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Preface to ”Information Theoretic Methods for Future

Communication Systems”

Information theory provides powerful tools that can help to eliminate bottlenecks in future

communication and computation systems. Eliminating such bottlenecks requires low latency

operations with large amounts of data to take advantage of data-driven methods for improving

services and providing reliability and other benefits. A collection of highly significant results,

provided in this book, shows how information theory can provide a fundamental understanding of

the limits of the reliability, robustness, secrecy, privacy, resiliency, and latency of such systems. Thus,

we are happy to share these fundamental insights to contribute to the research and development of

future systems.

Onur Günlü, Rafael F. Schaefer, Holger Boche, and H. Vincent Poor

Editors
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Information Theoretic Methods for Future
Communication Systems
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It is anticipated that future communication systems will involve the use of new
technologies, requiring high-speed computations using large amounts of data, in order to
take advantage of data-driven methods for improving services and providing reliability and
other benefits. In many cases, information theory can provide a fundamental understanding
of the limits to the reliability, robustness, secrecy, privacy, resiliency, and latency of such
systems. The aim of this Featured Special Issue has been to develop a collection of top
information and coding theoretic results that provide insight into future communication
and computation systems.

The top-notch quality contributions to this Featured Special Issue consist of 11 articles,
one of which is a review article. The topics touched upon include a multi-layer grant-free
transmission method [1], a direct transform-coding approach that maps the delay-Doppler
domain to the time domain [2], degree-of-freedom bounds for multi-antenna, multi-user,
and frequency-selective interference channels with an instantaneous relay with or without
coordination [3], new coded caching methods to reduce latency with user cooperation
and simultaneous transmission [4], and a low-resolution downlink precoding method for
multi-input single-output channels with orthogonal frequency-division multiplexing [5].
Furthermore, machine learning methods are discussed in the context of knowledge graphs
for semantic communications [6] and in a review of the state-of-the-art coding methods
for large-scale distributed machine learning [7]. Focusing on coding theory over rings, a
new weight that extends the traditional Hamming weight used for algebraic structures
is proposed and its properties are analyzed in [8]. Moreover, security aspects for future
communication and computation systems are considered to analyze Gaussian wiretap
channels with a jammer that overhears the transmissions [9], to propose new polynomial
codes that enable straggler-tolerant secure matrix multiplication [10], and to illustrate the
private-key rate regimes observed when reconstructing source sequences at another node
with side information under privacy and security constraints [11]. It is expected that these
contributions will have a significant impact on the applications of information and coding
theory to future communication and computation systems.
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Low-Resolution Precoding for Multi-Antenna Downlink
Channels and OFDM †

Andrei Stefan Nedelcu 1, Fabian Steiner 2 and Gerhard Kramer 2,*

1 Optical and Quantum Laboratory, Huawei Munich Research Center, 80992 Munich, Germany;
andrei.nedelcu2@huawei.com

2 Institute for Communications Engineering, Technical University of Munich (TUM), 80333 Munich, Germany;
fabian.steiner@tum.de

* Correspondence: gerhard.kramer@tum.de
† The results of this paper have been presented in part at the Workshop on Smart Antennas (WSA) 2018.

Abstract: Downlink precoding is considered for multi-path multi-input single-output channels where
the base station uses orthogonal frequency-division multiplexing and low-resolution signaling. A
quantized coordinate minimization (QCM) algorithm is proposed and its performance is compared
to other precoding algorithms including squared infinity-norm relaxation (SQUID), multi-antenna
greedy iterative quantization (MAGIQ), and maximum safety margin precoding. MAGIQ and QCM
achieve the highest information rates and QCM has the lowest complexity measured in the num-
ber of multiplications. The information rates are computed for pilot-aided channel estimation and
data-aided channel estimation. Bit error rates for a 5G low-density parity-check code confirm the
information-theoretic calculations. Simulations with imperfect channel knowledge at the transmit-
ter show that the performance of QCM and SQUID degrades in a similar fashion as zero-forcing
precoding with high resolution quantizers.

Keywords: massive MIMO; precoding; coarse quantization; coordinate descent; information rates

1. Introduction

Massive multiple-input multiple-output (MIMO) base stations can serve many user
equipments (UEs) with high spectral efficiency and simplified signal processing [1,2].
However, their implementation is challenging due to the cost and energy consumption
of analog-to-digital and digital-to-analog converters (ADCs/DACs) and linear power
amplifiers (PAs). There are several approaches to lower cost. One approach is hybrid
beamforming with analog beamformers in the radio frequency (RF) chain of each antenna
and where the digital baseband processing is shared among RF chains. Second, constant
envelope waveforms permit using non-linear PAs. Third, all-digital approaches use low-
resolution ADCs/DACs or low-resolution digitally controlled RF chains. The focus of this
paper is on the all-digital approach.

1.1. Single-Carrier Transmission

We study the multi-antenna downlink and UEs with one antenna each, a model
referred to as multi-user multi-input single-output (MU-MISO). Most works on low-cost
precoding for MU-MISO consider phase-shift keying (PSK) to lower the requirements on
the PAs. For instance, the early papers [3,4] (see also [5]) use iterative coordinate-wise
optimization to choose transmit symbols from a continuous PSK alphabet for flat and
frequency-selective (or multipath) fading, respectively. We remark that these papers do not
include an optimization parameter (called α below, see (8)) in their cost function, which
plays an important role at high signal-to-noise ratio (SNR), see [6,7]. This parameter is
related to linear minimum-mean square error (MMSE) precoding.

Entropy 2022, 24, 504. https://doi.org/10.3390/e24040504 https://www.mdpi.com/journal/entropy3
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Most works consider discrete alphabet signaling. Perhaps the simplest approach,
called quantized linear precoding (QLP), applies a linear precoder followed by one low-
resolution quantizer per antenna [8–15]. Our focus is on zero forcing (ZF), and we use the
acronyms LP-ZF and QLP-ZF, respectively, for unquantized ZF and the QLP version of ZF.

More sophisticated approaches use optimization tools as in [3,4]. For example, the
papers [16–18] use convex relaxation methods; Refs. [19–25] apply coordinate-wise op-
timization; Refs. [26–28] develops a symbol-wise Maximum Safety Margin (MSM) pre-
coder; Refs. [29–32] use a branch-and-bound (BB) algorithm; Ref. [33] uses a majorization-
minimization algorithm; Ref. [34] uses integer programming; and [35,36] use neural
networks (NNs). These references are collected in Table 1 together with the papers listed
below on orthogonal frequency-division multiplexing (OFDM). As the table shows, most
papers focus on single-carrier and flat fading channels.

Table 1. References for quantized precoding.

Precoding Algorithm

QLP Convex Coord.-Wise Other (MSM,
Modulation Fading Relaxation Optimization BB, NN, etc.)

1 Carrier Flat [8–15] [16–18] [19–25] [26,27,29–36]
Freq.-Sel. [28]

OFDM Freq.-Sel. [37] [38] [39–41] [42,43]

1.2. Discrete Signaling and OFDM

Our main interest is discrete-alphabet precoding for multipath channels with OFDM as
in 5G wireless systems. Precoding for OFDM is challenging because the alphabet constraint
is in the time domain after the inverse discrete Fourier transform (IDFT) rather than in the
frequency domain. We further focus on using information theory to derive achievable rates.
For this purpose, we consider two types of channel estimation at the receivers: pilot-aided
channel estimation via pilot-aided transmission (PAT) and data-aided channel estimation.

Discrete-alphabet precoding for OFDM was treated in Ref. [37], who used QLP and
low resolution DACs. A more sophisticated approach appeared in Ref. [38], who applied
a squared-infinity norm Douglas-Rachford splitting (SQUID) algorithm to minimize a
quadratic cost function in the frequency domain. The performance was illustrated via
bit error rate (BER) simulations with convolutional codes and QPSK or 16-quadrature
amplitude modulation (QAM) by using 1–3 bits of phase quantization.

The paper [39] instead proposed an algorithm called multi-antenna greedy iterative
quantization (MAGIQ) that builds on [19] and uses coordinate-wise optimization of a
quadratic cost function in the time domain. MAGIQ may thus be considered an extended
version of [4] for OFDM and discrete alphabets. Simulations showed that MAGIQ out-
performs SQUID in terms of complexity and achievable rates. Another coordinate-wise
optimization algorithm appeared in [40,41] that builds on the papers [21,22]. The algorithm
is called constant envelope symbol level precoding (CESLP) and it is similar to the refine-
ment of MAGIQ presented here. The main difference is that, as in [38], the optimization
in [40,41] uses a cost function in the frequency domain rather than the time domain. We
remark that processing in the time domain has advantages that are described in Section 3.1.

The MSM algorithm was extended to OFDM in [42]. MSM works well at low and
intermediate rates but MAGIQ outperforms MSM at high rates both in terms of complexity
and achievable rates. Finally, the recent paper [43] uses generalized approximate message
passing (GAMP) for OFDM.

4
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1.3. Contributions and Organization

The contributions of this paper are as follows.

• The analysis of MAGIQ in the workshop paper [39] is extended to larger systems and
more realistic channel conditions;

• Replacing the greedy antenna selection rule of MAGIQ with a fixed (round-robin)
schedule is shown to cause negligible rate loss. The new algorithm is named quantized
coordinate minimization (QCM);

• The performance of QLP-ZF, SQUID, MSM, MAGIQ, and QCM are compared in terms
of complexity (number of multiplications and iterations) and achievable rates;

• We develop an auxiliary channel model to compute achievable rates for pilot-aided and
data-aided channel estimation. The models let one compare modulations, precoders,
channels, and receivers;

• Simulations with a 5G NR low-density parity-check (LDPC) code [44] show that the
computed rate and power gains accurately predict the gains of standard channel codes;

• Simulations with imperfect channel knowledge at the base station show that the
achievable rates of SQUID and QCM degrade as gracefully as those of LP-ZF.

We remark that our focus is on algorithms that approximate ZF based on channel
inversion, i.e., there is no attempt to optimize transmit powers across subcarriers. This
approach simplifies OFDM channel estimation at the receivers because the precoder makes
all subcarriers have approximately the same channel magnitude and phase. For instance, a
rapid and accurate channel estimate is obtained for each OFDM symbol by averaging the
channel estimates of the subcarriers, see Section 4.1. Of course, it is interesting to develop
algorithms for other precoders and for subcarrier power allocation.

This paper is organized as follows. Section 2 introduces the baseband model and
OFDM signaling. Section 3 describes the MAGIQ and QCM precoders. Section 4 develops
theory for achievable rates, presents complexity comparisons, and reviews a model for
imperfect channel state information (CSI). Section 5 compares achievable rates and BERs
with 5G NR LDPC codes. Section 6 concludes the paper.

2. System Model

Figure 1 shows a MU-MISO system with N transmit antennas and K UEs that each
have a single antenna. The base station has one message per UE and each antenna has a
resolution of 1 bit for the amplitude (on-off switch) and b bits for the phase per antenna.
All other hardware components are ideal: linear, infinite bandwidth, no distortions except
for additive white Gaussian noise (AWGN).

Figure 1. Multi-user MIMO downlink with a low resolution digitally controlled analog architecture.
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2.1. Baseband Channel Model

The discrete-time baseband channel is modeled as a finite impulse response filter
between each pair of transmit and receive antennas. Let xn[t] be the symbol of transmit
antenna n at time t and let x[t] = (x1[t] . . . xN [t])T . Similarly, let yk[t] be the received
symbol of UE k at time t and let y[t] = (y1[t] . . . yK[t])T . The channel model is

y[t] =
L−1

∑
τ=0

H[τ]x[t − τ] + z[t] (1)

where the noise z[t] = (z1[t] . . . zK[t])T has circularly-symmetric, complex, Gaussian
entries that are independent and have variance σ2, i.e., we have z ∼ CN (0, σ2 I). The
H[τ], τ = 0, . . . , L − 1, are K × N matrices representing the channel impulse response, i.e.,
we have

H[τ] =

⎛⎜⎜⎜⎝
h11[τ] h12[τ] . . . h1N [τ]
h21[τ] h22[τ] . . . h2N [τ]

...
...

. . .
...

hK1[τ] hK2[τ] . . . hKN [τ]

⎞⎟⎟⎟⎠ (2)

where hkn[.] is the channel impulse response from the n-th antenna at the base station to the
k-th UE. For instance, a Rayleigh fading multi-path channel with a uniform power delay
profile (PDP) has hkn[τ] ∼ CN (0, 1/L) and these taps are independent and identically
distributed (iid) for all k, n, τ.

The vector x[t] is constrained to have entries taken from a discrete and finite alphabet

X = {0} ∪
{√

P
N

ej 2πq/2b
; q = 0, 1, 2, . . . , 2b − 1

}
. (3)

The transmit energy clearly satisfies ‖x[t]‖2 ≤ P and we define SNR = P/σ2. The
inequality is due to the 0 symbol that permits antenna selection. Antenna selection was
also used in [45] to enforce sparsity. Our intent is rather to allow antennas not to be used if
they do not improve performance.

2.2. OFDM Signaling

Figure 1 shows how OFDM can be combined with the precoder. Let T = TF + Tc be
the OFDM blocklength with TF symbols for the DFT and Tc symbols for the cyclic prefix.
We assume that TF ≥ L and Tc ≥ L − 1. For simplicity, all TF subcarriers carry data and we
do not include the cyclic prefix overhead in our rate calculations below, i.e., the rates in bits
per channel use (bpcu) are computed by normalizing by TF.

Consider the frequency-domain modulation alphabet Û that has a finite number of
elements, e.g., QPSK has Û = {û : û = (±1 ± j)/

√
2}. Messages are mapped to the

frequency-domain vectors û[m] = (û1[m], . . . , ûK[m])T for subcarriers m = 0, . . . , TF − 1
that are converted to time-domain vectors u[t] by IDFTs

uk[t] =
1

TF

TF−1

∑
m=0

ûk[m]ej 2πmt/TF (4)

for times t = 0, . . . , TF − 1 and UEs k = 1, . . . , K. For the simulations below, we generated
the ûk[m] uniformly from finite constellations such as 16-QAM or 64-QAM. We assume that
E[ûk[m]] = 0 for all k and m. Each UE k uses a DFT to convert its time-domain symbols
yk[t] to the frequency-domain symbols

ŷk[m] =
TF−1

∑
t=0

yk[t]e− j 2πmt/TF . (5)

6
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2.3. Linear MMSE Precoding

To describe the linear MMSE precoder, consider the channel from base station antenna
n to UE k:

hkn = (hkn[0], . . . , hkn[L − 1], 0, . . . , 0︸ ︷︷ ︸
(TF − L) zeros

)T (6)

and denote its DFT as ĥkn = (ĥkn[0], . . . , ĥkn[TF − 1])T. The channel of subcarrier m is the
K × N matrix Ĥ[m] with entries ĥkn[m] for k = 1, . . . , K, n = 1, . . . , N. The linear MMSE
precoder (or Wiener filter) for subcarrier m is

P[m]Ĥ[m]†
(

P[m]Ĥ[m]Ĥ[m]† + σ2 I
)−1

(7)

where P[m] = E[|ûk[m]|2] is the same for all k, Ĥ[m]† is the Hermitian of Ĥ[m], and I
is the K × K identity matrix. The precoder multiplies û[m] by (7) for all subcarriers m,
and performs N IDFTs to compute the resulting x[0], . . . , x[TF − 1]. We remark that ZF
precoding is the same as (7) but with σ2 = 0, where Ĥ[m]Ĥ[m]† is usually invertible if N is
much larger than K.

3. Quantized Precoding

We wish to ensure compatibility with respect to LP-ZF. In other words, each receiver k
should ideally see signals uk[t], t = 0, . . . , T − 1, that were generated from the frequency-
domain signals ûk[m], m = 0, . . . , TF − 1. Let u[t] = (u1[t] . . . uK[t])T and define the
time-domain mean square error (MSE) cost function

G(x[0], . . . , x[T − 1], α) =
T−1

∑
t=0

Ez[t]

[
‖u[t]− αy[t]‖2

]
=

T−1

∑
t=0

∥∥∥∥∥u[t]− α
L−1

∑
τ=0

H[τ]x[t − τ]

∥∥∥∥∥
2

+ α2TKσ2 (8)

where Ez[t][·] denotes the expectation with respect to the noise z[t]. The optimization
problem is as follows:

min
x[0],...,x[T−1], α

G(x[0], . . . , x[T − 1], α)

s.t. x[t] ∈ X N , t = 0, . . . , T − 1

α > 0.

(9)

The parameter α in (8) and (9) can easily be optimized for fixed x[0], . . . , x[T − 1] and
the result is (see [18] Equation (26))

α =
∑T−1

t=0 Re
(

u[t]H ∑L−1
τ=0 H[τ]x[t − τ]

)
∑T

t=0

∥∥∥∑L−1
τ=0 H[τ]x[t − τ]

∥∥∥2
+ TKσ2

. (10)

For the MAGIQ and QCM algorithms below, we use alternating minimization to find
the x[0], . . . , x[T − 1] and α. For the linear MMSE precoder, we label the α in (10) as αWF.

Observe that we use the same α for all K UEs because all UEs experience the same
shadowing, i.e., all K UEs see the same average power. For UE-dependent shadowing, a
more general approach would be to replace α with a diagonal matrix with K parameters αk,
k = 1, . . . , K, and then modify (8) appropriately.

7
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3.1. MAGIQ and QCM

For multipath channels, the vector x[t] influences the channel output at times t,
t + 1, . . . , t + L − 1. A joint optimization over strings of length T seems difficult be-
cause of this influence and because of the finite alphabet constraint for the xn[t]. Instead,
MAGIQ splits the optimization into sub-problems with reduced complexity by applying
coordinate-wise minimization across the antennas and iterating over the OFDM symbol.

For this purpose, consider the precoding problem for time t′ starting at t′ = 0 and
ending at t′ = T − 1. Observe that x[t′] influences at most L summands in (8), namely the
summands for t = (t′)T , . . . , (t′ + L − 1)T where (t)T = min(t, T − 1). To compute the new
cost after updating the symbol xn[t′], one may thus compute sums of the form

∑
t=(t′)T ,...,(t′+L−1)T

∥∥∥∥∥u[t]− α
L−1

∑
τ=0

H[τ]x[t − τ]

∥∥∥∥∥
2

(11)

for t′ = 0, . . . , T − 1. In both cases, one computes a first and second sum having the old and
new xn[t′], respectively. One then takes the difference and adds the result to (8) to obtain
the updated cost.

We remark that the time-domain cost function (8) is closely related to the frequency-
domain cost functions in [38,40,41]. However, the time-domain approach is more versatile
as it can include acyclic phenomena such as interference from previous OFDM blocks.
The time-domain approach is also slightly simpler because updating the symbol xn[t′] in
(8) or (11) requires taking the norm of at most L vectors of dimension K for each test symbol
in X while the frequency-domain approach in ([40] Equation (17)) takes the norm of TF
vectors of dimension K for each test symbol. Recall that TF ≥ L, and usually TF ≥ 10L to
avoid losing too much efficiency with the cyclic prefix that has length Tc ≥ L − 1.

The MAGIQ algorithm is summarized in Algorithm 1. MAGIQ steps through time
in a cyclic fashion for fixed α. At each time t, it initializes the antenna set S = {1, . . . , N}
and performs a greedy search for the antenna n and symbol xn[t] that minimize (8) (one
may equivalently consider sums of L norms as in (11)). The resulting antenna is removed
from S and a new greedy search is performed to find the antenna in the new S and the
symbol that minimizes (8) while the previous symbol assignments are held fixed. This
step is repeated until S is empty. MAGIQ then moves to the next time and repeats the
procedure. To determine α, MAGIQ applies alternating minimization with respect to α and
the precoder output {x[t] : t = 0, . . . , T − 1}. For fixed x[.] the minimization can be solved
in closed form, see (10) and line 22 of Algorithm 1.

Simulations show that MAGIQ exhibits good performance and converges quickly [39].
However, the greedy selection considerably increases the computational complexity. We
thus replace the minimization over S in line 9 of Algorithm 1) with a round-robin schedule
or a random permutation. We found that both approaches perform equally well. The new
QCM algorithm performs as well as MAGIQ but with a simpler search and a small increase
in the number of iterations.

Finally, one might expect that α is close to the αWF of the transmit Wiener filter [6,7]
since our cost function accounts for the noise power. However, Figure 2 shows that this is
true only at low SNR. The figure plots the average α of the QCM algorithm, called αQCM,
against the computed αWF for simulations with System A in Section 5. Note that αQCM is
generally larger than αWF.

8
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Algorithm 1 MAGIQ and QCM precoding.

1: procedure PRECODE(Algo, H[.], u[.])
2: x(0)[.] = x[.]init
3: α(0) = αinit
4: for i = 1 : I do // iterate over OFDM block
5: for t = 0 : T − 1 do
6: S = {1, . . . , N}
7: while S 
= ∅ do
8: if Algo = MAGIQ then
9: (x�n� , n�) = argminx̃n∈X ,n∈S

10: G
(

x(i)[0], . . . , x(i)[t − 1], x̃,

11: x(i−1)[t + 1], . . . , x(i−1)[T − 1], α(i−1)
)

12: else // Algo = QCM
13: n� = minS // round-robin schedule
14: x�n� = argminx̃n�∈X
15: G

(
x(i)[0], . . . , x(i)[t − 1], x̃,

16: x(i−1)[t + 1], . . . , x(i−1)[T − 1], α(i−1)
)

17: end if
18: x(i)n� [t] = x�n� // update antenna n� at time t
19: S ← S \ {n�}
20: end while
21: end for

22: α(i) =
∑T−1

t=0 Re(u[t]H ∑L−1
τ=0 H[τ]x(i)[t−τ])

∑T
t=0‖∑L−1

τ=0 H[τ]x(i)[t−τ]‖2
+TKσ2

23: end for
24: return x[.] = x(I)[.], α = α(I)

25: end procedure

0.25 0.3 0.35 0.4

0.25

0.3

0.35

0.4

0.45

SNR = 0dB

SNR = 20dB

αWF

α
Q

C
M

Figure 2. αQCM vs. αWF for System A of Table 2 and 64-QAM.
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Table 2. System parameters for the simulations.

System N K T = TF + Tc L Constellation b Fading Statistics

A 128 16 270 = 256 + 14 15 {16, 64}-QAM 2, 3 Flat and Rayleigh
uniform PDP

B 64 8 35 = 32 + 3 4 {4-32}-PSK 2 Rayleigh uniform PDP

C 80 8 277 = 256 + 21 22 16-QAM 2 Rayleigh uniform PDP
286 = 256 + 30 varies Winner2 NLOS C2 urban

D 128 16 410 = 396 + 14 15 64-QAM 2 Rayleigh uniform PDP

4. Performance Metrics

4.1. Achievable Rates

We use generalized mutual information (GMI) to compute achievable rates [46,47],
(Ex. 5.22) which is a standard tool to compare coded systems. Consider a generic in-
put distribution P(x) and a generic channel density p(y|x) where x = (x1, . . . , xS)

T and
y = (y1, . . . , yS)

T each have S symbols. A lower bound to the mutual information

I(X; Y) = ∑
x,y

P(x)p(y|x) log2

(
p(y|x)

∑a P(a) p(y|a)

)
(12)

is the GMI

Iq,s(X; Y) = ∑
x,y

P(x)p(y|x) log2

(
q(y|x)s

∑a P(a) q(y|a)s

)
(13)

where q(y|x) is any auxiliary density and s ≥ 0. In other words, the choices q(y|x) = p(y|x)
for all x, y and s = 1 maximize the GMI. However, the idea is that p(y|x) may be unknown
or difficult to compute and so one chooses a simple q(y|x). The reason why p(y|x) is
difficult to compute here is because we will measure the GMI across the end-to-end channels
from the ûk[m] to the ŷk[m] and the quantized precoding introduces non-linearities in these
channels. The final step in evaluating the GMI is maximizing over s ≥ 0. Alternatively, one
might wish to simply focus on s = 1, e.g., see [48].

We study the GMI of two non-coherent systems: classic PAT and data-aided channel
estimation. For both systems, we apply memoryless signaling with the product distribution

P(x) =
Sp

∏
i=1

1(xi = xp,i) ·
S

∏
i=Sp+1

P(xi) (14)

where the xp,i are pilot symbols, 1(a = b) is the indicator function that takes on the value
1 if its argument is true and 0 otherwise, and P(x) is a uniform distribution. Joint data
and channel estimation has Sp = 0 so that we have only the second product in (14). At the
receiver we use the auxiliary channel

q(y|x) =
S

∏
i=1

qx,y(yi | xi) (15)

where the symbol channel qx,y(.) is a function of x and y. Observe that qx,y(.) is invariant
for S symbols and the channel can be considered to have memory since every symbol x�
or y�, � = 1, . . . , S, influences the channel for all “times” i = 1, . . . , S. The GMI rate (13)
simplifies to

∑
x,y

P(x)p(y|x)
S

∑
i=Sp+1

log2

(
qx,y(yi | xi)

s

∑a P(a) qx,y(yi | a)s

)
. (16)

10
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One may approximate (16) by applying the law of large numbers for stationary signals
and channels. The idea is to independently generate the B pairs of vectors

x(b) = (x(b)1 , . . . , x(b)S )T

y(b) = (y(b)1 , . . . , y(b)S )T

for b = 1, . . . , B, and then the following average rate will approach Iq,s(X; Y)/S bpcu as
B grows:

Ra =
1
B

B

∑
b=1

R(b)
a (17)

where

R(b)
a =

1
S

S

∑
i=Sp+1

log2

⎛⎜⎝ qx(b) ,y(b)

(
y(b)i | x(b)i

)s

∑a P(a) qx(b) ,y(b)

(
y(b)i | a

)s

⎞⎟⎠. (18)

We choose the Gaussian auxiliary density

qx,y(y|x) =
1

πσ2
q

exp

(
−|y − h · x|2

σ2
q

)
(19)

where for pilot-aided transmission (PAT) the receiver computes joint maximum likelihood
(ML) estimates with sums of Sp terms:

h =
∑

Sp
i=1 yi · x∗i

∑
Sp
i=1

∣∣x2
i

∣∣
σ2

q =
1

Sp

Sp

∑
i=1

|yi − h · xi|2.

(20)

For the data-aided detector we replace Sp with S in (20). Note that for the Gaussian
channel (19) the parameter s multiplies 1/σ2

q in (16) or (18), and optimizing s turns out to
be the same as choosing the best parameter σ2

q when s = 1.
Summarizing, we use the following steps to evaluate achievable rates. Suppose

the coherence time is S/TF OFDM symbols where S is a multiple of TF. We index the
channel symbols by the pairs (�, m) where � is the OFDM symbol and m is the subcarrier,
1 ≤ � ≤ S/TF, 0 ≤ m ≤ T − 1. We collect the pilot index pairs in the set Sp that has
cardinality Sp, and we write the channel inputs and outputs of UE k for OFDM symbol �
and subcarrier m as ûk[�, m] and ŷk[�, m], respectively.

1. Repeat the following steps (2)–(4) B times; index the steps by b = 1, . . . , B;
2. Use Monte Carlo simulation to generate the symbols ûk[�, m] and ŷk[�, m] for

k = 1, . . . , K, � = 1, . . . , S/TF, and m = 0, . . . , T − 1;
3. Each UE estimates its own channel hk and σ2

q,k, i.e., the channel estimate (20) of UE k is

hk =
∑(�,m)∈Sp ŷk[�, m] · ûk[�, m]∗

∑(�,m)∈Sp |ûk[�, m]|2

σ2
q,k =

1
Sp

∑
(�,m)∈Sp

|ŷk[�, m]− hk · ûk[�, m]|2.
(21)

For the data-aided detector, in (21) we replace Sp with the set of all index pairs (�, m),
and we replace Sp with S;

11
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4. Compute R(b)
a in (18) for each UE k by averaging, i.e., the rate for UE k is

R(b)
a,k =

1
S ∑

(�,m)/∈Sp

log2

(
qûk ,ŷk

(ŷk[�, m] | ûk[�, m])s

∑a P(a) qûk ,ŷk
(ŷk[�, m] | a)s

)
(22)

where ûk and ŷk are vectors collecting the ûk[�, m] and ŷk[�, m], respectively, for all
pairs (�, m). For the data-aided detector we set Sp = ∅ in (22);

5. Compute Ra in (17) for each UE, i.e., the average rate of UE k is Ra,k =
1
B ∑B

b=1 R(b)
a,k ;

6. Compute the average UE rate Ra = 1
K ∑K

k=1 Ra,k.

Our simulations showed that optimizing over s ≥ 0 gives s ≈ 1 if the channel
parameters are chosen using (21).

4.2. Discussion

We make a few remarks on the lower bound. First, the receivers do not need to know
α. Second, the rate Ra in (17) is achievable if one assumes stationarity and coding and
decoding over many OFDM blocks. Third, as S grows, the channel estimate of the data-
aided detector becomes more accurate and the performance approaches that of a coherent
receiver. Related theory for PAT and large S is developed in [49]. However, the PAT rate is
generally smaller than for a data-aided detector because the PAT channel estimate is less
accurate and because PAT does not use all symbols for data.

We remark that blind channel estimation can approach the performance of data-aided
receivers for large S. Blind channel estimation algorithms can, e.g., be based on high-order
statistics and iterative channel estimation and decoding. For polar codes and low-order
constellations, one may use the blind algorithms proposed in [50]. We found that the PAT
rates are very close (within 0.1 bpcu) of the pilot-free rates multiplied by the rate loss factor
1 − Sp/S for pilot fractions as small as Sp/S = 10%.

Depending on the system under consideration, we choose one of TF = 32,256,396,
one of T = 35,270,277,286,410, one of S = 256,1584, and B = 200. For most simulations
we have TF = S = 256 and estimate the channel based on individual OFDM symbols, see
Section 1.3. For example, for T = 270 and a symbol time of 30 ns (symbol rate 33.3 MHz)
the coherence time needs to be at least (30 ns) · T = 8.1 μs. Of course, the transmitter needs
to know the channel also, e.g., via time-division duplex, which requires the coherence time
to be substantially larger. The main point is that channel estimation at the receiver is not a
bottleneck when using ZF based on channel inversion. Finally, for the coded simulations
we chose TF = 396 and S = 4TF = 1548 because the LDPC code occupies four OFDM
symbols.

4.3. Algorithmic Complexity

This section studies the algorithmic complexity in terms of the number of multiplica-
tions and iterations. The complexity of SQUID is thoroughly discussed in [38] and Table 3
shows the order estimates take from [38] (Table I). Note the large number of iterations.

Table 3. Algorithmic complexity.

Algorithm Multiplications per Iteration Iterations Pre-Processing Multiplications

QLP-ZF O(TK3 + TK2N) 1 -

SQUID O(8KNT + 8NT log T) 20–300 2T · ( 5
3 K3 + 3K2N + (6N − 2

3 )K)

MSM O(4KNT2 + 4KT + 2NT) ≈8400 4KNT

MAGIQ & QCM O(KNTL + KNL|X |) 4–6 KNT + 4NT log T

The complexity of MSM depends on the choice of optimization algorithm and [42]
considers a simplex algorithm. Unfortunately, the simplex algorithm requires a large
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number of iterations to converge because this number is proportional to the number of
variables and linear inequalities that grow with the system size (N, K, T). An interior point
algorithm converges more quickly but has a much higher complexity per iteration.

For MAGIQ and QCM, Equation (8) shows that updating x[.] requires updating L
of the T terms that each require a norm calculation. The resulting terms ‖u[t]‖2 do not
affect the maximization; terms such as ‖αHx‖2

2 can be pre-computed and stored with a
complexity of NKL|X |, and then reused as they do not change during the iterations. On
the other hand, products of the form αuHHx must be computed for each of the L terms for
each antenna update and at each time instance, resulting in a complexity of O(NKLT). The
initialization requires KNT multiplications and one must transform the solutions to the
time domain. We neglect the cost of updating α because the terms needed to compute it are
available as a byproduct of the iterative process over the time instances.

4.4. Sensitivity to Channel Uncertainty at the Transmitter

In practice, the CSI is imperfect due to noise, quantization, calibration errors, etc. We
do not attempt to model these effects exactly. Instead, we adopt a standard approach based
on MMSE estimation and provide the precoder with channel matrices H̃[τ] that satisfy

H[τ] =
√

1 − ε2H̃[τ] + εZ[τ] (23)

where 0 ≤ ε ≤ 1 and Z[τ] is a K × N matrix of independent, variance σ2
h = 1/L, complex,

circularly-symmetric Gaussian entries. Note that ε = 0 corresponds to perfect CSI and
ε = 1 corresponds to no CSI. The precoder treats H̃[τ] as the true channel realization for
τ = 0, . . . , L − 1.

5. Numerical Results

We evaluate the GMIs of four systems. The main parameters are listed in Table 2 and
we provide a few more details here.

• System A: the DFT has length TF = 256 and the channel has either L = 1 or L = 15
taps of Rayleigh fading with a uniform PDP. The minimum cyclic prefix length for
the latter case is Tc = 14 so the minimum OFDM blocklength is T = 270;

• System B: MSM is applied to PSK. However, the MSM complexity limited the simu-
lations to smaller parameters than for System A. The channel now has L = 4 taps of
Rayleigh fading with a uniform PDP. The T = 35 OFDM symbols include a DFT of
length TF = 32 and a minimum cyclic prefix length of Tc = 3;

• System C: System C is actually two systems because we compare the performance
under Rayleigh fading to the performance with the Winner2 model [51] whose number
L of channel taps varies randomly. For the Winner2 channel, the choice Tc = 30 suffices
to ensure that Tc ≥ L − 1. The Rayleigh fading model has L = 22 taps with a uniform
PDP, where L was chosen as the maximum Winner2 channel length that has almost
all the channel energy;

• System D: similar to System A but for a 5G NR LDPC code with code rate 8/9 and
64-QAM for an overall rate of 5.33 bpcu. The LDPC code uses the BG1 base graph
of the 3GPP Specification 38.212 Release 15, including puncturing and shortening as
specified in the standard. The code length is 9504 bits or 1584 symbols of 64-QAM;
this corresponds to 4 frames of TF = 396 symbols.The codewords were transmitted
using at least T = 410 symbols that include a DFT of length TF = 396 and a minimum
cyclic prefix length of Tc = 14.

The average GMIs for Systems A–C were computed using S = 256, B = 200, and a
data-aided detector. The coded results of System D instead have S = 1584 symbols to fit the
block structure determined by the LDPC encoder. For System D we considered both PAT
and a data-aided detector. For all cases, the GMI was computed by averaging over the sub-
carriers, i.e., channel coding is assumed to be applied over multiple sub-carriers and OFDM
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symbols. The MAGIQ and QCM algorithms were both initialized with a time-domain
quantized solution of the transmit matched filter (MF).

Figures 3 and 4 show the average GMIs for System A with b = 2 and b = 3, respectively.
In Figure 3, MAGIQ performs four iterations for each OFDM symbol while QCM performs
six iterations. Observe that MAGIQ and QCM are best at all SNRs and they are especially
good in the interesting regime of high SNR and rates. The gap to the rates over flat
fading channels (L = 1) is small. SQUID with 64-QAM requires 100–300 iterations for
SNR > 15 dB and a modified algorithm with damped updates, otherwise SQUID diverges.
In addition, we show the broadcast channel capacity with uniform power allocation and
Gaussian signaling as an upper bound for the considered scenario [52,53]. Figure 4 shows
that QCM with three iterations operates within ≈0.2–0.4 dB of MAGIQ with five iterations
when b = 3, which shows that QCM performs almost as well as MAGIQ.
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Figure 3. Average GMIs for System A and b = 2.
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Figure 4. Average GMIs for System A with 64-QAM and b = 3.

Figure 5 compares achievable rates of QCM, SQUID, and MSM for a smaller system
studied in [42]. We use PSK because the MSM algorithm was designed for PSK. The figure
shows that MSM outperforms SQUID and QCM at low to intermediate SNR and rates,
but QCM is best at high SNR and rates. This suggests that modifying the cost function (8)
to include a safety margin will increase the QCM rate at low to intermediate SNR, and
similarly modifying the MSM optimization to more closely resemble QCM will increase
the MSM rate at high SNR. We tried to simulate MSM for System A but the algorithm ran
into memory limitations (we used 2 AMD EPYC 7282 16-Core processors, 125 GB of system
memory, and Matlab with both dual-simplex and interior-point solvers).

Consider next the Winner2 non-line-of-sight (NLOS) C2 urban model [51], which is
more realistic than Rayleigh fading. The model parameters are as follows.

• Base station at the origin (x, y) = (0, 0);
• 100 drops of 8 UEs placed on a disk of radius 150 m centered at (x, y) = (0, 200 m); the

locations of the UEs are iid with a uniform distribution on the disc;
• 8 × 10 uniform rectangular antenna array at the base station with half-wavelength

dipoles at λ/2 spacing;
• 5 MHz bandwidth at center frequency 2.53 GHz;
• No Doppler shift, shadowing and pathloss.

Figure 6 shows the average GMIs for LP-ZF and MAGIQ. At high SNR, there is a
slight decrease in the slope of the MAGIQ GMI as compared to LP-ZF. This suggests that
one might need a larger N or b. The performance for the Rayleigh fading model is better
than for the Winner2 model but otherwise behaves similarly.
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Figure 7 shows BERs for the LDPC code with 64-QAM. Each codeword is interleaved
over 4 OFDM symbols, all 396 subcarriers, and the 6 bits of each modulation symbol by
using bit-interleaved coded modulation (BICM). The interleaver was chosen randomly
with a uniform distribution over all permutations of length 9504. The solid curves are for

16
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data-aided channel estimation and the dotted curves show the performance of PAT when
the fraction of pilots is Sp/S = 10%. The pilots were placed uniformly at random over the
four OFDM symbols and 396 subcarriers. A good blind detector algorithm that performs
joint channel and data estimation should have BERs between the solid and dotted curves.

The dashed curves in Figure 7 show the SNRs required for the different algorithms
based on Figure 3. In particular, the rate 5.33 bpcu requires SNRs of 9 dB, 12.9 dB, and
15.2 dB for LP-ZF, QCM, and SQUID, respectively. SQUID is run with 300 iterations
and QCM is run with 6 iterations. Each UE computes its log-likelihoods based on the
parameters (20) of the auxiliary channel. The GMI predicts the coded behavior of the
system within approximately 1 dB of the code waterfall region, except for SQUID, where
the gap is about 2 dB. The gap seems to be caused mainly by the finite-blocklength of the
LDPC code, since the smaller gap of approximately 1 dB is also observed for additive white
Gaussian noise (AWGN) channels. The sizes of the gaps are different, and the reason may
be that the slopes of the GMI at rate 5.33 bpcu are different, see Figure 3. Observe that
LP-ZF exhibits the steepest slope and SQUID the flattest at Ra = 5.33 bpcu; this suggests
that SQUID’s SNR performance is more sensitive to the blocklength.
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Figure 7. BERs for System D and a 5G NR LDPC code. The dashed vertical curves show the SNRs
required for long random codes, see Figure 3.

Figure 8 is for System A and shows how the GMI decreases as the CSI becomes noisier.
The behavior of all systems is qualitatively similar. However, the figure shows that the
QCM rate is more sensitive to the parameter ε than the SQUID rate when ε is small.
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6. Conclusions

We studied downlink precoding for MU-MISO channels where the base station uses
OFDM and low-resolution DACs. A QCM algorithm was introduced that is based on the
MAGIQ algorithm in [39] (see also [19]) and which performs a coordinate-wise optimization
in the time-domain. The performance was analyzed by computing the GMI for two auxiliary
channel models: one model for pilot-aided channel estimation and a second model for a
data-aided channel estimation. Simulations for several downlink channels, including a
Winner2 NLOS urban scenario, showed that QCM achieves high information rates and is
computationally efficient, flexible, and robust. The performance of QCM was compared
to MAGIQ and other precoding algorithms including SQUID and MSM. The QCM and
MAGIQ algorithms achieve the highest information rates with the lowest complexity
measured by the number of multiplications. For example, Figure 4 shows that b = 3 bits
of phase modulation operates within 3 dB of LP-ZF. Moreover, BER simulations for a 5G
NR LDPC code show that GMI is a good predictor of the coded performance. Finally, for
noisy CSI the performance degradation of QCM and SQUID is qualitatively similar to the
performance degradation of LP-ZF.

Author Contributions: Investigation, A.S.N., F.S. and G.K.; Software, A.S.N.; Writing—original draft,
F.S.; Writing—review & editing, A.S.N. and G.K. All authors have read and agreed to the published
version of the manuscript.

Funding: This research was funded by Deutsche Forschungsgemeinschaft through the grant KR
3517/9-1, and by Nokia Solutions and Networks through the project “Low Cost Booster Arrays for
Massive MIMO Precoding” in 2017.

Acknowledgments: The authors wish to thank M. Staudacher, W. Zirwas, B. Panzner, R. S. Ganesan,
P. Baracca, and S. Wesemann for useful discussions.

Conflicts of Interest: The authors declare no conflict of interest.

18



Entropy 2022, 24, 504

References

1. Marzetta, T. Noncooperative cellular wireless with unlimited numbers of base station antennas. IEEE Trans. Wirel. Commun. 2010,
9, 3590–3600. [CrossRef]

2. Ngo, H.Q.; Larsson, E.; Marzetta, T. Energy and spectral efficiency of very large multiuser MIMO systems. IEEE Trans. Commun.
2013, 61, 1436–1449.

3. Mohammed, S.K.; Larsson, E.G. Per-antenna constant envelope precoding for large multi-user MIMO systems. IEEE Trans.
Commun. 2013, 61, 1059–1071. [CrossRef]

4. Mohammed, S.K.; Larsson, E.G. Constant-envelope multi-user precoding for frequency-selective massive MIMO systems. IEEE
Wirel. Commun. Lett. 2013, 2, 547–550. [CrossRef]

5. Mohammed, S.K.; Larsson, E.G. Single-User beamforming in large-scale MISO systems with per-antenna constant-envelope
constraints: The doughnut channel. IEEE Trans. Wirel. Commun. 2012, 11, 3992–4005. [CrossRef]

6. Joham, M.; Utschick, W.; Nossek, J.A. Linear transmit processing in MIMO communications systems. IEEE Trans. Signal Process.
2005, 53, 2700–2712. [CrossRef]

7. Björnson, E.; Bengtsson, M.; Ottersten, B. Optimal multiuser transmit beamforming: A difficult problem with a simple solution
structure. IEEE Signal Proc. Mag. 2014, 31, 142–148.

8. Mezghani, A.; Ghiat, R.; Nossek, J.A. Transmit processing with low resolution D/A-converters. In Proceedings of the 2009
16th IEEE International Conference on Electronics, Circuits and Systems—(ICECS 2009), Yasmine Hammamet, Tunisia, 13–16
December 2009.

9. Mezghani, A.; Ghiat, R.; Nossek, J.A. Tomlinson Harashima Precoding for MIMO Systems with Low Resolution D/A-Converters.
In Proceedings of the ITG/IEEE Workshop on Smart Antennas, Berlin, Germany, 18–20 February 2009.

10. Usman, O.B.; Jedda, H.; Mezghani, A.; Nossek, J.A. MMSE precoder for massive MIMO using 1-bit quantization. In Proceedings of
the 2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Shanghai, China, 20–25 March 2016.

11. Saxena, A.K.; Fijalkow, I.; Swindlehurst, A.L. Analysis of one-bit quantized precoding for the multiuser massive MIMO downlink.
IEEE Trans. Signal Proc. 2017, 65, 4624–4634. [CrossRef]

12. Kakkavas, A.; Munir, J.; Mezghani, A.; Brunner, H.; Nossek, J.A. Weighted sum rate maximization for multi-user MISO systems
with low resolution digital to analog converters. In Proceedings of the International ITG Workshop Smart Antennas, Munich,
Germany, 9–11 March 2016.

13. Li, Y.; Tao, C.; Swindlehurst, A.; Mezghani, A.; Liu, L. Downlink achievable rate analysis in massive MIMO systems with one-bit
DACs. IEEE Commun. Lett. 2017, 21, 1669–1672. [CrossRef]

14. Swindlehurst, A.; Jedda, H.; Fijalkow, I. Reduced dimension minimum BER PSK precoding for constrained transmit signals in
massive MIMO. In Proceedings of the 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP),
Calgary, AB, Canada, 15–20 April 2018.

15. Saxena, A.K.; Mezghani, A.; Heath, R.W. Linear CE and 1-bit quantized precoding with optimized dithering. IEEE Open J. Signal
Proc. 2020, 1, 310–325. [CrossRef]

16. Jedda, H.; Nossek, J.A.; Mezghani, A. Minimum BER precoding in 1-bit massive MIMO systems. In Proceedings of the 2016 IEEE
Sensor Array and Multichannel Signal Processing Workshop (SAM), Rio de Janeiro, Brazil, 10–13 July 2016.

17. Jacobsson, S.; Durisi, G.; Coldrey, M.; Goldstein, T.; Studer, C. Quantized precoding for massive MU-MIMO. IEEE Trans. Commun.
2017, 65, 4670–4684. [CrossRef]

18. Wang, C.-J.; Wen, C.-K.; Jin, S.; Tsai, S.-H. Finite-alphabet precoding for massive MU-MIMO with low-resolution DACs. IEEE
Trans. Wirel. Commun. 2018, 17, 4706–4720. [CrossRef]

19. Staudacher, M.; Kramer, G.; Zirwas, W.; Panzner, B.; Ganesan, R.S. Optimized combination of conventional and constrained
massive MIMO arrays. In Proceedings of the ITG Workshop Smart Antennas, Berlin, Germany, 15–17 March 2017; pp. 1–4.

20. Shao, M.; Li, Q.; Ma, W.-K. One-bit massive MIMO precoding via a minimum symbol-error probability design. In Proceedings
of the 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Calgary, AB, Canada, 15–20
April 2018.

21. Tsinos, C.G.; Kalantari, A.; Chatzinotas, S.; Ottersten, B. Symbol-level precoding with low resolution DACs for large-scale array
MU-MIMO systems. In Proceedings of the 2018 IEEE 19th International Workshop on Signal Processing Advances in Wireless
Communications (SPAWC), Kalamata, Greece, 25–28 June 2018; pp. 1–5.

22. Domouchtsidis, S.; Tsinos, C.; Chatzinotas, S.; Ottersten, B. Symbol-level precoding for low complexity transmitter architectures
in large-scale antenna array systems. IEEE Trans. Wirel. Commun. 2019, 18, 852–863. [CrossRef]

23. Li, A.; Masouros, C.; Liu, F.; Swindlehurst, A.L. Massive MIMO 1-Bit DAC transmission: A low-complexity symbol scaling
approach. IEEE Trans. Wirel. Commun. 2018, 17, 7559–7575. [CrossRef]

24. Li, A.; Masouros, C.; Swindlehurst, A.L.; Yu, W. 1-Bit massive MIMO transmission: Embracing interference with symbol-level
precoding. IEEE Commun. Mag. 2021, 59, 121–127. [CrossRef]

25. Li, A.; Liu, F.; Liao, X.; Shen, Y.; Masouros, C. Symbol-level precoding made practical for multi-level modulations via block-level
rescaling. In Proceedings of the IEEE International workshop on Signal Processing advances in Wireless Communications, Oulu,
Finland, 4–6 July 2022; pp. 71–75.

19



Entropy 2022, 24, 504

26. Jedda, H.; Mezghani, A.; Nossek, J.A.; Swindlehurst, A.L. Massive MIMO downlink 1-bit precoding with linear programming
for PSK signaling. In Proceedings of the 2017 IEEE 18th International Workshop on Signal Processing Advances in Wireless
Communications (SPAWC), Sapporo, Japan, 3–6 July 2017; pp. 1–5.

27. Jedda, H.; Mezghani, A.; Swindlehurst, A.L.; Nossek, J.A. Quantized constant envelope precoding with PSK and QAM signaling.
IEEE Trans. Wirel. Commun. 2018, 17, 8022–8034. [CrossRef]

28. Jedda, H.; Mezghani, A.; Nossek, J.A.; Swindlehurst, A.L. Massive MIMO downlink 1-bit precoding for frequency selective
channels. In Proceedings of the 2017 IEEE 7th International Workshop on Computational Advances in Multi-Sensor Adaptive
Processing (CAMSAP), Curacao, 10–13 December 2017.

29. Landau, L.T.N.; de Lamare, R.C. Branch-and-bound precoding for multiuser MIMO systems with 1-bit quantization. IEEE Wirel.
Commun. Lett. 2017, 6, 770–773. [CrossRef]

30. Jacobsson, S.; Xu, W.; Durisi, G.; Studer, C. MSE-optimal 1-bit precoding for multiuser MIMO via branch and bound. In
Proceedings of the 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Calgary, AB,
Canada, 15–20 April 2018.

31. Li, A.; Liu, F.; Masouros, C.; Li, Y.; Vucetic, B. Interference exploitation 1-bit massive MIMO precoding: A partial branch-and-
bound solution with near-optimal performance. IEEE Trans. Wirel. Commun. 2020, 19, 3474–3489. [CrossRef]

32. Lopes, E.S.P.; Landau, L.T.N. Optimal and suboptimal MMSE precoding for multiuser MIMO systems using constant envelope
signals with phase quantization at the transmitter and PSK. In Proceedings of the International ITG Workshop on Smart Antennas,
WSA 2020, Hamburg, Germany, 18–20 February 2020; pp. 1–6.

33. Shao, M.; Li, Q.; Ma, W.; So, A.M.; A framework for one-bit and constant-envelope precoding over multiuser massive MISO
channels. IEEE Trans. Sig. Proc. 2019, 67, 5309–5324. [CrossRef]

34. Sedaghat, M.A.; Bereyhi, A.; Müller, R.R. Least square error precoders for massive MIMO With signal constraints: Fundamental
limits. IEEE Trans. Wirel. Commun. 2018, 17, 667–679. [CrossRef]

35. Balatsoukas-Stimming, A.; Castañeda, C.; Jacobsson, S.; Durisi, G.; Studer, C. Neural-network optimized 1-bit precoding for
massive MU-MIMO. In Proceedings of the 2019 IEEE 20th International Workshop on Signal Processing Advances in Wireless
Communications (SPAWC), Cannes, France, 2–5 July 2019; pp. 1–5.

36. Sohrabi, F.; Cheng, H.V.; Yu, W. Robust symbol-level precoding via autoencoder-based deep learning. In Proceedings of the
ICASSP 2020—2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Barcelona, Spain, 4–8
May 2020; pp. 8951-8955.

37. Jacobsson, S.; Durisi, G.; Coldrey, M.; Studer, C. Linear precoding with low-resolution DACs for massive MU-MIMO-OFDM
downlink. IEEE Trans. Wirel. Commun. 2019, 18, 1595–1609. [CrossRef]

38. Jacobsson, S.; Castañeda, C.O.; Jeon, D.G.; Studer, C. Nonlinear precoding for phase-quantized constant-envelope massive
MU-MIMO-OFDM. In Proceedings of the International Conference on Telecommunications and Communication Engineering,
Beijing China, 28–30 November 2018; pp. 367–372.

39. Nedelcu, A.; Steiner, F.; Staudacher, M.; Kramer, G.; Zirwas, W.; Ganesan, R.S.; Baracca, P.; Wesemann, S. Quantized precoding for
multi-antenna downlink channels with MAGIQ. In Proceedings of the International ITG Workshop on Smart Antennas, WSA
2018, Bochum, Germany, 14–16 March 2018; pp. 1–8.

40. Tsinos, C.G.; Domouchtsidis, S.; Chatzinotas, S.; Ottersten, B. Symbol level precoding with low resolution DACs for constant
envelope OFDM MU-MIMO systems. IEEE Access 2020, 8, 12856–12866. [CrossRef]

41. Domouchtsidis, S.; Tsinos, C.G.; Chatzinotas, S.; Ottersten, B. Joint symbol level precoding and combining for MIMO-OFDM
transceiver architectures based on one-bit DACs and ADCs. IEEE Trans. Wirel. Commun. 2021, 20, 4601–4613. [CrossRef]

42. Askerbeyli, F.; Jedda, H.; Nossek, J.A. 1-bit precoding in massive MU-MISO-OFDM downlink with linear programming. In
Proceedings of the International ITG Workshop on Smart Antennas, WSA 2019, Vienna, Austria, 24–26 April 2019; pp. 1–5.

43. Mezghani, A.; Heath, R.W. Massive MIMO precoding and spectral shaping with low resolution phase-only DACs and active
constellation extension. IEEE Trans. Wirel. Commun. 2022. [CrossRef]

44. Bae, J.H.; Abotabl, A.; Lin, H.-P.; Song, K.-B.; Lee, J. An overview of channel coding for 5G NR cellular communications. APSIPA
Trans. Signal Inf. Proc. 2019, 8, e17. [CrossRef]

45. Zhang, J.; Huang, Y.; Wang, J.; Ottersten, B.; Yang, L. Per-antenna constant envelope precoding and antenna subset selection: A
geometric approach. IEEE Trans. Signal Process. 2016, 64, 6089–6104. [CrossRef]

46. Kaplan, G.; Shamai, S. Information rates and error exponents of compound channels with application to antipodal signaling in a
fading environment. AEU. Archiv Elektr. Übertrag. 1993, 47, 228–239.

47. Gallager, R.G. Information Theory and Reliable Communication; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 1968.
48. Arnold, D.M.; Loeliger, H.A.; Vontobel, P.O.; Kavcic, A.; Zeng, W. Simulation-based computation of information rates for channels

with memory. IEEE Trans. Inf. Theory 2006, 52, 3498–3508. [CrossRef]
49. Meng, X.; Gao, K.; Hochwald, B.M. A training-based mutual information lower bound for large-scale systems. arXiv 2021,

arXiv:2108.00034.
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Abstract: Semantic communication is a promising technology used to overcome the challenges of
large bandwidth and power requirements caused by the data explosion. Semantic representation is
an important issue in semantic communication. The knowledge graph, powered by deep learning,
can improve the accuracy of semantic representation while removing semantic ambiguity. Therefore,
we propose a semantic communication system based on the knowledge graph. Specifically, in our
system, the transmitted sentences are converted into triplets by using the knowledge graph. Triplets
can be viewed as basic semantic symbols for semantic extraction and restoration and can be sorted
based on semantic importance. Moreover, the proposed communication system adaptively adjusts
the transmitted contents according to channel quality and allocates more transmission resources to
important triplets to enhance communication reliability. Simulation results show that the proposed
system significantly enhances the reliability of the communication in the low signal-to-noise regime
compared to the traditional schemes.

Keywords: semantic communication; knowledge graph; semantic extraction; semantic restoration

1. Introduction

In recent years, wireless communication technology has developed rapidly, bringing
great convenience to human life. Fifth-generation (5G) wireless communication technology
has played an important role in smart cities, autonomous driving, telemedicine, and other
fields [1]. However, with the gradual increase in the communication rate, the explosive
growth of data has created enormous challenges for wireless communication technology [2].
According to the forecast from the International Telecommunication Union (ITU), the annual
growth rate of the global mobile data stream will reach up to 55% by 2030 [3]. Moreover,
the transmission rate of existing communication technologies has gradually approached
the Shannon capacity [4], which cannot meet the continuously growing communication
demands in the future 6G era. In the future, the 6G communication system will play an
important role in remote holography [5], digital twin [6], and other application fields.
Therefore, the sixth-generation wireless communication system needs to provide an ultra-
high peak rate, ultra-large user experience rate, and ultra-low network latency, which
will consume more limited available spectrum and power and bring huge challenges to
communication technology. Semantic communication is one of the effective techniques
used to overcome these challenges [7].

Semantic communication, as a revolution against traditional communication, is a new
communication paradigm [8]. The concept of semantic communication was first proposed
by Weaver (1949) [9]. After Shannon (1948) put forward the classical information theory [4],
Weaver proposed that communication should be divided into three different layers, namely
the technical layer, semantic layer, and effectiveness layer. The technical layer represents tra-
ditional communication, focusing on “how to accurately transmit communication symbols”.
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The semantic layer focuses on “how to accurately convey the meaning of communication
symbols”; the effectiveness layer focuses on “how the received meaning effectively affects
the receiver’s behavior”. Compared with traditional communication, semantic communi-
cation aims to reduce the uncertainty of message understanding between the transmitter
and the receiver. Moreover, semantic communication mainly transmits semantic-relevant
information, which greatly reduces the amount of redundant data. Therefore, semantic
communication is a suitable technology (against the scenarios) with limited communication
bandwidth and a low signal-to-noise ratio (SNR) [10,11].

However, some fundamental problems of semantic communication have not been
effectively solved. One of them is semantic representation, which limits the development
of semantic communication [7]. Regarding semantic representation—existing research
studies tend to use transmitted content features to represent the semantics. This repre-
sentation lacks human language logic and cannot be interactive verification with human
understanding [12]. To solve this problem, we considered using the knowledge graph
instead of features to represent semantics. The knowledge graph can decompose text into
multiple semantic units without losing semantics [13], ensuring the accuracy of seman-
tic representation. The basic structure of the knowledge graph is a triplet in the form
of an “entity-relation-entity” [13]. From the linguistic point of view, a single entity may
have multiple types of semantic information. The specific semantic information can be
determined after a relationship is formed between entities, so the triplet in the knowledge
graph can be regarded as the smallest semantic symbol. There have been some research
studies exploring the relationship between the knowledge graph and semantics. Jaradeh
et al. (2019) proposed that the knowledge graph was the next-generation infrastructure for
semantic scholarly knowledge [14]. Mosa (2021) proposed that the knowledge graph could
help with semantic category prediction [15]. Zhou et al. (2022) combined the knowledge
graph with semantic communication to improve the validity of communication [16]. Thus,
the knowledge graph can effectively represent semantics; we investigated the semantic com-
munication system based on the knowledge graph (SCKG) for improving communication
reliability. The main contributions of this paper are summarized as follows:

• A semantic extraction method is proposed to extract triplets from transmitted text to
represent its core semantic information, reducing the information redundancy of the
transmitted text.

• A semantic restoration method based on text generation from the knowledge graph is
proposed, which completes the semantic restoration process by reconstructing the text
structure between entities and relations.

• A novel semantic communication system was developed, which can sort triplets based
on semantic importance and adaptively adjust the transmitted contents according to
the channel quality.

The rest of this paper is organized as follows. Section 2 briefly reviews the related
work. Section 3 details the proposed system and the semantic extraction and restoration
methods used in the model. Experimental results are presented in Section 4 to verify the
performance of the proposed model. Finally, Section 5 concludes this paper.

2. Related Work

2.1. Semantic Communication Development

Due to technical limitations in the early stage of communication development, re-
searchers have focused on solving engineering problems at the technical layer and post-
poned the study at the semantic layer. However, this does not mean that the research on
semantic communication will be shelved. With the advancements in technology, the seman-
tic problem has become an urgent problem that needs to be solved in the communication
field [17].

In terms of theoretical research, Carnap et al. (1954) first proposed the concept of the
semantic information theory to supplement the classical information theory [18]. They
thought that the semantic information contained in the sentence should be defined based
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on the logical probability of the content of the sentence. Floridi (2004) proposed a theory of
strongly semantic information [19] and pointed out the problem that sentence contradictions
will have infinite information. Bao et al. (2011) put forward a general model of semantic
communication, using a factual statement in the propositional logic form to represent
semantics [20]. Moreover, the semantic entropy, semantic noise, and semantic channel
capacity were defined in [20]. Based on the literature [20], Basu et al. (2012) provided a
detailed explanation of the relationship between semantic entropy and information entropy,
and they defined the concepts of semantic ambiguity and semantic redundancy [21]. In [22],
Lan et al. (2021) proposed that semantic communication can be divided into human-to-
human, human-to-machine, and machine-to-machine sub-areas, which broadened the
scope of semantic communication.

On the other hand, the rapid development of neural networks and artificial intelli-
gence technology promotes the progress of technical research in semantic communication.
In terms of semantic coding, the authors of [23] proposed a joint source-channel coding
for semantic information with a bidirectional long short-term memory model (BILSTM).
As an extension of the literature [23], Rao et al. (2018) presented a variable-length joint
source-channel coding of semantic information [24]. In [25], Liu et al. (2022) proposed a
semantic encoding strategy based on parts-of-speech and context-based decoding strategies,
which enhanced communication reliability from the semantic level. Based on the semantic
communication framework, Xie et al. (2021) proposed a deep learning-based semantic
communication model [26], which used word embedding technology to map text to se-
mantic space and then performed source-channel joint encoding for semantic information
by using the transformer framework [27]. Furthermore, the authors of [28] proposed a
lightweight distributed semantic communication system for the application scenario of
the internet of things (IoT), which reduced the cost of IoT devices. The authors of [29]
proposed a semantic communication model based on reinforcement learning to investigate
the impact of noisy environments on semantic information. In different information forms,
Weng et al. (2021) proposed a semantic communication model for speech transmission [30].
In [31], Hu et al. (2022) proposed a robust end-to-end semantic communication system to
combat the semantic noise for image transmission. Moreover, a semantic communication
model based on multi-information modalities was developed in [32]. Regarding semantic
representation, Zhou et al. (2022) used the transformer for semantic extraction and semantic
restoration [33].

2.2. Performance Metrics

Semantic communication, different from traditional communication systems, does
not emphasize the perfect recovery of the transmitted message, but rather on the receiver
correctly understanding the message in the same way as the transmitter. As a result,
performance metrics commonly used in traditional communication systems (e.g., bit error
rate and symbol error rate) are no longer suitable for semantic communication. Hence, this
paper uses the bilingual evaluation understudy (BLEU) score [34], a metric for evaluation
of translation with the explicit ordering (METEOR) score [35], and the semantic similarity
score [36], as performance metrics.

2.2.1. BLEU Score

BLEU is currently the most commonly used metric in text evaluation [37]. It evaluates
the similarity by counting the number of the same n-grams between transmitted and
received texts, where n-gram means n consecutive words in the text. The formula can be
expressed as

log BLEU = min
(

1 − lŝ
ls

, 0
)
+

N

∑
n=1

ωn log pn (1)
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where s and ŝ denote the transmitted sentence and restored sentence, respectively. ls and
lŝ are the lengths of the transmitted sentences s and restored sentence ŝ, respectively. ωn
represents the weight of n-grams, and pn denotes the precision of n-grams.

2.2.2. METEOR Score

METEOR extends the synonym set by introducing external knowledge sources, such
as WordNet [38]. Furthermore, it uses precision Pm and recall Rm to evaluate the similarity
between transmitted and received texts. The formula is given as follows

Fmean =
PmRm

αPm + (1 − α)Rm
(2)

METEOR = (1 − Pen)Fmean (3)

where α is the hyperparameter according to WordNet, Fmean represents the harmonic mean
combining Pm and Rm, and Pen is the penalty coefficient.

2.2.3. Semantic Similarity Score

The semantic similarity score converts text into vectors by using the BERT model [39].
It evaluates the semantic similarity between sentences by comparing the degree of similarity
between vectors. For the transmitted sentence’s vector v(s) and the received sentence’s
vector v(ŝ), the semantic similarity score can be expressed as

simv(s, ŝ) =
v(s) · (v(ŝ))T

‖ v(s) ‖ · ‖ v(ŝ) ‖ (4)

All the performance metrics introduced above take values between 0 and 1. A higher
score given by the performance metrics means that the received text’s semantic is closer to the
transmitted text’s semantic; 0 means semantically irrelevant; 1 means semantically consistent.

3. System Model

As shown in Figure 1, the structure of the proposed system consists of a semantic ex-
traction module, traditional communication architecture, and semantic restoration module.
The proposed system can be divided into two levels, which are the semantic level and the
technical level. The structure of the technical level is the same as that of the traditional
communication system; thus, we mainly introduce the details at the semantic level. At the
transmitter, the semantic extraction module can extract the knowledge graph (KG) of the
transmitted sentence to represent its semantics. More importantly, the knowledge graph is
sorted according to semantic importance. At the receiver, the semantic restoration module
can recover the transmitted sentence according to the received knowledge graph.

Figure 2 shows examples of the proposed semantic communication system in different
channel qualities. At the transmitter, the transmitted sentence is first converted into the
knowledge graph through the semantic extraction module. Next, the transmitter adjusts
the knowledge graph according to the channel quality. Then, the knowledge graph is
transmitted through the channel. With the noisy knowledge graph received, the semantic is
recovered through the semantic restoration module. In Figure 2a, when the channel quality
is good, the transmitted sentence and the restored sentence convey the same semantics
although they have different sentence structures. When the channel quality is poor, all
triplets cannot be transmitted correctly. Therefore, the proposed semantic communication
system chooses to transmit the most important triplet. When it comes to Steve Jobs, people
tend to care about his relationship with Apple rather than the college he graduated from.
As shown in Figure 2b, the transmitter only sends “< Steve Jobs-founder-Apple” when the
channel quality is poor.
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Figure 1. The structure of the proposed semantic communication system based on the knowledge
graph, including the semantic extraction module, traditional communication architecture, and se-
mantic restoration module.

(a)

(b)

Figure 2. Examples of the proposed semantic communication system in different channel qualities.
(a) An example of the proposed semantic communication system when the channel quality is good.
(b) An example of the proposed semantic communication system when the channel quality is poor.
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3.1. Semantic Extraction Method

To represent the semantic information correctly, the semantic extraction module at
the transmitter uses a deep learning network to extract the knowledge graph from the
transmitted sentence. Let S2Gθ(•) be the function of the proposed semantic extraction
method, which takes the sentence S = [w1, w2, · · · , wm] as input and its corresponding
output is the knowledge graph G, where wm is the mth word in the sentence. The deep
learning network structure for the semantic extraction method is shown in Figure 3.

Figure 3. The deep learning network structure for the semantic extraction method.

In particular, we used the pipeline method to extract the knowledge graph, which
means extracting the entities in S and then predicting the relations between entities. Firstly,
we used a well-established named entity recognition model (NER) to extract the entities [40].
This model is based on the conditional random field classifier and Gibbs sampling. The
conditional random field classifier combines the characteristics of the maximum entropy
model and the hidden Markov model, and it is often used to deal with sequence labeling
tasks, such as parts-of-speech tagging and named entity recognition. Gibbs sampling is a
method of generating Markov chains that can be used for Monte Carlo simulations. Based
on the conditional random field classifier and Gibbs sampling, NER is trained by using a
large amount of manually annotated text and can recognize entities from given sentences.
Therefore, the entities in the transmitted sentence can be expressed as

E = [en1, en2, · · · , eni, . . . , enL] = NER(S) (5)

where eni represents the ith entity in the sentence, L is the total number of entities contained
in the sentence.

After extracting entities from S, we predict the relations between the two entities.
Firstly, the embedding of each word wj in the entity eni is averaged to obtain the entity’s
embedding. The embedding of wj can be obtained by using a long short-term memory
model (LSTM) [41] to encode wj and its context. The formula is given as follows

emb
(
wj
)
= LSTM_encode

(
wj, w<j, w>j

)
(6)

Therefore, the ith entity’s embedding ei can be represented as

ei =
1

Len(eni)
∑

wj∈eni

emb
(
wj
)

(7)

where Len(eni) is the number of words in the entity eni.
Then we feed the entity embeddings into a multi-label classification layer MLCL(•) to

predict the relations. The multi-label classification layer MLCL(•) can take in two entities
and predict the possible relation set. To prevent these two entities from being irrelevant,
the relation set includes the “no-relation” type. The relation set between the ith entity and
the jth entity can be represented as

rij = MLCL
(
ei, ej

)
(8)

Since the knowledge graph is made of entities and relations, the probability of ex-
tracting a graph from a given sentence is equivalent to the product of the probability of
extracting the relation set given any two entities. The formula can be expressed as
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p(G | S) =
L

∏
i=0

L

∏
j=0

p
(
rij | ei, ej, S

)
(9)

Based on the probability p(G | S), we can denote the loss function of the proposed
semantic extraction method by using the negative log-likelihood loss, which can be formu-
lated as

LS2G(θ) = E[− log p(G | S; θ)]

= E

[
− log

L

∏
i=0

L

∏
j=0

p
(
rij | ei, ej, S; θ

)] (10)

where θ is the network parameter set of the deep learning network, which is shown in
Figure 3.

Utilizing the loss function LS2G, the optimal parameter set θ∗ can be easily found
using the gradient descent method. Consequently, the details of the proposed semantic
extraction method can be summarized in Algorithm 1.

Algorithm 1 The proposed semantic extraction method

Input: the transmitted sentence S
1: Build entity set E by Equation (5)
2: for each eni ∈ E do
3: Compute the embedding ei by Equations (6) and (7)
4: end for
5: Construct the relation set according to Equation (8)
6: Compute loss function LS2G(θ) according to Equation (10)
7: Train θ → θ∗

Output: The knowledge graph G

3.2. Semantic Restoration Method

The proposed semantic restoration method—similar to the proposed semantic extrac-
tion method—uses deep learning to generate sentences from the received knowledge graph.
The generated sentence can help the receiver understand the semantics of the transmitted
sentence. Let G2Sϕ(•) be the function of the proposed semantic restoration. The input of
G2Sϕ(•) is the received knowledge graph Ĝ and its output is the restored sentence Ŝ. The
deep learning network structure for the semantic restoration method is shown in Figure 4.

Figure 4. The deep learning network structure for the semantic restoration method.

At first, we encoded the received knowledge graph Ĝ to convert it to the embedding,
which could be processed by the deep learning network. Specifically, we used the graph
attention network (GAT) [42] to calculate the embedding of the received knowledge graph
Ĝ. GAT is a representative graph convolutional network that can encode the knowledge
graph by introducing the attention mechanism into the knowledge graph. Therefore, the
embedding of Ĝ can be represented as

h = GAT(Ĝ) (11)
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After obtaining the embedding h, we used the recurrent neural network (RNN) and
the attention mechanism to generate the sentence word by word. Each step of RNN can
produce a word embedding. In the ith step, the embedding bi can be represented as

bi = RNN(bi−1, wi−1) (12)

where wi−1 is the i − 1th word in the generated sentence, bi−1 is the embedding produced
in the i − 1th step. To improve the accuracy of the generated sentence, the attention
mechanism was used to obtain the embedding of contextual information. The formula can
be described as

ci = ATTENTION(bi, h) (13)

where ci denotes the contextual information of the ith word. Then we fed the word
embedding bi and the contextual information ci into a multilayer perceptron (MLP) to
generate the ith word wi.

Consequently, the generation of wi based on the received knowledge graph Ĝ and
all previously generated words w<i was fulfilled by predicting the word wi through MLP
with the assistance of the word embedding bi and the contextual information ci. Thus, the
probability of recovering word wi can be represented as

p(wi|w<i, Ĝ) ∝ exp(MLP([bi; ci])) (14)

In summary, the probability of generating a sentence from the received knowledge
graph Ĝ is equivalent to the product of the probability of generating each word. The
probability can be described as

p(Ŝ|Ĝ) = ∏ p
(
wi | w<i, Ĝ

)
(15)

Similarly, we used the negative log-likelihood loss to denote the loss function of
the proposed semantic restoration method according to the probability p(Ŝ|Ĝ). The loss
function can be represented as

LG2S(ϕ) = E[− log p(Ŝ | Ĝ; ϕ)]

= E
[
− log ∏ p

(
wi | w<i, Ĝ; ϕ

)] (16)

where ϕ is the network parameter set of the deep learning network, which is shown in
Figure 4. Finally, the gradient descent can be used to find the optimal parameter set ϕ∗ for
minimizing the loss function LG2S(ϕ).

The details of the proposed semantic restoration process are summarized in Algorithm 2.

Algorithm 2 The proposed semantic restoration method

Input: the received knowledge graph Ĝ
1: Compute the embedding of Ĝ by Equation (11)
2: while wi is not the satisfied end feature do
3: Compute bi by Equation (12)
4: Compute the contextual information ci by Equation (13)
5: Generate word wi according to Equation (14)
6: end while
7: Compute the loss function LG2S(ϕ) according to Equation (16)
8: Train ϕ → ϕ∗

Output: the knowledge graph Ŝ
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3.3. System Process

In this section, we introduce the overall process of the proposed semantic commu-
nication system. Let S = [w1, w2, · · · , wm] be the transmitted sentence, where wm is the
mth word in the sentence. As shown in Figure 5, with the help of the proposed semantic
extraction method S2Gθ(•), the transmitter converts the transmitted sentence S to the
knowledge graph G, which can be represented as G = S2Gθ(S). The knowledge graph G
consists of n triplets and it can be formulated as G = [g1, g2, · · · , gn].

Figure 5. The overall process of the proposed semantic communication system based on the knowl-
edge graph, combining the proposed semantic extraction method, the proposed semantic restoration
method, and the traditional communication architecture.

Using the proposed semantic extraction method, the transmitted sentence is converted
into a series of triplets. In this process, the semantics of the transmitted sentence are
extracted without losing semantics [13]. During transmission, these triplets are independent
of each other, which means that errors in some triplets will not affect other triplets. However,
in Markov models, once there is a transmission error, the whole transmitted sentence will
be affected. Therefore, the proposed semantic communication system is more robust under
a low SNR. Moreover, different semantic basic symbols (triplets) have semantic importance
in semantic communication, unlike bits or symbols that are treated equally in traditional
communication, such as longer-range models and Markov chain-based probabilistic models.
These triplets (with semantic importance) should be treated differently. The triplets with
important semantics should be allocated with many time slots and bandwidth resources.
When the channel quality is extremely poor, instead of transmitting all triplets, which
cannot be guaranteed by the channel, it is better to ensure that the most important triplet
can be transmitted correctly. When the channel quality is better, the system can adjust the
sending content according to semantic importance. Motivated by the different triplets with
semantic importance, we sort these triplets according to their semantic similarity scores:

simv(s, gi) =
v(s) · (v(gi))

T

‖ v(s) ‖ · ‖ v(gi) ‖
(17)

where gi denotes the ith triplet in G. Table 1 shows an example of semantic importance.
From Table 1, “< Steve Jobs – founder-Apple>” is more important than “< Steve Jobs –
graduate-Reed College >”, which is also in line with human perception.

Table 1. An example of semantic importance.

Sentence Triplets of Knowledge Graph Semantic Similarity

Steve Jobs, a graduate of Reed
College, is the founder of Apple

Steve Jobs – graduate-Reed College 0.56
Steve Jobs – founder-Apple 0.73
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Based on the sorted triplets, we can adaptively adjust the number of transmitted
triplets according to the channel quality. When the channel quality is extremely poor, we
only transmit the most significant triplet and use the communication resources of triplets
not transmitted to protect it. As the channel quality improves, we increase the number of
transmitted triplets.

After the transmitted knowledge graph G is obtained, the transmitter first maps it into
a binary bit stream B = T(G), and then feeds the binary bit stream into the channel encoder
to cope with the effects of channel noise and distortion. Therefore, the whole process of the
transmitter can be represented as

X = C(T(G)) (18)

where T(•) and C(•) denote the source encoder and the channel encoder, respectively. If X
is sent, the received signal can be represented as

Y = HX + N (19)

where H is the channel coefficient and N ∼ CN
(
0, σ2

n
)

denotes the additive white Gaus-
sian noise.

After obtaining the received signal, the receiver will decode it to recover the transmit-
ted knowledge graph. Defining C−1(•) and T−1(•) as the channel decoder and the source
decoder, respectively, the received knowledge graph Ĝ can be represented as

Ĝ = T−1
(

C−1(Y)
)

(20)

Then we use the proposed semantic restoration method G2Sϕ(•) to obtain the restored
sentence Ŝ.

Ŝ = G2Sϕ(Ĝ) (21)

The process of the proposed semantic communication system is shown in Algorithm 3.

Algorithm 3 Process of the proposed semantic communication system.

Input: The transmitted sentence S
1: Transmitter:
2: Extract the knowledge graph by Algorithm 1
3: for i = 1 to n do
4: Compute the semantic importance of gi by Equation (17)
5: end for
6: Sort the knowledge graph according to the semantic importance
7: Adjust the number of transmitted triplets according to the channel quality
8: C(T(G)) → X
9: Transmit X over the channel

10: Receiver:
11: Receive Y
12: T−1(C−1(Y)

)
→ Ĝ

13: Restore the sentence Ŝ by Algorithm 2
Output: The restored sentence Ŝ

4. Experimental Results

In this section, we compare the proposed SCKG with other traditional models under
different channels, including the AWGN channel and the Rayleigh fading channel to verify
the effectiveness of SCKG. In Table 2, we introduce the models used in the experiments,
including their general features and technical methods. It is worth noting that the traditional
communication models are not the only ones mentioned in Table 2. The source coding
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can also choose arithmetic coding, L–Z coding, and other coding methods. Identically, the
channel coding can also choose turbo code, polar code, and other coding methods.

Table 2. Introduction to the proposed model and other traditional models.

Model General Features Technical Methods

SCKG

(1) Adding the semantic ex-
traction module and semantic
restoration module into tradi-
tional communication architec-
ture. (2) Using triplets as seman-
tic basic symbols for semantic
extraction and restoration.

(1) Semantic extraction—
network structure using
NER + LSTM. (2) Semantic
restoration—network struc-
ture using GAT + RNN +
ATTENTION.

Huffman [43] + LDPC [44]

(1) Using the traditional com-
munication architecture from
Shannon’s information theory.
(2) Using Huffman coding as
source coding and using LDPC
coding as channel coding.

(1) Convert transmitted sen-
tences to bit sequences by us-
ing Huffman coding. (2) Using
LDPC coding to combat chan-
nel distortion.

DeepNN [23]

(1) Using the deep neural
network for source-channel
joint coding. (2) Replacing
source encoding and channel
encoding with the encoder
of the deep neural network.
(3) Replacing source decoding
and channel decoding with the
decoder of the deep neural
network.

(1) Encoder—network structure
using BILSTM. (2) Decoder—
network structure using
LSTM.

