
Edited by

Applied and Computational
Mathematics for Digital
Environments

Liliya Demidova
Printed Edition of the Special Issue Published in Mathematics

www.mdpi.com/journal/mathematics

Applied and Computational
Mathematics for Digital Environments

Applied and Computational
Mathematics for Digital Environments

Editor

Liliya Demidova

MDPI • Basel • Beijing • Wuhan • Barcelona • Belgrade • Manchester • Tokyo • Cluj • Tianjin

Editor

Liliya Demidova

MIREA—Russian

Technological University

Moscow

Russia

Editorial Office

MDPI

St. Alban-Anlage 66

4052 Basel, Switzerland

This is a reprint of articles from the Special Issue published online in the open access journal

Mathematics (ISSN 2227-7390) (available at: https://www.mdpi.com/si/mathematics/Appl

Comput Math Digit Environ).

For citation purposes, cite each article independently as indicated on the article page online and as

indicated below:

LastName, A.A.; LastName, B.B.; LastName, C.C. Article Title. Journal Name Year, Volume Number,

Page Range.

ISBN 978-3-0365-7266-6 (Hbk)

ISBN 978-3-0365-7267-3 (PDF)

© 2023 by the authors. Articles in this book are Open Access and distributed under the Creative

Commons Attribution (CC BY) license, which allows users to download, copy and build upon

published articles, as long as the author and publisher are properly credited, which ensures maximum

dissemination and a wider impact of our publications.

The book as a whole is distributed by MDPI under the terms and conditions of the Creative Commons

license CC BY-NC-ND.

Contents

About the Editor . vii

Preface to ”Applied and Computational Mathematics for Digital Environments” ix

Liliya A. Demidova

Applied and Computational Mathematics for Digital Environments
Reprinted from: Mathematics 2023, 11, 1629, doi:10.3390/math11071629 1

Evgeny Nikulchev, Dmitry Ilin and Alexander Gusev

Technology Stack Selection Model for Software Design of Digital Platforms
Reprinted from: Mathematics 2021, 9, 308, doi:10.3390/math9040308 7

Ilya E. Tarasov

A Mathematical Method for Determining the Parameters of Functional Dependencies Using
Multiscale Probability Distribution Functions
Reprinted from: Mathematics 2021, 9, 1085, doi:10.3390/math9101085 19

Anton Aleshkin

The Influence of Transport Link Density on Conductivity If Junctions and/or Links Are Blocked
Reprinted from: Mathematics 2021, 9, 1278, doi:10.3390/math9111278 33

Natanael Karjanto and Husty Serviana Husain

Not Another Computer Algebra System: Highlighting wxMaxima in Calculus
Reprinted from: Mathematics 2021, 9, 1317, doi:10.3390/math9121317 51

Bogdan Aman and Gabriel Ciobanu

Knowledge Dynamics and Behavioural Equivalences in Multi-Agent Systems
Reprinted from: Mathematics 2021, 9, 2869, doi:10.3390/math9222869 71

Dmitry Zhukov, Julia Perova and Vladimir Kalinin

Description of the Distribution Law and Non-Linear Dynamics of Growth of Comments
Number in News and Blogs Based on the Fokker-Planck Equation
Reprinted from: Mathematics 2022, 10, 989, doi:10.3390/math10060989 97

Juan-Jose Cardenas-Cornejo, Mario-Alberto Ibarra-Manzano, Daniel-Alberto Razo-Medina

and Dora-Luz Almanza-Ojeda

Complex Color Space Segmentation to Classify Objects in Urban Environments
Reprinted from: Mathematics 2022, 10, 3752, doi:10.3390/math10203752 121

Vladimir Krutikov, Svetlana Gutova, Elena Tovbis, Lev Kazakovtsev and Eugene Semenkin

Relaxation Subgradient Algorithms with Machine Learning Procedures
Reprinted from: Mathematics 2022, 10, 3959, doi:10.3390/math10213959 139

Askhat Diveev and Elizaveta Shmalko

Machine Learning Feedback Control Approach Based on Symbolic Regression for Robotic
Systems
Reprinted from: Mathematics 2022, 10, 4100, doi:10.3390/math10214100 173

Aleksei Vakhnin, Evgenii Sopov and Eugene Semenkin

On Improving Adaptive Problem Decomposition Using Differential Evolution for Large-Scale
Optimization Problems
Reprinted from: Mathematics 2022, 10, 4297, doi:10.3390/math10224297 205

v

Liliya A. Demidova

A Novel Approach to Decision-Making on Diagnosing Oncological Diseases Using Machine
Learning Classifiers Based on Datasets Combining Known and/or New Generated Features of
a Different Nature
Reprinted from: Mathematics 2023, 11, 792, doi:10.3390/math11040792 233

vi

About the Editor

Liliya Demidova

Liliya Demidova is Professor at the MIREA—Russian Technological University (Moscow,

Russia). She is the author of seven books and over two hundred papers that have been published in

reputable journals in both Russian and English. Her research interests include fuzzy logic, machine

learning, data mining, decision support, time series forecasting, and image processing.

vii

Preface to ”Applied and Computational Mathematics

for Digital Environments”

Currently, digitalization and digital transformation are actively expanding into various areas of

human activity, and researchers are identifying urgent problems and offering new solutions for digital

environments in industry, economics, business, medicine, ecology, education, etc.

Undeniably, when we seek to solve problems that challenge the global community, the advanced

principles and technologies of applied and computational mathematics must be involved. The

application of such principles and technologies will ensure the study and modeling of various

phenomena in the real world using intelligent software, hardware platforms, and corresponding

modules.

The present book contains the 11 papers that were accepted for publication among the 12

manuscripts that were submitted to the Special Issue “Applied and Computational Mathematics

for Digital Environments” of the MDPI “Mathematics” journal. The 11 papers, which appear in the

present book in the series that they have been published in, Volumes 9 (2021), 10 (2022), and 11 (2023)

of the journal, cover a wide range of topics connected to the principles and technologies of applied

and computational mathematics, which can be applied to solve various practical problems in digital

environments.

The topics of interest include, among others, scientific research, applied tasks, and problems in

the following areas:

• The construction of mathematical and information models of intelligent computer systems for

monitoring and controlling the parameters of digital environments;

• The development of intelligent optimization algorithms that search for optimal parameter values

of mathematical and information models in digital environments;

• Software and mathematical technologies in the implementation of intelligent monitoring and

computer control of the parameters of digital environments;

• The development and application of mathematical and information models, machine learning

methods, and artificial intelligence for the analysis and processing of big data in digital

environments.

I hope that this book will be useful to those who are interested in the real-world applications of

applied and computational mathematics for digital environments in terms of solving actual, practical

problems in all spheres of human life and activity.

As the Guest Editor of the Special Issue “Applied and Computational Mathematics for Digital

Environments” of the MDPI “Mathematics” journal, I am grateful to the contributing authors,

the reviewers of this paper for their valuable comments, which greatly improved the quality of

the submitted papers, and the administrative staff of MDPI publications for the support toward

completing this project. Furthermore, special thanks are due to the Managing Editor of the Special

Issue, Dr. Syna Mu, for his excellent collaboration, valuable assistance, and support.

Liliya Demidova

Editor

ix

Citation: Demidova, L.A. Applied

and Computational Mathematics for

Digital Environments. Mathematics

2023, 11, 1629. https://doi.org/

10.3390/math11071629

Received: 21 March 2023

Accepted: 23 March 2023

Published: 28 March 2023

Copyright: © 2023 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Editorial

Applied and Computational Mathematics for
Digital Environments

Liliya A. Demidova

Institute of Information Technologies, Federal State Budget Educational Institution of Higher Education,
MIREA–Russian Technological University, 78, Vernadsky Avenue, 119454 Moscow, Russia;
liliya.demidova@rambler.ru

1. Introduction

Currently, digitalization and digital transformation are actively expanding into various
areas of human activity, and researchers are identifying urgent problems and offering new
solutions regarding digital environments in industry [1,2], economics [3,4], medicine [5,6],
ecology [7,8], education [9,10], etc.

The advanced principles and technologies of applied and computational mathematics
should be used to address challenges faced by the global community. The application of
such principles and technologies enables the study and modeling of various phenomena of
the real world using intelligent software and hardware platforms and corresponding modules.

In this regard, topics of interest in this Special Issue, “Applied and Computational
Mathematics for Digital Environments”, include but are not limited to scientific research,
applied tasks and problems in the following areas:

• Construction of mathematical and information models of intelligent computer systems
for monitoring and controlling the parameters of digital environments;

• Development of intelligent optimization algorithms that search for optimal parameters
values of mathematical and information models in digital environments;

• Software and mathematical technologies in the implementation of intelligent monitor-
ing and computer control of the parameters of digital environments;

• Development and application of mathematical and information models, machine
learning methods, and artificial intelligence for the analysis and processing of big data
in digital environments.

2. Statistics of the Special Issue

A total of 12 papers were submitted to this Special Issue, of which 11 were published
(91.67%) [11–21] and only 1 was rejected (8.33%), indicating the very high quality of the
original submissions.

These 11 papers were accepted for publication in this Special Issue after a careful,
comprehensive and iterative peer-review process based on criteria related to their high
quality and novelty.

The geographical distribution of the authors of the submitted papers is presented in
Figure 1, and the published papers are represented by 26 authors from 5 different countries.

We also note that three papers were written by one author each, three papers were
written by teams of two authors, three papers were written by teams of three authors, one
paper was written by a team of four authors, and one paper was written by a team of
five authors.

At the same time, many papers were written as collaborations between authors from
different countries, cities and scientific organizations.

Mathematics 2023, 11, 1629. https://doi.org/10.3390/math11071629 https://www.mdpi.com/journal/mathematics1

Mathematics 2023, 11, 1629

Figure 1. The geographical distribution of the authors of the papers.

3. Authors of the Special Issue

The authors of this Special Issue and their affiliations are shown in Table 1.

Table 1. Affiliations and bibliometric indicators for authors.

Author Affiliation References

Evgeny Nikulchev
Department of Intelligent Information Security Systems, MIREA—Russian

Technological University, 119454 Moscow,
Russia

[11]

Dmitry Ilin
Department of Intelligent Information Security Systems, MIREA—Russian

Technological University, 119454 Moscow,
Russia

[11]

Alexander Gusev

Data Center, Russian Academy of Education, Moscow 119121,
Russia;

Kuban State Technological University, 350072 Krasnodar,
Russia

[11]

Ilya E. Tarasov Institute of Informational Technologies, RTU MIREA, Vernadsky pr. 78, 119454 Moscow,
Russia [12]

Anton Aleshkin
Department of Systems Management and Modelling, MIREA—Russian Technological

University, 78 Vernadsky Prospect, 119454 Moscow,
Russia

[13]

Natanael Karjanto
Department of Mathematics, University College, Natural Science Campus,

Sungkyunkwan University, Suwon 16419,
Korea

[14]

Husty Serviana
Husain

Department of Mathematics Education, Faculty of Mathematics and Natural Science
Education, Indonesia University of Education, Bandung 40154,

Indonesia
[14]

Bogdan Aman

Institute of Computer Science, Romanian Academy, 700505 Iaşi,
Romania;

Faculty of Computer Science, Alexandru Ioan Cuza University, 700506 Iaşi,
Romania

[15]

Gabriel Ciobanu Faculty of Computer Science, Alexandru Ioan Cuza University, 700506 Iaşi,
Romania [15]

Dmitry Zhukov
Institute of Cybersecurity and Digital Technologies, MIREA—Russian

Technological University, 78 Vernadsky Avenue, 119454 Moscow,
Russia

[16]

2

Mathematics 2023, 11, 1629

Table 1. Cont.

