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The idea of a sustainable society comprises a consumer society that considers the
welfare of the planet for future generations. A sustainable society would include a clean
environment with clean air and water; human appreciation of the natural environment; no
dependence on fossil fuels; materials being fully recycled for the creation of products; and
an interconnection between the ecosystem and the digital network. A society that can max-
imize the utilization of resources and sustain a zero-waste bioeconomy will enable growth
in both per capita consumption and the population. Many societies have yet to develop a
vision of what a truly sustainable society could look like. Important aspects such as basic
material usage, new energy sources, production factory organization, developments in
communication, transportation, and machinery, and the transition from science to industry
could majorly contribute towards improving the technological advancements within a
society. An Industrial Revolution in these areas would lead to changes to the domestic
system of industrial production and increase overall wealth and production capacity. The
creation of a sustainable society is essential to create a future for future generations in which
the sustainable development goals (SDGs) will be achieved and the natural ecosystem of
the Earth will be preserved. This Special Issue, entitled “New Processes: Working towards
a Sustainable Society”, showcases the advancements in sustainable processes and technolo-
gies that can provide an environmentally friendly management system. The Special Issue
is available online at: https://www.mdpi.com/si/processes/sustainable_society.

1. Nanotechnology in Materials and Bioprocessing

Nanomaterials have recently emerged as a class of modern materials that have unique
characteristics such as thermal, electrical, optical, and magnetic properties, which are
highly desirable in applications to advanced materials and bioprocessing. The integration
of nanomaterials into existing structures can significantly boost the capability of these
structures, which is a big advancement in science and technology. Rezaei et al. [1] employed
the incorporation of nano iron oxide into PCL nanofibers to create a composite scaffold with
enhanced performance. This study showed that incorporating magnetite nanoparticles
into PCL fibers greatly improves the cell attachment and promotes the cell growth rate,
which will provide better biological performance, especially in liver tissue engineering.
In the review by Taghizadeh et al. [2], the potential of iron-based nanostructures was
analyzed and reviewed comprehensively. The structural properties, methods of synthesis,
and various applications of iron-based nanostructures were discussed with regard to their
utilization in medicinal and technological development. Transforming iron compounds so
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that they have nano iron structures yields better and useful properties that mean they can
be employed in biomedical, industrial, environmental, agriculture, and engineering fields.

2. Sustainable Adsorption and Wastewater Treatment

Water resources are severely impacted by eutrophication and pollution caused by
human activities and industrial processing. These harmful compounds can be discharged
improperly into lakes, rivers, and oceans, where they have devastating effects on both
human and aquatic health. Three papers in this Special Issue present adsorption techniques
for use in wastewater treatment and in the slow release of nutrients. Alhogbi et al. [3]
presented a green removal process for dye molecules from wastewater using activated
carbon from waste. Palm tree fiber waste was used to synthesize activated carbon, which
was found to be highly efficient in the removal of Congo red anionic dye and Rhodamine
B cationic dye. The synthesized activated carbon also showed good reusability for up to
five cycles and could be easily removed from the wastewater. Gheju and Balcu [4] also
explored the use of an inexpensive walnut shell waste material as an adsorbent for the
removal of iron and chromium heavy metals in water treatment. Fresh walnut shell powder
was shown to be very promising in the removal of the heavy metals. The results indicated
that it was suitable for application in water treatment processes as a sustainable solution
can that reduce the amount of waste generated and assist as an efficient disposal method.
Zhang et al. [5] focused on the use of ion exchange resin to control the adsorption and
release of ammonia nitrogen in an attempt to produce a slow-release insecticide. Various
parameters were altered so the response of the ion exchange resin could be observed, and
it was found that the resin had a good adsorption effect on the ammonia nitrogen. This
study provided insights into alternative raw materials for use in slow-release insecticides
that can improve the utilization rate of biogas slurry and encourage the cleaner processing
of insecticides.

3. Process Management and Analysis for Sustainable Biomass Utilization

Many technologies have been used to determine the sustainability of biomass utiliza-
tion, either through economic, environmental, or social sustainability means. In different
technologies, assessment methods and multi-criteria decision-making methods have been
utilized to help researchers prioritize sustainable biomass utilization. Moy et al. [6] studied
the life cycle assessment of bioplastic and paper straws in Malaysia. This study was carried
out with the aim to environmentally assess the usage of plastic straws within the region,
with emphasis on the global warming potential, acidification potential, and eutrophica-
tion potential. The outcome of the study indicated that bioplastic straws were favored
as a material with less environmental impact than paper straws, which indicates that the
materials used to make straws should be changed in Malaysia. Abad-Segura et al. [7] also
introduced industrial process management for a sustainable society. This study analyzed
many bibliographies regarding industrial process management and its sustainable effects
on society; the work can serve as a platform for researchers to understand the growing
trends in achieving sustainable societies and goals. Huy and Phuc [8] also discussed a
structural model regarding the impact of corporate social responsibility (CSR) activities
and how they encourage better organizational performance. Based on the data gathered
from respondents in a public sector organization in South Vietnam, it was found that the
integration of CSR activities into public sector management does impact the CSR disclosure
and organizational performance, and implications for management were also outlined.

4. Optimization and Modeling for Enhanced Performance

Industrial processes in various fields and applications are complex, and to enhance
them to enable better outputs, large amounts of resources and time are needed. Modeling
and optimization tools have been used to evaluate the complexity of systems, develop
strategies to optimize systems, select appropriate mathematical models that can represent
systems, and to progress towards the commercialization of the process based on inputs from
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modeling. Usman et al. [9] demonstrated the use of a response surface methodology (RSM)
optimization technique to evaluate the performance, exhaust emissions, and acoustics of
a compression ignition engine when applied with hydroxyl-gas-enriched diesel. Several
parameters were altered to determine the level of their influence on the engine. The RSM
model was able to predict the suitable range of conditions based on the studied factors
(brake thermal efficiency, brake specific fuel consumption, hydrocarbon content, carbon
monoxide content, noise, and smoke). Hamzah et al. [10] also highlighted the use of
varying alcohol concentrations on the precipitation of lignin from a bamboo-like stem crop.
Different concentrations of ethanol was used to observe the purity of precipitated lignin
from Miscanthus x giganteus. The study showed that the overall size of lignin aggregates
decreased with lower ethanol concentrations. The study provided findings regarding the
ethanol concentration range suitable for obtaining better-quality lignin aggregates.

This Special Issue covers a broad range of topics that all aim to contribute to the
movement towards a sustainable society. For this to be achieved, the highest standard
of wellbeing must be provided for the environment, humans, and the economy, through
actions that are energetically, resource, environmentally, and socially sustainable.

We thank the Editor-in-Chief, Giancarlo Cravotto, and all of the contributors for their
enthusiastic support of the Special Issue, as well as the editorial staff of Processes for their
effort and assistance.
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Abstract: Iron oxide nanoparticles were employed to fabricate a soft tissue scaffold with enhanced
physicochemical and biological characteristics. Growth promotion effect of L-lysine coated magnetite
(Lys@Fe3O4) nanoparticles on the liver cell lines was proved previously. So, in the current experiment
these nanoparticles were employed to fabricate a soft tissue scaffold with growth promoting effect on
the liver cells. Lys@Fe3O4 nanoparticles were synthesized via co-precipitation reaction. Resulted
particles were ~7 nm in diameter and various concentrations (3, 5, and 10 wt%) of these nanoparticles
were used to fabricate nanocomposite PCL fibers. Electrospinning technique was employed and
physicochemical characteristics of the resulted nanofibers were evaluated. Electron micrographs
and EDX-mapping analysis showed that nanoparticles were well dispersed in the PCL fibers and
no bead structure were formed. As expected, incorporation of Lys@Fe3O4 to the PCL nanofibers
resulted in a reduction in hydrophobicity of the scaffold. Nanocomposite scaffolds were shown
increased tensile strength with increasing concentration of employed nanoparticles. In contrast to
PCL scaffold, nearly 150% increase in the cell viability was observed after 3-days exposure to the
nanocomposite scaffolds. This study indicates that incorporation of magnetite nanoparticles in the
PCL fibers make them more prone to cell attachment. However, incorporated nanoparticles can
provide the attached cells with valuable iron element and consequently promote the cells growth
rate. Based on the results, magnetite enriched PCL nanofibers could be introduced as a scaffold to
enhance the biological performance for liver tissue engineering purposes.

Keywords: electrospinning; iron-enriched scaffold; magnetite nanoparticles; nanofiber; PCL scaffold;
liver tissue engineering

1. Introduction

In recent years, tissue engineering (TE) has been recognized as a new approach in the
biomedical sciences that focuses on repair, regeneration, and replacement of tissues [1].
TE consists of three fundamental portions including scaffolds, growth factors, and cells.
By mimicking the extracellular matrix (ECM), scaffolds play the most important role in
the TE techniques. Scaffolds with the help of growth factors provide a suitable site for
cell attachment, growth, proliferation, and differentiation [2–7]. TE technologies have
to overcome many limitations around the used scaffolds such as ineffective cell growth,
inadequate production of effective growth factors, and inability to control cellular functions.
Some scaffolds also suffer from poor biological, mechanical, and electrochemical properties.
In addition, further studies and developments are required to achieve scaffolds with
appropriate physiological structure [5].
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Electrospinning is a well-known and simple technique for the construction of three-
dimensional biomimetic nano-scaffolds with hierarchical fibrous architecture [3,8–10].
Due to the structural similarity of electrospun fibrous to the ECM, electrospinning has
become one of the most common techniques for the fabrication of TE scaffolds [11]. This
technique provides scaffolds with a large surface area, good stability, high porosity, and
pore interconnections [8–10,12].

Up to now, many natural and synthetic polymers have been used in electrospin-
ning [7,13–15]. Natural polymers (e.g., alginate, gelatin, and collagen) have not been
widely used alone due to weak mechanical strength and inappropriate degradation rate.
Nonetheless, these compounds have been frequently used in composite scaffolds. Synthetic
polymers with better mechanical properties than the natural ones are a good substitute to
increase the biodegradability and biomechanical properties of scaffolds. Poly-lactic acid
(PLA), poly (glycolic acid) (PGA), poly (lactic-co-glycolic acid) (PLGA), polyurethane (PU),
and poly(ε-caprolactone) (PCL) are the most prevalent synthetic polymers used in elec-
trospinning techniques [7]. PCL, as FDA approved polymer, has received much attention
in this regard due to its tunable biodegradability and biocompatibility [2,7,8,12,16,17]. As
with most other synthetic polymers, low hydrophilicity is one of the major disadvantages
of PCL polymer and reduces the cell affinity to the resulting scaffolds [7,11]. The addition
of hydrophilic compounds such as gelatin, collagen, and polyethylene glycol (PEG) is a
common approach to increase hydrophilicity of PCL scaffolds [18–21]. In addition, metallic
and non-metallic nanoparticles such as silver, chitosan, titanium oxide, silica, and mag-
netite nanoparticles were also incorporated in PCL scaffolds to improve physicochemical
properties [6,22–26]. Magnetite nanoparticles are one of the well-studied nanoparticles
to improve physicochemical and biological properties of PCL scaffolds. In all previous
investigations however, magnetite nanoparticles loaded PCL scaffolds were employed
just for efficient mesenchymal stem cell proliferation, bone regeneration, and drug de-
livery [6,8,12,22,27]. Meanwhile, in our previous investigation, we found that magnetite
nanoparticles promote the growth of Hep-G2 cell line as well as human hepatic cell line.
These nanoparticles can act as nano iron sources to increase hepatic cell growth and prolif-
eration [28]. So, particularly in the case of liver scaffolds, in addition to beneficial effects
on the physicochemical properties, it seems fortification with magnetite nanoparticles can
provide a scaffold with growth-promoting effects. This hypothesis was investigated in the
current study by developing composite nanofibers that are incorporated with magnetite
nanoparticles (Scheme 1). Besides physicochemical evaluations, in vitro investigations
were also performed on the Hep-G2 cells as a liver cell line.
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As shown in Figure 1, the XRD pattern of the synthesized lysine coated magnetite
(Lys@Fe3O4) nanoparticles represented characteristic peaks of magnetite at 30, 35.5, 43, 57,
and 63 degrees in 2-Theta scale. The phase was identified by using PANalytical X’Pert
HighScore Plus software version 3.0e (3.0.5) (PANalytical B.V., Almelo, The Netherlands)
and COD databases bank. Analysis of the XRD graph was performed by using the Execute
Search and Match tool under the Analysis menu and Magnetite 96-900-5839 reference
code was the first phase candidate by 34 scores and all peaks were matched. Particle
size analysis was done using the TEM micrographs and revealed that the Lys@Fe3O4
nanoparticles are in the range of 4–10 nm with an average size of 7 nm (Figure 2). FTIR
evaluations were done in the region of 3800 to 400 cm−1 to investigate the chemical features
of the nanoparticles. As shown in Figure 3, the strong band at 631 cm−1 is a characteristic
peak for Fe-O bonds in the magnetic nanoparticles. Peaks of O-H groups appeared at
1621 cm−1 (deforming) and 3390 cm−1 (stretching). Peaks from C=O and N–H functional
groups in the Lys coating were expected to appear at about 1630 cm−1 and 3000 cm−1,
respectively. However, these peaks were overlapped with the peaks from O-H deforming
and stretching vibrations [29,30]. Previous studies showed that Lys and also other amino
acids interact with the magnetite nanoparticles via their carbocycle groups and the side
changes are exposed out of the nanoparticles [29–34].
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2.2. Characterization of Scaffolds

Appearance of the PCL nanocomposite fibrous mats with various concentrations (0,
3, 5, and 10%) of Lys@Fe3O4 nanoparticles is illustrated in Figure 4. An increase in the
nanoparticles concentration resulted in the darker brown membrane of fibers. SEM mi-
crographs of the prepared fibers are provided in Figure 5 and illustrated a typical smooth
and bead-free morphology. The diameters of the fibers were measured as 0.04–1.39 µm,
0.19–1.78 µm, 0.50–1.54 µm, and 0.65–1.59 µm, for PCL, 3MNP, 5MNP, and 10MNP, re-
spectively. The average fiber diameters (AFD) were calculated to be 0.719 µm, 0.985 µm,
1.021 µm, and 1.122 µm, for PCL, 3MNP, 5MNP, and 10MNP, respectively. There are con-
troversial data about the impacts of incorporated nanoparticles on the nanofiber diameter.
Some investigations indicated that incorporation of nanoparticles (up to 15%) in the PCL
nanofibers resulted in a decrease in the fibers’ diameter but an addition of 20% nanoparti-
cles resulted in the fibers with increased diameter [6,8]. Effects of additives on the diameter
of electrospun fibers can be related to the alterations in viscosity of the PCL solution. It is
confirmed that increasing the viscosity of the electrospinning solution would subsequently
result in larger nanofibers [35–37].

The elemental analysis of specimens was performed by SEM-EDX as shown in Figure 6.
EDX mapping analysis collected evidence to confirm the existence and dispersion of mag-
netic nanoparticles in the fiber specimens. Three elements (iron, oxygen, and carbon) were
evaluated in specimens and results are provided in Table 1. As expected, by increment of
magnetic nanoparticles concentrations, an increase in the fibrous iron content was recorded.

ATR-FTIR spectra of the fiber specimens are shown in Figure 7. The peaks that are
due to functional groups in the PCL polymer appeared in 2943, 2865, 1722, 1240, and
1165 cm−1. The peaks at 2943 and 2865 cm−1 were due to asymmetric and symmetric
stretching vibrations of C-H bonds. The peak that is due to carbonyl groups stretching
vibration appeared at 1722 cm−1. The peaks at 1240 cm−1 and 1165 cm−1 could be defined
for C-C and C-O bonds, respectively. Moreover, the characteristic peak of iron oxide
nanoparticles that is due to Fe-O stretching vibration was recorded at 583 cm−1 in the fibers
that contain magnetite nanoparticles. Recorded data from the ATR-FTIR analysis were
very similar to the previously reported spectra [8,38,39].
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Figure 6. EDX-mapping analysis of nanoparticles incorporated scaffolds, (a): carbon, (b): oxygen,
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Table 1. Elemental content of the magnetite enriched PCL scaffolds resulted from EDX analysis.

Composite

Elements 3MNP 5MNP 10MNP

A% W% A% W% A% W%

Carbon 73.19 66.93 72.34 65.53 72.88 65.77

Oxygen 26.66 32.47 27.29 32.93 26.58 31.95

Iron 0.15 0.6 0.36 1.53 0.54 2.27
Abbreviations: A%: Atomic percent; W%: Weight percent.
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The wettability of fibrous scaffolds was explored by contact angle testing (Figure 8).
Incorporation of nanoparticles in the PCL polymer resulted in a concentration-dependent
increase in the wettability of nanofibers. The contact angle of PCL fibers was measured to
be 138.93◦, while the angles for nanoparticles incorporated fibers were 132.21◦, 127.64◦, and
121.5◦ for 3MNP, 5MNP, and 10MNP, respectively. Previous investigations also showed
magnetite nanoparticles have a concentration-dependent impact on the reduction of hy-
drophobicity of PCL nanofibers [6,8].

Processes 2021, 9, x FOR PEER REVIEW 8 of 18 
 

 

 
Figure 7. ATR-FTIR spectra of the fibrous scaffolds, (a): PCL, (b): 3MNP, (c): 5MNP, and (d): 10MNP. 

The wettability of fibrous scaffolds was explored by contact angle testing (Figure 8). 
Incorporation of nanoparticles in the PCL polymer resulted in a concentration-dependent 
increase in the wettability of nanofibers. The contact angle of PCL fibers was measured to 
be 138.93°, while the angles for nanoparticles incorporated fibers were 132.21°, 127.64°, 
and 121.5° for 3MNP, 5MNP, and 10MNP, respectively. Previous investigations also 
showed magnetite nanoparticles have a concentration-dependent impact on the reduction 
of hydrophobicity of PCL nanofibers [6,8]. 

 
Figure 8. Contact angles of the fibrous scaffolds, (a): PCL, (b): 3MNP, (c): 5MNP, and (d): 10MNP, data were presented as 
mean± standard deviation (SD), n = 5. 

Results from tensile testing were presented as an overlaid diagram and presented in 
Figure 9. Other mechanical properties such as elastic module, elongation in peak point 

Figure 8. Contact angles of the fibrous scaffolds, (a): PCL, (b): 3MNP, (c): 5MNP, and (d): 10MNP, data were presented as
mean± standard deviation (SD), n = 5.

Results from tensile testing were presented as an overlaid diagram and presented in
Figure 9. Other mechanical properties such as elastic module, elongation in peak point and
elongation in break point are provided in Table 2. These data indicated that incorporation
of magnetite nanoparticles in the PCL nanofibers resulted in a significant increase in
the scaffold tensile strength. Increase in the scaffold strength was directly dependent
on the concentration of employed nanoparticles. In the current experiment, magnetite
nanoparticles were added to the PCL scaffolds up to 10 wt%. Based on the results, it is
obvious that high concentrations of incorporated nanoparticles can disturb the integrity of
polymer fibers and hence reduce the tensile strength of the resulted scaffold [6]. Uniform
dispersion of nanoparticles is the other critical point. Presence of beads in the fibers could
possibly be due to nanoparticles agglomeration during the electrospinning process which
will weaken the mechanical strength [40].

Table 2. Mechanical properties of fibrous scaffolds.

Samples F (MPa) Emod (MPa) Elongationpp (%) Elongationbp (%)

PCL 1.98 ± 0.32 2.95 ± 0.66 49.41 ± 14 57.64 ± 16

3MNP 2.21 ± 0.37 2.38 ± 0.75 72.96 ± 17 117.63 ± 27

5MNP 3.38 ± 0.53 4.42 ± 0.9 59.85 ± 12 93.87 ± 23

10MNP 4.9 ± 0.62 6.41 ± 1.2 62.71 ± 13 81.65 ± 20
Abbreviations: F: tensile strength; E: elastic module; pp: peak point; bp: break point, data were presented as
mean ± standard deviation (SD), n = 3.
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mer, two sharp diffraction peaks were recorded from the PCL and nanoparticles incorpo-
rated PCL scaffolds. In the case of nanocomposite scaffold, the diffraction peaks from 
magnetite nanoparticles were considerably eliminated and just the sharpest peak of mag-
netite crystals at 35.5° of 2-theta value was identifiable. These results indicated magnetite 
nanoparticles were completely embedded in the PCL fibers and there are no nanoparticles 
on the surface of fibers. Previous investigations about crystalline nanoparticles have 
shown similar observations. Coverage of crystalline nanoparticles with another crystalline 
material resulted in the elimination of diffraction peaks from the core structure [41]. Ad-
ditionally, it is worth mentioning addition of magnetite nanoparticles to the PCL poly-
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Evaluations about the crystal structure of prepared nanofibers were performed by
XRD analysis as shown in Figure 10. Due to the semi-crystalline nature of the PCL polymer,
two sharp diffraction peaks were recorded from the PCL and nanoparticles incorporated
PCL scaffolds. In the case of nanocomposite scaffold, the diffraction peaks from magnetite
nanoparticles were considerably eliminated and just the sharpest peak of magnetite crystals
at 35.5◦ of 2-theta value was identifiable. These results indicated magnetite nanoparticles
were completely embedded in the PCL fibers and there are no nanoparticles on the surface
of fibers. Previous investigations about crystalline nanoparticles have shown similar
observations. Coverage of crystalline nanoparticles with another crystalline material
resulted in the elimination of diffraction peaks from the core structure [41]. Additionally, it
is worth mentioning addition of magnetite nanoparticles to the PCL polymers reduced the
sharpness of the PCL characteristic peaks. This finding indicated presence of nanoparticles
in the fibers to some extent can disturb the crystal structure of the PCL polymer [42].
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Transmission electron micrographs of the prepared nanofibers were depicted in
Figure 11. No aggregation of magnetite nanoparticles was seen within the nanofibers;
therefore, it could be assumed the mixture of magnetic nanoparticles and PCL polymer
that was used in electrospinning process was a homogeneous suspension. While magnetic
nanoparticles are not colloidally stable in the organic solvents, presence of PCL polymer can
be considered as a key point to increase the stability of nanoparticles in the employed sol-
vent system (chloroform/methanol). Similar observation was also reported in the previous
study on the fabrication of magnetic nanofiber scaffolds [6].
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Figure 11. TEM images of PCL (a) and 5MNP (b) nanofibers.

TGA analysis was performed to evaluate thermal behavior of PCL and nanoparticles
incorporated PCL nanofibers. As illustrated in Figure 12 major decomposition of PCL
nanofibers was started at 340 ◦C and only 5.7% of the fibers remained at 440 ◦C. Reduction
in the weight continued at a very low rate up to 600 ◦C and all the fibers were decomposed.
Decomposition of nanocomposite fibers was started at 320 ◦C and just 4.13% of the fiber
remained at ~360 ◦C. By increasing the temperature more than 360◦, decomposition con-
tinued at a low rate and 1% remnant was recorded at 600 ◦C. This remnant is claimed to
be the remnant from magnetite nanoparticles. However, similar to previous reports the
recorded value is not well-matched with the employed concentration of nanoparticles [6].
The effect of magnetite nanoparticles on the nanofibers’ thermal stability was not found to
be concentration-dependent. In fact, nanoparticles incorporated fibers were reported to be
more thermally sensitive than PCL nanofibers and no obvious difference was reported for
nanocomposites with various concentrations of nanoparticles [6].

2.3. In Vitro Studies

Metabolic activity and viability of Hep-G2 cells on the prepared nanofiber scaffolds
were investigated over 1, 3, and 5 days by MTT assay. Metabolic activity on the PCL scaffold
was considered as a control (100% viability) and measured activity on the nanoparticles
incorporated scaffolds was reported as viability percent in contrast to control (Figure 13).
After one day of exposure of Hep-G2 cells to nanofiber scaffolds no significant difference
was seen among PCL and nanoparticles enriched PCL scaffolds. However, after three
and five days of exposure to the scaffolds, more viability was recorded in the well that
contained nanoparticles enriched nanofibers.
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SEM was used to visualize the attachment of Hep-G2 cells on the prepared nano-
fibers. The investigation was performed after one and three-days exposure of cells to the 
nanofibers and resulting micrographs were provided in Figure 14. As expected, on the 
first day of exposure, cells retained their circular shape and did not tend to adhere to the 
scaffold. However, on the third day, the tendency of the cells to adhere on both PCL and 
nanoparticles enriched PCL scaffolds was increased and elongated flat cells were obvi-
ously identified. Due to the more hydrophilic nature of the nanoparticles enriched scaf-
folds, it can be concluded these scaffolds are more prone to cell colonization than PCL 
scaffolds. Additionally, it was observed the rate of elongation, expansion and even cell 
infiltration in the enriched scaffold was higher than the PCL scaffold. 

Figure 13. Viability of Hep-G2 cells over one, three, and five-days exposure to the magnetite enriched
scaffolds, measured by MTT assay, data are represented as mean ± SD (n = 3), asterisks indicate
significantly different as compared with the control group (* p < 0.05 and ** p < 0.01).

SEM was used to visualize the attachment of Hep-G2 cells on the prepared nanofibers.
The investigation was performed after one and three-days exposure of cells to the nanofibers
and resulting micrographs were provided in Figure 14. As expected, on the first day of
exposure, cells retained their circular shape and did not tend to adhere to the scaffold. How-
ever, on the third day, the tendency of the cells to adhere on both PCL and nanoparticles
enriched PCL scaffolds was increased and elongated flat cells were obviously identified.
Due to the more hydrophilic nature of the nanoparticles enriched scaffolds, it can be con-
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cluded these scaffolds are more prone to cell colonization than PCL scaffolds. Additionally,
it was observed the rate of elongation, expansion and even cell infiltration in the enriched
scaffold was higher than the PCL scaffold.
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3. Discussion

Previous investigations indicated that Lys@Fe3O4 nanoparticles can promote cell
growth and proliferation in the liver-originated cell lines [28]. Magnetite nanoparticles
were also employed for the fortification of hard tissue scaffolds to achieve improved
physical and chemical characteristics. In the current experiment, magnetite nanoparticles
were used to fabricate a soft tissue scaffold with improved physicochemical characteristics
and also enhanced biological functionalities. Magnetite nanoparticles embedded in the PCL
nanofibers can act as iron nano-sources and provide the hepatic cells with the adequate
iron for enhanced growth and metabolism. It is interesting that an increase in the biologic
performance of the scaffolds can be up to 150%. The scaffolds that were enriched with 5
or 10 wt% of nanoparticles provided significantly higher growth rate after three to five
days of culture. In addition to iron supplementation, magnetite nanoparticles enhanced the
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hydrophilicity of PCL scaffolds and made the scaffolds more permeable to water dissolved
nutrients. Additionally, more hydrophilic scaffold provides a better attachment site for the
cells and results in an enhanced viability percent. These results are consistent with previous
studies for application of composite PCL scaffolds for bone and dental tissue engineering
(6, 12, 22, 34), but this investigation is the first effort for the fabrication of iron-enriched
PCL nanofibers as a fortified soft tissue scaffold with enhanced biologic functionalities.

In addition to biological properties, incorporation of magnetite nanoparticles improves
mechanical strength of the scaffolds. In this experiment, magnetite nanoparticles were
added to the scaffold up to 10 wt% and it was seen that magnetite nanoparticles enhance
tensile strength of the nanofibers. It has been shown higher concentrations (20%) of
nanoparticles can disturb the integrity of the fibers and reduce the tensile strength [6].
These data indicated there is an optimal concentration for the incorporated magnetite
nanoparticles to maintain polymer accretion and it was revealed that addition of magnetite
nanoparticles to the PCL nanofibers resulted in a reduction in the nanofibers’ thermal
stability. It seems magnetite nanoparticles acted as a nano-catalyst and enhanced the rate of
polymer decomposition. On the other hand, reduction in the crystallinity can be the other
reason to reduce thermal stability of nanocomposite fibers [43]. Based on the XRD data,
incorporation of magnetite nanoparticles in the PCL nanofibers disturbed crystallinity of
the PCL polymer and less sharp diffraction peaks were recorded. These results indicated
that nanoparticles can reduce the crystallinity of PCL nanofibers and therefore reduce
fibers’ thermal resistance.

In addition to nanomaterials, there are several reports for the fortification of PCL
nanofibers with phytochemicals, biomolecules, and even viruses. For instance, in an exper-
iment curcumin-loaded PCL fibers were fabricated by melt and solution electrospinning
methods. It was shown that the approach for the fibers’ preparation has an immense impact
on the pattern for the curcumin release. The fibers that were fabricated by melt electrospun
had a low rate for curcumin release. Meanwhile, solution electrospinning provided fibers
with a burst release profile. The difference in the drug release pattern was discussed to be
due to the difference in the crystalline feature of the fibers [44]. Prolong drug, doxorubicin,
release pattern was also reported by the PCL fibers with high crystallinity. The structure
was designed to be a star polymer made up of a poly (amido-amine) (PAMAM) core and
PCL branches. The structure exhibited effective controlled toxicity over A43, HeLa, and
MCF-7 cells lines [45]. Drug-loaded PCL fibers were also employed as an efficient delivery
system for vascular implant application. In this regard, PCL fibers were loaded with cilosta-
zol to achieve a system for drug dissolution and diffusion in combination with polymer
relaxation [46]. PCL nanofibers were also employed for the delivery of biomolecules such
as microRNA. The delivery system was developed as a nanofiber-mediated microRNA
delivery system to control cells differentiation through a combination of fiber topography
and gene silencing [47]. Fortification of PCL nanofibers was not just performed by the
chemicals or biomolecules and there are some experiments that used viral particles in this
way. Localized transduction was reported to be performed by using a virus-encapsulated
electrospun PCL fibrous scaffold. Recombinant adeno virus that encodes green fluorescent
protein (GFP) was embedded in PCL fibers via co-axial electrospinning. Subsequently, the
viral particles were released through a porogen-mediated process [48]. Bacteriophages
were another viral particle that were employed for the fortification of PCL scaffolds. Bac-
teriophage capsids were covalently immobilized on the PCL nanofibers to maximize the
phages’ tail exposure and increase their antibacterial activity. Authors introduced the
system as a promising substitute for antibiotics in applications toward skin infections [49].
These data from previous reports and the current experiment indicated PCL nanofibers can
be employed as biocompatible and flexible fibers for selective fortification and fabrication
of novel high throughput scaffolds.
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4. Materials and Methods
4.1. Materials

PCL (MW = 80,000 Da) and 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium
bromide (MMT) were obtained from Sigma-Aldrich (Darmstadt, Germany). Ferric chlo-
ride hexahydrate (FeCl3·6H2O), Ferrous sulfate heptahydrate (FeSO4·7H2O), ammonium
hydroxide (NH4OH) and Lys were purchased from Merck (Darmstadt, Germany). Chloro-
form (CHCl3) and methanol (CH3OH) were provided by Dr. Mojallali Chemical Complex
(Tehran, Iran). Hep-G2 cell line was kindly provided by the Pharmaceutical Science Re-
search Center, Shiraz University of Medical Sciences (Shiraz, Iran). Cell culture medium
(RPMI-1640), trypsin, and fetal bovine serum (FBS) were also purchased from Gibco (Gibco
Laboratories, Grand Island, NY, USA).

4.2. Synthesis of Lys Coated Magnetite Nanoparticles

Magnetite (Fe3O4) nanoparticles were synthesized by co-precipitation reaction. Lys
coating was also performed through the synthesis reaction via one-put reaction approach [32].
In brief, ferrous sulfate heptahydrate (FeSO4·7H2O, 0.6 g) and ferric chloride hexahydrate
(FeCl3·6H2O, 1.7 g) were dissolved in 50 mL distilled water. The mixture was stirred under
N2 atmosphere at 70 ◦C for 30 min and then Lys solution (1.6 g in 6 mL distilled water) was
added. After another 30 min, 5 mL NH4OH (32%) was suddenly injected into the reaction
mixture and stirring continued for 1.5 h. Resulted suspension of Lys coated magnetite
(Lys@Fe3O4) nanoparticles were harvested and washed with distilled water. The dark
black precipitate was dried in an oven at 55 ◦C.

4.3. Characterization of Lys Coated Magnetite Nanoparticles

The crystallinity of Lys@Fe3O4 nanoparticles was determined by X-ray diffraction
(XRD, Siemens D5000, Siemens, Aubrey, TX, USA). The samples were scanned with 45 kV
and 40 mA current strength in a 2θ range of 10–60◦ with a step size of 0.02◦, and the rate of
2◦ min−1. Particle size analysis and morphology investigations were done by transmission
electron microscopy (TEM; Philips, Amsterdam, Netherlands, CM 10, HT 100 Kv). Samples
were prepared by drying a drop of nanoparticle suspension (~100 µg/mL) on a carbon-
coated copper grid. Resulting micrographs were subjected to image analysis by using an
open platform for scientific image analysis (ImageJ 1.47v software). Statistical analysis
was also performed by SPSS Software v.20 (IBM Analytics, Chicago, IL, USA). Fourier
transformed infrared spectroscopy (FT-IR; Bruker, Germany, Vertex 70) was performed
with KBr pellets to determine the chemical status of the resulted nanoparticles.

4.4. Preparation of PCL Nanofibers

Nanoparticles doped PCL nanofibers were fabricated by dispersion of Lys@Fe3O4
nanoparticles in the PCL solution prior to the electrospinning process. Briefly, Lys@Fe3O4
nanoparticles were dispersed in a co-solvent of chloroform/methanol (3:1) and stirred for
2 h. Then, PCL pellets (9% w/w) were added to the suspension and stirring continued for
24 h. The concentrations of nanoparticles were calculated to be 3, 5 and 10 wt% of PCL.
Resulted fibers were labeled as 3MNP, 5MNP, and 10MNP, respectively. Consequently,
the mixture was loaded into a 5 mL syringe with 20-gauge needle and connected to a
high-voltage (11.5 kV) power supply of an electrospinning device (Nanoazma, Tehran,
Iran). The distance of tip-to-collector was set to be 12 cm, the flow rate was 0.8 mL/h, and
the drum speed was 250 rpm. The process was performed at ambient atmosphere.

4.5. Characterization of Fibers

Scanning electron microscopy (SEM, TESCAN-Vega 3, Tescan, Brno, Czech Republic)
at an accelerating voltage of 20 kV was used to analyze 3D morphology of the PCL fibers.
The image analysis was done by ImageJ software. Energy-dispersive X-ray spectroscopy
(EDX) mapping evaluations were performed to visualize the pattern of elemental dispersion
in nanofibers. Additionally, TEM (ZEISS EM10C-100 KV, Oberkochen, Germany) was used
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to visualize spread of nanoparticles in the fibers. Attenuated total reflection (ATR)-FTIR
spectroscopy (Bruker, Tensor II, Germany) was used to determine the nanofibers’ chemical
profile. Water affinity was measured by water contact angle using the CA-500A analyzer
(Sharifsolar, Iran). Tensile mechanical properties were measured by a universal testing
instrument (SANTAM, STM-20; Navard, Iran). Small pieces (30 × 10 mm) of fibers with a
thickness of 150–300 µm were prepared and used for the mechanical test. Crystallinity of the
fibers was characterized by XRD (Bruker, D8-ADVANCE) and samples were scanned in 2θ
range of 10–60◦ at the rate of 2◦ min−1. Studies about thermal behavior and compositional
fraction of the fibers were accomplished by thermogravimetric analysis (TGA; Mettler
Toledo, Switzerland).

4.6. Cells Cultured and In Vitro Tests

The Hep-G2 cells were cultured under the standard incubation conditions (5% CO2,
37 ◦C) using RPMI-1640 supplemented with 10% FBS and 1% pen/strep. Before any
in vitro tests, scaffold specimens were sterilized by ultraviolet irradiation (30 min for each
side of the film). Afterward, the specimens were attached to the bottom of the wells (48-
well-plate) using agarose solution (0.5% w/w). Hep-G2 cells were incorporated in scaffold
specimens and plates were incubated for 24 and 72 h. Attached cells were fixed on the
scaffolds by using 2.5% glutaraldehyde at room temperature. Specimens were then rinsed
by PBS and dehydrated by 25, 50, 70, 95, and 100% ethanol (three times and 5 min for each
concentration). Afterwards, the specimens were evaluated via SEM.

MTT assay was used to evaluate cell viability and proliferation. After 24, 48, and
96 h incubation, attached wells were washed by PBS and incubated in MTT solution for
4 h. Resulted blue formazan crystals were dissolved in 100 µL DMSO and transferred into
virgin wells for absorption measurement at 570 nm using a plate reader (Epoch, BioTek,
Winooski, VT, USA).

5. Conclusions

Lys@Fe3O4 nanoparticles were successfully employed as an additive to fabricate
iron-enriched soft tissue PCL scaffolds. Incorporation of magnetite nanoparticles in the
electrospun PCL fibers has an immense impact on the physical and chemical characteristics
of the scaffolds. The particles made PCL scaffolds less hydrophobic and also increased the
tensile strength of the fibers. On the other hand, composite nanofibers were more thermal
sensitive than PCL nanofibers. TEM and EDX mapping analysis showed that nanoparticles
were well dispersed in the nano fibers. Magnetite nanoparticles that were embedded in the
nanofibers can act as valuable sources of iron to promote cell growth and proliferation. It is
interesting that in contrast to the PCL scaffold, enriched scaffolds can improve cell viability
up to ~150%. However, no considerable difference was observed in the cell attachment
process. These data indicated that iron-enriched scaffolds can be considered as the scaffolds
with increased biological performance for liver tissue engineering.
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Abstract: The insecticidal ingredient in a biogas solution being fully utilized by cation exchange resin
to produce slow-release insecticide is of great social value. In this work, the feasibility of ammonia
nitrogen in a biogas slurry loaded on resin as a slow-release insecticide was evaluated by studying the
effect of adsorption and the slow release of ammonia nitrogen by resin. The effects of the ammonia
nitrogen concentration, resin dosage, adsorption time and pH value on the ammonia nitrogen
adsorption by the resin were studied. The results showed that the ion exchange resin had a good
adsorption effect on the ammonia nitrogen. With the increase of the resin dosage, time and ammonia
nitrogen concentration, the adsorption capacity increased at first and then stabilized. The ammonia
nitrogen adsorption capacity reached its maximum value (1.13 mg) when the pH value was 7. The
adsorption process can be fitted well by the Langmuir isothermal adsorption equation and quasi-
second-order kinetic model. Additionally, the release rate of the ammonia nitrogen increased with
the increasing sodium chloride concentration. The adsorption capacity of ammonia nitrogen by the
D113 (resin type) resin decreased by 15.8% compared with the ammonium chloride solution. The
report shows that the ion exchange resin has a good adsorption effect on ammonia nitrogen, which
is of guiding significance for expanding the raw materials for slow-release insecticides, improving
the utilization rate of biogas slurry and cleaner production of slow-release insecticides from biogas
slurry. Additionally, all variables showed statistical differences (p < 0.05).

Keywords: biogas slurry; ion exchange resin; ammonia nitrogen; adsorption; slow release

1. Introduction

Agriculture is a basic industry for national development, and it concerns the funda-
mental interests of the people [1]. Since the twentieth century, pesticides have been used
in pursuit of crop yield, which has made great contributions to agricultural production,
yet many of its shortcomings have been found in the process of use, such as causing the
serious destruction of the ecological environment [2], the deterioration of soil properties [3],
the pollution of water resources, the increase in pest resistance [4] and the damage to the
health of people [5]. In the meantime, 90% of pesticides are lost due to osmotic action [6],
resulting in a significant reduction of the pesticide utilization rate. It is extremely important
to solve these problems in the development of agriculture, and the search for economical,
environmentally friendly and highly effective insecticides has attracted more attention [7].
Recently, the insecticidal effect of biogas slurry has been studied.
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Biogas slurry is the residue tail liquid after anaerobic fermentation of biomass, which
has the function of promoting the growth and reproduction of animals and plants [8]
and killing insects because it is rich in a variety of nutrients and ammonia nitrogen [9].
Biogas slurry has a remarkable effect on the control of aphids and red spiders in fruits
and vegetables [10]. The full and rational utilization of biogas slurry can produce huge
economic benefits. Until now, many areas have begun to directly use clean and low-cost
biogas slurry to kill insects, which results in wasting some nutrients and is less efficient
than other synthetic pesticides [11]. The common practice is to mix biogas slurry with
other pesticides to further improve insecticidal efficiency [12]. This still does not solve
the problem of nutrient waste. Slow-release pesticides are currently the more popular
method [13] to improve the utilization efficiency of pesticides and reduce the pollution
to the environment via reducing pesticide dosages, pesticide spraying frequency and
prolonging the effective duration [14]. The combination of biogas slurry and slow-release
technology is an interesting research direction, and there have been no such reports yet.
To date, a variety of slow-release types have been developed, including microcapsule,
inclusion, homogeneous and adsorption [15]. Among these, adsorption is widely used
because of its low cost and easy operation.

A lot of slow-release carriers have been developed, such as nanoparticles [16], polymer
material [17], bentonite and zeolite. Cation exchange resin can effectively adsorb cations
from a solution and slowly release the adsorbed substances under certain conditions as
a common adsorbent [18]. Chen et al. found that the maximum exchange capacity of
lead (II) adsorbed by lignin-based cation exchange resin was 2.26 mmol/g [19], which
was comparable to a phenol cation exchange resin. Daisuke et al. found a new method to
remove Se(IV) using an Fe3+ ion exchange resin [20], and the Se was effectively removed
using a column packed with 12.8 g (10.4 cm3) of adsorbent. Leng et al. used a cation
exchange resin to remove iron from phosphoric acid and determined that the quasi-second-
order kinetic model perfectly described the adsorption process [21]. Goutham R. et al.
developed a polymer matrix film loaded with a combination of free diclofenac sodium
and an ion exchange resin complex to achieve an immediate and slow release [22]. Atyabi
et al. developed an effective sustained release system in which bicarbonate and other drugs
are loaded on ion exchange resins [23], and the cation exchange resin can also efficiently
adsorb ammonia nitrogen such that the efficiency is more than 90% [24]. To sum up, cation
exchange resin has great potential for adsorbing ammonia nitrogen from biogas slurry to
produce sustained release insecticides due to the high-efficiency adsorption of ammonia
nitrogen.

In this study, D113 (resin type) macroporous weak acid acrylic cation exchange resin
was selected, which is easier to regenerate than strongly acidic cation exchange resin and
has good ion exchange performance (the schematic diagram of adsorption and release is
shown in Figure 1). The adsorption capacity of the resin for ammonia nitrogen under dif-
ferent conditions was studied by the static adsorption method. The adsorption process and
type were determined by fitting, and the effects of adsorption of ammonia nitrogen in the
ammonium chloride solution and biogas slurry were compared. Slow-release studies were
carried out. These revealed the correlation between the resin dosage, ammonia nitrogen
concentration, adsorption time, adsorption temperature, pH value and ammonia nitrogen
adsorption capacity and the characteristics of a slow release. The adsorption process pa-
rameters of the D113 macroporous weak acid acrylic cation exchange resin were optimized,
which could provide scientific reference for the further research and development of tech-
nologies of efficient and environmentally friendly slow-release ecological insect repellent.
The experimental results provide technical support for the harmless treatment of biogas
slurry, and the use of pesticides will be reduced in the process of agricultural production,
which is beneficial to the clean production of green agriculture and the health of humans
and livestock.
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Figure 1. (a) Adsorption process. (b) Slow-release process.

2. Material and Methods
2.1. Experimental Materials

The D113 macroporous weak acid acrylic cation exchange resin (Shanxi Lanshen
Special Resin Co. Ltd., Xian, China) was selected for this study, and the molecular structure
diagram is shown in Figure 2. The resin was soaked in a 1.8 mol/L NaCl solution for 24 h
and washed with ammonia-free water. Then, the resin was soaked in a 0.5 mol/L HCl
solution for 10 h to remove inorganic impurities and repeatedly washed with ammonia-free
water to neutrality. After being soaked in a 1 mol/L NaOH solution for 10 h to remove
organic impurities, the resin was washed repeatedly with ammonia-free water to neutrality
and dried in a drying oven (Beijing Zhongxi Yuanda Technology Co., Ltd., Shenyang,
China) at 55 ◦C for use.
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Figure 2. Schematic diagram of the molecular structure of the D113 resin.

The biogas slurry was obtained from the anaerobic reactor using straw and pig manure
as raw materials, and the ammonia nitrogen concentration was 432.43 mg/L.

2.2. Standard Curve Drawing

The colorimetric tubes were filled with different volumes of an ammonia nitrogen
standard solution (0 mL, 0.5 mL, 1 mL, 2 mL, 4 mL, 6 mL, 8 mL, and 10 mL) and ammonia-
free water to 50 mL. a potassium sodium tartrate solution (Tianjin Yongda Chemical
Reagent Company Limited, Tianjin, China) (1 mL) and Nessler’s reagent (Merck KGaA,
Darmstadt, Germany) (1 mL) were added and then shaken well. The absorbance was
measured at 420 nm with a spectrophotometer after developing color for 15 min. The
standard curve regression equation was observed. As shown in Figure 3.
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2.3. Experimental Scheme
2.3.1. Resin Static Adsorption Test

In order to study the effects of the resin addition, ammonia nitrogen concentration,
time, temperature and pH value on the ammonia nitrogen adsorption, a certain quality
of ammonium chloride (Tianjin Kemiou Chemical Reagent Co., Ltd., Tianjin, China) was
weighed with an electronic balance according to the experimental requirements (100, 500,
1000, 1500, 2000, 2500, and 3000 mg/L) and placed in a 100-mL Erlenmeyer flask. Ammonia-
free water (50 mL) was added to fully dissolve it. The pH value of the solution was adjusted
as required by the experiment (4, 5, 6, 7, 8, 9, and 10), and the required resin (0.1, 0.2, 0.3,
0.4, 0.5, 0.6, and 0.7 g) was weighed into the Erlenmeyer flask. After being sealed with a
rubber stopper, the Erlenmeyer flask was shaken at 150 r/min in a constant temperature
shaker (Shanghai Changken Test Equipment Co., Ltd., Shanghai, China) with different
temperatures (20, 30, 40, 50, and 60 ◦C) and adsorption times (5, 10, 15, 20, 25, 30, 35, 40, 45,
50, 55, and 60 min).

2.3.2. Effect of Different NaCl Concentrations on the Slow Release of Ammonia Nitrogen

A sodium chloride solution (200 mg/L, 1000 mg/L, 2000 mg/L, 4000 mg/L, and
10,000 mg/L; 50 mL) was added to 100-mL Erlenmeyer flasks, and then 0.5 g of resin
containing ammonia nitrogen (10 mg / g) was put into the Erlenmeyer flasks. All reactors
remained still under room temperature. Samples were taken at 10 min, 30 min, 60 min,
120 min, 180 min, 240 min, 300 min, 360 min, 420 min, 480 min, 540 min, and 600 min,
respectively, and the absorbance was measured.

2.3.3. Adsorption of Ammonia Nitrogen from the Biogas Slurry by the Resin

The biogas slurry was centrifuged, and the concentration of ammonia nitrogen without
adsorption was measured. The supernatant (50 mL) was taken into the Erlenmeyer flask,
and another Erlenmeyer flask contained the ammonium chloride solution (50 mL) with the
same concentration of ammonia nitrogen as the biogas slurry. The adsorption experiments
were conducted at a resin addition amount of 0.5 g, adsorption temperature of 30 ◦C,
adsorption pH value of 7 and shaker speed of 150 r/min. Samples were taken at 5, 10, 15,
20, 25, 30, 35, 40, 45, and 50 min. The absorbance was measured. All experiments were
performed in triplicate, and the average value of the experimental data was used as the
result. The experimental procedures are shown in Figure 4.
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2.4. Determination of Ammonia Nitrogen by Nessler’s Reagent Spectrophotometer

The supernatant of the ammonium chloride solution adsorbed by the resin was
put into a 50-mL colorimetric tube by a liquid transfer gun. Ammonia-free water was
added to 50 mL to dilute the solution. A potassium sodium tartrate solution (1 mL)
and Nessler’s reagent (1 mL) were added to the colorimetric tube and then shaken well.
Ammonia nitrogen would react with Nessler’s reagent to form a reddish complex. After
developing color for 15 min, the absorbance of the solution was measured at 420 nm with a
spectrophotometer, and the ammonia nitrogen concentration was calculated.

2.5. Isotherm Curve Fitting

The Langmuir and Freundlich adsorption isotherm equations [25] (Equations (1)
and (2)) were used to simulate the data of ammonia nitrogen adsorption at different
temperatures:

Ce

Qe
=

1
KbQm

+
Ce

Qm
(1)

where Qe is the adsorption capacity of the resin at equilibrium in mg/g, Qm is the theoretical
maximum adsorption capacity of the ion exchange resin in mg/g, Ce is the ammonia
nitrogen concentration at the adsorption equilibrium in mg/mL and Kb is the equilibrium
constant:

lnQe = lnK f +
1
n

lnCe (2)

where Qe is the adsorption capacity of the resin at equilibrium in mg/g, Ce is the ammonia
nitrogen concentration at the adsorption equilibrium in mg/mL, Kf is the Freundlich
constant and n is the empirical constant.

2.6. Adsorption Kinetic Model Fitting

Two kinetic equations (Equations (3) and (4)) were used to fit the data of the ammonia
nitrogen adsorption under different adsorption times:

ln(Qe − Qt) = lnQe − K1t (3)

(quasi-first-order kinetic equation)
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where Qe is the adsorption capacity of the resin at equilibrium in mg/g, Qt is the adsorption
capacity of the resin at moment t in mg/g and K1 is the quasi-first-order kinetic rate
constant:

t
Qt

=
1

K2Q2
e
+

t
Qe

(4)

(quasi-second-order kinetic equation) where Qe is the ammonia nitrogen adsorption capac-
ity by the resin at equilibrium in mg/g, Qt is the ammonia nitrogen adsorption capacity by
the resin at moment t in mg/g and K2 is the quasi-second-order kinetic rate constant.

2.7. Statistical Analysis

The experimental data were analyzed by ANOVA (α = 0.05) using Mintab19 software
(Mintab19, Pennsylvania State University, State College, PA, USA, 2019).

3. Results and Discussion
3.1. Effect of Resin Addition on Ammonia Nitrogen Adsorption

The adsorption test was performed with resin addition amounts of 0.05 g, 0.1 g, 0.2 g,
0.3 g, 0.4 g, 0.5 g, and 0.6 g under an ammonium chloride concentration of 100 mg/L,
adsorption time of 30 min, adsorption temperature of 30 ◦C, pH value of 7 and shaker speed
of 150 r/min. The absorbance was measured using the Nessler’s reagent spectrophotometer
method, and then the adsorption capacity of ammonia nitrogen and resin unit adsorption
capacity were calculated. The results are shown in Figure 5a.
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Figure 5. The effect of (a) resin addition on the ammonia nitrogen adsorption capacity, (b) the initial
ammonia nitrogen concentration on the ammonia nitrogen adsorption capacity and (c) the ammonia
nitrogen adsorption ratio, (d) pH and (e) time on the ammonia nitrogen adsorption capacity.