4.1. Experimental Settings

In the simulation, the adopted dataset was the WebNLG dataset [45], which is usually
used to generate sentences from knowledge graphs. Each data in the dataset consists of
multiple triplets and their corresponding sentences. After preprocessing the dataset, we
obtained 12,597 training data, 1746 validation data, and 2493 test data. The training and
testing environment was Ubuntu16.04+CUDA10.1, the selected deep learning framework
was PyTorch 1.6.0. The training settings of the semantic extraction method and the semantic
restoration method are shown in Table 3.

Table 3. Training settings for semantic extraction and restoration method.

Type
Parameters for Semantic

Extraction Method
Parameters for Semantic

Restoration Method

Epochs 50 50
Batch size 32 32
Optimizer Adam Adam

Learning rate 5 × 10−5 2 × 10−4

Drop 0 0.1

In the experiment, the test data of WebNLG were transmitted sentence-by-sentence to
the transmitter. Then we obtained the restored sentences by using the above-mentioned
methods at the receiver. After the restored sentences were obtained, the experimental
results could be calculated according to the performance metrics.

For the benchmark, we adopted the traditional communication architecture with
source coding and channel coding, where source coding could use Huffman coding, arith-
metic coding, L–Z coding, etc., and channel coding could use LDPC coding, turbo code,
polar code, etc. For simplicity, we adopted the combination of Huffman coding and LDPC
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coding (named “Huffman + LDPC”). Moreover, we considered another two methods as
ablation experiments to validate the effectiveness of the proposed model. One involved
using the proposed model without adaptive transmission and semantic restoration (named
the “Proposed model without AT and SR”), and the other involved using the proposed
model without adaptive transmission (named the “Proposed model without AT”).

4.2. Experimental Result Analysis
4.2.1. Performance of the Proposed Semantic Communication System

First, we investigated the effects of the number of triplets on the semantic perfor-
mance under different SNRs. Here, we considered three strategies, one strategy was to
send the first triplet (named “Send the 1st triplet”), and the other two schemes involved
sending 50% triplets (named “Send 50% triplets”) and 100% triplets (named “Send 100%
triplets”), respectively. Moreover, we compared these three strategies with the benchmark
and an end-to-end deep learning-based communication system proposed in [23] (named
DeepNN). Figure 6 shows the performance of the semantic similarity versus the SNR in this
experiment. From Figure 6, “Send the 1st triplet” has the best semantic similarity under
a low SNR because it uses the most resources to protect the first triplet. With the SNR
becoming better, “Send 50% triplets” has better performance because “Send the 1st triplet”
transmits limited semantics, and the accuracy of the scheme “Send 100% triplets” cannot be
guaranteed due to the channel distortion. The semantic similarity of “Send 100% triplets” is
above the others at a high SNR, which is reasonable due to the error-free transmission when
the channel quality is good. Meanwhile, all three strategies outperformed the benchmark
and DeepNN in their superior SNR regions. According to Figure 6, it is reasonable to send
the most important triplet in the low SNR region, send 50% triplets in the medium SNR
region, and send 100% triplets in the high SNR region.

Figure 6. Semantic similarity versus the SNR under the AWGN channel, with send the 1st triplet;
send 50% triplets; send 100% triplets; Huffman + LDPC; DeepNN.

Figure 7 demonstrates the relationship between the SNR and the BLEU score under
the AWGN channel. From Figure 7, the proposed model performs better under a low
SNR in terms of the 1-gram BLEU score or 2-gram BLEU score due to the protection of
important triplets. Moreover, after converting the received triplets into sentences by using
the proposed semantic restoration method, “Proposed model without AT” outperforms
“Proposed model without AT and SR” for all SNR regimes. However, the performance of
the proposed model is inferior to the traditional communication system in the high SNR
region in Figure 7. This is because the proposed semantic restoration method attempts
to recover the same semantic rather than the same sentence structure. For example, the
transmitted sentence is “Steve Jobs was the founder of Apple”, and the restored sentence is
“Steve Jobs founded Apple”. Although the two sentences are semantically consistent, the
BLEU score of the proposed scheme is poor.
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(a) (b)

Figure 7. BLEU score versus the SNR over the AWGN channel. (a) BLEU(1-gram) score over the
AWGN channel. (b) BLEU(2-gram) score over the AWGN channel.

Figure 8 shows the relationship between the SNR and the BLEU score under the
Rayleigh fading channel. All scores in Figure 8 are lower than the scores in Figure 7 because
of the severe impacts of Rayleigh fading. However, the proposed model significantly
improves performance compared to the benchmark. From Figure 8, the proposed model
outperforms the benchmark across the SNR range over the Rayleigh fading channel, either
the 1-gram BLEU score or the 2-gram BLEU score. It reflects that our proposed model is
more robust to complex communication environments. Meanwhile, since “Proposed model
without AT” and “Send 100% triplets” are identical in the high SNR region, the results of
the proposed model and “Proposed model without AT” are the same when the SNR is
higher than 2 dB.

(a) (b)

Figure 8. BLEU score versus the SNR over the Rayleigh fading channel. (a) BLEU(1-gram) score over
the Rayleigh fading channel. (b) BLEU(2-gram) score over the Rayleigh fading channel.

Since BLEU is an evaluation metric that calculates scores based on word matching,
sentence sizes can affect the performance of our proposed model. To research this, we
divided the transmitted sentences into three groups—sentence length between 0 and 15,
sentence length between 15 and 30, and sentence length greater than 30. Figure 9 shows
the relationship between the SNR and the (1-gram) BLEU score under the AWGN channel
and the Rayleigh fading channel, respectively. From Figure 9a, “Sentence Length (0, 15)” is
significantly higher than the other two groups. This is because the proposed model only
transmits the most important triplet in the low SNR, and the length of the restored sentence
is limited. In the low SNR region, the BLEU score decreases as the sentence length increases.
With the SNR increasing, the number of the transmitted triplets increases, and the gaps
between the different groups narrow. In Figure 9b, the gaps between the different groups
are not obvious due to the effects of Rayleigh fading.
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(a) (b)

Figure 9. BLEU (1-gram) score versus the SNR with sentence length (0, 15). Sentence Length (15, 30);
sentence length (>30). (a) BLEU (1-gram) score over the AWGN channel. (b) BLEU (1-gram) score
over the Rayleigh fading channel.

Figure 10 shows the METEOR score versus the SNR over the AWGN channel and the
Rayleigh fading channel. From Figure 10a, the score of the benchmark is close to 1 and
higher than our proposed model when the SNR is above 4 dB. This is because the few errors
that occurred during the transmission were corrected by the channel coding at a high SNR;
the benchmark could restore the transmitted sentence without distortion. However, our
proposed model discards the information of sentence structure during transmission. When
the SNR is less than 4 dB, the channel coding cannot correct all errors during transmission.
In this situation, the METEOR score of the benchmark degrades rapidly. However, the
proposed model reduces the number of transmitted triplets and protects important triplets
in this case, which leads to a better performance in the low SNR region. From Figure 10b,
even under the Rayleigh fading channel, our model outperforms the benchmark in all
SNR regions.

(a) (b)

Figure 10. (a) METEOR score versus the SNR over the AWGN channel. (b) METEOR score versus
the SNR over the Rayleigh fading channel.

Figure 11 draws the relationship between the SNR and the semantic similarity under
the AWGN channel and the Rayleigh fading channel. From Figure 11, the “Proposed model
without AT and SR” outperforms the benchmark in the low SNR region under the AWGN
channel, while it outperforms the benchmark in all SNR regions under the Rayleigh fading
channel. This is because our proposed model splits the transmitted sentence into multiple
independent triplets, leading to that, the wrongly transmitted triplets will not affect the
semantics of other triplets. However, the benchmark model transmits the sentence as
a whole, and if errors occur in the transmission, then the semantics of the sentence are
affected. Therefore, when the channel quality is poor, our proposed model can preserve
partially correct semantics. Meanwhile, since the semantic similarity based on the BERT
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model can capture semantic relationships among words, the proposed scheme obtains a
higher similarity compared with the BLEU score and METEOR score.

(a) (b)

Figure 11. (a) Semantic similarity versus the SNR over the AWGN channel. (b) Semantic similarity
versus the SNR over the Rayleigh fading channel.

To ensure the fairness of the comparison of experimental results, we computed the
time complexities of all strategies. We transmitted 1000 sentences from the transmitter to
the receiver by using different strategies and calculated the average execution time. All
tests were run on Python and were performed by the computer with AMD Ryzen 7 4800H
and NVIDIA GeForce GTX 3060. The results are shown in Table 4. From Table 4, our
proposed model increases the computational complexity and improves communication
reliability.

Table 4. The time complexity of all strategies.

Strategies Time Complexity/s

Huffman + LDPC 2.7324
Proposed model without AT and SR 3.1638

Proposed model without AT 3.7742
Proposed model 3.8539

4.2.2. Comparison with Other Semantic Communication Models

To validate that our proposed model is more competitive than existing research,
we compared it with the scheme from [23], which adopts an end-to-end deep learning-
based communication system for text transmission (named DeepNN). Figure 12 shows the
relationship between the SNR and the semantic similarity performance over the AWGN
channel. From Figure 12, our proposed model outperforms DeepNN across the entire
SNR region. The reasons are two-fold. First, by using triplets as semantic basic symbols,
our proposed model can extract lossless semantics. Moreover, the important triplets are
allocated more transmission resources in our proposed model, which effectively protects
the importance of the semantics. However, DeepNN uses a fixed bit length to encode
sentences of different lengths, resulting in a partial loss of semantics.
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Figure 12. Semantic similarity of our proposed model and DeepNN versus the SNR over the
AWGN channel.

5. Conclusions

In this paper, the reliable semantic communication assisted by the knowledge graph
was studied, which overcomes the problem that the meaning of data represented by
the features of the deep learning model cannot be explainable [26,28]. Specifically, we
proposed a semantic extraction scheme that transforms the transmitted sentence into
multiple triplets with semantic importance. Moreover, an adaptive transmission scheme
is proposed, in which the important triplets are allocated more communication resources
to combat channel distortion. Moreover, a semantic restoration scheme was designed to
reconstruct the sentence and recover the whole semantic at the receiver. The simulation
results show that the proposed system outperforms the traditional schemes in improving
communication reliability, especially in the low SNR regime. However, the optimal number
of triplets transmitted over a specific channel is still an ’open question’. In the future,
more work is needed to analyze the relationship between the number of triplets and the
channel quality.
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Abstract: Caching technique is a promising approach to reduce the heavy traffic load and improve
user latency experience for the Internet of Things (IoT). In this paper, by exploiting edge cache
resources and communication opportunities in device-to-device (D2D) networks and broadcast
networks, two novel coded caching schemes are proposed that greatly reduce transmission latency
for the centralized and decentralized caching settings, respectively. In addition to the multicast gain,
both schemes obtain an additional cooperation gain offered by user cooperation and an additional
parallel gain offered by the parallel transmission among the server and users. With a newly established
lower bound on the transmission delay, we prove that the centralized coded caching scheme is
order-optimal, i.e., achieving a constant multiplicative gap within the minimum transmission delay.
The decentralized coded caching scheme is also order-optimal if each user’s cache size is larger
than a threshold which approaches zero as the total number of users tends to infinity. Moreover,
theoretical analysis shows that to reduce the transmission delay, the number of users sending signals
simultaneously should be appropriately chosen according to the user’s cache size, and always letting
more users send information in parallel could cause high transmission delay.

Keywords: coded cache; cooperation; device-to-device; transmission delay

1. Introduction

With the rapid development of Internet of Things (IoT) technologies, IoT data traffic,
such as live streaming and on-demand video streaming, has grown dramatically over the
past few years. To reduce the traffic load and improve the user latency experience, the
caching technique has been viewed as a promising approach that shifts the network traffic
to low congestion periods. In the seminal paper [1], Maddah-Ali and Niesen proposed a
coded caching scheme based on centralized file placement and coded multicast delivery
that achieves a significantly larger global multicast gain compared to the conventional
uncoded caching scheme.

The coded caching scheme has attracted wide and significant interest. The coded
caching scheme was extended to a setup with decentralized file placement, where no
coordination is required for the file placement [2]. For the cache-aided broadcast network,
ref. [3] showed that the rate–memory tradeoff of the above caching system is within a factor
of 2.00884. For the setting with uncoded file placement where each user stores uncoded
content from the library, refs. [4,5] proved that Maddah-Ali and Niesen’s scheme is optimal.
In [6], both the placement and delivery phases of coded caching are depicted using a
placement delivery array (PDA), and an upper bound for all possible regular PDAs was
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established. In [7], the authors studied a cached-aided network with heterogeneous setting
where the user cache memories are unequal. More asymmetric network settings have
been discussed, such as coded caching with heterogeneous user profiles [8], with distinct
sizes of files [9], with asymmetric cache sizes [10–12] and with distinct link qualities [13].
The settings with varying file popularities have been discussed in [14–16]. Coded caching
that jointly considers various heterogeneous aspects was studied in [17]. Other works on
coded caching include, e.g., cache-aided noiseless multi-server network [18], cache-aided
wireless/noisy broadcast networks [19–22], cache-aided relay networks [23–25], cache-
aided interference management [26,27], coded caching with random demands [28], caching
in combination networks [29], coded caching under secrecy constraints [30], coded caching
with reduced subpacketization [31,32], the coded caching problem where each user requests
multiple files [33], and a cache-aided broadcast network for correlated content [34], etc.

A different line of work is to study the cached-aided networks without the presence
of a server, e.g., the device-to-device (D2D) cache-aided network. In [35], the authors
investigated coded caching for wireless D2D network [35], where users locate in a fixed
mesh topology wireless D2D network. A D2D system with selfish users who do not
participate in delivering the missing subfiles to all users was studied in [36]. Wang et al.
applied the PDA to characterize cache-aided D2D wireless networks in [37]. In [38], the
authors studied the spatial D2D networks in which the user locations are modeled by
a Poisson point process. For heterogeneous cache-aided D2D networks where users are
equipped with cache memories of distinct sizes, ref. [39] minimized the delivery load by
optimizing over the partition during the placement phase and the size and structure of
D2D during the delivery phase. A highly dense wireless network with device mobility was
investigated in [40].

In fact, combining the cache-aided broadcast network with the cache-aided D2D
network can potentially reduce the transmission latency. This hybrid network is common
in many practical distributed systems such as cloud network [41], where a central cloud
server broadcasts messages to multiple users through the cellular network, and meanwhile
users communicate with each other through a fiber local area network (LAN). A potential
scenario is that users in a moderately dense area, such as a university, want to download
files, such as movies, from a data library, such as a video service provider. It should be
noted that the user demands are highly redundant, and the files need not only be stored by
a central server but also partially cached by other users. Someone can attain the desired
content through both communicating with the central server and other users such that the
communication and storage resources can be used efficiently. Unfortunately, there is very
little research investigating the coded caching problem for this hybrid network. In this
paper, we consider such hybrid cache-aided network where a server consisting of N ∈ Z+

files connects with K ∈ Z+ users through a broadcast network, and meanwhile the users
can exchange information via a D2D network. Unlike the settings of [35,38], in which each
user can only communicate with its neighboring users via spatial multiplexing, we consider
the D2D network as either an error-free shared link or a flexible routing network [18].
In particular, for the case of the shared link, all users exchange information via a shared
link. In the flexible routing network, there exists a routing strategy adaptively partitioning
all users into multiple groups, in each of which one user sends data packets error-free to the
remaining users in the corresponding group. Let α ∈ Z be the number of groups who send
signals at the same time, then the following fundamental questions arise for this hybrid
cache-aided network:

• How does α affect the system performance?
• What is the (approximately) optimal value of α to minimize the transmission latency?
• How can communication loads be allocated between the server and users to achieve the

minimum transmission latency?

In this paper, we try to address these questions, and our main contributions are
summarized as follows:
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• We propose novel coded caching schemes for this hybrid network under centralized
and decentralized data placement. Both schemes efficiently exploit communication
opportunities in D2D and broadcast networks, and appropriately allocate communi-
cation loads between the server and users. In addition to multicast gain, our schemes
achieve much smaller transmission latency than both that of Maddah-Ali and Niesen’s
scheme for a broadcast network [1,2] and the D2D coded caching scheme [35]. We
characterize a cooperation gain and a parallel gain achieved by our schemes, where the
cooperation gain is obtained through cooperation among users in the D2D network,
and the parallel gain is obtained through the parallel transmission between the server
and users.

• We prove that the centralized scheme is order-optimal, i.e., achieving the optimal
transmission delay within a constant multiplicative gap in all regimes. Moreover,
the decentralized scheme is also optimal when the cache size of each user M is larger
than the threshold N(1 − K−1

√
1/(K + 1)) that is approaching zero as K → ∞.

• For the centralized data placement case, theoretical analysis shows that α should
decrease with the increase of the user caching size. In particular, when each user’s
caching size is sufficiently large, only one user should be allowed to send information,
indicating that the D2D network can be just a simple shared link connecting all users.
For the decentralized data placement case, α should be dynamically changing accord-
ing to the sizes of subfiles created in the placement phase. In other words, always
letting more users parallelly send information can cause a high transmission delay.

Please note that the decentralized scenario is much more complicated than the central-
ized scenario, since each subfile can be stored by s = 1, 2, . . . , K users, leading to a dynamic
file-splitting and communication strategy in the D2D network. Our schemes, in particular
the decentralized coded caching scheme, differ greatly with the D2D coded caching scheme
in [35]. Specifically, ref. [35] considered a fixed network topology where each user connects
with a fixed set of users, and the total user cache sizes must be large enough to store all files
in the library. However, in our schemes, the user group partition is dynamically changing,
and each user can communicate with any set of users via network routing. Moreover, our
model has the server share communication loads with the users, resulting in an alloca-
tion problem on communication loads between the broadcast network and D2D network.
Finally, our schemes achieve a tradeoff between the cooperation gain, parallel gain and
multicast gain, while the schemes in [1,2,35] only achieve the multicast gain.

The remainder of this paper is as follows. Section 2 presents the system model,
and defines the main problem studied in this paper. We summarize the obtained main
results in Section 3. Following that is a detailed description of the centralized coded
caching scheme with user cooperation in Section 4. Section 5 extends the techniques we
developed for the centralized caching problem to the setting of decentralized random
caching. Section 6 concludes this paper.

2. System Model and Problem Definition

Consider a cache-aided network consisting of a single server and K users as depicted
in Figure 1. The server has a library of N independent files W1, . . . , WN . Each file Wn,
n = 1, . . . , N, is uniformly distributed over

[2F] � {1, 2, . . . , 2F},

for some positive integer F. The server connects with K users through a noisy-free shared
link but rate-limited to a network speed of C1 bits per second (bits/s). Each user k ∈ [K] is
equipped with a cache memory of size MF bits, for some M ∈ [0, N], and can communicate
with each other via a D2D network.

We mainly focus on two types of D2D networks: a shared link as in [1,2] and a flexible
routing network introduced in [18]. In the case of a shared link, all users connect with each
other through a shared error-free link but rate-limited to C2 bits/s. In the flexible routing
network, K users can arbitrarily form multiple groups via network routing, in each of
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which at most one user can send error-free data packets at a network speed C2 bits/s to the
remaining users within the group. To unify these two types of D2D networks, we introduce
an integer αmax ∈ {1, �K

2 �}, which denotes the maximum number of groups allowed to
send data parallelly in the D2D network. For example, when αmax = 1, the D2D network
degenerates into a shared link, and when αmax = �K

2 �, it turns to be the flexible network.

Server

User 1

User 2

User K

Figure 1. Caching system considered in this paper. A server connects with K cache-enabled users
and the users can cooperate through a flexible network.

The system works in two phases: a placement phase and a delivery phase. In the
placement phase, all users will access the entire library W1, . . . , WN and fill the content to
their caching memories. More specifically, each user k, for k ∈ [K], maps W1, . . . , WN to its
cache content:

Zk � φk(W1, . . . , WN), (1)

for some caching function

φk : [2F]N → [�2MF�]. (2)

In the delivery phase, each user requests one of the N files from the library. We denote
the demand of user k as dk ∈ [N], and its desired file as Wdk

. Let d � (d1, . . . , dK) denotes
the request vector. In this paper, we investigate the worst request case where each user
makes a unique request.

Once the request vector d is informed to the server and all users, the server produces
the symbol

X � fd(W1, . . . , WN), (3)

and broadcasts it to all users through the broadcast network. Meanwhile, user k ∈ {1, . . . , K}
produces the symbol (Each user k can produce Xk as a function of Zk and the received
signals sent by the server, but because all users can access to the server’s signal due to the
fact that the server broadcasts its signals to the network, it is equivalent to generating Xk as
a function Zk).

Xk � fk,d(Zk), (4)

and sends it to a set of intended users Dk ⊆ [K] through the D2D network. Here, Dk repre-
sents the set of destination users served by node k, fd and fk,d are some encoding functions

fd : [2F]N → [�2R1F�], fk,d : [�2MF�] → [�2R2F�], (5)

where R1 and R2 denote the transmission rate sent by the server in the broadcast network
and by each user in the D2D network, respectively. Here we focus on the symmetric case
where all users have the same transmission rate. Due to the constraint of αmax, at most
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αmax users can send signals parallelly in each channel use. The set of αmax users who send
signals in parallel could be adaptively changed in the delivery phase.

At the end of the delivery phase, due to the error-free transmission in the broadcast
and D2D networks, user k observes symbols sent to them, i.e., (Xj : j ∈ [K], k ∈ Dj),
and decodes its desired message as Ŵdk

= ψk,d(X, (Xj : j ∈ [K], k ∈ Dj), Zk), where ψk,d is
a decoding function.

We define the worst-case probability of error as

Pe � max
d∈Fn

max
k∈[K]

Pr
(
Ŵdk


= Wdk

)
. (6)

A coded caching scheme (M, R1, R2) consists of caching functions {φk}, encoding
functions { fd, fk,d} and decoding functions {ψk,d}. We say that the rate region (M, R1, R2)
is achievable if for every ε > 0 and every large enough file size F, there exists a coded
caching scheme such that Pe is less than ε.

Since the server and the users send signals in parallel, the total transmission delay,
denoted by T, can be defined as

T � max{R1F
C1

,
R2F
C2

}. (7)

The optimal transmission delay is T∗ � inf{T : T is achievable}. For simplicity, we assume
that C1 = C2 = F, and then from (7) we have

T = max{R1, R2}. (8)

When C1 
= C2, e.g., C1 : C2 = 1/k, one small adjustment allowing our scheme to con-
tinue to work is multiplying λ by 1/(k(1 − λ) + λ), where λ is a devisable parameter
introduced later.

Our goal is to design a coded caching scheme to minimize the transmission delay.
Finally, in this paper we assume K ≤ N and M ≤ N. Extending the results to other
scenarios is straightforward, as mentioned in [1].

3. Main Results

We first establish a general lower bound on the transmission delay for the system
model described in Section 2, then present two upper bounds of the optimal transmission
delay achieved by our centralized and decentralized coded caching schemes, respectively.
Finally, we present the optimality results of these two schemes.

Theorem 1 (Lower Bound). For memory size 0 ≤ M ≤ N, the optimal transmission delay is
lower bounded by

T∗ ≥ max
{

1
2

(
1 − M

N

)
, max

s∈[K]

(
s − KM

�N/s�
)

, max
s∈[K]

(
s − sM

�N/s�
) 1

1 + αmax

}
. (9)

Proof. See the proof in Appendix A.

3.1. Centralized Coded Caching

In the following theorem, we present an upper bound on the transmission delay for
the centralized caching setup.
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Theorem 2 (Upper Bound for the Centralized Scenario). Let t � KM/N ∈ Z+, and α ∈ Z+.
For memory size M ∈ {0, N

K , 2N
K , . . . , N}, the optimal transmission delay T∗ is upper bounded by

T∗ ≤ Tcentral, where

Tcentral � min
α≤αmax

K
(

1− M
N

) 1
1+t+α min{�K

α �−1, t}
. (10)

For general 0 ≤ M ≤ N, the lower convex envelope of these points is achievable.

Proof. See scheme in Section 4.

The following simple example shows that the proposed upper bound can greatly
reduce the transmission delay.

Example 1. Consider a network described in Section 2 with KM/N = K − 1. The coded caching
scheme without D2D communication [1] has the server multicast an XOR message useful for all K
users, achieving the transmission delay K

(
1 − M

N
) 1

1+t =
1
K . The D2D coded caching scheme [35]

achieves the transmission delay N
M (1− M

N ) = 1
K−1 . The achievable transmission delay in Theorem 2

equals 1
2K−1 by letting α = 1, almost twice as short as the transmission delay of previous schemes if

K is sufficiently large.

From (10), we obtain that the optimal value of α, denoted by α∗, equals 1 if t ≥ K − 1
and to αmax if t ≤ � K

αmax
�−1. When ignoring all integer constraints, we obtain α∗ = K

t+1 .
We rewrite this choice as follows:

α∗ =

⎧⎪⎨⎪⎩
1, t ≥ K − 1,

K/(t + 1), �K/αmax�−1< t<K−1,

αmax, t ≤ �K/αmax�−1.

(11)

Remark 1. From (11), we observe that when M is small such that t ≤ �K/αmax�−1, we have
α∗ = αmax. As M is increasing, α∗ becomes K/(t + 1), smaller than αmax. When M is sufficiently
large such that M ≥ (K− 1)N/K, only one user should be allowed to send information, i.e., α∗ = 1.
This indicates that letting more users parallelly send information could be harmful. The main reason
for this phenomenon is the existence of a tradeoff between the multicast gain, cooperation gain and
parallel gain, which will be introduced below in this section.

Comparing Tcentral with the transmission delay achieved by Maddah-Ali and Niesen’s
scheme for the broadcast network [1], i.e., K

(
1− M

N
) 1

1+t , Tcentral consists of an additional factor

Gcentral,c �
1

1 + α
1+t min{�K

α �−1, t}
, (12)

referred to as centralized cooperation gain, as it arises from user cooperation. Comparing
Tcentral with the transmission delay achieved by the D2D coded caching scheme [35],
i.e., N

M (1 − M
N ), Tcentral consists of an additional factor

Gcentral,p � 1
1 + 1

t +
α
t min{�K

α �−1, t}
, (13)

referred to as centralized parallel gain, as it arises from parallel transmission among the
server and users. Both gains depend on K, M/N and αmax.
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Substituting the optimal α∗ into (12), we have

Gcentral,c =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

1 + t
K + t

, t ≥ K − 1,

1 + t
K − K

t+1+t
, � K

αmax
�−1< t<K−1,

1 + t
αmaxt + t + 1

, t ≤ � K
αmax

�−1.

(14)

When fixing (K, N, αmax), Gcentral,c in general is not a monotonic function of M. More
specifically, when M is small enough such that t < � K

αmax
�−1, the function Gcentral,c is

monotonically decreasing, indicating that the improvement caused by introducing D2D
communication. This is mainly because relatively larger M allows users to share more
common data with each other, providing more opportunities on user cooperation. However,
when M grows larger such that t ≥ � K

αmax
�−1, the local and global caching gains become

dominant, and less improvement can be obtained from user cooperation, turning Gcentral,c
to a monotonic increasing function of M,

Similarly, substituting the optimal α∗ into (13), we obtain

Gcentral,p =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

t
K + t

, t ≥ K − 1,

t
t·K
t+1 + t + 1

, � K
αmax

�−1< t<K−1,

t
αmaxt + t + 1

, t ≤ � K
αmax

�−1.

(15)

Equation (15) shows that Gcentral,p is monotonically increasing with t, mainly due to the
fact that when M increases, more content can be sent through the D2D network without the
help of the central server, decreasing the improvement from parallel transmission between
the server and users.

The centralized cooperation gain (12) and parallel gain (13) are plotted in Figure 2
when N = 40, K = 20 and αmax = 5.
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Figure 2. Centralized cooperation gain and parallel gain when N = 40, K = 20 and αmax = 5.

Remark 2. Larger α could lead to better parallel and cooperation gain (more uses can concurrently
multicast signals to other users), but will result in worse multicast gain (signals are multicast to
fewer users in each group). The choice of α in (11) is in fact a tradeoff between the multicast gain,
parallel gain and cooperation gain.

The proposed scheme achieving the upper bound in Theorem 2 is order-optimal.

Theorem 3. For memory size 0 ≤ M ≤ N,

Tcentral
T∗ ≤ 31. (16)
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Proof. See the proof in Appendix B.

The exact gap of Tcentral/T∗ could be much smaller. One could apply the method
proposed in [3] to obtain a tighter lower bound and shrink the gap. In this paper, we only
prove the order optimality of the proposed scheme, and leave the work of finding a smaller
gap as the future work.

Figure 3 plots the lower bound (9) and upper bounds achieved by various schemes,
including the proposed scheme, the scheme Maddah-Ali 2014 in [1] which considers the
broadcast network without D2D communication, and the scheme Ji 2016 in [35], which
considers the D2D network without server. It is obvious that our scheme outperforms the
previous schemes and approaches closely to the lower bound.
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Figure 3. Transmission delay when N = 40, K = 20 and αmax = 5. The upper bounds are achieved
under the centralized caching scenario.

3.2. Decentralized Coded Caching

We exploit the multicast gain from coded caching, D2D communication, and parallel
transmission between the server and users, leading to the following upper bound.

Theorem 4 (Upper Bound for the Decentralized Scenario). Define p � M/N. For memory
size 0 ≤ M ≤ N, the optimal transmission delay T∗ is upper bounded by

T∗ ≤ Tdecentral � max
{

R∅,
RsRu

Rs + Ru − R∅

}
, (17)

where

R∅ �K(1 − p)K, (18)

Rs �
1 − p

p
(
1 − (1 − p)K), (19)

Ru � 1
αmax

� K
αmax �−1

∑
s=2

( s(K
s )

s − 1
ps−1(1−p)K−s+1)+ K

∑
s=� K

αmax �

(K(K−1
s−1 )

f (K, s)
ps−1(1−p)K−s+1), (20)

with

f (K, s) �

⎧⎨⎩�K
s
�(s − 1), (K mod s) < 2,

K − 1 − �K/s�, (K mod s) ≥ 2.
(21)

Proof. Here, R∅ represents the transmission rate of sending contents that are not cached
by any user, Rs and Ru represent the transmission rate sent by the server via the broad-
cast network, and the transmission rate sent by users via the D2D network, respectively.
Equation (17) balances the communication loads assigned to the server and users. See more
detailed proof in Section 5.
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The key idea of the scheme achieving (17) is to partition K users into �K
s � groups

for each communication round s ∈ [K − 1], and let each group perform the D2D coded
caching scheme [35] to exchange information. The main challenge is that that among all �K

s �
groups, there are �K

s � groups of the same size s, and an abnormal group of size (K mod s) if
(K mod s) 
= 0, leading to an asymmetric caching setup. One may use the scheme [35] for
the groups of size s, for the group of size (K mod s) ≥ 2, but how to exploit the caching
resource and communication capability of all groups while balancing communication
loads among the two types of groups to minimize the transmission delay remains elusive
and needs to be carefully designed. Moreover, this challenge poses complexities both in
establishing the upper bound and in optimality proof.

Remark 3. The upper bound in Theorem 4 is achieved by setting the number of users that exactly
send signals in parallel as follows:

αD =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
αmax, case 1,

�K
s
�, case 2,

�K
s
�, case 3.

(22)

If �K
s � > αmax, the number of users who send data in parallel is smaller than αmax, indicating

that always letting more users parallelly send messages could cause higher transmission delay.
For example, when K ≥ 4, s = K − 1 and αmax = �K

2 �, we have αD = 1 < αmax.

Remark 4. From the definitions of Tdecentral, Rs, Ru and R∅, it is easy to obtain that R∅ ≤
Tdecentral ≤ Rs,

Tdecentral =

⎧⎨⎩
RsRu

Rs + Ru − R∅
, Ru ≥ R∅,

R∅, Ru < R∅,
(23)

Tdecentral decreases as αmax increases, and Tdecentral increases as Ru increases if Ru ≥ R∅.

Due to the complex term Ru, Tdecentral in Theorem 4 is hard to evaluate. Since Tdecentral
is increasing as Ru increases (see Remark 4), substituting the following upper bound of Ru
into (17) provides an efficient way to evaluate Tdecentral.

Corollary 1. For memory size 0 ≤ p ≤ 1, the upper bound of Ru is given below:

• αmax = 1 (a shared link):

Ru ≤1 − p
p

[
1 − 5

2
Kp
(
1 − p

)K−1 − 4
(
1 − p

)K
+

3(1 − (1 − p)K+1)

(K + 1)p

]
; (24)

• αmax = �K
2 � (a flexible network):

Ru ≤K(1 − p)
(K − 1)

[
1 −

(
1 − p

)K−1− 2/p
K−2

(
1−(1−p)K−Kp(1−p)K−1)]. (25)

Proof. See the proof in Appendix C.

Recall that the transmission delay achieved by the decentralized scheme without D2D
communication [2] is equal to Rs given in (19). We define the ratio between Tdecentral and
Rs as decentralized cooperation gain:

Gdecentral,c � max{R∅
Rs

,
Ru

Rs + Ru − R∅
}, (26)
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with Gdecentral,c ∈ [0, 1] because of R∅ ≤ Rs. Similar to the centralized scenario, this gain
arises from the coordination between users in the D2D network. Moreover, we also com-
pare Tdecentral with the transmission delay (1 − p)/p, achieved by the D2D decentralized
coded caching scheme [35], and define the ratio between Rs and (1 − p)/p as decentralized
parallel gain:

Gdecentral,p � Gdecentral,c ·
(

1 − (1 − p)K
)

, (27)

where Gdecentral,p ∈ [0, 1] arises from the parallel transmission between the server and
the users.

We plot the decentralized cooperation gain and parallel gain for the two types of
D2D networks in Figure 4 when N = 20 and K = 10. It can be seen that Gdecentral,c and
Gdecentral,p in general are not monotonic functions of M. Here Gdecentral,c performs in a way
similar to Gcentral,c. When M is small, the function Gdecentral,c is monotonically decreasing
from value 1 until reaching the minimum. For larger M, the function Gdecentral,c turns to
monotonically increase with M. The reason for this phenomenon is that in the decentralized
scenario, when M increases, the proportion of subfiles that are not cached by any user and
must be sent by the server is decreasing. Thus, there are more subfiles that can be sent
parallelly via D2D network as M increases. Meanwhile, the decentralized scheme in [2]
offers an additional multicasting gain. Therefore, we need to balance these two gains to
reduce the transmission delay.
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Figure 4. Decentralized cooperation gain and parallel gain when N = 20 and K = 10.

The function Gdecentral,p behaves differently as it monotonically increases when M is
small. After reaching the maximal value, the function Gdecentral,p decreases monotonically
until meeting the local minimum (The abnormal bend in parallel gain when αmax = �K

2 �
comes from a balance effect between the Gdecentral,c and 1− (1− p)K in (27)), then Gdecentral,p
turns to be a monotonic increasing function for large M. Similar to the centralized case,
as M increases, the impact of parallel transmission among the server and users becomes
smaller since more data can be transmitted by the users.

Theorem 5. Define p � M/N and pth � 1 −
( 1

K+1
) 1

K−1 , which tends to 0 as K tends to infinity.
For memory size 0 ≤ M ≤ N,

• if αmax = 1 (shared link), then
Tdecentral

T∗ ≤ 24;

• if αmax = �K
2 �, then

Tdecentral
T∗ ≤

⎧⎪⎨⎪⎩max
{

6, 2K
( 2K

2K + 1

)K−1
}

, p < pth,

6, p ≥ pth.
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Proof. See the proof in Appendix D.

Figure 5 plots the lower bound in (9) and upper bounds achieved by various decen-
tralized coded caching schemes, including our scheme, the scheme Maddah-Ali 2015 in [2]
which considers the case without D2D communication, and the scheme Ji 2016 in [35] which
considers the case without server.
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Figure 5. Transmission delay when N = 100, K = 20 and αmax = 3. The upper bounds are achieved
under the decentralized random caching scenario.

4. Coding Scheme under Centralized Data Placement

In this section, we describe a novel centralized coded caching scheme for arbitrary K,
N and M such that t = KM/N is a positive integer. The scheme can be extended to the
general case 1 ≤ t ≤ K by following the same approach as in [1].

We first use an illustrative example to show how we form D2D communication
groups, split files and deliver data, and then present our generalized centralized coding
caching scheme.

4.1. An Illustrative Example

Consider a network consisting of K = 6 users with cache size M = 4, and a library
of N = 6 files. Thus, t = KM/N = 4. Divide all six users into two groups of equal size,

and choose an integer L1 = 2 that guarantees K(K−1
t )L1

min{α(�K/α�−1),t} to be an integer. (According
to (11) and (29), one optimal choice could be (α = 1, L1 = 4, λ = 5/9), here we choose
(α = 2, L1 = 2, λ = 1/3) for simplicity, and also in order to demonstrate that even
with a suboptimal choice, our scheme still outperforms that in [1,35]). Split each file Wn,
for n = 1, . . . , N, into 3(6

4) = 45 subfiles:

Wn = (Wl
n,T : l ∈ [3], T ⊂ [6], |T | = 4).

We list all the requested subfiles uncached by all users as follows: for l = 1, 2, 3,

Wl
d1,{2,3,4,5}, Wl

d1,{2,3,4,6}, Wl
d1,{2,3,5,6}, Wl

d1,{2,4,5,6}, Wl
d1,{3,4,5,6};

Wl
d2,{1,3,4,5}, Wl

d2,{1,3,4,6}, Wl
d2,{1,3,5,6}, Wl

d2,{1,4,5,6}, Wl
d2,{3,4,5,6};

Wl
d3,{1,2,4,5}, Wl

d3,{1,2,4,6}, Wl
d3,{1,2,5,6}, Wl

d3,{1,4,5,6}, Wl
d3,{2,4,5,6};

Wl
d4,{1,2,3,5}, Wl

d4,{1,2,3,6}, Wl
d4,{1,2,5,6}, Wl

d4,{1,3,5,6}, Wl
d4,{2,3,5,6};

Wl
d5,{1,2,3,4}, Wl

d5,{1,2,3,6}, Wl
d5,{1,2,4,6}, Wl

d5,{1,3,4,6}, Wl
d5,{2,3,4,6};

Wl
d6,{1,2,3,4}, Wl

d6,{1,2,3,5}, Wl
d6,{1,2,4,5}, Wl

d6,{1,3,4,5}, Wl
d6,{2,3,4,5}.

The users can finish the transmission in different partitions. Table 1 shows the trans-
mission in four different partitions over the D2D network.

51



Entropy 2022, 24, 1034

Table 1. Subfiles sent by users in different partition, l = 1, 2.

{1, 2, 3} {4, 5, 6}
user 2: W1

d1,{2,3,4,5}⊕W1
d3,{1,2,4,5} user 5: W1

d4,{2,3,5,6}⊕W1
d6,{2,3,4,5}

user 2: W1
d1,{2,3,4,6}⊕W1

d3,{1,2,4,6} user 5: W1
d4,{1,2,5,6}⊕W1

d6,{1,2,4,5}
user 1: W1

d2,{1,3,4,6}⊕W1
d3,{1,2,5,6} user 4: W1

d5,{2,3,4,6}⊕W1
d6,{1,3,4,5}

user 3: W1
d1,{2,3,5,6}⊕W1

d2,{1,3,5,6} user 6: W1
d4,{1,3,5,6}⊕W1

d5,{1,3,4,6}

{1, 2, 4} {3, 5, 6}
user 2: Wl

d1,{2,4,5,6}⊕Wl
d4,{1,2,3,5} user 5: Wl

d3,{1,4,5,6}⊕Wl
d6,{1,2,3,5}

{1, 4, 6} {2, 3, 5}
user 6: Wl

d1,{3,4,5,6}⊕Wl
d4,{1,2,3,6} user 3: Wl

d2,{3,4,5,6}⊕Wl
d5,{1,2,3,4}

{1, 2, 5} {3, 4, 6}
user 1: Wl

d2,{1,4,5,6}⊕Wl
d5,{1,2,3,6} user 4: Wl

d3,{2,4,5,6}⊕Wl
d6,{1,2,3,4}

{1, 2, 3} {4, 5, 6}
user 3: W2

d1,{2,3,4,5}⊕W2
d2,{1,3,4,5} user 4: W2

d5,{2,3,4,6}⊕W2
d6,{2,3,4,5}

user 3: W2
d1,{2,3,4,6}⊕W2

d2,{1,3,4,6} user 4: W2
d5,{1,2,4,6}⊕W2

d6,{1,2,4,5}
user 2: W2

d1,{2,3,5,6}⊕W2
d3,{1,2,4,5} user 5: W2

d4,{1,3,5,6}⊕W2
d6,{1,3,4,5}

user 1: W2
d3,{1,2,4,6}⊕W2

d2,{1,3,5,6} user 6: W2
d4,{1,2,5,6}⊕W2

d5,{1,3,4,6}
user 1: W2

d3,{1,2,5,6}⊕W1
d2,{1,3,4,5} user 6: W1

d5,{1,2,4,6}⊕W2
d4,{2,3,5,6}

In Table 1, all users first send XOR symbols with superscript l = 1. Please note that

the subfiles W1
d2,{1,3,4,5} and W1

d5,{1,2,4,6} are not delivered at the beginning since K(K−1
t )

α(�K/α�−1)

is not an integer. Similarly, for subfiles with l = 2, W2
d3,{1,2,5,6} and W2

d4,{2,3,5,6} remain
to be sent to user 3 and 4. In the last transmission, user 1 delivers the XOR message
W2

d3,{1,2,5,6} ⊕ W1
d2,{1,3,4,5} to user 2 and 3, and user 6 multicasts W1

d5,{1,2,4,6} ⊕ W2
d4,{2,3,5,6} to

user 5 and 6. The transmission rate in the D2D network is R2 = 1
3 .

For the remaining subfiles with superscript l = 3, the server delivers them in the
same way as in [1]. Specifically, it sends symbols ⊕k∈SW3

dk ,S\{k}, for all S ⊆ [K] :

|S| = 5. Thus, the rate sent by the server is R1 = 2
15 , and the transmission delay

Tcentral = max{R1, R2} = 1
3 , which is less than the delay achieved by the coded caching

schemes for the broadcast network [1] and the D2D communication [35], respectively.

4.2. The Generalized Centralized Coding Caching Scheme

In the placement phase, each file is first split into (K
t ) subfiles of equal size. More

specifically, split Wn into subfiles as follows: Wn = (Wn,T : T ⊂ [K], |T | = t). User k caches
all the subfiles if k ∈ T for all n = 1, ..., N, occupying the cache memory of MF bits. Then

split each subfile Wn,T into two mini-files as Wn,T =
(

Ws
n,T , Wu

n,T
)

, where

|Ws
n,T | = λ · |Wn,T | = λ · F

(K
t )

,

|Wu
n,T | = (1 − λ) · |Wn,T | = (1 − λ) · F

(K
t )

,
(28)

with

λ =
1 + t

α min{�K
α � − 1, t}+ 1 + t

. (29)
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Here, the mini-file Ws
n,T and Wu

n,T will be sent by the server and users, respectively. For
each mini-file Wu

n,T , split it into L1 pico-files of equal size (1 − λ) · F
L1(

K
t )

, i.e., Wu
n,T =(

Wu,1
n,T , . . . , Wu,L1

n,T
)

, where L1 satisfies

K · (K−1
t ) · L1

α min{�K
α � − 1, t}

∈ Z+. (30)

As we will see later, condition (29) ensures that communication loads can be optimally
allocated between the server and the users, and (30) ensures that the number of subfiles is
large enough to maximize multicast gain for the transmission in the D2D network.

In the delivery phase, each user k requests file Wdk
. The request vector d = (d1, d2, . . . , dK)

is informed by the server and all users. Please note that different parts of file Wdk
have been

stored in the user cache memories, and thus the uncached parts of Wdk
can be sent both by

the server and users. Subfiles(
Wu,1

dk ,T , . . . , Wu,L1
dk ,T : T ⊂ [K], |T | = t, k /∈ T

)
are requested by user k and will be sent by the users via the D2D network. Subfiles(

Ws
dk ,T : T ⊂ [K], |T | = t, k /∈ T

)
are requested by user k and will be sent by the server via the broadcast network.

First consider the subfiles sent by the users. Partition the K users into α groups of
equal size:

G1, . . . ,Gα,

where for i, j = 1, . . . , α, Gi ⊆ [K] : |Gi| = �K/α�, and Gi ∩ Gj = ∅, if i 
= j. In each group
Gi, one of �K/α� users plays the role of server and sends symbols based on its cached
contents to the remaining (�K/α� − 1) users within the group.

Focus on a group Gi and a set S ⊂ [K] : |S| = t + 1. If Gi ⊆ S , then all nodes in Gi
share subfiles

(Wu,l
n,T : l ∈ [L1], n ∈ [N],Gi ⊆ T , |T | = t).

In this case, user k ∈ Gi sends XOR symbols that contains the requested subfiles useful to
all remaining �K/α� − 1 users in Gi, i.e., ⊕j∈Gi\{k}Wu,l(k,Gi ,S)

dj ,S\{j} , where l(k,Gi,S) ∈ [L1] is a

function of (k,Gi,S) which avoids redundant transmission of any fragments.
If S ⊆ Gi, then the nodes in S share subfiles

(Wu,l
n,T : l ∈ [L1], n ∈ [N], T ⊂ S , |T | = t).

In this case, user k ∈ S sends an XOR symbol that contains the requested subfiles for all
remaining t − 1 users in S , i.e., ⊕j∈S\{k}Wu,l(k,Gi ,S)

dj ,S\{j} . Other groups perform the similar steps

and concurrently deliver the remaining requested subfiles to other users.
By changing group partition and performing the delivery strategy described above,

we can send all the requested subfiles

(Wu,1
dk ,T , . . . , Wu,L1

dk ,T : T ⊂ [K], |T | = t, k /∈ T )K
k=1 (31)

to the users.
Since α groups send signals in a parallel manner (α users can concurrently deliver

contents), and each user in a group delivers a symbol containing min{�K/α� − 1, t} non-
repeating pico-files requested by other users, in order to send all requested subfiles in (31),
we need to send in total
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K · (K−1
t ) · L1

α min{�K
α � − 1, t}

(32)

XOR symbols, each of size 1−λ

(K
t )

F bits. Notice that L1 is chosen according to (30), ensuring

that (32) equals to an integer. Thus, we obtain R2 as

R2 =
KL1 · (K−1

t )

α min{�K
α � − 1, t}

· 1 − λ

L1(
K
t )

= K
(

1− M
N

) 1
1+t+α min{�K

α �−1, t}
, (33)

where the last equality holds by (29).
Now consider the delivery of the subfiles sent by the server. Apply the delivery

strategy as in [1], i.e., the server broadcasts

⊕k∈SWs
dk ,S\{k}

to all users, for all S ⊆ [K] : |S| = t + 1. We obtain the transmission rate of the server

R1 =λ · K
(

1 − M
N

)
· 1

1 + t

=K
(

1− M
N

) 1
1+t+α min{�K

α �−1, t}
. (34)

From (33) and (34), we can see that the choice λ in (29) guarantees equal communication
loads at the server and users. Since the server and users transmit the signals simultane-
ously, the transmission delay of the whole network is the maximum between R1 and R2,
i.e., Tcentral = max{R1, R2} = K(1−M/N)

1+t+α min{�K/α�−1,t} , for some α ∈ [αmax].

5. Coding Scheme under Decentralized Data Placement

In this section, we present a novel decentralized coded caching scheme for joint
broadcast network and D2D network. The decentralized scenario is much more complicated
than the centralized scenario, since each subfile can be stored by s = 1, 2, . . . , K users,
leading to a dynamic file-splitting and communication strategy in the D2D network. We
first use an illustrative example to demonstrate how we form D2D communication groups,
split data and deliver data, and then present our generalized coding caching scheme.

5.1. An Illustrative Example

Consider a joint broadcast and D2D network consisting of K = 7 users. When using
the decentralized data placement strategy, the subfiles cached by user k can be written as(

Wn,T : n ∈ [N], k ∈ T , T ⊆ [7]
)

. (35)

We focus on the delivery of subfiles Wn,T : n ∈ [N], k ∈ T , |T | = s = 4, i.e., each subfile
is stored by s = 4 users. A similar process can be applied to deliver other subfiles with
respect to s ∈ [K]\{4}.

To allocate communication loads between the server and users, we divide each subfile
into two mini-files Wn,T =

(
Ws

n,T , Wu
n,T
)

, where mini-files {Ws
n,T } and {Wu

n,T } will be
sent by the server and users, respectively. To reduce the transmission delay, the size of
Ws

n,T and Wu
n,T need to be chosen properly such that R1 = R2, i.e., the transmission rate of

the server and users are equal; see (37) and (39) ahead.
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Divide all the users into two non-intersecting groups (Gr
1,Gr

2), for r ∈ [35] which satisfies

Gr
1 ⊂ [K],Gr

2 ⊂ [K], |Gr
1| = 4, |Gr

2| = 3,Gr
1 ∩ Gr

2 = ∅.

There are (7
4) = 35 kinds of partitions in total, thus r ∈ [35]. Please note that for any

user k ∈ Gr
i , |Gr

i | − 1 of its requested mini-files are already cached by the rest users in Gr
i ,

for i = 1, 2.
To avoid repetitive transmission of any mini-file, each mini-file in

(Wu
dk ,T \{k} : T ⊆ [7], k ∈ [7])

is divided into non-overlapping pico-files Wu1
dk ,T \{k} and Wu2

dk ,T \{k}, i.e.,

Wu
dk ,T \{k} = (Wu1

dk ,T \{k}, Wu2
dk ,T \{k}).

The sizes of Wu1
n,T and Wu2

n,T need to be chosen properly to have equal transmission rate of
group Gr

1 and Gr
2; see (51) and (52) ahead.

To allocate communication loads between the two different types of groups, split each
Wu1

dk ,T \{k} and Wu2
dk ,T \{k} into 3 and two equal fragments, respectively, e.g.,

Wu1
d2,{1,3,4} =

(
Wu1,1

d2,{1,3,4}, Wu1,2
d2,{1,3,4}, Wu1,3

d2,{1,3,4}

)
,

Wu2
d2,{1,3,4} =

(
Wu2,1

d2,{1,3,4}, Wu2,2
d2,{1,3,4}

)
.

During the delivery phase, in each round, one user in each group produces and
multicasts an XOR symbol to all other users in the same group, as shown in Table 2.

Table 2. Parallel user delivery when K = 7, s = 4, Gr
1 = 4 and Gr

2 = 3, r ∈ [35].

{1, 2, 3, 4} {5, 6, 7}
user 1: Wu1,1

d2,{1,3,4}⊕ Wu1,1
d3,{1,2,4}⊕ Wu1,1

d4,{1,2,3} user 5: ∪
x∈{1,2,3,4}

Wu2,1
d6,{5,7,x}⊕ Wu2,1

d7,{5,6,x}

user 2: Wu1,1
d1,{2,3,4}⊕ Wu1,2

d3,{1,2,4}⊕ Wu1,2
d4,{1,2,3} user 6: ∪

x∈{1,2,3,4}
Wu2,1

d5,{6,7,x}⊕ Wu2,2
d7,{5,6,x}

user 3: Wu1,2
d2,{1,3,4}⊕ Wu1,2

d1,{2,3,4}⊕ Wu1,3
d4,{1,2,3} user 7: ∪

x∈{1,2,3,4}
Wu2,2

d6,{5,7,x}⊕Wu2,2
d5,{6,7,x}

user 4: Wu1,3
d2,{1,3,4}⊕ Wu1,3

d3,{1,2,4}⊕ Wu1,3
d1,{2,3,4}

{1, 2, 3, 5} {4, 6, 7}
user 1: Wu1,1

d2,{1,3,5}⊕Wu1,1
d3,{1,2,5}⊕Wu1,1

d5,{1,2,3} user 4: ∪
x∈{1,2,3,5}

W
u2,y(..)
d6,{4,7,x}⊕W

u2,y(..)
d7,{4,6,x}

user 2: Wu1,1
d1,{2,3,5}⊕Wu1,2

d3,{1,2,5}⊕Wu1,2
d5,{1,2,3} user 6: ∪

x∈{1,2,3,5}
Wu2,1

d4,{6,7,x}⊕W
u2,y(..)
d7,{4,6,x}

user 3: Wu1,2
d2,{1,3,5}⊕Wu1,2

d1,{2,3,5}⊕Wu1,3
d5,{1,2,3} user 7: ∪

x∈{1,2,3,5}
W

u2,y(..)
d6,{4,7,x}⊕Wu2,2

d4,{6,7,x}
user 5: Wu1,3

d2,{1,3,5}⊕Wu1,3
d3,{125}⊕Wu1,3

d1,{235}

{1, 2, 3, 6} {4, 5, 7}
user 1: Wu1,1

d2,{1,3,6}⊕Wu1,1
d3,{1,2,6}⊕Wu1,1

d6,{1,2,3} user 4: ∪
x∈{1,2,3,6}

W
u2,y(..)
d5,{4,7,x}⊕W

u2,y(..)
d7,{4,5,x}

user 2: Wu1,1
d1,{2,3,6}⊕Wu1,2

d3,{1,2,6}⊕Wu1,2
d6,{1,2,3} user 5: ∪

x∈{1,2,3,6}
Wu2,1

d4,{5,7,x}⊕W
u2,y(..)
d7,{4,5,x}

user 3: Wu1,2
d2,{1,3,6}⊕Wu1,2

d1,{2,3,6}⊕Wu1,3
d6,{1,2,3} user 7: ∪

x∈{1,2,3,6}
W

u2,y(..)
d5,{4,7,x}⊕Wu2,2

d4,{5,7,x}
user 6: Wu1,3

d2,{1,3,6}⊕Wu1,3
d3,{1,2,6}⊕Wu1,3

d1,{2,3,6}

· · · · · · · · · · · · · · · · · ·
There should be 35 partitions in total while the table only shows three partitions.

Please note that in this example, each group only appears one time among all parti-
tions. However, for some other values of s, each group could appear multiple times in
different partitions. For example, when s = 2, group {1, 2} appears in both partitions
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{{1, 2}, {3, 4}, {5, 6, 7}} and {{1, 2}, {3, 5}, {4, 6, 7}}. To reduce the transmission delay, one
should balance communication loads between all groups, and between the server and
users as well.

5.2. The Generalized Decentralized Coded Caching Scheme

In the placement phase, each user k applies the caching function to map a subset of
MF
N bits of file Wn, n = 1, ..., N, into its cache memory at random: Wn =

(
Wn,T : T ⊆ [K]

)
.

The subfiles cached by user k can be written as
(

Wn,T : n ∈ [N], k ∈ T , T ⊆ [K]
)

. When
the size of file F is sufficiently large, by the law of large numbers, the subfile size with high
probability can be written by

|Wn,T | ≈ p|T |(1 − p)K−|T |. (36)

The delivery procedure can be characterized into three different levels: allocating
communication loads between the server and user, inner-group coding (i.e., transmission
in each group) and parallel delivery among groups.

5.2.1. Allocating Communication Loads between the Server and User

To allocate communication loads between the server and users, split each subfile Wn,T ,
for T ⊆ [K] : T 
= ∅, into two non-overlapping mini-files

Wn,T =
(

Ws
n,T , Wu

n,T
)

,

where
|Ws

n,T | = λ · |Wn,T |,
|Wu

n,T | = (1 − λ) · |Wn,T |,
(37)

and λ is a design parameter whose value is determined in Remark 5.
Mini-files (Ws

dk ,T \{k} : k ∈ [K]) will be sent by the server using the decentralized coded
caching scheme for the broadcast network [2], leading to the transmission delay

λRs = λ
1 − M/N

M/N

(
1 −

(
1 − M

N
)K
)

, (38)

where Rs is defined in (19).
Mini-files (Wu

dk ,T \{k} : k ∈ [K]) will be sent by users using parallel user delivery de-
scribed in Section 5.2.3. The corresponding transmission rate is

R2 = (1 − λ)Ru, (39)

where Ru represents the transmission bits sent by each user normalized by F.
Since subfile Wdk ,∅ is not cached by any user and must be sent exclusively from the

server, the corresponding transmission delay for sending (Wdk ,∅ : k ∈ [K]) is

R∅ = K
(
1 − M

N
)K, (40)

where R∅ coincides with the definition in (18).
By (38)–(40), we have

R1 = R∅ + λRs, R2 = (1 − λ)Ru. (41)

According to (8), we have Tdecentral = max{R1, R2}.
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Remark 5 (Choice of λ). The parameter λ is chosen such that Tdecentral is minimized. If Ru < R∅,
then the inequality R2 ≤ R1 always holds and Tdecentral reaches the minimum Tdecentral = R∅

with λ = 0. If Ru ≥ R∅, solving R1 = R2 yields λ = Ru−R∅
Rs+Ru

and Tdecentral =
RsRu

Rs+Ru−R∅
.

5.2.2. Inner-Group Coding

Given parameters (s,G , i, γ) where s ∈ [K − 1], G ⊆ [K], i ∈ {u, u1, u2} with indicators
u, u1, u2 described in (37) and (51), and γ ∈ Z+, we present how to successfully deliver

(Wi
dk ,S\{k} : ∀S ⊆ [K], |S| = s,G ⊆ S)

to every user k ∈ G via D2D communication.
Split each Wi

dk ,S\{k} into (|G| − 1)γ non-overlapping fragments of equal size, i.e.,

Wi
dk ,S\{k} =

(
Wi,l

dk ,S\{k} : l ∈ [(|G| − 1)γ]
)

, (42)

and each user k ∈ G takes turn to broadcast XOR symbol

Xi
k,G,s � ⊕j∈G\{k}Wi,l(j,G,S)

dj ,S\{j} , (43)

where l(k,G,S) ∈ [(|G| − 1)γ] is a function of (k,G,S) which avoids redundant trans-
mission of any fragments. The XOR symbol Xi

k,G,s will be received and decoded by the
remaining users in G.

For each group G, inner-group coding encodes in total (K−|G|
s−|G| ) of Wi

dk ,S\{k}, and each

XOR symbol Xi
k,G,s in (43) contains fragments required by |G| − 1 users in G.

5.2.3. Parallel Delivery among Groups

The parallel user delivery consists of (K − 1) rounds characterized by s = 2, . . . , K.
In each round s, mini-files

(Wu
dk ,T \{k} : ∀T ⊆ [K], |T | = s, k ∈ [K])

are recovered through D2D communication.
The key idea is to partition K users into �K

s � groups for each communication round
s ∈ {2, ..., K}, and let each group perform the D2D coded caching scheme [35] to exchange
information. If (K mod s) 
= 0, there will be �K

s � numbers of groups of the same size s,
and an abnormal group of size (K mod s), leading to an asymmetric caching setup. We
optimally allocate the communication loads between the two types of groups, and between
the broadcast network and D2D network as well.

Based on K, s and αmax, the delivery strategy in the D2D network is divided into
3 cases:

• Case 1: �K
s � > αmax. In this case, αmax users are allowed to send data simultaneously.

Select s · αmax users from all users and divide them into αmax groups of equal size s.
The total number of such kinds of partition is

β1 � (K
s )(

K−s
s ) · · · (K−s(αmax−1)

s )

αmax!
. (44)

In each partition, αmax users, selected from αmax groups, respectively, send data in
parallel via the D2D network.
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• Case 2: �K
s � ≤ αmax and (K mod s) < 2. In this case, choose (�K

s � − 1)s users from all
users and partition them into (�K

s � − 1) groups of equal size s. The total number of
such kind partition is

β2 � (K
s )(

K−s
s ) · · · (K−s(� K

s �−1)
s )

�K
s �!

. (45)

In each partition, (�K
s � − 1) users selected from (�K

s � − 1) groups of equal size s,
respectively, together with an extra user selected from the abnormal group of size
K − s(�K

s � − 1) send data in parallel via the D2D network.
• Case 3: �K

s � ≤ αmax and (K mod s) ≥ 2. In this case, every s users form a group,
resulting in �K

s � groups consisting of s�K
s � users. The remaining (K mod s) users

form an abnormal group. The total number of such kind of partition is

β3 = β2. (46)

In each partition, �K
s � users selected from �K

s � groups of equal size s, respectively,
together with an extra user selected from the abnormal group of size (K mod s) send
data in parallel via the D2D network.

Thus, the exact number of users who parallelly send signals can be written as follows:

αD =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
αmax, case 1,

�K
s
�, case 2,

�K
s
�, case 3.

(47)

Please note that each group G re-appears

NG � (K−s
s ) · · · (K−s·(αD−1)

s )

(αD − 1)!
(48)

times among [βc] partitions.
Now we present the decentralized scheme for these three cases as follows.
Case 1 (�K

s � > αmax): Consider a partition r ∈ [β1], denoted by

Gr
1, . . . ,Gr

αD
,

where |Gr
i | = s and Gr

i ∩ Gr
j = ∅, ∀i, j ∈ [αD] and i 
= j.

Since each group Gr
i re-appears NGr

i
times among [β1] partitions, and (|Gr

i | − 1) users
take turns to broadcast XOR symbols (43) in each group Gr

i , in order to guarantee that each
group can send a unique fragment without repetition, we split each mini-file Wu

dk ,S\{k} into
(|Gr

i | − 1)NGr
i

fragments of equal size.
Each group Gr

i , for r ∈ [β1] and i ∈ [αD], performs inner-group coding (see Section 5.2.2)
with parameters

(s,Gr
i , u, NGr

i
),

for all s satisfying �K
s � > αmax. For each round r, all groups Gr

1, . . . ,Gr
αD

parallelly send
XOR symbols containing |Gr

i | − 1 fragments required by other users of its group. By the
fact that the partitioned groups traverse every set T , i.e.,

T ⊆ {Gr
1 ∪ . . . ∪ Gr

αD
}β1

r=1, ∀T ⊆ [K] : |T | = s,
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and since inner-group coding enables each group Gr
i to recover

(Wu
dk ,S\{k} : ∀S ⊆ [K], |S| = s,Gr

i ⊆ S , k ∈ [K]),

we can recover all required mini-files

(Wu
dk ,T \{k} : ∀T ⊆ [K], |T | = s, k ∈ [K]).

The transmission delay of Case 1 in round s is thus

Ru
case1(s) � ∑

r∈[β1]
∑

k∈Gr
i

|Xu
k,Gr

i ,s|

(a)
=

K(K−1
s−1 )

αD(s − 1)
|Wu

dk ,T \{k}|

=
K(K−1

s−1 )

αmax(s − 1)
(1 − λ)ps−1(1 − p)K−s+1, (49)

where (a) follows by (44) and (48).
Case 2 (�K

s � ≤ αmax and (K mod s) < 2): We apply the same delivery procedure as
Case 1, except that β1 is replaced by β2 and αD = �K

s �. Thus, the transmission delay in
round s is

Ru
case2(s) =

K(K−1
s−1 )

αD(s − 1)
|Wu

dk ,T \{k}|

=
K(K−1

s−1 )

�K
s �(s − 1)

(1 − λ)ps−1(1 − p)K−s+1. (50)

Case 3 ( �K
s � ≤ αmax and (K mod s) ≥ 2): Consider a partition r ∈ [β3], denoted as

Gr
1, . . . ,Gr

αD
,

where Gr
i ⊆ [K], Gr

i ∩ Gr
j = ∅, ∀i, j ∈ [αD − 1] and i 
= j and Gr

αD
= [K]\(∪αD−1

i=1 Gr
i ) with

|Gr
i | = s, |Gr

αD
| = (K mod s).

Since group Gr
i : i ∈ [αD − 1] and Gr

αD
have different group sizes, we further split each

mini-file Wu
dk ,T \{k} into two non-overlapping fragments such that

|Wu1
dk ,T \{k}| = λ2|Wu

dk ,T \{k}|, (51)

|Wu2
dk ,T \{k}| = (1 − λ2)|Wu

dk ,T \{k}|,

where λ2 ∈ [0, 1] is a designed parameter satisfying (52).
Split each mini-file Wu1

dk ,S\{k} and Wu2
dk ,S\{k} into fragments of equal size:

Wu1
dk ,S\{k} =

(
Wu1,l

dk ,S\{k} : l ∈ [(s − 1)NGr
i
]
)

,

Wu2
dk ,S\{k} =

(
Wu2,l

dk ,S\{k} : l ∈
[(

|Gr
αD
| − 1

)( s − 1
|Gr

αD
| − 1

)
NGr

i

])
.

Following the similar encoding operation in (43), group Gr
i : i ∈ [αD − 1] and group

Gr
αD

send the following XOR symbols, respectively:

(
Xu1

k,Gr
i ,s : k ∈ Gr

i
)(αD−1)

i=1 ,
(
Xu2

k,Gr
αD ,s : k ∈ Gr

αD

)
.
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For each s ∈ {2, . . . , K}, the transmission delay for sending the XOR symbols above by
group Gr

i : i ∈ [αD − 1] and group Gr
� K

s �
can be written as

Ru1
case3(s) =

λ2K(K−1
s−1 )

(αD − 1)(s − 1)
· |Wu

dk ,T \{k}|,

Ru2
case3(s) =

(1 − λ2)K(K−1
s−1 )

(K mod s)− 1
· |Wu

dk ,T \{k}|,

respectively. Since Gi : i ∈ [�K
s �] and group G� K

s �
can send signals in parallel, by letting

Ru1
case3(s) = Ru2

case3(s), (52)

we eliminate the parameter λ2 and obtain the balanced transmission delay at users for
Case 3:

Ru
case3(s) �

K(K−1
s−1 )

K − 1 − �K
s �

(1 − λ)ps−1(1 − p)K−s+1. (53)

Remark 6. The condition �K
s � > αmax in Case 1 implies that s ≤ � K

αmax
� − 1. In this regime,

the transmission delay is given in (49). If s ≥ � K
αmax

� − 1 and (K mod s) < 2, scheme for Case 2
starts to work and the transmission delay is given in (50); If s ≥ � K

αmax
� − 1 and (K mod s) ≥ 2,

scheme for Case 3 starts to work and the transmission delay is given in (53).

In each round s ∈ {2, . . . , K}, all requested mini-files can be recovered by the delivery
strategies above. By Remark 6, the transmission delay in the D2D network is

R2 = (1−λ)
1

αmax

� K
αmax �−1

∑
s=2

[ s(K
s )

s − 1
ps−1(1−p)K−s+1]+ (1−λ)

K

∑
s=� K

αmax �

[K(K−1
s−1 )

f (K, s)
ps−1(1−p)K−s+1]

= (1 − λ)Ru, (54)

where Ru is defined in (20) and

f (K, s) �

⎧⎨⎩�K
s
�(s − 1), (K mod s) < 2,

K − 1 − �K/s�, (K mod s) ≥ 2.
(55)

6. Conclusions

In this paper, we considered a cache-aided communication via joint broadcast network
with a D2D network. Two novel coded caching schemes were proposed for centralized
and decentralized data placement settings, respectively. Both schemes achieve a parallel
gain and a cooperation gain by efficiently exploiting communication opportunities in the
broadcast and D2D networks, and optimally allocating communication loads between the
server and users. Furthermore, we showed that in the centralized case, letting too many
users parallelly send information could be harmful. The information theoretic converse
bounds were established, with which we proved that the centralized scheme achieves the
optimal transmission delay within a constant multiplicative gap in all regimes, and the
decentralized scheme is also order-optimal when the cache size of each user is larger than
a small threshold which tends to zero as the number of users tends to infinity. Our work
indicates that combining the cache-aided broadcast network with the cache-aided D2D
network can greatly reduce the transmission latency.
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Appendix A. Proof of the Converse

Let T∗
1 and T∗

2 denote the optimal rate sent by the server and each user. We first con-
sider an enhance system where every user is served by an exclusive server and user, which
both store full files in the database, then we are easy to obtain the following lower bound:

T∗ ≥ 1
2
(1 − M

N
). (A1)

Another lower bound follows similar idea to [1]. However, due to the flexibility of
D2D network, the connection and partitioning status between users can change during the
delivery phase, prohibiting the direct application of the proof in [1] into the hybrid network
considered in this paper. Moreover, the parallel transmission of the server and many users
creates abundant different signals in the networks, making the scenario more sophisticated.

Consider the first s users with cache contents Z1, ..., Zs. Define X1,0 as the signal
sent by the server, and X1,1, . . . , X1,αmax as the signals sent by the αmax users, respectively,
where Xj,i ∈ [�2T∗

2 F�] for j ∈ [s] and i ∈ [αmax]. Assume that W1, . . . , Ws are determined
by X1,0, X1,1, . . . , X1,αmax and Z1, . . . , Zs. Additionally, define X2,0, X2,1, . . . , X2,αmax as the
signals which enable the users to decode Ws+1, ..., W2s. Continue the same process such
that X�N/s�,0, X�N/s�,1, . . . , X�N/s�,αmax are the signals which enable the users to decode
Ws�N/s�−s+1, ..., Ws�N/s�. We then have Z1, . . . , Zs, X1,0, . . . , X�N/s�,0, and

X1,1, . . . , X1,αmax , . . . , X�N/s�,1, . . . , X�N/s�,αmax

to determine W1, . . . , Ws�N/s�. Let

X1:αmax � (X1,1, . . . , X1,αmax , . . . , X�N/s�,1, . . . , X�N/s�,αmax).

By the definitions of T∗
1 , T∗

2 and the encoding function (5), we have

H(X1,0, . . . , X�N/s�,0) ≤ �N/s�T∗
1 F, (A2)

H(X1:αmax) ≤ �N/s�αmaxT∗
2 F, (A3)

H(X1:αmax , Z1, . . . , Zs) ≤ KMF. (A4)

Consider the cut separating X1,0, . . . , X�N/s�,0, X1:αmax , and Z1, . . . , Zs from the corre-
sponding s users. By the cut-set bound and (A2), we have

�N
s
�sF ≤ �N

s
�T∗

1 F + KMF, (A5)

�N
s
�sF ≤ �N

s
�T∗

1 F + sMF + �N
s
�αmaxT∗

2 F. (A6)

Since we have T∗ ≥ T∗
1 and T∗ ≥ max{T∗

1 , T∗
2 } from the above definition, we obtain

T∗ ≥ max
s∈[K]

(s − KM
�N/s� ), (A7)

T∗ ≥ max
s∈[K]

(s − sM
�N/s� )

1
1 + αmax

. (A8)
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Appendix B

We prove that Tcentral is within a constant multiplicative gap of the minimum trans-
mission delay T∗ for all values of M. To prove the result, we compare them in the follow-
ing regimes.

• If 0.6393 < t < �K/α� − 1, from Theorem 1, we have

T∗ ≥ (s − Ms
�N/s� )

1
1 + αmax

(a)
≥ 1

12
· K
(

1 − M
N

) 1
1 + t

· 1
1 + αmax

,
(A9)

where (a) follows from [1] [Theorem 3]. Then we have

Tcentral
T∗ ≤ 12 · (1 + αmax)(1 + t)

1 + t + αt

= 12 · (1 + αmax)

1 + αt/(1 + t)

≤ 12 · (1 + αmax)

1 + α · 0.6393/(1 + 0.6393)

≤ 31, (A10)

where the last inequality holds by setting α = αmax.
• If t > �K/α� − 1, we have

Tcentral
T∗ ≤

K(1 − M
N ) 1

1+t+α(�K/α�−1)
1
2 (1 − M

N )

=
2K

1 + t + α(�K/α� − 1)
(a)
≤ 2K

K + KM/N
≤ 2, (A11)

where (a) holds by choosing α = 1.
• If t ≤ 0.6393, setting s = 0.275N, we have

T∗ ≥ s − KM
�N/s�

(a)
≥ s − KM

N/s − 1
= 0.275N − t · 0.3793N

≥ 0.0325N >
1

31
· N, (A12)

where (a) holds since �x� ≥ x − 1 for any x ≥ 1. Please note that for all values of M,
the transmission delay

Tcentral ≤ min{K, N}. (A13)

Combining with (A12) and (A13), we have Tcentral
T∗ ≤ 31.
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Appendix C

Appendix C.1. Case αmax = �K
2 �

When αmax = �K
2 �, we have

Ru = Ru-f �
K

∑
s=2

K(K−1
s−1 )

f (K, s)
ps−1qK−s+1, (A14)

where Ru-f denotes the user’s transmission rate for a flexible D2D network with αmax = �K
2 �.

In the flexible D2D network, at most �K
2 � users are allowed to transmit messages simulta-

neously, in which the user transmission turns to unicast.
Please note that in each term of the summation:

K(K−1
s−1 )

f (K, s)
≤

K(K−1
s−1 )

K − 1 − K
s

=
( K

K − 1
+

( K
K−1

)2

s − K
K−1

)
·
(

K − 1
s − 1

)

≤
K(K−1

s−1 )

K − 1
+

2K(K
s )

(K − 1)(K − 2)
, (A15)

where the last inequality holds by s ≥ K
K−1 + K−2

K−1 = 2 and( K
K−1

)2

s − K
K−1

(
K − 1
s − 1

)
=

K2(K−1
s−1 )

(K − 1)(K − 2)
·

K−2
K−1

s − K
K−1

≤
K2(K−1

s−1 )

(K − 1)(K − 2)
·

K−2
K−1 + K

K−1

s − K
K−1 + K

K−1

=
2K

(K − 1)(K − 2)
·
(

K
s

)
.

Therefore, by (A15), Ru-f can be rewritten as

Ru-f ≤
K

K − 1

K

∑
s=2

(
K − 1
s − 1

)
ps−1qK−s+1 +

2K
(K − 1)(K − 2)

K

∑
s=2

(
K
s

)
ps−1qK−s+1

=
Kq

K − 1
·

K−1

∑
i=1

(
K − 1

i

)
piqK−1−i +

2Kq/p
(K − 1)(K − 2)

·
K

∑
s=2

(
K
s

)
psqK−s

=
Kq

K − 1

(
1 − qK−1

)
+

2Kq/p
(K − 1)(K − 2)

·
(

1 − qK − KpqK−1
)

.

63



Entropy 2022, 24, 1034

Appendix C.2. Case αmax = 1

When αmax = 1, the cooperation network degenerates into a shared link where only
one user acts as the server and broadcasts messages to the remaining K − 1 users. A similar
derivation is given in [35]. In this case, Ru can be rewritten as

Ru =
K

∑
s=2

s(K
s )

s − 1
ps−1qK−s+1

≤
K

∑
s=2

(
1 +

3
s + 1

)(K
s

)
ps−1qK−s+1

=
K

∑
s=2

(
K
s

)
ps−1qK−s+1 +

3
K + 1

K

∑
s=2

(
K + 1
s + 1

)
ps−1qK−s+1

=
q
p

(
1 − qK − KpqK−1

)
+

3q/p2

K + 1

(
1 − qK+1 −

(
K + 1

)
pqK − K(K + 1)

2
p2qK−1

)
=

q
p

(
1 − 5

2
KpqK−1 − 4qK +

3(1 − qK+1)

(K + 1)p

)
,

where the inequality holds by the fact that s ≥ 2.

Appendix D

Appendix D.1. When αmax = �K
2 �

Recall that pth � 1 −
(

1
K+1

) 1
K−1

, which tends to zero as K goes to infinity. We first
introduce the following three lemmas.

Lemma A1. Given arbitrary convex function g1(p) and arbitrary concave function g2(p), if they
intersect at two points with p1 < p2, then g1(p) ≤ g2(p) for all p ∈ [p1, p2].

We omit the proof of Lemma A1 as it is straightforward.

Lemma A2. For memory size 0 ≤ p ≤ 1 and αmax = �K
2 �, we have

Ru ≥ R∅, Tdecentral =
RsRu

Rs + Ru − R∅
, for all p ∈ [pth, 1].

Proof. When αmax = �K
2 �, from Equation (20), we have

Ru =
K

∑
s=2

K(K−1
s−1 )

f (K, s)
ps−1(1 − p)K−s+1

≥ K
K

K−1

∑
x=1

(
K − 1

x

)
px(1 − p)K−x

= (1 − p)
(
1 − (1 − p)K−1), (A16)

where the first inequality holds by letting x = s − 1 and K
K−1−� K

s �
> K

K−1 . It is easy to show that

(1 − p)
(
1 − (1 − p)K−1) is a concave function of p by verifying ∂2(1−p)(1−(1−p)K−1)

∂p2 ≤ 0.

On the other hand, one can easily show that

R∅ = K(1 − p)K
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is a convex function of p by showing ∂2R∅(p)
∂p2 ≥ 0. Since the two functions (1 − p)

(
1 − (1 −

p)K−1) and R∅ intersect at pth = 1−
(

1
K+1

) 1
K−1

and p2 = 1 with pth ≤ p2, from Lemma A1
and (A16), we have

Ru ≥ (1 − p)
(
1 − (1 − p)K−1) ≥ R∅,

for all p ∈ [pth, 1]. From Remark 4, we know that Tdecentral =
RsRu

Rs+Ru−R∅
if Ru ≥ R∅

Lemma A3. For memory size 0 ≤ p ≤ 1 and αmax = �K
2 �, we have

RsRu

Rs + Ru − R∅
≤ 6T∗.

Proof. From (25) and (19), we have

Ru ≤ K
K − 1

·
(

q − qK
)
+

2K
(K − 1)(K − 2)

· q
p

(
1 − qK − KpqK−1

)
(a)
≤ K

K − 1
·
(

q − qK
)
+

2K
(K − 1)(K − 2)

· q
p

(
1 −

(
1 − Kp

)
− KpqK−1

)
=

K(3K − 2)
(K − 1)(K − 2)

·
(

q − qK
)

, (A17)

Rs =
q
p

(
1 − qK

) (b)
≤ q

p

(
1 −

(
1 − Kp

))
= Kq, (A18)

where (a) and (b) both follow from inequality(
1 − p

)K ≥
(
1 − Kp

)
. (A19)

Then, by Remark 4 and (A17), (A18) and definition of R∅ in (18), if αmax = �K
2 �, then

RsRu

Rs + Ru − R∅
≤

Kq · K(3K−2)
(K−1)(K−2)

(
q − qK)

Kq + K(3K−2)
(K−1)(K−2)

(
q − qK

)
− KqK

=
(

3 − 2
K

)
· q. (A20)

From Theorem 1, we have T∗ ≥ 1
2 q. Thus, we obtain

RsRu

Rs + Ru − R∅
· 1

T∗ ≤

(
3 − 2/K

)
· q

q/2
≤ 6 − 4

K
< 6.