Author Affiliation References

Julia Perova
Institute of Radio Electronics and Computer Science, MIREA—Russian

Technological University, 78 Vernadsky Avenue, 119454 Moscow,
Russia

[16]

Vladimir Kalinin
Institute of Cybersecurity and Digital Technologies, MIREA—Russian Technological

University, 78 Vernadsky Avenue, 119454 Moscow,
Russia

[16]

Juan-Jose
Cardenas-Cornejo

Electronics Engineering Department, DICIS, University of Guanajuato, Carr.
Salamanca-Valle de Santiago KM. 3.5 + 1.8 Km., Salamanca 36885,

Mexico
[17]

Mario-Alberto
Ibarra-Manzano

Electronics Engineering Department, DICIS, University of Guanajuato, Carr.
Salamanca-Valle de Santiago KM. 3.5 + 1.8 Km., Salamanca 36885,

Mexico
[17]

Daniel-Alberto
Razo-Medina

Electronics Engineering Department, DICIS, University of Guanajuato, Carr.
Salamanca-Valle de Santiago KM. 3.5 + 1.8 Km., Salamanca 36885,

Mexico
[17]

Dora-Luz
Almanza-Ojeda

Electronics Engineering Department, DICIS, University of Guanajuato, Carr.
Salamanca-Valle de Santiago KM. 3.5 + 1.8 Km., Salamanca 36885,

Mexico
[17]

Vladimir Krutikov
Department of Applied Mathematics, Kemerovo State University,

Krasnaya Street 6, 650043 Kemerovo,
Russia

[18]

Svetlana Gutova
Department of Applied Mathematics, Kemerovo State University,

Krasnaya Street 6, 650043 Kemerovo,
Russia

[18]

Elena Tovbis
Institute of Informatics and Telecommunications, Reshetnev Siberian State University of

Science and Technology, Prosp. Krasnoyarskiy Rabochiy 31, 660031 Krasnoyarsk,
Russia

[18]

Lev Kazakovtsev
Institute of Informatics and Telecommunications, Reshetnev Siberian State University of

Science and Technology, Prosp. Krasnoyarskiy Rabochiy 31, 660031 Krasnoyarsk,
Russia

[18]

Eugene Semenkin
Institute of Informatics and Telecommunications, Reshetnev Siberian State University of

Science and Technology, Prosp. Krasnoyarskiy Rabochiy 31, 660031 Krasnoyarsk,
Russia

[18,20]

Askhat Diveev
Federal Research Center “Computer Science and Control”, the Russian Academy of

Sciences, 119333 Moscow,
Russia

[19]

Elizaveta Shmalko
Federal Research Center “Computer Science and Control”, the Russian Academy of

Sciences, 119333 Moscow,
Russia

[19]

Aleksei Vakhnin
Department of System Analysis and Operations Research, Reshetnev Siberian State

University of Science and Technology, 660037 Krasnoyarsk,
Russia

[20]

Evgenii Sopov
Department of System Analysis and Operations Research, Reshetnev Siberian State

University of Science and Technology, 660037 Krasnoyarsk,
Russia

[20]

Liliya A. Demidova

Institute of Information Technologies, Federal State Budget Educational
Institution of Higher Education, MIREA—Russian Technological University,

78, Vernadsky Avenue, 119454 Moscow,
Russia

[21]

4. Overview of the Contributions to the Special Issue

Nikulchev et al. [11] evaluated the efficiency of integrating information technology
solutions into digital platforms by developing a mathematical model and methodology
based on the use of fuzzy logic.

Tarasov [12] studied the application of an approximation method of experimental data
using functional dependencies. The author introduced an independent parameter “scale

3

Mathematics 2023, 11, 1629

of the error probability distribution function” that considers the architecture and practical
approaches to its implementation.

Aleshkin [13] proposed an approach to modeling and managing traffic flows based on
percolation theory. The author studied the properties of transport networks and proposes
algorithms for building planar random networks and calculating their percolation thresholds.

The study by Karjanto et al. [14] is dedicated to a computer algebra system (CAS)
wxMaxima for calculus teaching and learning at a tertiary level. The authors study the
strengths and limitations of the software under consideration.

Aman et al. [15] address the behavior of multi-agent systems. The authors consider
how knowledge is handled and exchanged between agents, and study the evolution of the
system that is caused by these exchanges.

Zhukov et al. [16] consider distributions of news items via the number of comments,
including both comments at the first level and comments under these. The authors state
that under certain assumptions the law for the stationary probability distribution can be
derived from the Fokker–Planck differential equation.

Cardenas-Cornejo et al. [17] propose a new chromatic segmentation approach for
detecting and classifying objects in urban environments. This approach yields centroids of
patches on the color image, which are subsequently classified using a convolutional neural
network (CNN) with a high accuracy score.

The study by Krutikov et al. [18] is dedicated to a new relaxation subgradient min-
imization method (RSMM). The computational experiments conducted by the authors
confirmed the effectiveness of the proposed algorithm, showing that it outperforms cur-
rently known methods.

Diveev et al. [19] propose a universal numerical approach to solving the problem
of optimal control with feedback using machine learning methods based on symbolic
regression. First, authors introduce and discuss such notions as machine learning control,
stability, optimality and feasibility of machine-made control systems. Then, they provide
a substantiation for the machine learning feedback control approach based on symbolic
regression and evolutionary algorithms.

Vakhnin et al. [20] address large-scale global black-box optimization (LSGO). The au-
thors propose a self-adaptive approach that combines ideas from state-of-the-art algorithms
and implements Coordination of Self-adaptive Cooperative Co-evolution algorithms with
Local Search (COSACC-LS1).

Demidova [21] proposes an approach for diagnosing oncological diseases based on
blood protein markers, new features generated using non-linear dimensionality reduction
algorithm UMAP, formulas for various entropies and fractal dimensions. The author used
resulting datasets with various combinations of features to develop multiclass kNN and
SVM classifiers.

The published papers cover a wide range of tasks and problems in various fields of
human activity and offer solutions by applying modern tools to analyze and process data
in digital environments.

5. Acknowledgments to the Authors and Reviewers

As Guest Editor of the Special Issue, “Applied and Computational Mathematics for
Digital Environments”, I am grateful to all contributing authors. I also express my gratitude
to all the reviewers for their painstaking work and valuable comments that helped to
improve the quality of the submitted papers.

6. Conclusions

The purpose of this Special Issue was to attract high-quality new papers in the field of
applied and computational mathematics for digital environments, offering original solutions
to various problems that are relevant and in demand in various fields of human activity.

I hope that these selected research papers are recognized as important and meaningful
by the international scientific community and can form the basis for further research in the

4

Mathematics 2023, 11, 1629

field of applied and computational mathematics for digital environments, solving complex
problems in various disciplines and application areas.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The author declares no conflict of interest.

References

1. Fonseca, L. Industry 4.0 and the digital society: Concepts, dimensions and envisioned benefits. Proc. Int. Conf. Bus. Excell. 2018,
12, 386–397. [CrossRef]

2. Schnell, P.; Haag, P.; Jünger, H.C. Implementation of Digital Technologies in Construction Companies: Establishing a Holistic
Process which Addresses Current Barriers. Businesses 2023, 3, 1–18. [CrossRef]

3. Zhu, H.; Wang, C. Digital economy leads the high-quality development of industries: Theory, mechanism, and path. Financ. Econ.
Theory Pract. 2020, 41, 2–10.

4. Yang, S.; Jia, J. Digital Economy, Technological Innovation, and Environmental Quality Improvement. Sustainability 2022, 14,
15289. [CrossRef]

5. Sun, M.; Xie, L.; Liu, Y.; Li, K.; Jiang, B.; Lu, Y.; Yang, Y.; Yu, H.; Song, Y.; Bai, C.; et al. The metaverse in current digital medicine.
Clin. eHealth 2022, 5, 52–57. [CrossRef]

6. Syamimi Masrani, A.; Nik Husain, N.R. Digital environment: An evolutionary component in environmental health. J. Public
Health Res. 2022, 11, 1–6. [CrossRef]

7. Truong, T.C. The Impact of Digital Transformation on Environmental Sustainability. Adv. Multimed. 2022, 2022, 6324325. [CrossRef]
8. Marton, A. Steps toward a Digital Ecology Ecological Principles for the Study of Digital Ecosystems. J. Inf. Technol. 2022, 37,

250–265. [CrossRef]
9. Lodge, J.; Kennedy, G.; Lockyer, L. Digital learning environments, the science of learning and the relationship between the teacher

and the learner. In Learning Under the Lens: Applying Findings from the Science of Learning to the Classroom; Carroll, A., Cunnington,
R., Nugent, A., Eds.; Routledge: Abingdon, UK, 2020.

10. Andrianova, E.G.; Demidova, L.A.; Sovetov, P.N. Pedagogical design of a digital teaching assistant in massive professional
training for the digital economy. Russ. Technol. J. 2022, 10, 7–23. [CrossRef]

11. Nikulchev, E.; Ilin, D.; Gusev, A. Technology Stack Selection Model for Software Design of Digital Platforms. Mathematics 2021, 9,
308. [CrossRef]

12. Tarasov, I.E. A Mathematical Method for Determining the Parameters of Functional Dependencies Using Multiscale Probability
Distribution Functions. Mathematics 2021, 9, 1085. [CrossRef]

13. Aleshkin, A. The Influence of Transport Link Density on Conductivity If Junctions and/or Links Are Blocked. Mathematics 2021,
9, 1278. [CrossRef]

14. Karjanto, N.; Husain, H.S. Not Another Computer Algebra System: Highlighting wxMaxima in Calculus. Mathematics 2021, 9,
1317. [CrossRef]

15. Aman, B.; Ciobanu, G. Knowledge Dynamics and Behavioural Equivalences in Multi-Agent Systems. Mathematics 2021, 9, 2869. [CrossRef]
16. Zhukov, D.; Perova, J.; Kalinin, V. Description of the Distribution Law and Non-Linear Dynamics of Growth of Comments

Number in News and Blogs Based on the Fokker-Planck Equation. Mathematics 2022, 10, 989. [CrossRef]
17. Cardenas-Cornejo, J.-J.; Ibarra-Manzano, M.-A.; Razo-Medina, D.-A.; Almanza-Ojeda, D.-L. Complex Color Space Segmentation

to Classify Objects in Urban Environments. Mathematics 2022, 10, 3752. [CrossRef]
18. Krutikov, V.; Gutova, S.; Tovbis, E.; Kazakovtsev, L.; Semenkin, E. Relaxation Subgradient Algorithms with Machine Learning

Procedures. Mathematics 2022, 10, 3959. [CrossRef]
19. Diveev, A.; Shmalko, E. Machine Learning Feedback Control Approach Based on Symbolic Regression for Robotic Systems.

Mathematics 2022, 10, 4100. [CrossRef]
20. Vakhnin, A.; Sopov, E.; Semenkin, E. On Improving Adaptive Problem Decomposition Using Differential Evolution for Large-Scale

Optimization Problems. Mathematics 2022, 10, 4297. [CrossRef]
21. Demidova, L.A. A Novel Approach to Decision-Making on Diagnosing Oncological Diseases Using Machine Learning Classifiers

Based on Datasets Combining Known and/or New Generated Features of a Different Nature. Mathematics 2023, 11, 792. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

5

mathematics

Article

Technology Stack Selection Model for Software Design of
Digital Platforms

Evgeny Nikulchev 1,*, Dmitry Ilin 1 and Alexander Gusev 2,3

Citation: Nikulchev, E.; Ilin, D.;

Gusev, A. Technology Stack Selection

Model for Software Design of Digital

Platforms. Mathematics 2021, 9, 308.

https://doi.org/10.3390/math9040308

Academic Editor: Hsien-Chung Wu

Received: 17 December 2020

Accepted: 30 January 2021

Published: 4 February 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Intelligent Information Security Systems, MIREA—Russian Technological University,
Moscow 119454, Russia; ilin_dyu@mirea.ru

2 Data Center, Russian Academy of Education, Moscow 119121, Russia; alexander.gusev@rusacademedu.ru
3 Kuban State Technological University, Krasnodar 350072, Russia
* Correspondence: nikulchev@mail.ru

Abstract: The article is dedicated to the development of a mathematical model and methodology for
evaluating the effectiveness of integrating information technology solutions into digital platforms us-
ing virtual simulation infrastructures. The task of selecting a stack of technologies is formulated as the
task of selecting elements from sets of possible solutions. This allows us to develop a mathematically
unified approach to evaluating the effectiveness of different solutions, such as choosing programming
languages, choosing Database Management System (DBMS), choosing operating systems and data
technologies, and choosing the frameworks used. Introduced technology compatibility operation
and decomposition of the evaluation of the efficiency of the technology stack at the stages of the life
cycle of the digital platform development allowed us to reduce the computational complexity of the
formation of the technology stack. A methodology based on performance assessments for experi-
mental research in a virtual software-configurable simulation environment has been proposed. The
developed solution allows the evaluation of the performance of the digital platform before its final
implementation, while reducing the cost of conducting an experiment to assess the characteristics
of the digital platform. It is proposed to compare the characteristics of digital platform efficiency
based on the use of fuzzy logic, providing the software developer with an intuitive tool to support
decision-making on the inclusion of the solution in the technology stack.

Keywords: mathematical model for evaluating the effectiveness of integrating information technol-
ogy; digital platforms; virtual simulation infrastructures; experimental virtual environment

1. Introduction

The proliferation of web applications, driven by their platform and hardware indepen-
dence, ubiquity of use, interfaces, data transfer protocols, and programmable capabilities,
has defined the development of the IT sector—the creation of digital platforms. Using
a platform allows the collection and sharing of information between a huge number of
users, combining results into big data. Information technologies, which are used in the
development of digital platforms, are commonly called technology stacks. An important
feature of IT solutions integrated into the stack is their replaceability, meaning one of the
technologies can be replaced with an alternative, either newly created or a new version of
the existing one. There are many techniques for individual software design phases [1,2] for
specific technologies and software systems such as digital platforms.