As shown in Figure 5a, the ammonia nitrogen adsorption capacity increased with the
increase in the resin addition, but the unit adsorption capacity decreased. When 0.1 g of
resin was added, a total of 0.79 mg of ammonia nitrogen was adsorbed, accounting for
61% of the total ammonia nitrogen, and the unit adsorption capacity of the resin reached
its highest value (7.98 mg/g). The efficiency was higher than those of other slow-release
carriers [26]. When the resin addition increased to 0.4 g, 1.22 mg of ammonia nitrogen
was adsorbed, accounting for 94% of the total ammonia nitrogen, which reached a higher
value, but the unit adsorption capacity dropped to 3.07 mg/g. When the amount of resin
continued to increase, the adsorption effect slowed down significantly. At the resin addition
amount of 0.6 g, 1.28 mg of ammonia nitrogen was adsorbed, accounting for 98% of the
total ammonia nitrogen. However, the unit adsorption capacity decreased to 2.13 mg/g.
The unit adsorption capacity decreased to 1.79 mg/g when the resin addition was 0.7 g.
This adsorption law was consistent with the research results by Zhuang [27]. This may be
due to the number of ammonia nitrogen exchange sites increasing with the increasing resin
amount [28], and the unit utilization efficiency of the resin decreased with the increase in
the resin content, which may have been due to the fact that the ammonia nitrogen could
not completely contact the resin. After comprehensive consideration, the amount of resin
selected was 0.5 g, which showed a significant (p < 0.05) difference from the other addition
amounts.

3.2. Effect of the Ammonia Nitrogen Concentration on Ammonia Nitrogen Adsorption by the Resin
at Different Temperatures

The ammonium chloride solution concentration was set to 100 mg/L, 500 mg/L,
100 mg/L, 1500 mg/L, 2000 mg/ L, 2500 mg/L, and 3000 mg/L, and the adsorption tests
were performed at 20 ◦C, 30 ◦C, 40 ◦C, 50 ◦C, and 60 ◦C, respectively, under a resin addition
amount of 0.5 g, adsorption time of 30 min, pH value of 7 and shaker speed 150 r/min.
The absorbance was measured, and then the ammonia nitrogen adsorption capacity and
adsorption ratio were calculated. The results are shown in Figure 5b,c.

As shown in Figure 5b, when the concentration of ammonium chloride was 100 mg/L,
the adsorption capacity of the resin reached its minimum value. The adsorption capacity
increased gradually and then tended to be stable with the increase in the ammonium
chloride concentration because the number of adsorption sites of the resin was constant [29].
As the concentration of the ammonia nitrogen increased, the adsorption sites decreased
and finally reached saturation and adsorption equilibrium. When the temperature was
20 ◦C, the resin had the lowest adsorption capacity, and the maximum adsorption capacity
was 5.67 mg. The adsorption capacities at 30 ◦C, 40 ◦C, 50 ◦C and 60 ◦C were very close; the
maximum adsorption capacities were 7.80 mg, 8.04 mg, 8.34 mg and 7.89 mg, respectively.
There was a significant (p < 0.05) difference was observed between 20 ◦C and the other
temperatures. Because the resin adsorption process is an endothermic reaction [30], when
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the temperature increases, the adsorption capacity of the resin increases and finally tends
to be stable. According to Figure 5c, the adsorption rate fell off gradually from 88% to 19%
with the increase in the ammonia nitrogen concentration at 30 ◦C.

3.3. Effect of the pH Value on Ammonia Nitrogen Adsorption

The adsorption test was performed at pH values of 4, 5, 6, 7, 8, 9 and 10 with the con-
dition of a resin addition amount of 0.5 g, ammonium chloride concentration of 100 mg/L,
adsorption time of 30 min, adsorption temperature of 30 ◦C and shaker speed of 150 r/min.
The absorbance was measured using the Nessler’s reagent spectrophotometer method, and
the adsorption capacity was calculated. The results are shown in Figure 5d.

As shown in Figure 5d, the ammonia nitrogen adsorption capacity by the resin in-
creased first and then decreased with the increase in the pH value. The initial pH value
had a significant influence (p < 0.05) on the ammonia nitrogen adsorption capacity. The
ammonia nitrogen adsorption capacity reached its maximum value (1.13 mg) when the
pH value was 7. This was because when the solution was acidic, the concentration of H+

increased, which competed with NH4
+ for the adsorption sites on the resin. The higher the

concentration of the H+ was, the fiercer the competition with the NH4
+ was, resulting in a

reduction of the ammonia nitrogen adsorption capacity. When the solution was alkaline,
NH4

+ would combine with OH− to become free ammonia [NH3]. The method of resin
adsorption became physical adsorption, and the adsorption capacity was weak. Hence,
with the increase in the pH value, free ammonia [NH3] would increase, leading to a lower
ammonia nitrogen adsorption capacity for the resin [31]. The optimal pH value of the resin
for ammonia nitrogen adsorption was seven.

3.4. Effect of the Adsorption Time on Ammonia Nitrogen Adsorption

The adsorption experiment was carried out under the condition of a resin addition
amount of 0.5 g, ammonium chloride concentration of 100 mg/L, adsorption temperature
of 30 ◦C, pH value of 7 and shaker speed of 150 r/min. Samples were taken at 5, 10, 15,
20, 25, 30, 35, 40, 45 50, 55 and 60 min. After the absorbance was measured using the
Nessler’s reagent spectrophotometer method, the ammonia nitrogen adsorption capacity
was calculated. The results are shown in Figure 5e.

As shown in Figure 5e, when the time increased, the adsorption capacity gradually
increased within 5–20 min. The maximum adsorption capacity reached 0.96 mg at 20 min,
and the adsorption capacity was in a dynamic equilibrium at 20–60 min. This result from
our study was consistent with the result of Zhu [32]. This may be because the number of
adsorption sites decreased when the time increased, and the concentration of Na+ gradually
increased. After 20 min, the NH4

+ and Na+ competed with each other for adsorption, which
caused the ammonia nitrogen concentration to form a stable fluctuation phenomenon. In
order to ensure that the adsorption capacity reached the maximum, 30 min was selected as
the adsorption time.

3.5. Adsorption Isotherm

The data from the experiment of the effect of the ammonia nitrogen concentration on
the ammonia nitrogen adsorption at different temperatures were fitted by the Langmuir
and Freundlich adsorption isotherm equations (Equations (1) and (2)) [33]. The isotherm
adsorption curve was drawn, and the relevant parameters were calculated. The results are
shown in Figure 6 and Table 1.
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Table 1. Fitting parameters of the adsorption isotherm.

Temperature (K)
Langmuir Freundlich

Qm
(mg/g)

Kb
(mL/mg) R2 Kf n R2

293 11.1732 21.8292 0.9704 10.9091 2.9121 0.9182
303 15.5521 49.4615 0.9932 22.1447 2.8066 0.8836
313 16.5563 36.5294 0.9949 21.1915 3.2041 0.9462
323 16.7224 22.1482 0.9856 16.0691 2.9630 0.9605
333 16.7224 16.1622 0.9811 21.6932 2.3629 0.9682

According to Figure 6 and Table 1, the correlation coefficients R2 of the Langmuir
isothermal equation fitting at temperatures of 293 K, 303 K, 313 K, 323 K and 333 K were
0.9704, 0.9932, 0.9949, 0.9856 and 0.9811, respectively, and the correlation coefficients R2 of
the Freundlich isothermal equation fitting were 0.9182, 0.8836, 0.9462, 0.9605 and 0.9682,
respectively. The Langmuir isothermal equation was more suitable for describing the
adsorption process, which was single-molecule layer adsorption.
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3.6. Adsorption Kinetics

According to the data obtained from the test of the effect of the adsorption time
on ammonia nitrogen adsorption, two kinetic equations were used for the fitting curve
(Equations (3) and (4)) [34]. Then, the fitting curve was drawn, and the relevant parameters
were calculated. The results are shown in Figure 7 and Table 2.
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Table 2. Fitting parameters of the kinetic equations.

Quasi-First Order Kinetic Equation Quasi-Second-Order Kinetic Equation

Qe
mg/g

K1
min−1 R2 Qe

mg/g
K2

g/(mg·min) R2

2.1578 0.0981 0.2325 2.4510 0.03699 0.9496

According to Figure 7 and Table 2, the correlation coefficient R2 fitted by the quasi-
first-order kinetic equation was 0.2325, and the correlation coefficient R2 fitted by the
quasi-second-order kinetic equation was 0.9496. The ammonia nitrogen adsorption process
by the resin was more in line with the quasi-second-order kinetic equation.
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3.7. Effect of Different NaCl Concentrations on the Slow Release of Ammonia Nitrogen

The adsorption test was performed under the conditions of a resin addition amount
of 3 g, ammonium chloride concentration of 1500 mg/L, adsorption temperature of 30 ◦C,
adsorption pH value of 7, adsorption time of 30 min and shaker speed of 150 r/min.
After the adsorption was completed, the resin was separated by filtration. The resin was
placed in a drying box for drying to prepare a resin loaded with ammonia nitrogen. The
NaCl solutions with concentrations of 200 mg/L, 1000 mg/L, 2000 mg/L, 4000 mg/L and
10,000 mg/L (50 mL) were configured in Erlenmeyer flasks of 100 mL. The resin loaded
with ammonia nitrogen (0.5 g) was placed in an Erlenmeyer flask and remained still.
Samples were taken at 10 min, 30 min, 60 min, 120 min, 180 min, 240 min, 300 min, 360 min,
420 min, 480 min, 540 min and 600 min, respectively. The absorbance was measured by the
Nessler’s reagent spectrophotometer method before the ammonia nitrogen slow-release
amount was calculated. The results are shown in Figure 8.
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Figure 8. The effect of different NaCl concentrations on the slow release of ammonia nitrogen.

Figure 8 shows that when the concentration of the NaCl solution was 200 mg/L, the
slow-release amount of the resin was the lowest, reaching 2 mg in the stable stage and
accounting for 40% of the total. At 10,000 mg/L, the slow-release amount of the resin
reached 4 mg at the stable stage and accounted for 80% of the total. The slow-release
amount had a significant difference (p < 0.05) between each concentration. The slow-release
amount increased with the increase in concentration of the NaCl solution. In the initial
stage of slow release, the efficiency was the highest, and then it gradually decreased to
a stabilized value. The reason for this was that during the initial stage of slow release,
more Na+ could be exchanged with the NH4

+ on the resin. As the exchange continued,
the exchange sites continued to decrease, and the exchange rate gradually slowed down.
The concentration of the NaCl solution was flexibly adjusted according to the specific
slow-release requirements and the salinity tolerance of the crops to achieve better results.

3.8. Comparison of the Adsorption Ammonium Nitrogen Effect of Resin from Biogas Slurry and the
Ammonia Chloride Solution

The biogas slurry was centrifuged before 50 mL of supernatant was taken. Then, the
ammonia nitrogen concentration without adsorption was scaled. The other Erlenmeyer
flask contained 50 mL of the ammonium chloride solution with the same concentration
of ammonia nitrogen as the biogas slurry. The adsorption test was performed under the
conditions of a resin addition amount of 0.5 g, adsorption temperature of 30 ◦C, adsorption
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pH value of 7 and shaker speed of 150 r/min. Samples were taken at 5, 10, 15, 20, 25,
30, 35, 40, 45 and 50 min. After the absorbance was measured by Nessler’s reagent
spectrophotometer method, the ammonia nitrogen adsorption capacity was calculated.
The results are shown in Figure 9.
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Figure 9. Comparison of resin adsorption capacities from the biogas slurry and ammonia chloride
solution.

Figure 9 shows that the maximum adsorption capacity by the resin from the biogas
slurry was 4.8 mg, and the maximum adsorption capacity in the ammonia chloride solution
was 5.5 mg. There was a significant difference (p < 0.05) in the adsorption capacity. The
ability of resin to adsorb ammonia nitrogen from the biogas slurry significantly reduced.
In the process of adsorption of ammonia nitrogen in biogas slurry, the ammonia nitrogen
concentration fluctuated greatly in the later period. This was because the biogas slurry
contained a large number of interfering ions such as K ions, which would preempt the
exchange site with NH4

+, resulting in a decrease in the adsorption capacity of ammonia
nitrogen [35]. When the ammonia nitrogen concentration in the solution dropped to a
certain value, the relative concentration of K+ increased, and the exchange capacity of K+

was better than that of NH4
+. The ammonia nitrogen adsorbed by the resin was exchanged,

resulting in an increase of the ammonia nitrogen concentration. Then, the adsorption
capacity of the resin for NH4

+ was better than K+ again, and from there, the concentration
of ammonia nitrogen entered a state of fluctuation.

4. Conclusions

The effects and characteristics of adsorption and the slow release of ammonia nitrogen
by D113 resin under different conditions were studied. The results showed that increasing
the initial ammonia concentration, resin addition amount, temperature and time could
improve the adsorption capacity of ammonia nitrogen, and the optimum conditions for ad-
sorption were comprehensively analyzed. Under acidic conditions, hydrogen ions would
compete with ammonium ions for adsorption sites, and under alkaline conditions, hydrox-
ide ions would combine with ammonium ions in the solution to form free nitrogen, which
greatly affected the adsorption capacity of the resin for ammonia nitrogen. Therefore, the
optimal pH value is seven. The adsorption process for ammonia nitrogen is an endothermic
process. The adsorption capacity will increase with the increase in temperature and become
stable after reaching 30 ◦C.
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The process of ammonia nitrogen adsorption was in accordance with the Langmuir
isothermal curve and the quasi-second-order kinetic model. The process of adsorbing
ammonia nitrogen is monolayer adsorption and a combination of multiple diffusions.
The composition of biogas slurry is very complex, containing a large amount of organic
matter and some metal ions, which will affect the adsorption process. Thus, the adsorption
efficiency and adsorption capacity of resin for ammonia nitrogen in biogas slurry were
lower than those in the NH4Cl solution. Aside from that, the release of ammonia nitrogen
can be controlled by adjusting the solubility of the sodium chloride solution. In the process
of application, the concentration of the sodium chloride solution can be selected according
to the actual situation and the properties of the crop itself. The aim of this study was to
solve the problem of a low utilization rate of biogas slurry. The results provide theoretical
and practical support for the harmless treatment of biogas slurry and agricultural safety
production. The focus of the next research is to further improve the adsorption efficiency
of the resin for ammonia nitrogen in biogas slurry and to optimize the slow-release effect
of slow-release insecticides.
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Abstract: In this study, the response surface methodology (RSM) optimization technique was em-
ployed for investigating the impact of hydroxy gas (HHO) enriched diesel on performance, acoustics,
smoke and exhaust gas emissions of the compression ignition (CI) engine. The engine was operated
within the HHO flow rate range of 0–10 L/min and engine loads of 15%, 30%, 45%, 60% and 75%.
The results disclosed that HHO concentration and engine load had a substantial influence on the
response variables. Analysis of variance (ANOVA) results of developed quadratic models indicated
the appropriate fit for all models. Moreover, the optimization of the user-defined historical design
of an experiment identified an optimum HHO flow rate of 8 L/min and 41% engine load, with
composite desirability of 0.733. The responses corresponding to optimal study factors were 25.44%,
0.315 kg/kWh, 117.73 ppm, 140.87 ppm, 99.37 dB, and 1.97% for brake thermal efficiency (BTE), brake
specific fuel consumption (BSFC), CO, HC, noise, and smoke, respectively. The absolute percentage
errors (APEs) of RSM were predicted and experimental results were below 5%, which vouched for
the reliable use of RSM for the prediction and optimization of acoustics and smoke and exhaust
emission characteristics along with the performance of a CI engine.

Keywords: CI engine; HHO; response surface methodology; prediction; noise; smoke; optimization

1. Introduction

The oil reserves are depleting rapidly and are only sufficient to meet the drastically
increasing power demand for the next fifty years [1]. Energy demand is soaring at an
unprecedented pace and the available sources are too meagre to satisfy the needs [2,3]. In
this scenario, the consumption of diesel as a transportation fuel has also increased by about
40% over the last decade [4]. The agriculture sector makes a major contribution to diesel
consumption [5,6] as heavy machinery uses diesel as a fuel [7]. Moreover, automotive
diesel engines share 26% of total greenhouse gas emissions into the environment, which is
an unignorable threat to the stability of the Earth [8–10]. This has motivated researchers
to investigate alternative fuels, such as hydroxy gas (HHO) for the versatile dual-fuel
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compression ignition engines [11,12], to find clean, economical, and sustainable energy
resources [13–15].

The emission and combustion characteristics of internal combustion engines are
mainly governed by the chemical and physical properties of the burning fuel [16,17].
Hydroxy gas (HHO), also termed brown gas, has only hydrogen and oxygen in its structure,
and provides clean-burning to control CO2 emissions and produces pure water when
employed in CI engines [17]. Although hydrogen has a favorable high-octane rating,
specific energy content, and autoignition temperature, it alone is not an appropriate option
as a primary fuel due to the high safety risks of pressurized storage tanks in vehicles [18–21].
Consequently, an onboard HHO generating unit can mitigate the operational and safety
problems concerning hydrogen generation, transportation and storage [22,23]. However,
it can only be used as an additive because the same amount of energy as released from
combustion (240 kJ/mol) is mandatory for HHO production [24].

The use of HHO as an alternative fuel has been the focus of researchers for quite a long
time. In this regard, Pushpendra Kumar Sharma et al. explored the influence of varying
flow rates of HHO with varying engine loads and observed a maximum increase of 6.5% for
BTE along with a reduction of 58%, 60%, and 49% in CO and HC emissions, and smoke for
0.75 L/min and a 10 kg load, respectively [25]. Conversely, Subramanian et al. reported a
7% decrease in BTE at 36 L/min of flow rate owing to the higher auto-ignition temperature
of hydrogen, a non-homogeneous air–diesel–HHO mixture and incomplete combustion
at higher flow rates [26]. Usman et al. conducted a comparative assessment of gasoline,
LPG, and LPG–HHO blends and reported improved performance and emissions for HHO
blended LPG as compared to neat LPG [27]. Similarly, in another study, CNG–HHO blend
showed 15.4% higher brake power and reduced CO and HC emissions [28]. In addition,
Hydroxy gas can also be used as a secondary additive with the blends of other liquid
and gaseous fuels [22], such as bio-fuels, to improve the performance (BP and BSFC) and
emissions (CO2 and HC) of IC engines [26,29,30].

Over the last two decades, several studies have investigated the use of RSM opti-
mization to improve engine operation along with pollutant reduction of diesel-fueled
engines [31–33]. Samet Uslu defined RSM models of the emission and performance of an
engine operated with a palm oil diesel blend. He found that the correlation coefficients of
all models were 0.90. Moreover, the optimum palm oil percentage of 17.88% was identified
by multi-response optimization [31]. Milind Yadav et al. used RSM for the prediction
and optimization of the performance characteristics of an oxy–hydrogen blended gasoline
fueled SI engine [34]. Moreover, the use of RSM for the prediction of the emission and
performance of the biodiesel–diesel blend was conducted by Mustafa Aydın et al. They
reported a 32% biodiesel ratio, engine load of 816 W, and 470 bar injection pressure for the
best performance and minimal emissions [35].

The cited literature reveals that the use of RSM for the optimization of diesel engines
has been extensively carried out. However, one of the important aspects of emissions,
that is, acoustic emissions, has not been given attention. This study addresses this very
issue. Further, CI engines have not been optimized by employing the RSM technique for
performance, acoustic, smoke, and exhaust emissions of the diesel–HHO blend. In this
study, HHO was introduced with diesel at a flow rate of 0–10 L/min at varying loads. Later,
RSM was used for studying the individual interactions between the study factors along
with the statistical significance of developed models. The optimization identified the use of
HHO with diesel as an effective alternative fuel that promises improved performance and
reduced emissions.

Section 2 describes the detailed experimental approach of this study utilizing hydroxy
gas. The results are discussed in detail utilizing ANOVA analysis in Section 3. The work
is optimized utilizing RSM and validated in Sections 4 and 5, respectively. The study is
concluded with recommendations and future research directions in Section 6.
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2. Materials and Methods

This study used a 30 kW Perkins (AD 3.152), 91.4 mm bore length, four stroke diesel
engine for experimentation. The specifications of the test engine are shown in Table 1. The
experiments were performed for different flow rates of HHO, ranging from 0 L/min to
10 L/min while loads were varied from 0–75%, with an equal increment of 15% for each
strategic test run. The physicochemical properties of diesel and hydrogen are presented in
Table 2. Diesel fuel was directly supplied to the engine through the fuel injectors. However,
HHO gas was supplied to the test engine intake manifold at varying flow rates for the
diesel HHO mixture. The schematic of the experimental setup, which includes HHO
generator, noise measuring meter, smoke meter, emission analyzer and electric heaters,
is displayed in Figure 1. Brake thermal efficiency and brake specific fuel consumption
were calculated numerically by utilizing calorific value (CV), brake power (BP), and fuel
consumption (FC). The brake power was measured from the integrated control panel with
heaters, which indicates the value of voltage and current at different load conditions, varied
through electrical switches to turn on/off the heaters. In the experimental setup, heaters
acted as a resistance load. The test engine was equipped with three phase AC generator
having five breakers. Each breaker was equivalent to a load of 15%, which was applied
to the engine through the generator. Simply, all the breakers turned on means the engine
is operating on a load of 75%. Fuel consumption was determined by measuring time for
the consumption of 100 mL of liquid fuel indicated by a gauged cylinder fixed adjacent to
diesel containing tank while calorific value was obtained from Pakistan State Oil (PSO).
HHO flow rate was ascertained from the rotameter connected at the output of the HHO
generator. An emission analyzer (TESTO 350) was employed as a CO and HC emission
content recorder, with a measuring sensitivity of 1 ppm CO, and 10 ppm HC. A smoke
(opacity) meter (Wager 6500 manufactured by GasTech), which was in full compliance
with the requirements of the SAE J1667 test criteria, was used to notice the smoke within a
range of 0.0–100.0%. The engine noise level was measured with a sound level meter (UNI-T
UT353), which can accurately measure 30–130 dB sound at a frequency response of 31.5 Hz
to 8KHz.

Table 1. Test engine specifications.

Factors Narrative

Type/Make AD 3.152/Perkins
Volumetric efficiency (percent) 85

Stroke (cm) 1.27
Bore (cm) 0.91

Number of nozzles 3
Diesel injection 17◦ before TDC

Table 2. Properties of test fuels.

Properties Diesel Hydrogen [28]

Physical state Liquid Gas
Specific gravity 0.83–0.86 @ 16 ◦C 0.000083

Stoichiometric A/F 14.5 34.2
Viscosity (at 40 ◦C) (mm2/s) 2.42 N/A

Boiling Range 160 to 366 ◦C N/A
Cetane Number 57.86 -
Flash Point (◦C) 59 N/A

Calorific Value (kJ/kg) 44,000 120,000

HHO was generated by electrolysis of water, which is the most commonly used
method. Alkaline hydroxides, for example, KOH and NaOH and so forth, were used for
speeding up the reaction [36]. The HHO generation system included AC supply, load
controller, transformer, rectifier, reactor, and bubbler. The maximum production capacity
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of the unit was 10 L/min. Potassium hydroxide (KOH) was used as a catalyst owing to
its higher solubility and affinity for water [22,37]. The flow rate of the produced gas was
controlled using a potentiometer which was directly dependent on the current passing
through the cell.
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3. Results and Discussion
3.1. Response Surface Methodology

RSM is a statistical technique used for the estimation of relationships between input
and response variables. It adopts linear, quadratic, or higher-order polynomial functions to
investigate the statistical significance of the study factors and their interactions. Moreover,
the regression concept is used for the prediction and optimization of responses. Over the
years, the use of RSM in engineering fields has shown welcome results in the prediction of
complex systems.

In the current study, the examined parameters were engine load and HHO concen-
tration. Design-Expert version 11 was used for defining the multi-level historical design.
The candidate set was created using user-defined discrete levels. Engine load and HHO
concentration were assigned to four and six levels, respectively. The response variables
measured were BTE, BSFC, CO, HC, noise, and smoke. The best fit model for each response
was selected and analysis of variance (ANOVA) was applied for a better understanding of
model attributes. In ANOVA, F is a probability distribution in different samplings, Df is
degrees of freedom and the p-value is a statistical measure of variations in samples of a
particular property. The decision rule for significance was benchmarked as a p-value less
than 0.05. The percentage contribution (PC%) of each model term was calculated, which is
a ratio of an aggregate of squared deviations to an individual sum of squares (SOS). PC%
is a tool that provides a rough idea about the relative importance of study factors and the
interactions.

3.2. ANOVA Results

The ANOVA results and fit statistics for BTE are presented in Table 3. The F-value of
1980.51 and p-value less than 0.0001 show that the model for BTE is significant. Moreover,
the R2 value of 0.9976 (refer to Table 4) is close to positive unity and there is sufficient
agreement between predicted and adjusted R2. The p values from the ANOVA table show
that both load and concentration of HHO are significant. However, the load is significantly
contributing to aggregated variations with a PC% of 84.4 compared to fuel concentration
(3.5%). The best fitted quadratic model from the fit summary was selected owing to the
poor fit and aliased nature of linear and cubic models, respectively. The actual regression
equation for BTE is given by Equation (1).
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BTE (%) = 0.456285 + 0.793251 × Load − 0.00680684 × Concentration
+ 0.00680858 × Load × Concentration − 0.0059656 × Load2 + 0.00697741 × Concentration2.

(1)

Table 3. ANOVA results for BTE.

Source Sum of Squares Df Mean Square F-Value p-Value PC%

Model 1344.94 5 268.99 1980.51 <0.0001 99.7582
A-Load 1138.40 1 1138.40 8381.87 <0.0001 84.43851

B-HHO Concentration 47.75 1 47.75 351.56 <0.0001 3.541759
AB 7.30 1 7.30 53.76 <0.0001 0.541463
A2 151.34 1 151.34 1114.29 <0.0001 11.22534
B2 0.1454 1 0.1454 1.07 0.3111 0.010785

Residual 3.26 24 0.1358 0.241804
Cor Total 1348.20 29

Table 4. Coefficient of determination for BTE.

Coefficient of Determination Value

R2 0.9976
Adjusted R2 0.9971
Predicted R2 0.9958

The contour plot (see Figure 2a) reveals the impact of load and fuel addition on BTE
variation. The red color of the contour region advocates high engine BTE at high load
and high HHO concentration. The color gradually shifted to red with an increase in HHO
amount. The more explicit variation of response (BTE) is noticeable in Figure 2b. The
3D surface plot shows the rising curve of BTE with positive moments along the load and
fuel axes. The maximum thermal efficiency is observable at an engine load of 75% and a
10 L/min flow rate of HHO. The improvement in BTE with HHO enrichment is due to the
complete combustion of diesel in the presence of hydroxy gas which resulted from higher
mean effective pressure near TDC, owing to the faster flame travel in the case of hydrogen.
The dark and light circles above and below the surface represent the experimental and
predicted values, respectively. Furthermore, the accuracy of the given models could be
assessed using certain diagnostics tests and graphs. In general, small deviations between
experimental and predicted results are desirable for efficient models. Figure 3 shows a
comparison of actual and predicted BTE. The minimal deviations of predicted values from
actual data sets are testimony to a good fit of the quadratic regression model.

ANOVA results for the second response variable, BSFC, are shown in Table 5. The
model is significant owing to an F value of 169.80, a p-value less than the designated
range, and R2 (0.9725) close to 1, as indicated in Table 6. The ANOVA findings show
the significant effect of both load and HHO on fuel consumption. However, compared
on a comparative scale, the load variations were found to have a greater impact on an
engine than HHO concentration, as evidenced by PCs of 72.9% and 1.4%, respectively. The
quadratic regression equation for BSFC on an actual scale is shown by Equation (2).

BSFC (kg/KWh) = 1.01215 − 0.0241143 × Load − 0.00582281 × HHO Concentration
+ 2.20781 × 10−5 × Load ×HHO Concentration + 0.000197256 × Load2

− 4.87589 × 10−5 × HHO Concentration2.
(2)
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Table 5. ANOVA results for BSFC.

Source Sum of Squares Df Mean Square F-Value p-Value PC (%)

Model 0.7029 5 0.1406 169.80 <0.0001 97.24682
A-Load 0.5275 1 0.5275 637.11 <0.0001 72.98008

B-HHO Concentration 0.0099 1 0.0099 11.95 0.0020 1.369673
AB 0.0001 1 0.0001 0.0927 0.7634 0.013835
A2 0.1655 1 0.1655 199.85 <0.0001 22.89707
B2 7.101 × 10−6 1 7.101 × 10−6 0.0086 0.9270 0.000982

Residual 0.0199 24 0.0008 2.753182
Cor Total 0.7228 29
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Table 6. Coefficient of determination for BSFC.

Coefficient of Determination Value

R2 0.9725
Adjusted R2 0.9668
Predicted R2 0.9587

The effect of HHO addition and load on the fuel consumption trend of an engine is
shown in Figure 4a,b. The contour plot in Figure 4a shows that fuel economy improved
with successive addition of HHO to diesel at high loads. Moreover, it is also evident that,
for the load range of 15–45%, there are more abrupt variations in BSFC compared to high
loads, as indicated by a multi-color region. The response surface curve in Figure 4b shows
the decreasing increasing trend of BSFC with load and fuel concentration. The sudden lift
in the curve at the culmination is due to increased fuel demand at a high load owing to
ample friction resistance. The improved fuel economy with HHO enrichment is primarily
because of the higher calorific value of HHO and efficient combustion due to the lean
diesel–HHO–air mixture [38,39]. The comparison of predicted and actual BSFC, as given
in Figure 5, shows a bit of disorder data near the regression line. The disorderliness is due
to the manual use of equipment in calculating BSFC. However, the deviations are not so
large and therefore the model is acceptable.
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Similar to performance, quadratic models for emissions were also analyzed using
ANOVA. The defined model for CO emissions was significant as shown in Table 7. The
results revealed that both factors were significant; however, the percentage contribution of
load to overall variations was greater compared to fuel concentration. Moreover, the R2

value was 0.9819 (refer to Table 8) and there was a reasonable agreement between adjusted
and predicted R2. In an attempt to see the accuracy of the selected model, the actual versus
predicted description in Figure 6 could be used as a model accuracy measuring tool. It is
discernible from the figure that the data points are near to the linear regression line and
deviations are negligible. The CO emission regression equation on a coded scale is given
by Equation (3).

CO (ppm) = 140.804 − 1.66356 × Load − 3.55691 × HHO Concentration
− 0.0911124 × Load × HHO Concentration + 0.0622159 × Load2 − 0.0267857 × HHO Concentration2.

(3)
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Table 7. ANOVA results for CO.

Source Sum of Squares Df Mean Square F-Value p-Value PC%

Model 2.033 × 105 5 40,654.18 260.45 <0.0001 98.20
A-Load 1.635 × 105 1 1.635 × 105 1047.57 <0.0001 78.98

B-HHO Concentration 21,980.99 1 21980.99 140.82 <0.0001 10.62
AB 1307.48 1 1307.48 8.38 0.0080 0.63
A2 16,460.64 1 16,460.64 105.45 <0.0001 7.95
B2 2.14 1 2.14 0.0137 0.9077 0.00

Residual 3746.27 24 156.09 98.20
Cor Total 2.070 × 105 29

Table 8. Coefficient of determination for CO.

Coefficient of Determination Value

R2 0.9819
Adjusted R2 0.9781
Predicted R2 0.9684
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The variations in emissions of carbon monoxide with load and HHO concentrations
are shown in Figure 7a,b. The contour plot (Figure 7a) provides a general illustration of the
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CO emission pattern of the engine subjected to various loads. The emissions are shown
with the multi-color scheme, where blue stands for the minimum and red for the maximum.
The response surface in Figure 7b depicts the CO variations with load and HHO. The main
root of carbon monoxide generation is the partial burning of fuel inside the engine. The
addition of hydroxy gas not only reduces the carbon content but also facilitates complete
combustion which consequently reduces the emissions [40]. Therefore, a curve is seen to
be following a decreasing trend in the presence of HHO.
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Similarly, Table 9 presents the ANOVA results of HC emission. The model selected
and input variables are significant because of p values less than 0.005. The coefficient of
determination, the R2 value, however, is shown in Table 10. Engine load and HHO concen-
tration had percentage contributions of 82.4% and 10.3% respectively. The comparison of
actual and predicted HC emissions in Figure 8 shows that the selected model is accurate.
Equation (4) gives the predicting regression equation of HC emissions.

HC (ppm) = 94.8363 + 1.16673 × Load + 0.320067 × HHO Concentration
− 0.134163 × Load × HHO Concentration + 0.0232022 × Load2 + 0.00446429 × HHO Concentration2.

(4)

Table 9. ANOVA results for HC.

Source Sum of Squares Df Mean Square F-Value p-Value PC (%)

Model 1.065 × 105 5 21,306.90 176.60 <0.0001 97.32231317
A-Load 90,147.78 1 90,147.78 747.17 <0.0001 82.3792533

B-HHO Concentration 11,262.46 1 11,262.46 93.35 <0.0001 10.29191229
AB 2834.94 1 2834.94 23.50 <0.0001 2.590637732
A2 2289.29 1 2289.29 18.97 0.0002 2.092009374
B2 0.0595 1 0.0595 0.0005 0.9825 5.43726 × 10−5

Residual 2895.67 24 120.65 2.646134296
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Table 10. Coefficient of determination for HC.

Coefficient of Determination Value

R2 0.9735
Adjusted R2 0.9680
Predicted R2 0.9592
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The detailed effect of varying factors on hydrocarbon emissions is shown in Figure 9a,b.
The addition of HHO reduced HC emissions for all concentrations and the minimum
emissions were found to be for 10 L/min, as shown in Figure 9a. Similarly, the response
surface shows the emission variations of each fuel combination and is seen following
a decreasing trend. The presence of hydroxy gas reduces HC, while carbon present in
lubricating oil and primary diesel fuel is oxidized by excessive oxygen and high combustion
temperatures inside the cylinder. Moreover, a relatively short quenching distance and a
wider flammability range in the case of gaseous fuel have improved the engine performance
in this regard [41].
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In addition to the performance and emission of an engine, factors of noise and smoke
have also been considered. When the piston oscillates in the cylinder, it creates vibrations
which consequently cause high noise levels. Moreover, when sudden ignition of fuel occurs
inside the combustion chamber, it generates pressure waves that increase the intensity
of the vibrations [42]. The smoke is produced as the result of a rich air–fuel mixture and
lubricant burning in the combustion chamber [12]. Tables 11 and 12 present the ANOVA
results for noise and smoke. The quadratic models and study factors for both responses
were significant. Variations in noise would be more due to HHO concentration rather
than load, as shown by percentage contributions of 13.19% and 74.30%. Similarly, the
smoke model unveils that both load and fuel amount have a significant impact on smoke
produced. Moreover, a model R2 value close to one (based on Tables 13 and 14) and actual
versus predicted diagnostic descriptions (Figures 10 and 11) evidenced the accuracy of the
selected models. Equations (5) and (6) give the second-order regression equations of noise
and smoke.

Noise (dB) = 96.9203 − 0.0315619 × Load + 0.353839 × HHO Concentration
+ 0.0018 × Load × HHO Concentration + 0.000519577 ×Load2 − 0.0078125 × HHO Concentration2.

(5)

Smoke (%) = 1.77495 − 0.0799333 × Load − 0.0645821 × HHO Concentration
− 0.00115714 ×Load × HHO Concentration + 0.00239947 × Load2 + 0.0055625 × HHO Concentration2.

(6)

Table 11. ANOVA results for noise.

Source Sum of Squares Df Mean Square F-Value p-Value PC (%)

Model 54.28 5 10.86 46.00 <0.0001 90.5503968
A-Load 7.91 1 7.91 33.50 <0.0001 13.18848462

B-HHO Concentration 44.54 1 44.54 188.68 <0.0001 74.2915545
AB 0.5103 1 0.5103 2.16 0.1545 0.851247727
A2 1.15 1 1.15 4.86 0.0373 1.915023405
B2 0.1823 1 0.1823 0.7723 0.3882 0.304086551

Residual 5.66 24 0.236 9.449603204
Cor Total 59.95 29

Table 12. ANOVA results for smoke.

Source Sum of Squares Df Mean Square F-Value p-Value PC (%)

Model 54.28 5 10.86 46.00 <0.0001 97.08694515
A-Load 7.91 1 7.91 33.50 <0.0001 87.15578304

B-HHO Concentration 44.54 1 44.54 188.68 <0.0001 0.496195224
AB 0.5103 1 0.5103 2.16 0.1545 0.080273582
A2 1.15 1 1.15 4.86 0.0373 9.319517418
B2 0.1823 1 0.1823 0.7723 0.3882 0.035175877

Residual 5.66 24 0.236 2.913054855
Cor Total 59.95 29

Table 13. Coefficient of determination for noise.

Coefficient of Determination Value

R2 0.9055
Adjusted R2 0.8858
Predicted R2 0.8527
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Table 14. Coefficient of determination for smoke.

Coefficient of Determination Value

R2 0.9709
Adjusted R2 0.9468
Predicted R2 0.9528
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Figure 11. Comparison of actual and predicted smoke.

The effect of load and HHO on noise could be studied using the contour plots and
response surface presented in Figure 12a,b. The red-colored region at the right top corner
of Figure 12a indicates that, with the addition of HHO, the noise level increased and
is at a maximum for 10 L/min HHO. The same trend could be seen more explicitly in
Figure 12b where the response surface shows the gradual increase in noise level. The
increased noise level with the addition of hydroxy gas could be apprehended by improved
thermal efficiency and excessive combustion at high pressures inside the chamber [42,43].
The opacity is seen following a decreasing trend with a rise in fuel enrichment and load,
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as shown by Figure 13a,b. The contour plot and 3D response surface show that the least
smoke is found for a blend of diesel with 10 L/min of HHO. The improved performance of
an engine in terms of smoke emissions could be attributed to reduced HC emissions, high
flame propagation, and high flame temperature of hydrogen [44].
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4. RSM Based Optimization

Optimization is the study of maximizing output. An RSM-based optimization is a
method to identify optimized conditions by maximizing or minimizing the study factors.
In the current work, the emission and performance parameters of the engine are optimized
using the numerical optimization feature of the Design Expert. In the optimization setup
shown in Table 15, the goal of maximum was assigned to BTE only, while for smoke, noise,
BSFC, CO, and HC the minimum criteria were selected. Moreover, the default in the range
criterion for study factors was selected.
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Table 15. Optimization setup.

Name Goal Lower Limit Upper Limit Lower Weight Upper Weight Importance

A: Load (%) is in range 15 75 1 1 3
B: HHO Concentration (L/min) is in range 0 10 1 1 3

BTE (%) maximize 11.2216 31.8402 1 1 3
BSFC (kg/kWh) minimize 0.25126 0.71291 1 1 3

Noise (dB) minimize 96 101.3 1 1 3
HC (ppm) minimize 92.812 325 1 1 3
Smoke (%) minimize 0.3 9.7 1 1 3
CO (ppm) minimize 84 348 1 1 3

The engine operating conditions identified by optimization were 41% engine load
and blend of diesel with 8 L/min HHO, both rounded to the nearest whole number. The
response variables, corresponding to optimized operating conditions, were 25.44% BTE,
0.315 kg/kWh BSFC, 117.7 3 ppm of CO, 140.86 ppm of HC, 99.4 dB of noise, and smoke of
1.97%. The optimum gained values of study factors and response variables are shown by
the red and blue dots in Figure 14. The experimentation and RSM models in the previous
sections advocated the use of 10 L/min blended diesel for boosted performance and
reduced emissions. However, at the same time, all the blend percentages were unfavorable
for noise and therefore an optimum concentration of 8 L/min sounds reasonable.
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The statistical identification of how optimization involved the overall responses could
be studied through composite desirability (D). It is a unitless value in the range of 0–1,
with 1 for the best and 0 for the worst case. In the current study, composite desirability is
0.733, which is a clear indication that the optimization settings have achieved favorable
outcomes for all responses. The contour plot of desirability is shown in Figure 15. Moreover,
the impact of individual responses on the overall setting could be assessed through the
individual desirability (d) of each response, as shown by the bar graph in Figure 16. It is
evident that d is largest for CO (0.877) and lowest for noise (0.364). The numerical values
show that minimizing carbon monoxide emissions would have the greatest impact on the
overall settings compared, and minimizing noise would impart the least impact to the
setting as a whole.
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5. Validation of RSM Results

The obtained RSM multi-optimization results were validated using experimentation.
The engine was operated on the optimal values of load and HHO concentration and the
responses were recorded. The absolute percentage error (APE) between the RSM predicted
and experimentally obtained results was calculated as shown in Table 16.
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Table 16. Comparison of RSM and experimental values.

HHO Concentration
(L/min) Load (%) Value BTE (%) BSFC

kg/kWh CO ppm HC ppm Noise dB Smoke (%)

8 41
RSM Predicted 25.44 0.315 117.73 140.87 99.37 1.97
Experimental 26.22 0.4 121 138.4 96.22 2

APE 3.07 4.76 2.78 1.75 3.17 1.52

The APE shows that the developed RSM models and optimization results are accurate.
The predicted results showed a reasonable agreement with the experimental results, with
APE of all responses being below 5%. However, the maximum APE of 4.76% was evaluated
for BSFC, which may be due to inefficient desirability resulting from manual recording
during experimentation. Collectively, the predicted results of the developed models
were efficient, which promised the simplification of complex performances with the least
investment of time, effort and capital.

6. Conclusions

The purpose of the current investigation was to examine the impact of the blends of
diesel with HHO on performance, noise, smoke and tailpipe emissions. Engine load and
blend percentage of HHO were the varying factors. The following conclusions could be
obtained from the research.

• ANOVA analysis of all the developed quadratic models indicated suitable fits.
• The 10 L/min HHO blended diesel proved valuable for improving performance, smoke,

and for containing emissions.
• The noise increased for all the blended fuels and was maximum for 10 L/min HHO.
• The optimum blend flow rate among 0–10 L/min was 8 L/min for an engine load

of 41%.
• Optimization revealed a composite desirability value of 0.733 with 25.44%, 0.315 kg/kWh,

117.73 ppm, 140.87 ppm, 99.37 dB, and 1.97% for BTE, BSFC, CO, HC, noise, and
smoke respectively.

• In the optimization model, the most and least significant factors affecting desirability
(D) were CO and noise, respectively.

• APE predicted that experimental results were below 5%.

The ANOVA and optimization results indicated the potential of hydroxy gas to be used
as an alternative fuel in a CI engine. Thus, the use of HHO in blend percentages with diesel
will help to save the stability of the Earth from deteriorating due to significantly reduced
exhaust emissions compared to pure diesel. Moreover, the use of the RSM technique is
beneficial and could save time and capital.
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Nomenclature

APE Absolute percentage error
A/F Air fuel ratio
ANOVA Analysis of variance
BSFC Brake specific fuel consumption
BTE Brake thermal efficiency
CO Carbon monoxide
CI Compression ignition
D Composite desirability
d Individual desirability
dB Decibel
Df Degrees of freedom
HC Hydrocarbons
HHO Hydroxy gas
Ppm Parts per million
PC Percentage contribution
R2 Coefficient of determination
RSM Response surface methodology
TDC Top dead center

References
1. Höök, M.; Tang, X. Depletion of fossil fuels and anthropogenic climate change—A review. Energy Policy 2013, 52, 797–809.

[CrossRef]
2. Abas, N.; Kalair, A.; Khan, N. Review of fossil fuels and future energy technologies. Futures 2015, 69, 31–49. [CrossRef]
3. Kverndokk, S. Depletion of Fossil Fuels and the Impact of Global Warming; Discussion Papers; Statistics Norway Research Department:

Oslo, Norway, 1994.
4. Martins, F.; Felgueiras, C.; Smitkova, M.; Caetano, N. Analysis of fossil fuel energy consumption and environmental impacts in

European countries. Energies 2019, 12, 964. [CrossRef]
5. Li, N.; Mu, H.; Li, H.; Gui, S. Diesel consumption of agriculture in China. Energies 2012, 5, 5126–5149. [CrossRef]
6. González-Marrero, R.M.; Lorenzo-Alegría, R.M.; Marrero, G.A. A dynamic model for road gasoline and diesel consumption: An

application for Spanish regions. Int. J. Energy Econ. Policy 2012, 2, 201–209.
7. Agheli, L. Estimating the demand for diesel in agriculture sector of Iran. Int. J. Energy Econ. Policy 2015, 5, 660–667.
8. Nesamani, K.S. Estimation of automobile emissions and control strategies in India. Sci. Total Environ. 2010, 408, 1800–1811.

[CrossRef] [PubMed]
9. Sequera, A.; Parthasarathy, R.; Gollahalli, S. Effect of Fuel Injection Timing in the Combustion of Biofuels in a Diesel Engine. In

Proceedings of the 7th International Energy Conversion Engineering Conference, Denver, CO, USA, 2–5 August 2009.
10. Singh, P.; Chauhan, S.R.; Goel, V.; Gupta, A.K. Enhancing diesel engine performance and reducing emissions using binary

biodiesel fuel blend. J. Energy Resour. Technol. 2020, 142, 01220. [CrossRef]
11. Castro, N.; Toledo, M.; Amador, G. An experimental investigation of the performance and emissions of a hydrogen-diesel dual

fuel compression ignition internal combustion engine. Appl. Therm. Eng. 2019, 156, 660–667. [CrossRef]
12. Devarajan, Y. Experimental evaluation of combustion, emission and performance of research diesel engine fuelled Di-methyl-

carbonate and biodiesel blends. Atmos. Pollut. Res. 2019, 10, 795–801. [CrossRef]
13. Elgarhi, I.; El-Kassaby, M.M.; Eldrainy, Y.A. Enhancing compression ignition engine performance using biodiesel/diesel blends

and HHO gas. Int. J. Hydrogen Energy 2020, 45, 25409–25425. [CrossRef]
14. Hassan, Z.U.; Usman, M.; Asim, M.; Kazim, A.H.; Farooq, M.; Umair, M.; Imtiaz, M.U.; Asim, S.S. Use of diesel and emulsified

diesel in CI engine: A comparative analysis of engine characteristics. Sci. Prog. 2021, 104, 368504211020930. [CrossRef] [PubMed]
15. Song, J.; Wang, G. An Experimental Study on Combustion and Performance of a Liquefied Natural Gas–Diesel Dual-Fuel Engine

With Different Pilot Diesel Quantities. J. Therm. Sci. Eng. Appl. 2020, 12, 021011. [CrossRef]
16. Kemal, A.; Kahraman, N.; Çeper, B.A. Prediction of performance and emission parameters of an SI engine by using artificial

neural networks. Isi Bilimi Tek. Derg. J. Therm. Sci. Technol. 2013, 33, 57–64.
17. Elkelawy, M.; Etaiw, S.E.-d.H.; Bastawissi, H.A.-E.; Marie, H.; Elbanna, A.; Panchal, H.; Sadasivuni, K.; Bhargav, H. Study of

diesel-biodiesel blends combustion and emission characteristics in a CI engine by adding nanoparticles of Mn (II) supramolecular
complex. Atmos. Pollut. Res. 2020, 11, 117–128. [CrossRef]

18. Arat, H.T.; Baltacioglu, M.K.; Özcanli, M.; Aydin, K. Effect of using Hydroxy—CNG fuel mixtures in a non-modified diesel engine
by substitution of diesel fuel. Int. J. Hydrogen Energy 2016, 41, 8354–8363. [CrossRef]
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Abstract: Plastics are used for various applications, including in the food and beverage industry, for
the manufacturing of plastic utensils and straws. The higher utilization of plastic straws has indirectly
resulted in the significant disposal of plastic waste, which has become a serious environmental
issue. Alternatively, bio-plastic and paper straws have been introduced to reduce plastic waste.
However, limited studies are available on the environmental assessment of drinking straws. Life
cycle assessment (LCA) studies for bio-plastic and paper straws have not been comprehensively
performed previously. Therefore, the impact of both bio-plastic and paper straws on the environment
are quantified and compared in this study. Parameters, such as the global warming potential (GWP),
acidification potential (AP) and eutrophication potential (EP), were evaluated. The input–output
data of the bio-plastic and paper straws processes from a gate-to-grave analysis were obtained
from the literature and generated using the SuperPro Designer V9 process simulator. The results
show that bio-plastic straws, which are also known as polylactic acid (PLA) straws, had reduced
environmental impacts compared to paper straws. The outcomes of this work provide an insight into
the application of bio-plastic and paper straws in effectively reducing the impact on the environment
and in promoting sustainability, especially from the perspective of Malaysia.

Keywords: life cycle assessment; global warming potential; acidification potential; eutrophication
potential; bio-plastic straws; paper straws

1. Introduction

Plastic pollution is a serious and long-standing issue that threatens human health at a
global scale. The issue is alarming as plastic is non-biodegradable and does not completely
disintegrate [1]. In fact, Malaysia has been listed as the eighth-worst country worldwide
for the mismanagement of plastic waste [2]. It was estimated that there were almost one
million tons of mismanaged plastic waste in Malaysia, of which 0.14 to 0.37 million tons
may have been washed into the oceans in 2010 [3]. The incineration of plastic waste
could emit dioxin, which is carcinogenic and a hormone disruptor, and, with persistent
exposure, dioxin can accumulate in human body fat [4] and cause toxicity. Moreover,
plastic packaging and straws that have been washed into the ocean and were disposed
of in landfills also threaten the lives of the marine and land animals [5]. According to the
United States National Oceanographic and Atmospheric Administration, plastic debris
kills an estimated 100,000 marine mammals and millions of birds and fishes annually [6].

One of the strategies to reduce plastic waste and the resulting pollution issues is to
replace conventional fossil-based plastics, such as polyethylene (PE) and polypropylene
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(PP), with bio-plastics. Bio-plastics can be produced from renewable feedstocks without
depleting natural resources, and they can biodegrade at a much faster rate than conven-
tional plastics. Polylactic acid (PLA) is one of the most commonly used bio-plastics recently
due to its versatility and biodegradable properties [7]. A previous study reported that
the application of a polybutylene succinate (PBS) and PLA mixture to produce bio-plastic
straws resulted in a lower carbon footprint compared to conventional PP straws [8].

In addition to bio-plastic, paper is also an alternative to plastic. In comparison to the
conventional fossil-based plastics, paper is manufactured from logs wood, which is also a
renewable source. Therefore, paper is usually claimed to be more environmentally friendly.
However, the usage of either paper straws or bio-plastic straws can also pose some impacts
on the environment [9].

To date, the study of environmental impacts has been conducted using different
analytical tools, such as material flow analysis (MFA), environmental impact assessment
(EIA), and life cycle assessment (LCA). LCA is defined as the compilation and evaluation
of inputs, outputs, and environmental impacts of a product system throughout its life cycle
according to the ISO 14,040 standard [10]. It is a structured step-by-step framework, which
defines the goal and functional unit and leads to impact assessment [11].

