, and a smaller p-value indicates greater evidence that the parameter has
a strong influence on the dam response. A typical significance cut-off value of α = 0.05
is adopted here. Similarly, Sobol’s method [34], another variance-based global sensitivity
analysis, is applied because of its ability to quantify the importance of each input random
variable. Sobol’s method uses the decomposition of the variance to calculate the sensitivity
indices.

3.3. Conditional Probability of Exceedance Estimation

Safety is subjective and is a matter of addressing public concern as specified in safety
guidelines or regulations [15]. For the case of a deterministic analysis, this implies equating
the SF to a formalized target criterion tolerated by the profession and society. With the
move to a dam safety probabilistic-based approach, there has been a concomitant focus on
estimating the probability of the failure of dams. In a probabilistic analysis, the decision of
whether a dam is considered to be safe is made by comparing the calculated probability of
failure with a stipulated tolerated probability of failure. The majority of risk guidelines
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relate to the total probability of failure, which is difficult to interpret in practice [12].
With this in mind, the two approaches are combined in this study, and the probability of
presenting a SF lower than the minimum value prescribed by safety guidelines is estimated
to provide a better understanding of the probabilistic analysis output in terms of practical
considerations. This probability, which is conditioned on a determined LC, is formulated
according to Equation (4) from a frequentist point of view.

P f (SF < SFi | LC) =
∑n

j=1 Samples(SF ≤ SFi | LC)

∑n
j=1 Samples(LC)

, (4)

where P f , the probability of exceeding a monitored response, is calculated as the number
of samples exceeding a target SF (SFi) for a specific LC over the total number of samples
generated for that LC.

4. Case Study
4.1. Numerical Model

The present study is focused on a case study of a concrete gravity dam in Quebec,
Canada. It is the largest gravity dam in the province, with 19 unkeyed monoliths, a maxi-
mum crest height of 78 m, and a crest length of 300 m (Figure 3a). The tallest monolith of
the dam, with lift joints of 6 m, is selected as representative and modeled with the computer
software CADAM3D [41] (Figure 3b), which performs stability analysis on gravity dams
using the gravity method in accordance with the Canadian state-of-practice [9,11]. The
validation of the numerical model was based on the fundamental period of the system
and on global damping. By modifying the properties of the dam and of the foundation
materials, the fundamental period and total damping of the system were 0.271 s and 1.05 %
respectively, which matches the results from in situ forced vibration tests [42]. Additionally,
to perform all the simulations required for a probabilistic analysis, a script is created with
MATLAB to automate the model runs. Only one loading case was analyzed; this case
includes the self-weight of the block, the hydrostatic load exerted by the reservoir on the
block, the uplift pressures at the concrete-foundation contact and the ice load per unit
length. The uplift pressure distribution is defined according to the United States Army
Corps of Engineers (USACE) [11]. A nonlinear analysis that allows to consider the crack
propagation along the lift joints is used to analyze the system response, where if the base
crack extends beyond the drain, the full uplift pressure is considered in the crack.

4.6 m

6
5
.2
m

13
m

8
10

(a) (b)

EL. 231.65 m Crest

Base

52.1	m9.4	m
4.5	m

3
	m

Figure 3. Case study dam: (a) cross-section and (b) CADAM3D numerical model of the tallest
monolith.
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4.2. Performance Indicators

The overall stability of concrete retaining structures is verified by imposing perfor-
mance criteria on predefined indicators to ensure that a sufficient margin of safety against
failure exists for each of the failure mechanisms considered for the body of the system. The
performance indicators used herein are (i) the sliding safety factor (SFF), (ii) the overturning
safety factor (OSF), and (iii) the uplift safety factor (USF) and the position of the resulting
force (PR). Table 1 shows the stability criteria for concrete gravity structures according to
the Federal Energy Regulatory Commission (FERC) [43] and Canadian Dam Association
(CDA) [9] guidelines. These guidelines propose SFs considering the level of knowledge in
the strength parameters, where the required SFs are larger if no material tests are available.
The LCs fall into three broad categories: normal, unusual, and extreme. These categories
are related to a probability of exceedance for a period of time and at an acceptable level of
safety. In the context of this study, only the conditions associated with water levels and
ice loads are considered: normal operating conditions, unusual ice, or blocked drains and
extreme safety floods.

Table 1. Stability criteria.

LC
SSF

OSF USF PR
No Test † Test † Residual ‡

Usual 3 2 1.5 ≥ 1 1.2 1/3 median
Unusual 2 1.5 1.3 ≥ 1 1.1 1/2 median
Extreme 1.3 1.1 1.1 ≥ 1 1.1 within base

† Friction and cohesion, ‡ Friction only.

4.3. Modeling Parameters and Screening Study

Each parameter in the analysis is defined either as a fixed value or as a RV. associated
with a PDF. The preliminary set of considered parameters are selected taking into account
the input parameters in the CADAM3D numerical model and the RVs considered in
probabilistic analysis in the literature [15,19,22]. Table 2 presents the parameters that
are considered as RVs in the numerical analysis of the dam response and for which the
uncertainty or likelihood of occurrence is formally included. All the remaining input
parameters are held constant and represented by their best estimate values. The probability
distributions are defined using historical data from the case study dam and, when not
available, empirical data from similar dams [8,44,45]. Based on literature results [46] and
the dam owner’s expert judgement, it is assumed for the sampling and posterior analysis
that 65 % of the time, the concrete-rock contact is not bonded (apparent cohesion), while the
remaining 35 % of time, a special treatment is present that ensures the bond (real cohesion).
In the same manner, it is considered that the lift joints (concrete-concrete contact) are always
bonded. Note that Table 2 shows that some of the model parameters are correlated with
and/or conditional on each other provided that the aforementioned assumptions are made.
For the bonded case, the base peak cohesion is taken as twice the base tensile strength,
BCPR = 2×BRT, according to the Griffith criterion [47], while the base minimum peak
compressive stress is null; hence, BMCP= 0. Conversely, for the unbounded case, the
base tensile strength is null, i.e., BRT= 0, and the BMCP is normally distributed. Similarly,
given that the base residual internal friction angle is always lower than or equal to the
base peak friction angle, this parameter is considered equal to the peak friction angle
minus a variation normally distributed. A uniform distribution is used for most of the
parameters other than the minimum peak compressive stress so that more general cases
can be considered in the analysis, as explained in the following sections.
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Table 2. Uncertain parameters.

Parameter Designation PDF Distribution Parameters

Reservoir elevation (m) RN Uniform L = 225 U = 231
Ice load (kN/m) GLN Uniform L = 50 U = 200

Drain efficiency (%) DEI Uniform L = 0 U = 67
Base peak friction angle (◦) BFP Uniform L = 42 U = 55

Base residual friction angle (◦) BFR Normal BFP−N (5, 1)
Base tensile strength (kPa) BRT Uniform L = 150 U = 1500

Base min. peak compressive stress (kPa) BMCP Normal µ = 350 σ = 350
Base peak cohesion - Real (kPa) BCPR Uniform L = 300 U = 3000

Base peak cohesion - Apparent (kPa) BCPA Uniform L = 0 U = 1000
Joint tensile strength (kPa) JRT Uniform L = 1000 U = 3000
Joint peak friction angle (◦) JFP Uniform L = 45 U = 55
Joint peak cohesion (kPa) JCP Uniform L = 400 U = 700

The base parameters refer to the concrete-rock contact. The joint parameters refer to the concrete-concrete contact.

A screening study based on the TDs to assess the effect of each modeling parameter
on the response of the dam is displayed in Figure 4. The reservoir elevation (RN), drain
efficiency (DEI), and ice load (GLN) are some of the most influential parameters common
to almost every performance indicator. However, note that the parameters most affecting
a given response vary with respect to the considered lift joint, as shown in Figure 4a–d
and Figure 4b,c. For this reason, Figure 5 presents the variation in the SSF with respect
to loading and material property parameters for each joint. The effects of the joint peak
cohesion (JCP) and RN are more significant for the upper lift joints and, as expected, this is
even more evident for the GLN, whereas the joint peak friction angle (JFP) remains almost
constant.

(a)

(d)

(b)

(e)

(c)

(f)

Figure 4. TD: (a) Base joint—sliding safety factor (SSF), (b) Base joint—position of the resulting force (PR), (c) Base
joint—uplift safety factor (USF), (d) Crest joint—SSF, (e) Crest joint—PR, and (f) Base joint—overturning safety factor (OSF).
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(a) (b)

(c) (d)

Figure 5. Joint TD for the SSF: (a) reservoir elevation (RN), (b) joint peak cohesion (JCP), (c) ice load
(GLN), and (d) peak friction angle (JFP).

4.4. Load Combinations

In the structural safety evaluation of dams, unusual and extreme loads need particular
attention, as there is more uncertainty because of low event accuracy. The evaluation has to
consider two aspects: (i) load uncertainty and (ii) event frequency [15]. Table 3 displays the
event frequency associated with each LC according to the dam owners’ internal regulations
and based on the USACE guidelines [48].

Table 3. Probabilities associated with load combinations (LCs).

Load Combination (LC) Annual Probability (Pr) Return Period (RP)

Usual Pr > 0.5 RP< 2 years
Unusual 0.0069 ≤ Pr ≤ 0.5 2 ≤ RP ≤ 145 years
Extreme 10−4 ≤ Pr < 0.0069 145 < RP ≤ 104 years

Taking into account the ice and reservoir load, Figure 6 presents the cumulative
density function (CDF) associated with each load for determining the annual probability
of exceedance. The red data dots are obtained based on the monitored reservoir values
of the case study dam and the ice load traditionally used for each LC. To these points, a
log-normal distribution is fitted in each case (LN1). However, to better consider the load
uncertainty and given that we are fitting a CDF with only 3 points, two other log-normal
distributions are considered by keeping the same mean but doubling the standard deviation
and using a uniform distribution with the same mean and an upper bound equal to the
extreme condition. Table 4 provides the parameters of these distributions.

Table 4. Loading parameter distributions.

CDF
Distribution Parameters

RN GLN DEI

LN1 µln = 5.34 σln = 0.001 µln = 4.60 σln = 0.10 – –
LN2 µln = 5.34 σln = 0.002 µln = 4.60 σln = 0.20 – –
LN3 µln = 5.34 σln = 0.003 µln = 4.60 σln = 0.30 – –
UF1 L= 228.64 U= 230.10 L= 1.00 U= 200 L= 0.0 U= 0.67

39



Water 2021, 13, 855

(b)

(a)

Figure 6. Annual probability of exceedance: (a) RN and (b) GLN.

Figure 6a,b are combined to define the LCs by generating joint cumulative distribution
functions, as shown in Table 5. Then, the joint cumulative distributions are intersected with
horizontal constant probability planes equal to the annual probabilities defined in Table 3.
Finally, the intersection is projected onto the XY plane and the regions corresponding to the
usual, unusual, and extreme LCs are established, as shown in Figure 7. Figure 7a–d present
these regions considering the independence between RN and GLN, whereas Figure 7e
considers a negative correlation between RN and GLN, which provides a more realistic
view of the case study dam’s reservoir management. In the same manner, given that,
for some performance indicators, DEI is more critical than GLN (Figure 4b,c,f), Figure 7f
defines the LC regions as a function of RN and DEI. Likewise, the samples displayed
in Figure 7 are obtained with an LHS strategy considering that the samples are drawn
from the target distributions defined in Table 5, which are the same distributions as those
used for defining the LC regions. Notably, the samples are not evenly distributed in
the LC regions, which implies that there is not a sufficient number of samples for the
probabilistic analysis for each LC. To address these two main drawbacks, i.e., to upgrade
the LC definitions and/or different LCs for different performance indicators and a more
regular sampling space without the re-evaluation of the simulations, the methodology
proposed in Figure 8 is used. First, PLHS is used to generate samples to be simulated
with the numerical model considering only the upper and lower bounds of the possible
range of values of the parameters defining the LC. Then, in Step 2, the joint CDF is built
considering the distributions assigned to each of these parameters, and the joint cumulative
probability is calculated for the samples drawn in Step 1 to ensure that they follow the
target distributions. Next, in Step 3, the LC regions are defined by projecting on the XY
plane the intersection curve of the joint CDF with horizontal planes corresponding to the
annual probability of exceedance (Table 3). Finally, in Step 4, only the samples in Step 1 that
fall in each LC region, i.e., the samples in which joint cumulative probability correspond to
the prescribed annual probabilities of exceedance, are considered for the post-processing
stage. Figure 9 presents the final samples per load combination for D5.
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Figure 7. LC regions for RN-GLN: (a) D1, (b) D2, (c) D3, (d) D4, (e) D5, and (f) D6.

Table 5. Considered LC distributions.

LC Distribution Parameter Description

D1 RN-GLN LN1 ⊥⊥ LN1
D2 RN-GLN LN2 ⊥⊥ LN2
D3 RN-GLN LN3 ⊥⊥ LN3
D4 RN-GLN UF1 ⊥⊥ UF1
D5 RN-GLN LN1 | LN1 with ρRN-GLN = −0.7 †

D6 RN-DEI LN1 ⊥⊥ UF1
† Estimated from expert judgement and the historical reservoir management of the case study dam.
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Figure 8. Procedure for obtaining samples per LC.
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/

(b)

(a)

Figure 9. Samples per LC for D5: (a) cumulative density function, and (b) XY projection.

5. Results and Discussion
5.1. Sample Size

In the context of this study, and as a trade-off between the available computational
budget and time, a maximum number of 104 simulations is established. The total number
of permitted simulations is divided into 100 slices, containing 100 samples each. The
PLHS technique [38] is implemented via the VARS-Tool software package [49], which is
a MATLAB Toolbox. Figure 10 presents the results of Equations (1)–(3) for each slice and
for each joint. As seen from Figure 10, to obtain Eσ−SSF and ESSF3 within the specified
tolerance, n = 50 slices are required, while, for Eµ−SSF ≤ 1× 10−3, n = 60 are necessary.
Even though the number of slices can be automatically determined by the algorithm, in
this study, the number of slices is set to n = 55 given that with n = 50 the stopping condition
in Equations (2) and (3) is already met. Ultimately, Ns = 100× 55 samples are considered
for the probabilistic analysis.

5.2. Effect of Model Demand PDF Variation in the Analysis

To assess the effect of the model demand parameter definition in the probabilistic
analysis, the probability of exceeding a target SF conditioned on the LC is estimated.
This probability is calculated according to Equation (4) considering the load combination
distributions presented in Table 5. Figure 11 displays the probability of exceeding an SSF
prescribed by the CDA guidelines (Table 1) given an usual, unusual, and extreme LCs for
each lift joint. Note that, for the usual LC, the last 5 bottom lift joints are affected, while, for
the unusual and extreme LCs, only the concrete-rock (base) joint is affected. This can be
explained considering the SSF associated to the load case. Given that the concrete-concrete
joints in general presented 2 < SSF < 3, for a less critical load case, i.e., a higher target
safety factor, the probability of presenting a safety factor lower than the threshold for the
usual load case is higher, thus affecting more joints. For the unusual and extreme LCs, the
probability is even lower due to the considered target SSF, and only the base joint which
present different material properties than the concrete-concrete joints is affected. It can be
concluded that, for unusual and extreme load cases, only the base joint is critical, while, for
usual loading conditions, attention must be also paid to the last 5 bottom joints. Moreover,
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it is observed that using distributions that more realistically represent the LCs, such as
D5, which considers that during the summer, the reservoir is high, and the ice load is low,
and vice versa, provide less conservative probabilities of exceedance. Only the functions
corresponding to the sliding stability criteria are presented given that the numerical model
simulations showed that OSF and USF are always respected, highlighting the adequate
performance of the case-study dam.
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Figure 10. Progressive Latin hypercube sampling (PLHS) slice iterations: (a) Eµ−SSF, (b) Eσ−SSF, and
(c) ESSF3.
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Figure 11. Conditional probability functions: (a) usual, (b) unusual, and (c) extreme.

5.3. Model Parameter Recommendations for Adequate Performance
5.3.1. Influence of Model Parameters

The significance of each modeling parameter in Table 2 on the structural response of
the dam is also assessed by a screening study using ANOVA. For each response monitored,
a multiway ANOVA is conducted using MATLAB. The results of this analysis are shown in
Table 6, where the p-values < 0.05 indicate statistically significant parameters that should
be treated with special attention. It should be mentioned that, for a pure sensitivity analysis,
as is the case here, using uniform distributions is acceptable, but not for a reliability analysis
since it is hard to find a physical parameter (e.g., the rock/concrete strength parameters)
that follows a uniform distribution. The results are presented for the base and crest lift
joints, which are considered as representative of the system.

Overall, the results reveal that all the parameters have a statistically significant effect
on at least one of the critical dam responses. Additionally, the parameters used to define
the LCs, such as RN, GLN, and DEI, are important for every SF at the base and/or the
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crest. These results can be used to reduce the number of parameters considered in the
probabilistic analysis; however, given that nearly all the parameters are identified as
significant for at least one of the response quantities of interest, this approach is not used.
Beyond this, however, the results of the screening study are useful for better understanding
the effect of the joint parameter variations on the dam’s response and to validate the results
of more simplified methods, such as the TD.

Table 6. p-values from ANOVA: summarizing the significant parameters for the base and neck sliding of the dam.

Model
Parameter

SSF † SSFR ‡ USF OSF PR

Base Crest Base Crest Base Crest Base Crest Base Crest

RN <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05
GLN <0.05 <0.05 <0.05 <0.05 0.657 0.233 0.070 <0.05 <0.05 <0.05
DEI <0.05 – <0.05 – <0.05 – <0.05 – <0.05 –
BRT <0.05 – 0.087 – 0.215 – 0.191 – 0.151 –

BMCP <0.05 – <0.05 – <0.05 – 0.104 – <0.05 –
BCP <0.05 – 0.167 – 0.615 – 0.538 – 0.428 –
BFP <0.05 – 0.913 – 0.970 – 0.915 – 0.444 –
BRF 0.532 – <0.05 – 0.917 – 0.964 – 0.339 –
JRT – 0.206 – 0.096 – <0.05 – <0.05 – 0.060
JCP – <0.05 – 0.093 – <0.05 – <0.05 – 0.060
JPF – <0.05 – 0.251 – 0.190 – 0.231 – 0.315

† Friction and cohesion, ‡ Friction only.

In the same way as for the multiway ANOVA, for each response monitored, Sobol’s
indices were calculated using UQLab [50] through MATLAB. Total sensitivity indices,
which measure the main effects of a given parameter and all the interactions (of any order)
involving that parameter, as well as the first order indices (no interaction), were estimated
as shown in Figure 12. It is observed from Figure 12a that, for the concrete-rock joint, the
parameters which had the greatest effect on the monitored response are RN, DEI, BFP,
and BFR. Particularly, the most important parameters for PR are RN and DEI, DEI and
BFR for SSFR, BCP for SSF, and DEI for OSF and USF. On the contrary, it is observed
from Figure 12b that, for the concrete-concrete joint, the most important parameter is RN,
followed by GLN and JCP. In general, the parameters affecting the most PR, OSF, and SSFR
are RN and GLN, while RN, GLN, and JCP have the most influence on SSF. Finally, only
RN affects USF.
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Figure 12. Sobol indices: (a) Base and (b) Crest.

5.3.2. Stability Analysis Results

The final system output, together with the global sensitivity analysis, can also be used
to assess the dam performance through the formulation of safety recommendations. To this
end, the simulation results for the base SSF and PR at the base and at the crest are plotted
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against the two most influential parameters according to Figures 4 and 12. The simulation
results are presented in Figure 13a–c, where it can be seen that the response of interest can
be approximated well by a surface defined with only two model parameters, as shown in
Table 7.

Table 7. Parametric surface goodness-of-fits.

Surface R2 RMSE

SSF (BCP, BFP) 0.963 0.3613
PR (RN, DEI) 0.901 1.450
PR (RN, GLN) 0.999 0.101

Finally, ranges of values that meet the SFs provided by safety guidelines are formulated
by intersecting the parametric surfaces with horizontal planes at the target SFs specified
in Table 1. Figure 13d presents the BCP-BFP zones that result in base SSF values lower
than those prescribed by the CDA [9], while Figure 13e,f present the RN-DEI and RN-GLN
zones that provide a resultant within the 1/3 and 1/2 median of the base for the base and
the crest lift joints, respectively.

(a) (b) (c)

(d) (e) (f)

Figure 13. Stability analysis output: (a) SSF-Base, (b) PR-Base, (c) PR-Crest, (d) BCP-BFP regions,
(e) RN-drain efficiency (DEI) regions and (f) RN-GLN regions.

6. Conclusions

Uncertainties prevail in the safety assessment of dams, particularly in the identifi-
cation of failure modes, loading conditions and model parameter estimations. Hence,
it is important to consider various sources of uncertainties for the safety assessment of
dams, and the means to do so is through a probabilistic analysis. The main goal of this
study was to develop a probabilistic-based methodology to sufficiently assess the safety
of dams with a flexible sampling strategy so that new data can be easily and efficiently
incorporated in the analysis without the re-evaluation of the system simulations. Moreover,
a prescreening of the model parameter sensitivity was performed with the generation of
TDs, which was later validated with variance-based global sensitivity analysis methods,
such as ANOVA and Sobol’s indices. Finally, safety recommendations were formulated by
evaluating the system output, and the probability of the target SF exceeding the guidelines
given a determined LC was estimated.

The proposed procedure is more robust, computationally efficient, and more easily
interpretable than conventional methods while accounting for uncertainties in the resistance
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and loading parameters, which would otherwise be neglected. The perspective taken is
that dam safety assessment is a tool for providing insights that can strengthen both the
engineering and decision aspects of dam safety management. As such, this study will
allow professionals in the dam industry and dam owners to expedite the safety assessment
of gravity dams and to identify the parameter uncertainties affecting the dam response
the most so that economic resources can be invested in the exhaustive study of these
parameters.
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Abstract: Computational modeling plays a significant role in the design of rockfill dams. Various
constitutive soil parameters are used to design such models, which often involve high uncertainties
due to the complex structure of rockfill dams comprising various zones of different soil parameters.
This study performs an uncertainty analysis and a global sensitivity analysis to assess the effect
of constitutive soil parameters on the behavior of a rockfill dam. A Finite Element code (Plaxis)
is utilized for the structure analysis. A database of the computed displacements at inclinometers
installed in the dam is generated and compared to in situ measurements. Surrogate models are
significant tools for approximating the relationship between input soil parameters and displacements
and thereby reducing the computational costs of parametric studies. Polynomial chaos expansion
and deep neural networks are used to build surrogate models to compute the Sobol indices required
to identify the impact of soil parameters on dam behavior.

Keywords: sensitivity analysis; polynomial chaos expansion; uncertainty; deep neural networks;
rockfill dams

1. Introduction

To meet the new challenges faced by geotechnical engineers, the use of innovative
computer-based models has been growing exponentially. The complex structures and
uncertainties that comprise the design of rockfill dams are a major challenge for predicting
dam behavior [1,2]. Numerical methods, computational statistics and machine learning
play a significant role in building improved, reliable rockfill dam models, helping to predict
their behavior and reduce the cost of construction. The use of sensitivity analysis has
attracted the interest of engineers seeking to understand the complex behavior associated
with soil parameters. The main rationale for a sensitivity analysis using Sobol indices is
to identify the most significant parameters in the variability of the output response [3].
Sensitivity analysis methods are usually categorized into local and global sensitivity anal-
yses [4]. Local sensitivity analysis quantifies the local impact of an input parameter on
a model, whereas global sensitivity analysis is focused on the uncertainty in the output
due to the uncertainty in the input [5]. Numerous techniques have been developed for
obtaining Sobol indices through variants of the Monte Carlo sampling technique [6] and
variance-based global sensitivity analysis are performed to identify the parameters that
most affect the dam stability [7], although these techniques for sensitivity analysis often
require a large number of simulations [8]. The surrogate-based methods are the type more
widely used, due to their efficiency and cost savings [9–13]. Polynomial chaos expansion
based surrogate models have recently been used for the sensitivity analysis of dams [14].

This work evaluates surrogate-based and variance-based global sensitivity analyses
in the design of a rockfill dam. Finite element method models (FEM) with appropriate
soil parameters are often utilized for dam modeling and design [15–17]. Various consti-
tutive models exist, each involving a different set of parameters, tested on and used for
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several geotechnical problems [18]. In this study, a two-dimensional plane–strain finite
element-based model is used in Plaxis to compute the displacements and stresses for a
vertical cross-section of the dam, which employs a simple constitutive soil model, the Mohr–
Coulomb (MC) model [19]. The soil parameters cohesion(C), specific weight (ρ), shear
modulus (Gre f ), Poisson coefficient (ν) and friction angle (φ) are the input parameters for
the MC model [20]. Moreover, the Mohr–Coulomb constitutive model is widely used
in geotechnical engineering practice due to its simple nature, and fewer parameters are
required as compared to other more complex constitutive models such as the Hardening
Soil model (HS) [21]. The Sobol sampling method is applied to generate the samples of soil
parameters as the input [22,23]. Subsequently, the parameters are assigned to the numerical
model and the displacements are calculated at the positions of each of the inclinometers.
Once the database of the inputs and outputs has been produced, the dam response can be
estimated with respect to the uncertainty associated with the input parameters. The poly-
nomial chaos expansion (PCE) and deep neural network (DNN) techniques [24–27] are
used to build the surrogate models to evaluate the Sobol indices. The surrogate models are
trained by utilizing an error function that measures the difference between the computed
and measured displacements on the inclinometers.

2. Methodology

The methodology is comprised of two main phases: surrogate model approximation
and sensitivity–uncertainty analysis.

2.1. Surrogate Models

In the current challenging and technically competitive environment, surrogate models
can increase efficiency and reduce the computational costs of a problem or design process.
Several surrogate-modeling techniques have been applied to uncertainty analysis, sensi-
tivity analysis, and optimization. Polynomial chaos, a probabilistic approach, and deep
neural networks are used in this study.

2.1.1. Polynomial Chaos Expansion (PCE)

Consider a physical model represented by a function y = M(x), where x ∈ <n, y ∈ <m,
and n is the number of input quantities and m the number of outputs. For simplicity,
the m = 1 case will be considered in the following description. The uncertainties in the
input variables and their propagation to the output lead to the description of x and y as
random variables X = (X1, X2, X3, ..., Xn) and Y, respectively [28–30]. For a specific value
of x, the corresponding response (a realization) y is actually computed by executing a
deterministic numerical solver for the non-intrusive variant of PCE. The joint probability
density function (PDF) of the random vector X is denoted by ρx. Assuming that the
input random variables Xi are independent, then ρx is a multiplication of the marginal
probabilities, ρx(X) = ∏n

i=1 ρi(Xi). A polynomial Chaos Expansion approximates the
response Y as a linear combination of orthonormal polynomials ϕα(X):

Ȳ(X) =
NP

∑
α=1

bα ϕα(X), (1)

where bα are the expansion coefficients forming the vector b = (b1, b2, b3, ..., bNP)
T . In a full

PCE, the number of expansion factors NP depends on the polynomial order p and the num-
ber of random input parameters n, and is given by NP = (n+p)!

p! n! . The multivariate basis of
polynomials ϕα(X) can be constructed as a tensor product of univariate orthonormal poly-
nomials ϕpα

i
(X), that is, ϕα(X) = ∏n

i=1 ϕpα
i
(Xi), where pα

i (i = 1, ..., n) is a multi-index vec-
tor. The optimal choice of the univariate polynomial basis function is closely related to the
probability density functions ρi(Xi) [29]. For instance, Legendre polynomials serve as an op-
timal basis function for uniform distributions. The polynomial chaos expansion coefficients
bα can be computed in a non-intrusive and affordable way using a regression approach.
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A dataset D is composed of N input vectors XD = (x(1)D , x(2)D , ..., x(N)
D )T sampled from the

PDF ρx, and their corresponding responses are put in a vector YD = (y(1)D , y(2)D , ..., y(N)
D )

T
,

with y(i)D = M(x(i)D ). The expansion coefficients with a regularization term can be obtained

by minimizing the error ∑N
i=1(y

(i)
D − Ȳ(x(i)D ))2 + λPbTb. Defining Φ as the design matrix

whose components are ϕj(x(i)D )(i = 1, ..., N; j = 1, ..., NP), the expansion coefficients vector
is then given as the solution of the ordinary least-squares system:

b = (ΦTΦ + λP I)−1ΦTYD, (2)

where λP is a regularization parameter and I is the identity matrix. The number of sample
points is defined as N = γ NP, and γ ≥ 1 is an oversampling parameter used to control
the accuracy of the PCE [31,32]. The sample input vectors can be generated using effi-
cient sampling algorithms such as the Latin hypercube sampling algorithm (LHS) or the
Sobol scheme [22,23,33]. Once the expansion coefficients are computed, the polynomial
expansion defined in Equation (1) can be used to predict the approximate response for any
input variable (within the learning domain). For instance, the mean and the variance of the
response can be computed using the basis function orthonormality property [32]. Their
expressions are given by:

µD =
∫

ȲρxdX =
∫

(
NP

∑
α=1

bα ϕα(X))ρxdX = b1, (3)

and

σ2
D =

∫
(Ȳ− µD)

2ρxdX =
NP

∑
α=2

b2
α. (4)

Remark 1. The input variables are assumed to be independent in the above approach. However,
it is possible to use the Rosenblatt transformation [34] to formulate the problem as a function of
auxiliary independent variables.

2.1.2. Deep Neural Networks

Deep neural networks (DNN) are widely considered to be a powerful and general
numerical approach to building a nonlinear mapping between a set of inputs (features)
and their corresponding outputs (labels or targets). Deep neural networks are well known
in data science, with various applications in science and engineering. In the PCE approach,
the surrogate model is comprised of linear combinations of fixed basis functions. Such
models have useful practical applications, but they may be limited by the curse of dimen-
sionality for large datasets. It should be mentioned that much effort has been invested
in reducing the severity of the curse of dimensionality by using sparse expansions [35].
Furthermore, in order to apply such models to large-scale problems, the basis functions
must be adapted to the data. There is a large body of literature on deep networks [25–27],
and a brief description is given next. Deep neural networks use parametric forms for
basis functions, in which parameter values are adapted during training. Moreover, with
respect to these parameters, the model is nonlinear as it uses nonlinear activation functions.
Figure 1 illustrates a DNN with one hidden layer. The input data are mapped to the hidden
layer (1) to compute

h(1)j = f (
n

∑
i=1

W(1)
ji xi + a(1)j ), (5)
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which are then fed to the output layer (o) to compute the response

yk = g(∑
j=1

W(0)
kj h(1)j + a(0)k ), (6)

where f and g are activation functions, W(1)
ji , W(0)

kj are the weight parameters and a(1)j , a(0)k
are the bias parameters.

Figure 1. One-layer neural network.

The number of neurons in the input layer is the number of input features n, and m is
the dimension of the neural network response vector YNN . The number of hidden layers in a
deep neural network and the number of neurons in each hidden layer are hyperparameters,
which are optimized by experimentation guided by monitoring validation and test errors.
To determine the weights and bias parameters, the network is trained on the dataset by
minimizing the loss (error) function. As described earlier, a dataset D is composed of
N input vectors XD = (x(1)D , x(2)D , ..., x(N)

D )T , which are sampled from the PDF, and of the

corresponding targets, which are put in a vector YD = (y(1)D , y(2)D , ..., y(N)
D )

T
with y(i)D =

M(x(i)D ). In regression problems, the mean square error (MSE), also called the loss function,
between the model outputs and the labels (targets), is used along with a regularization term:

J =
1
N

N

∑
i=1

{
1
2

m

∑
k=1

[
y(i)k − y(i)D,k

]2
}
+ λ ∑

l,α,β
(W(l)

αβ )
2, (7)

where λ is a regularization hyperparameter. An iterative approach based on the back-
propagation algorithm is used to minimize the loss function. The activation function f
is usually the sigmoid or the rectified linear unit, while g is the identity function for our
regression problem. An example of a deep network is presented in Figure 2, where five
hidden layers are used; the input layer has n = 5 input parameters, and the output layer
has m = 64 responses (YNN = (y1, y2, ..., y64)

T).
It can be shown that minimizing the error function ED in Equation (8) is equivalent

to minimizing the negative log of the likelihood function, under an assumed Gaussian
distribution noise in the targets, with an assumed constant variance σ2

D.

ED =
1
N

N

∑
i=1

{
1
2

m

∑
k=1

[
y(i)k − y(i)D,k

]2
}

=
1

2N

N

∑
i=1

(YD −YNN)
2. (8)
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Figure 2. Five-layer Deep neural network.

Moreover, maximizing the log-likelihood with respect to the noise variance gives
the solution σ2

D,ML = 1
N ∑N

i=1(YD − YNN)
2. Therefore, the prediction of the network for

a given input parameter vector X is given by a Gaussian probability distribution with a
mean Ȳ(X) = YNN and a variance σ2

D,ML, which represents the noise in the data. There
are many public domain implementations of (standard) deep neural networks, such as the
TensorFlow library [36]. In this work, the Matlab deep learning neural toolbox is used [37].

2.1.3. Ensemble of Models

In machine learning, ensembling is a technique used to improve the predictive perfor-
mance and reduce the generalization error by training several models separately and subse-
quently combining their solutions [24–27]. The idea here is that the ensemble (i.e., averaged
solution) will perform at least as well as any of its members. Given a dataset, different
neural network solutions can be obtained by varying the numbers of layers, the number of
neurons for each layer, the training algorithm, the hyperparameters, and so forth. A simple
and efficient approach is to use several random initializations of the weights. This option
has proven to be efficient enough to generate an ensemble with partially independent mem-
bers [38]. Given a mixture of K trained neural networks, each member outputs a solution
with a mean Y(k)

NN and a variance σ
(k)
D,ML, an averaged single normal mean distribution can

be defined with a mean Ȳ(X) = Yens
NN , where:

Yens
NN =

1
K

K

∑
k=1

Y(k)
NN (9)

and a variance given by:

σ2
ens =

1
K

K

∑
k=1

{
(σ

(k)
D,ML)

2 + (Y(k)
NN)

2
}
− (Yens

NN)
2. (10)

K is typically taken between five and 12 (in the following numerical results, it is as-
sumed to be equal to ten). Therefore, the numerical prediction of the network is represented
by a Gaussian with the mean Ȳ(X) and the variance σ2

ens, which represents uncertainties in
both the data and in the weights.

55



Water 2021, 13, 1830

2.2. Global Sensitivity Analysis

Sensitivity analysis provides a means of determining the effects of variations of input
parameters on the outputs of a model. If a small change in input parameters results in a
relatively significant difference in the output, then the parameter is considered significant
for the model. In a global sensitivity analysis, all the inputs are varied simultaneously over
their range, and are usually considered independent. The fundamental steps constituting
the global sensitivity analysis technique are: (i) specification of the computational model;
(ii) determination of relevant inputs and their bounds; (iii) input sample generation by a
sampling design method; (iv) evaluation utilizing the generated input parameters; and
(v) uncertainty analysis and calculation of the relative importance of each input through
a sensitivity estimator. For more mathematical details, see [39] and references therein.
The code described in [39] is also used for the present case study.

3. Case Study: Application to Romaine-2 Dam

A real rockfill dam was selected for a case study in order to illustrate the application
of the surrogate modeling methodology for a global sensitivity analysis and an uncertainty
analysis. Figure 3a illustrates a 2D cross-section of the Romaine-2 dam built in Quebec
(Canada) [40,41]. The dam is 112 m high, and has an asphalt core and is grouted on a
rock foundation. The asphalt core is surrounded by crushed stones having a maximum
size of 80 mm, which act as supports. The transition zone (N) lies next to the support
region (M), composed of crushed stones having a maximum size of 200 mm. Moreover,
the particles with a maximum size of 600 mm are used in the inner shell zone (O) and
in the outer region (P), composed of rocks with a maximum size of 1200 mm. Two
vertical inclinometers named INV1 and INV2 are installed at two different positions
(see Figure 3a) to measure the vertical displacements, considered the measured data in
this study. Using the plane strain hypothesis, a finite element of the dam structure was
built using the commercial code Plaxis [42]. A mesh of (2187) triangular elements with
15 nodes each is presented in Figure 3b, where the different soil sub-domains are meshed
accordingly, and more refinement is used around the asphalt core. A mesh convergence
study [43] showed that the mesh is fine enough. To simplify the study, the Mohr–Coulomb
(MC) constitutive law was used, given that the dam was heavily compacted during
construction [40]. Indeed, a detailed numerical study [43] showed that the discrepancies
between the MC results and those obtained with the more sophisticated Hardening Soil
model [21] for this rockfill dam are not significant. A dataset D was built using Sobol’s
sampling algorithm to generate N sets of n = 5 physical parameters related to the sub-
domain (P). The parameters include the cohesion (C), specific weight (ρ), shear modulus
(Gre f ), Poisson coefficient (ν) and the friction angle (φ). For a sample (i), the input vector

is then x(i)D = (C(i), ρ(i), G(i)
re f , ν(i), φ(i))T . The parameters are supposed to follow a uniform

distribution. Several types of distributions could be utilized if more data are available
to generate the sample set of soil parameters. The dilatancy angle is set relative to the
friction angle as ψ = φ− 30 (in degrees). Only the parameter variations in zone (P) are
considered in this study, as this domain covers the maximum portion of the dam. Ideally,
all sub-domain parameters could be included, but for the sake of illustration, only zone
(P) is considered, as it is the most significant. The displacement fields corresponding to N
sets of inputs x(i)D are obtained by running Plaxis [42]. The displacements on a number of

points (32 in this case) on each inclinometer are extracted, yielding a response vector Y(i)
D

of dimension m = 64.
Table 1 presents the parameter interval of variations of zone P and the parameter

values of zones N, O and M. The parameter estimates in Table 1 are based on a previous
study conducted in [40,43].
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Table 1. Soil parameter values or intervals of variations for zones P, N, O and M.

Soil Parameters Units P N O M

Lower Bound Upper Bound

Cohesion (C) KNm−2 0 10−3 0 0 0
Specific weights (ρ) KNm−3 21.375 23.625 23.7 22.5 24.5
Shear modulus (Gre f ) KNm−2 25,000 35,000 64,000 45,000 110,000
Poisson coefficient (ν) −− 0.234 0.3465 0.33 0.22 0.33
Friction angle (φ) degree 40.85 45.15 47 45 47

(a) Cross-section of the Romaine-2 dam in Plaxis. Different zones of the dam are highlighted in
alphabets. The vertical inclinometers are denoted by INV1 and INV2.

(b) Mesh used for the computational domain.
Figure 3. Romaine-2 dam.

3.1. Sample Size Convergence Study

The Sobol sampling technique [44] was used to generate the samples by varying their
size N (N = 12, 48, 96, 156, 204, 252, 300, 348, 392, 444, 496, 512, 600, 720, 840, 900, 1080, 1500
and 3000). The corresponding numerical simulations were performed using Plaxis, which
required 587 CPU hours on an Intel-i7 PC, for N = 3000. To build confidence in the
generated database, a convergence study with respect to N was performed for the standard
deviation of the vertical displacement at the 64 measurement points on the inclinometers.
To check the convergence for this statistical study, standard deviation plots were built for
the sample size at three positions on each inclinometer: at the top, middle and bottom (see
Figure 4). The standard deviations show some fluctuations as the sample size is increased
up to 1080; however, between sample sizes 1080 and 3000, the standard deviation is close
to constant (up to 1% of variation), which implies that sample size 1080 is sufficient for
subsequent sensitivity studies.

The confidence intervals for the displacements (mean±2 standard deviation) obtained
by using this classical statistical analysis (which is in fact a Monte Carlo simulation (MCS))
are shown in Figure 5. The measured data for each inclinometer are also represented in
this figure, revealing fluctuations that can be attributed to some external effects such as the
installation process, calibrations, temperature variations and human factors, which may
have influenced some probes in the inclinometers. At the bottom, where the displacements
should be zero, there is instead a 2.5 cm displacement. Therefore, the uncertainty in the
measured displacement is estimated to be at least±2.5 cm. Figure 5 shows that, considering
the uncertainties, the measured data are mostly within the predicted numerical confidence

57



Water 2021, 13, 1830

intervals, especially when the displacements are more significant. The statistical confidence
intervals could be enlarged by changing the distribution intervals of the input parameters.
Indeed, we used a priori uniform distributions on estimated input intervals [40].

(a) Top section of the dam.

(b) Middle section of the dam. (c) Bottom section of the dam.

Figure 4. Variations of standard deviation (of the vertical displacement) with respect to the sample size for each inclinometer.
The plots are built for the nodes close to the top, middle and bottom sections of the dam.

(a) Vertical displacements for inclinometer INV1. (b) Vertical displacements for inclinometer INV2.

Figure 5. Confidence intervals for numerical vertical displacements.

58



Water 2021, 13, 1830

3.2. Sobol Indices

A Sobol index is defined as the ratio of partial variances to the total variance, and re-
flects the relative importance of each input parameter [45], as shown in Figure 6 for points
located at the top, middle and bottom of the inclinometers. The indices here range from
0 to 1. It is evident from Figure 6 that the shear modulus is the dominant parameter,
with a contribution of 44% to 71% in the top sections of the dam, and that it diminishes
gradually with the depth. The Poisson’s coefficient is the second most significant parameter,
with a smaller effect (24%) on top, and a high impact (84%) close to the foundation. At
140 m is the foundation (made up of routed rocks) of the dam, therefore the impact of soil
parameters is abrupt at the bottom.

(a) INV1 top section of dam. (b) INV2 top section of dam.

(c) INV1 middle section of dam. (d) INV2 middle section of dam.

(e) INV1 bottom section of dam. (f) INV2 bottom section of dam.

Figure 6. The pie charts show the sensitivity indices for INV1 and INV2 vertical displacements, respectively.
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The first-order indices are calculated along the inclinometers, as shown in Figure 7.
As stated earlier, for both inclinometers, the shear modulus is dominant in the upper
section of the dam. The Poisson’s coefficient is another crucial parameter influencing
the dam’s behavior. While it is less influential at the top section, its impact increases
as we head towards the bottom part. The specific weight only affects the lower section;
thus, the shear modulus and Poisson coefficients are the most significant parameters,
although their contributions vary with the elevation.

(a) INV1 1st-order Sobol indices. (b) INV2 1st-order-Sobol indices.

Figure 7. First Sobol variations with respect to the elevation.

3.3. Surrogate Modeling

Surrogate modeling is an approach aimed at generating an approximate numerical
model to reduce the computing time, especially when a large number of simulations are
required, as is the case in uncertainty and sensitivity analysis. Instead of using the ‘full-
order’ original finite element model, an approximate one called a ‘surrogate model’ (or
surface response) is built using the input–output database. Many techniques could be used,
but here we consider polynomial chaos expansions and deep neural networks. Based on
the convergence study in Section 3.1, the N = 1080 datasets is accurate enough to build the
surrogate models. To assess the accuracy of these models, we examine the residual errors
(the root mean square error (RMSE) and the coefficient of determination (R2)).

3.3.1. Polynomial Chaos Expansion (PCE)

A polynomial chaos expansion-based method [46] is a probabilistic technique that
can be used to build an accurate surrogate model. The degree of the polynomials and the
regularization parameters are tuned to get the best results. The PCE degree is varied from
2 to 6, and the regularization parameter λP is taken as 0.001, 0.01 and 0.1, respectively.

The mean and standard deviation are calculated using the surrogate model obtained
by running a simple Monte Carlo method on the PCE. The evaluation of the absolute mean
error with respect to the polynomial order and the regularization parameter for an output
response is shown in Figure 8, and is defined as:

E1 =
1
m

m

∑
i=1
‖Yi

mp −Yi
ms‖, (11)

where m is the number of nodes and Ymp denotes the mean of predicted displacement at
the same node as Yms, the simulated displacements. Ideally, λP is selected as the smallest
value which avoids overfitting. Figure 8 shows that, for 0.001, 0.01 and 0.1, the value E1
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decreases with the polynomial degree for both inclinometers. Therefore, the results for
P = 6 and λP = 0.001 are considered the most reliable.

Figure 9 shows that the measured and predicted displacements obtained using PCE
trained for datasets N = 300 and N = 1080 are in good agreement. Moreover, when consid-
ering the measurements along with their uncertainties, we see that they are mostly within
the predicted numerical confidence intervals of PCE, especially when the displacements are
more significant. The first-order indices along the inclinometers by using PCE are shown
in Figure 10. As stated earlier, for both inclinometers, the shear modulus is dominant in the
upper section of the dam. The Poisson’s coefficient is another crucial parameter influencing
the dam’s behavior. While it is less influential at the top section, its impact increases
as we head towards the bottom part. The specific weight only affects the lower section.
Thus, the shear modulus and Poisson coefficients are the most significant parameters,
although their contributions vary with the elevation. The Sobol indices at the top, middle
and bottom of the dam are also recomputed based on the PCE surrogate model, as shown
in Figures 10 and 11 , which illustrates almost the same information and conclusions as
those shown in Figures 6 and 7.

(a) INV1. (b) INV2.

Figure 8. Absolute mean error for degree and regularization parameters.

(a) Vertical displacements for inclinometer INV1. (b) Vertical displacements for inclinometer INV2.

Figure 9. Confidence intervals using polynomial chaos expansion-based surrogate model.
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(a) INV1 top section of dam. (b) INV2 top section of dam.

(c) INV1 middle section of dam. (d) INV2 middle section of dam.

(e) INV1 bottom section of dam. (f) INV2 bottom section of dam.

Figure 10. The pie charts show the sensitivity indices based on PCE for INV1 and INV2 vertical displacements, respectively.

The shear modulus is the dominant parameter, with a contribution of 50% to 70% in
the top sections of the dam, and whose influence diminishes gradually with the depth.
The Poisson coefficient is the second most significant parameter, with a smaller effect (18%)
on top and a high impact (90%) close to the foundation.

3.3.2. Deep Neural Network Results

In order to fit the data, a MATLAB function ‘Neural Net Fitting’ is used with a five-
layer feedforward network, as shown in Figure 2. A scaled conjugate gradient algorithm
was used for the training. The (N = 1080 and N = 300) datasets were divided into
training, validation and testing subsets, in the following proportions: 70%, 15%, and 15%
respectively. An ensemble of ten trained networks was created by randomly initializing
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the weights in the training, and the outputs were predicted individually and averaged
to obtain an ensemble output solution. An example of plots for datasets N = 300 and
N = 1080, showing the fitness variation with respect to the training iterations (epochs), is
presented in Figure 12.

The mean and standard deviation are calculated using the surrogate model obtained by
running a simple Monte Carlo method on the ensemble neural network model. The mean
and variance for the ensemble model are computed by Equations (9) and (10).

The displacements obtained with the ensemble neural network are shown in Figure 13,
and are very similar to those obtained with the statistical approach in Figure 5, and are
represented in the pie charts and the indices as shown in Figures 14 and 15, respectively.
The displacement standard deviations are calculated on the inclinometers using the sta-
tistical approach (MCS) and the PCE surrogate models and DNN models are reported
in Table 2, with a maximum standard deviation for all methods close to 4 centimeters.
Moreover, near the foundation of the dam the displacements are almost zero.

(a) INV1 1st-order Sobol indices. (b) INV2 1st-order Sobol indices.

Figure 11. First Sobol index results obtained using PCE surrogate model.

(a) Convergence of the fitness function for N = 1080. (b) Convergence of the fitness function for N = 300.

Figure 12. Performance of NN.
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Table 2. Comparative study of standard deviation in m by numerical simulations and surrogate models for top, middle and
bottom sections of the dam.

Inclinometers INV1 INV2

Approach Top Middle Bottom Top Middle Bottom

Statistical approach (MCS) 0.0388 0.0282 0.0043 0.0292 0.0161 0.0028
Polynomial Chaos Expansion (PCE) 0.0364 0.0291 0.0084 0.0313 0.0238 0.0079
Ensemble of Deep neural networks 0.0387 0.0311 0.00121 0.0285 0.0189 0.0042

(a) Vertical displacements for inclinometer INV1. (b) Vertical displacements for inclinometer INV2.

Figure 13. Confidence intervals using an ensemble of neural networks-based.

(a) INV1 top section of dam. (b) INV2 top section of dam.

(c) INV1 middle section of dam. (d) INV2 middle section of dam.

Figure 14. Cont.
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(e) INV1 bottom section of dam. (f) INV2 bottom section of dam.

Figure 14. The pie charts show the sensitivity indices based on DNN for INV1 and INV2 displacements, respectively.

(a) INV1 1st-order Sobol indices. (b) INV2 1st-order-Sobol indices.

Figure 15. First Sobol index results obtained using ensemble NN.

Figure 16 shows the computational efficiency for the cpu for one Plaxis realization
and for the surrogate models with respect to the number of samples for the soil parameters.
It can be observed that the surrogate models are more efficient at predicting the results
as compared to obtaining the simulations with the FEM model. It is worth noting that
this result will be helpful for an upcoming study that consists of the identification of soil
parameters by inverse analysis. In the inverse analysis, the optimization algorithm makes
hundreds of calls to obtain the numerical solutions [47]. Therefore, the surrogate models
will be used instead of the full-order original finite element model for computational
efficiency. The outcome of this study is that, indeed, NN requires many fewer samples to
realize a sensitivity or identification analysis compared to the full-order model.
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Figure 16. Computational efficiency for the displacements obtained by FEM, PCE and NN.