The system performance depends on the efficiency of each of the components of the
technology stack [3] and on the effectiveness of their interaction [4]. At the same time,
there can be more than one ready-made technology solution for one task, both commercial
and free of charge. In practice, the choice is based on load tests or expert assessments. The
approaches summarize the experience of using specific components or the technology stack,
but are not based on formal assessments and cannot be used to compare efficiency. Formal
methods are focused on solving identification and optimization tasks that are of greater

Mathematics 2021, 9, 308. https://doi.org/10.3390/math9040308 https://www.mdpi.com/journal/mathematics7

Mathematics 2021, 9, 308

dimensionality. The proposed methods do not consider the specifics of the operation of the
digital platform and its infrastructure.

The quality of the technology selection can only be judged after the entire stack of
technologies has been formed, a digital platform has been developed, and characteristics
are calculated. In practice, there are situations where large digital systems stop working
when they start at high load. For example, the logging framework accessed the database
where the main data was stored, which resulted in a significant increase in the latency of
access to the data. It is typical that when the system is commissioned, it turns out that
some of its write/reading functions are slower than expected, the method of storing data
was incorrectly selected, and so on. In high load systems with integrated modules used, it
is difficult or impossible to assess theoretically their effectiveness. In these conditions, a
model and an approach are proposed, which consist of identifying a subset of technologies
of the required technology stack and choosing based on an assessment of quality character-
istics in conditions that simulate a real environment, e.g., parameters of network loading,
parameters of virtual machines, data transfer rate, and so on.

The paper also proposes use of fuzzy logic. For example, when choosing technological
solutions based on minimizing the consumption of a resource, the key indicator is not
the specific number of bytes or microseconds spent on the execution of an algorithm that
changes slightly from experiment to experiment, but a qualitative estimate of whether
resource consumption is “high”, “medium”, or “low” in accordance with the developer’s
goals and perceptions. The introduction of such quality categories makes it possible to
significantly simplify the evaluation of the technological solution, breaking all the many
available technological solutions into a small number of classes relative to the consumption
of the resource, corresponding to the quality categories.

The article consists of six sections. Section 2 provides an overview of related works,
Section 3 proposes a basic model, Section 4 describes the virtual environment used for
experimental research, and Section 5 describes the example of decision-making for specific
experimental studies. Section 6 provides key results and conclusions.

2. Related Works

The basics of evaluating information technology solutions are considered within the
algorithmic efficiency theory. However, in the development of digital platforms, each
solution can include a large number of algorithms. Evaluating the effectiveness of each
individual algorithm will require laborious research. In addition, the solutions under
consideration may contain closed source code.

There are many approaches to the task of selecting effective software components [5–7],
methods for solving the problem of optimization, and formal models for the decision-
making support [8,9]. However, the tasks under consideration are of great dimensionality
and the existing solutions do not take into account the specifics of the operation of the
digital platform and its infrastructure. Various methods of Database Management System
(DBMS) benchmarking are well known for SQL, NoSQL, and hybrid solutions, but these
methods do not address the DBMS in the context of the technology stack.

Development practices (load testing, benchmarking, expert review etc.) generalize
experience in specific solutions or technology stacks and are actively applied in digital
platform development practices. A significant drawback of these practices is the lack of
consideration of the specifics of the operation of the digital platform and its infrastructure.

The need for experimental evaluation of the technology solutions before integration
into the digital platform can be due to various reasons. For example, the software de-
veloper may need to test the hypothesis about the pros or cons of the solution under
consideration [10]. The need for cross-platform functioning [11] also can be the reason for
experimental evaluation to ensure the resulting digital platform components can run in
various environments (browsers, mobile devices, operating systems etc.).

Distributed software development teams have a practice of using virtual development
environments [12]. This technology uses virtualization and virtual machine configura-

8

Mathematics 2021, 9, 308

tion management [13] to apply the right settings and install the required components. It
automates the process of synchronizing, setting up, and starting the developer’s work
environment. Configuration management systems facilitate simultaneous distributed work
on multiple components of the software being developed [14] and automate the process
of installing and customizing all the necessary components of the development environ-
ment [15]. Upgrading and modifying the virtual environment also becomes simplified [16]
because configuration files can be easily distributed among developers.

To test the compatibility of technology solutions, services are used to bootstrap a
virtual machine with the chosen operating system, software, and browser of a given version.
Microsoft has a number of virtual machines for Internet Explorer and Edge browsers that
do not require the purchase of a Windows license. However, since there are many other
browsers, there are tools with a large set of options. For example, BrowserStack provides
the ability to run virtual machines with a predetermined configuration on a remote server.
It also provides means to run automated test scenarios, such as regression testing, during
development.

A well-established approach to experimental software evaluation is software test-
ing [17]. In papers [18,19], a number of approaches to testing are considered, which
differ in their types: functional, non-functional, compatibility, reliability, recoverability,
performance, maintainability, security, and others. As noted in [20], there are noticeable
differences in views on the problems of software testing in industry and in science. At
the stage of software maintenance, automation tools are actively used [21,22]. Testing the
software is commonly included into the overall sequence of operations required to verify
that the software meets the requirements. In addition, experiments are being carried out to
assess the quality of the system [23,24] for the end users.

3. Technology Stack Selection Model

The concept and corresponding model for choosing a technology stack have been
developed and can be described as follows. It is necessary to construct a p-dimensional
vector of the technology stack to build the digital platform:

Ξ =
{
ξ1, ξ2, . . . , ξp

}
, ξi ∈ Ŝi, (i = 1, p),

where ξi—information technology solution for the technology stack (communication pro-
tocols, type of DBMS, frameworks used, Operating system (OS) version, etc.); Ŝi—the set
of possible alternatives for each information technology solution type. Let each set with
specific selected technology options denote Ξq.

For the given operating conditions (that is, when the digital platform is used after its
complete implementation, during the workload on software and hardware of a computing
system), each set of the technology stack can be associated with a vector of efficiency
characteristics, such as memory consumption, processing time of a given number of
records, processing queue size, failure frequency, maximum number of users, average CPU
load, client data transfer time, etc.:

∀Ξq → ϑq = [ϕq,1, . . . ,ϕq,n]
T ∈ Rn.

The stack Ξo will be effective if

∃Ξo, ∀Ξl , l �= o : max
Ω

(ϑl , ϑo) = ϑo.

Here, Ω is the configuration and operating conditions of the digital platform after its
implementation; max—operation of comparison of vectors characterizing qualities. In this
paper, the operation max is proposed to be implemented using fuzzy logic.

9

Mathematics 2021, 9, 308

In this case, the choice is a problem with computational complexity determined by a
complete enumeration of all elements of the sets Ŝi(i = 1, p) in p places of the technology
stack, i.e., it is necessary to enumerate all the options.

O = n1 · n2 · . . . · np,

where ni is cardinality of Ŝi(i = 1, p).
The complexity of the problem lies in the necessity of complete enumeration of

possible solutions, and in the fact that efficiency can be determined only by forming
the entire technology stack and assessing its performance after implementation. It is
proposed to solve the problem of evaluating the effectiveness by its approximation on
the basis of experimental virtual environments simulating the given operating conditions,
decomposing the general problem in accordance with the stages of the life cycle of the
development of digital platforms. To achieve this goal, the concept of a configuration is
introduced at t stages of the life cycle for a given configuration and operating conditions Ω:
ωi(i = 1, t) ⊂ Ω. At each stage ωi, each information technology solution of the technology
stack is selected so that the values of the efficiency characteristics are greater or equal in a
given set of alternatives.

In addition, technologies depend on the selection of previous information technology
solutions included into the technology stack. For example, the programming languages
chosen at the first stage limit the sets of libraries, the choice of the type of data storage
limits the choice of DBMS, and the choice of the OS also introduces restrictions.

Let an operation of compatibility of solutions be introduced such that

ξk �� ξg, if Ξ = (ξ1, . . . , ξk, . . . , ξg, . . . , ξp) → ϑ,
wherein ϑ has no zero elements,

In other words, compatible solutions are those that do not give zero efficiency values;
that is, they are able to function when used together.

At each m-th stage of the life cycle, the problem of choosing an information technology
solution for the formation of a technology stack is solved, i.e., a subset of the required Ξo is
formed. The procedure for choosing an information technology solution is as follows. For
each valid and compatible set Σm =

{
sm

1 , . . . , sm
η

}
,η < p.

Let sm
1 ∈ Ŝ1,

then
sm

2 ∈ S̃2 ⊆ Ŝ2, ∀s̃2 ∈ S̃2 : s̃2 �� sm
1 ;

sm
3 ∈ S̃3 ⊆ Ŝ3, ∀s̃3 ∈ S̃3 : s̃3 �� sm

2 ;
. . .
sm
η ∈ S̃η ⊆ Ŝη, ∀s̃η ∈ S̃η : s̃η �� sm

η−1;

For the efficiency vector given at the m-th stage out of Mi characteristics ∀Σm →
Φm ∈ RMm

:

∃Σo, ∀Σl , l �= o : max
ωm

(Φl , Σo) = Σo, for ωi obtaining a solution set for the technology stack Σo ⊂ Ξo.

When choosing solutions with the introduced operation of compatibility of infor-
mation technology solutions, the number of options for enumeration is reduced, so the
complexity estimate will be

Õ = n1 · n2(1 − Δ1) · n3(1 − Δ2) · . . . · np(1 − Δp−1),

where ni is the set cardinality Ŝi(i = 1, p); Δi(i = 1, p − 1, Δ1 ≤ Δ2 ≤ .. ≤ Δp−1) is the
coefficient characterizing the decrease in cardinality Ŝi down to S̃i, considering solution
compatibility.

10

Mathematics 2021, 9, 308

The original problem of evaluating a technology stack is divided into stages. Thus, the
technology stack is evaluated at each stage instead of a single evaluation after the digital
platform is launched. If the completely assembled digital platform does not meet the
requirements (in terms of speed, resources used, the ability to provide desired Quality-of-
service (QoS) to users, etc.), it will be necessary to identify which of the technology solutions
used affect efficiency (which is a very time-consuming task), and it will be necessary to
reimplement or to replace these technology solutions. When using the proposed approach,
assessments of the effectiveness of various alternative options are obtained at the stage of
selecting technological solutions. These assessments make it possible to select effective and
appropriate technological solutions before the time the platform is put into operation.

Thus, the approach allows the reduction of the number of options required to be
evaluated for forming a technology stack and makes it possible to evaluate information
technology solutions at the stages of the digital platforms’ development life cycle. The
introduced decomposition of the selection problem allows us to reduce the dimension of the
original problem and reduce the number of options under consideration, the effectiveness
of which can only be assessed by conducting experiments including each of the information
technology solutions into the digital platform.

The approach has limitations that must be considered when using it. The initial selec-
tion of the information technology solutions is carried out with the involvement of expert
assessments, and therefore the list of options may not be complete. If initial expert assess-
ments have led to an ineffective set of solutions, then the choice of subsequent solutions for
implementation in the technology stack will be limited by the need to ensure compatibility
with existing ineffective solutions. Thus, a systematic error in expert assessments can
hypothetically lead to a decrease in the efficiency of the digital platform.

4. Experimental Virtual Environment

When setting up an experiment, it is important to minimize the influence of the
observer on the object. To isolate the evaluated information technology solution from the
influence of the observer, it is necessary to form an independent infrastructure [25]. It can be
prepared both in hardware, using physical computing devices (computers, servers, routers,
etc.), and software, using virtual machines. The second option should be considered
preferable, since the implementation of the infrastructure using software means more
rational use of resources and portability. In addition, the use of virtual machines provides
infrastructure reusability.

It should be noted that infrastructure provisioned with virtual machines has several
disadvantages—it requires a large amount of disk space, it is difficult to monitor the current
state of virtual machines, and the changes you make need to be documented separately.

To mitigate the shortcomings, one can use the “infrastructure as code” approach. The
approach is implemented using systems such as:

• Systems for creating and configuring a virtual development environment (for example,
the Vagrant system);

• Systems for automating the deployment and management of applications in environ-
ments with containerization support (for example, Docker);

• Configuration management systems (for example, Ansible, Puppet).

Studies show that containerization systems are less suitable for setting up compu-
tational experiments. They provide less isolation of computational resources, which can
affect results.

To obtain experimental evaluations of the integration of information technology
solutions into digital platforms, a virtual simulation bench has been developed, as shown
in Figure 1.

11

Mathematics 2021, 9, 308

Figure 1. Scheme of the virtual bench for obtaining experimental evaluations of the integration of
information technology solutions.

Figure 1 contains a general scheme of the experimental bench. Configuration files in
YAML and Ruby languages are used as initial data. Based on the configuration files, virtual
machines are launched with the specified parameters and network connection settings.
Then the reference image of the operating system is loaded and launched. After launch,
the necessary software is installed on the guest operating systems using the configuration
management system (Ansible). The detailed description of the experiment, the source code
of the virtual environment, the settings of the swarm intelligence algorithm, and other
parameters are presented in the paper [25].