Among the environmental impact categories, global warming potential (GWP) is
an important indicator [12]. GWP represents the amount of carbon dioxide (CO2) and
other greenhouse gases (GHGs) emitted over a full life cycle of a process or a product.
Meanwhile, acidification potential (AP) is associated with atmospheric pollution arising
from anthropogenically derived sulfur (S) and nitrogen (N) as nitrogen oxides (NOx) or
ammonia (NH3). Anthropogenically derived pollutant deposition was found to enhance
the rate of acidification and increase the natural neutralizing capacity of soils [13]. Soil acid-
ification is also one of the major contemporary environmental issues globally. Acidification
potential is usually calculated in sulfur dioxide equivalents (SO2-eq) [14].

On the other hand, eutrophication potential (EP) is linked to the release of macronu-
trients, such as nitrogen (N) and phosphorus (P), into the air, water, and land, which can
affect both aquatic and terrestrial environments. A high level of nutrients can cause a
deplorable composition shift in species living in a polluted environment. The presence
of macronutrients in water systems often causes algal blooms, which impact the aquatic
ecosystem and domestic water quality.

About 300 million tons of plastic products are produced every year, and half of them
are single-use types, such as cups, straws, and shopping bags. A preliminary investigation
of marine litter pollution along a beach in India during the period of observation from
January to March 2020 found plastic straws as the third most common debris at 9.3% [15]
Meanwhile, straws and stirrers ranked fifth, representing 7.9% among the most common
debris found in the International Coastal Ocean Cleanup in year 2019 [16].

In Malaysia, it was estimated that each person uses one straw daily, amounting to
30 million straws being used daily. This usage of straws per capita varies from country to
country. For example, it was estimated that the straw usage in the United States of America
was at an average daily rate of 1.6 straws per capita. This is a total of 500 million plastic
straws being used every day in the United States alone [17]. In addition, collectively, up
to 8.3 billion plastic straws were estimated to pollute the world’s beaches [18]. Therefore,
aligning with the global effort to reduce plastic waste, in 2019, the Malaysian government
implemented a ban on single-use plastic straws [19]. This increased the awareness of
sustainability and the use of alternative straws. While some may argue the effectiveness of
banning plastic straw usage to promote a reduction in plastic waste, with the ban on single-
use plastic straws, the shift towards alternative straws has been gaining momentum. To
the best of our knowledge, there is limited environmental analysis of alternative drinking
straws, especially from the Malaysian perspective. Thus far, there are limited studies
available on the environmental assessment of drinking straws. A search of the keyword
“drinking straws” in the Scopus database showed 334 available published documents.
However, further filtering using the additional search parameter “life cycle assessment”
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showed seven published documents, of which only one paper was relevant. Limited results
showed environmental assessment for different types of plastics and/or straws. LCA of
PP, PLA, paper, glass, and stainless steel from cradle to grave was carried out by Chitaka
et al. [20], and the results showed that paper straws had the least impact as compared to
the other types of raw materials. However, Rana [21] found that stainless steel straws had
a significantly lower overall environmental impact than that of other straws. LCA for PP,
stainless steel, borosilicate glass, paper, bamboo, and wheat stem straws from cradle to
grave was performed by Zanghelini et al. [22], and it showed that plastic drinking straws
posed a lower environmental impact when compared to reusable straws. Meanwhile,
Chang and Tan [23] developed an integrated sustainability assessment of drinking straws.
The study was carried out to quantify the potential environmental impacts of different
drinking straws based on the scenarios of different countries, such as South Africa [20] and
Brazil [22]. However, no studies are found on the environmental assessments of drinking
straws in a Malaysian scenario.

Information on the environmental impact of bio-plastic and paper is scarce. Hence,
a significant research gap was noted in the evaluation of alternative natural drinking
straws, especially from a Malaysian perspective. Therefore, this study aims to present the
environmental impacts of both bio-plastic and paper straws from cradle to grave using the
LCA approach. Specifically, the main environmental protection indicators, such as GWP,
AP and EP, were evaluated. The work flow was arranged such that the methodology of
the LCA was detailed, followed by the results and discussion. Finally, the conclusion and
recommendations are presented.

2. Methodology
2.1. Life Cycle Assessment

There are four phases in a life cycle assessment, which are the goal and scope definition,
inventory analysis, impact assessment and interpretation [11]. In this study, an LCA of
bio-plastic and paper straws was carried out to evaluate their impacts on the environment.

2.2. Goal and Scope Definition

The goal of this study was to determine the overall environmental impact of bio-plastic
and paper straws from the manufacturing of the raw materials (gate) to their end-of-life
(grave). To compare the environmental impacts of bio-plastic and paper drinking straws,
data were normalized to a functional unit of 100 units of drinking straws produced which
was equivalent to 133 g of bio-plastic straws (given 1.33 g per straw) or 260 g of paper
straws (given 2.60 g per straw).

Figures 1 and 2 illustrate the bio-plastic straws and paper straws system boundaries
in the study, respectively. The input and output data presented included each process
that releases environmental pollutants, such as carbon monoxide (CO), carbon dioxide
(CO2), nitrogen oxide (NOx), nitrous oxide (N2O), methane (CH4), ammonia (NH3), sulfur
dioxide (SO2) and volatile organic compounds (VOC) into the atmosphere. Based on
Figure 1, raw materials (raw corns, NH3 solution, sulfuric acid, and protease), electricity,
and diesel fuel are fed into the system. Meanwhile, for the quantification of GWP, AP, and
EP, the pollutants (CO, CO2, NOx, N2O, CH4, NH3, SO2, and VOC) were considered as
the outputs.
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The manufacturing process of bio-plastic straws consists of six main steps: the pro-
duction of corn starch, the production of lactic acid, the production of bio-plastic, the
production of bio-plastic straws, delivery to consumers, disposal, and transportation. Dur-
ing the production of raw corn starch, processes involved include corn steeping and the
separation of germ, fiber, gluten, and starch, which were considered for the input–output
data analysis [24]. Next, lactic acid was produced from corn starch by saccharification of
starch followed by the fermentation of dextrose into lactic acid, microfiltration, acidifica-
tion, rotary vacuum filtration, and, finally, evaporation. The bio-plastic production also
included processes such as condensation, depolymerization, ring-opening polymerization,
crystallization and granulation. Before the final step (straw delivery), extrusion, injection
molding, labeling, and packaging steps were carried out. As bio-plastic straws are utilized
for a single use, different disposal methods (landfills, incineration and composting) were
evaluated. The wastes were equally divided among three different disposal methods with
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33% for each. Moreover, the transportation of raw materials to the production site and the
transportation of products to the consumer and to the disposal site were also considered in
this study. It should be noted that there is no transportation between Section 2 (lactic acid
preparation), Section 3 (bio-plastic production), and Section 4 (bio-plastic straw production)
as these sections are assumed to occur at the same manufacturing facility (as shown in the
Figure 1).

In addition, Figure 2 illustrates the overall system boundary of paper straws from
the gate to the grave. The setting of the system boundaries was performed in manner
similar to that of the bio-plastic straw products. The boundaries consisted of six sections
of processes that started from the wood preparation, kraft pulping, papermaking, paper
straw production, delivery to consumer and disposal site and transportation. The first
three steps are the extraction and manufacturing processes of raw materials for paper
straw production. The first step was the wood preparation, which consisted of debarking,
chipping and conveying. The next step was the kraft pulping process, which consisted
of three main units (energy generation, chemical recovery, and wastewater treatment).
The papermaking process also involved paper refining and screening, paper reforming,
pressing, finishing and drying before the production of paper straws. In the production of
paper straws, there are five main units, which are the paper feeder, glue feeder, winding
unit, cutting, and the collection unit. Similar to bio-plastic straws, paper straws are utilized
for a single use. Therefore, the disposal methods of the bio-plastic straws, such as landfills,
incineration, and composting, were included. The transportation of raw materials to the
production site and the transportation of products to the consumer and the disposal site
were also considered in this study. Similarly, for the bio-plastic straw, it should be noted
that there was no transportation between Section 1 (wood preparation), Section 2 (kraft
pulping process), and Section 3 (papermaking process) as these sections are assumed to
occur at the same manufacturing facility (as shown in Figure 2).

2.3. Inventory Analysis

A process simulation model was developed using a SuperPro Designer V9.0 based on
Figures 1 and 2. The process simulation flowsheet of bio-plastic and paper straws is shown
in Figures S1–S7 (Supplementary Data). The following assumptions and limitations were
made for the inventory analysis:

• All calculations were based on 100 units of drinking straws produced, which were
equal to 133 g of bio-plastic straws and 260 g of paper straws.

• Corn starch production was adapted from the corn refinery simulation [24].
• Similar physical properties in the injection molding of the PLA and the PP were

assumed as the PLA straws are very flexible and perform similarly to conventional
plastic straws made of PP [25].

• For the kraft pulping process, biomass combustion was used in the energy generation,
which is commonly used in the pulp and paper industry [26].

• The disposal of bio-plastic and paper straws was equally divided between a composite
facility, landfill and incineration. A similar amount of bio-plastic paper straws for each
disposal method was ensured. The equal division was assumed for different disposal
methods in order to analyze how each of the processes contributes to the GWP and
AP [27].

• The landfill sites of bio-plastic and paper straws are located in Malaysia. Thus, both
landfill sites have similar site characteristics, i.e., weather, humidity and temperature.

• The transportation of raw materials to the manufacturing site, the transportation of the
product to the customer and the transportation of used bio-plastic and paper straws
to disposal sites were based on the actual location of the supply chain in Peninsular
Malaysia as a case study.

The equipment set-up in the process simulator SuperPro Designer v9.0 (by Intelligen
Inc., Scotch Plains, NJ, USA) is illustrated in the Supplementary Data (Tables S1–S7). Based
on the input as stipulated in Tables S1–S7, SuperPro Designer performs thorough material
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and energy balances and calculates each of the process’s environmentally significant stream
properties. Then, the data are tabulated for further analysis. Details of the process data
inventory for bio-plastic and paper straws can be obtained from the Supplementary Data
(Tables S8 to S10). The quantity of the power consumption and emission of pollutants
(mass of pollutant, mi) from each of the unit processes of the bio-plastic and paper straw
production are essential to calculate the environmental impact categories.

2.4. Impact Assessment

The purpose of the impact assessment is to convert and aggregate the inventory
analysis findings into the relevant environmental indicator. This can be explained as the
transformation of the inventory results into the number of contributions to environmental
impact categories (GWP, AP and EP). The main environmental effects identified by the
European Commission in the Economics and Cross-Media Effects document includes
global warming, acidification, and eutrophication [28].

All the identified environmental potential indexes were evaluated using the expres-
sions summarized in Table 1. The main parameters used in the formula are the mass (mi)
in kilograms (kg) of a specific pollutant released to the air and pollutant specific weighting
factors (GWPi, APi and EPi). These factors are representative of potential environmental
effects per mass unit of the specific pollutant.

Table 1. Potential index definitions of the considered environmental effects and respective units of
measurement [10,28].

Index Formula Unit of Measure

Global Warming Potential GWP = ∑ GWPi × mi kg CO2 equivalent (kg CO2-eq)

Acidification Potential AP = ∑ APi × mi kg SO2 equivalent (kg SO2-eq)

Eutrophication Potential EP = ∑ EPi × mi kg PO4 equivalent (kg PO4-eq)

Each of the environmental potential indexes was evaluated as the sum of the effects
of several pollutants based on the data tabulated in Tables S8 to S10. Each pollutant
mass (mi) was weighted by a specific weighting factor, which was expressed based on
a reference substance. This allows a direct comparison and summation of the effects of
several unrelated pollutants according to a cross-media effect assessment approach.

The specific weighting factor values for selected pollutants are listed in Table 2. The
weight of various pollutants can be different as displayed in Table 2. In general, the sum
of each considered potential index can be calculated once the pollutant mass levels are
specified using the expression and specific factors reported in Tables 1 and 2, respectively.
For instance, to calculate the GWP for Section 1 of bio-plastic straws production, all the
pollutants related to GWP were taken into the calculation, as shown in Table 3. The total
GWP of individual process (such as corn steeping) can be calculated (0.26 × 2 + 0.03 ×
3 + 1100)/1000 = 1.1). The total GWP of Section 1 is the summation of the GWP of each
individual process.

Table 2. List of specific weighting factors for the pollutants [10,28,29].

Item of Measurement
GWPi APi EPi

kg CO2-eq/kg kg SO2-eq/kg kg PO4-eq/kg

CO 2 0 0
NOx 0 0.7 0.13
SOx 0 1 0
VOC 3 0 0
NH3 0 1.88 0.35
CO2 1 0 0
CH4 23 0 0
N2O 310 0 0
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Table 3. Example illustration of calculation for environmental impact category versus pollutants mass.

Pollutants GWPi

Corn Starch Production (Section 1)
Corn

Steeping
Germ

Separation
Fiber

Separation
Gluten

Separation
Starch

Separation

CO (g) 2 2.6 × 10−1 1.5 7.7 × 10−1 6.0 × 10−1 8.0 × 10−1

VOC (g) 3 3.0 × 10−2 1.7 × 10−1 8.9 × 10−2 6.9 × 10−2 9.2 × 10−2

CO2 (g) 1 1.1 × 103 6.3 × 103 3.4 × 103 2.6 × 103 3.5 × 103

Total GWP 1.1 6.3 3.4 2.6 3.5
Overall GWP 16.9 kg CO2-eq/100 straws

The generation of 1 MJ of electricity emits a specific amount of pollutants [30,31] and
further contributes to the GWP, AP and EP. The GWP is impacted by CO, CO2 and VOC,
while the AP is impacted by SO2 and NOx. The EP is impacted by NOx. The GWP is
impacted by CO, CO2 and VOC, while the AP is impacted by SO2 and NOx. The EP is
impacted by NOx. These data were obtained from the power consumption of Tables S8–S10
(Supplementary Data).

The transportation distances from the corn plantation site to the corn starch production
site, corn starch production site to straw manufacturing plant, straw manufacturing plant
to consumer and, finally, consumer to the disposal site (i.e., incinerator, composting facility,
and landfill) were taken into consideration based on the sites in Malaysia. The total distance
of bio-plastic straws is tabulated in Table 4. Similarly, Table 5 illustrates the transportation
details of the paper straws, which include the transportation of raw wood to the paper mill,
paper to paper straws, paper straws to the consumers, and, lastly, the used paper straws
transferred for end-of-life processing.

Table 4. Transportation distance for bio-plastic straws.

Starting Point Destination Distance (km)

Raw Corn Corn Starch 187
Corn Starch Bio-Plastic Straws 202

Bio-Plastic Straws Consumer 50

Consumer
Incineration Plant 562

Composting Facility 315
Landfill 27

Total distance (km) 1343

Table 5. Transportation distance for paper straws.

Starting Point Destination Distance (km)

Wood Supplier Paper Mill 59
Paper Mill Paper Straw 119

Paper Straw Consumer 50

Consumer
Incineration Plant 252

Composting Facility 31
Landfill 33

Total distance (km) 544

The details of the different locations are referenced based on the existing sites lo-
cated in Malaysia (Supplementary Data Figures S9 and S10 for bio-plastic and paper
straws, respectively). It was assumed that a medium- and heavy-duty truck was employed
throughout the transportation of the raw materials and products. The emission factors of
the transport used are shown in Table 6 to calculate the environmental impact based on the
total distances in Tables 4 and 5.
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Table 6. Product transport emission factors [32].

Vehicle Type Medium- and Heavy-Duty Truck

CO2 Factor (kg/km) 0.904716
CH4 Factor (g/km) 0.011185
N2O Factor (g/km) 0.006835

2.5. Data Interpretation

The final step in the LCA according to the ISO 14,044 standard on environmental
management is interpretation. There are three main objectives of LCA interpretation.
The first objective is to identify significant issues based on the LCA results. Next is
the evaluation of completeness, sensitivity and consistency. The results were interpreted
according to the goal and scope of the study, which includes an assessment and a sensitivity
evaluation of the significant inputs, outputs and methodological choices to understand the
uncertainty of the results. According to ISO 14044, the process of the completeness check
identifies any missing or incomplete information which is related to the goal and scope
of the LCA, and, if there is any, it shall be recorded and justified. The consistency check
can also be defined as a process to determine whether the assumptions, methods and data
are consistent with the goal and scope. The process addressed the data quality, regional
and/or temporal differences, system boundary, and consistency of impact assessment. The
findings from this research were compared to those of other similar studies to detect any
incomplete or erroneous data. Note that the data input of the equipment setup during the
initial simulation is based on the judgement of the researchers after considering the expert
input and literature review. As such, the value may vary if the type of the equipment
is varied and the efficiency of the equipment is improved. In summary, data validation
was conducted and compared with the published research, and then the conclusions were
drawn in line with the study objectives.

3. Results and Discussion
3.1. Overall Result of Bio-Plastic Straws

Figure 3 shows the GWP, AP and EP of bio-plastic straws. The initial sections of the
whole process, which are Sections 1 and 2, emitted a high amount of pollutants which
contributed to the three impacts. These processes included the production of starch from
raw corn followed by the production of lactic acid from the starch, which required a
relatively high amount of electricity. The extraction of the lactic acid from the raw corn
involves a series of energy-intensive process such as corn steeping, starch separation,
saccharification of the starch, fermentation and purification [24]. Therefore, a huge amount
of carbon dioxide was emitted to the environment and resulted in a high GWP for the
overall process. The amount of AP and EP in Section 1 was much higher than that in
Section 2 due to the release of NH3 during germ, gluten and starch separation. Overall, the
electricity consumption greatly reduced starting from Section 3 onwards where bio-plastic
was produced, until Section 5 of the system boundary (Figure 1) where delivery to the
consumer and the disposal of bio-plastic straws took place. This could be attributed to the
lower energy-intensive processes in the later sections of the overall manufacturing process
of bio-plastic straws.

In Section 4, where the bio-plastic straw production was carried out, small amounts
of pollutants contributing to GWP, AP and EP were captured in the inventory list. This
could be due to the continuous high amount of heat required to melt the PLA pellets in the
extrusion process. Therefore, a high amount of electricity supply was required in Section 4.
Lower AP and EP were noted as Section 5 of the system boundary involves delivery to the
consumer and the disposal of straws. These were mainly due to a smaller amount of NOx
and SOx emitted during the processes in Section 5 of the system boundary. In Section 6 of
the system boundary (Figure 1), AP and EP were observed to be zero because CO2, CH4,
and N2O were the only pollutants considered during the transportation section.

63



Processes 2021, 9, 1007Processes 2021, 9, x FOR PEER REVIEW 10 of 17 
 

 

 
Figure 3. (a) GWP, (b) AP, and (c) EP of 100 units of bio-plastic straws. 

In Section 4, where the bio-plastic straw production was carried out, small amounts 
of pollutants contributing to GWP, AP and EP were captured in the inventory list. This 
could be due to the continuous high amount of heat required to melt the PLA pellets in 
the extrusion process. Therefore, a high amount of electricity supply was required in Sec-
tion 4. Lower AP and EP were noted as Section 5 of the system boundary involves delivery 
to the consumer and the disposal of straws. These were mainly due to a smaller amount 
of NOx and SOx emitted during the processes in Section 5 of the system boundary. In Sec-
tion 6 of the system boundary (Figure 1), AP and EP were observed to be zero because 
CO2, CH4, and N2O were the only pollutants considered during the transportation section. 

3.2. Overall Result of Paper Straws 
Based on Figure 4, it can be observed that Section 2 contributed to the highest GWP, 

AP and EP compared to other sections. Section 2 involves the kraft pulping process where 
wood chips were converted into pulp, which was further processed into paper. There are 
three main units in the kraft pulping process section, which are the energy generation, 
chemical recovery and wastewater treatment. The energy generation unit contributed to 
the highest GWP, AP and EP due to the biomass combustion, which released high 
amounts of carbon dioxide, methane, nitrous oxide and nitrogen oxides [26]. 

Figure 3. (a) GWP, (b) AP, and (c) EP of 100 units of bio-plastic straws.

3.2. Overall Result of Paper Straws

Based on Figure 4, it can be observed that Section 2 contributed to the highest GWP,
AP and EP compared to other sections. Section 2 involves the kraft pulping process where
wood chips were converted into pulp, which was further processed into paper. There are
three main units in the kraft pulping process section, which are the energy generation,
chemical recovery and wastewater treatment. The energy generation unit contributed to
the highest GWP, AP and EP due to the biomass combustion, which released high amounts
of carbon dioxide, methane, nitrous oxide and nitrogen oxides [26].
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Section 5 of the system boundary, which includes disposal of paper straws by com-
posting, landfill or incineration, contributed to the highest GWP, followed by Sections 3
and 4. The highest GWP noted in Section 5 of the system boundary could be attributed to
the emission of methane from the landfill. On the contrary, Section 1 (the wood preparation
process) contributed to the least GWP. No emission of pollutants was involved in the wood
preparation process except a small amount of electricity that was used for the debark-
ing, chipping, and conveying process [33]. Section 3 (the papermaking process, which
consumed a high amount of electricity) contributed to the highest AP compared to other
sections. There were several processes in Section 3, which included paper refining and
screening, paper forming, pressing, finishing and paper drying. Paper forming, pressing,
and finishing processes required the most electricity annually and therefore resulted in
a high AP. By contrast, the disposal of paper straws (Section 5 of the system boundary)
contributed the least to AP.

3.3. Overall Comparison of Bio-Plastic Straws and Paper Straws

Six sections of the life cycle of bio-plastic and paper straws were studied regarding
the GWP, AP and EP. The first three sections were the extraction and production of raw
materials, which were the PLA for bio-plastic straws and paper for paper straws. There-
fore, Sections 1–3 were grouped as one for comparison, as shown in Figure 5. Based on
Figure 5a,b, paper straws contributed to a higher GWP and AP compared to bio-plastic
straws concerning the extraction and production of raw materials. Section 1 for the prepara-
tion of corn starch for bio-plastic straws contributed to the higher GWP and AP compared
to paper straws (Section 1: wood preparation). The production of starch from raw corn in
Section 1 of bio-plastic straws generated a large portion of GWP and AP. This was due to
the extraction process of starch, which involved corn steeping and germ, fiber, gluten and
starch separation. On the contrary, the kraft pulping process in Section 2 of paper straws
generated a large portion of GWP and AP due to higher energy generation that involved
the combustion of biomasses. Moreover, the papermaking process for paper straws in
Section 3 contributed to a higher GWP and AP than the polymerization of lactic acid for
bio-plastic straws due to the higher electricity consumption. However, based on Figure 5c,
bio-plastic straws contributed to a higher EP than paper straws, which could be ascribed to
the release of NH3 during germ, gluten, and starch separation in Section 1.

As for Section 4 where the production of drinking straws takes place, based on
the results shown in Figure 6, bio-plastic straws contributed to higher GWP, AP and
EP compared to that of paper straws. This could be explained by the energy-intensive
production of bio-plastic straws compared to paper straws which involved the process of
extrusion and injection moulding. In contrast, paper straw production does not require
high electricity consumption. In Section 5 of the system boundary, delivery to the consumer
and the disposal of drinking straws and paper straws contributed to the higher amount
of GWP as compared to bio-plastic straws. This was due to the high emission of methane
and carbon dioxide as a result of anaerobic decomposition in the landfill for paper straws.
However, both paper and bio-plastic straws contributed to the same amount of AP due to
similar electricity consumption for composting, landfill and incineration. For Section 6 of
the system boundary (transportation), bio-plastic straws contributed to a higher GWP as
compared to paper straws. This was due to longer distance travelled in the transport of
bio-plastic straws than paper straws, which was affected by the different locations of the
plants in the supply chain of the respective drinking straws. There was no AP and EP for
either bio-plastic or paper straws due to zero AP pollutants for the transportation section.

The AP findings of the present study are consistent with those reported by Chaffee
and Yaros (2007) where an LCA study was conducted to evaluate the environmental
impact of grocery bags. However, the authors stated that the GWP of paper grocery bags
was lower than that of bio-plastic grocery bags. This was due to the different system
boundary as their study involved the extraction of fuels and feedstocks from the earth
which included the tree growing process. Therefore, the CO2 emissions, which are one of
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the main GWP contributors, were greatly reduced, as most of the CO2 was absorbed during
the photosynthesis process that takes place during the development of trees. Moreover,
the raw material of paper bags consisted of a mixture of paper and recycled paper instead
of pure paper that was used for paper straw processing, which also reduced the overall
GWP. In contrast, the raw material of bio-plastic does not only consist of PLA but also other
compostable plastics [34]. Therefore, the GWP trend for grocery bags is different from that
of drinking straws; however, the AP pattern is similar.
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Overall, as shown in Figure 7, paper straws have a higher GWP and AP compared to
bio-plastic straws. However, bio-plastic straws have a slightly higher EP than paper straws,
but, generally, the EP for both types of straw is very small and insignificant compared to the
GWP and AP. The GWP and AP were mainly impacted by the extraction and production of
raw materials for the production of drinking straws. This included corn starch production
and wood preparation for Section 1, lactic acid production and kraft pulping process for
Section 2, and polylactic acid production and papermaking process for Section 3. Overall,
based on the simulated case study, bio-plastic straws are found to be a better option
compared to paper straws for a milder impact on the environment concerning the GWP
and AP.
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Figure 7. Overall grand total of GWP, AP, and EP for bio-plastic straws and paper straws.

3.4. Sensitivity Analysis

Sensitivity analysis was performed to demonstrate the effects of changing process
variables, i.e., power consumption, on the fluctuation of GWP, AP and EP values of bio-
plastic straws and paper straws. The results would enable the analysis of uncertainty
propagation in an LCA calculation. The results could also indicate how well the process
coped with uncertainty under different conditions [35]. The sensitivity analysis was
done by switching the simulation model to rating mode and tested for its robustness.
The probabilities were calibrated for the LCA outcomes arising from uncertainty in the
inventory and from data variation characteristics.

The power consumption for one of the unit operations, which was used for the
extrusion process in bio-plastic straws production (Section 4), was varied using SuperPro
Designer for sensitivity analysis. The effect of the power consumption variation towards
the GWP, AP and EP values of bio-plastic straws is shown in Figure 8a. On the other hand,
the power consumption for paper drinking straw machine in paper straws production
(Section 4) was also varied using SuperPro Designer for similar sensitivity analysis. The
result is shown in Figure 8b. The results shown in Figure 8 indicated that the LCA
conducted in this study experienced a slight increase of its GWP, AP and EP values (at the
range of 0.0004–0.500%) when the power consumption increased with an interval of 5–10%,
respectively. Hence, the sensitivity analysis conducted in this study showed minimal
fluctuations of GWP, AP, and EP values with the variation in the power consumption.
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4. Conclusions

The GWP, AP, and EP of bio-plastic straws were successfully evaluated using the LCA
with data obtained from process simulator. It was found that the corn starch production
contributed to the highest GWP, AP and EP, which was ascribed to energy-intensive
processes such as corn steeping and the separation of germ, fiber, gluten and starch.
Moreover, the GWP, AP, and EP of paper straws were also successfully investigated using
the LCA with data obtained from both the literature and the process simulator. The kraft
pulping process contributed to the highest GWP, AP, and EP due to the energy generation
unit, which involved biomass combustion. The GWP, AP, and EP for both bio-plastic and
paper straws were compared for an indication of straws with less environmental impact.
It was found that bio-plastic straws have a lower GWP of 26 kg CO2-eq per 100 units
of drinking straws, an AP of 0.12 kg SO2-eq per 100 units of drinking straws and an EP
of 0.016 kg PO4-eq per 100 units of drinking straws. Additionally, paper straws have a
GWP of 1225 kg CO2-eq per 100 units of drinking straws, an AP of 1.5 kg SO2-eq per
100 units of drinking straws and an EP of 0.0002 kg PO4-eq per 100 units of drinking straws.
Therefore, concerning the GWP and AP, bio-plastic straws are a better option than paper
straws for a milder impact on the environment. Previous studies have shown that plastic
straws posed a lower environmental impact compared to reusable straws, and bio-plastic
straws showed a lower carbon footprint compared to conventional plastic straws. From
this point of view, bio-plastic straws could be a feasible replacement for conventional
plastic straws. The outcome of this study is able to serve as a benchmark in selecting
alternative straws in efforts towards zero-plastic straws in Malaysia. However, the decision
to switch to bio-plastic straws should not be rushed. Comprehensive information related
to their biodegradability as well as the water and land footprints could be included for
consideration to provide a more holistic sustainability assessment of drinking straws.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/pr9061007/s1, Table S1: Equipment details of corn starch production (Section 1) based
on SuperPro Designer, Table S2: Equipment details of lactic acid production (Section 2) based on
SuperPro Designer, Table S3: Equipment details of bio-plastic production (Section 3) based on
SuperPro Designer, Table S4: Equipment details of bio-plastic straws production (Section 4) based
on SuperPro Designer, Table S5: Equipment details of delivery to consumer and disposal of bio-
plastic straws (Section 5) based on SuperPro Designer, Table S6: Equipment details of paper straws
production (Section 4) based on SuperPro Designer, Table S7: Equipment details of delivery to
consumer and disposal of paper straws (Section 5) based on SuperPro Designer, Table S8: Process
data inventory of bio-plastic straws production obtained from SuperPro Designer simulator (based on
100 drinking straws unit functional), TableS9: Process data inventory of bio-plastic straws production
obtained from SuperPro Designer simulator (based on 100 drinking straws unit functional) (continue),
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Table S10: Process data inventory of paper straws production obtained from SuperPro Designer
simulator (based on 100 drinking straws unit functional), Figure S1: Overall process flow diagram of
the corn starch production (Section 1), Figure S2: Process flow diagram of the lactic acid production
(Section 2), Figure S3: Process flow diagram of the bio-plastic production (Section 3), Figure S4:
Process flow diagram of the bio-plastic straws production (Section 4), Figure S5: Process flow
diagram of the delivery consumer and disposal of bio-plastic straws (Section 5), Figure S6: Process
flow of the production of paper straws (Section 2), Figure S7: Process flow diagram of the delivery to
consumer and disposal of paper straws (Section 5), Figure S8: Transportation detail for the overall
process for bio-plastic straws from gate to grave, Figure S9: Transportation detail for the overall
process for bio-plastic straws from gate to grave.
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Abstract: This study focuses on using a facile method for the green preparation of activated carbon
(AC) from palm tree fiber (PTF) waste. The synthesized cost-effective AC was investigated for the
removal of an anionic dye (Congo red, CR) and a cationic dye (Rhodamine B, RhB) from wastewater.
The morphological and structural characterization of the synthesized AC were performed by scanning
electron microscopy (SEM), transmission electron microscopy (TEM), surface area, Fourier transform
infrared spectroscopy (FTIR), total pore volume, average pore diameter and pore size distribution,
zeta potential, and zero-point charge. To investigate the adsorption efficiency, different parameters
such as adsorbent dosage, solution pH, initial dye concentration, and duration were applied using
the batch experiments. Various adsorption isotherm and kinetics models were applied to study the
adsorption mechanism and dynamics. The results showed that chemical activation with a weak acid
(H3PO4) at 400 ◦C for 30 min is a fast method for the activation of each precursor and produces a high
yield. The result of analysis showed an increase in the adsorption capacity at pH 2. The maximum
adsorption capacity was 9.79 and 26.58 mg g−1 at 30 min for CR dye and RhB dye, respectively. The
optimum adsorbent dosage for the activated carbon from palm tree fiber (PTFAC) was 0.15 g with
a high percentage removal of CR (98.24%) and RhB (99.86%) dyes. The adsorption isotherm and
kinetic studies were found to be favorable and feasible for assessing the adsorption of dyes with
the Langmuir model and pseudo-second-order reaction, respectively. In addition, the AC showed
reusability up to five cycles. The results showed that the synthesized AC was environmentally
friendly and successfully removed dyes from wastewater.

Keywords: activated carbon; adsorption; anionic and cationic dyes; palm tree fiber wastes; recycles

1. Introduction

The continuous growing population and their requirements have seriously contam-
inated water with several undesirable materials, for example, artificial dyes [1]. Syn-
thetic dyes obtained from organic or inorganic compounds are mainly composed of two
compounds—chromophores and auxochromes. The chromophore produces the color of
dye, whereas the auxochrome is responsible for the intensity of color [2,3]. Before the
invention of artificial dyes in 1956, the natural dyes obtained from plant sources as roots,
berries, bark, leaves, wood, fungi, and lichens were used [4]. After 1956, artificial dyes
derived from petrochemicals were used as coloring agents for several products in the
market. Additional engaging colors have been introduced to various advanced industries
such as textiles, paper, animal skin tanning, food processing, plastic, cosmetic, and dye-
producing industries [5]. Synthetic dyes are usually carcinogenic, cause serious damage to
water resources, and contribute to environmental pollution. The environmental and health
concerns associated with the wastewater effluents have led scientists to search for simple,
inexpensive, and rapid solutions. The putrefaction of dyes from wastewater can be done
using three methods, namely physical, biological, and chemical methods [6]. These include
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precipitation, oxidation, coagulation, adsorption, and membrane separation [7–9]. Among
these methods, adsorption is a cost-effective, simple, and feasible technique for the removal
of organic dyes from wastewater. Many synthetic ingredients have been effectively used as
adsorbents for the elimination of contaminants from water [10–12].

Among them, activated carbon (AC) is considered as the most commonly used adsor-
bent in the industry for the removal of contaminants [13]. The pore structure of the AC
is quite developed with a high surface area and good adsorption capacity. The external
chemical functional groups and structural properties of AC make it suitable for many
applications used for the elimination of organic and inorganic contaminants from contami-
nated water [14,15]. However, the fabrication of marketable AC is costly; thus, research
attention has been paid to develop a low-cost and competent AC using several sources. The
production of AC from natural sources or agroindustry wastelands was considered because
they are renewable, highly available, and cost-effective, and they have good properties.
Thus, their disposal is required for a cleaner environment. In this regard, many researchers
have reported on the preparation of AC from various industrial denim fabric waste [16] and
agriculture waste (biomasses) such as coconut coir, apricot stones [17], Nigella sativa L [18],
palm shell [19], pecan shell [20], pine cone [21], tapioca peel [22], macadamia nutshell [23],
Mucuna pruriens and Manihot esculenta [24], snail shell [25], and tea leaves [26].

There are two methods to produce AC: physical and chemical activation. In physical
activation, raw material is carbonized and then activated with steam and carbon dioxide.
Chemical activation involves the impregnation of a chemical-activating agent in the pre-
cursor material followed by activation at temperatures between 400 and 700 ◦C under the
nitrogen atmosphere [27]. The advantages of chemical activation are the following: (a) it
occurs in a shorter time compared to that prepared by physical activation; (b) the produced
AC has a high surface area with high yield; and (c) the activating chemical agent influences
the breakdown of carbon and prevents the development of tar and volatile substance,
thereby increasing the yield of AC. In addition, in the case of chemical activation, the
process of dehydration and oxidation requires lower temperatures compared to that in the
physical activation [28]. In the chemical activation method, ZnCl2, KOH, and H3PO4 are
extensively used as chemical-activating agents for the activation of lignocellulosic materi-
als, which have not been carbonized. In addition, KOH is used for the activation of coal
precursors or chars. The most common of activating agents include KOH and ZnCl2 since
they provide microporous features, which restricts these materials’ applications for the
adsorption of high molecular weight molecules in aqueous solution [16]. Thus, attempts
were made toward the use of H3PO4 as a proper and low-cost activating agent for of AC as
reported earlier for many biosorbent lignocellulosic material [16]. In the literature, various
parameters were studied such as the concentration of activation agent, temperature, and
activation time [29–31].

The present study focuses on the facile preparation of AC from biomass by chemical
and thermal activation methods. The vast number of date palm trees in Saudi Arabia is
about 23 million. Thus, palm tree fiber (PTF) is one of the greatest freely existing biomasses,
and it is common agricultural waste in Saudi Arabia. Therefore, PTF has been chosen
as the specific biomass in order to produce more economical Ac and easy accessibility
collection [32]. The parameters such as the activation agent, activation temperature, and
activation time were investigated for PTF activation in this study. Another goal of the study
was to use various analytical techniques to examine the efficiency of the prepared AC to
remove anionic dye Congo red (CR) and cationic dye rhodamine B (RhB) from polluted
water. The influence of initial concentration, duration, adsorbent dosage, and pH on the
adsorption of CR and RhB were studied. Performing equilibrium isotherm and kinetics of
adsorption for CR and RhB as well as exploring the re-generation of used activated carbon
from palm tree fiber (PTFAC) were also considered as the main objectives.
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2. Materials and Experimental Procedures
2.1. Instruments

The pH values of dyes and adsorbent powder were measured using a pH meter
(MP220; Mettler Toledo). A cyclone mill (CT 193 CyclotecTM; Mill Collection) was used to
ground the sample, and the sample was sifted by a KimLab ISO 3310 Std Test Sieve; the
required size was a 0.43 mm mesh size. The mixtures were agitated using a reciprocating
shaker (cat. no. 3006; GFL Shakers). The samples were carbonized in a muffle furnace
(A-550; Vulcan), and after washing, they were dried in an oven (FN 055/120 Dry Heat
Sterilizers). The spectroscopic reading was generated by using a UV-vis spectrophotometer
(UV-1650PC, Shimadzu). Transmission electron microscopy (TEM) was performed using
JEM-1230 (JEOL). The zeta potential of the PTFAC was measured by a Zetasizer (version
7.04, serial number MAL 1074157; Malvern Instruments). Scanning electron microscopy
(SEM) was performed by Quanta FEG250. Fourier transform infrared spectroscopy (FTIR)
was conducted by using a Spectrum Two FTIR Spectrometer (PerkinElmer) at the absorption
spectra range of 4000–400 cm−1.

2.2. Materials and Chemical Reagent

Palm tree fiber waste was collected from the locally available palm trees on the campus
of King Abdulaziz University, Jeddah, Saudi Arabia. The PTF was washed multiple times
with hot distilled water to eliminate dust and impurities and then dried in sunlight for a
few days. The dried palm fiber was crushed to powder form, sifted to the desired particle
size, and used to prepare the AC. The obtained granular particle size of the pulverized fiber
was approximately 0.43 mm. Raw materials and the prepared AC are shown in Figure 1.
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powder.

Congo red anionic dye (HiMedia) and RhB cationic dye (Sigma Chemical) were used
as adsorbates (Table 1). Stock dyes solution (1000 mg L−1) was made by dissolving a suit-
able amount of dye powder, which was accurately weighed on an electronic balance using
deionized water. During the adsorption experiments, a diluted dye solution that had a con-
centration between 5 and 50 mg L−1 was prepared from the stock solution. The chemicals
reagents such as H3PO4, H2SO4, HCl, and KOH were supplied by Fisher Scientific.

2.3. Chemical and Thermal Activation of Carbon from Palm Tree Fiber

The activation was carried out by impregnation of the PTF with various chemical
agents as such as phosphoric acid (85%), sulfuric acid (98%), and potassium hydroxide
(2 M) with an impregnation ratio of chemical/biomass being 3:1. The duration of the
process was 24 h. The experiment was done under full safety precautions. Inside a fume
hood, the chemical agent was added gradually to PTF to obtain a mixture. Then, the slurry
was filtered, washed, and dehydrated in a dryer oven at 130 ◦C for 2 h. The designed
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samples of chemically activated carbon PTF were termed as CAPTF-H3PO4, CAPTF-H2SO4,
and CAPTF-KOH. The pyrolysis process was carried out to increase the efficiency of the
fibers activated by phosphoric acid (85%). The fibers were carbonized at 200, 300, 400,
500, 600, and 700 ◦C several times (30, 60, 120, and 180 min) in a muffle furnace using a
covered porcelain crucible for reduced oxygen. Then, they were cooled at room temperature
and soaked in 1.0 M NaOH for 2 h. After soaking, the obtained materials were washed
thoroughly with hot distilled water followed by cold distilled water to remove all free acid
until they attained a neutral pH. Then, they were oven-dried at 130 ◦C for 2 h. Finally, the
dried materials were milled into a fine powder and kept in a plastic bag until used. The
samples produced by activated carbon palm tree fiber were termed as PTFAC, as shown in
Figure 1.

Table 1. Properties of synthetic dyes.

Dyes Rhodamine B (RhB) Congo Red (CR)

Molecular formula C28H31N2O3Cl C32H22N6Na2O6S2

Molecular structure
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Molecular weight (g/mol) 479.02 696.66

Chemical/Dye class Xanthene dye Diazo dye

λmax (nm) 554 nm 496 nm

The adsorption process was performed by the batch-adsorption method. To select
the fiscal chemical-activating agent (i.e., H3PO4, H2SO4, or KOH), the best pyrolysis
temperature (200, 400, 600, or 800 ◦C), and suitable time (30, 60, 80, and 120 min) to remove
CR and RhB dyes, the synthesized PTFAC were conducted under the following conditions:
volume of dye solution = 20 mL, initial concentration = 25 mg L−1, contact time = 120 min,
temperature = 25 ◦C, adsorbent dose = 0.1 g, agitation speed = 300 rpm, pH = natural.

2.4. Characterization of AC

The specific surface area, total pore volume, average pore diameter, and pore size
distribution of the prepared AC were examined by Brunauer–Emmett–Teller (BET) N2
adsorption method. The presence of porosity, microanalysis, and surface morphology
of the PTFAC carbonized at 400 ◦C were studied by using the SEM and TEM. The FTIR
technique was used to study the effect of chemical treatment on biomasses and to recognize
various functional groups present on the surface of the materials. This technique was used
to examine the surface functional groups of the ACs.

Zeta potential measurement was used for determining the surface charge of AC
particles in the solution. In other words, the possible difference between the dispersion
medium and the stationary layer of fluid attached to the particle was measured by zeta
potential. The pH of the solution with distilled water was measured as follows: the mixture
was prepared in a ratio of 10 mL water to 1.0 g of carbon; this mixture was stirred, and the
pH was measured several times until a constant value was reached. The pH of zero-point
charge (pHzpc) for AC was determined by the batch equilibrium method. During the
measurement, the solid/liquid ratio was 1:1000; that is, 0.05 g AC was added to 50 mL of
water. This suspension was left for 48 h, and the pH was measured and found to be 3. In
another experiment, 0.05 g of AC was mixed with 50 mL of 0.1 M NaCl, and the pH of
solution was fixed between 2 and 12 by 0.1 M hydrochloric acid or 0.1 M sodium hydroxide.
The solution was stirred for 48 h on a shaker bath at an agitation speed of 120 rpm and at
room temperature (25 ◦C). Thereafter, the final pH values were recorded, and the difference
between the original and final pH values (∆pH = pHinitial − pHfinal) was calculated and
compared with the initial ones.
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2.5. Adsorption Processing

The adsorption of dyes onto PTFAC was assessed using batch adsorption experi-
ments. The procedure was performed as follows: First, a series of dye solutions with
initial concentrations of 5.0–50 mg L−1 was prepared. Second, dye solutions with different
pH values (2.0–12) were prepared. Finally, 20 mL of dye solution was added into 50 mL
volumetric flasks with different amounts of PTFAC adsorbent doses (0.05–0.25 g). Then,
the mixtures were stirred in a shaker at an agitation speed of 250 rpm at different times
(5.0–120 min) at room temperature. The solutions were filtered using the Whatman Quali-
tative Filter Paper Grade 2. The dye concentration was determined by using the UV-visible
spectrophotometer at wavelength 554 nm and 496 nm for RhB and CR dyes, respectively.
All the experiments were performed in triplicate, and the mean values were recorded. The
amount of all dyes adsorbed by the PTFAC and the removal percentage was calculated by
Equations (1) and (2), respectively:

Removal % =
Co − Ce

Co
× 100 (1)

qe =
(Co − Ce)

m
× V (2)

where qe is the quantity of adsorbed dye on 0.1 g of PTFAC (mg g−1), Co is the original dye
concentration (mg L−1), Ce is the residual concentration of the solution at equilibrium (mg
L−1), V is the volume of dye solution (L), and m is the amount of the adsorbent PTFAC (g).

2.6. Desorption Studies and Regeneration

To understand the sustainability of regenerating the AC and make the process more
economical, desorption trials were performed to determine the efficiency of the AC. The
traits of an excellent adsorbent should include not only high adsorption capacity but also
reduction of the overall cost of the adsorbent by possessing high desorption capacity.
Desorption studies of PTFAC were carried out using different concentrations of acetic
acid CH3COOH, sodium hydroxide NaOH, and different pH values of distilled water.
The R-PTFAC is a sample after adsorption used to study the regeneration and recycle.
Thereafter, 0.1 g R-PFAC was added to 50 mL desorption solutions (0.1, 0.5, 1.0 M NaOH;
0.1, 0.5, 1.0 M CH3COOH) and distilled water and the pH was adjusted (2.5, 4.5, 6.5, 8.5,
and 10.5). Then, it was stirred in a shaker at 250 rpm for 3 h at room temperature. After
desorption, R-PTFAC was washed with distilled water until it became neutral and was
reused for the removal of RhB and CR dyes from solution. The adsorption–desorption
studies were performed for five sequential cycles. The dye concentration in the filtrate was
examined by the UV–vis spectrophotometer. The effectiveness of the desorbed dye from
AC was evaluated by Equation (2).

2.7. Application of Real Water Samples

The real water samples were collected from the water sewage treatment plant and tap
water at King Abdulaziz University, Jeddah City. The well water and seawater samples
were collected from Rabigh City. The samples were applied by the adsorption of dyes onto
the PTFAC using batch experiment. Under the same condition of the adsorption process,
the removal percentage was calculated by Equation (2).

3. Results and Discussion
3.1. Physical Properties, Characterization, and Morphology of Synthesized PTFAC

Surface area, total pore volume, and mean pore diameter of the prepared AC, as
determined by adsorption/desorption isotherm of nitrogen, are shown in Figure 2a. As a
result, the prepared AC has a 648.90 m2 g−1 (BET) specific surface area and 2.83 cm3 g−1

total pore volume. It is noteworthy to mention that the specific surface area for the raw
material before activation was 9.0 m2 g−1 [33]. As per the results of adsorption/desorption
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isotherms presented in Figure 2a,b, the AC carbon follows type V isotherm of mesoporous
materials with a 0.79 nm mean pore diameter, and the process is proceeded with multilayer
adsorption. The data found are in line with the surface area value reported in the literature
based on the modification method such as chemicals, physical, or pyrolysis activation [17].
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Figure 2. (a) Adsorption/desorption isotherm and (b) pore size distribution of activated carbon from
palm tree fiber (PTFAC).

On the other hand, the zeta potential and zero-point charge of the prepared AC are
presented in Figure 3. The prepared PTFAC shows a zeta potential value of −28.3 mV
and has high surface electronegativity. The pH values for PTFAC in a solution and pHzpc
were 3.56 and 3, respectively. This means that the surface of PTFAC behaves as positively
charged under a pH value of 3 and negatively charged beyond a pH value of 3 [34]. In
addition, similar values of pHzpc have been reported for white pine sawdust (pHzpc
3.65) [35] and Virgin Granular AC activation by HNO3 (pHzpc 3.0) [36], which are close to
the value observed in this study.

Figure 4 shows the SEM image of the palm fiber carbonized at 400 ◦C and TEM
image of the AC after grinding. Figure 4a show that after thermal treatment, the fiber is
converted into a skeleton of carbon grains with a size range between 1 and 4 µm. The
TEM image of PTF shows a rough surface and porosity (Figure 4a). Meanwhile, the SEM
image of raw biomass PTF is reported in ref. [33]. The PTF has a rough surface with no
evidence of porosity and is covered by arrays of protrusions, which can be Si particles.
The porosity of carbon is due to the decomposition of lignin, cellulose, and hemicellulose
during carbonization, resulting in the formation of micropores and mesopores [37,38].
The cell structure of the PTFAC can be seen clearly by TEM. After grinding, the particles
were converted into rounded and edged grains with a size range of 20–50 nm (Figure 4b).
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Furthermore, the TEM image of raw biomass PTF indicates that the cell wall structure of
the fiber is almost round [36].
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Figure 3. (a) Zeta potential and (b) Point of zero charge of PTFAC.
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The examination of the prepared AC before and after the adsorption of dyes by FTIR
can give better insight into the expected attraction forces between the PTFAC and dyes.
Figure 5 shows the FTIR spectra of the PTF and after the adsorption of CR and RhB dyes
by PTFAC. As shown in Figure 5, the following function groups are detected in the spectra:
the band observed at around 3335 cm−1 in the fiber and PTFAC spectra was attributed to
the O–H stretching of the hydroxyl group of alcohol present in cellulose and lignin, and
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the band at 1625 cm−1 was attributed to O–H bending of adsorbed water [39,40]. The band
at 2900 cm−1 was ascribed to the unsaturated C–H stretching vibration of the alkene or
aromatic groups [39]. The band observed at around 2925 cm−1 in the spectrum of fiber
was attributed to C–H vibration of organic matters in the fiber, which had nearly vanished
in the PTFAC, indicating that most of the elements such as hydrogen and oxygen are
removed after activation [16,41]. The bands at around 1605–1620 cm−1 were attributed to
the C=C stretching vibration in the aromatic rings [42]. The bands between 1238.81 cm−1

and 1032.31 cm−1 were attributed to the C–O stretching in carboxylic groups present in
cellulose, typically originating from the oxidized carbon [18,20]. The FTIR spectrum of
PTFAC demonstrates significant change by lowering peaks intensities when contrasted
to the PTF spectrum. The bands between 1220 and 1118 cm−1 can also ascribed to phos-
phorous species, such as hydrogen-bonded P=O, stretching vibrations O–C in P–O–C of
aromatic, P=OOH, and polyphosphate chain P–O–P [29,31]. In addition, the band around
1032.31 cm−1 assigned to the silicon atom initially attached to the oxygen atom Si–O [43].
The bands observed at around 470 cm−1, the spectra of carbons, were assigned to the
siloxane Si–O–Si group [43]. When the surface of PTFAC was covered by dyes, most of
its characteristic bands disappeared or mostly evanesced due to the adsorption of dye
on its surface. For example, O–H, C=C, and C–O bands and all types of phosphorous
species bands and Si–O–Si groups disappeared. This observation enhances the electrostatic
attraction forces between the adsorbent and adsorbed dyes through noncovalent interac-
tions, which may include dipole–dipole interaction, intermolecular forces, and hydrogen
bonding interaction.Processes 2021, 9, x FOR PEER REVIEW 9 of 21 
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Figure 5. The comparison of Fourier transform infrared spectroscopy (FTIR) spectra of palm tree
fiber (PTF) before and after the activation and after adsorption of Rhodamine B (RhB) and Congo red
(CR) dyes by PTFAC.