Next, we use Lemmas A2 and A3 to prove that when αmax = �K
2 �,

Tdecentral
T∗ ≤

⎧⎪⎨⎪⎩max
{

6, 2K
( 2K

2K + 1

)K−1
}

, p < pth,

6, p ≥ pth.

Appendix D.1.1. Case αmax = �K
2 � and p ≥ pth

In this case, from Lemma A2, we have

Tdecentral =
RsRu

Rs + Ru − R∅
.
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Thus, from Lemma A3,

Tdecentral =
RsRu

Rs + Ru − R∅
≤ 6T∗.

Appendix D.1.2. Case αmax = �K
2 � and p ≤ pth

From the definition of Tdecentral in (17), we have

Tdecentral
T∗ = max{R∅

T∗ ,
RsRu

Rs + Ru − R∅
· 1

T∗ }. (A21)

From Lemma A3, we know that

RsRu

Rs + Ru − R∅
· 1

T∗ ≤ 6, (A22)

and thus only focus on the upper bound of R∅/T∗.
According to Theorem 1, T∗ has the following two lower bounds: T∗ ≥ 1−p

2 , and

T∗ ≥ max
s∈[K]

(
s − KM

�N/s�
)
≥ max

s∈[K]

(
s − KM

N/(2s)

)
.

Let R∗
1(p) � 1

2 (1 − p) and R∗
2(p) � (K − 2K2 p), then we have

T∗ ≥ max{R∗
1(p), R∗

2(p)}.

Here R∅/R∗
1(p) and R∅/R∗

2(p) both are monotonic functions of p according to the
following properties:

∂
(

R∅/R∗
1(p)

)
∂p

=
∂
(
2K(1 − p)K−1)

∂p
≤ 0,

∂
(

R∅/R∗
2(p)

)
∂p

=
∂
(
qK/(1 − 2Kp)

)
∂p

=
KqK−1(1 + 2(K − 1)p

)
(1 − 2Kp)2 ≥ 0.

Additionally, notice that if p = 0, then R∅
R∗

2(p) = 1 < R∅
R∗

1(p) , and if p = 1, R∅
R∗

2(p) >
R∅

R∗
1(p) = 1.

Therefore, the maximum value of R∅/ max{R∗
1, R∗

2} is chosen at p = 1
2K+1 which satisfying

R∗
1(

1
2K+1 ) = R∗

2(
1

2K+1 ), implying that

R∅
T∗ ≤

R∅(
1

2K+1 )

R∗
1(

1
2K+1 )

= 2K
( 2K

2K + 1

)K−1
. (A23)

From (A21)–(A23), we obtain the following equality:

Tdecentral
T∗ ≤ max

{
2K
( 2K

2K+1

)K−1
, 6
}

.

66



Entropy 2022, 24, 1034

Appendix D.2. When αmax = 1

From Equation (24), we obtain that

Ru ≤ q
p

(
1 − 5

2
KpqK−1 − 4qK +

3(1 − qK+1)

(K + 1)p

)
≤ q

p

(
1 − 5

2
KpqK−1 − 4qK +

3(K + 1)p
(K + 1)p

)
=

q
p

(
4 · (1 − qK)− 5

2
KpqK−1

)
≤ q

p
(4 · (1 − qK))

= 4Rs, (A24)

where the second inequality holds by (A19) and the last equality holds by the definition
Rs � q

p (1 − qK) in (19). On the other hand, rewrite the second lower bound of T∗:

T∗ ≥ max
s∈[K]

(
s − sM

�N/s�
) 1

1 + αmax
. (A25)

From the result in [2] (Appendix B), we have

Rs

maxs∈[K]
(
s − sM

�N/s�
) ≤ 12. (A26)

Combining (A24)–(A26), we have

Rs

T∗ ≤ 12(1 + αmax),
Ru

T∗ ≤ 48(1 + αmax). (A27)

If p ≤ pth, by (A27) and since R∅ ≤ Tdecentral ≤ Rs (see Remark 4), we have

Tdecentral
T∗ ≤ Rs

T∗ ≤ 12(1 + αmax) = 24, (A28)

the last equality holds by the fact αmax = 1.
If p ≥ pth, from Lemma A2, we have Ru ≥ R∅ and

Tdecentral
T∗ =

RsRu
Rs+Ru−R∅

T∗

≤ min{Ru, Rs}
T∗

≤ min{12(1 + αmax), 48(1 + αmax)}
= 24, (A29)

where the second inequality holds by (A27) and the last equality is from the fact αmax = 1
in this case.
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Abstract: In this paper, we study the degrees of freedom (DoF) of a frequency-selective K-user
interference channel in the presence of an instantaneous relay (IR) with multiple receiving and
transmitting antennas. We investigate two scenarios based on the IR antennas’ cooperation ability.
First, we assume that the IR receiving and transmitting antennas can coordinate with each other and
that the transmitted signal of each transmitting antenna can depend on the received signals of all
receiving antennas, and we derive lower and upper bounds for the sum DoF of this model. In an
interference alignment scheme, we divide receivers into two groups called clean and dirty receivers.
We design our scheme such that a part of the messages of clean receivers can be de-multiplexed
at the IR. Thus, the IR can use these message streams for an interference cancellation at the clean
receivers. Next, we consider an IR, the antennas of which do not have coordination with each other
and where the transmitted signal of each transmitting antenna depends only on the received signal
of its corresponding receiving antenna. We also derive lower and upper bounds for the sum DoF
for this model of IR. We show that the achievable sum DoF decreases considerably compared with
the coordinated case. In both of these models, our schemes achieve the maximum K sum DoF if the
number of transmitting and receiving antennas is more than a finite threshold.

Keywords: frequency-selective interference channel; K-user interference channel; DoF; instantaneous
relay

1. Introduction

Spectrum sharing in wireless networks seems to be an inevitable solution to increasing
bandwidth demands. How to treat interference is one of the main challenges in these
scenarios. Interference alignment has proved to be a useful solution that aligns all inter-
ference signals into a smaller subspace, allowing the remaining signal space to be used
for the transmission of main signals. Thereby, it can achieve the maximum degrees of
freedom (DoF) of K

2 in a K-user interference channel [1]. An interesting question would
be to find tools that can improve this maximum value for the DoF. Instantaneous relay
(relay-without-delay; IR) is one of these tools [2,3].

For an IR, a transmitted signal in a t-th time slot (XIR(t)) is a function of all received sig-
nals (YIR(t)) from a first time slot up to a current (t-th) time slot, i.e.,
YIR(t) = fIR(XIR(1), . . . , XIR(t)), while for a classic relay, a transmitted signal in a t-th
time slot does not depend on a received signal in the t-th (current) time slot (it was shown
in [4] that a classic relay cannot increase the DoF of a K-user interference channel), i.e.,
YR(t) = fR(XR(1), . . . , XR(t − 1)). Though for the current technology, an IR might seem
impractical, there have been significant results on an IR, and active reconfigurable intelli-
gent surface (RIS) is a promising technology that makes it possible to realize an IR in the
near future [5]. An RIS is a special case of the IR model for which a transmitted signal in
the t-th time slot (XRIS(t)) is a function of the received signal (YRIS(t)) in the t-th time slot
only, i.e., YRIS(t) = fRIS(XRIS(t)).
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The capacities of wireless networks in the presence of an IR were studied in [6–30]. El
Gamal et al., in [6], showed that in the presence of an IR, rates higher than an existing cut-set
bound for a classic relay can be achieved for a point-to-point channel. In [7], a new upper
bound was derived for the capacity of a channel with an IR. The authors in [8] studied a
two-user interference channel in the presence of an IR and derived an outer bound for the
Gaussian case under strong and very strong interference conditions. They also introduced
an achievable scheme based on instantaneous amplify-and-forward relaying. In [9], the
authors studied a K-user interference channel in the presence of an IR in two scenarios,
wherein transmitters and receivers were aware and not aware of the existence of an IR. It
was shown that in both cases, an IR can enlarge the rate region and increase user fairness.
In [10], the authors studied general networks in the presence of an IR and derived cut-set
bounds for two cases of the IR having or not having its own message; they showed that
the proposed bounds are tight in some cases. In [11], it was proven that the networks
with an IR can be considered a channel with in-block memory. Then, a cut-set bound was
characterized that generalizes existing cut-set bounds.

As we stated before, an RIS is a special case of the generic IR model; thus, we will
review some related work on the capacities of RIS-assisted networks. In [12], the fundamen-
tal capacity limit of RIS-assisted multiple-input multiple-output (MIMO) communications
systems was studied by using a joint optimization of a MIMO transmit covariance matrix
and RIS phase shifts. In [13], RIS-assisted communication systems were studied wherein a
transmitter could control an RIS with a finite-rate link and information-theoretic limits were
derived. It was proven that the capacity is achievable if information is jointly encoded in a
transmitted signal and RIS phase shifts. In [14], a downlink non-orthogonal multiple-access
(NOMA) RIS-assisted communication system was studied wherein multiple users were
served by only one base station (BS). The sum rate of the users was maximized by using
a joint optimization of a beamforming vector at the BS and the phase shifts of the RIS,
wherein a successive interference cancellation decoding rate and RIS scattering element
constraints existed. In [15], the usage of an RIS was studied for a rank improvement of
MIMO communication channels.

From a DoF perspective, an interference alignment signaling scheme for a MIMO
X-channel, which outperforms the achievable DoF of previous signaling schemes, was
proposed in [16]. It is well known that the DoF of the frequency or time-selective K-user
interference channel is K

2 [1], which is an important result of the interference alignment
technique. We remark that the DoF of interference channels is an important problem, which
has been studied vastly in the literature; e.g., the DoF of a multi-input multi-output (MIMO)
interference channel [17], the DoF region of an interference channel [18,19], and the DoF of
an interference channel with a partial network topology [20–25]. Interference alignment is
an important technique, which has a vital impact on proving DoF achievability theorems
for multi-user wireless networks. A survey of the results available on the interference
alignment technique was reviewed in [26]. For the DoF of networks in the presence of an
IR, the sum DoF of a two-user interference channel assisted by an IR, with M antennas
for all nodes, was studied in [3], and it was proven that the DoF of 3M

2 can be achieved.
The DoF of an M antenna three-user interference channel assisted by an IR was studied
in [27], and it was shown that a DoF of 2M is achievable. The DoF of a two-way K-user
IR-aided interference channel, when the IR is equipped with 2K antennas, was studied
in [28]. It was demonstrated that the DoF of K can be achieved. The DoF of a two-user
interference channel in the presence of an IR, when there is an arbitrary number of IR
transmitting and receiving antennas, was studied in [29]. An inner and two outer bounds
were obtained. For a K-user interference channel assisted by an IR wherein the IR can only
instantaneously amplify and forward a received signal in a current channel use, with the
same number of antennas at all nodes, an achievable scheme and an outer bound were
proposed in [30]. Though the DoF in some special cases wherein K = 2 or K(K − 1) IRs
was derived, a general achievable DoF was not obtained. For a K-user interference channel
in the presence of active and passive RISs, inner and outer bounds on a DoF region and
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lower and upper bounds on a sum DoF were derived in [31]. For both active and passive
RISs, it was shown that by employing a sufficient number of elements for RIS, a K sum
DoFs can be achieved. In [32], it was shown that when there is a line-of-sight link between
an RIS and transceivers and there is no direct link between the transceivers, the phases of
RIS elements can be adjusted such that all interference can be canceled and a maximum K
DoF can be achieved in a K-user interference channel if the number of RIS elements is more
than a finite value.

The goal of this paper was to study the sum DoF of a frequency-selective K-user
interference channel in the presence of an IR. To the best of our knowledge, although the
DoF of two- and three-user interference channels and a scenario in which there are K(K − 1)
IRs have been studied, the sum DoF of a frequency-selective K-user interference channel
(wherein symbol extensions are in the frequency domain) in the presence of a multi-input
multi-output (MIMO) IR has not been characterized. Our contributions are as follows:

• We provide lower and upper bounds for the sum DoF of a K-user interference channel
in the presence of a MIMO IR with Q receiving antennas and W transmitting antennas,
which can coordinate with each other, i.e., each transmit antenna has access to all
receiving antennas. For this purpose, we propose an interference alignment-based
coding scheme in which we divide the receivers into two groups called clean and dirty
receivers. We design beamforming vectors such that some message symbols corre-
sponding to the clean receivers can be de-multiplexed at the IR. By de-multiplexing,
we mean that the IR separates only some of the message symbols using linear op-
erations without removing additive noise. Then, the IR utilizes the de-multiplexed
symbols for an interference cancellation at the clean receivers. Our proposed scheme
increases the DoF for W > K

2 compared to a case without an IR. Moreover, we show
that if the number of IR antennas exceeds a finite threshold, the maximum DoF of K
can be achieved, and we characterize this threshold.

• Moreover, we derive lower and upper bounds for the sum DoF for a special kind
of IR for which the IR has the same number of receiving and transmitting antennas
and the antennas do not have coordination with each other, i.e., the i-th transmitting
antenna has access to the i-th receiving antenna only. We extend the coding scheme
for this case and derive an achievable DoF. Similar to a coordinated IR, we show that
by considering a number of IR antennas more than a finite threshold, the maximum
DoF of K can be achieved. Our derivations show that the achievable DoF decreases
considerably compared with the coordinated IR.

This paper is organized as follows. In Section 2, we present the system model. In
Sections 3 and 4, we discuss our main results for the coordinated and non-coordinated
IRs, respectively. In Section 5, we present some numerical results to evaluate our proposed
schemes. Finally, in Section 6, we conclude the paper.

Notations: Bold letters demonstrate matrices. Calligraphic uppercase letters denote
sets and vector spaces. R is the set of real numbers. For the set A, |A| indicates the
cardinality of A. VT and VH are the transposition and Hermitian of matrix V, respectively.
diag(a1, . . . , am) denotes a diagonal matrix with the diagonal elements a1, . . . , am. The
function f (ρ) is o(log(ρ)) if

lim
ρ→∞

| f (ρ)|
log(ρ)

= 0.

Sequence a(n) goes to infinity with O(g(n)) if

0 < lim
n→∞

|a(n)|
|g(n)| < ∞.

N is the set of natural numbers, and W is the set of non-negative integers.
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2. System Model and Preliminaries

2.1. System Model

We consider a K-user interference channel with an IR in which K single-antenna
transmitters send their messages to K single-antenna receivers. In this system, the i-th
transmitter sends the message w[i] ∈ W [i] =

{
1, . . . ,

⌊
2Tri

⌋}
to the i-th receiver, where

ri is the transmission rate corresponding to the i-th transmitter and T is the number of
channel uses (in this paper, each channel use corresponds to each frequency slot and all
transmissions are in the same time cycle). We assume an IR with Q receiving antennas and
W transmitting antennas. Figure 1 shows the system model.

Figure 1. IR-assisted K-user interference channel. The IR has W transmitting antennas and Q
receiving antennas. Direct links are shown by solid arrows, cross-links are shown by dotted arrows,
and links between the IR and transmitters or receivers are shown by dashed arrows.

We consider a frequency-selective channel. Due to the instantaneity of the IR, it can
process the signals received from all frequency slots in the current time cycle and transmit
signals in different frequency slots in the same time cycle, which affects the received signals
at the receivers in all frequency slots. The received signal at the j-th receiver in the t-th
frequency slot ωt is shown by Y[j](ωt) and is presented as follows (note that in the general
case, the IR-transmitted signal is a function of the received signal in the past time cycles in
addition to the current time cycle. In the achievability proofs of this paper, the signals of
past time cycles are not needed and transmissions in different frequency slots are at the
same time cycle. However, for the upper bounds, the general case is considered.):

Y[j](ωt) =
K

∑
i=1

H[ji](ωt)X[i](ωt) +
W

∑
u=1

H[ju]
IR−R(ωt)X[u]

IR (ωt) + Z[j](ωt), (1)

where X[i](ωt) is the signal of the i-th transmitter, H[ji](ωt) is the channel coefficient
between the i-th transmitter and the j-th receiver, X[u]

IR (ωt) is the transmitted signal of the

u-th IR transmitting antenna, H[ju]
IR−R(ωt) is the channel coefficient between the u-th IR

transmitting antenna and the j-th receiver, and Z[j](ωt) is additive white Gaussian noise
(AWGN) at the j-th receiver in the t-th frequency slot ωt, where t ∈ {1, 2, . . . , T}. We
assume a perfect self-interference cancellation at the IR; thus, the received signal at the
q-th IR receiving antenna in the t-th frequency slot, which is shown by Y[q]

IR (ωt), is given
as follows:

Y[q]
IR (ωt) =

K

∑
i=1

H[qi]
T−IR(ωt)X[i](ωt) + Z[q]

IR (ωt), (2)

where H[qi]
T−IR(ωt) is the channel coefficient from the i-th transmitter to the q-th IR receiving

antenna (for an NC-IR, before a transmission begins, all required channel-state information
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and the transmission strategy are shared between all nodes and all receiving and transmit-
ting antennas of the NC-IR. However, when the transmission begins, the i-th transmitting
antenna of the NC-IR has access to the i-th receiving antenna only and its received signal
cannot be exchanged between other transmitting antennas (the same holds for the active
RIS [31])), q ∈ {1, . . . , Q}, and Z[q]

IR (ωt) are the AWGN at the q-th IR receiving antenna
in the t-th frequency slot. We assume that the perfect channel-state information for all
frequency slots is available at all nodes (this ideal assumption is vastly considered in the
literature [1,33]. Noisy channel-state information will be an interesting subject of future
work.). We consider two types of IR: (1) a MIMO IR, the antennas of which can have a
coordination with each other, called MIMO-coordinated IR (C-IR) and (2) an IR with no
coordination among its antennas because the u-th transmitting antenna has access to only
the u-th receiving antenna (W = Q). We call this model non-coordinated IR (NC-IR). At
each time cycle, for the MIMO C-IR, we have:

X[u]
IR (ωt) = f [u,ωt ](Y[1]

IR (ω1), . . . , Y[1]
IR (ωT), . . . , Y[Q]

IR (ω1), . . . , Y[Q]
IR (ωT)), (3)

where f [u,ωt ] indicates the encoding function of the IR for the u-th transmitting antenna at
the t-th frequency slot ωt. For the NC-IR, we have:

X[u]
IR (ωt) = f [u,ωt ](Y[u]

IR (ω1), . . . , Y[u]
IR (ωT)), u ∈ {1, . . . , Q}. (4)

We limit the functions f [u,ωt ] to be linear. (1) and (2) can be rewritten into the following
vector form:

Y[j] =
K

∑
i=1

H[ji]X[i] +
W

∑
u=1

H
[ju]
IR−RX

[u]
IR + Z[j], (5)

Y
[q]
IR =

K

∑
i=1

H
[qi]
T−IRX[i] + Z

[q]
IR , (6)

where X[i] is a T × 1 column vector including the channel inputs X[i](ωt), i.e.,

X[i] =
[

X[i](ω1) X[i](ω2) · · · X[i](ωT)
]T

.

Y[i], Y
[q]
IR , X

[u]
IR , Z[j] and Z

[q]
IR are also defined in the similar way. H[ji] is a diagonal matrix

defined as follows:
H[ji] = diag

(
H[ji](ω1), . . . , H[ji](ωT)

)
.

H
[ju]
IR−R and H

[qi]
T−IR are also defined similarly. Considering functions f [u,ωt ] to be linear, the

operation of the the MIMO C-IR can be represented as follows:

X
[u]
IR =

Q

∑
q=1

A[uq]Y
[q]
IR , (7)

where A[uq] are T × T matrices. Moreover, the linear operation of the NC-IR can be
represented as follows:

X
[u]
IR = A[u]Y

[u]
IR . (8)

Since we assume a frequency-selective K-user interference channel, H[ji](ωt), H[ju]
IR−R(ωt)

and H[qi]
T−IR(ωt) are independent random variables for different values of i, j, u, q and ωt,

whose cumulative distribution functions (CDFs) are continuous due to the frequency
selectivity of the channel. In the case of complex channel coefficients, their real and
imaginary parts are independent random variables , whose CDFs are continuous (e.g.,
complex Gaussian random variable).
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Remark 1. The assumption of frequency selectivity is essential for our coding scheme not only for
the realization of independent channel coefficients for each channel use but also because if we assume
the channel to be time selective and channel uses are in different time slots, by using (7) and (8), the
matrices A[uq] for the MIMO C-IR and the matrices A[u] for the NC-IR must be lower triangular
matrices due to the definition of the IR (the transmitted signal of an IR for the t-th time slot is
a function of the received signals for the time slots t′ ∈ {1, . . . , t}). However, if we assume the
channel to be frequency selective and consider our different channel uses in different frequency slots
in the same time cycle, the transmitted signals of the IR for each frequency slot can be a function of
all received signals for all frequency slots; thus, there would not be any constraint on the matrices
A[uq] and A[u] and our proposed achievability schemes will be realizable.

We assume that all transmitters can send a signal with a maximum average power

of ρ, i.e., 1
T

T
∑

t=1

∣∣∣X[i](ωt)
∣∣∣2 � ρ, ∀i ∈ {1, . . . , K}. We say the rate vector r = (r1, . . . , rK) is

achievable if lim
T→∞

Pr
{⋂

i
{ŵ[i] 
= w[i]}

}
= 0, where ŵ[i] is the estimated message at the

i-th receiver. In addition, C(ρ) indicates the closure of all the achievable rate vectors
r = (r1, . . . , rK).

2.2. Preliminaries

In the following section, we introduce some definitions that are used throughout this
paper.

Degrees of freedom (DoF): Similar to [1], we define the DoF region D for a K-user
interference channel as follows:

D =
{
(d1, . . . , dK) ∈ RK

+ : ∀(w1, . . . , wK) ∈ RK
+,

w1d1 + . . . + wKdK ≤ lim sup
ρ→∞

(
1

log(ρ)
sup

r(ρ)∈C(ρ)
(w1r1 + . . . + wKrK)

)}
. (9)

Span: The span(V) denotes the space spanned by the column vectors of the matrix V.
Dimension: We define the number of dimensions of the span(V) as the dimension of

V and show it by using d(V), which is equal to rank(V).
Normalized asymptotic dimension: We will see in our analysis that for a given K, Q

and for W, the dimensions of the beamforming matrices and the vector spaces will have an
order of O(nl), l, n ∈ N. For the matrix V, we define the normalized asymptotic dimension
(DN) as follows:

DN(V) = lim
n→∞

d(V)

nl , (10)

where l is the maximum integer number that satisfies lim
n→∞

d(V)
nl < ∞.

These definitions are also used for the vector space A; therefore, d(A) indicates the
dimension of A, and DN(A) indicates the normalized asymptotic dimension of A.

3. K-User Interference Channel in the Presence of MIMO C-IR

In this section, we present the lower and upper bounds for the sum DoF of the
frequency-selective K-user interference channel with a MIMO C-IR. First, we introduce the
lower bound as follows:

Theorem 1. For a frequency-selective K-user interference channel with a MIMO C-IR, where
max{W, Q} ≤ K, the following DoF is achievable:

DoF = max

⎧⎨⎩K
2
+ max

⎧⎨⎩0, K
W
K − 1

2

1 + 2
⌈

W
Q

⌉
⎫⎬⎭, min{Q, W}

⎫⎬⎭. (11)
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We can see from (11) that when W
K > 1

2 , the DoF always increases over K
2 , i.e., the DoF

increases in the absence of an IR.

Proof. We will prove the achievability of the first term K
2 + max

{
0, K

W
K − 1

2

1+2
⌈

W
Q

⌉
}

in (11) in

the following. The proof of the second term, i.e., min{Q, W}, is provided in Appendix A.
We present this proof in six steps. In Step 1, we divide the transmitters and the

receivers into two groups (clean and dirty). In Step 2, some message streams are considered
to have the capability of being de-multiplexed at the MIMO C-IR; thus, the MIMO C-IR
can use them for an interference cancellation in the clean receivers. After the interference
cancellation, the equivalent channel coefficients are derived for other receivers (dirty
receivers). In Step 3, we introduce the interference alignment equations such that the
assumption of the previous step (the de-multiplexing of some message streams) and the
interference alignment for each receiver and MIMO C-IR receiving antenna are satisfied. In
Step 4, we present the beamforming design for each symbol stream. In Step 5, we analyze
the satisfaction of the interference alignment equations at each receiver and MIMO C-IR
receiving antenna. Finally, in Step 6, we derive the achieved DoF, presented in the first term
of (11).

Step 1: Partitioning the Transmitters and Receivers

We divide the transmitters into two partitions. For the transmitters i ∈ {1, . . . , W},
we provide two sets of symbol streams: x̄[i] and x̃[i] (each element of the vectors x̄[i] and
x̃[i] is the extended symbols). The matrices V̄[i] and Ṽ[i] are the beamforming matrices, the
columns of which are the beamforming vectors corresponding to the elements of x̄[i] and
x̃[i], respectively. We can write:

X[i] = V̄[i]x̄[i] + Ṽ[i]x̃[i], i ∈ {1, . . . , W}. (12)

For the transmitters i ∈ {W + 1, . . . , K}, we only provide one set of extended symbols (x̄[i]),
and V̄[i] is the beamforming matrix for the symbols x̄[i]. Thus, we have:

X[i] = V̄[i]x̄[i], i ∈ {W + 1, . . . , K}. (13)

Note that the matrices Ṽ[i] and V̄[i] have T rows because we have T frequency slots. The
dimensions of x̄[i] and x̃[i] and the number of columns of V̄[i] and Ṽ[i] are determined in the
next steps.

In the following steps, we design the beamforming vectors Ṽ[i] and V̄[i] such that the
extended symbols x̃[i] can be de-multiplexed at the MIMO C-IR. By de-multiplexing, we
mean that the MIMO C-IR can separate each symbol of message streams x̃[i] using zero
forcing without decoding the symbol. The symbol streams x̄[i] act as interference signals,
and their beamforming vectors align into a smaller subspace.

We also divide the receivers into clean and dirty sets. In the next steps, the signal
transmitted by the MIMO C-IR is designed such that the interference induced by the
symbols x̃[i] will be removed at the receivers j ∈ {1, . . . , W}, called clean receivers, but this
interference will remain at the receivers j ∈ {W + 1, . . . , K}, called dirty receivers. The
main reason for choosing these terms (clean and dirty receivers) is that in our scheme, the
interference of some symbol streams is canceled at clean receivers by the MIMO C-IR (the
MIMO C-IR can de-multiplex these symbols and use them for interference cancellation)
and the clean receivers will observe fewer dimensions for the interference; however, all
interference remains at the dirty receivers.

Step 2: Interference Cancellation at Clean Receivers and Equivalent Channel for

Dirty Receivers
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We design the beamforming vectors Ṽ[i] and V̄[i] such that the interference induced
by the symbols x̃[i] will be removed at the clean receivers. We denote this interference as
Ĩ[j], which is written as follows:

Ĩ[j] = ∑
i∈{1,...,W},i 
=j

H[ji]Ṽ[i]x̃[i], j ∈ {1, . . . , W}, (14)

The MIMO C-IR can de-multiplex the streams corresponding to x̃[i] (this will be shown in
Steps 3–5), which is only contaminated by an additive noise, i.e., it will separate them into
the form of ˆ̃x[i] = x̃[i] + z̃[i]. Thus, for the interference cancellation, the MIMO C-IR designs
its transmitted signal such that:

∑
u∈{1,...,W}

H
[ju]
IR−RX

[u]
IR =

− ∑
i∈{1,...,W},i 
=j

H[ji]Ṽ[i] ˆ̃x[i] = − ∑
i∈{1,...,W},i 
=j

H[ji]Ṽ[i]
(

x̃[i] + z̃[i]
)
= −Ĩ[j] + Z̃[j], (15)

where
Z̃[j] = − ∑

i∈{1,...,W},i 
=j
H[ji]Ṽ[i]z̃[i].

The vector Equation (15) generates a linear set of equations, an equation for each element
of X

[u]
IR , which can be written for the t-th element as:

∑
u∈{1,...,W}

H[ju]
IR−R(ωt)X[u]

IR (ωt) = − Ĩ[j](ωt) + Z̃[j](ωt), ∀j ∈ {1, . . . , W}, ∀t ∈ {1, . . . , T}, (16)

which is a linear set of equations with W variables for each ωt. This set of equations is
almost surely solvable since the coefficients of the linear equations are drawn independently
and their CDFs are continuous; thus, the determinant of the matrix of linear equations will
be a non-zero polynomial in terms of independent random variables and by using ([34],
Lemma 1), it will be a non-zero with a probability equal to 1. Applying (16), the interference
cancellation will be conducted. Thus, for each ωt, we will have:

X[u]
IR (ωt) = ∑

j∈{1,...,W}
H[ju]

inv (ωt)(− Ĩ[j](ωt)(ωt) + Z̃[j](ωt)), (17)

where H[ju]
inv (ωt), the factor of − Ĩ[j](ωt) + Z̃[j](ωt) in (17), is a function of H[j′u′ ]

IR−R(ωt),
u′, j′ ∈ {1, . . . , W} obtained by solving Equation (16). We can write Equation (17) in
the vector form as follows:

X
[u]
IR = ∑

j∈{1,...,W}
H

[ju]
inv (−Ĩ[j] + Z̃[j]) (18)

= ∑
j∈{1,...,W}

∑
i∈{1,...,W},i 
=j

−H
[ju]
inv H[ji]Ṽ[i]x̃[i]+ ∑

j∈{1,...,W}
H

[ju]
inv Z̃[j], (19)

where H
[ju]
inv is a diagonal matrix as follows:

H
[ju]
inv = diag

(
H[ju]

inv (ω1), . . . , H[ju]
inv (ωT)

)
.

We highlight two properties of H
[ju]
inv :

• Similar to H[ji], diagonal elements H[ju]
inv (ωt) are independent random variables for

different t ∈ {1, . . . , T} because the channel coefficients are independent random
variables for each t ∈ {1, . . . , T}.
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• Each diagonal element H[ju]
inv (ωt) is a fractional polynomial constructed by the matrices

H[j′u′ ]
IR−R(ωt), j′, u′ ∈ {1, . . . , W}. A fractional polynomial is the ratio of the polynomial

P1(·) to the non-zero polynomial P2(·).
Although we cancel the interference Ĩ[j] at the clean receivers, this interference remains

at the dirty receivers with new equivalent channel coefficients. Now, we derive the new
channel coefficients for Ṽ[i]x̃[i], ∀i ∈ {1, . . . , W} at the dirty receivers j ∈ {W + 1, . . . , K}.
By combining (5), (12), and (13), we have:

Y[j] = ∑
i∈{1,...,K}

H[ji]V̄[i]x̄[i] + ∑
i∈{1,...,W}

H[ji]Ṽ[i]x̃[i] + ∑
u∈{1,...,W}

H
[ju]
IR−RX

[u]
IR + Z[j] (20)

= ∑
i∈{1,...,K}

H[ji]V̄[i]x̄[i] + ∑
i∈{1,...,W}

H[ji]Ṽ[i]x̃[i] + ∑
u,d,i∈{1,...,W},i 
=d

H
[ju]
IR−RH

[du]
inv H[di]Ṽ[i]x̃[i] + ˜̃Z

[j]
, (21)

where (21) follows from (19) and:

˜̃Z
[j]

= ∑
u,d

H
[ju]
IR−RH

[du]
inv Z̃[d] + Z[j].

(21) can be rewritten as:

Y[j] = ∑
i∈{1,...,K}

H[ji]V̄[i]x̄[i] + ∑
i∈{1,...,W}

H̃[ji]Ṽ[i]x̃[i] + ˜̃Z
[j]

, (22)

H̃[ji] = H[ji] + ∑
u,d∈{1,...,W},d 
=i

H
[ju]
IR−RH

[du]
inv H[di], i ∈ {1, . . . , W}, (23)

where H̃[ji] is the equivalent channel coefficient matrix from the transmitter i ∈ {1, . . . , W}
to the receiver j ∈ {W + 1, . . . , K} (dirty receivers) for Ṽ[i]x̃[i]. By using (23), we can see
that H̃[ji] has the following properties:

• H̃[ji] is a diagonal matrix.
• H̃[ji] = H[ji], ∀j ∈ {1, . . . , W}.
• For j ∈ {W + 1, . . . , K}, its t-th diagonal element has the following form:

H̃[ji](ωt) =

∑
u,i′ ,j′∈{1,...W},i′ 
=j′

H[ju]
IR−R(ωt)H[j′i′ ](ωt)P[ui′ j′ ]({H[me]

IR−R(ωt) : m, e ∈ {1, . . . , W}}) + H[ji](ωt),

where P[ui′ j′ ](S) indicates a fractional polynomial constructed from the variables
s ∈ S .

Step 3: Interference Alignment

In this step, we determine the interference alignment equations in the clean and
dirty receivers and MIMO C-IR receiving antennas. In our interference alignment scheme,
we align the subspace of the interference of each user into a bigger subspace with an
equal normalized asymptotic dimension. Note that for the matrices V and V′, we can
have the following relations simultaneously: d(V) > d(V′), DN(V) = DN(V

′), e.g.,
d(V) = (n + 1)l > d(V′) = nl , DN(V) = DN(V

′) = 1. We begin with clean receivers.
(1) Interference alignment at clean receivers: Consider the clean receiver j ∈ {1, . . . , W};

for each i ∈ {1, . . . , K}, i 
= j, we must have:

span
(

H[ji]V̄[i]
)
⊆ Āj, (24)

where Āj is considered a subspace that encompass all interference at the j-th receiver
induced by x̄[i], i ∈ {1, . . . , K}, i 
= j, for which we have:
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max
i∈{1,...,K},i 
=j

DN

(
span

(
H[ji]V̄[i]

))
= DN(Āj), (25)

which implies that the normalized asymptotic dimension of Āj is equal to the maximum

asymptotic dimension of span
(

H[ji]V̄[i]
)

for ∀i 
= j. Moreover, we define the message
subspaces as:

C̄j = span
(

H[jj]V̄[j]
)

,

C̃j = span
(

H̃[jj]Ṽ[j]
)

.

and we require C̄j, C̃j and Āj to be full-rank and linearly independent; thus, we can ensure
the decodability of the message streams x̃[j] and x̄[j] by using zero forcing at the j-th receiver.

(2) Interference alignment at dirty receivers: Consider the dirty receiver
j ∈ {W + 1, . . . , K}. Here, we have two interference subspaces at each receiver j; the
interference induced by x̄[i] aligns in subspace Āj, while the interference induced by x̃[i]

aligns in subspace Ãj. For each i ∈ {1, . . . , K}, i 
= j, we must have:

span
(

H[ji]V̄[i]
)
⊆ Āj, (26)

where Āj is considered a subspace for which we have:

max
i∈{1,...,K},i 
=j

DN

(
span

(
H[ji]V̄[i]

))
= DN(Āj), (27)

and for every i ∈ {1, . . . , W}, we must have:

span
(

H̃[ji]Ṽ[i]
)
⊆ Ãj, (28)

where Ãj is considered a subspace for which we have:

max
i∈{1,...,W}

DN

(
span

(
H̃[ji]Ṽ[i]

))
= DN(Ãj). (29)

Moreover, we define the message subspace as:

C̄j = span
(

H[jj]V̄[j]
)

,

and we want C̄j, Ãj and Āj to be full-rank and linearly independent; hence, we can ensure
the decodability of the message stream x̄[j] by using zero forcing in the j-th receiver.

(3) Interference alignment at the MIMO C-IR q-th receiving antenna: We assume that
W = QZ + P, 0 ≤ P < Q; we divide the transmitters i ∈ {1, . . . , W}, into Q distinct
sets, and the first P sets include Z + 1 transmitters and the other Q − P sets include
Z transmitters. We name these sets Bq, q ∈ {1, . . . , Q}. We designed our interference
alignment scheme such that the symbol streams x̃[i], i ∈ Bq can be de-multiplexed at the
q-th receiving antenna of the MIMO C-IR. To this end, all the interference induced by the
symbol streams x̄[i], i ∈ {1, . . . , K} must align into a limited subspace at each receiving
antenna of the MIMO C-IR. Thus, at each receiving antenna q ∈ {1, . . . , Q}, and for each
i ∈ {1, . . . , K}, we must have:

span
(

H
[qi]
T−IRV̄[i]

)
⊆ Ārq , (30)

where Ārq is considered a subspace for which we have:
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max
i∈{1,...,K}

DN

(
span

(
H

[qi]
T−IRV̄[i]

))
= DN(Ārq). (31)

In addition, at the q-th receiving antenna of the MIMO C-IR, the interference induced by the
symbol streams x̃[i], i ∈ {1, . . . , W}, i /∈ Bq must align into a subspace named Ãrq . Hence,
for each i ∈ {1, . . . , W}, i /∈ Bq, we must have:

span
(

H
[qi]
T−IRṼ[i]

)
⊆ Ãrq , (32)

where Ãrq is considered a subspace for which we have:

max
i∈{1,...,W},i/∈Bq

DN

(
span

(
H

[qi]
T−IRṼ[i]

))
= DN(Ãrq). (33)

Furthermore, we define C̃i,rq , i ∈ Bq as the message subspaces, which can be de-
multiplexed at the q-th MIMO C-IR receiving antenna as follows:

C̃i,rq = span
(

H
[qi]
T−IRṼ[i]

)
, i ∈ Bq.

We want C̃i,rq , ∀i ∈ Bq, Ārq and Ãrq to be full-rank and linearly independent; thus,

we can make sure that the message streams x̃[i], i ∈ Bq can be de-multiplexed at the q-th
MIMO C-IR receiving antenna by using zero forcing. Note that the q-th receiving an-
tenna of the MIMO C-IR de-multiplexes the message streams x̃[i], i ∈ Bq without having
the coordination with other receiving antennas. After each antenna de-multiplexes its
own message streams x̃[i], i ∈ Bq, all of these message streams are passed to the MIMO
C-IR transmitting antennas so the transmitting antennas can have coordination with each
other for an interference cancellation at the clean receivers (as in Equation (19)). A sim-
ple illustration of the interference alignment scheme is shown in Figure 2 for K = 3 and
W = 2. In Steps 4 and 5, we prove the existence of such beamforming vectors, mes-
sages, and interference subspaces, which satisfies the previous interference alignment
Equations (24)–(33) for the clean and dirty receivers and the MIMO C-IR. In Step 6, we
analyze the achieved DoF by using these beamforming vector designs.

Figure 2. Interference alignment scheme for 3-user interference channel in the presence of MIMO
C-IR with 2 receiving antennas. Subspaces corresponding to symbol streams in common dashed
boxes align into a joint subspace at each node. We can see that the interference of the message streams
x̃[1] and x̃[2] is canceled at clean receivers.
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Step 4: Beamforming Matrix Design

In this step, we design beamforming matrices such that the alignment Equations (24)–(33)
are satisfied and all users’ message streams are decodable.

(1) Beamforming matrix design for i ∈ {1, . . . , W}: To introduce the beamforming matrix
design, we must define some new notations. First, we define set F (A,B) as the set of all
functions g(x) : A → B, i.e.,

F (A,B) = {g(x)|g(x) : A → B}. (34)

It is obvious that |F (A,B)| = |A||B|. Moreover, we define matrix M(g(x), N[x],A) as follows:

M(g(x), N[x],A) = ∏
x∈A

(
N[x]

)g(x)
. (35)

Then, consider the vector w =
[

1 1 · · · 1
]H . We design the beamforming matrices

V̄[i] and Ṽ[i] as the following:

V̄[i] =
{[

M(g1(i, j), H[ji], S̄1)
][

M(g2(i, q), H
[qi]
T−IR, S̄2)

]
w :

g1 ∈ F
(
S̄1, {1, . . . , n}

)
, g2 ∈ F

(
S̄2, {1, . . . , sn}

)}
, (36)

where
S̄1 = {(i, j)|i, j ∈ {1, . . . , K}, i 
= j}, (37)

S̄2 = {(i, q)|i ∈ {1, . . . , K}, q ∈ {1, . . . , Q}}, (38)

where n ∈ N is an auxiliary variable that can go to infinity, and s is a parameter for
controlling the dimension of V̄[i], i.e., d(V̄[i]). This notation means that the right-hand side
of (36) is the set of column vectors, which forms the beamforming matrix V̄[i]. For Ṽ[i], we
have:

Ṽ[i] =
{[

M(g1(i, j), H̃[ji], S̄1)
][

M(g2(i, q), H
[qi]
T−IR, S̃2)

][
M(g3(i, q), T[qi], S̃3)

]
w :

g1 ∈ F
(
S̄1, {1, . . . , n}

)
, g2 ∈ F

(
S̃2, {1, . . . , sn}

)
, g3 ∈ F

(
S̃3, {1, . . . , υn}

)}
, (39)

where S̄1 is given in (37), and we have:

S̃2 =
{
(i, q)

∣∣i ∈ {1, . . . , K}, i /∈ Bq, q ∈ {1, . . . , Q}
}

, (40)

S̃3 =
{
(i, q)

∣∣i ∈ Bq, q ∈ {1, . . . , Q}
}

, (41)

T[qi]s are T × T diagonal random matrices for each i and q, where each of the diagonal
elements for each matrix is drawn independently and its CDF is continuous.

(2) Beamforming matrix design for i ∈ {W + 1, . . . , K}: We consider the beamforming
matrix V̄[i] as the following:

V̄[i] =
{[

M(g1(i, j), H[ji], S̄1)
][

M(g2(i, q), H
[qi]
T−IR, S̄2)

]
w :

g1 ∈ F
(
S̄1, {1, . . . , n}

)
, g2 ∈ F

(
S̄2, {1, . . . , tn}

)}
, (42)

where S̄1 and S̄2 are given by using (37) and (38), respectively. t is a parameter for
controlling the dimension of V̄[i], i.e., d(V̄[i]).

We note that each value of parameters s, υ and t can be approximated by using rational
numbers with arbitrarily small errors, and by choosing a sufficiently large n, parameters
sn, υn and tn will be integers and our proposed scheme will be realizable.
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Step 5: Validity of Interference Alignment Conditions and Decodability of Mes-

sage Symbols

Now, we analyze the spaces of messages and interference.
(1) Validity of interference alignment conditions at the clean receivers j ∈ {1, . . . , W}: For

the clean receivers j ∈ {1, . . . , W}, we have the following lemma:

Lemma 1. For the clean receivers j ∈ {1, . . . , W}, consider C̄j as the message subspace correspond-
ing to the symbol stream x̄[j], consider C̃j as the message subspace corresponding to the symbol
stream x̃[j], and consider Āj as the interference subspace induced by the symbol stream x̄[j

′ ], j′ 
= j.
Then, C̄j, C̃j and Āj are full-rank and linearly independent, i.e., all base vectors of these subspaces
are linearly independent. Thus, the message streams x̄[j] and x̃[j] are decodable by using zero forcing.
In addition, we have:

DN(C̄j) = Γ, (43)

DN(C̃j) = χ, (44)

DN(Āj) = max{Γ, ζ}, (45)

where
Γ = sQK, χ = sQK−WυW , ζ = tQK.

Proof. The proof is provided in Appendix B.

(2) Validity of interference alignment conditions at the dirty receivers j ∈ {W + 1, . . . , K}:
For the dirty receivers j ∈ {W + 1, . . . , K}, we have the following lemma:

Lemma 2. For the dirty receivers j ∈ {W + 1, . . . , K}, consider C̄j the message subspace corre-
sponding to the symbol stream x̄[j], consider Ãj as the interference subspace corresponding to the
symbol stream x̃[j

′ ], j′ 
= j, and consider Āj as the interference subspace induced by the symbol
streams x̄[j

′ ], j′ 
= j. Then, C̄j, Ãj and Āj are full-rank and linearly independent, i.e., all base vectors
of these subspaces are linearly independent. Thus, the message stream x̄[j] is decodable by using zero
forcing. In addition, we have:

DN(C̄j) = ζ, (46)

DN(Āj) = max{Γ, ζ}, (47)

DN(Ãj) = χ. (48)

Proof. The proof is provided in Appendix C.

(3) Validity of interference alignment conditions at the MIMO C-IR q-th receiving antenna
q ∈ {1, . . . , Q}: For the q-th receiving antenna of the MIMO C-IR q ∈ {1, . . . , Q}, we have
the following lemma:

Lemma 3. For the q-th receiving antenna of the MIMO C-IR q ∈ {1, . . . , Q}, consider C̃i,rq the
message subspace corresponding to the symbol streams x̃[i], i ∈ Bq, consider Ãrq the interference
subspace corresponding to the symbol streams x̃[j], j 
= Bq, and consider Ārq the interference
subspace induced by the symbol streams x̄[j], ∀j. Then, C̃i,rq , i ∈ Bq, Ārq , and Ãrq are full-rank and
linearly independent, i.e., all base vectors of these subspaces are linearly independent. Thus, the
message stream x̃[i], i ∈ Bq can be de-multiplexed by using zero forcing. In addition, we have:

DN(C̃i,rq) = χ, (49)

∑
i∈Bq

DN(C̃i,rq) =
∣∣Bq
∣∣χ, (50)
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DN(Ārq) = max{Γ, ζ}, (51)

DN(Ãrq) = χ. (52)

Proof. The proof is provided in Appendix D.

Now, we can calculate the dimension of the whole signal space at each receiver. We
define dt,j as the total dimension at the j-th receiver and dt,rq as the total dimension at the
q-th receiving antenna of the MIMO C-IR; thus, we have:

dt,j = d(C̄j) + d(C̃j) + d(Āj), ∀j ∈ {1, . . . , W}, (53)

dt,j = d(C̄j) + d(Āj) + d(Ãj), ∀j ∈ {W + 1, . . . , K}, (54)

dt,rq = ∑
i∈Bq

d(C̃i,rq) + d(Ārq) + d(Ãrq), ∀q ∈ {1, . . . , Q}, (55)

where the dimension of the message and the interference subspaces are derived in (A8)–(A10),
(A20)–(A22), and (A26)–(A28) in Appendices B–D. Similarly, define DN,t,j as the total
normalized asymptotic dimension at the j-th receiver and DN,t,rq as the total normalized
asymptotic dimension at the q-th receiving antenna of the MIMO C-IR; thus, from (43)–(52),
we have:

DN,t,j = DN(C̄j) + DN(C̃j) + DN(Āj) = Γ + χ + max{Γ, ζ}, ∀j ∈ {1, . . . , W}, (56)

DN,t,j = DN(C̄j) + DN(Āj) + DN(Ãj) = ζ + χ + max{Γ, ζ}, ∀j ∈ {W + 1, . . . , K}, (57)

DN,t,rq = ∑
i∈Bq

DN(C̃i,rq) + DN(Ārq) + DN(Ãrq) =
∣∣Bq
∣∣χ + χ + max{Γ, ζ}, ∀q ∈ {1, . . . , Q}. (58)

Now, we determine the minimum value for the parameter T (for which the interference
alignment equations are satisfied) as follows:

T = max

{
max

j∈{1,...,K}
{dt,j}, max

q∈{1,...,Q}
{dt,rq}

}
, (59)

and from (53)–(59), we have

lim
n→∞

T
nK2−K+QK

= χ + max{Γ, ζ}+ max

{
max

q∈{1,...,Q}

∣∣Bq
∣∣χ, ζ, Γ

}
. (60)

However, we have:

max
q∈{1,...,Q}

∣∣Bq
∣∣ = ⌈

W
Q

⌉
,

so we conclude that:

lim
n→∞

T
nK2−K+QK

= χ + max{Γ, ζ}+ max
{⌈

W
Q

⌉
χ, ζ, Γ

}
. (61)

Up until now, we have considered any arbitrary real values for each parameter Γ, χ
and ζ. Now, we make two additional assumptions for these parameters, which give us an
achievable DoF. First, we set the normalized asymptotic dimension of the space at the clean
receivers equal to that of the dirty receivers. Hence:

Γ = ζ. (62)
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Second, we set the maximum normalized asymptotic dimension of the space at each MIMO
C-IR receiving antenna to be less than or equal to that of the dirty receivers. Therefore,
we have:

ζ ≥
⌈

W
Q

⌉
χ. (63)

Having (62) and (63), (61) will have the following form:

lim
n→∞

T
nK2−K+QK

= χ + 2Γ. (64)

Step 6: DoF Analysis

Now, we characterize the total DoF. As stated before, we have W clean receivers, each
with a normalized message dimension equal to Γ + χ, and K −W dirty receivers, each with
a normalized message dimension equal to ζ (note that we set ζ = Γ).The total normalized
transmission length is equal to χ + 2Γ, so the total DoF has the following form:

DoF = max
χ≥0,Γ≥

⌈
W
Q

⌉
χ

W(χ + Γ) + (K − W)Γ
χ + 2Γ

, (65)

and by assuming Γ = βχ, we have:

DoF = max
β≥
⌈

W
Q

⌉ W(1 + β) + (K − W)β

1 + 2β
(66)

=
K
2
+ max

β≥
⌈

W
Q

⌉K
W
K − 1

2
1 + 2β

=
K
2
+ max

⎧⎨⎩K
W
K − 1

2

1 + 2
⌈

W
Q

⌉ , 0

⎫⎬⎭. (67)

We remark that if W
K > 1

2 , we set β =
⌈

W
Q

⌉
, and if W

K < 1
2 , we tend β to ∞. This completes

the proof of the achievability of the first term of (11). The proof of the second term, i.e.,
min{Q, W}, is provided in Appendix A.

Remark 2. It is known that the DoF is an appropriate performance metric that provides a capacity
approximation accurate within o(log(ρ)) [1]. Therefore, Theorem 1 indicates that the approximate
sum capacity of the K-user interference channel in the presence of a MIMO C-IR is lower bounded by(

max

{
K
2 + max

{
0, K

W
K − 1

2

1+2
⌈

W
Q

⌉
}

, min{Q, W}
}
− ε

)
log(1 + ρ) + o(log(ρ)), ∀ε > 0. Now,

we prove an improved achievable DoF for a special case of W and Q.

Theorem 2. Assume W = QZ + P, P = 1. Then, the achievable DoF (11) can be improved
as follows:

DoF = max

⎧⎨⎩K
2
+ max

⎧⎨⎩0, K
W
K − 1

2

1 + 2
⌊

W
Q

⌋
⎫⎬⎭, min{Q, W}

⎫⎬⎭. (68)

Proof. The proof is provided in Appendix E.

Remark 3. Theorem 2 shows that the approximate sum capacity of the K-user interference channel

with a MIMO C-IR is lower bounded by

(
max

{
K
2 + max

{
0, K

W
K − 1

2

1+2
⌊

W
Q

⌋
}

, min{Q, W}
}
− ε

)
log(1 + ρ) + o(log(ρ)), ∀ε > 0, where P = 1 (we have W = QZ + P, 0 ≤ P < Q). From (11)
and (68), we note that this lower bound is tighter than the previous bound.
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Remark 4. As expected, if we set Q = W = K, the maximum K DoF, which is the DoF at the
absence of interference, is achievable for the MIMO C-IR.

Remark 5. It was shown in [4] that an ordinary relay cannot increase the DoF of a K-user
interference channel. The main difference here is that the instantaneity of the relay can significantly
improve the DoF.

Remark 6. Although we derived the achievable DoF for the asymptotic case, the achievability
results are also valid for finite values of the auxiliary variable n, which determines the dimensions
of beamforming vectors (see Equations (36)–(42)). Thus, if all interference alignment conditions
(24)–(33) are satisfied and T is sufficiently large (as in Equation (59), i.e., larger than the sum of
the interference and message subspaces), then for each receiver j ∈ {1, . . . , K}, there is the matrix
Ej such that if we multiply the vector of received signals in all frequency slots (Y[j]) by Ej, the
transmitted streams will be separated at each receiver with additive noise. Then, for the clean
receivers j ∈ {1, . . . , W}, we have:

EjY
[j] =

[
x̄[j]

x̃[j]

]
+ n̂[j], (69)

where n̂[j] is additive Gaussian noise, which is not necessarily white. Moreover, for the dirty receivers
j ∈ {W + 1, . . . , K}, we have:

EjY
[j] = x̄[j] + n̂[j]. (70)

Thus, the proposed achievability scheme can be used for resource allocation problems, such as sum-
rate optimization problems. This kind of utilization of interference alignment coding schemes for
optimization problems was used in [35]. However, finding the optimal input distributions for the
symbol streams x̄[i] and x̃[i] and the optimal values for other parameters (t, s, and υ) in order to
compare the performance of the proposed scheme with the performance of other signaling strategies
(e.g., [36,37]) from the rate region perspective are still complicated problems and need complex
optimization algorithms, which are directions for future research.

Next, we introduce an upper bound for the sum DoF of the frequency-selective K-user
interference channel assisted by the MIMO C-IR.

Theorem 3. Considering the functions f [u,ωt ] to be linear in (3), the sum DoF of the frequency-
selective K-user interference channel assisted by the MIMO C-IR can be upper-bounded as follows:

K

∑
i=1

di ≤ min
{

K
2
+

WQ
2(K − 1)

, K
}

. (71)

Proof. By using (5)–(7), we have:

Y[j] =
K

∑
i=1

H[ji]X[i] +
W

∑
u=1

H
[ju]
IR−R

Q

∑
q=1

A[uq]

(
K

∑
i=1

H
[qi]
T−IRX[i] + Z

[q]
IR

)
+ Z[j]

=
K

∑
i=1

(
H[ji] +

W

∑
u=1

Q

∑
q=1

H
[ju]
IR−RA[uq]H

[qi]
T−IR

)
X[i] + Ẑ[j] =

K

∑
i=1

Ĥ[ji]X[i] + Ẑ[j], (72)

where

Ĥ[ji] = H[ji] +
W

∑
u=1

Q

∑
q=1

H
[ju]
IR−RA[uq]H

[qi]
T−IR, (73)
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Ẑ[j] =
W

∑
u=1

Q

∑
q=1

H
[ju]
IR−RA[uq]Z

[q]
IR + Z[j]. (74)

Now, consider the given i, j ∈ {1, . . . , K}, i 
= j. The matrices A[uq] must be chosen such
that rank(Ĥ[ii]) = T, ∀i; otherwise, the messages of each transmitter cannot be transmitted
completely and the resulting upper bound for the sum DoF will decrease. For more clarity
of the proof, we eliminate messages w[k], k 
= i, j, and this causes the rates ri and rj to
increase because of a data processing inequality [38] (Theorem 2.8.1). Hence, we have:

Y[i] = Ĥ[ii]X[i] + Ĥ[ij]X[j] + Ẑ[i], (75)

Y[j] = Ĥ[ji]X[i] + Ĥ[jj]X[j] + Ẑ[j]. (76)

Now, we define new variables as follows:

Y[j] ′ = Ĥ[ij]
(

Ĥ[jj]
)−1

Y[j] = Ĥ[ij]
(

Ĥ[jj]
)−1(

Ĥ[ji]X[i] + Ĥ[jj]X[j]
)
+ Ĥ[ij]

(
Ĥ[jj]

)−1
Ẑ[j], (77)

Y[j] ′′ = Ĥ[ij]
(

Ĥ[jj]
)−1(

Ĥ[ji]X[i] + Ĥ[jj]X[j]
)
+ Ẑ[i]. (78)

Then, we obtain:
Tri ≤ I

(
w[i]; Y[i]

)
+ ε, (79)

Trj ≤ I
(

w[j]; Y[j]
)
+ ε ≤ I

(
w[j]; Y[j], Y[j] ′′

)
+ ε = I

(
w[j]; Y[j] ′′

)
+ I
(

w[j]; Y[j]
∣∣∣Y[j] ′′

)
+ ε

≤ I
(

w[j]; Y[j] ′′
∣∣∣w[i]

)
+ I
(

w[j]; Y[j]
∣∣∣Y[j] ′′

)
+ ε

= I
(

w[j]; Y[i]
∣∣∣w[i]

)
+ I
(

w[j]; Y[j]
∣∣∣Y[j] ′′

)
+ ε. (80)

Thus, we have:

T(ri + rj) ≤ I
(

w[i], w[j]; Y[i]
)
+ I
(

w[j]; Y[j]
∣∣∣Y[j] ′′

)
+ 2ε ≤

(
2T − R[ij]

)
log(1 + ρ) + o(log(ρ)), (81)

where R[ij] = rank(Ĥ[ij]). By using the same argument, we obtain:

ri + rj ≤

⎛⎝2 −
max

{
rank

(
Ĥ[ij]

)
, rank

(
Ĥ[ji]

)}
T

⎞⎠ log(1 + ρ) + o(log(ρ)). (82)

Therefore, we obtain:

(K − 1)
K

∑
i=1

ri = ∑
i 
=j

ri + rj

≤ ∑
i 
=j

⎛⎝2 −
max

{
rank

(
Ĥ[ij]

)
, rank

(
Ĥ[ji]

)}
T

⎞⎠ log(1 + ρ) + o(log(ρ))

=

⎛⎝K(K − 1)− ∑
i 
=j

⎛⎝max
{

rank
(

Ĥ[ij]
)

, rank
(

Ĥ[ji]
)}

T

⎞⎠⎞⎠ log(1 + ρ) + o(log(ρ)). (83)

To minimize the term ∑
i 
=j

(
max{rank(Ĥ[ij]),rank(Ĥ[ji])}

T

)
, there are WQT2 variables in

the matrices A[uq]. Every unit decrement of the rank of cross-link matrices requires T
linear dependencies (T independent linear equations, which follow from the form of the
arrangement of coefficients of equations); thus, we can see that:
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∑
i 
=j

⎛⎝max
{

rank
(

Ĥ[ij]
)

, rank
(

Ĥ[ji]
)}

T

⎞⎠ ≥ K(K − 1)
2

− WQ
2

. (84)

Considering (83) and (84), the upper bound (71) can be obtained. We note that
∑K

i=1 di ≤ K is obvious because of (79).

Remark 7. Theorem 3 indicates that the approximate sum capacity of the frequency-selective K-
user interference channel assisted by the MIMO C-IR is upper-bounded by min{K

2 + WQ
2(K−1) , K}

log(1 + ρ) + o(log(ρ)).

4. K-User Interference Channel in the Presence of NC-IR

In this section, we provide the lower and upper bounds for the sum DoF of the
frequency-selective K-user interference channel in the presence of an NC-IR as follows.

Theorem 4. Consider U, p, e, e′ ∈ W such that

U = pe + e′, 0 ≤ e′ < p,
K
2
< U ≤ K. (85)

Then, with an NC-IR with W = Q = pU antennas, the following DoF is achievable:

DoF =
K
2
+ max

⎧⎨⎩K
U
K − 1

2

1 + 2
⌈

U
p

⌉ , 0

⎫⎬⎭. (86)

Proof. The proof is provided in Appendix F.

Remark 8. Theorem 4 indicates that the approximate sum capacity of a frequency-selective K-user in-

terference channel in the presence of the NC-IR is lower bounded by

(
K
2 + max

{
K

U
K − 1

2

1+2
⌈

U
p

⌉ , 0

}
− ε

)
log(1 + ρ) + o(log(ρ)), ∀ε > 0.

Remark 9. The active reconfigurable intelligent surface RIS can be modeled as a special case of
an NC-IR [34]. It was proven in [34] that for an active RIS with Q = U(K − 1) + U(K − U)
antennas, the following DoF is achievable:

DoF =
K + U

2
, 0 ≤ U ≤ K. (87)

Therefore, we can see that for 0 < Q < 2(K − 1), the achievable DoF (86) is dominant, and for
Q ≥ 2(K − 1), the maximums of (86) and (87) form the maximum achievable DoF for the NC-IR.

Remark 10. Considering Theorem 1, we can conclude that the maximum K DoF can be achieved
by using Q = W = K antennas for a MIMO C-IR, but Q = K(K − 1) antennas for achieving
the maximum K DoF by an NC-IR is required, which grows quadratically and shows a loss of
performance.

Finally, we introduce an upper bound for the sum DoF of the frequency-selective
K-user interference channel assisted by the NC-IR.

Theorem 5. Considering the functions f [u,ωt ] to be linear in (4), the sum DoF of the frequency-
selective K-user interference channel assisted by the NC-IR can be upper-bounded as follows:
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K

∑
i=1

di ≤ min
{

K
2
+

Q
2(K − 1)

, K
}

= min
{

K
2
+

W
2(K − 1)

, K
}

= min
{

K
2
+

√
WQ

2(K − 1)
, K
}

. (88)

Proof. This theorem can be proven by using the same argument given for Theorem 3,
except for the fact that the linear operation of the NC-IR can be represented as (8). Thus,
matrices A[u] provide QT2 variables, which changes (84) as follows:

∑
i 
=j

⎛⎝max
{

rank
(

Ĥ[ij]
)

, rank
(

Ĥ[ji]
)}

T

⎞⎠ ≥ K(K − 1)
2

− Q
2

, (89)

and which yields (88).

Remark 11. By considering Theorem 5, it can be seen that the approximate sum capacity of the
frequency-selective K-user interference channel assisted by the NC-IR is upper-bounded by the
expression min

{
K
2 + Q

2(K−1) , K
}

log(1 + ρ) + o(log(ρ)).

5. Numerical Results

In this section, we numerically evaluate the lower and upper bounds for the sum DoF
provided in the previous sections by using some examples. We note that the proposed
bounds of the DoF of the MIMO C-IR and NC-IR and the existing bounds for the active
RIS [31] (Theorems 1–5) do not depend on the distribution of channel coefficients, and
the only required properties are independence and being drawn from a CDF, which is
continuous. In Figure 3, we compare the lower and upper bounds for the sum DoF of a
six-user interference channel in the presence of the MIMO C-IR for different values of Q
and W and the case without the MIMO C-IR. We see that the achievable DoF can approach
only a maximum value (K = 6) when W = K = 6. Additionally, we can observe that the
maximum achieved DoF is equal to W when W ≥ 4. Moreover, the maximum K DoFs can
be achieved when Q = W.

In Figure 4, we compare the lower and upper bounds for the sum DoF of four-user
interference channels in the presence of the MIMO C-IR, NC-IR, and active RIS [34], and the
case without an IR. We note that to have a fair comparison, we assume the same number
of receiving and transmitting antennas for the MIMO C-IR (W = Q) as for the NC-IR and
active RIS. These figures show that the maximum K DoF can be achieved by employing
enough antennas for the MIMO C-IR, NC-IR, and active RIS. We see that the achievable
DoF is considerably decreased for the NC-IR and active RIS, and this reduction is due
to a lack of coordination between the antennas in the NC-IR and active RIS. Moreover,
these figures show that the required number of antennas to allow the NC-IR and active
RIS to achieve the maximum K DoF is quadratically larger than the required number of
antennas for a MIMO C-IR, which shows a performance loss for the NC-IR due to a lack of
coordination between the NC-IR antennas. In addition, the achievable DoF for the NC-IR
is better than for the active RIS because the NC-IR can combine the received signals from
different frequency slots (see Equation (4)); however, the model of the active RIS cannot
conduct this operation.

In Figure 5, we compare the achievable sum DoF of a three-user interference channel
in the presence of the MIMO C-IR (with W = Q), NC-IR, and active RIS, a time-selective
channel without an IR [1], and a channel with constant coefficients using Improper Gaussian
Signaling (IGS) [39] and Widely Linear Precoding (WLP) [40]. We can see that the proposed
scheme for the MIMO C-IR has the best performance and the IGS and WLP schemes for the
constant channel have the worst performance.
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Figure 3. Comparison of lower and upper bounds for the sum DoF of the six-user interference
channel in the presence of MIMO C-IR for the case without MIMO C-IR.

Figure 4. Comparison of lower and upper bounds for the sum DoF of the four-user interference
channel in the presence of MIMO C-IR (with W = Q), NC-IR, active RIS and for the case without IR.

Figure 5. Comparison of the achievable sum DoF of the three-user interference channel in the
presence of MIMO C-IR (with W = Q), NC-IR, and active RIS, the time-selective channel without
IR [1], and the channel with constant coefficients using Improper Gaussian Signaling (IGS) [39] and
Widely Linear Precoding (WLP) [40].
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6. Conclusions

In this paper, we studied the lower and upper bounds for the sum DoF of the IR-
assisted frequency-selective K-user interference channel and proposed novel interference
alignment-based coding schemes. The main novelty of this work is proposing a new
interference alignment-based coding scheme in which receivers are partitioned into two
groups called clean and dirty receivers. In this scheme, a part of the message streams
of transmitters corresponding to clean receivers is de-multiplexed at the IR, and the IR
uses these streams for an interference cancellation at the clean receivers, which causes an
improvement of the DoF. This DoF improvement is achieved because in the interference
alignment scheme, the dimension of interference subspaces decreases and the dimension
of message subspaces increases at the clean receivers. For a MIMO C-IR, the antennas of
which can have coordination with each other, and for an NC-IR (an IR with no coordination
between the antennas), we derived achievable DoFs and observed a performance loss for
the NC-IR compared with the MIMO C-IR. Moreover, we showed that by considering a
number of antennas more than a finite value, a maximum K DoF is achievable for both
the MIMO C-IR and NC-IR. The directions of our future work will contains the following
aspects: (1) Finding tight bounds for the DoF of a time-selective K-user interference channel
in the presence of an IR; (2) Extending our proposed coding scheme for more general
wireless channels, e.g., an X network; (3) Extending our coding scheme to a scenario with
an imperfect CSI.
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Appendix A

In this scheme, we use only one frequency slot: ω1. We set L = min{W, Q}. We
assume that only the transmitters i ∈ {1, . . . , L} send their messages to the receivers
j ∈ {1, . . . , L} via the symbols X[i](ω1), i ∈ {1, . . . , L}, and other transmitters are silent
(X[i](ω1) = 0, ∀i ∈ {L + 1, . . . , K}). Considering (2), the MIMO C-IR can de-multiplex
X[i](ω1), ∀i ∈ {1, . . . , L} by using L linear equations in the first L receiving antennas almost
surely because the matrix of the coefficients is in terms of independent random variables;
thus, the matrix’s determinant is a non-zero polynomial of independent random variables
with a continuous cumulative probability distribution, and considering [34] (Lemma 1),
it is a non-zero with the probability 1. Then, the MIMO C-IR designs its transmitted
signal to remove the interference in each receiver j ∈ {1, . . . , L} by solving the following
linear equations:

− ∑
i∈{1,...,L},i 
=j

H[ji](ω1)(X[i](ω1) + Z̃[i](ωt)) =
L

∑
u=1

H[ju]
IR−RX[u]

IR , ∀j ∈ {1, . . . , L}, (A1)

˜̃Z
[j]
(ωt) = − ∑

i∈{1,...,L},i 
=j
H[ji](ω1)Z̃[i](ωt), (A2)

where Z̃[i](ωt) is the detection noise for symbol X[i](ωt) at the MIMO C-IR. Note that by
using this procedure, the interference cancellation is conducted, but we have the additional

noise ˜̃Z
[j]
(ωt), which is negligible in a high signal to noise ratio (SNR) regime. Therefore, L

symbols can be transmitted in one frequency slot, and the total L DoF is achievable. Thus,
the second term in (11) is achievable, which completes the proof.
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Appendix B

Using (36) and (39), we characterize the message subspaces C̄j and C̃j as follows:

C̄j = span
(

H[jj]V̄[j]
)
=

span
{

H[jj]
[
M(g1(i, j), H[ji], S̄1)

][
M(g2(i, q), H

[qi]
T−IR, S̄2)

]
w : g1 ∈ F

(
S̄1, {1, . . . , n}

)
, g2 ∈ F

(
S̄2, {1, . . . , sn}

)}
, (A3)

where S̄1, S̄2, F (·, ·), and M(·, ·, ·) are given by using (37), (38), (34), and (35), respectively.

C̃j = span
(

H̃[jj]Ṽ[j]
)
=

span
{

H̃[jj]
[
M(g1(i, j), H̃[ji], S̄1)

][
M(g2(i, q), H

[qi]
T−IR, S̃2)

][
M(g3(i, q), T[qi], S̃3)

]
w :

g1 ∈ F
(
S̄1, {1, . . . , n}

)
, g2 ∈ F

(
S̃2, {1, . . . , sn}

)
, g3 ∈ F

(
S̃3, {1, . . . , υn}

)}
, (A4)

where S̃2 and S̃3 are given by using (40) and (41), respectively.
To satisfy interference alignment Equation (24), the subspace Āj must be chosen such

that: ⋃
i∈{1,...,K},i 
=j

{
span

(
H[ji]V̄[i]

)}
⊆ Āj.

Therefore, we characterize Āj as follows:

Āj =

span
{[

M(g1(i, j), H[ji], S̄1)
][

M(g2(i, q), H
[qi]
T−IR, S̄2)

]
w : g1 ∈ F

(
S̄1, {1, . . . , n + 1}

)
, g2 ∈ F

(
S̄2, {1, . . . , n max{s, t}}

)}
, (A5)

where S̄1 and S̄2 are given by using (37) and (38), respectively. Note that to use the zero-
forcing technique, the subspace of the interference must be a vector space, but the set of
interference vectors, which is equal to

⋃
i∈{1,...,K},i 
=j

{
span

(
H[ji]V̄[i]

)}
, is not a vector space;

thus, we choose the subspace of interference (A5), which is easier to work with and includes⋃
i∈{1,...,K},i 
=j

{
span

(
H[ji]V̄[i]

)}
.

After that step, we analyze the dimension and the normalized asymptotic dimension
of the messages and interference subspaces. First, we assume that the parameter T (the
number of frequency slots) is sufficiently large, and at the end of Step 5 of the proof, we
will choose the minimum value for T such that all message streams can be decodable and
all interference alignment equations can be satisfied. Considering the natures of Āj in (A5),
C̄j in (A3), and C̃j in (A4), we can see from a statement of [34] (Lemma 2) that if we choose

the variables xk as H[ji](ωt), H[qi′ ]
T−IR(ωt), i, i′, j ∈ {1, . . . , K}, q ∈ {1, . . . , Q}, yk as H[ju]

IR−R(ωt),

j ∈ {W + 1, . . . , K}, u ∈ {1, . . . , W}, and zk as H[ju]
IR−R(ωt), j ∈ {1, . . . , W}, u ∈ {1, . . . , W},

then by using [34] (Lemmas 1–3), the subspaces Āj, C̄j and C̃j are almost surely full-rank
and linearly independent (all base vectors of these subspaces are linearly independent).
In fact, if we take the constructing base vectors of Āj, C̄j and C̃j and construct a square
matrix by choosing some rows of the matrix, we can see by using [34] (Lemmas 2–3) that
the determinant of this square matrix will be a non-zero polynomial, and by using [34]
(Lemma 1), it will be a non-zero with a probability equal to one; thus, all message streams
are decodable at the clean receivers (by using zero forcing).

For more clarity, we will review [34] (Lemmas 1–3) as follows:
Ref. [34] (Lemma 1): Consider the k independent random variables X1, . . . , Xk, each

constructed from a CDF, which is continuous. The probability of the event that the non-zero
polynomial Pk(X1, . . . , Xk), constructed from X1, . . . , Xk with a finite degree, assumes the
value zero is zero, i.e., Pr{Pk(X1, . . . , Xk) = 0} = 0.
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Ref. [34] (Lemma 2): Consider the three sets of variables {xi, i ∈ Ax, |Ax| < ∞},
{yi, i ∈ Ay,

∣∣Ay
∣∣ < ∞}, and {zi, i ∈ Az, |Az| < ∞}. Consider the following functions:

f j =
|Ax |
∏
i=1

⎛⎝xi + ∑
i′∈Cj ,i′′∈Dj

xi′yi′′ P1
[i′i′′ j](zk : k ∈ Az) + yi′′P2

[i′i′′ j](zk : k ∈ Az)

⎞⎠aj
i

, (A6)

(aj
1, . . . , aj

|Ax |) ∈ W|Ax |, j ∈ {1, . . . , J},

where P[i′i′′ j]
1 (·) and P[i′i′′ j]

2 (·) are fractional polynomials and for ∀j, we have
∣∣Cj
∣∣, ∣∣Dj

∣∣ < ∞.

If for ∀j, j′ with j 
= j′, (aj
1, . . . , aj

|Ax |) 
= (aj′
1 , . . . , aj′

|Ax |), then the functions f j will be linearly
independent.

Ref. [34] (Lemma 3): Consider the set of non-zero linearly independent fractional
polynomials {P[j](·), j ∈ {1, . . . , J}} and consider the J sets of variables Xj = {xj

i :
i ∈ I , I ⊆ N, |I| < ∞}, j ∈ {1, . . . , J}. The determinant of the following matrix will
be a non-zero fractional polynomial:

A =

⎡⎢⎢⎢⎢⎣
P[1](X1) P[2](X1) · · · P[J](X1)

P[1](X2) P[2](X2) · · · P[J](X2)
...

...
. . .

...
P[1](XJ) P[2](XJ) · · · P[J](XJ)

⎤⎥⎥⎥⎥⎦. (A7)

Now, we have to make sure that interference alignment Equations (24) and (25) are
satisfied by analyzing the dimension of message streams and interference. The dimension
of the message subspaces C̄j and C̃j, which is equal to the number of its base vectors in (A3)
and (A4), can be characterized as follows:

d(C̄j) = nK2−K(sn)QK, (A8)

d(C̃j) = nK2−K(sn)ϕ(υn)θ , (A9)

where

ϕ =
Q

∑
q′=1

(K −
∣∣∣Bq′

∣∣∣) = KQ −
Q

∑
q′=1

∣∣∣Bq′
∣∣∣ = KQ − W,

θ =
Q

∑
q′=1

∣∣∣Bq′
∣∣∣ = W.

The dimension of the interference subspace Āj, which is equal to the number of its
base vectors in (A5), is:

d(Āj) = (n + 1)K2−K(max{sn, tn})QK. (A10)

We can see from (A8)–(A10) and (10) that l = K2 − K + QK. We define the following
parameters:

Γ = sQK, (A11)

χ = sQK−WυW , (A12)

ζ = tQK. (A13)

Considering (A8)–(A13) and (10), the normalized asymptotic dimensions of the message
and interference subspaces are:

DN(C̄j) = Γ, (A14)
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DN(C̃j) = χ, (A15)

DN(Āj) = max{Γ, ζ}. (A16)

Interference alignment Equations (24) and (25) are satisfied because we can see that
the normalized asymptotic dimension of the interference induced by V̄[i]x̄[i], i ∈ {1, . . . , W},
i 
= j is Γ and the normalized asymptotic dimension of the interference induced by
V̄[i]x̄[i], i ∈ {W + 1, . . . , K} is ζ.

Appendix C

Using (42), we can characterize the message subspace C̄j as follows:

C̄j = span
(

H[jj]V̄[j]
)
=

span
{

H[jj]
[
M(g1(i, j), H[ji], S̄1)

][
M(g2(i, q), H

[qi]
T−IR, S̄2)

]
w : g1 ∈ F

(
S̄1, {1, . . . , n}

)
, g2 ∈ F

(
S̄2, {1, . . . , tn}

)}
, (A17)

where S̄1, S̄2, F (·, ·), and M(·, ·, ·) are given by using (37), (38), (34), and (35), respectively.
To satisfy interference alignment Equation (26), the subspace Āj must be chosen such

that: ⋃
i∈{1,...,K},i 
=j

{
span

(
H[ji]V̄[i]

)}
⊆ Āj.

Therefore, we characterize Āj as follows:

Āj =

span
{[

M(g1(i, j), H[ji], S̄1)
][

M(g2(i, q), H
[qi]
T−IR, S̄2)

]
w : g1 ∈ F

(
S̄1, {1, . . . , n + 1}

)
, g2 ∈ F

(
S̄2, {1, . . . , n max{s, t}}

)}
, (A18)

where S̄1 and S̄2 are given by (37) and (38), respectively. To satisfy interference alignment
Equation (28), the subspace Ãj must be chosen such that:

⋃
i∈{1,...,W}

{
span

(
H̃[ji]Ṽ[i]

)}
⊆ Ãj.

Therefore, we characterize subspace Āj as follows:

Ãj = span
{[

M(g1(i, j), H̃[ji], S̄1)
][

M(g2(i, q), H
[qi]
T−IR, S̃2)

][
M(g3(i, q), T[qi], S̃3)

]
w :

g1 ∈ F
(
S̄1, {1, . . . , n + 1}

)
, g2 ∈ F

(
S̃2, {1, . . . , sn}

)
, g3 ∈ F

(
S̃3, {1, . . . , υn}

)}
, (A19)

where S̃2 and S̃3 are given by using (40) and (41), respectively.
By using the same argument given for the clean receivers, subspaces Āj, Ãj, and C̄j are

full-rank and linearly independent almost surely, i.e., all base vectors of these subspaces
are linearly independent. Now, we analyze the dimensions of the message and interference
subspaces. By calculating the number of base vectors of the message subspace C̄j in (A17),
we have:

d(C̄j) = nK2−K(tn)QK, (A20)

DN(C̄j) = ζ,

and for the interference subspaces in (A18) and (A19), we have:

d(Āj) = (n + 1)K2−K(max{sn, tn})QK, (A21)

DN(Āj) = max{Γ, ζ},

d(Ãj) = (n + 1)K2−K(sn)QK−W(υn)W , (A22)
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DN(Ãj) = χ.

Therefore, we can see that interference alignment Equations (26)–(29) are satisfied
because the normalized asymptotic dimension of the interference subspace induced by
Ṽ[i]x̃[i], i ∈ {1, .., W} is χ, the normalized asymptotic dimension of the interference subspace
induced by V̄[i]x̄[i], i ∈ {1, .., W} is Γ, and the normalized asymptotic dimension of the
interference subspace induced by V̄[i]x̄[i], i ∈ {W + 1, .., K}, i 
= j is ζ.