The proposed approach based on a virtual environment allows the obtaining of reliable
estimates of the effectiveness of information technology solutions. If the requirements and
operating conditions are changed (for example, the computing infrastructure is changed,
servers were replaced, the amount of data received, and the number of users were changed),
then the reliability of the estimates could be arguable. In this case, the estimates of the
effectiveness of information technology solutions need to be recalculated. However, the
methodology makes it possible to recalculate the value of the estimates using the experi-
mental virtual environment, even if the requirements and operating conditions are subject
to change.

Incorrect decomposition of the technology stack into subsets also can significantly
affect the reliability of the estimates obtained. That is, the technology stack can be decom-
posed so that interrelated and interacting information technology solutions are selected
at different stages, while the experimental evaluation of the effectiveness of these solu-
tions occurs independently of each other, which excludes the possibility of testing and
evaluating their mutual influence. In this case, the reliability of efficiency estimates can be
lower than expected; however, this limitation is general for all decomposition problems.
Decomposition of a single problem into many elementary problems increases the speed
and reduces computational costs of solving them, but it excludes the possibility of assessing
their mutual influence. Therefore, the depth of decomposition of the problem into subsets is
determined by the researcher depending on the available time and computational resources
for solving problems of assessing the effectiveness of information technology solutions.

5. Examples

Let there be given n functional requirements qi (i = 1, n) for the digital platform,
as well as t different configurations ωk (k = 1, t) of the infrastructure, reflecting the
set of conditions for the functioning of the platform. The platform developer defines M

12

Mathematics 2021, 9, 308

solutions of the technology stack to choose from. Each of the M solutions implement
at least one of the functional requirements qi. The subsets of alternative information
technology solutions from M capable of implementing the functional requirement qi can
be denoted as mi (i = 1, n). The subsets of information technology solutions, where for
each functional requirement qi there is at least one component from M, are defined as
technology stacks sj (j = 1, p

)
. S is the set of all possible stacks. To assess the quality of

integration of information technology solutions, f quality indicators rk,j
ξ ,(ξ = 1, f): Rk,j =

[rk,j
1 , . . . , rk,j

ξ , . . . , rk,j
f]

T
, (k = 1, t, j = 1, p) are introduced [26]. These quality indicators

belong to R f space. Thus,
∀ωk : sj → Rk,j ∈ R f ,

where Rk,j is a vector consisting of the values of the experimentally calculated quality
indicators for the infrastructure configuration ωk and the evaluated stack sj.

The following methodology for the integral quality assessment of the technology stack
is proposed:

1. Mathematical formalization of the problem of choosing the appropriate technology
stack in accordance with the above definitions.

2. Formation of fuzzy inference rules based on the goals and priorities of the digital
platform developer.

3. Study of the fuzzy inference system for the completeness of coverage of the range of
input values by the rules, the absence of redundant rules, and the elimination of the
ambiguous choice situation by setting the weights of the rules.

4. The choice of the method of normalizing the values of quality indicators rk,j
ξ for

transmission to the input of the fuzzy inference system.
5. Organization of experiments in a virtual simulation environment to obtain normalized

quality values rk,j
ξ for transferring to the input of the fuzzy inference system and

obtaining an integral quality indicator of the evaluated stack sj for infrastructure
configuration ωk.

6. To organize a directed search of the s∗ technology stack for configuration ωk, it is
proposed to use the swarm intelligence algorithm [27].

Let us consider the application of the methodology on the example of choosing
Node.js modules for developing a digital platform DigitalPsyTools [28], designed to provide
information support for population and longitudinal psychological research in Russia.

The following functional requirements are imposed on the modules used for data
transmission and processing in the digital platform:

• q1—sequentially check all elements of the array for compliance with the condition
and return an array consisting of elements for which the check gave the value “True”
(given alternatives: Lodash, Underscore);

• q2—apply the specified function to all elements of the array, returning a new array
consisting of the transformed elements (given alternatives: Lodash, Underscore, native
JavaScript);

• q3—return the first element of the array (given alternatives: Lodash, Underscore);
• q4—build full path to file or directory based on specified array of path elements (given

alternatives: native path module);
• q5—find and replace a substring in the given string (given alternatives: native JavaScript);
• q6—zip the transferred file array and return the generated Zip archive (given alterna-

tives: Adm-zip, jszip, zipit);
• q7—calculate the MD5 hash sum for the specified dataset (given alternatives: Hasha,

md5, Ts-md5);
• q8—read data from file (given alternatives: Fs-extra, native fs module);
• q9—read the contents of a directory by returning an array of filenames and subdirecto-

ries inside the directory (given alternatives: Fs-extra);

13

Mathematics 2021, 9, 308

• q10—recursively read the contents of a directory and return an array of filenames and
subdirectories inside the directory (given alternatives: Recursive-readdir).

Thus, n = 10, p = 216.
The quality of functioning is evaluated using f = 3 quality indicators: r1

k,j—physical
time spent on the experiment, ns; r2

k,j—microprocessor time spent on executing user
code during the experiment, μs; r3

k,j—increase in the size of memory pages allocated
to the experiment process (including heap, code segment, and stack), bytes. During the
experiment, the quality indicators were normalized relative to their maximum values in
the experiment, taking values on the interval [0; 1].

The use of these quality indicators is explained by the need to choose a technology
stack for which resource consumption in terms of increasing the size of memory pages,
processor, and physical time of program execution are minimal, which will ensure the best
user experience on various desktop and mobile devices.

The Fuzzy Logic Toolbox for MATLAB engineering software package is used for fuzzy
inference. It allows us to make the process of creating and configuring fuzzy inference
systems interactive. The developer visually configures the number of fuzzy sets, the type
of the membership function, the method of fuzzification of the initial quantitative data
for the transition to a qualitative representation, and the defuzzification method to obtain
a quantitative value at the output of the system. In the given example, the following
standard fuzzy inference parameters are set: and method: min; or method: max; implication:
min; aggregation: max; defuzzification: centroid.

Two different fuzzy inference systems of the Mamdani type were developed to obtain
integral quality indicators of the evaluated technology stack Ψ(ωk, sj

)
. Both systems are

described in Appendix A.
The first fuzzy inference system led to the following technology stack for the imple-

mentation of functional requirements:

• q1 is implemented by the “Underscore” component;
• q2 and q5 are implemented by the JavaScript language tools;
• q3—by the “Lodash” component;
• q4—by the “Path” component;
• q6—by the “Adm-zip” component;
• q7—by the “Hasha” component;
• q8—by the “Fs” component;
• q9—by the “Fs-extra” component;
• q10—by the “Recursive-readdir” component.

The integral quality indicator value for the technology stack is 0.8123.
The second fuzzy inference system led to the following technology stack for the

implementation of functional requirements of the given digital platform:

• q1 is implemented by the “Underscore” component;
• q2 and q5 are implemented by the JavaScript language tools;
• q3—by the “Lodash” component;
• q4—by the “Path” component;
• q6—by the “Adm-zip” component;
• q7—by the “Ts-md5” component;
• q8—by the “Fs-extra” component;
• q9—by the “Fs-extra” component;
• q10—by the “Recursive-readdir” component.

The integral quality indicator value for the technology stack is 0.8647.

6. Conclusions

A methodology for the selection of information technology solutions for a technology
stack of digital platforms based on fuzzy logic has been developed. The methodology was
tested on the choice of a technology stack for the component of data processing and trans-

14

Mathematics 2021, 9, 308

mission in the digital platform of population psychological research. The obtained results
were confirmed experimentally, as the implementation of the selected technologies pro-
vided the required level of quality and efficiency in the collection and transmission of data
in population studies. In this paper, studies of two alternative methods of fuzzy inference
are carried out, demonstrating the use of fuzzy logic for the developed methodology.

The contribution of the paper to the developer community lays in demonstration of
the importance of conducting experimental research and obtaining numerical estimates
of technology solution efficiency during the process of digital platform development. It
is shown that the software system will satisfy the specified requirements if the choice of
the technology stack is reasonable. The limitation of the approach is the need to allocate
additional computing resources and specialists for experimental research and analysis of
the results obtained. However, these costs are justified for digital platforms that process
big data or work with a large number of users, since the methodology helps to avoid many
of the errors that are commonly detected at the launch stage.

The proposed methodology can be applied in various models of the digital platforms’
life cycle. Since correct experiments are time consuming, it is quite possible that the
approach is difficult to apply in agile development methodologies with short sprints. The
methodology is suited better to the incremental and agile methodologies with a longer
sprint or iteration duration as it gives the advantage during the search of the effective
information technology solutions based on the previously selected technology stack.

The proposed methodology can be used when choosing technological solutions for the
technology stack of modern digital platforms and similar software systems with integrated
architecture.

Author Contributions: Conceptualization, E.N.; methodology, E.N., A.G., and D.I.; software, D.I.;
validation, A.G.; formal analysis, E.N. and A.G.; investigation, D.I.; resources, D.I.; writing—original
draft preparation, E.N., D.I.; writing—review and editing, A.G.; visualization, A.G.; supervision,
E.N.; project administration, E.N. All authors have read and agreed to the published version of the
manuscript.

Funding: This research was funded by the Ministry of Science and Higher Education of the Russian
Federation.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

Two different fuzzy inference systems of the Mamdani type (hereinafter FIS) were
developed, as shown in Figure A1, to obtain integral quality indicators Ψ(ωk, sj

)
of the

evaluated technology stack. These systems take as input the three quality indicators
described above, with r1

k,j being denoted as t, r2
k,j being denoted as cpu, and r3

k,j being
denoted as ram. The integral quality indicator Ψ(ωk, sj) is denoted as quality.

Figure A1. Structure of fuzzy inference system.

15

Mathematics 2021, 9, 308

In both fuzzy inference systems, the numerical values of the indicators t, cpu, ram are
associated with fuzzy sets “low”—low resource consumption, “med”—average resource
consumption, “high”—high resource consumption, for which triangular membership
functions are defined with coordinates vertices [−0.4 0 0.4], [0.1 0.5 0.9], [0.6 1 1.4] for
“low”, “med”, “high”, respectively.

The integral quality indicator named quality is associated with fuzzy sets “low”—
low quality, “med”—medium quality, “high”—high quality in accordance with defined
membership functions, as shown in Figure A2.

Figure A2. Membership functions of fuzzy sets for the integral quality indicator.

When determining the value of the integral quality indicator in FIS, the following
rules are used (the weight of the rule is indicated in brackets):

1. If (t is low) and (cpu is low) then (quality is high) (0.5);
2. If (t is low) and (cpu is med) then (quality is high) (0.5);
3. If (t is low) and (cpu is high) then (quality is med) (0.5);
4. If (t is med) and (cpu is low) then (quality is high) (0.5);
5. If (t is med) and (cpu is med) then (quality is med) (0.5);
6. If (t is med) and (cpu is high) then (quality is med) (0.5);
7. If (t is high) and (cpu is low) then (quality is med) (0.5);
8. If (t is high) and (cpu is med) then (quality is med) (0.5);
9. If (t is high) and (cpu is high) then (quality is med) (0.5);
10. If (ram is med) then (quality is med) (1);
11. If (ram is high) then (quality is low) (1).

For verification, an alternative output is considered, using more rules. When deter-
mining the value of the integral quality indicator in FISA, the following rules are used (the
weight of the rule is indicated in brackets):

1. If (t is low) and (cpu is low) and (ram is low) then (quality is high) (1);
2. If (t is low) and (cpu is low) and (ram is med) then (quality is high) (1);
3. If (t is low) and (cpu is low) and (ram is high) then (quality is med) (1);
4. If (t is low) and (cpu is med) and (ram is low) then (quality is high) (1);
5. If (t is low) and (cpu is med) and (ram is med) then (quality is med) (1);
6. If (t is low) and (cpu is med) and (ram is high) then (quality is low) (1);
7. If (t is low) and (cpu is high) and (ram is low) then (quality is med) (1);
8. If (t is low) and (cpu is high) and (ram is med) then (quality is low) (1);
9. If (t is low) and (cpu is high) and (ram is high) then (quality is low) (1);
10. If (t is med) and (cpu is low) and (ram is low) then (quality is high) (1);
11. If (t is med) and (cpu is low) and (ram is med) then (quality is med) (1);
12. If (t is med) and (cpu is low) and (ram is high) then (quality is low) (1);
13. If (t is med) and (cpu is med) and (ram is low) then (quality is med) (1);
14. If (t is med) and (cpu is med) and (ram is med) then (quality is med) (1);
15. If (t is med) and (cpu is med) and (ram is high) then (quality is low) (1);
16. If (t is med) and (cpu is high) and (ram is low) then (quality is med) (1);
17. If (t is med) and (cpu is high) and (ram is med) then (quality is med) (1);
18. If (t is med) and (cpu is high) and (ram is high) then (quality is low) (1);

16

Mathematics 2021, 9, 308

19. If (t is high) and (cpu is low) and (ram is low) then (quality is med) (1);
20. If (t is high) and (cpu is low) and (ram is med) then (quality is low) (1);
21. If (t is high) and (cpu is low) and (ram is high) then (quality is low) (1);
22. If (t is high) and (cpu is med) and (ram is low) then (quality is med) (1);
23. If (t is high) and (cpu is med) and (ram is med) then (quality is med) (1);
24. If (t is high) and (cpu is med) and (ram is high) then (quality is low) (1);
25. If (t is high) and (cpu is high) and (ram is low) then (quality is med) (1);
26. If (t is high) and (cpu is high) and (ram is med) then (quality is low) (1);
27. If (t is high) and (cpu is high) and (ram is high) then (quality is low) (1).