3.2. Optimization of Preparation Conditions for PTFAC

To optimize the preparation conditions of PTFAC, adsorption trial tests were carried
out using PTF activated with different chemical agents such as H3PO4 (85%), H2SO4
(98%), and KOH (2 M) with an impregnation ratio of 3:1 (chemical/biomass). In addition,
adsorption trial tests were conducted on the AC prepared at different temperatures at
various times. Figure 6 shows the removal percentage of CR and RhB dyes by PTF activated
by H2SO4, H3PO4, and KOH. From the mentioned dyes, the fiber activated by H2SO4
showed the highest removal percentage; hence, the H2SO4 is considered a strong oxidizing
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and dehydrating agent. As a result of the strong acid and base, H2SO4 and KOH exert a
high corrosive effect on the precursor that produces weight loss of the precursor, which
is less than that of the raw material. Indeed, the activation of AC by H3PO4 improves
the pore structure during the thermal treatment, which improves the porosity in terms of
macropores and mesopores of the PTFAC [8,44]. Thus, the activation by H3PO4 is highly
recommended for functionalization of the surface of the used bioadsorbent that has an
environmentally friendly in nature and easy to recover and recycle properties [17,45].Processes 2021, 9, x FOR PEER REVIEW 10 of 21 
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Figure 6. The removal percentage of CR and RhB dyes on the synthesized PTFAC with different (a)
chemical activation reagents, (b) activation temperature of CA-PTF-H3PO4, and (c) activation times
of CA-PTF-H3PO4 at 400 ◦C.

The removal percentage of dyes, adsorbed on PTFAC prepared at different tempera-
tures and times, are shown in Figure 6b,c, respectively. Thermal treatment data revealed
the chemical activation of AC with H3PO4 at 400 ◦C for 30 min in a facile and fast short
analytical time process for AC activation. Thus, it can be concluded that the cellulose
and hemicellulose in the PTF gradually decompose at 400 ◦C, resulting in a high specific
surface area. On the other hand, a long activation time causes degradation and decreases
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the surface area and porosity of carbons, damaging the pores because of the excessive
reaction with other activated agents. Hence, chemical activation with H3PO4 at 30 min is
adopted in the subsequent study for dyes removal in batch mode.

3.3. Influence of Parameters on the Adsorption Process (pH, Duration, Initial Concentration,
Adsorbent Dosage)

The batch experiment was done to study the influence parameters using Co = 25 mg
L−1, PTFAC mass = 0.1 g, V = 20 mL, t = 25 ◦C). In the adsorption process, the charge on the
adsorbent and the characteristics of adsorbate in solution are determined by the pH, which
has a radical impact on the adsorption ability. Figure 7a shows the effect of pH between
(2.0–12) on the removal percentage of CR and PhB dyes by PTFAC. Upon increasing the
pH values, the removal percentage declined slightly from 98.3% to 95.2% in the case of
CR and from 99.9% to 99.6% for RhB; apparently, the maximum adsorption is observed at
pH 2.0. As the zero-point charge of the adsorbent is at pH 3, it means that the adsorption
is high when pH is less than pHzpc and low when pH is more than pHzpc. However,
the cation dye (RhB) and anion dye (CR) at different pH values show high percentage
removal, which makes the PTFAC significant in the removal of wastewater, because dyes
in wastewater are usually in a wide pH range. It is well known that the adsorption of
dyes by the AC can proceed by van der Waals, electrostatic, and H-bonding interactions.
The CR is a dipolar molecule; it exists in an anionic form with red color at basic pH and
in a cationic form with blue color at acidic pH. It is also observed that the surface of AC
is covered by phenolic and carboxylic groups due to oxidation from the atmosphere and
water medium [46]. At lower pH, protonation of phenolic (PhOH) and carboxylic acid
(COOH) groups occurs on the surface of PTFAC, which leads to an increase in electrostatic
interactions with the cationic CR dye; therefore, the adsorption of CR on the AC surface is
higher. However, at a higher pH, the carboxylic and phenolic groups on the surface of AC
are expected to be completely ionized to carboxylate (COO−) and phenoxide (PhO−) ions.
Thus, the electrostatic repulsion between the anionic–CR and anionic–AC surface decreases
the adsorption capacity. In the case of RhB, the pH has no significant effect on the removal
percentage. The RhB may exist in cationic, laconic, or zwitterionic forms depending on
the pH of the solution medium. At lower pH, the RhB dye ions are cationic and present
in a monomeric molecular form that could easily enter the pore structure of the carbon,
resulting in higher adsorption. At higher pH, the RhB dye ions are zwitterionic and present
in dimer molecular form. The electrostatic interaction between the carboxylate ion and
xanthene groups in zwitterionic results in the formation of dimers of bigger molecular
forms that cannot easily enter the pores of carbon, resulting in lower adsorption. The
adsorption at all pH values in both the dyes shows a very insignificant variation, indicating
no ion exchange has occurred. So, the physical forces such as van der Waals, hydrogen
bonding and dipole–dipole interactions might participate in this developed adsorption [30].
Similar studies on the effect of pH at acidic media in removing RhB and CR dyes by other
adsorbents reported that RhB and CR dyes have maximum adsorption at pH 3.0 [47].

The duration plays an important role in the adsorption process of RhB and CR dyes
by PTFAC. Figure 7b shows that the removal percentage increases with the increase in
the duration, with high values of percentage between the range (5.0–120 min). The dyes
recorded a high absorption rate; their values were between 95.1% at 5 min and 99.5% at
120 min for CR dye, whereas they were 99.7% at 5.0 min and 99.9% at 120 min for RhB dye.
It indicated that the PTFAC has a high efficiency in removing both adsorbed dyes. This
is because of the very rapid adsorption that was found during the first 5.0 min, and even
then, the amount of the adsorbate increased with time and reached a constant value of
the maximum adsorption at 120 min. However, the availability of vacant active sites on
the surface of the PTFAC is the result of the rapid increase in adsorption during the initial
stage. Eventually, the process slows down due to the diffusion of dyes into the pores of
the PTFAC, because the external sites were fully occupied [8]. A similar study reported an
increase in the quantity of adsorption dyes with increased contact time. Using an initial
concentration of 1.0 g L−1, it was found that Raphia hookerie fruit epicarp could adsorb
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312 mg/g RhB dye at acidic pH, and equilibrium was attained at 40 min for an initial dye
concentration of 400 mg L−1 [47].
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Figure 7. Influence of (a) pH, (b) contact time, (c) initial concentration, and (d) adsorbent dosage on
elimination the RhB and CR dyes from solution by PTFAC (test conditions: T = 298 K, V = 20 mL).

The effect of the initial concentration parameter is significant in determining the
effectiveness of the adsorbent. The influence of initial dye concentration 5.0 to 50 mg L−1

on the adsorption capacity of PTFAC is shown in Figure 7c. The adsorption capacities (qe)
were increased with the increase in the initial dye’s concentration from 5.0 to 50 mg L−1.
The adsorption capacities were between 0.99 and 9.99 mg g−1 and 9.51 and 26.83 mg g−1

for CR and RhB days, respectively. After 25 mg L−1 initial concentration, no significant
change was observed in the adsorption capacity; thus, the adsorption process reached
the equilibrium. Initially, the adsorption process starts from the boundary layer; then, it
diffuses into the adsorbent surface, and finally diffuses into the porous structure of the
adsorbent [8]. In a similar study, an increase in the quantity of the dye adsorbed was
observed on increasing the initial concentration of 1.0 g L−1 of R. hookerie fruit epicarp
for adsorption capacity with 43.5 mg g−1 of RhB dye for an initial dye concentration of
50 mg L−1, while it can have a high adsorption of 312 mg g−1 of RhB dye for an initial dye
concentration of 400 mg L−1 [47].

The influence of adsorbent dosage (0.05 to 0.25 g) is shown in Figure 7d. The figure
shows that the removal amount of RhB and CR dyes by PTFAC increased with the increase
in the adsorbent dosage. Then, the equilibrium was attained after 0.1 g of PTFAC. There was
not much increase in the removal percentage of the dye. The percentage adsorbed of CR dye
increased from 97% (9.69 mg g−1) for the adsorbent dosage of 0.05 g to 99% (1.99 mg g−1)
for the adsorbent dosage of 0.25 g. The adsorption capacity of RhB dye increased from
99.6% (9.96 mg g−1) to 99.9% (1.99 mg g−1) with an increase in the adsorbent dosage of
0.05 to 0.25 g, respectively. The high removal efficiency with a high amount of adsorbent
(0.05–25 g) is due to the availability of binding sites for adsorption. The adsorption capacity
(qe) of the adsorbent was found to decrease with an increase in the adsorbent dosage, which
could be due to the interaction of adsorbent particles such as aggregation or agglomeration,
resulting in the decrease of the total surface area [8]. A similar study reported the increase
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in the percentage of adsorbed dye on increasing the adsorbent dosage [48]. Another
study reported the RhB dye concentration to be 100 mg L−1; at acidic pH, the percentage
adsorption of RhB dye increased from 85.19% to 88.88% as the adsorbent dosage increased
from 1.0 to 5.0 mg L−1 [47].

3.4. Adsorption Isotherms

Adsorption isotherm studies are very important as they describe how the adsorbed
molecules are distributed between the PTFAC and the CR and RhB dyes in the solutions at
equilibrium. They offer essential designing of the adsorption process by evaluating the
adsorption effectiveness of the adsorbent. In this work, adsorption equilibrium data of CR
and RhB dyes on PTFAC were analyzed by Langmuir and Freundlich adsorption isotherm
models. The Langmuir isotherm model is the most extensively used system, which is based
on a perfect hypothesis that adsorption occurs on the adsorbent at exact homogeneous
sites and can be useful for monolayer adsorption [49]. The linear equation of the Langmuir
isotherm model is presented below Equation (3).

Ce

qe
=

1
q Kl

+
1

qmax
Ce (3)

where qmax is the maximum adsorption capacity and Kl (L/mg) is the Langmuir constant.
qmax and Kl can be calculated by drawing Ce/qe (specific adsorption) against Ce (Figure 8a).
An additional important factor of Langmuir isotherm is the dimensionless separation factor
(Rl), which provides an understanding on the favorability of the adsorption process. This
has been given in Equation (4).

Rι =
1

1 + Kι Co
(4)

In the adsorption process, the separation factor Rl specifies whether the adsorption
isotherm is unfavorable (Rl > 1), satisfactory (0 < Rl < 1), irreversible (Rl = 0.0), or linear
(Rl = 1.0) [6,15]. The Freundlich isotherm model measures the adsorption capacity and
intensity of the adsorbate on heterogeneous surfaces, but it does not predict the maximum
adsorption [50]. The linear form of the Freundlich isotherm is expressed by Equation (5).

log
(
qe
)
= log (K f ) +

1
n

log (Ce) (5)

As Kf and 1/n are the Freundlich constants, they help calculate the capacity and
strength of adsorption, respectively. Kf and n can be obtained from the intercept and slope
by drawing log qe versus log Ce, respectively (Figure 8b). The n value gives the degree
of nonlinearity between the concentration of the solution and adsorbent. When n = 1.0,
the adsorption is linear, whereas n < 1 suggests that the adsorption process is chemical.
However, if n > 1, it means that the physical adsorption is satisfactory [15].

The Langmuir and Freundlich isotherms selected to explicate the interaction of CR
and RhB dyes with PTFAC are shown in Figure 8. Figure 8a shows the Langmuir isotherm;
as the linear correlation coefficient value (R2) represents the accuracy of the model, it is
found near the unity. The R2 values for the CR were 0.996, and for RhB, these were 0.980.
The Freundlich isotherm in Figure 8b shows R2 values for CR and RhB to be 0.8575 and
0.8541, respectively. Thus, this suggests that the adsorption values of CR and RhB dyes
are the best fit to the Langmuir adsorption model [49]. Based on the calculated data, the
coefficients of Langmuir and Freundlich isotherms models are illustrated in Table 2. The
Langmuir model shows a maximum adsorption capacity for CR dye at 10.4 mg g−1 and for
RhB dye at 26.5 mg g−1 by PTFAC. The dimensionless separation factor (Rl) value found for
CR dye was 0.04 and that for RhB dye was 0.034, indicating a favorable adsorption [6,15].
In addition, the highest value of the constant Kl for CR was 81.91 L mg−1, and for RhB,
it was 1264.5 L mg−1, which indicates a strong bonding of dyes onto PTFAC [30]. In this
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study, the value of n for RhB adsorption was above unity, indicating favorable physical
adsorption, but the value of n for CR was below unity, indicating chemical adsorption.

Processes 2021, 9, x FOR PEER REVIEW 13 of 21 
 

 

the percentage adsorption of RhB dye increased from 85.19% to 88.88% as the adsorbent 

dosage increased from 1.0 to 5.0 mg L−1 [47]. 

3.4. Adsorption Isotherms 

Adsorption isotherm studies are very important as they describe how the adsorbed 

molecules are distributed between the PTFAC and the CR and RhB dyes in the solutions 

at equilibrium. They offer essential designing of the adsorption process by evaluating the 

adsorption effectiveness of the adsorbent. In this work, adsorption equilibrium data of CR 

and RhB dyes on PTFAC were analyzed by Langmuir and Freundlich adsorption isotherm 

models. The Langmuir isotherm model is the most extensively used system, which is 

based on a perfect hypothesis that adsorption occurs on the adsorbent at exact homoge-

neous sites and can be useful for monolayer adsorption [49]. The linear equation of the 

Langmuir isotherm model is presented below Equation (3). 

𝐶ₑ

𝑞ₑ
=

1

𝑞 𝐾𝑙
+

1

𝑞max
𝐶ₑ  (3) 

where qmax is the maximum adsorption capacity and K𝜄 (L/mg) is the Langmuir constant. 

qmax and K𝜄 can be calculated by drawing Cₑ/qₑ (specific adsorption) against Cₑ (Figure 8a). 

An additional important factor of Langmuir isotherm is the dimensionless separation fac-

tor (R𝜄), which provides an understanding on the favorability of the adsorption process. 

This has been given in Equation (4). 

𝑅𝜄 =
1

1 + 𝐾𝜄 Cₒ
 (4) 

 

Figure 8. Adsorption isotherms: Langmuir model of (a) CR dye; (b) RhB dye and Freundlich model for the adsorption of 

(c) CR dye; (d) RhB dye by PTFAC (reaction conditions: T= 298 K, pH = 2.0, Co = 25 mg L−1, mass = 0.15 g, V = 20 mL, 

shaking time = 120 min).  

In the adsorption process, the separation factor R𝜄 specifies whether the adsorption 

isotherm is unfavorable (R𝜄 > 1), satisfactory (0 < R𝜄 < 1), irreversible (R𝜄 = 0.0), or linear (R𝜄 

y = 0.0984x + 0.0008
R² = 0.9966

0

0.005

0.01

0.015

0.02

0.025

0 0.05 0.1 0.15 0.2 0.25

C
e

/q
e

Ce (mg g-1)

CR (a)

y = 0.0378x + 3E-05
R² = 0.9802

0

0.0002

0.0004

0.0006

0.0008

0.001

0.0012

0.0014

0.0016

0.0018

0 0.01 0.02 0.03 0.04 0.05

C
e

/q
e

Ce (mg g-1)

RhB(b)

y = -0.6974x - 0.3729
R² = 0.8575

0

0.2

0.4

0.6

0.8

1

-2-1.5-1-0.50

lo
g 

q
e

log Ce

CR(c)

y = 0.7365x + 2.4869
R² = 0.854

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

-2.5-2-1.5-1-0.50

lo
g 

q
e

log Ce

RhB(d)

Figure 8. Adsorption isotherms: Langmuir model of (a) CR dye; (b) RhB dye and Freundlich model for the adsorption of (c)
CR dye; (d) RhB dye by PTFAC (reaction conditions: T= 298 K, pH = 2.0, Co = 25 mg L−1, mass = 0.15 g, V = 20 mL, shaking
time = 120 min).

Table 2. Adsorption isotherm parameters calculated for RhB and CR dyes adsorbed by PTFAC*.

Adsorption Isotherm Parameters CR RhB

Langmuir

qmax (mg g−1)/Co (25 mg L−1) 10.4 26.5
Kl (L mg−1) 81.91 1264.5

Rl 0.04 0.034
R2 0.996 0.980
χ2 0.013 1 × 10−3

Freundlich

Kf (mg g−1) (mg L−1) 0.24 3.07 × 102

1/n −1.43 1.357
R2 0.857 0.854
χ2 4.131 3 × 10−3

* Reaction conditions: T= 298 K, pH = 2.0, Co = 25 mg L−1, mass = 0.15 g/ 20 mL, shaking time = 120 min.

In addition, the chi-square test was considered to calculate the best fitted model and
validation of adsorption kinetics [51], using Equation (6).

χ2 =
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where qe,exp and qe,cal are the experimental and calculated data of adsorption capacity at 
equilibrium (mg g−1) for each model. This error equation is used to express the distributed 
error among the calculated and experimental values of the isotherm model. When the er-
ror is minor, it proves that the isotherm model is well fitted. According to the χ2 analysis, 

(
qe,exp − qe,cal

)2

qe,cal
(6)

where qe,exp and qe,cal are the experimental and calculated data of adsorption capacity at
equilibrium (mg g−1) for each model. This error equation is used to express the distributed
error among the calculated and experimental values of the isotherm model. When the error
is minor, it proves that the isotherm model is well fitted. According to the χ2 analysis, it
was found that the Langmuir isotherm model showed a lower χ2 value for CR dye (0.013)
and RhB dye (0.001), as depicted in Table 2, suggesting that the adsorption of both dyes
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was monolayer type. The previous study reported that the acid-activated red mud can
adsorb the CR dye, and the Langmuir isotherm model is the best fit because the chi-square
was low [52].

3.5. Adsorption Kinetics

Kinetic investigations offer an important indication to realize the adsorption dynamics
or adsorption mechanism using pseudo-first-order and pseudo-second-order models. The
mathematical term of the pseudo-first-order model [53] is expressed in Equation (7).

log
(
qe − qt

)
= log qe −

k1

2.303
t (7)

where qt (mg g−1) and qe (mg g−1) are the quantities of dyes adsorbed at time t and at
equilibrium, respectively. k1 is the rate constant of the pseudo-first-order model (min−1).
The plot of log (qe – qt) versus t for the adsorption of CR and RhB dyes on PTFAC results
in linear graphs with a negative slope (Figure 9a); k1 and qe are determined from the slope
and intercept, respectively. In this case, the calculated qe (CR 0.408, RhB 0.006 mg g−1)
values of both dyes were considerably different from the qexp values. This suggests that
the data do not fit well with the first-order model.
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Figure 9. Adsorption kinetics: pseudo-first-order model of (a) CR dye; (b) RhB dye and pseudo-second-order model for the
adsorption of (c) CR dye; (d) RhB dye by PTFAC (reaction conditions: T= 298 K, pH = 2.0, Co = 25 mg L−1, mass = 0.15 g, V
= 20 mL).

The pseudo-second-order model describes that the adsorption process is a chemical
process. It describes the proportion between the rate constant and the engaged active sites.
The linear equation of the pseudo-second-order rate model is given in Equation (8).

t
qt

=
1

K2 qe2 +
t

qe
(8)
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where k2 is the pseudo-second-order model adsorption rate constant. The drawing of t/qt
against t provides linear graphs. The values of qe and k2 can be determined from the slope
and intercept of the PTFAC graph (Figure 9b).

The pseudo-first-order model in Table 3 shows that the calculated qe value is 0.408 mg/g
for CR dye and 0.006 mg g−1 for RhB dye. The values vary significantly lower than the
experimental qe values, which are 4.972 mg g−1 for CR dye and 4.999 mg g−1 for RhB dye.
However, with the pseudo-second-order model, the calculated qe values are 4.992 mg g−1

for CR dye and 4.998 mg g−1 for RhB dye, which are similar to the experimental qe values.
In addition, the obtained R2 values are very close to ones for the pseudo-second-order
kinetics adsorption process, which were 0.999 and 1.0 for CR dye and RhB dye, respectively.
The χ2 test was used to validate the kinetics models [47,54]. As χ2 values are generally
found to be low, the value for CR dye was 7.74 × 10−5, and for RhB dye, it was 2.01 × 10−8.
This indicated that the adsorption kinetics data obey the pseudo-second-order model. This
is similar to a report on the adsorption of RhB dye onto the area-modified R. hookerie
epicarp [47].

Table 3. Adsorption kinetics parameters calculated for RhB and CR dyes adsorbed on PTFAC*.

Kinetic Models Parameters CR RhB

Pseudo first order

qe,cal (mg g−1) 0.408 0.006
k1 (1/min) −0.031 −0.023

R2 0.90 0.72
χ2 51.05 3732.3

Pseudo second order

qe,cal (mg g−1) 4.992 4.998
k2 (g mg−1 min−1) 1.35 × 10−3 9.75 × 10−3

R2 0.999 1
χ2 7.744 × 10−5 2.011 × 10−8

qe,exp 4.972 4.999

* Reaction conditions: T = 298 K, 0.15 g/20 mL, Co = 25 mg L−1.

The adsorption of CR and RhB dyes on PTFAC is an intricate process that involves
physical forces acting through pores contained and chemical bonding derived from the
active groups on the PTFAC adsorbent [43,54]. Activation by phosphoric acid also enhances
the acidic-containing functional groups on PTFAC, resulting in better dye removal from
the aqueous solution by the used adsorbent [33]. FTIR analysis revealed the existence of
hydrogen bonds between CR, RhB, and the surface of PTFAC. The H bonding interaction
occurred between hydroxyl groups at the PTFAC surface and nitrogen-containing func-
tional groups of CR and RhB in acidic medium in addition to the specific attraction between
negatively charged COO− and SO3

− groups of CR dye and the positively charged PTFAC
surface [47,55]. Protonation of –OH and –COOH groups present at the PTFAC surface in
addition to the van der Waals force also enhances the uptake of the used analytes [47,55].

3.6. Desorption and Regeneration Studies

Desorption studies help to explain the adsorption mechanism in the recovery of the
adsorbent and to investigate the possibility of regeneration of used PTFAC loaded with RhB
and CR dyes. Table 4 shows that the desorption using distilled water by adjusting pH to 2.5,
4.5, 6.5, 8.5, and 10.5 has a high desorption efficiency and is very close (in percentage) to the
CH3;COOH and NaOH (0.1, 0.5, and 1.0 M). Thus, the PTFAC loaded with RhB dye showed
a high stability in the adsorption process. The desorption percentage at pH values of 2.5,
4.5, 6.5, 8.5, and 10.5 was 99.88%, 99.84%, 99.84%, 99.81%, and 99.77%, respectively, whereas
in the desorption of CR loaded on PTFAC, the percentage decreased with increasing the
pH from 2.5 to 10.5, which was 98.68%, 97.36%, 96.1%, 93.42%, and 93.42%, respectively.
Hence, the optimum desorption percentage of CR and RhB was observed at pH 2.5 using
distilled water as a green desorption reagent. This indicates that the adsorption of the
dyes is mainly due to the Van der Waals, electrostatic, and H-bonding interactions, and
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chemisorption mechanism [48]. In addition, the regeneration study of the adsorbent might
yield an efficient economical treatment process. Figure 10 shows the regeneration cycle of
PTFAC with CR and RhB dyes. It has no significant change of percentage removal in CR
dye. The removal percentage was between 98.68 and 96.1%, which indicated that the use of
PTFAC could be increased to more than five cycles. Thus, PTFAC showed high resistance
to adsorption efficiency after five regeneration cycles, whereas there was a decrease in
percentage removal in RhB dye with the increase of the number of cycles from the first
cycle (99.88%) to the fifth cycle (54.49%). That was due to the effect of the repeated use of
the PTFAC on the adsorption process. These dyes loaded on the PTFAC surface can change
superficial structures and result in the loss or blockage of the adsorption sites in the AC.
The magnetic lignosulfonate FCS studied two regeneration cycles for CR, and removal was
83% after five cycles [56]. It can be concluded that PTFAC is an efficient high-potential
adsorbent for the removal of cationic and anionic dyes and can be recycled several times.

Table 4. Desorption percentage of CR and RhB dyes by PTFAC with different desorption reagents.

Desorption Reagent Desorption, %

CR RhB

CH3;COOH (0.1 M) 90.78 99.69
CH3;COOH (0.5 M) 92.10 99.73

CH3;COOH(1 M) 89.47 99.65
NaOH (0.1 M) 93.42 99.77
NaOH (0.5 M) 92.10 99.81
NaOH (1 M) 92.10 99.84
H2O (pH 2.5) 98.68 99.88
H2O (pH 4.5) 97.36 99.84
H2O (pH 6.5) 96.05 99.84
H2O (pH 8.5) 93.42 99.81

H2O (pH 10.5) 93.42 99.77
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Figure 10. Regeneration cycle of PTFAC after adsorption by RhB and CR dyes.

3.7. Environmental Water Treatment

This study investigated the efficiency of PTFAC as an environmental application by
determining the highest percentage removal of CR and RhB dyes. The environmental
water samples were filtrated through No. 2 Whatman Qualitative filter paper; then, the
spike method was used by obtaining a 15 mg L−1 dyes concentration. Table 5 shows the
percentage removal of CR and RhB dyes from contaminated water. Thus, the percentage
removal values for RhB dye were 99.8% for tap water, 99.3% for well water, 99.4% for
seawater, and 98.3% for sewage water from the treatment plant. The percentage removal
values for CR dye were 99.8% for tap water, 94.4% for well water, 93.3% for seawater,
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and 92.3% for sewage water from the treatment plant. This indicates the PTFAC has high
stability to remediate water from CR and RhB dye. The removal percentages from the
highest to the lowest are tap water > well water > seawater > sewage water from the
treatment plant. These results confirmed that PTFAC could be used to treat RhB and CR
wastewater in the environmental application without adjusting the pH of the wastewater.
Thus, the PTFAC has high removal efficiency in the remediation of contaminated water
from anion and cation dyes.

Table 5. Adsorptive percent removal of CR and RhB dyes from real water samples by PTFAC.

Tap Water Well Water Seawater Sewage Water
Treatment PlantDyes

% Removal of RhB 99.8 99.3 99.4 98.3

% Removal of CR 99.8 94.4 93.3 92.3

4. Conclusions

In the current study, palm fiber was successfully used as solid waste for the production
of AC activated by H3PO4 at 400 ◦C after 30 min. The established method is a facile and fast
method that can be used as an efficient adsorbent for the elimination of anionic and cationic
dyes from wastewater. The texture and surface characteristics of the prepared PTFAC
showed 648.90 m2g−1 surface area, 2.83 cm3g−1 total pore volume, and 0.79 nm mean pore
diameter with a zeta potential value of −28.3 mV and point of zero charge (pHzpc) equal
to 3. The FTIR study indicated the presence of various functional groups. The results of
the adsorption process of the prepared PTFAC showed that pH, adsorbent dosage, contact
duration, and initial dye concentration have a dominant effect on the adsorption of CR and
RhB dyes. The Langmuir isotherm showed a maximum monolayer CR and RhB adsorption
capacity of 10.4 mg g−1 and 26.5 mg g−1, respectively, of an initial concentration 25 mg L−1

at pH 2.0, 25 ◦C, 120 min, and 0.1 g/20 mL adsorbent dose of AC. The kinetic studies
showed that the adsorption process fits in with the pseudo-second-order kinetics. The
desorption and regeneration studies of adsorbent were found to be effective until the fifth
regeneration cycle by using distilled water an eco-friendly desorption reagent at pH 2.5,
suggesting that the adsorbent could be regenerated and reused. Hence, the investigation
concludes that the PTFAC prepared from PTF is a cost-effective and promising adsorbent
toward dyes from environments.
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Abstract: In this study walnut shells, an inexpensive and readily available waste, were used as
carbonaceous precursor for preparation of an innovative adsorbent (walnut-shell powder (WSP))
which was successfully tested for the removal of FeII from synthetic acid mine drainage (AMD). Then,
the exhausted iron-contaminated adsorbent (WSP-FeII) was recovered and treated with sodium boro-
hydride for the reduction of adsorbed FeII to Fe0. The resulting material (WSP-Fe0) was subsequently
tested for the removal of CrVI from aqueous solutions. Treatability batch experiments were employed
for both FeII and CrVI-contaminated solutions, and the influence of some important experimental
parameters was studied. In addition, the experimental data was interpreted by applying three kinetic
models and the mechanism of heavy metal removal was discussed. The overall data presented in
this study indicated that fresh WSP and WSP-Fe0 can be considered as promising materials for the
removal of FeII and CrVI, respectively. Furthermore, the present work clearly showed that water
treatment residuals may be converted in upgraded materials, which can be successfully applied
in subsequent water treatment processes. This is an example of sustainable and environmentally-
friendly solution that may reduce the adverse effects associated with wastes and delay expensive
disposal methods such as landfilling or incineration.

Keywords: sustainable water treatment; water treatment residuals; innovative adsorbent; heavy met-
als; acid mine drainage; hexavalent chromium

1. Introduction

In last decades, water pollution with heavy metals has become an increasingly im-
portant worldwide threat. Numerous heavy metals have been introduced into natural
water environments, especially as a result of human industrial activities, but also due to
agricultural, transport and waste disposal practices. Among the most important industrial
activities that contribute to contamination of aquatic systems by metallic ions (Cr, Ni, Zn,
Cu, Zn, Pb, Fe, Cd etc.) are: electroplating, surface finishing of metals, production and
recycling of electronics, metallurgy, mining, leather tanning, paper and pulp production,
fertilizer and pesticide production, batteries production [1–4]. Most heavy metals cause
toxic effects to living species, not only at excessive exposures, but also at low concentra-
tions, because they do not have any biological role in living cells, do not degrade into
harmless end products, and are bioaccumulative in nature. In addition, even heavy metals
which are necessary in small amounts as micronutrients for the normal development of
biological systems (e.g., Cu, Fe, Zn, Cr etc.) exert harmful effects to biological organisms
at high concentrations [4–6]. Therefore, the removal of heavy metals from contaminated
waters, prior to their discharge into natural effluents, is a necessary step in order to reduce
their adverse effects. The World Health Organization guidelines of some heavy metals in
drinking water are summarized in Table S1.
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Various methods have been applied for the removal of heavy metals from aqueous
solutions; these include chemical precipitation, membrane technologies, ion exchange,
electrochemical treatment, floatation, coagulation-flocculation, adsorption, evaporation,
photocatalysis [1,3,7–11]. Among all these methods, adsorption is generally considered
to be one of the best for the removal of heavy metals, due to its simplicity, ease of opera-
tion, selectivity and high efficiency. Activated carbon is the most widely used adsorbent
in water and wastewater treatment, owing to its high surface area and high degree of
surface porosity and reactivity. The heavy metal adsorption capacities reported in the
literature for commercial activated carbon are in the range of 0.29–146 mg/g [12]. Un-
fortunately, in spite of its excellent adsorption capacity, this material is also expensive,
which makes the costs of adsorption processes high, and, therefore, less economically
viable, especially in low income developing countries [4,13,14]. Therefore, over the last
decades, there has been an intense activity directed at the development of inexpensive
and easily available alternatives to commercially available activated carbon (e.g., clay min-
erals, industrial/agricultural wastes/byproducts etc.) which should decrease the cost of
the adsorption process, while still being efficient in improving the quality of the treated
effluents [3,4,14–19]. The heavy metal adsorption capacities reported in [12] for natural
materials, agricultural and industrial wastes are in the range of 0.003–83.3, 0.001–158 and
0.0002–133.35 mg/g, respectively; thus, it is obvious that low-cost adsorbents may exert
excellent metal removal capabilities, comparable to commercial activated carbon [12].

On the other hand, water treatment technologies should be not only efficient and
affordable, but also environmental-friendly. Therefore, great attention has been paid in
the last years to handling and disposal of water treatment residues (WTRs), which are
challenging tasks for today environmental scientists. One of the traditional and most
common methods of WTR management is by landfilling. However, today, this is no
longer considered a viable solution because of: (1) soil and groundwater contamination,
(3) high operating costs, and (3) difficulties in finding and operating new landfill sites,
under the circumstances of more and more strict environmental regulation. Hence, recov-
ery, recycling and reuse should be the preferred solution for the sustainable management
of WTR [20]. The use of groundwater treatment residuals (Fe and Mn (hydr)oxides) and
floculation-coagulation residuals (Fe and Al (hydr)oxides) as adsorbents, to remove pol-
lutants (e.g., heavy metals, metalloids, pesticides etc.) from aqueous solutions, has been
reported in the last years by numerous studies [21–24]. Instead, to our knowledge, few re-
searchers have addressed the issue of reusability of cheap exhausted adsorbents, resulted
from the removal of a particular heavy metal, in treatment processes of aqueous effluents
polluted with a different type of heavy metal [25]. In this previous study, bentonite was
used for sequential adsorption of heavy metals from aqueous solutions, proving not only
that reusability of exhausted adsorbents is possible, but also that some adsorbed metals
may have a beneficial role in the subsequent adsorption process. However, this research
also revealed that using bentonite as adsorbent suffers from multiple drawbacks, including
low adsorption capacity and leaching of structural iron at strong acidic pH [25].

The fruit and vegetable processing industry operates globally, producing huge amounts
of products and being a well-known generator of large volumes of agricultural wastes [26,27].
The world production of walnuts has been relatively stable over the last years, at about
2 million tons (in-shell basis), with China and the USA accounting for nearly three-quarters
of the total production [28]. Since the kernel represents approximately 45% of the walnut
mass (depending on the size and the variety of the walnut), it is obvious that the remaining
shells are an abundantly available waste that could be used as cheap adsorbent materials.
Consequently, the present study has two main objectives. Firstly, to investigate the use of
walnut shells, in powdered form (WSP), as cheap adsorbent in the remediation process of
synthetic acid mine drainage (AMD) containing FeII. To the best of our knowledge, removal
of FeII with agricultural waste derived adsorbents are few [29,30], while walnut shells in
their natural form (i.e., not activated by any chemical or physical method) were not re-
searched yet. The second objective of this paper was to recover the water treatment residue
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(WSP-FeII) resulted from the AMD remediation process, for further reuse in the removal of
CrVI from aqueous solutions. Since during the last two decades Fe0 was acknowledged as
an efficient reactive material for remediation of heavy metal contaminated effluents [31],
the water treatment residue (WSP-FeII) resulted from AMD remediation was treated with
sodium borohydride, in order to reduce the adsorbed FeII to Fe0, and the resulted material
(WSP-Fe0) was then used for the removal of CrVI. The effect of several important experi-
mental parameters (pH, heavy metal concentration, temperature, and ionic strength) on
efficiency of both treatment processes was investigated. Furthermore, the kinetic parame-
ters of the remediation processes were determined and the mechanisms of FeII and CrVI

removal were discussed.

2. Results and Discussion
2.1. Adsorbent Characterization
2.1.1. Fourier-Transform Infrared Spectroscopy (FTIR) Analysis

The FTIR spectra of the adsorbents were recorded within the range of 500–4000 cm−1.
The spectra of native WSP and WSP-FeII are given in Figures S1 and S2 (Supplementary
Material). The analysis of Figure S1 reveals a wide band near 3440 cm−1, indicating the
presence of hydrogen-bonded hydroxyl groups on the WSP surface [32]. This can be
correlated with the intense band around 1040 cm−1, characteristic for the valence vibration
of C-O bond in primary alcohols [33,34]. Peaks observed around 2920 and 1380 cm−1 can
be assigned to the stretching vibration of C-H bonds in methyl and methylene groups [35].
The flat peak located at about 2100–2200 cm−1 corresponds to C≡C groups stretching
vibration [34]. The bands around 1750 and 1720 cm−1 are indicative for the C=O group
stretching vibration in carboxyl and carbonyl groups [35,36]. Peaks around 1370 and
1330 cm−1 may be attributed to the O-H in-plane deformation characteristic for alcohols
and phenols [33,37]. Absorption bands near 1650, 1600, 1510, 1260, 800, 670 and 600 cm−1

can be related to complex vibrations related to aromatic compounds (e.g., lignin) [32–35,37].
By comparing the spectra of WSP (Figure S1) and WSP-FeII (Figure S2), a strong decrease
in intensity of peaks at 3440, 1600, 1260, 1040 and 800 cm−1 could be observed after the
adsorption of FeII; if we assume that FTIR spectra were recorded by following the same
procedure (i.e., pellets were prepared by mixing and pressing exactly the same amounts of
sample and KBr), this may suggest participation of some of the above mentioned functional
groups (hydroxyl, carboxyl and carbonyl) in metal binding. Similar changes in intensity of
the bands was observed also after the reaction of CrVI solution with WSP and WSP-Fe0

(Figures S1, S3–S5, Supplementary Material).

2.1.2. Scanning Electron Microscopy (SEM) Analysis

The SEM analysis enables the observation of the surface morphology of the stud-
ied adsorbents materials. Visual examination of the SEM micrographs (Figures S6–S10,
Supplementary Material) showed that external surface of prepared materials has an irreg-
ular rugged morphology, containing macropores with sizes of 1–2 µm, homogeneously
distributed all over the surface. No noticeable differences can be observed in SEM micro-
graphs before and after the adsorption process; no accumulation of contaminant on the
exhausted adsorbent can be discerned too, presumably due to the low amount of retained
metal at surface of the adsorbents.

2.1.3. Energy Dispersive X-ray Spectroscopy Analysis (EDX) Analysis

The EDX spectra of the adsorbents before and after CrVI adsorption are shown in
Figures S11–S15 (Supplementary Material). The absence of alkali and alkaline earth metals
(Ca2+ and K+) in the WSP-FeII sample (Figure S10) indicated that the adsorption process
may have involved an ion-exchange mechanism; furthermore, the EDX spectra of WSP-FeII

revealed additional Fe signals in comparison to WSP, indicating retention of Fe at the
surface of adsorbent. The EDX analysis also confirmed the retaining of CrVI onto the
surface of both WSP (control experiments) and WSP-Fe0; nevertheless, a visual comparison
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of EDX spectra of CrVI-loaded WSP-Fe0 and WSP (Figures S14 and S15) clearly reveals that
more Cr was bound on WSP-Fe0. In addition, the suppression of one Fe band in the EDX
spectra of WSP-Fe0 after reaction with CrVI may suggest that the Fe0 sites were involved in
removal of CrVI anions.

2.2. AMD Treatability Experiments
2.2.1. Effect of pH

Earlier studies have shown that pH of the aqueous solution is a highly important
factor in adsorption processes, capable to control the mechanism, and therefore, to enhance
or decrease the amount of metal retained at the adsorbent surface [38]. The effect of pH on
the removal of FeII was studied by varying the pH of the metal ion solution from 1.0 to
4.1. These pH values were selected because they are within the range of levels reported
for pH in AMD environments [39,40]. In addition, pH values below 4.5 also ensure that
removal of FeII occurs solely due to adsorption. Figures 1 and 2 clearly show that both
efficiency of FeII removal and adsorption capacity of WSP increased with increasing pH
from 1.0. to 4.1. While only limited AMD remediation was observed at pH 1.0 and 2.1,
an important enhancement of the adsorption process was achieved as pH was increased to
2.5, and then further gradually raised up to 4.1. This is in accord with results of previous
works using alternative vegetal adsorbents like thermochemically-activated walnut shells
and orange peels, which indicated increased removal efficiency with increasing pH of the
solution [29,30].
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Carboxyl and hydroxyl (fenolic) groups are among the most important functional
oxidized groups (active centers) existent at surface of natural carbon-based agricultural
residues, which are able to take part in specific adsorption processes with metal cations,
according to [20,41]:

WSP-C6H5-OH + Men+ ⇔WSP-C6H5-OM(n−1)+ + H+ (1)

WSP-COOH + Men+ ⇔WSP-COOM(n−1)+ + H+ (2)
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However, carboxyl and hydroxyl groups are also involved in acido-basic equilibria
which may be described as following:

WSP-C6H5-OH + H+ ⇔WSP-C6H5-OH2
+ (3)

WSP-C6H5-OH + HO− ⇔WSP-C6H5-O− + H2O (4)

WSP-COOH + H+ ⇔WSP-COOH2
+ (5)

WSP-COOH + HO− ⇔WSP-COO− + H2O (6)

In the present work, the pHpzc of the WSP was found to be 6.4; accordingly, the net
charge of WSP surface was positive over the entire studied pH range. Nevertheless, it is
clear from the above equations that an increase in solution pH (i.e., more HO- anions
available for Equations (4) and (6) causes an increase in the number of negative charges
existent at WSP surface, even though the net charge still remains positive at pH < 6.4.
Hence, on the one hand, the efficiency of adsorption will increase at higher pH due to
enhanced electrostatic attraction between cationic FeII species and negatively charged
centers at WSP surface. On the other hand, the competition with hydronium cations for
anionic exchanging sites at WSP surface also decreased as the pH was raised in the range
1.0–4.1, contributing thus to the increased sorption of FeII cations.

2.2.2. Effect of FeII Initial Concentration

The influence of FeII concentration was studied within the concentration range of
25–100 mg L−1. These concentrations were selected because they are within the range of
FeII levels reported in AMD environments [39,40]. As revealed in Figure 3, the efficiency
of FeII uptake by WSP was found to decrease proportionally with the increase of FeII

concentration. This is attributable to the fact that available sorption sites become progres-
sively insufficient for the increasingly number of FeII ions at higher concentrations; hence,
a more rapid saturation of the adsorption centers will occur and, as a result, the percentage
removal of FeII ions decreases. Figure 3 also shows that adsorption of FeII proceeds in
two steps: a rapid decrease of metal concentration within the first stage (first 60 min),
when the amount of available sites was still much higher than the amount of FeII ions to be
adsorbed, followed by a strong decrease in the adsorption rates in the second phase, due to
continuous diminishing of the number of negatively charged functional groups throughout
the adsorption experiment. This phenomenon was previously reported by several studies
employing agro-based waste adsorbents in the process of heavy metal removal from aque-
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ous solutions [16]. In contrast, Figure 4 indicates that adsorption capacity of WSP firstly
increased with increasing the initial FeII concentration, and then reached a saturation value.
The maximal adsorption capacity of WSP was found to be about 5.8 mg g−1, achieved at
the concentration of 100 mg L−1 FeII. The higher amount of FeII retained per unit mass
of adsorbent (mg g−1) at higher initial concentration is the result of increased FeII con-
centration gradient at solution-adsorbent interface (i.e., increased probability of collision
between metal ions and adsorbent surface), which led to enhanced mass transfer driving
forces to overcome all mass transfer resistances [42]. Our results are in agreement with
findings reported by several earlier workers for FeII adsorption on agro-wastes, such as
thermochemically-activated walnut shells and orange peels [29,30].
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2.2.3. Effect of Temperature

The effect of temperature was investigated over the range of 6–33 ◦C. The results
presented in Figures 5 and 6 show that uptake of FeII on WSP was positively affected by
the increase of temperature; nevertheless, it is important to point out that an improvement
in FeII adsorption was observed only when temperature was increased from 6 to 22 ◦C;
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a subsequent rise of temperature to 33 ◦C led to no discernible enhancement the FeII uptake.
The observed temperature dependence is indicative of an endothermic adsorption process.
The enhancement of adsorption efficacy with increasing temperature may be attributed
to better interactions between FeII and WSP as a result increased rates of intraparticle
diffusion of FeII ions into the pores of WSP, or to creation of new adsorption sites at
higher temperatures [43]. The positive effect of temperature on the adsorption efficacy
was reported also in early works investigating removal of FeII from aqueous solutions by
adsorption on thermochemically-activated walnut shells and orange peels [29,30].
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2.2.4. Effect of Ionic Strength

To investigate the influence of ionic strength, adsorption of FeII on WSP was con-
ducted in the co-presence of NaCl concentrations of 0, 0.01, 0.03 and 0.05 M as background
electrolyte. NaCl was used as indifferent electrolyte, in accord to previous studies investi-
gating the effect of ionic strength [44]. From Figures 7 and 8 it results that the process of
FeII adsorption was progressively hindered in the presence of increasingly concentrations
of competing Na+ cations. The trend of the change of metal adsorption with ionic strength
can be used for differentiating between the two main adsorption processes that may be
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involved in binding of anions onto minerals: physical (non-specific) adsorption, and chem-
ical (specific) adsorption. In our case, the observed effect can be interpreted as indicating
non-specific weak interactions (physisorption) being involved in adsorption mechanism of
FeII [44].
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2.3. CrVI Treatability Experiments
2.3.1. Effect of pH

In this series of tests the impact of initial pH was studied within the pH range of
1.0–5.9. The results of the present experiments (Figure 9) indicated that CrVI removal with
WSP-Fe0 was significantly hindered by the increase of pH; moreover, at pH ≥ 5.1 CrVI

removal was almost totally inhibited. Control experiments with WSP showed the same
trend of decreasing efficacy of CrVI removal with increasing pH (Figure 9). Our results may
be attributed, on the one hand, to a decrease in the number of positive charges existent
at WSP surface with increasing pH, which hinders electrostatic attraction of anionic CrVI

species. On the other hand, removal of CrVI at Fe0 centers is known to be a complex
process also inhibited by the increase of pH [45]. Similar maximum adsorption efficiency
in the acidic range has been most often reported in the literature for retaining of CrVI
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on adsorbents developed from different agricultural wastes (acid-activated rice husk,
ZnCl2-activated wood, acid-activated saw dust, ZnCl2-microwave-activated sawdust,
date pits, tea-waste) [32,46–48]. However, different influence of pH has also been observed;
for instance, the effective pH range for Chrysophyllum albidum seed shells-based adsorbents
was found to be 4.5–5 [49].
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Two important observations can be made by analyzing the findings of pH influence
experiments: (1) higher CrVI removal efficiencies for WSP-Fe0 than for WSP were observed
over the pH range of 1.0–4.1, and (2) no CrVI removal and low CrVI removal efficiency was
noticed over the pH range of 5.1–5.9 for WSP-Fe0 and WSP, respectively. The existence of
Fe0 centers at surface of WSP-Fe0 may explain both the better CrVI removal at pH 1.0–4.1
and the lack of CrVI removal at pH 5.1–5.9, observed for WSP-Fe0. It is well known that
CrVI removal at Fe0 surface (adsoption + possible reduction) is pH-dependent: the lower
the pH, the higher the removal efficiency [45]. However, CrVI adsorption at WSP surface
is also favored by an acidic pH. Therefore, it is apparent that adsorption at surface of
Fe0 centers was more severely hindered at pH 5.1–5.9 than adsorption at surface of WSP
surface. This is a relevant evidence of the importance of Fe0 centers in the process of CrVI

removal with WSP-Fe0.
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2.3.2. Effect of CrVI Initial Concentration

The influence of initial concentration was examined by varying the initial metal
concentration from 1 to 5 mg L−1. These concentrations were selected because they are
within the common levels both for subsurface CrVI-contaminated groundwater [50] and for
wastewater effluents [51,52]. Figure 10 depicts the influence of initial CrVI concentration on
removal efficiency. It can be easily seen from this figure that initial concentration of CrVI

is another parameter which plays an important role in the process of CrVI removal with
WSP-Fe0: the higher the initial CrVI concentration, the lower the efficacy of the removal
process. The same outcome was noticed also for the control experiments conducted with
WSP (Figure 10): uptake of CrVI was inhibited at higher CrVI concentrations; nevertheless,
Figure 10 clearly reveals that, for same CrVI initial concentration, better removal yields
were always obtained for WSP-Fe0 than for WSP, which is attributable to existence of
Fe0 at surface of WSP-Fe0. The results of the influence of initial concentration are con-
sistent with previous findings reporting removal of CrVI from aqueous effluents by use
of other biosorbents (acid-activated rice husk, ZnCl2-activated wood, acid-activated saw
dust, ZnCl2-microwave-activated sawdust) [32,47,48]. The negative effect of initial CrVI

concentration is similar to the one observed in the process of FeII removal, and has an
identical explanation: the more rapid saturation of the reactive centers existent at surface
of WSP-Fe0 (available for the interaction with CrVI) with increasing CrVI concentration.
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2.3.3. Effect of Temperature

The dependence of the CrVI removal process with temperature was investigated over
the range of 6–32 ◦C. It is evident from Figure 11 that removal of CrVI with WSP-Fe0 was
highly dependent on the temperature: an increased trend in removal efficiency was noticed
with rise in temperature, indicating the endothermic nature of the process. The observed
influence of increasing temperature can be most probably ascribed to increase in rate
of diffusion of the CrVI ions across the boundary layer. Even though the same effect of
temperature was observed also in control experiments with WSP (Figure 11), however, for
same temperature, higher CrVI removal efficiencies were always obtained for WSP-Fe0

than for WSP, attributable to existence of Fe0 at surface of WSP-Fe0. Our results are in line
with previous findings indicating favorable binding of CrVI on different biosorbents (acid-
activated rice husk, ZnCl2-activated wood, acid-activated saw dust, ZnCl2-microwave-
activated sawdust) at higher temperature [32,47,48].
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2.3.4. Effect of Ionic Strength

To study the influence of this parameter, the ionic strength of CrVI solutions was ad-
justed using NaCl as background electrolyte, in the concentration range of 0–0.05 M. The ex-
tent of CrVI removal with WSP-Fe0 as a function ionic strength is depicted in Figure 12.
As revealed by this figure, the addition of NaCl (i.e., increase of ionic strength) led to a slight
increase in CrVI removal efficiency. The highest improvement in removal efficacy was no-
ticed as the ionic strength was increased from 0 to 0.01 M; a further increase in ionic strength
to 0.03 and 0.05 M lead to removal yields higher than for 0 M, but lower than for 0.01 M.
Thus, it can be concluded that optimal ionic strength for CrVI removal with WSP-Fe0 was
0.01 M. On the other hand, control experiments conducted with WSP revealed that removal
of CrVI was practically not influenced by the increase of ionic strength (Figure 12). Con-
versely, other authors reported a more or less significant adverse influence of ionic strength
on the removal of CrVI with grape stalks, cork, olive stones, thermochemically-activated
walnut shells or surfactant modified spent mushroom [46,53–55]. The two different effects
exerted by the background ionic strength on removal of CrVI with WSP-Fe0 and with WSP
are indicative of two distinct removal mechanisms involved in the two cases. On the one
hand, the absence of any visible influence of ionic strength on CrVI removal with WSP
can be interpreted as indicating a specific adsorption mechanism [44]; on the other hand,
the higher removal efficiencies obtained with WSP-Fe0 at higher ionic strengths may be
ascribed to existence of Fe0 active sites at surface of WSP-Fe0. This is in accord with find-
ings of previous studies which demonstrated that Cl- anion can accelerate Fe0 corrosion
by forming soluble complexes with FeII, which are carried away from the metal surface;
the as formed FeII complexes have two important roles: (1) to delay the formation of oxide
layers at surface of Fe0, and (2), to act as secondary reducing agents for the reduction of
CrVI [56,57].
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2.4. Kinetic Modeling
2.4.1. Identification of the Kinetic Order

The statistical fits of FeII and CrVI removal experimental data to pseudo first and
pseudo second-order equations, and the parameters of the two kinetic models are summa-
rized in Table 1. With regard to FeII removal, as evidenced by the correlation coefficients,
pseudo second-order kinetic model provided the best match for the experimental data.
This conclusion is confirmed also by the fact that equilibrium adsorption capacity value (qe)
predicted by the pseudo second-order model fits the best the experimental value (qe

exp).
These evidences indicate that pseudo second-order kinetic model was the more appropriate
to describe FeII adsorption. This is consistent with results from a previous study using
thermochemically-activated orange peels [30]. The pseudo second-order kinetic model
assumes that the rate-limiting step of the adsorption process is of chemisorption nature,
involving sharing or exchange of electrons between adsorbent and adsorbate [58].