Appendix D

Using (39), we can characterize the message subspaces C̃i,rq , i ∈ Bq as follows:

C̃i,rq = span
(

H
[qi]
T−IRṼ[i]

)
=

span
{

H
[qi]
T−IR

[
M(g1(i, j), H̃[ji], S̄1)

][
M(g2(i, q), H

[qi]
T−IR, S̃2)

][
M(g3(i, q), T[qi], S̃3)

]
w :

g1 ∈ F
(
S̄1, {1, . . . , n}

)
, g2 ∈ F

(
S̃2, {1, . . . , sn}

)
, g3 ∈ F

(
S̃3, {1, . . . , υn}

)}
, (A23)

where S̃2, S̃3, F (·, ·), and M(·, ·, ·) are given by using (40), (41), (34), and (35), respectively.
To satisfy interference alignment Equation (30), the subspace Ārq must be chosen such

that: ⋃
i∈{1,...,K}

{
span

(
H

[qi]
T−IRV̄[i]

)}
⊆ Ārq .

Therefore, we can characterize Āj as follows:

Ārq =

span
{[

M(g1(i, j), H[ji], S̄1)
][

M(g2(i, q), H
[qi]
T−IR, S̄2)

]
w : g1 ∈ F

(
S̄1, {1, . . . , n}

)
, g2 ∈ F

(
S̄2, {1, . . . , n max{s, t}+ 1}

)}
, (A24)

where S̄1 and S̄2 are given by using (37) and (38), respectively.
To satisfy interference alignment Equation (32), the subspace Ãrq must be chosen such

that: ⋃
i∈{1,...,W},i/∈Bq

{
span

(
H

[qi]
T−IRṼ[i]

)}
⊆ Ãrq .

Therefore, we characterize Ãj as follows:

Ãrq = span
{[

M(g1(i, j), H̃[ji], S̄1)
][

M(g2(i, q), H
[qi]
T−IR, S̃2)

][
M(g3(i, q), T[qi], S̃3)

]
w :

g1 ∈ F
(
S̄1, {1, . . . , n}

)
, g2 ∈ F

(
S̃2, {1, . . . , sn + 1}

)
, g3 ∈ F

(
S̃3, {1, . . . , υn}

)}
, (A25)

where S̃2 and S̃3 are given by using (40) and (41), respectively.
By using the same argument given for the clean receivers, subspaces Ārq , Ãrq and

C̃i,rq , i ∈ Bq are full-rank and linearly independent almost surely, i.e., all base vectors of
these subspaces are linearly independent. Now, by calculating the number of base vectors,
we can analyze the dimensions of the subspaces C̃i,rq , i ∈ Bq, Ārq and Ãrq :

d(C̃i,rq) = nK2−K(sn)QK−W(υn)W , ∀i ∈ Bq, (A26)

DN(C̃i,rq) = χ.

Thus, the normalized dimension of the total subspaces, the message symbols of which
may be de-multiplexed (x̃[i], i ∈ Bq) at the MIMO C-IR q-th receiving antenna is:

∑
i∈Bq

DN(C̃i,rq) =
∣∣Bq
∣∣χ.
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For Ārq , we have:

d(Ārq) = nK2−K(max{sn, tn}+ 1)KQ, (A27)

DN(Ārq) = max{Γ, ζ},

and for Ãrq , we have:

d(Ãrq) = nK2−K(sn + 1)QK−W(υn)W , (A28)

DN(Ãrq) = χ.

Thus, we can see that interference alignment Equations (30)–(33) are satisfied.

Appendix E

The second term of (68) is exactly the same as the second term of (11) in Theorem 1.
The proof of the first term is similar to the proof of the first term of (11) in Theorem 1 with
a difference in the MIMO C-IR de-multiplexing method. In the proof of Theorem 1, each
MIMO C-IR receiving antenna q de-multiplexes the message streams x̃i, i ∈ Bq separately
without a coordination with other receiving antennas. However, in the proof of this
theorem, we use a coordination between the MIMO C-IR receiving antennas. Without a
loss of generality, assume that |B1| = Z + 1 and

∣∣Bq
∣∣ = Z, q 
= 1. To de-multiplex the

message streams x̃i, i ∈ {1, . . . , W} at the MIMO C-IR, first we de-multiplex the message
streams x̃i, i ∈ Bq, q 
= 1 at the q-th MIMO C-IR receiving antenna separately. Then, to
de-multiplex the message streams x̃i, i ∈ B1, we first remove the interference induced by
the message streams x̃i, i ∈ {1, . . . , W}, i /∈ B1. This results in a decrement in the total
normalized asymptotic dimension at the first receiving antenna of the MIMO C-IR (the
amount of decrement is χ), so (58) changes into the following form for q = 1:

DN,t,r1 =

⌊
W
Q

⌋
χ + χ + max{Γ, ζ}, (A29)

and the constraint (63) changes into the following form:

ζ ≥
⌊

W
Q

⌋
χ. (A30)

Then, we see that the DoF (68) is achievable.

Appendix F

The proof of this theorem is similar to the first term in the proof of Theorem 1. Here,
we use the variable U introduced in the statement of the theorem to denote the number of
clean receivers. Note that to avoid several notations, we use the same notations (such as
the name of sets and vector subspaces) used in the proof of Theorem 1. Thus, from now on,
these notations belong to this theorem. Our proof has six steps as follows.

Step 1: Dividing Receivers, Transmitters, and NC-IR Antennas

Using the same method as Step 1 of the proof of the first term in Theorem 1, we divide
the transmitters into two partitions. For the transmitters i ∈ {1, . . . , U}, we provide two sets
of symbol streams: x̄[i] and x̃[i]. The matrices V̄[i] and Ṽ[i] are beamforming matrices, the
columns of which are the beamforming vectors for each element of x̄[i] and x̃[i], respectively.
For the transmitters i ∈ {U + 1, . . . , K}, we provide only one set of the symbol stream x̄[i],
and the matrix V̄[i] is the beamforming matrix for the symbols x̄[i]. Hence, the vectors X[i]

will have the forms of (12) and (13) by using the setting W = U. The reason for this kind of
partitioning is the same as in Theorem 1. The main difference here is in the interference
alignment scheme used for de-multiplexing the message streams x̃[i], i ∈ {1, . . . , U} in the
NC-IR receiving antennas.
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Next, we divide the transmitters i ∈ {1, . . . , U} into the p distinct sets El , l ∈ {1, . . . , p}
such that for l ∈ {1, . . . , e′}, we have |El | = e + 1, and for l ∈ {e′ + 1, . . . , p}, we have
|El | = e. Similarly, we divide the NC-IR antennas into the p distinct sets Fl , l ∈ {1, . . . , p}
such that |Fl | = U, ∀l ∈ {1, . . . , p}. Now, we design the beamforming matrices V̄[i] and
Ṽ[i] such that the message streams x̃[i], i ∈ El may be de-multiplexed in each of the NC-IR
antennas u ∈ Fl for ∀l ∈ {1, . . . , p}.

Step 2: Interference Cancellation at the Clean Receivers and Equivalent Channel

at the Dirty Receivers

For the interference cancellation, we design the outputs of antennas in the set Fl such
that the interference induced by the message streams x̃[i], i ∈ El is removed at the clean
receivers j ∈ {1, . . . , U}. Thus, the NC-IR antennas’ transmitted signal must be designed
such that they satisfy the following:

− ∑
i∈El ,i 
=j

H[ji]Ṽ[i]x̃[i] = ∑
u∈Fl

H
[ju]
IR−RX

[u]
IR , ∀j ∈ {1, . . . , U}, ∀l ∈ {1, . . . , p}. (A31)

The solution to (A31) can be derived as follows:

X
[u]
IR = ∑

j∈{1,...,U}
∑

i∈El ,i 
=j
H

[ju]
inv H[ji]Ṽ[ji]x̃[i], ∀u ∈ Fl , (A32)

where H
[ju]
inv is a T × T diagonal matrix and its t-th diagonal element is a fractional poly-

nomial in terms of H[j′u′ ]
IR−R(ωt), u′ ∈ Fl , j′ ∈ {1, . . . , U}. This solution exists almost surely

because the matrix of the coefficients of the linear equations is in terms of independent
random variables, its determinant is a non-zero polynomial in terms of these random
variables drawn from a CDF, which is continuous, and by using [34] (Lemma 1), it is a
non-zero with the probability 1. Note that each NC-IR receiving antenna de-multiplexes
the symbol streams x̃[i] with additive noise. This event does not disturb the equations
above because if each symbol is replaced by a symbol with additive noise, the interference
cancellation holds but we have additional noise, which is negligible in a high SNR regime.
We can see that the received signals at the receivers have the same forms as (22) and H

[ju]
inv

and the equivalent channel matrix H̃[ji] has the same properties introduced in Step 2 of the
proof of the first term in Theorem 1.

Step 3: Interference Alignment Equations

The interference alignment equations and message and interference subspaces for
the clean and dirty receivers are the same as in Step 3 of the proof of the first term in
Theorem 1 ((24)–(29)) if we replace W with U. Consider q ∈ {1, . . . , pU}: we define the
function L(q) = l if q ∈ Fl (l is unique because the sets Fl are disjointed). We designed
the interference alignment scheme such that the symbol streams x̃[i], i ∈ EL(q) can be de-
multiplexed at the q-th receiving antenna of the NC-IR. Thus, the interference alignment
equations for the NC-IR change as follows.

To this end, all the interference induced by the symbol streams x̄[i] must align into
a limited subspace. Therefore, at the q-th receiving antenna of the NC-IR and for each
i ∈ {1, . . . , K}, we must have:

span
(

H
[qi]
T−IRV̄[i]

)
⊆ Ārq , (A33)

where Ārq is considered a subspace for which we have:

max
i∈{1,...,K}

DN

(
span

(
H

[qi]
T−IRV̄[i]

))
= DN(Ārq). (A34)

Then, for each i ∈ {1, . . . , U}, i /∈ EL(q), we have:
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span
(

H
[qi]
T−IRṼ[i]

)
⊆ Ãrq , (A35)

where Ãrq is considered a subspace for which we have:

max
i∈{1,...,U},i/∈EL(q)

DN

(
span

(
H

[qi]
T−IRṼ[i]

))
= DN(Ãrq). (A36)

Moreover, we define C̃i,rq , i ∈ EL(q) as the message subspaces, which can be de-
multiplexed at the NC-IR q-th antenna as follows:

C̃i,rq = span
(

H
[qi]
T−IRṼ[i]

)
, i ∈ EL(q). (A37)

We want C̃i,rq , ∀i ∈ EL(q), Ārq and Ãrq to be full-rank and linearly independent, so we

can make sure that the message streams x̃[i], i ∈ EL(q) can be de-multiplexed at the q-th
NC-IR antenna. In Steps 4 and 5, we prove the existence of such beamforming vectors,
messages, and interference subspaces, which satisfies the previous interference alignment
equations for the clean and dirty receivers and the MIMO C-IR. In Step 6, we analyze the
achieved DoF by using the beamforming vectors’ design.

Step 4: Beamforming Matrix Design

The beamforming matrices V̄[i], ∀i ∈ {1, . . . , K} are the same as (36) and (42) if we
replace W with U. For Ṽ[i], we have:

Ṽ[i] =
{[

M(g1(i, j), H̃[ji], S̄1)
][

M(g2(i, q), H
[qi]
T−IR, S̃2)

][
M(g3(i, q), T[qi], S̃3)

]
w : (A38)

g1 ∈ F
(
S̄1, {1, . . . , n}

)
, g2 ∈ F

(
S̃2, {1, . . . , sn}

)
, g3 ∈ F

(
S̃3, {1, . . . , υn}

)}
, (A39)

where S̄1, F (·, ·) and M(·, ·, ·) are given by using (37), (34), and (35), respectively, and we
have:

S̃2 =
{
(i, q)

∣∣∣i ∈ {1, . . . , K}, i /∈ EL(q), q ∈ {1, . . . , Q}
}

, (A40)

S̃3 =
{
(i, q)

∣∣∣i ∈ EL(q), q ∈ {1, . . . , Q}
}

. (A41)

T[q′′i′′′ ]s are T × T diagonal random matrices for each (i, q), where each diagonal
element for each matrix is drawn independently and its CDF is continuous.

Note that similar to the proof of Theorem 1, each value of the parameters s, υ and t can
be approximated by using rational numbers with arbitrarily small errors, and by choosing
a sufficiently large n, the parameters sn, υn and tn will be integers.

Step 5: Validity of Interference Alignment Conditions and Decodability of Mes-

sage Symbols

(1) Validity of Interference Alignment Conditions at Clean Receivers j ∈ {1, . . . , U}: The
message subspace C̄j and the interference subspace Āj will be exactly the same as (A3) and
(A5). The message subspaces C̃j will change as follows:

C̃j = span
(

H̃[jj]Ṽ[j]
)
=

span
{

H̃[jj]
[
M(g1(i, j), H̃[ji], S̄1)

][
M(g2(i, q), H

[qi]
T−IR, S̃2)

][
M(g3(i, q), T[qi], S̃3)

]
w :

g1 ∈ F
(
S̄1, {1, . . . , n}

)
, g2 ∈ F

(
S̃2, {1, . . . , sn}

)
, g3 ∈ F

(
S̃3, {1, . . . , υn}

)}
, (A42)

where S̃2 and S̃3 are given by using (A40) and (A41).
Considering the natures of Āj in (A5), C̄j in (A3), and C̃j in (A42), we can see from a

statement by [34] (Lemma 2) that if we choose the variables xk as H[ji](ωt), H[ri′ ]
T−IR(ωt), i, i′,

j ∈ {1, . . . , K}, u ∈ {1, . . . , Q}, yk as H[ju]
IR−R(ωt), j ∈ {U + 1, . . . , K}, u ∈ {1, . . . , Q}, and zk

as H[ju]
IR−R(ωt), j ∈ {1, . . . , U}, u ∈ {1, . . . , Q}, then by using [34] (Lemmas 1–3), subspaces Āj,
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C̄j and C̃j are full-rank and linearly independent (all base vectors of these subspaces are linearly
independent) almost surely. The reason is that if we take the constructing base vectors of Āj,
C̄j, and C̃j and construct a square matrix by choosing some rows of it, we can see by using [34]
(Lemmas 2–3) that the determinant of this square matrix is a non-zero polynomial, which is
non-zero with the probability 1 by using [34] (Lemma 1). Thus, all the message streams are
decodable at the clean receivers (by using zero forcing). For more clarity, [34] (Lemmas 1–3)
are reviewed in Appendix B.

Similar to the proof of Theorem 1, first we assume that the parameter T is sufficiently
large, and at the end of this step, we determine the minimum required T. The dimensions
of the subspaces C̄j and Āj are the same as (A8) and (A10), respectively. Hence, we calculate
the dimension of C̃j by calculating the number of its base vectors in (A42) as follows:

d(C̃j) = nK2−K(sn)ϕ(υn)θ , (A43)

where

ϕ =
Q

∑
q′=1

(K −
∣∣∣EL(q′)

∣∣∣) = KQ −
Q

∑
q′=1

∣∣∣EL(q′)

∣∣∣ = KQ − U2,

θ =
Q

∑
q′=1

∣∣∣EL(q′)

∣∣∣ = U2.

We can see from (10) that l = K2 − K + QK. We can define the following parameters:

Γ = sQK,

χ = sQK−U2
υU2

,

ζ = tQK.

Therefore, the normalized asymptotic dimensions of the message and interference sub-
spaces are:

DN(C̄j) = Γ, (A44)

DN(C̃j) = χ, (A45)

DN(Āj) = max{Γ, ζ}. (A46)

Thus, interference alignment Equations (24) and (25) are satisfied.
(2) Validity of interference alignment conditions at the dirty receivers j ∈ {U + 1, . . . , K}:

For the dirty receivers, the message subspace C̄j and the interference subspace Āj are
exactly the same as (A17) and (A18). To satisfy interference alignment Equation (28) (if W
is replaced with U), the subspace Ãj must be chosen such that:⋃

i∈{1,...,U}

{
span

(
H̃[ji]Ṽ[i]

)}
⊆ Ãj.

Therefore, we can characterize subspace Ãj as follows:

Ãj = span
{[

M(g1(i, j), H̃[ji], S̄1)
][

M(g2(i, q), H
[qi]
T−IR, S̃2)

][
M(g3(i, q), T[qi], S̃3)

]
w :

g1 ∈ F
(
S̄1, {1, . . . , n + 1}

)
, g2 ∈ F

(
S̃2, {1, . . . , sn}

)
, g3 ∈ F

(
S̃3, {1, . . . , υn}

)}
, (A47)

where S̃2 and S̃3 are given by using (A40) and (A41).
By using the same argument given for Āj, C̄j and C̃j at the clean receivers, subspaces

Āj, Ãj and C̄j are full-rank and linearly independent almost surely. Then, we have:

DN(C̄j) = ζ, (A48)
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DN(Āj) = max{Γ, ζ}, (A49)

d(Ãj) = (n + 1)K2−K(sn)QK−U2
(υn)U2

, (A50)

DN(Ãj) = χ. (A51)

Hence, we can see that interference alignment Equations (26)–(29) are satisfied.
(3) Validity of interference alignment conditions at the q-th antenna of the NC-IR

q ∈ {1, . . . , Q}:The interference subspace Ārq is exactly the same as (A24) if we replace
W with U. The message subspaces C̃i,rq , i ∈ EL(q) and the interference subspace Ãrq will
change as follows:

C̃i,rq = span
(

H
[qi]
T−IRṼ[i]

)
=

span
{

H
[qi]
T−IR

[
M(g1(i, j), H̃[ji], S̄1)

][
M(g2(i, q), H

[qi]
T−IR, S̃2)

][
M(g3(i, q), T[qi], S̃3)

]
w :

g1 ∈ F
(
S̄1, {1, . . . , n}

)
, g2 ∈ F

(
S̃2, {1, . . . , sn}

)
, g3 ∈ F

(
S̃3, {1, . . . , υn}

)}
, (A52)

where S̃2 and S̃3 are given by using (40) and (41), respectively.

C̃i,rq = span
(

H
[qi]
T−IRṼ[i]

)
=

span
{

H
[qi]
T−IR

[
M(g1(i, j), H̃[ji], S̄1)

][
M(g2(i, q), H

[qi]
T−IR, S̃2)

][
M(g3(i, q), T[qi], S̃3)

]
w :

g1 ∈ F
(
S̄1, {1, . . . , n}

)
, g2 ∈ F

(
S̃2, {1, . . . , sn}

)
, g3 ∈ F

(
S̃3, {1, . . . , υn}

)}
, (A53)

where S̃2 and S̃3 are given by using (A40) and (A41), respectively.
To satisfy interference alignment Equation (A35), the subspace Ãrq must be chosen

such that: ⋃
i∈{1,...,U},i/∈EL(q)

{
span

(
H

[qi]
T−IRṼ[i]

)}
⊆ Ãrq .

Therefore, we can characterize Ãj as follows:

Ãrq = span
{[

M(g1(i, j), H̃[ji], S̄1)
][

M(g2(i, q), H
[qi]
T−IR, S̃2)

][
M(g3(i, q), T[qi], S̃3)

]
w :

g1 ∈ F
(
S̄1, {1, . . . , n}

)
, g2 ∈ F

(
S̃2, {1, . . . , sn + 1}

)
, g3 ∈ F

(
S̃3, {1, . . . , υn}

)}
, (A54)

where S̃2 and S̃3 are given by using (A40) and (A41), respectively.
By using the same argument given before, subspaces Ārq , Ãrq , and C̃i,rq , i ∈ EL(q) are

full-rank and linearly independent almost surely. We can see that:

d(C̃i,rq) = nK2−K(sn)QK−U2
(υn)U2

, ∀i ∈ EL(q), (A55)

DN(C̃i,rq) = χ, (A56)

so the normalized dimension of the total subspaces that can be de-multiplexed at the NC-IR
q-th antenna is:

∑
i∈EL(q)

DN(C̃i,rq) =
∣∣∣EL(q)

∣∣∣χ. (A57)

For Ārq , the same as in the proof of Theorem 1, we have:

DN(Ārq) = max{Γ, ζ}. (A58)

For Ãrq , we have:

d(Ãrq) = nK2−K(sn + 1)QK−U2
(υn)U2

, (A59)
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DN(Ãrq) = χ. (A60)

Thus, we can see that interference alignment Equations (30)–(33) are satisfied.
The same as in the proof of scheme 1 in Theorem 1, we derive the dimension of

the whole received signal space at each receiver. Therefore, if we define dt,j as the total
dimension at the j-th receiver and dt,rq as the total dimension at the q-th receiving antenna
of the NC-IR, then we can see (53)–(55) will be obtained if we replace W and Bq with U
and EL(q), respectively. Therefore, considering DN,t,j as the total normalized asymptotic
dimension at the j-th receiver and DN,t,rq as the total normalized asymptotic dimension at
the q-th antenna of the NC-IR, we have:

DN,t,j = Γ + χ + max{Γ, ζ}, ∀j ∈ {1, . . . , U}, (A61)

DN,t,j = ζ + χ + max{Γ, ζ}, ∀j ∈ {U + 1, . . . , K}, (A62)

DN,t,rq =
∣∣∣EL(q)

∣∣∣χ + χ + max{Γ, ζ}, ∀q ∈ {1, . . . , Q}. (A63)

Considering the parameter T as (59), we have:

lim
n→∞

T
nK2−K+QK

= χ + max{Γ, ζ}+ max

{
max

q∈{1,...,Q}

∣∣∣EL(q)

∣∣∣χ, ζ, Γ

}
. (A64)

Moreover, we have:

max
q∈{1,...,Q}

∣∣∣EL(q)

∣∣∣ = ⌈
U
p

⌉
. (A65)

Therefore, from using (A64) and (A65), we can conclude that:

lim
n→∞

T
nK2−K+QK

= χ + max{Γ, ζ}+ max
{⌈

U
p

⌉
χ, ζ, Γ

}
. (A66)

Moreover we let:
Γ = ζ, (A67)

ζ ≥
⌈

U
p

⌉
χ. (A68)

By using assumptions (A67) and (A68), we can see that the total normalized length is:

lim
n→∞

T
nK2−K+QK

= χ + 2Γ. (A69)

Step 6: DoF Analysis

Now, we can characterize the total DoF. As stated before, we have U clean receivers,
each with a normalized message dimension equal to Γ + χ, and K − U dirty receivers,
each with a normalized message dimension equal to ζ (note that we assumed ζ = Γ).
Therefore, the total normalized length of T is equal to χ + 2Γ. Thus, the total DoF has the
following form:

DoF = max
χ≥0,Γ≥

⌈
U
p

⌉
χ

U(χ + Γ) + (K − U)Γ
χ + 2Γ

. (A70)

By assuming that Γ = βχ, we have:

DoF = max
β≥
⌈

U
p

⌉ U(1 + β) + (K − U)β

1 + 2β
(A71)

=
K
2
+ max

β≥
⌈

U
p

⌉K
U
K − 1

2
1 + 2β

=
K
2
+ max

⎧⎨⎩K
U
K − 1

2

1 + 2
⌈

U
p

⌉ , 0

⎫⎬⎭, (A72)
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where (A72) follows from the fact that if U
K > 1

2 , we set β =
⌈

U
p

⌉
, and if U

K < 1
2 , we tend β

to ∞. This completes the proof.
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Abstract: This article aims to give a comprehensive and rigorous review of the principles and recent
development of coding for large-scale distributed machine learning (DML). With increasing data
volumes and the pervasive deployment of sensors and computing machines, machine learning has
become more distributed. Moreover, the involved computing nodes and data volumes for learning
tasks have also increased significantly. For large-scale distributed learning systems, significant
challenges have appeared in terms of delay, errors, efficiency, etc. To address the problems, various
error-control or performance-boosting schemes have been proposed recently for different aspects,
such as the duplication of computing nodes. More recently, error-control coding has been investigated
for DML to improve reliability and efficiency. The benefits of coding for DML include high-efficiency,
low complexity, etc. Despite the benefits and recent progress, however, there is still a lack of
comprehensive survey on this topic, especially for large-scale learning. This paper seeks to introduce
the theories and algorithms of coding for DML. For primal-based DML schemes, we first discuss the
gradient coding with the optimal code distance. Then, we introduce random coding for gradient-
based DML. For primal–dual-based DML, i.e., ADMM (alternating direction method of multipliers),
we propose a separate coding method for two steps of distributed optimization. Then coding schemes
for different steps are discussed. Finally, a few potential directions for future works are also given.

Keywords: error-control coding; gradient coding; random codes; ADMM

1. Background and Motivations

With the fast development of computing and communication technologies, and emerg-
ing data-driven applications, e.g., IoT (Internet of Things), social network analysis, smart
grids and vehicular networks, the volume of data for various intelligent systems with
machine learning has increased explosively along with the number of involved computing
nodes [1], i.e., in a large scale. For instance, learning systems based on MAPReduce [2]
have been widely used and may often reach the data volume of petabytes (1015 bytes),
which may be produced and stored in thousands of separated nodes [3,4]. Large-scale
machine learning is pervasive in our societies and industries. Meanwhile, it is inefficient
(sometimes even infeasible) to transmit all data to a central node for analysis. For the
reason, distributed machine learning (DML), which stores and processes all or parts of
data in different nodes, has attracted significant research interests and applications [1,3–16].
There are different methods of implementing DML, i.e., primal method (e.g., distributed
gradient descend [4,7], federated learning [5,6]) and primal–dual method (e.g., alternating
direction method of multipliers (ADMM)) [16]. In a DML system, participating nodes (i.e.,
agents or workers) normally process local data and send the learning model information to
other nodes for consensus. For instance, in a typical federated learning system [5,6], worker
nodes run multiple rounds of gradient descends (local epoch) with local data and received
global models. Then, the updated local models are sent to the server for aggregating into
new global models (normally weighted sum). The models are normally much shorter than
raw data. Thus, significant communication costs are saved by federated learning, and
meanwhile the transmission of models in general has better privacy than sending raw data
over networks. Actually, in addition to federated learning, other DML also has the benefits
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of communication efficiency and improved privacy since model information has, in general,
smaller volumes and better privacy than raw data.

Despite various benefits, there are severe challenges for the implementation of DML,
especially for large-scale DML. Ideally, DML algorithms have speedup gains, which should
scale linearly with the number of participating learning machines (computing nodes).
However, the practical speedup gain of DML is limited by various bottlenecks, and is still
far from the theoretical upper limits [17,18]. Among others, significant bottlenecks include
communication loads, security, global convergence, synchronization, slow computing
nodes, complex optimization functions, etc. For instance, due to the limitation of computing
capability and communication networks, a part of the computing nodes may have slow
response and become the bottleneck of DML systems if the fast-response nodes have to
wait for them. These nodes are often referred to as straggler nodes [4], and also called
system noise [19]. To efficiently combat the straggler nodes, many schemes have been
proposed, such as repetition nodes [20,21], blacklisting straggler nodes [22] and error-
control codes [4,8–14,23–25]. Blacklisting method detects the straggler nodes and will not
schedule more tasks to them. Thus, it is a type of after-event approach. The repetition of
computing nodes needs lots of resources and a suitable mechanism to detect straggler
nodes and find corresponding repetition nodes. Moreover, it is rather expensive to repeat
all computing tasks and related data. More recently, error-control coding was proposed for
DML by regarding straggler nodes as erasure, which can be corrected by coded data from
non-straggler nodes and are shown to be much more efficient than the schemes based on
replication. Error-control coding can correct the loss by straggler nodes of current learning
rounds and thus is a type of current-event approach.

In [8], more practical computing networks with hierarchical structures were studied.
For such networks, hierarchical coding schemes based on multiple MDS codes were pro-
posed to reduce computation time. In [9], each multiplication matrix was further divided
into sub-matrices, and all sub-matrices were encoded by MDS codes (e.g., Reed–Solomon
codes). Thus, the computed parts in straggler nodes can be exploited, and the comput-
ing time can be further reduced. However, as the number of nodes and sub-matrices
increases, the complexity of the MDS codes will increase substantially. In [25], the deter-
ministic construction of Reed–Solomon codes was proposed for gradient-based DML. The
generator matrix of the codes in [25] is sparse and well balanced, and thus the waiting
time is reduced for gradient computation. In [10], a new entangled polynomial coding
scheme was proposed to minimize the recover threshold of master–worker networks
with generalized configurations for matrix-multiplication-based DML. In [26,27], coding
schemes are considered for matrix multiplication in heterogeneous computing networks.
However, the complexity of coding in [26,27] is still very high for large-scale DML since
matrix inversion is used for decoding, and moreover, the coding matrix is pre-fixed and
is hard to adapt to varying networks. In [28], low-complexity decoding was proposed
for matrix multiplication for DML. However, the results in [28] are preliminary and hard
to be used for heterogeneous networks, and the communication load is still very high.
In [11], coding schemes based on the Lagrange polynomial are proposed to encode blocks
among worker nodes. The proposed codes may achieve optimal tradeoffs among redundancy
(against straggler nodes), security (against Byzantine modification) and privacy. However,
the coding scheme in [11] is also based on MDS codes, which may not be flexible and have
high complexity for large-scale DML. Furthermore, the existing coding schemes are mostly
for matrix multiplication (for distributed gradient descend), i.e., the primal method. Another
important class of large-scale DML is based on primal-dual methods, i.e., ADMM [16], for
which codes have seldom been studied. Thus, coding for ADMM based large-scale DML
should be developed to combat straggler nodes, reduce communication loads and increase
efficiency.

Despite the progress in coding for straggler nodes [4,8–14,24,25], the results are still
preliminary and there are also various critical challenges for exploiting the advantages
of DML, especially for large-scale learning: (1) Reliability and complexity—though coding
has been proposed for addressing the straggler nodes to improve reliability, the existed
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schemes are mainly for the systems with a limited number of nodes or data. The coded
DML schemes based on existing optimal error-control codes (i.e., maximum distance
separable: MDS codes) [4,24,25] have very high encoding/decoding complexity when
the number of involved nodes or the data volume scales up. Moreover, MDS codes treat
every coding node equally and are not optimal for heterogeneous networks (e.g., IoT or
mobile networks). (2) Communication loads—with increasing nodes or data volumes, the
communication loads will quickly increase for exchanging model updates among learning
nodes. Thus, coding schemes efficient in communication loads are critical for large-scale
DML. (3) Limited learning functions—most of the existing coding schemes for DML are
for gradient descend (primal method), i.e., combining coding with matrix multiplication
and/or data shuffling [4,8–14,24,25]. Coding for many other important distributed learning
functions, e.g., primal–dual optimization functions (also may be non-smooth or non-
convex) in ADMM has seldom been explored. Moreover, existing coding for DML often
runs in a master–worker structure, which may not be efficient (or even infeasible) for
certain applications, e.g., those without master nodes. Thus, coding for fully decentralized
DML should be also investigated. By encoding the messages to (or/and from) different
destinations/sources in intermediate nodes, network coding shows the benefits of reducing
information flow in the networks [29,30]. Moreover, it has been shown that network coding
can improve the reliability and security of communication networks [12,31,32]. Thus, it is
also valuable to discuss the applications of network coding to DML.

In what follows, we first introduce the basics on DML in Section 2. Then we discuss
how error-control coding can help with the straggler problem in Section 3, the random
coding construction in Section 4, and coding for primal–dual-based DML (ADMM) in
Section 5. Finally, conclusions and discussion for future works are given in Section 6.

2. Introduction of Distributed Machine Learning

In general, DML will have two steps: (1) Agents learn local models from local data,
maybe combining with global models. This step may iterate multiple rounds, i.e., local
iterations, to produce a local model. (2) With local models, agents will reach consensus.
These two steps may also iterate multiple rounds, i.e., global iterations. There are also
different methods to implement the two steps, for instance, the primal and primal–dual
methods as mentioned above. There are different ways to achieve consensus, for instance,
through a central server, i.e., master–slave method or fully decentralized. For the former,
the implementation is relatively straightforward. Yet, for the latter, there are also different
approaches as will be discussed later on. For Step (1), the common local learning machine
includes, for example, linear (polynomial) regressions, classification and neural networks.
The common approach of these learning algorithms is to find the model parameters (e.g.,
weights in neural networks) that minimize the cost functions (such as mean-squared
errors/L2 loss, hinge loss and cross-entropy loss). In general, convex cost functions should
be chosen. For instance, for linear regression, we assume x, y as the input and output of
the training data, respectively, and w (normally a matrix or a vector) as the weight to be
optimized. If the mean-squared error cost functions are used, then the learning machine
works as

min
w

‖ xw − y ‖2 . (1)

To find the optimal w, one common approach is to use gradient descend, which is a
first-order iterative optimization algorithm for finding a local minimum of a differentiable
function. If the cost function is convex, then the local minimum is also the global mini-
mum [33]. For instance, in the training process of neural networks, gradient descend is
commonly used to find the optimized weight and bias iteratively. The gradient is found
by partial derivative of cost functions relative to optimizing variables (weight and bias of
training examples). For instance, for node i, the optimizing variables can be updated by

wi
t+1 = wi

t − γ∇F(wi
t, Di), (2)
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where t is the iteration step index, γ is the step size, Di is the data set (training samples)
in node i, F(wi

t) is the cost function with current optimizing variables, and ∇F(wi
t, Di)

denotes the gradients for given (wi
t, Di) (by partial derivatives). The training process is

normally performed in batches of data. Di can be further divided into subsets, e.g., N
subsets, i.e., Di = {D1

i , D2
i , · · · , DN

i }. If subsets are exclusive, the gradients from different
subsets are independent, i.e., ∇F(wi

t, Di) = {∇F(wi
t, D1

i ),∇F(wi
t, D2

i ), · · · ,∇F(wi
t, DN

i )}.
However, in many DML systems, e.g., those based on MAPReduce file systems, or sensor
nodes in neighboring areas, there may be overlapping data subsets, i.e., Dk

i = Dn
j for

certain k, n and i 
= j. Therefore, there may be identical gradients in different nodes.
These properties were recently exploited for coding. It it clear from (2) that for given
gradients, the steps of finding optimal parameters are mainly linear matrix operations
(matrix multiplications). Actually, in addition to neural networks, one core operation of
many other learning algorithms is also matrix multiplications, such as regression, power-
iteration-like algorithms, etc. [4]. Thus, one of the major coding schemes for DML is based
on the matrix multiplication of the learning process [4,8–14,24,25]. Clearly, major coding
schemes (forward error-control coding and network coding) are linear in terms of encoding
and decoding operations, i.e., C = M × W, where C, M and W are codeword (vectors),
coding matrix and information message, respectively. Since both learning and coding
operations are linear matrix operations, then the coding matrix and learning matrix can
be jointly optimized. On the other hand, coding can be optimized to provide efficient and
reliable information pipelines for DML systems. In such way, coding and DML matrices
are separately optimized. Separate optimization actually has been widely studied for many
years for existing systems due to the simpler design relative to joint design. There are
many works in the literature on the separate optimization of learning systems and coding
schemes. We will focus on joint design in this article.

3. Coding for Reliable Large-Scale DML

In this section, we will first give a review on the basic principles of coding for reliable
DML. Then, we will discuss two optimal construction of codes for DML.

One toy example of how coding can help to deal with stragglers can be found in
Figure 1 [34]. For instance, it can be a federated learning network with worker and server
nodes. There is partial overlapping for data segments in different worker nodes and thus
the partial overlapping of gradients. As in Figure 1, we divide the data set of a node into
multiple smaller sets to denote the partial overlapping of different nodes. Meanwhile,
multiple sets in a node are also necessary for encoding as shown in the figure since one
data set corresponds to one source symbol of the code. In the server node, a weight sum
of the gradient is needed. In the figure, three worker nodes have different data parts of
D1, D2, D3, which are used to compute gradients G1, G2, G3, respectively. In the server, an
individual gradient is not needed but only their sum Gs = G1 + G2 + G3. We can easily
see that gradients from any two nodes can calculate Gs. For instance, if worker3 is outage,
then Gs = 2(G1/2 + G2)− (G2 − G3) with two transmission coded blocks from worker1
and worker2. If there is no coding, then worker1 and worker2 have to transmit G1, G2, G3
separately with three blocks after the coordination operations. Thus, coding can save the
transmission and also coordination loads.

Though the idea of applying coding for DML is straightforward as shown in the
above toy example, the code design will be rather challenging for large-scale DML, i.e.,
when the numbers of nodes and/or gradients per node are very large. One big challenge
is how to construct encoding and decoding matrices, especially with limited complexity.
In what follows, we will first give a brief introduction of the MAPReduce file systems,
which are often used in DML. Then, we will discuss the coding schemes with deterministic
construction [34]. The random construction based on fountain codes is given in the next
section, which normally has lower complexity [13,14].

108



Entropy 2022, 24, 1284

Figure 1. Coded DML with a master–worker structure can tolerate any of one straggler node.

In large DML systems, MAPReduce is a commonly used distributed file storage
system. As shown in Figure 2, there are three stages for the MAPReduce file systems: map,
shuffling and reduce. In the system, data are stored in different nodes. In the map stage,
stored data are sent to different computing nodes (e.g., cloud computing nodes), according
to pre-defined protocols. In the shuffling stage, the computed results (e.g., gradients)
are exchanged among nodes. Finally, the end users will collect the computed results in
the reduce stage. MAPReduce can be used in federated learning, which was originally
proposed for the applications in mobile devices [5]. In such a scenario, data are first sent
to different worker nodes in the map stage, according to certain design principles. Then
in the shuffling stage, local model parameters are aggregated in the server node. Finally,
the aggregated models are obtained in the final iteration at the server. In such a way,
worker nodes have all necessary data for computing local models, sent from storage nodes.
However, there may be straggling worker nodes, due to either slow computing at the node
or transmission errors in the channels. In such scenario, gradient coding [34] can be used
to correct the straggler nodes.

Figure 2. A common realization of DML based on MAPReduce.

To construct gradient coding, we use A to denote the possible straggler pattern multi-
plied by the corresponding decoding matrix, and B to denote how different gradients (or
model parameters) are combined in the worker node. Thus, A denotes transmission matrix
multiplied by decoding matrices in some sense (as they recover transmitting gradients from
received coded symbols) and B can also be regarded as an encoding matrix. Assuming that
k is the number of different gradients (data partitions) in all nodes and there are a total of n
output channels in all nodes, the dimension of B is n × k. Denoting ḡ = [g1, g2, · · · , gk]

T as
the vector of all gradients, then worker node i transmits bi ḡ, where bi is the i-th row of B
and the encoding vector at node i. The dimension of A is k × n. A row of A corresponds to
an instance of straggling patterns, in which 0 means a straggler node and how the gradients
are reproduced in the server. Thus, all rows in A denote all possible ways of straggling.
Denoting f as the number of surviving workers (none-stragglers), there are at most n − f
0s in each row of A. In the example of Figure 1, we only need the sum of gradients from
worker nodes instead of the values of individual gradients. Thus, we have AB = 1k×k
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and each row of ABḡ is identically G1 + G2 + G3, where 1k×k denotes all 1 matrix. For the
example, we can easily see that

A =

⎧⎨⎩
0 1 2
1 0 1
2 −1 0

⎫⎬⎭, and B =

⎧⎨⎩
1/2 1 0

0 1 −1
1/2 0 1

⎫⎬⎭. (3)

Clearly, if we want individual values of ḡ, we should redesign A, B such that AB is
an identity matrix. Or if we want the weighted sum of gradients (weights more general
than 1), A, B should be also redesigned. From the description, we can see that the main
challenge of designing the gradient coding is to find suitable encoding matrix B such that
it can correct the straggling loss defined by A. In [34], two different ways of finding B
and corresponding A are given, i.e., fractional repetition and cyclic repetition schemes as
detailed in the following.

We denote n and s as the number of worker nodes and straggler nodes, respectively,
and assume n is a multiple of s + 1. Then, fractional repetition construction is described as
the following steps.

• Divide n workers into s + 1 groups of size n/(s + 1);
• In each group, divide all the data equally and disjointly, assigning s + 1 partitions to

each worker;
• All the groups are replicas of each other;
• After local computing, every worker transmits the sum of its partial gradient.

By the second step, in a group, the first worker obtains the first s + 1 partitions from the
map stage and computes the first s + 1 gradients, and the second worker obtains the second
s + 1 partition from the map stage and computes the second s + 1 gradient and so on. The
encoding of each group of workers can be denoted by a block matrix B̄block(n, s) ∈ R

n
s+1×n with

B̄block(n, s) =

⎡⎢⎢⎢⎣
11×(s+1) 01×(s+1) · · · 01×(s+1)
01×(s+1) 11×(s+1) · · · 01×(s+1)

...
...

. . .
...

01×(s+1) 01×(s+1) · · · 11×(s+1)

⎤⎥⎥⎥⎦
n

s+1×n

. (4)

Here 11×(s+1) and 01×(s+1) means 1 × (s + 1) matrix of all 1 s and all 0 s (row vector),
respectively. Then B is obtained by replicating s + 1 copies of B̄block(n, s), i.e.,

B = Bf rac =

⎡⎢⎢⎢⎢⎣
B̄1

block(n, s)
B̄2

block(n, s)
...

B̄(s+1)
block (n, s)

⎤⎥⎥⎥⎥⎦, (5)

where B̄i
block(n, s) = B̄block(n, s), for i ∈ {1, · · · , s + 1}. In addition to the encoding matrix

Bf rac, reference [34] also gives the algorithms of constructing the corresponding A matrix
as follows.

It was shown in [34] that by fractional repetition schemes, B = Bf rac from (5) and A from
Algorithm 1 can correct any s straggler. It can be more formally stated as the following theorem.

Algorithm 1 Algorithm to compute A for fractional repetition coding.
Input: B = Bf rac;
f ← binom(n, s) A ← zeros( f , n) for I ⊆ [n], s.t.|I| = (n − s) do

a = zeros(1, k) x = ones(1, k)/B(I, :) a(I) = x A = [A; a]
Output: A s.t. AB = 1 f×k;
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Theorem 1. Consider B = Bf rac from (5) for a given number of workers n and stragglers s(< n).
Then, the scheme (A, Bf rac), with A from Algorithm 1 is robust to any s straggler.

Here, we refer the interested readers to [34] for the proof. In addition to fractional
repetition construction, another way of finding the B matrix is the cyclic repetition scheme,
which does not require n to be a multiple of s + 1. The algorithm to construct the cyclic
repetition B matrix is given as follows.

Actually, the resultant matrix B = Bcyc from Algorithm 2 has the following support
(non-zero parts):

supp(Bcyc) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

∗ ∗ · · · ∗ ∗ 0 0 · · · 0 0
0 ∗ ∗ · · · ∗ ∗ 0 · · · 0 0
...

...
...

...
...

...
. . . . . .

...
...

0 0 · · · 0 0 ∗ ∗ · · · ∗ ∗
...

...
...

...
...

...
. . . . . .

...
...

∗ · · · ∗ ∗ 0 0 · · · 0 0 ∗

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (6)

where ∗ is the non-zero entries in Bcyc, and in each row of supp(Bcyc), there are (s + 1)
non-zero entries. The position of non-zero entries is right shifted one step and cycled
around until the last row. The construction of A matrix follows Algorithm 1 also for Bcyc. It
was shown in [34] that cyclic repetition schemes can also correct any s stragglers:

Algorithm 2 Algorithm to construct B = Bcyc.

Input: n, s(< n);
H = binom(n, s) H = −sum(H(:, 1 : n − 1), 2) B = zeros(n) for i = 1 : n do

j = mod(i − 1 : s + i − 1, n) + 1 B(i, j) = [1;−H(:, j(2 : s + 1))] \ H(:, j(1))]
Output: B ∈ Rn×n with (s + 1) non-zeros in each row.

Theorem 2. Consider B = Bcyc from Algorithm 2, for a given number of workers n and stragglers
s(< n). Then, the scheme (A, Bcyc), with A from Algorithm 1 is robust to any s straggler.

Fractional repetition and cyclic repetition schemes provide specific methods of encod-
ing and decoding for master–worker DML for tolerating any s stragglers. More generally, it
was also shown in [34] the necessary conditions for matrix B for tolerating any s stragglers
if the following conditions are satisfied.

Condition 1 (B-Span): Consider any scheme (A, B) robust to any s stragglers, given
n(s < n) workers, then every subset (I) ⊆ span{bi|i ∈ (I)} is satisfied, where span{·} is
the span of vectors.

If A matrix is constructed by Algorithm 1, (A, B) with Condition 1 is also sufficient.

Corollary 1. If A matrix is constructed by Algorithm 1 and B satisfies Condition 1, (A, B) can
correct any s stragglers.

Numerical results: In Figure 3, the average time per iteration for different schemes
is compared from [34]. In naive scheme, the data are divided uniformly across all workers
without replication, and the master just waits for all workers to send their gradients.
In ignoring the s straggler scheme, the data distribution is the same as the naive scheme.
However, the master node only waits until n − s worker nodes successfully send their
gradients (no need to wait for all gradients). Thus, as discussed in [34], ignoring the
straggler scheme may lose in the generalization performance by ignoring a part of data sets
of straggler nodes. The running learning algorithms are based on logistic regression. The
training data are from the Amazon Employee Access dataset from Kaggle. The delay is
introduced by the computing latency of AWS clusters, and there is no transmission error.
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As shown in the figure, the naive scheme performs the worst. With increasing stragglers,
coding schemes also perform better than ignoring straggler schemes as expected.

Figure 3. Comparison average time per iteration on Amazon employee access dataset [34].

4. Random Coding Construction for Large-Scale DML

The gradient coding in [34] works well for the DML scheme with a master–worker
structure with limited sizes (finite number of nodes and limited data partitions). However,
the deterministic construction of encoding and decoding matrices may be challenging
when the number of nodes or data partitions (e.g., n or k) is large. The first challenge is the
complexity of encoding and decoding, both of which are based on matrix multiplication,
which may be rather complex, especially for decoding (e.g., based on Gaussian elimination).
Though DML with MDS codes is optimal in terms of code distance (i.e., the degree of
tolerance to the amount of straggler nodes), the coding complexity will be rather high
with the increasing number of participating nodes, i.e., for hundreds or even thousands of
computing nodes. For instance, Reed–Solomon codes normally need to run in non-binary
fields, which are of high complexity. Another challenge is lack of flexibility. Both factional
repetition and cyclic repetition coding schemes assume static networks (worker nodes
and data). However, in practice, the participating nodes may be varying in mobile nodes
or sensors, for example. In the mobile computing scenario, the number of participating
nodes may be unknown. It will rather difficult to design deterministic coding matrices
(A or B) in such a scenario. Similarly, if the data are from sensors, the amount of data
may also be varying. Thus, the deterministic construction of coding is hard to adapt to
these scenarios, which, however, are very common in large-scale learning networks. Thus,
coding schemes efficient in varying networks and of low complexity are preferable for
large-scale DML. In [13,14], we investigated the random coding for DML (or distributed
computing in general) to address the problems. Our coding scheme is based on fountain
codes [35–37]. The coding scheme is introduced as follows.

Encoding Phase: As shown in Figure 4, we consider a network with multiple storage
and computing/fog nodes. Let FNf denote the f -th fog node and let SUs denote the s-th
storage unit with f ∈ {1, 2, · · · , F} and s ∈ {1, 2, · · · , S}, respectively. Let Df denote the
dataset node f needed to finish a learning task. Df will be obtained from the storage
units available to node f . For instance, in a DML with wireless links as in Figure 4, Df
means the data union for all the storage units within the communication range of FNf (i.e.,
within R f ). Similar to federated learning, FNf will use the current model parameters to
calculate gradients, namely, intermediate gradients, denoted as g f = [g f ,1, g f ,2, · · · , g f ,|Df |],
where g f ,a means the gradient trained by data a(a ∈ Df ) and |Df | is the size of Df .
Meanwhile, fog nodes need to calculate the intermediate model parameters (e.g., weight)
w f = [w f ,1, w f ,2, · · · , w f ,|w f |], where |w f | is the length of model parameters learned at FNf .
Then the intermediate gradients and model parameters will be sent out to other fog nodes
(or the central sever if there is one) for further processing after encoding. The coding
process for g f is as follows.

• A number dg is selected according to degree distribution Ω(x) = ∑
|Df |
dg=1 Ωdg xdg with

probability Ωdg xdg ;
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• Then, dg intermediate gradients are selected uniformly at random from g f to encode
into one coded intermediate gradient;

• The above two steps repeated until Qg
f = (1 + η f )|Df | coded intermediate gradients

are formed, where η f (≥ 0) is the expanding coefficient of the fountain codes (denoting
redundancy).

Ω(x) can be optimized by the probability of straggling (regarded as erasure) due
to channel errors, slow computing, etc. The optimization of the degree distribution for
distributed fountain codes can be found in, for example, [38], and we will not discuss it
here for space limitation. With the above coding process, the resulted coded intermediate
gradients are

cg
f = [g f ,1, g f ,2, · · · , g f ,|Df |]G

g
f = g f Gg

f , (7)

where Gg
f is the generator matrix at fog node FNf . The encoding process for w f is the

same as that of g f with a possibly different degree distribution μ(x) = ∑
w f
dw=1 μdw xdw . The

formed Qw
f = (1 + η f )w f coded intermediate parameters can be written as cw

f = w f Gw
f ,

where Gw
f is the generator matrix at FNf for model parameters.

Figure 4. Distributed machine learning with multiple data storage and computing/fog nodes.

Exchanging Phase: The coded intermediate gradients cg
f and model parameters cw

f ,
( f ∈ {1, 2, · · · , N}) are exchanged among fog nodes. Let M be the total number of all dif-
ferent data in all F nodes, M ≤ ∑F

f=1 |Df |. The equality holds only if F datasets are disjoint.
Decoding Phase: The generator matrices for the received coded intermediate gradients

and model parameters from fog node FNi(i ∈ {1, 2, · · · , F}) \ { f } at FNf are G̃g
i, f with

size |G| × Qg
i, f and G̃w

i, f with size wi × Qw
i, f , respectively, where Qg

i, f = (1 − εi, f )Q
g
i and

Qw
i, f = (1 − εi, f )Qw

i . Here εi, f denotes the straggling probability from FNi to FNf due to var-
ious reasons, e.g., physical-layer erasure, slow computing, and congestion. Thus, the gener-
ator matrices corresponding to the received coded intermediate gradient and model param-
eters at FNf can be written as G̃g

f = [11G̃g
1, f , · · · , 1 f−1G̃g

f−1, f , 1 f+1G̃g
f+1, f , · · · , 1FG̃g

F, f and

G̃g
f = [11G̃g

1, f , · · · , 1 f−1G̃g
f−1, f , 1 f+1G̃g

f+1, f , · · · , 1FG̃g
F, f and G̃w

f = [11G̃w
1, f , · · · , 1 f−1G̃w

f−1, f ,
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1 f+1G̃w
f+1, f , · · · , 1FG̃w

F, f , respectively. Here I = {11, · · · , 1F} is an indicator parameter. Let
λ be the probability of straggling. Then, I f , ( f ∈ {1, 2, · · · , F}) can be evaluated as

I f =

{
1, with probability 1 − λ,
0, with probability λ.

(8)

Then fog node FNf decodes the received coded intermediate parameters from G̃g
i, f

and G̃w
i, f , (i ∈ {1, 2, · · · , F} \ { f }), and tried to decode N − |Df | new gradients and

Γw ∑i∈{1,2,··· ,F}\{ f } wi model parameters, where Γw ∈ [0, 1] is a parameter determined
by specific learning algorithms. For the benefits of fountain codes (e.g., LT or Raptor codes),
the iterative decoding is feasible if the numbers of received coded gradients or model
parameters are slightly larger than those of gradients and models in transmitting fog nodes.
Clearly, to optimize the code degree distribution and task allocation, it is critical for a node
to know the number of received intermediate gradients and model parameters at the node.
For the purpose, we have the following analysis.

Assume γa,b as the overlapping ratio of the dataset in FNa and FNb, then for all fog
nodes, we have the overlapping ratio as follows:

γ =

⎡⎢⎢⎢⎣
1 γ1,2 · · · γ1,F

γ2,1 1 · · · γ2,F
...

...
. . .

...
γF,1 γF,2 · · · 1

⎤⎥⎥⎥⎦. (9)

If γa,b = 0, then node FNa and FNb has disjoint datasets. At FNf , |Df | intermediate
gradients are known. Thus, A = N − |Df | new intermediate gradients are required for
updating model parameters w f . Then, we have the following result:

Theorem 3. The total number of new intermediate gradients received from the other fog nodes
at FNf can be calculated by Δ = ∑F−1

πi ,i=1 1πi ((1 − γπi , f )ϕ(i, f )) · |Dπi |, where ϕ(i, f ) can be
written as

ϕ(i, f )) =
{

1, if i = 1,
Πi−1

a=1(1 − γπi ,πi−πa |Θa, f ), if 2 ≤ i ≤ F − 1,
(10)

where Θa, f is a set formed by the indices of fog nodes, and it can be evaluated by

Θa, f =

{ { f }, if a = 1,
{ f , π1, · · · , πa−1}, if a > 1.

(11)

If γ is known at each fog node (or at least from the transmitted neighbors at each
receiving node), then Δ can be evaluated, and the computation and communication loads
can be optimized through proper task assignment and code degree optimization. Theorem 3
is for gradients, and a similar analysis also holds for model parameters. In Figure 5, we
show the coding gains in terms of communication loads, which are defined as the ratio of
the total number of data transmitted by all the fog nodes to the data required at these fog
nodes. As we can see from the figure, if the number of nodes F or straggler probability
increases, the coding gains increase as expected.
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Figure 5. Ratio of coding gains relative to uncoded systems in communication loads.

We note that both deterministic codes in Section 3 and random construction coding
here are actually a type of network coding [29,30], which can reduce communication loads
by computing at intermediate nodes (fog nodes) [3,4]. More recently, one type of special
network codes, i.e., BATS (batched sparse) codes, was proposed with two layered codes as
shown in Figure 6. For outer codes, we can use error control codes such as fountain codes
in MAP phase. For inner codes, network codes can be used such as random linear network
codes in data shuffling stage. In [12], we studied BATS codes for fog computing networks.
As shown in Figure 7, numerical results demonstrate that the BATS codes can achieve a
lower communication load than uncoded and deterministic codes (network codes) if the
computing load is lower than certain thresholds. Here, we skip further details and refer
interested readers to [12].

Figure 6. Large-scale distributed machine learning (DML) with BATS codes.
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Figure 7. Communication load comparison among BATS codes, coded computing (deterministic
codes) and uncoded [12]. eF denotes the channel erasure probability and corresponds to straggling
probability. The computing load is defined as involved computing nodes and thus corresponds to
expanding coefficients.

5. Coding for ADMM

5.1. Introduction and System Setup

As a primal–dual optimization method, ADMM is shown to be able to generally
converge at a rate of O(1/t) for convex functions, where t is the iteration number [16],
which is often faster than the schemes based on primal methods. Meanwhile, ADMM also
has the benefits of robustness to non-smooth/non-convex functions and being adaptive
to fully decentralized implementation. Thus, ADMM is especially suitable for large-scale
DML and has attracted substantial research interests. For DML, especially for the fully
decentralized learning system without a central server, we can denote the learning network
as G = (N , E), where N = {1, . . . , N} is the set of agents (computing nodes) and E is
the set of links. For ADMM, agents aim at solving the following consensus optimization
problem collaboratively:

min
x

N

∑
i=1

fi(x;Di), (12)

where fi : Rp → R is the local optimization function of agent i, and Di is the data set of
agent i. All the agents share a global optimization variable x ∈ Rn. Data sets of different
agent may have overlapping, i.e., Di ∩ Dj 
= ∅, for a part or all i 
= j. This can happen,
for instance, among the sensors of nearby areas for weathers, traffic, smart grids, etc., or
if MAPReduce is used, the same data are mapped to different agents. For ADMM, (12) is
solved iteratively by a two-step process:

• Step (a), local optimization of fi on receiving updated global variable and with Di
(normally by augmented Lagrangian as detailed below);

• Step (b), global variable x reaches consensus.

With DML, there are also straggler nodes and unreliable-link challenges for ADMM,
especially for large-scale and heterogeneous networks or with wireless links. However,
with primal–dual optimization, it is very hard (if possible) to transfer ADMM optimization
process into a linear function (e.g., matrix multiplication as in gradient descend). Thus,
coding schemes based on linear operations (e.g., matrix multiplication in [4,8–11,24,25])
are impossible to be directly used in ADMM and there are very few results on coding
for ADMM so far, to our best knowledge. To address the problem, one solution is to use
coding separately for two steps of ADMM. For instance, error control coding can be used
for local optimization if the data are stored in different locations for an agent. For the global
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consensus, network coding can be used to reduce the communication loads and increase
reliability. In [15], we preliminarily investigated how coding (MDS codes) can be used in
local optimization (step (a)). A more detailed introduction is given as follows.

As depicted in Figure 8, a distributed computing system consists of multiple agents,
each of which is connected with several edge computing nodes (ECNs). Agents can
communicate with each other through links. ECNs are capable of processing data collected
from sensors, and transferring desired messages (e.g., model updates) back to the connected
agent. Based on the agent coverage and computing resources, the ECNs connected to agent
i(∈ N ) are denoted as Ki = {1, . . . , Ki}. This model is common in current intelligent
systems, such as smart factories or homes.

Figure 8. ADMM with multiple agents, each of which collect trained models from multiple ECNs
with sensed data. Agents are connected via Hamiltonian networks.

The multi-agent system seeks to find out the optimal solution x∗ by solving (12). Di is
allocated to dispersed ECNs Ki. The formulation of decentralized optimization problem
can be described as follows. By defining x = [x1, . . . , xN ] ∈ RpN×d and introducing a
global variable z ∈ Rp×d, problem (12) can be reformulated as

(P-1) : min
x,z

N

∑
i=1

fi(xi;Di), s.t. 1 ⊗ z − x = 0, (13)

where 1 = [1, . . . , 1]T ∈ RN , and ⊗ is the Kronecker product. In the following, fi(xi,Di) is
denoted as fi(xi) for simplifying illustration.

In what follows, we will present communication-efficient and straggler-tolerant de-
centralized algorithms, by which the agents can collaboratively find an optimal solution
through local computations and limited information exchange among neighbors. In the
scheme, local gradients are calculated in dispersed ECNs, while variables, including primal
and dual variables and global variables z, are updated in the corresponding agent. For
illustration purpose, we will first present stochastic ADMM (sI-ADMM) and then coded
version of sI-ADMM (i.e., csI-ADMM). Both of them are proposed in [15]. The standard
incremental ADMM iterations for decentralized consensus optimization will be reviewed
first. The augmented Lagrangian function of problem (P-1) is

Lρ(x, y, z) =
N

∑
i=1

fi(xi) + 〈y, 1 ⊗ z − x〉+ ρ

2
‖1 ⊗ z − x‖2, (14)
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where y = [y1, . . . , yN ] ∈ RpN×d is the dual variable, and ρ > 0 is a penalty parameter.

With incremental ADMM (I-ADMM) [39,40], with guaranteeing ∑N
i=1(x1

i −
y1

i
ρ ) = 0 (e.g.,

initialize x1
i = y1

i = 0), the updates of x, y and z at the (k + 1)-th iteration follow:

xk+1
i :=

⎧⎪⎪⎨⎪⎪⎩
arg min

xi
fi(xi) +

ρ

2

∥∥∥∥∥zk − xi +
yk

i
ρ

∥∥∥∥∥
2

, i = ik;

xk
i , otherwise;

(15a)

yk+1
i :=

⎧⎨⎩yk
i + ρ

(
zk − xk+1

i

)
, i = ik;

yk
i , otherwise;

(15b)

zk+1 := zk +
1
N

[(
xk+1

ik
− xk

ik

)
− 1

ρ

(
yk+1

ik
− yk

ik

)]
. (15c)

For ADMM, solving augmented Lagrangian especially for the x-update above may
lead to rather high computational complexity. To achieve fast computation for x-update,
first-order approximation and mini-batch stochastic optimization in (15a) can be adapted.
Furthermore, a quadratic proximal term with parameter τk is proposed in [15] to stabilize
the convergence behavior of the inexact augmented Lagrangian method. Ref. [15] also
introduces the updating step-size γk for the dual update. Both parameters τk and γk can
be adjusted with iteration k. Finally, the updates of x and y at the (k + 1)-th iteration are
presented as follows:

xk+1
i :=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
arg min

xi

〈
Gi(xk

i ; ξk
i ), xi − xk

i

〉
+
〈

yk
i , zk − xi

〉
+

ρ

2

∥∥∥zk − xi

∥∥∥2
+

τk

2

∥∥∥xi − xk
i

∥∥∥2
, i = ik;

xk
i , otherwise;

(16a)

yk+1
i :=

⎧⎨⎩yk
i + ργk

(
zk − xk+1

i

)
, i = ik;

yk
i , otherwise;

(16b)

where Gi(xk
i ; ξk

i ) is the mini-batch stochastic gradient, which can be obtained through
Gi(xk

i ; ξk
i ) =

1
M ∑M

l=1 ∇Fi(xk
i ; ξk

i,l). To be more specific, M is the mini-batch size of sampling
data, ξk

i = {ξk
i,l}M denotes a set of independent and identically distributed randomly

selected samples in one batch, and ∇Fi(xk
i ; ξk

i,l) corresponds to the stochastic gradient of a
single example ξk

i,l .

5.2. Mini-Batch Stochastic I-ADMM

For above setup of ADMM, response time is defined as the execution time for updating
all variables in each iteration. In the updates, all steps, including x-update, y-update
and z-update, are assumed to be in agents rather than ECNs. In practice, the update is
often computed in a tandem order, which leads to a long response time. With the fast
development of edge/fog computing, it is feasible to further reduce the response time
since computing the local gradients can be dispersed to multiple edge nodes, as shown in
Figure 8. Each ECN computes a gradient using local data and shares the result with its
corresponding agent, and no information is directly exchanged among ECNs. Agents can
be activated in a predetermined circulant pattern, e.g., according to a Hamiltonian cycle,
and ECNs are activated whenever the connected agent is active, as shown in Figure 8. A
Hamiltonian cycle based activation pattern is a cyclic pattern through a graph that visits
each agent exactly once (i.e., 1 → 2 → 4 → 5 → 3 in Figure 8). Correspondingly, the
mini-batch stochastic incremental ADMM (sI-ADMM) [15] is presented in Algorithm 3. At
agent ik, global variable zk+1 gets updated and is passed as a token to the next agent ik+1 via
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a pre-determined traversing pattern, as shown in Figure 8. Specifically, in the k-th iteration
with cycle index m = �k/N�, agent ik is activated. Token zk is first received and then the
active agent broadcasts the local variable xk

i to its attached ECNs Ki. According to batch
data with index Ik

i,j, new gradient gi,j is calculated in each ECN, followed by the gradient
update, x-update, y-update and z-update in agent ik, via steps 21–24 in Algorithm 3. At
last, the global variable zk+1 is passed as a token to its neighbor ik+1. In Algorithm 3, the
stopping criterion is reached when

∥∥∥zk − xk
i

∥∥∥ ≤ εpri and
∥∥∥Gi(xk

i ; ξk
i )− yk

i

∥∥∥ ≤ εdual , ∀i ∈ N ,

where εpri and εdual are two pre-defined feasibility tolerances.

Algorithm 3 Mini-batch stochastic I-ADMM (sI-ADMM)

1: initialize: {z1 = x1
i = y1

i = 0, |i ∈ N}, batch size M;
2: LocalDataAllocation:
3: for agent i ∈ N do
4: divide Di labeled data into Ki equally disjoint partitions and denote each partition

as ξ i,j, j ∈ Ki;
5: for ECN j ∈ Ki do
6: allocate ξ i,j to ECN j;
7: partition ξ i,j examples into multiple batches with each size M/Ki;
8: end for
9: end for

10: UpdatingProcess:
11: for k = 1, 2, . . . do
12: StepsofActiveAgenti = ik = (k − 1) mod N + 1:

13: receive token zk;
14: broadcast local variable xk

i to ECNs Ki;
15: ECNj ∈ Kicomputesgradientinparallel:
16: receive local primal variable xk

i ;
17: select batch Ik

i,j = m mod �|ξ i,j| · Ki/M�;

18: update gradient gi,j =
Ki
M ∑

M
Ki
l=1 ∇Fi(xk

i ; ξk
i,l);

19: transmit gi,j to the connected agent;
20: until the Ki-th responded message is received;
21: update gradient via gradient summation:

Gi(xk
i ; ξk

i ) =
1
Ki

Ki

∑
j=1

gi,j; (17)

22: update xk+1 according to (16a);
23: update yk+1 according to (16b);
24: update zk+1 according to (15c);
25: send token zk+1 to agent ik+1 via link (ik, ik+1);
26: until the stopping criterion is satisfied.
27: end for

5.3. Coding for Local Optimization for sI-ADMM

With less reliable and limited computing capability of ECNs, straggling nodes may be
a significant performance bottleneck in the learning networks. To address this problem,
error control codes can be used to mitigate the impact of the straggling nodes by leveraging
data redundancy. Similar to Section 3, two MDS-based coding methods over real field R,
i.e., fractional repetition scheme and cyclic repetition scheme, can be adopted and integrated
with sI-ADMM for reducing the responding time in the presence of straggling nodes. The
coded sI-ADMM (csI-ADMM) approach is presented in Algorithm 4. Denote the minimum
required ECNs number by Ri and the maximum number of stragglers the system can
tolerate by Si. Different from sI-ADMM, in csI-ADMM, encoding and decoding processes
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are used in each ECN j ∈ Ki and its corresponding agent i, respectively. Gi(xk
i ; ξk

i ) will be
updated via steps 15–20, where the local gradient is calculated in ECN j ∈ Ki in parallel
via selected (Si + 1)M/Ki batch samples, and the gradient summation can be recovered
in active agent ik with the responded messages from any Ri out of Ki ECNs to combat
slow links and straggler nodes. As in steps 22–26 of sI-ADMM, activated agent ik then
updates local variables successively. Computation redundancy is introduced, but agent i
can tolerate any (Si = Ki − Ri) stragglers.

Algorithm 4 Coded sI-ADMM (csI-ADMM)

1: initialize: {z1 = x1
i = y1

i = 0|i ∈ N}, batch size M;
2: LocalDataAllocation:
3: for agent i ∈ N do
4: divide Di labeled data based on repetition schemes in [34] and denote each partition

as ξ i,j, j ∈ Ki;
5: for ECN j ∈ Ki do
6: allocate ξ i,j to ECN j;
7: partition ξ i,j examples into multiple batches with each size (Si + 1)M/Ki;
8: end for
9: end for

10: UpdatingProcess:
11: for k = 1, 2, . . . do
12: StepsofActiveAgenti = ik = (k − 1) mod N + 1:
13: run steps 13–14 of Algorithm 3
14: ECNj ∈ Kicomputesgradientinparallel:
15: run step 16 of Algorithm 3
16: select batch

Ik
i,j = m mod �|ξ i,j| · Ki/(Si + 1)M�; (18)

17: update gi,j via encoding function pj
enc(·);

18: transmit gi,j to the connected agent;
19: until the Ri-th fast responded message is received;
20: update gradient via decoding function qi

dec(·);
21: run steps 22–26 of Algorithm 3;
22: end for

5.4. Simulations for Coded Local Optimization

Both computed-generated and real-world datasets are used to evaluate the perfor-
mance of the coded stochastic ADMM algorithms. The experimental network G consists of
N agents and E = N(N−1)

2 η links, where η is the network connectivity ratio. For agent i,
Ki = K ECNs with the same computing power (e.g., computing and memory) are attached.
To reduce the impact of token traversing patterns, both the Hamiltonian cycle-based and
non-Hamiltonian cycle-based (i.e., the shortest path cycle-based [41]) token traversing
methods are evaluated for the proposed algorithms.

To demonstrate the advantages of the coding schemes, csI-ADMM algorithms are
compared with uncoded sI-ADMM algorithms with respect to the accuracy [42], which is
defined as

accuracy =
1
N

N

∑
i=1

∥∥∥xk
i − x∗

∥∥∥∥∥x1
i − x∗

∥∥ , (19)

where x∗ ∈ Rp×d is the optimal solution of (P-1), and the test error [43], which is de-
fined as the mean square error loss. For demonstrating the robustness against straggler
nodes, distributed coding schemes, including cyclic and fractional repetition methods and
the uncode method, are used for comparison. For fair comparison, the parameters for
algorithms are tuned and kept the same in different experiments. Moreover, unicast is
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considered among agents, and the communication cost per link is 1 unit. The consumed
time for each communication among agents is assumed to follow a uniform distribution
U (10−5, 10−4) seconds. The response time of each ECN is measured by the computation
time, and the overall response time of each iteration is equal to the execution time for
updating all variables in each iteration. All experiments were performed using Python on
an Intel CPU @2.3 GHz (16 GB RAM) laptop.

To show the benefit of coding, in Figure 9, we compare the accuracy vs. running
time for both coded and uncoded sI-ADMM. In simulation, the maximum delay εi,
(i = 1, 2, 3) for stragglers in each iteration is considered. For illustration purpose, we
set up different εi with ε1 > ε2 > ε3 in simulation. For showing the benefits of coding
to the convergence rate, convergence vs. straggler nodes trade-off for csI-ADMM, the
impact of the number of straggler nodes on the convergence speed is shown in Figure 10.
In simulations, 10 independent experiment runs are performed with the same simulation
setup on synthetic data and take an average for presentation. We can see that, with an
increasing number of straggler nodes, the convergence speed decreases. This is because
increasing the number of straggler nodes decreases the allowable mini-batch size allocated
in each iteration and therefore affects the convergence speed.

Figure 9. Comparison of coded and uncoded ADMM in accuracy and running time.
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Figure 10. Impact of number of straggler nodes on the convergence rate of the proposed csI-ADMM
on synthetic dataset.

5.5. Discussion

Above, we discuss the application of error-control coding in the local optimization step
of ADMM. In the agent consensus step, there are also straggling or transmission errors for
updating global variables. To improve reliability in the consensus step, we can use linear
network error correction codes [31] or BATS codes [32] based on LT codes. For the latter,
the global variable (vector) is divided into many smaller vectors. The encoding process
continues until certain stopping criteria are reached (e.g., feedback from other nodes or time
out). There are quite a few papers on applying network coding for consensus; see [44,45].
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Since there is no significant difference between the consensus process of the global variables
of ADMM or other types of messages, interested readers are referred to these papers for
further reading. We note that network coding can improve both the reliability and security
of the consensus, i.e., as secure network codes [46].

6. Conclusions and Future Work

We discussed how coding can be used to improve the reliability and reduce the
communication loads for both primal- and primal–dual-based DML. We discussed both
deterministic (and optimal) and random construction of error-control codes for DML. For
the low-complexity and high flexibility, the latter may be more suitable for large-scale DML.
For primal-dual based DML (i.e., ADMM), we discussed separate coding process for the
two steps of ADMM, i.e., in local optimization and consensus processes separately. We
introduced the algorithms on how to use codes for the local optimization of ADMM.

For emerging applications of increased interest, DML will be more and more common.
Another interesting area for applying coding for DML is security. Though DML has a
certain privacy-preserved capability (compared to transmit raw data), a higher security
standard may be needed for sensitive applications. Secure coding has been an active topic
for years; see [47]. We also have preliminary results on improving privacy by artificial noise
in DML [40]. However, a further study is largely needed for improving performance and
general scenarios.

Another interesting area for future work may be further studying coding for primal–
dual methods. Though separate coding for the two steps of ADMM may solve the problem
partly, the coding efficiency may be low and system complexity may be high. As discussed
in Section 5, directly applying error control codes to ADMM may be infeasible. Another
potential approach may be to simplify the optimization functions without significant
performance loss, and error-control codes can be used.
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Abstract: Coding theory where the alphabet is identified with the elements of a ring or a module has
become an important research topic over the last 30 years. It has been well established that, with the
generalization of the algebraic structure to rings, there is a need to also generalize the underlying
metric beyond the usual Hamming weight used in traditional coding theory over finite fields. This
paper introduces a generalization of the weight introduced by Shi, Wu and Krotov, called overweight.
Additionally, this weight can be seen as a generalization of the Lee weight on the integers modulo 4
and as a generalization of Krotov’s weight over the integers modulo 2s for any positive integer s. For
this weight, we provide a number of well-known bounds, including a Singleton bound, a Plotkin
bound, a sphere-packing bound and a Gilbert–Varshamov bound. In addition to the overweight,
we also study a well-known metric on finite rings, namely the homogeneous metric, which also
extends the Lee metric over the integers modulo 4 and is thus heavily connected to the overweight.
We provide a new bound that has been missing in the literature for homogeneous metric, namely the
Johnson bound. To prove this bound, we use an upper estimate on the sum of the distances of all
distinct codewords that depends only on the length, the average weight and the maximum weight of
a codeword. An effective such bound is not known for the overweight.

Keywords: rings; coding theory; Johnson bound; Plotkin bound

1. Introduction

Coding theoretic experience has shown that considering linear codes over finite fields
often yields significant complexity advantages over the nonlinear counterparts, particularly
when it comes to complex tasks such as encoding and decoding. On the other side, it
was recognized early [1,2] that the class of binary block codes contains excellent code
families, which were not linear (Preparata, Kerdock codes, Goethals and Goethals–Delsarte
codes). For a long time, it could not be explained why these families exhibit formal duality
properties in terms of their distance enumerators that occur only on those among linear
codes and their duals.

A true breakthrough in the understanding of this behavior came in the early 1990s
when, after preceding work by Nechaev [3], the paper by Hammons et al. [4] discovered
that these families allow a representation in terms of Z4-linear codes.

A crucial condition for this ring-theoretic representation was that Z4 was equipped
with an alternative metric, the Lee weight, rather than with the traditional Hamming
weight, which only distinguishes whether an element is zero or non-zero. The Lee weight
is finer, assigning 2 a higher weight than the other non-zero elements of this ring.

The fact that the traditional settings of linear coding theory (finite fields endowed with
the Hamming metric) are actually too narrow, which suggests expanding the theory in at
least two directions: on the algebraic part, the next more natural algebraic structure serving
as alphabet for linear coding is that of finite rings (and modules). On the metrical part, the
appropriateness of the Lee weight for Z4-linear coding suggests that the distance function
for a generalized coding theory requires generalization as well.

Entropy 2022, 24, 1473. https://doi.org/10.3390/e24101473 https://www.mdpi.com/journal/entropy125
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Since these ground-breaking observations, an entire discipline arose within algebraic
coding theory. A considerable community of scholars have been developing results in
various directions, among them code duality, weight-enumeration, code equivalence,
weight functions, homogeneous weights, existence bounds, code optimality and decoding
schemes, to mention only a few.

The paper at hand aims at providing a further contribution to this discipline, by
introducing the overweight on a finite ring. This weight is a generalization of the Lee
weight over Z4, as well as of the weight introduced in [5] by Krotov over Z2s for any
positive integer s, which was further generalized to Zpk in [6].

We study the relations of this new weight to other well-known weights over rings and
state several properties of the overweight, such as its extremal property. We also develop a
number of standard existence bounds, such as a Singleton bound, a sphere-packing bound,
a Plotkin bound and a version of the (assertive) Gilbert–Varshamov bound.

In the final part of this article, we derive a general Johnson bound for the homogeneous
weight on a finite Frobenius ring. This result is important, as it is closely connected to list
decoding capabilities.

2. Preliminaries

Throughout this paper, we will consider R to be a finite ring with identity, denoted
by 1. If R is a finite ring, we denote by R× its group of invertible elements, also known
as units.

Let us recall some preliminaries in coding theory, where we focus on ring-linear
coding theory.

For a prime power q, let us denote by Fq the finite field with q elements and, for a
positive integer m, we denote by Zm the ring of integers modulo m.

In traditional coding theory, we consider a linear code to be a subspace of a vector
space over a finite field.

Definition 1. Let q be a prime power, and let k ≤ n be non-negative integers. A linear subspace C
of Fn

q of dimension k is called a linear [n, k] code.

We define a weight in a general way.

Definition 2. Let R be a finite ring. A real-valued function w on R is called a weight if it is a
non-negative function that maps 0 to 0.

It is natural to identify w with its additive extension to Rn, and so we will always write
w(x) = ∑n

i=1 w(xi) for all x ∈ Rn. Every weight w on R induces a distance d : R × R −→ R

by d(x, y) = w(x − y). Again, we will identify d with its natural additive extension to
Rn × Rn.

If the weight additionally is positive definite, symmetric and satisfies the triangular
inequality, that is,

1. w(0) = 0 and w(x) > 0 for all x 
= 0,
2. w(x) = w(−x) for all x ∈ R,
3. w(x + y) ≤ w(x) + w(y) for all x, y ∈ R,

then the induced distance inherits these properties, i.e.,

1. d(x, y) ≥ 0 for all x, y ∈ R and d(x, y) = 0 if and only if x = y.
2. d(x, y) = d(y, x) for all x, y ∈ R,
3. d(x, z) ≤ d(x, y) + d(y, z) for all x, y, z ∈ R.

The most prominent and best studied weight in traditional coding theory is the
Hamming weight.
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Definition 3. Let n ∈ N. The Hamming weight of a vector x ∈ Rn is defined as the size of
its support

wH(x) = |{i ∈ {1, . . . , n} | xi 
= 0}|,
and the Hamming distance between x and y ∈ Rn is given by

dH(x, y) = |{i ∈ {1, . . . , n} | xi 
= yi}| = wH(x − y).

The minimum Hamming distance of a code is then defined as the minimum distance
between two different codewords

dH(C) = min{dH(x, y) | x, y ∈ C, x 
= y}.

Note that the concept of minimum distance can be applied for any underlying dis-
tance d.

In the paper at hand, we focus on a more general setting where the ambient space is a
module over a finite ring.

Definition 4. Let n ∈ N and let R be a finite ring. A submodule C of RRn of size M = |C| is
called a left R-linear (n, M) code.

The most studied ambient space for ring-linear coding theory is the integers modulo 4,
denoted by Z4, endowed with the Lee metric.

Definition 5. For x ∈ Zm, its Lee weight is defined as

wL(x) = min{x, | m − x |}.