FIS and FISA decision surfaces are shown in Figure A3.

Figure A3. Decision surfaces for fuzzy inference systems, FIS and FISA.

Consideration of decision surfaces for pairs of indicators for FIS and FISA indicates
the applicability of both fuzzy inference systems for the choice of information technology
solutions. However, due to a more compact rule base and the use of weight priorities, FIS
is distinguished by a higher steepness of the surface in terms of t, cpu and by the presence
of local maximum, which is compensated by the superior weight of the selection rules in
terms of the ram indicator (Rules 10 and 11) to eliminate the ambiguity of the choice in
terms of t, cpu.

References

1. Ramirez, A.; Romero, J.R.; Ventura, S. Interactive multi-objective evolutionary optimization of software architectures. Inf. Sci.
2018, 463, 92–109. [CrossRef]

2. Yang, Y.; Yang, B.; Wang, S.; Jin, T.; Li, S. An enhanced multi-objective grey wolf optimizer for service composition in cloud
manufacturing. Appl. Soft Comput. 2020, 87, 106003. [CrossRef]

3. Gholamshahi, S.; Hasheminejad, S.M.H. Software component identification and selection: A research review. Softw. Pract. Exp.
2019, 49, 40–69. [CrossRef]

4. Beran, P.P.; Vinek, E.; Schikuta, E. A cloud-based framework for QoS-aware service selection optimization. In Proceedings of the
13th International Conference on Information Integration and Web-based Applications and Services, Ho Chi Minh City, Vietnam,
5–7 December 2011; pp. 284–287.

17

Mathematics 2021, 9, 308

5. Ramírez, A.; Parejo, J.A.; Romero, J.R.; Segura, S.; Ruiz-Cortés, A. Evolutionary composition of QoS-aware web services: A
many-objective perspective. Expert Syst. Appl. 2017, 72, 357–370. [CrossRef]

6. Vinek, E.; Beran, P.P.; Schikuta, E. A dynamic multi-objective optimization framework for selecting distributed deployments in a
heterogeneous environment. Procedia Comput. Sci. 2011, 4, 166–175. [CrossRef]

7. Kudzh, S.A.; Tsvetkov, V.Y.; Rogov, I.E. Life cycle support software components. Russ. Technol. J. 2020, 8, 19–33. [CrossRef]
8. Ezenwoke, A.; Daramola, O.; Adigun, M. QoS-based ranking and selection of SaaS applications using heterogeneous similarity

metrics. J. Cloud Comput. 2018, 7, 15. [CrossRef]
9. Belov, V.; Tatarintsev, A.; Nikulchev, E. Choosing a Data Storage Format in the Apache Hadoop System Based on Experimental

Evaluation Using Apache Spark. Symmetry 2021, 13, 195. [CrossRef]
10. Beyer, D.; Lemberger, T. Software verification: Testing vs. model checking. In Haifa Verification Conference; Springer: Cham,

Switzerland, 2017; pp. 99–114.
11. Yigitbas, E.; Anjorin, A.; Jovanovikj, I.; Kern, T.; Sauer, S.; Engels, G. Usability evaluation of model-driven cross-device web user

interfaces. In International Conference on Human-Centred Software Engineering; Springer: Cham, Switzerland, 2018; pp. 231–247.
12. Caballer, M.; Blanquer, I.; Moltó, G.; De Alfonso, C. Dynamic management of virtual infrastructures. J. Grid Comput. 2015, 13,

53–70. [CrossRef]
13. Giannakopoulos, I.; Konstantinou, I.; Tsoumakos, D.; Koziris, N. Cloud application deployment with transient failure recovery. J.

Cloud Comput. 2018, 7, 1–20. [CrossRef]
14. Xuan, N.P.N.; Lim, S.; Jung, S. Centralized management solution for vagrant in development environment. In Proceedings of the

11th International Conference on Ubiquitous Information Management and Communication, Beppu, Japan, 5–7 January 2017.
[CrossRef]

15. Peacock, M. Creating Development Environments with Vagrant; Packt Publishing Ltd.: Birmingham, UK, 2015.
16. Iuhasz, G.; Pop, D.; Dragan, I. Architecture of a scalable platform for monitoring multiple big data frameworks. Scalable Comput.

2016, 17, 313–321. [CrossRef]
17. Garousi, V.; Giray, G.; Tüzün, E.; Catal, C.; Felderer, M. Aligning software engineering education with industrial needs: A

meta-analysis. J. Syst. Softw. 2019, 156, 65–83. [CrossRef]
18. Lemos, O.A.L.; Silveira, F.F.; Ferrari, F.C.; Garcia, A. The impact of Software Testing education on code reliability: An empirical

assessment. J. Syst. Softw. 2018, 137, 497–511. [CrossRef]
19. Nachiyappan, S.; Justus, S. Cloud testing tools and its challenges: A comparative study. Procedia Comput. Sci. 2015, 50, 482–489.

[CrossRef]
20. Garousi, V.; Felderer, M. Worlds apart: Industrial and academic focus areas in software testing. IEEE Softw. 2017, 34, 38–45.
21. Couto, L.D.; Tran-Jørgensen, P.W.V.; Nilsson, R.S.; Larsen, P.G. Enabling continuous integration in a formal methods setting. Int. J.

Softw. Tools Technol. Transf. 2020, 2, 667–683. [CrossRef]
22. Mäntylä, M.V.; Adams, B.; Khomh, F.; Engström, E.; Petersen, K. On rapid releases and software testing: A case study and a

semi-systematic literature review. Empir. Softw. Eng. 2015, 20, 1384–1425. [CrossRef]
23. Lindgren, E.; Münch, J. Raising the odds of success: The current state of experimentation in product development. Inf. Softw.

Technol. 2016, 77, 80–91. [CrossRef]
24. Dingsøyr, T.; Lassenius, C. Emerging themes in agile software development: Introduction to the special section on continuous

value delivery. Inf. Softw. Technol. 2016, 77, 56–60. [CrossRef]
25. Gusev, A.; Nikulchev, E.; Ilin, D. The Dataset of the Experimental Evaluation of Software Components for Application Design

Selection Directed by the Artificial Bee Colony Algorithm. Data 2020, 5, 59. [CrossRef]
26. Brondolin, R.; Ferroni, M.; Santambrogio, M. Performance-aware load shedding for monitoring events in container based

environments. ACM Sigbed Rev. 2019, 16, 27–32. [CrossRef]
27. Gusev, A.; Ilin, D.; Kolyasnikov, P.; Nikulchev, E. Effective selection of software components based on experimental evaluations

of quality of operation. Eng. Lett. 2020, 28, 420–427.
28. Nikulchev, E.; Ilin, D.; Silaeva, A.; Kolyasnikov, P.; Belov, V.; Runtov, A.; Pushkin, P.; Laptev, N.; Alexeenko, A.; Magomedov, S.;

et al. Digital Psychological Platform for Mass Web-Surveys. Data 2020, 5, 95. [CrossRef]

18

mathematics

Article

A Mathematical Method for Determining the Parameters of
Functional Dependencies Using Multiscale Probability
Distribution Functions

Ilya E. Tarasov

Citation: Tarasov, I.E. A

Mathematical Method for

Determining the Parameters of

Functional Dependencies Using

Multiscale Probability Distribution

Functions. Mathematics 2021, 9, 1085.

https://doi.org/10.3390/math9101085

Academic Editor: Liliya Demidova

Received: 27 March 2021

Accepted: 7 May 2021

Published: 12 May 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Institute of Informational Technologies, RTU MIREA, Vernadsky pr. 78, 119454 Moscow, Russia;
tarasov_i@mirea.ru

Abstract: This article discusses the application of the method of approximation of experimental data
by functional dependencies, which uses a probabilistic assessment of the deviation of the assumed
dependence from experimental data. The application of this method involves the introduction of
an independent parameter “scale of the error probability distribution function” and allows one to
synthesize the deviation functions, forming spaces with a nonlinear metric, based on the existing
assumptions about the sources of errors and noise. The existing method of regression analysis can be
obtained from the considered method as a special case. The article examines examples of analysis of
experimental data and shows the high resistance of the method to the appearance of single outliers
in the sample under study. Since the introduction of an independent parameter increases the number
of computations, for the practical application of the method in measuring and information systems,
the architecture of a specialized computing device of the “system on a chip” class and practical
approaches to its implementation based on programmable logic integrated circuits are considered.

Keywords: statistics; multiscale analysis; data analysis; system on chip

1. Introduction

Currently, data to be analyzed are subject to the action of many factors, which is due to
both the increasing complexity of objects and systems that are the sources of such data, and
the increasing requirements for the quality of analysis of complex multi-parameter systems.
An additional factor is the effect of interference, including outliers, which complicates the
analysis in an automated mode, forcing researchers to perform additional operations to
identify data that incorrectly describe the process under study and to eliminate them from
the analyzed samples.

On the other hand, advances in computing technology and increased computing
performance make it attractive to use digital computing systems to implement advanced
data analysis techniques that could benefit from such increased performance. Therefore, the
search for new methods of data analysis can improve the quality of information, measuring
and analytical systems, if modern high-performance computing systems can be used for
their implementation.

The presented method is an original study inspired by the positive results and experi-
ence of using multiscale analysis for processing experimental results in applied physics.
Practical results include the application of the method in a number of precision measuring
devices, for example, a series of dielectric loss tangent meters (Tangent-M3, RU.C.34.010A
reg. No. 52972, MEP-6IS, reg. No. 44621-10). The noted disadvantage of the method, as
will be shown below, is the large number of computations for its implementation; therefore,
during the research process, it had limited application. At present, the development of
computer technology, especially FPGA, makes it possible to revise the practical aspects
of the presented method and re-iterate it taking into account the new possibilities of
computer technology.

Mathematics 2021, 9, 1085. https://doi.org/10.3390/math9101085 https://www.mdpi.com/journal/mathematics19

Mathematics 2021, 9, 1085

An approach based on the synthesis of hypotheses with subsequent verification of
their quality can be significantly more effective compared to analytical approaches based
on the use of predetermined statistical parameters. The Anscombe quartet [1] is a well-
known example illustrating the ambiguous nature of regression analysis. It represents
four sets of data (pairs of points) with the same statistical characteristics, but visually
significantly different.

The literature notes that all sets of points have the same function, determined based
on a regression analysis:

y(x) = 0.5x + 3, (1)

Thus, the application of the least squares method does not allow one to distinguish
datasets either by the characteristics of the regression dependence, by the correlation
coefficient or by the main statistical characteristics of the datasets, which also coincide. In
general, the role of the Anscombe quartet is to demonstrate the imperfection of regression
analysis when applied to data that are the result of various processes that cannot be
taken into account in the formulation of the regression analysis problem. The modern
reference to the Anscombe quartet is usually made in the context of the importance of
data visualization [2,3]. In this article, the Anscombe quartet will be used as a widespread
example to illustrate the analysis results.

2. Theoretical Description of the Method of Approximating the Parameters of
Functional Dependencies Using Multiscale Probability Distribution Functions

The analysis method considered below, first described in [4], consists of using the
Bayes’ theorem for data analysis, in which a free parameter “scale of the probability density
function” is introduced, and the posterior probabilities are calculated for different values
of this parameter. This approach is intended to partially compensate for the well-known
drawback of Bayes’ theorem in the form of insufficient substantiation of the choice of the a
priori error distribution law.

The essence of the approach considered here is to accept a probabilistic hypothesis of
the form “the quantity has a real value equal to Xi.” Then, the probability that the observed
(measured) value will have a value x is determined by the probability density function of
the error distribution, where the argument is the deviation value Xi − x. In accordance
with Bayes’ theorem, the posterior probability that a series of measurements x1, x2, . . .
xn appeared in the process of measuring a quantity with a real value Xi is determined by
the formula:

fA(x, σ) =
1
N ∑n

i=1 P(xi|xreal , σ), (2)

There is a known maximum likelihood method, which is based on a similar formula,
but estimates the product of probability density functions, not the sum:

L(x, σ) = ∏n
i=1 P(x − xi, σ), (3)

There is a significant difference between the method of maximum likelihood and the
considered method of statistical analysis. There is an obvious difference in the mathematical
formulation, which consists of the summation of the probabilities in the considered method
and in their multiplication in the maximum likelihood method. From the point of view of
probability theory, the multiplication of the probability of independent events corresponds
to the probability of their simultaneous occurrence. In relation to the measurement process,
this means that all measured values objectively reflect the state of the measured object.
The presence of disturbances, partial inconsistency between the object and the measuring
system, interference in the measuring channel, etc. calls into question the correctness
of such an assumption. At the same time, the addition of probabilities corresponds to a
situation where some (but not necessarily all) measured values can be used to assess the
state of an object. In this case, there is an implicit filtering of misses (although in reality
they all participate in determining the probability), since the analysis technique provides
for the determination of such a value of the measured quantity x, at which the appearance

20

Mathematics 2021, 9, 1085

of all quantities in the analyzed sample can be explained taking into account any possible
interference in the measuring system.