4. Conclusions

This paper contributes to the sensitivity and uncertainty analysis for rockfill dams
using the surrogate modeling approach. The approach was applied to a real rockfill dam
with an asphalt core. Two surrogate models were developed, namely, a polynomial chaos
expansion (PCE) model and a deep neural network (DNN) by training two datasets N = 300
and N = 1080. Their results were compared to those obtained with Monte Carlo simulations.
The variance-based sensitivity analysis reinforces the fact that the shear modulus and the
Poisson coefficient are the parameters that play the most significant role in the dam’s
behavior. Therefore, when considering all material sub-domains, these two parameters
may be kept as the only significant uncertain parameters, thereby significantly reducing
the total number of uncertain inputs. A second analysis was conducted by sampling the
input parameters using a uniform probability distribution. Overall, this study shows that
building surrogate models reduces the computational cost of numerical models when a
large number of simulations is required, as in sensitivity and uncertainty analyses.
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Abstract: Dam safety assessment is typically made by comparison between the outcome of some
predictive model and measured monitoring data. This is done separately for each response variable,
and the results are later interpreted before decision making. In this work, three approaches based on
machine learning classifiers are evaluated for the joint analysis of a set of monitoring variables: multi-
class, two-class and one-class classification. Support vector machines are applied to all prediction
tasks, and random forest is also used for multi-class and two-class. The results show high accuracy
for multi-class classification, although the approach has limitations for practical use. The performance
in two-class classification is strongly dependent on the features of the anomalies to detect and their
similarity to those used for model fitting. The one-class classification model based on support vector
machines showed high prediction accuracy, while avoiding the need for correctly selecting and
modelling the potential anomalies. A criterion for anomaly detection based on model predictions is
defined, which results in a decrease in the misclassification rate. The possibilities and limitations of
all three approaches for practical use are discussed.

Keywords: anomaly detection; machine learning; support vector machines; random forest;
one-class classification

1. Introduction

Dams are an essential element in our way of living, since they provide fundamental
services to our society, including drinking water, irrigation, navigation, flood protection,
and recreation. In addition, they are a decisive element in hydroelectric generation schemes.
According to the International Commission on Large Dams (ICOLD), there are around
60,000 large dams in operation worldwide, 6100 of which are in Europe [1]. Many of them
were built decades ago and are close to, or even exceeded, their service life. This results in
an increasing relevance of predictive maintenance and safety assessment of dams, as was
highlighted in a recent report published by the United Nations University [2]. Similar
figures were also reported in the USA [3].

Dam failures are rare, but safe dam operation requires significant resources for moni-
toring and repair. In this context, the early detection of anomalies allows increasing the
effectiveness of investments in maintenance and, therefore, reduces the cost of operation.

The conventional approach to anomaly detection involves the use of some predictive
model to estimate the dam response under a given combination of loads. Models based on
the finite element method (FEM) can be used for such a purpose, once properly calibrated.
Nonetheless, there is a tendency towards the use of machine-learning (ML) models, which
are solely based on monitoring data [4,5].

In both cases, a set of monitoring devices is typically selected, and the measurements
are compared to the predictions of the model. This is done separately for each response
variable, then results are interpreted together with the knowledge about the dam properties,
past behaviour, and other relevant information. In case some deviation is detected between
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the expected response and the observed behaviour, engineering judgement is employed to
make decisions regarding dam safety. In particular, the comparison shall be interpreted to
identify the probable origin of the observed deviations, which requires an additional effort.

In this work, ML is applied to jointly analyse the records of a set of relevant monitoring
devices and to associate them either to normal operation or to some anomaly scenario. This
approach has two potential benefits:

• Increased efficiency of the overall process: it directly provides an interpretation of the
dam response, without the need for analysing each device separately.

• Reduction of the occurrence of false alerts: deviations of measurements from predic-
tions due to measurement errors in isolated devices are not compatible with serious
anomaly scenarios and therefore would be considered as normal behaviour with
this approach.

In spite of the increasing interest of the community in applying ML methods in
dam safety, the joint analysis has been much less explored. Mata et al. [6] applied linear
discriminant analysis (LDA) to classify a group of observations into two classes: normal
operation and potential failure scenario. They used DEM/FEM to generate the data
corresponding to both situations. In a previous work, we used random forests (RF) as
classifiers to associate a set of records to six potential scenarios (normal and five different
potential anomalies) [7]. Although the results showed the potential of such an approach,
a relevant drawback was also highlighted: anomaly scenarios need to be simulated with
accuracy to generate the training set. This raises doubts on the capability for anomaly
detection when the actual behaviour is not considered among the simulated scenarios.
This relevant issue, specially from a practical viewpoint, is addressed in this work: a
methodology is proposed for detecting unforeseen anomalies, i.e., scenarios which were
not used for training the ML classifier. A similar approach was applied by Fischer et al.
for detecting internal erosion in earth dams and levees, based on experimental laboratory
data [8,9]. We further explore the possibilities of such approach for anomaly detection in
arch dams, with the addition of the following elements:

• A real arch dam in operation is considered as the case study, and the dataset used is
based on the actual recorded monitoring data.

• Realistic anomaly scenarios are analysed, correspondent to crack opening in typical
locations in arch dams.

• Time is considered when analysing the predictions of the model, so that part of the
false negatives are eliminated and the final method is more robust.

• The predictions of the model are further analysed, which provides additional infor-
mation on the reliability of anomaly detection.

The rest of the paper is organised as follows: the methods used are introduced in
Section 2, including the FEM model used for generating the database, the ML algorithms
and their calibration; results are presented and described in Section 3: model calibration,
performance analysis, exploration of errors and evaluation on the validation set. Section 4
includes the conclusions and ideas for future research.

2. Methods

The overall workflow includes the following steps:

1. A thermo-mechanical FEM model of the dam was created and its results compared to
available monitoring data.

2. Transient analyses were run on the FEM model for the scenarios considered: normal
operation and different crack openings.

3. The time series of results of the FEM model in terms of radial and tangential displace-
ments were exported, together with a label correspondent to the scenario from which
they were obtained.

4. ML classifiers were fitted to a fraction of the data available and they were later
evaluated in terms of prediction accuracy on an independent dataset.
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5. In view of the results for the test set, a new criterion for anomaly detection was
defined, based on the model predictions, which was applied to the validation set.

The details of each step are described in the next subsections.

2.1. Case Study

The proposed methodology was applied to a Spanish double curvature arch dam with
a height of 81 m above foundation and 20 cantilevers, with the material properties specified
in Table 1. Five years of monitoring data were considered for this work (corresponding
to the period from March 1999 to March 2004), which included the reservoir level and the
air temperature, as well as the displacements at 28 monitoring stations corresponding to
seven pendulums located as shown in Figure 1.

Table 1. Material properties.

Material Properties Concrete Soil Units

Young Modulus 3 × 1010 4.9 × 1010 Pa
Poisson coefficient 0.2 0.25 [-]

Density 2400 3000 Kg/m3
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Figure 1. Location of pendulums and cracks considered for each scenario. View from downstream.

2.2. FEM Model

For the construction of the 3D model, the designed mesh was formed by linear
tetrahedra of variable size (Figure 2). A portion of the foundation was included in the 3D
model with the conventional dimensions for structural analyses: foundation domain of
two heights of the dam in depth, upstream and downstream directions and more than half
the length of the dam on the left and right sides (Figure 3). The geometry was generated
using a tool developed by the authors [10], which assists in creating the 3D model of arch
dams from the geometrical definition of the arches and cantilevers. The mesh size in the
dam body was chosen to ensure at least three elements along the radial direction, while the
size of the elements of the foundation was increased gradually up to 25 m. This resulted in
a mesh of 33,000 nodes forming 173,000 tetrahedra, generated with the GiD software [11].
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Figure 2. Close view of the dam body and the mesh elements.

Figure 3. Overall view of the computational model for the dam body and foundation.

The final goal of this study is to identify behaviour patterns associated to certain
structural anomalies in arch dams and, in particular, those due to crack openings. After a
literature review, four categories of cracks frequently observed in arch dams were identified
(Table 2). Two anomaly scenarios were defined for each category (Figure 1).

Table 2. Classification according to the type of crack.

Nomenclature Type of Crack

Case 1 (a & b) Vertical crosswise [12–14]
Case 2 (a & b) Horizontal at the base [13,14]
Case 3 (a & b) Parallel to the dam-foundation contact, mid-height [13–15]
Case 4 Perpendicular to the dam-foundation contact, downstream mid-height [13,14]

The cracks are considered in the FEM model by duplicating the faces of the corre-
sponding elements and eliminating the tensile strength. This is basically equivalent to
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using no-tension interface elements. The location and dimensions of the cracks introduced
and the associated scenarios are shown in Figure 1.

Since the temperature field in the dam body influences the deformations of the dam
and depends on the initial temperature considered, we performed a preliminary analysis
to obtain a realistic thermal field to be used as the reference temperature in the body
of the dam. This is a relevant issue, since thermal displacements are computed on the
basis of the difference between these values and the thermal field at each time step of
the simulation [16]. For this purpose, we performed a 12-year transitory analysis with a
fixed value of the initial temperature (8 °C) and a time step of 12 h. The resulting thermal
field at the end of this preliminary calculation was taken as the initial temperature for all
the scenarios considered. A similar approach was used by Santillan et al. [17] and by the
authors in previous studies [18].

A transient analysis was performed for a 5-year period on the Scenario 0 (normal
operation, no crack opening). Since actual records for air temperature and reservoir level
were applied, the results are realistic and can be considered representative of the actual
behaviour of the dam. A one-way coupling between the thermal and the mechanical
problem was applied: the thermal field at the end of the preliminary transient analysis
was taken as reference temperature, i.e., deviations from such a value results in thermal
deformations; the hydrostatic load is applied and the stress and deformation are computed
assuming elastic behaviour; the deformation field is computed as the sum of the thermal
and the mechanical deformations. The numerical implementation was developed by the
authors and described in detail in [16].

The results of this model in terms of radial and tangential displacements at the
location of the monitoring stations (see Figure 1) were extracted and compared to the
actual measurements recorded. Figure 4 shows this comparison for three of the measuring
stations. Results show that the simulated behaviour is representative of the actual evolution
of dam displacements as a function of the variation of the thermal and hydrostatic loads.
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Figure 4. Comparison between the observed radial displacements in stations 12, 16 and 26 and the
results of the numerical model of Scenario 0.

Afterwards, seven FEM simulations were run for the same 5-year period on the
modified models, correspondent to the anomaly scenarios defined. The tile plots in Figure 5
show the magnitude of the difference to Scenario 0: each tile corresponds to a monitoring
variable and a particular scenario. The colour of the tile is a function of the median
difference on the 5-year period between the records of the corresponding device for the
scenario considered and those for Scenario 0, normalized with respect to the range of
variation of the variable. Although this allows for comparison among devices and scenarios,
the denormalized value (Figure 6) is also relevant, since deviations in variables with low
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fluctuation may be of the same order of magnitude of the measuring error, thus hard
to distinguish.

The plots show that Scenario 2a features the greatest deviation from normal operation.
This is due to the nature of the anomaly: a crack opening in the dam heel. The combined
effect of hydrostatic load and low temperatures generates tensile stresses in that area, which
result in high displacements when the crack opens. The deviation from the reference case
is greater for the lower station of the closest pendulum (Rad17), and decays progressively
along such vertical (Rad18 to Rad21). The effect is similar, though lower, for the adjacent
pendulum line (Rad12 to Rad16).

By contrast, the crack simulated in Scenario 2b, located in the downstream toe, has a
minor effect on the records because such an area is compressed most of the time, thus the
crack is closed and the behaviour is similar to the reference case.

The deviations in other scenarios are in general lower, with more impact on the
tangential displacements in relative terms.
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Figure 5. Median difference between anomaly scenarios and Scenario 0 for all tangential (left) and
radial (right) displacements considered. Results are normalized to the range of variation of each
input in Scenario 0.
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2.3. Data Preparation

As a result of the numerical calculations, a database is created including 8 scenarios:
normal operation (Scenario 0) and 7 different anomalous behaviours (Scenarios 1a, 1b, 2a,
2b, 3a, 3b and 4). For each scenario, the database includes one record per day, corresponding
to the actual recorded reservoir level and air temperature for the period 18 March 1999–15
March 2004, i.e., 1825 records per scenario.

This database reasonably approximates the dam response to the variation of thermal
and mechanical loads in a realistic situation. However, the numerical model excludes the
measuring errors which exist in actual devices. These errors were considered by adding a
noise with normal distribution N(0, 0.1) to the simulated displacements.

Such data are divided into three subsets as a function of the date: the training set
includes data for the period 18 March 1999–17 March 2002, the test set ranges from 18 March
2002 to 17 March 2003 and the validation set goes from 18 March 2003 to 15 March 2004.

2.4. Classification Tasks
2.4.1. Multi-Class (MC) Classification

The conventional problem of supervised classification requires a training set with a
set of inputs (also called features or predictors) and the corresponding labels. Those data
are supplied to the algorithm, which learns the structure of the data and defines rules for
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assigning some classes to a set of inputs. In our case, the fitted model will be supplied with
a set of monitoring records for a given load combination and will generate a prediction
in terms of the scenario to which it corresponds. More precisely, the model differentiates
between normal operation (Scenario 0) and each of the anomalies (other 7 scenarios).

In practice, ML classification models compute a probability of belonging to each of
the classes defined during training for each set of input values. By default, the predicted
class is that with the highest probability. However, the raw probabilities can be explored to
draw more information regarding model predictions.

The prediction of this model corresponds to one of the 8 classes used for training. This
approach has the advantage of distinguishing among different anomalies, but requires
availability of samples corresponding to all possible situations, which need to be generated
with numerical models. It is not clear if such a model would be useful in case some anomaly
not included in the training set occurs.

2.4.2. Two-Class (TC) Classification

To overcome such limitation, an alternative approach is proposed. Part of the anoma-
lies considered were eliminated from the training set. As a result, models were fitted on a
modified training set, which only includes Scenarios 0, 1a, 2a, 3a and 4. A new label was
created with two classes: 0 for normal operation (former Scenario 0) and 1 for all other
scenarios. To avoid the problem of imbalanced data [19], a random sample of records for
anomalous scenarios was taken, so that this modified training set includes 1825 samples for
class 0 and the same amount of records for class 1 (equally distributed among the original
scenarios 1a, 2a, 3a and 4). The test set included both Scenario 0 and those anomalies not
used for training (Scenarios 1b, 2b and 3b). Again, the class label was modified to include
only two classes (0 and 1), as in the training set. This classification task is more challenging,
since part of the test set corresponds to situations not used for training (Scenarios 1b, 2b
and 3b). However, it is more realistic: anomalies in the test set may represent real scenarios,
i.e., actual behaviour patterns not considered during model training.

2.4.3. One-Class (OC) Classification

The third alternative explored makes use of the ‘One-Class Classification’ approach [20,21].
This technique was developed for problems in which the information available for training
only corresponds to the normal operation. It is therefore applied for novelty detection.
The training set in this case is limited to the samples corresponding to Scenario 0 within
the original training set. The model fitted with this procedure is only capable of predicting
two classes: that used for training and some other (it is thus useless to differentiate among
different types of anomalies). This method was developed for cases in which information
on the response of the system for abnormal operation is not available or is costly or
impossible to obtain. That is the case in dam safety, and that was the limitation of previous
approaches: in the best setting, some anomalies could be simulated, but they do not
necessarily correspond to the behaviour patterns that may occur.

2.5. Algorithms

Machine learning (ML) problems can be classified into two main categories in ac-
cordance to the nature of the target variable: while in regression problems the goal is
predicting the value of some numerical variable, in classification tasks the objective is
assigning some label to a set of input values.

The vast majority of applications of statistical and ML methods to the analysis of
dam monitoring data make use of the regression approach: some model is fitted to the
available monitoring data with the aim of predicting some dam response such as the radial
displacement at a given location within the dam body. Decisions regarding dam safety are
made on the basis of the comparison between the model predictions and the observations.

By contrast, this work is based on classification: we define a set of response patterns,
or classes, associated to the scenarios considered. They are provided to the model together
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with the values of the monitoring variables. The objective of model fitting is identifying
patterns in the input data useful to distinguish between classes. The output of the model is
thus a categorical variable (label).

Many ML algorithms can be applied both to regression and classification tasks,
though their capabilities and performance often vary. In this work, two of the most
popular ML algorithms available for classification were considered as described in the next
sections: random forests (RF) and support vector machines (SVM).

2.5.1. Random Forests (RF)

RFs [22] are known to be appropriate for environments with many highly interrelated
input variables [23]. Although the amount of samples in our database is relatively large,
as compared to the number of inputs, these are highly correlated by nature (they have a
strong association since they are linked in the numerical model).

This same algorithm was previously used in regression problems in different appli-
cations, e.g., to build regression models to predict dam behaviour [24], to interpret the
response of dams to seismic loads [25] and to better understand the behaviour of labyrinth
spillways [26]. Other fields of application in the water sector include dam safety [27], water
quality [28], classification of water bodies [29] or urban flood mapping [30].

A random forest model is a group of classification trees, each of which is fitted on an
altered version (a bootstrap sample) of the training set [31]. Since they were first proposed
by Breiman [22], RFs have been used in multiple fields both for regression and classification
tasks. The main ingredients of the algorithm can be summarized as follows:

• For each tree in the final model (ntree), a bootstrap sample from the training set
is drawn.

• A tree model is fitted to each sample. Instead of all the available inputs, a random
subsample of size mtry is taken for each split.

• The prediction of the forest is taken by averaging the outcomes of all individual trees.
For classification, the label with higher proportion of predictions is taken.

This process includes randomness in two steps (in bootstrap sample generation, and in
taking predictors at each split) with the aim of capturing as many patterns as possible from
the training data.

One of the advantages of RF is the existence of the out-of-bag data (OOB), i.e., the part
of the observations excluded from each bootstrap sample. The prediction accuracy for each
observation can be computed from the trees grown on samples where such observation
was not included. This can be considered as an implicit cross validation, which allows for
obtaining a good estimate of the prediction error without the need to explicitly separate a
subset of the available data.

Extensive application of this algorithm showed high prediction accuracy and ro-
bustness, i.e., the effect of the model parameters is low [31,32]. In addition, the algorithm
performs implicit variable selection while fitting each tree, which simplifies pre-process [33].

As mentioned above, RF classifiers are robust in the sense that the model parameters
typically have low influence on the results. Nonetheless, a calibration process was followed
in this work based on the OOB error: all possible combinations of mtry (4, 6, 8 and 10), ntree
(400, 600, 800 and 1000) and nodesize (1, 3, 5 and 7) were considered to fit RF models, and the
prediction accuracy for the OOB data was assessed. The combination of parameters with
the lowest error was chosen to fit the final RF model. The same procedure was followed for
multi-class and two-class tasks.

2.5.2. Support Vector Machines (SVM)

Although SVM can be applied to regression problems, the algorithm was originally
created for classification [34]. The model fitting process not only aims at increasing clas-
sification accuracy on the training set, but also at maximizing the margin to improve
separation of the classes [35]. This results in greater generalization capability. In addition,
SVM is also among the most appropriate algorithms for one-class classification [20] and
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has already been used for this purpose in the water field [21]. Applications of SVM both for
regression and classification are numerous in different sectors. In hydraulics and hydrology,
examples include pipe failure detection in water distribution networks [36], prediction of
urban water demand [37] rainfall-runoff modelling [38], flood forecasting [39], as well as
reliability analysis [40–42] and dam safety [4,5,8,9,43,44].

SVM make use of a non-linear transformation of the inputs into a high dimensional
space, where a linear function is used for classification. The theoretical fundamentals of
the algorithm are described in many publications (see, for instance [34,35,45]).

Since SVM models are more sensitive to the training parameters than RFs, calibration
is more important than for RFs. Five-fold cross-validation (CV) was applied to the training
set to obtain reliable estimates of prediction error and thus to select the best training
parameters. In this work, we used radial basis kernels, defined as a function of two
parameters: C (cost) and γ. For MC and TC, all possible combinations of C (0.1, 1, 10) and
γ (0.001, 0.01, 0.1) were considered and the best combination from CV was later applied to
fit the final model.

The process is similar for one-class classification (see Section 2.4), with the addition of
the parameter ν, which controls the size of the margin between the class used for training
and the outliers (anomalies in our case) [20]. We considered all possible combinations of γ
(0.01, 0.04, 0.05, 0.06, 0.1), C (0.1, 1, 10) and ν (0.01, 0.025, 0.05, 0.075, 0.1). The results were
evaluated in terms of the BA on a test set including both the anomalous situations in the
training period and all the cases for the test period.

2.6. Measures of Accuracy

Henceforth, anomalies are considered as positive experiments (correctly predicted
cracked cases are thus true positives, TP), while Scenario 0 corresponds to negative ex-
periments (correct predictions for Scenario 0 are true negatives, TN). Consequently, false
positives (FP) will be cases where the model predicted a crack on data from a crack-free
case, and false negatives (FN) those when the model predicted no crack with data from a
cracked case. In this work, the following measures of accuracy were considered:

Sensitivity =
TP

TP + FN
(1)

Specificity =
TN

TN + FP
(2)

Two error measures were used that take into account both false positives and false
negatives: balanced accuracy (BA) is computed as the mean of sensitivity and specificity.
In turn, the F1 score [46] also considers both, but more relevance is given to the false
positives. This is in accordance to the nature of the phenomenon to be considered: in dam
safety, overseeing an anomaly is more important than predicting a false crack.

F1 =
2 × Precision × Sensitivity

Precision + Sensitivity
(3)

where:
Precision =

TP
TP + FP

(4)

3. Results and Discussion
3.1. Multi-Class Classification
3.1.1. Calibration

Figure 7a shows the median of OOB class error for all combinations of parameters
tested for RF models. It can be observed that the effect of the model parameters on
the results is low. Nonetheless, we took the values from the best combination of those
considered: ntree = 1000, mtry = 4, nodesize = 1. The same result of the calibration process is
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shown for the SVM model also in Figure 7. In this case, the best performance was obtained
with C = 10 and γ = 0.001.
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Figure 7. Results of the calibration process. (a) RF model. The mean of the OOB error for all classes is
plotted as a function of the number of trees (ntree), nodesize and the mtry parameter. (b) SVM model
results for 5-folds cross validation.

3.1.2. Evaluation

Although OOB error is often a good estimate for the generalization error, the RF
model was evaluated using the test set, so that it can be compared to the SVM model.
The confusion matrix is the main result, showing the predictions versus the real values.
Tables 3 and 4 include the results both for the RF and the SVM model, in addition to the F1
and balanced accuracy for each class.

Table 3. Confusion matrix for multi-class classification for the RF model.

Observed Class

0 1a 1b 2a 2b 3a 3b 4 F1 BA

Predicted class

0 350 10 0 0 0 0 0 3 0.962 0.977
1a 5 333 0 0 1 0 0 1 0.945 0.955
1b 1 17 365 0 1 0 0 1 0.973 0.996
2a 0 0 0 365 0 0 0 0 1 1
2b 0 0 0 0 360 0 0 0 0.993 0.993
3a 0 0 0 0 0 365 0 0 1 1
3b 2 4 0 0 2 0 365 0 0.989 0.998
4 7 1 0 0 1 0 0 360 0.981 0.991

Table 4. Confusion matrix for multi-class classification for the SVM model.

Observed Class

0 1a 1b 2a 2b 3a 3b 4 F1 BA

Predicted class

0 364 6 0 0 1 0 0 2 0.986 0.997
1a 0 356 0 0 0 0 0 2 0.985 0.987
1b 1 2 365 0 0 0 0 0 0.996 0.999
2a 0 0 0 365 0 0 0 0 1 1
2b 0 0 0 0 364 0 0 0 0.999 0.999
3a 0 0 0 0 0 365 0 0 1 1
3b 0 0 0 0 0 0 365 0 1 1
4 0 1 0 0 0 0 0 361 0.993 0.994

The results of both algorithms show high accuracy in identifying all scenarios, being
the performance of SVM model slightly better. This confirms the benefits of these techniques
for supervised classification.
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Both models show more accurate results than those obtained in a previous work based
on RF [7], in which different anomalies were considered. This may be due to the calibration
process, more detailed in this case, but also to the nature of the anomalies introduced.
While they affected the mechanical boundary conditions in the former study, more realistic
situations are considered here, representative of crack formation in different areas of the
dam body. The effect of these modifications on the dam response have a more local effect,
easier to identify by ML models.

The high accuracy demonstrates the soundness of the approach and the usefulness of
the algorithms. However, it still has the limitation of the need for identifying and modelling
the anomalies to be detected, which is highly relevant for its practical implementation.

3.2. Two-Class Classification
3.2.1. Calibration

The same process was followed for calibration of both models for the case of two
classes. The result is shown in Figure 8. As before, the combinations of parameters with
best performance for the OOB error (RF) and the 5-folds cross-validation error (SVM) were
later used for evaluation.
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Figure 8. Result of the calibration process for the two-class classification task. (a) RF model.
(b) SVM model.

3.2.2. Evaluation

The evaluation of classification models for this task can be done in the first instance
by means of the confusion matrix, as before. Table 5 shows the result for the RF model,
which featured an F1 of 0.820 and a balanced accuracy of 0.846. In this case, there is a clear
difference between classes. The model is highly accurate for identifying anomalies: the
rate of false positives is 0.3%. This results in a specificity of 0.995. By contrast, the rate of
false negatives is relatively high (48%), and thus sensitivity is lower (0.697).

Table 5. Confusion matrix for the RF model on the test set in the two-class classification problem.

Observed Class

0 1

Predicted class 0 363 332
1 2 763

The features of the training set need to be considered for the analysis of these results.
The problem was posed in an unconventional manner, since samples labelled as anomalies
in the training set (Class 1) are indeed different from those with the same label in the test
set. They are both anomalous and different from Class 0, which corresponds to normal
operation in both the training and the test sets, but they were computed from different
numerical models. In conventional classification problems, classes defined in the training
set are the same as in the evaluation or test sets. When the model is applied to a new set of
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input values, these are classified according to their similarity to each of the classes. In this
case, the test scenarios are in fact different from either of the two classes defined during
training. The model determines which of the two classes is more closely related to the
new input. The relatively high proportion of anomalous cases that the model considers as
normal is therefore explained by the nature of the classification task. This can be further
explored by separating the samples for class 1 into the original scenarios (Table 6). There is
a clear difference among anomalies: accuracies or Scenarios 1b, 2b and 3b are 52%, 67%
and 90%, respectively.

Table 6. Detailed confusion matrix for the RF model and the two-class classification. All anomalous
samples are separated into the original scenarios.

Observed Class

0 1a 1b 2a 2b 3a 3b 4

Predicted class 0 363 0 176 0 120 0 35 0
1 2 0 189 0 245 0 330 0

This conclusion is confirmed by the results of the SVM model (Table 7). Although the
overall accuracy is again slightly higher than for the RF model (F1 0.822; balanced accuracy
0.847), the same imbalance is observed, with specificity of 0.997 and sensitivity of 0.698.

Table 7. Confusion matrix for the SVM model on the test set in the two-class classification problem.

Observed Class

0 1

Predicted class 0 364 331
1 1 764

The same difference among scenarios is observed for the SVM model (Table 8). While
Scenario 3b is again well identified (98% accuracy), results are poorer for Scenarios 1b and
2b (57% and 54%, respectively).

Table 8. Detailed confusion matrix for the SVM model and the two-class classification. All anomalous
samples are separated into the original scenarios.

Observed Class

0 1a 1b 2a 2b 3a 3b 4

Predicted class 0 364 0 157 0 168 0 6 0
1 1 0 208 0 197 0 359 0

3.3. One-Class Classification
3.3.1. Calibration

Three different combinations of parameters featured the highest accuracy, one of
which (ν = 0.075, C = 0.1, γ = 0.05) was taken to fit the final model. Figure 9 shows the
results of the calibration process.

3.3.2. Evaluation

The results of the one-class classifier on the test set show similar general figures than
for the two-class models (F1 0.920; BA 0.903), but they are more balanced between ability
to detect normal operation and anomalies. The figures from the confusion matrix (Table 9)
result in a sensitivity of 0.858 and a specificity of 0.948.
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Figure 9. Result of the calibration process for the one-class SVM model with 5-folds cross-validation.

Table 9. Confusion matrix for the SVM model on the test set in the one-class classification problem.

Observed Class

0 1

Predicted class 0 346 364
1 19 2191

Again, these results can be further explored by separating the anomalies into the
original scenarios (Table 10). In this case, all classes are predicted with higher accuracy
(from 75% for Scenario 4 up to 100% for Scenarios 2a and 3a), at the cost of a higher
proportion of false positives, which nonetheless is low (5 %).

Results are better for Scenarios 2a and 3a because their deviation from the reference
pattern (Scenario 0) is higher, as can be observed in Figure 5.

Table 10. Detailed confusion matrix for the one-class model separated by the original scenarios
considered.

Observed Class

0 1a 1b 2a 2b 3a 3b 4

Predicted class 0 346 96 70 0 48 0 33 117
1 19 269 295 365 317 365 332 248

3.4. Class Probability

The previous analyses are based on the raw predictions of the ML models. In this
section, we discuss the class probability. For example, RF models include a large number
of classification trees, each of which generates a predicted class. The overall prediction
is taken as the majority vote for all trees. The value of the predicted probability can be
explored to draw more detailed information on the behaviour of the system and make
decisions. The prediction of a class with high probability can be expected to be more
reliable than others for which two or more classes feature similar probabilities.

Following this idea, the predicted probabilities of the calibrated models for the test set
were computed for all scenarios. Figure 10 includes the results for all 4 calibrated models
with the classification of the outcome into TN, FN, TP and FP.
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Figure 10. Predicted probability of belonging to Scenario 0. (a) RF multi-class. (b) SVM multi-class.
(c) RF two-class. (d) SVM two-class.

This analysis was made with the aim of exploring the possibility of defining some
practical criterion to improve the results of the raw predictions. This could be the case
for the multi-class RF model: all wrong predictions, both FPs and FNs, correspond to
relatively low probabilities for Scenario 0. In other words, predicted probabilities for TN
are in general high, and those for TP are low in the vast majority of the cases. This may
suggest that an intermediate category of uncertain predictions might be defined including
all cases with predicted probability for Scenario 0 in an intermediate range (e.g., 0.2 to 0.4).
This would eliminate the FPs and FNs, at the cost of converting a proportion of TPs and
TNs into this intermediate category.

The analysis of the plot for multi-class SVM shows the capability of the algorithm to
maximise the margin between categories. Probabilities of Scenario 0 in correct predictions
are close to 1 for TNs and close to 0 for TPs. The criterion mentioned for RFs is not useful
to eliminate the FNs because the few errors feature probabilities above 0.5.

In any case, the main reason for not defining this practical criterion for multi-class
models is that their default accuracy is already very high, in addition to the aforementioned
limitation of the need to identify a priori and accurately model the anomalies to be detected.

As for the two-class models, the plots show that the separation between classes is less
clear. Interestingly, the predicted probabilities of the SVM model for FNs are farther from
the 0.5 limit than for the RF model. Again, there is not a clear benefit in using the predicted
probabilities for practical purposes.

3.5. Time Evolution of Predictions

In previous sections, the model predictions were evaluated separately: both false
positives and false negatives were assessed in terms of the amount of occurrences as com-
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pared to the size of the test set. From a practical viewpoint, the persistence of predictions
is relevant when it comes to make decisions regarding dam safety. Anomalies in dam
behaviour generally occur progressively, starting by a small deviation from normal opera-
tion and increasing in time. In such event, an accurate model would predict anomalous
behaviour with persistence in time. In other words, no major decision will be made from a
single prediction of anomaly if the subsequent sets of records are considered as normal by
the model.

As a result, isolated prediction errors can be considered affordable from a practical
point of view. Since the test set corresponds to realistic evolution of external loads and dam
response over time (one year of actual measurements), draw relevant conclusions can be
drawn from the exploration of the location of errors in time.

This was done for all five models (three prediction tasks and two algorithms). More
precisely, the number of consecutive errors—at least two—were computed (either false
positives or false negatives) and included in Table 11 together with the overall miss-
classifications. The results show a large reduction in miss-classifications in all cases as
the time window grows. It should be noted that for multi-class models, errors between
anomalous scenarios are considered TPs.

Table 11. Number of consecutive errors (both false negatives and false positives) by model and prediction task. All errors
are also shown for comparison.

Task Algorithm All Errors 2 Consecutive Errors 3 Consecutive Errors 4 Consecutive Errors

MC RF 28 (1.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%)
MC SVM 10 (0.3%) 0 (0.00%) 0 (0.0%) 0 (0.0%)
TC RF 334 (22.9%) 151 (10.3%) 77 (5.27%) 38 (2.60%)
TC SVM 338 (23.2%) 157 (10.8%) 83 (5.68%) 42 (2.88%)
OC SVM 383 (13.1%) 115 (3.9%) 40 (1.37%) 17 (0.58%)

3.6. Practical Criterion

As a result of the previous analysis, a procedure was defined to generate predictions for
its application to the validation set. A homologous process was followed for all alternatives
used (RF and SVM models for multi-class and two-class classification, and SVM model for
one-class):

1. A new model was fitted using a dataset including both the training and the test set,
i.e., for the period 1999–2003. In all cases, the parameters of the model were taken
from the previous calibration.

2. A new classification is generated, based on the results of the previous analyses. The ra-
tionale is that true anomalies in dam behaviour are persistent in time, at least until
some remediation measure is adopted. Hence, model predictions should be stable
over short periods of time. In accordance, shifts in model predictions, from normal
to anomaly or vice versa, are considered with caution and termed as “soft predic-
tions”, whereas stable outcomes are classified as “hard predictions”. Therefore, four
categories are defined as follows:

(a) If the model prediction is Normal and equal to previous prediction, i.e., at
least two consecutive predictions of no-crack, it is classified as “Hard negative”
(HN).

(b) If the model prediction is Normal, but the previous prediction was Anomaly,
it is considered “Soft negative” (SN).

(c) If the model prediction is Anomaly, but the previous prediction was Normal,
it is considered “Soft positive” (SP).

(d) If the model prediction is Anomaly and equals the previous prediction, it is
termed as “Hard positive” (HP).

The evaluation of the results is made on the basis of the errors defined in Table 12.
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Table 12. Definition of hard and soft errors for evaluation of the modified predictions.

Observed

Normal Anomaly

Predicted

HN TN Hard FN
SN TN Soft FN
SP Soft FP TP
HP Hard FP TP

3.7. Validation
3.7.1. Multi-Class Classification

The confusion matrix for the RF model is included in Table 13. It shows 5 hard errors
(all of them HP) out of 2912 cases (0.2%). The proportion of soft predictions is below 5%,
which implies that the model can be useful for practical application.

Table 13. Confusion matrix for the validation set and the RF model. Multi-class classification.

Observed Class

0 1a 1b 2a 2b 3a 3b 4

Predicted class

HN 332 0 0 0 0 0 0 0
SN 14 1 0 0 0 0 0 5
SP 13 60 3 1 5 1 5 18
HP 5 303 361 363 359 363 359 341

The results for the SVM model are similar, as can be observed in Table 14. As in
previous analysis, the performance is slightly better. In particular, only one hard error is
registered, and the amount of soft predictions is lower (37; 1%).

Table 14. Confusion matrix for the validation set and the SVM model. Multi-class classification.

Observed Class

0 1a 1b 2a 2b 3a 3b 4

Predicted class

HN 347 0 0 0 0 0 0 0
SN 8 0 0 0 0 0 0 2
SP 8 9 1 1 1 1 1 5
HP 1 355 363 363 363 363 363 357

These results demonstrate the capability of both algorithms for identifying behaviour
patterns. The SVM model consistently outperformed RF in all analyses, though the dif-
ference is small. The calibration effort and required computational time is also similar.
In other settings, SVM may require more detailed calibration and some variable selection.
It shall be remembered that the amount of inputs is relatively high and that all inputs are
highly correlated by their nature. In such a setting, the performance of some classification
algorithms may degrade. This was not expected to affect the RF model, which is known to
perform well even with many correlated variables, but SVM also provided accurate results
without performing variable selection.

The main benefit of this approach is the capability of distinguishing response patterns,
not only between normal and anomalous behaviour, but also among different anomalies.
By contrast, it has the limitation of requiring the identification and modelling of the
expected anomalies. It is thus unclear what the effect of the application of these models
would be in practice when some unforeseen anomaly scenario occurs.
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3.7.2. Two-Class Classification

The confusion matrix for the RF model and the two-class classification task is included
in Table 15. The format of this matrix is unconventional, not only because of the particular
definition of the soft predictions, but also because the anomalous situations, which were
provided to the model as belonging to a unique Class with label 1, are disaggregated here in
accordance with the actual scenario from which they were obtained with the FEM (classes
1a to 4). It should be reminded that the models used for this task were fitted on a training
sample including Scenarios 0, 1a, 2a, 3a and 4, and that the anomalous situations in the
validation set comprise different anomalies (Scenarios 1b, 2b and 3b) in addition to the
normal situation. The prediction task is thus more challenging, but also more realistic,
since unforeseen response patterns can be expected to occur in practice.

It can be seen that no HFP are registered for the RF model and the ad hoc criterion
defined. The amount of HFN is higher due to the difference in nature of Class 1 samples
between the training and the validation set.

Table 15. Confusion matrix for the validation set and the RF model. Two-class classification.

Observed Class

0 1a 1b 2a 2b 3a 3b 4

Predicted class

HN 359 0 90 0 59 0 1 0
SN 3 0 84 0 86 0 22 0
SP 2 0 85 0 85 0 23 0
HP 0 0 105 0 134 0 318 0

In this case, the results for the SVM model is poorer (Table 16), especially for Scenarios
1b and 2b. This may be the effect of the maximization of the margin between categories
when applied to samples of different nature. In this case, no HFP are obtained and the
amount of soft predictions is 332 (23%).

Table 16. Confusion matrix for the validation set and the SVM model. Two-class classification.

Observed Class

0 1a 1b 2a 2b 3a 3b 4

Predicted class

HN 359 0 180 0 139 0 1 0
SN 3 0 70 0 85 0 8 0
SP 2 0 71 0 84 0 9 0
HP 0 0 43 0 56 0 346 0

The results of this approach for Scenario 3b suggest that it can be useful to detect
anomalies only in case they resemble the situations considered for training. By contrast,
the model tends to consider as normal those patterns not included in the training data. This
is a similar limitation as that described for the MC model, and confirms the conclusions
drawn in the previous section.

These classification models fitted with data involving some situations and applied
to different anomalies, predict on the basis of the degree of similarity between the new,
observed behaviour and those provided for training. Good performance can be expected in
terms of anomaly detection when the actual pattern is more similar to some of the foreseen
anomalies than to the normal scenario. This is the case of Scenario 3b.

3.7.3. One-Class Classification

The new criterion showed to be useful for OC model. Table 17 shows the confusion
matrix for the validation set. The ratio of HFP is low (0.1%). A higher proportion of HFN is
observed, though still better than for the TC models (3.8%). It should be reminded that the
OC model was fitted using exclusively data from normal operation. This is relevant from a
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practical viewpoint, since this approach avoids the need for identifying and modelling the
anomaly scenarios for model fitting.

Table 17. Confusion matrix for the validation set and the SVM model. One-class classification.

Observed Class

0 1a 1b 2a 2b 3a 3b 4

Predicted class

HN 329 30 18 0 11 0 5 48
SN 17 66 52 0 37 0 28 69
SP 16 67 53 1 37 1 29 70
HP 3 202 242 364 280 364 303 178

3.7.4. Summary of Validation

The models examined include relevant differences in terms of the information used
for training and evaluation. Those differences need to be considered when comparing
performances. Furthermore, although the anomalous scenarios are initially the same for all
tasks, they are included different ways: as different classes (MC), grouped into one single
anomalous class with different scenarios in training and testing (TC) or plainly grouped
into a global category for all situations different from Scenario 0 (OC).

Keeping these differences in mind, results are summarised and compared in Table 18.
It can be seen that the error rates in this case (adding soft and hard errors) are similar than
those for the test set (Table 11). This confirms that the model accuracy is representative of
the models used and the case study.

The proposed criterion is beneficial for the OC model, in the sense that the majority of
raw miss-classifications are turned into soft errors.

Table 18. Model comparison for the validation set.

RF MC SVM MC RF TC SVM TC SVM OC

# pct # pct # pct # pct # pct

TN 346 11.9% 355 12.2% 362 24.9% 362 24.9% 346 11.9%
Hard FN 0 0.0% 0 0.0% 150 10.3% 320 22.0% 112 3.8%
Soft FN 6 0.2% 2 0.1% 192 13.2% 163 11.2% 252 8.7%
Hard FP 5 0.2% 1 0.0% 0 0.0% 0 0.0% 3 0.1%
Soft FP 13 0.4% 8 0.3% 2 0.1% 2 0.1% 16 0.5%

TP 2542 87.3% 2546 87.4% 750 51.5% 609 41.8% 2191 75.2%
# samples 2912 100% 2912 100% 1456 100% 1456 100% 2912 100%

4. Conclusions

Both RF and SVM showed high prediction accuracy for the multi-class classification
task (miss-classification rate below 0.5%), with SVM slightly better than RF. These models
have the advantage of being capable of distinguishing between anomalies of different kind,
which can be useful when potential failure modes can be well defined and modelled. How-
ever, this need may be a relevant limitation in many settings for their practical application.
Their capability to detect anomalous patterns not considered for model fitting is unclear.

Two-class classification models can only distinguish between two classes—normal and
anomalous behaviour—but they are incapable of differentiating among different anomalies.
This approach is more representative of the practical application, where unforeseen patterns,
not considered for model fitting, may occur. The results for the TC models show their
limitations in real settings. Their capability for identifying anomalies is strongly dependent
on the nature of the actual pattern and its relation to the situations used for model fitting.
While high accuracy was obtained for Scenario 3b, the proportion of miss-classifications
for Scenarios 1b and 2b is too high for considering this approach in practice.
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The one-class classifier based on SVM is fitted exclusively on data for normal operation.
This is the typical situation in many dams which performed correctly for long periods,
and thus the approach can be applied in practice using monitoring data. The results
were better than TC models, and overall suggest that this model can be useful in practice.
Although the accuracy also depends on the properties of the situation to identify, the model
is not biased by the decisions of the modeller regarding which scenario to consider: the
ability for anomaly detection of this model depends on the magnitude of the anomaly,
i.e., serious anomalies can be detected with higher accuracy. The process is simpler because
no anomalous data are required for model fitting: there is no need to create a numerical
model and the probable anomaly scenarios need to be neither defined nor modelled. This
also enlarges the scope of application to any dam typology and response variable, since
some phenomena are difficult to simulate with the FEM. The model can be fitted solely with
monitoring data in dams with long series of high-quality records for a relevant number
of response variables. In general, a FEM model can be created to complement the time
series—e.g., fill periods with missing values.

A practical criterion was defined to classify patterns on the basis of the model outcomes
to differentiate predictions as a function of their consistency over time. This resulted in a
decrease in miss-classification rate for all approaches. Although the overall conclusions
hold for all prediction tasks and algorithms, the utility of the one-class classifier is clearer.
This criterion is specific to the case study considered, and thus should be adapted to other
situations in accordance with the amount of data available, the reading frequency and other
problem-specific properties such as the nature of the potential failure scenario. The work
also showed that the time window applied has a relevant effect on the performance of the
mode. Engineering judgment and knowledge on dam history should be the fundamentals
for setting up a procedure for each specific case.

The main drawback of this approach is that no information is obtained regarding
the kind of anomaly identified: the outcome of the model is limited to the probability of
belonging to the pattern used for model fitting or some other, without further specification.
The combination of this approach with engineering knowledge and some other model—
either a multi-class classifier or a set of regression models—may result in a more complete
pattern identification. The authors are exploring this possibility in an open research line.
This involves the need for analysing each output separately, but its application to a set of
selected variables can be beneficial to take advantage of the benefits of both approaches,
and alleviate their limitations.

Another limitation of these approaches is that high-quality data is needed for model
fitting. In this analysis, training data was generated by a FEM model, which ensured that
the resulting time series are complete and—in principle—of arbitrary length. By contrast,
databases of monitoring data in many dams include periods of missing values, variable
reading frequency and other issues. FEM models can be useful for improving the monitor-
ing data to some extent, but still have limitations for some dam typologies, certain failure
scenarios and determined response variables. The performance of ML classifiers when
fitted with low-quality databases is also the topic of ongoing research.
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Abstract: The main aim of structural safety control is the multiple assessments of the expected
dam behaviour based on models and the measurements and parameters that characterise the dam’s
response and condition. In recent years, there is an increase in the use of data-based models for
the analysis and interpretation of the structural behaviour of dams. Multiple Linear Regression
is the conventional, widely used approach in dam engineering, although interesting results have
been published based on machine learning algorithms such as artificial neural networks, support
vector machines, random forest, and boosted regression trees. However, these models need to be
carefully developed and properly assessed before their application in practice. This is even more
relevant when an increase in users of machine learning models is expected. For this reason, this
paper presents extensive work regarding the verification and validation of data-based models for
the analysis and interpretation of observed dam’s behaviour. This is presented by means of the
development of several machine learning models to interpret horizontal displacements in an arch
dam in operation. Several validation techniques are applied, including historical data validation,
sensitivity analysis, and predictive validation. The results are discussed and conclusions are drawn
regarding the practical application of data-based models.

Keywords: concrete dam; machine learning methods; structural behaviour; sensitivity analysis;
model validation

1. Introduction

Dam safety is a continuous requirement due to the potential risk of environmental,
social, and economic disasters. In ICOLD’s bulletin number 138 [1] the assurance of
the safety of a dam or any other retaining structure is considered to require “a series of
concomitant, well-directed, and reasonably organised activities. The activities must: (i) be
complementary in a chain of successive actions leading to an assurance of safety, (ii) contain
redundancies to a certain extent so as to provide guarantees that go beyond operational
risks” [1]. Continuous dam safety control must be done at various levels. It must include
an individual assessment (dam body, its foundation, appurtenant works, adjacent slopes,
and downstream zones) and, as a whole, in the various areas of dam safety: environmental,
structural, and hydraulic/operational [2].

Structural safety can be understood as the dam’s capacity to satisfy the structural
design requirements, avoiding accidents and incidents during the service life. Structural
safety includes all activities, decisions, and interventions necessary to ensure the adequate
structural performance of the dam. The activities performed for the structural safety control
of large dams are usually aided by simulation models. According to Lombardi [3]: “the
difference between the predicted value and the actual reading is indeed the true criteria to
judge the behaviour of the dam”. Such predictions can be based on deterministic models,
such as finite element models or data-based models. Most large dams have an essential
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database of monitoring measurements, recorded along years, both from the environmental
variables (related to the main loads) and the dam response. This, together with the
developments in Machine Learning (ML) techniques, has led to a significant increase in
the use of ML models to support the analysis and interpretation of the observed structural
behaviour. The ML algorithms applied [4] include multiple linear regressions [3,5,6],
artificial neural networks [7–16], support vector machines [17,18], random forest [19] and
boosted regression trees [20]. A comparison of their performance can be found in [21].

Regression models are the most known and used data-based models for engineers
responsible for dam safety activities. They have been validated and tested over years of use,
and their capabilities and limitations are well known [21]. In recent years, new data-based
models based on ML methods have been adopted as a guaranty in redundancy to the
traditional adopted models to describe the observed behaviour or, in some cases, to study a
particular aspect of the dam behaviour. However, the growing use of ML models is mainly
restricted to scientific publications and academic examples, without a broad and deep
discussion about model validation and verification issues. These research and technical
gaps are partly because of the lack of agreement regarding how to reliably evaluating the
validity of these models and their scope of application. Open issues for their practical
implementation include:

• The adequate selection of input variables.
• The possibilities and limitations of their interpretation for identifying the effects of

the external variables.
• The required size of the available monitoring data for model fitting.
• The methods for handling missing values.
• The selection of training and predicted sets.
• The procedure for reliably evaluating model accuracy and defining warning thresholds

from model predictions.

In other fields with extended background on the application of data-based models, a
further effort was put into developing procedures and concepts for model validation. This
is the case of electrical engineering, where Sargent [22] proposed an overall framework for
verifying and validating simulation models in any area of expertise.

The problem is more relevant in social sciences, where the decisions of the modeller
have a substantial effect on the results because of the higher indetermination in the defini-
tion of the prediction task (e.g., [23]). Likewise, when complex databases are used, different
decisions may lead to opposite conclusions [24].

The main contribution of this work is the presentation of a methodology for the
validation and verification of ML models to the analysis and interpretation of the structural
behaviour observed in dams. In this work, Sargent’s framework is adapted to dam safety
for the validation and verification of data-based models for predicting dam behaviour. The
proposed approach is applied to the case study of an arch dam located in Portugal. Models
based on neural networks (NN), support vector machines (SVM), random forests (RF),
and boosted regression trees (BRT) are fitted for predicting the radial displacement of the
highest cantilever. The results are discussed, and conclusions are drawn regarding their
application in practice.

The article is organised as follows: Section 2 includes a state of art review regarding
the adoption and use of ML models to analyse and interpret the observed structural dam
behaviour. The proposed methodology for model validation and verification is presented
in Section 3. The case study is described in Section 4. The results of the application of the
proposed methods for validation and verification are presented and discussed in Section 5.
Finally, conclusions are included in Section 6.
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2. State of Art: Machine Learning Models for Dam Behaviour Interpretation
and Prediction
2.1. Overview about Machine Learning

Machine Learning is usually described as the study of “computer algorithms that
improve automatically through experience” [25]. There are two main ML approaches used
in different problems: supervised and unsupervised learning, Figure 1. In unsupervised
learning, only the input data is available. The objective is to define groups or classes of
similar samples, then assigning some class to new inputs. In supervised learning, both
the input variables and the true output of the system are available during the training
stage. The algorithm learns the association between inputs and response so that predictions
can be obtained when new inputs are provided to the model. Supervised learning is the
approach used in dam safety, using measured data from the past behaviour of the dam for
model fitting.