Table 1. Kinetic parameters of FeII and CrVI removal.

Test

Pseudo 1st Order Pseudo 2nd Order
qe

exp

(mg g−1)k1
(min−1)

qe
(mg g−1) R2 k2

(g mg−1 min−1)
qe

(mg g−1) R2

FeII + WSP 1.4 × 10−3 1.20 0.7936 18.8 × 10−3 3.93 0.9998 4.20

CrVI + WSP 6.9 × 10−3 0.35 0.9891 1.9 × 10−2 0.33 0.9874 0.40

CrVI + WSP-Fe0 1.8 × 10−2 0.46 0.9948 5.9 × 10−2 0.56 0.9923 0.50

From the kinetic data of CrVI removal with WSP-Fe0 it can be seen that regression co-
efficient of the second-order model is lower than of the pseudo first-order model, which im-
plies that removal of CrVI with WSP-Fe0 follows the pseudo first-order kinetics. In addition,
the calculated qe value obtained from the pseudo first-order model agrees better with the ex-
perimental qe

exp value than the one obtained from the second-order model. Consequently,
the retention of CrVI onto WSP-Fe0 could be best described by the pseudo first-order kinetic
model. Control experiments with WSP are in good agreement with WSP-Fe0 experiments,
revealing that adsorption onto WSP also fitted well to the pseudo first-order kinetic model.
The pseudo first-order kinetic model was successfully applied in early works investigat-
ing CrVI removal by different biomaterials (thermochemically-modified Terminalia arjuna
nuts, FeIII impregnated biochar and tea-waste [59–61]), being indicative for existence of
relatively weak electrostatic interactions between CrVI and adsorbent [62]. Nevertheless,
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several other studies, working with ZnCl2-activated S. guttata shell waste or acid-activated
pomegranate husk, indicated that pseudo-second order was the applicable kinetic model
for CrVI removal [63,64].

2.4.2. Identification of the Rate Limiting Step

Removal of a contaminant via adsorption occurs through a mechanism comprising
the following consecutive steps: (1) transport of contaminant in the bulk of the solution,
(2) transport of contaminant through the liquid film surrounding the adsorbent particle,
to its external surface (film diffusion), (3) transport of contaminant from the adsorbent
surface into its pores (intraparticle diffusion), and (4) retention of the contaminant inside the
pores. Generally, phase (1) and (4) are very rapid and do not represent the rate determining
step [65]. The Weber and Morris model was applied in this study to determine whether
film diffusion or intraparticle diffusion is the rate limiting step. If intra-particle diffusion
would be the rate-limiting step, then Weber and Morris plots should pass through the
origin and have a good linearity. Figures 13–15 clearly reveal that, for both FeII and CrVI

removal, the qt versus t0.5 plots show multilinearity, indicating that at least two steps
take place. This implies that intraparticle diffusion was not the only rate-controlling step,
and that diffusion through the liquid film around the adsorbent toward particle surface
is also involved in metal binding onto adsorbent. The first (sharper) region of the Weber
and Morris plots corresponds to the phase of the adsorption which is predominantly
controlled by film diffusion, while the second region describes the adsorption stage where
intraparticle diffusion played the major role, being thus rate limiting [66,67]. Accordingly,
the kdif intraparticle diffusion rate constants were derived from the slope of the second
linear portion, while the C values were computed from the intercept of the first linear
portion. The kdif intraparticle diffusion rate constant can be used for evaluation of the
effect of intraparticle diffusion on the adsorption process: the higher the kdif, the lower
the resistance to diffusion inside the pores. The intercept C value provides information
about the thickness of the boundary layer: the larger the intercept value, the greater the
resistance of external mass transfer across the boundary layer [64,67].
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From the values of intraparticle diffusion model parameters (Table 2) it can be seen
that higher diffusion rate was observed for removal of CrVI with WSP-Fe0 than with
WSP, while similar low C values were determined in both cases. On the other hand,
FeII removal with WSP is characterized by much lower diffusion rate constant and much
higher boundary layer effect than removal of CrVI with both WSP-Fe0 and WSP. Similar
Weber and Morris plots exhibiting multilinearity and not intersecting the origin were
previously reported for the adsorption of acid-activated date palm seed, Eichhornia crassipes
biomass and tea-waste [61,68,69].

Table 2. Weber and Morris diffusion model parameters.

kdiff
(mg g−1 min−0.5) C

FeII removal by WSP 5.3 × 10−3 2.4
CrVI removal by WSP 0.9 × 10−2 2 × 10−2

CrVI removal by WSP-Fe0 1.6 × 10−2 3 × 10−2

2.5. Mechanism of Metal Removal

The remediation of the AMD solution occurs through a pure adsorption process of FeII

at surface of WSP, via mixed physical and chemical mechanisms. Similarly, CrVI removal
with WSP-Fe0 can also be ascribed to adsorption processes. However, in this case, the higher
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removal efficiencies observed for WSP-Fe0 than for WSP are indicative of existence of
differences in mechanism of metal removal. This is attributable to Fe0 centers formed
at surface of WSP as a result of reaction between WSP-FeII and sodium borohydride.
Over the last three decades, Fe0 has been demonstrated to represent a highly efficient
reagent in remediation of water contaminated with a wide variety of pollutants, including
CrVI. Removal of CrVI with Fe0 occurs through a very complex mechanism, which may
involve physicochemical processes such as adsorption, direct reduction, indirect reduction,
co-precipitation/enmeshment in the mass of precipitates; generally, both adsorption and
reduction processes of CrVI in Fe0/H2O system are favored by an acidic pH, being strongly
hindered at pH levels close to neutral values [45]. After being adsorbed at surface of
WSP-Fe0, CrVI can be reduced to CrIII by WSP functional groups, by Fe0 (at very acidic
pH, when it’s not covered by oxides), by FeII-based corrosion products formed at surface
of Fe0 or by dissolved FeII. In addition, under acidic conditions, CrVI reduction may take
place also homogeneously with dissolved FeII. Thus, we can suggest that removal of
CrVI with WSP-Fe0 occurred through a combined adsorption-reduction process. However,
since very low concentrations of dissolved CrIII (~0.2–0.4 mg L−1) were detected only at pH
1.0 and 2.1, and CrIII adsorption/precipitation is inhibited at acidic pH, it can be assumed
that adsorption processes played the most important role in removal of CrVI. This is
in good agreement with similar observations reported by other researchers, indicating
that CrVI removal by natural biomaterials occurs via an adsorption-coupled reduction
mechanism [70,71].

3. Materials and Methods
3.1. Preparation of the Adsorbent for AMD Treatability Experiments

Walnuts (Juglans regia) were obtained from a local market in Timisoara (Romania).
After crushing the walnuts by hand, shells were separated, rinsed several times with
distilled water to remove impurities, and dried in an oven at 80 ◦C for 24 h. Then, the dried
shells were powdered using an electric grinder. The resultant WSP was washed with
distilled water until no brown coloration of the water was noticed, and then dried again
in oven at 80 ◦C for 24 h, to remove moisture. After cooling, the WSP was ground with
a mortar and pestle, and subsequently sieved to particles size of 0.5–1.25 mm for further
treatability experiments with synthetic AMD solutions.

3.2. Preparation of the Reactive Material for CrVI Treatability Experiments

After each AMD treatability experiment, the exhausted adsorbent (WSP-FeII) was
recovered and dried at room temperature. By means of mass balance calculation, the concen-
tration of adsorbed iron was determined to be about 3 mg FeII/g WSP. Then, the adsorbed
FeII was reduced to Fe0 via the liquid-phase reduction method, using sodium borohydride
(NaBH4) as reducing reagent [72]:

Fe(H2O)6
2+ + 2BH4

− → Fe0 + 2B(OH)3 + 7H2 (7)

About 250 mL distilled water were added over 80 g of WSP-FeII and the obtained
slurry was stirred at a rate of 200 rpm, in order to keep solid particles in suspension. Then,
0.6 g NaBH4 was added in small portions while stirring, in a fume hood; NaBH4 was
used in excess to the stoichiometric needed amount, in order to account for any that may
decompose during the course of the reaction with water. The usual brown color of the
solid material immediately darkened to a black appearance, indicating the formation of Fe0

centers at surface of WSP (Figure S16) [73]. After the addition of NaBH4 was completed
(~60 min), the resulted mixture was stirred for an additional 60 min. The resulted WSP-Fe0

was separated from the solution, washed with distilled water, dried at 80 ◦C for 24 h in an
oven, and kept in vacuum desiccator prior to being used in treatability experiments with
CrVI solution.
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3.3. AMD Treatability Experiments

Synthetic AMD stock solution (1000 mg L−1) was prepared by dissolving the required
amount of AR grade FeSO4·7H2O in distilled de-ionized water. Then, AMD working
solutions with desired FeII concentrations were prepared by appropriate dilution of stock
solution, knowing that Fe is often the main heavy metal present in acid mine drainage [74].
AMD treatability experiments were conducted in batch system, using an Ovan jar tester.
500 mL AMD solution was poured in 800 mL Berzelius flasks, followed by addition of 5 g
WSP. The mixture was stirred (200 rpm) and, at timed intervals, samples were withdrawn,
filtered using a 0.45 µm filter and analyzed for FeII. The pH of FeII solutions was adjusted
before experiments to the required value by addition of small amounts of concentrated
H2SO4. Detailed conditions of AMD treatability experiments are summarized in Table 3.

Table 3. Setup design of AMD treatability experiments.

Investigation of the Influence of

pH FeII Concentration Temperature Ionic Strength

pH 1.0–4.1 4.1 4.1 4.1
FeII concentration

(mg L−1)
50 25–100 50 50

Temperature
(◦C) 22 22 6–33 22

Ionic strength
(mole L−1 NaCl) 0 0 0 0–0.05

3.4. CrVI Treatability Experiments

CrVI stock solution (1000 mg L−1) was prepared by dissolving the required amount
of AR grade K2Cr2O7 in distilled de-ionized water. The stock solution was then further
diluted with de-ionized distilled water in order to prepare the working CrVI solutions.
Batch CrVI treatability experiments were conducted by mixing 1 g of WSP-Fe0 with a
volume 500 of mL CrVI solution in 800 mL Berzelius flasks. The mixture was stirred
using an Ovan jar tester (200 rpm) and, at predetermined times, supernatant aliquots
were collected, filtered through a 0.45 µm filter and sent to CrVI analysis. The pH of CrVI

solution was set by addition of small amounts of concentrated H2SO4 or 1 M NaOH solution.
For comparison purposes, control CrVI treatability experiments with raw WSP were also
conducted, by keeping unchanged all experimental conditions. Detailed conditions of CrVI

treatability experiments are summarized in Table 4.

Table 4. Setup design of CrVI treatability experiments.

Investigation of the Influence of

pH CrVI Concentration Temperature Ionic Strength

pH 1.0–5.9 3.0 3.0 3.0
CrVI

concentration
(mg L−1)

2 1–5 2 2

Temperature
(◦C) 22 22 6–33 22

Ionic strength
(mole L−1 NaCl) 0 0 0 0–0.05

3.5. Analytical Procedure

CrVI and FeII concentrations in the filtrate were analyzed by the 1,5-diphenylcarbazide
method (at 540 nm) and, 1,10-ortophenantroline colorimetric method (at 510 nm), respec-
tively, by using a 200 PLUS spectrophotometer (Specord, Germany). Crtotal was determined
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by treating the sample with KMnO4 to oxidize any present CrIII, followed by analysis as
CrVI; then, CrIII was determined from the difference between Crtotal and CrVI [75]. The pH
of the samples was measured using a 7320 pH-meter (Inolab, Germany); three standard
buffer solutions at pHs 4.0, 7.0 and 10.0 were employed for calibration. Point of zero
charge (pHpzc) of WSP surface was determined using the pH drift method [76]. The pre-
pared adsorbents were characterized by Fourier transform infrared spectrometry (FTIR:
VERTEX 70, Bruker, Germany) and scanning electron microscopy (SEM: Inspect S, FEI,
The Netherlands) coupled with energy dispersive X-ray spectroscopy (EDX: GENESIS XM
2i, The Netherlands).

3.6. Kinetic Modeling of Experimental Data

The kinetics of contaminant removal was analyzed using the linearized forms of
Lagergren pseudo first-order model and Ho’s pseudo second-order model [58,77,78]:

log(qe − qt) = log qe −
k1

2303
t (8)

t
qt

=
1

k2q2
e
+

t
qe

(9)

where qe is the equilibrium adsorption capacity (mg g−1), qt is the adsorption capacity
at time t (mg g−1), k1 (min−1) and k2 (g mg−1 min−1) are the pseudo first-order and,
respectively, pseudo second-order adsorption rate coefficients. The product k2qe2 also
represents the initial sorption rate. qe and qt were calculated as follows:

qt =
(C0 − Ct)V

M
(10)

qe =
(C0 − Ce)V

M
(11)

where M is the mass of adsorbent used in the kinetic experiments (g), Ce the equilibrium
concentration of metal (mg L−1), Ct the metal concentration at time t (mg L−1), C0 the initial
concentration of metal (mg L−1); V the volume of solution used in the kinetic experiments (L).

The slope and intercept of the plots of log(qe - qt) vs. t allows computation of pseudo
first-order k1 and of equilibrium adsorption capacity qe; similarly, the plot of t/qt vs. t
enables the pseudo second-order rate constant k2 and qe to be determined from intercept
and slope. In order to further assess the nature of the rate-limiting step of the process
(film diffusion or intraparticle diffusion), experimental data was fitted also to the Weber
and Morris intraparticle diffusion model [64,79]:

qt = kdi f f · t0.5 + C (12)

where qt (mg g−1) is the adsorption capacity at time t, kdiff (mg g−1 min−0.5) is the intra-
particle diffusion rate constant and C is a constant linked to the apparent thickness of the
film boundary layer.

Kinetic modeling was conducted using experimental data acquired at pH 4.1, 50 mg L−1,
22 ◦C, and pH 4.1, 2 mg L−1, 22 ◦C, for FeII and CrVI, respectively.

3.7. Statistical Analysis

All the data represent the mean of two independent experiments and relative error
less than 2% were obtained. Statistical analysis was performed using Microsoft Excel 2016
statistical tool.

4. Conclusions

In last years, the use of agricultural wastes/byproducts as cost-effective alternative
adsorbents for the treatment of water contaminated with a large variety of pollutants
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has attracted significant interest. However, much less interest has shown for finding
environmentally-friendly solutions for the management of residual solids resulted from
such water treatment processes. The present paper presents data on the use of WSP,
a local agricultural waste, for the sequential removal of two heavy metals, namely FeII

and CrVI, from aqueous effluents. Results presented herein clearly demonstrated that
WSP can be considered as a promising adsorbent for the removal of FeII from AMD,
while WSP-Fe0, obtained by treating the FeII-contaminated solid residue (WSP-FeII) with
sodium borohydride, is a suitable reactive reagent in the process of CrVI removal from
contaminated waters. The better capacity of WSP-Fe0 to remove CrVI, compared to fresh
WSP, was ascribed to existence of Fe0 centers at surface of WSP-Fe0. Adsorption kinetics
of CrVI and FeII was successfully fitted by the pseudo first- and pseudo second-order
model, respectively. While binding of FeII on WSP occurred via physical and chemical
mixed adsorption, removal of CrVI with WSP-Fe0 took place through a more complex
mechanism, involving both adsorption and reduction processes. This study provides
compelling evidence that residues resulted from a water adsorption treatment process
can be successfully converted into reactive materials for a subsequent water treatment
technology. The major challenge of this strategy is to identify water treatment processes
with fully compatible pollutants.
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Abstract: Among all minerals, iron is one of the elements identified early by human beings to take
advantage of and be used. The role of iron in human life is so great that it made an era in the ages of
humanity. Pure iron has a shiny grayish-silver color, but after combining with oxygen and water it
can make a colorful set of materials with divergent properties. This diversity sometimes appears
ambiguous but provides variety of applications. In fact, iron can come in different forms: zero-valent
iron (pure iron), iron oxides, iron hydroxides, and iron oxide hydroxides. By taking these divergent
materials into the nano realm, new properties are exhibited, providing us with even more applications.
This review deals with iron as a magic element in the nano realm and provides comprehensive data
about its structure, properties, synthesis techniques, and applications of various forms of iron-based
nanostructures in the science, medicine, and technology sectors.

Keywords: Fe nanomaterials; Fe nanoparticles; ferric; ferrous; iron ores; synthesis methods

1. Introduction

Iron, in terms of mass, is the most abundant element on Earth. This element is an important
constituent of the earth’s outer and inner cores, and the fourth most important element in the earth’s
crust. Among all minerals, iron is one of the early elements identified by the human beings to be taken
advantage of and used. It made an era in the ages of humanity; namely, the Iron Age is identified as the
final epoch of the three-age division of the prehistoric ages. This came after the Bronze Age, when the
human beings reached superior strength and hardness in tools and weapons by iron. In fact, the age of
iron did not come to an end, but developed until the 21st century life. The United States of America
alone produced ~49 million metric tons of iron ore in 2018. This number is larger for the world’s
largest iron ore mine producers, with Australia and Brazil, countries which produce 900 million and
490 million metric tons, respectively [1].

Pure metallic iron is rarely found on the lithosphere because, in the presence of oxygen and
moisture, it will cause it to readily oxidize. In order to obtain metallic iron, oxygen must be removed
from natural ores by reduction. From a chemical point of view, iron, with the chemical symbol “Fe”
(from Latin: ferrum), is an element with an atomic number of 26, and is located in the first round of the
transition metals. It is also the head of ferromagnetic materials. The D orbital of iron ([Ar] 3d6 4s2)
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is not totally full (Figure 1) and can have different oxidation states. The most important states of iron
oxidation are ferrous (Fe2+) and ferric (Fe3+). Ferrous iron links to sulfur and nitrogen ligands as well
as oxygen ligands. Ferric iron tends to react to hard ligands, such as oxygenated ligands. The most
common coordination number for iron (II) and iron (III) is six, which has an octagon spatial arrangement.
Furthermore, for ferrous/ferric iron, there is also a tetrahedral arrangement (a coordination number of
four), and also a square pyramid or a trigonal bipyramid (especially in a complex coordination of five).
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Iron has a shiny grayish-silver color but after combination with oxygen and water can make various
forms of iron oxide, iron oxide hydroxide, and iron hydroxide. This diversity sometimes appears
ambiguous but provides a colorful array of materials with divergent properties and applications.
By taking this color pen set to the nano realm, it provides us with even more colors. The current review
is dealing with this magic element and provides a wide view of iron, iron oxide, iron oxide hydroxide,
and iron hydroxide in the nano realm.

2. Zero-Valent Iron

The appearance of pure iron ranges from silver to black or gray and has a metallic sheen with
ferromagnetic properties. Pure iron is not used in the industry because of its softness and lack of
sturdiness. Iron is usually used along with nonmetal elements (carbon, sulfur, phosphorus, and silicon),
and sometimes with other metals (chromium, nickel, vanadium, and molybdenum) in alloy form,
where the resultant product would be steel or cast iron. The cheap price and high strength of iron
alloys have commoditized their use in the automotive industry, the hull of large ships, and buildings.
Nanoparticles of pure iron are known as zero-valent iron nanoparticles (ZVINPs) and are usually
synthesized by chemical reduction of iron ions [2]. In this manner, reducing agents, such as sodium
borohydride ore hydrazine, are used to reduce iron ions to iron atoms and subsequently iron atoms
aggregate and form ZVINPs [3,4]. In addition to chemical reducing agents, some biochemical species
are also able to reduce iron ions, and hence can be employed for the bio-reduction of iron ions
to ZVINPs [5,6]. In comparison to chemical reduction reactions, in the bio-reduction reactions,
no additional molecule is required to stabilize nanoparticles. Biologic molecules are sufficient for both
the reduction and protection of the prepared particles [5,7–9]. However, when chemical reducing
agents are employed, a second protective molecule is required to stabilize the particles (Figure 2).

Generally, ZVINPs are unstable and tend to oxidize and hydrate iron into oxides and iron
hydroxides (4). In fact, ZVINPs usually exhibit the dual characteristics of iron (Fe0) and iron oxides or
hydroxides. This feature is due to oxidation of exposed iron atoms on the surface of particles and the
formation of an iron oxide/hydroxide shell around the zero-valent core (see Section 4.1.3) [2,7–9]. In order
to prevent the oxidation reactions and maintain the properties of ZVINPs, coating with noble metals can
be used. For instance, ZVINPs with gold or silver coating are effective in the treatment of cancer, and can
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suppress the growth of cancer cells while possessing adequate biocompatibility with nonmalignant
cells [10,11]. Minerals are the other applicable material to protect zero-valent iron nanoparticles.
For instance, montmorillonite, which is a clay mineral, has been used as an effective protective agent
and support [2]. In some investigations chelating agents, such as diethylenetriaminepentaacetic acid
(DTPA), were used as a stabilizer for ZVINPs [7]. Biologic compounds were also shown to be effective
for protection from oxidation. These compounds can make a thick coating around the particles and
protect them from oxidation. It has been shown that by using biologic coatings any detectable iron
oxides can be formed on the particles [5,12].Processes 2020, 8, x FOR PEER REVIEW 3 of 28 
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ZVINPs gained diverse applications in environmental sciences and remediation proposes.
These nanoparticles are used to remove arsenic from contaminated aquatic environments [13,14].
Extensive lab studies have shown the potency of these nanoparticles in the adsorption and degradation
of halogenated hydrocarbons, such as trichloroethylene (TCE) [15]. These nanoparticles are also
effective against pesticides, transition metals, organic dyes, and radioactive contaminations [7,16–18].
ZVINPs can also act as an antimicrobial agent which have a better performance in the absence of
oxygen. The antimicrobial activity of these nanoparticles against Escherichia coli has been studied under
anaerobic and aerobic conditions. In the absence of oxygen, when E. coli is exposed to 9 mg/L of iron
nanoparticles for 10 min, bacterial cells were effectively disabled. In aerobic conditions, when the
bacteria were exposed to 90 mg/L of iron nanoparticles for 90 min, the antimicrobial effects were
negligible, since, in the presence of oxygen, ZVINPs are oxidized [19].

3. Iron Oxides

In the presence of oxygen and humidity, iron easily combines with oxygen and transforms to iron
oxides. Iron oxides are widespread in nature and can be found in soil, rocks, lakes, rivers, seafloors,
and even in living creatures [20]. Generally iron oxides receive much attention from scientists and
researchers because of the variety in their physical and chemical properties. Iron reacts with oxygen in
various states and therefore can be found in diverse chemical formulas with different properties as
described in the following.

3.1. Ferrous Oxide (FeO)

Fritz Wüst, a German metallurgist (1860–1938), named iron (II) oxide (ferrous oxide, Fe=O,
Figure S1) as wüstite. It is a gray-black ore with a greenish shade. The FeO formula is not exactly
correct because wüstite is a typical non-stoichiometric mineral. In this mineral the amount of iron is
always less than the stoichiometric ratio, and there is no temperature at which a one-to-one ratio can
be seen between iron and oxygen. In fact, there is deficient iron in the structure with compositions
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ranging from Fe0.84O to Fe0.95O (Fe1−xO) [21]. It has an isometric (cubic) crystal system and has
anti-ferromagnetic properties [22].

The most common methods for preparing wüstite nanoparticles are co-precipitation (Scheme 1),
polyol method (Scheme 2), pyrolysis (thermal decomposition) of organometallic compounds (Scheme 3),
micro emulsion, hydrothermal (Scheme 4), and sol-gel synthesis (Scheme 5) [23]. Among these methods,
thermal decomposition of iron (II) or iron (III) complexes is the most employed technique [22,24,25].
wüstite nanoparticles can also be fabricated by physical approaches, such as ball milling, using a mixture
powder of hematite and iron [26]. The main challenge in all the above-mentioned methods for preparing
wüstite nanoparticles is to achieve nanoparticles with controlled size, shape, and composition [23].

Wüstite nanoparticles are semi-stable, and are therefore used in the creation of mixed phase
nanoparticles [27]. Moreover, in order to create stability in wüstite nanoparticles, they are covered with
organic ligands. In another approach, wüstite nanoparticles can be doped with other divalent metals
(Dm), such as cobalt and magnesium, to fabricate Dm(x)Fe(1−x)O. These structures can be synthesized
by the thermal decomposition of DmFe organometallic complexes or by solution-combustion methods
[28,29]. The surface of the doped wüstite nanoparticles is oxidized to DmFe2O4 and form a shell to
protect the core from oxygen transmission. The thickness of the oxidized shell can be tuned through
a controllable oxidation process and has significant effects on the core/shell ratio and exchange bias
properties. For instance, it has been shown that a shell of CoFe2O4 with 4 nm thickness is ideal for
resistance to oxygen transmission [29].

From application point of view, there are reports for the antimicrobial properties of wüstite
nanostructures. It has been shown that the nanochains of carbon coated wüstite nanoparticles can kill
bacterial cells within a short incubation time at minimal dosages [30]. Wüstite nanoparticles can be
applied as radiation filters. Glasses with thin films of FeO and Fe2O3 nanoparticles are used as solar
radiation filters. These filters are applicable on the building windows to prevent heat transmittance
while visible light is passing through [31].
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3.2. Ferric Oxide (Fe2O3)

As its name indicates, ferric oxide is the oxide of iron (III) (O=Fe–O–Fe=O, Figure S1). This form
of iron oxide is well-known as rust and can be found in red and brown. Ferric oxide is the result of
dehydration reaction of FeO(OH) and Fe(OH)3 at temperatures above 200 ◦C (Equations (1) and (2)).
It can be found in its hydrated (see Section 3.2.2) or anhydrous forms. In the following we made a
detailed reviews on the various phases of anhydrous ferric oxides.

2FeO(OH)→ Fe2O3 + H2O (1)

2Fe(OH)3→ Fe2O3 + 3H2O (2)

3.2.1. Anhydrous Ferric Oxides

Anhydrous forms of ferric oxide can be found in different polymorphs, such as alpha (α-Fe2O3),
beta (β-Fe2O3), gamma (γ-Fe2O3), and epsilon (ε-Fe2O3). These minerals are the same in chemical
structure but have differences in their crystal systems [32].

Hematite (α-Fe2O3)

The word hematite is taken from the Greek word hematicos, which means bloody. The chemical
reaction to get hematite from magnetite is shown in Equation (3). Hematite is a widespread iron oxide
and can be found in rocks and soil. It is the oldest known ore of iron that has ever formed on the Earth.

2Fe3O4 + 1/2O2→ 3(α-Fe2O3) (3)

Hematite has a rhombohedral and hexagonal crystal system, and its crystal habit can be seen as
either spindle, bar, oval, square, or spherical. It has a red metallic appearance. Hematite has different
forms, but all forms have a red sheen. Hematite iron deposits are most significant in the steel industry
and in the preparation of cast iron. This mineral is one of the precious rocks, and the fine cuts of its
black crystals are used in making jewelry. Moreover, its powder is used in pigments, such as red
pigment 22 and antirust [20].

The most common ways to produce hematite nanoparticles are chemical precipitation, the
polyol process, pyrolysis of organometallic compounds, micro emulsion, hydrothermal synthesis,
and sol-gel process [23,33,34]. These nanoparticles can also be obtained by calcination of mixtures
of iron oxide nanoparticles at high temperatures (about 500 ◦C) [35]. Biosynthesis (plant mediated
synthesis) is another route, in fact, a green route, for fabrication of hematite nanoparticles [36].
These particles can be fabricated by using various plants, such as root extract of Arisaema amurense [37],
Tragacanth gel [38], Citrus reticulum peels extract [39], the extract of green tea leaves (Camellia
sinensis) [40], Ailanthus excelsa [36], and guava (Psidium guajava) [41].

Hematite nanoparticles are the most stable iron nanostructure in the ambient conditions and
have size and shape-dependent magnetic properties. The magnetic saturation is in direct relation
to particle size, and by increasing the size, an increase in the magnetic saturation value can be
observed. On the other hand, it has been shown that spherical nanoparticles have the highest magnetic
saturation, while cubic and ellipsoidal nanoparticles are ranked in the next positions, respectively [42].
These nanoparticles can exhibit ferromagnetism or superparamagnetic behavior at room temperatures.
However, in contrast to magnetite (Fe3O4) nanoparticles, saturation magnetization values of hematite
nanoparticles are very low [43]. These nanostructures have gained applications in the development of
electrochemical devices, as cathode in lithium batteries, the fabrication of photo electrochemical systems
to produce hydrogen from water using solar radiation, as photo reactive nanomaterial for the enhanced
performance of photoelectrochemical cells, and as reusable catalysts [23,40,44]. These nanoparticles
can be employed for the enhancement of the thermal conductivity of the base fluids in nanofluidic
systems [41]. Hematite nanoparticles have a high capacity for metal ions’ removal from aqueous
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solutions. These particles can be employed for metal cations removal from acid mine drainage. It has
been shown that hematite nanoparticles can completely remove aluminum, magnesium, manganese,
and iron ions, while zinc and nickel ions remove over 80% and sodium and calcium ions remove up
to 72% [35]. Hematite nanostructures are also able to decontaminate aqueous systems from different
organic pollutants and can be used as an effective material in fertilizers fabrication [39]. The surface
modification of hematite nanoparticles with the organic functional groups makes these particles more
biocompatible and suitable to treat the chlorosis in plants, such as Glycine max [45].

Beta-Fe2O3 (β-Fe2O3)

β-Fe2O3 is a scarce form of iron (III) oxides. This polymorph is a metastable phase and easily
transformed into the more stable alpha (α-) phase of ferric oxide. The transformation occurs at high
temperatures, above 500 ◦C, but the mechanism of transformation and the changes which occur in
crystal structure are, as yet, unclear. In fact, the exact crystal structure of the β-Fe2O3 is not defined,
and this is due to difficulties in obtaining a β phase in pure monophasic crystals [46]. β-Fe2O3

was discovered in 1958 and believed to have a cubic body centered crystal structure [47]. However,
techniques for the fabrication of β-Fe2O3 nanostructures have been developed and these structures can
be obtained via simple chemical reactions. Solid state reaction is one of the most common techniques
for the fabrication of β-Fe2O3 nanoparticles, where NaFe(SO4)2 is used as the precursor. In brief,
a solution mixture of Fe2(SO4)3 and Na2SO4 is evaporated in an oven at ambient atmosphere to
obtain NaFe(SO4)2. The resulting powder is then fully grounded and mixed with NaCl, in a 1:2 ratio,
and heated up to 400–500 ◦C in a muffle furnace. After cooling, the product should be dispersed in
distilled water and washed to remove NaFe(SO4)2 and Na3Fe(SO4)3 [46,47]. In addition, colloidal
β-Fe2O3 nanostructures can be fabricated by hydrolysis of ferric ions in boiling water. The shape of
prepared nanostructures can be controlled by the employing cobalt ions (Co2+). It has been shown that
spherical and rod nanoparticles can be obtained in this order [48].

Water splitting and hydrogen production is one of the most promising approaches to overcoming
the global energy crisis. Water splitting can be performed via photoelectrochemical reactions which
employ ferric oxide nanoparticles as the photoanode material. Due to availability, photochemical
stability, and high efficiency for light absorption, in the past decades, hematite (α-Fe2O3) has been
envisioned as a strong semiconductor photocatalyst. However, there are some obstacles with hematite.
For instance, its low conductivity reduces the photoelectrochemical activity and there are also some
other defects, such as large over potential and short hole transport distance. Recent studies introduced
β-Fe2O3 as a more promising phase for light assisted water splitting. β-Fe2O3 has a smaller band
gap than hematite and therefore is more efficacious in light absorption and photoelectrochemical
reactions [47].

Maghemite (γ-Fe2O3)

Maghemite is the second most abundant form of ferric oxide. It has a cubic and tetragonal
crystal system and its crystal habit is cube, plate, or spindle in shape. The color of maghemite is
brown or reddish brown. Its combination is metastable and at high temperatures (about 500 ◦C),
it turns into the alpha phase. Maghemite has ferrimagnetic properties and its nanoparticles show
superparamagnetic properties [49,50]. The most common techniques for maghemite nanoparticles
production are co-precipitation, polyol process, micro emulsion, hydrothermal synthesis, sol-gel
process, and the pyrolysis of organometallic compounds [23]. These particles can also be obtained by
the oxidation of magnetite (Fe3O4) nanoparticles via thermic treatments [50–52]. The conversion of
magnetite to maghemite can also be seen on the surface of magnetite nanoparticles that forms a core-shell
structure of magnetite-maghemite [53]. To improve the properties of the prepared nanostructure,
the surface of the maghemite, nanoparticles can be functionalized using divergent biocompatible
compounds, such as amino acids, fatty acids, silica, and hydroxyapatite [52]. Surface modifications were
also done by multiwall carbon nanotubes (MWCNTs) and ethylenediaminetetraacetic acid (EDTA) [52].
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Even polymeric materials have been used [54–56]. Doping is another approach to improve the properties
and functionalities of maghemite nanoparticles. For instance, these nanoparticles can be doped with
rare-earth elements, such as yttrium [57]. On the other hand, maghemite nanoparticles themselves can
be used for the decoration of other nanostructures, such as carbon nanotubes. Maghemite nanoparticles
decorated on carbon nanotubes have been used for the fabrication of oxygen evolution reaction
(OER) electrocatalysts [58]. Also, maghemite nanoparticles are used in magnetic recording media,
biocompatible magnetic fluid production, and electro chromic devices [23].

The other well studied application of maghemite nanoparticles is in the environmental sciences.
These nanoparticles are efficient to remove heavy metals, such as uranium [56], hexavalent chromium
ions [59,60], copper(II), and lead(II) ions [52], from aqueous systems. Maghemite nanoparticles are so
promising in this field that they can clean up contaminated water to drinking water standards [60].

Like hematite nanoparticles, maghemite nanoparticles can also be used in fertilizer formulations.
In contrast to chelated irons, employment of maghemite nanoparticles in plant fertilizers resulted
in more improved agronomic properties such as growth rate of leaves and chlorophyll content [57].
Also, maghemite nanoparticles can improve plants’ abiotic stress tolerance. Delivery of maghemite
nanoparticles by irrigation in a nutrient solution to plants resulted in a significant reduction of hydrogen
peroxide and malondialdehyde formation. These effects were discussed as nanozyme properties of
maghemite nanoparticles [57].

Maghemite nanoparticles have been approved by the FDA to be employed in medical and
pharmaceutical sciences [61,62]. These nanoparticles can be used for theranostic applications [63].
Nanostructures of maghemite can illustrate the high values of magnetic saturation (near or equal to
magnetite nanoparticles) that makes them ideal for biomedical magnetic applications, such as magnetic
labeling, magnetically guided deliveries, and hyperthermia therapies [51,63–65]. For instance, it has
been shown that by using 10 nm maghemite nanoparticles an increase in the temperature of up to
~50 ◦C is possible [51]. Maghemite nanoparticles are also a promising candidate for the fabrication of
dual functional nanostructures. Fluorescent magnetic nanoparticles are one of them. In an experiment
rhodamine isothiocyanate (RITC) is covalently encapsulated within maghemite nanoparticles and
used for cell labeling. These nanostructures were found to be pH sensitive and introduced as a pH
sensor for animal tissues and cell compartments [66]. In another experiment rhodamine was used for
labeling a maghemite–albumin nanohybrid to combine targeting by the iron-acquisition pathway and
photothermal therapies [67].

Maghemite nanoparticles can be employed in magnetofection techniques. Nanoparticles with
efficient coatings, such as dendrimers, can couple fragments of DNA and take them into the cell under
magnetic stimulus [68].

Drugs can also be delivered by these nanoparticles. In an attempt to fabricate a potential
drug carrier, maghemite nanoparticles were functionalized with divergent molecules, such as
human serum albumin (HSA), aminobenzoic acid, poly (ethylene imine) (PEI), and poly (ethylene
oxide)-block-poly(glutamic acid) (PEO−PGA) [69–71]. Maghemite nanoparticles were also employed
for the fabrication of multi stimuli-responsive smart nanogels. By combining thermo-responsive
polymers, such as poly (vinyl alcohol)-b-poly(N-vinylcaprolactam) copolymers with maghemite
nanoparticles, an innovative drug delivery system was obtained that is glucose-, pH-, thermo-,
and magnetic-responsive. In addition, the magnetic properties of the maghemite nanoparticles
make nanogel effective for magnetically-induced heating and magnetic resonance imaging (MRI)
performance [72].

Maghemite nanoparticles can be used as a high sensitivity magnetic biosensor. In an experiment,
it has been shown that, based on the giant magneto-impedance (GMI) effect, MAT-LyLu cells that grow
in the presence of 0.1 mg/mL nanoparticles for 24 h make detectable modifications in the magnetic
field at 1 MHz frequency [65].

Beside all the mentioned applications, maghemite nanoparticles have gained applications in tissue
engineering and biologic scaffolds preparation. The inclusion of these nanoparticles in the scaffolds’
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polymer network resulted in the significant improvement in physical and chemical characteristics of
the prepared scaffolds. It has been shown that gradual increase of nanoparticle concentration in the
polymer network significantly increases the polymer’s hydrophilicity, water swelling, Young modulus
(mechanical stiffness), effective viscosity, and negative value of electrical potential [73,74]. Maghemite
nanoparticles also improve biologic properties of the scaffolds. Polymers imbedded with maghemite
nanoparticles pose increased biocompatibility and cell adhesion index [73]. It has been shown that
addition of maghemite nanoparticles to the scaffolds can increase initial cell adhesion by 1.4-fold,
enabling earlier cellular proliferation confluence [74]. In some cases, doping with maghemite
nanoparticles provides scaffolds with specific advantages for particular tissues. For instance,
the application of these nanoparticles in scaffolds for bone repair and regeneration resulted in
higher mineral induction [74]. In regard to skin repair, nanoparticle-doped scaffolds provide a higher
cell proliferation rate for human skin fibroblast cells [75]. Maghemite nanoparticles were also used for
tissue engineering a heart valve to obtain the required properties of an aortic heart valve. Fabricated
materials using this technology are desirable scaffolds for human aortic smooth muscle cells migration
and proliferation. In addition, these scaffolds provide a mutual adaption in terms of clotting time and
hemolysis percent [76].

ε-Fe2O3

ε-Fe2O3 has an orthorhombic crystal system and shows properties between the alpha and gamma
phases [32,77]. The ε-polymorph of Fe2O3 is unique due to its significant ferromagnetic resonance
and coupled magnetoelectric features that cannot be found in any other phases [78]. This compound
is metastable and at temperatures from 500 ◦C to 750 ◦C it turns into hematite (alpha phase).
The preparation of the pure epsilon phase is also very challenging due to the contamination with alpha
and gamma phases. There are some techniques to achieve a high proportion of epsilon phase [79].
However, the optimal reaction condition to achieve single-phase ε-Fe2O3 remains as a challenge for
the future [78]. Recent studies have shown that this compound was used in the glazing of ceramics in
ancient China [20]. Rod-shaped ε-Fe2O3 with a large coercive field were used in a mesoscopic ferrite
bar magnet which can be used as a probe in magnetic force microscopes [80].

Zeta-Fe2O3 (ζ-Fe2O3)

As mentioned in detail previously, there are four well-known polymorphs for ferric oxide
(α-Fe2O3, β-Fe2O3, γ-Fe2O3, and ε-Fe2O3), which are similar in chemical structure but differ in
crystal structures and, hence, physical properties However, in 2015, via synchrotron X-ray diffraction
experiments, a new phase was introduced for ferric oxide. It evolved from cubic β-Fe2O3 during a high
pressure (above 30 GPa) treatment and was termed zeta-Fe2O3 (ζ-Fe2O3). After pressure release the
structure was retained and was stable at an ambient atmosphere. The structure was also stable at high
pressures up to 70 GPa, which is above the pressures that induced phase transfer in other ferric oxide
phases. This structure shows antiferromagnetic properties with ~69◦ K Neel transition temperature.
The discoverers claimed that this novel phase may have unique physicochemical properties that would
lend it particular applications [81].

3.2.2. Hydrous Ferric Oxide (Ferrihydrite)

Hydrous ferric oxide or ferrihydrite is one of the well-known iron compounds with a 5Fe2O3.9H2O
chemical formula. However, there are also other reported formulas such as Fe5HO8.4H2O and
Fe2O3.2FeO(OH).2.6H2O [82,83]. The indeterminate chemical formula of ferrihydrite is due to the
variability of the content of combined water. Ferrihydrite has a hexagonal crystal system (hcp)
and a spherical habit crystal. Based on the constitutive crystallites, ferrihydrite can be considered
between two diffraction end-crystalline structures which are described as two- or six-line ferrihydrite.
This nomination is based on the number of scattering bands in their X-ray diffraction patterns.
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It is interesting that ferrihydrite can just be found in the nature as nanocrystals in a dark
brown or reddish brown color [20,83]. It is a widespread mineral on the Earth and can be found in
soil and sediments of hot springs, marine environments, and fresh waters. In these environments
ferrihydrite nanostructures precipitate by the oxidation of aqueous Fe(II) solutions that contain
dissolved organic matter. The oxidation occurs at neutral pH and it is obvious that presence of organic
compounds significantly affects the crystallinity of the resulted nanostructures [84,85]. Ferrihydrite can
be mineralized as nanoparticles in the ferritin protein of animals, plants, and microorganisms, where it is
utilized in intracellular iron storage [86]. It has been shown that crystalline and amorphous ferrihydrite
nanoparticles in the size range of 3–6 nm can be assembled within ferritin [87]. Some microbial
cells are also able to mineralize ferrihydrite nanostructures on the cell surface. The structure is
mostly nanostructured polysaccharide-iron hydrogel and produced under microaerophilic conditions.
Nanostructures which are produced by the bacterium Klebsiella oxytoca are one of the well-known and
studied mineralize ferrihydrite nanostructures. This iron reducing bacterium (FeRB) is able to ferment
ferric citrate under microaerophilic or anaerobic conditions and produces a Fe(III)-hydrogel [88–91].
Other bacterial cells, such as Staphylococcus warneri, Xanthomonas campestris, and Ralstonia sp., were also
reported to be able to fabricate an Fe(III)-binding exopolysaccharide and develop polysaccharide-iron
nanostructures [92–94]. Synthetic ferrihydrite nanoparticles can also be prepared chemically.
The reaction can be performed at ambient atmosphere by adding an alkaline solution (NaOH)
to the solution of ferric ions (e.g., ferric nitrate, Fe(NO3)3.9H2O, or ferric chloride, FeCl3.6H2) under
constant stirring [95,96].

Both synthetic and biologic ferrihydrite nanostructures exhibit weak magnetic (paramagnetic)
behavior. Low magnetic response beside good contrasting properties and biostability make the
ferrihydrite a valuable contrasting agent for MRI imaging [97]. However, there are some techniques to
improve the magnetic moment of ferrihydrite nanoparticles. It has been shown that the heat treatment
of ferrihydrite nanoparticles at low temperatures (about 160 ◦C) enhances the average magnetic
moment of biosynthesized nanoparticles. It is claimed that an enhanced in magnetic moment can be
due to the partial agglomeration of nanoparticles throughout heat treatment process [98].

Ferrihydrite nanoparticles have gained applications in environmental remediation activities.
These particles can be employed to remove mineral contaminants such as Pb(II), Cd(II),
Cu(II), Zn(II), phosphate, and arsenate from aqueous solutions [99,100]. In the case of organic
contaminants, ferrihydrite nanoparticles are known to effectively improve the bioremediation activities.
Microorganisms play the main role in this regard and ferrihydrite nanoparticles can enhance microbial
degradation of a wide range of contaminants [101]. In recent attempts scientists tried to inject
a colloidal ferrihydrite in the subsurface to create reactive zones and promote biodegradation
reactions [101]. There are also some attempts to enhance particles’ mobility in the soil column
via polymer coatings as a surface engineering strategy or post flushing with particle-free electrolyte
solutions [101,102]. The injection of ferrihydrite nanoparticles in the soil column is not just profitable for
the soil microorganisms; the soil that is treated with ferrihydrite nanoparticles is even more beneficial
for plants. It has been shown that soil enrichment with ferrihydrite nanoparticles enhances the growth
and chlorophyll content in the maize seedlings [103].

3.3. Ferrous Ferric Oxide (Fe3O4)

Ferrous ferric oxide is well known as magnetite and its name is taken from the Greek word
“magnet”. Its IUPAC (International Union of Pure and Applied Chemistry) name is iron (II, III)
oxide, and its common chemical name is ferrous-ferric oxide. It has two iron (III) and one iron (II) in
combination with four oxygen. The structural formula of Fe3O4 is shown in Figure S1. Magnetite
has a crystal cubic-hexoctahedral system with an octahedral habit crystal. It has a black appearance
with a metallic opaque sheen. This combination is fragile and has caught the attention of researchers
because of its outstanding properties and has therefore has been thoroughly studied. Magnetite is
ferrimagnetic and can be employed as a permanent magnet [20,32].
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It is interesting that magnetite shows superparamagnetic qualities in the nanometer range
(1 to 100 nanometers). This means that nanoscale magnetite fails to maintain magnetization after
removal of the external magnetic field. This unique property makes magnetite nanoparticles one of the
most employed nanostructures in technology, science, and especially in medicine. Wide applications
of magnetite nanoparticles have led to the development of various methods for their synthesis.
Some of the common methods of magnetite nanoparticle synthesis are pyrolysis of organometallic
compounds, polyol process, micro emulsion, hydrothermal synthesis, sol-gel, and coprecipitation [104].
Coprecipitation is the most commonly employed technique. In this method, magnetite nanoparticles
are produced using bivalent and trivalent hydrated salt ions in the presence of a strong base under
controlled atmosphere. The chemical reaction is as provided in Equation (4).

2 Fe+3 + Fe+2 + 8 OH−→ Fe3O4 + 4 H2O (4)

It is fair to mention that magnetite nanoparticles are the most studied and employed iron-based
nanostructures. These particles have gained myriad divergent applications in engineering, such as
data storage and transfer [105], the rising up and the aggregation of activated sludge [106],
heavy metal absorbents [107,108], nanocatalysts [109], and various others. In addition to the various
engineering applications of magnetite nanoparticles, plenty of studies were also performed for
the medical application of magnetite nanoparticles in drug delivery, magnetic resonance imaging
(MRI), hyperthermia therapy, and immunoassay [110,111]. In order to employ magnetic iron oxide
nanoparticles in medical applications, they are usually coated with biocompatible organic or inorganic
molecules, such as silica, amino acids, lipoamino acids, carbohydrates, proteins, and polymers [112–122].
Biocompatible magnetite nanoparticles have also been widely used in biological sciences for magnetic
labeling and the magnetic separation of the cells and biomolecules (e.g., nucleic acids, enzymes,
and antibodies) [123–136]. These nanoparticles gained some applications to increase the performance
and addressing the defects of fermentation industries. Magnetite nanoparticles can increase the
performance of microbial cells and make high performance cells. It showed that magnetite nanoparticles
can increase the permeability of the cell membrane toward improvement in mass transfer and increasing
the cell functions [123,137,138]. On the other hand, certain concentrations of magnetite nanoparticles
can affect biofilm formation by microbial cells which is a major problem of the fermenters [139,140].
A recent study showed that by using magnetite nanoparticles in a fermentation period, valuable
industrial strains can be protected from potential phage infections [141].

It is interesting that living creatures employ magnetite nanoparticles for navigation. Magnetotactic
bacteria are Gram-negative bacteria that are able to build specialized magnetite nanostructures.
Members of this bacterial family are able to fabricate magnetosome nanostructures that are biogenerated
magnetite nanocrystals engulfed by a phospholipid bilayer. Magnetosomes are arranged in a line in
the cytoplasm of bacteria and act as a compass needle to provide the ability of magnetotaxis for the
cell [142]. Magnetosomes can be in diverse morphologies and it has been shown that environmental
conditions have an immense effect on their morphology [143]. Biogenic magnetite nanoparticles are not
restricted to the bacterial realm and there are obvious reports for the presence of these nanostructures
in migratory and non-migratory animals. It has been shown that, like arrangement of magnetosome in
the bacterial cytoplasm, magnetic nanoparticles are arranged in short or long chains in the ethmoid
and lateral ethmoid bones of migratory and non-migratory fishes [144]. The chains of magnetic
nanoparticles were also reported in the plants. Magnetic nanoparticles are located in the form of
chains in the wall of the phloem sieve tubes (i.e., the vascular tissue of plants) [145]. Interestingly,
magnetite nanoparticles have been identified in human tissues (e.g., brain, meninges, heart, liver,
spleen, and cervical skin) [146]. In addition, human stem cells are able to degrade and synthesize
magnetic nanoparticles [147].
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4. Ferric Oxide-Hydroxide (Ferric Oxyhydroxide)

Ferric oxyhydroxide is composed of iron, oxygen, and hydrogen with the FeO(OH) chemical
formula (O=Fe–OH, Figure S1). In aqueous matrixes, ferric ions can hydrolyze to some extent and
produce ferric oxyhydroxide. As shown in Equation (5), this hydrolysis reaction produces protons
and, to some extent, makes the environment acidic. Ferric oxyhydroxide is usually encountered as
hydrated forms with the FeO(OH)·nH2O general formula (see the Section 4.2) and anhydrous ferric
oxyhydroxide. These two forms are discussed in the following sections.

Fe(III) + 2H2O→ FeO(OH) + 3H+ (5)

4.1. Anhydrous Ferric Oxyhydroxides

Like ferric oxide, anhydrous ferric oxyhydroxide can be found in four different polymorphs,
denoted as the α, β, γ, and δ phases. Different phases are distinguished by their distinct crystalline
structure [20].

4.1.1. Goethite (α-FeOOH)

Goethite is the main component of iron rust and is also the main compound of bog iron ores.
In recent years, this mineral has benn used as iron ore and known as brown iron ore. Goethite is an
antiferromagnetic mineral [148]. It has an orthorhombic crystal system and its crystal habitat is usually
either needle, star, or hexagonal [20,148]. Its color in the crystalline state is dark brown or black and
yellow. When powder, it is semi-transparent to opaque.

Recent investigations revealed that nanostructures of goethite can be formed in nature.
By cryogenic Fe MÖssbauer spectroscopy studies it was discovered that in the marine and lacustrine
environments the ferric oxyhydroxide phase is the nanogoethite [149]. The laboratory synthesis of
goethite nanoparticles is usually performed by using ferric nitrate (Fe(NO3)3.9H2O) or ferric chloride
hexahydrate (FeCl3.6H2O) as an iron precursor. In this order a basic solution, mostly sodium hydroxide
(NaOH), is added to the iron solution with continuous stirring until a clear solution of yellowish-brown
color is formed. This yellowish-brown precipitate is ferrihydrite and needs to age to goethite [96,150].
The aging process is done at high temperatures, about 60–100 ◦C [96,151,152]. The speed of the base
addition is a critical point in the process and is inversely proportional to the resulting particles’ specific
surface area. It is shown that by varying the rate of base addition from 1 mL/min to 10 mL/min the
obtained specific surface area is reduced from 101 ± 5 m2/g to 64 ± 2 m2/g [96]. The major problem
with these techniques is that the produced nanoparticles are not uniform in shape and size. Recent
experiments indicated that this problem can be solved by controlled synthesis reactions. These reactions
are based on the fact that presence of additional molecules, such as carbohydrates, can control the
crystals’ growth pattern. It has been shown that such compounds can drive the reaction to induce
isotropic growth of goethite nanocrystals [150].