At the same time, the appearance of a single slip for the maximum likelihood method
will lead to the appearance of a sample element with a large deviation from the considered
variant of the approximating dependence, for which the probability density function will
be close to zero.

The provisions of the considered method can be applied to modify the regression
analysis. It is known that regression analysis uses the method of least squares, which
minimizes the sum of squares of deviations of experimental points from the corresponding
values obtained from the analytical dependence:

P(β) = ∑N
i=1(f (xi, β)− yi)

2, (4)

where β is the vector of dependence parameters.
Let us introduce the function ρ(x1, x2) = (x1 − x2)

2 for the least squares method. In
this case, Equation (4) can be represented as:

P(β) = ∑N
i=1 ρ(f (xi, β), yi), (5)

Since the function ρ(x1, x2) is a function of the distance between the points x1, x2 in
some space R(x, ρ), the least squares method can be considered as a method that minimizes
the sum of distances in the space R from the approximating dependence to the experimental
points. Moreover, for the LSM the function R is quadratic.

An idea of using a distance function other than quadratic is known. For example,
the least absolute deviation method is based on the linear distance. Alternatives to the
least squares method are known, such as quantile regression, least trimmed squares and
others, and this shows that the disadvantages of the least squares method are significant
and practical applications require alternative methods of analysis.

In Equation (5), the distance function can be replaced. It is easy to imagine that with an
arbitrary choice of distance functions, the results of the analysis will be radically different,
but no particular case will be preferable. The choice and justification of the distance function
in this work is proposed to be made on the basis of the known or assumed distribution law
of the measurement error. Taking into account the mentioned analysis method based on
Bayes’ theorem, it is proposed to carry out statistical analysis for a series of functions with
different values of σ. For this, a relationship should be established between the distance
function and the probability function. One can introduce the operator g : L(x) → ρ(x) ,
which maps the probability of a dependence with these parameters to the distance from
the approximating dependence to the next experimental point in the space R.

If the distance function ρ (Δx) ∈ [0; ∞), and the probability density function P (Δx)
[0; Pmax] and, obviously, the zero distance in the space R correspond to the maximum
probability, then g(x) can be taken as:

g : Pmax − P(x) (6)

When using such a mapping, the minimum (zero) distance corresponds to the maxi-
mum probability density. This is the easiest way to convert the maximum probability to
the minimum distance and should be reviewed and improved upon in the future. Conse-
quently, the condition for the maximum of the probability function defined by Equation (2)
can also be written as an adequate condition for minimizing the total distance in some
space R between the assumed dependence and the points of the original sample.

From the point of view of the assessment method by the probability criterion, Equation (5)
can be written as:

P(β) =
N

∑
i=1

p(f (xi, β)− yi, σ) (7)

21

Mathematics 2021, 9, 1085

When using this criterion, it is necessary to determine the set of parameters β, upon
substitution of which in Equation (5) the function P(β) reaches its maximum value.

From the above, it follows that for a set of experimental readings, a space is constructed
with a function of the distance between points determined by the characteristics of the
measuring channel (including the digital part). For this space, the fulfillment of the triangle
axiom is not obvious (moreover, it can be shown that this axiom does not hold in the case
of a Gaussian distribution of the error); thus, in the general case, one cannot speak of its
metric. For such spaces, where the triangle axiom does not hold (however, the rest of the
axioms characteristic of metric spaces hold), the terms “symmetric” or “pseudo metrics”
are used. Due to this replacement, it is incorrect to designate the resulting function as
“regression dependence,” since this implies a search for a minimum of deviations using
the least squares method. In this case, it is more correct to use the more general term
“approximating dependence.”

If we consider the widely used Gaussian function and construct a distance function
based on it, it will look compared to the quadratic distance function, as shown in Figure 1.

Figure 1. Comparative representation of the quadratic distance function and the distance function constructed under the
assumption that the error has a Gaussian probability distribution.

Thus, in the considered approach, the procedure for analyzing the parameters of the
regression dependence is replaced by the procedure for synthesizing a possible vector
of parameters and estimating its probability in accordance with a modified Bayesian
estimate, in which the independent parameter “scale of the probability density function” is

22

Mathematics 2021, 9, 1085

introduced. Based on this function, a space is formed in which the sum of the distances from
the hypothetical dependence to the available points of the analyzed sample is minimized.

An obvious objection to the proposed approach is the sharply increasing volume of
computational operations. Indeed, in addition to the synthesis of hypotheses about the
possible values of the parameters of the approximating dependence, it is also required to
change the parameter “scale of the probability distribution function,” which forms the
corresponding distance function. Thus, for n parameters of the dependence to be analyzed,
there is n + 1 parameter, which in this work is proposed to be obtained not analytically, but
by methods of computational mathematics.

The development of computer technology and the emergence of new architectures,
including a great deal of attention to parallel computing, makes it attractive to use numer-
ical methods of analysis if the use of high-performance computing systems allows new
possibilities to be obtained. For example, in [5], the author considered the practical issues
of building a high-performance computing system with parallel computing nodes based
on an FPGA. The current state of the architecture of high-performance computing devices
demonstrates the widespread use of parallel operating nodes and systems [6–9].

As an example, consider the process of analyzing the parameters of a linear relation-
ship. Among the possible options for representing a linear function, it seems advisable
to choose the option with the direction vector angle and the distance to the origin of co-
ordinates (θ, p). This form of representation, in particular, allows one to find vertical and
horizontal lines, and also provides a more uniform distribution of hypotheses when the
angle of the direction vector changes linearly.

The straight line equation is represented by the formula:

R = X cosθ + Y sinθ − p (8)

In this representation of straight line, R is a distance between point with (X; Y)
coordinates and a line described by (θ, p). This is very useful for the described method,
because Equation (8) may be easily converted to a distance in any other space, including
quadratic, Gaussian etc.

If we introduce the criterion of the quality of an approximation in the form of a
function that takes the maximum value when the distance between the pixel and the
generated line representation is zero, then the search for a set of parameters for a straight
line can be performed by maximizing Equation (7):

S(θ, p) = ∑
X, Y

f (X cosθ + Y sinθ − p) (9)

In a more general form, Equation (9) can be represented as:

S(
→
a) = ∑

X, Y
f
(

X, Y,
→
a
)

(10)

where
→
a is the vector of the line parameters.

As follows from Equations (8)–(10), an important role is played by the choice of the
function f, which is used to determine the quality criterion of the approximation. It can be
pointed out that similar approaches were previously used in problems of approximating
functions from experimental data. For example, the Hough transformation [10] assumes,
instead of analyzing image pixels, the synthesis of hypotheses about the presence of a line
with certain parameters and counting the number of image pixels belonging to each of
these lines. Similarly, “voting for hypotheses” is implemented, which is mathematically
similar to performing a probabilistic estimate.

For the Hough transform, the function S can be represented as:

f =

{
0 with |X cosθ + Y sinθ − p| > 1
1 with |X cosθ + Y sinθ − p| ≤ 1

(11)

23

Mathematics 2021, 9, 1085

From Equation (11) it can be seen that Equation (10) can be reduced to the Hough
transformation by passing to the limit if the approximation quality function is presented
as a delta function (according to the principle of the presence or absence of a pixel).
The possibility of using nearby pixels for analysis appears when using functions that
make sense of the probability of deviation of pixels in an image from an idealized line
representation with specified parameters. This property seems to be significant in the
analysis of high-resolution images, where graphic objects, visually perceived as straight
lines, have deviations from the idealized straight line when they are presented in a discrete
form using a video matrix subject to interference.

It can be noted that a number of publications devoted to the Hough transformation
provide for the transformation of the original image with blurring on the basis of the
corresponding convolution kernels [11,12]. The proposed approach is mathematically close
to this effect, though it is not the original image that is blurred, but rather the analyzing
function. In this case, the function used for such blurring is based on the known form of the
error distribution law, which can be qualitatively obtained from the analysis of the subject
area and its characteristic processes. Additionally, the introduction of an independent
parameter “distribution function scale” allows a number of analysis procedures to be
performed with a comparison of the results.

3. Illustration of the Characteristics of the Method Using the Example of the
Anscombe Quartet

The data presented in the Anscombe quartet were analyzed using the method de-
scribed in this paper. The purpose of this analysis was to identify the ability of the method
to distinguish between datasets based on the quantitative characteristics obtained. We used
the representation of a straight line in Equation (8), with several options for the values of
the scale σ. A probabilistic representation of the result was used, since it involves finding
the maximum probability (and not the minimum distance in a nonlinear distance space),
which provides a better visual representation of the results. The analysis results are shown
in Figure 2, where the left side of the figure visualizes the value of the probability function
depending on the parameters (θ, p), and the right side shows the corresponding datasets of
the Anscombe quartet with superimposed straight lines corresponding to the maximum of
the probability function.

The plotting algorithm is quite simple. For each pair of values, the probability density
function is calculated according to Equation (7) and is represented as a color in the hot
palette. The horizontal axis represents the θ value, and the vertical axis represents the
p value.

Figure 2. Cont.

24

Mathematics 2021, 9, 1085

Figure 2. Results of the analysis of the data presented in the Anscombe quartet (σ = 1).

The data in Figure 2 clearly show the cardinal difference of the proposed method,
which provided the identification of the assumed straight lines, which can be determined
by taking into account the presence of specially introduced outliers in cases 3, 4. For case 2,
the initial data are a parabola; therefore, the search for the parameters of the straight line is
obviously inappropriate.

It can be noted that as the parameter “distribution scale” increases, the results of the
analysis tend to the results obtained for the regression dependence. This is illustrated in
Figure 3, where the analysis was carried out with σ = 10.

25

Mathematics 2021, 9, 1085

Figure 3. Results of the analysis of the data presented in the Anscombe quartet, with an increase in
the scale of the probability distribution function (σ = 10).

26

Mathematics 2021, 9, 1085

Thus, the method considered in the article can be reduced to the well-known method
of regression analysis by the passage to the limit (σ → ∞). At the same time, the analysis
with other values of σ, including in the range determined based on the analysis of the
experimental distribution of the error in the initial data, is able to give results that ade-
quately reflect the dependences in the analyzed data, being stable to the single outliers in
the sample.

4. Examples of Using the Method for Analyzing Samples of Various Types

The positive effect of sample analysis using the developed method is manifested
primarily for situations where the data generally correspond to the assumed analytical law
describing the relationship between them. In this section of the article, the results of the
analysis of a number of synthetic and experimentally obtained samples are considered.

Figures 4 and 5 show the results of the analysis of a sample containing two sets
of points belonging to different straight lines with the same slope, but with a different
constant coefficient.

Figure 4. Analysis results of the data sample, σ = 0.1.

Figure 5. Analysis results of the data sample, σ = 5.

In Figure 4 it can be seen that the assumed straight lines corresponding to the ana-
lytically specified functions y = x and y = x + 2 are reflected in the graph of the function
P as two bright points corresponding to the local maxima of the probability function for
these hypotheses. At the same time, an increase in the scale of σ to a value of 5, exceeding
the distance between the straight lines, led to the obtaining of the “averaged line.” This
allows us to talk about the possibility of managing the results of the analysis by choosing
such a scale of the probability density function that most adequately reflects the processes
occurring in the system under study and measuring devices.

27

Mathematics 2021, 9, 1085

Figure 6 shows the results of an experimental study of the transient process in a test
RC circuit connected to a source of rectangular voltage pulses. The sample is the voltage
readings across the capacitor measured with a digital oscilloscope. In Figure 6, artifacts can
be seen in the form of digital noise caused by interference in the measurement path. The
presence of horizontal sections and fragments where the investigated function decreases
will not allow investigating the characteristics of the RC chain using only local analysis,
since the time constant calculated for such fragments will tend to infinity or go beyond the
domain of the logarithmic function.

Figure 6. Results of the analysis of a sample of data describing the transient process in the RC chain.

At the same time, an expression can be chosen in the form of an approximating function:

V(t) = V0(1 − exp(−t/τ)), (12)

where V0 is the amplitude voltage value and τ is the time constant of the RC chain.
In Figure 6, it can be seen that the discovered function passes through the main

experimental points, making it possible to quantitatively determine the parameters of the
dependences approximating the experimental data.