Figure 1. Supervised and unsupervised learning approaches.

Supervised models can in turn be classified into regression, if the output variable
is numerical, and classification, in case it is categorical. Although some applications of
classification in dam safety can be found in the literature [26,27], the vast majority of
examples of ML models in this field are based on regression.

As a result, only supervised regression models are considered in this work. Several
mathematical algorithms can be adopted, depending on the goal and the data available,
Figure 2. A description of the main algorithms used in the context of the interpretation
of the behaviour of dams can be found in [4,21]. As mentioned above, NNs, RF, SVM
and BRT are considered in this application. These algorithms are succinctly described
herein, together with the conventional multiple linear regression model, which is taken
as reference.

Figure 2. Main machine learning techniques used in dam safety assessment context.

The regression problem in dam safety can be formulated as follows: suppose that a
dataset with p independent variables and n observations,

(
X1, ..., Xp, Y

)
is available, where

Y represents the observed structural response, and X are the functions of water height

93



Water 2021, 13, 2717

above the dam base, temperature and time. The goal of a regression model is computing
an estimate of the response variable as a function of the inputs (Equation (1)):

Y = f
(
Xj
)
+ ε, j = 1 ... p (1)

where ε is the model error.
The overall process for building and applying data-based predictive models is sum-

marised in Figure 3. The monitoring data available is split into two separate datasets. The
former is used to calibrate the model parameters (e.g., number of neurons in a NN model),
while the latter is fed into the calibrated model for verifying prediction accuracy. Some
authors use all available data for training, which may be acceptable if regression models
are used. However, leaving an independent data set for model evaluation is essential for
most ML models to avoid overfitting.

Figure 3. General scheme for fitting and applying predictive models based on monitoring data.

2.2. Formulation by Separation of the Reversible and Irreversible Effects: The HST and
HTT Approaches

In the operation phase of the dam’s life, the thermal effect is directly related to the
air and water temperature variations. There are two main approaches for choosing the
parameters that represent the thermal effect in data-based models [6]: the HST (hydrostatic,
seasonal, time) approach and the HTT (hydrostatic, temperature, time) approach. In the
HST approach, the portion of the structural response due to the thermal effects is usually
considered as the sum of sinusoidal functions with an annual period, similar to air and
water temperatures variations. As a result, the thermal effects are smoothed. In the HTT
approach, the thermal effects are associated to temperatures measured on the dam body,
therefore, the actual evolution of thermal loads is considered. Although some authors have
presented the benefits of using measured temperatures of the concrete dam body with, or
instead of, sinusoidal functions [5], HTT models are not often used in day-to-day analysis
analysis because of the difficulty in the selection of the variables to represent the thermal
effect, especially when there is a large number of input variables. In this work, the HST
was the approach adopted to obtain the main results. More details regarding the input
variables usually adopted in this type of model can be found in [5–7,21,28].

The data-based models used for the prediction of the structural response of concrete
dams are based on the following simplifying assumptions:

(i) The analysed effects refer to a period in the life of a dam for which there are no
relevant structural changes.

(ii) The effects of the normal structural behaviour for normal operating conditions can
be represented by two parts: a part of elastic nature (reversible and instantaneous,
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resulting from the variations of the hydrostatic pressure and the temperature) and
another part of the inelastic nature (irreversible) such as a time function.

(iii) The effects of the hydrostatic pressure, temperature, and time changes can be evalu-
ated separately.

2.3. Machine Learning Models Used for the Dam Behaviour Interpretation and Prediction

Multiple Linear Regression (MLR) models are widely used by dam engineers. The
form of Equation (1) for a MLR model relating the independent variables to the dependent
variable can be written as (Equation (2)):

Y = β0 + β1X1 + β2X2 + ... + β jXj + ... + βpXp + ε (2)

where ε stands for the random error. The model can be represented by a system of n
equations that can be expressed in a matrix notation as Y = Xβ + ε where Y is a (n× 1)
vector of the dependent variable or response, X is a (n× (p + 1)) matrix of the levels of the
p independent variables, β is a ((p + 1)× 1) vector of the regression coefficients, and ε is a
(n× 1) vector of random errors.

The model assumes that the expected value of the random error is zero, i.e., E(ε) = 0;
the variance V(ε) = σ2 and the errors are uncorrelated [29–31]. In matrix notation, the
least squares estimator of β is β̂ =

(
XT X

)−1XTY while the fitted model is Ŷ = X β̂ and
the vector of the residuals is denoted by ε̂ = Y − Ŷ .

The general expression of the regression problem shown in Equation (1) applies to ML
regression models. However, the final mathematical expression is in general more complex
than that of the MLR, and, therefore, more difficult to analyse.

Neural networks can be considered as an extension of MLR models by adding a
non-linear transformation of the inputs [32]. The output of the model is computed as
presented in Equation (3):

yNN =
L

∑
l=1

wl · g(Xt) + b (3)

where L is the total number of neurons in the hidden layer, wl are the weights, Xt is a linear
transformation of the inputs Xj, and g(Xt) is a non-linear transformation. In this work, a
sigmoid function is used in the hidden layer, different for each neuron l, which is computed
as presented in Equation (4):

g(Xt) =
1

1 + eXt
(4)

Many variations of the original NN model have been proposed and used in different
fields: from the addition of several intermediate layers until the introduction of complex
algorithms to account for certain aspects of the model [33,34]. NN can be considered the
most popular ML algorithm in dam engineering [7,10,17].

In general, NN are prone to overfitting, i.e., their high flexibility allows for increasing the
prediction accuracy for the training data (in theory, perfect accuracy could be achieved [35]).
This issue can be alleviated using cross-validation or similar resampling techniques.

However, this does not imply that such model will be as accurate for an independent
data set. Therefore, the training process needs to be followed with care. An independent
data set needs to be considered to evaluate the model, for which prediction error should be
similar to that in the training set.

Support vector machines resemble NNs in some aspects, such as the inclusion of non-
linear transformations of the inputs. In this case, the inputs are transformed, then linear
regression is performed on the modified variables. Overfitting is also an issue for SVM
models, and the training parameters strongly influence the results. Consequently, SVM
models must be fitted with care: wide ranges of parameter values need to be considered,
and cross-validation or similar approaches must be followed to obtain reliable estimates on
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the prediction accuracy. SVM have been used in some publications related to dam safety,
but the effect of the model parameters was not examined in depth [4,11,17,21].

Other ML algorithms recently applied to the prediction of dam behaviour belong to
the family of tree-based models: random forests (RF) and boosted regression trees (BRT).
In both cases, the model outcome is computed from a typically large amount of simple
models, in this case, regression trees.

Regression trees are often used in classification problems because of their ease of
interpretation: usual rules can be represented by these models in the form of criteria for
dividing the original dataset into a series of groups with common features. However,
such approach can also be applied for regression, i.e., for predicting numerical variables,
by computing the average of the output variable for all elements in each of the resulting
groups. This approach keeps the interpretability, but prediction accuracy is lower than for
other algorithms. In addition, the resulting model is strongly dependent on the training set,
i.e., the addition of a few samples may result in highly different rules and predictions. To
overcome the limitations of regression trees, RF were proposed by Breiman [36], in which a
significant amount of simple regression trees is created, and the result is computed as the
average of their predictions. Additional ingredients of the RF algorithm include:

• Each tree is created from a bootstrapped sample of the training set, in which some the
samples are included, some are excluded, and others are duplicated.

• Only a random subsample of the inputs is taken for creating each split of each tree.

RF models are easy to implement and robust in complex settings [36], particularly
when the p

n ratio is high [37].
BRTs are also based on trees, with some differences:

• The tree models in the ensemble are simple, i.e., with just a few branches.
• Each tree is fitted on a random subset of the original training set.
• The residual of the previous ensemble is considered as the objective function for fitting

each tree. As a result, the model prediction is computed as the sum of outputs from
all trees (instead of the average, as for RF).

BRTs share some of the advantages of RFs regarding their robustness (low dependence
on the training parameters) and a lower tendency to overfitting [20].

An in-depth description of the mathematical foundation of these algorithms is out of
the scope of this article. They can be found in many publications with different viewpoints,
from theory to practice, a selection of which is included in Table 1.

Table 1. Reference publications on the ML algorithms considered.

Relevant Publications

Algorithm Theory and Fundamentals Practical Implementation

Neural networks [35] [7,8]
Support Vector Machines [38,39] [18,40,41]
Random Forests [36] [19,42]
Boosted Regression Trees [43,44] [20,45]

3. Methodology Proposed for Model Validation and Verification

The main concepts coined for general verification and validation of simulation models
can be summarised, based on Sargent’s framework [22], as follows:

• Model verification is “ensuring that the computer program of the computerized model
and its implementation are correct”.

• Model validation is a “substantiation that a computerized model within its domain of
applicability possesses a satisfactory range of accuracy consistent with the intended
application of the model”.

96



Water 2021, 13, 2717

• Model accreditation is determining if a model satisfies specified model accreditation
criteria according to a specified process.

• Model credibility is the concern with developing in (potential) users the confidence
they require to use a model and in the information derived from that model.

A model may be valid for one set of experimental conditions and invalid for another.
Performing model verification and validation is usually part of the (entire) model develop-
ment process. The graphical paradigm developed by Sargent [22] was adapted for dam
engineering (Figure 4).

Figure 4. Simplified version of the modelling process for dam engineering, adapted from [22].

These definitions presented by Sargent [22] were updated for the case of data-based
models in the field of dam safety and dam engineering. Thus, specialists in dam safety
activities can consider the verification and validation of ML models for the interpretation
of structural dam’s behaviour that:

(i) The problem entity is the system (real) composed of the reservoir, the dam and
its foundation.

(ii) The conceptual model is the mathematical/logical/verbal representation of the prob-
lem entity developed for a particular study, usually the analysis and interpretation of
the observed structural dam’s behaviour (based on recorded data).

(iii) The computerized model is the conceptual model implemented on a computer. In this
case, machine learning was adopted for the development of the model simulation.
A critical aspect of this topic is that the person who develops the ML model (as a
programmer or as a software user) must have a strong knowledge of how machine
learning techniques work and be familiarized with the programming language or
with the software in use.

(iv) The conceptual model validation is defined as determining that the theories and
assumptions underlying the conceptual model are correct and that the model repre-
sentation of the problem entity is “reasonable” for the intended purpose of the model.
For example, dam engineers usually perform this validation through the following
questions: Is the horizontal displacement of the dam body increasing with the increase
of hydrostatic water effect? Is the displacement downstream or upstream? Is the range
of displacements higher near the crest? Is the structural response due to the air temper-
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ature variations similar to a sinusoidal shape with an annual period? Can the effects
of the hydrostatic pressure, temperature, and time changes be evaluated separately?

(v) Computerized model verification is defined as assuring that the computer program-
ming and implementation of the conceptual model are correct. In the case of data-
based models used in dam engineering, this is performed through the knowledge
of the functioning, the field of application and the range of validity of the machine
learning methods. The computerized model is developed and tested to verify if the
conceptual model is well simulated using a “training set” of data from the reservoir-
dam-foundation system (problem entity). For the computerized model verification,
two types of verifications can be performed: (i) the first regarding the verification of
the programming code (if a home-made software is used) or regarding parameters
and to the learning method adopted in each case, and (ii) the second regarding the
verification of the conceptual model must be supported by a specialist with a strong
knowledge about the dam’s behaviour.

(vi) Operational validation is defined as determining that the model output behaviour
has sufficient accuracy for the intended purpose over the domain of the intended
applicability. This is usually achieved through the knowledge of the performance
indicators of the data-based models developed. In some cases, a new set of data from
the reservoir-dam-foundation system is used to validate the model.

(vii) Data validity is defined as ensuring that the data necessary for model building,
evaluation and testing, and conducting the model experiments to solve the problem
are adequate and correct. This is an important task usually performed through the
quality control of monitoring data—e.g., repeatability and reproducibility studies [46],
comparison between manual and automated measurements [47], the metrological
verification of the measuring devices [48], training of the operators, and through the
quantification of the measurement uncertainties in dam monitoring systems.

Verification and validation must be performed again when any change is made to the
model. For problem entity, some changes can result from some incident, change in the
properties of the dam body (e.g., due to changes in concrete proprieties due to alkalis-silica
reactions) or even improvement works performed in the structure or surrounding, e.g.,
due to tunnel excavations near the dam body for the construction of power boosts. In
typical situations, these models are used to characterize the pattern of the structural dam
behaviour in normal conditions of exploitation and then identify possible changes in the
structural condition of the dam.

In addition to the work used as the primary reference, several works [49–54] present
several validation techniques in different areas of expertise. Some of them have been used
in dam engineering for the validation of traditional models.

Based on the referred before, the authors propose the adoption of the following tech-
niques for the verification and validation of ML models for dam behaviour interpretation:
historical data validation, parameter variability-sensitivity analysis, predictive valida-
tion, comparison to other models, and analysis of the time evolution of the residuals, as
presented in Figure 5 and succinctly described in Table 2.

In dam engineering, the HST approach is consensually accepted, as referred before.
This approach assumes that the effects of the main loads (water level and temperature
variations) on the structural response can be considered independently (known as sep-
aration effects). This can be checked by applying a sensitivity analysis as proposed in
this work. Indirectly, the potential risk of dams (low probability of accident but with very
high consequences) is an aspect that justifies the need for robust model validation and
verification process.

98



Water 2021, 13, 2717

Figure 5. Proposed techniques for the verification and validation of ML models for dam
behaviour interpretation.

Table 2. Description of the proposed techniques for model validation and verification of ML models
for dam behaviour interpretation, adapted from [22].

Validation
Technique

Description

Historical data
validation

Part of the data is used to build the model, and the remaining
data are used to determine (test) whether the model reproduces
the behaviour of the system.

Sensitivity analy-
sis

The values of the input variables are changed and the effect on
the model output is analyzed, which should resemble the ob-
served behaviour of the real system. This technique can be used
qualitatively—directions only of outputs—and quantitatively—
both directions and (precise) magnitudes of outputs.

Predictive vali-
dation

The model is used to generate predictions of the behaviour of
the system, which are later compared to the observed response
to identify anomalies and draw conclusions regarding the safety
state of the dam. The data may come from an operational system
or be obtained by conducting experiments on the system, e.g.,
field tests.

Comparison to
other models

This action is transversal and is performed for all three previous
processes, i.e., results of different models in terms of historical
data validation, sensitivity analysis, and predictive validation are
compared and discussed.

Time evolution
of the residuals

This action allows to easily identify if there are singularities on
the observed behaviour or sometrend (such as a change of the
observed pattern) over time.

The mathematical calculation and the graphic representation presented in the follow-
ing sections were supported by the R project software and several packages [55–62].

4. Case Study
4.1. The Salamonde Dam

Salamonde dam (Figure 6) is located in the Cávado River, which flows through north-
western Portugal, being part of the hydro-electrical system of Cávado-Rabagão-Homem
owned and operated by EDP [63]. The Salamonde dam consists of a double curvature
arch. The construction completion date was 1953. The maximum dam height is 75 m,
and the total crest length is 284 m. The maximum reservoir water level is 280.0 m, with
a total storage capacity of 65 hm3. Following the best technical practices, the monitoring
system of the Salamonde dam aims at the evaluation of the loads, the characterization of
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the rheological, thermal and hydraulic properties of the materials, and the evaluation of
the structural response.

The monitoring system of the Salamonde dam consists of several devices, which
measure physical quantities such as concrete and air temperatures, reservoir water level,
seepage and leakage, displacements in the dam and on its foundation, joint movements,
and pressures, among others. The deformation of the dam body is controlled with five
inverted pendulums (FP1 to FP5).

In this case study, the measurements of the (absolute) horizontal displacements (radial
direction) measured at the highest base (at 277.07 m) of the combined FP3 and FP5 pendu-
lums is analysed (FP3/5–277.07 m). The location of the FP3/5–277.07 m base is shown in
Figure 6.

Figure 6. Salamonde dam: Upstream and downstream dam faces and pendulum distribution.

4.2. The Analysed Data

The data analysed corresponds to a period between January 2000 and December 2019,
resulting in more than 934 observations per variable. The data between January 2000
and December 2014 was used for training the ML models. The dam behaviour and its
structural condition during the period of the training set, are considered adequate by the
dam engineering specialists. So, the main purpose is to obtain ML models able to represent
the behaviour pattern observed in the training set with a good generalization capability.
Once the ML models are generated, the purpose is to use them in the day-to-day dam
monitoring and safety activities. Thus, the data from the time period between January 2015
and December 2019 was adopted as a predicted set. The time evolution of the reservoir
water level and radial displacements in the referred FP3/5–277.07 m base are presented in
Figure 7. The statistical characterization of the radial displacement and of the water height
variations is presented Table 3.
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Figure 7. Radial displacements in FP3/5–277.07 m and reservoir water level along time.

Table 3. Statistical parameters for the radial displacement measured in the FP3/5–277.07 m and for
the reservoir water level.

Radial displ. (mm) Water Height (m)
Training Set Predicted Set Training Set Predicted Set

Mean (mm) 14.49 9.90 66.16 69.09
Max (mm) 39.9 26.9 74.1 73.46
Min (mm) −4.1 −3.5 45.8 62.64
σ (mm) 10.58 7.69 6.60 2.60

The structural response of the displacement at any point of the dam is strongly
related to the corresponding variation in the water level in the reservoir. The observations
presented in Figure 7 were used for the computation of the models presented in this work.
Signs (+) indicate displacements towards upstream and signs (−) towards downstream.

A characterization and knowledge of the main data prior to any deep analysis are
essential to avoid misinterpretation of the dam behaviour. One part of this task is usually
performed through expedite data visualization, as presented in Figure 7. Figures 8–11 can
also support this first analysis in order to identify the domain of the training set, in terms
of (i) the water level (Figures 8 and 9) and also the thermal (indirectly to the range of data
in a month) loads and, (ii) in terms of the displacements observed (Figures 10 and 11).

Figure 8. Water height from 2000 to 2019, by month (training set: from 2000 to 2014 and predicted
set: from 2015 to 2019).

Figure 9. Water height from 2000 to 2019, in polar coordinate system, by month (training set: from
2000 to 2014 and predicted set: from 2015 to 2019).

101



Water 2021, 13, 2717

Figure 10. Radial displacements in FP3/5–277.07 m from 2000 to 2019 by month (training set: from
2000 to 2014 and predicted set: from 2015 to 2019).

(a) Positive values of measurements. (b) Negative values of measurements.

Figure 11. Radial displacements in FP3/5–277.07 m from 2000 to 2019 in polar coordinate system, by
month (training set: from 2000 to 2014 and predicted set: from 2015 to 2019).

4.3. The ML Models Developed

Once a basic knowledge about the main loads’ variations and radial displacement is
achieved, the ML models were developed following the HST approach. The ML methods
used were: the Multiple Linear Regression (MLR), Support Vector Machine (SVM), Mul-
tilayer Perceptron Neural Network (NN), Random Forest (RF) and Boosted Regression
Trees (BRT).

Although different ML models were considered in this work, the article focuses
on the methods and criteria for model validation and verification rather than on the
implementation of these models or their capabilities and limitations. This implies that
the models showed are not optimal, but they present an adequate generalization capacity.
In general, default training parameters were considered and a reduced amount of input
variables was included, being the same terms used for all models.

The MLR model was used for comparison since it is widely used and well known in
the dam engineering community. In addition, the radial displacement of an arch dam was
chosen, for which the HST approach is appropriate.

In this case study, the MLR model with the best performance for the radial displace-
ment of the FP3/5–277.07 m, yMLR was obtained as the sum of the hydrostatic pressure
term β4 × h4 (where h is the reservoir water level height and can vary between 0 and
75 m) and the temperature terms β5 × sin(d) + β6 × cos(d) to represent the effect of the
annual thermal variation of the temperature, where d = 2π j

365 and j is the number of days
between the beginning of the year and the date of the observation. No relevant variation
was recorded on the past behaviour of Salamonde Dam. This was verified in preliminary
fits of the MLR model, including time-dependent terms. The results (not shown) confirm
the negligible effect of time. Therefore, no time effect was considered in any ML model.

The input variables (h4, sin(d) and cos(d)) were used in the same form in all the ML
models. They were previously transformed in order to vary between zero and one. The
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regression coefficients of the MLR models obtained are β4 = −26.445, β5 = −12.378 and
β6 = −12.624, with β0 = 42.125; being the MLR model represented through the Equation (5).

yMLR = −26.445h4 − 12.378sin(d)− 12.624cos(d) + 42.125 (5)

The residuals were obtained through the difference between the observed horizontal
displacement and the corresponding predicted value. These values contain all information
that the model cannot explain.

Regarding the development of the remaining ML models:

• SVR model: a Gaussian RBF kernel with an ε-insensitive loss function was adopted
and several values of ε (0.05, 0.1, 0.5), C (1, 10, 20) and γ (0.1, 0.2, 0.3, 0.4) were tested
on 2/3 of the training data, and their accuracy evaluated on the remaining 1/3. The
best combination of parameters were ε = 0.1, C = 10 and γ = 0.3.

• NN model: Every neuron in the network is fully connected with each neuron of the
next layer. A logistic transfer function was chosen as the activation function for the
hidden layer and the linear function for the output layer. Parameter calibration was
used for the NN model to select the number of neurons in the hidden layers: models
with 3, 4 and 5 neurons were tested. To find out the optimum result, 15 initializations
of random weights and a maximum of 1500 iterations were performed for each NN
architecture. A cross-validation technique was adopted to select the best NN: 65%
of the training set was used for training, 20% of the training set was used to choose
the NN with better performance and 15% of the training set was used to check the
performance of the NN model.

• RF model: Default parameters were used for the RF model, i.e., 500 trees and one
input variable randomly taken for each split.

• BRT model: Default parameters of the gbm package [62] were applied, with 300 trees
in the final model.

Higher prediction accuracy may be obtained for the case study after a throughout
selection of variables and model calibration, but that is out of the scope of this article. By
contrast, stress is put on analysing the outcomes of the models and their comparison with
reference methods and engineering knowledge.

5. Results and Discussion

The results obtained from the proposed model validation and verification techniques,
splited in five steps, are presented and discussed in the following sections (Figure 12).

Figure 12. Workflow of the proposed techniques for the verification and validation of ML models for
dam behaviour interpretation.

5.1. Step 1: Historical Data Validation

The availability of monitoring data for a certain period is a requirement for fitting any
predictive data-based model. In general terms, reserving part of the data for validating
the model is always a good practice. The primary step in model validation is thus the
comparison between model predictions and the observed response for the time period used
for model fitting (training period). Once a model is obtained (e.g., a good performance and
generalization capacity are expected) and it is put into operation, new data is presented
to the model. In the case study, this new data, from the predicted period, results from
measurements obtained after the last measurement record of the training period. Being the
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training and the predicted periods part of historical data, a similar pattern within the two
periods is expected if there is no change in the behaviour of the reservoir-dam-foundation
system. As a consequence, a similar performance is expected when the predicted set is
presented to the model.

Three different ways of comparison are suggested. First, the time series of predictions
can be plotted together with the observations, i.e., placing the date in the horizontal axis
and both predictions and observations on the vertical one. This allows for analysing
whether the model predictions follow the variations observed due to changes in water
level and air temperature. A detailed analysis of this plot also permits identifying periods
of large errors, which can be later analysed in detail. Placing the time series of residuals,
i.e., the difference between predictions and observations is also a good practice. Figure 13
shows these plots for all models considered.

The nature of the predictive model needs to be considered for the interpretation of
these plots. In particular, the MLR model is less flexible and, therefore, usually presents
more bias and less variance. It can be taken as a reference for assessing the variance of ML
models, more prone to overfitting.

The reading frequency for water level is higher than for the response variable in
the selected case study. This is often the case in many dams without a fully automated
monitoring system. As a result, model predictions can be plotted with a higher degree of
detail, and thus conclusions can be drawn from the time evolution of predictions.

Having a low training error is a necessary condition for a ML model to be effective,
but it is not sufficient for ensuring high accuracy in practice. All ML models may overfit the
training data, in which case actual prediction accuracy, e.g., that obtained when new data
is fed to the model, is much lower. However, computing some error metrics is a useful first
step in model validation. Table 4 presents some performance parameters for the training
set: the mean error, mean(ε), the mean absolute error, mean(|ε|), the maximum absolute
percentage error, MAPE; the maximum absolute error, |εmax|, the minimum absolute error,
|εmin|, and the root mean square error, RMSE. As a complement to the table and plots
presented, the density function of the residuals is also useful, Figure 14. It can be seen that
the overall density functions resemble the normal distribution for all ML models, while
that of MLR shows a left tail.

Table 4. Performance parameters for the MLR, SVR, NN, RF and BRT models regarding the
training set.

MLR SVR NN RF BRT

mean(ε) (mm) 0.00 0.07 0.02 −0.01 0.02
mean(|ε|) (mm) 2.12 1.33 1.51 0.84 1.81
MAPE (%) 42.78 34.41 34.33 25.86 47.45
|εmax| (mm) 8.02 8.90 7.81 5.04 7.51
|εmin| (mm) 0.00 0.00 0.00 0.00 0.00
RMSE (mm) 2.60 1.88 1.97 1.15 2.22
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Figure 13. Measurements of the training set and output of the Machine Learning models for the
horizontal upstream-downstream displacements at FP3/5–277.07 m base, block GH.

Figure 14. ML model residuals distribution for the training data.

The performance metrics for the training set show higher accuracy for the SVR, NN,
RF and BRT models than for MLR model. This can be taken as a first verification of the
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validity of the calibration process. However, this result should be confirmed by the results
on an independent data set, not used for model fitting.

It should be noted that in spite of the low values of the mean absolute error and the
RMSE, MAPE is very high. This is because the target variable includes values close to zero,
for which even small prediction errors can result in very high MAPE (the error is divided
by the observed value). It is thus important to consider several performance parameters.

The graphical analysis of residuals (difference between predictions and observations)
is another helpful tool in model validation. This can be done by exploring the predictions
vs. observations plot, which is a conventional way of analysing predictive models. Adding
a straight line through the origin with a 1/1 slope helps the analysis, since it corresponds
to a perfect fit. These plots are included in Figure 13 for all models. In addition to the
spread of the results and their distance to the perfect fit line, these plots allow verifying the
sign of the errors and detecting changes for certain regions of the range of variation of the
target variable.

A modified version of the plots mentioned above that can be interesting in dam safety
analysis implies the separation of the overall predictions-observations couples as a function
of the month the measurements were taken. Figure 15 includes this representation for all
predictive models and the training data. Vertical lines were added to highlight the range of
variation of the response variable for each month. This is highly relevant for all models,
but particularly for those based on ML: their applicability is restricted to such range of
variation of the data. Their higher flexibility implies that their reliability greatly decreases
when new inputs are taken out of the scope of the training data. So, the application of any
ML model (even MLR models) for new data out of the domain of the training set is not
recommended because meaningless or even erroneous results may be obtained.

5.2. Step 2: Sensitivity Analysis

The identification of the effect of each external variable is often used when analysing
predictive models in dam safety. Different procedures can be applied, partially depen-
dent on the nature of the model. ML techniques are often criticised for being ”black
boxes”, difficult to interpret. These models can capture interactions among inputs and
non-linearities, making them more complex and challenging to analyse. Nonetheless, some
specific methodologies for model interpretation can be applied to particular algorithms.
For example, relative influence and partial dependence plots helped detect thermal inertia
in an arch dam from a model based on BRT [20]. Other techniques have been proposed for
the same purpose [64].

In the case of MLR, the conventional procedure implies plotting the predictions when
the input under analysis is varied along with its range of variation while other inputs are
fixed to their mean values. This is the simplest form of sensitivity analysis. This approach
has limitations since the external effects are not independent (water level variations affect
the thermal field in the dam body). However, it is simple and well known and can be
applied to any predictive model. Therefore, it was used in this work. The results are shown
and discussed herein.
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Figure 15. ML model values vs measurements of radial displacements in FP5/5–277.07 m from 2000
to 2014 (training data). The vertical lines are the maximum and minimum measured values obtained
during the training set.

5.2.1. Effect of Water Level

The analysis of the effect of water level as learned by each predictive model was made
based on the plots shown in Figure 16. Curves show models predictions for the 15th day of
each month, a vector of values of the water level taken with an interval of 0.1 m, along the
possible range of variation. The available measurements are also plotted for reference, as
well as vertical lines highlighting the maximum and minimum observed values. However,
the distance from the curves to the observations does not reflect the actual prediction errors,
since the actual day of record is, in general, different from the 15th for the observations.

The effect of hydrostatic load on the radial displacements in arch dams is well known:
higher water levels are associated with deformation toward the downstream side and
vice-versa. This was captured by all models considered, though relevant differences can
be mentioned.

The curves for models based on trees (BRT and RF) show high non-linearities for some
months, e.g., February, June, August. In addition, predictions follow a series of steps as the
water level increases. This is due to the underlying mechanism for fitting these models.
The regression trees used are created by dividing the input space into adjoint regions and
computing predictions independently.
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Figure 16. Sensitivity analysis due to the hydrostatic effect for Machine Learning model results based
on the training data. The vertical lines are the maximum and minimum measured values obtained
during the training set.

By contrast, NN and SVR, both based on non-linear smooth transformations of the
inputs, resulted in smooth effects. In general, this can be considered as more representative
of the actual effect of the hydrostatic load. Nonetheless, the results for some months are
not in accordance with engineering knowledge. For instance, the curve for July of several
models shows a horizontal part followed by a stretch with a high slope, then another
inflection. Similar shapes are obtained for May and June. This can reasonably be attributed
to some degree of overfitting. It should be noted that a small amount of observations
is available for these months and low water levels, whereas the density of records for
high levels is greater than for low levels. By contrast, the SVR model shows low variance
without inflection points and results close to those obtained from the MLR model.

Since predictions were generated for the whole range of water level variation and all
months, this plot is also helpful in observing the behaviour of the models when extrapo-
lating. Tree-based models take constant values when predicting out of the training range.
This results in close to horizontal sections of the curves (e.g., January, February, March).
The results for other models show the increasing variance from MLR (the lowest) to SVR
and NN.

The reliability of the results for all models is nonetheless poor for low water levels
and winter months since the information available in the training set for those conditions
is also poor.

However, the disagreement observed between the results for the water level effect
and the physical phenomenon does not imply that the correspondent models have to be
discarded for prediction. Their performance can be useful as far as the input variables
remain within the range of variation of the training set. This is actually the situation in the
case study: the reservoir level in the prediction period remained high (Figure 7).

5.2.2. Effect of Temperature

A similar process was followed to compute the effect of temperature on the radial
displacement. It should be remembered that temperature is indirectly considered in the
models as a function of the calendar day. Therefore, the curves are calculated in this case
from the predictions for each date. As for the water level, the range of variation from the
training set was divided into 8 regions with the same amount of records. Predictions are
made from the mean level for each region.
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Figure 17 show the results. The size of the intervals reflects the scarcity of records for
low water levels: the first two regions include around 8 m of water variation to have as
many records as for 1–3 m with a high water level.

Figure 17. Sensitivity analysis due to the thermal effect for Machine Learning model results based
on the training data. The vertical lines are the maximum and minimum measured values obtained
during the training set.

The shape of the curves of all models again matches the knowledge on the physical
process: high temperatures result in concrete expansion, which generates deformations in
the upstream direction due to the mechanical restrictions of arch dams. The same reason
results in deformation to the downstream side for the first months of the year.

The thermal effect is also well known in these structures and was captured by the
models. The higher deformations toward upstream do not match up with the hottest
months, but some time later. This reflects the delay between changes in air temperature
and the thermal field in the dam body.

5.3. Step 3: Predictive Validation

The same methods used for historical data can be applied to the recent period of
records, which was not used for model fitting.

The analysis of predictions for this period shall focus on detecting whether overfit-
ting exists in ML models. First, prediction errors were computed (Table 5). The highest
prediction accuracy was obtained for MLR, though differences were slight.

The comparison between these results and those for the training set reveals a relevant
difference between MLR and ML models: while the performance of MLR is better for the
prediction set, all the others ML models featured lower accuracy. This result is reasonable
and shows the tendency to overfitting of ML models. MLR is less flexible, which is a
limitation under some circumstances (if more relevant inputs are involved or if response
variables of a different nature need to be considered) and reduces the risk of overfitting.
It can be concluded that training error is a good estimate of generalization capability for
MLR but not for ML models. This implies that using a separated part of the training set
to evaluate model accuracy is essential when ML models are used (e.g., NN), but not as
critical for the MLR model.
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Table 5. Performance parameters for the MLP, SVR, NN, RF and BRT models regarding the predicted
set.

MLR SVR NN RF BRT

mean(ε) (mm) −0.61 −0.25 −0.29 −0.47 −0.52
mean(|ε|) (mm) 1.66 1.84 1.85 1.99 1.92
MAPE (%) 38.41 34.85 37.26 46.88 58.21
εmax (mm) 4.69 7.05 7.44 6.92 6.47
εmin (mm) 0.00 0.01 0.01 0.00 0.02
RMSE (mm) 2.02 2.39 2.40 2.51 2.42

The difference between accuracies on both datasets also depends on the distribution
of the target variable in both sets. In the case study shown, the water level in the prediction
period remains high. Consequently, the performance metrics of the models for this period
correspond to their predictive capability for high water levels. In this case, since high levels
were more frequent in the training set, model accuracy is also higher. Hence the overall
prediction accuracy can be expected to be lower for all models. This should be taken into
account in practice if the model is applied during a period of low hydrostatic load.

As in the training set, MAPE is high for all models for the same reason: a relatively
low error for small target values may result in extremely high MAPE. As an example, the
maximum MAPE for the MLR model is 560% for an observed displacement of 0.7 mm.
This suggests that MAPE can be misleading when applied to certain target variables.

Figure 18 shows the time series of predictions and observations with the corresponding
residuals. A first exploration of these plots may lead to the conclusion that all models
have excessive variance: the time series of predictions is noisier than that of observations.
However, it should be reminded that the reading frequency of the water level is higher
than that of the displacements, and all predictions are shown in the plot. In addition, the
time series of reservoir level is indeed noisy (maybe due to the daily variations of the water
height in the reservoir). Taking these factors into consideration, the variance in predictions
seems reasonable. In addition, similar variability can be observed for MLR and ML models.
These conclusions were confirmed from the comparison between the standard deviation of
the observations and that of the predictions from each model (see Table 6).

The plot of predictions vs. observations (Figure 19) shows no relevant differences
to that for the training set. However, this kind of representation may be useful to check
the performance and confirm that the prediction is within the domain of the horizontal
displacements considered in the training set (vertical lines in the figure).

Table 6. Standard deviation of predictions and observations for the training and predicted periods.

Time Series Standard Deviation (mm)
Training Set Predicted Set

Observations 10.58 7.69
MLR 10.25 7.86
SVR 10.43 7.9
NN 10.45 7.97
BRT 10.35 8.12
RF 10.19 7.51
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Figure 18. Measurements of the predicted set and output of the Machine Learning models for the
horizontal upstream-downstream displacements at FP3/5–277.07 m base, block GH.

5.4. Step 4: Time Evolution of Residuals

The effect of time is often interpreted as the contribution of irreversible deformations
to the displacements since, in principle, such term encompasses all effects not explained by
the loads. This is the case of displacements in arch dams. In other typologies and response
variables, other inputs may play a role and a more detailed analysis is recommended.

In the case study considered, preliminary tests on the MLR models showed no relevant
irreversible effects. As a result, time was not considered as input in the models. However,
further verification can be made even in models where time was considered negligible.
Since model predictions are solely based on the external loads (temperature indirectly
considered from the calendar day), the temporal evolution of the residuals may reveal
unforeseen irreversible effects. This approach is similar to the analysis of the ”Corrected
measurements” proposed by Guo et al. [65]: the difference between model predictions
without time-dependent input and observed data can be considered as the evolution of the
response of the dam for identical load conditions over time. It can be thus be expressed as
presented in Equation (6):
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CM = Yobs −Ypred (6)

provided that time is not considered in the calculation of Ypred.
Guo and co-authors also suggested fitting a linear model to the CM to draw conclu-

sions on the evolution of the dam behaviour with the Equation (7):

CM = a0 + a1t + ε (7)

where t is the time.

Figure 19. ML Model values vs measurements of radial displacements in FP5/5–277.07 m from
2015 to 2019 (predicted data). The vertical lines are the maximum and minimum measured values
obtained during the training set.

The linear model can later be analysed to identify irreversible effects. This procedure
was followed for all models. In all cases, the slope of the linear fit is positive and small,
which might indicate a temporal evolution of the deformations toward the upstream
direction, Figure 20. However, the fit of the linear model to the residuals is also poor for all
models (R2 below 0.1), so no reliable conclusions can be drawn in this case.
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Figure 20. Residuals along the training and the predicted sets.

5.5. Step 5: Comparison to Other Models

The interpretation of the structural behaviour through different models is fundamental
to support an informed decision. This step was performed along with the four steps before,
verifying that the presented ML models are suitable for the interpretation of the horizontal
displacement analysed in the case study.

6. Conclusions and Final Remarks

In the day-to-day safety control of dams, data-based models are developed to anal-
yse and predict structural dam behaviour (such as displacements in a concrete dam),
considering main loads effects (such as the hydrostatic, temperature, and time effects).

The use of data-based models, namely based on HST and HTT approaches, using
machine learning techniques, has had an interesting evolution in dam engineering. World-
wide, the increase in the day-to-day use of ML techniques is expected, mainly in large
hydroelectric companies and entities responsible for dam safety control activities. In order
to ensure that models are adequate, validation and verification of the models by specialists
with expertise in dam engineering is necessary. In this work, the authors present sev-
eral recommendations, with scientific and technical frameworks, to validate and verify
ML models.

Based on the specificity of the dam safety control activities, five techniques to perform
model validation and verification were proposed and applied to the following ML models:
multiple linear regression, support vector machine, multilayer perceptron neural network,
random forest, and regression trees. These five techniques were: historical data validation,
sensitivity analysis, predictive validation, time evolution of the residuals, and comparison
to other models. All the models presented showed to be suitable for the analysis and
interpretation of the horizontal displacements presented in the case study. The proposed
validation and verification of the ML models is based on five techniques that were never
performed simultaneously. Sensitivity analysis is performed on all ML models, which is
crucial for improving confidence in their day-to-day use.

Performing model validation and verification is part of the model development pro-
cess. Our reflections and contributions are based on the article presented by Sargent [22]
and on the authors’ experience acquired along years of activity in the field of dam safety
control. They can be summarised as follows:

113



Water 2021, 13, 2717

• Dams are made of, and founded on, materials whose properties change with time,
so each data-based model has a limited lifetime (from a couple of months until
several years) and a regular update of the parameters of the models based on “new
data” is recommended. However, the model updating must be performed with data
representing the typical (and acceptable) dam behaviour.

• Good data quality is necessary to obtain good ML models, but an adequate learning
process is also necessary. The performance of the ML models is a consequence of
the quality of data (directly related to the measurements uncertainties or even errors
from the measuring process) and the suitability of the ML techniques adopted for the
intended purpose (e.g., analysis and interpretation of the dam behaviour).

• ML models showed to be able to learn the pattern behaviour of the data (sometimes
unseen from the users of the data). Some ML techniques are too prone to overfitting.
However, an adequate generalization capacity can be achieved if a suitable learning
strategy is adopted.

• Day-to-day dam safety activities based on data-based models are usually split into
two parts: model development and operation. Each part uses different data (from the
same source) recorded along time: the training and the prediction sets. However, these
two sets are recorded measurements. So, regarding the historical data validation, two
strategies can be performed: (i) use a part of the training set to validate the behaviour
of the model or, in other words, to verify the adequacy and the generalization capacity
of the model, and (ii) to use the own prediction set for this purpose (as usually verified
in MLR because the shape of the terms adopted is well known in this field).

• To perform predictive validation is a routine activity of dam engineers. This process of
forecast the structural response (based on known inputs) and compare to the observed
response is fundamental to identify possible measurement errors or some change of
the dam behaviour pattern observed before (namely on the training set) in order to
draw conclusions regarding the safety state of the dam.

• The water level and the temperature variations are two important loads to be consid-
ered in the study of the dam behaviour, and their effect on horizontal displacements
in concrete dams is well known. For this reason, performing sensitivity analysis in
the model regarding these two loads is relevant to the model validation process. This
is more important because one premise of the HST approach (adopted in this work)
is that the effects of the hydrostatic pressure, temperature, and time changes can be
evaluated separately.

• The knowledge about the evolution of the residuals over time can provide beneficial
information about how the reservoir-dam-foundation system changes. The properties
of this system change over time. However, a slow time dependency variation is
expected in most dams in normal exploitation. Evidence of trends may be, for example,
related to changes in concrete proprieties due to alkalis-silica reactions.

• Using more than one predictive model and comparing the results is strongly rec-
ommended. This can also be useful if some of the models are based on the FEM,
particularly when complex behaviour is observed or when the interpretation of the
model suggests some potential anomaly.

ML methods have proven to be an interesting and suitable tool for developing data-
based models, increasingly relevant mainly when the amount of information increases
with the measurement history. Like any tool, it has to be used by specialists with a broad
knowledge of how it works in order to obtain data-based models that satisfy the needs
of the dam safety control activities. Within this continuous process, the validation and
verification of the ML models adopted are key to having suitable models for reliable
analysis and interpretation of the dam behaviour.

The proposed methodology for validation and verification of ML models can be
applied to the prediction and analysis of other dam typologies and physical quantities, such
as those related to the dynamic behaviour (e.g., frequencies modes) and hydro-mechanical

114



Water 2021, 13, 2717

phenomena (uplift pressure and seepage). This can increase the credibility of ML models
in the dam engineering community and thus foster their widespread implementation.
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Abstract: In the assessment of concrete dams in cold climate, it is common that the theoretical stability
becomes insufficient for load cases that include ice loads. However, the magnitude and return period
of these ice loads have a high degree of uncertainty. This study estimates the magnitude of ice loads
on eight concrete dam monoliths using measurements of their displacement from 29 winters. In
the displacement signals, events are identified and assumed to be caused solely by ice loads. The
observed displacement during an event is interpreted as an ice load using a load–displacement
relationship derived from FE simulations of each dam. These simulations show that ice loads of the
magnitudes given in design guidelines and recorded in previous measurements would significantly
affect the structural response of the studied dams. However, only small traces of ice loads can be
found in the observed responses of the studied dams. The estimated ice loads are significantly lower
than the ice loads recorded in traditional ice load measurements. These results indicate that the
average magnitude of ice load on an entire monolith is significantly lower than the measured local
pressures. This would imply that ice loads may be a smaller concern regarding dam safety than
previously believed.

Keywords: ice loads; concrete dams; back-calculation; dam safety; monitoring

1. Introduction

The ability to store water for electricity production, agriculture, or consumption is
essential for modern societies. A fundamental prerequisite for water storage is safe dams.
A failure of a dam may result in catastrophic consequences. Further, the construction and
rehabilitation of dams have a high economic and environmental cost. These costs can
be reduced if a dam’s operation without measures can be prolonged. To do so, with a
maintained high level of safety, adequate assessments are required. Therefore, refined
analyses and increased knowledge about the loads that act on dams facilitate prolonging
their life span, resulting in substantial economic and environmental benefits.

Dams are mainly designed to withstand the loads caused by the impounded water. In
addition to the pressure from the water, dams in cold regions may be exposed to loads from
an ice sheet. This ice load is caused by the restrained expansion or movement of the ice
and may constitute a significant fraction of the total horizontal loads. Current guidelines
for ice load on dams are typically based on the geographical location of the dam but do not
consider the local conditions [1–5]. In these guidelines, the design ice load varies between
50 kN/m and 250 kN/m. Such magnitudes often cause a theoretically insufficient stability
for load cases that includes ice loads in assessments of concrete dams in cold climate.
However, the magnitude and return period of the ice loads are today among the most
considerable uncertainty when evaluating dams in cold regions [6]. Furthermore, there is
a discrepancy between the number of dams where ice load is a theoretical problem, and
the fact that few dam safety incidents have been reported where large ice loads has been
identified as a cause.
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There are four categories of methods for measuring the ice load on fixed structures:
interfacial measurements, methods based on Newton’s second law, internal ice stress
measurements, and structural response monitoring/hindcast calculations [7]. A recent
systematic literature review of ice load measurements on dams compiled 123 unique record-
ings of seasonal maximum ice loads [8]. An overwhelming majority of these recordings
are performed with local stress sensors or interfacial stress sensors that are considerably
smaller than the dam–ice interaction area of interest. This difference leads to extrapolation
and uncertainty regarding the representativeness of the measured local stresses, compared
to the global structural load. One way to overcome this issue is by using the third mea-
surement method, structural response monitoring (SRM). With this method, the ice loads
are back-calculated from the measured response of the structure. SRM is the only ice load
measurement method that determines the global load [7]. The method is also relatively
cheap to implement and use, only requires work performed on land above water, and
the measurements can be used as a part of the dam owners continuous safety monitoring.
Despite these advantages, only a few cases are reported where this method has been used
for dams [9–12].

This study addresses this issue by back-calculating the ice load from observed dis-
placement from dam safety monitoring of eight dam monoliths from five different dams.
This is the first study to quantify the magnitude of ice loads on concrete dams based on
their structural response. The back-calculated ice loads also add empirical data on the
magnitude of global ice loads.

Sections 2–4 describe the methods and materials of this study. The two back-calculation
approaches used to separate the displacement caused by ice loads from those caused by
other loads are described in Section 2, and Section 3 describes the studied dams. Section 4
presents the analysis methods and their application. These methods include finite element
simulations of the ice–load–displacement relationship and the transient behavior of the
dams, data-based models to predict the behavior of the dams and calculations of ice loads.
The research findings are presented and discussed in Section 5, focusing on three key
themes: the expected structural response of the dams from ice loads, the accuracy of the
applied methods and derived ice loads, and their practical implications. The conclusions
from the research are summarized in Section 6. Table 1 explains the abbreviations that are
used in figures and tables throughout the paper.

Table 1. Abbreviations used in the paper.

Abbverition Full Name

AFDD Accumulated freeze degree days
BFN Bålforsen dam
Crest Crest displacments
FEM Finite element model
HTT Hydrostatic, Thermal, Time model
HST Hydrostatic, Seasonal, Time model
KRN Krokströmmen dam
PCA Principal component analysis
PC1 First principal component
RSE Ramsele dam
RMSE Root mean square error
RTN Rätan dam
R2 Coefficient of determination
SFF Storfinnforsen dam
WLA Water level amplitude

2. Back-Calculation of Ice Load

In the structural response monitoring method, the size of the ice load is back-calculated
from the measured response of the structure. The method requires linearity between the
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ice load and the response [7]. Provided that the behavior of the dam of interest is already
monitored, back-calculation of the ice load is performed in three steps:

1. Estimation of the relationship between applied ice loads and displacements, i.e., the
stiffness of the dam as a function of the ice load.

2. Separation of responses caused by ice loads from responses caused by other loads in
the measured signal.

3. Calculation of the magnitudes of ice loads based on (1) and (2), respectively.

Assuming that the relationship between the ice load I and the structural response u is
linear, the relationship between a change in load and response can be written as

∆I = KI∆u (1)

where KI is the structural stiffness with respect to the ice load. If the dam response to an
ice load is established, for example, from simultaneous measurements of ice load and dam
behavior, the stiffness can be calculated directly from the inverse of Equation (1). If not, the
stiffness can be estimated from a model

K̂I =
∆ Ĩ

∆ũ( Ĩ)
(2)

Here, ∆ Ĩ is the model ice load, ∆ũ( Ĩ) is the response, and K̂I is the estimated stiffness
with respect to the ice load.

An observed change in the structural response, ∆−→u , can be divided into three parts,

∆−→u = ∆u(I) + ∆u(Ic) + ε (3)

where ∆u(I) is the change caused by the ice load, ∆u(Ic) is the change caused by all other
loads on the dam, and ε is the observation error. Consequently, there are two main methods
to estimate the size of the ice load from the measured signal. Either by using data where
∆u(Ic) ≈ 0 so that Equation (3) is reduced to

∆û(I) = ∆−→u + ε (4)

where ∆û(I) is an estimate of ∆u(I), or by estimating ∆u(Ic) so that

∆û(I) = ∆−→u − ∆û(Ic) + ε (5)

From the estimated stiffness and the estimated measured response caused by the ice
load, its magnitude can be estimated as

∆ Î = K̂I∆û(I). (6)

In this study, two methods have been used to quantify ∆û(I); one event-based ap-
proach and one residual-based approach. These two methods are presented in the follow-
ing sections.

2.1. Event-Based Approach

Ice load on dams occurs as events [11,13–19], and such an event is characterized by

• a rise in load from an initial low level,
• a peak load, and
• a subsequent rapid decrease.

These ice load events predominantly last from hours up to a day, but can in some
cases, last several days [11]. Figure 1 shows examples of time-histories containing three
ice load events, one idealized time-history from a design guideline [20] and one measured
time history, from Hellgren et al. [21]. This event-shaped time history is caused by a
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combination of the loading mechanisms and the mechanical behavior of the ice. The main
load-causing mechanisms for ice load on dams are restrained thermal expansions and
water level fluctuations. These two mechanisms have short-term duration as the maximum
variation is finite and can occur as a slow change over an extended period or a rapid change
over a short period. Therefore, neither the temperature nor the water level can continuously
increase or decrease for more than a limited period. The mechanical behavior of fresh-water
ice is highly non-linear with a high initial creep rate. This creep relaxes the stress caused by
the mechanism presented above so that the ice load continuously decreases during periods
when no new load generating event occur.