One of the most prominent generalizations of the Lee weight over Z4 is the homoge-
neous weight.

Definition 6. Let R be a Frobenius ring. A weight w : R −→ R is called (left) homogeneous of
average value γ > 0, if w(0) = 0 and the following conditions hold:

(i) For all x, y with Rx = Ry, we have that w(x) = w(y).
(ii) For every non-zero ideal I ≤ RR, it holds that

1
|I| ∑

x∈I
w(x) = γ.

We will denote the homogeneous weight with wt.

The homogeneous weight was first introduced by Constantinescu and Heise in [7]
in the context of coding over integer residue rings. It was later generalized by Greferath
and Schmidt [8] to arbitrary finite rings, where the ideal I in Definition 6 was assumed to
be a principal ideal. In its original form, however, the homogeneous weight only exists
on finite Frobenius rings. It can be shown that a left homogeneous weight is at the same
time right homogeneous, and for this reason, we will omit the reference to any side for the
sequel. In [9], Honold and Nechaev finally generalized the notion of homogeneous weight
to some finite modules, called weighted modules, over a (not necessarily commutative)
ring R with identity.

Since we will establish a Plotkin bound for a new weight, let us recall here the Plotkin
bound over finite fields equipped with the Hamming metric.

127



Entropy 2022, 24, 1473

Theorem 1 (Plotkin bound). Let C be an (n, M) block code over Fq with minimum Hamming
distance d. If d > q−1

q n, then

M ≤ d

d − q−1
q n

.

For the homogeneous weight, the following Plotkin bound was established in [10].

Theorem 2 (Plotkin bound for homogeneous weights, [10]). Let wt be a homogeneous weight
of average value γ on R, and let C be an (n, M) block code over R with minimum homogeneous
distance d. If γn < d, then

M ≤ d
d − γn

.

3. Overweight

As the Hamming weight defined over the binary can be generalized to larger ambient
spaces in different ways resulting in different metrics, such as the Hamming weight over
Fq or the Lee weight over Zps ; in addition, the Lee weight over Z4 can be generalized in
different ways. For example, the weight defined in [5] over Z2m for any positive integer m
is a possible generalization, but the most prominent generalization is the homogeneous
weight (see for example [10]). In this section, we introduce a new generalization, called
the overweight. This weight shows some interesting properties and relations to the homoge-
neous weight and can additionally be seen as a generalization of the weight defined in [5]
over Z2s for any positive integer s and the weight defined in [6] over Zps .

Definition 7. Let R be a finite ring. The overweight on R is defined as

W : R −→ R, x �→

⎧⎪⎨⎪⎩
0 if x = 0,
1 if x ∈ R×,
2 otherwise.

We also denote by W its additive expansion to Rn, given by W(x) = ∑n
i=1 W(xi).

Let us call the distance which is induced by the overweight the overweight distance, and
denote it by D, i.e., D(x, y) = W(x − y).

The motivation of introducing this new weight is twofold: on one hand, it is the-
oretically interesting to explore a new generalization of the Lee weight over Z4 and its
connections to other known weights over rings. On the other hand, the overweight would
also be perfectly suitable for a channel, where unit errors are more likely.

Note that the overweight is designed to satisfy the following criteria: it is positive
definite, symmetric, satisfies the triangular inequality and distinguishes between units and
non-zero non-units. Furthermore, it is extremal in the sense that, on a big family of rings,
any increase of the weight of non-zero non-units would violate the triangular inequality,
thus the name overweight. We will now study this extremal property in more details.

We can consider weights with values in {0, 1, α}, for some α > 0, without fixing
the subsets of R where these values are attained. Thus, we are considering the generic
weight function

f (x) =

⎧⎪⎨⎪⎩
0 if x = 0,
1 if x ∈ A1,
α if x ∈ A2,

where A1 ⊂ R \ {0} and A2 = R \ (A1 ∪ {0}). Such a weight is always positive definite. In
addition, the weight is symmetric if and only if A1 and A2 contain all additive inverses of
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their elements. Let us now consider the triangular inequality: if there exist x, y ∈ A1 such
that x + y ∈ A2, then we must have

α = f (x + y) ≤ f (x) + f (y) = 2.

Thus, in order for f to be an extremal weight, one chooses α = 2.
The overweight is a special case of such a weight function f with the choice A1 = R×.

The existence of elements x, y ∈ R× such that x + y ∈ R \ ({0} ∪ R×) is satisfied for many
rings—for example, for rings with a non-trivial Jacobson radical.

Relations to Other Weights

Clearly, the homogeneous weight and the overweight coincide with the Lee weight on
Z4, with the Hamming metric on finite fields Fq, and finally with the weight [6] on Zps .

Proposition 1. The overweight over finite chain rings gives an upper bound on the normalized
homogeneous weight.

Proof. Over a finite chain ring with socle S and residue field size q, we have that the
normalized homogeneous weight is defined as

wt(x) =

⎧⎪⎨⎪⎩
0 if x = 0,

q
q−1 if x ∈ S \ {0},

1 else.

If x ∈ S \ {0}, then also x ∈ R \ R×, and

wt(x) =
q

q − 1
≤ 2 = W(x).

If x ∈ R×, then wt(x) = 1 = W(x) and finally, if x ∈ R \ (S ∪ R×), we have that

wt(x) = 1 ≤ 2 = W(x),

which implies the result.

In [11], Bachoc defines the following weight on Fp-algebras A, with units A× as follows:

wB(x) =

⎧⎪⎨⎪⎩
0 if x = 0,
1 if x ∈ A×,
p else.

This is in the same spirit as the overweight. The weight of Bachoc is, however, only
assuming positive definiteness. We note that, whenever we have a F2-algebra, the two
weights coincide. The overweight can thus also be seen as a generalization of Bachoc’s
weight to a general finite ring.

Let us illustrate this connection with some examples: we consider the ring M2(Fp)
of 2 × 2 matrices over Fp and the ring Fp[x]/(x2). In both cases, the Bachoc weight only
coincides with the homogeneous and the overweight in the case p = 2.

Finally, in [5], Krotov defines the following weight over Z2m, for any positive integer m:

wK(x) =

⎧⎪⎨⎪⎩
0 if x = 0,
2 if 2 | x, x 
= 0,
1 else.
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Clearly, this is a further generalization of the Lee weight over Z4 and thus coincides
there with the homogeneous and the overweight. However, even more is true: the weight
of Krotov and the overweight coincide over Z2s , for any positive integer s. Thus, the
overweight may be considered as a generalization of Krotov’s weight over Z2s for any
positive integer s.

Let us give some examples to illustrate the differences between the above-mentioned weights.

Example 1. In the following table, wH denotes the Hamming weight, wt the normalized homoge-
neous weight, wL denotes the Lee weight, wK denotes Krotov’s weight, wB denotes Bachoc’s weight
and finally W denotes the overweight. Let us consider two easy but pathological cases, namely Z6
for Table 1 and Z2 ×Z2 for Table 2.

Table 1. Comparison of weights in Z6.

wH wt wL wK W

0 0 0 0 0 0
1 1 1/2 1 1 1
2 1 3/2 2 2 2
3 1 2 3 1 2
4 1 3/2 2 2 2
5 1 1/2 1 1 1

Table 2. Comparison of weights in Z2 ×Z2.

wH wt wB W

(0,0) 0 0 0 0
(0,1) 1 2 2 2
(1,0) 1 2 2 2
(1,1) 2 0 1 1

Finally, another interesting connection to the Hamming weight arises by considering
the following linear injective isometry.

Lemma 1. The map

ψ : (F2[x]/(x2), W) → (F2
2, wH)

a + bx �→ (a + b, b)

is a linear isometry.

Recall that, over F2[x]/(x2), the overweight coincides with the weight of Bachoc and
the homogeneous weight.

4. Bounds for the Overweight

In this section, we develop several bounds for the overweight, such as a Singleton
bound, a sphere-packing bound, a Gilbert–Varshamov bound and a Plotkin bound.

For this, let us first define the minimum overweight distance of a code.

Definition 8. Let C ⊆ Rn be a code. The minimum overweight distance of C is then denoted by
D(C) and defined as

D(C) = min{D(x, y) | x, y ∈ C, x 
= y}.

4.1. A Singleton Bound

The Singleton bound usually follows a puncturing argument, which is possible for the
overweight, but gives the same result as applying the following observation:
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Remark 1. For all x ∈ R, we have that

0 ≤ wH(x) ≤ W(x) ≤ 2wH(x) ≤ 2n,

where wH denotes the Hamming weight.

Hence, using the Singleton bound for the Hamming metric directly gives a Singleton
bound for the overweight.

Proposition 2. Let C ⊆ Rn be a code of size M and minimum overweight distance d. Then,

d ≤ 2(n − �log|R|(M)�+ 1).

Example 2. A trivial example for a code achieving the Singleton bound in Proposition 2 is given by
C = 〈(p, . . . , p)〉 ⊂ Zn

ps , having logps(| C |) = s−1
s and minimum overweight distance d = 2n.

However, if we define the rank of a linear code C, denoted by rk(C), to be the minimal
number of generators of C, then the following bound is known for principal ideal rings [12,13]

dH(C) ≤ n − rk(C) + 1.

Codes achieving this bound are called Maximum Distance with respect to Rank (MDR)
codes, in order to differentiate from MDS codes. This is a sharper bound than the usual
Singleton bound, since for non-free codes we have rk(C) > log|R|(M).

In the case of linear codes, the rank thus also leads to a sharper Singleton-like bound
for the overweight.

Proposition 3. Let R be a principal ideal ring. Let C ⊆ Rn be a linear code of rank rk(C) and
minimum overweight distance d. Then,

d ≤ 2(n − rk(C) + 1).

Example 3. As an example for a code, we can consider C = 〈(3, 6, 3, 0), (6, 6, 0, 3)〉 ⊂ Z4
9, having

minimum overweight distance d = 6.

4.2. A Sphere-Packing Bound

The sphere-packing bound as well as the Gilbert–Varshamov bound are generic bounds,
and we are able to provide them for the overweight in a simple form involving the volume
of the balls in the underlying metric space.

We begin by defining balls with respect to the overweight distance.

Definition 9. For a given radius r ≥ 0, the overweight ball Br,D(x) of radius r centered in x is
defined as

Br,D(x) := {y ∈ Rn | D(x, y) ≤ r}.

Clearly, the volume of such a ball is invariant under translations, i.e.,

|Br,D(x)| = |Br,D(y)|,

for all x, y ∈ Rn.
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Moreover, setting u := |R×| and v := |R| − 1 − u, we have the generating function
fW(z) = 1 + uz + vz2 for this weight function, so that the generating function for W on Rn

takes the form

f n
W(z) = (1 + uz + vz2)n

= ∑
k0+ku+kv=n

(
n

k0, ku, kv

)
1k0(uz)ku(vz2)kv

=
n

∑
k=0

n−k

∑
�=0

(
n
k

)(
n − k
�

)
ukv�zk+2�,

where we have set k = ku and � = kv, and where the condition k0 + ku + kv = n is
transformed in 0 ≤ k ≤ n, 0 ≤ � ≤ n − k. Now, setting t = k + 2�, we obtain the simplified
expression for the generating function

f n
W(z) =

2n

∑
t=0

� t
2 �

∑
�=0

(
n

t − 2�

)(
n − t + 2�

�

)
ut−2�v�zt.

Lemma 2. The foregoing implies that the ball of radius e (centered in 0) has volume exactly

|Be,D(0)| =
e

∑
t=0

� t
2 �

∑
�=0

(
n

t − 2�

)(
n − t + 2�

�

)
ut−2�v�. (1)

We thus provided an explicit formula for the cardinality of balls in Rn with respect to
the overweight distance.

We now obtain the sphere-packing bound for the overweight distance by combining
the previous results. As before, R is a finite ring and u = |R×|, whereas v = |R| − 1 − u
represents the number of non-zero non-units.

Corollary 1 (Sphere-Packing Bound). Let C ⊆ Rn be a (not necessarily linear) code of length n,
and minimum overweight distance d = 2e + 1. Then, we have

|C| ≤ |R|n
|Be,D(0)|

,

where the cardinality of Be,D(0) is given in Equation (1).

If the minimum distance is even and R is a finite local ring with maximal ideal J, this
bound can be adapted as follows.

Corollary 2. Let R be a local ring with maximal ideal J, q = |R/J| and C ⊆ Rn+1 be a (not
necessarily linear) code of length n + 1 and minimum overweight distance d = 2e + 2. Then,

|C| ≤ |R|n+1

q|Be,D(0)|
,

where Be,D(0) is the overweight ball of radius e in Rn, and its volume is given in Equation (1).

Proof. Pick x1, . . . , xq such that the cosets x1 + J, . . . , xq + J form a partition of R. For all
m ∈ J, define the set

Sm := {x1 + m, . . . , xq + m}.
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Notice that the sets Sm form a partition of R and that all elements of Sm have mutual
overweight distance 1. Thus, given r ∈ R, we denote with S(r) the unique set Sm that
contains r. Furthermore, let

π : Rn+1 → Rn

be the projection that removes the n + 1’th coordinate and

Z(x) := {z ∈ Rn+1 | D(π(z), π(x)) ≤ e, zn+1 ∈ S(xn+1)}.

Now, if x 
= y ∈ Rn+1 are two codewords, then Z(x) and Z(y) are disjoint. In-
deed, if z ∈ Z(x) ∩ Z(y), then S(xn+1) = S(yn+1) as they cannot be disjoint. Hence,
D(xn+1, yn+1) ≤ 1. Furthermore, both D(π(x), π(z)) and D(π(y), π(z)) are less than or
equal to e, implying that D(π(x), π(y)) ≤ 2e. It follows that D(x, y) ≤ 2e + 1, which is a
contradiction.

To find non-trivial examples of perfect codes is as notoriously hard as over finite fields
in the Hamming metric. Clearly, in the case R = Fq, there are non-trivial perfect codes, as
the overweight coincides with the Hamming weight. Examples of such codes can be found
in [5] (Section IV). Furthermore, in the case R = Zpk , linear 1-perfect codes are classified in
terms of their parity-check matrix in [6] (Theorem IV.1).

4.3. A Gilbert–Varshamov Bound

With arguments similar to those for the sphere-packing bound, we can also obtain a
lower bound on the maximal size of a code with a fixed minimum distance.

Proposition 4 (Gilbert–Varshamov bound). Let R be a finite ring, n a positive integer and
d ∈ {0, . . . , 2n}. Then, there exists a code C ⊆ Rn of minimum overweight distance at least
d satisfying

|C| ≥ |R|n∣∣Bd−1,D(0)
∣∣ ,

where the volume is given in Equation (1) for e = d − 1, i.e.,

∣∣Bd−1,D(0)
∣∣ =

d−1

∑
t=0

� t
2 �

∑
�=0

(
n

t − 2�

)(
n − t + 2�

�

)
ut−2�v�.

Proof. Assume C ⊆ Rn of minimum overweight distance of at least d is a largest code
of length n and minimum distance d. Then, the set of balls Bd−1,D(x) centered in the
codewords x ∈ C must already cover the space Rn. Since, if this were not the case, one
would find an element y ∈ Rn that is not contained in the ball of radius d − 1 around any
element of C. This word y would have distance at least d to each of the words of C, and
thus C ∪ {y} would be a code of properly larger size with distance at least d, a contradiction
to the choice of C.

From the covering argument, we then see that

|C| ≥ |R|n∣∣Bd−1,D(0)
∣∣ ,

as desired.

Let us consider the special case where R is a finite chain ring. Since the overweight is an
additive weight, and the conditions of [14] are easily verified, we can use [14] (Theorem 22)
to obtain that random linear codes over Rn achieve the (asymptotic) Gilbert–Varshamov
bound with high probability.

Example 4. As an easy example, we can consider Rn = Z2
8. The maximal minimum overweight

distance is given by d = 2n = 4. The Gilbert–Varshamov bound states for this example that
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there exists a code C with | C |> 1, as | B3,D(0) |= 55. For example, the code C = 〈(2, 2)〉 has
four elements.

4.4. A Plotkin Bound

Over a local ring, we can use methods similar to the ones used for the classical
Plotkin bound to obtain an analogue of the Plotkin bound for (not necessarily linear) codes
equipped with the overweight.

For the rest of this section, R is a finite local ring with maximal ideal J. The notation
stems from the Jacobson radical of the ring R. Note that the factor ring R/J is a finite field,
whose cardinality will be denoted by q.

Similarly to the Hamming case, for a subset A ⊆ R, we will denote by

W(A) =
∑a∈A W(a)

|A|

the average weight of the subset A.

Lemma 3. Let I ⊆ R be a left or right ideal. Then,

W(I) =

⎧⎪⎪⎨⎪⎪⎩
|R|+|J|−2

|R| if I = R,

2
(

1 − 1
|I|

)
if {0} � I � R,

0 else.

Proof. Note that the last case is trivial as I = {0}. If {0} � I � R, then all non-zero
elements of I have weight 2, so this case follows as well.

Finally, if I = R, then there are |R \ J| = |R| − |J| elements of weight 1 and |J| − 1
elements of weight 2. Hence, the total weight is |R| − |J|+ 2(|J| − 1) and dividing by |R|
yields the claim.

Corollary 3. Let R be a local ring with maximal ideal J and assume that |J| ≥ 2. Then, we have
that W(J) ≥ W(I) for all left or right ideals I ⊆ R.

Proof. We immediately see that W(J) ≥ W(I) for all I ⊆ J. Now, consider the case I = R.
We have that

W(R) =
|R|+ |J| − 2

|R| =
|R \ J|
|R| + 2

|J| − 1
|R|

=
|R \ J|
|R| + 2

|J| − 1
|J| · |J||R|

≤ 2
|J| − 1
|J| · |R \ J|

|R| + 2
|J| − 1
|J| · |J||R|

= 2
|J| − 1
|J| = W(J),

where we used that 2 |J|−1
|J| ≥ 1.

To ease the notation, let us denote by η the following

η = W(J) = 2
(

1 − 1
|J|

)
.

In what follows, we provide a Plotkin bound for the overweight over a local ring R
with maximal ideal J. The case |J| = 1 is already well studied, since, in this case, R is a field
and D is simply the Hamming distance. Hence, we will assume that |J| ≥ 2.
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We start with a lemma for the Hamming weight. The proof of it follows the idea of
the classical Plotkin bound, which can be found in [15], and for the homogeneous weight
in [10].

Lemma 4. Let I ⊆ R be a subset and P be a probability distribution on I. Then, we have that

∑
x∈I

∑
y∈I

wH(x − y)P(x)P(y) ≤ 1 − 1
|I| .

Proof. We have that

∑
x∈I

∑
y∈I

wH(x − y)P(x)P(y) = ∑
x∈I

P(x)(1 − P(x)) = ∑
x∈I

P(x)− ∑
x∈I

P(x)2.

If we apply the Cauchy–Schwarz inequality to the latter sum, we obtain that

∑
x∈I

P(x)− ∑
x∈I

P(x)2 ≤ 1 − 1
|I|

∣∣∣∣∣∑x∈I
P(x)

∣∣∣∣∣
2

= 1 − 1
|I| .

From which we can conclude.

We are now ready for the most important step of the Plotkin bound. As before, R is a
local ring with non-zero maximal ideal J and η = W(J).

Proposition 5. Let P be a probability distribution on R. Then, it holds that

∑
x∈R

∑
y∈R

W(x − y)P(x)P(y) ≤ η.

Proof. Let q = |R/J| and pick x1, . . . , xq such that xi + J 
= xj + J if i 
= j. Then, it follows
that the cosets xi := xi + J form a partition of R. For all k ∈ {1, . . . , q}, we denote by

Pk = ∑
x∈xk

P(x).

It follows that
q
∑

k=1
Pk = 1. By rewriting the initial sum as sum over all cosets, we

obtain that

∑
x∈R

∑
y∈R

W(x − y)P(x)P(y)

=
q

∑
k=1

∑
x∈xk

∑
y∈R

W(x − y)P(x)P(y)

=
q

∑
k=1

∑
x∈xk

⎛⎝ ∑
y∈xk

2wH(x − y)P(x)P(y) + ∑
z∈R\xk

wH(x − z)P(x)P(z)

⎞⎠
=

q

∑
k=1

⎛⎝2 ∑
x∈xk

∑
y∈xk

wH(x − y)P(x)P(y) + ∑
x∈xk

∑
z∈R\xk

P(x)P(z)

⎞⎠
=

q

∑
k=1

(
2 ∑

x∈xk

∑
y∈xk

wH(x − y)P(x)P(y) + ∑
x∈xk

P(x)(1 − Pk)

)
.
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If Pk 
= 0, then P̃(x) := P(x)/Pk defines a probability distribution on xk. In this case,
we apply Lemma 4 to obtain that

∑
x∈xk

∑
y∈xk

wH(x − y)P(x)P(y)

=P2
k

(
∑

x∈xk

∑
y∈xk

wH(x − y)
P(x)P(y)

P2
k

)

≤P2
k

(
1 − 1

|J|

)
.

Note that the same inequality also trivially holds if Pk = 0. Applying this and using
that ∑

x∈xk

P(x) = Pk, we obtain that

q

∑
k=1

(
2 ∑

x∈xk

∑
y∈xk

wH(x − y)P(x)P(y) + ∑
x∈xk

P(x)(1 − Pk)

)

≤
q

∑
k=1

(
P2

k · 2
(

1 − 1
|J|

)
+ Pk(1 − Pk)

)

≤
q

∑
k=1

Pk · 2
(

1 − 1
|J|

)
= 2

(
1 − 1

|J|

)
= η,

where we used that 2
(

1 − 1
|J|

)
≥ 1 since |J| ≥ 2 in the last inequality.

To complete the Plotkin bound for the overweight, we now follow the steps in [10].
Using Proposition 5, we obtain the following result:

Proposition 6. Let C ⊆ Rn be a (not necessarily linear) code of minimum overweight distance
d. Then,

|C|(|C| − 1)d ≤ ∑
x∈C

∑
y∈C

D(x, y) ≤ |C|2n η.

Proof. The first inequality follows since the distance between all distinct pairs of C is at
least d.

For the second inequality, let pi : Rn → R be the projection onto the ith coordinate.
Note that

Pi(z) :=
|p−1

i (z) ∩ C|
|C|

defines a probability distribution on R for all i ∈ {1, . . . , n}. Using Proposition 5, we
obtain that

∑
x∈C

∑
y∈C

D(x, y) =
n

∑
i=1

∑
x∈C

∑
y∈C

W(xi − yi)

=
n

∑
i=1

∑
r∈R

∑
s∈R

W(r − s)Pi(r)Pi(s)|C|2

≤ |C|2
n

∑
i=1

η = |C|2nη.

Thus, we obtain the claim.

From this inequality, we obtain a Plotkin bound for the overweight distance. As before,
R is a local ring with non-zero maximal ideal J and η = 2

(
1 − 1

|J|

)
.
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Theorem 3 (Plotkin bound for the overweight distance). Let C ⊆ Rn be a (not necessarily
linear) code of minimum overweight distance d = D(C) and assume that d > nη. Then,

|C| ≤ d
d − nη

.

Proof. We divide both sides of the inequality in Proposition 6 by |C| to obtain that

|C|(d − nη) ≤ d.

The result then follows from the assumption that d − nη > 0.

By rearranging the same inequality, we also obtain the following version of the Plotkin
bound, which does not require the assumption that d > nη.

Corollary 4. Let C ⊆ Rn be a (not necessarily linear) code with | C |≥ 2 and let d = D(C). Then,

d ≤ |C|nη

|C| − 1
.

Proof. We obtain this by dividing both sides of the inequality in Proposition 6 by |C|(|C| − 1),
which is non-zero by assumption.

Remark 2. Note that W is a homogeneous weight on Z4, and thus our bound coincides with the
bound from [10] for the homogeneous weight on Z4.

Example 5. If we consider codes over Z9 and fix |C| = 9, n = 3. We obtain that d ≤ 9/2 and
hence by the integrality that d ≤ 4. The linear code

C = 〈(1, 1, 3)〉

attains this bound.

5. A Johnson Bound for the Homogeneous Weight

Another interesting bound is the Johnson bound due to its relation with list-decodability.
In the classical form, the Johnson bound gives an upper bound on the largest size Aq(n, d, w) of
a constant-weight w code over Fq of length n and minimum Hamming distance d. However,
for the list-decodability of a code, we are interested in codes having codewords of weight at
most w. In fact, if the largest size of such a code A′

q(n, d, w) is small, e.g., at most a constant L,
then every ball of radius w contains at most L codewords and hence one can decode a list of a
size at most L. In more detail, the Johnson bound for list-decodability in the Hamming metric
states that, if

w
n

< (1 − 1
q
)

(
1 −

√
1 − q

q − 1
δ

)
= Jq(δ),

where δ denotes the relative minimum distance, then A′
q(n, d, w) ≤ n(d − 1).

This famous bound is still missing for the well-studied homogeneous weight, which
is, like the overweight, a generalization of the Lee weight over Z4. In this section, we prove
a Johnson bound for the homogeneous weight from Definition 6, denoted by wt and let γ
be its average weight on R. By abuse of notation, we denote with wt also the extension of
wt to Rn, that is,

wt(x) =
n

∑
i=1

wt(xi).

Note that wt does not necessarily satisfy the triangle inequality. In [7] (Theorem 2), it
is shown that the homogeneous weight on Zm satisfies the triangle inequality if and only if
m is not divisible by 6.
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We define the ball of radius r with respect to a homogeneous weight wt to be the set of
all elements having distance less than or equal to r.

Definition 10. Let y ∈ Rn and r ∈ R≥0. The ball Br,wt(y) of radius r centered in y is defined as

Br,wt(y) := {x ∈ Rn | wt(x − y) ≤ r}.

Our aim is to provide a Johnson bound for the homogeneous weight over Frobenius
rings. Thus, we begin by defining list-decodability.

Definition 11. Let R be a finite ring. Given ρ ∈ R≥0, a code C ⊆ Rn is called (ρ, L) list-decodable
(with respect to wt) if, for every y ∈ Rn, it holds that

|Bρn,wt(y) ∩ C| ≤ L.

Over Frobenius rings, the following result holds, which will play an important role in
the proof of the Johnson bound.

Proposition 7 ([10] (Corollary 3.3)). Let R be a Frobenius ring, C ⊆ Rn a (not necessarily linear)
code of minimum distance d and ω = max{wt(c) | c ∈ C}. If ω ≤ γn, then

|C|(|C| − 1)d ≤ ∑
x,y∈C

wt(x − y) ≤ 2|C|2ω − |C|2ω2

γn
.

With this, we obtain an analogue of the Johnson bound for the homogeneous weight.

Theorem 4. Let R be a Frobenius ring and C ⊆ Rn be a (not necessarily linear) code of minimum
distance d. Assume that ρ ≤ γ. Then, it holds that C is (ρ, dγn) list-decodable if one of the
following conditions is satisfied:

(i) We have that γ n(d − γ n) ≥ 1.

(ii) It holds that ρ ≤ γ −
√
(γ − d

n )γ + 1
n2 .

Proof. Assume that e ≤ ρn and let y ∈ Rn. We have to show that, under the given conditions,
|Be,wt(y) ∩ C| ≤ dγn.

Note first that we may assume that y = 0; otherwise, simply consider the translate

C′ = {c − y | c ∈ C}.

Assume that x1, . . . , xN are in Be,wt(0) ∩ C. We have that wt(xi − xj) ≥ d for i 
= j, thus
using Proposition 7 and wt(x − y) = wt(y − x), we obtain that

N(N − 1)d ≤ 2 ∑
i<j

wt(xi − xj) ≤ 2N2e − N2e2

γn
.

Hence, it follows that
N(dγn − 2eγn + e2) ≤ dγn.

It holds that
dγn − 2eγn + e2 = (nγ − e)2 − nγ(nγ − d).

If we assume that nγ(nγ − d) ≤ −1, then we clearly have

(nγ − e)2 − nγ(nγ − d) ≥ 1.
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If this is not the case, we see that
√
(γ − d

n )γ + 1
n2 is well-defined. Thus, if

e
n
≤ γ −

√(
γ − d

n

)
γ +

1
n2 ,

then
nγ − e ≥

√
(nγ − d)nγ + 1,

and hence
(nγ − e)2 − nγ(nγ − d) ≥ 1.

It follows that N ≤ dγn.

Remark 3. Note that the second condition already forces ρ ≤ γ.

Example 6. As an easy example, we can consider the code C = 〈(1, 1), (4, 0)〉 ⊂ Z2
8 of minimum

homogeneous distance 2 and γ = 1. The second condition of Theorem 4 is clearly satisfied by
choosing ρ = 1/2 since

γ −
√(

γ − d
n

)
γ +

1
n2 =

1
2

,

implying that the code is (1/2, 4) list decodable. For example, when setting y = (1, 2), we see that

B1,wt(y) ∩ C = {(1, 1), (2, 2), (1, 5), (6, 2)},

so the bound is attained.

6. Open Problems

We conclude this paper with some interesting open questions for the newly defined
overweight that we have encountered.

Problem 1. Classify the codes that attain the bounds derived in this paper.

Problem 2. Give a Griesmer bound, an Elias-Bassalygo and a Johnson bound for the overweight.

Proving an analogue of a Griesmer, Elias-Bassalygo and Johnson bound poses a
difficult challenge over rings and in particular for the overweight, due to the necessity of
an effective upper bound on the sum of the distances.
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Abstract: This paper considers secure communication in the presence of an eavesdropper and a
malicious jammer. The jammer is assumed to be oblivious of the communication signals emitted by
the legitimate transmitter(s) but can employ any jamming strategy subject to a given power constraint
and shares her jamming signal with the eavesdropper. Four such models are considered: (i) the
Gaussian point-to-point wiretap channel; (ii) the Gaussian multiple-access wiretap channel; (iii) the
Gaussian broadcast wiretap channel; and (iv) the Gaussian symmetric interference wiretap channel.
The use of pre-shared randomness between the legitimate users is not allowed in our models. Inner
and outer bounds are derived for these four models. For (i), the secrecy capacity is obtained. For
(ii) and (iv) under a degraded setup, the optimal secrecy sum-rate is characterized. Finally, for (iii),
ranges of model parameter values for which the inner and outer bounds coincide are identified.

Keywords: Gaussian wiretap channel; Gaussian multiple-access wiretap channel; Gaussian broadcast
wiretap channel; jamming; secure communication

1. Introduction

Consider secure communication over wireless channels between legitimate parties in
the presence of an eavesdropper and a malicious jammer. The jammer is assumed to be
oblivious of the legitimate users’ communication but can employ any jamming strategy
subject to a given power constraint. Consequently, the main channel between the legitimate
users is arbitrarily varying [1]. Unlike most works that consider arbitrarily varying channels,
however, pre-shared randomness is not available to the legitimate users in our scenario.
Additionally, the jammer shares her jamming signal with the eavesdropper who can thus
perfectly cancel the effect of the jamming signal on her channel. In this paper, we study
the fundamental limits of secure communication rates in the presence of such a jammer-
aided eavesdropper over four Gaussian wiretap channel models: the Gaussian wiretap
channel [2], the Gaussian multiple-access wiretap channel [3], the Gaussian broadcast
wiretap channel [4], and the Gaussian symmetric interference wiretap channel.

1.1. Contributions

Our contributions are summarized as follows.

• For secure communication over Gaussian point-to-point, multiple-access, broadcast,
and symmetric interference wiretap channels in the presence of a jammer-aided
eavesdropper as described above, we determine inner and outer bounds on the secrecy
capacity region.

• We show that our bounds are tight for the point-to-point setting, tight for sum-rates
for the multiple-access and interference settings under degraded setups, and tight for
some ranges of model parameter values for the broadcast setting.

Entropy 2022, 24, 1595. https://doi.org/10.3390/e24111595 https://www.mdpi.com/journal/entropy141
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Our main strategy to handle our multiuser settings is to reduce the problem to single-
user coding. Previous known techniques for such a reduction, such as rate-splitting [5] and
successive cancellation decoding [5] [Appendix C], that have been developed for multiple-
access settings without security constraints, do not easily apply to wiretap channel models.
These techniques consist in achieving the corner points of achievability regions that can be
described by polymatroids whose corner points have positive components. However, regions
described by polymatroids whose corner points have negative components, as in our wiretap
channel models, prevent the applications of these techniques. We overcome this roadblock
by proposing novel time-sharing strategies coupled with appropriate secret-key exchanges
between the legitimate users. As seen in the proofs of our results, eavesdropping and
arbitrary jamming are not easy to decouple in the secrecy analysis. In particular, the analysis
of the secrecy in our proposed model does not follow from a standard secrecy analysis in
the absence of jamming, as we need to consider (i) codewords uniformly distributed over
spheres, which we use to handle an arbitrarily varying main channel; and (ii) block-Markov
coding and specific time-sharing strategies (to allow the reduction of multiuser coding
to single-user coding) which create inter-dependencies between coding blocks. Note that
our achievability schemes also rely on point-to-point codes developed in [1]. One of the
benefits of reducing multiuser coding to point-to-point coding techniques is that despite
the fact that our setting involves multiple transmitters and an arbitrarily varying channel
between the legitimate users, pre-shared randomness among the legitimate users will not be
needed in our achievability schemes. Our strategy for the converse consists of reducing the
problem of determining a converse for our model to the problem of determining a converse
for a related model in the absence of a jammer.

1.2. Related Works

Related works that consider simultaneous eavesdropping and oblivious jamming
threats for the point-to-point discrete memoryless wiretap channel include [6–11]. The
proof techniques used in these references to obtain security, such as random binning [12,13],
resolvability/soft covering [10,14,15], or typicality arguments, are challenging to apply to a
Gaussian setting in the absence of shared randomness at the legitimate user. Specifically,
for the Gaussian point-to-point channel in the presence of an adversary that arbitrarily
jams [1], the only known coding mechanism to obtain reliability in the absence of pre-
shared randomness relies on codewords uniformly drawn on a unit sphere [1], which
are challenging to integrate with the above techniques to obtain security because their
components are not independent and identically distributed.

Another line of work [16] considers Gaussian channel models where the eavesdropper
channel can vary arbitrarily, but the main channel is not. The setting considered in the
present paper, where the main channel between the legitimate users is arbitrarily varying,
prevents the use of analyses similar to those in [16] for the same reasons described above.

Several other works have considered continuous channel models, including the Gaus-
sian MIMO wiretap channel [17], the Gaussian multiple-access wiretap channel [18], where
deviating users can be viewed as active adversary, and continuous point-to-point wire-
tap channels [19,20], where the adversary can choose between eavesdropping or jamming.
These references differ from the above-mentioned references on arbitrarily varying channels
as they assume a specific signaling strategy for the jammer.

Finally, note that for point-to-point channels, stronger jamming strategies that depend
on the signals of the legitimate transmitters have been studied in [21–23].

1.3. Organization of the Paper

The remainder of the paper is organized as follows. We describe the models in
Section 2. We present our results for the Gaussian point-to-point wiretap channel, the Gaus-
sian multiple-access wiretap channel, the Gaussian broadcast wiretap channel, and the
Gaussian symmetric interference wiretap channel in Sections 3–6, respectively. We discuss
in Section 4.2 a way to avoid, at least for some channel parameters, time-sharing for the
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multiple-access setting. We also discuss in Section 4.3 an extension of the multiple-access
setting to more than two transmitters. We detail the proofs for the multiple-access setting
in Sections 7 and 8. We end the paper with concluding remarks in Section 9.

2. Problem Statement

2.1. Notation

For a, b ∈ R, define �a, b� � [�a�, �b�] ∩ N, ]a, b[� [a, b]\{a, b}, ]a, b] � [a, b]\{a},
and [a, b[� [a, b]\{b}. The components of a vector, Xn, of size n ∈ N, are denoted by
subscripts, i.e., Xn � (X1, X2, . . . , Xn). For x ∈ R, define [x]+ � max(0, x). The notation
x �→ y describes a function that associates y to x when the domain and the image of
the function are clear from the context. The power set of a finite set S is denoted by 2S .
The convex hull of a set S is denoted by Conv(S). Unless specified otherwise, capital
letters designate random variables, whereas lowercase letters designate realizations of
associated random variables, e.g., x is a realization of the random variable X. For R ∈ R+,
Bn

0 (R) denotes the ball of radius R centered in 0 in Rn under the Euclidian norm.

2.2. Gaussian Multiuser Wiretap Channel in the Presence of a Jammer-Aided Eavesdropper

Consider the Gaussian memoryless wiretap channel model with two transmitters and
two legitimate receivers

Yn
1 � √

g11Xn
1 +

√
g12Xn

2 +
√

g13Sn + Nn
1 , (1a)

Yn
2 � √

g21Xn
1 +

√
g22Xn

2 +
√

g23Sn + Nn
2 , (1b)

Zn �
√

h1Xn
1 +

√
h2Xn

2 + Nn
Z, (1c)

where Yn
1 , Yn

2 are the channel outputs observed by the legitimate receivers, and Zn is the
channel output observed by the eavesdropper. For l ∈ {1, 2}, Xn

l is the signal emitted by
Transmitter l satisfying the power constraint ‖Xn

l ‖2 � ∑n
i=1(Xl)

2
i ≤ nΓl , Sn is an arbitrary

jamming sequence transmitted by the jammer that is oblivious of the communication of the
legitimate users and satisfies the power constraint ‖Sn‖2 � ∑n

i=1 S2
i ≤ nΛ, and Nn

Y1
, Nn

Y2
, Nn

Z
are sequences of independent and identically distributed Gaussian noise with variances σ2

1 ,
σ2

2 , σ2
Z, respectively. The channel coefficients g11, g12, g13, g21, g22, g23, h1, h2 are fixed

and known to all parties. Note that we assume that the jammer helps the eavesdropper
by sharing her jamming sequence, which allows the eavesdropper to perfectly cancel Sn

from Zn. Coding schemes and achievable rates are defined as follows.

Definition 1. Let n, k ∈ N. A
(
2nR1 , 2nR2 , n, k

)
code Cn consists, for each block j ∈ �1, k�, of

• Two message sets M(j)
l � �1, 2nR(j)

l �, l ∈ {1, 2};

• Two stochastic encoders, e(j)
l : M(j)

l → Bn
0 (
√

nΓl), l ∈ {1, 2};

• Two decoders, g(j)
l : Rn → M(j)

l , l ∈ {1, 2};

where for any l ∈ {1, 2}, Rl =
1
k ∑k

j=1 R(j)
l , and operates as follows. For each block j ∈ �1, k�,

transmitter l ∈ {1, 2} encodes with e(j)
l a uniformly distributed message M(j)

l ∈ M(j)
l to a codeword

of length n, which is sent to the legitimate receiver over the channel described by Equation (1a),
Equation (1b), Equation (1c) with the power constraint nΛ for the jamming signal Sn

i . Note that
all the power constraints at the transmitters and the jammer hold for a given transmission block of
length n, which is relevant when the power constraints hold within any time window corresponding
to n channel uses. Then, the legitimate receiver l ∈ {1, 2} forms an estimate M̂(j)

l � g(j)
l (Yn

l ) of the

message M(j)
l . We define M̂ �

(
M̂(j)

1 , M̂(j)
2

)
j∈�1,k�

, M �
(

M(j)
1 , M(j)

2

)
j∈�1,k�

, S � (Sn
i )i∈�1,k�,

and S � {(Sn
i )i∈�1,k� : ‖Sn

i ‖2≤ nΛ, ∀i ∈ �1, k�}.

143



Entropy 2022, 24, 1595

Definition 2. A rate pair (R1, R2) is achievable, if there exists a sequence of
(
2nR1 , 2nR2 , n, k

)
codes such that

lim
n→∞

sup
S∈S

P[M̂ 
= M] = 0 (reliability), (2a)

lim
n→∞

1
nk

H(M|Zkn) ≥ R1 + R2 (equivocation). (2b)

2.3. Special Case 1: The Gaussian Wiretap Channel in the Presence of a Jammer-Aided Eavesdropper

Assume that the two transmitters are colocated and the two receivers are colocated in
Section 2.2. More specifically, as depicted in Figure 1, the channel model of Section 2.2 becomes

Yn � Xn + Sn + Nn
1 , (3a)

Zn �
√

hXn + Nn
Z, (3b)

where σ2
1 = σ2

Z = 1. We term this model as Gaussian Wiretap channel with Jammer-Aided
eavesdropper (Gaussian WT-JA in short form). Note that this model recovers as a special
case the Gaussian wiretap channel [2].

Nn
Z

ReceiverEncoder

Sn

Sn

√
g

√
g

Eavesdropper

Jammer

Nn
1 M̂M

Xn

Y n � Xn + Sn +Nn
1

√
h

Zn �
√
hXn +Nn

Z

Figure 1. The Gaussian wiretap channel in the presence of a jammer-aided eavesdropper.

2.4. Special Case 2: The Gaussian Multiple-Access Wiretap Channel in the Presence of a
Jammer-Aided Eavesdropper

Assume that the two receivers are colocated in Section 2.2. More specifically, as de-
picted in Figure 2, the channel model of Section 2.2 becomes

Yn � Xn
1 + Xn

2 + Sn + Nn
1 , (4a)

Zn �
√

h1Xn
1 +

√
h2Xn

2 + Nn
Z, (4b)

where σ2
1 = σ2

Z = 1. We term the model as Gaussian Multiple-Access Wiretap channel with
Jammer-Aided eavesdropper (Gaussian MAC-WT-JA in short form) with the parameters
(Γ1, Γ2, h1, h2, Λ, σ2

1 , σ2
Z). This model recovers as special cases the model in [24] in the

absence of the security constraint (2b), and the Gaussian multiple-access wiretap channel [3].
Note that the model in [24] was introduced to study the presence of selfish transmitters
via cooperative game theory, and that, similarly, the Gaussian MAC-WT-JA can be used to
study the presence of selfish transmitters via coalitional game theory [25].
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Nn
Z

M1

Xn
1

Xn
2

M2

ReceiverEncoder 1

Encoder 2

Sn Sn
√
g

√
g

Eavesdropper

Jammer

Nn
1

Y n � Xn
1 +Xn

2 + Sn +Nn
1

Zn �
√

h1X
n
1 +

√
h2X

n
2 +Nn

Z√
h2

√
h1

(M̂1, M̂2)

Figure 2. The Gaussian multiple-access wiretap channel in the presence of a jammer-aided eavesdropper.

2.5. Special Case 3: The Gaussian Broadcast Wiretap Channel in the Presence of a
Jammer-Aided Eavesdropper

Assume that the two transmitters are colocated in Section 2.2. More specifically,
as depicted in Figure 3, the channel model of Section 2.2 becomes

Yn
1 � Xn +

√
g1Sn + Nn

1 , (5a)

Yn
2 � Xn +

√
g2Sn + Nn

2 , (5b)

Zn �
√

hXn + Nn
Z, (5c)

where σ2
Z = 1. We term the model as Gaussian Broadcast Wiretap channel with Jammer-

Aided eavesdropper (Gaussian BC-WT-JA in short form). Note that this model recovers as
special cases the multi-receiver wiretap channel [26] and the model in [27] in the absence of
the security constraint (2b).

Nn
Z

Encoder

Sn

Sn

√
g

Eavesdropper

Jammer

Xn

√
h

Zn �
√
hXn +Nn

Z

Nn
1

Y n
2 � Xn +

√
g2S

n +Nn
2

Y n
1 � Xn +

√
g1S

n +Nn
1

√
g1

√
g2

Nn
2

Receiver 2

Receiver 1

M̂1

M̂2

√
g

(M1,M2)

Figure 3. The Gaussian broadcast wiretap channel in the presence of a jammer-aided eavesdropper.

2.6. Special Case 4: The Gaussian Symmetric Interference Wiretap Channel in the Presence of a
Jammer-Aided Eavesdropper

Consider the following special case of the channel model of Section 2.2

145



Entropy 2022, 24, 1595

Yn
1 � Xn

1 + Xn
2 + Sn + Nn

1 , (6a)

Yn
2 � Xn

1 + Xn
2 + Sn + Nn

2 , (6b)

Zn �
√

h1Xn
1 +

√
h2Xn

2 + Nn
Z, (6c)

where σ2
1 = σ2

2 = σ2
Z = 1. We term the model as Gaussian Symmetric Interference Wiretap

channel with Jammer-Aided eavesdropper (Gaussian SI-WT-JA in short form). In the
absence of the security constraint (2b) and the jamming sequence, this model recovers a
special case of the Gaussian interference channel under strong interference [28].

3. The Gaussian Wiretap Channel in the Presence of a Jammer-Aided Eavesdropper

We present a capacity result for the Gaussian WT-JA model described in Section 2.3.

Theorem 1. The secrecy capacity of the Gaussian WT-JA is

C(Λ) �

⎧⎨⎩
[

1
2 log

(
1+(1+Λ)−1Γ

1+hΓ

)]+
if Γ > Λ

0 if Γ ≤ Λ
. (7)

Observe that C(Λ) is non-zero if and only if Γ > Λ and (1 + Λ)−1 > h. When Γ > Λ,
Theorem 1 means that arbitrary oblivious jamming is no more harmful than Gaussian
jamming, i.e., when the jamming sequence is obtained from independent and identical
realizations of a zero-mean Gaussian random variable with variance equal to the power
constraint Λ.

The proof of Theorem 1 follows as a special case of the achievability and converse bounds
derived in the next section in Theorems 2 and 3, respectively, for the Gaussian MAC-WT-JA.

4. The Gaussian Multiple-Access Wiretap Channel in the Presence of a
Jammer-Aided Eavesdropper

4.1. Inner and Outer Bounds for the Gaussian MAC-WT-JA

We derive inner and outer bounds for the Gaussian MAC-WT-JA in Theorems 2 and 3.
Their proofs are provided in Sections 7 and 8, respectively.

Theorem 2 (Achievability). We consider three cases.

1. When Γ1 > Λ and Γ2 ≤ Λ,

RMAC
1 �

{
(R1, 0) : R1 ≤ max

0≤P2≤Γ2

[
1
2

log
(

1 + Γ1(1 + Λ + P2)
−1

1 + Γ1h1(1 + h2P2)−1

)]+}
(8)

is achievable.
2. When Γ2 > Λ and Γ1 ≤ Λ,

RMAC
2 �

{
(0, R2) : R2 ≤ max

0≤P1≤Γ1

[
1
2

log
(

1 + Γ2(1 + Λ + P1)
−1

1 + Γ2h2(1 + h1P1)−1

)]+}
(9)

is achievable.
3. When min(Γ1, Γ2) > Λ,

RMAC � Conv

⎛⎜⎜⎝RMAC
1 ∪RMAC

2 ∪
⋃

Λ<P1≤Γ1
Λ<P2≤Γ2

RMAC
1,2 (P1, P2)

⎞⎟⎟⎠ (10)
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is achievable, where

RMAC
1,2 (P1, P2) �

{
(R1, R2) : R1 ≤

[
1
2

log
(

1 + P1(1 + Λ)−1

1 + P1h1(1 + h2P2)−1

)]+
,

R2 ≤
[

1
2

log
(

1 + P2(1 + Λ)−1

1 + P2h2(1 + h1P1)−1

)]+
,

R1 + R2 ≤
[

1
2

log
(

1 + (P1 + P2)(1 + Λ)−1

1 + P1h1 + P2h2

)]+}
. (11)

Theorem 3 (Partial Converse).

1. If max(Γ1, Γ2) ≤ Λ, then no positive rate is achievable.
2. When min(Γ1, Γ2) > Λ and h1 = h2, the sum-rate bound of RMAC

1,2 (Γ1, Γ2) described
in Equation (11) is tight by choosing (P1, P2) = (Γ1, Γ2).

Observe that in the achievability scheme for RMAC
1 , choosing a transmission power

smaller than Γ1 for Transmitter 1 would result in a smaller region, since for a fixed P2,

x �→ log
(

1+x(1+Λ+P2)
−1

1+xh1(1+h2P2)−1

)
is either negative when (1+Λ+ P2)

−1 ≤ h1(1+ h2P2)
−1, or non-

decreasing when (1 + Λ + P2)
−1 > h1(1 + h2P2)

−1. By exchanging the role of the transmit-
ters, we have the same observation for RMAC

2 .

4.2. Discussion of Rate-Splitting

Rate-splitting [5] can be adapted to the Gaussian MAC-WT-JA to avoid time-sharing,
however, the entire region in Equation (11) cannot be achieved as splitting the power of
one user precludes reliable communication. Assuming that

I(X1X2; Y)− I(X1X2; Z) ≥ max[I(X1; Y|X2)− I(X1; Z), I(X2; Y|X1)− I(X2; Z)], (12)

then one can split the power of Transmitter 1 in (P1 − δ) and δ, where δ ∈ [0, P1], and define
the following functions from [0, P1] to R

RU :δ �→ 1
2

log
1 + (P1 − δ)(1 + Λ + δ + P2)

−1

1 + h1(P1 − δ)
, (13a)

RV :δ �→ 1
2

log
1 + δ(1 + Λ)−1

1 + h1δ(1 + h1(P1 − δ) + h2P2)−1 , (13b)

R2 :δ �→ 1
2

log
1 + P2(1 + Λ + δ)−1

1 + h2P2(1 + h1(P1 − δ))−1 . (13c)

Lemma 1. For any δ ∈ [0, P1], we have (RU + RV + R2)(δ) = I(X1X2; Y) − I(X1X2; Z).
Moreover, for any point (x0, y0) in

D(P1, P2)

�
{
(R1, R2) ∈ RMAC

1,2 (P1, P2) : R1 + R2 =

[
1
2

log
(

1 + (P1 + P2)(1 + Λ)−1

1 + P1h1 + P2h2

)]+}
, (14)

there exists δ0 ∈ [0, P1] such that x0 = (RU + RV)(δ0) and y0 = R2(δ0).

Proof. Define

Y � U + V + X2 + NY, (15a)

Z �
√

h1(U + V) +
√

h2X2 + NZ, (15b)
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where V, U, X2, NY, NZ are independent zero-mean Gaussian random variables with
variances δ ∈ [0, P1], P1 − δ, P2, (1 + Λ), 1, respectively. Additionally, define

RU(δ) � I(U; Y)− I(U; Z|VX2) =
1
2

log
1 + (P1 − δ)(1 + Λ + δ + P2)

−1

1 + h1(P1 − δ)
, (16a)

RV(δ) � I(V; Y|UX2)− I(V; Z) =
1
2

log
1 + δ(1 + Λ)−1

1 + h1δ(1 + h1(P1 − δ) + h2P2)−1 , (16b)

R2(δ) � I(X2; Y|U)− I(X2; Z|V) =
1
2

log
1 + P2(1 + Λ + δ)−1

1 + h2P2(1 + h1(P1 − δ))−1 . (16c)

By the chain rule, we have, for any δ ∈ [0, P1], (RU + RV + R2)(δ) = I(X1X2; Y) −
I(X1X2; Z). Finally, since (RU + RV)(0) = I(X1; Y)− I(X1; Z|X2) and (RU + RV)(P1) =
I(X1; Y|X2)− I(X1; Z), by continuity of δ �→ (RU + RV)(δ), there exists δ0 ∈ [0, P1] such
that x0 = (RU + RV)(δ0) and y0 = R2(δ0) for any point (x0, y0) in D(P1, P2) .

As remarked in [29], a potential issue is that RU(δ0) or RV(δ0) can be negative in
Lemma 1. We have the following achievability result.

Proposition 1. Let (x0, y0) ∈ D(P1, P2) and δ0 be as in Lemma 1. Then, (x0, y0) can be achieved
without time-sharing if RU(δ0) ≥ 0 and RV(δ0) ≥ 0 and min(δ0, P1 − δ0) > Λ. (x0, y0) ∈
D(P1, P2) can also be achieved without time-sharing if similar conditions (obtained by exchanging
the role of the two transmitters) are satisfied when splitting the power of Transmitter 2.
Proof idea: Transmitter 1 is split into two virtual users that transmit at rate RU(δ) with
power δ and at rate RV(δ) with power P1 − δ. Encoding for User 2 and the two virtual users
is similar to Case 1 in the proof of Theorem 2. The receiver adopts a minimum distance
decoding rule as in Theorem 2 to first decode the message associated with the virtual user
that transmits at rate RV , then to decode the message associated with User 2, and finally,
to decode the message associated with the virtual user that transmits at rate RU . A similar
procedure can be performed if one decides to split the power of Transmitter 2.

An illustration of Proposition 1 is depicted in Figure 4. Note that for some model
parameters, the set of points achievable with Proposition 1 can be empty and, unfortu-
nately, it does not seem easy to obtain a simple analytical characterization of the rate pairs
achievable with Proposition 1.

Figure 4. The shaded area represents RMAC
1,2 (P1, P2), where (P1, P2, Λ, h1, h2) = (4, 3.3, 1.5, 0.12, 0.11).

The solid segments represent the rate pairs achievable with Proposition 1.
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4.3. Extension to More Than Two Transmitters

We extend our result for the MAC-WT-JA to the case of an arbitrary number of
transmitters. The problem is more involved than the case of two transmitters and requires
new time-sharing strategies that leverage extended polymatroid properties.

Consider the model of Section 2.4 with L transmitters instead of two transmitters.
We let L � �1, L� denote the set of transmitters. More specifically, the channel model of
Section 2.4 becomes

Yn � ∑
l∈L

Xn
l + Sn + Nn

1 , (17a)

Zn � ∑
l∈L

√
hlXn

l + Nn
Z, (17b)

where σ2
1 = σ2

Z = 1. We term the model as Gaussian MAC-WT-JA with parameters
((Γl)l∈L, (hl)l∈L, Λ, σ2

1 , σ2
Z). When the channel gains (hl)l∈L are all equal to h ∈ [0, 1[, we

refer to this model as the degraded MAC-WT-JA with parameters ((Γl)l∈L, h, Λ, σ2
1 , σ2

Z).
Given Λ ∈ R+ and (Γl)l∈L, we define hΛ � (1 + Λ)−1, L(Λ) � {l ∈ L : Γl > Λ},
and Lc(Λ) � L\L(Λ). The following achievability result is proven in Appendix B.

Theorem 4. Assume that for all l ∈ L(Λ), hΛ > hl. The following region is achievable for the
Gaussian MAC-WT-JA with parameters ((Γl)l∈L, (hl)l∈L, Λ, 1, 1)

R =
⋃

(Pl)l∈L
:∀l∈L(Λ),Λ<Pl≤Γl

{
(Rl)l∈L : ∀l ∈ Lc(Λ), Rl = 0 and ∀T ⊆ L(Λ),

RT ≤
[

1
2

log
(

1 + hΛPT
1 + (∑l∈T hl Pl)(1 + ∑l∈T c hl Pl)−1

)]+}
, (18)

where for any (Pl)l∈L and T ⊆ L, we use the notation PT � ∑l∈T Pl.

We immediately obtain the following corollary.

Corollary 1. The following region is achievable for the degraded Gaussian MAC-WT-JA with
parameters ((Γl)l∈L, h, Λ, 1, 1)

R =
⋃

(Pl)l∈L
:∀l∈L(Λ),Λ<Pl≤Γl

{
(Rl)l∈L : ∀l ∈ Lc(Λ), Rl = 0 and ∀T ⊆ L(Λ),

RT ≤
[

1
2

log
(

1 + hΛPT
1 + hPT (1 + hPT c)−1

)]+}
. (19)

Note that the achievability strategy used in the proof of Theorem 4 is different than the
achievability strategy used in the proof of Theorem 2. While Theorem 4 gains in generality
by considering an arbitrary number of users, it requires the assumption ∀l ∈ L(Λ), hΛ > hl ,
which is not needed in Theorem 2. We also have the following optimality result, which is
proven in Appendix C.

Theorem 5. The maximal secrecy sum-rate RL � ∑l∈L Rl achievable for the degraded Gaussian
MAC-WT-JA with parameters ((Γl)l∈L, h, Λ, 1, 1) is[

1
2

log

(
1 + hΛΓL(Λ)

1 + hΓL(Λ)

)]+
. (20)

Note that the optimal secrecy sum-rate is positive if and only if hΛ > h and L(Λ) 
= ∅.
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5. The Gaussian Broadcast Wiretap Channel in the Presence of a
Jammer-Aided Eavesdropper

Theorems 6 and 7 provide inner and outer bounds, respectively, for the Gaussian
BC-WT-JA.

Theorem 6 (Achievability). We have the following inner bounds.

1. When g2Λ ≥ Γ and g1Λ < Γ,

RBC
1 �

⎧⎨⎩(R1, 0) : R1 ≤

⎡⎣1
2

log

⎛⎝1 + Γ
σ2

1+g1Λ

1 + hΓ

⎞⎠⎤⎦+⎫⎬⎭ (21)

is achievable.
2. When g1Λ ≥ Γ and g2Λ < Γ,

RBC
2 �

⎧⎨⎩(0, R2) : R2 ≤

⎡⎣1
2

log

⎛⎝1 + Γ
σ2

2+g2Λ

1 + hΓ

⎞⎠⎤⎦+⎫⎬⎭ (22)

is achievable.
3. When max(g1Λ, g2Λ) < Γ, and, without loss of generality, σ2

1 + g1Λ ≤ σ2
2 + g2Λ (ex-

change the role of the receivers if σ2
1 + g1Λ > σ2

2 + g2Λ),

Conv

⎛⎝RBC
1 ∪RBC

2 ∪
⋃

α∈]max(g1,g2)ΛΓ−1,1]

RBC(α)

⎞⎠, (23)

is achievable where we have defined for α ∈ [0, 1]

RBC(α) �

⎧⎪⎨⎪⎩(R1, R2) : R1 ≤

⎡⎢⎣1
2

log

⎛⎜⎝ 1 + (1−α)Γ
σ2

1+g1Λ

1 + h(1 − α)Γ

⎞⎟⎠
⎤⎥⎦
+

,

R2 ≤

⎡⎣1
2

log

⎛⎝1 + αΓ
(1−α)Γ+σ2

2+g2Λ

1 + hαΓ
h(1−α)Γ+1

⎞⎠⎤⎦+⎫⎬⎭. (24)

Note that RBC(α = 0) = RBC
1 and RBC(α = 1) = RBC

2 . The achievability scheme of
Theorem 6 is similar to the proof of Theorem 2 and [27] [Theorem 3].

Theorem 7 (Partial converse).

1. If Γ ≤ min(g1Λ, g2Λ), then no positive rate is achievable;
2. When g2Λ ≥ Γ and g1Λ < Γ, the achievability region RBC

1 in Theorem 6 is tight;
3. When g1Λ ≥ Γ and g2Λ < Γ, the achievability region RBC

2 in Theorem 6 is tight;
4. When Γ > max(g1Λ, g2Λ), the following region is an outer bound⋃

α∈[0,1]

RBC(α), (25)

where RBC(α) has been defined in Theorem 6.

The proof of Theorem 7 is similar to the proof of Theorem 3 using [26] in place
of [30]. Observe that the gap between the inner and outer bounds of Theorems 6 and 7
when Γ > max(g1Λ, g2Λ) comes from the fact that our achievability scheme is limited to
α ∈]max(g1, g2)ΛΓ−1, 1] ∪ {0}.
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6. The Symmetric Interference Wiretap Channel in the Presence of a
Jammer-Aided Eavesdropper

By the symmetry in Equation (6a) and Equation (6b), a code for the Gaussian MAC-
WT-JA allows Receiver i ∈ {1, 2} to securely recover the message of Transmitter i. Hence,
from the achievability result for the Gaussian MAC-WT-JA, we have the following achiev-
ability result for the Gaussian SI-WT-JA.

Theorem 8 (Achievability). We consider three cases.

1. When Γ1 > Λ and Γ2 ≤ Λ, RSI
1 � RMAC

1 is achievable;
2. When Γ2 > Λ and Γ1 ≤ Λ, RSI

2 � RMAC
2 is achievable;

3. When min(Γ1, Γ2) > Λ, RSI � RMAC is achievable;

where RMAC
1 , RMAC

2 , and RMAC are defined in Theorem 2.

Next, by the symmetry in Equations (6a) and (6b), we have that any code for the
Gaussian SI-WT-JA allows Receiver i ∈ {1, 2} to securely recover the messages from both
transmitters, meaning that an outer bound for the Gaussian SI-WT-JA can be obtained
by considering an outer bound for a Gaussian MAC-WT-JA. Hence, from the partial
converse for the Gaussian MAC-WT-JA, we obtain the following partial converse for the
Gaussian SI-WT-JA.

Theorem 9 (Partial converse).

1. If max(Γ1, Γ2) ≤ Λ, then no positive rate is achievable.
2. When min(Γ1, Γ2) > Λ and h1 = h2, the sum-rate achieved in RSI is tight by choosing

(P1, P2) = (Γ1, Γ2).

7. Proof of Theorem 2

To prove Theorem 2, it is sufficient to prove the achievability of the dominant face

D(P1, P2)

�
{
(R1, R2) ∈ RMAC

1,2 (P1, P2) : R1 + R2 =

[
1
2

log
(

1 + (P1 + P2)(1 + Λ)−1

1 + P1h1 + P2h2

)]+}
(26)

of RMAC
1,2 (P1, P2) to prove the achievability of RMAC

1,2 (P1, P2) when min(Γ1, Γ2) > Λ and
where (P1, P2) ∈]Λ, Γ1]×]Λ, Γ2]. The achievability of RMAC

i , i ∈ {1, 2}, when Γi > Λ
and Γ3−i ≤ Λ is obtained similarly by having Transmitter ī � 3 − i send Gaussian noise.
Observe that the rate constraints in RMAC

1,2 (P1, P2) can be expressed as

R1 ≤ [I(X1; Y|X2)− I(X1; Z)]+, (27a)

R2 ≤ [I(X2; Y|X1)− I(X2; Z)]+, (27b)

R1 + R2 ≤ [I(X1X2; Y)− I(X1X2; Z)]+, (27c)

where

Y � X1 + X2 + NY, (28a)

Z �
√

h1X1 +
√

h2X2 + NZ, (28b)

and X1, X2, NY, NZ are independent zero-mean Gaussian random variables with variances
P1, P2, (1 + Λ), 1, respectively. As remarked in [29], the set function T �→ I(XT ; Y|XT c)−
I(XT ; Z) is submodular but not necessarily non-decreasing, where ∀T ⊆ {1, 2}, XT �
(Xt)t∈T . This is the main reason why achieving the corner points of RMAC

1,2 (P1, P2) by
means of point-to-point codes via the successive decoding method [5] [Appendix C] does
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not easily translate to our setting. Before we provide our solution, we summarize our proof
strategy in the three cases below. Figure 5 illustrates these cases.

1
1

2

2

˜
2

˜
1

˜
1

˜
2

2 2

2 2

1

1

1

1

2

11

2

Figure 5. Region R1,2(P1, P2).

Case 1: Assume

I(X1X2; Y)− I(X1X2; Z) ≥ max[I(X1; Y|X2)− I(X1; Z), I(X2; Y|X1)− I(X2; Z)]. (29)

The corner points of RMAC
1,2 are given by

C1 � (I(X1; Y|X2)− I(X1; Z), I(X2; Y)− I(X2; Z|X1)), (30a)

C2 � (I(X1; Y)− I(X1; Z|X2), I(X2; Y|X1)− I(X2; Z)). (30b)

We will achieve each corner point with point-to-point coding techniques and perform
time-sharing to achieve D(P1, P2). Specifically, to achieve Ci, i ∈ {1, 2}, the encoders will
be designed such that the decoder can first estimate the codeword sent by Transmitter
ī � 3 − i (by considering the codewords of Transmitter i as noise), which is in turn used
to estimate the codeword sent by Transmitter i. This approach is similar to the successive
decoding method [5] [Appendix C] for a multiple-access channel in the absence of a
security constraint.

Case 2.a: Assume

I(X1X2; Y)− I(X1X2; Z) ≥ I(X1; Y|X2)− I(X1; Z), (31a)

I(X1X2; Y)− I(X1X2; Z) < I(X2; Y|X1)− I(X2; Z). (31b)

Hence,

C̃2 � (I(X1; Y)− I(X1; Z|X2), I(X2; Y|X1)− I(X2; Z)) (32)
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has a negative x-coordinate and the method of Case 1 cannot be directly applied here. Now,
the corner points of RMAC

1,2 are

C1 � (I(X1; Y|X2)− I(X1; Z), I(X2; Y)− I(X2; Z|X1)), (33a)

C2 � (0, I(X1X2; Y)− I(X1X2; Z))). (33b)

The idea to achieve C1 is, as in Case 1, a successive decoding approach by decomposing the
sum rate I(X1X2; Y)− I(X1X2; Z) as the sum of I(X2; Y)− I(X2; Z|X1), which represents
the secret message rate for Transmitter 2, and I(X1; Y|X2)− I(X1; Z), which represents the
secret message rate for Transmitter 1. However, C2 cannot be decomposed in a similar
manner and thus cannot be achieved with the same method. Instead, to achieve any point
in D(P1, P2), we rely on a strategy over several transmission blocks. First, in an appropriate
number of transmission blocks, the transmitters can send secret messages with rates C1 as
in Case 1. Part of the secret messages of Transmitter 1, with a rate equal to the absolute
value of the x-coordinate of the point C̃2, is dedicated to the exchange of a secret key
between Transmitter 1 and the legitimate receiver. Then, for the remaining transmission
blocks, Transmitter 2 transmits a secret message with rate I(X1X2; Y)− I(X1X2; Z), while
Transmitter 1 uses the previously generated secret key to produce a jamming signal, which
can be canceled out by the legitimate receiver but not by the eavesdropper who does not
know the secret key.

Case 2.b: Assume

I(X1X2; Y)− I(X1X2; Z) ≥ I(X2; Y|X1)− I(X2; Z), (34a)

I(X1X2; Y)− I(X1X2; Z) < I(X1; Y|X2)− I(X1; Z). (34b)

This case is handled as Case 2.a by exchanging the role of the two transmitters.
Case 3: Assume

I(X1X2; Y)− I(X1X2; Z) < min[I(X1; Y|X2)− I(X1; Z), I(X2; Y|X1)− I(X2; Z)]. (35)

Hence,

C̃1 � (I(X1; Y|X2)− I(X1; Z), I(X2; Y)− I(X2; Z|X1)), (36a)

C̃2 � (I(X1; Y)− I(X1; Z|X2), I(X2; Y|X1)− I(X2; Z)), (36b)

have a negative y-component and a negative x-component, respectively, and the strategy
of Case 1 or Case 2 cannot be directly applied here. The corner points of the region are

C1 � (I(X1X2; Y)− I(X1X2; Z), 0), (37a)

C2 � (0, I(X1X2; Y)− I(X1X2; Z)). (37b)

These corner points do not seem to be easily achievable using the method for Case 1. We
will first show that it is possible to achieve a point R ∈ D(P1, P2), where R has strictly
positive components. All the other points in D(P1, P2) will then be achieved as in Case 2 by
doing the substitutions C1 ← R and C2 ← R in Case 2.a and Case 2.b, respectively.

Note that it is sufficient to consider the case

min[I(X1; Y|X2)− I(X1; Z), I(X2; Y|X1)− I(X2; Z)] ≥ 0. (38)

Indeed, for i ∈ {1, 2} and ī � 3 − i, when I(Xi; Y|Xī) − I(Xi; Z) > 0 and I(Xī; Y|Xi) −
I(Xī; Z) ≤ 0, we have Rī = 0 and Ri ≤ I(X1X2; Y) − I(X1X2; Z) ≤ I(Xi; Y|Xī) −
I(Xi; Z|Xī) =

1
2 log

(
1+Pi(1+Λ)−1

1+Pihi

)
. These cases correspond to Theorem 1 and can be treated

as in Case 1.
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7.1. Case 1

We show the achievability of C2. The achievability of C1 is obtained by exchanging
the role of the transmitters.

Codebook construction: For Transmitter i ∈ {1, 2}, construct a codebook C(i)
n with

�2nRi��2nR̃i� codewords drawn independently and uniformly on the sphere of radius
√

nPi

in Rn. The codewords are labeled xn
i (mi, m̃i), where mi ∈ �1, 2nRi�, m̃i ∈ �1, 2nR̃i�. We define

Cn � (C(1)
n , C(2)

n ) and choose for δ > 0

R1 � I(X1; Y)− I(X1; Z|X2)− δ, (39a)

R̃1 � I(X1; Z|X2)− δ, (39b)

R2 � I(X2; Y|X1)− I(X2; Z)− δ, (39c)

R̃2 � I(X2; Z)− δ. (39d)

Encoding at Transmitter i ∈ {1, 2}: Given (mi, m̃i), transmit xn
i (mi, m̃i). In the remain-

der of the paper, we use the term randomization sequence for m̃i.
Decoding: The receiver performs minimum distance decoding to first estimate (m1, m̃1)

and then to estimate (m2, m̃2), i.e., given yn, it determines (m̂1, ˆ̃m1) � φ1(yn, 0), and
(m̂2, ˆ̃m2) � φ2(yn, xn

1 (m̂1, ˆ̃m1)) where for i ∈ {1, 2}

φi(yn, x) �

⎧⎪⎨⎪⎩
(mi, m̃i) if ‖yn − x − xn

i (mi, m̃i)‖2 < ‖yn − x − xn
i (m

′
i, m̃′

i)‖2

for (m′
i, m̃′

i) 
= (mi, m̃i)

0 if no such (mi, m̃i) ∈ �1, 2nRi�× �1, 2nR̃i� exists

. (40)

Define e(Cn, sn) � P
[
(M̂1, M̂2) 
= (M1, M2)|Cn

]
. We now prove thatECn [supsn e(Cn, sn)]

+ 1
n I(M1M2; Zn|Cn)

n→∞−−−→ 0. We will thus conclude by Markov’s inequality that there
exists a sequence of realizations (Cn)n≥1 of (Cn)n≥1 such that both supsn e(Cn, sn) and
1
n I(M1M2; Zn|Cn) can be made arbitrarily close to zero as n → ∞.

Average probability of error: We have

e(Cn, sn) ≤ P
[
(M̂1, M̂2) 
= (M1, M2) or ( ̂̃M1, ̂̃M2) 
= (M̃1, M̃2)|Cn

]
(41a)

≤ e1(Cn, sn, xn
2 (M2, M̃2)) + e2(Cn, sn, 0), (41b)

where for i ∈ {1, 2}

ei(Cn, sn, x) � 1

�2nRi��2nR̃i� ∑
mi

∑
m̃i

P
[
‖xn

i (mi, m̃i) + sn + x + Nn
Y − xn

i (m
′
i, m̃′

i)‖2

≤ ‖sn + x + Nn
Y‖2 for some (m′

i, m̃′
i) 
= (mi, m̃i)

]
. (42)

Next, we have

ECn [e1(Cn, sn, xn
2 (M2, M̃2))] ≤ ECn [e1(Cn, sn, xn

2 (M2, M̃2))|C(1)
n ∈ C∗

1 ] + P[C(1)
n /∈ C∗

1 ] (43a)
n→∞−−−→ 0, (43b)

where, in Equation (43a), C∗
1 represents all the sets of unit norm vectors scaled by

√
nP1 that

satisfy the two conditions of Lemma A1 (in Appendix A), Equation (43b) holds because
P[C(1)

n ∈ C∗
1 ]

n→∞−−−→ 1 by Lemma A1, and ECn [e1(Cn, sn, xn
2 (M2, M̃2))|C(1)

n ∈ C∗
1 ]

n→∞−−−→ 0 by

Theorem A1 (in Appendix A) using that R1 + R̃1 < I(X1; Y) = 1
2 log

(
1 + P1

1+Λ+P2

)
and by

interpreting the signal of Transmitter 2 as noise. Then,

154



Entropy 2022, 24, 1595

ECn [e2(Cn, sn, 0)] ≤ ECn [e2(Cn, sn, 0)|C(2)
n ∈ C∗

2 ] + P[C(2)
n /∈ C∗

2 ] (44a)
n→∞−−−→ 0, (44b)

where, in Equation (44a), C∗
2 represents all the sets of unit norm vectors scaled by

√
nP2 that

satisfy the two conditions of Lemma A1, Equation (44b) holds because P[C(2)
n ∈ C∗

2 ]
n→∞−−−→

1 by Lemma A1, and ECn [e2(Cn, sn, 0)|C(2)
n ∈ C∗

2 ]
n→∞−−−→ 0 by Theorem A1 using that

R2 + R̃2 < I(X2; Y|X1) = 1
2 log

(
1 + P2

1+Λ

)
. Hence, by Equations (41b), (43b) and (44b),

we have

ECn [e(Cn, sn)]
n→∞−−−→ 0. (45)

Equivocation: We first study the average error probability of decoding (m̃1, m̃2) given
(zn, m1, m2) with the following procedure. Given (zn, m1, m2), determine m̆2 � ψ2(zn, 0),
and m̆1 � ψ1(zn,

√
h2xn

2 (m2, m̆2)) where

ψi(zn, x) �

⎧⎪⎨⎪⎩
m̃i if ‖zn − x −

√
hixn

i (mi, m̃i)‖2 < ‖zn − x −
√

hixn
i (mi, m̃′

i)‖2

for m̃′
i 
= m̃i

0 if no such m̃i ∈ �1, 2nR̃i� exists

. (46)

We define ẽ(Cn) � P
[
(M̆1, M̆2) 
= (M̃1, M̃2)|Cn

]
and for i ∈ {1, 2},

ẽi(Cn, x) � 1

�2nR̃i� ∑
m̃i

P
[
‖
√

hixn
i (mi, m̃i) + x + Nn

Z −
√

hixn
i (mi, m̃′

i)‖2

≤ ‖x + Nn
Z‖2 for some m̃′

i 
= m̃i

]
. (47)

Then, with the same notation as in Equations (43) and (44), we have

ECn [ẽ(Cn)] ≤ ECn [ẽ1(Cn, 0)] +ECn [ẽ2(Cn,
√

h1xn
1 (M1, M̃1))] (48a)

≤ ECn [ẽ1(Cn, 0)|C(1)
n ∈ C∗

1 ] + P[C(1)
n /∈ C∗

1 ]

+ECn [ẽ2(Cn,
√

h1xn
1 (M1, M̃1))|C(2)

n ∈ C∗
2 ] + P[C(2)

n /∈ C∗
2 ] (48b)

n→∞−−−→ 0, (48c)

where Equation (48c) holds because P[C(1)
n ∈ C∗

1 ]
n→∞−−−→ 1 and P[C(2)

n ∈ C∗
2 ]

n→∞−−−→
1 by Lemma A1, ECn [ẽ1(Cn, 0)|C(1)

n ∈ C∗
1 ]

n→∞−−−→ 0 by Theorem A1 using that R̃1 <

I(X1; Z|X2) = 1
2 log(1 + h1P1), and ECn [ẽ2(Cn,

√
h1xn

1 (M1, M̃1))|C(2)
n ∈ C∗

2 ]
n→∞−−−→ 0 by

Theorem A1 using that R̃2 < I(X2; Z) = 1
2 log

(
1 + h2P2

1+h1P1

)
and by interpreting the signal

of Transmitter 1 as noise.
Define M � (M1, M2), M̃ � (M̃1, M̃2). Let the superscript T denote the transpose

operation and define X � [
√

h1(Xn
1 )

T √
h2(Xn

2 )
T ]T ∈ R2n×1, such that

Zn = GX + Nn
Z, (49)

with G � [In, In] ∈ Rn×2n and In the identity matrix with dimension n. Let KX denote
the covariance matrix of X. Note that, by independence between Xn

1 and Xn
2 , we have

KX =

( K√h1Xn
1

0n

0n K√h2Xn
2

)
, where 0n � 0 × In and K√hiXn

i
is the covariance matrix of

√
hiXn

i ,

i ∈ {1, 2}. Then, for i ∈ {1, 2}, since Xn
i is chosen uniformly at random over a sphere of

radius
√

nPi, the off-diagonal elements of K√hiXn
i

are all equal to 0 by symmetry, and the
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diagonal elements are all equal (also by symmetry) and sum to nhiPi. Hence, K√hiXn
i
=

hiPi In, i ∈ {1, 2}, and

KX =

(
h1P1 In 0n

0n h2P2 In

)
. (50)

Then, we have

I(M; Zn|Cn) = I(MM̃; Zn|Cn)− I(M̃; Zn|MCn) (51a)

= I(MM̃; Zn|Cn)− H(M̃|Cn) + H(M̃|Zn MCn) (51b)

≤ I(X; Zn|Cn)− H(M̃|Cn) + H(M̃|Zn MCn) (51c)

≤ I(X; Zn)− H(M̃|Cn) + H(M̃|Zn MCn) (51d)

= h(Zn)− h(Nn
Z)− H(M̃|Cn) + H(M̃|Zn MCn) (51e)

≤ 1
2

log |GKXGT + In| − H(M̃|Cn) + H(M̃|Zn MCn) (51f)

=
n
2

log(1 + h1P1 + h2P2)− H(M̃|Cn) + H(M̃|Zn MCn) (51g)

= nI(X1X2; Z)− H(M̃|Cn) + H(M̃|Zn MCn) (51h)

≤ nI(X1X2; Z)− n(I(X1X2; Z)− 2δ) + O(nECn [ẽ(Cn)]) (51i)

= 2δn + o(n), (51j)

where Equation (51b) holds by independence between M and M̃; Equation (51c) holds
because (M, M̃) − (X, Cn) − Zn forms a Markov chain; Equation (51d) holds because
Cn − X − Zn forms a Markov chain; Equation (51f) holds because h(Nn

Z) =
1
2 log((2πe)n)

and because h(Zn) ≤ 1
2 log((2πe)n|GKXGT + In|) by Equation (49) and the maximal dif-

ferential entropy lemma (e.g., [31]) [Eq. (2.6)]; Equation (51g) holds by Equation (50);
in Equation (51i), we used the definition of R̃1 + R̃2 and the uniformity of M̃ to obtain
the second term, and Fano’s inequality to obtain the third term; Equation (51j) holds
by Equation (48c).