Interestingly, in Figure 6 there are artifacts originating from the measuring equipment.
The measurement mode with low voltage resolution was deliberately chosen so that the
experimental data contained horizontal segments that cannot be adequately described by
an exponential function. At the same time, the considered method makes it possible to
find the analytical parameters of the exponential function that adequately describes the
experimental data and is robust to artifacts.

5. Implementation of the Method in Measuring and Information Systems

As mentioned above, the considered method is demanding on the performance of the
computing device for its implementation. The synthesis of n parameters of the approxi-
mating dependence, performed in the range of their possible values, supplemented by a
change in the “scale” parameter, in the direct calculation of the probabilities of hypotheses
has a computational complexity of O (n + 1). This significantly distinguishes the considered
analysis method from averaging and even digital filtering. Therefore, for the practical
application of the method, it is necessary to consider the issues of its implementation in
measuring and information systems.

At present, for high-performance computing, along with general-purpose processors
(CPUs), graphic processors (GPUs) [13–15] and programmable logic integrated circuits
with FPGA architecture [16–20] are also widely used.

Taking into account the fact that the calculations of individual probabilities of indi-
vidual hypotheses about the parameters of the approximating function are independent
processes, parallel computing architectures can be effectively used for this method. There-

28

Mathematics 2021, 9, 1085

fore, GPUs and FPGAs appear to be promising hardware platforms, since they provide a
large number of computational nodes, the capabilities of which are sufficient to calculate
the probability of hypotheses about the parameters of the approximating dependence.

At the same time, the use of a GPU for this task is fraught with certain difficulties.
For example, when using a GPU with a program based on the CUDA SDK, the measured
data preparation time in the CPU was 0.2–0.3 s, and the calculation time was 27 ms
(for 100 CUDA cores and 1000 iterations in each core) with a tabular presentation error
probability density function. Computing the Gaussian function in the GPU increases the
computation time to 61 ms. Thus, up to 90% of the analysis time is spent on data transfer
operations between the CPU and GPU. Therefore, one should also consider computational
architectures that process data as it is received.

A specialized computing device of the “system on a chip” (SNC) class, combining data
reception and processing, will eliminate the operations of sending data and probability
functions, replacing them with storing (or generating) probability functions in the SNC and
processing the incoming values in real time (or in combination with their storage in the
buffer memory). Prototyping of such a device is now widely performed using FPGAs. The
feasibility of implementing a specialized VLSI is determined by technical and economic
factors; however, the high cost of preparing VLSI production determines the widespread
use of FPGAs in systems manufactured in small quantities.

When considering the architecture and implementation of a specialized computing
device, it is necessary to be guided by the following considerations. Since GPUs are effective
in the tasks of building three-dimensional graphics and are structurally similar to them,
most likely, it will not be possible to exceed their technical and economic characteristics
when implementing similar architectures or repeating existing ones. Therefore, for a
dedicated FPGA-based device, the following must be done:

1. Reduce the functionality of the computational units compared to the CUDA cores
used in a GPU.

2. Provide storage or generation of probability density functions in a computing device,
thereby eliminating the need to transfer them from a control device (for example,
a PC).

A variant of the structural diagram of a specialized computing device for determining
the parameters of the approximating dependence is shown in Figure 7.

Additional advantages of the proposed approach from the point of view of specialized
computing systems can be indicated. For example, in Figure 7, the analyzed data and the
error probability distribution function can be generalized for a number of computing units.
However, it is more important that there are no requirements for constant transmission of
input data and results, since for the operation of such a computing system, it is sufficient
to load the analyzed sample and the table representing the error probability distribution
function. This significantly reduces the load on the peripheral devices of such a computer.

Prototyping of the computing device was carried out on the basis of an FPGA with
APSOC Xilinx Zynq-7020 architecture. The obtained characteristics of the module for
calculating the probability are shown in Table 1. The module has an internal table for
storing the values of the probability density function and an external interface for entering
individual values of the sample under study in integer format. The clock frequency of the
module was 150 MHz for the XC7Z20 FPGA.

From the data in the table, it can be seen that when describing a highly specialized
module in the hardware description language (HDL), a compact implementation of a
computational node can be obtained. Thus, for the considered FPGA ZC7020, related to
the initial-middle level, it is possible to estimate the number of parallel working nodes in
80–90 (which is limited by the number of memory blocks). For other FPGAs, the number
of channels will be correspondingly higher.

Table 2 shows estimates of the comparative performance characteristics of some
FPGAs, assuming that the number of placed modules is determined by the number of

29

Mathematics 2021, 9, 1085

memory blocks, and the practically achievable clock frequency is 150 MHz for the Zynq-
7000 and 200 MHz for the more productive UltraScale+ and Versal FPGAs.

Figure 7. Block diagram of a specialized computing device for determining the parameters of the
approximating dependence.

Table 1. Using the resources of FPGA XC7Z7020 when implementing one module for calculating the
probability of a hypothesis.

Resource Utilization Available Utilization %

LUT 214 53,200 0.40
FF 158 106,400 0.15

BRAM 1.50 140 1.07
DSP 2 220 0.91

Table 2. Comparative characteristics of FPGA performance when calculating the probability
of hypotheses.

FPGA Number of Channels Performance, 109 Samples/Sec

Zynq-7000 XC7Z20 90 13.5
Kintex UltraScale+ XCKU3P 240 48

Kintex UltraScale+ XCKU19P 1000 200
Zynq MPSOC ZU2CG 100 15
Zynq MPSOC ZU19EG 600 120

Versal VM1102 100 20
Versal VM2902 1300 260

30

Mathematics 2021, 9, 1085

As can be seen from Table 2, FPGA performance ranges from approximately 10 to
250 billion samples per second. Sample processing means calculating the probability that a
given sample belongs to one of the sets of approximating dependencies and adding this
probability to the accumulator. In this case, the digital interfaces of the FPGA provide
direct transfer of the analyzed data to the computing device, and the probability density
functions are specified in the considered implementation by tables.

6. Conclusions

The method presented in the article is proposed for processing data exposed to
unpredictable impulse noise. The noted disadvantage of the method is the large number
of computations required for its implementation, which can be compensated for by using
a high-performance element base, such as FPGA. Several issues outlined in the article
require additional research and development. For example, the construction of the distance
function is of great theoretical interest, and this publication presents it only briefly. Similar
to other methods of multiscale analysis, the study and classification of distance functions
and their properties opens up great opportunities for research.

An important practical issue is the improvement of algorithms for finding the extrema
of the distance or probability function. The examples shown use brute force to construct
an entire surface that illustrates the behavior of the probability function. The amount of
computation can be significantly reduced using known or new algorithms for finding the
extremum of a function. In this area, it is possible to create software implementations of the
method, frameworks and libraries, as well as hardware accelerators for high-performance
data analysis.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The author declares no conflict of interest.

References

1. Anscombe, F.J. Graphs in Statistical Analysis. Am. Stat. 1973, 27, 17–21.
2. Li, Q. Overview of data visualization. In Embodying Data; Springer: Singapore, 2020. [CrossRef]
3. Embarak, O. The importance of data visualization in business intelligence. In Data Analysis and Visualization Using Python; Apress:

Berkeley, CA, USA, 2018. [CrossRef]
4. Tarasov, I.E. Estimation of measurements data with use of probability distribution functions with variable scale Zavodskaya

Laboratoriya. Diagn. Mater. 2004, 70, 55–61.
5. Tarasov, I.E.; Potekhin, D.S. Real-time kernel function synthesis for software defined radio and phase-frequency measuring digital

systems. Russ. Technol. J. 2018, 6, 41–54. (In Russian) [CrossRef]
6. Jouppi, N.P.; Young, C.; Patil, N.; Patterson, D.; Agrawal, G.; Bajwa, R.; Bates, S.; Bhatia, S.; Boden, N.; Borchers, A.; et al.

In-Datacenter Performance Analysis of a Tensor Processing Unit. In Proceedings of the 44th International Symposium on
Computer Architecture (ISCA), Toronto, ON, Canada, 26 June 2017.

7. Hennessy, J.L.; Patterson, D.A. Computer Architecture, 6th ed.; A Quantitative Approach (The Morgan Kaufmann Series in
Computer Architecture and Design); Morgan Kaufmann: Burlington, MA, USA, 2017; 936p.

8. Olofsson A 2016 Epiphany-V: A 1024 Processor 64-Bit RISC System-on-Chip. Available online: https://www.parallella.org/wp-
content/uploads/2016/10/e5_1024core_soc.pdf (accessed on 2 February 2021).

9. Japan’s Own Processor “PEZY-SC2” and Equipped with Supercomputers “Gyoko” Details. Available online: https://pc.watch.
impress.co.jp/docs/news/1091458.html (accessed on 2 February 2021).

10. Hough, P.V.C. Method and Means for Recognizing Complex Patterns. U.S. Patent 3,069654, 18 December 1962.
11. Hassanein, A.S.; Mohammad, S.; Sameer, M.; Ragab, M.E. A Survey on Hough Transform, Theory, Techniques and Applications.

arXiv 2015, arXiv:1502.02160.
12. Barbosa, W.O.; Vieira, A. On the Improvement of Multiple Circles Detection from Images using Hough Transform. TEMA 2019,

20, 331–342. [CrossRef]
13. Perepelkin, E.E.; Sadovnikov, B.I.; Inozemtseva, N.T. Computing on Graphics Processing Units (GPU) in Problems of Mathematical and

Theoretical Physics, 3rd ed.; Lenand: Moscow, Russia, 2019; 240p, ISBN 978-5-9710-6490-9.

31

Mathematics 2021, 9, 1085

14. Boreskov, A.V.; Kharlamov, A.A. Basics of Working with CUDA Technology; DMK Press: Moscow, Russia, 2019; 232p, ISBN 978-5-
9760-715-2.

15. Sanders, J.; Kendroth, E. CUDA Technology in Examples: An Introduction to GPU Programming: Translate from English; Slinkina, A.A.,
Boreskov, A.V., Eds.; DMK Press: Moscow, Russia, 2018; 232p, ISBN 978-5-97060-581-3.

16. Tarasov, I.E. FPGA Xilinx. In VHDL and Verilog Hardware Description Languages, CAD, Design Techniques; Hotline-Telecom: Moscow,
Russia, 2019; p. 538. ISBN 978-5-9912-0802-4.

17. Available online: www.xilinx.com (accessed on 2 February 2021).
18. Available online: https://www.xilinx.com/products/silicon-devices/fpga/kintex-ultrascale.html (accessed on 2 February 2021).
19. Available online: https://www.xilinx.com/products/silicon-devices/soc.html (accessed on 2 February 2021).
20. Available online: https://www.xilinx.com/products/silicon-devices/acap/versal.html (accessed on 2 February 2021).

32

mathematics

Article

The Influence of Transport Link Density on Conductivity If
Junctions and/or Links Are Blocked

Anton Aleshkin

Citation: Aleshkin, A. The Influence

of Transport Link Density on

Conductivity If Junctions and/or

Links Are Blocked. Mathematics 2021,

9, 1278. https://doi.org/10.3390/

math9111278

Academic Editor: Liliya Demidova

Received: 14 May 2021

Accepted: 30 May 2021

Published: 2 June 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Department of Systems Management and Modelling, MIREA—Russian Technological University, 78 Vernadsky
Prospect, 119454 Moscow, Russia; Antony@testor.ru; Tel.: +7-916-306-9879

Abstract: This paper examines some approaches to modeling and managing traffic flows in modern
megapolises and proposes using the methods and approaches of the percolation theory. The author
sets the task of determining the properties of the transport network (percolation threshold) when
designing such networks, based on the calculation of network parameters (average number of
connections per crossroads, road network density). Particular attention is paid to the planarity and
nonplanarity of the road transport network. Algorithms for building a planar random network (for
modeling purposes) and calculating the percolation thresholds in the resulting network model are
proposed. The article analyzes the resulting percolation thresholds for road networks with different
relationship densities per crossroad and analyzes the effect of network density on the percolation
threshold for these structures. This dependence is specified mathematically, which allows predicting
the qualitative characteristics of road network structures (percolation thresholds) in their design. The
conclusion shows how the change in the planar characteristics of the road network (with adding
interchanges to it) can improve its quality characteristics, i.e., its overall capacity.

Keywords: increasing traffic capacity; percolation threshold; transport link density; transport net-
work; density of transport links

1. Introduction

Controlling and balancing flows in transport networks is one of the main problems of
modern conurbations. Urbanization and the development of the motor transport industry
have led to the emergence of huge vehicle flows moving within our current limited traffic
infrastructures, and this has led to an increase in delays and, consequently, a loss of time
and money, as well as increased emissions of harmful substances into the atmosphere.