With the first method, the ice load is back-calculated from events in the measured crest
displacement. The ice load affects the dam behavior, and an ice load event causes the dam to
deform in the downstream direction due to the increased load. By identifying displacement
events in the measured signal, i.e., where the dam displaces from a local minimum to a
peak, and if ∆u(Ic) ≈ 0 during such event, all displacements can be attributed to the ice
load. The assumption that ∆u(Ic) ≈ 0 for dams during an ice load event as the duration of
an event is insufficient for an ambient temperature change to affect the global behavior of
the dam and that water level variations related to ice loads are relatively minor for the dam.

Day 1 Day 2 Day 3 Day 4 Day 5
t

I(t
)

Event 1 Event 2 Event 3

Start
Peak
End

Idealized
Example

IL

ΔI

Figure 1. Illustration of ice load events with an idealized and real case. The idealized case is after
ISO-19906 [20] and the example from Hellgren et al. [21].

A displacement event can be identified in the dam monitoring signal as the difference
between a local minimum and a maximum. By doing this for the entire signal, N events
can be identified.

∆−→u =< ∆−→u1 , · · ·∆−→uN > . (7)

After these events are identified, the maximum ice loads are estimated as follows:

∆Î = K̂I∆
−→u . (8)

The total ice load, IT is the sum of a long-term ice load, IL and an event ice load ∆I, as

IT = IL + ∆I (9)

The long-term load describes the ice load at the start of the event and is a pressure
built up in the ice over the winter. Comfort et. al. [11] suggest that the long-term ice load
IL is a function of the ice thickness, hi, and the ratio of the water level amplitude,

IL = 37(hi − 0.25) +
1.47
a/hi

(10)
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where a is the average water level amplitude over two days. Equation (10) provides the ice
load in kN/m and is only valid for an ice thickness greater than 0.25 m and a ratio between
a and hi greater than 0.08.

2.2. Residual-Based Approach

In the second method, the residual-based approach, a model is used to estimate the
displacement of the dam caused by variation in all other factors except the ice load, u(Ic).
For this, a model is used where

u(Ic) = f (H, T, t). (11)

Here, H is the influence of hydrostatic pressure, T is the variation caused by changes in
the ambient temperatures, and t is the irreversible changes that may occur over time. These
three phenomena are the main causes of variation affecting the dam’s global behavior. After
the displacement caused by the complementary loads to the ice load has been estimated,
the signal from the dam monitoring can be adjusted by removing these effects.

uR = −→u − f (H, T, t) (12)

For a model that perfectly describes the influence of Ic on the dam, uR contains the
effect from the ice load and the measurement errors. Consequently, the total ice load is
estimated as

Î = K̂I∆uR. (13)

Figure 2 shows the difference between the two methods used to identify displacements
caused by ice loads for a fictive displacement time-series.

t

u(
t)

Event 1 Event 2

Start
Peak

Observed displacements 
Predicted displacements, 
caused by all factors except the ice load 

Δu1 Δu2

uR

uR

Figure 2. Illustration of the two methods used to identify displacements caused by ice loads in the
observed displacements.

3. Studied Dams

This study was performed as a case study where the ice load was back-calculated using
measurement data from four concrete buttress dams: Bålforsen (BFN), Storfinnforsen (SFF),
Ramsele (RSE), and Rätan (RTN), and one arch dam, Krokströmmen (KRN). From the four
buttress dams, data from seven independent monoliths were included in the analysis, four
from Storfinnforsen and one from each of the other dams. All dams are located in Sweden.

3.1. Dams

The five studied dams are all run-off-the-river plants, with small variations between
the maximum and minimum allowable water levels in the reservoir (<0.5 m). All of these
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dams also have an insulation wall installed on the downstream side. These insulation
walls reduces the displacements caused by seasonal temperature variations and thereby
limits the risk of propagation of thermal cracks. For several of the buttress monoliths, the
insulation wall was installed after the observation of through-cracks. The crack pattern for
respective monolith includes several of the four crack types typically observed on buttress
dams in Sweden: inclined cracks from the front plate that have propagated in the buttress
toward the foundation, inclined cracks that have propagated from the inspection passage
toward the front plate, and vertical cracks originating from the foundation, see [22,23].

The combination of small changes in water level and concrete temperature means that
the dams are exposed to minimal external load changes other than the ice load. Therefore,
these dam monoliths are suitable for back-calculations of the ice load. Table 2 provides
a summary of the included monoliths. Below, a short presentation of each studied dam
is given.

3.1.1. Bålforsen

Bålforsen hydropower dam (BFN) is located in the river Umeälven in the northern
region of Sweden and was constructed in 1958. In this study, data from concrete buttress
monolith number 18 were used. The properties of the monolith are summarized in Table 2
and a sketch of the section and the locations of sensors are shown in Figure 3b. The data
included from the dam are

• the crest displacements measured with a hanging pendulum,
• local displacements measured with five crack width sensors with a 220 mm center to

center distance between anchorage points
• the air temperature outdoors and in the enclosed area between the front plate and the

insulation wall,
• the water temperature at the depths of 3 and 17 m, and
• water level.

3.1.2. Rätan

Rätan hydropower dam (RTN) in the river Ljungan, is a 31 m high concrete buttress
dam constructed in 1968 and located 20 km north of the geographic midpoint of Sweden,
in the northern ice load region. At Rätan, ice load measurements have been performed
using a load panel between 2015–2021, see in [19,21]. Monolith 15, the monolith where
the load panel is attached, is included in this study. The dimension of the monolith, its
prominent cracks, and the position of the sensors are shown in Figure 3a. The monolith is
equipped with a hanging pendulum, that unfortunately is non-functioning. Instead, data
from measurements of local displacements were used. The included data are

• local displacements measured with two crack widths sensors with a 360 mm center to
center distance between anchorage points;

• the air temperature outdoors and in the enclosed area between the front plate and the
insulation wall;

• the water temperature at the depths of 3, 12, and 23 m; and
• water level.

3.1.3. Krokströmmen

Krokströmmen hydropower dam (KRN) is located in the river Ljusnan, 30 km south
of the geographical midpoint of Sweden and in the northern ice load region. The concrete
dam is an arch dam that was constructed in 1952. The properties of the dam are presented
in Table 2 and the section of monolith 10 are shown in Figure 3h. The included data are

• the crest displacements measured with a hanging pendulum located at monolith 10,
• the air temperature outdoors,
• the water temperature at the depths of 3 and 20 m, and
• water level.
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Figure 3. Dam sections for the monoliths used in the case study. The light gray line shows a sketch
of the location of the cracks included in the simulation, and the dark gray shows the insulations
walls. (a) RTN, (b) BFN, (c) SM03, (d) SM42, (e) SM44, (f) SM46, (g) RSE, (h) KRN. MaWL: Maximum
retention water level, the abbreviations for the dam names are presented in Table 2.

This data from the external variables are available with hourly frequency from Decem-
ber 2016. However, the logging of the pendulum was non-functioning from November
2017. Thereby, only approximately one year of crest displacement recordings are available.

3.1.4. Ramsele and Storfinnforsen

Ramsele (RSE) and Storfinnforsen (SFF) are two concrete buttress dams built in the
1950s, located 10 km apart in the Faxälven river in the the northern ice load region of
Sweden. The Storfinnforsen concrete dam consists of 81 independent concrete buttress
monoliths, of which four are equipped with hanging pendulums. The monoliths are,
Monolith 03 (Figure 3c), Monolith 42 (Figure 3d), Monolith 43 (Figure 3e), and Monolith
46 (Figure 3f), referred to as M03, M42, M43, and M46, respectively. The concrete dam
at Ramsele consists of 49 independent monoliths, where the tallest monoliths are slightly
higher than 40 m. From Ramsele dam, data from Monolith 23 (Figure 3g) was included in
this study.

Both of these dams have recently undergone extensive renovation and rehabilitation
measures, which includes a new monitoring program and installation of post-tensioned
rock-anchored tendons through the buttress wall to increase stability. New sensors have
been continuously added after the start of the new program in 2019. Therefore, the avail-
ability of data from secondary measurement such as indoor temperatures and water tem-
peratures vary but are overall sparse. The data included from the dam are
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• the crest displacements measured with a hanging pendulums,
• the air temperature outdoors, and
• water level.

Table 2. Overview of basic characteristics, the data and the performed analysis for each dam.

Type Buttress Arch

Dam Rätan Bålforsen Storfinnforsen Ramsele Krokströmmen

Name RTN BFN SM03 SM42 SM43 SM46 RSE KRN

In
fo

Monolith 15 18 - 3 42 43 46 23
Length [m] 9.0 8.0 8.0 8.0 8.0 8.0 8.0 160
Height [m] 31.0 20.75 18.0 41.0 39.0 36.0 37.0 45.0

D
at

a

Start * 13/10 12/12 19/11 20/10 19/02 19/02 19/07 16/12
End * 21/05 21/05 21/06 21/06 21/06 21/06 21/02 17/11

Crest - X X X X X X X
Crack width X X - - - - - -

TO X X X X X X X X
TI X X - - - - - -
TW X X - - - - - X
WL X X X X X X X X
Ice load X † † † † † † †

A
na

ly
si

s

1-I X X - - - - - X
1-II X X - - - - - X

2-I X X X X X X X X
2-II-i X X X X X X X X
2-II-ii-A X X - - - X X -
2-II-ii-B X X - - - - - -

X: Yes; -: No; *: Year/Month; †: Not available, data from Rätan.

4. Analysis Methods

The eight monoliths were studied in two types of analyses: a pre-study that investi-
gates the influence of previously measured ice loads on the transient behavior of the dams
under normal conditions, and estimating the ice loads these dams have been subjected to
from their measured structural response. The following analyzes were performed:

1. Pre-study

I Simulation of transient behavior without ice load
II Simulation of transient behavior with ice load

2. Estimation of ice loads

I Simulation of ice load–displacement relationship
II Back-calculation

i Event identification
ii Residual

A. Hydrostatic, Seasonal, Time (HST)
B. Hydrostatic, Thermal, Time (HTT)

Table 2 presents the performed analysis for each dam. A more detailed presentation of
each analysis is given in the following sections.

4.1. Finite Element Analyses

Three different FE-analyses were performed: one simulation of the transient behavior
of the dam without ice load (1-I); one simulation of the transient behavior with applied ice
load (1-II); and one to estimate the stiffness, i.e., the ice load–displacement relationship (2-I).
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All numerical analyses were performed with Abaqus [24], version 2021, using the standard
implicit solver. The models used for the simulations includes the dam and part of the
surrounding rock. All models are reused from the previous studies, and a more thoughtful
description of the FE-models are given in the respective studies, see Table 3 for sources.
The dams were modeled in 3D with 8-node linear brick elements with reduced integration
and hourglass control (DC3D8 and C3D8R in Abaqus) or 6-node linear triangular prism
elements (DC3D6 and C3D8 in Abaqus), see Table 3. A maximum element size of 0.3 m.
was used for the dams. The elements of the rock match the dams at the interface surface
with increasing size towards the outer edge of the models. In the mechanical model, the
boundary conditions were applied to the rock by prohibiting displacements perpendicular
to each side at all outer boundaries of the rock, except the top surface. The interaction
properties for the interface between dam and foundation, and a linear elastic constitutive
model were used for all materials with properties chosen according to previous studies as
presented in Table 3 for each dam, respectively.

All different simulations were all performed in three steps. In the first step, the gravity
load was applied to the dam. In the second step, the hydrostatic pressure corresponding to
the maximum water level was applied on the upstream part of the rock and dam. The third
step differed between the three analyses. In analyses 1-I and 1-II, the transient behavior of
the dams was simulated with and without ice load. These simulations were performed in
two domains, for temperature and mechanical equilibrium. In the temperature model, an
adiabatic boundary condition was applied to all rock surfaces except the top surface. The
top of the rock and the dam was divided into four categories of surfaces: outside, indoor,
insulation, and water. On each surface, the corresponding measured temperature was
applied using robin boundary condition. All temperatures are shown in Figure 4. Time
steps of different length was used between periods with and without expected ice load. A
two week time step was used for the period May to December and a six hour time time step
for the period where ice loads are expected (January to April). The resulting temperature
field was used as input to the mechanical model with a one-way coupling. Therefore, the
resulting temperature distribution from the thermal domain was applied in the mechanical
domain, and the strains and corresponding displacements from temperature variation were
calculated using the same time steps.

In analysis 1-II, the transient simulation with ice load, the magnitude of the measured
ice loads from [19,21] was applied as a uniform pressure on a one-meter high surface under
the maximum water level. These data were used for all included dams. The data contain
measurements from six winters. However, the signal is only complete from ice formation
to ice break up for four of these winters, 2016/2017, 2018/2019, 2019/2020, and 2020/2021.
Therefore, the recordings from these winters where used recurringly in that order to cover
the period from 2012–2021. Figure 4 shows the applied ice load and Table 2 presents an
overview of the performed analysis and used data.

In analysis 2-I, the ice load was applied the same one-meter high surface as in analysis
1-II in 30 kPa (30 kN/m) steps up to 300 kPa (300 kN/m). To mimic the measurement
data, displacements corresponding to the measured were extracted from the simulated
deformations of the dam. From these displacements, a relation between the magnitude of
the ice load and the measured deformation of the dam was calculated.
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Table 3. Material properties used for simulations of the different dams.

Unit BFN KRN SFF RSE RTN

C
on

cr
et

e

Density kg/m3 2300 2700 2300 2300 2300
Elastic modulus GPa 21.7 30 25.0 25.0 30.0
Poisson’s ratio - 0.2 0.2 0.2 0.2 0.2
Conductivity W/mK 1.7 1.7 - - 1.7
Specific heat J/K 1000 1000 - - 1000
Expansion 10−6 1/K 10.6 10.0 - - 10.6
Element type - Brick Tet Brick Brick Brick

R
oc

k

Density kg/m3 2300 2500 2300 2300 2300
Elastic modulus GPa 32.0 50.0 60.0 60.0 50.0
Poisson’s ratio - 0.2 0.2 0.2 0.2 0.2
Conductivity W/mK 1.7 1.7 1.8 1.8 1.7
Specific heat J/K 1000 1000 - - 1000
Expansion 10−6 1/K 8.3 8.0 - - 10.0
Element type - Brick Tet Tet Tet Brick

Te
m

p-
BC

Reference temperature ◦C 4 0 - - 4
filmCoeff water W/m2/K 500 500 - - 500
filmCoeff air W/m2/K 13 13 - - 13
filmCoeff insulation W/m2/K 1 1 - - 1

Dam-Rock interaction - Tie Tie Fric Fric Fric
Friction coefficient - - - 1.0 1.0 1.0

Source [25,26] [27] [28,29] [28,29] [30]

4.2. Data-Based Models

Data-based models were used to back-calculate the ice load with the residual approach.
These models where used to create adjusted measurement series, i.e., a measuring series
where the effect from all external loads (except the ice loads) were removed. There are many
types of data-based models intended to predict the behavior of dams [31]. In general, data-
based models have a better prediction accuracy than FE-models, but are less interpretable.
For this reason, two data-based models with a distinct physical coupling were chosen. The
model are hydrostatic temperature and time (HTT) and hydrostatic seasonal time (HST). In
the following section, a description of the implementation of these models is given.

4.2.1. Hydrostatic, Seasonal, Time Model

The HST model was first introduced in [32] and has thereafter been used as a method
for behavior analysis of several types of dams [33–40]. HST is a multilinear regression
model, where the variation in behavior of a dam is assumed to be function of three parts:
H, the influence of hydrostatic pressure; S, seasonal effects; and t, time-dependent effects.
The model thus includes a function for each phenomenon considered to affect the global
behavior of the dam and is based on the hypothesis that these three variables are sufficient
to explain the variation in behavior. Furthermore, the three variables are also assumed to
be independent of each other.

The response of the dam can thus be written as

yHST = F(H) + F(S) + F(t). (14)

In the literature, the hydrostatic pressure is predominantly modeled with a third- or
fourth-degree polynomial. However, the dams in this case study all are exposed only to
small water level variations. Therefore, a simple linear relation can be assumed [41],

F(H) = β0 + β1h. (15)
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where h is the relative water level related to the dam height Hdam and the reservoir level,
WL, according to

h =
WL− BL

Hdam
, (16)

where BL is the bottom level. Figure 4 shows h for all dams.
In HST, the seasonal variation with the first terms in a periodic Fourier series, accord-

ing to

F(S) = β5 sin
(

2πt
L

)
+ β6 cos

(
2πt

L

)
+ β7 sin

(
4πt

L

)
+ β8 cos

(
4πt

L

)
(17)

where L = 52.18 if the time variable t has the unit of weeks. This type of function assumes
that the behavior of the dam follows a seasonal pattern consisting of a full-year period and
a half-year period.

The last effect is the irreversible changes over time. In this study, a linear relationship
is assumed for this effect,

F(t) = β9t. (18)

4.2.2. Hydrostatic, Thermal, Time Model

With the HTT model, the seasonal behavior is replaced by a function that considers
the actual temperature,

yHTT = F(H) + F(T) + F(t) (19)

In this study, the outside air temperature TA, indoor air temperature TI , and water
temperature TW from each dam was used.

F(T) = β5TA + β6TI + β7TW (20)

The HTT model was not used for Storfinnforsen and Ramsele as the required input
data is unavailable. For the arch dam at Krokströmmen, TI was omitted. For those dams
with several thermometers at different water depths, the temperatures recorded by the
topmost thermometers were included in the data-based analysis.

4.2.3. Data Preparation

From the monitoring, two type of recordings were included in this study. The first
type is global measurements of the crest displacement by hanging pendulums. In this
study, positive changes correspond to a movement of the crest in the downstream direction,
i.e., the direction the crest displaces from an increase in ice load. The included data all have
a frequency of one sample per hour. The second type of included of measurements are
local displacements, recorded with crack width sensors. The data from such sensors were
combined through a dimension reduction using a principal component analysis (PCA),
and the first principal component (PC1) was used in the analyses. The PCA was performed
on the simulated response to the ice load and results in a linear combination of the crack
width signal that maximize the response caused by ice loads in the recorded signals.

For fitting of the data-based models, the temperatures and response signals were
re-sampled to a time-step of two weeks. In the re-sampling, the actual measured value was
used and no aggregation for the data between time steps were performed. The models
were fitted on the complete time-series of re-sampled data, thus without a division into
training and test set. After the fitting of each model, the residuals was calculated using the
actual frequency of the recorded signals.
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Figure 4. Input data for the analysis.

4.3. Time History and Event Identification

Ice load events were identified via a search to find local maxima and minima in the
recorded signals, i.e., the time history of the pendulum and PC1 data. A local maximum
or minimum was defined as an extreme value during at least 6 h. After identifying a
peak in the signal, an iteration was performed to find the nearest previous and immediate
following local minimum. These three points were used to define ice load events with time
and magnitude for the start, peak, and end, respectively. This search was performed with
the find_peaks function from the Signal subpackage of the SciPy package [42].

4.4. Calculation of Ice Load

For all dams, the ice load was estimated using the event-based approach. From the
identified events in crest displacements and PC1, all differences between the minimum
value at the start of the event and the peak were assumed to be caused by the ice load. For
the event-based approach, the ice thickness is a required input to Equation (10). In this
study, the ice thickness was estimated using Stefans equation where the ice thickness, hi, is
calculated from the accumulated freezing degree days (AFDD)

hi = α
√

AFDD, (21)
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where α is a coefficient to account for local conditions. In this study, α = 2.7 was used,
recommended for conditions that maximize the ice thickness, i.e., a windy lake with no
snow cover [43].

For the monoliths with a data period longer than two years the ice load was also
calculated with the residual approach, see Table 2. In the residual approach, all positive
residuals during the winter were interpreted as an ice load.

5. Result and Discussion

This section presents and discuss the results from the case studies and the back-
calculation of ice loads. It starts with a comparison of the measured dam behavior and
the predicted behavior from the three model types. After that, the estimated ice load–
displacement relation is presented for each dam and behavior before the identified, and
back-calculated ice load events and residual ice loads are shown.

5.1. Stiffness

Figure 5 shows the calculated crest displacement as function of ice load and presents
the calculated stiffness. The relationship between increased ice load and the crest displace-
ment and is linear for all dams. The magnitude of ice load required to displace the crest
1 mm ranges between 86 kN/m for the arch dam at Krokströmmen and 254 kN/m for
Bålforsen. The monoliths at Storfinnforsen and Ramsele all have similar stiffness where
an ice load of approximately 160 kN/m is required to displace the dam crest 1 mm. This
indicates that the load–displacement relationship is relatively constant for dams of this type.
The slope of this relationship is similar also for all seven buttress monoliths, despite their
different heights and shapes. If any, the results show a small negative relation between the
stiffness and the dam height.

The ice load–displacement relationship is linear also for the two PC1 signals. The slope
of these relationships does not have an interpretable unit, as the data was standardized
before the PCA. For Rätan, the components are 0.59 and 0.80 for sensors 1 and 2, respectively.
For Bålforsen, the other dam with local sensors, the weights in PC1 are −0.16, 0.82, 0.43,
0.08, and 0.35 for Sensors 1–5, respectively. Therefore, the sensors best positioned to capture
effects from the ice load are sensors 2, followed by sensors 3 and 5. Sensor 2 and 3 are
located orthogonal and parallel to the crack running vertically from the inspection gallery
to the foundation, while Sensor 5 are located on the front plate.
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Figure 5. Ice load–displacement relationship. The legend presents the slope for each line in the kN/m
per displacement unit. (a) Crest displacement, (b) PC1 of local displacements.

5.2. Time History of Displacements

Figure 6 shows the measured and modeled time history from the three model types—
HST, HTT, and FEM—for the crest displacement and PC1 of local displacements. Figure 6
shows that the ice load of the magnitude measured and applied in this project are large
enough to be detected visually in the measured crest displacement. This difference is
highlighted for Rätan dam as shown in Figure 6a, where only the results from analyses
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1-I and 1-II, the simulations with and without ice loads, are presented. However, this
effect can also be seen for Bålforsen in Figure 6b. For Krokströmmen, the only arch dam,
the ice load creates increased variation in the crest movements during the winter, but the
magnitudes of these variations are relatively small and not necessarily distinguishable
from the noise in the signal. One possible explanation for this difference is that the ice
load does not act in the downstream direction along the whole arch dam. Thus, the dam
displacements from increased ice loads are not fully represented by the downstream crest
displacements measured by the pendulum. Another possible explanation is the lesser
insulation and lack of heating that causes larger natural crest variations for Krokströmmen
compared to the other dams. Therefore, the influence from the ice load is relatively smaller
and more difficult to distinguish from the influence of other loads. This difference between
the displacements for simulations with and without ice loads can also be seen in the PC1
signals from Rätan in Figure 6g, but is not as prominent as for the crest displacements.

5.3. Accuracy

Table 4 presents the root mean square error (RMSE) and the coefficient of determina-
tion (R2) for analyses 1-I, 2-II-ii-A, and 2-II-ii-B. The RMSE provides an absolute measure of
fit in the units mm and kN/m, which is easier to interpret but only relevant for internal
comparison. In contrast, the R2 is a relative measure of fit that can be used in comparisons
between dams. All FEM models capture the expected direction of the measured displace-
ments well but do, for some periods, predict the incorrect magnitude of the variations. The
two comparisons between simulated and measured crest displacements score R2 values
of 0.76. However, the two models differ significantly in the RMSE. For the FE model
of Krokströmmen, where the RMSE for the displacement is 3.44 mm, and the stiffness
(86 kN/m/mm), the RMSE corresponds to an ice load of 296 kN/m. Such magnitudes of
errors make it impossible to accurately back-calculate the ice load using the residual-based
approach. For the FE model of Bålströmmen, the mean error is smaller but still considerable.
The FEM model of Rätan shows an adequate ability to capture the local response of the dam
while the FE-model of Bålforsen shows an insufficient ability to capture the local response
of the dam. For that reason, the accuracy of the derived stiffness is uncertain, and the PC1
from Bålforsen was therefore excluded from further analyses.

For both approaches, potential sources of error include the measuring accuracy of
the dam monitoring equipment and estimation of the load–displacement relationship.
Good quality and accuracy of the measurements are essential for the quantification of the
influence of different loads in the response of a dam. The installed pendulums have an
accuracy of 0.01 mm [44] which translates to ice loads of approximately 0.8–2.5 kN/m
based on the stiffness presented in Section 5.1. The error on the estimated ice load is directly
proportional to the error of the estimated stiffness. For the crack width sensors, the accuracy
is 0.005 mm and the resolution 0.00125 mm [45]. The observed variation between winter
and summer for the crack with sensors with the largest variation is approximately 0.4 mm.
Thus, the relative accuracy is lower for the crack width sensor than for the pendulum. This
can be observed in the time history where the crest displacement signal is more smooth
than the PC1 signal. The lack of resolution means that the PC1 signal varies between two
discrete levels during some periods. This variation is sometimes incorrectly classified as
events, which could have been avoided with higher resolution.

In the residual approach, the assumption is that the models can be used to remove
the influence from all loads except the ice load from the measured signal. The model with
the best prediction accuracy in this study was HTT. This model was used in the residual
approach to create an adjusted signal where effects from temperature, water level, and time
were removed. The HST provides R2 values in the range 0.7–0.9, while R2 for the HTT is
over 0.89 in all comparisons. Thus, the linear combination of temperatures, water level,
and time that is HTT can explain over 90% of the variance in displacements. These results
can be compared to the work in [40] where a HST model was used on the buttress dams at
Ancipa (R2 = 0.95–0.97), Sabbione (R2 = 0.95–0.96), and Malga Bissina (R2 = 0.88–0.91, 0.92,
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0.92, 0.90), and the results from in [39] where crest the crest displacement of a buttress dam
was predicted with HST (R2 = 0.95) and HTT (R2 = 0.96). Thus, the prediction accuracy
for the models in this study is similar to previous studies. However, the result presented
in Table 4 shows that despite the high accuracy of the data-based models, the RMSE as
ice load is relatively large. For the four predictions of crest displacements, the RMSE is
between 27 and 57 kN/m. Furthermore, as shown in Figure 7, the errors are similarly
distributed during both summer and winter, with only a slight tendency for the average
errors to be greater during the winter. Furthermore, the most significant errors and ice
loads are similarly frequent during summer and winter. Thus, the accuracy of the ice loads
calculated with the residual approach was deemed unreliable. Therefore, only the ice loads
from the event-based approach were included as the final results.

Table 4. The root mean squared error (RMSE) and R2 for the three analyses for crest displacement
and PC1.

Crest PC1

1-I 2-II-ii-A 2-II-ii-B 1-I 2-II-ii-A 2-II-ii-B
Dam Type Unit FEM HST HTT FEM HST HTT

BFN R2 - 0.76 0.70 0.89 0.06 0.78 0.94
RMSE mm 0.21 0.23 0.13 0.13 0.06 0.03
† kN/m 52 57 33 467 222 112

KRN R2 - 0.76 - - - - -
RMSE mm 3.44 - - - - -
† kN/m 295 - - - - -

RTN R2 - - - - 0.81 0.97 0.97
RMSE mm - - - 0.01 0.005 0.004
† kN/m - - - 352 146 130

SM43 R2 - - 0.92 - - - -
RMSE mm - 0.16 - - - -
† kN/m - 27 - - - -

SM46 R2 - - 0.78 - - - -
RMSE mm - 0.24 - - - -
† kN/m - 39 - - - -

† RMSE × K̂I .

5.4. Time History of Ice Loads

Figure 8 shows a time history of the total ice load calculated with the event-based
approach for both crest displacement and the first PC1 of the crack width sensors. The
figure shows two main results: that the calculated ice loads are small and and that the
deviation in crest displacement during periods with expected ice loads are similar to
those from the rest of the year. In general, the ice loads are low and are combined for all
dams other than Rätan, only a few occasions of ice loads in the vicinity of 100 kN/m. In
comparison with the expected response of the dams shown in Figure 6, the ice loads and
underlying displacements are small.

Figure 8 also shows that events occur during all months and that the most prominent
occur during periods with no ice in the reservoir. Figure 7b show histograms of the
identified ice load events during summer and winter. For a dam exposed to significant
ice loads, the expected result is that both events will be greater and more frequent during
January to April when ice loads are expected to occur. Such a trend is not visible neither in
the events nor in the residuals or the resulting ice loads. A t-test for difference in the means
of the events’ magnitude between winter and summer shows that the upper limit of the
95% confidence interval for the difference is from −2.2 kN/m for SM03 to 4.2 kN/m for
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Bålforsen, where a positive value means a larger mean for the winter period. There are two
implications of these results:

• event identification alone is not a sufficient method to identify displacements caused
by ice loads

• the ice loads in this study are most likely overestimated.
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Figure 6. Measured and modeled time history for the eight included dams: crest displacements;
(a) RTN, (b) BFN, (c) SM03, (d) SM42, (e) SM44, (f) SM03, (g) RSE, (h) KRN; and the first principal
component of the crack width measurements; (j) BFN and (i) RTN.

The first implication is a problem for the accuracy of the method and the estimated
loads. Several improvements could be made to the classification algorithms, such as
filtering the signal based on frequency or applying post-peak criteria. However, this study
applied a conservative approach to ensure that the ice loads were not underestimated. In
the event-based approach, all displacements that occur during an event was assumed to
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be caused by ice loads. During a thermal ice load event, the air temperature increases and
warms the downstream part of the dam. When the temperature in this downstream part
increases, thermal expansion causes a crest displacement in the upstream direction. Such
displacement is in the opposite direction to a displacement caused by ice loads and could
thereby conceal the influence from this load. However, the high thermal mass of concrete
results in slow thermal expansion. During an event caused by water level variation, the
hydrostatic pressure will also vary from the changed water level. However, this difference
is also negligible as any significant water level change will break the ice sheet.
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Figure 7. Distribution of events and residuals and during the summer (June to September) and ice
load season (January to April). (a) Residuals. (b) Events. For visibility, have 15 events from BFN-PC1
with magnitudes over 50 kN/m and 4 events from RTN-PC1 with magnitudes over 200 kN/m been
removed. None of the removed events occurred during a winter.

The presence of ice loads of similar magnitude and frequency during winter and
summer implies that several of the events inferred as ice loads should be attributed to noise
in the measured signal. Therefore, the magnitude of ice loads presented in this study is
most likely overestimated. Furthermore, the static equilibrium requires the dam the deform
in response to the ice load. The absence of clear evidence of such responses are a indication
that the dams have not been subjected to any major global ice loads.

5.5. Annual Max of Ice Loads

Table 5 presents the maximum total ice load from each winter (Jan–April) for all
included monoliths. This table shows the results without considering the reservations
discussed above. The results can be divided into three categories: The first category is the
single winter from the arch dam at Krokströmmen, where the maximum magnitude was
83 kN/m. The second category is the 20 winters from the remaining buttress dams. For
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these dams, the data from the crest displacement measurements indicate that the maximum
ice load event for a typical winter is between 50 and 100 kN/m, with two occurrences of
ice loads over 100 kN/m.

2014 2015 2016 2017 2018 2019 2020 2021
0

100

200

300

Ice
 lo

ad
 [k

N/
m

] PC1
Measured

(a)

2013 2014 2015 2016 2017 2018 2019 2020 2021
0

100

200

300

Ice
 lo

ad
 [k

N/
m

] Crest
PC1

(b)

2017 2018
0

100

200

300

Ice
 lo

ad
 [k

N/
m

] Crest

2020 2021
0

100

200

300
Ice

 lo
ad

 [k
N/

m
] Crest

2021 2022
0

100

200

300

Ice
 lo

ad
 [k

N/
m

] Crest

(c) (d) (e)

2020 2021
0

100

200

300

Ice
 lo

ad
 [k

N/
m

] Crest

2020 2021
0

100

200

300

Ice
 lo

ad
 [k

N/
m

] Crest

2020 2021
0

100

200

300

Ice
 lo

ad
 [k

N/
m

] Crest

(f) (g) (h)

Figure 8. Time history of the total ice load (event + long-term) identified and back-calculated from
events in the crest displacements and the first principal component of the crack width sensors.
(a) RTN, (b) BFN, (c) KRN, (d) SM03, (e) SM42, (f) SM44, (g) SM03, (h) RSE.

The third category is the eight winters of PC1-data from Rätan. During these winters,
the estimated ice loads are between 67 and 205 kN/m. For seven of the eight winters,
the maximum estimated ice load exceeds 100 kN/m. The results from Rätan Dam can
be compared with ice loads measured with a load panel on the upstream face of the
dam [19,21]. The measured ice loads with the load panel are presented in Figure 8. During
the six seasons of measurements, the 1 m wide and 3 m high load panel recorded 73 ice load
events with a magnitude greater than 75 kN/m and an overall maximum of 200 kN/m.
During the eight winters in this study, which includes the six winters with measurements,
the maximum ice load estimated from the response of the dam is 205 kN/m and 52 events
greater than 75 kN/m was identified. Only two of the events occur simultaneously, i.e.,
ice loads were registered both by the panel and in the dam’s response. These two events
occurred on 5 and 19 February 2020. On the first occasion, an ice load of 111 kN/m was
measured with the panel, while the estimated total ice load from the dam’s response was
77 kN/m. The corresponding loads for the second occasion are 99 and 78 kN/m.

Traditionally, the ice load has been measured with a sensor in the ice or on the dam
face. Previous measurements campaigns with such sensors have recorded ice load with
significantly larger magnitudes than the design loads and those estimated in this study,
e.g., 780 kN/m from one season at the Beaumont dam [46], 600 kN/m from one winter
with four stress cell panels at the La Gabelle dam [46], 370 kN/m from five winters at
Seven sisters dam [11], 290 kN/m from four winters at the Eleven Mile Canyon dam [47],
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270 kN/m from five winters with three to four panels at the Tradalsvik dam [48], 200 kN/m
from one winter with eleven panels at the Barrett Chute dam [49], and 200 kN/m for six
winters with the load panel, and 720 kN/m from one winter with three stress cell panels at
the Rätan dam [19].

Table 5. The annual maximum of total ice load, event ice load, long-term ice load, ice thickness,
accumulated degree freeze days (AFFD), the minimum temperature, and the mean water level
amplitude. Note that the time of the different extreme values for the different variables during a
winter does not necessarily occur simultaneously.

Ice Load Ice Thick. Temp. AFDD WLA

Dam Winter Total Event Long-Term min Mean

kN/m m °C °C Days m/Day

BFN * 2013 † 97 75 30 0.75 −25 772 0.20
2014 60 43 21 0.48 −26 321 0.24
2015 65 54 18 0.48 −23 316 0.23
2016 73 53 27 0.65 −27 579 0.19
2017 64 54 14 0.54 −25 401 0.24
2018 58 37 31 0.78 −25 835 0.24
2019 87 67 29 0.73 −27 728 0.23
2020 61 51 22 0.50 −21 348 0.18
2021 52 30 26 0.62 −24 524 0.10

KRN 2017 † 84 75 13 0.46 −25 287 0.17

RSE 2020 107 89 20 0.46 −19 285 0.06
2021 59 38 30 0.72 −26 704 0.05

RTN 2014 † 68 64 9 0.37 −17 186 0.16
2015 115 99 18 0.54 −20 403 0.14
2016 208 182 28 0.69 −24 646 0.16
2017 173 155 20 0.54 −19 405 0.15
2018 152 130 33 0.81 −24 898 0.15
2019 116 97 27 0.65 −21 576 0.16
2020 101 91 15 0.43 −13 251 0.15
2021 118 117 27 0.65 −23 572 0.12

SM03 2020 33 13 20 0.46 −19 286 0.05
2021 46 18 30 0.71 −26 701 0.04

SM42 2021 95 67 30 0.71 −26 701 0.04

SM43 2019 49 24 26 0.60 −21 502 0.05
2020 71 57 20 0.46 −19 286 0.05
2021 108 79 30 0.71 −26 701 0.04

SM46 2019 76 53 26 0.60 −21 502 0.05
2020 66 51 20 0.46 −19 286 0.05
2021 87 57 30 0.71 −26 701 0.04

* From crest-displacement data, see Section 5.3. † Data not available for the full winter.

One possible explanation for the small ice loads estimated in this study is scale effects,
i.e., that local ice loads on a small area can be significantly larger than the mean of the global
ice loads on the whole structure. This phenomenon is considered in design standards for
piers, off-shore structures, and ships [20,50,51], but not in design guidelines for dams [1–5].
Ice is a material whose behavior and strength are scale-dependent. A compilation of
2073 freshwater ice beam tests shows that the scale-dependent flexural strength in kPa
is proportional to V−0.13 [52], where V is the volume of the beam. For ice–structure
interaction, the same general relation also applies, and the average ice load decreases as the
area of interaction increases. The relationship between volume and the flexural strength
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for freshwater ice presented in [52] gives that flexural strength for an ice volume with the
width of 8 m (a dam monolith) is 7% of that of a 1 m wide volume (the load panel). The
results from this study indicate that the scale effect is applicable also for dam–ice interaction
and that further studies is needed to investigate how the ice loads vary along the dam and
between different scales.

5.6. Practical Implications

The Swedish guidelines for ice loads on bridge piers and dams are essentially the
same recommendations as given in the first guidelines from 1931 [53]. The foreword
to the latest revision of the recommendations for ice loads on bridges in Sweden states
that these first ice loads recommendations were created based on no actual knowledge
but has gained empirical validation [54]. There are simultaneous indications that the ice
loads in design guidelines are either over- or underestimated. The results from previous
existing measurements and the theoretical models indicate that the current guidelines
underestimate the magnitudes of ice loads. However, a common result in assessments of
concrete dams in cold regions is insufficient stability for load cases that includes ice loads.
For this reason, several Swedish dams has been rebuilt or strengthen to ensure sufficient
stability. Despite this, there is a general public opinion among dam engineers that the
current guidelines are too strict. The use of these design magnitudes worldwide in design
of dams for almost a century has resulted in few incidents and no failures reported as
induced by ice loads.

For the design of concrete dams, the relevant load is the global ice load, i.e., the average
load on the width of the structure. This ice load is not a load in the pure sense but rather a
restraint force where the ice load is the restrained movement or expansion of the ice sheet.
A dam subjected to ice loads will deform until a new equilibrium position is reached. Ice
loads of the magnitude in current design guidelines constitute a significant portion of the
the total horizontal load on most dams. These ice loads’ magnitude combined with the
long lever arm from the foundations theoretically causes a large structural response. This
large expected influence of ice loads is also shown in the results from analyses 1 (I and II)
and 2-II in this study.

The most probable interpretation of the results of this study is that no or very small
traces of ice load can be observed in the measured response of most dams. These results
are limited to the eight studied dam monoliths. However, as the ice load was included as a
design load for dams approximately hundred years ago without any theoretical basis, ice
loads has not caused any major incidents. Therefore, a main focus of future investigation
should be to find full-scale empirical evidence of existence of global ice loads on dams
of a relevant magnitude. It is likely that such evidence can be found, but before this, it is
recommended that studies are performed to investigate that ice loads on concrete dams
can pose a dam safety issue.

Such investigations should primarily focus on finding influence of ice loads in the
structural behaviour of concrete dams. Using measurements from the dam monitoring
to estimate the magnitude of the ice load is a cost-effective method that has advantages
from both a scientific and dam safety perspective. From a scientific perspective, this type
of measurement provides a cheap method that is readily accessible for many dams. The
method also facilitates the use of data already collected, as long as it was sampled with
a sufficiently high frequency. Therefore, the method presents an opportunity to rapidly
expand the empirical data on the impact of ice loads on concrete dams. From a dam safety
perspective, the installation of a global displacement sensor such as a hanging pendulum
have several benefits. For dams where the dam owner wants to examine or monitor the
magnitude of the ice load, such a method is therefore very advantageous.
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6. Conclusions

This study estimates the magnitude of the ice load on an arch dam and seven monoliths
from four concrete buttress dams, based on measured structural response during 29 winters.
The main results are the magnitudes of ice loads calculated using identified displacement
events in the measured signals. With this event-based approach, the loads were estimated
from identified displacement events in the measured signal and interpreted as ice loads
using a displacement–ice load relationship derived from FE simulations. The results from
the FE simulations show that ice loads of magnitudes from traditional ice load measurement
sensors and the applicable design guideline should significantly affect the studied dam
structural response and be detected by traditional dam monitoring. Nevertheless, only
small traces of ice loads can be found in the observed response of the studied dams.

The annual maximum magnitudes of ice loads estimated in this study are significantly
smaller than those recorded during ice loads measurements sensors and in design guide-
lines. However, the results show that displacement events occur with similar frequencies
and magnitudes during all months. Therefore, the conservative assumption used in this
study, that ice loads cause all displacements during events, is likely to cause an overestima-
tion of the ice loads. Therefore, the event-based approach applied in this study provides a
conservative estimate of the magnitude. The true magnitude of the ice loads these dams
have been subjected to is most likely even lower.

This study involves modeling the structural behavior of several concrete dams located
in cold climates. Therefore, some auxiliary conclusions regarding the interpretation and
modeling of the behavior of the dams in this study, adjacent to the primary research
question for this study, are:

• The relationship between increased ice load and crest displacements in the down-
stream direction is linear up to 300 kN/m/mm. For the seven studied buttress mono-
liths, the slope of the ice load–displacement relationship is approximately 180 kN/m/mm,
while the corresponding slope for the arch dam is 90 kN/m/mm.

• The magnitudes of ice loads recorded with traditional ice load measurement sensors
and the applicable design guideline should cause structural displacements that are
visible in the measured crest displacements of dams. The influence from ice loads
should be especially prominent in such recordings from dams in reservoirs with small
water level fluctuations and where the natural thermal variations between winter and
summer have been dampened by insulation and heating.

• The HTT model that considers a linear combination of variations in water level,
ambient temperatures, and time can explain over 90% of the variance in the dams’
displacements.

• The insulation walls on the downstream part of the dam monoliths and the heating
of the enclosed area between the front plate and the insulation have a significant
influence on the behavior of the dam. These measures both reduce the magnitude
and change the phase and shape of the variation in displacements from air and water
temperature variation.

This study demonstrates the need to further investigate the relationship between
stresses measured in the ice sheet, pressures measured at the dam–ice interaction face, and
the dam’s response. Further research should be undertaken to investigate the influence of
ice loads on the structural behavior of concrete dams. The event-based method used in this
study is fast and straightforward and, therefore, suitable for applying on other dams. Such
studies could rapidly increase the empirical knowledge regarding the magnitudes of ice
loads on dams.
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Abstract: The seismic safety assessment of large concrete dams remains a significant challenge
in dam engineering, as it requires appropriate analysis methods, modern performance criteria,
and advanced numerical models to simulate the dam seismic behavior. This paper presents a
method for seismic safety assessment of arch dams based on Endurance Time Analysis (ETA), using
tensile and compressive damage results from a robust formulation for seismic analysis considering
joint opening/sliding and concrete non-linear behavior (finite element program DamDySSA, under
development in LNEC). The seismic performance is evaluated by controlling the evolution of the
damage state of the dam, according to predefined performance criteria, to estimate acceleration
endurance limits for tensile and compressive damage. These acceleration limits are compared,
respectively, with the peak ground accelerations prescribed for the Operating Basis Earthquake (OBE)
and Safety Evaluation Earthquake (SEE), aiming to evaluate the dam seismic performance relative to
both earthquake levels efficiently, using a single intensifying acceleration time history. The ETA-based
method is applied to the cases of Cabril Dam (132 m-high) and Cahora Bassa Dam (170 m-high),
confirming its usefulness for future seismic safety studies, while the potential of DamDySSA for
non-linear seismic analysis of arch dams is highlighted.

Keywords: arch dams; seismic safety; endurance time analysis; non-linear seismic analysis; concrete
damage model; tensile and compressive damage

1. Introduction
1.1. Framework and Motivation

Large concrete dams are civil engineering structures with significant social, environ-
mental, and economic impact. In fact, dams play a key role in the proper management of
freshwater resources, namely for water supply, flood control, soil irrigation, and energy
production, and they have become vital to populations and societies [1,2], not only due to
the global increase in water demand, but also because of climate change [3]. Most dams are
structures of high potential risk, since incidents or accidents may result in significant losses
for populations and the environment [4]. For these reasons, dam engineers must ensure the
best operational conditions and the structural safety of dams in normal service conditions
and during exceptional events, under both static and dynamic loads.

In this context, emphasis should be given to the fact that many of the major concrete
dams in operation or under construction are located in regions of high seismicity [5], and
strong earthquakes can cause unacceptable joint openings or significant concrete damage
that may require service interruption or even compromise structural integrity, among other
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incidents [6–9]; for example, in China, one of the regions with the highest seismic activity
in the world, sophisticated experimental and numerical studies were carried out to support
the design of new ultra-high concrete dams [10–13]. On the other hand, most of the older
dams were built many decades ago, and thus designed using unreliable seismic analysis
methods and outdated performance criteria. As such, the need to reassess the seismic safety
of older dams based on modern practices has been identified; for example, in Switzerland,
the seismic safety reassessment of all 208 large dams according to modern standards was
required and carried out based on current approaches [14].

Therefore, appropriate methodologies and models should be developed to analyze
the dynamic response of dams in normal operating conditions, aiming to control structural
integrity over time and to evaluate the structural safety under seismic loads. The permanent
structural health monitoring of dams can be conducted based on ambient/operational
vibration analysis methods, to detect modal parameter variations that can be correlated
with loss of stiffness, while the response during seismic events can be monitored, e.g., by
controlling quantities of interest or by comparing the measured acceleration time histories
with the response predicted using numerical models [15–17]. For seismic safety assessment
of dams, the performance under strong earthquakes should be evaluated based on reliable
methods of analysis and on modern performance criteria [8,9], using advanced models to
simulate the dynamic response of dam–reservoir–foundation systems, with the possibility
of modeling non-linear structural behavior, and using suitable seismic inputs, which are
essentially models of earthquake ground motion [18,19].

1.2. Objetives and Contributions

Dam safety assessment, namely under seismic loads, has become a fundamental
component to ensure the overall safety of large concrete dams [9], with a view to meet the
increasingly demanding requirements in terms of structural safety, and then to respond to
the main concerns of dam owners and entities responsible for dam safety control [20–22]. To
contribute at the level of the methodologies for seismic safety assessment of concrete dams,
the main objective of this paper is to present a method based on Endurance Time Analysis
(ETA), using tensile and compressive damage results from sophisticated non-linear seismic
simulations with joint movements and concrete deterioration.

Although ETA-based procedures have already been used by other researchers for
evaluating the dynamic capacity of dams under intensifying earthquakes [23–29], the
innovation presented in this work resides in the adopted approach for evaluating the
seismic performance of the dam: essentially, this is conducted by controlling the evolu-
tion of the damage state of the dam, considering suitable performance criteria, in order
to estimate acceleration endurance limits associated with both tensile and compressive
damage. Additionally, using a single intensifying acceleration time history, the proposed
approach enables an efficient evaluation of the seismic performance of the dam in relation
to the earthquake levels required in current guidelines [20–22], namely by comparing the
endurance limits for tensile and compressive damage with the peak ground accelerations
prescribed for the Operating Basis Earthquake (OBE) and the Safety Evaluation Earthquake
(SEE) of the dam site.

Another innovation achieved is the way the non-linear seismic response of arch
dams is simulated, using the finite element program DamDySSA. This program, under
development in LNEC for several years, includes a robust coupled formulation for non-
linear seismic analysis of dam–reservoir–foundation systems, simultaneously considering
(a) the structural effects due to the opening/sliding joint movements, using a non-linear
joint model, and (b) the tensile and compressive damage in concrete, based on an isotropic
constitutive damage model with two independent damage variables and softening.

The ETA-based method is applied to the cases of Cabril Dam (132 m-high) and Cahora
Bassa Dam (170 m-high). Overall, high acceleration endurance limits associated with tensile
damage and compressive damage were determined for both dams, allowing to show their
good seismic performance.
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2. On the Seismic Safety of Concrete Dams

Although significant developments have been achieved in this field, seismic capacity
assessment must be carried out based on sensitive analyses of results and engineering
judgement [28,30–32], with a view to meet the requirements and the performance criteria
defined in the guidelines of the International Commission on Large Dams (ICOLD) and
in the regulations of each country. This section presents an overview on several topics of
interest for seismic safety of concrete dams.

2.1. Models for Non-Linear Dynamic Analysis of Dam–Reservoir-Foundation Systems

Large concrete dams are usually structures with unique and complex geometry, par-
ticularly in the case of arch dams, and they may have different types of discontinuities,
including construction joints or concrete cracking. Furthermore, the dynamic behavior of
dams is strongly influenced by the interaction with the reservoir and the foundation [33,34].
Therefore, for simulating the dynamic behavior of concrete dams it is essential to develop
robust models of dam–reservoir–foundation systems (Figure 1), considering the specific
features of the dam structure and multiple dynamic effects, such as dam–water interaction,
pressure wave propagation in the reservoir domain, dam–foundation interaction, the be-
havior of the rock mass, and damping mechanisms, including viscous damping in the dam
and radiation damping in the reservoir and foundation; these are factors that can have a
significant influence in the overall seismic behavior of the dam [18,19].