Note that the idea of considering a fictitious decoder at the eavesdropper to use Fano’s
inequality in Equation (51i) is a standard technique that already appeared in [32].

7.2. Case 2

We only consider Case 2.a; Case 2.b is handled by exchanging the role of the transmit-
ters. Let R � (R1, R2) ∈ D(P1, P2). There exists α ∈ [0, 1[ such that R = (1 − α)C1 + αC̃2.
The corner point C1 is achievable by Case 1, however, recall that since the first compo-
nent of C̃2 is negative, it thus cannot be achieved as in Case 1, and one cannot perform
time-sharing between C1 and C̃2 to achieve R. Instead, we achieve R as follows. We define
k, k′ ∈ N such that k′/k = (1 − α)−1 − 1 + ε, ε > 0, this is possible by density of Q in R.
We realize a first transmission T1 as in Case 1 of a pair of confidential messages of length
nkC1. Part of these confidential messages is dedicated to exchange a secret key of length
nk′(I(X1; Z|X2)− I(X1; Y)) > 0 between Transmitter 1 and the receiver, which is possible
because (1 − α)C1 + αC̃2 = R has positive components. We then realize a second transmis-
sion T2 of a pair of confidential messages of length nk′(0, I(X2; Y|X1)− I(X2; Z)) assisted
with the secret key that is shared between Transmitter 1 and the receiver. Hence, the overall
transmission rate of confidential messages is k

k+k′ C1 +
k′

k+k′ C̃2, which is arbitrarily close to
R by choosing a sufficiently small ε. We now explain how transmission T2 is performed.
We repeat k′ times the following coding scheme.

Codebook construction: Perform the same codebook construction as in Case 1 for
Transmitter 2. For Transmitter 1, construct a codebook with �2nR̆1��2nR̊1� codewords
drawn independently and uniformly on the sphere of radius

√
nP1 in Rn. The codewords
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are labeled xn
1 (m̆1, m̊1), where m̆1 ∈ �1, 2nR̆1�, m̊1 ∈ �1, 2nR̊1�. We define the rates R̆1 �

I(X1; Y)− δ, R̊1 � I(X1; Z|X2)− I(X1; Y)− δ, and R̃1 � R̆1 + R̊1 = I(X1; Z|X2)− 2δ.
Encoding at Transmitters: Encoding for Transmitter 2 is as in Case 1. Given (m̆1, m̊1),

Transmitter 1 forms xn
1 (m̆1, m̊1), where m̊1 is seen as a secret key known at the receiver and

that has been shared through transmission T1 described above. In the following, we define
m̃1 � (m̆1, m̊1).

Decoding and average probability of error: As in Case 1, using minimum distance
decoding, one can show that on average over the codebooks, the receiver can reconstruct
xn

1 (m̆1, m̊1) with a vanishing average probability of error because m̊1 is known at the
receiver and because R̆1 < I(X1; Y). The receiver can then reconstruct xn

2 as in Case 1.
Equivocation: The equivocation computation for transmission T2 is as in Case 1 by

remarking that it is possible on average over the codebooks to reconstruct with vanishing
average probability of error first xn

2 given (zn, m2) and then xn
1 given (zn, xn

2 ) by using that
R̃1 < I(X1; Z|X2).

Finally, to conclude that R is achievable, we need to show that the secrecy constraint is
satisfied for the joint transmissions T1 and T2. We use the superscript (Ti) to denote random
variables associated with transmission Ti, i ∈ {1, 2}. Define M(T1) �

(
M(T1)

1 \M̊(T1)
1 , M(T1)

2

)
,

the confidential messages sent during transmission T1 excluding M̊(T1)
1 , defined as all the

confidential messages sent during transmission T1 and used during transmission T2. We
define M(T2) �

(
∅, M(T2)

2

)
as the confidential messages sent during transmission T2. We

define M̃(Ti) �
(

M̃(Ti)
1 , M̃(Ti)

2

)
as the randomization sequences used by both transmitters

in Transmission Ti, i ∈ {1, 2}. We also define X(Ti) as all the channel inputs from both
transmitters in Transmission Ti, i ∈ {1, 2}, and Z(Ti) as all the channel outputs observed by
the eavesdropper in Transmission i ∈ {1, 2}. Finally, we define M(T1,T2) �

(
M(T1), M(T2)

)
,

M̃(T1,T2) �
(

M̃(T1), M̃(T2)
)

, Z(T1,T2) �
(

Z(T1), Z(T2)
)

, X(T1,T2) �
(

X(T1), X(T2)
)

, C(T1,T2)
n �(

C(T1)
n , C(T2)

n

)
. We have

I(M(T1,T2); Z(T1,T2)|C(T1,T2)
n )

= I(M(T1,T2)M̃(T1,T2); Z(T1,T2)|C(T1,T2)
n )− I(M̃(T1,T2); Z(T1,T2)|M(T1,T2)C(T1,T2)

n ) (52a)

= I(M(T1,T2)M̃(T1,T2); Z(T1,T2)|C(T1,T2)
n )− H(M̃(T1,T2)|C(T1,T2)

n )

+ H(M̃(T1,T2)|Z(T1,T2)M(T1,T2)C(T1,T2)
n ) (52b)

≤ I(X(T1,T2); Z(T1,T2)|C(T1,T2)
n )− H(M̃(T1,T2)|C(T1,T2)

n )

+ H(M̃(T1,T2)|Z(T1,T2)M(T1,T2)C(T1,T2)
n ) (52c)

≤ I(X(T1,T2); Z(T1,T2))− H(M̃(T1,T2)|C(T1,T2)
n ) + H(M̃(T1,T2)|Z(T1,T2)M(T1,T2)C(T1,T2)

n ) (52d)

≤ n(k + k′)I(X1X2; Z)− H(M̃(T1,T2)|C(T1,T2)
n ) + H(M̃(T1,T2)|Z(T1,T2)M(T1,T2)C(T1,T2)

n )
(52e)

≤ 3nδ(k + k′) + H(M̃(T1,T2)|Z(T1,T2)M(T1,T2)C(T1,T2)
n ) (52f)

≤ 3nδ(k + k′) + O
(

nE
C
(T1,T2)
n

[ẽ(C(T1,T2)
n )]

)
, (52g)

where Equation (52b) holds because we defined M(T1,T2) such that M(T1,T2) is indepen-
dent from M̃(T1,T2), Equation (52c) holds because (M(T1,T2), M̃(T1,T2))−

(
C(T1,T2)

n , X(T1,T2)
)
−

Z(T1,T2) forms a Markov chain, Equation (52d) holds because C(T1,T2)
n − X(T1,T2) − Z(T1,T2)

forms a Markov chain, Equation (52e) holds similar to Equation (51h), Equation (52f)
holds because by definition R̃1 + R̃2 ≥ I(X1X2; Z)− 3δ, Equation (52g) holds by Fano’s
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inequality with ẽ(C(T1,T2)
n ) defined as the probability of error to reconstruct M̃(T1,T2) given(

Z(T1,T2), M(T1,T2)
)

using minimum distance decoding as in Case 1. Then, define

ẽ(1)(C(T1,T2)
n ) as the error probability to reconstruct M̃(T2) from

(
Z(T2), M(T2)

)
using min-

imum distance decoding, and ẽ(2)(C(T1,T2)
n ) as the error probability to reconstruct M̃(T1)

from
(

Z(T1), M(T1), M̃(T2)
)

using minimum distance decoding. As in the analysis of Case 1

and by observing that M̊(T1)
1 is included in M̃(T2), we have

E
C
(T1,T2)
n

[ẽ(C(T1,T2)
n )] ≤ E

C
(T1,T2)
n

[ẽ(1)(C(T1,T2)
n )] +E

C
(T1,T2)
n

[ẽ(2)(C(T1,T2)
n )] (53a)

n→∞−−−→ 0. (53b)

We conclude from Equations (52g) and (53b)

I(M(T1,T2); Z(T1,T2)|C(T1,T2)
n ) = 3nδ(k + k′) + o(n). (54)

7.3. Case 3

We have I(X1; Z|X2)− I(X1; Y) > 0 and I(X2; Z|X1)− I(X2; Y) > 0 as depicted in
Figure 5. Assume I(X1X2; Y)− I(X1X2; Z) > 0, otherwise RMAC

1,2 (P1, P2) = {(0, 0)}. We
will use the following lemma.

Lemma 2. Define hΛ � (1 + Λ)−1. We have

1. I(X1; Z|X2)− I(X1; Y) ≤ I(X1; Y|X2)− I(X1; Z)
or I(X2; Z|X1)− I(X2; Y) ≤ I(X2; Y|X1)− I(X2; Z).

2. h1 < hΛ or h2 < hΛ.
3. Assume I(X1; Z|X2) − I(X1; Y) ≤ I(X1; Y|X2) − I(X1; Z). There exists m, m′ ∈ N∗,

such that

m′(I(X1; Y|X2)− I(X1; Z)) ≥ m(I(X1; Z|X2)− I(X1; Y)), (55a)

m(I(X2; Y|X1)− I(X2; Z)) > m′(I(X2; Z|X1)− I(X2; Y)). (55b)

Proof. (i) Assume that

I(X1; Z|X2)− I(X1; Y) > I(X1; Y|X2)− I(X1; Z), (56a)

I(X2; Z|X1)− I(X2; Y) > I(X2; Y|X1)− I(X2; Z). (56b)

Then,

I(X1; Z|X2)− I(X1; Y) + I(X2; Z|X1)− I(X2; Y)

> I(X1; Y|X2)− I(X1; Z) + I(X2; Y|X1)− I(X2; Z), (57)

which contradicts the fact that I(X1; Z|X2) − I(X1; Y) < I(X2; Y|X1) − I(X2; Z) and
I(X2; Z|X1)− I(X2; Y) < I(X1; Y|X2)− I(X1; Z).

(ii) By contradiction, if h1 ≥ hΛ and h2 ≥ hΛ, then I(X1X2; Y)− I(X1X2; Z) ≤ 0.
(iii) Choose m′ ∈ N∗ such that

I(X1; Z|X2)− I(X1; Y) ≤ m′(I(X1X2; Y)− I(X1X2; Z)). (58)

Then, there exists m ∈ N∗ and r ∈ [0, I(X1; Z|X2)− I(X1; Y)[ such that

m′(I(X1; Y|X2)− I(X1; Z)) = m(I(X1; Z|X2)− I(X1; Y)) + r. (59)
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Then, we have

m(I(X2; Y|X1)− I(X2; Z))

= m(I(X1; Z|X2)− I(X1; Y)) + m(I(X1X2; Y)− I(X1X2; Z)) (60a)

= m′(I(X1; Y|X2)− I(X1; Z)) + m(I(X1X2; Y)− I(X1X2; Z))− r (60b)

= m′(I(X2; Z|X1)− I(X2; Y)) + (m + m′)(I(X1X2; Y)− I(X1X2; Z))− r (60c)

> m′(I(X2; Z|X1)− I(X2; Y)) + m(I(X1X2; Y)− I(X1X2; Z)) (60d)

> m′(I(X2; Z|X1)− I(X2; Y)), (60e)

where Equation (60b) holds by Equation (59), and Equation (60d) holds because r <
I(X1; Z|X2)− I(X1; Y) ≤ m′(I(X1X2; Y)− I(X1X2; Z)).

By (i) in Lemma 2, assume without loss of generality that I(X1; Z|X2)− I(X1; Y) ≤
I(X1; Y|X2)− I(X1; Z) by exchanging the role of the transmitters if necessary. We let m, m′

be as in (iii) of Lemma 2. D(P1, P2) is achieved in four steps.
Step 1. During a first transmission T0, Transmitter 2 transmits a confidential message

of length nm′(I(X2; Z|X1)− I(X2; Y)) to the receiver. This is possible with a point-to-point
wiretap code; as in Case 1, when Transmitter 1 remains silent and when hΛ > h2. If, on the
other hand, hΛ ≤ h2, then by (ii) in Lemma 2, hΛ > h1 and Transmitter 2 can transmit
a confidential message of length nm′(I(X2; Z|X1) − I(X2; Y)) as follows. Transmitter 1
transmits a confidential message of length nk(I(X1; Z|X2)− I(X1; Y)), where k ∈ N∗ is
such that nk(I(X2; Y|X1)− I(X2; Z)) ≥ nm′(I(X2; Z|X1)− I(X2; Y)). Using this secret key
shared by Transmitter 1 and the receiver, Transmitter 2 can transmit a confidential message
of length nk(I(X2; Y|X1)− I(X2; Z)) as in Case 2. Note that Step 1 is operated in a fixed
number of blocks of length n.

Step 2. As in Case 2, the transmitters achieve transmission T1 of confidential messages
of length (nm′(I(X1; Y|X2) − I(X1; Z)), 0) by using the secret key exchanged during T0
between Transmitter 2 and the receiver. Then, as in Case 2 and because m′(I(X1; Y|X2)−
I(X1; Z))− m(I(X1; Z|X2)− I(X1; Y)) ≥ 0 by (iii) in Lemma 2, the transmitters achieve a
transmission T2 of confidential messages of length (0, nm(I(X2; Y|X1)− I(X2; Z))) using
a secret key of length nm(I(X1; Z|X2)− I(X1; Y)) exchanged between Transmitter 1 and
the receiver during T1. Hence, after T1 and T2, the transmitters achieved the transmis-
sion of confidential messages of length (nm′(I(X1; Y|X2)− I(X1; Z))− nm(I(X1; Z|X2)−
I(X1; Y)), nm(I(X2; Y|X1)− I(X2; Z))).

Step 3. The transmitters repeat T1 and T2 t times, where t is arbitrary, since
m(I(X2; Y|X1) − I(X2; Z)) − m′(I(X2; Z|X1) − I(X2; Y)) > 0 by (iii) in Lemma 2. Af-
ter these t repetitions, the rate pair achieved is arbitrarily close to

R =
1

m + m′ (m
′(I(X1; Y|X2)− I(X1; Z))− m(I(X1; Z|X2)− I(X1; Y)),

m(I(X2; Y|X1)− I(X2; Z))− m′(I(X2; Z|X1)− I(X2; Y))) (61)

provided that t is large enough since Step 1 only requires a fixed number of transmission
blocks. Observe that R ∈ D(P1, P2).

Step 4. Any point of D(P1, P2) can then be achieved as in Case 2 by doing the substi-
tutions C1 ← R and C2 ← R in Case 2.a and Case 2.b, respectively.

The proof that secrecy holds over the joint transmissions is similar to Case 2 and
thus omitted.

8. Proof of Theorem 3

We first show that determining a converse for our model reduces to determining a
converse for a similar model when the jammer is inactive, i.e., when Λ = 0.
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Lemma 3. Let O � {(R1, R2) : R1 ≤ B1, R2 ≤ B2, R1 + R2 ≤ B1,2} be an outer bound, i.e., a
set that contains all possibly achievable rate pairs, for the Gaussian MAC-WT-JA with parameters
(Γ1, Γ2, h1, h2, 0, σ2

Y + Λ, σ2
Z). Then,{

(R1, R2) : R1 ≤
{

B1 if Γ1 > Λ
0 if Γ1 ≤ Λ

, R2 ≤
{

B2 if Γ2 > Λ
0 if Γ2 ≤ Λ

, R1 + R2 ≤ B1,2

}

is an outer bound for the Gaussian MAC-WT-JA with parameters (Γ1, Γ2, h1, h2, Λ, σ2
Y, σ2

Z).

Proof. Consider any encoders and decoder for the Gaussian MAC-WT-JA with the pa-
rameters (Γ1, Γ2, h1, h2, Λ, σ2

Y, σ2
Z) that achieve the rate pair (R1, R2). Note that by [24] [The-

orem 2.3], for any l ∈ {1, 2} such that Γl ≤ Λ, we must have Rl = 0, since an outer
bound for the model in [24] is also an outer bound for the Gaussian MAC-WT-JA, which
has the additional security constraint (2b). Then, to derive an outer bound, it is suf-
ficient to consider a specific jamming strategy and study the best achievable rates for
this jamming strategy, since the boundaries of the capacity region correspond to the
best (from the jammer’s point of view) jamming strategies and any other jamming strat-
egy can only enlarge the set of achievable rates. We assume that in each transmission
block, the jamming sequence is Sn with the components independent and identically dis-
tributed according to a zero-mean Gaussian random variable with the variance Λ′ < Λ.
The average probability of error at the legitimate receiver is thus upper-bounded by
supS∈S P[M̂ 
= M] + kP[‖Sn‖2 > nΛ]

n→∞−−−→ 0 where we used the notation of Defini-
tion 1 and the fact that kP[‖Sn‖2 > nΛ]

n→∞−−−→ 0 since Λ′ < Λ. Hence, since the se-
crecy constraint is independent of Λ′, we obtain the reliability and secrecy constraints
for a Gaussian MAC-WT-JA with parameters (Γ1, Γ2, h1, h2, 0, σ2

Y + Λ′, σ2
Z), meaning that

(R1, R2) ∈ O′, where O′ is an outer bound for the Gaussian MAC-WT-JA with parameters
(Γ1, Γ2, h1, h2, 0, σ2

Y + Λ′, σ2
Z). Finally, we conclude the proof by choosing Λ′ arbitrarily close

to Λ.

We now obtain Theorem 3 as follows. (i) holds from Lemma 3. (ii) holds from Lemma
3 and [33] [Theorem 6] by remarking that x �→ log

(
1+x(1+Λ)−1

1+xh

)
is non-decreasing when

(1 + Λ)−1 > h and negative when (1 + Λ)−1 ≤ h.

9. Concluding Remarks

In this paper, we defined Gaussian wiretap channels in the presence of an eaves-
dropper aided by a jammer. The jamming signal is power-constrained and assumed to
be oblivious of the legitimate users’ communication but is not restricted to be Gaussian.
We studied several models in this framework, namely point-to-point, multiple-access,
broadcast, and symmetric interference settings. We derived inner and outer bounds for
these settings, and identified conditions for these bounds to coincide. We stress that no
shared randomness among the legitimate users is required in our coding schemes.

Our achievability scheme for the Gaussian MAC-WT-JA relies on novel time-sharing
strategies and an extension of successive decoding for multiple-access channels to multiple-
access wiretap channels via secret-key exchanges. An open problem remains to provide a
scheme that avoids time-sharing. Section 4.2 provides such a scheme for some rate pairs
and channel parameters; however, it might not be possible to achieve the entire region of
Theorem 2 by solely relying on point-to-point codes, in which case the design of multi-
transmitter codes for arbitrarily varying multiple-access channels would be necessary.

Finally, beyond proving the existence of achievability schemes for our models, finding
explicit coding schemes largely remains an open problem. We note that [34] investigates
this problem for short communication blocklengths over point-to-point channels via a
practical approach that relies on deep learning. Another open problem is to achieve the
same regions as that derived in this paper under strong and semantic security guarantees.
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Appendix A. Supporting Results

Lemma A1 ([1]). Let ε > 0, η ∈]8√ε, 1[, K > 2ε, R ∈ [2ε, K], and N � enR. Let Xn
1 , . . . , Xn

N be
independent random variables uniformly distributed on the unit sphere. With probability arbitrarily
close to one as n → ∞, we have

1. |{j : 〈Xn
j , un〉 ≥ α}| ≤ en

(
[R+ 1

2 log(1−α2)]
+
+ε
)

for any unit vector un ∈ Rn, α > 0.

2. 1
N |{i : |〈Xn

j , Xn
i 〉| ≥ α, |〈Xn

j , un〉| ≥ β, for some j 
= i}| ≤ e−nε for any unit vector
un ∈ Rn, α, β ∈ [0, 1] such that α ≥ η , α2 + β2 > 1 + η − e−2R.

Theorem A1 ([1,24]). Consider a channel whose output is defined as Yn = Xn + Vn + sn, where
Xn is the input such that ‖Xn‖2 ≤ n, Vn represents noise (to be defined next), and sn is a state
unknown to the encoder and decoder such that ‖sn‖2 ≤ nΛ, Λ < 1. Let σ, δ > 0. Consider a
codebook Cn made of N � en( 1

2 log(1+(Λ+σ2)−1)−δ) codewords (xn
1 , . . . , xn

N) that satisfy the two
conditions of Lemma A1, and define the average probability of error e(Cn) of a minimum distance
decoder as e(Cn) � 1

N ∑N
i=1 P[‖xn

i + sn + Vn − xn
j ‖2 ≤ ‖sn + Vn‖2, for some j 
= i].

1. (From [1]). If Vn is a vector with i.i.d. zero-mean Gaussian coordinates with variance σ2,
then limn→∞ e(Cn) = 0.

2. (From [24]). If Vn � Wn + U, where Wn is a vector with i.i.d. zero-mean Gaussian
coordinates with variance a2 and U is independently distributed uniformly at random on a
sphere with radius

√
nb2 such that a2 + b2 = σ2, then limn→∞ e(Cn) = 0.

Appendix B. Proof of Theorem 4

We first recall some definitions and results on polymatroids.

Definition A1 ([35]). Let f : 2M → R. P( f ) �
{
(Ri)i∈M ∈ RM : RS ≤ f (S), ∀S ⊆ M

}
associated with the function f is an extended polymatroid if f is submodular, i.e., ∀S , T ⊆
M, f (S ∪ T ) + f (S ∩ T ) ≤ f (S) + f (T ).

Property A1 ([29] [Property 1]). Define g : 2L(Λ) → R, T �→ I(XT ; Y|XT c) − I(XT ; Z),
where Y � ∑l∈L(Λ) Xl + NY, Z � ∑l∈L(Λ)

√
hlXl + NZ, with (Xl)l∈L(Λ), NY, NZ independent

zero-mean Gaussian random variables with variances (Pl)l∈L(Λ), (1 + Λ), 1, respectively.

C(Λ) �
{
(Rl)l∈L(Λ) ∈ R|L(Λ)| : ∀T ⊆ L(Λ), RT ≤ g(T )

}
(A1)

associated with g is an extended polymatroid.

Property A2 ([35]). Define the dominant face D(Λ) of C(Λ) as

D(Λ) �
{
(Rl)l∈L(Λ) ∈ C(Λ) : RL(Λ) = g(L(Λ))

}
. (A2)

For π ∈ Sym(|L(Λ)|), where Sym(|L(Λ)|) is the symmetric group on L(Λ), for
i, j ∈ L(Λ), define πi:j � (π(k))k∈�i,j�. D(Λ) is the convex hull of the vertices

161



Entropy 2022, 24, 1595

V �
{
(Cπ(i))i∈�1,|L(Λ)|� : π ∈ Sym(|L(Λ)|)

}
, where for π ∈ Sym(|L(Λ)|), for

i ∈ �1, |L(Λ)|�, Cπ(i) = g
(
{πi:|L(Λ)|}

)
− g

(
{πi+1:|L(Λ)|}

)
.

Define D+(Λ) � D(Λ) ∩ R
|L(Λ)|
+ . By Property A2, for any R ∈ D+(Λ), for any

V = (Vl)l∈L(Λ) ∈ V , there exists αV ∈ [0, 1], such that ∑V∈V αV = 1 and R = ∑V∈V αVV.
As remarked in [29], g is, in general, not non-decreasing; hence, some V ∈ V might have
negative components and the successive decoding method [5] [Appendix C] cannot be
applied to the multiple-access wiretap channel. We show in the following how to overcome
this issue. For l ∈ L(Λ), define R∗

l � −∑V∈V αV1{Vl < 0}Vl , and R∗ � (R∗
l )l∈L(Λ). Our

coding scheme operates in three steps, the idea of which is described below.
Step 1. For l ∈ L(Λ), a secret message of length nR∗

l is exchanged between Transmit-
ter l and the receiver.

Step 2. For all V ∈ V , secret messages of length n(αV1{Vl > 0}Vl)l∈L(Λ) are ex-
changed between the transmitters and the receiver, provided that secret sequences of
length nR∗ are shared between the transmitters and the receiver, which is ensured by
Step 1. The overall length of secret communication is n(∑V∈V αV1{Vl > 0}Vl)l∈L(Λ),
i.e., n(R + R∗).

Step 3. Repeat t times Step 2. It is possible to do so because secret sequences of
length at least nR∗ were exchanged between the transmitters and the receiver in Step 2.
The overall rate of secret sequences exchanged between the transmitters and the receiver
is thus R, provided that t is large enough, since Step 1 only requires the transmission of a
finite number of blocks.

The coding schemes and their analyses to realize Steps 1 and 2 are described in
Appendix B.1 and Appendix B.2, respectively. In the remainder of the section, Y and Z
are defined as in Property A1 with (Xl)l∈L(Λ) zero-mean Gaussian random variables with
variances (Pl)l∈L(Λ).

Appendix B.1. Proof of Step 1

The proof of Step 1 directly follows from the point-to-point setting, i.e., Theorem 1,
applied to each l ∈ L(Λ) since we assumed hl < hΛ.

Appendix B.2. Proof of Step 2

We fix V ∈ V . The following procedure must be reiterated for each V ∈ V by applying
a permutation π ∈ Sym(|L(Λ)|) on the labeling of the transmitters. For convenience, we
relabel the transmitter from 1 to |L(Λ)| and redefine L(Λ) as �1, |L(Λ)|�. We show how
to exchange secret messages with rate (1{Vl > 0}Vl)l∈L(Λ) between the transmitters and
the receiver, when they have access to pre-shared secrets (obtained from Step 1) with rate
(−1{Vl < 0}Vl)l∈L(Λ). Define I � {l ∈ L(Λ) : Vl ≤ 0} and I c � L(Λ)\I . We also use the
notation XL(Λ) � (Xl)l∈L(Λ), Xn

L(Λ)
� (Xn

l )l∈L(Λ), and for i, j ∈ L(Λ), Xi:j � (Xl)l∈�i,j�.

Codebook construction: For Transmitter i ∈ I c, construct a codebook C(i)
n with

�2nRi��2nR̃i� codewords drawn independently and uniformly on the sphere of radius
√

nPi

in Rn. The codewords are labeled xn
i (mi, m̃i), where mi ∈ �1, 2nRi�, m̃i ∈ �1, 2nR̃i�. We

choose the rates as Ri � I(Xi; Y|X1:i−1)− I(Xi; Z|Xi+1:|L(Λ)|)− δ, R̃i � I(Xi; Z|Xi+1:|L(Λ)|)

− δ. For Transmitter i ∈ I , construct a codebook C(i)
n with �2nR̆i��2nR̊i� codewords

drawn independently and uniformly on the sphere of radius
√

nPi in Rn. The code-
words are labeled xn

i (m̆i, m̊i), where m̆i ∈ �1, 2nR̆i�, m̊i ∈ �1, 2nR̊i�. We define the rates
R̆i � I(Xi; Y|X1:i−1) − δ, R̊i � I(Xi; Z|Xi+1:|L(Λ)|) − I(Xi; Y|X1:i−1) − δ, and R̃i � R̆i +

R̊i = I(Xi; Z|Xi+1:|L(Λ)|)− 2δ. Define Cn � (C(i)
n )i∈L(Λ).

Encoding at the transmitters: For Transmitter i ∈ I c, given (mi, m̃i), transmit xn
i (mi, m̃i).

For Transmitter i ∈ I , given (m̆i, m̊i), transmit xn
i (m̆i, m̊i), where m̊i is assumed to be

known at the receiver by the transmissions in Step 1. In the following, we define for i ∈ I ,
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m̃i � (m̆i, m̊i). By convention, define for i ∈ I , mi � ∅. Also define m � (mi)i∈L(Λ),
m̃ � (m̃i)i∈L(Λ). In the following, we refer to m̃ as randomization sequence.

Decoding: The receiver performs minimum distance decoding, i.e., given yn, deter-
mine starting from i = 1 to i = |L(Λ)|, (m̂i, ˆ̃mi) � φi(yn, ∑i−1

j=1 xn
j (m̂j, ˆ̃mj)) where

φi : (yn, x) �→

⎧⎪⎨⎪⎩
(mi, m̃i) if ‖yn − x − xn

i (mi, m̃i)‖2 < ‖yn − x − xn
i (m

′
i, m̃′

i)‖2

for (m′
i, m̃′

i) 
= (mi, m̃i)

0 if no such (mi, m̃i) ∈ �1, 2nRi�× �1, 2nR̃i� exists

. (A3)

Define m̂ � (m̂i)i∈L(Λ), ˆ̃m � ( ˆ̃mi)i∈L(Λ). Let e(Cn, sn) � P
[

M̂ 
= M|Cn

]
, we now

prove that on average on Cn, we have ECn [supsn e(Cn, sn)] + 1
n I(M; Zn|Cn)

n→∞−−−→ 0. We
will thus conclude that there exists a sequence of realizations (Cn) of (Cn) such that both
supsn e(Cn, sn) and 1

n I(M; Zn|Cn) can be made arbitrarily close to zero as n → ∞.
Average probability of error: We have

e(Cn, sn) ≤ P
[

M̂ 
= M or ̂̃M 
= M̃
∣∣∣Cn

]
(A4a)

= ∑
i∈L(Λ)

ei

(
Cn, sn,

|L(Λ)|
∑

j=i+1
xn

j (Mj, M̃j)

)
, (A4b)

where for i ∈ L(Λ)

ei(Cn, sn, x) � 1

�2nRi��2nR̃i� ∑
mi

∑
m̃i

P
[
‖xn

i (mi, m̃i) + sn + x + Nn
Y − xn

i (m
′
i, m̃′

i)‖2

≤ ‖sn + x + Nn
Y‖2 for some (m′

i, m̃′
i) 
= (mi, m̃i)

]
. (A5)

Assume that the receiver has reconstructed (mj, m̃j)j∈�1,i�, for i ∈ L(Λ). Assume first that
i + 1 ∈ I c. Using minimum distance decoding, on average over the codebooks, we show
that the receiver can reconstruct xn

i+1. We have

ECn

[
ei

(
Cn, sn,

|L(Λ)|
∑

j=i+1
xn

j (Mj, M̃j)

)]

≤ ECn

[
ei

(
Cn, sn,

|L(Λ)|
∑

j=i+1
xn

j (Mj, M̃j)

)∣∣∣∣∣C(i)
n ∈ C∗

i

]
+ P

[
C(i)

n /∈ C∗
i

]
(A6a)

n→∞−−−→ 0, (A6b)

where in Equation (A6a) C∗
i represents all the sets of unit norm vectors scaled by

√
nPi

that satisfy the two conditions of Lemma A1 (in Appendix A), Equation (A6b) holds because
P[C(i)

n ∈ C∗
i ]

n→∞−−−→ 1 by Lemma A1, and

ECn

[
ei

(
Cn, sn, ∑

|L(Λ)|
j=i+1 xn

j (Mj, M̃j)
)
|C(i)

n ∈ C∗
i

]
n→∞−−−→ 0 by Theorem A1 (in Appendix A) us-

ing the definition of Ri + R̃i and by interpreting the signal of transmitters in �i + 1, |L(Λ)|�
as noise.

Similarly, when i + 1 ∈ I , using minimum distance decoding, on average over the
codebooks, the receiver can reconstruct xn

i+1(m̆i+1, m̊i+1) with a vanishing average proba-
bility of error because m̊i+1 is known at the receiver and by definition of R̆i+1, hence,

ECn [e(Cn, sn)]
n→∞−−−→ 0. (A7)
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Equivocation: We first study the average error probability of decoding m̃ given (zn, m)
with the following procedure. From i = |L(Λ)| to i = 1, given (zn, m), determine ˙̃mi �
ψi

(
zn, ∑

|L(Λ)|
j=i+1

√
hjxn

j (mj, ˙̃mj)
)

, where for i ∈ L(Λ)

ψi : (zn, x) �→

⎧⎪⎨⎪⎩
m̃i if ‖zn − x −√

hixn
i (mi, m̃i)‖2 < ‖zn − x −√

hixn
i (mi, m̃′

i)‖2

for m̃′
i 
= m̃i

0 if no such m̃i ∈ �1, 2nR̃i� exists

. (A8)

We define ẽ(Cn) � P
[

˙̃M 
= M̃
∣∣∣Cn

]
. We have

ẽ(Cn) = ∑
i∈L(Λ)

ẽi

(
Cn,

i−1

∑
j=1

√
hjxn

j (Mj, M̃j)

)
, (A9)

where for i ∈ L(Λ)

ẽi(Cn, x) � 1

�2nR̃i� ∑
m̃i

P
[
‖
√

hixn
i (mi, m̃i) + x + Nn

Z −
√

hixn
i (mi, m̃′

i)‖2

≤ ‖x + Nn
Z‖2 for some m̃′

i 
= m̃i

]
. (A10)

Similar to the justifications for obtaining Equation (A6b),ECn

[
ẽi(Cn, ∑i−1

j=1

√
hjxn

j (Mj, M̃j))
]

vanishes to zero as n → ∞ by interpreting the signal of transmitters in �1, i − 1� as noise and by
using the definition of R̃i. We thus obtain

ECn [ẽ(Cn)]
n→∞−−−→ 0. (A11)

Let the superscript T denote the transpose operation and define X � [
√

h1(Xn
1 )

T
√

h2(Xn
2 )

T . . .
√

h|L(Λ)|(Xn
|L(Λ)|)

T ]T ∈ Rn|L(Λ)|×1, such that

Zn = GX + Nn
Z, (A12)

with G � [In, In, . . . , In] ∈ Rn×n|L(Λ)| and In the identity matrix with dimension n. Let KX

denote the covariance matrix of X. Similar to Equation (50), we have

KX = diag(h1P1 In, . . . , h|L(Λ)|P|L(Λ)| In). (A13)

Then, we have

I(M; Zn|Cn) ≤ I(X; Zn)− H(M̃|Cn) + H(M̃|Zn MCn) (A14a)

≤ 1
2

log |GKXGT + In| − H(M̃|Cn) + H(M̃|Zn MCn) (A14b)

=
n
2

log

⎛⎝1 + ∑
l∈L(Λ)

hl Pl

⎞⎠− H(M̃|Cn) + H(M̃|Zn MCn) (A14c)

≤ nI(XL(Λ); Z)− n(I(XL(Λ); Z)− 2|L(Λ)|δ) + O(nECn [ẽ(Cn)]) (A14d)

= 2|L(Λ)|δ + o(n), (A14e)

where Equation (A14a) holds similar to Equation (51d), Equation (A14b) holds similar to
Equation (51f), Equation (A14c) holds by Equation (A13), in Equation (A14d), we used the
definition of ∑i∈L(Λ) R̃i and the uniformity of M̃ to obtain the second term, and Fano’s
inequality to obtain the third term, Equation (A14e) holds by Equation (A11).
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The proof of joint secrecy for Step 1 and the repetitions of Step 2 is similar to the proof
of Theorem 2.

Appendix C. Proof of Theorem 5

The proof that Equation (20) is an upper bound on the secrecy sum-rate is similar to
the case L = 2 in Theorem 3.

Remark that from the statement of Corollary 1, it is unclear whether the sum-rate of
Theorem 5 is achievable. However, by inspecting the proof of Theorem 4, observe that
we achieve a point in D+(Λ) � D(Λ) ∩R

|L(Λ)|
+ , where D(Λ) is defined in Equation (A2).

Hence, the sum-rate of Theorem 5 is indeed achievable.
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Abstract: In orthogonal time frequency space (OTFS) modulation, information-carrying symbols
reside in the delay-Doppler (DD) domain. By operating in the DD domain, an appealing property
for communication arises: time-frequency (TF) dispersive channels encountered in high-mobility
environments become time-invariant. OTFS outperforms orthogonal frequency division multiplexing
(OFDM) in high-mobility scenarios, making it an ideal waveform candidate for 6G. Generally, OTFS is
considered a pre- and postprocessing step for OFDM. However, the so-called Zak transform provides
the fundamental relation between the DD and time domain. In this work, we propose an OTFS
system based on the discrete Zak transform (DZT). To this end, we discuss the DZT and establish
the input–output relation for time-frequency (TF) dispersive channels solely by the properties of the
DZT. The presented formulation simplifies the derivation and analysis of the input–output relation
of the TF dispersive channel in the DD domain. Based on the presented formulation, we show that
operating in the DD incurs no loss in capacity.

Keywords: orthogonal time frequency space modulation; discrete Zak transform; delay-Doppler
channel; time-frequency dispersive channel; 6G

1. Introduction

Motivated by challenges encountered in wireless communication over time-variant
channels, such as Doppler dispersion or equalization, a new modulation technique termed
orthogonal time frequency space (OTFS) was introduced in [1]. The driving idea behind
OTFS is to utilize the delay-Doppler (DD) domain to represent information-carrying sym-
bols. The interaction of the corresponding OTFS waveform with a time-frequency (TF)
dispersive channel results in a two-dimensional convolution of the symbols in the DD
domain ([2], [Section III-A]). OTFS utilizes the time-invariant channel interaction in the
DD domain and outperforms orthogonal frequency division multiplexing (OFDM) in
high-mobility scenarios, as shown in [1–6], making it an ideal waveform candidate for 6G.

Most of the literature on OTFS considers OTFS as a pre- and postprocessing technique
for OFDM systems, as described in [3,5,7]. However, the continuous Zak transform pro-
vides a more fundamental relationship between the DD and time domain, as pointed out
in [2] and studied in [8]. In principle, OTFS describes a time domain signal by its DD
representations in a similar way to OFDM, which defines a signal in the TF domain. The
difference between the DD and TF domains is that the TF domain allows a continuous-time
signal to be described by a discrete number of coefficients in the TF domain [9]. On the
other hand, the continuous Zak transform maps a continuous-time signal to continuous
values in the Zak domain. In [8], a discretization of the Zak representation was achieved
using time and bandwidth limitations on the signal, represented by a point in the DD
domain. However, depending on the domain of the signal under study, different variants
of the Zak transform exists. The discrete-time version is referred to as the discrete-time
Zak transform (DTZT) and the discrete (and finite) version is the discrete Zak transform
(DZT) [10]. The DTZT is discrete in the delay and continuous in the frequency domain,
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while the DZT is discrete in both the delay and Doppler domains. Thus, an alternative
description of OTFS can be provided by the DZT, as we show in this work.

Another motivation for using the DZT can be found by considering OFDM. The
fundamental concept of OFDM, that is, mapping symbols onto a set of orthogonal signals
in the frequency domain, dates back to 1966 [11]. The success of OFDM is based on
its efficient digital implementation to compute the discrete Fourier transform (DFT) [12].
Equivalently, OTFS can be efficiently implemented using the discrete Zak transform (DZT).
The DZT itself is based on the DFT, which allows for efficient implementation as well.
Implementations of OTFS which resemble the DZT have been studied previously, in [13],
for example. However, the proposed systems is based on OFDM that adds a cyclic prefix
(CP) to every OFDM symbol. The CP adds additional signaling overhead and results in a
different channel interaction in the DD domain.

DZT-based OTFS is closely related to radar processing in a pulse Doppler radar. A
pulse radar transmits a pulse train with uniformly spaced and identical pulses. Target
motion introduces a phase shift for each pulse, which is utilized at the receiver to extract
the velocity information of a radar target. To this end, the sampled signal is arranged in a
two-dimensional grid, and a DFT is applied along the so-called slow time to extract the
velocity information of a target; see ([14], [Chapter 17]) or ([15], [Chapter 3]) for details.
This variant of Doppler processing is equivalent to the DZT. Similarly, the radar transmitter
of such a pulse Doppler radar can be described by the inverse DZT, as demonstrated in [16].
The close connection to radar makes OTFS an ideal waveform for joint communication and
sensing, which has been explored by [6], among others.

A fundamental treatment of OTFS based on the DZT is currently absent from the
literature. The aim of this work is to close this gap in the literature by providing a com-
plete treatment of OTFS based solely on the DZT. Therefore, we discuss the DZT and its
properties, then we derive the input–output relationship for TF dispersive channels in
the DD using the DZT and its properties. Our DZT-based approach provides an intuitive
understanding of OTFS and drastically simplifies its analysis. Based on our analysis, we
further show that the capacity in the DD domain is equivalent to the capacity of the time-
variant channel in the time domain (Parts of this work were presented at the 2022 IEEE
International Conference on Communications Workshops (ICC Workshops) [17]).

The remainder of the paper is organized as follows. In Section 2, we provide an
introduction to the DZT covering all properties needed for OTFS. The signal model based
on the DZT is described in Section 3. Based on the presented signal model, we further
establish the input–output relationship of OTFS based on the DZT in Section 4. In Section 5,
we establish the connection between the DD and the TF domain, which allows the imple-
mentation of OTFS by an OFDM system. In Section 6, we demonstrate that operating in the
DD incurs no loss in capacity. Finally, our conclusions are presented in Section 7.

2. Discrete Zak Transform

The continuous Zak transform is a mapping of a continuous-time signal onto a two-
dimensional function. Implicit usage of the Zak transform can be traced back to Gauss [18];
however, it was Zak who formally introduced the transform in [19], and after whom it
was named. An excellent paper from a signal theoretical point of view was provided by
Janssen [20]. Later on, Bölcskei and Hlawatsch [10] provided an overview of the discrete
versions of the transform, namely, the discrete-time Zak transform and the discrete Zak
transform. This section is devoted to the DZT and its properties, which we use to describe
OTFS and to establish the input–output relation of the TF dispersive channel discussed in
Section 3.

2.1. Definition and Relations

In the following discussion, we treat finite-length sequences of length N as one period
of a periodic sequence with period N, which we express as a product N = KL with K, L ∈ N.
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Following the notation in [10], we use Z(L,K)
x ∈ CZ×Z to denote the DZT of a sequence

x ∈ CZ with a period KL. The DZT of x is defined as follows ([10], Equation (30)):

Z(L,K)
x [n, k] � 1√

K

K−1

∑
l=0

x[n + lL]︸ ︷︷ ︸
x(n,L)[l]

e−j2π k
K l , n, k ∈ Z. (1)

It follows from (1) that the DZT for a given n is the unitary discrete Fourier transform
(DFT) of a subsampled sequence x(n,L) � {x(n,L)[l] = x[n + lL] : l ∈ Z}. The variable
n determines the starting phase of the downsampled sequence, whereas the variable k
is the discrete frequency of its DFT. Thus, the variables n and k represent the time and
frequency, respectively.

The periodic sequence x can be recovered from its DZT through the following sum relation:

x[n] =
1√
K

K−1

∑
k=0

Z(L,K)
x [n, k], (2)

which follows from the definition of the DZT in (1) and the relation

K−1

∑
k=0

e−j2π l
K k = K

∞

∑
m=−∞

δ[l − mK], (3)

where δ[n] denotes the Kronecker delta. We refer to (2) as the inverse discrete Zak trans-
form (IDZT).

Remark 1. Depending on the period N of the sequence under consideration, different choices of
K and L are possible. We indicate the particular choice of L and K in the superscript of the DZT
notation we use (Z(L,K)

x ). If the choice is not important for the context, we drop the superscript
for brevity of notation (Zx). Furthermore, the DZT is in general a complex-valued function. To
illustrate the DZT, we often write the DZT in polar form, i.e.,

Zx[n, k] = |Zx[n, k]|ejϕx [n,k], (4)

where |Zx[n, k]| and ϕx[n, k] represent the magnitude and the phase of Z(L,K)
x [n, k], respectively.

We restrict the phase to the principal values, i.e., to the interval [−π, π).

Example 1 (DZT). Consider the N-periodic sequence g with elements

g[n] =

{
f [n], 0 ≤ n ≤ L − 1,
0, L ≤ n ≤ KL − 1.

(5)

The sequence is zero, except possibly for the first L samples, where it takes the value of an arbitrary
sequence f . The second condition in (5) implies that only one nonzero addend (for l = 0) exists in
the summation (1). Thus, the elements of Zg for 0 ≤ n ≤ L − 1 and 0 ≤ k ≤ K − 1 are

Zg[n, k] =
1√
K

f [n]. (6)

Example for a sequence f and the corresponding magnitude of the DZT Zg are illustrated in
Figure 1a,b, respectively.
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Figure 1. (a) Sequence f [n] = e−
1
2 (

n−L/2
σL/2 )

2

for σ = 1/4, 0 ≤ n ≤ L − 1 and L = 30. The sequence
g has a period KL = 900. (b) Magnitude of the discrete Zak transform (DZT) Zg with parameters
K = 30, L = 30 in (6), for 0 ≤ n ≤ L − 1 and 0 ≤ k ≤ K − 1. The phase ϕg[n, k] (not plotted) is zero
for the presented values of n and k; see (6).

We express the period of the sequence x as a product KL with K, L ∈ N. This factor-
ization ensures that the sequence can be decomposed into L subsampled sequences with
period K. In general, the product KL is not uniquely defined, as different choices of K and
L result in the same product. Independent of the period, two choices are always possible
and provide interesting insights. First, the choice K = 1 in (1) leads to

Z(L,1)
x [n, k] = x[n], (7)

i.e., the elements of DZT for a specific n and any k are the elements of the sequence x.
Second, the case L = 1 results in

Z(1,K)
x [n, k] =

1√
K

K−1

∑
l=0

x[n + l]e−j2π k
K l . (8)

For n = 0, we obtain
Z(1,K)

x [0, k] = X[k] (9)

where X ∈ CZ is the unitary DFT of the sequence x, i.e.,

X[k] � 1√
K

K−1

∑
l=0

x[l]e−j2π k
K l . (10)

It follows from (8) that Z(1,K)
x [n, k] represents the DFT of the circular shifted sequence

x with shift parameter n. Using the circular shift property of the DFT provided in
([21], Equation (3.168))

x[n − n0] ⇔ e−j2π k
K n0 X[k], (11)

we can express (8) equivalently as

Z(1,K)
x [n, k] = ej2π k

K nX[k] = ej2π k
K nZ(1,K)

x [0, k]. (12)
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Following the same approach used to obtain the DFT (9), we can obtain the inverse
DFT (IDFT). Therefore, we consider (2) for the case L = 1, which is

x[n] � 1√
K

K−1

∑
k=0

X[k]ej2π k
K n, (13)

where (13) is obtained by substituting (12) in (2).
While the DZT Zx of a sequence x can be obtained from a sequence x, it can additionally

be obtained from its DFT X in (9) through

Z(L,K)
x [n, k] =

1√
L

L−1

∑
l=0

X[k + lK]ej2π k+lK
KL n. (14)

Proof. See Appendix A.

Equivalently, using (1), we recognize (14) as

Z(L,K)
x [n, k] = ej2π n

KL kZ(K,L)
X [k,−n], (15)

where Z(K,L)
X is the DZT of the DFT sequence X.

The corresponding inverse relation is

X[k] =
1√
L

L−1

∑
n=0

Z(L,K)
x [n, k]e−2π k

KL n. (16)

Proof. See Appendix B.

Figure 2 summarizes the relations between the sequence x, the DZT Zx, and the DFT
X. Note that the DFT X can be obtained in two ways: either directly via (10) or indirectly
using (1) and (16). The later approach resembles the Cooley–Tukey algorithm, which is a
fast Fourier transform algorithm [10].

x X

Zx

(1)
(2)

(16)
(14)

(13)

(10)

Figure 2. Different signal representations of a sequence x and its corresponding DZT Zx and DFT X
transforms.

2.2. Properties of the DZT

The DFT X of a sequence x with length K is periodic with period K, i.e., X[k] = X[k + mK]
with m ∈ Z; see (10). The DZT possess similar properties, as the DZT is the DFT of the
downsampled sequence x(n,L); see (1). Consequently, the DZT is periodic in the frequency
variable k, i.e.,

Z(L,K)
x [n, k + mK] = Z(L,K)

x [n, k], m ∈ Z. (17)

Using the circular shift property of the DFT in (11), we then have

Z(L,K)
x [n + mL, k] = ej2π k

K mZ(L,K)
x [n, k], m ∈ Z, (18)
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i.e., the DZT is periodic in n with a period L up to a complex factor ej2π(k/K)m. The DZT is
therefore said to be quasi-periodic with quasi-period L. Due to the periodicity properties in
(17) and (18), the DZT is fully determined by the DZT for 0 ≤ n ≤ L − 1 and 0 ≤ k ≤ K − 1,
which is referred to as the fundamental rectangle [10].

The quasi-periodicity in (18) can be utilized to express the IDZT in (2) as follows:

x[n + lL] =
1√
K

K−1

∑
k=0

Z(L,K)
x [n, k]ej2π k

K l . (19)

Here, we express the index of the sequence as sum of the form n + lL with 0 ≤ n ≤ L − 1
and l ∈ Z. Because the fundamental rectangle fully determines the DZT Zx, we restrict
ourselves to this fundamental rectangle when plotting the DZT. In fact, this is what is done
in Figure 1b.

Example 2 (IDZT). Consider the DZT defined by a single nonzero coefficient on the fundamental
rectangle of size 4 × 6 and provided by

Z(4,6)
x [n, k] = δ[n]δ[k]. (20)

The fundamental rectangle and the DZT in (20) are illustrated in Figure 3a (left). One period of the
sequence x obtained through (19) is

x[n] =
1√
6

K−1

∑
l=0

δ[n − 6l], (21)

i.e., a train of real Kronecker deltas starting at n = 0 with spacing L = 6, as shown in Figure 3a
(right). Now, consider the DZT

Z(4,6)
y [n, k] = δ[n − 3]δ[k − 5], (22)

which is shown in Figure 3b. One period of the corresponding sequence y is

y[n] =
1√
6

K−1

∑
l=0

δ[n − 3 − 6l]ej2π 5
6 l (23)

and is shown in Figure 3b. When compared to x, the sequence y is delayed by three samples and
modulated with a discrete frequency k = 5.

In fact, a single coefficient at Zx[n, k] maps onto a sequence

vn,k[n′] =
1√
K

K−1

∑
l=0

δ[n′ − n + lL]ej2π k
K l . (24)

The set of sequence {vn,k : 0 ≤ n ≤ L − 1, 0 ≤ k ≤ K − 1} forms an orthonormal basis and
Zx[n, k] are the expansion coefficients of a sequence x with respect to this orthonormal basis. We
use this fact in Section 3, where we define a sequence by its corresponding DZT in the same way as
OFDM defines the symbols in the DFT domain.
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Figure 3. Two examples of DZTs (left) defined by a single nonzero coefficient on the fundamental
rectangle (indicated by a dot) and the corresponding sequences (right) for (a) the DZT in (20) and (b)
the DZT in (22).

Using the quasi-periodicity, we can further find that the elementwise product of a DZT
Zx with the complex conjugate DZT Z∗

y is periodic in n and k. Motivated by this periodicity,
we apply a two-dimensional DFT, which turns out to be [10,22]

L−1

∑
n=0

K−1

∑
k=0

Zx[n, k]Z∗
y [n, k]ej2π(m

K k− l
L n) = 〈x, ym,l〉, (25)

where ym,l � y[n − mL]ej2π(l/L)n. Here, 〈·, ·〉 is the inner product, defined as

〈x, y〉 =
N−1

∑
n=0

x[n]y∗[n]. (26)

Note that the Fourier kernel ej2π(m
K k− l

L n) in (25) has opposed signs for the two individual
dimensions. Therefore, the two-dimensional discrete Fourier transform in (25) is usually
referred to as the inverse symplectic finite Fourier transform (ISFFT).

Proof. See Appendix C.

The inverse relation is provided by

Zx[n, k]Z∗
y [n, k] =

1
KL

K−1

∑
m=0

L−1

∑
l=0

〈x, ym,l〉e−j2π( k
K m− n

L l), (27)

which follows from applying the corresponding two-dimensional inverse transform on both
sides of (25). The transform of the right-hand side of (27) is referred to as the symplectic
finite Fourier transform (SFFT). The relations (25) and (27) provide a useful tool when
considering the OTFS overlay for OFDM in Section 5.

2.3. Signal Transform Properties

Here, we list three signal transform properties that we use later when studying OTFS.
A comprehensive overview of signal transform properties can be found in ([10], Table VII).
Let x, y, and z be sequences with the same periods and let Zx, Zy, and Zz be their respective
DZTs. Then, the following properties hold:
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1. Shift: Let y be the shifted version of x, i.e., y[n] = x[n − m]; then,

Zy[n, k] = Zx[n − m, k]. (28)

A shift in the sequence causes a shift in the corresponding DZT. The proof follows
from the definition of the DZT (1). For shifts of multiples of L, i.e., m = lL with l ∈ Z,
we further have

Zy[n, k] = e−j2π k
K mZx[n, k], (29)

which follows from the quasi-periodicity of the DZT in (18).
2. Modulation: Let z = x · y be the elementwise product of x and y, i.e., z[n] = x[n]y[n].

Then,

Zz[n, k] =
1√
K

K−1

∑
l=0

Zx[n, l]Zy[n, k − l], (30)

i.e., the DZT of the element-wise multiplication is a scaled convolution with respect to
the variable k.

Proof. See Appendix D.

3. Circular Convolution: Consider z = x� y, i.e., the circular convolution of x and y. Then,
the DZT Zz is

Zz[n, k] =
√

K
L−1

∑
m=0

Zx[m, k]Zy[n − m, k], (31)

i.e., the DZT of a circular convolution is the scaled convolution with respect to the
variable n up to a constant.

Proof. See Appendix E.

The shift property in (28) together with the quasi-periodicity in (18) has another im-
portant implication. In OTFS, as we show in Section 3, the received signal includes a
superposition of delayed sequences that, in general, are not multiples of L. We discuss this
further in Example 3.

Example 3 (Shifted DZT). Consider a DZT Zh with elements

Zh[n, k] = Zg[n − 10, k], (32)

which is a shifted version of the DZT Zg in Figure 1b of Example 1. To evaluate the DZT Zh
within the fundamental rectangle, we first make the observation that any index n can be expressed
as n = i + mL with m = 
n/L�, where 
n/L� denotes the greatest integer less than or equal
to n/L. In this example, the indices n = 0 to 9 of Zh correspond to the indices n = −10 to −1
of Zg. Expressing the latter indices in terms of i and m, we know m = −1 and i from 20 to 29.
Thus, by the quasi-periodicity property in (18), we have that Zh[n, k] = e−j2πk/KZg[n + 20, k] for
0 ≤ n ≤ 9. On the other hand, the indices of 10 ≤ n ≤ 29 of Zh[n, k] correspond to the indices
0 ≤ n ≤ 19 of Zg[n, k]. Therefore, m = 0 and Zh is the shifted DZT Zg within the fundamental
rectangle. Thus,

Zh[n, k] =

{
e−j2π k

K Zg[n + 20, k], 0 ≤ n ≤ 9,
Zg[n − 10, k], 10 ≤ n ≤ 29,

(33)

or more generally, Zh[n, k] = ej2π(k/K)
(n−10)/L�Zg[(n − 10)L, k]. The DZT Zh is depicted in
Figure 4, which illustrates different phase behaviors as well.
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Figure 4. The DZT Zh[n, k] = Zg[n − 10, k] in Example 3, with Zg[n, k] being the DZT of Figure 1. The
shift of the DZT with respect to n causes a circular shift of the magnitude |Zg[n, k]| of the DZT (top).
The phase ϕh[n, k] experiences an additional linear phase for indices smaller than 10 (bottom).

3. System Model

In this section, we use the IDZT/DZT to map the symbols in the DD domain directly
to a time domain sequence and vice versa. We consider a pulse-amplitude modulation
(PAM) system to map the discrete symbols onto continuous pulses, as schematically shown
in Figure 5. This approach allows for the digital implementation of OTFS similar to the
PAM implementation of OFDM presented in ([23] Chapter 6.4.2).
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Figure 5. OTFS system model considered in this work. The IDZT maps a sequence consisting of
the symbols defined in the DD domain to a discrete sequence. A CP is added by copying the last
O samples. The resulting sequence x is converted to a serial stream by a parallel-to-serial converter
(P/S) before being mapped onto a pulse p(t) and sent over a noisy TF-dispersive channel h(τ, ν). At
the receiver, a sampled matched filter is applied before the serial stream is converted to a parallel
stream by a serial-to-parallel (S/P) converter. Lastly, the sequence y is mapped to the DD domain
using the DZT. The DD input–output relationship is provided by (46) and Theorem 1.

3.1. Transmitter

Similar to OFDM, which defines symbols in the frequency domain, OTFS defines
K × L symbols on the fundamental rectangle in the Zak domain. The symbols in the Zak
domain are mapped to a sequence in the time domain using the IDZT in (19). Prior to
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modulation, a CP of length O is added by copying the last O samples and inserting them
at the beginning of the sequence (see Figure 5). As we show later, the CP turns the linear
convolution of the channel into a circular convolution, allowing us to use the circular
convolution property (47) of the DZT. The elements of the sequence x are then mapped
onto time-shifted pulses p(t) using PAM. The transmitted signal is provided as follows:

s(t) =
N+O−1

∑
n=0

x[n − O]p(t − nT), (34)

where T is the modulation interval and p(t) is a square-root Nyquist pulse. Note that (34)
is equivalent (up to the CP) to (21) of [8]. However, by considering the DZT and PAM, no
discretization of the continuous Zak transform is required. Moreover, considering the class
of Nyquist pulses in the modulation allows for more freedom in controlling the interference
in the delay domain.

Remark 2. In Section 2.1, we discussed the implications of the choice of the parameters K and L
for the DZT. Similarly, the choice of K and L influences the OTFS system under study. For the case
K = 1, the symbols of Zx are arranged on a line along the delay axis. The IDZT does not alter the
sequence and can be skipped; see (7). Thus, the system is a single carrier system. On the other hand,
for L = 1, the symbols Z(L,K)

x [n, k] are arranged along the Doppler axis. The IDZT is simply the
IDFT (see (13)), and (34) becomes an OFDM signal as in ([23] Chapter 6.4.2).

3.2. Channel Model

We now consider TF dispersive channels and model the received signal as follows ([24]
Chapter 1.3.1):

r(t) =
∫ ∞

−∞

∫ ∞

−∞
h(τ, ν)s(t − τ)ej2πνtdτdν + w̃(t) (35)

where h(τ, ν) is the so-called DD spreading function. The complex noise w̃(t) is assumed to
be white and Gaussian with power spectral density N0. We model the channel by P discrete
scattering objects. Each scattering object is associated with a path delay τp, a Doppler shift
νp, and a complex attenuation factor αp. Thus, the spreading function h(τ, ν) becomes

h(τ, ν) =
P−1

∑
p=0

αpδ(τ − τp)δ(ν − νp). (36)

Substituting (36) in (35) yields

r(t) =
P−1

∑
p=0

αps(t − τp)ej2πνpt + w̃(t), (37)

i.e., the received signal is a superposition of scaled, delayed, and Doppler-shifted replicas
of the transmitted signal. The Doppler shift is provided by νp = vp fc/c, where vp, fc, and c
are the relative velocity of the pth scattering object, the carrier frequency, and the speed
of light, respectively. The length of the CP in (34) is chosen such that OT is larger than or
equal to the maximum delay.

Remark 3. In the channel model in (36), it is assumed that the individual delays are independent
of the absolute time. Strictly speaking, this is not the case, as the movement of a reflector affects the
delay. However, (36) holds as long as the signal length NT is chosen such that the delay does not
change significantly.
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Substituting (34) in (37), the received signal is

r(t) =
P−1

∑
p=0

αp

N+O−1

∑
n=0

x[n − O]p(t − nT − τp)ej2πνpt + w̃(t). (38)

3.3. Receiver

At the receiver, a matched filter with impulse response p∗(−t) is applied. The output
of the matched filter y(t) is

y(t) =
P−1

∑
p=0

αp

N+O−1

∑
n=0

x[n − O]
∫ ∞

−∞
p(τ − nT − τp)ej2πνpτ p∗(τ − t)dτ + w(t), (39)

where w(t) is the filtered noise. Assuming that the pulse bandwidth is much larger than the
maximum Doppler shift, we can approximate the integral in (39) as ej2πνp(nT+τp)h(t − nT − τp),
where h(t) is the corresponding Nyquist pulse. The output of the matched filter is then

y(t) ≈
P−1

∑
p=0

αp

N+O−1

∑
n=0

x[n − O]ej2πνp(nT+τp)h(t − nT − τp) + w(t). (40)

The matched filter output is sampled every T seconds and with an offset of OT to
discard the CP. The sampled signal y[m] = y((m + O)T) is

y[n] =
P−1

∑
p=0

αp

N−1

∑
m=−O

x[m]ej2π
kp
KL mhτp [n − m] + w[n], (41)

where hτp [n] = h(nT − τp) is the sampled Nyquist pulse and w[m] are independent and
identically distributed (i.i.d.) complex zero-mean Gaussian random variables with variance
N0. To shorten the notation, we combine the constant phase terms ej2πνpτp with the channel
gain αp in (41). Furthermore, we express νp as a multiple of the Doppler resolution, which
we define as

Δν � 1/(KLT), (42)

i.e., νp = Δνkp.
We can bound the interval for which h(t) is significantly different from zero (for

sufficient large L) to ±LT/2. Thus, we can express hτp [n] as

hτp [n] =

{
h(nT − τp), for − LT

2 ≤ nT − τp < LT
2 ,

0, else.
(43)

The CP allows the linear convolution in (41) to be approximated by a circular convolu-
tion; the sample y[n] is then provided by

y[n] =
P−1

∑
p=0

αpyp[n] + w[n], (44)

where

yp[n] =
KL−1

∑
m=0

x[m]ej2π
kp
N mhτp [n − m]. (45)

Here, hτp is periodicized over a period KL, i.e., hτp [n] = hτp [n + KL]. In a last step, the
receiver computes the DZT of the sequence y[m] before subsequent processing takes place.
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4. Delay Doppler Input–Output Relationship

To express the input–output relationship in the DD domain for the system presented
in Figure 5, we first note that the DZT is a linear transform; as such, we can write the DZT
of (44) as

Zy[n, k] =
P−1

∑
p=0

αpZyp [n, k] + Zw[n, k], (46)

where Zyp is the DZT of sequence yp described in (45) and Zw[n, k] is the DZT of the noise.
The elements of Zw[n, k] are i.i.d. zero-mean Gaussian random variables with variance N0.
This follows from the fact that the DZT is a unitary transform ([10], Section VI).

For the signal model of a single reflector in (45), we provide the following result for the
input–output relationship in the DD domain for the OTFS system described in Section 3.

Theorem 1. Considering the fundamental rectangle Zx ∈ CL×K of complex symbols in the DD
domain, the input–output relation for OTFS transmission over a time-frequency selective channel
for a single reflector is

Zyp [n, k] =
L−1

∑
m=0

(
K−1

∑
l=0

Zx[m, l]Zνp [m, k − l]

)
Zτp [n − m, k], (47)

where Zτp and Zνp are the delay and Doppler spreading functions, respectively. The delay spreading
function Zτp is the DZT of the shifted and sampled impulse hτp [n] in (43), and the Doppler spreading
functions is provided as follows:

Zνp [n, k] =
1√
K

ej2π
kp
KL ne−jπ K−1

K (k−kp)
sin
(
π(k − kp)

)
sin
(

π
K (k − kp)

) . (48)

Proof. See Appendix F.

To illustrate the spreading of a single symbol in the DD domain, we consider the
following example. Let L = K = 30 and

Zx[n, k] =

{
1 for n = k = L/2,
0 else.

(49)

The fundamental rectangle with the only nonzero element is presented in Figure 6a. Further-
more, assume that τ = 0.5T and ν = 0.5Δν. Note that this example causes the maximum
spread of a single symbol in the DD domain. We can visualize the spreading of the symbol
defined in (49) in two steps. Therefore, we define Zŷ as the DZT resulting from the inner
convolution in (47), presented in Figure 6b, with respect to the Doppler index k. The result-
ing spread of the nonzero symbol is visualized in Figure 6c. Finally, the symbol that has
been spread in the Doppler domain is spread in the delay domain by the delay spreading
function Zτ , which is illustrated in Figure 6d. Note that due to the limited support of hτ

(see (43)), the magnitude of Zτ is independent of the index k. The resulting spread of the
nonzero symbol in the DD domain is shown in Figure 6e.

For the particular case of τp = npT with np = 0, 1, . . . , O − 1 and νp = kp/(KLT) with
kp ∈ Z, Zyp simplifies to

Zyp [n, k] = ej2π
kp
KL (n−np)Zx[n − np, k − kp], (50)

i.e., the received symbols Zyp are in the DD domain displaced symbols Zx.
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Figure 6. Example of the spread of a symbol (a) in the DD domain due to fractional delay and
Doppler shift. The spread can be first evaluated in the Doppler domain (c) using the Doppler
spreading function in (b). The spread symbol in the Doppler domain is further spread in the delay by
the the delay spread function in (d). The overall spread in the DD domain is shown in (e).

Theorem 1 shows that the channel interaction with the symbols in the DD domain
is time-invariant, neglecting the additional phase terms due to the quasi-periodicity and
modulation. The invariance is helpful in the detection of the symbols. Consider a TDL-C
channel with a delay spread of 300 ns, a carrier frequency of 4 GHz, and a maximum
velocity of 120 kmph. Furthermore, assume an OTFS system with K = 7 and L = 600
and 1/T = 9 MHz. The channel response Zh[n, k] = ∑K−1

l=0 Zνp [n, k − l]Zτp [n, k] in the DD
domain is illustrated in Figure 7a. The magnitude of this channel stays approximately
constant throughout the entire transmission of an OTFS frame. Figure 7b illustrates the
equivalent OFDM channel. The variation of the channel along the subcarrier index k as
well along the time index n can be seen. To keep track of the channel, additional pilots need
to be used, and these cannot be used for communication.

In addition to constant channel interaction, OTFS offers the advantage of a concise and
sparse channel description compared to OFDM. In an OFDM system, the channel coefficient
for each subcarrier must be estimated for subsequent symbol detection. In contrast, for
symbol detection in an OTFS system, knowledge of the interference introduced by each
reflector is sufficient. The sparsity can be seen in Figure 7; the support of |Zh[n, k]| is limited
to a small area, while the channel transfer function changes with each subcarrier and time
index, that is, l and m, respectively.
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Figure 7. Two different representations of the time-variant channel: (a) DD representation and (b) TF
representation. The DD domain representation is only nonzero for a small part of the domain, and
stays constant throughout the transmission. On the other hand, the TF domain representation of the
channel in the TF domain changes with respect to the time, and therefore needs to be tracked.

Remark 4. The discrete two-dimensional convolution in (46) can be equivalently expressed in
the form

y = Hx + w, (51)

where y, x, and w are the vectorized DTZs Zy, Zx, and Zw, respectively. The vectors are all of
length KL. The matrix H ∈ CKL×KL describes the intersymbol interference in the DD domain.
Because Zτp and Zνp have small support in the DD domain, the corresponding matrix H is sparse.
The matrix-vector formulation of the input–output relationship is the basis for many works on
OTFS; for example, see [5,6].

5. OTFS Overlay for OFDM

Currently, orthogonal frequency division multiplexing (OFDM) is the dominant modu-
lation scheme in wireless communication. For example, it is used in 5G and in several 802.11
standards. This section shows that DFT-based ODFM can be used for OTFS modulation
and demodulation. In this context, OTFS is considered a pre- and postprocessing step for
the OFDM system.

To derive the pre- and postprocessing step, we first derive an alternative way to
compute the DZT. For this purpose, we consider (27). If we choose the sequence y such that
its DZT Zy[n, k] = 1, then we can obtain the DZT Zx through the right-hand side of (27).
The N periodic sequence y with DZT Zy[n, k] = 1 is

y[n] =

{√
K, 0 ≤ n ≤ L − 1,

0, elsewhere.
(52)

With this particular choice of y, we recognize the inner product on the right-hand side
of (27) as

〈x, ym,l〉 =
√

K
L−1

∑
n=0

x[n + mL]ej2π l
L n, (53)

which is the scaled L-point DFT of the samples x[n] for mL ≤ n ≤ (m+ 1)L− 1. If we define

am,l � 〈x, ym,l〉, (54)

for 0 ≤ m ≤ K − 1 and 0 ≤ l ≤ L − 1, then the DZT of x is obtained through

Zx[n, k] =
1

KL

K−1

∑
m=0

L−1

∑
l=0

am,l e
−j2π( k

K m− n
L l), (55)

180



Entropy 2022, 24, 1704

i.e., by the SFFT of the coefficients am,l . Note that the set am,l represents the Gabor expansion
coefficients for the choice of a rectangular analysis window (see [25], Section 4), and thus a
mixed TF representation of the sequence x.

The coefficients am,l , on the other hand, are obtained from Z(L,K)
x [n, k] using (25):

am,l =
L−1

∑
n=0

K−1

∑
k=0

Zx[n, k]ej2π( k
K m− n

L l). (56)

The samples of the sequence x for mL ≤ n ≤ (m + 1)L − 1 are obtained as follows:

x[n + mL] =
1√
KL

L−1

∑
l=0

am,l ej2π l
L n, (57)

which is the L-point IDFT of the coefficients am,l for a fixed m. Thus, the DZT (IDZT) can
be implemented by consecutive execution of the DFT (IDFT) and the SFFT (ISFFT).

The above-described two-step approach for the calculation of the DZT and IDZT can be
used to implement OTFS using OFDM hardware, which is typically based on the IDFT/DFT
(see ([26], Section 19.3), ([23], Section 6.4.2), ([27] Section 12.4.3), or ([28], Section 4.6)) by
extending the transmitter and receiver by the ISFFT and SFFT, respectively. The coefficients
am,l then represent the coefficient in the TF domain. The index m refers to the mth OFDM
symbol in the time domain, and l is the corresponding subcarrier index. Note that for the
DZT, the parameter L the grid size in the delay domain. For DFT-SFFT implementation, on
the other hand, L defines DFT size, which defines the number of points in the frequency
domain. Thus, an L × K grid in the DD domain translates to a K × L grid in the TF domain.

Remark 5. In CP-OFDM, a CP is added for each OFDM symbol by copying the last O samples
of an OFDM symbol and inserting them in front of the corresponding OFDM symbol with length
L. This symbol-wise CP is not required in the OFDM implementation of OTFS. Instead, a single
CP is added by copying the last O samples of the entire sequence and inserting them in front of
the sequence.

6. DD Channel Capacity

The input–output relationship in (41) is equivalently expressed as

y[n] = ∑
m∈L

h[n, m]x[n − m] + w[n], (58)

where h[n, m] is the time-variant multi-tap channel response at time instance n and L is the
support of h[n, m] in m. This channel response is deterministic and periodic (considering
kp ∈ Q) with some finite period M, i.e., h[n, m] = h[n + bM, m] for any n ∈ {1, 2, . . . , M}
and b ∈ Z. Upon using the channel N times, the input output relationship can be written
in the following vector form:

YN = HNXN + WN , (59)

where XN is the input block, YN is the corresponding output block, WN is the block of
noise samples (all column vectors), and HN is the channel (convolution) matrix constructed
from the time-varying channel response h[n, m].

The above channel can be shown to be information-stable (see Section 3.9 in [29]); hence,
its capacity is provided by the following multi-letter limiting expression [30]:

C = lim
N→∞

sup
fXN

1
N

I(XN ; YN), (60)
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where fXN is the multi-letter input distribution for block length N. For each block length N,
the corresponding mutual information term in (60) is maximized by a Gaussian input [31];
hence, the capacity is provided by

C = lim
N→∞

max
QN :tr(QN)≤NP

1
N

log det
(

1
σ2 HNQNHH

N + IN

)
. (61)

Let HN = UNΣNVH
N be the SVD of HN . Then, the optimal input covariance matrix is

provided by QN = VNDNVH
N , where DN is a diagonal matrix obtained using water-

filling [31]. The capacity-achieving strategy is characterized by a sequence {QN}N∈N.
In case we do not wish to use the channel response matrix in the construction of input

sequences, we may add the restriction that the multi-letter input distribution must be
isotropic. In this case, we simply have QN = PIN , and the capacity is provided by

Ciso = lim
N→∞

1
N

log det
(

P
σ2 HNHH

N + IN

)
. (62)

It is evident that Ciso is achieved by any input of the form XN = BNSN , where BN is a
set of orthonormal basis (i.e., BH

NBN = BNBH
N = IN) and SN is a vector of zero-mean i.i.d.

Gaussian symbols with covariance E
[
SNSH

N

]
= PIN . As shown in Section 2, the set of

sequence {vn,k : 0 ≤ n ≤ L − 1, 0 ≤ k ≤ K − 1} forms an orthonormal basis. Thus, the
capacity of the DD channel is provided by (62).

7. Conclusions

In this work, we have presented an OTFS based on the discrete Zak transform. The
discrete Zak transform-based description allows for an efficient digital implementation of
OTFS. Furthermore, we derived the input–output relation for the symbols in the delay-
Doppler domain solely based on discrete Zak transform properties, which provides a con-
cise description of OTFS compared to the pre- and postprocessing approaches for OFDM.

Our presented discrete Zak transform approach can be used to study and evaluate
OTFS from a different perspectives, potentially leading to OTFS performance improve-
ments. For example, considering Nyquist pulses p(t) with larger roll-off factors allows the
interference in the delay domain to be controlled. Additionally, applying windows to the
subsampled sequences of the DZT reduces the interference in the Doppler domain.
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Appendix A. Proof of Relation (14)

Substituting x[n] in (1) by (13), we obtain

Z(L,K)
x [n, k] =

1
K
√

L

K−1

∑
l=0

KL−1

∑
k′=0

X[k′]ej2π
(

k′
KL (n+lL)− k

KL l
)

. (A1)

Note that in the derivation of (13), the case for L = 1 was considered; thus, the sequence
x has a period K. Here, on the other hand, we consider the sequence x to be KL-periodic.
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Therefore, (13) is adopted accordingly by substituting K by KL. Next, we rearrange terms
and obtain

Z(L,K)
x [n, k] =

1
K
√

L

KL−1

∑
k′=0

X[k′]ej2π k′
KL n

K−1

∑
l=0

e−j2π k′−k
K l , (A2)

where we finally replace the last sum by relation (3) which, due to the sifting property of
the Kronecker delta, leads to

Z(L,K)
x [n, k] =

1√
L

L−1

∑
l=0

X[k + lK]ej2π k+lK
KL n. (A3)

Appendix B. Proof of Relation (16)

In a first step, we rewrite the summation in (10) as a double summation, i.e.,

X[k] =
1√
KL

K−1

∑
l=0

L−1

∑
n=0

x[n + lL]e−j k
KL (n+lL). (A4)

Next, we use relation (19) to express x[n + lL] through its IDZT, which leads to

X[k] =
1

K
√

L

K−1

∑
l=0

L−1

∑
n=0

K−1

∑
k′=0

Z[n, k′]e−j k−k′
K le−j k

KL n, (A5)

and in a final step we use relation (3) with respect to the summation over l, which results in

X[k] =
1√
L

L−1

∑
n=0

Zx[n, k]e−j2π k
KL n. (A6)

Appendix C. Proof of Relation (25)

To prove the relation (25), we substitute the DZT Zx and Z∗
y by their definition in (1).

After rearranging terms, we obtain

1
K

L−1

∑
n=0

L−1

∑
l′=0

L−1

∑
l′′=0

x[n + l′L]y∗[n + l′′L]e−j2π l
L n

K−1

∑
k=0

e−j2π k
K (l′−l′′−m). (A7)

We can us relation (3) to substitute the last summation. From the sifting property of the
Kronecker delta (3), we have

L−1

∑
n=0

L−1

∑
l′=0

x[n + l′L]y∗[n + (l′ − m)L]e−j2π l
L n. (A8)

Because the complex exponential sequence is periodic, with a period L, we can rewrite the
double summation as a single summation, providing us with

KL−1

∑
n=0

x[n]y∗[n − mL]e−j2π l
L n (A9)

which can be recognized as the inner product between x and ym,l .

Appendix D. Proof of the Modulation Property

To prove the modulation property, we can use the definition of the sequence z = x · y
and the definition of the DZT in (1), which is

Zz[n, k] =
1√
K

K−1

∑
l=0

x[n + lL]y[n + lL]e−j2π k
K l . (A10)
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Now, expressing x[n + lL] using (19), we have

Zz[n, k] =
1
K

K−1

∑
m=0

Zx[n, m]
K−1

∑
l=0

y[n + lL]e−j2π
(k−m)

K l . (A11)

Finally, using the DZT definition (1), we obtain

Zz[n, k] =
1√
K

K−1

∑
m=0

Zx[n, m]Zy[n, k − m]. (A12)

Appendix E. Proof of the Convolution Property

To prove relation (31), we first express the circular convolution as a multiplication in
the DFT domain, i.e.,

Z[k] =
√

KLX[k]Y[k], (A13)

where the factor
√

KL is due to the unitary definition of the DFT. Using (14), we have

Zz[n, k] =
√

K
L−1

∑
l=0

X[k + lK]Y[k + lK]ej2π k+lK
KL n. (A14)

Now, using (16) to express the elements of the DFT through their DZT, we obtain

Zz[n, k] =
√

K
L

L−1

∑
n′=0

L−1

∑
n′′=0

Zx[n′, k]Zy[n′′, k]
L−1

∑
l=0

e−j2π k+lK
KL (n′+n′′−n). (A15)

Substituting the last sum by (3) and applying the sifting property of the Kronecker delta,
we finally have

Zz[n, k] =
√

K
L−1

∑
n′=0

Zx[n′, k]Zy[n − n′, k]. (A16)

Appendix F. Proof of Theorem 1

To prove Theorem 1, we start by expressing the sequence y in (45) as

y =
(

x · uνp

)
� hτp , (A17)

where uνp [n] = ej2π(kp/N)n. Using the modulation property (30) and the convolution
property (31), we can express the DZT of y as

Zy[n, k] =
L−1

∑
m=0

(
K−1

∑
l=0

Zx[m, l]Zν[m, k − l]

)
Zτ [n − m, k]. (A18)

Here, Zν is the DZT of sequence uν, which is

Zν[n, k] =
1√
K

K−1

∑
l=0

ej2π
kp
KL (n+lL)e−j2π k

K l

=
1√
K

ej2π
kp
KL n

K−1

∑
l=0

e−j2π
k−kp

K l

=
1√
K

ej2π
kp
KL n 1 − e−j2π(k−kp)

1 − e−j2π
k−kp

K

=
1√
K

ej2π
kp
KL ne−jπ K−1

K (k−kp)
sin
(
2π(k − kp)

)
sin
(

2π
k−kp

K

) . (A19)
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Abstract: We extend the problem of secure source coding by considering a remote source whose
noisy measurements are correlated random variables used for secure source reconstruction. The
main additions to the problem are as follows: (1) all terminals noncausally observe a noisy measure-
ment of the remote source; (2) a private key is available to all legitimate terminals; (3) the public
communication link between the encoder and decoder is rate-limited; and (4) the secrecy leakage
to the eavesdropper is measured with respect to the encoder input, whereas the privacy leakage is
measured with respect to the remote source. Exact rate regions are characterized for a lossy source
coding problem with a private key, remote source, and decoder side information under security,
privacy, communication, and distortion constraints. By replacing the distortion constraint with a
reliability constraint, we obtain the exact rate region for the lossless case as well. Furthermore, the
lossy rate region for scalar discrete-time Gaussian sources and measurement channels is established.
An achievable lossy rate region that can be numerically computed is also provided for binary-input
multiple additive discrete-time Gaussian noise measurement channels.