High quality goethite is rare and usually polished to be used in making jewelry [20]. From an
industrial standpoint, goethite is among the main pigments (brown ochre; a yellowish-brown pigment)
which has been used since ancient times. Goethite nanoparticles have gained some environmental
applications and are used to remove metallic cation pollutants, such as arsenic and chromium [152–154].
These nanoparticles are also used as an absorbent for the removal of fluoride from contaminated
waters [83]. Surface modification studies were also performed to enhance the nanostructures’ stability
and mobility in porous media. Humic acid is reported to be efficient in this regard. However, the major
drawback is aggregation in the presence of divalent cations, e.g., calcium and magnesium ions, which is
due to complexation phenomena related to the interaction of divalent cations with humic acid [155].

Goethite nanoparticles are able to quench free radicals. This property can be used to improve
the oxidative stability of commercial products to enhance the storage time. For instance, gasoline
oxidation is a factor that significantly decreases the gasoline storage time. A study on the gasoline
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induction period indicated that goethite nanoparticles can inhibit gasoline oxidation and significantly
elongate the induction period of the commercial gasoline [156].

4.1.2. Akaganeite (β-FeOOH)

The name of this compound has been taken from the Akagan mine in Japan. It is an
antiferromagnetic mineral and has a monoclinic crystal system with hexagonal, bar-like, star-shaped,
and prismatic crystals [157]. Its appearance has a tan-brown color with a metallic sheen. This mineral
has been found in different parts of Earth as well as in the rocks from the Moon. This mineral can be
found in corrosion of iron and hot springs that contain chloride [158]. Although akaganeite is known
as one of the anhydrous forms of FeOOH, in chloride-containing environments. In such conditions,
chloride takes part in the structure and so the exact structure would be FeO0.833(OH)1.167Cl0.167 [158].
In fact, it is composed of an iron oxyhydroxide framework with tunnels, hollandite channels, that is
filled with chloride ions [157,158].

The nanostructure of akaganeite is mostly formed in nanorods and can be synthesized by
hydrolysis of an iron chloride solution. The reaction is performed at high temperatures, about 80 ◦C,
and usually in the presence of surfactants, e.g., poly (ethylene oxide) (PEO) or polymers (e.g.,
polyethyleneimine) as a capping agent and structure director to control the particle size distribution
and particles shape [159–161]. Control over the particles’ size is possible by varying the concentration
of the capping agent. In fact, smaller nanorods can be obtained by increasing the concentration of
capping agent [159].

Akaganeite has aroused widespread interest as a new generation of adsorbent material owing to
its outstanding uptake capacity for toxic anions and cations [157,158,162]. Akaganeite ion exchange
capability strongly depends on the hydroxyl groups located outside of the hollandite channels [163].
Formation of oriented aggregations is a key feature of the akaganeite nanorods [161,164]. New synthesis
techniques have been developed to fabricate mesoporous akaganeite nanorods with increased specific
surface area and hierarchical scaffold structure which is formed through the nano-rods’ aggregation [161].
These structures can provide even more uptake capability for akaganeite nanorods. Akaganeite
nanorods can also be used as catalyst material. Among various iron oxide and iron oxide hydroxide
nanostructures, akaganeite nanorods are the most effective catalysts for the reduction of 4-nitrotoluene
using hydrazine hydrate as a reducing agent [83]. One of the promising applications of akaganeite
nanorods is in the fabrication of magnetite nanorods. Converting akaganeite nanorods into magnetite
is a common approach for the synthesis of ellipsoidal magnetite nanoparticles. This conversion can
be performed through a reduction reaction by using a chemical reducing agent, such as hydrazine
(Equation (6)) [160].

12β-FeOOH + N2H4→ 4Fe3O4 + 8H2O + N2 (6)

4.1.3. Lepidocrocite (γ-FeOOH)

Lepidocrocite is also called esmeraldite or hydrohematite. It is thermodynamically metastable
and based on the aqueous condition, undergoes a phase transition to a more stable iron oxide
structure [165,166]. This iron combination has anti-ferromagnetic properties. It can be formed in
crystalline or amorphous structures from iron oxidation phenomena, such as atmospheric oxidation
or sea corrosion [167]. Its crystal system and structure are orthorhombic, and its crystal habit is
normally string-shaped [168]. Its appearance has a ruby red to orange-brown color, has a semi-metallic
sheen, and is found in rocks, soil, and rust. It has transparent crystals that form thin sheet-like
structures [169]. This fine appearance captures attention of jewelry designers and takes lepidocrocite
to the jewelry industry.

Nanoscale lepidocrocite can be formed by the oxidation of zero-valent iron nanostructures (ZVINs)
in oxygenated aqueous matrixes [170]. By the oxidation of ZVINs, ferrous ions diffuse out of the
structure and an oxidized layer will form on the zero-valent core. The complete oxidation of zero-valent
core resulted in the collapse of the core-shell structure and complete variations in the structure and
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composition. The resulting structure was a reddish-brown powder of nanosheets and nanoneedles
which are characteristic morphology of iron oxide nanostructures [170,171]. In another approach,
lepidocrocite nanoparticles can be fabricated by adding sodium hydroxide (NaOH) to a solution of
ferric ions to reach a pH of ~6 [167,168,172].

Like other iron-based nanostructures, nanoscale lepidocrocite has gained applications as
adsorbent and catalyst. It can be employed to remove heavy metals (e.g., chromium and uranium)
and metal complex dyes (e.g., Lanacron brown S-GL which is known as Acid Brown 298, LBS-GL)
[167,172,173]. These nanostructures are able to catalyze degradation reactions. For instance, lepidocrocite
nanoparticles were employed for the degradation of carbon tetrachloride (CCl4) and it showed that the
compound was degraded in a second-order reaction [171]. From a microbiological point of view, it has
been shown that iron reducing bacteria (IRB) can employ nanoscale lepidocrocite as an electron acceptor
when special compounds (e.g., hydrogen, formate, pyruvate, serine, lactate, ore N-acetylglucosamine)
are utilized as electron donors [174].

4.1.4. Feroxyhyte (δ-FeOOH)

Feroxyhyte has a hexagonal closed-packed crystal system and is essentially a planar
antiferromagnet [175,176]. It can be found naturally as yellowish-brown deposits in iron-manganese
nodules at high pressure environments, such as a very deep ocean and gleysol. However, by exposure
to surface environment or aerated conditions, it converts to goethite [177]. It is the only phase of
anhydrous ferric oxide-hydroxide that has significant magnetic properties at room temperature [178,179].
Feroxyhyte nanoparticles are usually synthesized by the rapid oxidation of ferric hydroxide (Fe(OH)2),
whereas hydrogen peroxide and the resulting nanostructures can be in plate, needle, or sphere
morphologies [176,178,180–182]. In addition, magnetite (Fe3O4) nanoparticles can be used as a
precursor to fabricate feroxyhyte nanoparticles. In this technique, magnetite nanoparticles are
rapidly oxidized in the air [178]. Irradiation-based techniques were also developed to fabricate these
nanoparticles [180]. In these approaches γ-irradiation is used to reduce ferric ions to ferrous and then
a white suspension of ferric hydroxide is resulted. The resulting ferric hydroxide can be oxidized
rapidly while coming into contact with atmospheric oxygen [180].

Nanostructures of feroxyhyte have a promising potential in environmental sciences and wastewater
treatment. These particles can activate hydrogen peroxide to generate reactive oxygen species
(ROS) which are effective in degradation of organic molecules [181]. Feroxyhyte nanoparticles
can also eliminate inorganic pollutants. It has been shown that mesoporous feroxyhyte nanoparticles
and ferrous ions have a synergistic action for phosphate immobilization. Hydroxyl groups on the
nanoparticles and in-situ generated ferric ions were found to promote phosphate immobilization.
This δ-FeOOH/Fe(II) synergistic system can reached about 94% removal efficiency at acidic pH [183].
Doping of nanostructures with foreign metal ions, such as cupper and manganese, is another
approach to enhance the catalytic and adsorbent properties of feroxyhyte nanoparticles [178,179,184].
These nanostructures are applicable in batch and continuous flow models to remove heavy metal (e.g.,
arsenic, cadmium, mercury, and nickel) pollutants from drinking water [185,186]. Feroxyhyte can be
used as a coating for other nano-adsorbents, such as maghemite (γ-Fe2O3) nanoparticles, to improve
their stability and recovery capacity. It has been shown that maghemite nanoparticles with various
ratios of feroxyhyte coating have different potentials for chromate (VI) removal, and the optimal mass
ratio of coating to core is 1.0 [187].

Feroxyhyte nanoparticles can be used as a photocatalyst for water splitting and hydrogen
generation. Besides common nano size features such as the small particle size and high surface area,
these nanoparticles have a small band gap energy and mesoporous structure that make feroxyhyte
nanoparticles a suitable photocatalyst [188]. Like what we have in the remediation activities, foreign
metal doping can also increase the photocatalytic activity of feroxyhyte nanoparticles. Nickel ions
(Ni2+) can be used to increase the conductivity and charge transfer in the particles. By loading Ni(OH)2
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on the surface of the resulting structure, charge separation will also improve. These modifications
significantly enhance the photocatalytic activity of feroxyhyte nanoparticles [189].

Feroxyhyte nanoparticles behave superparamagnetically or ferromagnetically at ambient
temperature [176,182]. Therefore, these particles can be considered in technical, medical, and biomedical
practices as an alternative for previously employed magnetic nanoparticles. Experimental evidences
showed that feroxyhyte nanoparticles can release heat under an alternative magnetic field and the heat
production can be controlled by changing the mass of nanoparticles [182].

4.1.5. Schwertmannite

In 1994 schwertmannite was introduced as a novel iron oxyhydroxysulphate from the Pyhäisalmi
sulphide mine, Province of Oulu, Finland. It was found in ochreous precipitates from acid, sulphate-rich
waters [190]. Schwertmannite has a structure similar to akaganeite, the only difference being that
schwertmannite has sulfate ions instead of chloride ions so it is called iron oxyhydroxysulfate mineral
with the chemical formula of Fe8O8(OH)8−2x(SO4)x·nH2O (1 ≤ x ≤ 1.75) [191,192]. It is poorly
crystalline nanometric material with tetragonal crystal system and paramagnetic behavior [193].
It appears as an opaque yellowish-brown and has a fibrous morphology under the electron
microscope [190,191].

In nature, schwertmannite nanocrystals were formed through the oxidation of ferrous ions and
subsequently ferric ions precipitation. Synthetic schwertmannite nanoparticles can also be fabricated
by the chemical oxidation of ferrous ions. Usually ferrous ions are provided from an FeSO4 solution and
hydrogen peroxide is used as an oxidizing agent (Equation (7)). Precipitation occurred by hydrolysis
of the resulting ferric ions. Ferric ions first form a complex intermediate with water molecules and
then, at high concentrations of sulfate ions (SO4

2+), transform into schwertmannite. The total reaction
is illustrated in Equation (8) [192].

2Fe2+ + H2O2 + 2H+→ 2Fe3+ + 2H2O (7)

8Fe(SO4) + 2O2 + (4 + x)H2O→ Fe8O8(OH)x(SO4)y + (8 − y)SO4
2+ + 2(8 − y)H+ (8)

Biosynthesis (biogenic fabrication) is another technique for the fabrication of schwertmannite
nanostructures. It is dependent on the biological ferrooxidation of ferrous ions by iron oxidizing
microorganisms that are able to oxidize ferrous ions or elemental sulfur as a source of energy.
These organisms can precipitate nano-sized schwertmannite at ambient temperature and acidic
pH (~2–3) [194]. Acidithiobacillus ferrooxidans is the most known and studied bacteria in this family [195].

Schwertmannite was found to have considerable potential as an absorbent material, which is
applicable for water treatment and soil remediation purposes. It has a promising potential to remove
both mineral (e.g., arsenic, chromium, antimony, and fluoride) and organic contaminants [192].
Song et al. (2018) compared the characteristic features of chemically synthesized and biogenic
schwertmannite nanostructures that are important for remediation purposes [196]. They show that
chemical synthesis can fabricate more schwertmannite than biogenic methods. But biogenic methods
provide larger nanoparticles with larger specific surface area. From a surface morphology point
of view, chemically synthesized particles have a smooth surface, while the surface of the biogenic
particles is chestnut shell-like with higher saturated adsorption capacity [196]. In addition, biogenic
schwertmannite has a higher chemical stability. Synthetic schwertmannite is more sensitive to the
aging process and conversion to the goethite [197]. Key features of the biogenic nanoparticles can
even be improved by a simple heating. Heating up to 250 ◦C resulted in the significant increase in the
particles’ porosity, specific surface area, and efficiency for contaminants removal [198]. Biofabrication
of schwertmannite has a critical point; adherence of prepared nanostructures to the reactor wall during
the biosynthesis process resulted in deterioration of particles’ structural characteristics. To eliminate
the adhered schwertmannite, Zhang et al. introduced additional schwertmannite into the reactor
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system prior to schwertmannite biosynthesis. They show that by doing so, all biogenic schwertmannite
nanostructures are in a suspended form [199].

4.2. Hydrated Ferric Oxyhydroxides

Ferric oxyhydroxide is usually encountered as hydrated forms with a FeO(OH)·nH2O general
formula. The monohydrate form of this compound is the most common form and is known as ferric
hydroxide and its simplified formula is Fe(OH)3 (Figure S1f). For the first time it was reported from
the Proprietary Mine at Broken Hill, New South Wales, Australia and called bernalite in homage to the
British crystallographer J. D. Bernal (1901–1971) [200]. Bernalite is structurally related to perovskites
(a calcium titanium oxide mineral, CaTiO3) and its small crystals, up to 3 mm, occurs as flattened
pyramidal to pseudo-octahedral with slightly concave faces. Due to goethite inclusions, the crystals
can be transparent to opaque with pale green (bottle-green) color [200,201].

Bernalite nanoparticles can be transformed from goethite nanorods at alkaline pH (~10) and in
the presence of arsenate. Arsenate has a key role in the formation of bernalite and the abundance of
bernalite is in direct relation with the arsenate concentration [202]. In the laboratorial experiments,
ferric hydroxide can be easily obtained by increasing the pH of a ferric ions solution up to about 8 as in
Equation (9) shows [203].

Fe(III) + 3OH−→ Fe(OH)3 (9)

It can be a basic reaction to prepare a precursor for other iron-based nanoparticles. For instance,
ferric hydroxide was used as a precursor for the generation of monodisperse ferromagnetic and
superparamagnetic iron oxide nanoparticles [204]. In a similar manner, controlled dehydration of
ferric hydroxide resulted in Fe2O3 [205]. In a novel approach, Thuy et al. (2014) employed the reaction
for the fabrication of colloidal ferric hydroxide to remove heavy metals from water. They combined the
coprecipitation of ferric hydroxide and flotation technique using gamma poly-glutamic acid (γ-PGA)
for collecting Au, Bi, Co, Cd, Cu, In, Ir, Mn, Ni, Pb, Pd, Pt, Te, Sb, Rh, Ru, and Zn. To perform the
precipitation reaction, they added a solution of sodium hydroxide to heavy metals contaminated water
containing ferrous ions [206]. Coprecipitation of ferric hydroxide can also be performed in the presence
of other nanoparticles, such as magnetite nanoparticles, and form a core-shell structure. Arefi et al.
showed that the resulting core-shell nanostructure is applicable as a heterogeneous catalyst for the
direct oxidative amidation of alcohols with amine hydrochloride salts [207].

5. Iron Hydroxides

Iron hydroxides can be found in two different structures as ferrous hydroxide and ferric hydroxide.
Molecular structure of ferrous hydroxide is provided in Figure 1, and it can be denoted as Fe(OH)2

or FeH2O2. Basically, it is a nearly white substance, but by exposure to oxygen, ferrous ions are
oxidized to ferric and provide a greenish to reddish-brown color of ferric hydroxide. Chemically,
ferrous hydroxide is produced as a gelatinous precipitate when ferrous ions are exposed to an
alkali, such as hydroxide salts or ammonium (Equation (10)). In the synthesis of ferrous hydroxide
nanoparticles, the employed alkali has a significant effect on the shape and surface features of the
resulted nanostructure. It was shown that ammonium derived the reaction to make nanospheres
with a porous surface, while hydroxide salts (e.g., NaOH) make smooth nanorods. It is obvious that
the product is sensitive to the oxygen, and hence the reaction should be performed under an inert
atmosphere [208].

Fe2+ + 2OH−→ Fe(OH)2 (10)

Nanostructures of ferrous hydroxide are great activators for hydrogen peroxide to produce
hydroxyl radicals. This potential provides the particles a Fenton-like catalyst property that can
be employed to degrade organic pollutants as a Fenton-like activator of hydrogen peroxide [208].
The molecular structure of ferric hydroxide is provided in Figure 1. Ferric hydroxide was discussed in
detail in Section 4.2.
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The content of this review was summarized in tabular format as Supplementary Material and
provided in Table S1 for a quick overview.

6. Conclusions

Iron as a well-known element from the ancient time, retaining an outstanding position in the
human life and culture. Due to its different valency and combining power with oxygen atoms and
water molecules, it comes in a colorful variety of compounds with diverse chemical structures and
physical appearances. In the recent years, by taking iron compounds to the nano realm, we can improve
the iron to achieve unpresented properties and applications. In this review 19 different compounds of
iron, from pure iron to combined forms of iron with oxygen and water, were investigated for their
structures, properties, synthesis routes, and applications as nanomaterials. Nanostructures of iron can
be prepared by simple chemical reactions and even in some cases these structures are achievable via
biologic pathways or biochemical reactions. Provided data demonstrate that iron-based nanomaterials
can be employed in medical, biomedical, industrial, engineering, environmental, and agricultural
sceneries. The discovery of the potential applications of iron-based nanomaterials only in its emerging
phase and there will be a huge amount of investigations in this regard in the future.
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and Fe(OH)3 (f), Table S1: A tabular summery of the data that provided in the main manuscript.
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Abstract: This work assesses the behavior of organosolv lignin aggregates derived from Miscanthus x
giganteus using different ethanol concentrations (10%, 25%, 50%, and 75% by volume). The percentage
of lignin recovery was found to decrease from 75.8% to 71.4% and 25.1%, as the ethanol concentration
was increased from 10% to 25% and 50%, respectively. Increasing the ethanol concentration further to
75% led to zero recovery. The purity of the precipitated lignin was consistently found to be ≥90%.
Lignin derived from the dried supernatant obtained at 50% ethanol concentration resulted in high
lignin purity (51.6%) in comparison with the other ethanol concentrations used. Fourier transform
infrared spectroscopy analysis showed that the precipitated lignin and dried supernatant at 50%
ethanol concentration possessed the highest peak intensity apportioned to wavenumber of lignin as
compared to that of at 25% and 10% ethanol concentrations, and the results linked with the percentage
of lignin purity. The results of particle size analysis for precipitated lignin demonstrated particle sizes
of 306, 392, and 2050 nm for 10%, 25%, and 50% ethanol concentrations, respectively, and the remaining
supernatant with average particle sizes of 1598, 1197, and 875 nm, respectively. These results were
verified with the morphology of lignin macromolecules in scanning electron microscopy images.
Results of the particle size distribution of lignin revealed that the overall size of lignin aggregates
decreased with decreasing ethanol concentration. In summary, these findings suggest that ethanol
concentration affected the behavior of lignin aggregates in water–ethanol solution.

Keywords: lignocellulosic; organosolv; lignin; aggregates; purity; concentration

1. Introduction

The demand for finite resources such as fossil fuels and natural gas are growing in most countries
in the world in spite of the current energy crisis. The increasing awareness of the need for renewable
and sustainable sources of energy has driven interest in lignocellulosic second-generation bioethanol.
Miscanthus sp., a genus comprising of about 25 species has been proven as one of the biomass crops
having high biomass energy potentials [1]. Miscanthus x giganteus (MxG), a hybrid between Miscanthus
sinensis and Miscanthus sacchrisflorus, is a promising high-yield lignocellulosic biomass crop that
is currently used as a solid fuel used in co-firing power stations [2]. When compared with other
genotypes, MxG has a wide range of potential benefits including the possibly unique and exclusive
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trait for adaptation to climate and environmental conditions, low levels of nutrients needed, soil
carbon sequestration, and ease of harvesting and handling [3–6]. MxG also has an efficient rhizome
system, which plays a key role as a nutrient reserve for the annual shoot growth in the growing
season [7]. Miscanthus sp., which can be obtained mainly from the Europe and the United States,
has enormous potential to become a feedstock to support second-generation bioethanol production.
Similarly, the concept of biorefining has been identified as a method whereby cellulose, the substrate for
ethanol production, can be recovered along with other renewable bio-based chemical building blocks,
hemicellulose and lignin, thus potentially improving the overall economy of bioethanol production.

Within the integrated biorefinery concept, an area of research that has gained significant interest is
the processing of lignin which, as mentioned earlier, is the second most abundant natural polymer after
cellulose and hemicellulose [8]. Currently, lignin is traditionally viewed as the by-product of paper
and pulp processes. However, with the emergence of second generation bioethanol production, large
quantities of lignin will be created. Lignin isolated via different extraction methods can vary widely
in terms of chemical composition and molecular structure. The differences also affect the physical
properties such as solubility and particle size. Therefore, in the context growing interest in developing
value added uses for lignin, this work focuses on characterizing lignin extracted using a modified
organosolv method [9], particularly emphasizing the formation of aggregates. There is insufficient
information available that describes the association behavior of lignin in solution, which depends on
the solvent properties and lignin structure [10].

Understanding and interpreting the assembly of lignin macromolecules in solution are relevant
and significant, as the heterogeneity and complexity of lignin structure, unique chemical reactivity,
and the unknown molecular characteristics of lignin become the greatest bottlenecks in the utilization
of lignin in producing various useful and renewable materials in the industry [11–13]. Previously,
numerous studies on lignin aggregates have been conducted in conjunction with different types of
methods and sources of lignin such as the aggregation and assembly of alkali lignin using iodine as
probe [14], the impact of lignin source on its self-assembly in d-DMSO solution [10], and the aggregation
of acetylated lignins in N,N-dimetylacetamide in the presence of salts [15]. A crucial physicochemical
property of organosolv lignin which becomes the subject matter for this work is the higher solubility
of organosolv lignin in organic solvents [16]. Organosolv lignin has a tendency to aggregate in most
solvents, affecting the lignin recovery process, the biodegradation processes, and the preparation of
lignin-based materials.

In this work, the resulting soluble lignin extract from delignification process was fractionated
according to different ethanol solubilities under centrifugation, thereby generating two fractions:
the precipitated fraction and supernatant fraction. Characterization of the resulting fractions was
carried out by Klason lignin assay, Fourier transform infrared spectroscopy (FTIR), scanning electron
miscroscopy (SEM), and particle size analysis. Specifically, the study compared the purity, lignin
recovery, chemical structure, and especially particle size and morphology characterization for the
resulting fractions.

2. Materials and Methods

2.1. Materials

The lignocellulosic biomass used was air-dried. The MxG was provided by the Institute of
Biological, Environmental and Rural Sciences (IBERS, UK) in collaboration with Phytatec (UK) Ltd.
The biomass was harvested in Aberystwyth, Wales, United Kingdom and kept in a cool, dry, and dark
place throughout the study. Nitrogen (compressed oxygen free nitrogen, BOC, UK), and carbon dioxide
(vapor withdrawal, BOC, UK) had ≥99.8% purity. Sulfuric acid (72%) (Fluka-Sigma Aldrich, UK) and
absolute ethanol (Fisher Scientific, UK) were used as reagents.
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2.2. Methodology

2.2.1. Biomass Preparation

Prior to hydrolysis, the MxG was mixed in distilled water and then warmed to 50 ◦C to soften the
grass. The mixture was then soaked for 20 min to rehydrate the grass. The mixture was milled for
3 min in a domestic blender to reduce the particle size of the material. The grinding conditions of the
temperature, soaking time, grinding time, and the solid-to-liquid ratio were previously optimized to
yield an average particle size of 500 µm [17].

The MxG slurry was placed inside the reactor directly after the sample preparation at 120 ◦C.
The sequentially processed MxG obtained at 120 ◦C was used for biomass hydrolysis at 180 ◦C and
200 ◦C. Subsequently, the MxG was mixed in water and a 1:1 ethanol-water solution for 180 ◦C and
200 ◦C, respectively, by warming to 50 ◦C and for a wetting time of 5 min prior to each hydrolysis step.

2.2.2. Biomass Hydrolysis

The steps taken in extracting lignin in this work are outlined in Figure 1.
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Figure 1. Steps taken in lignin extraction.

The MxG slurry was transferred to a 500 mL stirred pressure vessel (Alloy C276, Parr, IL, USA).
The reactor was closed and pressurized with desired gas to 50 bar. The set point temperature was
increased to the set temperature and was kept stable during the reaction time by a controller (4386, Parr).
After the reaction, the reactor temperature was decreased through a cooling system with a cooling coil
inside the pressure vessel in which a coolant flew at an initial −7 ◦C. When the temperature fell below
50 ◦C, the reactor was depressurized slowly to atmospheric pressure before the reactor was opened.
Finally, the solution and solid fibers were separated using a laboratory test sieve (BS410-1 size 45 µm,
Endecotts Ltd., England) for biomass hydrolysis at 120 ◦C and 180 ◦C. The solid fibers were placed in
the drying cabinet (65 ◦C) until it reached constant weight. The liquid fraction or filtrate for biomass
hydrolysis at 200 ◦C was recovered by vacuum filtration through a Pyrex sintered disc of porosity 2,
rinsed with mixture of distilled water: ethanol (1:1).

The MxG was treated through a three-stage temperature profile sequential batch extraction method
adapted from Hamzah et al. [9] to differentially separate extractives, hemicellulose, cellulose, and
lignin. The first step applied subcritical water (SCW) at 120 ◦C with an equilibrium time of 30 min and
50 bar of nitrogen gas to remove water-soluble extractives that could have interfered with the isolation
and later analytical steps. The second step used a SCW at a regime of 180 ◦C and a reaction time of
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30 min under 50 bar of nitrogen gas to hydrolyze hemicelluloses prior to delignification. The final step
involved lignin extraction via a SCW with associated modifiers using a 1:1 ethanol–water mixture at
200 ◦C, a reaction time of 60 min, and 50 bar of carbon dioxide gas. The nitrogen gas was used in SCW
to maintain the constant pressure inside the reactor and to ensure that water remain as liquid [18].
In lignin extraction, carbon dioxide under pressure creates carbonic acid that serves as a catalyst for
hydrolysis reaction [17,19].

2.2.3. Lignin Precipitation

The lignin precipitation method was adapted from Roque [17]. The 50% ethanol concentration
of soluble lignin extract obtained after vacuum filtration was placed in a freezer at −20 ◦C for 2 h,
after which the ethanol concentration was adjusted to either 10% and 25% by adding distilled water,
and 75% by adding ethanol. The lignin was recovered using a J2-21 centrifuge (Beckman, Indianapolis,
IN, USA) with a JA-10 rotor at 4 ◦C and at 10,000 revolutions per minute with 17,700 relative centrifugal
force (RCF) for 10 min. The remaining supernatant was dried at 65 ◦C for further Klason lignin assay
and FTIR analysis. The resulting precipitated lignin was air-dried and stored in 2 mL Eppendorf tubes
at room temperature and later analyzed by a Klason lignin assay and FTIR analysis. The amount of
precipitated lignin was compared to the total amount of lignin in the soluble fraction (precipitated lignin
and dried supernatant), which gives the percentage of lignin recovery using Equation (1):

Percentage of lignin recovery (%) =
Al

Al + As
× 100%, (1)

where Al is the amount of precipitated lignin (g) and As is the amount of lignin derived from dried
supernatant (g).

2.2.4. Klason Lignin Determination

After the hydrolysis experiments, the precipitated lignin and dried supernatant was analyzed for
lignin content using the Klason lignin assay following the Determination of Structural Carbohydrates
and Lignin in Biomass Laboratory Analytical Procedure (NREL/TP-510-42618) [20].

2.2.5. FTIR Analysis

The FTIR analysis was carried out on the samples without any special pre-treatment. The IR
spectra were determined using a spectrometer (FTIR-6300, JASCO, Easton, MD, USA) over a
wavenumber ranging from 4000 cm−1 to 600 cm−1. The resolution was 4 cm−1 and 32 scans were
averaged. The precipitated lignin and dried supernatant of different ethanol concentration were
analyzed for chemical structure characterization. Principle component analysis (PCA) was performed
using the UnscramblerTM Version 10.3 software (CAMO). Two different pre-processing methods
(smoothing followed by normalization) were performed on each of the three repeated spectrum
measurements in the regions of 4000 cm−1 to 600 cm−1. Analysis of FTIR spectra datasets by PCA
determines the differences between spectra in terms of chemical structure and composition of the
samples [21].

2.2.6. SEM Analysis

SEM images of lignin and dried supernatant were captured using a Philips XL30 FEG ESEM
scanning electron microscope operating at 10 kV with various magnifications. Samples were coated
with platinum for 120 s using Emscope SC500 sputter coater prior to analysis.
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2.2.7. Particle Size Analysis

The precipitated lignin and dried supernatant were dispersed at 10 mg mL−1 based on initial
concentration of ethanol-water solutions (10%, 25%, and 50% ethanol concentration). To achieve a
good colloidal dispersion, the samples were ultrasound-treated for 10 s at room temperature using
the 500W Fisher ScientificTM Model 505 Sonic Dismembrator prior to measurement. The diameter
measurement was carried out in triplicate and the average reading of the results was reported.

Malvern Zetasizer Nano ZS

Lignin particle size was performed according to the protocols described with modification [22,23].
Lignin particle size was analyzed at 23 ◦C. The obtained size distribution represented the dependencies
of the relative intensity of the scattered light on the hydrodynamic diameter of lignin particles.

Malvern Mastersizer 2000

A refractive index of 1.6 [24] and absorption of 0.01 for lignin were used by the instrument to
calculate the particle size distribution [25]. The mean particle size was reported in terms of D3,2 values.
The D3,2 is the surface area mean diameter and refers to the diameter of a sphere equivalent volume to
surface area of the particles in the sample.

2.2.8. Statistical Analysis

SPSS software (Version 22) was used to carry out statistical analysis. Post hoc test by Tukey’s
honest significant different (HSD) was conducted at α = 0.05 to determine if the results obtained at
each ethanol concentration were significantly different.

3. Results and Discussion

3.1. Percentage of Lignin Recovery

Figure 2 shows an increasing trend on percentage of lignin recovery as the ethanol co-solvent
becomes more dilute. The post hoc test analysis illustrated that percentage of lignin recovery using 25%
ethanol concentration (71.4%) did not differ significantly from the 10% ethanol concentration (75.8%),
at a 95% confidence level. Lignin precipitation using 50% ethanol concentration only recovered 25.1%
lignin. Further increasing the ethanol concentration to 75% led to zero recovery. The overall statistical
analysis results were tabulated in Table 1.
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Table 1. Analysis of Tukeytest for the assessment of ethanol concentration.

Dependent Variable Percentage of Ethanol
Concentration

Comparison with Other Percentage
of Ethanol Concentration Sig.

Percentage of purity
precipitated lignin

50%
25% 0.857
10% 0.010 *

25%
50% 0.857
10% 0.010 *

10%
50% 0.010 *
25% 0.010 *

Percentage of purity
dried supernatant

50%
25% 0.013 *
10% 0.000 *

25%
50% 0.000 *
10% 0.525

10%
50% 0.000 *
25% 0.525

Percentage of lignin
recovery

50%
25% 0.000 *
10% 0.000 *

25%
50% 0.000 *
10% 0.100

10%
50% 0.000 *
25% 0.100

Note: Numbers with asterix (*) indicate statistically significant differences at the 0.05 level.

Critical precaution needs to be taken into consideration if water is added as the mixture of solution
for delignification process. Based on the previous study within the research group, it is shown that the
optimum delignification was achieved using ethanol:water ratio (1:1) [17] and similar concentration
was used for delignification in this study. The optimal concentration of ethanol for delignification
(1:1) is in agreement with the research conducted by Pasquini et al. [26]. The utilization of 100%
ethanol is not preferred for delignification. The presence of both nucleophilic agents; water and ethanol
produce a good solvent to promote the cleavage of lignin, and the capacity to dissolve the lignin
fragments. With the addition of water, the nucleophilic agent stimulated the cleavage of the lignin but
decreased the capability of the solvent to dissolve lignin in the delignification process [26]. High water
content in the mixture of the solution for delignification may have demonstrated negative effects on
delignification due to the nature of the hydrophobic biopolymer of lignin that could trigger adsorption
of lignin fragments onto the surface of biomass fibers [27]. A suitable concentration of ethanol–water
mixtures is desirable to avoid lignin re-precipitation onto the biomass fibers, thereby reducing the
efficacy of delignification. Therefore, the best compromise between nucleophilicity and solubility of
ethanol and water mixtures could promote good delignification.

Here, a new experiment looked at the addition of water to the soluble lignin extract was carried
out after delignification for the purpose of lignin recovery study via centrifugation. In the lignin
precipitation of ethanol pulping, the removal of lignin also depends on the capacity of aqueous
ethanol solution to solubilise lignin fragments [26,28]. In a study with Alcell lignin and its solubility in
ethanol–water mixtures, it was demonstrated that lignin solubility increased as the ethanol concentration
increased until a maximum was reached at 70% ethanol concentration [29]. When lignin precipitation
is conducted by diluting liquor with water that decreased the amount of organic solvent, the solubility
of lignin decreased, thus more lignin was recovered [28,30,31]. The findings were in agreement with
the finding of Sun et al. which states that addition of anti-solvent such as ethanol, 1-propanol, and
1-butanol decreases the lignin solubility in the resultant system, therefore leading to a higher lignin
recovery [32]. In general, it seems that a 10% ethanol concentration could be proposed as the ethanol
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concentration for lignin recovery since there is no significant difference between lignin recovery using
25% and 10% ethanol addition.

3.2. Percentage of Lignin Purity

The resulting soluble lignin extract after delignification was fractionated according to different
ethanol concentration under centrifugation thereby generating two fractions: precipitated and
supernatant fraction. Both fractions were analyzed by Klason lignin assay to reveal the purity
of lignin. A comparison between the three different ethanol concentrations is presented in Figure 3.
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Figure 3. Percentage of lignin purity at different ethanol concentrations.

Overall, the purity of the obtained precipitated lignin consistently demonstrated a high purity
(≥90%). Such high purity lignin has enormous possibilities to be used in several industrial applications
such as polymer blends, adhesives, and corrosion inhibitors [12,16,33]. A few studies have also reported
high purity of lignin from the organosolv method, for instance, 95.4% for sugarcane bagasse [34],
91.9% for MxG [35], as well as 96.5% for shrub willow [25].

As it can be seen from Figure 3, the purity of lignin derived from dried supernatant obtained
at 50% ethanol concentration is considerably higher than that of at 25% and 10%. The high purity
lignin derived from dried supernatant obtained at 50% ethanol concentration is due to less lignin that
was precipitated as compared to other ethanol concentrations. Thus, more lignin remained with the
impurities, as discussed in the FTIR analysis (Section 3.3). Considering that high dilution may lead
to excessive energy costs if using 50% ethanol concentration, it is recommended to use 10% ethanol
concentration for lignin precipitation process since there is no significant difference in the purity of the
precipitated lignin using 50% and 25% ethanol concentrations.

3.3. FTIR Analysis

Figure 4a shows the PCA scores plot for the precipitated lignin and dried supernatant and it was
elucidated that there were two definite clusters observed and were distinguishable within each other.
Overall, the score plot for the dataset has functions, whose first two principles components explained
84% and 11% of the spectral variance, respectively. At the top are the spectra for the precipitated lignin
at different ethanol concentration. A second cluster at the bottom consists of spectra for the dried
supernatant. When comparison was made between similar types of spectra within samples, scores of
precipitated lignin (10%_L_1 and 10%_L3, 25%_L_1 and 25%_L_3, 50%_L_1 and 50%_L_2) and scores
of dried supernatant (10%_S_1 and 10%_S_2, 25%_S_1 and 25%_S_3, 50%_S_1 and 50%_S_2) were close
to each other, indicating that the samples within similar type of spectra possess similar composition.
Thus, a spectra was chosen only from the spectra with similar types to be analyzed for FTIR analysis.
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The spectra of precipitated lignin at different ethanol concentration are shown in Figure 4b.
When comparison was made between the three spectra at different ethanol concentrations, the spectra
at 50% ethanol concentration had a high intensity peak as compared to the other two spectra at 25% and
10%, suggesting that a high intensity in peak indicates a high purity of lignin, especially at 3400 cm−1.
The peak at 3400 cm−1 indicated the presence of OH stretching vibrations in aromatic and aliphatic OH
groups [36,37]. The abundance of hydroxyl groups, demonstrating that lignin recovered can be a good
alternative to polyols in the production of lignin polymer composites through lignin depolymerisation
and modification at higher bio-replacement ratios [38]. However, when the hydroxyl group peak is of
interest, strong water absorption (around 3000–4000 cm−1) could have influenced the results obtained
and in turn, relatively led to the misinterpretation of the data. Therefore, the conclusion of the findings
should be treated with caution, as the findings related to the availability of hydroxyl groups can be
validated by various methods in future such as size exclusion chromatography and potentiometric
titration, respectively.

The wavenumbers of 2938 cm−1 and 2842 cm−1 are attributed to CH stretching in aromatic
methoxyl groups and in methyl and methylene groups of side chains [37]. An asymmetry and
broadening of the peaks at 1705 cm−1 and 1600 cm−1 result from the weak absorption around 1640 cm−1

and may originate from both protein impurity and water associated with lignin, respectively [37].
The appearance of wavenumber at 1220 cm−1 is caused by the extraction process due to the hot
water cleaved hemiacetal linkages, thus, liberating acids during biomass treatment which facilitate
the breakage of ether linkages in biomass [39]. It is stated that the cleavage of O-acetyl groups
and uronic acid substitutions on the hemicellulose released acids such as acetic and other organic
acids which act as a catalyst, and catalyzed the formation and removal of oligosaccharides, and
further hydrolyzed hemicellulose to monomeric sugars and aldehydes [40,41]. However, cellulose
and hemicellulose appeared as contaminants as indicated by spectra wavenumbers at 897 and 1705 to
1720 cm−1. A wavenumber of 897 cm−1 represents amorphous cellulose which aids hydrolysis of the
cellulose to glucose if enzymatic hydrolysis occurs [42]. The wavenumbers of 1705 to 1720 cm−1 are
attributed to ester carbonyl vibration in acetyl, feryloyl, and p-coumaryl groups in hemicelluloses [43].
Wavenumbers of 2340 to 2360 cm−1 were found in all spectra and are related to OH stretching from
strong H-bonded-COOH [44].

In general, hardwoods or angiosperms are made up of guaiacyl (G) and syringl (S) units, while
softwoods or gymnosperms contain only G units. Besides, grasses contain a variety of acidic guaiacyl
units attached as esters and demonstrate more substitution of p-hydroxyphenyl units (H) such as
ferulic, hydroxycinnamic, and p-coumaric acids [45]. Lignin extracted from Miscanthus sp. contains all
three lignin monomers, G, H, and S units [7,46,47]. This data showed that the wavenumbers related
to G, H, and S units could be at 1326 cm−1(G-S units), 1265, 1030, 915 cm−1 (G units), 1118, 833 cm−1

(S units), 1705–1720 cm−1 (H units), and 2938, 2842 cm−1 for H–S units.
Supernatant obtained from the fractionation of the resulting soluble lignin extract at different

ethanol concentration after centrifugation was dried for FTIR analysis (Figure 4c). In general, the
spectra of 50% ethanol concentration had more broad intensity than 25% and 10% especially for
wavenumbers apportioned to lignin. In fact, the supernatant has been proven to have the highest
purity (51.6%). The peaks for the dried supernatant related to lignin including wavenumbers of
2842, 2340, 2360, 1640, and 1326 cm−1 were in weaker intensity as compared to peaks of precipitated
lignin. The weak intensity and absence of peaks (915 cm−1) related to lignin were due to more lignin
precipitation and thus less lignin composition appeared in the dried supernatant. A peak of 1540 cm−1,
related to an aromatic ring stretching in lignin, was found in both spectra for the precipitated lignin and
the dried supernatant [48]. In summary, from the spectra in Figure 4c, it is apparent that wavenumbers
of 897 and 1705 to 1720 cm−1 related to the contamination of cellulose and hemicellulose were in high
intensity and resulted in broader peaks at 50% ethanol concentration as compared to the 25% and 10%
ethanol concentrations, thus the lignin derived from the supernatant had a lower purity level.
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3.4. SEM Analysis

When comparing the three samples of precipitated lignin at different ethanol concentrations, SEM
images showed similarity in the presence of the lignin macromolecule globule structure of spherical
balls or droplets. The shape of the lignin macromolecule was not identical in terms of size, as shown in
Figure 5a–c. The precipitated lignin at 50% ethanol concentration had a larger lignin macromolecule
size than that of at 25% and 10%. On the other hand, the precipitated lignin at 25% and 10% ethanol
concentrations exhibited a mixture of large and small lignin macromolecules. In addition, it formed
more colloidal and amorphous lignin macromolecule structure. A representative of SEM images of
dried supernatant is exhibited in Figure 5d–f at 50%, 25%, and 10% ethanol concentrations, respectively.
SEM images at 50% ethanol concentration of dried supernatant revealed that a crystalline structure was
observed in the dried supernatant as compared to that at 25% and 10%. The dried supernatant at 25%
and 10% ethanol concentrations had less crystalline and smooth surfaces as compared to that of at 50%.

This is associated with the effect of surface area and particle size. Surface area is inversely
proportional to particle size [49]. In a study of the effect of metal chlorides on the solubility of lignin
in the black liquor of pre-hydrolysis kraft pulping, as the metal chlorides concentration increased,
the particle size of lignin increased, hence the solubility of lignin decreased due to the increasing
coagulation degree of lignin in the black liquor [50], thereby resulting in lower lignin precipitation. It
is suggested that large particle size of lignin results in lower reaction surface area for the precipitation
to take place. Therefore, less lignin is recovered.

The literature has emphasized the importance of ethanol concentration on lignin depolymerization.
Findings revealed that there is a great increase in liquid residue from 41 to 65.5% by increasing ethanol
concentration from 0 to 65 volume%. Nevertheless, the solid residue yields decreased steadily from
39% to 17% [51]. The high ethanol concentration exerted a negative impact on the recovery of solid
residue in lignin depolymerization. Therefore, the study would be more convincing if the molecular
weight of the lignin obtained at different ethanol concentrations using different established methods
such as gel permeation chromatography and size exclusion chromatography in addition to structural
morphology could be obtained. Currently, efforts to increase the use of lignin in biopolymer applications
is related to degradation or deconstruction of lignin to small monomers by depolymerization and
chemical modification of lignin to increase reactive sites into lignin molecules [52,53]. The available
reactive hydroxyl groups in lignin demonstrate possibilities for chemical modifications prior to lignin
valorization into valuable materials [54]. Thus, molecular weight determination will enable the SEM
data to be verified by independent techniques.
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3.5. Particle Size Analysis

The data characterizing the particle size of lignin and the supernatant in different ethanol
concentrations are presented in Table 2. A comparison between the three different ethanol concentrations
using a Zetasizer illustrated that lignin precipitation at 50% ethanol concentration had the highest
average particle size (2050.0 nm) as compared to that of at 25% (391.7 nm) and 10% (306.2 nm) and the
remaining dried supernatant had the lowest average particle size (875.1 nm) as compared to that of the
25% (1197.3 nm) and 10% (1598.3 nm). The particle size of respective lignin macromolecules can be
explained using the SEM image analysis (Figure 5), especially the SEM image of the precipitated lignin
at 50% ethanol concentration that clearly shows that lignin macromolecules have regular, uniform, and
large shapes as compared to that of the 25% and 10%. High average particle size of the precipitated
lignin could also be due to the agglomeration of particles which reduces the surface area available
for a precipitation reaction [55,56]. The surface area available during precipitation may influence the
interaction of attractive and repulsive forces that further affects the lignin stability in solution and the
lignin recovery process.

Table 2. Particle sizes of precipitated lignin and supernatant at different ethanol concentrations.

Sample
Ethanol

Concentration
(%)

Particle Size

Particle Diameter from
Zetasizer Nano ZS (nm)

Particle Diameter from Mastersizer
2000 (µm)

Particle Size
Distribution

Particle
Size

1Dv10
2Dv50

3Dv90
4D3,2

Lignin

50
342.0–1281.0

2050.0 5.5 98.2 257.7 18.31281.0–6439.0

25
91.3–1718.0

391.7 7.0 36.2 131.7 8.63580.0–6439.0

10
58.8–295.3

306.2 3.8 67.8 300.2 11.1295.3–2669.0
3580.0–6439.0

Supernatant

50
68.1–295.3

875.1 4.5 13.3 239.6 10.3295.3–1484.0
1484.0–6439

25 825.0–2305.0 1197.3 3.0 9.3 86.3 6.9

10 531.2–6439.0 1598.3 4.1 40.7 275.6 12.6

Note: D = diameter; v = volume. 1Dv10 = the maximum particle diameter below which 10% of the sample volume
exists. 2Dv50 = the maximum particle diameter below which 50% of the sample volume exists. 3Dv90 = the maximum
particle diameter below which 90% of the sample volume exists. 4D3,2 = surface area mean diameter.

The 50% and 25% ethanol concentration had bimodal distributions whereas the 10% ethanol
concentration of the precipitated lignin had multimodal distribution. The precipitated lignin at 25% and
10% ethanol concentration contains both nano- (<100 nm) and micro-size particles. The precipitated
lignin at 50% ethanol concentration had only micro-size particles. The measured supernatant particles
size at 10% and 25% ethanol concentration had a monomodal distribution whereas at 50% ethanol
concentration, the supernatant showed a multimodal distribution. The supernatant of 25% and 10%
ethanol concentration only had micro-particles whereby supernatant at 50% ethanol concentration
contained both nano- and micro-particles. The resulting difference in particle size distributions for both
precipitated lignin and supernatant may be due to the changes of physical and chemical properties;
i.e., the samples in dried form, dispersed in the solution that cause the rearrangement of lignin
macromolecules and the formation of new self-assembled structures [57].

Overall, the particle diameter of Mastersizer correlated with the patterns of particle size distribution
of Zetasizer for both the precipitated lignin and dried supernatant. In general, reducing the ethanol
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concentration from 50% to 25% via Zetasizer results in a lower range of particle size distribution.
A further reduction to 10% ethanol concentration showed that the distribution tends to move towards
the right position of the distribution, demonstrating that the lignin particles tend to form a population
of large particles within the precipitated lignin and dried supernatant.

Based on the data presented in Table 2, further distribution of Mastersizer results for precipitated
lignin and dried supernatant are discussed. For precipitated lignin, reduction of 50% to 25% ethanol
concentration showed that Dv10 increased in size from 5.5 µm to 7.0 µm and decreased to 3.8 µm at
10% ethanol concentration. This indicates that the reduction of ethanol concentration from 50 to 10%
ethanol concentration created large population of small particles. In contrast, Dv50 and Dv90 of the
particle population exhibited different trends, whereby reducing ethanol concentration from 50% to
25% led to a descending trend in the size of lignin particles and ascending trend from 25% to 10%
ethanol concentration. This showed that either re-aggregation of lignin particles occurred, or that
lignin tends to form large particles at 10% ethanol concentration for Dv50 and Dv90 of the particle
population (67.8 µm and 300.2 µm, respectively).

Similar findings were also observed for Dv50 and Dv90 of the particle population for supernatant,
which showed an increment of lignin particle size at 10% ethanol concentration when compared
to that of at 25% and 50% ethanol concentration. Dv10 of the particle population showed different
trends for supernatant. The particle size of 10% particle population (Dv10) decreased from 4.5 µm
(50% ethanol concentration) to 3.0 µm (25% ethanol concentration) and increased to 4.1 µm
(10% ethanol concentration). A possible explanation for various lignin aggregate behaviors may
be the fact that lignin in an amphiphilic polymer contains both hydrophobic and hydrophilic segments
besides possessing self-assembly behavior [58]. The hydrophilic segments of lignin macromolecules had
an affinity to ethanol, whereas the hydrophobic segments dissociate lignin aggregate in ethanol-water
mixture [58–61].

4. Conclusions

The focus of this study is primarily trying to understand the behavior of lignin aggregates and
the study has raised important question on whether the effect of ethanol concentration influenced the
behavior of lignin aggregates. In the present study, the effect of ethanol concentration was investigated
on lignin recovery, particle size, chemical structure, and microscopy imaging properties. Findings
showed that lignin recovery increased as the ethanol concentration decreased. Since there is no
significant difference in the purity of precipitated lignin when using 50% and 25% ethanol concentration
as compared to that of at 10%, it is suggested that 10% ethanol concentration is used for lignin
recovery. Moreover, at 10% ethanol concentration, the purity of precipitated lignin was high (≥90%).
The results of lignin purity correlated well with the chemical structure analysis via FTIR. Both spectra
of precipitated lignin and supernatant at 50% ethanol concentration had higher intensity peak than
25% and 10% especially for wavenumbers apportioned to lignin. The morphology images captured
via SEM imaging revealed the findings of particle size analysis.

Overall, it was demonstrated that the lignin macromolecule agglomerates which form post
extraction could be de-agglomerated by reducing the ethanol concentration from 50% to 10%. It is
hypothesized that water had an influence on hygroscopic solvents i.e., different ethanol concentration
that has different ability to attract and hold water molecules from the surrounding environment.
Solvation of ethanol and water creates non-covalent interactions, such as hydrogen, Van der Waals
and hydrophobic bonding that have a strong tendency to form aggregates with other molecules.
The relationship between the solvent concentration and the resultant lignin macromolecule is complex.
The present study is imperative and could facilitate an improved understanding on structural complexity
of lignin for lignins obtained via SCW extraction.
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Abstract: Few decades ago, the development of the industrial sector was disconnected from society’s
protection. Negative effects awareness emerges from the current industrial processes through the
Sustainable Development Goals (SDGs), considering the causal implications to build up a more
sustainable society. The aim of this study is to analyze the state of the art in industrial processes
management to obtain positive and sustainable effects on society. Thus, a bibliometric analysis of
1911 articles was set up during the 1988–2019 period, bringing up the authors’ productivity indicators
in the scientific field, that is, journals, authors, research institutions, and countries. We have identified
environmental management; the impact assessments of industrial processes on the environment and
its relation with a more sustainable society; as well as the study of the sustainable management of
water resources as the related axes in the study of environmental protection with political, economic,
and educational approaches. The growing trend of world scientific publications let us observe the
relevance of industrial processes management in the implementation of efficient models to achieve
sustainable societies. This research contributes to the academic, scientific, and social debate on
decision-making both in public and private institutions, and in multidisciplinary groups.