To simulate the reservoir and dam–reservoir dynamic interaction, there is the clas-
sic added water mass model, using a displacement-based formulation for the dam and
foundation and considering the reservoir mass effect based on the solution proposed by
Westergaard [35]. Although simple and efficient, this model neglects water compressibility
and hydrodynamic effects on curved and flexible dams [36,37], and the added mass effect
is overestimated for arch dams [19]. Therefore, a better solution is to use a coupled model
based on a finite element formulation for simulating the behavior of the solid (dam and
foundation) and fluid (reservoir) domains [38]. In this case, it is common to consider a
formulation in dispalcements for the solid, and in hydrodynamic pressures or in velocity
potentials for the fluid, considering proper boundary conditions to simulate dam motion–
water pressure coupling and the reservoir pressure wave propagation with radiation at
the far-end boundary [38–40]. A coupled formulation in displacements and pressures was
implemented in the finite element program DamDySSA.

Regarding the foundation behavior, the massless models hypothesize a deformable
foundation block with a rigid boundary at the base, neglecting the wave propagation effects
and radiation damping [41]. For massless models, the substructure method is usually
employed to compute an elastic and massless substructure foundation block, considering
an equivalent stiffness matrix condensed at the dam–rock interface [41,42]; the seismic
input can be applied as uniform or spatially variable ground motion [43,44]. Alternatively,
energy dissipating models consider the foundation mass and enable the simulation of
wave propagation and radiation effects in the rock mass [34,45,46]. The seismic input
can be obtained using equivalent force schemes, to generate the ground motion at the
dam–foundation surface [47,48], or by performing deconvolution analysis and then using
compression/shear waves propagating from the foundation base [40,45]. Neglecting the
foundation inertia and damping can result in an overestimation of stresses in the dam
body [45,49–51], if no additional damping source is considered. However, for substructure
massless models, a damping matrix proportional to the foundation stiffness matrix can be
introduced at the dam–rock interface, as considered in DamDySSA.

With regard to the seismic behavior of arch dams, under low intensity earthquakes,
commonly measured on dams, low-amplitude movements are expected, and thus the
numerical simulations can be carried out assuming linear-elastic behavior for concrete and
considering that joints in the dam body remain closed [15,52–54]. On the other hand, under
high intensity earthquakes, vibrations of greater amplitude and hence larger deformations
may occur, resulting in the opening of the vertical contraction joints [55,56], and, at the
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same time, in high tensile and/or compressive stresses that might cause concrete cracking
or crushing [57,58]. Therefore, for non-linear seismic analysis of arch dams, appropriate
constitutive models should be used in order to simulate both the structural effects due to
joint movements and the nonlinear behavior of concrete up to failure under tension and
compression [59–63]. In DamDySSA, a robust formulation is implemented for non-linear
seismic analysis, considering a non-linear joint model, to simulate opening/closing and
sliding movements, and an isotropic constitutive damage model with softening and two
independent damage variables for tension and compression.

Figure 1. Representation of an arch dam–reservoir-foundation system. Possible interaction effects for
non-linear dynamic analysis.

2.2. Ground Motion

For non-linear seismic analysis, carried out using time domain procedures, the seismic
input is defined by means of acceleration time histories. Preferably, the earthquake ground
motion should be represented by real accelerograms, recorded for site conditions similar
to those of the dam to be analyzed [64]. Nevertheless, currently available records of
strong earthquakes are not enough to cover the range of possible conditions, meaning that
artificial acceleration time histories are needed [20]. Ideally, these accelerograms should
be obtained based on the design ground motion parameters from specific seismic hazard
studies conducted for the site of the dam to be analyzed.

Suitable acceleration time histories for dynamic response analysis can be generated
from response spectra [65], considering specific features of the horizontal and vertical
components and spatial variation effects (Figure 2a). Several methods have been developed
for generating realistic seismic acceleration time histories, including the classic stochastic
stationary procedure implemented in the computer program SIMQKE [66], the so-called
Stochastic Method developed by Boore [67], the stochastic fault rupture and seismic wave
propagation model developed by Carvalho [68], and the method for generating non-
uniform ground motion using transfer functions proposed by Alves [47]. A different
approach that has been gaining popularity in dam engineering is to consider endurance
time excitation functions (ETEFs), developed by Estekanchi [69] and later optimized [70,71],
which enable the generation of artificial intensifying acceleration time histories (Figure 2b)
for ETA-based procedures.

Generated acceleration time histories, especially from ETEFs, may be quite different
from acceleration records of real earthquakes, as they are models of the seismic load. Even
so, by applying appropriate methods of analysis, the use of generated accelerograms as
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the seismic inputs in advanced numerical models of dam–reservoir–foundation systems
will lead to a safe seismic design and to an adequate seismic safety assessment, which is
essentially the main goal [72].

Figure 2. Seismic acceleration time histories: (a) design spectrum compatible generated acceleration
time history; (b) intensifying dynamic excitation produced based on an ETEF.

2.3. Methods of Analysis

The studies for seismic safety assessment of dams are usually conducted by perform-
ing multiple time history seismic analyses, using appropriate acceleration time histories,
to simulate both common service scenarios and failure scenarios. The seismic response
analyses can be carried out using one or multiple (with distinct frequency content) gen-
erated accelerograms, which are scaled to obtain seismic loads with various peak ground
accelerations, corresponding to weaker or stronger ground motions. This methodology is
according to the principals of Incremental Dynamic Analysis [73], and it has allowed re-
searchers to obtain valuable results and draw assertive conclusions on the seismic capacity
of large concrete dams; several application examples can be found in studies for gravity
dams [61,74] and arch dams [75,76]. The obvious disadvantage is the need to conduct
multiple calculations for different seismic excitation levels, resulting in longer calculation
times to investigate different scenarios, particularly if non-linear analyses are required.

Another approach that has been used more frequently over the past decade is to
evaluate the seismic capacity of concrete dams based on ETA [23–29], which is essentially
a seismic analysis pushover procedure for seismic performance assessment under a pre-
designed intensifying dynamic excitation. The aim of ETA is to subject the dam to dynamic
vibrations from a low excitation level, where the structural response is within the linear
domain, to medium excitation level, as structural non-linearities start to occur, and finally
to a high excitation level, ultimately causing dam failure. Therefore, the evaluation of the
seismic performance of the dam is performed in a single time history analysis, by controlling
the response in multiple time steps along the process, considering one or several engineering
demand parameters [24,29]. The ETA-based approach enables a good assessment of the
seismic capacity of dams, and it is also highly efficient when compared to the traditional
approach, as it significantly reduces computational demands. ETA procedures may also be
of great use, e.g., for dynamic shape optimization [28].

2.4. Seismic Design and Performance Criteria

The general guidelines for seismic analysis, design and safety assessment are docu-
mented in bulletins [20] from the Committee on Seismic Aspects of Dam Design of ICOLD,
as well as in the specific regulations of the National Commissions on Large Dams of its
various member countries. In what concerns methods of analysis, it is possible to adopt
simplified evaluation procedures based on linear seismic analysis for seismic performance
evaluation. However, according to modern performance criteria, structural non-linearities
are acceptable to a certain extent under severe earthquake levels. Thus, in current practice,
non-linear seismic analysis procedures are considered, enabling researchers to investigate
the non-linear structural behavior of dams towards collapse. With respect to the selection
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of seismic parameters for large dams [20], there are two main levels to be considered for
seismic design and safety assessment: the Operating Basis Earthquake (OBE) and the Safety
Evaluation Earthquake (SEE).

The OBE is the earthquake that may be expected to occur during the lifetime of the
dam, with a minimum return period of 145 years (probability of occurrence of about 50%
during a service life of 100 years). The OBE indicates an earthquake level under which
significant damage or loss of service must not occur. The seismic performance criteria for
the OBE can be verified based on linear-elastic dynamic analyses, by evaluating stresses
and deformations, or through rigid body sliding and overturning stability analysis. For
example, these types of verifications were conducted for the case of Luzzone Dam, in the
scope of an ICOLD International Benchmark Workshop [77,78].

The SEE is the governing earthquake event for seismic design and safety assessment of
the dam and safety-relevant components. The SEE can be taken as the Maximum Credible
Earthquake (MCE), which is expected to induce the largest ground motion at the dam
site, considering the seismic history and seismotectonic setup in the dam region, or as the
Maximum Design Earthquake (MDE), with a return period of 10,000 years, using suitable
ground motion parameters. Under the SEE, structural damage is acceptable to a certain
extent, however the dam must resist without (a) structural integrity being compromised
or (b) uncontrolled release of the reservoir, to avoid flooding in the downstream region.
The performance criteria assessment under the SEE requires non-linear dynamic analysis
methods, in order to investigate the main failure modes. For example, for arch dams,
these failure modes include concrete crushing in key areas, under high compressive arch
stresses, leading to the loss of bearing capacity in the arch direction, and the local sliding or
overturning stability of blocks at the crest, due to large movements in the upstream direc-
tion; required modeling results may include inelastic deformations and joint movements,
stresses, and tensile and compressive damages.

3. ETA-Based Method for Seismic Safety Assessment of Arch Dams

This paper presents a methodology for seismic safety assessment of arch dams based
on ETA, using tensile and compressive damage results obtained in non-linear seismic
simulations that consider the effects due to joint opening/sliding movements and the
concrete non-linear behavior (see Section 4 about the program DamDySSA). The proposed
approach for evaluating the seismic performance of the dam consists in an intuitive analysis,
carried out by controlling the evolution of the damage state of the dam, considering
appropriate performance criteria.

The main goal is to determine two endurance limits, one associated with tensile
damage (t+; ad

+) and the other with compressive damage (t−; ad
−), which correspond to

the duration or the respective acceleration level of an intensifying seismic load that the
dam can withstand without presenting unacceptable levels of damage. In practice, the
endurance limits are determined for two excitation levels, ad

+ and ad
−, which correspond to

the maximum acceleration values of the intensifying seismic action that originate acceptable
damage states according to specific criteria defined for tensile, and compressive damage,
respectively. In this way, it is expected for concrete cracking under tensions to become
excessive after ad

+ (repair interventions required), and for compressive damages to increase
until concrete crushing occurs in key areas of the dam after ad

− (collapse scenario).
The adopted performance criteria are related to the extent of concrete damage on the

dam body, with a view towards meeting the requirements defined for large dams under
the OBE and the SEE in the current seismic design and safety guidelines [20]. Essentially,
in terms of tensile damage, the occurrence of concrete cracking in significant areas of the
upstream and/or downstream surfaces of the dam is considered unacceptable, particularly
if there is cracking propagation across the thickness of the cantilevers, since this damage
state could affect the structural integrity of the dam and require repair interventions—this
scenario would not meet the dam safety requirements for the OBE. As for compressive
damage, the occurrence of concrete crushing caused by compressive damage in key areas
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of the dam, e.g., in the upper blocks of the main cantilevers, is considered unacceptable,
namely if there is propagation within these blocks, as this scenario could ultimately result
in collapse and hence in an uncontrolled release of water from the reservoir—this would
not comply with the dam safety requirements under SEE levels.

Finally, with the proposed approach, the seismic performance of the dam in relation
to both earthquake levels is efficiently evaluated based on a single time history analysis,
by comparing the acceleration limits for tensile and compressive damage with the peak
ground accelerations prescribed for the Operating Basis Earthquake (OBE) and the Safety
Evaluation Earthquake (SEE) of the dam site. In summary, the structural safety of the dam
under seismic loads is ensured for the OBE, if aOBE < ad

+, and for the SEE, if aSEE < ad
−.

The application of this method includes essentially three phases (Figure 3), namely:

• Phase 1: Development of the 3D finite element model of the dam–reservoir–foundation
system and generation the intensifying seismic load.

• Phase 2: Perform the non-linear seismic calculations and output the non-linear re-
sponse results in multiple time steps (response time histories, deformed shapes with
joint movements, principal stresses fields, tensile and compressive damage).

• Phase 3: Estimation of the performance endurance limits and comparison with refer-
ence ground motion parameters (OBE and SEE) for the seismic safety assessment.

Figure 3. Schematic representation of the proposed methodology for seismic safety assessment of
dams based on ETA.
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4. Used Finite Element Program (DamDySSA)

DamDySSA is a 3D finite element program for dynamic analysis of concrete dam–
reservoir–foundation systems. Several years in development in LNEC, the latest version
of the program includes calculation modules for modal analysis, linear seismic analysis,
and non-linear seismic analysis [62]. Figure 4 shows the graphical user interface designed
for the program in MATLAB. The coupled finite element formulation and the numerical
method for non-linear seismic analysis are summarized in the following sub-sections.

Figure 4. DamDySSA: finite element program for dynamic analysis of concrete dams. User interface.

4.1. Dynamic Behavior of the Dam–Reservoir-Foundation System: Finite Element Formulation

The dynamic behavior of the dam–reservoir–foundation system is simulated based
on a coupled model in displacements (dam–foundation) and in hydrodynamic pressures
(reservoir) [38]. Specific boundary conditions are prescribed at the main interfaces of the
solid-fluid system, to consider dam–water dynamic interaction, the propagation of pressure
waves in water with radiation at the far end of the reservoir, and the reservoir free surface
effect [79]. In DamDySSA, a true coupled approach is adopted to solve the dynamic problem
without separating the solid and fluid domain equations [62]. Therefore, the finite element
equation of the dam–reservoir–foundation system is simply written
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where u
˜
= u

˜
(t) is the displacements vector for the dam nodes (three degrees of freedom

for each node), while p = p(t) is the hydrodynamic pressures vector for the reservoir
nodes (each with a single pressure degree of freedom). The mass, damping and stiffness
matrices are m

−
, c
−

and k
−

, for the solid domain, and S
−

, R
−

and H
−

, for the fluid domain; the

coupling matrix for water pressure–structure motion coupling is Q
−

. The nodal force vectors

in the solid and fluid domain are F
˜ s

= F
˜ s
(t) and F

˜ w
= F

˜ w
(t), respectively; the forces in
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the dam may include the dam self-weight, the hydrostatic pressure on the upstream face,
and the dynamic loads. Generalized damping is assumed, with natural viscous damping
calculated element by element in the solid domain and energy dissipation due to radiation
in the reservoir domain. The substructure method [41] is used to model the foundation
block as an elastic and massless substructure, considering equivalent stiffness and damping
components incorporated in the dam–rock interface; consequently, the seismic input is
applied directly at the dam base, assuming uniform ground motion.

In this program, the dam–reservoir-foundation system is discretized using solid hexa-
hedral finite elements with 20 nodes; these are isoparametric elements, and integration is
achieved with 2nd degree interpolation functions and 27 Gauss points. The main disconti-
nuities, e.g., dam–foundation interface, joints, or cracks, are discretized using compatible
interface elements with 16 nodes and 9 integration Gauss points (Figure 5).

Figure 5. Types of finite elements used for discretization of the dam–reservoir-foundation system
and of dam discontinuities.

4.2. Non-Linear Time-Stepping Method for Non-Linear Seismic Analysis

The non-linear seismic response of the dam–reservoir–foundation system is calculated
using a non-linear time-stepping method, considering both the structural effects due to
the joint movements and the nonlinear behavior of concrete with softening under tension
and compression [62]. The implemented method combines a time-stepping formulation,
based on the application of the principles of the Newmark method [80], to the coupled
dynamic problem, and a stress-transfer iterative method [81] to simulate non-linear dam
behavior within each time step t+∆t. The goal is to solve the coupled dynamic equation in
time domain

M
−

..
q
˜ t+∆t

+ C
−
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−
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where Ψ
˜

is the vector of unbalanced forces, which is introduced in the problem to repro-

duce the stress redistribution process that takes place as structural non-linear behavior
progresses.

In DamDySSA, the stress-transfer iterative process is conducted in each time step t+∆t,
being divided into two iterative sub-processes: the first, to simulate the effects due to joint
movements, and the second, to model the concrete behavior up to failure under tension and
compression [62]. Therefore, the unbalanced forces that arise in the iterative process are
associated with the unbalanced stresses due to joint and concrete non-linear behavior. The
unbalanced stresses are computed as the difference between the installed stresses and the
material strength, considering the following constitutive models (Figure 6). The non-linear
joint behavior is simulated using a constitutive model based on the Mohr–Coulomb failure
criterion (Figure 6a), with or without cohesion, and considering appropriate normal/shear
stress-displacement laws to account for opening/closing and sliding movements [55,56],
and (ii) the concrete behavior up to failure is reproduced using a 3D isotropic damage
model with strain-softening and two independent scalar damage variables, d+ for damage
under tension and d− for damage under compression [82,83] (Figure 6b).
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Figure 6. (a) Non-linear joint model with cohesion and (b) Concrete constitutive model with two
independent damage variables.

5. Results: Seismic Safety Assessment of Arch Dams

The ETA-based methodology presented in Section 3 is applied to evaluate the seismic
performance of two large arch dams, namely the 132 m-high Cabril Dam (Portugal) and the
170 m-high Cahora Bassa Dam (Mozambique), and the non-linear seismic simulations are
conducted using the program DamDySSA. Performance endurance limits associated with
the evolution of tensile damage and compressive damage are determined and compared
with peak ground accelerations for the OBE and the SEE. This section presents the case
studies and the main results of this work.

5.1. Case Study I: Cabril Dam (130 m-High)
5.1.1. Dam Description and Finite Element Mesh

The first case study is the iconic Cabril Dam (Figure 7), the highest dam in Portugal
and an essential part of the country’s infrastructure, in operation since 1954. Cabril Dam is
a 132 m-high double curvature arch dam, with a 290 m-long crest; this dam was designed
with a unique geometry, as seen in the central cantilever, where the cross-section thickness
varies between a maximum of 20 m, near the dam base, and a minimum of 4.5 m, about
7 m below the crest, increasing again to 7 m at the crest level. The dam was constructed
on a good quality granite rock mass, and it impounds a reservoir with an area of around
20 million m2 and an effective storage of about 615 million m3. The reservoir level usually
ranges from a minimum at el. 265 m to the normal level (NWL) at el. 295 m.

Figure 7. Case study I: Cabril Dam. Location and seismic hazard zones. Upstream, cross-section and
plan views. Variation of the reservoir level over time.
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Located in the center of Portugal, Cabril Dam is integrated in a national region of
high seismic risk, close to some active intraplate faults. A seismic risk study has not been
conducted at the dam site as of yet, so there are no reference peak ground acceleration
values for the OBE and the SEE. Nevertheless, a seismic hazard analysis was conducted
for a site not very far from Cabril Dam, to the north-northwest, for which peak ground
accelerations of 0.06 g (OBE) and 0.14 g (MDE) were prescribed [75]. Since Cabril Dam
is in an area of higher seismic risk, similar or higher earthquake ground motion may be
expected. Thus, peak ground accelerations of 0.1 g (OBE) and 0.2 g (MDE) have been
assumed as reference for the seismic behavior studies to be conducted for Cabril Dam [62],
in order to meet the recommendations of the Portuguese Standards for dam design [84].

Figure 8 shows the latest finite element mesh of the Cabril dam–reservoir–foundation
system (with three elements in thickness in the dam body) and the main material properties.
The dam concrete and foundation rock are assumed as isotropic materials, with Young’s
modulus E = 25 GPa and Poisson’s ratio v = 0.2, while the water in the reservoir is considered
a compressible fluid with a pressure wave propagation velocity cw = 1440 m/s. These
material properties have been validated based on experimental results from vibration
monitoring data under ambient/operational conditions and during seismic events [15–17].
For non-linear seismic analysis, all vertical contraction joints were incorporated into the
dam mesh, using appropriate normal and shear stiffness values, null cohesion, and a 30◦

friction angle. The concrete constitutive damage law was adopted for all dam elements,
with tensile strength ft = 3 MPa and compressive strength fc = −30 MPa.

Figure 8. Finite element mesh and material properties used for dynamic analysis of Cabril Dam.

5.1.2. Non-Linear Seismic Analysis and Seismic Safety Assessment

For seismic safety assessment, the non-linear seismic behavior of Cabril Dam is simu-
lated considering a dynamic load combination that includes the dam self-weight (SW), the
hydrostatic pressure for full reservoir (HP132), and a seismic load (SEISMICL) consisting
of an acceleration time history designed for ETA, with accelerations increasing to about
1.5 g in 15 s (Figure 9). The non-linear response results show, when the seismic forces
push the dam towards upstream, significant upstream displacements along the upper
blocks and relative movements between the surfaces of the cantilevers. Furthermore, the
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opening of the vertical contraction joints causes a release of the arch tensions at the top
of the dam, which prevents the occurrence of tensile damage. However, the subsequent
stress redistribution process that takes place leads to an increase in vertical stresses along
the height of the cantilevers, with vertical tensions that end up surpassing the concrete
strength, causing concrete damage.

Figure 9. Non-linear seismic analysis of Cabril Dam. Deformed shape and principal stresses for
t = 5.4 s, radial displacement envelope at the central section (until t = 5.4 s), and displacement time
history at the crest central point.

The evolution of the tensile and compressive damages obtained in the non-linear
simulations under intensifying seismic accelerations is presented in Figure 10, aiming to
make an overall assessment of the seismic performance of Cabril Dam and estimate the
endurance limits according to the established performance criteria (recall Section 3).

Until t = 5 s, there is a gradual progression of tensile damage, and tensile failure
ultimately occurs in several blocks along the upper part of the downstream face of the dam,
and near the dam base, on the upstream side. Nevertheless, concrete cracking is mostly
superficial and so this tensile damage state is considered acceptable. After that, between
t = 5 s (a ≈ 0.5 g) and t = 6 s (a ≈ 0.6 g), there is an important increase in tensile damage
at both upstream and downstream faces, with concrete cracking covering a significant
part of the upper half of the dam, and already propagating from upstream to downstream
in several blocks. This scenario could affect the structural integrity of the dam and thus
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require the interruption of normal operating conditions for repairs, hence failing to meet
the performance criterion defined in the proposed method for the OBE excitation level.
Accordingly, the endurance limit for tensile damage (t = 5 s) corresponds to an acceleration
of 0.5 g, which is five times the value assumed as the OBE peak ground acceleration (0.1 g)
at the dam site.

Figure 10. Seismic safety assessment of Cabril Dam: evolution of tensile and compressive damage
for increasing acceleration levels.
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As for the compressive damage evolution, it is worth emphasizing that compressive
damage began to arise only after t = 11 s (a ≈ 1.1 g), while the first occurrence of concrete
compressive failure is reported at the top of the central cantilever, only after the dam was
subjected to peak ground accelerations of about 1.3 g. Since the adopted performance
criterion for compressive damage is based on the non-occurrence of concrete crushing with
propagation across the blocks in key areas of the dam, which could induce collapse and
uncontrolled release of water from the reservoir, the compressive endurance limit is at least
1.3 g, 6.5 times more than the peak ground acceleration considered for the MDE (0.2 g) for
Cabril Dam, thus demonstrating its impressive resistant capacity.

5.2. Case Study II: Cahora Bassa Dam (170 m-High)
5.2.1. Dam Description and Finite Element Mesh

The second case study is the Cahora Bassa Dam (Figure 11), located on the Zambezi
River, near Songo, in western Mozambique. Built from 1969 to 1974, it is one of the highest
dams in the African continent. Cahora Bassa is a thin 170 m-high double curvature arch
dam, with a 303 m-long arch at the crest, which presents a unique half-hollow shape. The
thickness of the central cantilever ranges from a maximum of 23 m at the dam base, to
about 4 m at the crest level. In addition, the dam has one control surface spillway and eight
half-height spillways. The dam was constructed on a gneissic granite rock mass of very
good quality, and it impounds Lake Cahora Bassa, which is 270 km long and 30 km wide at
is widest point. The reservoir level does not usually present significant changes, varying
between about el. 326 m and el. 320 m.

Cahora Bassa Dam is located in an earthquake hazard area, not far from the East
African Rift system, which extends from the Red Sea to the Indic Ocean, across Mozambique,
an active continental rift that is responsible for most earthquake events in Eastern Africa.
According to a study on the seismic behavior of the dam [76], for seismic safety assessment
the recommendations of the Portuguese Standards for dam design [84] can be followed.
As such, the OBE and the MDE excitation levels must be considered for the evaluation of
both regular and failure scenarios; the peak ground accelerations values to be used are
those determined in the seismic hazard evaluation conducted for the Cahora Bassa Dam
area [76], of 0.076 g (OBE) and 0.102 g (MDE).

Figure 11. Case study II: Cahora Bassa Dam. Location and seismic hazard zones. Upstream, cross-
section and plan views. Variation of the reservoir level over time.
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The most recent finite element mesh of the Cahora Bassa dam–reservoir–foundation
system is presented in Figure 12. The dam mesh, with three elements in thickness, replicates
the real dam geometry quite well; still, in this version, the half-hollow crest shape and the
geometry of the spillways are represented in a simplified way. The dam concrete and the
foundation rock are considered to be isotropic materials, using Young’s modulus E = 40 GPa
and Poisson’s ratio v = 0.2, while the reservoir water is simulated as a compressible fluid
with a pressure wave propagation velocity cw = 1500 m/s. All material properties have
been calibrated using dynamic experimental data, including modal parameters estimated
from measured vibrations and seismic response results [15–17]. In order to simulate the
non-linear structural response, vertical contraction joints were introduced in the dam body,
considering calibrated stiffness values, null cohesion, and a 30◦ friction angle; the non-linear
behavior of concrete is reproduced using the constitutive damage law with tensile strength
ft = 3 MPa and compressive strength fc = −30 MPa for all dam elements.

Figure 12. Finite element mesh and material properties used for dynamic analysis of Cahora Bassa Dam.

5.2.2. Non-Linear Seismic Analysis and Seismic Safety Assessment

In order to conduct the seismic safety evaluation of Cahora Bassa Dam, the non-
linear seismic response (Figure 13) is computed for a load combination including the dam
self-weight (SW), the hydrostatic pressure for full reservoir (HP170), and a seismic load
(SEISMICL) represented by the acceleration time history designed for ETA. The obtained
non-linear response results enable us to see that, when the larger dynamic motions are in
the upstream direction, the lateral cantilevers move towards upstream while the central
cantilevers move in the opposite direction. In terms of structural effects due to the joint
movements, similarly to the previous case study, the opening of the vertical contraction
joints cause a reduction of the arch effect, and thus the arch tensions along the top of
the dam are released, hence avoiding tensile damage at the upper blocks. However, the
subsequent stress redistribution originates an increase in vertical stresses along the height
of the dam cantilevers, and vertical tensions become greater than concrete tensile strength.
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Figure 13. Non-linear seismic analysis of Cahora Bassa Dam. Deformed shape and principal stresses
for t = 3.2 s, radial displacement envelope for the lateral cantilever (until t = 3.2 s), and displacement
time history at the crest of the lateral cantilever.

Lastly, the seismic safety assessment of Cahora Bassa Dam and the determination of
performance endurance limits under the intensifying seismic excitation is conducted based
on the evolution of the tensile and compressive damage (Figure 14), taking into account the
established performance criteria (see Section 3).

The tensile damage evolution up to t = 5 s (a ≈ 0.5 g) shows that superficial concrete
failure occurs near the upstream base and along the upper half of the downstream face of
the dam. Since there is no sign of concrete cracking propagating across the thickness of
the cantilevers, the resulting tensile damage state may be considered acceptable. However,
past that there is a considerable propagation of concrete cracking over the upstream and
downstream faces, and there are several blocks on most cantilevers where tensile failure
has propagated through the entire section. Naturally, this scenario should be considered
unacceptable, given the adopted criterion for the OBE. As such, the endurance limit related
to tensile damage corresponds to an acceleration value of about 0.5 g, 6.5 times higher than
the OBE peak ground acceleration (0.076 g) prescribed for Cahora Bassa Dam.
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In what concerns the compressive damage evolution, until t = 6 s, there are no signs
of damage due to compressions. After that point, however, compressive damage starts
to increase progressively, specifically at the top of the lateral cantilevers, on the upstream
face, and below the surface spillway, on the downstream face, until t = 9 s, when concrete
crushing due to compressive failure has occurred from upstream to downstream in the
blocks under the surface spillway. Bearing in mind the adopted performance criteria to
meet the requirements under the SEE level, this scenario would not be acceptable as it
could lead to local collapse and hence to the uncontrolled release of the reservoir. Thus,
the endurance limit associated with compressive failure is set to around 0.8 g, about eight
times the peak ground acceleration value of the MDE (0.102 g) for Cahora Bassa Dam.

Figure 14. Seismic safety assessment of Cahora Bassa Dam: evolution of tensile and compressive
damage for increasing acceleration levels.
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5.3. Discussion

Section 5 provided the mains results of the studies conducted for the seismic safety
assessment of two large arch dams, namely Cabril Dam and Cahora Bassa Dam, using
the proposed ETA-based method (Section 3) and the finite element program DamDySSA
(Section 4). Considering the adopted performance criteria, established to meet the require-
ments for the OBE and SEE, endurance limits were determined for both dams based on the
evolution of tensile and compressive damage under intensifying seismic excitation.

For the case of Cabril Dam, the endurance limits were of 0.5 g for tensile damage and of
at least 1.3 g for compressive damage: these values are, respectively, 5 and 6.5 times greater
than the peak ground accelerations assumed for the OBE (0.1 g) and for the MDE (0.2 g).
Therefore, the conducted seismic performance evaluation demonstrated the impressive
resistant capacity of Cabril Dam under seismic loads. Moreover, the achieved results
suggest that the seismic safety of the dam might be clearly verified in future studies, in
case similar or even higher values than those assumed here are defined for the OBE and
the MDE in seismic hazard studies carried out at the dam site.

As for Cahora Bassa Dam, the endurance limits were of about 0.5 g in terms of tensile
damage, and around 0.8 g in what concerns compressive damage. These are acceleration
values about 6.5 and 8 times greater, respectively, than the OBE (0.076 g) and MDE (0.102 g)
peak ground accelerations prescribed for the Cahora Bassa Dam site. This seismic safety
study showed that, despite being a thin 170 m-high arch dam, Cahora Bassa Dam performs
very well under strong seismic loads, as both endurance limits were considerably greater
than the values of the OBE and MDE peak ground accelerations.

Finally, the same tensile and compressive concrete strength values were considered for
Cabril Dam and Cahora Bassa Dam, so it is worth comparing their seismic performance. On
the one hand, Cahora Bassa Dam is taller and thinner than Cabril Dam, hence higher stresses
tend to get installed. Thus, since compressions are considerably higher in Cahora Bassa
Dam [55], the endurance limit associated with compressive damage is lower than for Cabril
Dam. On the other hand, it was interesting to see that both arch dams presented similar
tensile damage evolutions until t = 5 s, resulting in equal endurance limits; nevertheless,
after that, the tensile damage progression was more severe for the case of Cahora Bassa
Dam. Overall, by comparing the endurance limits with the prescribed values of the peak
ground acceleration for the OBE and the SEE, both dams presented considerable safety
factors. In the case Cahora Bassa Dam, located in an area of lower seismicity, the safety
factors are slightly higher than for Cabril Dam.

6. Conclusions and Future Research

The seismic safety assessment is a fundamental issue for dam safety control, and
therefore it is essential to develop suitable methods of analysis and robust models in order
to analyze the seismic behavior of dams under strong earthquakes.

To contribute to this field, an ETA-based method for seismic safety assessment of
arch dams, using tensile and compressive damage results from advanced non-linear seis-
mic analyses considering joints and concrete non-linear behavior, was presented. In the
ETA-based method, a new and intuitive approach was proposed for seismic performance
evaluation, namely by controlling the evolution of the damage state of the dam. Consid-
ering suitable performance criteria, acceleration endurance limits are estimated based on
the evolution of tensile and compressive damage, and then compared, respectively, with
reference peak ground accelerations prescribed for the OBE and the SEE of the dam site.
With this approach, it is possible to conduct the seismic safety assessment in relation to
both earthquake levels (OBE and MDE) in an efficient manner, by conducting a single
intensifying acceleration time history analysis.

An important innovation was also achieved in the finite element program DamDySSA,
used to carry out the seismic analyses for this work. Several years under development in
LNEC for dynamic analysis of dam–reservoir–foundation systems, the program is based
on a coupled finite element formulation in displacements and pressures, and a robust
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formulation was recently implemented for non-linear seismic analysis, considering (a) non-
linear joint behavior, using a constitutive model based on the Mohr–Coulomb failure
criterion and using normal/shear stress-displacement laws for opening/closing and sliding
movements, and (b) the concrete behavior up to failure, using an isotropic damage model
with strain-softening and independent tensile and compressive scalar damage variables. A
considerable investment was also made in programming the graphical outputs, to achieve
realistic 3D representations of the damage in the dam body and hence facilitate the results
analysis and interpretation.

The ETA-based method was then used to evaluate the seismic performance of the
132 m-high Cabril Dam (Portugal) and the 170 m-high Cahora Bassa Dam (Mozambique).
The achieved results confirmed the potential of the proposed methodology for seismic
safety assessment of concrete dams and showed that it enables a simple and intuitive
analysis, which can be very beneficial for dam safety officers and dam owners. Therefore,
the method can be used to support the seismic design and safety assessment of new dams or
to conduct analyses for seismic safety reassessment of older dams that have been designed
based on outdated methods and regulations; for example, a program for seismic safety
reassessment of older large concrete dams of high potential risk could be carried out in
Portugal and Mozambique, and the tools presented in this paper could prove useful. The
proposed method can also be used to conduct seismic safety evaluations of dams for
scenarios considering different reservoir water levels, distinct concrete strength properties,
and using various intensifying seismic accelerogram with different frequency content.

In terms of future research, the proposed ETA-based methodology may be improved
by including specific parameters that allow for a more objective quantification of the global
damage state of the dam. In what concerns the program DamDySSA, it could be enhanced
by implementing parallelization techniques, using GPU computing, in order to increase
the computational efficiency of the non-linear analyses.
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Abstract: This paper proposes a systematic approach for the seismic design of 2D concrete dams.
As opposed to the traditional design method which does not optimize the dam cross-section, the
proposed design engine offers the optimal one based on the predefined constraints. A large database
of about 24,000 simulations is generated based on transient simulation of the dam-foundation-water
system. The database includes over 150 various dam shapes, water levels, and material properties,
as well as 160 different ground motion records. Automated machine learning (AutoML) is used
to generate a surrogate model of dam response as a function of thirty variables. The accuracy of
single- and multi-output surrogate models are compared, and the efficiency of the design engine for
various settings is discussed. Next, a simple yet robust inverse analysis method is coupled with a
multi-output surrogate model to design a hypothetical dam in the United States. Having the seismic
hazard scenario, geological survey data, and also the concrete mix, the dam shape is estimated and
compared to direct finite element simulation. The results show promising accuracy from the AutoML
regression. Furthermore, the design shape from the inverse analysis is in good agreement with the
design objectives and also the finite element simulations.

Keywords: design variable; finite element; feasibility design; surrogate; gravity dams; AutoML

1. Introduction

Seismic design and analysis of concrete dams have been always challenging tasks
because multiple factors are involved in performance evaluation [1]. They include, but are
not limited to, the semi-unbounded size of the reservoir and foundation rock domains, fluid-
structure interaction, wave absorption at the reservoir boundary, water compressibility,
foundation rock-structure interaction, spatial variations in ground motion at the dam-
foundation interface, and nonlinear damage mechanism of dam concrete. A detailed
review of the dynamic analysis of concrete dams can be found in [2]. However, the seismic
safety of existing dams is different from the seismic design of new ones. Whereas linear
elastic analyses are warranted for design, nonlinear ones must be performed when the
complete structural response is desired, the failure load is to be determined as accurately
as possible, or the “true” factor of safety must be found [3].

Structural design is founded on verification of the safety inequality: “Demand≤ Capacity”.
This inequality can be interpreted with different engineering response quantities which
results in various seismic design philosophies. In a broad classification, the seismic design
is force-based, displacement-based, or energy-based. If both sides of safety inequality
are written based on forces or moments, the design is force-based, and if displacement
or deformation (e.g., deflection, curvature, strain, and rotation) is used, the design is
displacement-based. Finally, if energy terms are compared, the design is energy-based [4].
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In force-based design, the lateral load-resisting system is designed for an equivalent
static force. However, in the displacement-based method, multiple (drift-based) per-
formance levels are checked to ensure the displacement does not exceed the threshold
values. In force-based design, the structural system is designed for a single seismic hazard
level, i.e., the design basis earthquake (DBE) in which the structure should satisfy the life
safety performance objective. However, the satisfaction of one performance level does not
guarantee the satisfaction of other (i.e., higher) performance levels too. In contrast, the
displacement-based design operates on multiple performance levels to satisfy all of them.
It is noteworthy that an earthquake originally imposes energy (and not force) on a structure.
Such energy (through the foundation) produces displacement relative to the ground. The
forces are indeed the byproduct of such a relative displacement and not the other way
around. Therefore, a displacement-based method is straightforward and more detailed.

Concrete gravity dams have traditionally been designed by an extended version
of force-based procedure [5,6]. As opposed to framed structures which include only
one equivalent lateral force, there are three static lateral forces in dams: (1) the forces
associated with the weight of the dam which is obtained as a product of a seismic coefficient
(α ∈ [0.05− 0.10]) and the weight of the portion of the dam being considered, (2) the forces
associated with reservoir hydrodynamic pressure which are obtained as a product of α and
a pressure coefficient, αp, and (3) the hydrostatic pressure [7]. There are several limitations
in this method: the dynamic characteristics of the coupled system, as well as the time
and frequency-domain characteristics of the ground motion records, are not considered.
The traditional design method has also very conservative criteria: the compressive stress
should be limited to 1/4 of the compressive strength, f ′c , and the tension is usually not
permitted, or the allowable tensile stress is very small. In addition, the static sliding and
overturning criteria have little meaning in the context of traditional seismic dam design as
the oscillatory responses are ignored.

The authors are unaware of any previous attempt at the displacement-based design
of concrete dams. The only accessible document is the research by Andonov et al. [8]
which proposed to use of a displacement-based method for linear and nonlinear seismic
assessment of the existing dams. Beyond the previous classification for seismic design
methods, other extensions have been proposed such as performance-based seismic de-
sign [9], reliability-based seismic design [10], risk-based seismic design [11], and more
recently, the resilience-based seismic design [12]. Despite the availability of such advanced
seismic design frameworks, there are rarely used in concrete dam design probably due
to the complexity of the numerical model. For example, Ferguson et al. [13] showed the
application of the risk-informed design framework for roller-compacted concrete dams
under extreme seismic events.

On the other hand, the shape optimization of the existing dam layout has been dis-
cussed widely for both gravity and arch dams. The pioneering work belongs to Ramakrish-
nan and Francavilla [14] that used the penalty function to optimize the shape of gravity
dams. Others adopted simple or advanced optimization algorithms for dam shape op-
timization [15–17]. Some others combined the optimization algorithms with machine
learning to accelerate the process [18,19]. A risk-based framework for shape optimization
of arch dams was introduced by Talatahari et al. [20] on which expected costs of failure are
incorporated in the analysis. More recently, a surrogate–assisted shape optimization frame-
work for dams was introduced by Fengjie and Lahmer [21] which incorporates various
uncertainty sources. This method has been extended by Abdollahi et al. [22] for multiple
seismic performance levels by eliminating the design dependency on a particular ground
motion record. Nearly all these techniques require advanced knowledge of optimization
techniques and/or machine learning modeling. Moreover, a large number of finite element
simulations is required to satisfy the objective functions. Therefore, they are not popular
among practitioners. Moreover, a series of particular cost functions are required during
the shape optimization such as volume of concrete, construction quality and complexity,
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location of dam and availability of materials, etc. which makes the generalization of results
nearly impossible.

With multiple limitations in the traditional seismic design method, and also the
complexity of the advanced shape optimization techniques, there is a need for a simple
yet accurate seismic design framework. This paper proposes a finite element-based design
engine to assist the practitioners in feasibility level (i.e., initial) layout development for
2D concrete gravity dams under seismic events. The engine includes a large inventory of
gravity dam shapes with different material properties for concrete and foundation rock.
Such a large inventory has been subjected to different water levels and many ground
motion records. The current database covers about 24,000 unique combinations of dam
shapes, material properties, water, and earthquake loading. Further, a low-code automated
machine learning (AutoML) tool is used to develop a high-fidelity surrogate model that
connects all the design variables to response quantities (e.g., displacements and stresses).
Such an AutoML surrogate model has never been trained for structural systems (more
specifically dams) with both the epistemic (i.e., modeling and material) and aleatory (i.e.,
loading) variability [23,24]. Therefore, the first contribution of this paper is to explore the
accuracy of such a surrogate model with different assumptions that an AutoML prepackage
is provided for analysts. Next, a surrogate model-based inverse analysis is introduced for
initial parameter estimation during dam design. Using the generated engine in this paper,
and also having some information about the seismic event, the engineer will be able to
estimate the dam shape for different levels of response quantity in a second. This engine
provides the best initial guess (shape and material of the dam) based on the constraints
that are introduced by the analyst.

The paper’s structure is as follows: Section 2 provides a quick review of the AutoML
and its differences with classical machine learning approaches. Furthermore, a high-level
review is provided about the application of machine learning in the seismic analysis of
dams. Section 3 provides the underpinning theories about the design variables used in
this paper to develop the surrogate models. The data structure is discussed in Section 4
including a brief explanation of the software used for finite element simulations, and also
some generic responses from the database. Section 5 dives into the AutoML application,
the anatomy, and performance of the developed surrogate models, while Section 6 explores
the design engine and inverse problems, as well as some practical examples. Finally, a
summary of the research this provided in Section 7.

2. Automated Machine Learning (AutoML)
2.1. ML-Based Response Evaluation of Dams

Most of the current applications of machine learning in dam engineering are focused
on structural health monitoring which mainly compiles the measured data during the
lifetime of the dam and predicts the response trend [25,26]. This is not the focus of our
paper. In this paper, (automated) machine learning is used to post-process the results of
finite element simulations. Studies in this field are limited and there is no comprehensive
research on comparing different techniques.

Chen et al. [27] evaluated the probability of sliding in a dam using an improved re-
sponse surface method. Karimi et al. [28] proposed a neural network procedure for system
identification of gravity dams coupled with a hybrid finite element-boundary element anal-
ysis to estimate the dynamic characteristics of an empty dam. Gaspar et al. [29] conducted
a global sensitivity analysis of the thermo-chemo-mechanical coupled model of RCC’s
physical properties. Gu et al. [30] proposed a chaos genetic optimization algorithm to invert
the initial zoning deformation modulus and determine the inversion objective function
using the measured displacement and finite element method. Su et al. [31] proposed the ap-
plication of least squares support vector machine and conditional back analysis for optimal
selection of dam parameters. Hariri-Ardebili and Pourkamali-Anaraki [32,33] showed the
application of several machine learning techniques in the multi-hazard analysis of gravity
dams. Both the simplified and nonlinear damage analyses were performed including the
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seismic, hydrologic, and aging hazard sources. Seismic reliability and sensitivity of concrete
dams were investigated with polynomial chaos expansion (PCE) [34] and adaptive Kriging
methods [35].

Segura et al. [36] developed a series of seismic fragility curves for concrete dams using
various machine learning methods. Macedo et al. [37] developed a series of new models
for estimating seismically-induced slope displacements based on various machine learning
techniques. Zhou et al. [38] coupled the support vector machine with a plastic failure
model for fragility analysis of concrete-faced rockfill dams. Cheng et al. [39] proposed two
back-analysis frameworks based on multivariate machine learning models to determine
the dynamic properties of the material in concrete dams. Salazar and Hariri-Ardebili [40]
combined the random forest method with stochastic finite element procedure to evaluate
the impact of concrete heterogeneity in dams. A PCE and Random Forest-based model
is also used for sensitivity analysis of heterogeneous arch dams [41]. Segura et al. [42]
developed a dual-layer meta-model for the safety assessment of rock wedges. Hariri-
Ardebili et al. [43] proposed a machine learning-aided probabilistic seismic demand model
for concrete dams using both real and artificial ground motions. Li et al. [44] developed
an efficient methodology for risk analysis of dams with a large number of seismic waves
which is based on screening for intensity measures and a surrogate model.

While many of the above-mentioned researches have adopted multiple machine
learning (or surrogate) methods to generalize the findings, those methods were selective
depending on the personal preference of the analyst (or the availability and/or capability
of the software), and thus, there is no generalized recommendation regarding the efficiency
of a particular method. Moreover, none of them have used an automated machine learning
framework for regression or classification purposes. In the following section, the concept
of AutoML is explained.

2.2. Underpinning Theory

Automated machine learning, also known as AutoML, is a growing field that aims
to allow users with varying backgrounds and expertise to design an end-to-end machine
learning system for the problem at hand [45,46]. The automation process facilitates several
crucial and time-consuming aspects, including feature processing or engineering, model
discovery, and hyperparameter tuning. Given a set of raw features or attributes, the
first step is to find a set of meaningful and usable features to be passed to a machine
learning method. Examples include converting categorical features to numerical values
and feature scaling methods, such as standardization [47], to ensure that all features are
in the same range and treated equally. Model discovery refers to finding the best learning
method among a set of candidate machine learning methods. For example, in the context
of regression which is the main focus of this paper, eligible machine learning methods
may include linear/polynomial regression, instance-based learning techniques such as
nearest neighbors, or even neural networks. On the other hand, hyperparameter tuning
involves selecting the best hyperparameters for the learning method which is deemed to be
the final choice. Hyperparameters can be viewed as external parameters that have to be
specified before training machine learning models, and are known to significantly impact
the outcome, such as the number of nearest neighbors when using instance-based models.
In machine learning, the combination of model discovery and hyperparameter tuning is
typically called model selection.

Therefore, AutoML holds great potential to make machine learning and data science
more accessible across scientific disciplines to extract patterns and make data-driven
decisions. For example, AutoML has been deployed in a wide array of applications, such
as image-based plant phenotyping [48], fault severity diagnosis in industrial processes [49],
reducing manufacturing costs [50], analyzing biological data [51], and predicting the
casualty rate and economic loss induced by earthquakes [52]. Despite the recent progress
in this area, we would like to highlight the proper way to evaluate the effectiveness of
AutoML techniques. After finalizing a learning method and its hyperparameters using
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AutoML, one should evaluate its performance on a test or hold-out data set to report its
generalization error. This additional step allows us to decouple the model selection process
and model assessment, reflecting the “true” performance of the selected model or surrogate
when facing new cases. The overall procedure is depicted in Figure 1 via a flowchart. The
training data set will be used along with an AutoML technique to select the final model
and its hyperparameters, while the test data will be used to report evaluation metrics on
unseen data to measure the generalization error.

Available Data

Training Data AutoML Selected Model

Test Data

Final Evaluation

Figure 1. Proper performance evaluation of AutoML techniques, by holding out part of the available
data as a test set.

Given the above introduction of AutoML, we explain the underlying concepts in more
detail. Let A = {A(1), . . . , A(N)} represent a set of N eligible machine learning algorithms.
Moreover, each A(n), n = 1, . . . , N, comes with a set of hyperparameter configurations,
represented by Λ(n). Furthermore, let us assume that the training data in Figure 1, called
Dtrain is split into K cross-validation folds {D(1)

train, . . . ,D(K)
train} and {D(1)

valid, . . . ,D(K)
valid}, such

that D(k)
train = Dtrain \ D(k)

valid for k = 1, . . . , K. Given a loss function L that measures the

prediction quality, we make the assumption that L(A(n)
λ ,D(k)

train,D(k)
valid) represents the loss

evaluated on the validation data D(k)
valid using the training data D(k)

train and the learning
method A(n) with its corresponding hyperparameter choices λ ∈ Λ(n). With this notation
in place, the main idea behind automated machine learning is to solve the following
minimization problem in an efficient and robust manner:

arg min
A(n)∈A,λ∈Λ(n)

1
K

K

∑
k=1
L(A(n)

λ ,D(k)
train,D(k)

valid) (1)

The solution to the above problem results in finding the best learning method and its
hyperparameters, which can be used as a surrogate model to capture the behavior of the
desired system as accurately as possible. As mentioned before and depicted in Figure 1, an
additional step is to evaluate the performance of the selected model on a hold-out test data
set to ensure that the model generalizes well beyond the existing data Dtrain.

Among available AutoML techniques/frameworks, we have decided to use auto-
sklearn [53,54] in this paper because of five main reasons. First, auto-sklearn is a Python-
based open-source toolkit, which resembles the widely-used scikit-learn machine learning
package, also known as sklearn [55]. This means that we can use similar methods such
as “fit” and “predict” to train and evaluate models, respectively. Second, during the
optimization process, auto-sklearn can automatically create an ensemble of top-performing
models, instead of reporting a single model with the highest accuracy. To be more formal,
the final solution of auto-sklearn can take the form of ∑n βn A(n)

λ , where the weights should
satisfy 0 ≤ βn ≤ 1 and ∑n βn = 1. As a result, the top-performing models will have βn > 0
to contribute to the final surrogate model. It has been shown that ensemble methods provide
an efficient way to improve predictive accuracy, e.g., [56], which makes auto-sklearn a very
attractive choice. Third, auto-sklearn allows us to solve multi-output problems in which
the goal is to predict multiple quantities of interest at the same time. This is an important
feature of auto-sklearn because, for the application of seismic design of dams, we have to
describe the system’s behavior using various quantities, and training distinct models for
each quantity becomes intractable. Currently, PyCaret, which is another popular AutoML
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framework [57], does not support multi-output regression models, which is a substantial
drawback for many applications, including the problem of interest in this paper.

The fourth reason is that auto-sklearn runs within a user-determined time budget, with
the default value of one hour. Therefore, the user has the option to spend more or less time
depending on the computational requirements and the availability of resources. Finally,
the fifth reason is that the search space of auto-sklearn is significantly large and considers
various regression models and classifiers from the scikit-learn library. For example, in the
most recent version of auto-sklearn 0.15.0 that we use in this paper, the following regression
models A are included in the search space:

• Linear models: minimizing a regularized empirical loss with stochastic gradient
descent (SGD), and Bayesian Automatic Relevance Determination (ARD) regression;

• Ensemble models: Adaboost, random forest (and decision trees), extra trees, gradi-
ent boosting;

• Probabilistic model: Gaussian process (GP) regression;
• K-nearest neighbor (KNN) and support vector regression (SVR);
• Neural networks: Multilayer perceptron (MLP).