Keywords: information theoretic security; secure source coding; remote source; private key; side
information

1. Introduction

Consider multiple terminals that observe correlated random sequences and wish to
reconstruct these sequences at another terminal, called a decoder, by sending messages
through noiseless communication links, i.e., the distributed source coding problem [1].
A sensor network where each node observes a correlated random sequence that needs
to be reconstructed at a distant node is a classic example of this problem [2] (p. 258).
Similarly, function computation problems in which a fusion center observes messages
sent by other nodes to compute a function are closely related problems that can be used
to model various recent applications [3,4]. Since messages sent over communication
links can be public, security constraints are imposed on these messages against an eaves-
dropper in the same network [5]. If all sent messages are available to the eavesdropper,
it is necessary to provide an advantage to the decoder over the eavesdropper to enable
secure source coding. Providing side information that is correlated with the sequences
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that should be reconstructed to the decoder can provide such an advantage over the
eavesdropper that can also have side information, as in [6–8]. Allowing for the eaves-
dropper to access only a strict subset of all messages is also a method to enable secure
distributed source coding, which was considered in [9–11]; see also [12], in which a
similar method was applied to enable secure remote source reconstruction. Similarly, a
private key that is shared by legitimate terminals and hidden from the eavesdropper can
also provide such an advantage, as in [13,14].

Source coding models in the literature commonly assume that dependent multi-
letter random variables are available and should be compressed. For secret-key agree-
ment [15,16] and secure function computation problems [17,18], which are instances of
the source coding with the side information problem [19] (Section IV-B), the correla-
tion between these multiletter random variables was posited in [20,21] to stem from an
underlying ground truth that is a remote source, such that its noisy measurements are
these dependent random variables. Such a remote source allows one to model the cause
of correlation in a network, so we also posit that there is a remote source whose noisy
measurements are used in the source coding problems discussed below, which is similar
to the models in [22] (p. 78) and [23] (Figure 9). Furthermore, in the chief executive officer
(CEO) problem [24], there is a remote source whose noisy measurements are encoded,
such that a decoder can reconstruct the remote source by using encoder outputs. Our
model is different from the model in the CEO problem, since in our model, the decoder
aims to recover encoder observations rather than the remote source that is considered
mainly to describe the cause of correlation between encoder observations. Thus, we
define the secrecy leakage as the amount of information leaked to an eavesdropper about
encoder observations. Since the remote source is common for all observations in the
same network, we impose a privacy leakage constraint on the remote source because each
encoder output observed by an eavesdropper leaks information about unused encoder
observations, which might later cause secrecy leakage when the unused encoder obser-
vations are employed [25–27]; see [28–30] for joint secrecy and joint privacy constraints
imposed due to multiple uses of the same source.

1.1. Summary of Contributions

We extend the lossless and lossy source coding rate region analyses by considering
a remote source that should be kept private, decoder and eavesdropper side information,
and a private key shared by the encoder and decoder. Considering that one encoder
provides insights with enough richness to extend the results to multiple encoders [31], in
this work, we consider the single encoder case. A summary of the main contributions is
as follows.

• We characterize the lossy secure and private source coding region when noisy mea-
surements of a remote source are observed by all terminals, and there is one private
key available.

• Requiring reliable source reconstruction, we also characterize the rate region for the
lossless secure and private source coding problem.

• A Gaussian remote source and independent additive Gaussian noise measurement
channels are considered to establish their lossy rate region under squared error distortion.

• We provide an achievable lossy secure and private source coding region for a binary
remote source and its measurements through additive Gaussian noise channels, which
includes computable differential entropy terms.

1.2. Organization

This paper is organized as follows. In Section 2, we introduce the lossless and lossy se-
cure and private source coding problems with decoder and eavesdropper side information
and a private key under storage, secrecy, privacy, and reliability or distortion constraints.
In Section 3, we characterize the rate regions for the introduced problems, which include
three parts that correspond to different private key rate regimes. In Section 4, we evaluate
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the lossy rate region for Gaussian sources and channels with squared error distortion.
In Section 5, we consider a binary modulated remote source measured through additive
Gaussian noise channels and provide an inner bound for the lossy rate region with Ham-
ming distortion. In Section 6, we provide the proof for the lossy secure and and private
source coding region.

1.3. Notation

Uppercase X represents random variables and lowercase x their realizations from
a set X , denoted by calligraphic letters. A discrete random variable X has proba-
bility distribution PX and a continuous random variable X probability density func-
tion (pdf) pX . A subscript i denotes the position of a variable in a length-n sequence
Xn = X1, X2, . . . , Xi, . . . , Xn. Boldface uppercase X = [X1, X2, . . .]T represent vector ran-
dom variables, where T denotes the transpose. [1 : m] denotes the set {1, 2, . . . , m} for
an integer m ≥ 1. Define [a]− = min{a, 0} for a ∈ R. Function Hb(x) = −x log x −
(1−x) log(1−x) is the binary entropy function, where logarithms are to the base 2.
A binary symmetric channel (BSC) with crossover probability ε is denoted by BSC(ε).
X ∼ Bern(β) with X = {0, 1} is a binary random variable with Pr[X = 1] = β. The ∗-
operator represents p ∗ q = (1 − 2q)p + q. Function Q(·) denotes the complementary
cumulative distribution function of the standard Gaussian distribution. The function
sgn(·) represents the signum function.

2. System Model

We consider the lossy source coding model with one encoder, one decoder, and an
eavesdropper (Eve), depicted in Figure 1. The encoder Enc(·, ·) observes a noisy measure-
ment X̃n of an i.i.d. remote source Xn ∼ Pn

X through a memoryless channel PX̃|X in addition

to a private key K ∈ [1 : 2nR0 ]. The encoder output is an index W that is sent over a link
with limited communication rate. Decoder Dec(·, ·, ·) observes index W, private key K, and
another noisy measurement Yn of the same remote source Xn through another memory-

less channel PYZ|X in order to estimate X̃n as ̂̃Xn. The other noisy output Zn of PYZ|X is
observed by Eve in addition to index W. Assume K is uniformly distributed, hidden from
Eve, and independent of the source output and its noisy measurements. The source and
measurement alphabets are finite sets.

PX

Enc(·, ·)K

PYZ|X

PX̃|X

Dec(·, ·, ·)

K

Eve

W

Xn

Yn

X̃n

Xn

Zn

̂̃Xn

W

Figure 1. Source coding with noisy measurements (X̃n, Yn) of a remote source Xn and with a uniform
private key K under privacy, secrecy, communication, and distortion constraints.

We next define the rate region for the lossy secure and private source coding problem
defined above.
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Definition 1. A lossy tuple (Rw, Rs, R�, D) ∈R4
≥0 is achievable given a private key with

rate R0≥0, if for any δ>0 there exist n≥1, an encoder, and a decoder, such that

1
n

log
∣∣W ∣∣ ≤ Rw + δ (storage) (1)

1
n

I(X̃n; W|Zn) ≤ Rs + δ (secrecy) (2)

1
n

I(Xn; W|Zn) ≤ R� + δ (privacy) (3)

E
[
d
(

X̃n, ̂̃Xn(Yn, W, K)
)]

≤ D + δ (distortion) (4)

where d(x̃n, ̂̃xn) = 1
n ∑n

i=1 d(x̃i, ̂̃xi) is a per-letter bounded distortion metric. The lossy secure
and private source coding region RD is the closure of the set of all achievable lossy tuples. ♦

In (2) and (3), we consider conditional mutual information terms to take account of
unavoidable secrecy and privacy leakages due to Eve’s side information, i.e., I(X̃n; Zn) and
I(Xn; Zn), respectively; see also [21,32]. Furthermore, we consider conditional mutual
information terms rather than corresponding conditional entropy terms, the latter of
which is used in [6,14,33–35], to characterize the secrecy and privacy leakages simplifies
our analysis.

We next define the rate region for the lossless secure and private source coding problem.

Definition 2. A lossless tuple (Rw, Rs, R�)∈R3
≥0 is achievable given a private key with rate

R0 ≥ 0, if for any δ > 0 there exist n ≥ 1, an encoder, and a decoder, such that we have
(1)–(3) and

Pr
[

X̃n �= ̂̃Xn(Yn, W, K)
]
≤δ (reliability). (5)

The lossless secure and private source coding region R is the closure of the set of all
achievable lossless tuples. ♦

3. Secure and Private Source Coding Regions

3.1. Lossy Source Coding

The lossy secure and and private source coding region RD is characterized below; see
Section 6 for its proof.

Define [a]− = min{a, 0} for a ∈ R.

Theorem 1. For given PX, PX̃|X, PYZ|X, and R0, the region RD is the set of all rate tuples
(Rw, Rs, R�, D) satisfying

Rw ≥ I(U; X̃|Y) (6)

and if R0 < I(U; X̃|Y, V), then

Rs ≥ I(U; X̃|Z) + R′ − R0 (7)

R� ≥ I(U; X|Z) + R′ − R0 (8)

where we have

R′ = [I(U; Z|V, Q)− I(U; Y|V, Q)]− (9)
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and if I(U; X̃|Y, V) ≤ R0 < I(U; X̃|Y), then

Rs ≥ I(V; X̃|Z) (10)

R� ≥ I(V; X|Z) (11)

and if R0 ≥ I(U; X̃|Y), then

Rs ≥ 0 (12)

R� ≥ 0 (13)

for some

PQVUX̃XYZ = PQ|V PV|U PU|X̃PX̃|XPXPYZ|X (14)

such that E
[
d
(
X̃, ̂̃X(U, Y)

)]
≤ D for some reconstruction function ̂̃X(U, Y). The region RD is

convexified by using the time-sharing random variable Q, required due to the [·]− operation. One
can limit the cardinalities to |Q| ≤ 2, |V| ≤ |X̃|+ 3, and |U | ≤ (|X̃|+ 3)2.

We remark that (12) and (13) show that one can simultaneously achieve strong secrecy
and strong privacy, i.e., the conditional mutual information terms in (2) and (3), respectively,
are negligible, by using a large private key K, which is a result missing in some recent
works on secure source coding with a private key.

3.2. Lossless Source Coding

The lossless secure and and private source coding region R is characterized next; see
below for a proof sketch.

Proposition 1. For given PX, PX̃|X, PYZ|X, and R0, the region R is the set of all rate tuples
(Rw, Rs, R�) satisfying

Rw ≥ H(X̃|Y) (15)

and if R0 < H(X̃|Y, V), then

Rs ≥ H(X̃|Z) + R′′ − R0 (16)

R� ≥ I(X̃; X|Z) + R′′ − R0 (17)

where we have

R′′ = [I(X̃; Z|V, Q)− I(X̃; Y|V, Q)]− (18)

and if H(X̃|Y, V) ≤ R0 < H(X̃|Y), then

Rs ≥ I(V; X̃|Z) (19)

R� ≥ I(V; X|Z) (20)

and if R0 ≥ H(X̃|Y), then

Rs ≥ 0 (21)

R� ≥ 0 (22)

for some

PQVX̃XYZ = PQ|V PV|X̃PX̃|XPXPYZ|X . (23)
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One can limit the cardinalities to |Q| ≤ 2 and |V| ≤ |X̃|+ 2.

Proof Sketch. The proof for the lossless region R follows from the proof for the lossy region
RD, given in Theorem 1 above, by choosing U = X̃, such that we have reconstruction

function ̂̃X(X̃, Y) = X̃, so we achieve D = 0. Thus, the reliability constraint in (5) is satisfied
because d(·, ·) is a distortion metric.

4. Gaussian Sources and Additive Gaussian Noise Channels

We evaluate the lossy rate region for a Gaussian example with squared error distortion
by finding the optimal auxiliary random variable in the corresponding rate region. Consider
a special lossy source coding case in which (i) there is no private key; (ii) the eavesdropper’s
channel observation Zn is less noisy than the decoder’s channel observation Yn, such that
we obtain a lossy source coding region with a single auxiliary random variable that should
be optimized.

We next define less noisy channels, considering PYZ|X .

Definition 3 ([36]). Z (or eavesdropper) is less noisy than Y (or decoder) if

I(L; Z) ≥ I(L; Y) (24)

holds for any random variable L, such that L − X − (Y, Z) form a Markov chain. ♦

Corollary 1. For given PX, PX̃|X, PYZ|X, and R0 = 0, the region RD when the eavesdropper is
less noisy than the decoder is the set of all rate tuples (Rw, Rs, R�, D) satisfying

Rw ≥ I(U; X̃|Y) = I(U; X̃)− I(U; Y) (25)

Rs ≥ I(U; X̃|Z) = I(U; X̃)− I(U; Z) (26)

R� ≥ I(U; X|Z) = I(U; X)− I(U; Z) (27)

for some

PUX̃XYZ = PU|X̃PX̃|XPXPYZ|X (28)

such that E
[
d
(
X̃, ̂̃X(U, Y)

)]
≤D for some reconstruction function ̂̃X(U, Y). One can limit the

cardinality to |U |≤ |X̃|+3.

Proof Sketch. The proof for Corollary 1 follows from the proof for Theorem 1 by con-
sidering the bounds in (6)–(8) since R0 = 0. Furthermore, R′ defined in (9) is 0 for the
less noisy condition considered, which follows because (Q, V)− U − X − (Y, Z) form a
Markov chain.

Suppose the following scalar discrete-time Gaussian source and channel model for the
lossy source coding problem depicted in Figure 1

X = ρxX̃ + Nx (29)

Y = ρyX + Ny (30)

Z = ρzX + Nz (31)

192



Entropy 2022, 24, 1716

where we have remote source X ∼ N (0, 1), fixed correlation coefficients ρx, ρy, ρz ∈ (−1, 1),
and additive Gaussian noise random variables

Nx ∼N (0, 1−ρ2
x) (32)

Ny ∼N (0, 1−ρ2
y) (33)

Nz ∼N (0, 1−ρ2
z) (34)

such that (X̃, Nx, Ny, Nz) are mutually independent, and we consider the squared error

distortion, i.e., d(x̃, ̂̃x)=(x̃−̂̃x)2
. Note that (29) is an inverse measurement channel PX|X̃ that

is a weighted sum of two independent Gaussian random variables, imposed to be able to
apply the conditional entropy power inequality (EPI) [37] (Lemma II); see [20] (Theorem 3)
and [38] (Section V) for binary symmetric inverse channel assumptions imposed to apply
Mrs. Gerber’s lemma [39]. Suppose |ρz| > |ρy|, such that Y is less stochastically degraded
than Z, since then there exists a random variable Ỹ such that PỸ|X = PY|X and PỸZ|X =

PZ|XPỸ|Z [40] (Lemma 6), so Z is also less noisy than Y since less noisy channels constitute a
strict superset of the set of stochastically-degraded channels and both channel sets consider
only the conditional marginal probability distributions [2] (p. 121).

We next take the liberty to use the lossy rate region in Corollary 1, characterized for
discrete memoryless channels, for the model in (29)–(31). This is common in the literature
since there is a discretization procedure to extend the achievability proof to well-behaved
continuous-alphabet random variables and the converse proof applies to arbitrary random
variables; see [2] (Remark 3.8). For Gaussian sources and channels, we use differential
entropy and eliminate the cardinality bound on the auxiliary random variable. The lossy
source coding region for the model in (29)–(31) without a private key is given below.

Proposition 2. For the model in (29)–(31), such that |ρz| > |ρy| and R0 = 0, the region RD with
squared error distortion is the set of all rate tuples (Rw, Rs, R�, D) satisfying, for α ∈ (0, 1],

Rw ≥ 1
2

log
(1 − ρ2

xρ2
y(1 − α)

α

)
(35)

Rs ≥
1
2

log
(1 − ρ2

xρ2
z(1 − α)

α

)
(36)

R� ≥
1
2

log
(1 − ρ2

xρ2
z(1 − α)

1 − ρ2
x(1 − α)

)
(37)

D ≥
α(1 − ρ2

xρ2
y)

1 − ρ2
xρ2

y(1 − α)
. (38)

Proof Sketch. For the achievability proof, let U ∼ N (0, 1−α) and Θ ∼ N (0, α), as in [41]
([Equation (32)]) and [42] (Appendix B), be independent random variables for some
α ∈ (0, 1] such that X̃ = U + Θ and U − X̃ − X − (Y, Z) form a Markov chain. Choose the

reconstruction function ̂̃X(U, Y) as the minimum mean square error (MMSE) estimator,
and given any fixed D > 0, auxiliary random variables are chosen such that the distortion
constraint is satisfied. We then have, for the squared error distortion,

D = E
[(

X̃ − ̂̃X(U, Y)
)2
]
(a)
=

1
2πe

e2h(X̃|U,Y) (39)
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where equality in (a) is achieved because X̃ is Gaussian and the reconstruction function
is the MMSE estimator [43] (Theorem 8.6.6). Define the covariance matrix of the vector
random variable [X̃, U, Y] as KX̃UY and of [U, Y] as KUY, respectively. We then have

h(X̃|U, Y) = h(X̃, U, Y)− h(U, Y)

=
1
2

log
(

2πe
det(KX̃UY)

det(KUY)

)
(40)

where det(·) is the determinant of a matrix; see also [12] (Section F). Combining (39) and (40),
and calculating the determinants, we obtain

D =
α(1 − ρ2

xρ2
y)

1 − ρ2
xρ2

y(1 − α)
. (41)

One can also show that

I(U; X̃)=h(X̃)−h(X̃|U)=
1
2

log
( 1

α

)
(42)

I(U; X)=h(X)−h(X|U)=
1
2

log
( 1

1 − ρ2
x(1 − α)

)
(43)

I(U; Y)=h(Y)−h(Y|U)=
1
2

log
( 1

1 − ρ2
xρ2

y(1 − α)

)
(44)

I(U; Z)=h(Z)−h(Z|U)=
1
2

log
( 1

1 − ρ2
xρ2

z(1 − α)

)
. (45)

Thus, by calculating (25)–(27), the achievability proof follows.
For the converse proof, one can first show that

I(U; X̃)− I(U; Y) = h(Y|U)− h(X̃|U) (46)

I(U; X̃)− I(U; Z) = h(Z|U)− h(X̃|U) (47)

I(U; X)− I(U; Z) = h(Z|U)− h(X|U) (48)

which follow since h(X̃) = h(X) = h(Y) = h(Z). Suppose

h(X̃|U) =
1
2

log(2πeα) (49)

for any α ∈ (0, 1] that represents the unique variance of a Gaussian random variable; see [20]
(Lemma 2) for a similar result applied to binary random variables. Thus, by applying the
conditional EPI, we obtain

e2h(Y|U) (a)
= e2h(ρxρyX̃|U) + e2h(ρy Nx+Ny)

= 2πe
(
ρ2

xρ2
yα + ρ2

y(1 − ρ2
x) + 1 − ρ2

y
)

= 2πe
(
1 − ρ2

xρ2
y(1 − α)

)
(50)

where (a) follows because U − X̃ − (Nx, Ny) form a Markov chain and (Nx, Ny) are in-
dependent of X̃, so (Nx, Ny) are independent of U, and equality is satisfied since, given
U, ρxρyX̃ and (ρyNx + Ny) are conditionally independent and they are Gaussian random
variables, as imposed in (49) above; see [20] (Lemma 1 and Equation (28)) for a similar
result applied to binary random variables by extending Mrs. Gerber’s lemma. Similarly,
we have

e2h(Z|U) = 2πe
(
1 − ρ2

xρ2
z(1 − α)

)
(51)
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which follows by replacing (Y, ρy, Ny) with (Z, ρz, Nz) in (50), respectively, because the
channel PY|U can be mapped to PZ|U with these changes due to (29)–(31) and the Markov
chain relation U − X̃ − X − (Y, Z). Furthermore, we have

e2h(X|U) (a)
= e2h(ρxX̃|U) + e2h(Nx)

= 2πe
(
ρ2

xα + 1 − ρ2
x
)

= 2πe
(
1 − ρ2

x(1 − α)
)

(52)

where (a) follows because Nx is independent of U, and equality is achieved since, given U,
ρxX̃ and Nx are conditionally independent and are Gaussian random variables. Therefore,
by applying (46)–(52) to (25)–(27), the converse proof for (35)–(37) follows.

Next, consider

h(X̃|U, Y) = −I(U; X̃|Y) + h(X̃|Y)
(a)
= −h(Y|U) + h(X̃|U) + h(Y|X̃)

(b)
=

1
2

log
( α

1 − ρ2
xρ2

y(1 − α)

)
+ h(ρxρyX̃+ρyNx+Ny|X̃)

(c)
=

1
2

log
( α

1 − ρ2
xρ2

y(1 − α)

)
+ h(ρyNx+Ny)

=
1
2

log
(

2πe
α(ρ2

y(1 − ρ2
x) + (1 − ρ2

y))

1 − ρ2
xρ2

y(1 − α)

)
=

1
2

log
(

2πe
α(1 − ρ2

xρ2
y)

1 − ρ2
xρ2

y(1 − α)

)
(53)

where (a) follows by (25) and (46), and since h(Y) = h(X̃), (b) follows by (49) and (50),
and (c) follows because (Nx, Ny) are independent of X̃. Furthermore, for any random

variable X̃ and reconstruction function ̂̃X(U, Y), we have [43] (Theorem 8.6.6)

E
[(

X̃ − ̂̃X(U, Y)
)2
]
≥ 1

2πe
e2h(X̃|U,Y). (54)

Combining the distortion constraint given in Corollary 1 with (53) and (54), the con-
verse proof for (38) follows.

5. Multiple Binary-input Additive Gaussian Noise Channels

Consider next a binary remote source X ∈ {−1, 1} and its binary noisy measurement
X̃ ∈ {−1, 1} observed by the encoder, which represents a practical setting with binary
quantizations. For instance, a static random-access memory (SRAM) start-up output at a
nominal temperature is a binary value obtained by quantizing sums of Gaussian random
variables [28,44]. Suppose the noisy channel PYZ|X outputs consist of a single discrete-time
additive Gaussian noise channel output Y observed by the decoder and two independent
discrete-time additive Gaussian noise channel outputs Z = [Z1, Z2]

T observed by the
eavesdropper, in which the eavesdropper obtains more information by measuring the
remote source twice. Furthermore, assume that X is uniformly distributed, the binary
channel PX̃|X is symmetric such that Pr[X̃ �= X] = p for p ∈ [0, 1], and we also have

Y = ρyX + Ny (55)

Z =

[
Z1
Z2

]
= ρzX

[
1
1

]
+

[
Nz1

Nz2

]
(56)
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where we have fixed correlation coefficients ρy, ρz ∈ (−1, 1) and additive Gaussian noise
random variables

Ny ∼N (0, 1−ρ2
y) (57)

Nz1 ∼N (0, 1−ρ2
z) (58)

Nz2 ∼N (0, 1−ρ2
z) (59)

such that (X, Ny, Nz1 , Nz2) are mutually independent. Consider the Hamming distortion,
i.e., d(x̃, ̂̃x)=1{x̃ �= ̂̃x}. Impose the condition |ρz| > |ρy| such that Z1 and Z2 are less noisy
than Y, so Z is also less noisy than Y, which follows by applying similar steps as being
applied in Section 4. Thus, for R0 = 0, the region RD characterized in Corollary 1 is also
valid for such binary-input additive Gaussian noise channels when one replaces Z with Z.
A computable achievable lossy secure and private source coding region for such channels
is given next.

Proposition 3. For the setting with multiple binary-input additive Gaussian noise channels,
defined above, such that |ρz| > |ρy| and R0 = 0, the region RD with Hamming distortion
includes the set of all rate tuples (Rw, Rs, R�, D) satisfying, for an independent random variable
C ∼ Bern(p ∗ q) with any q ∈ [0, 0.5] and for any λ ∈ [0, 1],

Rw ≥ λ
(

1 − Hb(q)− h
(
ρyX + Ny

)
+ h

(
ρy(1−2C) + Ny

))
(60)

Rs ≥ λ

(
1 − Hb(q)− h

([
ρzX + Nz1

ρzX + Nz2

])
+ h

([
ρz(1−2C) + Nz1

ρz(1−2C) + Nz2

]))
(61)

R� ≥ λ

(
1 − Hb(p ∗ q)− h

([
ρzX + Nz1

ρzX + Nz2

])
+ h

([
ρz(1−2C) + Nz1

ρz(1−2C) + Nz2

]))
(62)

D ≥ λq + (1 − λ)

(
p ∗ Q

(
ρy√

1 − ρ2
y

))
(63)

where random variable Y =
(
ρyX + Ny

)
has pdf

1
2

(
e
− (y+ρy)2

2(1−ρ2
y) + e

− (y−ρy)2

2(1−ρ2
y)

)
√

2π(1 − ρ2
y)

(64)

the random variable sY =
(
ρy(1−2C) + Ny

)
has pdf

(p ∗ q)
e
− (sy+ρy)2

2(1−ρ2
y)√

2π(1 − ρ2
y)

+ (1−(p ∗ q))
e
− (sy−ρy)2

2(1−ρ2
y)√

2π(1 − ρ2
y)

(65)

the vector random variable
[

Z1
Z2

]
=

([
ρzX + Nz1

ρzX + Nz2

])
has joint pdf

1
2

(
e
−
(
(z1+ρz)2+(z2+ρz)2

)
2(1−ρ2

z) + e
−
(
(z1−ρz)2+(z2−ρz)2

)
2(1−ρ2

z)

)
2π(1 − ρ2

z)
(66)
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and the vector random variable
[

sZ1
sZ2

]
=

([
ρz(1−2C) + Nz1

ρz(1−2C) + Nz2

])
has joint pdf

(p ∗ q)
e
−
(
(sz1+ρz)2+(sz2+ρz)2

)
2(1−ρ2

z)

2π(1 − ρ2
z)

+ (1−(p ∗ q))
e
−
(
(sz1−ρz)2+(sz2−ρz)2

)
2(1−ρ2

z)

2π(1 − ρ2
z)

. (67)

Proof. We first evaluate (25)–(27) by choosing a binary uniformly distributed U and a
channel PX̃|U such that Pr[X̃ �= U] = q for any q ∈ [0, 0.5]. We have

I(U; X̃) = H(X̃)− H(X̃|U)
(a)
= 1 − Hb(q) (68)

I(U; X) = H(X)− H(X|U)
(b)
= 1 − Hb(p ∗ q) (69)

where (a) and (b) follow by relabeling the input and output symbols to represent the
channels PX̃|U and PX|X̃ as BSC(q) and BSC(p), respectively, which follows since entropy is
preserved under a bijective mapping for discrete random variables. For relabeled symbols,
the channel PX|U is a BSC(p ∗ q) since it is a concatenation of two BSCs, so denote the
independent random noise component in this channel as C ∼ Bern(p ∗ q). Then, we obtain

h(Y|U) = h(ρyX + Ny|U)
(a)
= h(ρy(1−2C) + Ny) = h(sY) (70)

where (a) follows since symbols {−1, 1} correspond to the antipodal modulation of binary
symbols, and since (C, Ny, U) are mutually independent. One can compute (70) numerically
by using the pdf

p
sY(sy) =

1

∑
c=0

PC(c)p
sY|C(sy|c) = (p ∗ q)

e
− (sy+ρy)2

2(1−ρ2
y)√

2π(1 − ρ2
y)

+ (1−(p ∗ q))
e
− (sy−ρy)2

2(1−ρ2
y)√

2π(1 − ρ2
y)

. (71)

Similarly, we can compute

h(Y) = h(ρyX + Ny) (72)

numerically by using the pdf

pY(y) = ∑
x∈{−1,1}

PX(x)pY|X(y|x) =
1
2

(
e
− (y+ρy)2

2(1−ρ2
y) + e

− (y−ρy)2

2(1−ρ2
y)

)
√

2π(1 − ρ2
y)

. (73)

Next, consider

h(Z|U) = h

((
ρzX

[
1
1

]
+

[
Nz1

Nz2

])∣∣∣∣U
)

(a)
= h

([
ρz(1−2C) + Nz1

ρz(1−2C) + Nz2

])
= h

([
sZ1
sZ2

])
(74)

where (a) follows since (C, Nz1 , Nz2 , U) are mutually independent. Denote

sZ = [sZ1, sZ2]
T . (75)
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We can compute (74) numerically by using the joint pdf

p
sZ(sz) = p

sZ1 sZ2
(sz1, sz2) =

1

∑
c=0

PC(c)p
sZ1 sZ2|C(sz1, sz2|c)

= (p ∗ q)
e
−
(
(sz1+ρz)2+(sz2+ρz)2

)
2(1−ρ2

z)

2π(1 − ρ2
z)

+ (1−(p ∗ q))
e
−
(
(sz1−ρz)2+(sz2−ρz)2

)
2(1−ρ2

z)

2π(1 − ρ2
z)

(76)

which follows since sZ|C is a jointly Gaussian vector random variable with independent
components sZ1|C and sZ2|C, since every scalar linear combination of the components is
Gaussian; see [45] (Theorem 1). Similarly, we can compute

h(Z) = h

([
ρzX + Nz1

ρzX + Nz2

])
(77)

numerically by using the joint pdf

pZ(z) = pZ1Z2(z1, z2) = ∑
x∈{−1,1}

PX(x)pZ1Z2|X(z1, z2|x)

=
1
2

(
e
−
(
(z1+ρz)2+(z2+ρz)2

)
2(1−ρ2

z) + e
−
(
(z1−ρz)2+(z2−ρz)2

)
2(1−ρ2

z)

)
2π(1 − ρ2

z)
. (78)

Now, we consider the expected distortion. First, choose the reconstruction function

̂̃X1(U, Y) = U (79)

for the binary uniformly distributed U and the channel PX̃|U such that Pr[X̃ �= U] = q for
any q ∈ [0, 0.5], as considered above. For this reconstruction function and choices of U and
PX̃|U , we obtain the expected distortion

E
[
d
(
X̃, ̂̃X1(U, Y)

)]
= q. (80)

Second, choose the reconstruction function

̂̃X2(U, Y) = sgn(Y) (81)

and consider U. We then obtain

E
[
d
(
X̃, ̂̃X2(U, Y)

)]
= p ∗ Q

(
ρy√

1 − ρ2
y

)
(82)

which follows since the channel Psgn(Y)|X̃ can be considered as a concatenation of two

BSCs with crossover probabilities p and Q

(
ρy√

1 − ρ2
y

)
, where the former follows since

Pr[X̃ �= X] = p and the latter because X ∈ {−1, 1} and

Pr[X �= sgn(Y)] = Pr[X �= sgn(ρyX + Ny)] = Pr[Ny > ρy]. (83)

Therefore, the proof for the achievable lossy secure and private source coding region follows
by combining (68)–(70), (72), (74), (77), (80), and (82) by applying time sharing, with time-
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sharing parameter λ ∈ [0, 1], between the two reconstruction functions in (79) and (81) with
corresponding U and PX̃|U , since for constant U the terms in (25)–(27) are zero.

Remark 1. The proof of Proposition 3 follows similar steps as those in [46] (Section II) and it seems
that the achievable lossy secure and private source coding region given in Proposition 3 is optimal.
Considering (Rw, Rs, R�), one can apply Mrs. Gerber’s lemma to show that the choice of U such
that PX̃|U is a BSC(q) after relabeling the input and output symbols is optimal, since Mrs. Gerber’s
lemma is valid for all binary-input symmetric memoryless channels with discrete or continuous
outputs [47]. This result follows because convexity is preserved; see also [48] (Appendix B) for an
alternative proof of convexity preservation for independent BSC measurements. However, it is not
entirely clear how to prove that the sign operation used for estimation suffices for the rate region.

6. Proof for Theorem 1

6.1. Achievability Proof for Theorem 1

Proof Sketch. We leverage the output statistics of random binning (OSRB) method [16,49,50]
for the achievability proof by following the steps described in [51] (Section 1.6).

Let (Vn, Un, X̃n, Xn, Yn, Zn) be i.i.d. according to PVUX̃XYZ that can be obtained

from (14) by fixing PU|X̃ and PV|U , such that E[d
(
X̃, ̂̃X)] ≤ (D + ε) for any ε > 0. To each

vn assign two random bin indices Fv ∈ [1 : 2nR̃v ] and Wv ∈ [1 : 2nRv ]. Furthermore, to each
un assign three random bin indices Fu ∈ [1 : 2nR̃u ], Wu ∈ [1 : 2nRu ], and Ku ∈ [1 : 2nR0 ],
where R0 is the private key rate defined in Section 2. Public indices F = (Fv, Fu) represent
the choice of a source encoder and decoder pair. Furthermore, we impose that the messages
sent by the source encoder Enc(·, ·) to the source decoder Dec(·, ·, ·) are

W = (Wv, Wu, K + Ku) (84)

where the summation with the private key is in modulo- 2nR0 , i.e., one-time padding.
The public index Fv is almost independent of (X̃n, Xn, Yn, Zn) if we have [49] (Theorem 1)

R̃v < H(V|X̃, X, Y, Z)
(a)
= H(V|X̃) (85)

where (a) follows since (X, Y, Z) − X̃ − V form a Markov chain. The constraint in (85)
suggests that the expected value, taken over the random bin assignments, of the variational
distance between the joint probability distributions Unif[1:2nR̃v ] · PX̃n and PFvX̃n vanishes

when n → ∞. Moreover, the public index Fu is almost independent of (Vn, X̃n, Xn, Yn, Zn)
if we have

R̃u < H(U|V, X̃, X, Y, Z)
(a)
= H(U|V, X̃) (86)

where (a) follows from the Markov chain relation (X, Y, Z)− X̃ − (U, V).
Using a Slepian–Wolf (SW) [1] decoder that observes (Yn, Fv, Wv), one can reliably

estimate Vn if we have [49] (Lemma 1)

R̃v + Rv > H(V|Y) (87)

since then the expected error probability, taken over random bin assignments, vanishes
when n → ∞. Furthermore, one can reliably estimate Un by using a SW decoder that
observes (K, Vn, Yn, Fu, Wu, K + Ku) if we have

R0 + R̃u + Ru > H(U|V, Y). (88)
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To satisfy (85)–(88), for any ε > 0 we fix

R̃v = H(V|X̃)− ε (89)

Rv = I(V; X̃)− I(V; Y) + 2ε (90)

R̃u = H(U|V, X̃)− ε (91)

R0 + Ru = I(U; X̃|V)− I(U; Y|V) + 2ε. (92)

Since all tuples (vn, un, x̃n, xn, yn, zn) are in the jointly typical set with high probability,
by the typical average lemma [2] (p. 26), the distortion constraint (4) is satisfied.

Communication Rate: (90) and (92) result in a communication (storage) rate of

Rw = R0 + Rv + Ru
(a)
= I(U; X̃|Y) + 4ε (93)

where (a) follows since V − U − X̃ − Y form a Markov chain.
Privacy Leakage Rate: Since private key K is uniformly distributed, and is indepen-

dent of source and channel random variables, we can consider the following virtual scenario
to calculate the leakage. We first assume for the virtual scenario that there is no private key
such that the encoder output for the virtual scenario is

ĎW = (Wv, Wu, Ku). (94)

We calculate the leakage for the virtual scenario. Then, given the mentioned properties of
the private key and due to the one-time padding step in (84), we can subtract H(K) = nR0
from the leakage calculated for the virtual scenario to obtain the leakage for the original
problem, which follows from the sum of (91) and (92) if ε → 0 when n → ∞. Thus, we
have the privacy leakage

I(Xn; W, F|Zn) = I(Xn; ĎW, F|Zn)− nR0

(a)
= H(ĎW, F|Zn)−H(ĎW, F|Xn)−nR0

(b)
= H(ĎW, F|Zn)− H(Un, Vn|Xn) + H(Vn|ĎW, F, Xn) + H(Un|Vn, ĎW, F, Xn)− nR0

(c)
≤ H(ĎW, F|Zn)− nH(U, V|X) + 2nεn − nR0 (95)

where (a) follows because (ĎW, F) − Xn − Zn form a Markov chain, (b) follows since
(Un, Vn) determine (Fu, Wu, Ku, Fv, Wv), and (c) follows since (Un, Vn, Xn) is i.i.d. and
for some εn > 0 such that εn → 0 when n → ∞ because (Fv, Wv, Xn) can reliably
recover Vn by (87) because of the Markov chain relation Vn − Xn − Yn and, similarly,
(Fu, Wu, Ku, Vn, Xn) can reliably recover Un by (88) because of H(U|V, Y) ≥ H(U|V, X)
that is proved in [21] (Equation (55)) for the Markov chain relation (V, U)− X − Y.

Next, we consider the term H(ĎW, F|Zn) in (95) and provide single letter bounds on
it by applying the six different decodability results given in [21] (Section V-A) that are
applied to an entirely similar conditional entropy term in [21] (Equation (54)) that measures
the uncertainty in indices conditioned on an i.i.d. multi-letter random variable. Thus,
combining the six decodability results in [21] (Section V-A) with (95) we obtain

I(Xn; W, F|Zn) ≤ n
(
[I(U; Z|V)− I(U; Y|V) + ε]− + I(U; X|Z) + 3εn − R0

)
. (96)

The equation (92) implicitly assumes that private key rate R0 is less than (I(U; X̃|V)−
I(U; Y|V)+ 2ε) = (I(U; X̃|Y, V) + 2ε), where the equality follows from the Markov chain
relation (V, U)− X̃ −Y. The communication rate results are not affected by this assumption,
since X̃n should be reconstructed by the decoder. However, if the private key rate R0 is
greater than or equal to (I(U; X̃|Y, V) + 2ε), then we can remove the bin index Ku from the
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code construction above and apply one-time padding to the bin index Wu, such that we
have the encoder output

Ď

ĎW = (Wv, Wu + K) (97)

where the summation with the private key is in modulo- 2nRu = 2n(I(U;X̃|Y,V)+2ε). Thus, one
then does not leak any information about Wu to the eavesdropper because of the one-time
padding step in (97). We then have privacy leakage

I(Xn; Ď

ĎW, F|Zn) = I(Xn; Wv, F|Zn)

(a)
≤ H(Xn|Zn)− H(Xn|Zn, Wv, Fv) + ε′n
(b)
≤ H(Xn|Zn)− H(Xn|Zn, Vn) + ε′n
(c)
= nI(V; X|Z) + ε′n (98)

where (a) follows for some ε′n such that ε′n → 0 when n → ∞ since by (86) Fu is almost
independent of (Vn, Xn, Zn); see also [52] (Theorem 1), (b) follows since Vn determines
(Fv, Wv), and (c) follows because (Xn, Zn, Vn) are i.i.d.

Note we can reduce the privacy leakage given in (98) if R0 ≥ (I(U; X̃)− I(U; Y) +
4ε) = (I(U; X̃|Y) + 4ε), where the equality follows from the Markov chain relation U −
X̃ − Y, since then we can apply one-time padding to both bin indices Wv and Wu with the
sum rate

Rv + Ru
(a)
= I(V; X̃)− I(V; Y) + 2ε+ I(U; X̃|V)− I(U; Y|V)+2ε

(b)
= I(U; X̃)− I(U; Y) + 4ε (99)

where (a) follows by (90) and (92), and (b) follows from the Markov chain relation V −U −
X̃ − Y. Thus, one then does not leak any information about (Wv, Wu) to the eavesdropper
because of the one-time padding step, so we then obtain the privacy leakage of

I(Xn; F|Zn) = I(Xn; Fv|Zn) + I(Xn; Fu|Zn, Fv)
(a)
≤ 2ε′n (100)

where (a) follows since by (85) Fv is almost independent of (Xn, Zn) and by (86) Fu is almost
independent of (Vn, Xn, Zn).

Secrecy Leakage Rate: Similar to the privacy leakage analysis above, we first consider
the virtual scenario with the encoder output given in (94), and then calculate the leakage
for the original problem by subtracting H(K) = nR0 from the leakage calculated for the
virtual scenario. Thus, we obtain

I(X̃n; W, F|Zn) = I(X̃n; ĎW, F|Zn)− nR0

(a)
= H(ĎW, F|Zn)− H(ĎW, F|X̃n)− nR0

(b)
= H(ĎW, F|Zn)− H(Un, Vn|X̃n) + H(Vn|ĎW, F, X̃n) + H(Un|Vn, ĎW, F, X̃n)

(c)
≤ H(ĎW, F|Zn)− nH(U, V|X̃) + 2nε′n − nR0

(d)
≤ n

(
[I(U; Z|V)− I(U; Y|V) + ε]− + I(U; X̃|Z) + 3ε′n − R0

)
(101)

where (a) follows from the Markov chain relation (ĎW, F) − X̃n − Zn, (b) follows since
(Un, Vn) determine (ĎW, F), (c) follows because (Vn, Un, X̃n) are i.i.d. and because (Fv, Wv, X̃n)
can reliably recover Vn by (87) due to the Markov chain relation Vn − X̃n − Yn and, similarly,
(Fu, Wu, Ku, Vn, X̃n) can reliably recover Un by (88) due to H(U|V, Y)≥H(U|V, X̃) that can
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be proved as in [21] (Equation (55)) for the Markov chain relation (V, U)− X̃ − Y, and (d)
follows by applying the six decodability results in [21] (Section V-A) that are applied to (95)
with the final result in (96) by replacing X with X̃.

Similar to the privacy leakage analysis above, if we have R0 ≥ (I(U; X̃|Y, V) + 2ε),
then we can eliminate Ku and apply one-time padding as in (97), such that no information
about Wu is leaked to the eavesdropper, we have

I(X̃n; Ď

ĎW, F|Zn) = I(X̃n; Wv, F|Zn)

(a)
≤ H(X̃n|Zn)− H(X̃n|Zn, Wv, Fv) + ε′n
(b)
≤ H(X̃n|Zn)− H(X̃n|Zn, Vn) + ε′n
(c)
= nI(V; X̃|Z) + ε′n (102)

where (a) follows because by (86) Fu is almost independent of (Vn, X̃n, Zn), (b) follows
since Vn determines (Fv, Wv), and (c) follows because (X̃n, Zn, Vn) are i.i.d.

If R0 ≥ (I(U; X̃|Y) + 4ε), we can apply one-time padding to hide (Wv, Wu), as in the
privacy leakage analysis above. We then have the secrecy leakage of

I(X̃n; F|Zn) = I(X̃n; Fv|Zn) + I(X̃n; Fu|Zn, Fv)
(a)
≤ 2ε′n (103)

where (a) follows since by (85) Fv is almost independent of (X̃n, Zn) and by (86) Fu is almost
independent of (Vn, X̃n, Zn).

Suppose that public indices F are generated uniformly at random, and the encoder
generates (Vn, Un) according to PVnUn |X̃n FvFu

that can be obtained from the proposed
binning scheme above to compute the bins Wv from Vn and Wu from Un, respectively.
Such a procedure results in a joint probability distribution almost equal to PVUX̃XYZ fixed
above [51] (Section 1.6). The privacy and secrecy leakage metrics above are expectations
over all possible public index realizations F = f . Therefore, using a time-sharing random
variable Q for convexification and applying the selection lemma [53] (Lemma 2.2) to each
decodability case separately, the achievability for Theorem 1 follows by choosing an ε > 0
such that ε → 0 when n → ∞.

6.2. Converse Proof for Theorem 1

Proof Sketch. Assume that for some δn >0 and n ≥ 1, there exist an encoder and a decoder,
such that (1)–(4) are satisfied for some tuple (Rw, Rs, R�, D) given a private key with rate R0.

Define Vi � (W, Yn
i+1, Zi−1) and Ui � (W, Yn

i+1, Zi−1, Xi−1, K) that satisfy the Markov
chain relation Vi − Ui − X̃i − Xi − (Yi, Zi) by definition of the source statistics. We have

D + δn
(a)
≥ E

[
d
(

X̃n, ̂̃Xn(Yn, W, K)
)]

(b)
≥ E

[
d
(

X̃n, ̂̃Xn(Yn, W, K, Xi−1, Zi−1)
)]

(c)
= E

[
d
(

X̃n, ̂̃Xn(Yn
i , W, K, Xi−1, Zi−1)

)]
(d)
=

1
n

n

∑
i=1

E
[
d
(

X̃i,
̂̃Xi(Ui, Yi)

)]
(104)

where (a) follows by (4), (b) follows since providing more information to the reconstruction
function does not increase expected distortion, (c) follows from the Markov chain relation

Yi−1 − (Yn
i , Xi−1, Zi−1, W, K)− X̃n (105)
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and (d) follows from the definition of Ui.
Communication Rate: For any R0 ≥ 0, we have

n(Rw + δn)
(a)
≥ log |W|

≥ H(W|Yn, K)− H(W|Yn, K, X̃n) (106)

(b)
=

n

∑
i=1

I(W; X̃i|X̃i−1, Yn
i+1, Zi−1, K, Yi) (107)

(c)
=

n

∑
i=1

I(X̃i−1, Yn
i+1, Zi−1, K, W; X̃i|Yi)

(d)
≥

n

∑
i=1

I(Xi−1, Yn
i+1, Zi−1, K, W; X̃i|Yi)

(e)
=

n

∑
i=1

I(Ui; X̃i|Yi) (108)

where (a) follows by (1), (b) follows from the Markov chain relation

(Yi−1, Xi−1, Zi−1)− (X̃i−1, Yn
i , K)− (X̃i, W) (109)

(c) follows because (X̃i, Yi) are independent of (X̃i−1, Yn
i+1, Zi−1, K), (d) follows by applying

the data processing inequality to the Markov chain relation in (109), and (e) follows from
the definition of Ui.

Privacy Leakage Rate: We obtain

n(R� + δn)

(a)
≥ [I(W; Yn)− I(W; Zn)] + [I(W; Xn)− I(W; Yn)]

(b)
= [I(W; Yn)− I(W; Zn)] + I(W; Xn|K)− I(K; Xn|W)− I(W; Yn|K) + I(K; Yn|W)

(c)
= [I(W; Yn)− I(W; Zn)] + [I(W; Xn|K)− I(W; Yn|K)]− I(K; Xn|W, Yn)

≥
n

∑
i=1

[
I(W; Yi|Yn

i+1)− I(W; Zi|Zi−1)
]

+
n

∑
i=1

[
I(W; Xi|Xi−1, K)− I(W; Yi|Yn

i+1, K)
]
− H(K)

(d)
=

n

∑
i=1

[
I(W; Yi|Yn

i+1, Zi−1)− I(W; Zi|Zi−1, Yn
i+1)− R0

]
+

n

∑
i=1

[
I(W; Xi|Xi−1, Yn

i+1, K)− I(W; Yi|Yn
i+1, Xi−1, K)

]
(e)
=

n

∑
i=1

[
I(W; Yi|Yn

i+1, Zi−1)− I(W; Zi|Zi−1, Yn
i+1)−R0

]
+

n

∑
i=1

[
I(W; Xi|Xi−1, Yn

i+1, Zi−1, K)− I(W; Yi|Yn
i+1, Xi−1, Zi−1, K)

]
( f )
=

n

∑
i=1

[
I(W, Yn

i+1, Zi−1; Yi)− I(W, Zi−1, Yn
i+1; Zi)− R0

]
+

n

∑
i=1

[
I(W, Xi−1, Yn

i+1, Zi−1, K; Xi)− I(W, Yn
i+1, Xi−1, Zi−1, K; Yi)

]
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(g)
=

n

∑
i=1

[
I(Vi; Yi)− I(Vi; Zi)− R0 + I(Ui, Vi; Xi)− I(Ui, Vi; Yi)

]
=

n

∑
i=1

[
− I(Ui, Vi; Zi)− R0 + I(Ui, Vi; Xi) + (I(Ui; Zi|Vi)− I(Ui; Yi|Vi))

]
(h)
≥

n

∑
i=1

[
I(Ui; Xi|Zi)− R0 + [I(Ui; Zi|Vi)− I(Ui; Yi|Vi)]

−
]

(110)

where (a) follows by (3) and from the Markov chain relation W −Xn −Zn, (b) follows since
K is independent of (Xn, Yn), (c) follows from the Markov chain relation (W, K)− Xn −Yn,
(d) follows because H(K) = nR0 and from Csiszár’s sum identity [54], (e) follows from the
Markov chain relations

Zi−1 − (Xi−1, Yn
i+1, K)− (Xi, W) (111)

Zi−1 − (Xi−1, Yn
i+1, K)− (Yi, W) (112)

( f ) follows because (Xn, Yn, Zn) are i.i.d. and K is independent of (Xn, Yn, Zn), (g) fol-
lows from the definitions of Vi and Ui, and (h) follows from the Markov chain relation
Vi − Ui − Xi − Zi.

Next, we provide the matching converse for the privacy leakage rate in (98), which is
achieved when R0 ≥ I(U; X̃|Y, V). We have

n(R� + δn)
(a)
≥ H(Xn|Zn)− H(Xn|Zn, W)

(b)
= H(Xn|Zn)−

n

∑
i=1

H(Xi|Zi, Zi−1, Xn
i+1, W, Yn

i+1)

(c)
= H(Xn|Zn)−

n

∑
i=1

H(Xi|Zi, Vi, Xn
i+1)

(d)
≥

n

∑
i=1

[H(Xi|Zi)− H(Xi|Zi, Vi)]

=
n

∑
i=1

I(Vi; Xi|Zi) (113)

where (a) follows by (3), (b) follows from the Markov chain relation

(Zn
i+1, Yn

i+1)− (Xn
i+1, W, Zi)− Xi (114)

(c) follows from the definition of Vi, and (d) follows because (Xn, Zn) are i.i.d.
The matching converse for the privacy leakage rate in (100), achieved when R0 ≥

I(U; X̃|Y), follows from the fact that conditional mutual information is non-negative.
Secrecy Leakage Rate: We have

n(Rs + δn)

(a)
≥ [I(W; Yn)− I(W; Zn)] + [I(W; X̃n)− I(W; Yn)]

(b)
= [I(W; Yn)− I(W; Zn)] + I(W; X̃n|K)− I(K; X̃n|W)− I(W; Yn|K) + I(K; Yn|W)

(c)
= [I(W; Yn)− I(W; Zn)] + [I(W; X̃n|K)− I(W; Yn|K)]− I(K; X̃n|W, Yn)

(d)
≥

n

∑
i=1

[
I(W; Yi|Yn

i+1)− I(W; Zi|Zi−1)
]
+ I(W; X̃n|Yn, K)−H(K)
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(e)
=

n

∑
i=1

[
I(W; Yi|Yn

i+1, Zi−1)− I(W; Zi|Zi−1, Yn
i+1)− R0

]
+ nH(X̃|Y)−

n

∑
i=1

H(X̃i|Yi, Yn
i+1, W, K, X̃i−1)

( f )
≥

n

∑
i=1

[
I(W, Yn

i+1, Zi−1; Yi)− I(W, Zi−1, Yn
i+1; Zi)− R0

]
+ nH(X̃|Y)−

n

∑
i=1

H(X̃i|Yi, Yn
i+1, W, K, Xi−1, Zi−1)

(g)
=

n

∑
i=1

[
I(Vi; Yi)− I(Vi; Zi)− R0

]
+ nH(X̃|Y)−

n

∑
i=1

H(X̃i|Yi, Ui, Vi)

(h)
=

n

∑
i=1

[
I(Vi; Yi)− I(Vi; Zi)− R0

]
+

n

∑
i=1

[
I(Ui, Vi; X̃i)− I(Ui, Vi; Yi)

]
=

n

∑
i=1

[
− I(Ui, Vi; Zi)− R0 + I(Ui, Vi; X̃i) + (I(Ui; Zi|Vi)− I(Ui; Yi|Vi))

]
(i)
≥

n

∑
i=1

[
I(Ui; X̃i|Zi)− R0 + [I(Ui; Zi|Vi)− I(Ui; Yi|Vi)]

−
]

(115)

where (a) follows by (2) and from the Markov chain relation W − X̃n − Zn, (b) follows
because K is independent of (X̃n, Yn), (c) and (d) follow from the Markov chain relation
(W, K)− X̃n −Yn, (e) follows because H(K) = nR0 and (X̃n, Yn) are i.i.d. and independent
of K, and from the Csiszár’s sum identity and the Markov chain relation

Yi−1 − (X̃i−1, W, K, Yn
i+1, Yi)− X̃i (116)

( f ) follows since (Yn, Zn) are i.i.d. and from the data processing inequality applied to the
Markov chain relation

(Xi−1, Zi−1)− (X̃i−1, W, K, Yn
i+1, Yi)− X̃i (117)

(g) follows from the definitions of Vi and Ui, (h) follows from the Markov chain relation
(Vi, Ui)− X̃i − Yi, and (i) follows from the Markov chain relation Vi − Ui − X̃i − Zi.

Next, the matching converse for the secrecy leakage rate in (102), achieved when
R0 ≥ I(U; X̃|Y, V), is provided.

n(Rs + δn)
(a)
≥ H(X̃n|Zn)− H(X̃n|Zn, W)

(b)
≥ H(X̃n|Zn)−

n

∑
i=1

H(X̃i|Zi, Zi−1, X̃n
i+1, W, Yn

i+1)

(c)
= H(X̃n|Zn)−

n

∑
i=1

H(X̃i|Zi, Vi, X̃n
i+1)

(d)
≥

n

∑
i=1

[H(X̃i|Zi)− H(X̃i|Zi, Vi)] =
n

∑
i=1

I(Vi; X̃i|Zi) (118)

where (a) follows by (2), (b) follows from the Markov chain relation

(Zn
i+1, Yn

i+1)− (X̃n
i+1, W, Zi)− X̃i (119)

(c) follows from the definition of Vi, and (d) follows because (X̃n, Zn) are i.i.d.
Similar to the privacy leakage analysis above, the matching converse for the secrecy

leakage rate in (103), achieved when R0 ≥ I(U; X̃|Y), follows from the fact that conditional
mutual information is non-negative.
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Introduce a uniformly distributed time-sharing random variable Q∼Unif[1 : n] that
is independent of other random variables, and define X = XQ, X̃ = X̃Q, Y =YQ, Z = ZQ,
V=VQ, and U=(UQ,Q), so

(Q, V)− U − X̃ − X − (Y, Z) (120)

form a Markov chain. The converse proof follows by letting δn → 0.
Cardinality Bounds: We use the support lemma [54] (Lemma 15.4) for the cardinality

bound proofs, which is a standard step, so we omit the proof.
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Abstract: Emerging wireless technologies are envisioned to support a variety of applications that
require simultaneously maintaining low latency and high reliability. Non-orthogonal multiple access
techniques constitute one candidate for grant-free transmission alleviating the signaling requirements
for uplink transmissions. In open-loop transmissions over fading channels, in which the transmitters
do not have access to the channel state information, the existing approaches are prone to facing
frequent outage events. Such outage events lead to repeated re-transmissions of the duplicate
information packets, penalizing the latency. This paper proposes a multi-access broadcast approach
in which each user splits its information stream into several information layers, each adapted to
one possible channel state. This approach facilitates preventing outage events and improves the
overall transmission latency. Based on the proposed approach, the average queuing delay of each
user is analyzed for different arrival processes at each transmitter. First, for deterministic arrivals,
closed-form lower and upper bounds on the average delay are characterized analytically. Secondly,
for Poisson arrivals, a closed-form expression for the average delay is delineated using the Pollaczek-
Khinchin formula. Based on the established bounds, the proposed approach achieves less average
delay than single-layer outage approaches. Under optimal power allocation among the encoded
layers, numerical evaluations demonstrate that the proposed approach significantly minimizes
average sum delays compared to traditional outage approaches, especially under high arrival rates.

Keywords: broadcast approach; channel state information; latency; multiple access

1. Introduction

There is a growing need for maintaining low latency and high reliability in a wide
range of wireless communication systems [1]. Among the recently proposed techniques
for attaining the latency-reliability requirements is the power domain non-orthogonal
multiple access (NOMA) [2–6]. Uplink power domain NOMA [5] facilitates simultaneous
multi-user channel access, alleviating the traditional signaling period at the beginning of
the transmission. Furthermore, by leveraging power control and adaptive decoding order
among users, NOMA techniques enhance user fairness by taking into consideration the
dissimilarities in the channel state of each user [7,8].

A fundamental challenge that NOMA faces in wireless networks is that its power
control critically relies on the availability of full channel state information at each trans-
mitter (CSIT). This assumption is generally unfeasible under the anticipated network scale
growth. In the absence of CSIT, traditional NOMA occasionally suffers from outage events,
which necessitate repeated re-transmissions and negatively affect the overall latency. To
address this issue, we propose a non-orthogonal multi-access technique in which each
transmitter splits its stream of information into multiple encoded layers, each adapted
to a specific combination of all the network’s channel states. Each user then transmits

Entropy 2022, 24, 1757. https://doi.org/10.3390/e24121757 https://www.mdpi.com/journal/entropy209
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the superposition of all its encoded layers to the receiver. In particular, we approach the
problem of minimizing the overall communication latency from a cross-layer resource
allocation perspective by focusing on the dominant delay factor, i.e., the queuing delay [9].
The goal of the proposed approach is to minimize the average sum-queuing delay among
users by optimally allocating power among the encoded layers at each transmitter in the
physical layer.

Outage avoidance via multi-layer superposition coding was first proposed in [10,11]
for the slowly fading single-user channels. This is generally referred to as the broadcast ap-
proach [12]. Furthermore, the studies in [13] extended the broadcast approach to the energy
harvesting settings, those in [14–20] to random and multi-access channel models, and those
in [21,22] to the multiuser interference channel. Aside from analyzing the achievable rate
regions of multi-layer superposition coding [17,23], the average delay performance has only
been studied for the single-user fading channel in [24]. However, under CSIT uncertainties,
the advantages of adaptive multi-layer superposition coding for controlling the average
queuing delay in multiple access channels are yet to be explored. Finally, we note that
the broadcast approach is related to the studies on the “rate-splitting”, the foundations of
which rely on superposition coding of the layered information messages [25].

In this paper, we consider an N-user block fading multiple access channel (MAC) in
which all transmitters are oblivious to their instantaneous channel state. Each user possesses
an infinite capacity queue, occasionally holding the arriving information packets to be
transmitted. A novel multi-layer superposition coding scheme is then employed, in which
each transmitter adapts its message to the combined network state. Based on the proposed
scheme, closed-form lower and upper bounds on the average delay are characterized
analytically for deterministic arrivals. Furthermore, a closed-form expression for the
average queuing delay is delineated for Poisson arrivals. Based on the derived bounds
on average delay, the proposed approach is shown to outperform the single-layer outage
approach. Finally, under optimal power allocation among the encoded layers, numerical
evaluations demonstrate that the broadcast approach significantly reduces the average sum
delays compared to traditional outage approaches under symmetric/asymmetric arrival
rates and channel statistics among users.

A rich literature exists on minimizing the average delay through cross-layer resource
allocation in MAC with full CSIT. Relevant studies include [26] in which the authors
provide an optimal solution for minimizing average delays of two-user MAC channels
by controlling the departure probability of each user’s queue. In [27], an information-
theoretic rate allocation policy is proposed to achieve a lower bound on the average delay
of multi-access coding schemes. Dynamic power and rate control to minimize the average
delay are studied for multi-access channels in [28]. The study in [28] provides a one-step
value iteration policy for optimal scheduling in MAC fading channels. A lower bound
on the LTE-A average delay is derived in [29] for random access channels under different
arrival processes. The random access scheduling problem is addressed in [30] using a
distributed virtual queue model facilitating a self-organizing policy. The study in [31]
proposes a joint superposition coding and scheduling policy for the uplink NOMA by
relying on user-pairing to reduce the complexity of analysis [32,33]. The accuracy of
ranking users in NOMA techniques using distance-based measures versus instantaneous
signal-to-noise ratio (SNR) is addressed in [34]. Joint scheduling and superposition coding
in fading channels is studied in [35]. The effect of unsaturated traffic in uplink NOMA is
studied in [36] using tools from queuing theory. Interaction between power control and
queuing service rates in interference-limited channels is studied in [37]. Delay analysis of
multi-point to multi-point networks is provided in [38] for spatial-temporal random arrival
traffic. The problem of power control in delay-bounded applications is considered in [39],
especially under the assumption of imperfect successive interference cancellation in uplink
NOMA. The effective capacity of two-user uplink NOMA is characterized in [40] under
quality-of-service delay constraints.
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Energy-efficient transmission in uplink NOMA is studied in [41] under statistical
delay constraints, where probabilistic upper bounds on queuing delays of NOMA are
characterized. Resorting to the concept of effective capacity, the study in [42] proposes
an optimized hybrid approach between non-orthogonal multiple access and orthogonal
multiple access with different user pairing techniques in order to maximize the effective
capacity under stringent delay constraints. Contention-based modified NOMA for uplink
access is studied in [43], showing that exploiting collisions in the power domain can greatly
reduce access delay. The throughput, access delay, and energy efficiency of NOMA uplink
random access system are studied in [44]. Joint power control and user scheduling is
considered in [45] to investigate the access delay minimization problem through an efficient
sub-optimal iterative algorithm. Optimal power level partitioning to accommodate non-
critical and high-priority messages is studied in [46]. A joint dynamic power control and
user pairing algorithm is proposed in [47] to minimize long-term time average transmit
power and queuing delay. Recent studies further includes [48] in which an adaptive rate
NOMA with full CSIT is shown to provide better ergodic capacities for mobile users than
OMA while satisfying strict local delay constraints for the internet of things (IoT) devices
in cellular IoT networks. Opportunistic NOMA schemes are proposed in [49] for short
message delivery with delay constraint based on which an upper bound on session error
probability is derived, showing the impact of NOMA on session error under Rayleigh
fading. A queuing delay analysis is presented in [50] for uplink NOMA with full CSIT,
and the impact of channel estimation imperfections for finite-length channel coding is
studied. Dynamic power allocation schemes with statistical delay quality-of-service (QoS)
guarantees are shown in [51] to significantly improve the sum effective capacity and
effective energy efficiency for an uplink NOMA system with paired users.

The rest of this paper is organized as follows. Section 2 presents the N-user multi-
access channel model. The proposed multi-layer-based multi-access approach is outlined
in Section 3 for the special case of the 2-state channel. The average delay achievable
by the proposed approach is shown to outperform the average delay of the single-layer
outage approach in Section 4 for deterministic and stochastic arrivals processes. The
proposed multi-access approach is generalized to the case of finite arbitrary �-state channel
in Section 5. Finally, numerical evaluations are provided in Section 6, and the paper is
concluded in Section 7.

2. Channel Model

Consider an N-user block fading MAC channel consisting of N transmitters and one
receiver. The channel state is assumed to remain unchanged during the period of one
transmission block of n channel uses and varies independently among consecutive blocks.
We assume that the block length n is large enough to give rise to the notion of reliable
communications but much shorter than the dynamics of the fading process [24]. Each
transmitter is assumed to know the statistics of the channel state information (CSI) of its
own link to the receiver but is oblivious to its instantaneous value. Complete CSI of all links
is assumed to be available at the receiver. The input-output relationship of this channel is
given by

Y =
N

∑
i=1

hiXi + W , (1)

where Xi denotes the transmitted signal from user i and W is the additive white Gaussian
noise with zero mean and unit variance. Finally, hi denotes the state of the fading channel
between transmitter i and the receiver. The transmitted signal Xi is subject to an average
power constraint P for all i ∈ {1, . . . , N}, i.e., E

[
|Xi|2

]
≤ P. We consider a quantized model

for the fading channel according to which h2
i takes one of two possible states, referred to

as {weak, strong}, denoted by {α1, α2}, respectively. Without loss of generality, we assume
0 < α1 < α2 < +∞. User i experiences strong or weak channel states with probabilities
pi

�
= P(h2

i = α2) and p̄i
�
= 1 − pi, respectively.
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Each transmitter is assumed to possess an infinite-capacity queue. The queue at
transmitter i receives random packets with an average arrival rate λi (bits/channel use).
The size of the data queued at transmitter i at the beginning of any transmission block t
is denoted by Q̃i(t), ∀i ∈ {1, . . . , N}. We define Ai(t) as the total number of bits arriving
in the queue at transmitter i during transmission block t. Finally, ri(t) (bits/channel use)
denotes the service rate of the queue at transmitter i. Hence, the queue size at transmitter i
at the end of any transmission block can be expressed using a recursive relationship as

Q̃i(t + 1) =

{
Q̃i(t) + nAi(t)− nri(t), Q̃i(t) + nAi(t)− nri(t) ≥ 0
0, otherwise

. (2)

Accordingly, we define Qi(t) as queue size normalized by the number of transmission
blocks n, i.e.,

Qi(t + 1)
�
=

{
Qi(t) + Zi(t), Qi(t) + Zi(t) ≥ 0
0, o.w.

, (3)

where the random variable Zi(t) is defined as Zi(t)
�
= Ai(t)− ri(t), and it captures the

change in the queue size at transmitter i at the end of transmission block t. We remark
that the number of bit arrivals Ai(t) is random and does not necessarily fit into the exact
size of the transmitted packet in a given transmission block. Therefore, if the backlogged
data at any queue is less than a packet length, the data bits are zero-padded to form a
complete packet for the encoder at each transmitter. Throughout the rest of the paper, we
assume that the processing delay, i.e., encoding and decoding processes, as well as the
transmission delay, are fixed and negligible with respect to the queuing delay. We use the
concise notation C(x, y) �

= 1
2 log2(1 +

x
1
P +y

), {xi
j}k

j=1
�
= {xi

1, xi
2, . . . , xi

k}. Finally, we denote

the set of all users in the network by N �
= {1, . . . , N}.

3. 2-State Channel Multi-Access

In this section, we present a non-orthogonal multiple-access approach based on multi-
layer encoding at each transmitter and successive interference cancellation (SIC) at the
receiver. The underlying layering approach hinges on adapting the number of encoded
layers at each transmitter to the combined fading state of the network, i.e., the fading states
of all transmitters to the receiver. Owing to the arising interference in non-orthogonal
multi-access channels with no CSIT, the channel state of each user directly affects the
decoding success probabilities of all the other users. Motivated by this, the recent work
in [17] proposed a multi-layer coding approach for the two-user multiple access channel
with no CSIT, specially adapted to the combined network state resulting in an enlarged
average achievable rate regions compared to the existing multi-layer coding approaches.
In this section, we extend the layering approach in [17] to the general case of an arbitrary
number of N-users. As shown in this paper, the proposed multi-access approach enjoys
considerable advantages in reducing the queuing delay.

3.1. Layering Approach

At the beginning of each transmission block, user i aims to transmit all the data bits
accumulated in its queue if the channel state allows it. Otherwise, it encodes a part of
its data with the maximum allowable encoding rate. Towards this goal, user i encodes
its data (fully or partially) using 2N independent messages generated from 2N Gaussian
codebooks. These messages are denoted by Ui

jk, ∀i ∈ N , j ∈ {1, 2}, k ∈ {0 ∪N}. Based on
this decomposition

Xi =
2

∑
j=1

N

∑
k=0

Ui
jk . (4)
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We consider an ordering of the network states based on the number of users with strong
channel states denoted by k. We define Sk as the set of k users’ indices that experience strong
channel states. Accordingly, Ek denotes the event that exactly k users are experiencing a
strong channel including.

The notation Ui
jk can be interpreted as follows. Superscript i denotes the user index

i ∈ N , subscript j ∈ {1, 2} refers to user i’s channel state, where j = 1 if h2
i = α1 and

otherwise j = 2. Finally, k ∈ {0 ∪N} represents the number of users in the network with a
strong channel state, possibly including user i’s channel. Therefore, for every value of k,
user i adapts the rate of two codewords, {Ui

jk}2
j=1, based on its own channel state resulting

in a total of 2k layers. The correspondence between each channel state and the adapted
layer is shown in Table 1 and summarized below:

• Ui
10 is adapted to E0, where all channels are weak.

• Ui
2N is adapted to EN , where all channels are strong.

• When exactly k channels are strong:

– Ui
1k is adapted to N\Ek if user i’s channel is weak.

– Ui
2k is adapted to Ek if user i’s channel is strong.

The rate of codeword Ui
jk is denoted by Ri

jk. Finally, we define βi
jk as the power fraction

of the total power P allocated to codeword Ui
jk, such that

2

∑
j=1

N

∑
k=0

βi
jk = 1 .

For user i, the rate of each codebook is governed via the power allocation parameters βi
jk

such that at least one layer is successfully decoded in every possible network state.

Table 1. Layering and codebook assignments by user i.

h2
i

k
0 1 2 . . . N − 1 N

α1 Ui
10 Ui

11 Ui
12 . . . U1

1N−1
α2 Ui

21 Ui
22 . . . Ui

2N−1 Ui
2N

3.2. Decoding Approach

Corresponding to the layering approach in Section 3.1, we propose a decoding algo-
rithm with 2kN SIC stages for each combined channel state with k strong channels. The
layers’ decoding order is adapted to the combined channel states such that all the layers
adapted to channel states with less than k strong users, {Ui

j�, ∀j ∈ {1, 2}, � < k}, are first
decoded and subtracted from the received signal. Afterwards, layers adapted to channel
state with exactly k strong users, {Ui

jk, ∀j ∈ {1, 2}}, are decoded.
When |S| = k, the receiver employs 4k + 1 decoding stages. Each of the layers for any

j ∈ {1, 2} and � ∈ {0, . . . , k}, the set of codebooks {Ui
j� : i ∈ N} is partitioned to two sets

Pj� � {Ui
j� : i ∈ S} and Qj� � {Ui

j� : i /∈ S} , (5)

rendering a total of 4k+ 1 partitions for different j ∈ {1, 2} and � ∈ {0, . . . , k}. The decoding
strategy decodes one message from each of these, except for the partition {Ui

2k : i /∈ S}.
The decoding strategy works as follows. We create the following two sequences of sets:

P � {P10,P11,P21, . . . ,P2(k−1),P1k, } , (6)

Q � {Q1k,Q2(k−1),Q1(k−1), . . . ,Q11,Q10, } . (7)

The decoding strategy selects codebooks by alternating between P and Q in ascending
order and decodes exactly one codebook from each. Specifically, the codebook sets are
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selected in the following order: {P10,Q1k,P11,Q2(k−1),P21, . . . ,P1k,Q10}. This results in
4k coding stages. Finally, the codebooks in {Ui

2k : i ∈ S} are decoded as the last stage,
i.e., stage 4k + 1. Next, we describe the decoding stages and the set of codebooks decoded
in each.

• Decoding stage 1: We start by decoding the layers P10 � {Ui
10 : i ∈ S}, i.e., the

codebooks Ui
10 of only the k strong users in S . We define Sk as an ordered set of these

users, in which the users are ordered in an ascending order based on their indices. The
codebooks will be decoded sequentially in this order.

• Decoding stage 2: Next, after decoding and removing the codebooks in P10, we
sequentially decode the layers in Q1k = {Ui

1k : i /∈ S}, which involves layers Ui
1k of

users with weak channels.
• Decoding stage 3: In the third stage, the codebooks in P10 and Q1k are already

decoded. We continue by sequentially decoding the set of codebooks in P11 � {Ui
11 :

i ∈ S}.
• Decoding stage 4: The decoding process continues by sequentially decoding the

codebooks in Q2(k−1) = {Ui
2(k−1) : i /∈ S}, while the codebooks of P10, Q1k, and P11

are already decoded.
• Decoding stage 5: This stage sequentially decodes the codebooks P21.
• Decoding stage 6: This stage sequentially decodes the codebooks in Q1(k−1).
• Decoding stages {2, . . . , 4k + 1}: Following the pattern of the previous decoding

stages, in general, in stage {2, . . . , 4k}, we decode the codebooks according to the
following schedule for � ∈ {1, . . . , k}:

codebooks in Q1(k−�+1) stage 4�− 2
codebooks in P1� stage 4�− 1
codebooks in Q2(k−�) stage 4�
codebooks in P2� stage 4�+ 1

(8)

The proposed decoding approach results in decoding more layers for a channel state
with k strong users compared to a state with k − 1 strong users. In particular, the receiver
decodes one extra layer for user i in channel state Ek as compared to state Ek−1. Note
that in both states, user i experiences a weak channel. On the other hand, the receiver
decodes two extra layers for user i in channel state Ek as compared to state Ek−1, note that
user i experiences a strong channel in both states. Our intuition behind such a strategy
hinges on two factors. First, that decoding and removing additional interfering users
with strong channel states is expected to increase the achievable rate of user i. Secondly,
when user i experiences a stronger channel, the receiver can possibly decode an additional
layer from its message. The decoded layers for channel state Ek are shown in Table 2
for illustration.

Table 2. Decoded layers for channel state Ek where h2
i = αj.

Stage Stage 1 Stage 2 Stage 3 Stage 4 . . . Stage 4k + 1

Codebook P10 Q1k P11 Q2(k−1) . . . {U1
2k : i ∈ Sk}

Finally, the detailed steps of the proposed successive decoding algorithm are presented
in Algorithm 1. We remark that the effect of the precedence of users with similar channel
states within each decoding stage on the average achievable delay will be analyzed in the
subsequent sections.
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Algorithm 1: Successive Decoding for 2-state channel

1: input (h2
1, . . . , h2

N), k
2: for � ∈ {0, . . . , k}
3: if � = 0
4: In stage 1 successively decode {Ui

10}N
i=1

5: else if � ∈ {1, . . . , k}
6: (1) In stage 4�− 2 successively decode Q1(k−�+1)
7: (2) In stage 4�− 1 successively decode P1�
8: (3) In stage 4� successively decode Q2(k−�)

9: (4) In stage 4�+ 1 successively decode P2�
10: end if

11: end for

Based on the multi-access approach outlined throughout this section, the service rate
of the queue at transmitter i is determined by the total rates of the successfully decoded
layers during each network state. Therefore, the service rate ri(t) during transmission block
t varies randomly and is jointly determined by the states of all users as well as the power
allocation among different layers at each transmitter, i.e., βi

jk. The achievable rates for all
the encoded layers are formally stated in the Theorem 1.

Theorem 1. For the N-user MAC channel without CSIT, when exactly k ∈ N ∪ {0} users have
strong channels, the achievable rates of the layering approach in Section 3.1 and the decoding
policy in Algorithm 1 are characterized by the set of rates

{
Ri

jk, ∀j ∈ {1, 2}, i ∈ N , � ∈ {0 ∪N}
}

that satisfy

Ri
j� ≤ min

S :|S|=k
di

j�(S) , (9)

where constants
{

di
jk(S), ∀k ∈ {0 ∪N}, j ∈ {1, 2}

}
are defined in Appendix A.

Proof. See Appendix B.

We remark that characterizing the achievable rate region of the proposed approach in
the form of rate bounds on individual codebooks rates, rather than an average achievable
rate region, will be instrumental to characterizing the average achievable delay analysis
throughout the next section.

4. Average Queuing Delay

In this section, we investigate the average queuing delay achieved by the multi-access
approach in Section 3 compared to the conventional single-layer (outage) multi-access
approach. First, in Section 4.1, we focus on the case of the deterministic arrival process
at each queue, for which we delineate lower and upper bounds on the average queuing
delay. Furthermore, the case of stochastic arrivals is examined in Section 4.2 in which
a closed-form expression for the average delay achievable by the proposed approach is
characterized and compared to that of the single-layer transmission approach. To proceed,
we define E i

k as the event in which we have exactly k strong channels and they include
the channel of user i. Accordingly, we define Ē i

k � N\E i
k. We begin by computing the

probabilities of the events E i
k (and E(S̄ i

k)) as follows.

P
[
E i

k

]
= ∑

I⊆N
|I|=k

∏
j∈I

pj ∏
�/∈I
� �=i

p̄� and P
[
Ē i

k

]
= ∑

I⊆N
|I|=k

∏
j∈I
j �=i

pj ∏
�/∈I

p̄� . (10)

where I denotes a subset of user indices.
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4.1. Deterministic Arrivals

Throughout this subsection, we assume that the data arrival process at each queue is a
deterministic process with an average arrival rate λi, i.e., Ai(t) = λi, ∀i ∈ N . Note that as
a result of the zero-padding applied by the encoder, whenever the available data bits are
fewer than a transmission packet, a G/G/1 queuing model is generated at each transmitter.
A closed-form expression characterizing the average delay of the G/G/1 queuing model is,
in general, unknown. Therefore we resort to characterizing upper and lower bounds on the
average queuing delay. These bounds are formally presented in Theorem 2. Before stating
Theorem 2, we provide an outline of the main steps pertinent to deriving the characterized
bounds, where the detailed proof can be found in Appendix C.