Keywords: sustainable process; industry; green technology; effective management; sustainable
society; scientific research

1. Introduction

Currently, the industrial processes used by responsible and competitive firms must incorporate
design efficiency steps. Hence, the sustainability concept is engaged in a process where we can get
better indicators with fewer resources [1,2].

In this context, these processes have to support sustainable development, guaranteeing the
basic needs of the population, through the rational management of natural resources, and without
compromising the sustainability of future societies. Indeed, industrial processes are considered
sustainable when they are innovative and compose safety and waste management [3]. Therefore,
a society will be sustainable if it is organized in such a way that can guarantee the citizens’ and
ecosystems’ life, through generations [4].

In the overall process, it is necessary to understand that a change from a consumer society to a
sustainable conservative society must focus on the wellbeing of the planet and on guarantying future
generations. This can only be achieved through the respect of biophysical boundaries and the reduction
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in resources exploitation, which in turn is supposed to encourage social justice from the per capita
consumption point of view [5].

Initiatives are supposed to raise awareness about the creation of a more sustainable society that
encompasses the Sustainable Development Goals (SDGs) [6,7]. A sustainable society will provide a
higher level of well-being in the environment, social and economic dimensions.

With the industrial revolution, global production has been one of the main economic activities
of society, triggering a negative impact on the environment. On the other hand, human activity
has brought environmental awareness in the median and the political and social agenda around the
world [8,9]. Sustainability in this study refers to the reduction of negative impacts on environmental,
social, and economic relations, in order to approach climate change, pollution, and resources’
management [10–12].

The motivation of this study, well justified in the research, is the evolution of the knowledge base
of the management of industrial processes with the firm intention of contributing to a society under a
model that includes the dimensions of sustainability: environmental, economic, and social.

In the literature review, we have found enough material to answer the research questions defined
in this study: (i) what is the knowledge structure of the industrial processes for a sustainable society;
(ii) what are the most productive authors, institutions, and countries and; (iii) what are the current
research axes in the field and the further perspectives.

Thereby, the aim of this study is the analysis of the current state of the art in management of
industrial processes to increase sustainability during the 1988–2019 period.

We identified a sample of 1911 articles from scientific journals in the Scopus database from Elsevier
to answer the research questions defined in our study. This study uses the bibliometric method to
synthesize the current available knowledge on the management of industrial processes for a sustainable
society, from the first article appearance in Scopus (1988) to the last year (2019).

The scientific production in the research field let us identify the main drivers, their current and
potential trends, and the gaps in critical knowledge.

The main limit found in this study is the impossibility to know if the number of publications
obey the community regulation issues, the demands of interest groups, or the needs required by a
global society.

Finally, a set of research axes dedicated to the environmental protection with political, economic,
and educational approaches are currently being explored to address environmental management
concerns; the impact of industrial processes on the environment and their relationship with a more
sustainable society; and the sustainable management of water resources and their effects on society.
Therefore, we can conclude that industrial processes are implementing efficient and accountable
models, giving rise to sustainability enhancement on society.

2. Research Scope

Once the research topic is identified, this section frames the conceptual background within some
theoretical principles, and provides the definition used in the study, in order to avoid misinterpretations.
Hence, it works as a guideline for the research and provides a framework for outcomes interpretation.

2.1. Backgrounds

The Industrial Revolution was the economic, social, and technological starting point; it began in
the second half of the 18th century in the United Kingdom, and a few decades after spread to parts
of western Europe and North America. In this period, the socioeconomic paradigm evolved from a
rural economy, based mainly on agriculture and trade, to an urban, industrialized, and mechanized
economy [13–15].

Therefore, the Industrial Revolution was a turning point in history, where both agricultural and
industrial production grew exponentially, while reducing production time.
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In the pre-industrial economy, most of the population subsisted thanks to agricultural work, mainly
based on self-consumption, trade representing a small percentage of the economy, since productivity
was low [16]. Furthermore, cities were small and barely developed, and absolutist monarchies were
the government regimes that supported these pre-industrial societies.

The industrial economy triggered technological, socioeconomic, and cultural changes, affecting
all structures of society. Overall, scholars addressing technological changes considered the use of new
materials, energy sources, and machines, the ones addressing cultural ones inferred an increase in
knowledge in the scientific, technical, and health areas, while the social scholars refer to population
growth, especially in urban settings [17–19].

Technology currently holds a crosscutting impact on all sectors of the economy and society.
The speed of changes is breeding a new industrial revolution, which pushes companies to rethink
business models and the sustainability of their processes [20,21].

2.2. Framework

A series of theoretical principles, encompassing the industrial processes framework for a
sustainable society, support this study. Once the literature review is completed, Table 1 presents the
articles that support the main research objectives.

Table 1. Main articles reviewed in relation to the objective of the research topic.

Year Article Title [Reference] Journal Author(s)

2019 Does corporate social responsibility affect the cost of
equity in controversial industry sectors? [22]

Review of Accounting and
Finance

Hmaittane, A.;
Bouslah, K.;
M’Zali, B.

2018 UN sustainable development goals: How can
sustainable/green chemistry contribute? The view
from the agrochemical industry [23]

Current Opinion in Green
and Sustainable Chemistry

O’Riordan, T.J.C.

2015 Sustainable Development Titanium Industry [24] Economy in the Industry Kostygova, L.A.
2014 Green Process Engineering as the Key to Future

Processes [25]
Processes Patel, D.; Kellici, S.;

Saha, B.
2012 Controversial issues in factors determining

intra-industry trade [26]
International Journal of
Economics and Business

Research

Ferto, I.; Soós, K.A.

2012 An Overview of Cement production: How “green”
and sustainable is the industry? [27]

Environmental
Management and

Sustainable Development,

Potgieter, J.H.

2006 Where is developing country industry in sustainable
development planning? [28]

Sustainable Development Luken, R.A.

2004 Striving for process excellence [process industry] [29] Manufacturing Engineer Venables, M.
1999 Sustainable development for industry and society [30] Building Research &

Information
Stigson, B.

1995 Green materials and green processes [31] Journal of Materials
Research

Szekely, J.;
Laudise, R.

The industrial processes addressing the achievement of more efficient societies are sustained
by the organizational theory, which provides the basis for insertion in the organizations. From the
literature review, the theoretical framework of the impact of industrial processes on the environmental,
economic, and social dimensions of societies is established.

The stakeholders’ theory appears for the first time in a study published by Freeman in 1984,
suggesting the change in the company’s business models integrating the corporate social responsibility
(CSR) concept. Although, the initial aim of these changes was in the environmental dimension,
organizations have also showed interest in how to interact with stakeholders [32–35]. Therefore,
the increased need to discover how to encourage corporate social responsibility matches the increasing
social demands for the business sector to take responsibility for its social impacts and look after the
firms’ interests [36,37].
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In this study, industry is considered as a set of operations carried out in order to obtain, transform,
or transport products encompassed in the secondary sector. The secondary sector is based on the
transformation of raw materials into products for intermediate or final consumption, so the industry
understanding implies a production process, which will use a certain amount of labor and capital [38,39].

Moreover, industrial firms require resources that, even if not participating directly in the industrial
process, make possible to obtain merchandises, which may be for final consumption, if they go straight
to consumers, or intermediate goods, if they must cross through another industrial transformation
before to be send to consumers.

We consider a process to be a sequence of steps logically arranged with specific aims, i.e., in a
firm, a process refers to actions looking for higher efficiency in production, triggering an increase in its
profitability by producing more with lower costs [40–42].

In this study, the industrial process is responsible for obtaining, transforming, or transporting
one or more raw materials, in order to shift them into materials or products that satisfy the societal
needs maximizing utility [43,44]. According to the use of natural resources, work characteristics and
flexibility on changes, four kinds of processes can be identified: batch processes, continuous flow,
piecework, and mass production [45–47].

The concept of sustainability was established in the Brundtland Report in 1987, to relate
environment to development, defined as the possibility to meet the current needs without compromising
the necessary resources of the future. Eleven years later, in 1998, the concept of sustainability was
encompassed in the triple bottom line, where social, environmental, and economic dimensions are
interconnected in the firms’ understanding [48–51].

In 2015, the United Nations published the 2030 Agenda for Sustainable Development, with 17
Sustainable Development Goals (SDGs) and 169 targets, to verify the progress on sustainability,
regarding the economic, social, and environmental dimensions. Sustainability influences organizations,
mainly through the SDGs dissemination [52,53]. Thereby, the good practices on firms’ sustainability
need to be aligned with the SDGs indicators to improve accountability and compare information
on their actions. Regarding the efficient management of industrial processes, companies should
address to following SDGs: 7th goal: Affordable and clean energy; 9th goal: Industry, innovation and
infrastructure; 11th goal: Sustainable cities and communities; 12th goal: Responsible production and
consumption; and 17th goal: Partnership for the goals [54–57].

The industrial sector must know the 169 goals and identify which are the activities influenced by
each of them, so, we can set specific objectives and indicators with which to measure the progress on
each activity, resulting in better communication with society and stakeholders. Indeed, companies act
as corporate citizens and they have the commitment to implement sustainability in their value chains,
minimizing their environmental impact, achieving economic benefits, and improving society [58,59].

Furthermore, the industrial sector must target beyond the written goals defined in the 2030,
because each SDG needs innovative solutions. Therefore, stable, sustainable, and equitable wellbeing
and social justice is an essential requirement for facing poverty, although this will not be enough [60–62].

According to the United Nations Educational, Scientific and Cultural Organization (UNESCO),
the principles that represent sustainability are interdependence, diversity, human rights, global equity
and justice, rights of future generations, conservation, values and decisions about lifestyle, democracy
and citizen participation, precautionary principle, and economic vitality. All those principles should
be included in sustainability trainings [63–65].

The sustainable process takes into account the success of environmental policies based on
functionality, efficiency, and sustainability. Companies with highly effective resources and materials
management improve their performance and logistics when prioritizing regional production.
Sustainability in management also encourage firms to minimize waste and scrap production and
through control and review processes, to choose partner companies that have sustainable certifications
and standards joining the socially responsible approach [66].
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Contributing to the sustainability definition, the UN World Commission on Environment and
Development identify that a sustainable society is the one that meets the current needs without
compromising the ability of future generations to take care of their own needs [67–69].

In general, society joins sustainability seeking to improve the life quality of citizens, improve
autonomy, and move through a common good. Hence, the sustainable principles in society indicate
the planetary boundaries and capacity for resources, among which are: (i) conservation: buying
durable products, consciously consuming, and recycling; (ii) recycling: use over and over, close loops
to save energy, avoid pollution, protect habitats, and conserve resources; (iii) rational use of renewable
resources; and (iv) population control, to optimize resources in relation to consumption [70–73].

2.3. Underlying Terminology

Other concepts have been identified in order to build an underlying conceptual structure in this
thematic area, those concepts entail the basis of knowledge on resource management of industrial
processes to contribute positively to a sustainable society.

Thus, the effective management concept integrates efficiency as a fundamental term in management
systems, measuring the level in which we carry out activities and we achieve successful results according
to the plans; how do we manage the interconnected functions to create a corporate policy, in addition
to organizing, planning, controlling, and steering the organization’s resources in order to achieve
their objectives. In this sense, an organization must act effectively, understood as the achievement of
results in accordance to the guiding plans [74,75]. We have tools to support organizations in achieving
efficiency management of their activities, i.e., systems’ management laying on the bases for effective
management [76].

On the other hand, the term green technology, also known as green computing, or green IT,
refers to the efficient use of computing resources, minimizing the environmental impact, maximizing
their economic viability, and ensuring social responsibilities. This set of methods reduces the IT impact
on the environment [77,78].

Green-tech protocols must affect practically everything from food to clothing, furniture, cleaning
products, packaging, etc. Those protocols represent the only way in which we can expect a reduction or
even the elimination of hazardous materials and dangerous habits for society and for the planet [79–81].

The eco-technologies group is composed by the techniques, raw materials, and production
systems supported by a non-stop research work. Innovation allows the accomplishment of objectives
that transform people’s lives on a global scale, based on: (i) circular economy: use of resources,
manufacturing-production, consumption, waste, and recycling; (ii) decrease: modify the way of
consuming, reducing waste, the amount of energy used and pollution; and (iii) sustainability: finding
a way to meet current needs without putting the resources of future generations at risk [82–86].

Furthermore, contributing to the framework of this research, the ISO 2600 assists companies
and organizations engaged in a socially responsible operation, clarifying what social responsibility
means and helps in the translation of principles into effective actions. The theoretical framework states
that companies integrating respect of society and the environment recognize it as a critical success
factor and move towards the sustainability assessment in particular and the overall performance in
general [87–89].

3. Materials and Methods

Bibliometric analysis applies mathematical and statistical methods to scientific literature, with the
aim of studying and analyzing scientific activity. The instruments used to measure the scientific activity
are the bibliometric indicators that provide information on the scientific activity outcomes. Garfield
introduced the bibliometric analysis in the mid-20th century; this method has been widespread in
scientific research, for decades contributing to the revision, summary, and analysis of the state of the
art across multiple disciplines [90–92]. Thereby, bibliometric analysis has evolved based on the critical
thinking of sciences and the availability of scientific databases for researchers.
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The aim of this study is to provide an outlook of the research dynamics of industrial process
management to achieve a more sustainable society. We performed a quantitative bibliometric analysis
to identify, organize, and analyze trends in the research topic. In recent decades, the bibliometric
analysis has contributed to the revision of scientific knowledge and has been used successfully in
different scientific fields [93–96].

In the Scopus database, we used a search query using the terms “sustainability”, “management”,
“process”, and “industry” to examine the subfields of the title, abstract, and keywords, in a 32 years
period, from 1988 to 2019, as shown in other bibliometric works [97,98]. The analyzed period gathered
the articles from the first article collected in the Scopus (1988) to the last full year (2019).

We got the sample of the analyzed articles through a search in April 2020. This search only
included scientific articles, both in open and non-open access. Hence, the final sample included
1911 documents. The analyzed variables were the year of publication, journal, author, country of
affiliation of the author, research institution where the author is affiliated, subject area, and keywords.
In this study, the indicators of the analyzed scientific production were the distribution by years of the
published articles, and the productivity of the authors, countries, and research institutions. In this
sense, Figure 1 shows a diagram with the steps applied in research on industrial process management
for a more sustainable society.
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The quality indicators referring to the impact of the different agents used in this study were:
the h-index, which allows detecting the most outstanding authors in the discipline, based on the
number of citations received from their articles; citations’ number; and the indicator that measures
the quality of the scientific journals included in the Scopus database, the 2018 SCImago Journal Rank
(SJR) [99–101].

The network indicators, which measure the collaborative links between authors, institutions,
and countries, are included in the analysis to provide reliability and suitability in bibliometric analysis,
using the analysis of co-authorship. Co-authorship of a technical document is an official declaration of
the participation of two or more authors or organizations. Co-authorship analysis is widely used to
understand and evaluate patterns of scientific collaboration. In co-authoring networks, nodes represent
authors, organizations, or countries, who are connected when they share the authorship of an article.

The keywords analysis in our research topic has allowed the uncovering of the main issues
or further perspectives of research topics or problems, based on the analysis of co-occurrences,
since scientific articles can be reduced to a set of word appearances. With the analysis of co-occurrences,
the proximity relationship of two or more terms in a text unit is established. The co-occurrence of
two concepts is very high if they frequently appear together in one set of documents and rarely do so
separately in the rest. Furthermore, the graphic representation of the co-occurrence networks allows
them to be viewed [102–104].

We have used the software tool VOSviewer (version 1.6.10., Leiden University, Leiden,
The Netherlands) for the analysis of these network indicators, which provides data about the interactions
and contents assessments, in order to measure the activities of research networks [105,106].

The results obtained are worthy for scholars, practitioners, decision-makers, public authorities,
and other stakeholders, because we are assessing the scientific production of a research field with
strong influence over society.

4. Results and Discussion

4.1. Analysis of Scientific Production

The following subsection displays the main characteristics of scientific production, the evolution
in the number of articles, and percentages of variation between periods, and, finally, the total number
of journals where articles on this topic were published.

Hence, Table 2 shows the evolution of the main characteristics of the articles published on
industrial processes for a sustainable society, from 1988 to 2019. The time horizon of the study is
32 years and it has been divided into four-year periods, in order to facilitate the analysis. In this time
horizon, interest on the relationship between industrial processes and a sustainable model of society
has increased, especially in the last eight years, as observed in the collected data.

Therefore, if in the first period (1988–1991) only 2 articles were published on this topic, in the last
four-year period analyzed (2016–2019), the number attempt 845, that is, practically 425 times more.
The number of publications increases in the last four-year period, where 44.20% of the total articles
analyzed have been published. This exponential growth could be due to the initiative promoted by
the United Nations in 2015, in addition to the definition of the 2030 Agenda and the Millennium
Development Goals (MDGs), which propelled collaboration and the progressive increase in scientific
publications [107,108]. During the last 8 years (2012–2019), 70% of the articles have been published
(1339), and 2019 was the year with more publications, 271 articles.

On the other hand, the authors Buckley, Pass, and Prescott published in 1988 the first article on the
research topic of management of industrial processes for a sustainable society, with the title “Measures
of international competitiveness: A critical survey”, in the Journal of Marketing Management. This article
is classified in the “Business, Management, and Accounting” thematic area [109]. Likewise, it should
be noted that the same article can be classified in more than one category, which will depend on the
publisher and author.
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Table 2. Main characteristics of scientific production (1998–2019).

Period A AU C TC TC/A J

1988–1991 2 4 2 205 102.5 2
1992–1995 2 4 1 63 31.5 2
1996–1999 38 73 13 764 20.1 35
2000–2003 84 224 34 2716 32.3 73
2004–2007 135 345 42 3415 25.3 105
2008–2011 311 879 53 11,919 38.3 226
2012–2015 494 1553 70 11,339 23.0 315
2016–2019 845 2813 82 5299 6.3 386

A: number of articles; AU: number of authors; C: number of countries; TC: number of citations in total articles; TC/A:
number of citations per article; J: number of journals.

Figure 2 shows the evolution in the number of articles and the variation percentage between each
four-year period studied. In addition, we highlight the increase percentage between the second and
third periods analyzed (1800%), in 1992–1995 and 1996–1999, even at that time the scientific activity
in this field of study was still very low. The percentage increase in the number of publications in
the 2008–2011 period (130.40%), obey to the fact that it is the first four-year period with more than
300 articles (311).
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Figure 2. Evolution of the number of articles and percentage of variation between four-year periods.

The total amount of authors who have contributed to this research topic during the analyzed
period was 5895. The total number of authors has also increased during this period, as does the volume
of articles. In the last three years (2016–2019), 47.70% of the total amount of authors from the 32-year
period is concentrated. In addition, we observe that the number of authors who published on the
relationship between industrial processes and a sustainable society in the first period (1988–1991) was
4, increasing to 2813 between 2016–2019. The number of authors experience a higher increase than the
number of published articles, because in the recent years, the average number of authors per article
has also increased. In the four-year period 1988–1991, the average number of authors per article was
2 authors per article, while in the last period (2016–2019) it increased to 3.3, the highest average of
authors per article in the studied time horizon.

In the analyzed period (1988–2018), the total number of countries that has at least one pubblication
is 99. Thereby, the number of countries has increased from two in the first period (1988–1991) to 82 in
the last one (2016–2019).

We account 205 citations for the 2 articles published between 1988–1991, then the number of
citations grew exponentially, from the second period (1992–1995), with 63, to the sixth four-year period
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analyzed (2008–2011), with 11,919. Since 2011, the total number of citations decreased, as showed by
the 2012–2015 and 2016–2019 periods, with 11,339 and 5229, respectively. The circumstance of the
decrease in the number of citations is due to the fact that the most recent articles published will receive
more citations in the coming years [110]. The decreasing in the overall number of citations is also
related to the decreasing in the average number of citations per article, because it has decreased from
the first four-year period (2001–2003), with 102.5, to the last period (2016–2018), with 6.3.

Finally, the total number of journals where “Industrial process management for a sustainable
society” topics were published has been 864 throughout the 32 years period. Thus, the journals
incidence increased from 2 in the first observed period to 386 in the last period (2016–2019), which
represents 44.7% of the total.

4.2. Distribution of Publications by Subject Area and Journal

The following Section 4.2 displays the main thematic areas related to scientific production.
Likewise, a comparison of growth trends according to the main thematic areas is presented and a
ranking of the most prolific journals on this subject is shown.

During the analyzed timeframe, 1988–2019, we found 26 categories according to the Scopus
classification, with studies related to industrial processes and sustainable society. We classified the
sample of 1911 articles in the 26 subject areas, an article can be classified in more than one subject area,
depending on the author and editor’s interest.

Figure 3 presents the evolution over time of the 5 main themes, through the Scopus analytics that
links articles of the sample (1988–2019) with the underpinning subject areas.

The most studied category throughout the studied period is “Environmental Science”, with 22%
of published articles (914) in this category. Followed, by “Business, Management, and Accounting”
(14%, 583), “Engineering” (14%, 583), “Social Sciences” (11%, 467), and “Energy” (9%, 373) categories
in order of importance. Therefore, the previous five categories represent 71% of the documents
published from 1988 to 2019. The rest of the subject area categories do not exceed 3% of total articles
published except for “Agricultural and Biological Sciences” (5.2%, 214), and “Economics, Econometrics,
and Finance” (4%, 172).

Environmental Science, with an exponential growth, is the only subject area that published articles
in all the analyzed periods, followed by Business, Management, and Accounting that almost published
in all periods, except in 1992–1995.

The shared features identified in the “Environmental Science”, “Business, Management,
and Accounting” and “Engineering and Social Sciences” publications categories, is that the
research topics are linked both conceptually and practically to management, technological processes,
and the dynamics of industrialization, environmental impact, environmental sustainability, and the
socio-economic systems that encompass the biophysical boundaries. Hence, it is recognized by authors
who relate the impact of environmental and organizational practices of industries to business [111,112].
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Figure 3. Comparison of growth trends of main subject areas (1988–2019).

Table 3 shows the characteristics of articles in the overall investigation of industrial processes for
a sustainable society. We rank the 20 journals with most articles published, the journals belonging
to the first quartile (Q1) of the 2018 SJR index stands out with 75% of total articles. In addition,
the International Journal of Production Economics, has the highest impact factor, SJR, with 2.475 (Q1),
followed by Business Strategy and the Environment journal, with 2.166 (Q1).

The Journal of Cleaner Production (137, 7.17%) and Sustainability (111, 5.81%) are the two journals
that have published the most articles. The top 20 journals in this research has published 29.20% (558)
of all articles. On the other hand, the Journal of Cleaner Production is the journal that has the most
in the first position of the ranking, with 3 out of 8 periods analyzed, even when the Sustainability
(99) journal attains the first position, with the highest number published articles, in the last period
of the analysis (2016–2019). Furthermore, the Journal of Cleaner Production is well-recognized by the
scientific community, standing out as the most cited per period (4142), although the International
Journal of Production Economics holds the highest average of citations per article (185.22) per period
and the highest h-index for published articles (38), followed by Resources Conservation and Recycling
(18) in the second place, while the highest h-index for all subjects is presented by Science of the Total
Environment (205).

We notice that the herein analyzed research has increased in the number of journals and authors
over the years, as evidenced by the increase in the indicators of number of articles and journals [113,114].
The European origin journals stand out as the most relevant: the United Kingdom (8), Netherlands (4),
Switzerland (1), Germany (1), and Italy (1); and the American ones (5).
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Table 3. Top 20 prolific journals (1998–2019).

Journal A TC TC/A Ha Hj SJR(Q) Country
R (A)

88–91 92–95 96–99 00–03 04–07 08–11 12–15 16–19

Journal of Cleaner Production 137 4142 30.23 38 150 1.620(Q1) Netherlands 0 0 0 0 1(6) 1(8) 1(33) 2(90)
Sustainability (Switzerland) 111 609 5.49 15 53 0.549(Q2) Switzerland 0 0 0 0 0 0 2(12) 1(99)
Resources Conservation and

Recycling 40 810 20.25 18 103 1.541(Q1) Netherlands 0 0 0 0 12(2) 5(5) 4(11) 3(22)

Journal of Environmental
Management 31 564 18.19 13 146 1.206(Q1) USA 0 0 0 7(2) 70(1) 3(6) 7(7) 5(15)

Science of the Total Environment 29 475 16.38 14 205 1.536(Q1) Netherlands 0 0 0 0 0 148(1) 5(9) 4(19)
WIT Transactions on Ecology and

the Environment 25 19 0.76 2 19 0.125(Q4) UK 0 0 0 0 2(6) 4(6) 3(12) 119(1)

Business Strategy and the
Environment 21 686 32.67 11 84 2.166(Q1) USA 0 0 8(1) 0 5(3) 8(4) 20(3) 7(10)

Marine Policy 21 343 16.33 9 79 1.242(Q1) UK 0 0 0 55(1) 11(2) 38(2) 11(6) 8(10)
Waste Management 18 603 33.50 15 127 1.523(Q1) UK 0 0 0 0 0 46(2) 14(5) 6(11)

International Journal of Life Cycle
Assessment 16 264 16.50 9 89 1.538(Q1) Germany 0 0 0 0 57(1) 32(2) 9(6) 9(7)

Journal of Sustainable Tourism 14 264 18.86 7 83 1.365(Q1) UK 0 0 2(2) 8(2) 0 36(2) 52(2) 12(6)
Journal of Construction

Engineering and Management 13 560 43.08 12 95 1.044(Q1) USA 0 0 0 0 10(2) 10(4) 26(3) 31(4)

Water Science and Technology 13 258 19.85 8 124 0.455(Q2) UK 0 0 35(1) 0 14(2) 161(1) 6(8) 135(1)
International Journal of

Production Research 12 619 51.58 10 115 1.585(Q1) UK 0 0 0 0 0 34(2) 10(6) 27(4)

Journal of Industrial Ecology 11 479 43.55 9 85 1.486(Q1) USA 0 0 0 0 0 2(8) 49(2) 180(1)
Chemical Engineering

Transactions 10 30 3.00 3 29 0.273(Q3) Italy 0 0 0 0 0 0 15(4) 10(6)

Management of Environmental
Quality 10 88 8.80 5 29 0.358(Q3) UK 0 0 0 0 3(4) 135(1) 27(3) 105(2)

Energy 9 309 34.33 7 158 2.048(Q1) UK 0 0 13(1) 0 36(1) 13(3) 115(1) 36(3)
International Journal of
Production Economics 9 1667 185.22 8 155 2.475(Q1) Netherlands 0 0 0 0 0 130(1) 16(4) 26(4)

Journal of Management in
Engineering 8 292 36.50 6 55 1.271(Q1) USA 0 0 0 0 73(1) 0 8(7) 0

A: number of articles; R: rank position by number of articles in the four-year period; TC: number of citations;
TC/A: number of citations by article; Ha: h-index in articles; Hj: h-index in journal; SJR(Q): Scimago Journal Rank
2018 (Quartile).

In 2008, Vachon and Klassen published the most cited article (848) “Environmental management
and manufacturing performance: The role of collaboration in the supply chain” in the International
Journal of Production Economics, included into the “Business, Management and Accounting” and
“Economics, Econometrics and Finance” subject area categories [115]. This article was the only
published article about this topic of analysis in the previous journal during the period (2008–2011).

4.3. Productivity of Authors, Institutions, and Countries

Section 4.3 displays the most productive authors and the cooperation between them based on
co-authorship. As for the institutions, the most prolific are shown, the countries with the highest
production and the network of cooperation among them based on co-authorship, and the most
productive international collaborations.

Hence, Table 4 shows what we consider as the most important variables from articles written
by the 12 most prolific authors on the topic of management of industrial processes for a sustainable
society during the period 1988–2019. It is noteworthy to mention that seven authors in this ranking are
European: Germany (3), Italy (2), and the United Kingdom (1), and 2 North Americans: the United
States (1), and Canada (1).

The most productive author on the analyzed topic is the German, Seuring, from the Universität
Kassel, with seven published articles, followed by the Italians, Colla, from the Scuola superiore di
studi universitari e di perfezionamento Sant’Anna, and, Ulgiati, from Parthenope University of Naples,
with six published articles each. Regarding citations, the German, Seuring from the Universität Kassel
holds the first place with 583 citations, although the authors with the highest average number of
citations per article are also Germans, Foerstl and Hartmann, with 107.40 and 103.60, respectively and
not the Italians Colla and Ulgiati, accounting six articles each. In addition, Seuring also stands out
with the highest h-index (7), followed by Ulgiati (6). All authors in this ranking published their first
article from 2000, and seven show interest in this topic in 2019, publishing at least one article.
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Likewise, the main thematic area (Environmental Sciences) associated with the contributions of
each of the most productive authors has been identified, reflecting the motivations in this scientific field
and the inclinations of the journals for the publication of these lines of research, such as the reviewed
literature shows [116,117].

Table 4. Top 12 prolific authors (1988–2019).

Author A TC TC/A Institution C First A Last A h-index

Seuring, S. 7 583 83.29 Universität Kassel Germany 2003 2015 7
Colla, V. 6 75 12.50 Scuola Superiore Sant’Anna Italy 2014 2018 5

Ulgiati, S. 6 129 21.50 Parthenope University of Naples Italy 2011 2019 6
Brent, A.C. 5 102 20.40 Victoria University of Wellington New Zealand 2005 2010 5
Foerstl, K. 5 537 107.40 German Graduate School of Management and Law Germany 2010 2018 5

Genovese, A. 5 334 66.80 Sheffield University Management School UK 2015 2018 5
Govindan, K. 5 168 33.60 Syddansk Universitet Denmark 2014 2019 4
Hartmann, E. 5 518 103.60 Friedrich-Alexander-Universität Germany 2010 2019 4
Hewage, K. 5 205 41.00 The University of British Columbia Canada 2011 2019 4

Huisingh, D. 5 360 72.00 The University of Tennessee USA 2009 2019 5
Hussain, M. 5 2 0.40 Abu Dhabi University United Arab Emirates 2017 2019 1
Raut, R.D. 5 21 4.20 National Institute of Industrial Engineering India 2015 2019 3

A: number of articles; TC: number of citations; TC/A: number of citations by article; C: country; First A: First article;
Last A: Last article; h-index: Hirsch index in this research topic.

Figure 4 shows the networking map between the main authors that published on the topic
industrial processes for a sustainable society, based on the co-authorship analysis. In Figure 4,
the different colors represent the networking clusters of articles production, while the size of the circle
changes according to the number of articles published by author. The network shows high dispersion
in the authors’ collaboration during the analyzed period (1988–2019). This limited collaboration in the
network influences the overall evolution of the social structure of this research topic. We note that the
limited scientific collaboration between the authors, in some way involves a wide scope in the subject
areas, in addition to promoting innovation, and facilitating access to various topics of study in the field
of research [118,119].Processes 2020, 8, x FOR PEER REVIEW 13 of 28 
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Table 5 shows the 10 institutions with the highest number of published articles during the period
of study (1988–2019). We observe that the institutions in the ranking have a diverse origin, for example,
30% of the institutions are European (Imperial College London, Politecnico di Milano, and Wageningen
University and Research Center), 30% from Asia (Chinese Academy of Sciences, Hong Kong Polytechnic
University, and Beijing Normal University), and 20% from Australia (University of Queensland and
University of Melbourne). The Chinese Academy of Sciences is the most productive institution with
21 articles, while the most cited institution (851) with the highest average of citations per article (50.06)
is the University of British Columbia (851) from Canada. The University of British Columbia and the
Imperial College London share the highest h-index (12) in this research topic.

On the other hand, Hong Kong Polytechnic University is the institution with the highest percentage
of international collaboration (64.3%), although the international collaboration does not influence
the number of citations, in comparison with articles written without international co-authorship.
The Politecnico di Milano and the Wageningen University and Research Center are the only two
institutions where international co-authorship outstands as a profitable practice, because the articles
published by these two institutions have a much higher number of international citations.

Table 5. Top 10 prolific institutions (1988–2019).

Institution C A TC TC/A h-index IC (%) TCIC TCNIC

Chinese Academy of Sciences China 21 302 14.38 11 33.3% 15.86 13.64
The University of British Columbia Canada 17 851 50.06 12 41.2% 48.86 50.90

Imperial College London UK 17 772 45.41 12 47.1% 42.13 48.33
University of Queensland Australia 17 440 25.88 10 52.9% 29.33 22.00

Universidade de Sao Paulo - USP Brazil 14 241 17.21 8 14.3% 14.00 17.75
Hong Kong Polytechnic University Hong Kong 14 565 40.36 10 64.3% 25.11 67.80

Politecnico di Milano Italy 14 322 23.00 11 50.0% 36.00 10.00
University of Melbourne Australia 14 355 25.36 9 21.4% 11.33 29.18

Wageningen University and Research Centre Netherlands 13 594 45.69 9 61.5% 64.25 16.00
Beijing Normal University China 13 124 9.54 8 61.5% 10.88 7.40

C: country; A: number of articles; TC: number of citations; TC/A: number of citations by article; h-index: Hirsch
index in research topic; IC: percentage of articles made with international collaboration; TCIC: number of
citations by article made with international collaboration; TCNIC: number of citations by article made without
international collaboration.

Table 6 shows the countries with the highest scientific production on industrial processes for a
sustainable society, including the ones we consider the most characteristics.

In our study, the United States stands out as the country with most publications (289) and with the
highest h-index, along with the United Kingdom (47). In addition, the United States has the highest
number of citations (7481), and 32.25 average citations per article, positioning in the second place in
the average citation rate, just behind Canada (43.96) with only 95 articles.

The amount of American and English publications stands out in the interest of those countries on
the management of industrial processes for a sustainable society. The United States started publishing
on the management of industrial processes for a sustainable society in 1996, and it has led the ranking
of publication productivity on this topic in all periods, excluding the 2004–2017 period. China has
the second position in articles productivity at the last period (2016–2019), with 90 items, representing
the 68.2% of total production. We observe, what we think is a notworthy characteristic in the top
10 ranking of countries articles production, that Italy (2003), Brazil (2003), and Spain (2003), out of
10 countries, published its first article until the fourth period (2000–2003).

In short, the United States, the United Kingdom, Australia, China, and Italy, are the 5 most engaged
countries on this research subject, with 50% (952) of all analyzed articles. This ranking coincides with
the countries that produce the most scientific documents, and the excellence rate that includes the
most cited articles in their area. The latter is an indicator of the high quality of research in these
countries [120,121].
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Table 6. Top 10 prolific countries in number of articles (1998–2019).

Country A TC TC/A h-index
R (A)

1988–1991 1992–1995 1996–1999 2000–2003 2004–2007 2008–2011 2012–2015 2016–2019

USA 289 6828 23.63 47 0 0 1(9) 1(17) 3(16) 1(62) 1(93) 1(92)
UK 232 7481 32.25 47 2(1) 0 2(8) 3(12) 1(20) 2(50) 3(52) 3(89)

Australia 189 3760 19.89 35 1(1) 0 5(2) 2(12) 2(19) 3(43) 2(53) 5(59)
China 132 1146 8.68 20 0 0 9(1) 19(1) 10(5) 11(8) 7(27) 2(90)
Italy 110 2236 20.33 25 0 0 0 22(1) 21(2) 9(9) 4(42) 7(56)

Brazil 107 1064 9.94 19 0 0 0 17(1) 9(6) 10(8) 5(36) 6(56)
Spain 101 2416 23.92 25 0 0 0 31(1) 13(4) 4(18) 8(27) 8(51)
India 100 1290 12.90 16 0 0 6(2) 6(4) 11(5) 12(8) 10(20) 4(61)

Germany 98 2822 28.80 28 0 0 11(1) 5(6) 4(10) 8(13) 6(29) 11(39)
Canada 95 4176 43.96 28 0 0 7(1) 4(7) 6(9) 5(17) 9(20) 10(41)

A: number of articles; R: rank position by number of articles in the four-year period; TC: number of citations; TC/A:
number of citations by article; h-index: Hirsch index in research topic.

Table 6 shows the indicators regarding international collaboration ordered by the amount of
scientific production in the observed period (1988–2019). We identify the international networks of
scientific collaboration lead by China with 55.3% (45 countries), followed by Canada (50.5%, 28), Spain
(45.5%, 38), and the United Kingdom (41.4%, 45). In our ranking, India is the country with the lowest
percentage of international collaboration (17%, 8).

On the other hand, we observe in Table 7 that the number of articles’ citations is higher where
international co-authorship is entailed than those made without international collaborations, exception
made by the United Kingdom, Germany, and Canada.

Table 7. Top 10 prolific countries and international collaboration (1998–2019).

Country NC Main Collaborators IC (%)
TC/A

IC NIC

USA 44 UK, Canada, China, Australia, Germany 33.6% 32.48 19.15
UK 45 USA, Spain, Germany, Italy, Canada 41.4% 29.72 34.03

Australia 36 China, UK, USA, Canada, Netherlands 39.2% 22.26 18.37
China 38 Australia, USA, UK, Hong Kong, Italy 55.3% 9.03 8.25
Italy 30 UK, Spain, USA, China, Germany 33.6% 33.35 13.73

Brazil 22 Canada, UK, USA, China, Portugal 21.5% 12.43 9.26
Spain 38 UK, Italy, Chile, Germany, USA 45.5% 30.57 18.36
India 8 USA, Denmark, UK, Australia, Canada 17.0% 38.76 7.60

Germany 26 UK, Switzerland, USA, Austria, Netherlands 39.8% 26.59 30.25
Canada 28 USA, UK, Australia, Brazil, China 50.5% 27.31 60.96

NC: number of collaborator countries; IC: percentage of articles made with international collaboration; TC/A:
number of citations by article; IC: international collaboration; NIC: no international collaboration.

Figure 5 shows a networking map between countries based on the co-authorship analysis,
where the different colors represent the different clusters build up by the groups of countries, while
the size of the circle changes according to the number of articles published by country [122,123].
The VOSviewer software identifies eight sets of components.

Cluster 1 is the largest and includes 14 countries, led by Australia with 189 published articles.
Cluster 1 is associated with Malaysia (65 articles), Iran (22), Mexico (21), Chile (18), Indonesia (18),
Japan (16), Lithuania (11), Saudi Arabia (11), Pakistan (10), Egypt (9), Bangladesh (7), Kenya (6),
and Nigeria (6). Cluster 2 has Italy (100) at the head and is associated with Brazil (107), Canada (95),
Sweden (52), France (50), Portugal (26), Thailand (21), Norway (16), United Arab Emirates (11), Serbia
(10), and Slovenia (7). Cluster 3 is led by Spain (101) and includes Finland (42), Russian Federation
(22), Greece (18), New Zealand (18), Romania (14), Poland (13), and Hungary (12). Cluster 4 is leaded
by Germany (98), and includes the Netherlands (60), Switzerland (35), Austria (22), Belgium (20),
Ireland (17), and Colombia (9). Cluster 5 is leaded by the United States (289) and includes Turkey (38),
South Korea (26), Singapore (9), Qatar (6), and Croatia (5). Cluster 6 has China (132) at the head and
cooperates with South Africa (47), Taiwan (32), Hong Kong (23), and the Philippines (8). Cluster 7 is
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led by the United Kingdom (232), and collaborates with Czech Republic (8), and Slovakia (7). Finally,
cluster 8 is composed by India (100) and Denmark (29).
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4.4. Keywords Analysis

Section 4.4 displays an analysis of the most relevant keywords, the keyword network map based
on co-occurrence and their evolution, during the period analyzed (1988–2019).

Therefore, Table 8 lists the 20 most frequently used keywords in the sample of 1911 articles during
the observed period (1988–2019) divided in eight four-year periods within the 32-year timeframe.
The most outstanding terms are Sustainability (864 articles, 45.2%) and Sustainable Development
(757, 39.6%). In the literature review, both terms are considered as synonyms [124], then if we observe
them together, they rank first in 6 out of 8 four-year periods (Sustainability: 2000–2003, 2008–2011,
2016–2019; and Sustainable Development: 1996–1999, 2004–2007, 2012–2015). We identify the keywords
Environmental Management (262, 13.7%), Decision Making (235, 12.3%), and Environmental Impact
(212, 11.1%) listed in order of importance.

Indeed, we identify four thematic axes according to the keywords semantics. Hence, the first
group is associated with sustainability in processes (Sustainability, Sustainble Development, Life Cycle,
Recycling, and Life Cycle Assessment); the second is related to the environmental dimension
of industry (Environmental Management, Environmental Impact, Environmental Sustainability,
and Environmental Protection); the third with the management of industrial processes (Decision
Making, Waste Management, Supply Chain Management, Water Management, Project Management,
Economics, and Stakeholder); and the fourth with the industry itself (Construction Industry, Industry,
and Innovation).
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Table 8. Top 20 keywords (1988–2019).

Keyword

1988–2019 1988–1991 1992–1995 1996–1999 2000–2003 2004–2007 2008–2011 2012–2015 2016–2019

(A) % R
(A) % R

(A) % R
(A) % R

(A) % R
(A) % R

(A) % R
(A) % R

(A) %

Sustainability 864 45.2% 0 – 28(1) 50.0% 6(5) 13.2% 1(39) 46.4% 2(47) 34.8% 1(154) 49.5% 2(206) 31.2% 1(412) 18.2%
Sustainable Development 757 39.6% 14(1) 50.0% 0 – 1(10) 26.3% 2(28) 33.3% 1(51) 37.8% 2(123) 39.5% 1(213) 24.9% 2(331) 14.6%

Environmental Management 262 13.7% 8(1) 50.0% 3(2) 100.0% 12(3) 7.9% 10(7) 8.3% 10(11) 8.1% 4(42) 13.5% 4(72) 8.5% 4(124) 5.0%
Decision Making 235 12.3% 0 – 0 – 0 – 7(8) 9.5% 11(10) 7.4% 6(35) 11.3% 8(52) 7.1% 3(130) 4.1%

Environmental Impact 212 11.1% 0 – 0 – 2(9) 23.7% 3(15) 17.9% 3(20) 14.8% 9(26) 8.4% 5(63) 5.3% 8(79) 3.1%
Environmental Sustainability 182 9.5% 0 – 0 – 0 – 33(4) 4.8% 18(7) 5.2% 11(22) 7.1% 7(53) 4.5% 7(96) 2.6%

Waste Management 169 8.8% 0 – 29(1) 50.0% 44(2) 5.3% 18(6) 7.1% 4(18) 13.3% 8(32) 10.3% 10(38) 6.5% 10(72) 3.8%
Supply Chain Management 149 7.8% 0 – 0 – 0 – 0 – 104(3) 2.2% 22(16) 5.1% 15(31) 3.2% 6(98) 1.9%

Life Cycle 147 7.7% 0 – 0 – 0 – 38(4) 4.8% 26(6) 4.4% 13(20) 6.4% 11(37) 4.0% 9(79) 2.4%
Construction Industry 143 7.5% 0 – 0 – 89(1) 2.6% 27(4) 4.8% 8(12) 8.9% 5(35) 11.3% 13(31) 7.1% 11(60) 4.1%

Industry 132 6.9% 0 – 0 – 0 – 6(9) 10.7% 36(5) 3.7% 7(33) 10.6% 6(60) 6.7% 48(24) 3.9%
Recycling 132 6.9% 0 – 19(1) 50.0% 5(5) 13.2% 41(4) 4.8% 7(13) 9.6% 10(25) 8.0% 19(27) 5.1% 13(57) 3.0%

Environmental Protection 113 5.9% 0 – 12(1) 50.0% 4(5) 13.2% 5(10) 11.9% 16(8) 5.9% 27(13) 4.2% 12(36) 2.6% 20(40) 1.5%
Water Management 108 5.7% 0 – 0 – 47(2) 5.3% 13(7) 8.3% 67(4) 3.0% 15(19) 6.1% 9(39) 3.8% 25(37) 2.2%
Project Management 98 5.1% 0 – 0 – 0 – 0 – 9(12) 8.9% 12(21) 6.8% 17(28) 4.3% 24(37) 2.5%

Priority Journal 89 4.7% 0 – 0 – 0 – 128(2) 2.4% 98(3) 2.2% 39(11) 3.5% 16(29) 2.2% 16(43) 1.3%
Innovation 87 4.6% 0 – 0 – 0 – 0 – 20(7) 5.2% 21(16) 5.1% 31(20) 3.2% 15(43) 1.9%
Economics 83 4.3% 0 – 0 – 3(5) 13.2% 20(5) 6.0% 81(3) 2.2% 36(11) 3.5% 18(27) 2.2% 29(32) 1.3%

Life Cycle Assessment 83 4.3% 0 – 0 – 0 – 111(2) 2.4% 54(4) 3.0% 50(10) 3.2% 27(21) 2.0% 14(45) 1.2%
Stakeholder 80 4.2% 0 – 0 – 0 – 0 – 21(7) 5.2% 18(17) 5.5% 20(26) 3.4% 39(29) 2.0%

A: number of articles; R: rank position by number of articles in the four-year period; %: percentage of articles in
which it appears; (–): not data.

Figure 6 represents the keywords network map of the 1911 articles on the research topic.
The keyword network maps is build up through the co-occurrences method and the different
colors of nodes identify the clusters, while their size changes according to the keywords’ frequency.
We identify four main lines of research: “Environmental Protection”, “Environmental Management”,
“Environmental Impact”, and “Water Management” [35,39,64,74,125,126]. We set up this clusters
according to the keywords associated to most articles in the sample, using the VOSviewer software.Processes 2020, 8, x FOR PEER REVIEW 18 of 28 
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Cluster 1 (grey) is about the thematic axe “Sustainability in processes”. Cluster 1 is the bigger
group and it has the 32% of the total keywords, Environmental Protection leads Cluster 1 with
(113 articles) followed by Innovation (87 articles), Economics (83), Stakeholder (80), Food Industry
(68), Economic and Social Effects (58), Agriculture (55), Environmental Economics (54), Conservation
of Natural Resources (52), Forestry (45), Corporate Social Responsibility (44), Ecology (44), Forest
Management (43), Implementation Process (39), Land Use (38), Governance Approach (33), Case Study
(32), Public Policy (32), Strategic Approach (31), Strategic Planning (31), Biodiversity (30), Developing
Countries (30), Industrial Ecology (30), Ecotourism (27), Education (27), Policy (26), Economic Aspect
(25), or Ecosystem (25) among others.

We associate cluster 1 with the “Environmental protection” research line. This research line enables
a political, economic, educational, and touristic approach. The political approach considers the relation
to normative regulation; the economic one considers the costs and the consumption; the educational
approach studies training at different academic levels; and the touristic approach considers tourism as
an outstanding sector for a more sustainable society [127,128].

Cluster 2 (green) is about the thematic axe “Environmental dimension of industry”. Cluster 2
has the highest centrality and includes the 30% of total keywords. Cluster 2 encompasses the
keywords Environmental Management (262), Decision Making (235), Supply Chain Management
(149), Construction Industry (143), Project Management (98), Supply Chains (62), Manufacture (60),
Pollution Control (57), Energy Utilization (52), Analytical Hierarchy Process (51), Manufacturing (51),
Risk Management (49), Commerce (46), Risk Assessment (44), Surveys (42), Decision Support
Systems (39), Construction (37), Industrial Economics (36), Performance Assessment (36), Information
Management (35), Sustainability Assessment (35), Sensitivity Analysis (34), Sustainable Supply Chains
(34), Cleaner Production (33), Technology (33), Buildings (31), Quality Control (31), Environmental
Technology (29), Hierarchical Systems (29), Product Design (29), Manufacturing Industries (28), Product
Development (28), Costs (27), Industrial Management (27), Textile Industry (27), Environmental
Regulations (26), Industrial Research (26), and Benchmarking (25).

We associate cluster 2 with the “Environmental management” research line. This research line
studies the process that allows the reduction of environmental impacts and the efficiency progress to
achieve economic, environmental, and operational improvements of organizations [129,130].

Cluster 3 (blue) is about the thematic axe “Industrial processes”. Cluster 3 gathers 19% of
all keywords. It is associated with the following keywords: Environmental Sustainability (182),
Waste Management (169), Life Cycle (147), Recycling (132), Life Cycle Assessment (83), Life Cycle
Analysis (72), Environmental Performance (70), Climate Change (63), Wastewater Treatment (58),
Life Cycle Assessment (LCA) (56), Environmental Impact Assessment (55), Waste Disposal (54),
Environment (52), Carbon Dioxide (48), Optimization (44), Greenhouse Gases (37), Investments (37),
Carbon Footprint (36), Emission Control (32), Biomass (31), Economic Analysis (31), Circular Economy
(30), Global Warming (30), Carbon (27), Cost Benefit Analysis (27), Greenhouse Gas (27), Gas Emissions
(26), Solid Waste (26), Biofuel (25), and Energy Management (25).

We associate cluster 3 with the “Environmental impact” research line. This research line studies
the impact of industrial processes on the environment and its relationship with a more sustainable
society. The scientific production of this thematic axis deals with the direct impact of the industry on
nature, by the territorial development, the use of natural resources and waste production [131–134].

Finally, cluster 4 (yellow) is holds the “Industry” thematic axe. Cluster 4 is the smallest one,
composed by 18% of keywords and head the “Water Management” research line. Cluster 4 is
associated with the following keywords: Water Supply (71), Industrial Waste (62), Wastewater (45),
Water Conservation (41), Waste Water Management (39), Water Resources (38), Energy Conservation
(36), Water Quality (36), Chemical Industry (35), Water (32), Pollution (31), Water Resource (31), Water
Pollution (30), Water Treatment (30), Waste Water (29), Sewage (28), Waste Treatment (27), Effluent (26),
Effluents (25), and Energy (25).
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Water management is a research line that studies the sustainable water resources management and
its effects on society. We define this research line as the effort to improve the understanding on how to
promote a collaborative management of water, land, and resources, with the aim to maximize wellbeing
and social justice, without compromising the sustainable functionality of ecosystems [135,136].

The four previous mentioned thematic axes encompass concepts related to the industrial processes
management to achieve a more sustainable society, for example, sustainable development in globalized
times and the causal effects of industrial management in society. There is a consolidation in the
development of research that has led to an increase in the number of contributions, in relation to the
implementation of management and implementation of sustainable policies in industrial processes.
Similarly, there is an evolution in terminology that is accompanied by the emergence of new lines of
research, such as those expressed below and in line with the results obtained [137,138].

4.5. Future Research Perspectives

Figure 7 shows the changes over time and stability of each keyword network, because we can
identify the time period in which they have been studied, according to the research sample observed
in the 1988–2019 period.Processes 2020, 8, x FOR PEER REVIEW 20 of 28 
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We assume a significative increase in the keywords related to the research topic in the 2012–2015
period, influenced by the exponential increase in the articles publication on management of industrial
processes for a more sustainable society. The keywords diversity in the bibliometric analysis brings
out an idea of the range of researchs topics in the field of study. On the other hand, we also observe
the emergence of another keywords group from 2016. The new keyword group encompass concepts
like green cluster and environmental management to improve firms’ environmental image and social
responsibility coming from public authorities and civil society pressures.

Hence, Figure 7 let us to improve our understanding on the keywords relevance over time.
So, the early bird keywords in the timeline have strong influence over the most recent keywords.