Although we refer interested readers to the sklearn documentation page for more
detailed information and updates regarding these models and their implementations, we
can immediately see the diversity of the models that are included in solving the above
optimization problem. To demonstrate the ease-of-use of auto-sklearn for practitioners
without a deep knowledge of machine learning methods, we show relevant code snippets
for performing the three main steps involved in our proposed framework in Listing 1:
(1) dividing the available data into training and test sets, (2) model selection using Dtrain,
and (3) model assessment via Dtest. To save space, we listed R2 or the coefficient of
determination as the only score to measure the quality of predictions, but we will use a
broader list of evaluation metrics in our numerical results. As a final point, once auto-
sklearn finds the best model according to the search space and the given time budget, we
can store/load the surrogate model “automl” to make predictions in the future.

Listing 1. Sample of auto-sklearn code to perform the proposed framework.

Version November 28, 2022 submitted to Water 6 of 25

• Linear models: minimizing a regularized empirical loss with stochastic gradient descent (SGD),206

and Bayesian Automatic Relevance Determination (ARD) regression;207

• Ensemble models: Adaboost, random forest (and decision trees), extra trees, gradient boosting;208

• Probabilistic model: Gaussian process (GP) regression;209

• K-nearest neighbor (KNN) and support vector regression (SVR);210

• Neural networks: Multilayer perceptron (MLP).211

Although we refer interested readers to the sklearn documentation page for more detailed212

information and updates regarding these models and their implementations, we can immediately213

see the diversity of the models that are included in solving the above optimization problem. To214

demonstrate the ease-of-use of auto-sklearn for practitioners without a deep knowledge of machine215

learning methods, we show relevant code snippets for performing the three main steps involved in216

our proposed framework: (1) dividing the available data into training and test sets, (2) model selection217

using Dtrain, and (3) model assessment via Dtest. To save space, we listed R2 or the coefficient of218

determination as the only score to measure the quality of predictions, but we will use a broader list of219

evaluation metrics in our numerical results. As a final point, once auto-sklearn finds the best model220

according to the search space and the given time budget, we can store/load the surrogate model221

“automl” to make predictions in the future.222

223
from sklearn.model_selection import train_test_split224

from sklearn.metrics import r2_score225

from autosklearn.regression import AutoSklearnRegressor226

227

# step 1: train/test split, (X, y) is the entire data set228

X_train, X_test, y_train, y_test = train_test_split(229

X, y, test_size=0.2, random_state=0)230

231

# step 2: model selection, time budget: 1 hour or 3600 sec232

automl = AutoSklearnRegressor(233

time_left_for_this_task=3600)234

235

automl.fit(X_train, y_train)236

237

# step 3: model assessment (R2 or other metrics)238

r2_score(y_test, automl.predict(X_test))239240

3. Design Variables241

The feasibility level design of a gravity dam includes the selection of an appropriate cross-section242

including the material properties for the coupled system that satisfy the design objectives under the243

applied loads. Figure 2 illustrates a generic gravity dam including the dimensions, material properties,244

and loading.245

3.1. Dam Shape246

Probably the most important task during seismic design is to select an optimal initial cross-section.247

Multiple sources offer a cross-section for concrete gravity and arch dams. A large inventory of dams248

has been studied and a generic dam shape is developed using seven length-related variables as shown249

in Figure 3 (L1 to L7). All dimensions are a random dependent of the dam base. Also, the reservoir250

is modeled by assuming a random water level between 50-100% of dam height (corresponding to251

winter and summer conditions). All the generated dam layouts are consistent with current dam design252

practices or an existing dam.253

• L1 ∈ (50, 150) m.254

• L2 = L1 × α1; α1 ∈ (0.00, 0.05) −→ L2 ∈ (0, 7) m.255

• L3 = L4 × α3; α3 ∈ (1.00, 1.20) −→ L3 ∈ (7, 40) m.256

3. Design Variables

The feasibility level design of a gravity dam includes the selection of an appropriate
cross-section including the material properties for the coupled system that satisfy the design
objectives under the applied loads. Figure 2 illustrates a generic gravity dam including the
dimensions, material properties, and loading.
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Figure 2. Generic shape of a gravity dam including design variables, material parameters, water, and
seismic loads.

3.1. Dam Shape

Probably the most important task during seismic design is to select an optimal initial
cross-section. Multiple sources offer a cross-section for concrete gravity and arch dams.
A large inventory of dams has been studied and a generic dam shape is developed using
seven length-related variables as shown in Figure 3 (L1 to L7). All dimensions are a
random dependent of the dam base. Furthermore, the reservoir is modeled by assuming a
random water level between 50–100% of dam height (corresponding to winter and summer
conditions). All the generated dam layouts are consistent with current dam design practices
or an existing dam.

• L1 ∈ (50, 150) m.
• L2 = L1 × α1; α1 ∈ (0.00, 0.05) −→ L2 ∈ (0, 7) m.
• L3 = L4 × α3; α3 ∈ (1.00, 1.20) −→ L3 ∈ (7, 40) m.
• L4 = L1 × α2; α2 ∈ (0.12, 0.24) −→ L4 ∈ (6, 35) m.
• L5 = L6 × α5; α5 ∈ (0.30, 0.70) −→ L6 ∈ (20, 140) m.
• L6 = L1 × α4; α4 ∈ (1.10, 1.60) −→ L5 ∈ (55, 235) m.
• L7 = L5 × α6; α6 ∈ (0.75, 0.90) −→ L7 ∈ (40, 200) m.
• WL = L5 × α7; α7 ∈ (0.50, 1.00)

3.2. Material Properties

The design of a new dam requires the definition of material properties for finite
element simulations. The concrete properties mainly depend on the mix design, and also
the availability of the ingredients (e.g., sand, gravel, and cement) near the dam site. The
rock properties are typically obtained from geological surveys. However, for feasibility-
level design, the exact rock properties might not be available yet. Moreover, the reservoir
bottom reflection coefficient, αw, is needed which simulates the impact of bottom sediments
and alluvium. For new dams, αw > 0.9 is typically used. However, to account for long
terms effects, smaller values should be used. Seven properties are assumed to be unknown
during the design process. Each one covers a wide range of possible values.

Concrete modulus of elasticity Ec ∈ [15, 45] GPa, concrete Poisson’s ratio νc = 0.2
(fixed), concrete mass density ρc ∈ [2200, 2600] kg/m3, concrete hysteretic damping
ηc ∈ [0.02, 0.10], rock modulus of elasticity Er ∈ [15, 45] GPa, rock Poisson’s ratio νr = 0.33
(fixed), rock mass density ρr ∈ [2200, 2800] kg/m3, rock hysteretic damping ηr ∈ [0.02, 0.08],
and the reservoir bottom wave reflection coefficient αw ∈ [0.5, 0.9]. All material properties
are sampled based on a truncated normal distribution using the Latin Hypercube sam-
pling technique. No correlation is assumed among these variables. Figure 4 shows the
distribution of the material properties used for surrogate modeling. Concrete compressive
strength, f ′c , is not directly used in finite element analyses; however, the results of linear
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elastic simulations should be compared to tensile ( f ′t ≈ 0.1 f ′c) and compressive strength to
ensure the demand does not exceed the capacity.

Figure 3. Inventory of all gravity dam shapes generated based on a Matlab code including a random
water level in red; the box size is 170 × 240 m in all cases.

Figure 4. Distribution of material properties.

3.3. Loads

The inputs to the finite element model include both the ground motion records and the
water pressure (both hydrostatic and hydrodynamic components). As discussed earlier, the
water level is assumed to be 50–100% of the dam height. Subsequently, the corresponding
hydrostatic and hydrodynamic pressures are automatically computed and applied by
the software. For the seismic simulations, a large database of 160 ground motions is
selected worldwide to consider the aleatory uncertainty. While the current practice in
earthquake engineering is to select the ground motion records based on the seismic hazard
characteristics of the dam site, a random record selection process is used in this paper
to generate the surrogate model (later we will show the application of ground motion
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selection and scaling for a particular dam site). A random ground motion selection is
especially useful because none of the generic dams in this paper are associated with a
specific site/location. Moreover, variation of the geometry and material properties in the
generic models changes the vibration characteristics of the structures (e.g., fundamental
period). Thus, ground motion selection and scaling methods such as spectral matching are
not practical methods.

Since a ground motion record has a stochastic nature, one cannot directly use it for
classical machine learning regression (unless a time series regression is used which is a
complex task). Therefore, it is efficient to extract several meta-features. It is possible to
distinguish the ground motion records based on their unique characteristics. A wide range
of time-, frequency-, spectral- and intensity-dependent intensity measure (IM) parameters
are summarized in Table 1 [58,59]. For each single ground motion signal, fifteen IM
parameters are extracted. Figure 5 shows the correlation among fifteen IM parameters for
a pilot dam (i.e., a dam that all its shape and material parameters are close to the median
of the design space). The lower triangular cells show the one-by-one correlation between
160 ground motion records. The diagonal cells are the histogram of data points. The upper
triangular cells are the correlation in terms of Spearman’s linear correlation coefficient (R)
and p-values for testing the hypothesis of no correlation against the alternative hypothesis
of a nonzero correlation (P). As seen, the significant duration, tsig, has the lowest correlation
with other IMs, while the first-mode spectral values have the highest correlation with
other IMs.
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Figure 5. Matrix of fifteen seismic intensity measures for all the applied ground motion records. R:
Correlation, and P: p-value.
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Table 1. A list of ground motion IMs [58].

No. Description of IM Symbol Mathematical Model

1 Peak ground acceleration PGA max(|ü(t)|)
2 Peak ground velocity PGV max(|u̇(t)|)
3 Peak ground displacement PGD max(|u(t)|)
4 Acceleration spectrum intensity ASI

∫ 0.5
0.1 Sa(T, ξ)dT

5 Velocity spectrum intensity VSI
∫ 2.5

0.1 Sv(T, ξ)dT
6 First-mode spectral acceleration Sa(T1) Sa(T1, ξ)
7 First-mode spectral velocity Sv(T1) Sv(T1, ξ)
8 First-mode spectral displacement Sd(T1) Sd(T1, ξ)
9 First-mode spectral acceleration Sa(T2) Sa(T2, ξ)

10 Root-mean-square of acceleration aRMS ( 1
ttot

∫ ttot
0 (ü(t))2dt)1/2

11 Root-mean-square of velocity vRMS ( 1
ttot

∫ ttot
0 (u̇(t))2dt)1/2

12 Arias intensity IA
π
2g

∫ ttot
0 (ü(t))2dt

13 Specific energy density SED
∫ ttot

0 (u̇(t))2dt
14 Cumulative absolute velocity CAV

∫ ttot
0 |ü(t)|dt

15 Significant duration tsig t0.95IA − t0.05IA

Note: ü(t), u̇(t) and u(t) are acceleration, velocity and displacement time histories, respectively.

4. Data Structure

So far, all the design variables including the geometry parameters, material properties,
and loading have been discussed. In this section, the finite element software is introduced,
and the data structure is explained.

4.1. Software

The finite element code EAGD [60] is used for dynamic analyses, where the foundation
rock is idealized as a homogeneous, isotropic, viscoelastic half-plane. A two-dimensional
model is developed including 480 elements which is reasonable for linear elastic systems.
The dam-foundation interaction effects are included by adding the dynamic stiffness matrix
for the rock region in the dam’s equation of motion. This frequency-dependent matrix is
defined with respect to the degree of freedom of the nodal points at the dam base [61].
The reservoir water is idealized by a fluid domain of constant depth and infinite length in
the upstream direction. The dissipation of hydrodynamic pressure waves by the reservoir
bottom materials is accounted for by applying a boundary condition that partially absorbs
the incident waves. The system is analyzed based on the following load cases: dam
self-weight, water pressure, and the free-field horizontal component of the earthquake
ground motion.

4.2. Input-Output Coverage

Matlab [62] is paired with EAGD to automate the finite element simulations. A total of
24,000 simulations have been conducted which cover a wide range of dam shapes, material
properties, and ground motions. Figure 6 shows the data structure. Two side matrices of
160× 15× 150 and 15× 150 are used as inputs in AutoML. The former one is a 3D matrix
that identifies the characteristics of the ground motion record. One may note that some
of the IM parameters depend on the vibration period of the dam (e.g., Sa(T1)), and thus,
this side matrix is three-dimensional and not two-dimensional. On the other hand, the side
matrix which defines the geometry, material, and water level is a two-dimensional matrix
as it does not depend on the applied seismic load.

Within the probabilistic simulation framework, and after completing any single finite
element analysis, the results are post-processed, and the required information is extracted.
Data are stored in the form of a 2D matrix (for scalar quantities) and a 3D matrix (for spatial
and temporal quantities).

• Scalar quantities cover the maximum (or minimum) response of the dam at a particular
location and the entire duration of the applied ground motion. For example, maximum
crest displacement shows the “global” behavior of the dam under the applied motion.
Similarly, the maximum first principal stress at the dam heel is a “local” metric that
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presents the onset of cracking (if exceeds the tensile strength). Other peaks (i.e.,
maximum or minimum) response quantities can be extracted from displacement,
stress, and strain results.

• Vector quantities cover the responses over time, or they present the spatial distribution
of the response parameters. Cumulative inelastic duration (CID) shows the time
intervals in which the stress at a particular location exceeds the tensile strength. The
overstressed area (OA) illustrates the spatial distribution of regions within the dam
body where the tensile strength exceeds the tensile strength (or a multiplayer of it).
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Figure 6. Data structure.

While it is possible to use as many as output parameters in developing a surrogate
model, for any practical implementation, a total of ten response quantities are considered
in this paper. They are:

• Out1: maximum horizontal crest displacement, ∆max

• Out2: maximum first principal stress at heel, σheel
p1,max

• Out3: maximum first principal stress at upstream face 5% from the heel, σUP5%
p1,max

• Out4: maximum first principal stress at toe, σtoe
p1,max

• Out5: minimum third principal stress at the heel, σheel
p2,min

• Out6: minimum third principal stress at the toe, σtoe
p2,min

• Out7: CID for demand capacity ratio exceeds one at the heel, CIDheel
DCR=1

• Out8: CID for demand capacity ratio exceeds two at the heel, CIDheel
DCR=2

• Out9: Overstressed area for demand capacity ratio exceeds one at the heel, OAheel
DCR=1

• Out10: Overstressed area for demand capacity ratio exceeds two at the heel, OAheel
DCR=2

5. Results: Surrogate Model

In this section, we examine the efficacy of auto-sklearn, explained in Section 2, for de-
veloping accurate machine learning-based surrogate models mapping the design variables
to the quantities of interests (QoI). Specifically, we consider three scenarios that involve pre-
dicting: (1) Out2, i.e., single output, (2) outputs 1 through 6, and (3) all 10 outputs discussed
in the previous section. The main intention behind this analysis is to better understand the
tradeoff between the number of outputs and the quality of the final surrogate models when
using AutoML techniques. We hypothesize that the increase in the number of outputs
makes it more challenging to find a model (and its corresponding hyperparameters) that
performs well across all the desired outputs. Before stating our results, note that the studied
outputs fall within substantially different ranges. Thus, it makes sense to use a linear
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transformation technique for each output individually such that all values of a desired
quantity of interest will be transformed into the range [0, 1]. That is, the minimum and
maximum values of the transformed output will be 0 and 1, respectively. To this end,
we use the “MinMaxScaler” method from sklearn, where the transformation is given by
(y−min)/(max−min) for each output value y.

For all experiments, we use three evaluation metrics that are specifically designed
for regression problems. The first one is R2 or the coefficient of determination, which is
defined as follows for a set of n finite element results y1, . . . , yn and their predicted values
obtained by a machine learning model ŷ1, . . . , ŷn:

R2(y, ŷ) = 1− ∑n
i=1(yi − ŷi)

2

∑n
i=1(yi − ȳ)2 , (2)

where ȳ = 1
n ∑n

i=1 yi is the sample mean or average. Therefore, the best possible score is
1 when yi = ŷi for all cases, and the result is 0 when all the predicted values are equal to
the sample mean ȳ, which means that the machine learning model has not learned any
patterns. Therefore, R2 values closer to 1 indicate a more accurate machine learning-based
surrogate model. The two other evaluation metrics are Root Mean Square Error (RMSE)
and Mean Absolute Error (MAE). We can compute these two metrics as follows:

RMSE(y, ŷ) =

(
1
n

n

∑
i=1

(yi − ŷi)
2

)1/2

(3)

MAE(y, ŷ) =
1
n

n

∑
i=1
|yi − ŷi|. (4)

Based on these formulas, when yi = ŷi for all cases, the return values are zeros, and,
overall, values closer to 0 indicate more accurate machine learning or surrogate models.

5.1. Scenario 1: Single Output

In the first scenario, we just consider Out2 (i.e., maximum principal stress at the heel)
and use the default time limit of one hour when using auto-sklearn for model selection (we
fix the time limit throughout this section). Table 2 reports the final result, including the
types of machine learning models used in the ensemble and their corresponding weights
βn as well as the length of time the model was optimized for (called duration). To interpret
this table, note that the rank of each model is based on the calculated value of the loss
function that we discussed in Section 2; Rank 1 has the lowest value of the loss. In terms of
the ensemble method selected by auto-sklearn, as expected, we can confirm that ∑n βn = 1.
Furthermore, we notice that the final model consists of two main types of machine learning
models: Gradient Boosting and ARD Regression. Gradient Boosting is a boosting-like
algorithm for regression that combines weak learners and the main difference between the
models listed in the table is related to critical hyperparameters, such as the maximum depth
of the tree and the minimum number of samples required to split an internal node [63]. On
the other hand, the most influential model in the ensemble according to the assigned weight
is ARD Regression, which can be viewed as a Bayesian extension of linear regression, where
the parameters of the regression model are assumed to be in Gaussian distributions. Due
to its probabilistic nature, training such models can be time-consuming, as evident from
the duration column of Table 2.

Next, we present a parity plot to better understand the performance of the final model
using both training and test data sets. This step is crucial because we should show that the
final model is not suffering from overfitting, which is a common problem when the selected
machine learning model is too complex for the problem at hand. Particularly, Figure 7
plots true values of the quantity of interest obtained via our finite element model versus
predicted values produced by the machine learning model that auto-sklearn selected. The
reason that we focus on the range [0, 0.3], instead of [0, 1], is that the majority of scaled
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output values fall within this range. Hence, this allows us to visualize the behavior of the
surrogate model more closely in this interesting regime. However, we use the entire data
set to report evaluation metrics. In the title of this figure, the accuracy score refers to R2 or
the coefficient of determinations, and the best possible score is 1. Therefore, we corroborate
that the trained surrogate model performs well on both training and test data sets. In
addition, we evaluated the performance of this model on the test data using the other
discussed metrics: RMSE = 0.008 and MAE = 0.004, showing the reasonable performance
of the final surrogate model.

Table 2. The result of model selection performed by auto-sklearn when considering a single output
(Scenario 1).

Rank Ensemble Weight Type Duration

1 0.16 Gradient Boosting 24.10
2 0.04 Gradient Boosting 3.85
3 0.14 Gradient Boosting 11.88
4 0.24 ARD Regression 103.09
5 0.06 Gradient Boosting 11.311
6 0.12 Gradient Boosting 3.21
7 0.06 Gradient Boosting 11.13
8 0.10 Gradient Boosting 8.95
9 0.06 Gradient Boosting 147.51
10 0.02 ARD Regression 1.65

Figure 7. Scenario 1 (Out2): plotting true vs. predicted values for both training and test samples. The
available data are split into train/test sets according to Figure 1. We see that the surrogate model
performs well on both training and test sets (acc in the title refers to R2).

5.2. Scenario 2: Multi-Output, Out1 through Out6

In the second scenario, we consider a multi-output setting, where the objective is to
develop a surrogate model to predict six quantities of interest: Out1 through Out6. Similar
to the previous experiment, we report the anatomy of the final model, including ranks,
ensemble weights/models, and duration, in Table 3. Note that the final model primarily
consists of tree-based machine learning models. In fact, Extra Trees and Random Forests
are similar in the sense that they both build multiple trees and split nodes using random
subsets of features. Therefore, their main goal is to improve the predictive accuracy and
control overfitting by constructing ensemble methods. However, as apparent in the table,
such methods are computationally expensive. On the other hand, K-Nearest Neighbor
methods are much faster when working with data sets consisting of a few thousand data
points, which is the case in our study. The number of nearest neighbors, which is the most
important hyperparameter, is set to 17 in this example.

Moreover, we provide parity plots in Figure 8, where each subfigure represents actual
vs. predicted values for both training and test sets accompanied by R2 values. Similar to the
previous scenario, we focus on the range [0, 0.3] (except for Out5 and Out6) because most
output values fall within this range. However, Out5 and Out6 take on negative values, and
using the transformation technique that we discussed earlier in this section, the majority
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of data points that have low absolute values fall within [0.7, 1]. This is because negative
numbers get smaller as their magnitude increases.

Table 3. The result of model selection performed by auto-sklearn when considering six outputs
(Scenario 2).

Rank Ensemble Weight Type Duration

1 0.84 Extra Trees 176.97
2 0.06 Random Forest 132.60
3 0.10 K-Nearest Neighbor 19.53

To interpret the reported results in Figure 8, note that Out2 is shared between scenar-
ios 1 and 2, and that the performance of the obtained surrogate model in the second case
is slightly worse than the one produced in the first scenario. This is consistent with our
hypothesis because the second case study aims to find a model that performs well across
all six outputs, instead of a single output. Despite the minor accuracy reduction, we believe
that the surrogate model in this scenario is more useful because of predicting multiple
outputs at the same time, while the reported R2 values are consistently above 0.9 across all
the desired quantities of interest.

Figure 8. Scenario 2 (Out1 through Out6): plotting true vs. predicted values for both training and
test samples. The available data are split into train/test sets according to Figure 1. We see that the
surrogate model performs well on both training and test sets, and the R2 values exceed 0.9 for all the
studied outputs.

In addition, Table 4 reports the performance of the machine learning-based surrogate
model on the testing data using three metrics. Based on these results, we conclude that
the overall performance of our model is satisfactory. RMSE and MAE values are less than
0.01 because the transformed output values are distributed in the range [0, 1]. Moreover,
the overall R2 value is about 0.95, meaning that the model has learned useful input-output
patterns from the training data set.
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Table 4. Evaluating the performance of the trained surrogate model using six outputs: Out1
through Out6.

Output R2 RMSE MAE

Out1 0.912 0.007 0.002
Out2 0.958 0.009 0.004
Out3 0.956 0.009 0.004
Out4 0.948 0.010 0.005
Out5 0.958 0.009 0.004
Out6 0.947 0.010 0.005

Overall 0.947 0.009 0.004

5.3. Scenario 3: Multi-Output, Out1 through Out10

In this section, we extend our previous analysis to account for the 10 outputs explained
in Section 4. Table 5 presents the structure of the final ensemble method identified by using
auto-sklearn. This model mainly contains Decision Trees and the K-Nearest Neighbor
regression models. From the computational standpoint, optimizing the Decision Tree
model is typically more time-consuming than training the K-Nearest Neighbor model.
However, from the predictive accuracy viewpoint, Decision Trees are popular because
they learn simple decision rules from the available data to approximate a wide range of
linear and nonlinear functions, which is helpful when considering various input-output
mappings. By carefully reviewing the selected hyperparameters, we noticed that the main
difference between the chosen Decision Trees is the minimum number of samples required
to split an internal node in the tree (ranging from 3 to 19). On the other hand, the number
of nearest neighbors for the two selected models is set to 4 and 17. As a final point, it is
interesting to observe that the K-Nearest Neighbor regression model with 17 neighbors
was also found in the previous scenario, where we considered 6 outputs.

Table 5. The result of model selection performed by auto-sklearn when considering all ten outputs
(Scenario 3).

Rank Ensemble Weight Type Duration

1 0.08 Decision Tree 1.88
2 0.04 Decision Tree 158.13
3 0.22 Decision Tree 161.25
4 0.04 Decision Tree 6.22
5 0.16 Decision Tree 7.37
6 0.06 Decision Tree 1.22
7 0.06 Decision Tree 160.86
8 0.20 Decision Tree 101.23
9 0.02 Decision Tree 1.7

10 0.04 Decision Tree 69.75
11 0.02 K-Nearest Neighbor 18.94
12 0.06 K-Nearest Neighbor 1.31

Furthermore, Figure 9 presents parity plots for the resulting surrogate model when
considering all ten outputs, showing actual values obtained by the finite element analysis
on the horizontal axis and the corresponding predicted values by the surrogate model
on the vertical axis. Comparing the first six outputs with the results from the previous
case study, we again notice an insignificant reduction in the predictive accuracy measured
by the R2 score. This reduction is reasonable given that the new surrogate model should
predict a larger number of outputs compared to the previous case. However, except for
Out1 and Out10, the accuracy score exceeds 0.9. To have a more detailed analysis of this
surrogate model, we report two other additional metrics (RMSE and MAE) in Table 6.
Based on these results, the overall R2 score is above 0.9 and the final RMSE and MAE values
are on par with the previous case that we just considered six outputs. Therefore, based
on our analysis, we conclude that auto-sklearn is capable of performing model selection
in challenging scenarios involving the prediction of multiple quantities of interest at the
same time. As a result, auto-sklearn provides an easy-to-use framework for non-experts in
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machine learning and practitioners because of eliminating the need to develop multiple
independent surrogate models for individual outputs.

Figure 9. Scenario 3 (Out1 through Out10): plotting true vs. predicted values for both training and
test samples. The available data are split into train/test sets according to Figure 1. We see that the
surrogate model performs well on both training and test sets, and the R2 values exceed 0.9 for all the
studied outputs except for Out1 and Out10.

Table 6. Evaluating the performance of the trained surrogate model using 10 outputs: Out1
through Out10.

Output R2 RMSE MAE

Out1 0.884 0.008 0.003
Out2 0.946 0.010 0.005
Out3 0.947 0.010 0.005
Out4 0.933 0.011 0.005
Out5 0.950 0.009 0.005
Out6 0.927 0.012 0.006
Out7 0.912 0.013 0.004
Out8 0.909 0.009 0.001
Out9 0.926 0.032 0.010

Out10 0.854 0.016 0.003
Overall 0.919 0.013 0.005

6. Results: Dam Design Engine

Having multiple surrogate models from Section 5, this section discusses the imple-
mentation of those in a context of a design engine. In general, a surrogate model aims to
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estimate the structural responses as a function of dam shape, material parameters, water
level, and applied ground motion:

QoI = g


Mat1, · · · , Mat7︸ ︷︷ ︸

Material

, L1, · · · , L7︸ ︷︷ ︸
Shape

, Lw︸︷︷︸
Water

, IM1, · · · , IM15︸ ︷︷ ︸
Seismic


 (5)

where the input parameters take a range of values for each of the 30 input parameters, and
QoI is a matrix of outputs (i.e., quantities of interests).

In any practical seismic dam design process, the seismic hazard scenario for which
the dam should be designed is known (from probabilistic or deterministic seismic hazard
analysis—PSHA/DSHA [64,65]) and is provided to the structural team by a seismologist.
Moreover, the basic material properties are also available with good confidence. The
foundation rock properties are determined by geologists including the profile of shear wave
velocity, mass density, elasticity, permeability, shear strength, etc. [66]. The mechanical
properties in concrete are governed by mix design and can be assumed to be known for the
feasibility level design [67,68]. Finally, some of the shape parameters are known with good
confidence at the feasibility level of design. For example, the total dam height is usually
provided to the engineer by the project manager (with inputs from the dam owner, and
hydrology team). Therefore, an inverse analysis can be performed on the pre-generated
surrogate model using the known variables (specified with an asterisk in the following
equation) to estimate the unknown ones:

[
Mat∼i, L∼j

]
︸ ︷︷ ︸

Unknown variables

= g−1


 L∗w︸︷︷︸

Water

, IM∗1 , · · · , IM∗15︸ ︷︷ ︸
Seismic

, Mat∗i︸ ︷︷ ︸
Material

, L∗j︸︷︷︸
Shape

, QoI∗(σheel
p1,max, ∆max, · · · )


 (6)

where index i and j are known material and shape variables, and∼ i and∼ j are the remaining
unknown variables. QoI∗ are a series of target responses for the design earthquake.

To explain the technical aspects of the inverse analysis, let us assume that the final
surrogate model obtained by auto-sklearn (or other AutoML techniques) takes the form
of g(θi, θj, θ∼i, θ∼j), where θi and θj represent all known variables that we can treat them
as constants and the other two variables are unknown. Here, the goal is to find the “best”
choices of θ∼i, θ∼j such that the value of the function g gets as close as possible to the target
response g∗. There are two main steps involved in solving this problem: (1) defining a
search space, i.e., the set of possible values for the unknown variables, and (2) casting an
optimization problem. We denote the search space for each variable type by θmaterial and
θshape. With this notation in place, the optimization problem takes the following form:

arg min
θ1∈θmaterial,θ2∈θshape

|g∗ − g(θi, θj, θ1, θ2)|. (7)

Since the size of the search space is finite, we can find the objective function in the above
optimization problem for each feasible solution, and then sort them in ascending order.
This means that we will have a “ranked” list of possible solutions for the inverse problem.

Design earthquake and ground motion records for dam projects are typically obtained
from two main sources [7]: ICOLD and FEMA. While the detailed discussion on ground
motion selection and scaling is beyond the coverage of this paper, some major aspects are
clarified [69].

• ICOLD recommendations There are two basic seismic loads for the design of new
dams [70]: Operating Basis Earthquake (OBE) which represents the seismic intensity
level at the dam site for which only minor (easily repairable) damage is acceptable
and the dam should remain functional. The OBE corresponds to the return period of
145 years (50% probability of exceedance in 100 years). Safety Evaluation Earthquake
(SEE) represents the seismic intensity level at the dam site for which a dam must be
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able to resist without the uncontrolled release of the reservoir water. The SEE ground
motion can be obtained from a probabilistic and/or deterministic seismic hazard
analysis. For large and high consequence dams, SEE is defined as (a) Maximum
Credible Earthquake (MCE) from DSHA where the parameters should be estimated
at the 84th percentile level, (b) Maximum Design Earthquake (MDE) from PSHA
corresponding to return period of 10,000 years (1% probability of exceedance in
100 years) [71,72].

• FEMA recommendations Time-based performance assessment evaluates a dam’s
performance over a period considering all earthquakes that may occur in that period,
and the probability that each will occur [73]. This procedure follows the following
main steps: (a) generate a seismic hazard curve, i.e., λ vs. Sa(T1), (b) compute seismic
intensity range and split it into Ni equal intervals, (c) develop a target response
spectrum, Strg

a (T), for each intensity range, and (d) select and scale suites of Ngm
ground motions for each spectrum.

Having the scaled ground motions, all the intensity measure parameters listed in
Table 1 should be calculated. While the majority of these IMs are structure-independent,
some are calculated based on the vibration period of the system (e.g., Sa(T1)). However,
at this stage, the shape (and maybe some of the material properties) are unknown, and
thus, direct finite element modeling cannot be used. Instead, a simplified method is used to
estimate the initial fundamental period of the dam. The formulation is based on Algorithm 1
originally proposed by [74] by introducing a set of new dynamic compliance coefficients.

Algorithm 1 Estimation of the fundamental period of the coupled system [74,75].
Inputs: Lw [m], L6 [m], Ec [MPa], Er [MPa], αw
Output: Tdw f [sec].

1: procedure

2: Dr =
Lw
L6

. Depth ratio

3: Td = 0.38 L6√
Ec

. Fundamental period of a “standard” section

4: Rr = f (Dr , Ec, αw). Standard values for the period lengthening ratio due to hydrodynamic [74], Figure 10

5: R f = 0.21(Er)−0.75 + 0.98 . Standard values for the period elongation ratio due to foundation [75]

6: Tdw f = Rr R f Td . Fundamental period of dam-water-foundation system

7: end procedure

0.5 0.6 0.7 0.8 0.9 1
Dr

10

15

20

25

30

E
c
[G

P
a
]

1.1 1.2 1.3

Rr (Dr ,Ec,αw = 0 .50 )

0.5 0.6 0.7 0.8 0.9 1
Dr

10

15

20

25

30

E
c
[G

P
a
]

1.1 1.2 1.3 1.4

Rr (Dr ,Ec,αw = 0 .75 )

0.5 0.6 0.7 0.8 0.9 1
Dr

10

15

20

25

30

E
c
[G

P
a
]

1.1 1.2 1.3 1.4

Rr (Dr ,Ec,αw = 0 .90 )

0.5 0.6 0.7 0.8 0.9 1
Dr

10

15

20

25

30

E
c
[G

P
a
]

1.1 1.2 1.3 1.4

Rr (Dr ,Ec,αw = 1 .00 )

Figure 10. Standard values for the period lengthening ratio due to hydrodynamic effects, Rr.

Example of AutoML Seismic Design

In this section, we elaborate on the practical implementation of the design engine for
a hypothetical site in the central north United States. The objective is to design a straight
concrete gravity dam with a 100 m height. The dam is located in a relatively wide valley.
The normal water level is provided to be 95 m. According to the concrete mix design, the
concrete modulus of elasticity and mass density are 22 GPa, and 2400 kg/m3, respectively.
The measured shear wave velocity for the top 30 m of rock is about 2250 m/s, and the rock
mass density is 2600 kg/m3. Therefore, the modulus of elasticity of the rock is estimated
to be 35 GPa. For the feasibility level design, a 0.06 and 0.04 constant hysteretic damping is
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assumed for the dam and foundation respectively, which correspond to 3% and 2% of viscous
damping for each substructure. The combined damping value for the overall dam-water-
foundation system is then larger than damping values measured from field tests on several
dams, and it is close to the 90% percentile of the collected data by Chopra [7]. Moreover, the
reservoir bottom wave reflection coefficient of 0.9 is used.

Following a probabilistic seismic hazard analysis (which is beyond the coverage of
this paper), two seismic hazard levels with 2500 and 5000 years of the return period (RP)
are identified for the dam site (denoted as RP2500 and RP5000). The target and individual
response spectra for the scaled records are plotted in Figure 11a. The scaled records are
also shown in Figure 11b. While the three-component records are typically scaled based on
the target spectra, only a single component is shown for this hypothetical example.
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Figure 11. Uniform hazard response spectra and three scaled ground motions for each hazard level.
(a) Response spectra. (b) Ground motion records (left to right: GM1, GM2, and GM3).

While different objectives can be defined by the design team for the feasibility level
design, this example is solely focused on the structural aspects and does not consider the
construction cost, as well as risk-informed constraints [13]. This means that the design does
not consider the concrete volume used for construction and also the architectural elements.
It also does not consider the population at risk in the downstream dam.

We assume that the maximum dynamic tensile stress at the dam heel should be
limited to 0.75 MPa under the 2500 years return period scenario. No other constraint is
considered in this example. However, it is possible to add more constraints on stress and/or
displacement components. Three ground motion records in Figure 11b are processed, and
fifteen IM parameters are extracted as discussed in Table 1. Using engineering judgment,
the strongest one (i.e., GM1) is used for design. The most comprehensive surrogate scenario
is used (see Section 5.3) which is developed based on ten outputs. An inverse analysis
is run, and the top 100 design candidates are identified. Figure 12 illustrates a parallel
plot that connects all the design variables for the top 100 candidates to five major outputs
(including crest displacement, and maximum/minimum principal stresses at the heel and
toe). A large variety of L1 (dam base) values have been included for these top 100 design
candidates. The ∆max varies from 8.5 to 9.5 mm which corresponds to 0.0085–0.0095% of
dam height. This is close to a threshold value of 0.01% recommended in [76] for gravity
dams. The value of σheel

p1,max is in the [0.81–0.82] MPa range which is close to the threshold
value (i.e., 0.75 MPa) previously defined for inverse analysis. The variation in the other
three stress quantities is small too.

The small variation of displacement and stress responses for the top 100 design
candidates, Figure 12, shows that all these models are more or less acceptable from an ML-
engine point of view. However, they need to be verified by direct finite element simulations.
Therefore, a series of new analyses are conducted using L1 to L7 (and also Lw) values in
Figure 12 based on GM1 of RP2500, and also the material properties described earlier in
this section. The results of direct finite element simulations are collected and compared
to those estimated from inverse analysis based on the trained surrogate model. First, the
ratio of direct finite element results to the machine learning engine is computed for all
top 100 design candidates, as well as five response parameters. Next, a Kernel density
function is fitted to each of the five response parameters as shown in Figure 13. As seen,
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all four stress responses are centered at one showing that the results of inverse analysis
fluctuate around the direct finite element simulation. The range of significant ratio variation
is 0.7–1.3 (and for compressive stress up to 1.5). This means that despite the similarity
of 100 design candidates from the ML point of view, the direct finite element simulation
causes considerable differences among them. In the cases of displacement response, a bias
is observed between the direct finite element and machine learning engine, as the former
tends to 20% more results (on average).
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Figure 13. Kernel distribution fitted on the ratio of FE to ML-engine results.

So far, Figure 13 showed the variation of the top 100 design candidates specified by
the ML engine and tested by direct finite element simulation. Since only a single design
should be selected at the end, we have a closer look at the top three candidates provided by
the ML engine. Six (unknown) shape variables for each design are listed here:

• Candidate 1: L1 = 72 m, L2 = 0, L3 = 15.4 m, L4 = 14 m, L5 = 40 m, L7 = 75 m.
• Candidate 2: L1 = 72 m, L2 = 0, L3 = 15.4 m, L4 = 14 m, L5 = 40 m, L7 = 85 m.
• Candidate 3: L1 = 70 m, L2 = 0, L3 = 15.4 m, L4 = 14 m, L5 = 40 m, L7 = 80 m.

As seen, only L1 and L7 values change for these top three candidates. Figure 14
illustrates the non-concurrent envelop for the first principal stress for top three candidates.
Figure 14a presents σp1,max only for the dynamic response under RP2500 and GM1. As
seen, in all cases σheel

p1,max is about 0.8 MPa which is close to the predefined value of 0.75 MPa.
The locations with high dynamic tensile stress are the dam heel and (to some extent) the
downstream face in the vicinity of neck discontinuity. Figure 14b shows the same designs;
however, the stress results include the static loads too. In this load combination, the tensile
stresses of about 0.2 MPa are only limited to the heel. This is somehow consistent with
the traditional design approach that specifies no/limited tension in the dam. While the
initial design is based on the RP2500 scenario, the candidate models are further analyzed
for RP5000. Figures 14c,d present the results of dynamic only and static+dynamic load
combinations for the same three candidates. As seen, the dynamic tensile stresses are
increased to about 1.2 MPa in all cases, while the combined tensile stress is about 0.7 MPa at
the heel (and for the 1st candidate also around the neck). Depending on the design tensile
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strength f ′t , cracking might be expected at the dam-foundation interface which necessitates
conducting a nonlinear simulation (beyond the coverage of this paper).
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Figure 14. Direct finite element analysis of top three single-constraint surrogate-assisted design
candidates (left to right: candidate 1, 2 and 3) based on GM1; Non-concurrent envelope of maximum
first principal stresses are shown in MPa. (a) RP2500; Dynamic only (σheel

p1,max constraint to 0.75).
(b) RP2500; Static + Dynamic. (c) RP5000; Dynamic only. (d) RP5000; Static + Dynamic.

7. Summary

This paper proposed a finite element-based design engine to assist the practition-
ers in feasibility level layout development for 2D concrete gravity dams under seismic
events. The engine includes a large inventory of gravity dam shapes with different material
properties for concrete and foundation rock. Such a large inventory has been subjected to
different water levels and many ground motion records. The current database covers about
24,000 unique combinations of dam shapes, material properties, water, and earthquake
loading. Automated machine learning (AutoML) tool was used to develop a high-fidelity
surrogate model. Next, the surrogate model combined with inverse analysis to design new
dams that only few of the design variables are known priori.

Using auto-sklearn as an instance of AutoML techniques that are increasing in pop-
ularity, we showed that one could build accurate surrogate models capable of predicting
multiple quantities of interest simultaneously. Such models typically form an ensemble
containing a rich combination of various machine learning methods, such as Bayesian and
tree-based methods. Moreover, we presented a principled way to assess the performance
of surrogate models obtained by AutoML to understand the generalization error. Future
research directions for this task include (1) a comprehensive analysis of the impact of the
time budget in auto-sklearn on the quality of surrogate models, and (2) a comparison with
other AutoML techniques, including AutoKeras that allows us to restrict our focus on
neural network models.

On the design side, the surrogate-assisted inverse analysis showed promising results
in early design of concrete gravity dams. The results of inverse analysis was in very good
agreement with test data from same surrogate model. However, there were some differences
for data beyond those initially used for meta-modeling. This necessitates increasing the
database which covers even more ground motion records. We tested the design engine
for a single scenario (i.e., only based on maximum heel stresses); however, a more refined
assessment should be performed in future to cover multi-output design scenarios. For
future studies, the current engine needs to be validated by other high-fidelity simulations
specially for the higher seismic intensity levels. As discussed in the paper, the current
seismic design engine is only based on structural analysis results and does not cover the
construction complexities and also the failure risk. Those metrics will be integrated with
the design engine in future to make it a robust tool for decision makers.
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Abstract: Dam surveillance activities are based on observing the structural behaviour and interpreting
the past behaviour supported by the knowledge of the main loads. For day-to-day activities, data-
driven models are usually adopted. Most applications consider regression models for the analysis of
horizontal displacements recorded in pendulums. Traditional regression models are not commonly
applied to the analysis of relative movements between blocks due to the non-linearities related to the
simultaneity of hydrostatic and thermal effects. A new application of a multilayer perceptron neural
network model is proposed to interpret the relative movements between blocks measured hourly in a
concrete dam under exploitation. A new methodology is proposed for threshold definition related to
novelty identification, taking into account the evolution of the records over time and the simultaneity
of the structural responses measured in the dam under study. The results obtained through the
case study showed the ability of the methodology presented in this work to characterize the relative
movement between blocks and for the identification of novelties in the dam behaviour.

Keywords: concrete dam; multilayer perceptron neural network model; structural health monitoring;
threshold definition; moving average of the residuals; moving standard deviation of the residuals;
DBSCAN

1. Introduction

Structural monitoring involves observing a phenomenon or event and its impact on
the structure. The purpose of the analysis and interpretation of the measurements gathered
during an inspection is to enhance the conceptual understanding of the dam’s behaviour
and aims to define, based on better parameters, eventual models. Once a model is built,
the dam’s condition assessment is based on test hypotheses and scenario simulations
supported by the monitoring data and the prediction of the structural behaviour in space
and time. The procedure of providing information for assessing the dam’s structural
condition is a form of critical analysis capable of reducing the intrinsic uncertainty related
to the dam’s behaviour.

The assessment of the dam’s condition based on the information provided by the
monitoring system is possible if the information is updated. Any abnormal behaviour
can be readily identified, allowing for the implementation of an appropriate intervention
or prevention measures. The assessment of the structural behaviour of the dam and its
condition must be performed for each dam independently, even for dams of the same
type, since they are influenced by several aspects, such as the heterogeneities in the dam’s
foundation and the surrounding areas of the dam or the different loads (as a consequence
of environmental or operational conditions) that the structure receives. For each concrete
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dam, different models can be used according to each purpose, to the existing knowledge
about the actual structural behaviour, and the quality of information available for the
characterization of the structure’s behaviour. The selection of the conceptual model to be
used for dam surveillance activities must take into account: (i) the purpose of the analysis
(safety assessment, prediction of deformations, interpretation of the recorded data from the
monitoring system, or analysis of an accident or abnormal behaviour), (ii) the identification
of the key factors of the physical problem, and (iii) the available geological and geotechnical
information.

During a dam’s life, the performance and safety conditions are under continuous
assessment due to the potential failure scenarios identified during the design phase and
due to the other scenarios “suggested” by the observed behaviour through the analysis of
relevant parameters (such as water level and temperature variations, among other things),
as seen in Figure 1. Typically, these parameters will describe the loads or operating condi-
tions to which the system is subjected, the materials of the structure, the materials of the
structure’s foundations, and the structural response of the dam [1]. Thus, visual inspections
and measurements collected by the structural monitoring system are fundamental for
safety control activities. The main physical quantities measured through the monitoring
system are seepage and leakage, uplift pressure, horizontal displacements, vertical dis-
placements, relative displacements between blocks (contraction joint movements), and
relative displacements in the rock mass foundation. The interpretation of the observed
values is usually based on knowledge related to the physical and chemical phenomena
that govern the structure and, whenever possible, is based on deterministic or data-based
models. For decision-making, deterministic models are preferred, while in day-to-day
activities, data-based models are the most commonly used.

Figure 1. Some parameters analysed for the assessment of dam safety and performance.

The most common approaches for data-based models are the HST (hydrostatic, sea-
sonal, time) and the HTT (hydrostatic, thermal, time) models, in which the effects of
hydrostatic pressure, temperature, and time are considered additive effects, and their sepa-
ration is valid [1–5]. The hydrostatic pressure is usually considered a polynomial function
of the water height. However, in addition to the pressure from the water, dams in cold
regions may be exposed to loads from an ice sheet [6]. The time effect is represented by
polynomial functions or by functions of another type (exponential or s-shaped). The ther-
mal effect is considered differently in each approach. In the HST approach, the temperature
effect is represented by sinusoidal functions with a one-year period, which are a function
of the day of the year only. In the HTT approach, the temperature effect is a function of the
measured temperatures. A large number of publications about HST and HTT models can
be consulted in the literature [1–15].
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Multiple linear regression is one of the most commonly used data-based models [3],
showing good performance, mainly for case studies related to the prediction of horizontal
and vertical displacements observed on a dam body. On the other hand, new models based
on machine learning have been studied and published for about a decade with positive
results; these are proposed mainly for the analysis of displacements. Proposed machine
learning models could differ in their approach and advantages; such is the case of artificial
neural network (NN) models, which principally allow the identification of non-linear
relationships between the input quantities, if any. One main aspect to take into account
in the case of NN models is that suitable generalization criteria, such as cross-validation
criteria, must be adopted to avoid overfitting [5].

There are quantities, such as seepage, uplift pressure, and relative movements between
blocks, in which regression models could be used with special care since the separation
of effects may not be valid. For example, the behaviour of contraction joints depends on
the state of stress installed. The variation observed differs for “open” or “closed” joints.
Joint opening and closure are governed by normal stress criteria. The non-linear behaviour
presented by the contraction joints can be explained by the non-resistance of the contraction
joints to tension. As referred to by Hariri and Kianoush, modelling the joints (contraction,
peripheral and lift joints) has an important role in both the static and the seismic analysis of
concrete arch dams [16]. Some authors developed a non-linear joint element to represent the
behaviour of vertical contraction joints in concrete dams [16–21]. The current knowledge
in the field of machine learning allows the proper interpretation and prediction of these
quantities, including anomaly detection [22,23], knowledge that is expected to grow in the
following years.

The definition of thresholds for novelty identification related to movements in con-
traction joints is a natural step in the safety control activities of dams. For the identification
of damage or gross measurement errors, the limits can be based on deterministic models or
even on the maximum values observed in the dam life history affected by a multiplicative
factor. However, identifying novelties earlier could be based on narrower limits resulting
from data-based models. Nowadays, the definition of thresholds has been mainly based
on considering a multiplicative factor associated with the standard deviation of residuals
(the part not explained by the model adopted). This analysis allows the point-to-point
identification of values that exceed established limits without any temporal or multidi-
mensional context. Thus, two methodologies for threshold definition are presented in this
work, one complementary to the traditional approach that can be used for the identification
of novelties in a temporal context through the consideration of moving averages and the
moving standard deviation of the residuals, and another, in a multidimensional context,
through the use of the density-based spatial clustering of applications with noise (DBSCAN)
method [24].

The methodology proposed is presented in Section 2. The case study, a concrete
dam under exploitation, and the relative movements between blocks registered by the
measurements of an automated monitoring system are described in Section 3. The results
and final remarks are presented in Sections 4 and 5.

2. Methodology Proposed for the Characterization of Relative Movements between
Blocks and for Threshold Definition for Novelty Identification
2.1. Methodology

The priority for any threshold definition process is an adequate data-based model
with a proper approach. The HTT approach was chosen in this study because of the
daily variation observed in the quantity under study (relative movement between blocks).
Enough information was obtained from the dam body’s thermometer and water level
measurement devices. Regarding the machine learning method adopted, the authors
selected the MLP-NN method. The methodology for the definitions of thresholds based
on the residuals of the data-based models developed from the past history of the records
(relative movements between blocks in the case study) is detailed ahead:
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• The adoption of the HTT formulation for the development of the prediction model
requires the selection of the main physical quantities to be used. The water height
and the concrete dam body temperature variations are the selected main inputs in the
proposed model.

• The separation of effects in the analysis of the relative movements between blocks may
not be verified, so a model capable of mapping the interaction between the inputs is
recommended. In this sense, an MLP-NN model was found to be suitable. Once the
MLP-NN model is obtained, the influence of the main loads on the responses, as well
as the analysis of the residuals, r, can be analysed.

• The definition of thresholds for novelty identification based on the residuals can be
defined: (i) based on one record at a time, (ii) based on a time window of records,
(iii) and based on the simultaneity of the responses measured, as shown below.

• A threshold definition based on one record at a time is the most used type of threshold
in dam engineering and consists of the adoption of a multiplier n applied to the
standard deviation of the residuals, sd.r., as follows: n × sd.r. Values of n equal to
3 and 4 correspond to a confidence level of 99.73% and 99.99%, respectively, since
residuals are assumed to follow a Gaussian distribution.