Establishing the desired bounds hinges on characterizing the average queue size at
each transmitter i using the Laplace transform of the probability distribution function (PDF)
of the queue size Qi (moment generating function). Let the PDF of Qi be denoted by dFi(q)
and its associated Laplace transform be denoted by Li(s). Therefore, the average queue
size at transmitter i is given by

E[Qi] = lim
s→0

−dLi(s)
ds

. (11)

Recalling the recursive expression for Qi in terms of the variable Zi in (3), a recursive form
of Fi(q) can be expressed as follows [52,53]

Fi(q) =

⎧⎨⎩
∫ q

−∞
Fi(q − τ)dFZi (τ) , q ≥ 0

0 , q < 0
, (12)

where dFZi (z) denote PDF of Zi denoting change in queue size at user i. At the end of every
transmission block, the change in queue size i, Zi, is primarily determined by the difference
between the data arrival λi and the total rate of all the layers successfully decoded by
the receiver from user i’s message stream, which in turn is determined by the combined
network state. Consequently, dFZi (z) can be expressed as

dFZi (z) = P
[
E
(
S̄ i

0

)]
δ
(

z − λi + Ri
10

)
+ P

[
E
(
S i

N

)]
δ

(
z − λi +

2

∑
j=1

N

∑
k=1

Ri
jk

)

+
N−1

∑
�=1

P
[
E
(
S i
�

)]
δ

(
z − λi +

2

∑
j=1
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We remark that in order to guarantee the stability of the data queue at each transmitter, we
assume that the arrival rate λi is less than the average achievable rate (service rate of the
queue), i.e.,

λi < E[ri] , ∀i ∈ N , (14)

where the average service rate at queue i is given by

E[ri] = P
[
E
(
S̄ i

0

)]
Ri

10 + P
[
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S i

N

)]
·
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·
(

2

∑
j=1
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. (15)

An explicit expression for Fi(q), ∀i ∈ N , directly follows by combining (12) and (13)
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Fi(q) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
0 , ∀q ∈ R1

P
[
E
(
S i

0
)]

Fi(q − λi + ∑2
j=1 ∑N

k=0 Ri
jk) , ∀q ∈ R2

...
P
[
E
(
S̄ i

0
)]

Fi(q − λi + Ri
10) , ∀q ∈ R2N−1

, (16)

where the intervals Ri, ∀i ∈ {1, . . . , 2N − 1}, are given by

R1
�
= (−∞, 0) ,

R2
�
=

[
0, λi −

2

∑
j=1

N

∑
k=0

Ri
jk + Ri

1(N−1)

]
,

...

R2N−1
�
=
[
λi − Ri

10, ∞
)

.

Finally, the Laplace transform of the queue size PDF is computed using (16), which in turn
facilitates obtaining the average queue size at user i. Note that although Fi(q) is expressed
in (16), it is still a recursive form. Therefore, the obtained expression for the average queue
size delay contains the unknown term Fi(q), which is why a closed form cannot be obtained.
Subsequently, an upper and a lower bound on the average queue size of user i ∈ N are
formally characterized in the next theorem.

Theorem 2. The average queue size of transmitter i under the multi-access policy in Section 3 is
bounded by

1
2

2

∑
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2
− Ni

Di
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2
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jk − λi −

Ni
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, (17)

where we have defined Di
�
= 2(E[ri]− λi) and
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·
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. (18)

Proof. See Appendix C.

Using Little’s law, upper and lower bounds on the average queuing delay at trans-
mitter i under deterministic arrivals can directly be obtained by normalizing the bounds
characterized in Theorem 2 E[Qi] by λi.

In order to assess the performance of the proposed multi-layer superposition coding
access approach, we compare the achievable average queuing delay to that of the conven-
tional single-layer access (outage) approach. To this end, we first summarize the single-layer
approach, and afterward, a lower bound on the average queuing delay achieved by the
single-layer approach is characterized in Lemma 1. Finally, we compare the rate of in-
crease of the average delay achieved by each policy with respect to the data arrival rate.
As the arrival rate increases, the rate of increase of the average delay with respect to λi
resulting from the proposed approach is lower than that resulting from the single-layer
(outage) approach.

According to the single-layer (outage) transmission approach, each transmitter en-
codes the available data in its queue into one layer of a fixed rate irrespective of the
unknown network state. For i ∈ N , let Rs

i denote the rate of the single encoded layer
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transmitted by user i in the outage approach. In any given transmission block, if the rate
Rs

i lies in the achievable rate region of the actual network state, it will be successively
decoded by the receiver. Otherwise, an outage occurs where the receiver fails to decode
the message of user i, and the transmitter attempts to re-transmit the same message in the
subsequent transmission block using the same encoding rate Rs

i . We define rs
i (t) as the

service rate of the queue at user i under the single-layer transmission, the encoding rate of
the codeword transmitted by user i in transmission block t and successively decoded by the
receiver, hence removed from user i’s queue. Furthermore, we denote by ps

i the probability
of successfully decoding a message of rate Rs

i from user i. Accordingly, the service rate of
the queue at transmitter i using the outage approach is given by

rs
i (t) =

{
Rs

i , with probability ps
i

0, with probability 1 − ps
i

. (19)

Finally, we define Qs
i as the queuing size at transmitter i under the single-layer transmission

approach summarized above. In Lemma 1, we characterize lower and upper bounds on
the average E[Qs

i ] using an approach similar to that used to characterize the bounds in
Theorem 2.

Lemma 1. The average queue size of transmitter i under single layer (outage) approach is lower
and upper bounded according to:

1
2

Rs
i −

λi
2
−
(

Rs
i − λi

)2 − Rs
i
(
1 − ps

i
)

2
(

ps
i Rs

i − λi
) ≤ E[Qs

i ] ≤ Rs
i − λi −

(
Rs

i − λi
)2 − Rs

i
(
1 − ps

i
)

2
(

ps
i Rs

i − λi
) . (20)

Proof. Follows the same argument as that in Appendix C.

In Theorem 2 and Lemma 1, we remark that the characterized bounds on the aver-
age queuing delay at each transmitter depend only on the arrival rate at the same node.
Therefore, the effect of the average arrival rate on the delay bounds in (17) or (20) can be
analyzed for each node i independently. In Theorem 3, while fixing the average achievable
rates at each user among both approaches, we show that as the arrival rate λi at each user
increases, the proposed multi-access approach lower rate of increase in the average queuing
delay with respect to that achieved by the single layer approach.

Theorem 3. For the N-user multiple access channel, given that

E[ri] = E[rs
i ] , (21)

the rate of increase of average delay with respect the arrival rate under the approach in Section 3 is
lower than that achieved by single-layer outage approach, i.e., for every i ∈ N

∂E[Qi]

∂λi
≤ ∂E[Qs

i ]

∂λi
. (22)

Proof. See Appendix D.

4.2. Stochastic Arrivals

In this section, we consider the proposed multi-layer superposition coding policy
presented in Section 3 under Poisson distributed random arrivals Ai ∼ Pois(λi). We
adopt the same queuing model in which each transmitter applies zero-padding in case the
available bits in its queue are fewer than the size of a transmitted packet. Therefore, under
Poisson distributed arrivals, the considered model constitutes an M/G/1 queuing model
with an average arrival rate λi and service rate ri specified in (15). Furthermore, we denote
the queue utilization at transmitter i by ρi

�
= λi

E[ri ]
. The average queue length for an M/G/1
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queue can be characterized in a closed form by directly applying the Pollaczek-Khinchin
formula. Theorem 4 formally states the average queuing size under the proposed layering
and decoding approach.

Theorem 4. According to the multi-access approach outlined in Section 3, the average queue length
at user i with Poisson distributed arrivals with the average rate λi is given by

E[Qi] = ρi +
ρ2

i + λiV[ri]

2(1 − ρi)
, (23)

where the average service rate E[ri] is given by (15) and the variance of the service rate V[ri] is

V[ri] = −E[ri] + P
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·
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Ri
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)2

. (24)

Proof. Follows by applying Pollaczek-Khinchin formula for the M/G/1 average queue
size [54], where the service rate of queue i is given by ri.

We remark that the proof of Theorem 3 implies that the proposed approach out-
performs the single-layer outage approach in the case of Poisson arrivals as well, under
equal average achievable rates. This result can be readily verified given that the proof
in Appendix D essentially boils down to showing that the variance of the service rate
(transmission rate) at each queue, V[ri], is higher in the case of single-layer outage approach
when compared to the proposed multi-layer approach.

5. �-State Channel Multi-Access

In this section, we generalize the multi-access encoding and decoding approach
outlined in Section 3 from the special case of 2-state channel, {weak, strong}, to channel with
an arbitrary number of states �. We denote the channel states by {α1, . . . , α�}. Without loss
of generality, we assume that 0 < α1 < · · · < α� < +∞. Similarly to Section 2, we consider
a slowly fading non-orthogonal multiple access channel model with N-transmitters and
one receiver. The channel power gain of each user i can randomly take one of �-states, i.e.,
h2

i ∈ {α1, . . . , α�}.
In the layering approach in Section 3.1, we ordered the network state according to

the number of users experiencing a strong channel state. Subsequently, each user splits its
message into 2N layers, and the receiver decodes the layers adapted to the actual network
state. Similarly, for the �-state channel, we order the combined network state according to
the number of users in the network sharing a particular state αj as well as the value of such
a state. In particular, a combined network state is degraded with respect to another state if
it has a strictly smaller sum-rate capacity. We define the column vector h �

= [h2
1, . . . , h2

N ]
T as

the the combined network state and consider that a network state h to be degraded with
respect to network state h̃ if and only if

‖h‖1 < ‖h̃‖1 . (25)

The motivation of such ordering stems from the fact the condition in (25) indicates the
state h̃ allows higher sum-rate capacity in an N-user MAC with full CSIT. In order to
overcome the absence of full CSIT at each user, a transmitter splits its message into a
finite number of layers, each adapted to the combined network state to avoid complete
outages. Similarly to Section 3.1, user i encodes an available message using (�− 1)N + 1
independent random Gaussian codebooks. The codewords of these codebooks are denoted
by Ui

jk. For layer Ui
jk, j ∈ {1, . . . , �} denotes the channel state of user i, that is h2

i = αj, while
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k ∈ {0, . . . , N − 1} denotes the number of users in the network with stronger channel state,
i.e., k = ∑N

i=1 I(h2
i > αj) where I(x) is the indicator function.

According to the layering approach outlined above, the receiver attempts to succes-
sively decode up to N((�− 1)N + 1) depending on the exact combined network state h. In
particular, when the actual network state is h, the receiver decodes for each user i layer Ui

jk
adapted to network state h in addition to all the layers adapted to all degraded network
states h̃ such that (25) is satisfied. The number of layers decoded for user i at the receiver
increases from network state h to network state ĥ either if its own channel state becomes
stronger or if the number of users experiencing channels strictly stronger than h2

i increases.
Given a network state h, the receiver employs up to M stages of successive decoding,

where M denotes the argument of the strongest channel gain in the network, i.e., M �
=

arg ‖ h ‖∞. In stage n ∈ {1, . . . , M}, the receiver successively decodes up to one layer for
each user according to a descending order of the channel states among users. The details of
the proposed decoding order for the �-state channel are outlined in Algorithm 2.

Algorithm 2: Successive Decoding for �-state channel

1: input h
2: set ki = ∑N

d=1 I(h2
d > αi), ∀i ∈ N , M �

= arg ‖ h ‖∞
3: for m ∈ {1, . . . , M}
4: Successively decode {Ui

mki
: h2

i ≥ αm, ∀i ∈ N} .
5: end for

We remark that according to the proposed layering approach for the �-state channel
and decoding approach in Algorithm 2, the total number of layers decoded by the receiver
from each user i is possibly different in certain network states. Although, one possible
generalization of the layering policy in Section 3 is that each user adapts a different encoding
layer to each possible combined channel state, which in turn requires each user to encode
its message into �N layers. However, the computational complexity of the decoding process,
in addition to determining the optimal power allocation among layers, is considerable as
the number of users N grows larger. Therefore, we adopt the outlined layering approach
where each user splits its message into N(�− 1) + 1 layers instead of �N layers.

6. Numerical Evaluations

In this section, we evaluate the average achievable queuing delay for each user in
the MAC channel using the multi-access broadcast approach outlined in Section 3. In
particular, we adopt a Monte-Carlo simulation to optimally allocate the transmission power
among the encoded layers at each user such that the average queuing delay is minimized.
We divide the comparison settings into two main parts according to the arrival process
at each queue, where we set the arrival process to be the same among both users in each
setting. The first considers deterministic arrivals with value λ. The second one considers
the Poisson arrival process. Furthermore, we also consider symmetric and asymmetric
channel distributions among users. Throughout this section, we set the channel gains to
α1 = 0.5 for the weak channel and α2 = 1 for the strong channel gains. In the symmetric
case, we set the channel probability distribution for each user as p1 = p2 = 0.5, and in
the asymmetric case, we set the probabilities to p1 = 0.5 and p2 = 0.1. In the asymmetric
model, user 2 encounters a weak channel with a high probability, i.e., p̄2 = 0.9. We set the
objective function in this numerical simulation to minimize the sum average delays of users
1 and 2 for the broadcast approach. Subsequently, based on the obtained optimal power
distribution among the layers at each user, we evaluate the resulting average delay for the
outage approach such that the average rates for each user are equal across both approaches.

Figures 1 and 2 focus on deterministic arrivals in the symmetric and asymmetric
channel settings. In these figures, we compare average delay versus varying arrival rate λ
in the proposed broadcast approach (denoted by “Bc”) and in the outage approach (denoted
by “outage”). In these evaluations, we have set the SNR to P = 10 dB. Furthermore, in these
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figures, we provide upper bounds that we have characterized for the broadcast approach
(denoted by “BcUB”) and the outage approach (denoted by “OutageUB”). Figures 3 and 4
depict the counterparts of these results for Poisson arrival processes. Finally, it is observed
that introducing asymmetry in the models (i.e., unequal probabilities for encountering
strong channels) slightly improves the average latency of the broadcast approach, whereas
it does not have a notable effect in the outage approach.
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Figure 1. Deterministic: Symmetric.
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Figure 2. Deterministic: Asymmetric.
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Figure 3. Poisson: Symmetric.
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Figure 4. Poisson: Asymmetric.

The numerical evaluations support the analysis, demonstrating that the proposed
broadcast approach significantly enhances the average delays of both users in the moderate
and high SNR regimes for moderate and high arrival rates.

7. Concluding Remarks

In this paper, a non-orthogonal multi-access broadcast approach is employed, in
which each user splits its information stream into a finite number of encoded layers, each
adapted to one possible network state, serving as an outage-free low-latency transmission
scheme. In particular, the average queuing delay of each user under the proposed multi-
access approach is analyzed for different arrival processes at each transmitter. First, for
deterministic arrivals, closed-form lower and upper bounds on the average delay are
derived analytically. Secondly, for Poisson arrival rates, the average queuing delay is
characterized in a closed form. The latency advantage of the proposed approach compared
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to the single-layer transmission is shown analytically. Finally, we note that in this paper, our
focus has been on the discrete channel models since it provides a setting based on which
the key ideas (specifically information layering and decoding strategy) can be described
clearly and in detail. In order to gain insight into the behavior in the continuous channel
models, by increasing the number of channel states in the limit of an infinite number of
states, the models converge to a continuous model, and the codebook assignments and
decoding strategy converge to their counterparts for continuous channels (larger number
of codebooks with low rates).
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Appendix A. Constants of Theorem 1
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Appendix B. Proof of Theorem 1

The rate region characterized in Theorem 1 is achievable by employing the layering
scheme in Section 3.1 at each transmitter combined with the successive decoding strategy
in Algorithm 1. Recall that the maximum rate of codeword Ui

jk, for each user i ∈ N channel
j ∈ {1, 2}, and k ∈ {0 ∪N}, is bounded by the minimum achievable rate for that codebook
in all combined network states during which it is decoded.

We define S as the set of users’ indices that are experiencing a strong states. This set is
known to the receiver. Accordingly, we define Sk as a realization of S that contains exactly
k users, i.e., k users have strong channels and N − k users have weak channels. Next, we
discuss S0 and Sk for k ∈ N , separately.

|S| = 0: All channels are weak
In the event of a network state with all channels in the weak state, h2

i = α1, ∀i ∈ N ,
the receiver decodes only one layer per user. Specifically, it decodes {Ui

10 : i ∈ N}. It
performs successive decoding, starting from user 1 and continuing in the ascending order
of users’ indices. In order to successfully decode layers {Ui

10 : i ∈ N}, the rate of each layer
i ∈ N should satisfy:

∀i ∈ N : Ri
10 ≤ C

(
α1βi

10, Nα1 −
i

∑
j=1

α1β
j
10

)
�
= di

10(φ). (A9)

Note that the second argument C(x, y) represents the undecoded layers that will be treated
as interference for layer Ui

10. Hence, based on the successive decoding procedure, when
the receiver decodes Ui

10, layers Ui
10 for users j ∈ {1, . . . , i − 1} have already been decoded.

Thus, their interference is subtracted from the total transmitted signal, accounted by the
term 1 − β

j
10. On the other hand, none of the layers transmitted by users j ∈ {i + 1, . . . , N}

have been decoded yet, which is accounted by the term (N − i)α1.
Next, we will characterize upper bounds on the achievable rates of all the layers

decoded when there are exactly k users with strong channels, i.e., |S| = k.

|S| = k: k channels are strong
As discussed earlier, when |S| = k, the receiver employs 4k + 1 decoding stages. For

this purpose, the set of codebooks {Ui
j� : i ∈ N} is partitioned to two sets

Pj� � {Ui
j� : i ∈ S} and Qj� � {Ui

j� : i /∈ S} , (A10)

rendering a total of 4k+ 1 partitions for different j ∈ {1, 2} and � ∈ {0, . . . , k}. The decoding
strategy, decodes one message from each of these, except for the partition {Ui

2k : i /∈ S}.
The decoding strategy works as follows. We create the following two sequences of sets:

P � {P10,P11,P21, . . . ,P2(k−1),P1k, } , (A11)

Q � {Q1k,Q2(k−1),Q1(k−1), . . . ,Q11,Q10, } . (A12)
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The decoding strategy selects codebooks by alternating between P and Q an an ascending
order and decodes exactly one codebook from each. This results in 4k coding stages. Finally,
the codebooks in {Ui

2k : i ∈ S} are decoded as the last stage, i.e., stage 4k + 1.

• Decoding stage 1:

We start by decoding the layers P10 � {Ui
10 : i ∈ S}. Recall that Sk was defined as an

ordered set of these users. The codebooks will be decoded sequentially in this order.
When m ∈ Sk, we denote the position of m in Sk by k(m). Hence, ∀m ∈ Sk

Rm
10 ≤ C

⎛⎝α2βm
10, (N − k)α1 + kα2 − ∑

j∈Sk ,j≤k(m)

α2(1 − β
j
10)

⎞⎠ �
= dm

10(Sk) . (A13)

• Decoding stage 2:

Next, we sequentially decode the layers in Q1k = {Ui
1k : i /∈ S}, which involves layers

Ui
1k of users with weak channels. When n /∈ Sk, we denote the position of n in the

ordered set N\Sk by k̄(n). Hence, ∀n /∈ Sk

Rn
1k ≤ C

⎛⎝α1βn
1k, (N − k)α1 + kα2 − ∑

j∈Sk

α2β
j
10 − ∑

j/∈Sk ,j<k̄(n)

α1β
j
1k

⎞⎠ �
= dn

1k(Sk) . (A14)

• Decoding stage 3:

In the third stage, the codebooks in P10 and Q1k are already decoded. We continue by
sequentially decoding the set of codebooks in P11 � {Ui

11 : i ∈ S}. Hence, ∀m ∈ Sk

Rm
11 ≤ C

⎛⎝α2βm
11, (N − k)α1 + kα2 − ∑

j∈Sk

α2β
j
10 − ∑

j/∈Sk

α1β
j
1k − ∑

j∈Sk ,j≤k(m)

α2β
j
11)

⎞⎠ �
= dm

11(Sk) . (A15)

• Decoding stage 4:

The decoding process continues by sequentially decoding the codebooks in Q2(k−1) =

{Ui
2(k−1) : i /∈ S}, while the codebooks of P10, Q1k, and P11 are already decoded.

Hence, for n /∈ Sk

Rn
2(k−1) ≤ C

(
α1βn

2(k−1), (N − k)α1 + kα2 − ∑
j∈Sk

α2(β
j
10 + β

j
11)

− ∑
j/∈Sk

α1β
j
1k − ∑

j/∈Sk ,j≤k̄(n)

α1β
j
2(k−1))

⎞⎠ �
= dn

2(k−1)(Sk) . (A16)

• Decoding stage 5:

This stage sequentially decodes the codebooks P21. For all m ∈ S i
k we have

Rm
21 ≤ C

(
α2βm

21, (N − k)α1 + kα2 − ∑
j∈Sk

α2(β
j
10 + β

j
11)

− ∑
j/∈Sk

α1(β
j
1k + β

j
2(k−1))− ∑

j∈Sk ,j≤k(m)

α2β
j
21)

⎞⎠ �
= dm

21(Sk) . (A17)

• Decoding stage 6:

This stage sequentially decodes the codebooks in Q1(k−1). Hence, ∀n /∈ Sk we have
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Rn
1(k−1) ≤ C

(
α1βn

1(k−1), (N − k)α1 + kα2 − ∑
j∈Sk

α2(β
j
10 + β

j
11 + β

j
21)

− ∑
j/∈Sk

α1(β
j
1k + β

j
2(k−1))− ∑

j/∈Sk ,j≤k̄(n)

α1β
j
1(k−1))

⎞⎠ �
= dn

1(k−1)(Sk) . (A18)

• Decoding stages {2, . . . , 4k + 1}:

Following the pattern of the previous decoding stages, in general in the stage {2, . . . , 4k},
we decode the codebooks according to the following schedule, for � ∈ {1, . . . , k}:

codebooks in Q1(k−�+1) stage 4�− 2
codebooks in P1� stage 4�− 1
codebooks in Q2(k−�) stage 4�
codebooks in P2� stage 4�+ 1

(A19)

Accordingly, we obtain the following rate constraints.

• Decoding stage 4�− 2:

By sequentially decoding the messages in Q1(k−�+1), ∀n /∈ Sk we have

Rn
1(k−�+1) ≤ C

(
α1βn

1(k−�+1), (N − k)α1 + kα2 − ∑
j∈Sk

α2β
j
10 − ∑

j∈Sk

�−1

∑
i=1

α2(β
j
1i + β

j
2i)

− ∑
j/∈Sk

α1

�−1

∑
i=1

(β
j
1(k−i+1) + β

j
2(k−i+1))− ∑

j/∈Sk ,j≤k̄(n)

α1β
j
1(k−�+1))

⎞⎠ �
= dn

1(k−�+1)(Sk) . (A20)

• Decoding stage 4�− 1:

By sequentially decoding the messages in P1�, ∀m ∈ Sk we have

Rm
1� ≤ C

(
α2βm

1�, (N − k)α1 + kα2 − ∑
j∈Sk

α2β
j
10 − ∑

j∈Sk

�−1

∑
i=1

α2(β
j
1i + β

j
2i)

− ∑
j/∈Sk

α1

�−1

∑
i=1

(β
j
1(k−i+1) + β

j
2(k−i+1))− ∑

j∈Sk ,j≤k(m)

α2β
j
1�

⎞⎠ �
= dm

1�(Sk) . (A21)

• Decoding stage 4�:

By sequentially decoding the messages in Q1(k−�), ∀n /∈ Sk we have

Rn
2(k−�) ≤ C

(
α1βn

2(k−�), (N − k)α1 + kα2 − ∑
j∈Sk

α2β
j
10 − ∑

j∈Sk

�

∑
i=1

α2β
j
1i − ∑

j∈Sk

�−1

∑
i=1

α2β
j
2i

− ∑
j/∈Sk

�

∑
i=1

α1β
j
1(k−i+1 − ∑

j/∈Sk

�−1

∑
i=1

α1β
j
2(k−i+1) − ∑

j/∈Sk ,j≤k̄(n)

α1β
j
2(k−�)

)

⎞⎠ �
= dn

2(k−�)(Sk) . (A22)

• Decoding stage 4�+ 1:

By sequentially decoding the messages in P2�, ∀m ∈ Sk we have
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Rm
2� ≤ C

(
α2βm

2�, (N − k)α1 + kα2 − ∑
j∈Sk

α2β
j
10 − ∑

j∈Sk

�

∑
i=1

α2β
j
1i − ∑

j∈Sk

�−1

∑
i=1

α2β
j
2i

− ∑
j/∈Sk

α1

�

∑
i=1

(β
j
1(k−i+1) + β

j
2(k−i+1))− ∑

j∈Sk ,j≤k(m)

α2β
j
2�

⎞⎠ �
= dm

2�(Sk) . (A23)

Given the upper bounds on the individual achievable rates of Ui
jk, ∀i ∈ N , j ∈ 1, 2,

k ∈ {0 ∪ N}, the maximum achievable rate of Ui
jk is bounded my the minimum upper

bound among all the network states within which it is decoded.

Appendix C. Proof of Theorem 2

By applying a change of variable to each term and taking the integral
∫ ∞

0 e−sqdF1(q)
as a common factor, L1(s) can be expressed as

L1(s) =
F1(0)−

∫ (∑ij R1
ij−λ1)

0+ e−s(q+(λ1−∑ij R1
ij))dF1(q)

1 − [ p̄1 p̄2e−s(λ1−∑ij R1
ij) + p̄1 p2e−s(λ1−R1

11−R1
21)) + p1 p̄2e−s(λ1−R1

11−R1
12)) + p1 p2e−s(λ1−R1

11))]
(A24)

Further, by using the definition of F1(0) = p̄1 p̄2F1(q − (λ1 − ∑ij R1
ij)) and multiplying the

numerator and denominator of (A24) by a common factor, e−s(∑ij R1
ij−λ1), we have.

L1(s) =
p̄1 p̄2[

∫ (∑ij R1
ij−λ1)

0 e−s(∑ij R1
ij−λ1) − e−sqdF1(q)]

e−s(∑ij R1
ij−λ1) − [ p̄1 p̄2 + p̄1 p2e−s(R1

12+R1
22)) + p1 p̄2e−s(R1

21+R1
22)) + p1 p2e−s(R1

21+R1
12+R1

22))]

�
=

D1(s)
N1(s)

. (A25)

It can be readily noticed from (A25) that lims→0 D1(s) = lims→0 N1(s) = 0, therefore
we apply L’hopital’s limit rule on (A25) to arrive at

E[Q1] = lim
s→0

D
′′
Q1
(s)− N

′′
Q1
(s)

2D′
Q1
(s)

. (A26)

Finally, we evaluate the terms D
′′
Q1
(s), N

′′
Q1
(s) and D

′
Q1
(s) where we have

lim
s→0

D
′
Q1
(s) = −(∑

ij
R1

ij − λ1) + p̄1 p2(R1
12 + R1

22) + p1 p̄2(R1
12 + R1

22) + p1 p2(R1
12 + R1

21 + R1
22) (A27)

lim
s→0

D
′′
Q1
(s) = (∑

ij
R1

ij − λ1)
2 − p̄1 p2(R1

12 + R1
22)

2 − p1 p̄2(R1
12 + R1

22)
2 − p1 p2(R1

12 + R1
21 + R1

22)
2 , (A28)

and

lim
s→0

N
′′
Q1
(s) = p̄1 p̄2

∫ (∑ij R1
ij−λ1)

0
[(∑

ij
R1

ij − λ1)
2 − q2]dF1(q) . (A29)

Finally, by using lims→0 D
′
1(s) = lims→0 N

′
1(s), the second derivative of the numerator

term can be upper bounded by replacing (∑ij R1
ij − λ1 + q) by 2(∑ij R1

ij − λ1) arriving at
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lim
s→0

N
′′
Q1
(s) ≤ 2(∑

ij
R1

ij − λ1)

(
∑
ij

R1
ij − λ1

− p̄1 p2(R1
12 + R1

22)− p1 p̄2(R1
12 + R1

22)− p1 p2(R1
12 + R1

21 + R1
22)
)

. (A30)

Next, we leverage (A26) reaching

E[Qi] ≥
1
2 ∑2

j=1 ∑N
k=0 Ri

jk −
λi
2 − Ni

Di
,

E[Qi] ≤ ∑2
j=1 ∑N

k=0 Ri
jk − λi − Ni

Di
, (A31)

where

Ni
�
= −

(
∑2

j=1 ∑N
k=0 Ri

jk − λi

)2

+ P
[
E
(
S̄ i

0

)](
∑2

j=1 ∑N
k=1 Ri

jk

)2

+ ∑N−1
�=1 P

[
E
(
S i
�

)]
·
(

∑2
j=1 ∑N

k=�+1 Ri
jk + Ri

1�

)2

+ ∑N−1
�=1 P

[
E
(
S̄ i

�

)]
·
(

∑2
j=1 ∑N

k=�+1 Ri
jk + Ri

2�

)2

Di
�
= 2(E[ri]− λi) . (A32)

Appendix D. Proof of Theorem 3

In this Appendix, we base the proof of Theorem 3 on two main steps. First, we
characterize a lower bound on the average achievable rate of each user i using a single
layer per user (outage approach). Secondly, we derive the rate of increase of the average
achievable delay with respect to the average arrival rate λi (first-order derivative) for the
delay upper bound of the multi-layer approach to that of the delay lower bound of the
outage approach. Finally, under a fixed average achievable rate among both approaches,
we show that the proposed approach outperforms the single layer outage approach.

Recalling the recursive expression for Qi in terms of the variable Zi in (3), a recursive
form of Fi(q) can be expressed as follows [52,53]

Fi(q) =

{
0, q < 0∫ q
−∞ Fi(q − τ)dFZi (τ), q ≥ 0 ,

(A33)

where dFZi (z) denote pdf of Zi.
At the end of every transmission block, the change in queue size i, Zi, is primarily

determined by the difference between the data arrival λi and the fixed rate successfully
decoded at the receiver, which in turn is determined by the combined network state.
Consequently, dFZi (z) can be expressed by

dFZi (z) = Poutδ(z − λi + RF) . (A34)

We remark that in order to guarantee the stability of every queue i, we assume that the
arrival rate λi is less that the average achievable rate (service rate of the queue), i.e.,

λi < PoutRF, ∀i ∈ N . (A35)

Combining (12) and (13), an explicit expression for Fi(q), ∀i ∈ N is given by

Fi(q) ={
0 , ∀q < 0

PoutFi(q − λi + RF) , ∀q ≥ 0
. (A36)
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Finally, we evaluate the terms D
′′
Q1
(s) and N

′′
Q1
(s) where we have

lim
s→0

D
′′
Q1
(s) = (RF − λi)

2 − (1 − Pout)R2
F , (A37)

and

lim
s→0

N
′′
Q1
(s) = Pout

∫ RF−λ1)

0
[(RF − λ1)

2 − q2]dF1(q) . (A38)

Finally, by using lims→0 D
′
1(s) = lims→0 N

′
1(s), the second derivative of the numerator

term can be lower bounded by replacing (FF − λ1 + q) by (RF − λ1) arriving at

lim
s→0

N
′′
Q1
(s) ≥ (RF − λ1)(RF − λ1 − PoutRF) . (A39)

and substitute (A26) reaching

E[Qi] ≥
1
2

RF −
λi
2
− Ni

Di
, (A40)

where

Ni
�
= −(RF − λi)

2 + (1 − Pout)R2
F

Di
�
= PoutRF − λi . (A41)

By taking the derivative of the upper/lower bounds derived above we reach

∂UB
∂λi

= −1 −
∑2

j=1 ∑N
k=0 Ri

jk − λi

E[ri]− λi
− 2

Ni

D2
i

, (A42)

∂LB
∂λi

= −1 − RF − λi
PoutRF − λi

− 2
−(RF − λi)

2 + (1 − Pout)R2
F

PoutRF − λi
. (A43)
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Abstract: Large matrix multiplications commonly take place in large-scale machine-learning appli-
cations. Often, the sheer size of these matrices prevent carrying out the multiplication at a single
server. Therefore, these operations are typically offloaded to a distributed computing platform with a
master server and a large amount of workers in the cloud, operating in parallel. For such distributed
platforms, it has been recently shown that coding over the input data matrices can reduce the compu-
tational delay by introducing a tolerance against straggling workers, i.e., workers for which execution
time significantly lags with respect to the average. In addition to exact recovery, we impose a security
constraint on both matrices to be multiplied. Specifically, we assume that workers can collude and
eavesdrop on the content of these matrices. For this problem, we introduce a new class of polynomial
codes with fewer non-zero coefficients than the degree +1. We provide closed-form expressions for
the recovery threshold and show that our construction improves the recovery threshold of existing
schemes in the literature, in particular for larger matrix dimensions and a moderate to large number
of colluding workers. In the absence of any security constraints, we show that our construction is
optimal in terms of recovery threshold.

Keywords: distributed computation; matrix multiplication; distributed learning; information theo-
retic security; polynomial codes

1. Introduction

Recently, tensor operations have emerged as an important ingredient of many signal
processing and machine learning applications [1]. These operations are typically complex
due to the large size of the associated tensors. Therefore, in the interest of a low execution
time, such computations are often performed in a distributed fashion and outsourced to
a cloud of multiple workers that operate in parallel over the distributed data set. These
workers in many cases consist of commercial off-the-shelf servers that are characterized by
failures and varying execution times. Such straggling servers are handled by state-of-the
art cloud computation platforms via a repetition of the computation task at hand. However,
recent work has shown that encoding the input data may help alleviate the straggler
problem and thus reduce the computation latency, which mainly depends on the amount
of stragglers present in the cloud computing environment; see [2,3]. More generally, it
has been shown that coding can control the trade-off between computational delay and
communication load between workers and master server [3–6]. In addition, the workers in
the cloud may not be trustworthy, so the input and output of the partial computations need
to be protected against unauthorized access. To this end, it has been shown that stochastic
coding can help keep both input and output data secure from eavesdropping and colluding
workers (see, for example, [7–14]).

In this work, we focus on the canonical problem of distributing the multiplication of
two matrices A and B, i.e., C = AB, whose content should be kept secret from a prescribed
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number of colluding workers in the cloud. Our goal is to minimize the number of workers
from which the partial result must be downloaded, the so-called recovery threshold, to recover
the correct matrix product C.

Coded matrix computation was first addressed in the non-secure case by applying
separate MDS codes to encode the two matrices [3]. In [5], polynomial codes have been
introduced, which improves on the recovery threshold of [3]. The recovery threshold was
further improved by the so-called MatDot and PolyDot codes [15,16] at the expense of a
larger download rate. In particular, PolyDot codes allow a flexible trade-off between the
recovery threshold and the download rate, depending on the application at hand.

In [17,18] two different schemes are presented, an explicit scheme that improves on
the recovery thereshold of PolyDot codes and a construction based on the tensor rank
of matrix multiplication, which is optimal up to a factor of 2. In [19] a new construction
for private and secure matrix multiplication is proposed based on entangled polynomial
codes, which allows for a flexible trade-off between the upload rate and the download
rate (equivalently, the recovery threshold). For small numbers of stragglers [20] constructs
schemes that outperform the entangled polynomial scheme. Recently, several attempts
have been made to design coding schemes to further reduce upload and download rates,
the recovery threshold, and computational complexity for both workers and server (see, for
example, [21–27]). For example, in [21], bivariate polynomial codes were used to reduce
the recovery threshold in specific cases. In [22], the authors considered new schemes for the
private and secure case which outperform [19] for specific parameter regions. The work
in [23] considered distributed storage repair codes, so-called field-trace polynomial codes,
to reduce the download rate for specific partitions of matrices A and B. Very recently,
the authors in [24] proposed a black-box coding scheme based on star products, which
subsumes several existing works as special cases. In [25], a discrete Fourier transform-
based scheme with low upload rates and encoding complexity is proposed. The work
in [26] focused on selecting the evaluation points for the polynomial codes, providing a
better upload rate than [9], but worse than [25].

In the following, we propose a new scheme for secure matrix multiplication, which
provides explicit evaluation points for the polynomial codes, but unlike the work in [26], is
also able to tolerate stragglers. Specifically, we exploit gaps in the underlying polynomial
code. This is motivated by the observation that the recovery threshold can be improved by
selecting the number of evaluation points to be equal to the number of only the non-zero
coefficients in the polynomial [9,19]. In addition, selecting dedicated evaluation points has
the advantage that the condition for security against colluding workers is automatically
satisfied (see, for example, condition C2 in [27]). As such, our approach is able to provide
a constructive scheme with provable security guarantees. Further, our coding scheme
provides an advantage in terms of download rate in some cases, and is both straggler-
tolerant and robust against Byzantine attacks on the workers.

This paper is organized as follows. In Section 2, the problem statement and the
background is highlighted. Section 3 discusses design and properties of our proposed
scheme and provides performance guarantees with respect to the number of helper nodes
needed for recovery, security, straggler tolerance and under Byzantine attacks. Section 4
extends the scheme of Section 4 by introducing gaps into the code polynomials and by
studying its properties. Finally, Section 5 presents numerical results and comparisons with
state-of-the-art schemes from the literature.

2. Problem Statement and Background

Let A and B be a pair of matrices over the finite field Fq, whose product is well defined.
We consider the problem of computing the product C = AB. The computation will be
distributed among a number of helper nodes, each of which will execute a portion of the
total calculation. We also assume that the user wishes to hide the data contained in the
matrices A and B and that up to T honest but curious helper nodes may collude to deduce
information about the contents of A and B. To divide the work among the helper nodes,
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the matrices A and B are each divided into KM and ML blocks, respectively, of compatible
dimensions, say a × r and r × b. The matrices are also assumed to have independent
and identically distributed uniformly distributed entries from a sufficiently large field of
cardinality q > N, where N denotes the number of servers to be employed (in fact, we will
require q to exceed the degree of a polynomial P(x)Q(x), central to this scheme). Hence,
for given matrix partition of A and B according to

A =

⎡⎢⎣A1,1 · · · A1,M
...

. . .
...

AK,1 · · · AK,M

⎤⎥⎦, B =

⎡⎢⎣ B1,1 · · · B1,L
...

. . .
...

BM,1 · · · BM,L

⎤⎥⎦,

we obtain

C = AB =

⎡⎢⎣C1,1 · · · C1,L
...

. . .
...

CK,1 · · · CK,L

⎤⎥⎦ where Ci,j =
M

∑
m=1

Ai,mBm,j.

The system model is displayed in Figure 1. We consider a distributed computing
system with a master server and N helper nodes or workers. The master server is interested
in computing the product C = AB. In Figure 1, the worker receives matrices A and B and
T random uniformly independent and identically distributed matrices of size Rt ∈ Fa×r

q

and St ∈ Fr×b for t ∈ [T]. To keep the data secure and to leverage possible computational
redundancy at the workers, the server sends encoded versions of the input matrices to the
workers. This security constraint imposes the mutual information condition

I(AT , BT ; A, B) = 0 (1)

between the pair (A, B) and their encodings (AT , BT ) for all subsets T ⊂ [N] of maximum
cardinality T. The server generates a polynomial representation of A and Rt by constructing
a polynomial P(x) ∈ Fa×r

q [x]. Likewise, a polynomial representation of B and Qt results
in a polynomial Q(x) ∈ Fr×b

q [x]. The polynomial encodings that the p-th worker receives
comprise the two polynomial evaluations P(αp) and Q(αp), for distinct evaluation points
αp ∈ Fq with p ∈ [N]. It then computes the matrix product P(αp)Q(αp) and sends it back
to the server. The server collects a subset of NR ≤ N outputs from the workers as defined
by the evaluation points in the subset {P(αp)Q(αp)}p∈NR with |NR| = NR. The size of the
smallest possible subset NR for which perfect recovery is obtained, i.e.,

H(AB|{P(αp)Q(αp) : p ∈ NR}) = 0, (2)

where H denoted the entropy function, is defined as the recovery threshold. The server
then interpolates the underlying polynomial such that the correct product C = AB can be
assembled from a combination of the interpolated polynomial coefficients Ci,j (see Section 3
for details).

We further define the upload rate Ru per worker as the sum of the dimensions of
P(αp) and Q(αp), i.e., Ru = (a + b)r field elements of Fq. Likewise, the download rate or
communication load Rd is defined as the total number of field elements to be downloaded
from the workers such that (2) is satisfied, i.e., Rd = abNR.
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Figure 1. System model for secure matrix multiplication.

Notation. For the remainder, we fix A, B, C to be matrices over Fq such that C = AB,
and we fix K, M, L, a, b, r to be the integers as defined above. We define [n] := {1, . . . , n} for
any positive integer n. For each k ∈ [K], � ∈ [L], and m ∈ [M], we write Ak,m, Bm,�, and Ck,�
to denote the (k, m), (m, �), and (k, �) blocks of A, B, and C, respectively. The transpose of a
matrix Z is denoted by Zt.

3. Proposed Scheme

The scheme we propose uses a similar approach to the schemes in [9,19,27]. We will
begin with the choices for exponents in P(x) and Q(x) and show that the desired blocks
of C appear as coefficients of the product PQ. We discuss the maximum possible degree
of PQ since it gives us an upper bound on the necessary evaluations, and hence workers,
needed to interpolate PQ. In Section 3.3, we give explicit criteria for choices of evaluation
points and prove that the scheme protects against collusion of up to T servers. Section 3.4
discusses the option to query additional servers to provide resilience against stragglers and
Byzantine servers.

Section 4 uses ideas from the GASP scheme [9] to reduce the recovery threshold by
examining how many coefficients in the product are already known to be zero.

3.1. Choice of Exponents and Maximal Degree

We propose the following scheme to outsource the computation among the worker
servers. The model will incorporate methods to secure the privacy of the data held by the
matrices A, B, and C.

Let D := M + 2. For the given A and B, we define the polynomials:

P̄(x) :=
K

∑
k=1

xD(k−1)
M

∑
m=1

xm Ak,m and Q̄(x) :=
L

∑
�=1

xDK(�−1)
M

∑
m=1

xM+1−mBm,�.

We now define polynomials

P(x) := P̄(x) + R(x) and Q(x) :=Q̄(x) + S(x),

where and R(x), S(x) are a pair of matrix polynomials:

R(x) :=
T

∑
t=1

xD(t−1)Rt and S(x) :=
T

∑
t=1

xD(t−1)St,

whose coefficients are a × r and r × b matrices over Fq, respectively, chosen uniformly
at random.

In the next theorem, we show that the desired matrices Ck,� appear as coefficients of
the product PQ and can hence be retrieved by inspection of this product.

Theorem 1. For each pair (k, �) ∈ [K] × [L], the block Ck,� arising in the product C = AB
appears as the coefficient of xD((k−1)+K(�−1))+M+1 in the product PQ.
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Proof. We calculate the product

PQ =P̄Q̄ + P̄S + RQ̄ + RS

=
K

∑
k=1

L

∑
�=1

xD((k−1)+K(�−1))
M

∑
m=1

M

∑
m′=1

Ak,mBm′ ,�xM+1+m−m′

+
K

∑
k=1

T

∑
t′=1

xD(k+t′−2)
M

∑
m=1

Ak,mSt′x
m

+
L

∑
�=1

T

∑
t=1

xD(K(l−1)+(t−1))
M

∑
m′=1

RtBm′ ,�xM+1−m′

+
T

∑
t=1

T

∑
t′=1

RtSt′x
D(t+t′−2).

Consider the exponents modulo D. The first term in the sum of terms above is the
product P̄Q̄. Any of the exponents of x in this term are equal to D − 1 ≡ M + 1 mod D
if and only if m = m′, in which case its corresponding coefficient is Ck,�. In particular,
the matrix block Ck,� appears in the product P̄Q̄ as the coefficient of xD((k−1)+K(�−1))+M+1.

We claim that no other exponent of x in PQ− P̄Q̄ is equal to M+ 1 mod D, from which
the result will follow. Observe that the exponents in the second and third term of the prod-
uct (i.e. those of P̄S + RQ̄) are all between 1 and M modulo D, while every exponent of x
in the fourth term, which is RS, is a multiple of D.

In order to retrieve the polynomial PQ, we may evaluate P and Q at a number of
distinct values α1, . . . , αN+1 in F×

q . The values P(αi) and Q(αi) are found at a cost of zero
non-scalar operations. Define

V(α1, . . . , αN+1) :=

⎛⎜⎜⎜⎜⎜⎝
1 α1 α2

1 · · · αN
1

1 α2 α2
2 · · · αN

2
...

. . .
...

1 αN α2
N · · · αN

N
1 αN+1 α2

N+1 · · · αN
N+1

⎞⎟⎟⎟⎟⎟⎠.

The (i, j)-entries of the coefficients of PQ ∈ Fa×b
q [x] can be retrieved by computing

the product

V(α1, . . . , αN+1)
−1((P(α1)Q(α1))i,j, . . . , (P(αN+1)Q(αN+1))i,j)

t,

if the degree of PQ is at most N. Since this computation involves only Fq-linear compu-
tations, the total non-scalar cost is the total cost of performing the N + 1 matrix products
P(αi)Q(αi). In the distributed computation scheme as shown in Figure 1, the server up-
loads each pair of evaluations P(αi), Q(αi) to the i-th worker node, which then computes
the product P(αi)Q(αi) and returns it to the server.

In this approach to reconstructing PQ, we require the participation of N + 1 worker
nodes, where N is the degree of PQ. For this reason, we study this degree. Since

deg(PQ) ≤ max(deg(P̄Q̄), deg(P̄S), deg(RQ̄)deg(RS)),

we have the following result, wherein each of the values N1(K, L, M; T) to N4(K, L, M; T)
correspond to the maximum possible degrees of P̄Q̄, P̄S, RQ̄, and RS, respectively. We
write N(A, B; K, L, M; T) to denote the maximum possible degree of the polynomial PQ, as
the A, B, R, S range over all possible matrices of the stated sizes.

Proposition 1. The degree of PQ is upper bounded by N(A, B; K, L, M; T), where
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N(A, B; K, L, M; T) = max

⎧⎪⎪⎪⎨⎪⎪⎪⎩
N1(K, L, M; T) := D(KL − 1) + 2M (3)

N2(K, L, M; T) := D(K + T − 2) + M (4)

N3(K, L, M; T) := D(K(L − 1) + T − 1) + M (5)

N4(K, L, M; T) := 2D(T − 1) (6)

Proposition 2. The following are equivalent.

1. T > K,
2. N3(K, L, M; T) > N1(K, L, M; T),
3. N4(K, L, M; T) > N2(K, L, M; T).

Proof. First note that T > K ⇔ T − K ≥ 1 and that 1 = �M
D � > M

D . Since T − K is an
integer, we thus have that the following inequalities are equivalent to T > K:

T − K >
M
D

,

D(T − K) > M,

D(K(L − 1) + T − 1) + M > D(KL − 1) + 2M.

This shows that N3(K, L, M; T) > N1(K, L, M; T) if and only if T > K. Similarly, using
the 2nd and 3rd inequalities just above, we have

T > K ⇔ DT > DK + M,

⇔ 2D(T − 1) > D(T + K − 2) + M,

from which we see that N4(K, L, M; T) > N2(K, L, M; T) if and only if T > K.

Proposition 3. The following are equivalent.

1. T > K(L − 1) + 1,
2. N4(K, L, M; T) > N3(K, L, M; T),
3. N2(K, L, M; T) > N1(K, L, M; T).

Proof. We have the following inequalities:

T > K(L − 1) + 1 ⇔ T − K(L − 1)− 1 ≥ 1 >
M
D

,

⇔ D(T − K(L − 1)− 1) > M,

⇔ D(2T − 2) > D(K(L − 1) + T − 1) + M,

from which we deduce that N4(K, L, M; T) > N3(K, L, M; T). We now show that N2(K, L,
M; T) > N1(K, L, M; T). We have:

T > K(L − 1) + 1 ⇔ D(T − K(L − 1)− 1) > M,

⇔ D(K + T − 2) + M > D(KL − 1) + 2M.
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We tabulate (see Table 1) the value of N(K, L, M; T) based on the observations of
Propositions 2 and 3.

Table 1. Summary table of maximal degree of PQ.

T > K(L − 1) + 1 T ≤ K(L − 1) + 1

T > K 2D(T − 1) (6) D(K(L − 1) + T − 1) + M (5)
T ≤ K D(K + T − 2) + M (4) D(KL − 1) + 2M (3)

3.2. AB versus Bt At

We compare the recovery threshold cost of calculating Bt At rather than AB. It can
be shown that it is always better to calculate AB whenever K ≥ L. That is, we show that
N(A, B; K, L, M; T) ≤ N(Bt, At; L, K, M; T) for K ≥ L. We consider all possible cases for the
maximal degree in the following two theorems and remarks.

Theorem 2. 1. Let T > K, L. Suppose that T < K(L − 1) + 1 and T < L(K − 1) + 1.
We have that

N(A, B; K, L, M; T) = N3(K, L, M; T) < N3(L, K, M; T) = N(Bt, At; L, K, M; T),

if and only if L < K.
2. Let K ≥ T > L. Suppose that T < K(L − 1) + 1 and T < L(K − 1) + 1. We have that

N(A, B; K, L, M; T) = N1(K, L, M; T) < N3(L, K, M; T) = N(Bt, At; L, K, M; T).

3. Let T > L, K and suppose that L(K − 1) + 1 ≥ T > K(L − 1) + 1. We have that

N(A, B; K, L, M; T) = N4(K, L, M; T) < N3(L, K, M; T) = N(Bt, At; L, K, M; T).

4. Let T > K ≥ L and suppose that T > L(K − 1) + 1. We have that

N(A, B; K, L, M; T) = N4(K, L, M; T) = N4(L, K, M; T) = N(Bt, At; L, K, M; T).

5. Let T ≤ L ≤ K and suppose that T ≤ K(L − 1) + 1. We have that

N(A, B; K, L, M; T) = N1(K, L, M; T) = N1(L, K, M; T) = N(Bt, At; L, K, M; T).

Proof. 1. Since T > K, and T < K(L − 1) + 1 by Propositions 2 and 3 we have that

N3(K, L, M; T) > N4(K, L, M; T) > N2(K, L, M; T), N1(K, L, M; T)

and so N(A, B; K, L, M; T) = N3(K, L, M; T).
Similarly, since T > L, and T < L(K − 1) + 1, we have that N(Bt, At; L, K, M; T) =
N3(L, K, M; T). Clearly, L < K if and only if:

N3(K, L, M; T) = D(K(L − 1) + T − 1) + M

< D(L(K − 1) + T − 1) + M = N3(L, K, M; T).

2. By Propositions 2 and 3, the assumptions K ≥ T and T < K(L − 1) + 1 imply
that N(A, B; K, L, M; T) = N1(K, L, M; T), while the assumptions T > L and T <
L(K − 1) + 1 yield that N(Bt, At; K, L, M; T) = N3(L, K, M; T).
Clearly, since T > L, we have M < D(T − L) and

N1(K, L, M; T) = D(KL − 1) + 2M < D(L(K − 1) + T − 1) + M = N3(L, K, M; T).
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3. From the given assumptions, by Propositions 2 and 3, we have N(A, B; K, L, M; T) =
N4(K, L, M; T) and N(Bt, At; L, K, M; T) = N3(L, K, M; T). Since L(K − 1) + 1 ≥ T,
as in the proof of Proposition 3, we have

N4(K, L, M; T) = 2D(T − 1) = N4(L, K, M; T) ≤ N3(L, K, M; T).

4. For the given assumptions the statement follows immediately from Propositions 2
and 3.

5. From the given assumptions, by Propositions 2 and 3, we have N(A, B; K, L, M; T) =
N1(K, L, M; T) and N(Bt, At; L, K, M; T) = N1(L, K, M; T). The rest follows immedi-
ately from N1(K, L, M; T) = D(KL − 1) + 2M = D(LK − 1) + 2M = N1(L, K, M; T).

Remark 1. Clearly, if T ≤ K and T > K(L − 1) + 1 then L = 1. In this case, from Propositions 3
and 2, we have that N(A, B; K, 1, M; T) = N2(K, 1, M; T).

Theorem 3. Let T ≤ K and T > K(L − 1) + 1.

(i) Assume T > L and T ≤ L(K − 1) + 1 then N(A, B; K, L, M; T) = N2(K, 1, M; T) =
N3(1, K, M; T) = N(Bt, At; L, K, M; T).

(ii) Assume T = 1 ≤ L and T ≤ L(K − 1) + 1 then N(A, B; K, L, M; T) = N2(K, 1, M; 1) <
N1(1, K, M; 1) = N(Bt, At; L, K, M; T).

Proof. (i) Since L = 1 we have that
N2(K, 1, M; T) = D(K + T − 2) + M = D(L(K − 1) + T − 1) + M = N3(1, K, M; T)
and so the result follows.

(ii) We see that
N2(K, 1, M; 1) = D(K − 1) + M < D(K − 1) + 2M = N1(1, K, M; 1)

Remark 2. The remaining two cases lead to a contradiction and can hence never occur. Let T ≤ K
and T > K(L − 1) + 1 and T > L(K − 1) + 1. By Remark 1, we have that L = 1 and we obtain
the contradiction T ≤ K < T.

3.3. T-Collusion

Each query is masked with a polynomial of the form ∑T−1
i=0 xiDRi, where Ri is chosen

uniformly at random. A query is private in the case of T servers colluding if and only if
the matrix

M(x1, . . . , xT) :=

⎛⎜⎜⎜⎜⎝
1 · · · 1

xD
1 · · · xD

T
...

. . .
...

xD(T−1)
1 · · · xD(T−1)

T

⎞⎟⎟⎟⎟⎠
has full rank for any subset of T evaluation points. This is the same as condition C2 in [27].
Because of the very specific set of exponents used, we can give a more explicit condition
for the invertibility of this matrix.

Proposition 4. The matrix M(x1, . . . , xT) is invertible if and only if the elements xD
1 , . . . , xD

T
are distinct.

Proof. M(x1, . . . , xT) is a Vandermonde matrix with entries xD
1 , . . . , xD

T .

Proposition 5. A set of elements of Fq such that their Dth powers are pairwise different has size at
most N = q−1

gcd(q−1,D)
+ 1.
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Proof. Fix a generator γ of F∗
q . Then the image of the map x �→ xD from Fq to Fq is given

by 0 together with all powers γDi where 0 ≤ i < q − 1.

Corollary 1. Let T < q. If gcd(q − 1, D) = 1, then the scheme in Section 3 is secure against
T-collusion for any choice of evaluation points.

3.4. Stragglers and Byzantine Servers

Considering the scheme as described in the previous section, we see that the responses
are the coordinates of a codeword of a Reed–Solomon code. The polynomial that needs to
be interpolated has degree at most N = N(K, L, M; T), and hence N + 1 evaluation points
suffice for reconstruction. Any N + 1 evaluation points are admissible and hence we have
the following theorem.

Theorem 4. The scheme in Section 3 is straggler resistant against S stragglers if N + 1 + S helper
nodes are used.

Proof. The responses can be considered as a codeword in an [N + 1 + S, N + 1, S + 1] RS
code, with S erasures. Since S is smaller than the minimum distance of the code, the full
codeword and hence the interpolating polynomial can be recovered.

Similarly, we can use additional helper nodes to account for possible Byzantine servers
whose responses are incorrect.

Theorem 5. The scheme in Section 3 is resistant against Byzantine attacks of up to B helper nodes
if N + 1 + 2B helper nodes are used.

Proof. The responses can be considered as a codeword in an [N + 1 + 2B, N + 1, 2B + 1]
RS code, with B errors. Since 2B is smaller than the minimum distance of the code, the full
codeword and hence the interpolating polynomial can be recovered.

Combining both theorems give us the following corollary.

Corollary 2. The scheme in Section 3 is resistant against S stragglers and B Byzantine helper
nodes if N + 1 + S + 2B helper nodes are used.

4. Gaps in the Polynomial

The upper bound on the recovery threshold given by the maximum degree of the
product PQ can actually be improved if we choose instead to use the fact that we need
only as many servers as non-zero coefficients. Similar to considerations in [9], as a basic
observation of linear algebra, we note that only as many evaluation points as there are
possible non-zero coordinates are required to retrieve the required matrix coefficients of PQ.
Let PQ have degree r − 1 and suppose that q ≥ r + 1. Let α1, . . . , αr be distinct elements of
F×

q . Suppose that the zero coefficients of PQ are indexed by I and let i = r − |I|. There
exist j1, . . . , ji ∈ {1, . . . , r} such that the i × i matrix V, found by deleting the columns of
V(αj1 , . . . , αji ) indexed by I , is invertible. Then, each (s, t)-entry of the unknown coefficients
of the polynomial PQ ∈ Fa×b

q [x] can be retrieved by computing the product

V−1((P(αj)Q(αj))s,t : j ∈ [r]\I)t.
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Theorem 6. Let M ≥ 2, D = M + 2. Let

P̄(x) :=
K

∑
k=1

xD(k−1)
M

∑
m=1

xm Ak,m, R(x) :=
T

∑
t=1

xD(t−1)Rt,

Q̄(x) :=
L

∑
�=1

xDK(�−1)
M

∑
m=1

xM−m+1Bm,�, S(x) :=
T

∑
t=1

xD(t−1)St.

The number N of non-zero terms in the product PQ satisfies

N ≤

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

N1(K, L, M; T) + 1 if M > 2, T ≤ K, L ≥ 2 or L = 1, T = 1;
3LK + K − T + LT + 1 if M = 2, T ≤ K, L ≥ 2;
((L − 1)K + T)M + 2LK + 1 if K + 1 ≤ T ≤ 
LK/2�+ 1, L ≥ 2;
((L − 1)K + T)M + LK + 2T − 1 if T > 
LK/2�+ 1, L ≥ 2;
(K + T − 1)M + 2K + 1 if 2 ≤ T ≤ 
K/2�+ 1, L = 1;
(K + T − 1)M + K + 2T − 1 if T > 
K/2�+ 1, L = 1.

Proof. We have P(x) = P̄(x) + R(x) and Q(x) = Q̄(x) + S(x). Recall that P̄(x) and R(x)
have disjoint support, as do Q̄(x) and S(x). From Theorem 1, for each each k ∈ [K], � ∈ [L],
the matrix

Ck� = Ak,1B1,� + · · ·+ Ak,MBM,�

is the coefficient of xh in P̄Q̄ for

h = (k − 1)D + (�− 1)KD + M + 1 = (k + (�− 1)K)D − 1.

Clearly, each such coefficient h ≡ M + 1 mod D. The degrees of terms arising in the
product PQ are given by

(i + zK)D + j + y + 2, (7)

(i + t)D + j + 1, (8)

(u + zK)D + y + 1, (9)

(u + t)D. (10)

for i ∈ {0, ..., K − 1}, z ∈ {0, ..., L − 1}, j, y ∈ {0, ..., M − 1} and u, t ∈ {0, ..., T − 1}. The
sequence (7) corresponds to terms that appear in the product P̄Q̄. By inspection, we see that
no element θ in any of the sequences (8)–(10) satisfies θ ≡ −1 mod D: in (8) this would
require j = M and in (9) this would require y = M, contradicting our choices of j, y. The
total number of distinct terms to be computed is the number of distinct integers appearing
in the union T of the elements of the sequences (7)–(10). Let U0 denote the set of integers
appearing in (7). Observe that U0 = {2, . . . , (LK + 1)D − 4}, unless M = 2, in which case
U0 = {j : 2 ≤ j ≤ 4LK, j �≡ 1 mod 4}. Consider the set

U := {0, 1, 2, . . . , (LK + 1)D − 4}.

We make the following observations with respect to U .

• If M > 2, then U = U0 ∪ {0, 1} ⊂ T ,
• U contains the elements of (8) ⇐⇒ T ≤ (L − 1)K + 1,
• U contains the elements of (9) ⇐⇒ T ≤ K,
• U contains the elements of (10) ⇐⇒ T ≤ 
LK/2�+ 1.

Consider the following sets.

U1 := {αD + i : 0 ≤ α ≤ K + T − 2, 1 ≤ i ≤ M}, |U1| = (K + T − 1)M;

U2 := {βD + j : 0 ≤ β ≤ T − 1 + (L − 1)K, 1 ≤ j ≤ M}, |U2| = ((L − 1)K + T)M;

U3 := {γD : 0 ≤ γ ≤ 2T − 2}, |U3| = 2T − 1.
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Clearly, U1 comprises the elements of the sequence (8) and the members of U3 are
exactly those of the sequence (10). For T ≥ K + 1, we have

{u + xK : 0 ≤ u ≤ T − 1, 0 ≤ x ≤ L − 1} = {β : 0 ≤ β ≤ T − 1 + (L − 1)K},

in which case U2 is exactly the set of elements of (9). It follows that U1 ∪ U2 ∪ U3 ⊆ U if
and only if T ≤ min{(L − 1)K + 1, K, 
LK/2�+ 1}. This minimum is K if L ≥ 2 and is 1
if L = 1. Furthermore, U3 is disjoint from U1 and from U2. If L ≥ 2 or if L = K = 1, then
U1 ⊂ U2, while if L = 1, then U2 ⊂ U1.

Suppose first that M > 2. We thus have that U = T if L ≥ 2 and T ≤ K, or if
L = T = 1; in either of these cases, PQ has at most

|T | = |U | = (LK + 1)D − 3 = (LK − 1)D + 2M + 1 = N1(K, L, M; T) + 1

non-zero terms. We summarize these observations as follows.

T =

⎧⎨⎩
U if L ≥ 2 and T ≤ K, or if L = T = 1;
U ∪ U1 ∪ U3 if L = 1
U ∪ U2 ∪ U3 if L ≥ 2 or if L = K = 1.

Furthermore,

U ∩ U3 = {γD : 0 ≤ γ ≤ min{2T − 2, LK}},

U ∩ U2 = {βD + j : 0 ≤ β ≤ min{LK, T − 1 + (L − 1)K}, 1 ≤ j ≤ M}
\{LKD + M − 1, LKD + M},

U ∩ U1 = {αD + i : 0 ≤ α ≤ min{LK, T + K − 2}, 1 ≤ i ≤ M}
\{LKD + M − 1, LKD + M}

Hence |U ∩ U3| = min{2T − 1, LK + 1}. If T ≥ K + 1 then |U ∩ U2| = M(LK + 1)− 2
and so, applying inclusion–exclusion, we see that, if L ≥ 2, then

|T | =

⎧⎨⎩
|U | = (LK + 1)D − 3 = (LK + 1)(M + 2)− 3 if K ≥ T;
|U ∪ U2| = ((L − 1)K + T)M + 2LK + 1 if K + 1 ≤ T ≤ 
LK/2�+ 1;
|U ∪ U2 ∪ U3| = ((L − 1)K + T)M + LK + 2T − 1 otherwise .

In the case L = 1, we have U2 ⊆ U1, while if T ≤ K then the elements of (9) are
contained in U . Therefore, T = U ∪ U1 ∪ U3 and so for T ≥ 2 we have

|T | =

{
(K + T − 1)M + 2K + 1 if T ≤ 
K/2�+ 1;
(K + T − 1)M + K + 2T − 1 otherwise .

Finally, suppose that M = 2. If L = 1 then, since U2 ⊂ U1 we have T = U0 ∪ U1 ∪ U3.
Similar to previous computations, we see |T | takes the same values as in the case for M > 2.
If L ≥ 2 and T ≥ K + 1 then T = U0 ∪U2 ∪U3. Again using similar computations as before,
we see in this case that |T | takes the same values as in the case for M > 2. Suppose that
L ≥ 2 and T ≤ K. In this case, the integers appearing in (9) comprise the set

U′
2 := {4(u + zK) + j : 0 ≤ u ≤ T − 1, 0 ≤ z ≤ L − 1, 1 ≤ j ≤ 2}, |U ′

2| = 2TL.
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We have |U0| = 3KL and moreover,

U0 ∩ U′
2 = {4(u + zK) + 2 : 0 ≤ u ≤ T − 1, 0 ≤ z ≤ L − 1}, |U0 ∩ U′

2| = TL;

U0 ∩ U1 = {4α + 2 : 0 ≤ α ≤ K + T − 2}, |U0 ∩ U1| = K + T − 1;

U0 ∩ U3 = {4(α + 1) : 0 ≤ α ≤ 2T − 3}, |U0 ∩ U3| = 2T − 2;

U1 ∩ U′
2 = {4(u + zK) + j : 0 ≤ u ≤ T − 1, 0 ≤ z ≤ 1, 1 ≤ j ≤ 2}, |U1 ∩ U′

2| = 4T;

U0 ∩ U1 ∩ U′
2 = {4(u + zK) + 2 : 0 ≤ u ≤ T − 1, 0 ≤ z ≤ 1}, |U0 ∩ U1 ∩ U′

2| = 2T.

Therefore, |T | = 3LK + K − T + TL + 1.

Example 1. Let M = 3, K = 3, L = 2, that is:

A =

⎡⎣A1,1 A1,2 A1,3
A2,1 A2,2 A2,3
A3,1 A3,2 A3,3

⎤⎦, B =

⎡⎣B1,1 B1,2
B2,1 B2,2
B3,1 B3,2

⎤⎦.

We will compute the product AB using 32 helper nodes, assuming that T = 3 servers may
collude. Choose a pair of polynomials

R(z) = R1 + R6x5 + R11x10 and S(z) = S1 + S6x5 + S11x10,

whose non-zero matrix coefficients are chosen uniformly at random over Fq. We have

P̄(x) = x(A1,1 + A1,2x + A1,3x2) + x6(A2,1 + A2,2x + A2,3x2) + x11(A3,1 + A3,2z + A3,3z2)

Q̄(x) = x(B3,1 + B2,1x + B1,1x2) + x16(B3,2 + B2,2x + B1,2x2).

Define P(x) := P̄(x) + R(x) and Q(x) := Q̄(x) + S(x). In Table 2, we show the exponents
that arise in the product P(x)Q(x). The monomials corresponding to the computed data are
4, 9, 14, 19, 24, 29, shown in blue. The coefficients of x4, x9, x14, x19, x24 and x29 are, respectively,
given by

C1,1 = A1,1B1,1 + A1,2B2,1 + A1,3B3,1,

C1,2 = A1,1B1,2 + A1,2B2,2 + A1,3B3,2,

C2,1 = A2,1B1,1 + A2,2B2,1 + A2,3B3,1,

C2,2 = A2,1B1,2 + A2,2B2,2 + A2,3B3,2,

C3,1 = A3,1B1,1 + A3,2B2,1 + A3,3B3,1,

C3,2 = A3,1B1,2 + A3,2B2,2 + A3,3B3,2.

Note that the total number of non-zero terms in PQ is LKD + M − 1 = 32, as predicted
by Theorem 6. This also corresponds to the case for which PQ has degree N1(K, L, M; T) =
N1(3, 2, 3; 3) = 31, which is consistent with Theorem 2. Therefore, 32 helper nodes are required to
retrieve PQ and hence the coefficients Ck,m. If the matrices have entries over Fq with q = 64, then
since gcd(q − 1, D) = gcd(63, 5) = 1, the user can retrieve the data securely in the presence of 3
colluding workers.

Suppose now that we have T = 6 colluding servers. In this case, we have T = 6 > 4 =

LK/2�+ 1 and L > 1 and so from Theorem 6, we expect the polynomial PQ to have at most
(LK + T)D − K(M + L) − 1 = 44 non-zero coefficients. These exponents are shown in the
corresponding degree table for our scheme (see Table 3). In this case, to protect against collusion by
6 workers, we require a total of 44 helpers. While the degree of PQ in this case is 50 (see Table 1),
the coefficients corresponding to the exponents E = {34, 39, 44, 46, 47, 48, 49} are zero, and hence
known a priori to the user. Let α be a root of x6 + x4 + x3 + x + 1 ∈ F2[x], so that α generates F×

64.
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Let V be the 44× 44 matrix obtained from V(αi : i ∈ [63]) by deleting the columns and rows indexed
by E ∪ {51, . . . , 62}. It is readily checked (e.g., as here, using MAGMA [28]) that the determinant
of V is α11 and in particular is non-zero. Therefore, we can solve the system to find the unknown
coefficients of PQ via the computation V−1(P(αij)Q(αij) : i, j ∈ [63]\(E ∪ {51, . . . , 62}))t.

Table 2. Exponents of P(x)Q(x) for K = 3, L = 2, M = 3, T = 3. The monomial exponents which
correspond to the computed data are shown in blue. The grey background marks noise exponents.

0 1 2 3 5 16 17 18 10
0 0 1 2 3 5 16 17 18 10
1 1 2 3 4 6 17 18 19 11
2 2 1 4 5 7 18 19 20 12
3 3 4 5 6 8 19 20 21 13
5 5 6 7 8 10 21 22 23 15
6 6 7 8 9 11 22 23 24 16
7 7 8 9 10 12 23 24 25 17
8 8 9 10 11 13 24 25 26 18

10 10 11 12 13 15 26 27 28 20
11 11 12 13 14 16 27 28 29 21
12 2 13 14 15 17 28 29 30 22
13 3 14 15 16 18 29 30 31 23

Table 3. Exponents of P(x)Q(x) for K = 3, L = 2, M = 3, T = 6. The monomial exponents which
correspond to the computed data are shown in blue. The grey background marks noise exponents.

0 1 2 3 5 16 17 18 10 15 20 25
0 0 1 2 3 5 16 17 18 10 15 20 25
1 1 2 3 4 6 17 18 19 11 16 21 26
2 2 3 4 5 7 18 19 20 12 17 22 27
3 3 4 5 6 8 19 20 21 13 18 23 28
5 5 6 7 8 10 21 22 23 15 20 25 30
6 6 7 8 9 11 22 23 24 16 21 26 31
7 7 8 9 10 12 23 24 25 17 22 27 32
8 8 9 10 11 13 24 25 26 18 23 28 33

10 10 11 12 13 15 26 27 28 20 25 30 35
11 11 12 13 14 16 27 28 29 21 26 31 36
12 2 13 14 15 17 28 29 30 22 27 32 37
13 3 14 15 16 18 29 30 31 23 28 33 38
15 15 16 17 18 20 31 32 33 25 30 35 40
20 20 21 22 23 25 36 37 38 30 35 40 45
25 25 26 27 28 30 41 42 43 35 40 45 50

We remark that for the case of no collusion, Theorem 6 does not yield an optimal
scheme. The proposition below outlines a modified scheme with a lower recovery threshold
if secrecy is not a consideration.

Proposition 6. Define the polynomials:

P̃(x) :=
K

∑
k=1

x(k−1)M
M

∑
m=1

xm Ak,m,

Q̃(x) :=
L

∑
�=1

x(K+�−1)M
M

∑
m=1

xM+1−mBm,�.

The following hold:

1. For each (i, j) ∈ [K]× [L], Cij is the coefficient of zM(i+j+K−1)+1 in P̃Q̃.
2. The number N of non-zero terms in the product P̃Q̃ satisfies

N ≤ KLM + M − 1.
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Proof. For each (i, j) ∈ [K]× [L], define the following:

• (cij) := (M(K + i + j − 1) + 1),
• BM(cij) := {cij − M + 1, . . . , cij + M − 1} = {cij + u : −(M − 1) ≤ u ≤ M − 1}.

We have

P̃Q̃ =
K

∑
k=1

L

∑
�=1

M

∑
m=1

M

∑
m′=1

xM(K+�+k−1)+1+m−m′
Ak,mBm′ ,�.

The distinct monomials arising in the product P̃Q̃ are those indexed by the distinct
elements of ∪(i,j)∈[K]×[L]BM(cij). It is straightforward to check that for each (i, j) ∈ [K]× [L],
the integer cij is not contained in Bm(cut) for any (u, t) �= (i, j) and hence the required
coefficients Cij that appear in the product P̃Q̃, which are indexed by the cij, can be uniquely
retrieved. We compute the number of workers required by this scheme. We have

V :=

∣∣∣∣∣∣ ⋃
(i,j)∈[K]×[L]

BM(cij)

∣∣∣∣∣∣
= KL(2M − 1)− ∑

(i,j) �=(u,t)

∣∣BM(cij) ∩ BM(cst)
∣∣

= KL(2M − 1)− (KL − 1)(M − 1) = KLM + M − 1.

The recovery threshold of this scheme takes the same value as the recovery threshold
of the poly-entangled scheme of Theorem 1 [18].

5. Results and Comparison with the State-of-the-Art

We provide some comparison plots that highlight parameter regions of interest.
In Figure 2, we compare the two variants of our own scheme. The recovery threshold when
considering the maximal degree of the resulting product polynomial is shown alongside
the count of possibly non-zero coefficients. We see that significant gains can be achieved,
especially in the higher collusion number region.

Figure 2. Comparison of maximal degree with non-zero coefficient.

In Figure 3, we compare our (non-zero coefficient) scheme with the SGPD scheme
presented in [19]. For K > 1, we see that, except for very low values of T, our new scheme
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outperforms the SGPD scheme. This comparison of the recovery threshold for the two
schemes is well justified since they use the same division of the matrices and will have
identical upload and download costs per server.

Figure 3. Comparison with [19].

The comparison in Figure 4 with the entangled codes scheme [17] and a newer scheme
using roots of unity [26] shows that our new codes have lower recovery threshold for low
number of colluding servers. Calculating the actual number of servers needed for the
entangled scheme requires knowledge of the tensor rank of matrix multiplication. These
ranks, or their best known upper bounds, are taken from [29,30]. It should be noted that the
scheme in [26] requires that either ((L + 1)(K + T)− 1) | q or (KML + LT + KM + T) | q
where q is the field size. The requirements for our scheme outlined in Proposition 5 and
Corollary 1 (i.e., that gcd(q − 1, D) = 1, q > N) are much less restrictive.

Figure 4. Comparison with [17,26] for the cases M = 4, L = 3 and M = 5, L = 2.

The comparison with the GASP scheme is less straightforward since the partitioning
in GASP has a fixed value of M = 1. The plot in Figure 5 shows the recovery thresholds
for the GASP scheme with partitioning K = L = 3M as well as the recovery thresholds of
our scheme for K = L = 3 and varying M from 1 to 5. We compare here with the maximal
degree of our scheme, not the non-zero coefficients, to show that the variant of our scheme
that is able to mitigate stragglers and Byzantine servers achieve much lower recovery
thresholds. Fixing K and L to be the same value across this comparison means that the
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download cost per server is the same for all our schemes and the K = L = 3 GASP scheme.
Note that in the M = 1 case, we have identical partition and hence upload cost per server
as the K = L = 3 GASP scheme, while for M = 2, we have identical upload cost with the
K = L = 6 GASP scheme, and M = 5 corresponds to the K = L = 15 GASP scheme. We can
see that the grid partitioning allows for a much lower recovery threshold when the upload
cost is fixed. The outer partitioning of the GASP scheme allows for low download cost
per server that makes up for the higher recovery threshold. Explicitly, the outer partition
into KM and LM blocks allows for a download rate of NGASP(

ab
M2 ), where NGASP is the

recovery threshold for the GASP scheme. In contrast, the scheme presented in this paper
will have a download rate of Nab if we partition into K × M and M × L blocks.

Figure 5. Comparison of the maximal degree with the GASPr scheme from [10].

It should be noted though that our construction allows to explicitly control the field
size needed. In contrast, the GASP scheme might have to choose its evaluations points from
an extension field Theorem 1 [9] if the base field is fixed by the entries of the matrices A and
B, or just requires a very large base field. This would greatly increase the computational
cost and the rates at all steps of the scheme. For example, for K = 3, L = 3, T = 3, GASPr
uses N = 22 servers and the exponents for the randomness in one of the polynomials are
9, 10, 12. Then, there are no suitable evaluation points for q = 23, 25, 27, 29, 31, 32, 37, 41, 43
and so for these values of q, an extension field is required.

Furthermore, the scheme presented in this paper can be used in situations where
stragglers or Byzantine servers are expected as described in Corollary 2.

Complexity

We summarize the cost of Fq-arithmetic operations and transmission of Fq elements
associated with this scheme, using N servers. We refer the reader to ([25], Table 1) and
([26], Table 1) to view the complexity of other schemes in the literature (note that the costs
defined in [25] are normalized). There are various trade-offs in costs depending on the
partitioning chosen (the proposed scheme is completely flexible in this respect), ability to
handle stragglers and Byzantine servers, and constraints on the field size q.

We remark that additions in general are much less costly than Fq-multiplications in
terms of space and time: for example, if q = 2�, then an addition has space complexity
(number of AND and XOR gates) O(�) and costs 1 clock in time, while multiplication has
space complexity O(�2) and time complexity O(log2(�)) [31,32].
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The encoding complexity of our scheme comes at the cost of evaluating the pair
of polynomials P(x) and Q(x) each at N distinct elements of Fq. This is equivalent to
performing Nr(a + b) (scalar) polynomial evaluations in Fq. Given α ∈ Fq, the (i, j)-entry
of P(α) is an evaluation of an Fq-polynomial with KM + T coefficients, while the (i, j)-entry
of Q(α) is an evaluation of an Fq-polynomial with KL + T coefficients. The decoding
complexity is the cost of interpolating the polynomial PQ ∈ Fa×b

q [x] using N evaluation
points, when PQ has at most N unknown coefficients.

The cost of either polynomial evaluation at N points or interpolation of a polynomial
of degree at most N − 1 has complexity O(N log2 Nlog log N). Therefore, we have the
following statement.

Proposition 7.

1. The encoding phase of the scheme presented in Section 3, using N servers, has complexity
O((a + b)rN log2 Nlog log N).

2. The decoding phase of the scheme presented in Section 3, using N servers, has complexity
O(abN log2 Nlog log N).

3. The total upload cost of the scheme presented in Section 3, using N servers, is r(a + b)N.
4. The total download cost of the scheme presented in Section 3, using N servers, is abN.

6. Conclusions

In this work, we addressed the problem of secure distributed matrix multiplication for
C = AB in terms of designing polynomial codes for this setting. In particular, we assumed
that A and B contain confidential data, which must be kept secure from colluding workers.
Similar to some previous work also employing polynomial codes for distributed matrix
multiplication, we proposed to deliberately leave gaps in the polynomial coefficients for
certain degrees and provided a new code construction which is able to exploit these gaps
to lower the recovery threshold. For this construction, we also presented new closed-form
expressions for the recovery threshold as a function of the number of colluding workers
and the specific number of submatrices that the matrices A and B are partitioned into
during encoding. Further, in the absence of any security constraints, we showed that our
construction is optimal in terms of recovery threshold. Our proposed scheme improves
on the recovery threshold of existing schemes from the literature in particular for large
dimensions of A and a larger number of colluding workers, in some cases, even by a
large margin.
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