Research moves forward worldwide, incorporating new concepts and strategies that open
new research lines. Indeed, we are witnessing the emergence of keywords such as social welfare,
attracting consumer, or competitiveness that bridge the gap between Industry 4.0 and sustainability.
The outcoming group of keywords pave the way for a new research line where the impact of Industry
4.0 on the triple bottom line will be explored [139,140]. The previous mentioned research line seeks
to better understand how this dynamic relationship between economic development (job creation,
cost reduction, and risk management); environmental responsibility (energy and resources conservation,
renewable energy consumption, recycling, packaging reduction and decarbonization); and social
welfare (working condition regulations, community enhancement, and the development of social
responsibility in products and services).

On the other hand, we also identify controversial keywords related with the research topic in the
analyzed literature, keywords like agrochemical, pesticide, tobacco, defense industry, bioengineering,
robotics, or conflict mineral exploitation. These terms are connected to a new research line that
adresses controversial issues at industries, provocative industries by its definition of international
trade agreements, or by the unfair labor and wage conditions resulting from the high mobility of global
capitals [141,142].

Moreover, we identify a concurrent research line that explores the regional and social perspectives
of the “sin stock sectors”. These sectors include the alcohol, tobacco, gambling, sex and firearms industry
of which characteristics changes around the world. So, concerning this research line, the studies’
interests turn around the behavior of ethical and socially responsible investments regarding ethically
questionable activities, assuming the social benefit as the final goal [143,144].

We recognize “the concept design of sustainable industrial process” as a new thematic axe
encompassing keywords such as ecodesign, architectural design, or construction industry. Currently,
a large number of companies include sustainable development within their commercial strategies,
therefore industrial engineers seek to implement this strategy in the design of manufacturing process.

Likewise, artificial intelligence (AI) and sustainable development concepts set up the development
of a new research line, aiming to understand how current technology will affect the planet through
climate change and biodiversity loss. Therefore, previous research line studies how AI applications
bring environmental benefits or not, considering tradeoffs, spillover, and rebound effects on water
quality, air pollution, deforestation, soil quality degradation, and biodiversity [145,146].

5. Conclusions

The aim of this study is to analyze the research trends of scientific production on industrial
processes management for a more sustainable society, during the last 32 years. We drew up a
bibliometric analysis of 1911 articles from the Elsevier Scopus database to depict the evolution of
scientific production, thematic areas, journals, authors, institutions, the most productive countries,
and the main research lines based on the keyword network analysis.

Scientific production increased every year during the 1988–2019 period, especially in the last period
(2016–2019), where 845 documents have been published, accounting for the 44.2% of total articles.

We observe that most articles of our research topic are in the following four subject areas:
Environmental Science; Business, Management and Accounting; Engineering; and Social Sciences.
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The outstanding diversity of subject areas in the articles sample demonstrates the cross-sectional
approach of sustainability, which is linked with environmental, economic, social, scientific,
and technological disciplines. Furthermore, the most productive journals are the Journal of Cleaner
Production and Sustainability, together gathering 12.98% of total articles published. We observe that
75% of journals are in the first quartile of journals’ ranking Scopus. The Journal of Cleaner Production is
the most cited, and it has the highest h-index, but the International Journal of Production Economics has
the highest average citations per article.

We notice that the 60% of authors are Europeans, therefore the most prolific authors, the most
cited, and the author’s with highest average citations per article belong to German research institutes.

The countries that publish the most in this research area are the United States and the
United Kingdom, Australia, China, and Italy, with 50% of the articles sample. Hong Kong has
the highest percentage of international collaboration regarding articles’ publication; even when this
international exposition is not translated into higher citations rate, in comparison with the articles
without international collaboration. The Netherlands and Italy are the only two countries that take
advantage of the international co-authorship getting higher international citations.

In addition, we set up four thematic axes resulting from the industrial process management of
industrial for a more sustainable society. The first thematic axis studies environmental protection,
taking different approaches (political, economic, educational, or touristic); the second thematic axis
addresses the environmental management; the third analyses the impact of environmental industrial
processes on a more sustainable society; and, finally, the fourth thematic axis studies the sustainable
management of water resources and its causal effects on society.

Likewise, we observed that the research field of industrial processes management for a sustainable
society is gaining more attention from scholars and practitioners over the years. New research topics
emerge, within the boundaries of interest of this study, to analyze the impact of Industry 4.0 on the
sustainability triple bottom line. New research subjects address controversial issues at industries,
provocative industries by its definition of international trade agreements, or by the unfair labor and
wage conditions resulting from the high mobility of global capitals. Furthermore, we identify a
concurrent research line that explores the behavior of ethical and socially responsible investments
regarding non-ethical activities. On the other hand, new studies should address the concept design of
sustainable industrial process, implemented in the manufacturing processes design. We identify the
need for studies seeking to understand the relationship between artificial intelligence and sustainable
development, to assess how current technological advances will affect the planet, due to challenges
such as climate change and the loss of biodiversity.

Innovation in this research field has been identified based on the morphology of the clusters
of authors, institutions, countries, and keywords, and the intensity of the relationships that
develop in them. The results obtained are a complement to the area of knowledge of industrial
processes and allow establishing the relationship between science and technology and supporting the
decision-making process.

This study identifies some limitations that could be addresses in further research studies. In our
study, the outcome is conditioned by the methodology we define, the database chosen, the keywords
selected to extract the articles sample; the timeframe; and the analyzed variables. Therefore, the use of
a different database and variables will bring out different outcomes, complementing the analysis and
opening the floor for comparative studies.

Finally, we observed in the recent years that international research on industrial processes
management for a more sustainable society shows an upward trend.
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Abstract: This paper sets its sights on propounding a structural model to delve into the
interrelationship between the impact of the integration of corporate social responsibility activities
into the public sector scorecard management framework on the corporate social responsibility
disclosure and enhancement of the organizational performance among public sector organizations.
The conceptual framework in company with hypothesis framing were established after examining the
related literature. Data were gathered from a sample of 723 respondents in public sector organizations
in South Vietnam via convenience sampling method. Structural equation modeling was employed
to validate the goodness of model fit and examine the hypotheses. These findings revealed that
integration of corporate social responsibility activities into the public sector scorecard management
framework was significantly and positively related to the corporate social responsibility disclosure
and organizational performance. Additionally, it also asserted that corporate social responsibility
disclosure was considerably associated in a positive manner with organizational performance. Thus,
some detailed implications in connection with each causal relationship and several orientations were
underlined to ameliorate the capacity of managing and measuring the organizational corporate social
responsibility practices in a strategic manner.

Keywords: corporate social responsibility; corporate social responsibility disclosure; organizational
performance; public sector scorecard

1. Introduction

Corporate social responsibility (CSR) practices have been broadly adopted throughout the
organizational community in light of the value creation characteristic of CSR [1]. CSR’s implementation
can help an organization easily achieve the approval of local communities, good staff attraction and
retention [2], far-reaching risk mitigation [3] and so on.

CSR has been widely applied in both developed and developing economies [4]. Surprisingly,
the numerous scholars have largely paid attention to the developed countries while placing less concern
on the developing economies [5].

In the developing economies, CSR represents the formal and informal ways in which a business
creates a significant contribution to ameliorating the governance, social, ethical, labor and environmental
conditions of the countries [6]. In addition, these are the regions where globalization, economic growth,
investment and business activities are likely to cause the most significant social and environmental
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impacts [7]. Furthermore, as stated by [8], the CSR report earned divergent attention from stakeholders
in developed and developing countries. This is because the organizations in developing nations receive
lower pressures in corporate social responsibility disclosure (CSRD). Asia has been the region most
often covered in the literature in relation to CSR in developing nations [7]. Unfortunately, the research
about CSR in this region within and among countries has still been sparse [9].

As a member of Asia, Vietnam first introduced CSR activities in 2000. The change in awareness
of Vietnamese organizations was marked in 2010. Although a public sector organization (PSO)
is more likely to perform socially responsible activities, these organizations are often found to
concentrate on philanthropic activities rather than prioritizing environmental CSR initiatives to
attain better organizational performance (OP). Admittedly, the biggest barriers and challenges to the
implementation faced by PSO include the insufficient awareness of the concept of social responsibility;
lack of financial and technical resources; and multiple sets of codes of conduct. Notably, the evaluation
on the actual impact of CSR implementation was also another concern among many organizations [10].
However, PSOs have been lacking a clear, quantitative, consistent instrument for evaluating their goals.
Moreover, according to government regulations, an alternation should be taken into consideration
to meet the transparent and fair requirements when measuring the PSO’s performance, especially in
CSR’s implementation.

In this regard, the management and measurement framework that has been proposed for this
application is the public sector scorecard (PSS) due to the main advantages of outcome improvement
economically; measurement development; public sector (PS) characteristics’ conformity; emphasizing
the expectations of users and stakeholders; re-designing phases and ameliorating service delivery;
dealing with capability and organizational matters; and promoting a performance management culture
based on improvement, innovation and learning [11]. Indeed, the PSS is considered as an effective
framework for ensuring that strategy, processes and performance measures in relation to CSR practices
are aligned with each other. In particular, these activities are also aligned with the demands and
expectations of service users and stakeholders. Besides, PSS can create better conditions for the
collaborative work between the leaders and staff and service users and other key stakeholders. It can
also deal with risk management and organizational culture, and has the capability to assure that staff

and processes are facilitated to attain the targets. In addition, PSS can give rise to the improvement of
CSR practices and concentrate on creating desired outcomes, including value for money.

Building on these abovementioned analysis, this research generated a significant contribution
to the literature in several aspects. Firstly, this paper placed an emphasis on the benefits and the
likelihood of the integration between CSR and PSS (ICP) because the scrupulous CSR governance would
lead to success via organizational structure enhancement, CSR performance accomplishment and
sustainable development [12]. On the other hand, due to lacking independent verification, voluntary
CSRD used to be criticized as being unreliable and reported under a selected manner [13]. Thus,
the association between CSRD and ICP was handled to determine the effectiveness of ICP on the
disclosure activities. Thirdly, the impact of ICP on PSOs’ performance was also accentuated in terms of
sustainable development. Although Asia has been broadly acknowledged as a region with numerous
studies focusing on the CSR issues, the studies about CSR in the region within and among nations
are still limited [9]. In addition, based on the assumption of [14], there have been limited theoretical
and empirical investigations on CSR practices in Vietnam up to date. Thus, this research added new
empirical evidence to ease the limitations of the amount of empirical research and the association
between CSR and organizational outcomes [15]. These findings could help both practitioners and
academicians attain a deep understanding on ICP through a general strategic management framework
in connection with the CSR practices. In addition, these results also gain several useful insights into
CSRD in PSO, as CSRD reporting has been shown to fail to attain homogeneous designs between
countries [16]. Importantly, the proposed framework of the current research can be treated as an
example for PSOs in other developing countries, especially the countries belonging to Asia, due to
these following reasons. Firstly, as PSOs have been established with the primary role of serving
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the public, they are required to deliver the highest levels of compliance with the law during their
operations. Secondly, there have been several similarities in the characteristics of CSR practices [7]: the
geo-economic development conditions and the same size of geo-economic flow between the countries
in Asia [17]. To that end, this paper endeavors to illustrate how to adopt the theoretical model through
addressing these research questions below.

RQ1. Does the ICP have a significant effect on the CSRD in PSO? How far does it influence?
RQ2. Does the ICP have a significant effect on the OP in PSO? How far does it influence?
RQ3. Does the CSRD have a significant effect on the OP in PSO? How far does it influence?
The remaining parts of this research are structured as follows. The review of the prior research

is sketched out in Section 2. The next section institutes the theoretical background and develops
hypotheses for the research. Subsequently, the methodology employed in empirical research is carefully
elucidated in Section 3. Our main section in which the findings of the study are included is Section 4.
Eventually, theoretical and managerial implications, and useful directions for future research based on
the inherent limitations, are foregrounded in Section 5.

2. Overview of Prior Research

2.1. The Association between Corporate Social Responsibility and Management

Several scholars have recently become interested in the integration between CSR components
and organizational management due to the perception on the improvement in corporate CSR
target controlling [18]. In particular, [19] propounded the combination of financial and strategic
control procedures to apply for managing the environment. Additionally, the sustainability
ingredients were integrated into organizational strategy in terms of a management control system [20].
Analogously, [21] added a new finding by means of putting the management control system into CSR
strategy management.

2.2. The Linkage between Corporate Social Responsibility and Organizational Performance

A large amount of research has been concentrated on exploring the impacts of CSR on the various
facets of an organization [22], which provoked a variety of homogeneous results. Particularly, [23]
indicated the causal link between corporate reputation, CSR and OP, whereas [24] argued that good
CSR could lead to a good corporate reputation and gained the performance of the organization.
Additionally, more involvement in the satisfaction of stakeholders was also another concern to ensure
the OP, as with financial performance (FP) was also closely related to the image of the entities [25].
On the other hand, CSR implementation was supposed to lead to the satisfaction of the consumers
regarding the quality of service and retain the highly qualified workers [26]. Thus, ultimately higher
profits were promised. On the contrary, CSR has been argued to cause a negative effect on FP (i.e., [27]).
In particular, there was less likelihood that FP could take place simultaneously with abounding CSR
activities [28], as supplemental resources and capacity during the process of CSR process would cause
high expenditures and lower profit [29]. As such, an inverse association between organizational CSR
activities and FP has been ascribed to the entities with better CSR performance but failing to attain
the financial facet [30]. Besides, in the investigation on the relationship between CSR, public service
motivation (PSM) and organizational citizenship behavior (OCB) in PS, [31] proved that employee
perceptions of both internal and external CSR influenced the development of a desire to serve the
public in a positive manner. In addition, these findings indicated that PSM not only partially mediated
the interconnection between internal CSR perceptions and employee OCB, but also fully mediated the
association between external CSR perceptions and OCB.

2.3. The Relationship between Corporate Social Responsibility Disclosure and Organizational Performance

Researchers have recently placed their sharp-witted concern on the disclosures of CSRs [32].
However, the outcome of this subject has come to a conflict [33] in which the variety of measures of
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CSRD, research methodologies and FP measures were ruminated to be the main causes [34]. While [35]
manifested the evidence of the positive association between levels of CSRD in the annual statements and
OP in relation to FP and corporate reputation, the CSRD-performance relationship was experimentally
found to be less significant for practical purposes in the work of [36]. Furthermore, the association
between CSRD and FP was also scrutinized through numerous empirical studies and was proved to be
tight [37]. On the other hand, the converse results on the relationship between CSRD and FP were also
highlighted in several studies (i.e., [38]). The neutral association between CSRD and FP also occurred
in the findings of numerous scholars [39]. In the meanwhile, the evidence between CSRD and FP has
not yet even been detected in several research (i.e., [40]).

3. Theoretical Background and Hypothesis Development

3.1. Theoretical Background

3.1.1. Legitimacy Theory

Legitimacy theory. There has been a growing consensus among numerous scholars on putting
legitimacy theory (LT) in place for explaining the driving force behind corporate social and
environmental disclosures [41]. Therefore, this theory has been broadly applied in several studies
related to the organizational environmental disclosures and has gradually assumed the central position
in this type of research [42]. As stated by [43], the social contract is defined as multitudinous social
expectations on the way which an entity should undertake its operations. LT is calculated based on
the perception of a “social contract” existing between an entity and its operational surroundings [44].
According to [45], LT originated from the perception that an organization was supposed to consummate
within the bounds and norms of with socially responsible behaviors. Simultaneously, organizational
legitimacy leaned on the prolongation of reciprocal associations with its stakeholders [46], comprising
implementing moral obligations to numerous stakeholders [47]. Building on the LT viewpoint,
legitimacy and power have been consented to the organization by the society [48]. Hence, any
particularly organizational behavior should be carefully investigated within its context and hunted
for substitute driving forces [49], as these powers would have been lost if the organization had not
utilized them in an appropriate manner. In doing so, the exploitable CSR activities could be effectively
employed in almost all of organizations. On the other hand, as CSRD was considered to act as a critical
mechanism to gain the impact of CSR on organizational reputation [50], it has been turned into a
vital instrument for organizational management through integrating CSR activities into strategic risk
management for the best result of CSR activities [51]. The more involvement in CSR activities, the more
success in operation that this organization could reap [52].

The application of Legitimacy theory in this study. Within the association between organization and
society, the CSR activities are persistently presented, investigated, identified and adjusted. The CSR
reporting practices have become a primary instrument for organizational management [53] and
maintaining legitimacy [43]. As such, if the chances of adverse shifts in community expectations
become higher, the organization should make more effort regarding conducting the CSRD [43]. In other
words, organizations attempt to legitimize their actions by engaging in CSR reporting to achieve
acceptance from society. Integrating the CSR activities into the PSS framework should help by
managing, measuring and improving the CSR activities. In doing so, the performance of CSR activities
could be maximized. Accordingly, the PSO could determine which tactics and disclosure options
would be available and suitable for managing legitimacy. Moreover, the PSO could take up numerous
public disclosure strategies to gain the OP.

3.1.2. Resource-Based Theory

Resource-based theory. Building on the resource-based viewpoint, the choice and accumulation
of resources was considered as a function of internal decision making and external strategic
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determinants [54]. Therefore, the resource-based theory could be used as an instrument for undertaking
the analysis of social policy refinement [55]. As stated by [56], the organizational intangible resources
consisted of technology, human capital and reputation. On the other hand, intangible resources could
be comprised of the assets, capabilities, processes, attributes, information and knowledge managed by
the organization [57]. Through combining intangible resources into strategic planning process, several
researchers detached corporate social performance from OP and endeavored to bridge the former
to organizational FP [58]. The CSR activities could give rise to a significant support for establishing
and reinforcing a solid, sustainable, long-term reputation to enhance the competitive advantage [59].
Additionally, CSR practices could encourage the workforce, ameliorating productivity and facilitating
improvement of performance [60].

The application of resource-based theory in this study. The considerable changes in the business
environment have set a demand on organizational changes in terms of different resources and
capabilities. An organization should have the capability to spread out its resources rather than only
possessing unique resources. Thus, resource-side matters had to be addressed by the practicing
strategists [61]. The resource-based view of the organization proposed that an organization should
constitute its internal capabilities to match the conditions of the external environment. On the other
hand, the theory inferred that the right combination of resources should be developed, progressively
evaluated and managed for the specific OP intended. As such, PSOs have been advised to choose an
appropriate framework to manage and measure the CSR activities based on organizational resources.
In this case, PSS is considered as the most suitable framework for PSO [11]. Based on integrating the
CSR practices into the PSS framework, CSR activities are aligned with each other. Additionally, these
activities are also aligned with the expectations of service users and stakeholders. Besides, PSS can
create better conditions for the collaborative work between the leaders and staff and service users and
other key stakeholders. It can also deal with risk management and organization culture, and has the
capability of assuring that staff and processes are enabled to attain certain targets. Furthermore, PSS
can create improvements on CSR practices and concentrate on generating desired outcomes, including
value for money. In doing so, it can make a significant contribution to the improvement in CSRD and
enhancement in OP.

3.1.3. Corporate Social Responsibility and CSR Disclosure

Corporate social responsibility. CSR refers to a course of action in which the agreement to make
a contribution for society and a cleaner environment was adopted in a voluntary manner by the
organization [62]. It could be an approach for public image and reputational improvement through
the activities that meet the needs of society [63]. The definition of CSR employed in the present
research was insinuated by [64] which was mentioned as a consistent course of specific action and
policies involved in stakeholders’ satisfaction and the pivotal triple aspects of economic, social and
environmental performance [64]. As propounded by [65], the two categories of CSR strategies for
organizations to participate included the CSR governance in a serious and strict manner and CSR
governance in a symbolic and opportunistic way. Particularly, a course of serious and rigorous
operations was undertaken in terms of serious and strict CSR governance with the support of vital
resources, which led to fruitful CSR outcomes [32]. Conversely, only corporate image or emergent
matters were put in place for being addressed rather than dealing with essential resource allocation for
a deep and strategic CSR program [66].

Corporate social responsibility disclosure. CSRD refers to the action of supplying financial and
non-financial information presented in an annual statement or isolated social reports that was
concerned with organizational interaction with its physical and social environment [67]. Besides, CSRD
typically does not only consist of information on the physical environment, energy, human resources,
products and community (presented in detail [68]), but also organizational operations, aspirations
and public image in association with the environment, staff, consumer matters, energy utilization,
corporate governance issues and so on [40].
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3.1.4. Public Sector Scorecard

Being set up from the balanced scorecard adaption and extended for cultural and value
establishment for public and voluntary sectors, PSS has been excogitated as a fructiferous framework
with effective contributions to outcome improvement for service users and stakeholders without
increasing overall expenditures [11]. PSS is administered through the three main junctures, including
strategy mapping, service improvement and measurement and evaluation [11].

Strategy mapping is the process dealing with the association between outcome, process and
capability components [69]. As such, a draft strategy mapping is built up after the series of interactive
workshops on several matters regarding anticipated outcomes—strategic, service user, stakeholder, FP
and capability outputs of the internal departments (i.e., senior managers, staff) and external components
(i.e., service users and organizational stakeholders)—have been finished. A risk-management workshop
transpiring through identification, lessening and eliminating of risks is subsequently used in the draft
strategy map. Those efforts are finally complemented officially into the strategy map in terms of
risk-management culture. Besides, disagreement on strategic drivers and diverge requirements and
priorities should be balanced out [70] due to the diversity of targets and stakeholders [71].

The service improvement phase is set up with the aim of fostering the workshop participants
to raise their voices and reveal the evidence or data for the generation of tools consisting of process
maps, systems thinking and lean management to be complemented. Additionally, the next workshop
confirms the capability outputs’ attendance in the strategy with the purpose of bringing it to the
attention of supporting staff, thereby creating a culture of improvement, innovation and learning rather
than a quarrel culture.

In the measurement and evaluation step, the negotiation among workshop participants is held to
find out the appropriate performance assessments for each constituents of the strategy map in which the
potential evaluation approaches will be under investigation and selection. In addition, a comprehensive
understanding on OP can be achieved through careful analysis and learning performance measures in
the light of cause and effect definition opportunities and addressing issues of creation.

The cycle will end with utilizing the performance information for strategy map modification,
the determination of further service renovations and the promotion of better performance evaluations.
Nonetheless, in view of several changes and the association between performance measures and
changing strategy appearances, the cycle will still go on [72].

3.1.5. Organizational Performance

As stated by [73], the success of an organization is reflected by the degree of its performance during
operations. Owing to the multidimensional characteristics and multiple measurement approaches in
existence, OP was argued to lead to numerous challenges in evaluation [74]. OP was established by
the weighted combination of perceived and objective performance information which was proven
to have a strong degree of convergence [75] and named such primary categories as the financial (i.e.,
objective) and nonfinancial (i.e., subjective) measures in a slightly different manner in the literature [76].
Notwithstanding the huge contribution to the examination on the relationship between CSR activities
and OP based on the financial indicators [77], unfortunately, the financial indicators have no longer
been sufficient for OP assessment, as the financial prosperity of an organization cannot be separated
from social, environmental and governance activities [78]. Besides, the economic performance not been
cared for properly, although the such vital components of the CSR concept as environmental, social and
governance dimensions and the integration between CSR and environmental, social and governance
implementation has been indicated to create the positive effect on the organizational value and
performance [79]. Furthermore, there was an urgent call for environmental performance to be tacked on
in OP evaluation in terms of sustainable development [80]. Apparently, a comprehensive framework,
one which is multi-dimensional and qualitatively-based, has been in demand as a replacement [81].
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3.2. Hypothesis Development

Owing to the same main target of serving the stakeholders, ICP in organizational CSR
implementation management and measurement as follows.

Service user and stakeholder involvement. The effective public service design and provisions can
have better outcomes if the participation of experience and knowledge provided by service users is
highlighted [82]. Customers are considered to possess the power on account of the competition of
discrepant dimensions among various entities [34]. As such, suitable methods for better customer
treatment renovation are put in the CSRD [83]. Besides, owing to the vital role of stakeholders in
organizational strategy, there has been growing attention on constructing and maintaining a close
association, increasing the interaction between the organization and stakeholders to gather useful
information [84] and creating a better chance for more innovative activity and achievement [85].

Working across organizational boundaries. Eliminating the boundaries between entities in operational
processes is the most crucial affair to take into consideration, because the focus of service users is on
the available service distribution through many organizations or departments [86] and the solution
for Governmental achievement in terms of the main outcomes is the cooperation between numerous
organizations [11]. Admittedly, the diversity in CSR practices in numerous developing regions based
on their own perceptions about the CSR has led to a variety of CSRD designs. This, therefore, raises
an urgent claim regarding PSS’s application into a CSR program as it does not only allow the people
coming from various departments or entities to put their attention toward common essential outcomes
instead of narrower targets, but also helps people, regarding the measurement and assessment, to
make precise evaluations of the outcomes, processes and capability components [11].

Improvement and capability process. The bulk of organizational resource consumption being
from undertaking CSR activities has led to a barrier for organizations regarding investment in CSR
programs [12]. In this regard, PSS is recommended to be adopted for this program due to the
advantage of process improvement dealing with the different outcomes demanded, including financial
outcomes in an overall performance management framework [11]. On the other hand, almost all
CSR strategies are also covered with interior and exterior components [87]. In particular, the internal
ingredients mentioned on the method were applied by the staff, while external components were
related to the requirements and expectations of outside stakeholders [88]. Thus, human resource
management (HRM) has been argued to make significant contributions to employee commitment
boosting; the organizational commitment with CSR practices; and integrating creation between
the CSR principles and HRM processes together with stakeholder alignment establishment [88].
Additionally, the leaders who possess the superior external expertise and knowhow would become the
good observers for environmental protection regulations and place sufficient attention on corporate
stakeholders [89]. As such, they may devote themselves to the social responsibility implementation
and gaining information [90].

Integrating risk management. As stated by [86], the combination between identification and
addressing the primary risks has been well-recognized among the effective performance entities.
The comprehensive CSRD also leads to the accurate evaluation on the operation situation and
organizational risk factors [89] and good reputation building and reputational risk avoidance [91].
On account of the effect of the customer on the organizational market risk, the treatment with
organizational customers would be significantly improved and the risk of losing its share of market
would be decreased considerably when the CSRD has been put in place [34]. Nevertheless, there
are still numerous risks related to the operational process related to CSR practices which should be
integrated into PSS management framework to attain a better performance of CSRD.

Improvement, innovation and learning. As asseverated by [92], CSR practices have positively
related to an entity’s performance in terms of the innovation process. As such, CSR activities have
been supposed to assist with organizational innovation capacity which leads to the enhancement
of distinction creation and competitive advantages [93] and the capacity for process and product
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innovation [94]. In doing so, socially responsible organizations have been asserted to present the
quantity of CSRD in an in depth and high-quality manner [95].

Based on the aforementioned information, the study hypothesis was formed.

Hypothesis 1 (H1). ICP has caused an impact on the CSRD in a significant and positive manner.

CSR activities have been well-recognized to give rise to the enhancement in FP [96] and economic
performance [97]. Indeed, CSR implementation was reported to provide a competitive advantage and
help an organization to accomplish sustainable growth goals [98]. On the other hand, an organization
which places more concern on CSR activities would increase its reputation, customer loyalty and
employee satisfaction [99]. In terms of the association with OP in the stakeholder aspect, more
involvement in CSR activities would positively impact OP due to the effective support in establishing
a good relationship with stakeholders and better care for society [100]. In like manner, [101] also
underlined that gaining better understanding among stakeholders of the measures implemented by the
organization for their wellbeing would generate a rapidly increasing on OP. Numerous researchers have
simultaneously placed an emphasis on the investment in stakeholder engagement and management due
to its benefits of a positive image, high quality employee recruitment and employee retainment [102].
Thus, a research hypothesis was supposed as follows.

Hypothesis 2 (H2). ICP has caused an impact on the OP in a significant and positive manner.

Owing to the vital role of information provided by the entities, CSRD was proved to bring a great
deal of benefit for the organizations. Regarding the financial facet, CSRD implementation would lead to
the prosperity in the economy [103]. In terms of the management aspect, CSRD was considered to have
a significant influence on the effectiveness of interior decision-making [104] and exterior relationship
management [105]. Importantly, proficiency in stakeholder management also helped the organization
receive much useful support from their stakeholders [106] to accomplish better FP [107]. Besides,
involvement in the CSRD was revealed to yield a competitive advantage and enhance a company’s
value [108]. Thus, a research hypothesis was considered as follows.

Hypothesis 3 (H3). CSRD has caused an impact on the OP in a significant and positive manner.

The research model which was established on the LT and Resource-based theory to investigate
the interrelationship between the ICP, CSRD and OP was depicted in Figure 1.
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4. Methodology Design

4.1. Procedure and Item Generation

An empirical study was employed to verify the assumption model. Owing to its major role in the
economic development of Vietnam, the southern region was selected to investigate the CSR practices
among PSOs in the present study. Additionally, as PSOs have been established with the primary role of
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serving the public, they are required to deliver the highest compliance levels with the law during their
operations. Hence, almost all of the PSOs in Vietnam could take the results of this study as a reference.
Moreover, due to the advantages of favorable environmental and economic conditions, this region has
faciliated foreign investment much more than any other regions in the country. It is not surprisingly
that this has been the region with the greatest developments in advanced management and modern
technology adoption. Taken together, the findings on the research conducted in this region could serve
as a reference for several developing countries in light of the similiarities in economic conditions.

In light of the adaption from English literature, all the scales applied in this study were used
after translation and back-translation by a variety of bilingual experts. The questionnaire utilized
in this research was set up with seven-point Likert scale ranging from 1 “completely disagree” to
7 “completely agree.” Building on the above-mentioned research questions, the current study went
through several procedures as follows.

Semi-structured interviews were employed in this study as they were considered to be suitable for
gathering qualitative data from professionals [109]. Through employing semi-structured interviews,
researchers could draw up a previous framework of themes to be investigate. Nonetheless, this type of
interview could also help to emerge new ideas during the interview. The semi-structured interviews
were done with several experts to consult their advice. The interviewees included four leaders of PSOs
and four faculty members. Based on their suggestions, adjustments were made for several items which
could not describe the current state of CSR practices in PSOs or were very hard to understand. Then,
revisions with the experts were conducted again to create a complete questionnaire.

To improve sentence structure and layout of the instrument in relation to the PSOs in South
Vietnam, a pilot test was performed. The pilot survey was undertaken with 100 participants randomly
picked up from the target population. The Cronbach’s α value was used to check the degree of
internal consistency of each construct [110]. The Cronbach’s α value of the pilot test were found to
be above 0.7 [111], substantiating that the variables and dimensions of this research enclosed with
acceptable reliabilities.

To examine the newly developed scale empirically, a cross-sectional study was employed
for primary data collection through a questionnaire survey. As stated by [18], the accountants
played an important role in measuring, disclosing and assuring all the organizational information,
especially information about CSR. Hence, accounting staff were considered to participate in the
generation, assurance, publication and analysis report on CSR regardless of the lack of formal
stipulated structure [18]. As propsed by [112], the ideal sample size to estimate parameters for
covariance-based SEM (CB-SEM) was 10:1. In the meanwhile, [113] suggested the optimal sample size
which had an items to participants’ ratio ranging from 1:4 to 1:10. The theoretical model contained
52 parameters and 3 indicators; thus, the number of 520 respondents was considered to meet the
demand. Through the convenience sampling technique, these questionnaires were distributed from
September 2019 to February 2020 and personally collected by the researchers. Unfortunately, some
erroneous and incomplete questionnaires were excluded from the analysis. Finally, 723 complete
responses were obtained, corresponding to a response rate of 87.84 % of the respondents. Hence, the
sample was representative of the general population in the target region.

4.2. Data Analysis

As stated by [114], SEM was an effective statistical instrument for analyzing the interconnection
between multiple variables by the measurement and structural models [115]. In the current research,
SPSS version 25.0 was employed for evaluating the item-total correlations and exploratory factor
analysis (EFA). In the meanwhile, AMOS version 25.0 was utilized for SEM. Maximum likelihood
estimation method was applied to evaluate both measurement and structural model [116].
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4.3. Measures and the Questionnaire

With the aim of explorating the impact of ICP on the CSRD and the OP in PSO, the measurement
scales applied in this study were taken from the previous works in private sector due to several reasons.

Firstly, a thorough review of literature illustrated that far more concerns regarding CSR practices
have been placed in the private sector [117]; it was not surprisingly that there have been numerous
works devoted to finding out the appropriate measurement scales for CSR practices in this sector.

Secondly, the CSR practices in the developing countries have been most commonly related to
philanthropy and charity [7]. In particular, these nations tend to conduct the corporate social investment
in education, health, sport development and service communication. As stated by [118], PSO was
underlighted to conduct more social and environmental commitments in comparison to that of private
sector. PSOs have also undertaken numerous activities related to CSR pratices; namely, adhering to
strict regulations, helping the poor, operating in a manner in line with the philanthropic and charitable
expectations of society, contributing toward bettering the local communities and so on.

Thirdly, under budgetary pressures and program effectiveness enhancement, public leaders
typically seek a new approach to managingg the organization through adopting practices from the
other sectors [119]. In addition, owing to the demand of adherence to strict regulations, PSOs have
been made to experience the structural and procedural changes applied in the private sector [120].

Taken together, the measurement scales employed in this study were inherited from the previous
works investigated in private sector. Nevertheless, the measurement scales used the revisions of
experts and the pilot test to achieve appropriateness with the context of this study. In a nutshell, the
measure scales employed in the current research were set up as follows.

4.3.1. The Integration between Corporate Social Responsibility and Public Sector Scorecard

There has been a growing concern in measuring the actual impact of CSR implementation [10].
The most critical demands of an effective performance management system included quality
management, service redesign and performance measurement [69]. Through integrating with the PSS,
the organizational strategies, processes and performance measures on CSR practices should accord
with the outcomes related to service users and other key stakeholders.

As stated by [121], concentrating on the outcomes could guide the organization towards the
true goals and enhance the accountability. Additionally, concentrating on the outcomes and being
able to evaluate them lets the organization measure what organizational activities are actually being
achieved [122]. As such, the integration of PSS into the organizational operation could bring several
advantages. According to [11], the PSS project was begun with identifying the outcomes of PSO,
its service users and other stakeholders and value for money which helped the PSO concentrate on
these outcomes. Based on those things, the measurement scales for the outcomes of CSR activities
when these activities were integrated with PSS were established as follows.

Key performance outcomes. The key performance outcomes were defined as the main performance
outcomes demanded by the relevant organization [69]. Thus, the items for measuring the key
performance outcomes in PSO in the research were developed from the works of [123,124].

Service user/stakeholder. The service user/stakeholder was referred to the outcomes relating to the
service users and other key stakeholders. Therefore, the measurement scales of service user/stakeholder
in this study were designed from those propounded by [123–125].

Financial. The financial was identified as the accomplishment of value for money or decreasing
overall cost. The criteria applied to measure the financial were taken as reference from the contributions
of [123,124].

It was distinguished from planned service and policies because it dealt with the actual experience
of users and stakeholders [11]. The organization would try to determine how the processes could be
improved to generate better performance.

Service delivery. The items for measuring the Service delivery in this study were modified from the
works of [123,124].
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The capability in PSS framework focused on what could be conducted to assure that redesigned
processes performed smoothly. This might relate to extra resources to enable the organization to
accomplish the required outcomes [69]. These extra resources typically comprised innovation and
learning; effective leadership; and people, partnerships and resources. To that end, the measurement
scales for these components were set up as follows.

Leadership. The significance of leadership towards success in CSR practices has been underlined
([126–129]). The criteria applied to measure the leadership in this study were adjusted from the
contributions of [130].

People, partnerships and resources. Because CSR implementation also raise the demand on by
generous amount (of organizational resources; [12]), the organization had to allocate resources in an
appropriate manner [131]. Thus, in this study, the measurement scales of the People, partnerships and
resources were modified from the works of [123,124].

Innovation and learning. As proposed by [132,133] CSR could serve as a source of innovation
and competitive advantage, analyzing and learning from performance measures could offer deep
understandings on how effectively the organizations performed [69]. Hence, the measurement scale of
Innovation and learning were adjusted from the works of [26,125,134].

4.3.2. Corporate Social Responsibility Disclosure

Apart from the above-mentioned reasons for the selection of measurement scales in this research,
our choice of modifying the measurement scales established by [135] was due to the correspondence
between the two research contexts. To put it simply, the context of this study was the developing
country and the research undertaken by [135] was also in the developing region. In doing so,
CSRD was made up by the five primary components including Community Welfare, Contribution
to Education, Environmental and Energy Importance, Services, Customers and Stakeholders and
Workforce. Accordingly, Community Welfare included three sub-scale items was modified from the
study of [40,135–137], and [33]. In the meanwhile, the rest of the measurement scales was adapted
from the findings of [135].

4.3.3. Organizational Performance

The organizational financial prosperity should be fulfilled with the appearance of social,
environmental, and governance activities [78]. Thus, the measurement scales for ORG employed in
this paper were established by the four key elements namely Economic performance, Environment
performance, Human performance, Governance performance.

Economic performance connected to the economic condition which focused on the economic
indicators instead of financial indicators presented on the annual statement [138]. As such, Economic
performance was adapted from the works of [139].

Human performance signified to the association between the organization and its labor force [140].
Thus, Human performance was aligned from the studies implemented by [141].

Environmental performance described the endeavor which organizations utilize to insulate
nature [142]. Environment performance was adjusted from the works of [125,134,143,144].

Governance performance implied for the systems and processes related to sheltering the
organizational orientation, control and accountability [145]. Additionally, board composition and board
behavior [146] and satisfying stakeholders [147] were supposed to be the main targets of organizational
governance. Hence, Governance performance was taken from the outcomes of [148].

5. Result Analysis and Discussion

5.1. Demographic Characteristics

The demographic profile of the 723 respondents was covered with their gender, age, qualification
and working experience. In terms of the gender, females constituted 75.10 per cent of the respondents
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while only 24.9 per cent of males were devoted to the main sample. With regard to the age,
196 respondents (7.47 per cent) belonged to “above 45” group, 328 respondents (45.37 per cent) were the
“35–45” group, 145 respondents (20.06 per cent) were “25–35” group and the remaining 54 respondents
(7.47 per cent) were classified as “below 5.” The work experience ranged from below 5 years (7.47 per
cent) to 5–10 years (20.75 per cent), 10–15 years (49.41 per cent) and more than 15 years (23.62 per
cent). Moreover, respondents having an undergraduate background accounted for 94.47 per cent,
whereas respondents having a postgraduate degree took up a tiny minority (5.53 percent) of the
target population.

5.2. Assessment of Convergent Validity

The reliability analysis of the scale was firstly carried out through evaluating the Cronbach’s α.
Hence, value of the Cronbach’s αwas recommended at 0.7 or more to demonstrate the trustworthiness
of the scale [149]. Given that convergent validity illustrated the extent to which the scale correlated
positively with other measures of the same constructs [150], factor loadings, composite reliability
(CR) and average variance extracted (AVE) were employed in this study for convergent validity
measurement [151]. Thus, standardized factor loadings were suggested to exceed the value of 0.6 [152].
Besides, CR was requested to be over the cutoff value of 0.82 [153]. The acceptable level of AVE was
expected to be above 0.5 [154]. The results depicted in Table 1 indicated that the model obtained good
convergent validity.

Table 1. Results summary for the measurement model.

Model Construct Items
Factor

Loadings
Ranges

AVE Cronbach’s
Alpha

Composite
Reliability

Discriminant
Validity Source

Integration Between Csr and Pss

Key performance
outcome 4 0.748–0.854 0.614 0.861 0.864 Yes

[123,124]Financial 2 0.839–0.854 0.719 0.835 0.837 Yes
Service delivery 4 0.722–0.805 0.595 0.852 0.854 Yes

People,
partnerships and

resources
3 0.823–0.858 0.698 0.871 0.874 Yes

Service
user/stakeholder 3 0.817–0.877 0.714 0.882 0.882 Yes [123–125]

Leadership 3 0.806–0.889 0.710 0.878 0.880 Yes [130]
Innovation and

Learning 3 0.826–0.888 0.734 0.892 0.892 Yes [26,125,134]

Corporate Social Responsibility Disclosures

Community
Welfare 3 0.795–0.888 0.696 0.872 0.873 Yes [33,40,135–137]

Contribution to
Education 2 0.832–0.910 0.759 0.862 0.863 Yes

[135]Environmental
and Energy
Importance

3 0.814–0.874 0.723 0.884 0.887 Yes

Services,
Customers and

Stakeholders
3 0.832–0.883 0.745 0.893 0.898 Yes

Workforce 3 0.802–0.889 0.713 0.877 0.881 Yes

Organizational Performance

Economic
performance 4 0.707–0.821 0.622 0.866 0.868 Yes [139]

Environment
performance 3 0.790–0.835 0.669 0.858 0.858 Yes [125,134,143,144]

Human
performance 5 0.705–0.804 0.562 0.864 0.865 Yes [141]

Governance
performance 4 0.709–0.861 0.607 0.859 0.860 Yes [148]
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5.3. Assessment of Discriminant Validity

The discriminant validity was considered as the extent to which measures of a given construct
distinguished from measures of other constructs in the same model [112]. The AVE could be wielded
to ascertain the discriminant validity [154]. Accordingly, when the AVE of each of the latent constructs
was higher than the highest squared correlation compared with any other latent variable, discriminant
validity of the construct level was set up [155]. The Table 2 displays that the square root of the AVE
values were well above the correlation values; thus discriminant validity was achieved.

Table 2. Results of discriminant validity.

HP EP KPO GP SD SCS IL SUS EEI WORK LEAD CW PPR ENP CE FINA

HP 1
EP 0.034 1

KPO 0.243 0.090 1
GP 0.128 0.171 0.093 1
SD 0.061 0.065 0.064 0.186 1
SCS 0.097 0.071 0.073 −0.005 0.012 1
IL 0.146 −0.010 0.040 0.076 0.133 0.065 1

SUS 0.014 −0.026 0.156 −0.011 0.037 0.078 0.025 1
EEI 0.318 0.145 0.121 0.108 0.037 0.150 0.078 −0.001 1

WORK 0.146 0.191 0.112 0.047 0.030 0.228 0.124 0.107 0.013 1
LEAD −0.023 −0.017 0.044 0.006 0.172 0.027 0.213 0.160 0.037 0.100 1

CW 0.123 0.051 0.106 0.070 0.063 0.136 −0.024 0.035 0.209 0.110 0.143 1
PPR 0.158 0.038 0.099 0.008 0.229 0.016 0.174 −0.160 0.056 0.123 0.168 0.074 1
ENP 0.121 0.212 0.131 0.147 0.049 0.043 0.065 0.062 0.067 −0.043 0.004 0.089 0.003 1
CE 0.062 0.019 0.119 0.071 0.027 0.095 0.072 0.066 0.159 0.126 0.054 0.233 −0.017 0.067 1

FINA 0.231 0.035 0.195 0.074 −0.023 0.047 0.000 0.194 0.036 0.190 −0.071 0.077 0.008 0.024 0.017 1

HP = human performance; EP = economic performance; KPO = key performance outcome; GP = governance
performance; SD = service delivery; SCS = services, customers and stakeholders; IL = innovation and learning; SUS
= service user/stakeholder; WORK = workforce; EEI = environmental and energy Importance; LEAD = leadership;
PPR = people, partnerships and resources; CW = community welfare; ENP = environment performance; CE =
contribution to education; FINA = financial.

5.4. Assessment of Overall Model Fit

The generally lowest values suggested for GFI, TLI, AGFI and CFI were 0.90 and the ratio of
χ2/df was proposed to be below 3.0 [156]. On the other hand, the value of GFI was also reported to
be under 0.95 in several research namely the GFI index ranging from 0.774 to 0.923 [157]. The results
in the Table 3 exposed that the measurement model and structural model met the goodness of fit
requirements in the present context.

Table 3. Results of measurement and structural model analysis.

The Goodness of Fit Measures CMIN/DF GFI CFI TLI RMSEA

Recommended value ≤3 ≥0.9 ≥0.9 ≥0.9 ≤0.08
Measurement Model 1.810 0.903 0.953 0.964 0.033

Structural Model 1.946 0.887 0.940 0.937 0.036

5.5. Hypothesis Verification

5.5.1. Direct Effect

In order to test the research hypotheses, this study estimated the path coefficients of the research
statistical structural model which revealed several noticeable results highlighted in Table 4 as follows.

Table 4. Structural coefficients (β) of the proposed model.

Hypothesis Relationship Estimate S.E. C.R. P Inference

Hypothesis 1 (H1) CSRD ← ICP 0.544 0.137 3.960 0.000 Supported
Hypothesis 2 (H2) OP ← ICP 0.291 0.117 2.482 0.013 Supported
Hypothesis 3 (H3) OP ← CSRD 0.272 0.112 2.427 0.015 Supported
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The outputs illustrated that the positive effect of ICP (β = 0.544) was significant at the 95%
confidence level, hence offering support for Hypothesis 1 (H1), which conjectured that ICP had a
positive influence on the CSRD. This indicated that in the current study the effect of ICP on CSRD was
significant. In other words, PSO could succeed in gaining the efficiency and effectiveness in disclosing
CSR issues through putting the ICP into action.

The research results propped up Hypothesis 2 (H2) which was developed to investigate the effect
of ICP on the ORG (β = 0.291). This hinted the positive effect of ICP on OP. In other words, the ICP
would facilitate the PSO to enhance the overall performance. Accordingly, undertaking CSR practices
under the PSS framework in a strategic manner could generate significant support for attaining higher
performance in a variety of ways; namely, in economic, human, environmental and governance facets.

In order to examine Hypothesis 3 (H3), the impact of CSRD on OP was measured. The results
showed that the effect of CSRD on OP was significant at the 95% confidence level (β = 0.272). Since
gaining better understanding among stakeholders on the measures implemented by the organization
for their wellbeing would generate a rapid increasing on OP [101]. Hence, the higher degree in the
CSRD that could be achieved by the PSO, the better performance the PSO could reap.

5.5.2. Indirect Effect

The results showed the presence of the positive indirect effect of ICP on OP through CSRD was
significant at the 95% confidence level. Therefore, if the level of CSRD gets higher, the mediating effect
between ICP and OP is significant (β = 0.506), supporting the positive indirect effect of ICP on OP
in PSO. By controlling the mediators, the direct effect of ICP on OP was significant but weaker (β =

0.257), indicating full mediation. To put it simply, PSOs could enhance their overall performance in
such aspects as economic, human, environmental and governance facets when the disclosure practices
were taken into consideration instead of concentrating only on performing the ICP.

6. Concluding Remarks

6.1. Discussion and Implication

From the academic standpoint, the current research has augmented on the studies related to
the strategic CSR management toward the sustainable development. Although the combination
between CSR and management has been not a new concept and substantiated to bring several certain
effectiveness to the organizations, it has been widely applied in the private sector, which has many
differences in characteristics compared to PSOs. In this regard, the research has deepened the insights on
the likelihood and the advantages of integration between CSR practices into a management framework
which is well-acknowledged to be best suited to the characteristics of a PSO. In light of the same
target, stakeholder, PSS has been proved to be in appropriate to integrate the CSR practices in PSO.
Importantly, this potential integration has empirically validated in this study to uplift the CSRD in the
developing countries, which was regarded as the pressing concern in these regions as CSRD has not
yet been compulsory regulation [158] and the demand on CSR programs due to the inherent social
provisions and governance gaps [159]. On the other hand, the significant and positive impact that ICP
effectuated on OP has invigorated the role of PSS adoption in relation to sustainable development.
This framework is deliberated for workshop established approach in which the outcome definition
has been implemented through raising spirits of the organizational internal and external components
to participate to restructure and originate the new process to accomplish these outcomes and find
out the effective solution for the capability and related matters to attain the outcome. As such, it can
be taken as a reference for addressing the issue of lacking similarities in CSR practice and reporting
as the boundary between regions and organization has eliminated. What is more, the outcomes
mentioned in this model mainly come to grips with the target which is under the highest satisfaction
from almost all of the users and stakeholders who played the most important role in the existence of
the organization. Additionally, the financial outcomes are also involved to boost the financial situation
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of the organization, and simultaneously, generate a better solution to the prior expostulation based on
the fact that the entities with better performance in CSR practices would suffer from the poor FP [30].
Importantly, service delivery chiefly revolve about actual experiences of users and stakeholders will
lead to the higher opportunities to achieve loyalty of the users and the approval of the stakeholders.
Besides, the capability in this framework also buttons down on the essential support for the employees
(i.e., motivation and training) and processes (i.e., innovation and learning, leadership) in fulfilling the
outcomes and outputs.

Additionally, the findings of this research have put accent on CSRD with the roles both on the
independent and mediate variable. In terms of the role as an independent variable, the findings on
the interconnection between CSRD and OP have elucidated and reinforced the works of several prior
researchers (i.e., [35,160]). In the meanwhile, this study has given out a converse result to some prior
works (i.e., [161]) in terms of the mediating role of CSRD.

Furthermore, the performance of PSO has been concentrated on the comprehensive aspects in
terms of sustainable development, namely, the economic performance; environment performance,
human resource performance and governance performance which highlighted the consistence of
the ICP can be best suited for managing and measuring the CSR in a strategic manner toward the
sustainable development in PSO in the developing regions.

In respect to the practical implication, the leaders are supposed to intensify the perception of CSR
practices as a reasonable investment rather than an obligation to conduct. Besides, the result which
accentuated the contribution of PSS into managing and measuring the CSR program in PSO in terms
of the strategic manner toward the sustainable development also raises a demand on the consideration
for adoption in PSO. As such, with the exception from the certain support of financial resources,
the departmental communication also play an important role in facilitate for the introduction and
application of PSS as the employees will be likely to adopt in effective manner with the comprehensive
perception on the meaning and value of PSS and CSR practices. On the other hand, the findings on
the mediating of CSRD in the ICP-OP linkage have raised an urgent demand for policymakers for
a general regulation about CSRD towards sustainable development in PSO because environmental
outcomes can only be achieved through policy instruments which based on the combination of laws,
regulatory approaches and market signals to cause a positively significant impact on operations and
behaviors [162] among PSOs.

6.2. Limitations and Further Research

Unfortunately, the current research still suffered from several limitations. The restriction in terms
of small sample size and target population was considered as the primary barrier in the generalization
of empirical outcomes. Nevertheless, this situation will probably be eliminated when such a manifold
population has been targeted in further studies. Owing to the cross-sectional data collection, the
findings of the present research were prevented from creating any strong causal requirements in
relation to these effects [163]. Thus, future researchers should take the longitudinal designs into
consideration to allow the research framework to be modeled over time. Importantly, the replication of
this type of research in a variety of areas has been in demand due to desires to underline much more
interesting findings on the relationships of the proposed model in detail; the introduction of PSS and
the number of issues regarding CSR are still too much for PSOs to handle, especially in the developing
economies. Besides, the secondary data related to CSR issues are also recommended for the future
work to eradicate the inherent limitations in this study. Eventually, we request the involvement of
several procedures in relation to the direct-indirect for the more accurate affirmation.
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