• A threshold definition based on a time window of records of one physical quantity
is based on the moving average of the residuals, m.a.r., and the moving standard
deviation of the residuals, m.sd.r., adopting a time window of records over time. The
size of the time window may depend on the case under study.

• A threshold definition based on the simultaneity of the responses measured allows the
identification of novelties related to a cluster of data (with m features) related to the m
quantities considered in the analysis. DBSCAN is a method suitable for this approach,
in which it is necessary to adopt, as an initial step, suitable values for Epsilon distance,
ε and MinPoints, MinP (Section 2.4). Hence, the residuals related to several physical
quantities (r1, . . . rm), with m being the number of features measured simultaneously,
are assessed to define clusters of the ones that present a behaviour far from that of the
remaining data.

The proposed flowchart for the interpretation of the relative movements between
blocks and for the operational threshold definition is presented in Figure 2.

Pre-processing data

HTT model formulation
y = f (h, T, t) + r

MLP NN model
y = ŷMLP + r

is the
MLP

model
suitable?

update the
model is
needed

Perform analysis of residuals and threshold definition
r = y − ŷMLP

Based on a time window
m.sd.r and m.sd.r

Based on one record at time
n × sd.r

Based on multiple responses
DBSCANε,MinP(r1, ...rm)

no

yes

Figure 2. Proposed flowchart for the definition of thresholds for novelty identification.
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The theoretical background related to the MLP-NN algorithm, the moving average,
the moving standard deviation of the residuals, and the DBSCAN method are presented in
the following subsections.

2.2. Multilayer Perceptron Neural Network Algorithm

Artificial neural networks have caught the attention of the scientific community since
the 1990s [25] due to their ability to learn the pattern of structural behaviour in large
infrastructures with a good capacity for generalization [5,14,26–31]. A NN computes
a function of the inputs by propagating the computed values from the input neurons to the
output neurons using different weights as an intermediate parameter [26]. A multilayer
perceptron neural network is a feed-forward algorithm with neurons arranged in layers. It
is the most widely used model for cognitive tasks such as pattern recognition and function
approximation [5]. The specific architecture of feed-forward networks assumes that all
nodes in one layer are connected to those of the next layer. The input layer transmits the
data to the output layer going through a set of hidden layers that perform computations
that include refining the weights between neurons over many input-output pairs to provide
more accurate predictions.

The MLP-NN (Figure 3) learns by an iterative weight adjustment process that enables
the correct learning using the training data so that, in a testing phase, it predicts the
unknown data. Those weights w are located in each connection between the input layer
x with N neurons and the hidden layer l with Q. The first layer receives the inputs, and
the last layer produces the outputs. The middle layer is called the hidden layer. Within
it, the information is constantly feed-forwarded from one layer to the next one having
two associated values: the input value and the weight. In mathematics and programming,
weights are shown in a matrix format W, where the number of columns contains the
input dimensions (input values and weights), and the number of rows contains the output
dimensions (hidden layer neurons Q). Another weight associated with the network is the
bias b. Bias is attached to every layer in the network except for the input layer and carries
neurons that try to account for unforeseen or non-observable factors. Activation functions
are applied to each of the neurons in the hidden layer. The activation function will map the
linear combinations of the inputs and weights to the following layer, in the case presented
in Figure 3 from the input layer to the hidden layer and, in a further step, to the output
layer of network L.

Figure 3. MLP architecture where x represents the input layer, l represents the hidden layer, L
represents the output layer, b represents the bias and w represents the weights, adapted from [5].

For regression problems, such as those found in the framework of SHM, the activation
functions must be differentiable so that any non-linear models built from them can be
derived with respect to their weights [32]. In this case, the activation function from the
input layer to the hidden layer f can be the logistic sigmoid or the hyperbolic tangent
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function. The activation function from the hidden layer to the output layer g is a linear
function.

2.3. Time-Window Threshold Definition Based on the Moving Average and Moving Standard
Deviation of the Residuals

The detection of any deviation not identified by the prediction model between the
observed and predicted data, is one of the main objectives of the residual analysis. A
moving average control chart of the residuals (m.a.r.) is a type of memory control chart
based on an unweighted moving average, and it is defined as

m.a.r.i =
m.sum.r.i

w
=

∑i
j=i−w+1 rj

w
, i ≥ w (1)

where w is the width of the moving average at time i.
In order to describe the dispersion of residuals, the m.sd.r. is also presented in order to

know how much the residuals vary or how spread they are along time, being defined as

m.sd.r.i =

√√√√ 1
w − 1

i

∑
j=i−w+1

(xj − x̄j to i)2 (2)

For these periods, the average of all observations within a time window of w size up to
time i defines the moving average. Four different m.a.r., related to 6, 12, 24, and 168 records,
correspondent to a quarter, a half, an entire day, and a week, are potential options to be
considered in this type of study. However, only the results of a m.a.r. and m.sd.r. with a
time window of one day and a time step of one hour are presented in this work.

Once the m.a.r. and the m.sd.r. are established, the definition of a baseline of the
structural behaviour under normal conditions is possible. The m.a.r., in this sense, allows
the identification of extreme values and trends along a time period. The m.sd.r. allows
the identification of any increment of variability and/or randomness along the same time
period. Those changes might suggest novelty.

2.4. Multivariate Threshold Definition Based on DBSCAN Algorithm

Density-based spatial clustering of applications with noise is a clustering algorithm
proposed by Ester et al. [24]. It searches for “core objects”, points that contain a minimum
of observations (MinPoints) within its neighbourhood (defined by an epsilon radius),
including the core point itself. If a point is found outside of any of the core object’s
neighborhood, it is considered noise [33]. Border points are points within reach of a core
object without the minimum points in their neighbourhood to be considered core objects
themselves (Figure 4). DBSCAN is known to be able to discover clusters with shapes other
than linear and be robust enough to handle outliers and noise.

Figure 4. DBSCAN illustration with MinPoints = 4 and epsilon distance represented by circles. Core
points, such as A, are represented in red, B and C, in yellow, are border points, and N is a noise point,
represented in blue. From [34].
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The clusters are created as follows: after uncovering a core object (i.e., a point with a
high density of neighbours according to the parameters), DBSCAN starts a cluster with
it and all its neighbours. All points within the Epsilon distance of the neighbours are
then added to the cluster. This process continues until there are no more points within
the distance. All the points that do not belong to a neighbourhood (i.e., to a cluster) are
considered noise or outliers.

3. Case Study
3.1. The Feiticeiro Dam

The hydroelectric development of Baixo Sabor is composed of two schemes. The
upstream scheme (termed the Baixo Sabor dam) is 12.6 km away from the Sabor river
mouth. The downstream scheme (termed the Feiticeiro dam, Figure 5) is about 3.3 km far
from the mouth of the Sabor river [35]. The Feiticeiro dam comprises a concrete gravity
dam with an overflow-controlled spillway and a downstream stilling basin. The dam is
45 m high and has a crest length of 315 m, which is divided into twenty-two blocks. The
total concrete volume is equal to 130,000 m3.

Figure 5. Overall view of the Feiticeiro dam.

In accordance with the best technical practices, the monitoring system of the Feiticeiro
dam aims at the evaluation of the loads, the characterisation of the rheological, thermal
and hydraulic properties of the materials, and the evaluation of the dam’s structural
response. The monitoring system of the Feiticeiro dam consists of several devices that
make it possible to measure quantities such as the concrete and air temperatures, reservoir
water level, seepage and leakage, displacements in the dam and in its foundation, joint
movements, strains and stresses in the concrete, and pressures, among others [36–38].

The system used for the measurement of the reservoir water level comprised a high-
precision pressure meter, which provides a record of the water height over time, and a level
scale. The air temperature and humidity were measured in an automated weather station
placed on the right-side bank approximately 100 m apart from the dam crest.

The concrete temperature was measured by 76 electrical resistance thermometers
distributed across a dam thickness of several blocks. The location of the thermometers
was defined taking into account the set of other electrical resistance devices (strain gauges,
embedded jointmeters and strain gauges) that also allowed for the measurement of the
concrete’s temperature.

Displacements were measured using an integrated system that included 3 pendulums,
8 rod extensometers, and geodetic observations. The relative movements between blocks
were measured by superficial and embedded jointmeters.

The deformation of the concrete was measured with electrical strain gauges arranged
in groups and distributed in radial sections, allowing the determination of the stress state
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through the knowledge of the deformation state and of the deformation law of the concrete.
The quantities of drained and infiltrated water were measured individually in drains of
the drainage system installed in the dam foundation and in weirs that differentiated the
total quantity of water that flows in the drainage gallery in several zones of the dam. The
drainage system comprised a set of 57 drains distributed over the drainage gallery with
3 drains per block. All the water extracted from drains and leakages was collected in
4 weirs.

The measurement of the uplift pressure at the foundation was performed by a piezo-
metric network that comprised 26 piezometers. A real-time data acquisition system for
the auscultation instrumentation (ADAS) was installed at Feiticeiro dam, allowing the
measurement of the following physical quantities [39]:

• Horizontal movements based on the pendulum method through the use of optical
telecoordinometers (4–20 mA signal);

• Vertical movements through rod strain meters with a position transducer of the
vibrating wire type;

• Discharges through level gauges with ultrasonic sensors (4–20 mA signal);
• Pressures through piezometers with pressure transducers of the vibrating wire type;
• Relative movements between blocks through 3D jointmeters with a position transducer

of the vibrating wire type, located in the inspection galleries;
• Relative movements between blocks through 1D jointmeters with a resistance trans-

ducer of the Carlson type, embedded in the concrete dam body;
• Concrete strain through strain meters with resistance strain meter transducers of the

Carlson type, embedded in the concrete dam body;
• Concrete temperature through thermometers with resistance thermometer transducers

of the Carlson type.

The responses under study are variations of the relative movements between blocks
(at the higher level) measured by 7 automated jointmeters. The water level and the concrete
temperature are measured by several thermometers located in the dam body, and they
represent the main environmental loads studied in this case.

The mathematical calculations and the graphic representations presented ahead were
supported by the R project software [40–43].

3.2. The Analysed Data

In this case study, the daily variation of the opening-closing movements between
blocks measured at the 134.2 m level and through 3D jointmeters were analysed (jointmeter
designed by BT3, BT5, BT7, BT8, BT10, BT12, and BT13).

The location of the jointmeter part of the automated monitoring system is shown in
Figure 6. The data analysed correspond to a period between April 2017 and June 2022,
with more than 38,660 records per variable. Measurements from the automated monitoring
system are taken every hour. In the case of gaps in records, the values were estimated by
interpolation between consecutive records. The manual and the automated measurements
of the opening-closing movements were compared, showing the good performance of the
two measurement systems (this comparison is not part of this study).

The samples regarding the relative movements between blocks were collected every
two weeks for manual measurements and every hour for automated measurements, as
seen in Figure 7. Signs (+) indicate opening movements, and signs (−) indicate closing
movements.
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Figure 6. Feiticeiro dam. Thermometers and 3D jointmeters included in the automated monitoring
system. Legend: MWL—Maximum reservoir water level.

Figure 7. Time series of the relative movements between blocks measured between April 2017 and
June 2022.

Once the measuring devices to be studied in this work were installed in the down-
stream face of the dam body (a visiting gallery at the level of 134 m is nonexistent), they
measured the relative movements between blocks in a zone that is strongly influenced by
the daily variations of the temperatures, as shown in Figure 8, regarding the measurements
between the 1st and the 8th of August 2018.
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Figure 8. Time series of the relative movements between blocks measured between the 1st and the
8th of August 2018.

Among the different loads acting on concrete dams, it is typical to distinguish, as the
most important loads for structures in normal operations, the hydrostatic pressure and
the temperature variation. The time evolution of the reservoir water level is presented in
Figure 9.

Figure 9. Time series of the reservoir water level measurements between April 2017 and June 2022.

The temperature variations observed in the dam body were recorded through ther-
mometers embedded in the dam body (blocks J7–J8, J11–J12, and J15–J16). The relative
position of the thermometers are presented in Figure 6 and Table 1, and their records are
those shown in Figure 10.

Table 1. Relative location of the thermometers in the dam body.

Block Level (m) Position Block Level Position

T10 J7–J8 122.1 u.f. T11 J7–J8 122.1 1 m u.f.
T15 J7–J8 122.1 1 m d.f. T16 J7–J8 122.1 d.f.
T31 J11–J12 112.0 u.f. T32 J11–J12 112.0 1 m u.f.
T33 J11–J12 112.0 oth T35 J11–J12 112.0 oth
T62 J15–J16 122.1 u.f. T64 J15–J16 122.2 oth
T65 J15–J16 122.1 1/2 th. T66 J15–J16 122.2 oth

Notes: u.f.—upstream face, d.f.—downstream face, oth—other, th—thickness.
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Figure 10. Temperatures in the dam body recorded between April 2017 and June 2022.

The observations presented in Figures 7–10 will be used for the computation of the
models presented in this work.

Based on the evolution of the time series of the joint movements, water level, and
temperature variations, it is expected that the thermal effect is more significant when
compared with the water level effect. Figure 11 presents an example of the temperature
and the water height in the structural response for the case study. Figure 11 (left) shows the
evolution of opening-closing movement measures in the jointmeter BT3 vs. the temperature
measures in the thermometer T37. As expected, the movement between the blocks is in the
closing direction when the temperature increases. Figure 11 (right) shows the evolution
of the opening-closing movement measures in the jointmeter BT3 and the water height
when the temperature measured in the thermometer T37 is 10 ◦C. The opening movement
increases slightly with an increase in the water height.
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Figure 11. Opening-closing mov. measured in BT3 vs. temperature measured in T37 (left). Opening-
closing mov. measured in BT3 vs. water level for temperature measured in T37 equal to 10 ◦C (right).

4. Results and Discussion
4.1. Model Formulation, Construction, and Performance

The MLP-NN model based on an HTT approach considered, as an input layer, 15 pa-
rameters (representing the hydrostatic pressure—h, h2, h4, where h is the reservoir water
level that can vary between 0 and 45 m—and the temperature effects measured at T10,
T11, T15, T16, T31, T32, T33, T35, T62, T64, T65 and T66), seven responses at the output
layer (representing the opening-closing movements between blocks measured at BT3, BT5,
BT7, BT8, BT10, BT12 and BT13), and one hidden layer. Every neuron in the network is
fully connected.

A hyperbolic tangent transfer function was chosen as the activation function for
the hidden layer, and a linear activation function was chosen for the output layer. The
generalized backpropagation delta learning rule algorithm was used in the training process.
To find the optimum result (through the minimization of a cost function defined by the
mean squared error), 5 initializations of random weights and a maximum of 1500 iterations
were performed for each MLP-NN architecture.

A randomization of the learning set was previously carried out, making it possible to
define the training set, the cross-validation set and the test set, with a number of examples
equal to 65%, 15%, and 20%, respectively. The cross-validation was used as the stopping
criteria. In each iteration, the performance for the training set is usually better than before,
but if at any time the error for the cross-validation set increases, the NN model may lose
its generalization capacity. The training stops when the error for the cross-validation set
begins to increase, with a better generalization thus being ensured [5]. The test set was used
as an auxiliary element that enabled us to carry out the quality evaluation of the MLP-NN
model for the training set. In this case study, the network with the best performance was
a 15-25-7 MLP-NN (less error for the cross-validation set). The results are represented in
Figures 12–14 and described in Table 2.

Table 2. MLP model performance parameters.

Measurements Model

Min Max rMin rMax sd R2

[mm] [mm] [mm] [mm] [mm] %

BT3 O/C 0.16 2.56 −0.22 0.35 0.060 99.81
BT5 O/C 0.29 2.85 −0.32 0.39 0.072 99.79
BT7 O/C 1.03 3.57 −0.29 0.33 0.068 99.92
BT8 O/C 0.70 2.61 −0.21 0.34 0.063 99.86

BT10 O/C 0.25 2.15 −0.21 0.30 0.056 99.77
BT12 O/C 0.81 2.72 −0.24 0.37 0.067 99.85
BT13 O/C 0.48 2.21 −0.22 0.28 0.048 99.86

Notes: r—residual, sd—standard deviation, R2—coefficient of determination.
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Figure 12. Time series of the fitted values and recorded values for the movements measured through
3D jointmeters.

Figure 13. Time series of the relative movements between block measurements and fitted values
between the 1st and the 8th of August 2018.
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Figure 14. Fitted values vs. recorded values for the movements measured through 3D jointmeters.

4.2. Threshold Definition for a Singular Record

The traditional approach adopted for threshold definition in regression models consists
of adopting a multiplicative factor associated with the standard deviation of the residuals.
Usually, multiplicative factors equal to 3 or 4, corresponding to a confidence level of 99.73%
and 99.99%, respectively, are adopted. This approach assumes that the residuals follow a
normal distribution (an assumption that is often not verified for real cases but that allows a
good approximation). The same type of criterion can also be used in the MLR-NN model
following the limits shown in Figure 15.
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Figure 15. Residuals of the movements measured through 3D jointmeters.

4.3. Threshold Definition for Novelty Identification Based on a Time Period Evolution of
the Residuals

In case a novelty is identified, verifying if it is an isolated record is relevant in order
to avoid the false internal warning since, usually, isolated novelties are associated with
measurement errors. A critical aspect of dam safety control activities is the pattern recog-
nition in the observed behaviour, including their expected evolution over time. With the
exception of extreme load events and other time effects (such as the existence of internal
expansion reactions in the concrete), the pattern in the observed behaviour is expected
to be continuous over time. Thus, one way to identify novelties in the dam’s behaviour
is to analyze the evolution of this behaviour (through the residuals) in a time window
along time. Since daily variations resulting from daily temperature changes are observed,
a moving window with 24 hourly records and with a time step equal to the measurement
frequency (1 h) was adopted.

Figure 16 shows the evolution of the moving average of the residuals (m.a.r.) and
of the moving standard deviation of the residuals (m.sd.r.) in a time window of one day
over time.
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Figure 16. Residuals, m.a.r., and m.sd.r. over time.

The simultaneous analysis of the m.a.r. and m.sd.r. allows us to identify if the predicted
values are moving away from the recorded values (i.e., if the residuals are increasing,
meaning that the non-explained part of the model is increasing), and if the residuals
increase along time, this could suggest a damage evolution. The definition of thresholds
based on multiplicative factors associated with the standard deviation of the residuals is
also proposed in this analysis. Similar to the single record analysis, thresholds based on
multipliers of 3 and 4 for the standard deviation of the residuals are also proposed, although
these values can be updated depending on the results, as seen in Figure 17. The priority in
this kind of analysis is to identify periods in which the residuals and their evolution are
higher; consequently, a deeper analysis of the data can be carried out.
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Figure 17. m.sd.r. vs. m.a.r. for each quantity.

4.4. Threshold Definition for Novelty Identification Based on Multivariate Data

Both of the previous analyses consider one physical quantity at a time. However,
considering several quantities at the same time is relevant for an integral judgment. To
address this consideration, a threshold definition based on the DBSCAN method is used. By
definition, the residuals should follow a distribution similar to a normal distribution with a
zero mean. Based on this premise, a criterion for the identification of spread records (in
the n features dimension—seven in this case study) that are far from most of the records is
defined. An analysis of the effect of the parameters Epsilon and MinPoints were performed
as presented in Table 3. Values of Epsilon = 0.12 and MinPoints = 7 were adopted for this
case study, as seen in Figure 18. These values were defined based on the specialist criteria
considering the standard deviation of the residuals.

Table 3. Number of potential novelties based on several Epsilon and MinPoints values.

MinPoints
Epsilon

0.08 0.10 0.12 0.14 0.16

5 79 9 5 3 0
6 102 12 5 3 1
7 116 14 5 3 1
8 126 22 5 3 1
9 140 22 5 3 1

205



Water 2023, 15, 297

Figure 18. Novelty identification based on a multivariate analysis based on the DBSCAN method
(adopting Epsilon = 0.12 and MinPoints = 7).

The dam behaviour in the time period under study presents a good performance, and
there is no abnormal behaviour. The monitoring system records were used for defining the
thresholds based on the three proposed procedures. Based on the thresholds defined and
for future measurements, the records above the thresholds are the potential candidates to
represent a novelty. They should be assessed in order to identify whether they are related
to a measurement error or due to other situations.

The analysis of the monitoring data gathered from the horizontal displacements in a
concrete dam’s behaviour and the adoption of data-based models to interpret the structural
behaviour are common in day-to-day dam surveillance activities.

5. Conclusions and Final Remarks

The analysis of relative movements between blocks through data-based models is
unusual due to the nonlinearity of the observed data, which cannot be represented in
traditional linear regression models. In this case, a multilayer perceptron neural network
(MLP-NN) model was developed to interpret the observed relative movements between
blocks. The residuals (the part not explained by the model) resulting from the model
were used in this work to define thresholds for novelty identification. The explanatory
capacity of the residual analysis allows the definition of a more accurate baseline for the
characterization of the structural behaviour. In this work, the analysis of the relative
movements between blocks was performed based on hourly recorded measurements. The
main inputs considered are the function of the water level and the temperatures measured
in several thermometers spread along the dam body. The proposed procedures allow for
the earlier detection of novelties through the analysis of the residuals of the MLP-NN
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prediction model, adopted for the interpretation of the relative movement between blocks,
for (i) a singular record, (ii) a moving time period, and (iii) multivariate records. The main
issues related to the definition of thresholds can be summarised as follows:

• The definition of univariate thresholds based on the residuals, one for each quantity,
is the first recommended step. This approach, through the use of multiplicative
factors associated with the standard deviation of the residual, allows an easy novelty
identification that, in some cases, could be related to measurement errors.

• The second type of threshold proposed in this study can be defined by the adoption
of a moving window with the moving average and the standard deviation of the
residuals. This kind of approach allows the specialist to have immediate information
concerning the evolution over time.

• Finally, the third type of threshold proposed can be defined based on multiple factors
related to the behaviour of the residuals for all the quantities considered in the model.
For this approach, a strategy based on the DBSCAN algorithm, which proved to be
suitable for multivariate analysis, was used.

To be effective, dam safety control activities must be considered an ongoing process. In
this sense, applying the proposed procedures for operational issues in different dams and
considering different quantities is suggested. It is important to highlight that each procedure
has its singularities and challenges; the observed structural behaviour, the performance of
the model adopted, and the quality and frequency of the measurement recorded need to be
considered for the adoption of an adequate multiplicative factor for univariate thresholds
and the adoption of adequate parameters for multivariate thresholds. The definition of
the moving window size for calculating the moving average and the standard deviation
depends on the measurement frequency of the records and the reservoir’s exploitation
regime. Despite these challenges, the implementation of any of the proposed procedures in
an automated monitoring system can adequately support dam surveillance activities.
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Abstract: The existing Scoggins Dam and reservoir are in Washington County, Oregon, and the title
is held by the U.S. Bureau of Reclamation (Reclamation). Reclamation has previously identified
dam safety concerns related to the existing embankment dam. Regional project sponsors, including
Clean Water Services, have identified the need for expanded storage capacity in the reservoir to meet
growing water demands and address water quality issues in the Tualatin River downstream of the
dam. As part of efforts to resolve dam safety issues and increase the water storage in the reservoir,
a comprehensive feasibility level design of a new 185-foot-high Roller Compacted Concrete (RCC)
dam. Extraordinary seismic hazards have been identified in the region associated with the Cascadia
Subduction Zone (CSZ). Further, any dam alternative carried forward for funding, final design, and
construction will have to meet the Public Protection Guidelines (PPG) of Reclamation that require a
formal quantitative risk analysis. A risk-informed design approach was adopted to configure the
layout and cross-section properties of the dam. A multi-phase site characterization program and
preliminary RCC mix design program were performed to support the design. In addition, models
were developed, and an extensive suite of both (two-dimensional) 2D and (three-dimensional) 3D
structural analyses were performed for seismic loadings with total durations of over 200 s, strong
shaking of over 140 s, and peak ground accelerations of over 2 gravitational accelerations (g) (up
to 50,000-year return period event). This paper describes the feasibility design configuration of the
dam, including the seismic hazard characterization, structural analysis models, and seismic response
modeling results. The expected performance of the dam relative to the risk-informed design criteria
and Reclamation PPGs will be generally described.

Keywords: roller compacted concrete (RCC); risk-informed design; Cascadia Subduction Zone (CSZ);
non-linear structural analysis

1. Introduction

Hagg Lake reservoir, impounded by Scoggins Dam (Figure 1), is a key water resources
facility for a range of water providers in Washington County, Oregon. The dam was
completed in 1975. It is located on Scoggins Creek, about 5 miles (8 km) southwest of Forest
Grove, Oregon and 25 miles (40.25 km) west of Portland, Oregon. The estimated existing
storage capacity of Hagg lake is 53,640 acre-feet (>66,000,000 cubic meters [m3]) at the top of
the current active conservation pool elevation of 303.5 feet (92.5 m). An enlarged reservoir
has been under consideration as a central feature of the Tualatin Basin Dam Safety and
Water Supply Joint Project. The new RCC dam holding the enlarged Joint Project reservoir
presented in this paper would be located downstream of the existing embankment dam
and have a maximum structural height of 180.5 feet (55 m), an increased storage capacity
of up to 50,000 acre-feet (61,674,000 m3) and a total maximum storage of 103,640 acre-feet
(127,838,000 m3).
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The feasibility design described in this paper was based on the results of appraisal-level
designs (Reclamation, FAC 09-01) [1], where the RCC dam concept was originally examined
as a possible project that could address both dam safety and increased water supply project
objectives. A straight gravity plan and cross-section were developed, structurally modeled,
and then subjected to a full quantitative risk analysis (QRA). The QRA demonstrated that
the gravity dam section could be designed to withstand the very large seismic hazards at
the site and that some optimization would likely be possible. One of the most significant
optimizations identified during the QRA was curving the dam in a plan to activate arch
action during higher seismic events that could cause cracking and potential sliding of the
dam. The corresponding cross-section and curved gravity alignment were verified during
feasibility design based on a risk-informed design approach.

2. A Review of Seismic Design and Dam Safety Risk Analysis of Concrete Dams

Seismic design and analysis of existing or new concrete dams is a challenging task
and requires consideration of multiple performance factors, including dam-foundation-
water interaction, proper seismic analysis, and realistic modeling of nonlinear and damage
behavior of concrete [2]. In the case of new concrete dams, consideration of material
property variation with time and thermal effects must be incorporated into the design.
While there has been tremendous research on the seismic “analysis” of existing concrete
dams and hydraulic structures against natural hazards, there was limited attention on the
seismic “design” of new dams [3], particularly in high seismic regions and for dams for
which failure may impact large populations downstream of the reservoir.

Traditionally, concrete gravity dams have been designed by a force-based procedure [4,5].
In this method, the forces associated with the weight of the dam are obtained as a product of
a seismic coefficient, and the weight of the portion of the dam being considered is statically
applied to the dam. These forces were also combined with hydrostatic and simplified
hydrodynamic pressures [6]. The main disadvantages of this method are that the dynamic
characteristics of the dam and the applied ground motions are ignored.

Therefore, for new concrete dam design, a state-of-the-art method is needed to over-
come the limitations of the traditional standards-based seismic design methods. This paper
proposes the application of risk-informed design in concrete dam engineering. In the
following sub-sections, a brief review of the literature is provided on (1) different design

212



Water 2023, 15, 116

philosophies in earthquake engineering and (2) the evolution and application of risk-based
procedures in dam engineering.

2.1. Seismic Design Philosophies

A key factor in the design process for modifying an existing or construction of a new
concrete dam or major concrete hydraulic structure is the identification of design objectives
and criteria. Over the past 30 to 40 years, there has been significant advancement of analysis
capabilities, the widely accepted use of RCC for both rehabilitation of existing dams and
design of new dams, and continuing development of different design methods utilizing
advanced numerical modeling and updated codes, standards, and industry guidelines.
Performance-based seismic design [7] allows for the desired level of seismic performance
for the structural systems when they are subjected to a specific level of ground shaking.
Multiple levels of ground shaking can be evaluated, with a different level of performance
specified for each shaking level. Reliability-based seismic design [8] uses the mean values
of the random system parameters as design variables and optimizes the objective function
subject to pre-defined probabilistic constraints. Risk-based seismic design [9] uses safety as
the main objective. A risk-based design considers composition, intended use, materials,
actual use, environmental issues, and ultimate decommissioning of the structure. It can
be complex, requiring knowledgeable teams and schedules that include risk analysis
throughout the design process. More recently, the concept of resilience-based seismic
design [10] has been introduced. It is the next generation of performance-based design
procedures. In this approach, the interaction of the structure with local and regional
communities is accounted for. The structure should not be considered alone but as part
of a group of infrastructure requiring the use of a portfolio approach which provides for
incorporation of regional loss analysis.

The implementation of the above-discussed design philosophies in concrete dam
engineering is usually discussed within the so-called “shape optimization” task by Ramakr-
ishnan and Francavilla [11]. It is an iterative procedure that combines advanced structural
optimization theories with specific objective functions that are defined by engineers for the
gravity or arch dams [12,13]. In some cases, the optimization algorithms are combined with
machine learning methods to accelerate the design process and reduce the computational
burden [14,15].

2.2. Risk-Informed Decision-Making (RIDM) in Dam Engineering

Risk can be defined as the “measure of the probability and severity of an adverse
effect to life, health, property, or environment”. In the general case, risk is estimated by the
combined consideration of loading scenario(s), the system (dam or structure) response to
loading, and the associated consequence of failure [16]. The risk concept can be interpreted
either as an individual risk or the overall risk of the system with different dimensions. Risk
management encompasses activities related to making risk-informed decisions, prioritizing
evaluations of risk, prioritizing risk reduction activities, and making program decisions
associated with managing a portfolio of facilities.

Risk assessment is the process of deciding whether existing risks are tolerable and
whether present risk control measures are adequate, and if not, whether alternative risk
control measures are justified or should be implemented. Risk assessment incorporates
the risk analysis and risk assessment phases. Tolerable risk means different things to
different people and organizations. Some focus on economic risks to their companies or
organizations (e.g., insurance, offshore oil, and gas), while others focus on the loss of life.
Most of the regularities use a “risk curve” [17], either in the form of f -N or F-N chart.

The introduction and subsequent adoption of risk analysis into the dam safety com-
munity of practice in the United States was a complex journey [18]. While a complete
treatment of this timeline is beyond the scope of this paper, notable milestones should be
mentioned. First, a visionary look at risk related to dams was first introduced to the dam
engineering community of practice in 1964 by Casagrande [19]. Following the failure of the
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Teton dam on June 5, 1976, the creation of federal dam safety guidelines was ordered by
President Carter in 1977 [20]. In response to the Teton dam failure, Reclamation passed its
own dam safety act in 1978 [21], and the Federal Emergency Management Agency (FEMA)
was identified as the lead federal agency for oversight of dam safety in 1979 [22]. The
combined 1978 Reclamation Act, along with the issue of the first federal guidelines for
dam safety in 1979 [23], laid the groundwork for Reclamation’s pioneering use of risk for
their dam safety program. The foundational tools for performing a risk analysis of dams
were introduced in 1981 by Whitman based on research in the MIT Civil Engineering pro-
gram [24]. Reclamation issued its first Public Protection Guidelines in 1997 [25]. Dam safety
guidelines were subsequently issued by the U.S. Army Corps of Engineers (USACE) [26]
and the Tennessee Valley Authority (TVA) [27] in 2011; a joint dam safety guideline for risk
analysis by all federal agencies was issued by FEMA in 2015 [28], and most recently by
the Federal Energy Regulatory Commission (FERC) in 2021 [29], promulgated regulations
for dam safety risk analysis for all licensed hydropower projects with dams. Most state
agencies in the United States are now considering the adoption of risk analysis guidelines
for their dam safety programs.

A comprehensive review of the risk analysis of dams has been provided by Hariri-
Ardebili [30] and Hariri Ardebili and Nuss [31]. Stedinger et al. [32] wrote a report explain-
ing the concepts needed to perform a thorough probabilistic analysis of the dam safety
issues. Bowles et al. [33] reviewed the relationship between the standard- and risk-based
approaches for dam safety in the context of comprehensive risk management. Bowles [34]
explains the step-by-step procedure for portfolio risk assessment of dams. Chauhan and
Bowles [35] presented a framework for uncertainty analysis in dam safety risk assessment,
including an approach to incorporating input uncertainties into the risk analysis model.
Peyras et al. [36] proposed a method to support dam aging diagnosis and risk analysis
that capitalizes on an expert’s knowledge and feedback. Smith [37] proposed a model for
dam risk analysis based on Bayesian networks. Serrano-Lombillo et al. [38] proposed a
technique to calculate incremental risks in the context of an event tree. Castillo-Rodrıguez
et al. [39] proposed a variation of the combined risk analysis approach for complex dam-
levee systems, which was based on the event tree analysis from multiple combinations of
“load-system response-consequence” events. More recently, [40,41] combined the natural
hazard-based assessment of dams with pandemic constraints and complex emergencies
and presented the concept of a multi-risk-based framework for dam safety.

The use of risk analysis and assessment in dam safety, as summarized above, has been
focused on the safety of existing dams and decisions to modify those dams to reduce risk
to tolerable levels. USACE has recently issued some guidance related to risk-informed
design [42]; however, this guidance is very high level, is focused on four high-level tolerable
risk guidelines (TRGs), and is being mostly applied to existing dams and levees. Overall,
USACE states that “the objective of risk-informed design is for risks to be tolerable for
the final project, including the associated floodplain management practices”. To meet
this objective, teams performing designs must demonstrate that the completed design
configuration will meet USACE risk tolerance guidelines portrayed on f -N or F-N charts
provided in ER 1110-2-1156 [43].

2.3. Objectives and Contributions

The objective of this paper is to present a framework for the risk-informed design of
new RCC dams, particularly in high seismic hazard regions, that will provide adequate
long-term safety when evaluated under Reclamation’s PPGs expressed on Reclamation’s
f -N chart. Such a design would also meet the Federal risk tolerance guidelines [28] as well
as the similar guidelines of the USACE, TVA, and FERC. In a high seismic region such as
the northwestern United States, including the location of Scoggin’s dam, this was a very
challenging task. Early structural modeling as part of an appraisal-level design provided
an indication that the cross-section of the dam would need substantial adaptation from a
traditional gravity section, and the configuration of the dam would need to be changed to a
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curved gravity dam to result in adequate structural response and overall level of dam safety.
To meet Reclamation’s dam safety guidelines, a set of four design criteria were established
against which the design configuration of the dam would be developed and subsequently
evaluated. By meeting those criteria, the design team was confident that the design would
have tolerable safety risks based on a full Quantitative Risk Analysis (QRA) performed
by an experienced risk estimating cadre under the supervision of a well-qualified and
experienced risk analysis facilitator at the completion of the feasibility design. Having
tolerable risks would mean that a substantial redesign of the dam would not be needed and
that the feasibility level design could be compared to a companion design of modifications
to the existing embankment dam for the purpose of making a final decision on the preferred
project configuration to move forward into the final design.

The contribution of this paper is that of a completed feasibility design of a new RCC
dam in a high seismic hazard region for which a full QRA completed by an experienced risk
estimating team showed the design would meet federal dam safety guidelines for tolerable
risk. The four risk-informed design criteria established as the basis for the design are
believed to have much broader applicability within the dam safety community of practice
for other new RCC dams and/or major hydraulic structures in high seismic regions with
high potential life loss consequences if failure were to occur.

3. The Proposed Concept of Risk-Informed Design for New RCC Dams

The adoption of risk analysis as the framework for dam safety in the United States
is challenging engineers to understand how existing facilities will respond to a large
range of static, hydrologic, and seismic loading conditions. Risk analysis must consider the
response of the reservoir system (including the dam, spillway, outlet works, and foundation
treatments) for a wide range of loadings up to and including the onset of damage states,
progressive damage development, and ultimately failure of the structure while at the same
time considering the consequences of dam failure as first suggested by Casagrande in
1965 [19].

As will be shown, the northwest United States is a region of very large potential
earthquakes associated with the CSZ capable of generating M9 earthquakes with unprece-
dented ground motion intensity and duration. To meet the requirements of risk-informed
dam safety and design, engineers must understand the potential consequences of dam
failure (life loss and other economic and environmental impacts), develop models, perform
analyses, and adopt designs for seismic loadings beyond the range of documented loadings
that have occurred at existing dams around the world. Hence, significant judgment is
required in interpreting the results of modeling for which there is limited to non-existent
calibration of the models to the actual performance of existing dams under very high
loading conditions.

The concept of risk-informed design, as presented in this paper, requires adopting
design criteria for four distinct performance domains: (1) where the linear (undamaged)
response is expected, (2) where the onset of non-linear behavior (initiation of damaged
states) occurs, (3) where an acceptable and limited amount of damage and related perfor-
mance of the damaged structure will occur at the extreme end of loadings that risk analysis
requires to be considered, and (4) where a final damage state for which the post-earthquake
performance of the dam and appurtenant structures would be acceptable and not result in
catastrophic failure and loss of life consequences.
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4. Regional Seismic Hazards

Seismic hazards at the Scoggins site have been developed by Reclamation through
site-specific evaluations. The hazard is generated from three separate potential sources,
including (1) local (crustal) faults such as the Gales Creek fault system, (2) intraplate, and
(3) intraslab. The intraplate and intraslab hazards are associated with the CSZ off the
Oregon coast.

4.1. Probabilistic Seismic Hazards

Example hazards from the probabilistic seismic hazard assessment (PSHA) at the
Scoggins dam site are summarized in Table 1. The table includes the return period and
corresponding estimated peak ground acceleration (PGA) associated with the CSZ events
as well as the total hazard PGA at the site.

Table 1. Probabilistic seismic hazards at the Scoggins Dam Site.

Return Period (Years) CSZ Events (g) Total Hazard PGA (g)

500 0.16 0.37
1000 0.40 0.55
5000 0.95 1.08

10,000 1.25 1.36
50,000 2.00 2.08

Note(s): g = gravitational acceleration.

4.2. Representative Time Histories

Time histories for use in structural response analyses and evaluations were created for
the Scoggins site by Reclamation in 2012 and published in a Technical Memorandum in
2013 [44]. Seed records were scaled to the conditional mean spectra (CMS) that matched
the uniform hazard spectra from the PSHA at either a 0.2 s period (short period [SP]) or a
0.75 s period (long period [LP]). Both were performed expecting SP motions to be more
detrimental on rigid structures (RCC dam, spillway, outlet works) and LP motions to have
a more detrimental effect on the embankment alternative being evaluated for the project.
For the RCC dam structural analyses, one-time history was developed to represent an event
produced by a Gales Creek Fault system rupture (Record MYG008 from the M7.2 f2005
Miyagi-Oki earthquake) and scaled to the SP CMS with a duration of about 40 s. Other
seed records were considered from either the 2011 M9.0 Tohoku interface earthquake or as
synthetic records matching the SP or LP CMS. These records represented an M9.0 interface
earthquake having a total duration of over 240 s (period of strong shaking from 100 to 120 s)
and included x, y, and z ground motion components. Ultimately, a synthetic time history
SRCH10-SP, along with the MYG008 motions, were used in the structural evaluation of
the RCC dam. Example ground motion components and Husid plots for the SRCH10-SP
10 k-year event with a peak PGA of 1.36 g are shown in Figure A1 in Appendix A.

5. Risk-Informed Design Criteria

Ferguson et al. [45] introduced the risk-informed design approach adopted for the
ongoing designs of three new RCC dams that will be located in Oregon and Washington,
where seismic hazards from the CSZ are critical design criteria for the layout and cross-
sections of the dams.

216



Water 2023, 15, 116

The risk-informed design approach as evolved over a series of planning level studies
and has been substantially influenced by the author’s and HDR’s experience with Federal
(including Reclamation’s) standards-based design guidance as well as Risk-Informed
Decision-Making (RIDM) guidance that has evolved in the United States since the late 1990s.
In addition, the approach has evolved based on an understanding of (1) potential failure
modes (PFMs) and related system response event trees used for quantitative risk analysis of
concrete gravity dams (Reclamation/USACE Best Practices, 2019, Chapter E-3) on several
large concrete dams, (2) understanding of uncertainties associated with the estimation of
loading frequencies, (3) estimation of the range and corresponding uncertainty associated
with material properties for the dams and foundation materials at each site, and (4) the
potential for strength degradation and changes to water pressures on critical potential
failure surfaces.

The general risk-informed design approach for the Scoggins RCC replacement dam
(sometimes referred to as Option 3 in the project alternatives evaluation) included separate
but related seismic performance criteria. RIDM takes the important step of considering
consequences of dam failure that are not typically considered as part of standards-based
design, except the dam’s general hazard classification. Under RIDM, a high-hazard dam
that could result in higher levels of life loss upon failure requires consideration of higher
seismic loading. For example, a high-hazard dam that could result in the loss of 1 to 10 lives
would consider seismic loading of up to 1 in the 10,000-year event. For higher life loss
potential, the structure response must be evaluated for earthquakes with higher estimated
recurrence intervals to assess risks fully. Based on experience performing full QRA, with
either earthquake or hydrologic loading partitions that help identify that the maximum risk
partition has been evaluated, it has become common to evaluate earthquakes with estimated
recurrence intervals of 20,000 to 50,000 years. The maximum risk partition is typically
associated with loading partitions that are less than these recurrence intervals, confirming
that the design achieves an adequate level of risk against failure. For the Scoggins dam, the
risk evaluation was complicated by the fact that estimated life loss consequences for the
existing dam were much higher (over 100) than for the new downstream RCC dam. The new
downstream dam would require the acquisition of a sawmill facility and a few residences.
Once completed, the downstream dam would have estimated life loss consequences of
about 10 or an order of magnitude lower. In order to compare the options, the same design
criteria used for the evaluation of the option to modify the existing dam was used for the
RCC dam and included the earthquakes with up to a 50,000-year return period.

Based on experience with the earlier appraisal-level structural analyses and design
development, a set of risk-informed design criteria was adopted for the Scoggins RCC
dam feasibility design. Results of the appraisal level design full quantitative risk analysis
suggested that such criteria would result in risk estimates that would be acceptable under
Reclamation’s PPGs (2011). The design criteria were as follows:

5.1. #1 Elastic Response for 500- to 1000-Year Seismic Events

• No cracking of the concrete;
• No sliding of the RCC dam.

5.2. #2 Linear-Elastic Transitioning to Possible Localized Non-Linear Response with Limited
Damage Beginning to Occur between the 1000- and 5000-Year Seismic Events

• Limited cracking of the concrete permitted, but not permitted to crack through the
section for the 1000-year event;

• No sliding of the RCC dam for the 1000-year event.
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5.3. #3 Non-Linear Response, Moderate Damage, and Post-Earthquake Stability for Events Larger
Than 5000-Year Return Periods—Earthquake Events with Estimated Recurrence Intervals of up to
1 in 50,000 Years Were Evaluated

• Cracking through the section allowed with the estimated extent and location of damage
within the dam being judged acceptable;

• Sliding of any section of the dam limited to less than about 2 to 4 feet of estimated
displacement;

• Sensitivity analysis for higher and lower friction angles on any identified planes of
sliding to inform risk analysis.

5.4. #4 Post-Seismic Stability Factor of Safety (FOS) > 1.0

• Predicted for all loading conditions, including the damage from the 10,000- and
50,000-year events when a reasonable lower bound residual friction angle of 35 degrees
is assumed for the planes of sliding, and full uplift (drains assumed inoperable) is
applied linearly along the sliding plane as a full normal operating reservoir at the
upstream heel of the dam and tailwater at the toe of the dam.

6. Structural Model and Modeling Approach

Structural analyses supporting the feasibility design included the development of both
2D and 3D structure finite element models. A curved gravity configuration was adopted for
the feasibility design based in part on the results of appraisal design structural modeling
and QRA evaluations previously described. A plan and profile view of the dam and a
typical non-spillway-overflow cross-section through the dam at the maximum structural
height section is shown in Figure A2 in Appendix B. A cross-section through the dam that
was developed to meet the risk-informed design criteria described in Section 5 is shown on
Figure A3 in Appendix B.

The 3D structural analysis model included 28 monoliths. All monoliths are 50 feet
(15.24 m) wide except the monolith containing the low-level outlet facility in the lower left
abutment area that has a width of 100 feet (30.48 m). Dam monoliths would be formed by
transverse contraction joints (TCJs) expected to control the behavior of the dam, including
the potential for cracking and movement of monoliths during an earthquake event. The
2D models of the dam were developed late in the structural analysis process to further
evaluate the potential for cracking in the upper portion of the dam that were indicated by
the 3D analyses results of the 50,000-year, long-duration earthquake time histories.

The 3D and later 2D analysis models were developed in LS-DYNA (version 11.0).
These models can consider both linear-elastic and non-linear structural behavior (both
material models and contact surfaces) and the loading conditions during which a change
from linear-elastic to non-linear behavior is likely to occur. The initial 3D model included
provisions for non-linear behavior using specific contact surfaces where cracking and/or
sliding was expected to occur, including the dam–foundation contact and along TCJs
between the dam monoliths. The type of LS-DYNA contact used included “Tiebreak with
Friction” for the dam/foundation contact and “Sliding with Friction” for the TCJs. Study
cases were included as part of the 3D seismic response analyses where the non-linear
behavior along the dam foundation contact was prohibited so that locations within the
dam could be identified where overstressing, potential cracking, and damage would begin
to occur. As the analysis work continued, additional contact surfaces were added to the 2D
model of a central monolith exhibiting maximum seismic response (overstressing) so that
the potential for cracking in the upper portion of the dam could be evaluated.

6.1. Model Descriptions including Provisions for Non-Linear Response

The 3D structural analyses included three major components: the foundation, the
reservoir, and the dam, which includes voids for the outlet works, sluiceways, and drainage
gallery in the dam. The model was built in accordance with Reclamation’s state-of-practice
for non-linear analysis for concrete dams [46] and is shown in Figure 2. The model extends
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7400 feet (2255.5 m) in the north–south (cross-canyon) direction, 6500 feet (1981.2 m) in the
east–west direction (upstream-downstream), and is roughly 1000 feet (304.8 m) deep.
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A plan and exploded isometric view looking at the downstream face of the dam in the
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and outer profile view colors represent different monoliths in the dam. Inner color shown on profile
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A cross-section of the 2D model established through monolith 15 is shown in Figure 4.
The upper portion of Figure 4a shows a general view, including the maximum non-overflow
section, foundation, and reservoir, and Figure 4b shows a close-up view of the cross-section
showing locations where contact elements were included in the 2D model at the dam-
foundation contact and in the upper portion of the dam at the base of the chimney section.
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The reservoir was simulated at the normal maximum operating level of elevation, 
303.5 feet (92.5 m). The reservoir geometry was dictated by the planned maximum reser-
voir level, dam limits, and foundation geometry. For short-duration earthquakes, the res-
ervoir was modeled using the LS-DYNA elastic fluid material model and reduced inte-
grated brick elements with an hourglass Type 2 that yielded the lowest undesirable hour-
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Figure 4. 2D Model through monolith 15 showing: (a) dam, foundation, and reservoir; (b) close-
up of cross-section showing contact elements at rock (foundation)—concrete interface, potential
inclined crack, and lift joint crack at the base of the chimney section. The brown elements represent
the foundation bedrock, blue represents the reservoir and the four colors in the dam cross-section
represent the different parts of the dam produced by the contact surfaces with the model (labeled 1, 2
and 3).

The foundation in the 3D model was represented by a combination of 200-foot by
200-foot by 40-foot-deep (61 m by 61 m by 12.2 m) coarser mesh blocks except in the imme-
diate vicinity of the dam where 200-foot (cross-canyon) by 50-foot (upstream-downstream)
by 40-foot-deep (61 m by 15.24 m by 12.2 m) blocks were used to facilitation establishment
of the dam-foundation contact.

The reservoir was simulated at the normal maximum operating level of elevation,
303.5 feet (92.5 m). The reservoir geometry was dictated by the planned maximum reservoir
level, dam limits, and foundation geometry. For short-duration earthquakes, the reservoir
was modeled using the LS-DYNA elastic fluid material model and reduced integrated
brick elements with an hourglass Type 2 that yielded the lowest undesirable hourglass
energy and allowed the water to flow with sliding of the dam and without loss of the
reservoir force at the end of the earthquake. Significant problems with the elastic fluid
model elements were experienced for long-duration earthquakes. Attempts were made
to resolve the issue with the longer-duration earthquakes related to element distortion,
including remeshing and increasing the stiffness of reservoir elements near the bank of the
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reservoir. Subsequently, in consultation with Reclamation modeling experts, it was agreed
that the reservoir portion of the model would be changed to a linear elastic material with a
Poisson’s ratio of 0.4999 and a modulus of elasticity of 189.7 psi (pound-force per square
inch) (1.31 MPa) consistent with Reclamation guidance [46]. With changes, the model for all
long-duration earthquake loadings was run until a time of about 142 s when runs stopped
due to insufficient memory. A restart run for a selected case was completed and verified
that simulations up to 142 s were capturing the maximum displacement response of the
dam consistent with the Arias intensity variation with time.

Contact surfaces in the 3D model were used to evaluate the interaction between the
dam monoliths, the dam monoliths and foundation, the dam and the reservoir, and the
reservoir and foundation. All contacts were defined per the Reclamation’s State-of-Practice
guidelines [46].

A global damping value (or Rayleigh) damping equal to 1.8 was used in the analysis
during the application of static loads, including the maximum reservoir loading. Once the
initial static loading condition was completed, the static loading prescribed foundation
boundary conditions were replaced with a non-reflecting boundary and static reaction
forces. The three-component earthquake traction loadings were applied at the base of the
model, and the mass damping was reduced to near zero (0.001) and remained at this level
during the application of seismic loads. Energy dissipation was limited to that which would
occur at the non-linear contact surfaces and foundation and reservoir radiation damping.
The sufficiency of this approach was evaluated and verified in a test model that applied an
impulse load during an intermediate stage of loading. The natural period and damping
of the dam were estimated at 0.33 s and 6.6%, respectively. Further, the application of
increasing load in the last stage of the test model verified that both overturning and sliding
failure at the base of the dam could be captured by the model.

6.2. Material Properties

The foundation properties used in the 3D and 2D models were estimated characteristics
values based on the evaluation of the results of three phases of site characterization and
expert judgment. A summary of the characteristic properties developed from the results of
lab testing, downhole and surface geophysical testing, and rock mass classification of rock
core samples is provided in Table 2.

Table 2. Foundation material properties.

Material Properties Assigned Value

Average Bedrock Density (y) 145 lb/ft3 (6.94 kpa)
Rock Mass Deformation Modulus (E) 1.00 × 106 lb/in2 (6895 MPa)

Poisson’s Ratio (v) 0.32
Shear Wave Velocity (Vs) 3500 ft/s (1067 m/s)

P-Wave Velocity (Vp) 6800 ft/s (2073 m/s)

Note(s): ft/s = feet per second, lb/ft3 = pounds per cubic feet, lb/in2 = pounds per square inch, m/s = meters per
second, MPa = megapascals, kpa = kilopascals.

The target unconfined compressive strength selected for the feasibility-level structural
analyses of the dam cross-section was based on results of appraisal-level structural analysis
results as well as feasibility-level RCC mix design studies of both an on-site sandstone
aggregate source and an off-site quarry source. Both the on-site and off-site sources were
found to provide both coarse and fine aggregate materials that would meet acceptable
quality requirements for the RCC. Because of the uncharacteristic cross-section properties,
including the sloping upstream face and relatively flat downstream slope of the dam,
and considering the suitability of the on-site sandstones for use in the construction of the
dam, a zoned cross-section was selected, allowing for materials having different specified
strengths and an expected overall construction cost reduction. The inside of the dam would
be constructed of material with lower specified strength than the outer surfaces of the dam.
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To inform the risk analysis of the dam, analyses were performed using the target
strengths of the RCC at one year of age as well as the anticipated long-term strength of
these materials (greater than 10 years of age). The following 1-year design strengths were
considered in the development of engineering properties used in the structural analyses:

• Outer Zone: 2400 psi (16.55 MPa)
• Inner Zone: 1800 psi (12.41 MPa)

The average concrete density from the test mixes for the inner and outer zones along
with structural concrete for the outlet works, are summarized in Table 3. The modulus
of elasticity of concrete material is dependent on age, strength, and aggregate types. The
modulus values selected for the structural analyses based on the target one-year unconfined
compressive strength targets are summarized in Table 4. Estimated Tensile strengths
along with the estimated shear strength of the target RCC materials, are summarized in
Tables 5 and 6.

Table 3. Density of concrete for monoliths and structures.

Type of Concrete
SS SB BB

(Pounds per Cubic Foot—lb/ft3 [kpa])

RCC Outer Zone (2400) 138 [6.61] 145 [6.94] 150 [7.18]
RCC Inner Zone (1800) 137 [6.56] 145 [6.94] 150 [7.18]

Structural Concrete N/A 145 [6.94] 150 [7.18]
Note(s): N/A = not applicable, SS = blend of sandstone coarse and fine aggregate, SB = blend of sandstone coarse
and basalt fine aggregate, BB = blend of basalt coarse and fine aggregate.

Table 4. Modulus of elasticity and Poisson’s ratio for the monoliths.

Type of Concrete Young’s Modulus (E) Poisson’s Ratio (v)

RCC Outer Zone (2400) 2.61 × 106 lb/in2 (17,995 MPa) 0.20
RCC Inner Zone (1800) 2.32 × 106 lb/in2 (15,996 MPa) 0.20

Structural Concrete 4.07 × 106 lb/in2 (28,062 MPa) 0.20

Table 5. Summary of estimated tensile strength of RCC materials for structural analyses and evalua-
tion of modeling results.

Name Lower Bound Psi (MPa) Upper Bound Psi (MPa)

Static Tensile Strength (Intact RCC) 160 [1.103] 195 [1.344]
Dynamic Tensile Strength (Intact RCC) 242 [1.668] 292 [2.013]

Static Tensile Strength (Principal
stresses oriented perpendicular to RCC

lift surfaces—80% of intact)
128 [0.882] 156 [1.076] 1

Dynamic Tensile Strength (Principal
stresses oriented perpendicular to RCC
lift surfaces—150% of static adjusted for

lift joints)

192 [1.324] 234 [1.613] 2

Note(s): 1 80% applied to intact RCC strength to account for lift joints. 2 150% of the static tensile strength adjusted
for lift joints.
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Table 6. Summary of estimated shear strength of RCC materials for structural analysis and evaluation
of modeling results.

Feature Intact Shear
Strength—Base Case

Intact Shear
Strength—Long-Term Case

Cracked but Undeformed
Shear Strength

Residual Shear
Strength

Intact RCC Phi = 45 deg.,
c = 100 psi [0.69 Mpa]

Phi = 55 deg.,
c = 150 psi [1.03 MPa]

Bonded Lift Joint Phi = 45 deg.,
c = 100 psi

Phi = 55 deg.,
c = 150 psi

Un-bonded Lift
Joint Phi = 45 deg. Phi = 35 deg.

Note(s): deg. = degrees.

RCC materials continue to gain strength over time resulting in higher compressive and
tensile strength capacity. To inform the risk analyses for the feasibility design configuration,
several study cases were evaluated with what were judged to be reasonable “long-term”
strength properties (properties after about 10 years of age), including:

• Dam/foundation contact tensile strength: 150 psi;
• Basal joint shear strength (prior to cracking): φ (friction angle) = 55 deg., c (cohe-

sion) = 150 psi [1.03 MPa].

The material properties of the RCC materials were developed not only from the
mix design studies but from published sources. Splitting and direct tensile, as well as
shear strength testing, was not performed as part of the mix design studies; rather, the
assignment of those strengths from published sources was judged to be sufficient for the
feasibility design. Such testing will be considered during the subsequent final design work
if structural analyses indicate that it is warranted.

A summary of the contact surface properties used for each contact surface in the 3D
model is summarized in Table 7.

Table 7. Contact Surfaces used in the 3D Finite Element Model.

Name of Contact
Surface

Type of LS-DYNA
Contact Used

Shear Bond
Strength

(Cohesion)
(lb/in2)

Normal Bond
(Tensile) Strength

(lb/in2)

Initial (Intact)
Friction Angle

(Degrees)

Residual Friction
Angle after

Sliding Initiates
(Degrees)

Dam/Foundation Tiebreak with
Friction 100 to 250 3 100 to 250 3 45 (long-term of 55

also used) 2 35

Dam/Water Tied Tied Tied N/A
Foundation/Water Tied Tied Tied N/A

TCJs 4 Sliding with
Friction N/A N/A 45 1

Note(s): 1 This is a conservative but commonly used value for TCJs in structural modeling. 2 The founda-
tion contact strength neglects the expected rough contact found during construction. 3 0.69 to 1.72 MPa. 4

TCJs = Transverse Contraction Joints.

6.3. Cracking Potential in the Upper Portion of the Dam

The seismic loading potential at the Scoggins site is extraordinary. The seismic loading
being considered for the feasibility design is unprecedented for any concrete dam in the
world (Weiland, 2021, personal communication [47]). Consequently, it was important to
consider the potential for cracking and adverse response at other locations within the dam
as part of the quantitative risk analysis of the feasibility design. For purposes of feasibility
design, this hazard was judged to be in the upper portion of the dam (base of the chimney
section), consistent with noted cracking case histories such as Hsingfengkiang Dam, China
(1962); Koyna dam, India (1967); and Sefed-Rud Dam, Iran (1990). The use of non-linear
material models to inform potential cracking locations in the dam was considered, but it
was decided to defer those analyses to a later stage of project development.
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The two additional contact surfaces were added to the upper portion of the 2D model of
monolith 15 to evaluate the potential preference for cracking to develop. In general, except
as noted below, the contact surfaces were oriented to be consistent with crack formation at
Koyna dam but adapted for RCC construction methods. The horizontal surface labeled as
3 in Figure 4 corresponds to the typical orientation of one-foot-thick horizontal lift surfaces
and generally aligns with the maximum principal stresses (Z-stresses) observed near the
upstream face and into the central portion of the dam cross-section. The inclined contact
shown as contact surface 2 in Figure 4 was intended to represent cracking that could initiate
from the downstream face of the dam. While this surface was extended through the entire
section of the dam, the likelihood of such a crack forming through the entire section was
judged to be extremely low (see discussion below). It was included to fully understand and
describe the potential behavior of the upper portion of the dam, particularly the potential
for upstream movement of the curved gravity section.

Cracking initiates and develops in response to the orientation of the major principal
stresses. Results of both the 3D and 2D structural analysis models show that the major
principal stresses orient parallel to the upstream and downstream faces of the dam. For
larger earthquakes, the major stresses begin to cycle between tension and compression. It
is tensile stresses resulting from the movement of the dam crest in either the upstream or
downstream directions that cause the initiation and progression of cracking.

While there is a potential for both horizontal and inclined crack surfaces to develop in
the upper portions of conventional concrete dams, the method of RCC dam construction
suggests a predominant likelihood for horizontal cracking along lift surfaces verses the
development of inclined cracks across the RCC layers through intact materials. If a crack
initiates through intact concrete materials in various lifts due to principal stress orientations
(e.g., cracks initiating from the downstream face of the dam), it is likely that the crack
formation would be influenced by lift surface properties as the crack propagates, and the
crack would likely take on a stair-stepped and eventually a bi-linear configuration toward
the center of the section where principal stress orientation begins to provide a preference
for the development of tension perpendicular to the lift surfaces. In fact, cracking from
the upstream face of the dam would likely initiate at a lifting surface and follow that
surface until the crack intersects any cracks developing from the downstream face. With
strong enough and long enough shaking, a continuous crack with an approximate bi-linear
configuration could develop through the cross-section. Such a bi-linear configuration is
shown at the bottom of Figure 4. The possible bi-linear crack forms the bottom of the block
labeled as Part 4, shown in the light tan color.

Both Chopra and Chakrabarti (1973) [48] and Nuss et al. (2012) [49] note that the
cracking at the Koyna dam that occurred at the base of the dam’s chimney section was
horizontal from both the upstream and downstream faces. Physical (Mridha and Maity,
2014 [50]) and numerical models of crack propagation with SFEM methods (Wang et al.,
2015) [51] indicate a preference for bi-linear crack configuration.

An additional consideration in the evaluation of potential cracking-related failure
modes in the upper portion of the dam cross-section would be the contribution of side forces
on moveable blocks. The TCJs are very rough, and any movement upstream or downstream
would have to overcome some element of roughness along the TCJs. Movement in the
downstream direction would likely encounter increasing resistance to deformation as
the radial monolith joints engage and arch action is mobilized. For blocks moving in
the upstream direction of the curved gravity configuration of the dam, the TCJs would
likely offer an initial significant amount of side resistance. However, if enough movement
occurs, the TCJs could begin to open with a reduction and possible full elimination of side
resistance unless enhanced roughness was introduced in the TCJ construction.

6.4. Model Setup and Calibration

Static and dynamic loads were applied in LS-DYNA using multiple load curves.
Gravity and uplift loads were applied on the same load curve, ramped up from zero to full
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force at 2 s, given 1 s of quiet time before earthquake loads began at 3 s into the model runs.
Full gravity and uplift loads were held constant until the end of the runs.

Gravity was applied to all the dam and reservoir elements to achieve a steady static
stress state before seismic loads were applied. This avoided any unfavorable behavior in
the foundation and unrealistic foundation settlement. Hydrostatic loads were generated
against the upstream face of the dam as the gravity load of the reservoir was applied.
Uplift pressures were applied along opposite faces of the foundation contact surface using
element face pressures and a load curve. Water pressures along the contact could not be
implemented from the reservoir block in the model. Silt loads were not considered in
the analysis.

For the feasibility analyses, construction sequencing and thermal analyses were not
performed as it was anticipated that initial stresses within the dam would not control
the dam’s behavior during seismic loading. To confirm that rigorous modeling of initial
stress conditions was not required, an evaluation of three alternative normal loading
models (application of self-weight and normal reservoir hydrostatic pressures relative to
the activation of vertical contact elements between the monoliths) was completed. These
analyses confirmed that the time when activation of vertical contact between the dam
monoliths occurred did not significantly influence initial stresses and the estimated seismic
response along the contact at the base of the dam or the vertical monolith joints.

Full hydrostatic pressure was assumed at the upstream heel of the dam, and tailwater
pressure was assumed at the downstream toe for all structural analyses. The uplift pressure
varied linearly from full head to tailwater head when a gallery was not present in the
monolith (upper abutment locations). At locations where a gallery was present, a drain
efficiency of 65% was used for normal and earthquake loading conditions. Uplift pressure
values at nodal contact points were calculated using an excel spreadsheet, and these
pressures were applied as non-uniform pressure on the slave and master surfaces. For
the flood loading (reservoir elevation 312 feet) and post-earthquake loading conditions, a
0% drain efficiency was assumed.

The LS-DYNA dynamic analysis of the foundation-dam-reservoir system used the
traction time history at the base of the model as input. In accordance with Reclamation
guidelines for non-linear analysis of concrete dams [46], a non-reflecting foundation bound-
ary at the sides and base of the foundation materials with a shear velocity of 1000 m per
second was applied. Through an iterative deconvolution process, an estimated factor of
0.55 was applied to the input ground motions provided by Reclamation based on estimated
foundation stiffness properties to reproduce the target input motions and site response
spectrum at the foundation surface (base of the dam) beneath the maximum section location.
Deconvolution was verified through analyses with two additional foundation models.

All production models for the structural analyses were mainly different in material
parameters and earthquake input motions. For all production models, the static loading,
including the weight of the dam and reservoir water (but not the foundation weight) as
well as uplift pressures, were applied during the initial time step of zero to 2 s. This was
followed by a silent time of one second after the earthquake traction load was then applied
at the base of the model. The earthquake load was continued until a time sufficient to
capture the maximum responses of the dam. For the long-duration earthquakes, it was
found that the maximum permanent displacements and stresses were captured within the
first 142 s of the time history. For the short-duration earthquakes, maximum permanent
displacements were captured within the first 20 to 25 s.
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6.5. Model Study Cases

A total of 20 study cases were outlined for seismic response analysis with the 3D
model. The study cases are listed in Table A1 in Appendix C. Eighteen of these study
cases were completed. The first three study cases represented a range of planned static
analyses that were subsequently combined into a single analysis. Because the 3D model did
not provide a direct indication of the stability FOS, supplemental 2D analyses (excluding
consideration of arch stresses that may have developed) of the full range of monolith
heights were completed.

As can be seen in Table A1, the study cases evaluated static loading conditions of
the maximum reservoir level and ground motions from three earthquake recurrence inter-
vals, including 5000-, 10,000-, and 50,000-year events. Short-duration and long-duration
events were completed for each of the recurrence intervals, and base case RCC strength
(one-year target strengths), as well as long-term RCC strengths, were also considered.
Post-earthquake analyses were completed assuming degraded strengths of φ = 35◦ and
c = 100 psi [0.69 MPa] before full crack development and φ = 35◦ and c = 0 after crack
development was completed to bound the estimates of monolith deformations (maximum
possible under worst-case assumptions) and to verify that movement of the monoliths
stopped at the end of the earthquake loading. Finally, uplift loads on the dam/foundation
contact were considered, including full functionality (65% reduction) during the earth-
quake, as well as ranging from fully functional to non-functional following the earthquake
(post-earthquake study cases).

Additional 2D study cases were added during a later stage of the structural model-
ing work. This 2D model and related study cases were designed to inform the potential
for cracking and displacements in the upper portions of the dam during large and long-
duration earthquake events. A total of 10 study cases with various combinations of contact
restraint, material strengths along the contact surfaces, and earthquake loads were com-
pleted. The study cases are summarized in Table A2 in Appendix C. The 2D modeling was
used in lieu of using the large 3D model in the interest of time. Similar to using non-linear
material models, the use of the large 3D model for evaluation of cracking potential in
the upper portion of the dam was deferred to a later stage in the design process when
additional time and resources would be available, and the results of the initial discrete
crack and 2D results (including applied radial shear resistance as described below) could
be used to inform the requirements for more rigorous computational approaches.

As was expected, deformations predicted with the initial 2D modeling approach were
substantially higher than predicted by the 3D model for similar strength assumptions
and earthquake loads. This difference was attributed primarily to the inability of the
2D model to incorporate shear strength along the TCJs, and the development of arch
stresses and transfer of arch loads that will substantially influence the performance of the
dam, particularly downstream displacements that engage the vertical monoliths joints
and initiate arch load transfer. Subsequently, the 2D model was modified to include
components of radial shear resistance on the TCJs based on the 3D modeling analysis
results. The components of radial shear resistance were conservatively estimated and then
incorporated into the 2D model (lower than the actual 3D model indicates will occur with
downstream movements). With this change, the total deformations estimated by the 2D
model were similar to the 3D model estimates.

The 2D study cases ranged from full linear elastic with all contact surfaces tied (Case 1
with bond strength assumed as 1 × 1020 psi [6.9 × 1017 MPa]) to various combinations of
tied base, lift surface, and inclined contact surfaces and combinations of untied contact ten-
sile and shear strength assumptions. Study cases 3, 4, and 5 considered all contact surfaces
untied with both best estimate and long-term tensile and shear strength assumptions along
the lift surfaces or, in the case of the inclined contact, intact tensile and shear strength. Case
10 allowed only the inclined contact surface to crack. As previously noted, this case was
judged to be extremely unlikely to occur but run to inform the risk estimators.
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7. Model Results
7.1. Static Analyses

Overall, the evaluation of model contact forces and gravity analyses indicated that no
nonlinearity (sliding) would occur at the dam-to-foundation interface. All monoliths would
have a sufficient sliding FOS (>1.5), assuming a sliding friction angel of 45 degrees, zero
cohesion, and 65% foundation drain efficiency. The minimum FOS values occur under the
maximum sections of the dam with a base elevation of 130 feet (39.6 m) or less. Further, all
monoliths would have a FOS greater than 1.2 for post-earthquake conditions assuming that
the sliding friction angle degraded to 35 degrees, foundation drains were not functional
under the dam, and full reservoir uplift pressure was applied under the entire base of
the monolith.

Static analyses were also evaluated for normal reservoir operations and a reservoir
elevation of 310.5 feet (94.9 m; PMF loading), assuming that a large enough earthquake
had occurred at the site to cause cracking through the entire base of the dam and enough
sliding to result in some strength degradation and loss of foundation drain function. The
results of these analyses are summarized in Table 8. Sliding FOS for friction angles of 45
and 35 degrees in combination with a range of selected cohesion values are also shown in
this table. These strength combinations indicated sliding stability FOS values equal to 3.0
and 4.0, while for the PMF loading, the FOS values are equal to 2.0 and 2.7.

Table 8. Summary of static gravity analyses for increased uplift and reduced contact
strength assumptions.

Case Reservoir
(Feet [m])

Tailwater
(Feet)

Drain
Efficiency

Compression
at Base

Friction
(deg.)

Cohesion
(psi [MPa]) Sliding FOS

Normal 303.5 [92.5] 160 0% 100%

45 0 2.09
35 0 1.46
45 25 [0.17] 3.0
35 42 [0.29] 3.0
35 70 [0.48] 4.0

PMF 310.5 [94.6] 192 0% 100%

45 0 1.7
35 0 1.19
45 9 [0.06] 2.0
35 24 [0.17] 2.0
35 45 [0.31] 2.7

Figure 5 shows a summary of the 2D gravity analysis results for sliding FOS for a
normal maximum reservoir elevation (303.5 feet [92.5 m]) and a very large flood (pool
elevation to 312 feet [95.1 m]), a base friction angle of 45 degrees and the full range of
monolith heights along the axis of the dam. The sliding FOS values increase at higher
elevations supporting the previous assertion that the minimum FOS values are beneath
the maximum sections of the dam. Subjected to static loading, the proposed dam has
tremendous reserve strength if arch action is ever mobilized, demonstrating the benefit of
curing the dam.

227



Water 2023, 15, 116Water 2023, 15, x FOR PEER REVIEW 18 of 44 
 

 

 
Figure 5. Graphical depiction of gravity analysis results for static loading sliding factor of safety 
(base friction of 45 degrees). 

The LS-DYNA dynamic analyses indicate that once sliding initiates, the net resultant 
of forces along the vertical contacts of the maximum height monoliths near the center of 
the dam mobilizes a resultant upstream–downstream horizontal force. For a one-foot-
thick section of a dam, the average equivalent shear stress of 0.15 psi (0.001 MPa) acts on 
the vertical sides. A post-earthquake gravity analysis considering half of this estimated 
side shear stress, a residual friction angle of 35 degrees with no cohesion, and a uniform 
reservoir pressure along the entire length of the cracked base indicates that maximum 
height monoliths of the dam have a minimum FOS of 1.2. 

7.2. 3D Seismic Response Analyses 
Based on work completed during the appraisal design phase, it was clearly demon-

strated that the plan and cross-section requirements for the dam were going to be con-
trolled by seismic loading response. The study cases were run and evaluated to verify that 
the proposed cross-section would meet the risk-informed design criteria and have failure 
risks that would meet Reclamation’s Public Protection Guidelines (2011) [52]. The follow-
ing critical PFMs for the dam were identified as driving the design and risk estimates: 
1. Sliding of the dam at the dam to foundation interface or along a lower lift (just above 

the foundation contact) that yields to a large displacement between adjacent mono-
liths or instability of one or more monoliths; 

Figure 5. Graphical depiction of gravity analysis results for static loading sliding factor of safety
(base friction of 45 degrees).

The LS-DYNA dynamic analyses indicate that once sliding initiates, the net resultant
of forces along the vertical contacts of the maximum height monoliths near the center of
the dam mobilizes a resultant upstream–downstream horizontal force. For a one-foot-
thick section of a dam, the average equivalent shear stress of 0.15 psi (0.001 MPa) acts on
the vertical sides. A post-earthquake gravity analysis considering half of this estimated
side shear stress, a residual friction angle of 35 degrees with no cohesion, and a uniform
reservoir pressure along the entire length of the cracked base indicates that maximum
height monoliths of the dam have a minimum FOS of 1.2.

7.2. 3D Seismic Response Analyses

Based on work completed during the appraisal design phase, it was clearly demon-
strated that the plan and cross-section requirements for the dam were going to be controlled
by seismic loading response. The study cases were run and evaluated to verify that the
proposed cross-section would meet the risk-informed design criteria and have failure risks
that would meet Reclamation’s Public Protection Guidelines (2011) [52]. The following
critical PFMs for the dam were identified as driving the design and risk estimates:

1. Sliding of the dam at the dam to foundation interface or along a lower lift (just above
the foundation contact) that yields to a large displacement between adjacent monoliths
or instability of one or more monoliths;
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2. Overstressing during the earthquake leading to cracking and sliding in the upper part
of the dam with significant degradation (rubbilizing) of the concrete along vertical
monolith joints.

The study case analyses summarized in Tables A1 and A2 (Appendix C) formed the
basis for assessing these PFMs and completing a full QRA of the proposed dam. Modeling
results for different combinations of earthquake loadings and dam-to-foundation interface
strength were carefully reviewed to evaluate stress time histories and estimated monolith
displacements, identifying critical time steps and locations with the model corresponding
to the maximum response of the dam. The analyses were further reviewed at those specific
time snapshots and locations when the structure displacement and stress responses were
the highest values.

A set of common points along the crest of the dam were used to plot and then select the
range of estimated displacements. An example of a deformed shape of the dam following
a 5000-year, short-duration (MYG008) earthquake event and assumed 1-year material
properties for the RCC is shown in Figure 6. The representative crest nodal points (A
through H) established for the comparative evaluation of crest displacement are also shown
in this figure. The black dots represent the original location of the nodal points relative to
the deformed shape of the dam. Nodes A–C, D–F, and G–I are left abutment, central valley,
and right abutment response locations, respectively.
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properties. For example, Nodes A through G show some accumulated displacements at 
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as much as 4 inches (10.16 cm) for Node B. Cracking through the base of the dam would 
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abutment was zero inches indicating that cracking through the base of the monolith at 
those locations likely did not occur. 

Figure 6. Plan view of dam showing deformed shape (magnification factor of 300) following the
5000-year MYG008 Earthquake. One-year strength parameters. Different colors represent different
monoliths within the dam. Letters A through I represent the nodal displacement plot locations shown
in Figure 7. Corresponding nodal numbers used to obtain displacement plots from model are listed
adjacent to the letters A through I.

An example of a plot of the estimated displacement for each of the A through I nodal
points is shown in Figure 7. The displacements are total absolute displacements of the
monoliths above the foundation contact. Relative displacements of the monoliths are
estimated by comparing the total displacements of adjacent monoliths. The accumulated
nodal point displacements are an indication of the monoliths that cracked through the base
(A through G) verses those that did not crack (H and I) for the assumed material properties.
For example, Nodes A through G show some accumulated displacements at the end of the
earthquake ranging from a little to less than 1 inch (<2.54 cm) for Node G to as much as
4 inches (10.16 cm) for Node B. Cracking through the base of the dam would have occurred
in all monoliths represented by these nodes for displacements to have developed. However,
the accumulated displacement of nodes H and I in the upper right abutment was zero
inches indicating that cracking through the base of the monolith at those locations likely
did not occur.
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Figure 7. Plot of crest node displacement for the 5000-year, short-duration earthquake (MYG008) and
1-year strength parameters. (x-displacement is in inches, and time scale is in seconds. On the vertical
axis, positive displacement is movement downstream, and negative (−) is movement upstream).

Tables A3 and A4 in Appendix C contain summaries of the estimated displacements
for the base case and long-term strength assumptions for the MYG008 Short Duration,
and SRCH10 Long Duration (CSZ) ground motions, respectively. Displacement estimates
are also shown for both the post-earthquake 10,000-year and 50,000-year events when
the dam to foundation joint shear strength of only φ = 35◦ and c = 100 psi (0.69 MPa)
uncracked) and φ = 35◦ and c = 0 (cracked base) were used in the model. As previously
noted, these values were provided to the risk estimating team to help bind the estimated
displacement relative to the shear strength assumptions. As can be seen, cracking and
sliding of some monoliths occurs for the 5000-year earthquake events assuming the 1-year
tensile and shear strength properties for the RCC. However, no cracking and sliding of any
monoliths occurred for the 5000-year and 10,000-year earthquakes and only occurred for
the 50,000-year earthquakes when the long-term strengths were used. Hence, the feasibility
design plan and cross-section of the dam are robust and linear-elastic performance would
be expected for events equal to or greater than the 10,000-year earthquakes as the materials
in the dam strengthen over time.

LS-DYNA has an important shear strength limitation that makes the estimated dis-
placement results conservative. Specifically, once the dam cracks through the contact
surface, the strength can only be simulated with a friction angle and zero cohesion. The
estimated shear strength of the contact should consider some component of cohesion or
increased friction upon cracking but prior to any significant sliding when roughness or
asperities along the cracked surface make and important contribution to the shear strength.
Degradation of the shear strength down to a value of 35 degrees occurs as deformations
along the crack surface take place. Accounting for the process of strength degradation
from an initial value of 55 degrees down to 35 degrees would more realistically represent
actual displacements that would be smaller than those provided in Tables A3 and A4 when
strength degradation is not accounted for and once the section cracks, the shear strength is
immediately reduced to 35 degrees.

230



Water 2023, 15, 116

A comprehensive summary of the estimated base cracking, representative maximum
tensile stress conditions in the monoliths, estimated maximum tensile stresses that occurred
in the RCC adjacent to the monolith TCJs (vertical joints), and the maximum estimated dif-
ferential movement between two monoliths is presented in Tables A5 and A6 in Appendix C
for the base case and long-term strength assumptions and for the MYG008 Short Duration,
and SRCH10 Long Duration (CSZ) ground motions, respectively. These tables include
a set of columns in the center that indicate the monolith numbers where the maximum
estimated tensile stress excursions occurred, the tensile stress excursion range, the number
of excursions indicated by the model results, and the estimated damage conditions that
would develop. The estimated damage condition is a qualitative description assigned to
guide the risk assessment on the type (if any) of seepage or discharge response that might
occur. Figure 8 generally illustrates how the values in these tables were developed for
each of the study cases for the same short-duration 5000-year earthquake (MYG008). The
location of the various nodes plotted in Figure 8 is along the upstream face of Monolith
15, as shown in Figure 9. The figure shows the maximum stress response (tensile stress
of about 250 psi) occurs at about 12 s for this combination of earthquake and material
properties that occurred at node J along the upstream face of monolith 15 just below the
chimney section.
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Figure 8. Example stress response of various nodes along the upstream face of monolith 15 during
the 5000-year Short Duration MYG008 Earthquake. Max_principal_stress shown on vertical axis is in
psi (145 psi = 1 MPa). Note that positive stress on the vertical axis is tension, and negative stress on
this axis is compression. Units of the horizontal scale are seconds.

The maximum responses (tensile stresses) included in Table A5 (Appendix C) occurred
in Monoliths 24 and 25 and between Monoliths 22 and 23 (near crest node A) in the left
abutment area, as illustrated in Figure 10. The insert in the lower right of Figure 10 shows a
typical plot of principal stresses along the downstream face of the dam in the left abutment
of the dam at a monment in time of the earthquake time history when the maximum stress
response occurred.
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The estimated limits of tensile strength of the RCC parent materials, as well as 
bonded lift surfaces at one year, are shown in Figure 10. The estimates of the one-year and 
long-term RCC tensile strengths were similarly added to all stress plots at nodes selected 
for evaluation where maximum stress response occurred. This allowed for the identifica-
tion of the number of tensile stress excursions exceeding the estimated tensile strength of 

Figure 9. Location of nodal points along the upstream face of monolith 15 corresponding to stress
response plot in Figure 8. Different colored lines in the plot represent the boundaries of the monoliths
formed by the TCJs in the dam model. Perspective is looking from the reservoir toward the upstream
face of the dam.
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Figure 10. Plot of maximum stress response in vicinity of Crest Node A during the 5000-year, short-
duration earthquake. (note stress plot in lower right are tensile in psi units. 145 psi = 1 MPa). The
principal stresses shown on the vertical axis are in psi. Positive numbers represent tension and
negative numbers represent compression.

The estimated limits of tensile strength of the RCC parent materials, as well as bonded
lift surfaces at one year, are shown in Figure 10. The estimates of the one-year and long-
term RCC tensile strengths were similarly added to all stress plots at nodes selected for
evaluation where maximum stress response occurred. This allowed for the identification of
the number of tensile stress excursions exceeding the estimated tensile strength of the RCC

232



Water 2023, 15, 116

that occurred. These number of excursions were then used to assess cracking and concrete
damage that would likely occur qualitatively.

In addition to the issues of monolith cracking, displacement, and tensile stresses that
could result in cracking and damage within the dam, an overall evaluation of the structural
modeling results focused on the following considerations relative to the risk-informed
design criteria:

1. Up to what level of earthquake will the structure behavior be linear, and when/where
will the onset of cracking/damage and non-linear behavior begin with no large
overstressing or significant damage to the dam?

2. What and where are the maximum stresses and the potential for damage within the
structure for larger earthquakes? The evaluation results lead to the decision to develop
a simple 2D model for capturing the cracking/displacement failure mode within the
RCC dam structure.

3. What are the maximum estimated non-linear displacement and expected relative
monolith displacements at the end of larger earthquakes?

4. Post-earthquake performance and stability of the dam.

7.3. Cracking in the Upper Portion of the Dam

Stresses indicated by the 2D model results suggest that cracking will develop, and
sliding will first occur at the base of the dam near the foundation contact. For the best
case estimated 1-year strength of the RCC, cracking and sliding along the base of the dam
for some monoliths begins to occur for the 500-year return period earthquakes. However,
assuming the long-term strength properties of the RCC, only the 50,000-year event for both
the short and long-duration earthquakes causes cracking and sliding to occur along the
base of the dam. For the longer-duration earthquakes, the model results also indicated
a potential for cracking and some sliding on a continuous crack through the dam near
the base of the chimney section for earthquakes greater than the 10,000-year event when
base cracking and sliding did not occur in the model. For the 10,000-year earthquake
and restraint at the base of the dam (no cracking and sliding), a limited number of stress
excursions occurred in the maximum height monoliths that exceeded the estimated one-
year tensile strength of the RCC. Based on the number of these excursions, as well as
consideration of the long-term strength of the RCC, the excursions were judged not to be
significant enough to cause cracking initiation.

Crest cracking and sliding near the chimney section of the dam were indicated for
earthquake events with a 50,000-year return period with or without base sliding and
regardless of the RCC material properties. This became the driving failure mode of concern
for the risk analysis. The models simulating the potential for cracking and sliding at both
the crest and base of the dam did not show meaningful overstressing at other zones within
the cross-section. Stresses within the dam are significantly reduced when a basal crack
develops at or near the dam and foundation contacts.

Based on an evaluation of the principal tensile stress orientations and magnitude from
the 3D model results, as previously discussed, two possible crack surfaces were selected
for simulation in the 2D model, as shown in Figure 4. Because of the slopes of both the
upstream and downstream faces of the dam, the most likely orientation of the cracks at
initiation would be perpendicular to the faces of the dam. Each initiating crack would slope
in opposite directions toward the center of the dam. For the downstream face, the crack
inclination was estimated to be dipping between 30 and 42 degrees from horizontal toward
the reservoir. For the upstream face, the crack inclination was estimated to be dipping
about 15 to 22 degrees from the horizontal toward the downstream toe of the dam.

The two contact surfaces were evaluated in different ways to confirm the potential for
cracking and potential deformations along a continuous crack. Two of three combinations
were judged as likely based on the RCC lift surface construction method, the orientation of
principal stresses, and information on cracking from the Koyna dam case history and both
physical and FEM model studies of the Koyna dam cracking incident:
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1. Cracking along a continuous horizontal lift surface (Contact 3 on Figure 4);
2. Cracking along a bi-modal surface, including a lifting surface from the upstream face

to the center of the dam and an inclined crack from the downstream face to the center
of the dam (a combination of cracking on the upstream half of Contact 3 and the
downstream half of Contact 2 forming the tan colored block shown on Figure 4).

As previously noted, one study case was completed of a crack along the continuous
inclined Contact 2 surface to inform the risk analysis. The likelihood of this continuous
cracked surface developing was judged to be very remote but presented to the risk team to
provide a severe upper bound of potential crest block deformations. It was judged to be
very remote by the structural analysis team because principal tensile stress orientations
rotate through the structure to an orientation that parallels the upstream face of the dam,
and there is just not enough stress of the needed orientations that would cause such a crack
to develop through the entire cross-section of the dam.

Initially, the analyses with the 2D model showed significantly higher deformations
than the 3D model due to the lack of monolith side forces in the 2D model. To increase
confidence in the 2D model results, as previously noted, radial stresses consistent with
vertical monolith joint stresses mobilized in the 3D model were added to the 2D model.
Once these stresses were considered, the deformations estimated by the 2D model became
similar to those estimated by the 3D model. This is illustrated by the results presented
in Table 9 for the 2D Study Case 3 analyses. The first row shows the estimated base and
crest displacements when no radial (TCJ) side stress was used. To obtain the relative crest
displacement, the base displacement is subtracted from the crest displacement, as shown in
the fourth column of the table.

Table 9. 2D Study Case 3, estimated permanent displacements for the MYG008-50k Earthquake using
base case (one-year) strengths.

Side Shear Stress
(psi)

Base Displacement
(Inches [cm])

Crest Displacement
(Inches [cm])

Relative Crest
Displacement
(Inches [cm])

0 19 [48.26] 42 [106.68] 42 − 19 = 23 [58.42]
0.25 [0.002 MPa] 12 [30.48] 26 [66.04] 26 − 12 = 14 [35.56]

3D analysis
(left, center, right)

14, 6, 10
[35.6, 15.2, 25.4] — 0

The second row in the table showed the estimated displacements when a conservative
amount of side shear stress was added to the 2D model. The third row summarizes the
estimated displacements of the entire monoliths in the left abutment, center valley section,
and right abutment areas of the 3D model. The 2D model of Monolith 15 represents a
monolith in the center valley area of the 3D model. When the side shear was added, the
estimated base displacement of 12 inches (30.48 cm) from the 2D model compares with an
estimated displacement of 6 inches (15.24 cm) in the center monolith from the 3D model.
Further adjustment of the side shear stresses was not performed, believing that the 2D
model estimates with a limited amount of side shear stress (less than actually predicted
by the 3D model) were reasonable and slightly conservative when evaluating the issue
of cracking and displacements that may occur in the upper portion of the dam for this
loading condition.
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For comparison purposes, the results of Study Case 5 with the MYG008-50k earthquake
and long-term strengths are shown in Table 10. As can be seen by comparing the results in
this table with Table 9, increases in shear strength with time do not impact the potential for
the structure to crack through the dam section at either the base or crest but significantly
reduces the displacements that would occur.

Table 10. 2D Study Case 5, estimated permanent displacements for the MYG008-50k Earthquake
using long-term strengths.

Side Shear Stress
(psi)

Base Displacement
(Inches [cm])

Crest Displacement
(Inches [cm])

Relative Crest
Displacement
(Inches [cm])

0 13 [33] 28 [71.1] 28 − 13 = 15 [38.1]
0.25 [0.002 MPa] 8 [20.3] 12 [30.5] 12 − 8 = 4 [10.2]

3D analysis
(left, center, right) 6, 3, 0 [15.2, 7.6, 0] — 0

The results of analyses of the 2D model for the long-duration SRCH10-50k earthquake
with long-term strengths are summarized in Table 11. These results showed that the base
sliding of the adjusted 2D model with side shear stress produced displacements that were
close to the calculated sliding from the 3D model. Similar to the comparison of the long-
term strength, short-duration earthquake results above, cracking through the crest and crest
sliding of about half of the estimated base sliding is possible. The importance of including
side friction in the 2D model to account for arch action once cracking develops is clearly
indicated by the results in Table 11.

Table 11. Permanent displacements for the SRCH10-50k Earthquake, long-term strengths.

Side Shear Stress
(psi)

Base Displacement
(Inches [m])

Crest Displacement
(Inches [m])

Relative Crest
Displacement
(Inches [m])

0, Case 3 147 [3.73] 280 [7.11] 280 − 147 = 133 [3.38]
0, Case 6 186 [4.72] — 0

0.25, Case 5
[0.002 MPa] 33 [0.84] 46 [1.17] 46 − 33 = 13 [0.33]

3D analysis
(left, center, right)

38, 51, 85
[0.97, 1.3, 2.16] — 0

Overall, the 2D model results for simulations with side shear stress generally con-
firmed the potential for cracking in the upper portion of the dam for the 50,000-year
earthquake events. Cracking through the upper portion of the dam may also occur for
the 10,000-year earthquake events but only when the base case (1-year) strengths were
used. Generally, crest displacements were predicted to be about one-half of base sliding
displacements when the crest section cracks through the entire section. These estimates of
behavior were believed to be conservative. The 3D model results indicated that the radial
shear stresses along the TCJ surfaces near the dam crest are larger than the average TCJ
radial shear stress used in the 2D analyses.
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The 2D modeling also confirmed that the primary direction of sliding of the dam
crest is downstream when cracking through the section is either along a lifting surface, or
the bi-linear surface described above occurs, and the reservoir is full. For the base case
(1-year) strengths crest and the long-duration earthquake (SRCH10-50k), deformations
ranged from less than a foot for the bi-linear crack configuration to about 3.5 feet (1.07 m)
for a continuous crack along a horizontal lift surface. Estimated crest deformations ranged
from a few inches for the bi-linear crack configuration to just over 1 foot for a continuous
crack along a lifting surface when long-term strengths and the long-duration (SRCH10-50k)
earthquake were evaluated.

When the model was allowed to crack along both the Contact 3 and Contact 2 surfaces
without any restraint, a bounding (worst-case result with a very low likelihood of occur-
rence) showed that the small wedge of RCC material between the Contact 2 and 3 surfaces
(Part 2 on Figure 4b) in the upstream portion of the dam developed and moved upstream
between 2 and 6 feet while the remainder of the upper portion of the dam (Parts 3 and 4 on
Figure 4b) moved downstream along the horizontal lift surface. Because the section of the
dam is 47 feet wide at the crack locations, the net deformations between the upper portion
of the dam (Parts 3 and 4) and the Part 2 wedge in excess of 20 to 23 feet (6.1 to 7 m) would
have to occur in order for any sort of upstream toppling failure to occur. The analysis
further indicated that the crest of the dam (Parts 3 and 4) was stable following even the
largest and long duration 50,000-year earthquake event. These results were considered
conservative as the 2D model did not consider the effect of increasing side restraint that
would occur as downstream deformations engage increasing arch resistance to sliding.

8. Risk Analysis Results

The original appraisal-level design team risk analysis for the new RCC dam configura-
tion was conducted in 2016 and considered only seismic-related PFMs for a straight-axis
gravity dam cross-section with flatter upstream and downstream slopes. The results of that
risk analysis were below Reclamation’s risk tolerance guidelines. However, there were a
number of ideas for optimization of the dam section that could further improve the safety
of the dam and increase confidence in the risk estimate results. One important idea from
the appraisal-level risk analysis was to curve the gravity dam axis in order to mobilize
arch action that would reduce estimated sliding displacements. It was further believed that
curving the dam axis would allow for some reduction in the upstream and downstream
slope requirements resulting in possible cost reductions for the construction of the dam.

The feasibility design configuration (see Appendix B) included a curved gravity
plan configuration for the dam and reduced upstream and downstream slopes. For the
feasibility-level design risk analysis completed in later 2019, a total of 18 PFMs, including
seismic (structural and geologic hazard), static, and hydrologic, were described, discussed,
and evaluated. Full quantitative risk analyses following the best practices for dam and
levee safety risk analyses [52] were performed. Risks were estimated by a joint HDR-
Reclamation team for three primary risk-contributing PFMs. Details of the risk analyses,
including failure mode event trees and nodal analyses, are beyond the scope of this paper.
However, the overall results are instructive relative to the conceptual framework for risk-
informed designs presented in this paper. The total Annual Failure Probability (AFP) wacs
nearly an order of magnitude below Reclamation’s Public Protection Guideline value for
AFP [53]. The total Annualized Life Loss (ALL) risk (1.4 × 10−4) is also nearly one order of
magnitude below the guideline value for ALL. The feasibility design level risk estimates
are summarized in Table 12.
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Table 12. Summary of risk analysis results for the new Scoggins RCC Dam.

Potential Failure Mode AFP (Annual Failure
Probability)

Estimated Mean
Loss of Life

ALL (Annualized Life
Loss Risk)

PFM 5—Seismic sliding and instability at the
RCC/foundation contact: limited release failure,

short duration
3.05 × 10−7 1 3.05 × 10−7

PFM 5—Seismic sliding and instability at the
RCC/foundation contact: catastrophic failure,

short duration
1.80 × 10−7 12 2.07 × 10−6

PFM 5—Seismic sliding and instability at the
RCC/foundation contact: limited release failure,

long duration
5.22 × 10−6 1 5.22 × 10−6

PFM 5—Seismic sliding and instability at the
RCC/foundation contact: catastrophic failure,

long duration
2.42 × 10−7 12 2.78 × 10−6

PFM 6—Seismic sliding and instability at the base of the
chimney section: catastrophic failure, short duration 3.52 × 10−6 12 4.04 × 10−5

PFM 6—Seismic sliding and instability at the base of the
chimney section: catastrophic failure, long duration 7.33 × 10−6 12 8.43 × 10−5

PFM 11—Left abutment rock block instability: limited
release failure 2.33 × 10−8 1 2.33 × 10−8

PFM 11—Left abutment rock block instability:
catastrophic failure 1.60 × 10−8 11 1.84 × 10−7

Total Risk 1.68 × 10−5
8

(weighted loss
of life)

1.35 × 10−4

The risk results were considered conservative. The confidence was somewhat low,
and uncertainties were moderate to high regarding the performance of the upper portion
of the dam for the 10,000-year and 50,000-year events under PFM6. Likewise, because of
the way the ground motions were developed for the short-duration and long-duration
events, summing the risk from both durations for a single PFM may have overestimated
the total risk. Similarly, the consequence estimated for crest failure modes would likely be
far less than breach discharge resulting from the breach of a full monolith which was not
accounted for in the Total ALL estimate. PFM 6 contributed 64% of the total mean AFP and
92% of the total mean ALL.

Verifying the risk of the proposed layout and cross-section of the dam was an im-
portant step in the feasibility design. The quantitative risk analysis provided not only
confirmation of the safety of the new RCC dam configuration but important input that
further optimization of the configuration may be possible during the final design.

9. Conclusions and Recommendations

The 3D and 2D structural models developed for the feasibility design configuration of
the new Scoggins RCC dam demonstrated that the section was robust and would provide a
level of safety that would be acceptable under the Reclamations Public Protection Guide-
lines [52]. Further, the results of the risk analysis for the feasibility design configuration
validated the four-component risk-informed design criteria that were used in developing
the feasibility design.
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Specifically, the following was found related to the risk-informed design criteria
established for the feasibility design of the dam:

9.1. #1 Elastic (Linear) Response for 500- to 1000-Year Seismic Events

• No cracking of the concrete;
• No sliding of the RCC dam.

Structural Analysis Results

The response of the structure is related to the strength properties of the RCC. The
RCC properties will increase with time, and two study cases were evaluated, including
(1) base material properties (1-year target strengths), and (2) long-term properties (esti-
mated 10-year strengths). For the base case material properties, linear elastic behavior
is expected for earthquakes with recurrence intervals between 1000 and 5000 years. For
the long-term material properties, linear elastic behavior is expected for earthquakes with
recurrence intervals between 5000 and 10,000 years. No cracking of the concrete or sliding
of the dam is expected in the linear elastic performance range for the dam.

9.2. #2 Linear-Elastic Transitioning to Possible Localized Non-Linear Response with Limited
Damage Beginning to Occur between the 1000- and 5000-Year Seismic Events

• Limited cracking of the concrete permitted, but not permitted to crack through the
section for the 1000-year event;

• No sliding of the RCC dam for the 1000-year event.

Structural Analysis Results

The structural analyses confirmed that the transition into localized non-linear response
with limited damage is a function of the RCC material strength. For the base material
properties, this transition is expected between the 1000- and 5000-year earthquake events.
By the time the structure is 10 years old, the transition is expected to occur for earthquakes
ranging from 5000- to 10,000-year events. No sliding of the dam at any location occurs for a
short or long duration 1000-year event for any of the assumed material properties.

9.3. #3 Non-Linear Response, Moderate Damage, and Post-Earthquake Stability for Events Larger
Than 5000-Year Return Periods

• Cracking through the section may be allowed depending on analysis results and the
estimated extent and location of damage within the dam;

• Sliding resultant of any section of the dam limited to less than about 2 to 4 feet of
estimated displacement;

• Sensitivity analysis for higher and lower friction angles on any identified planes of
sliding to inform risk analysis.

Structural Analysis Results

The non-linear response was indicated beginning at an earthquake event having a
recurrence interval as low as the 1000- to 5000-year when base case (1-year) strength param-
eters are used. The non-linear response was not indicated in the analyses for the 10,000-year
earthquake loading when the long-term strength parameters were used corresponding to
the expected RCC strength at about 10 years and beyond. Cracking and sliding displace-
ments will have a preference to develop along the base of the dam with the potential for
cracking and sliding at a location near the chimney section for an earthquake recurrence
interval between 10,000 and 50,000 years. The occurrence and magnitude of cracking and
displacements estimated are directly related to both the strength properties of the RCC and
the duration of earthquake loading. Estimated displacement for the larger events where
non-linear behavior is initiated is generally less than the specified design criteria.
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Overall, the dam is expected to perform well for the full range of earthquakes consid-
ered in the structural analyses.

9.4. #4 Post-Seismic Stability FOS > 1.0

• Predicted for all loading conditions, including the 10,000- and 50,000-year events,
when a reasonable lower bound residual friction angle of 35 degrees is assumed for
the planes of sliding, and full uplift is applied linearly along the sliding plane as a full
reservoir at the upstream heel of the dam and tailwater at the toe of the dam.

Post-Seismic Stability Analysis Results

A post-earthquake gravity analysis with the 2D model considering a small component
of side shear stress, a residual friction angle of 35 degrees along a basal sliding plane,
and uniform reservoir pressure along the entire length of the cracked base yielded a
minimum FOS of 1.2. For all study cases, the design configuration results in a dam that
will remain stable following all earthquake events considered in the analyses. Maximum
displacements of 2 to less than 4 feet (0.61 to <1.22 m) were estimated for the maximum
height sections with the 3D model for the 50 k, long-duration earthquake and base (1-year)
material properties. Further analysis of the dam crest cracking potential with the 2D model
estimated maximum potential displacements of 2 to 4 feet in the downstream direction for
the most likely crack configuration. For a worst-case (very low probability) continuous
crack sloping in the upstream direction, model simulations indicate a maximum upstream
displacement potential for a small wedge of RCC material of 2 to 6 feet for the 50k, long-
duration earthquake. The likelihood of a toppling or overtopping event resulting from the
cracking and sliding of the dam near the crest is considered remote.
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