All this entails the requirement for traffic flow control and balancing models and
methods to be developed. In general, it is necessary to look at the topology of a transport
network in order to solve the dynamic task of traffic redistribution. The problem in so
doing, however, is that the number of vehicles in the network is constantly increasing and,
as a result, current management models become outdated and inefficient. It is, therefore,
necessary to search for new management tools or to modernize the physical base (road
width and length, number of lanes etc.) of the current transport network. Let us consider
some of the current approaches to traffic management in transport systems which fall into
two categories: local and systematic management.

Local management is carried out on the basis of statistically estimated vehicle char-
acteristics. The result is provided with the estimate of transport flow efficiency per any
single road junction regardless of any neighboring ones. Systematic management provides
transport flow optimization in the sphere including many junctions and, as a rule, operates
considering the macro-characteristics of the flow. Any change in management operations
on any single junction inevitably leads to a change in neighboring transport flow character-
istics. Conflict between local and systematic management methods is common. Thus, if a
network simultaneously uses both management methods, these should be implemented at

Mathematics 2021, 9, 1278. https://doi.org/10.3390/math9111278 https://www.mdpi.com/journal/mathematics33

Mathematics 2021, 9, 1278

different times. Local management time is selected with the aim of limiting the influence of
transport flow on neighboring junctions.

Without dwelling in detail on transport flow analysis and the development of man-
agement models throughout history (which include models proposed by Grinschields,
Richards, Grindberg, El Hozaini, Underwood, Drake, and Pipes: optimal speed, “Smart”
driver, leader follow, cellular automata models, etc.) and the different methods of classifi-
cation, this paper instead presents some more recent models.

For example, in [1], a network flow model based on a conservation hyperbolic system
with discontinuous flow was investigated. This investigation showed that the model
could be quickly developed because additional procedures were not required for solution
management. The model developed enables us to automatically select the solution where
a flow is maximized in each direction (user’s optimum), i.e., there is no need to calculate
maximum flow, which could be transferred through any junction (global optimum), as the
model is developed according to standard approaches.

In [2], the authors developed a short-term traffic forecasting method. During this
investigation, an efficiency comparison of specific algorithms was undertaken using the
Volterra prediction model, RBFNN (radial basis function neural network). According to
such a comparison, the Volterra model was selected where traffic data were normalized to
simplify the programming of algorithms.

In [3], the authors developed an algorithm to calculate the exact average speed of flow
movement using mobile detector data for measuring movement speed. The algorithm
developed indicates average speed on a given road section, ignoring repetitive messages,
and a travel time filter is used to compensate such time selection exceeding the road speed
limit. Furthermore, this method comprises errors, such as errors caused by connection
failure, dubbing recording, and other factors.

In [4], the authors performed an investigation on the calibration and testing of a
macroscopic traffic flow model. Their model was investigated and compared to 10 different
algorithms in total (regarding its ability to converge to this solution) for different datasets.
Optimization algorithms using particle swarm (PSO) seemed to be the most effective in
terms of both convergence rate and solution compilation.

In [5], the authors used a Gaussian regression model (GPR), optimized using par-
ticle swarm algorithm (PSO), to predict undefined, nonlinear, and complex traffic in a
road tunnel.

Other studies [6,7] described models of stochastic flow dynamics in traffic networks
with nondeterministic characteristics of statistical parameter distribution, describing the
dependence of the probability of blocking individual nodes from traffic characteristics over
time. The developed mathematical models describe the rules of intersection maintenance
(time of switching traffic lights), considering the material balance of the number of cars
in the system and the connection of their flows between neighboring intersections. The
authors of [6,7] showed that the use of percolation theory techniques and the results of the
stochastic model of traffic flows allows simulating the operation of the transport network
at the level of not only individual nodes, but also the whole structure. The proposed model
allows using a real map of the transport network to create its dynamic model, as well as
simulate its work and the occurrence of traffic jams.

In [8], the authors studied traffic flow instability in experimental and empirical inves-
tigations. To calculate traffic instability, the authors considered the competition between
stochastic violations, which can tend to destabilize traffic flow, and how drivers adapt to
changing speeds, which can, in contrast, tend to stabilize traffic flow.

In [9], the authors developed a modified algorithm for optimizing the transportation
route according to street traffic flow. This study was based on a modified ant algorithm
(ant colony optimization algorithm), being one of the most effective polynomial searching
solutions for dealing with problems regarding route optimization.

34

Mathematics 2021, 9, 1278

In [10], a structural analysis of public transport routes was performed concerning
tariffs and operating mode. To provide more adequate and logical results, the advanced
route calculation algorithm was proposed for different structures.

In [11], the authors developed a transport network algorithm in the form of a pre-
fractal graph based on their theory. The search for solutions to multi-objective problems
using an indication of the optimal path was carried out by algorithms which searched for
optimal solutions on several criteria if the presence of such criteria was proven or based
on a solution with specific deviations from the optimal solution. In this paper, the largest
maximal chains extraction algorithm (MCEA algorithm) was used with the arbitrary graph.

In [12], the professional system and regulator using the fuzzy logic module was
studied for traffic control systems at intersections.

In [13], the authors developed a traffic control method based on a traffic efficiency
index they compiled, comprising factors such as traffic and road capacities.

In [14], the authors studied loaded traffic management issues using a prediction
model for any specific intersection and within the transport area. Using a solution based
on a predictive management algorithm model, the residual queue is distributed, due to a
transport demand which exceeds the capacity of the crossing, along all incoming transport
links. Simultaneously, in the case of long-term implementation of the intersection, a big
queue accumulation in oversaturation mode is observed. In this case, a network-wide
delay can be prevented by decreasing transport demand at intersection entrances only.

Another author [15] studied the possibility to use the main network traffic diagram for
prediction of traffic functioning conditions in cities. The traffic model studied by the author
was based on the use of standard Pipes model for indication of dependencies between
speed and density for traffic performance calculation. The model analysis showed that
it is necessary to limit a high level of vehicle accumulation and use the correspondent
management strategies when controlling traffic on roads in cities.

In [16], the authors studied the nature of traffic interval distribution depending on
the distance from the previous signaled crossing. According to the investigation results,
the authors made a conclusion that normalized Erlang distribution is the most suitable
practice for description of intervals inside traffic groups.

In [17], the principles of using telecommunications technologies based on the protocols
of interaction of the type “car-to-car” were examined to organize an efficient infrastructure
in terms of ensuring traffic transport. The information used for this method included the
parameters of movement, the location, and the parameters of the state of the car’s systems.
After processing and analyzing this information, it is possible to form recommendations
and management effects. These recommendations are used by the driver or an automated
driving system. The article described a model that allows realizing the interaction of cars,
which can determine the optimal use of the car’s resources, as well as the aggressive driving
style of the vehicle.

A brief review on the development of recently created models shows that, despite
their variety, no investigations studied the general features of transport network structure,
indicating its conductivity. No works banded the dynamic characteristics and structural
features (topology) of transport systems.

Accordingly, this paper aimed to study the effect of the density of transport network
connections on their conductivity when blocking nodes and/or links, analyzing the depen-
dence of such an influence and finding generalized patterns for predicting the properties
of the road network (the possibility of determining the percolation threshold based on the
calculated density of the road network). This should take into account different types of
network structures (planar and nonplanar networks) and various tasks to be solved (node
tasks and link tasks).

2. Statement of the Problem

The significant density index of vehicles per area unit of all current roads leads
to an inevitable congestion of vehicles at one or other elements of the traffic system

35

Mathematics 2021, 9, 1278

(e.g., intersections and roads), i.e., delays (jams). Most traffic investigations, analyses,
and subsequent developments of management models focus on local-level solutions, not
considering the transport network.

The traffic systems of modern conurbations have very wide, complex, and branching
structures (see Figure 1 for example), which may be represented as a graph (junctions—
road intersections and edges—roads). When modeling traffic, it is necessary to consider
the dynamic of traffic mass change (daily variation of flows) and the fact that all elements
of the transport graph (junctions and edges) have different characteristics (traffic capacity).

Figure 1. Traffic maps of several world conurbations (a—New York, b—Tokyo, c—Moscow, d—Mexico).

If we trace the path of the detailed traffic graph model generated with a detailed
description of its attributes (number of lanes, route length, number of directions at intersec-
tions, etc.), requiring such a model for the local management of traffic would be extremely
complicated and difficult to implement for practical purposes.

It is arguably more convenient to create a traffic percolation model to make the
structure more efficient, regardless of which specific elements could be blocked due to the
formation of traffic delays. In this case, functioning and reliability mean that at least one
freeway is possible which comprises unblocked graph elements between any two arbitrary
network junctions.

3. Percolation Theory Methods for the Network Transport Structures

Percolation theory (graph-based probability theory) studies solutions to problems
relating to junction and link tasks [18–21] for networks with various regular and accidental

36

Mathematics 2021, 9, 1278

structures. When solving the link problem, the link share must be separated by at least
two isolated parts (or, conversely, the fraction of conductive nodes (crossroads) when
conductivity occurs). When solving junction problems, the fraction of blocked junctions
is indicated where the network is broken up into isolated clusters within which links can
be kept (or, conversely, the fraction of conductive junctions, when conductivity occurs).
Percolation threshold is the fraction of nonblocked junctions (junction task) or unbroken
nodes (crossroads) (nodes task), where conductivity occurs between two randomly selected
network junctions. For the same structure of percolation threshold values, junction, and
nodes (crossroads), tasks have different meanings. Note that, in the case of junction
blocking, all links are blocked, and, in the case of node (crossroad) blocking, only one link
is blocked between neighboring junctions.

Use of the term “blocked junction fractions” or “blocked road fractions” is equivalent
to the occurrence probability that a randomly selected junction (or nodes) will be blocked.
Therefore, we may accept that the percolation limit value indicates the probability of pas-
sage through the whole network if any of its junctions (or links) are blocked or (removed),
i.e., given the average probability of a single junction (or nodes) being blocked.

Achieving the percolation threshold in a network corresponds to a cluster where links
exist among random junctions. An endless or contracting conducting cluster is formed.
Note that this approach claims to be universal and can be applied not only to the topology
of road networks, but also to other topologies [22].

For finite structures, conductivity may appear at different fractions of conducting
junctions (or links, see Figure 2). However, if network size L tends toward endlessness,
then the sphere of transfer becomes compact (see Figure 2, curve I for small-sized structure
or curve II for an endless network).

Figure 2. The probability of percolation occurrence depending on the value of the fraction of
conductive junctions (or links).

For finite-sized structures, the percolation threshold structure ξc(L) may be determined
from the fixed value of network transition probability in relation to the conducting state. In
Figure 2, this probability is chosen to be equal to 0.5 (50%). However, we could also take a
value of 0.95 or 0.99, for example (then, the percolation threshold would correspond to the
given criteria of network reliability working); in other words, it is possible to determine
what fraction of blocked junctions and/or links influences the decrease in the necessary
level of performance.

Based on specified work reliability values (the probability of transition or being in
conductive state), we can find the fraction of unblocked junctions (or road).

The fraction of blocked junctions (or links) where network conductivity disappears
(which can be calculated as follows: one minus conductive junctions (or links)) causes
the blocking of the network as a whole, and this value can be associated with the macro-

37

Mathematics 2021, 9, 1278

characteristics of traffic in the current transport system. In the simplest case, we can give
the following estimate: the accepted level of intensity of traffic without delays (presented
as qmax) for European cities is 600–900 vehicles and in the USA up to 1300 vehicles per
hour per lane; in Russian cities, this index is 300–700 vehicles per hour per lane. Therefore,
knowing the total city road stretch and number of lanes, as well as daily vehicle dynamics,
we can use such data to calculate the average traffic intensity at any moment (presented as
q(t)). Then, the average probability (P(t)) of a network element blocking at any moment in
time t may be indicated as follows:

P(t) =

{
q(t)
qmax

, q(t) ≤ qmax

1, q(t) > qmax
.

Furthermore, using such a probability estimate of network element blocking, we can
find, at a given time t, the state of the reliability and efficiency of the network as a whole, as
well as analyze daily dynamics of changes to the network and, consequently, if necessary,
change the structure (for example, link density) of the transport system as appropriate (the
way in which the traffic functioning reliability is associated with density of its links, for
example, as discussed later in the article).

For exact estimates of average blocking probability, different macroscopic mathemati-
cal models of traffic flows can be used (drawing on the models proposed by Grinschilds,
Richards, Grindberg, El Khozaini, Underwood, Drake, and Pipes: the optimum speed,
“Smart” driver, leader follow, cellular automata models, etc.).

The main problem when investigating percolation features of network structures
which have accidental structures is that there are currently no established analytical meth-
ods and, as such, it is only possible to study such networks by using computer-aided
simulation. First of all, it is necessary to build a topological graph, which is itself a rather
difficult task for studying the percolation properties of planar network structures which
have accidental structures.

The application of some methods of percolation theory to traffic flow modeling was
described in [23]. In this paper, traffic dynamics were seen as a critical phenomenon, in
which there was a transition between isolated local and global flows on the roads with
the formation of clusters of congested sections of the transport network in local structures
and their unification into a global cluster. Local flows are connected by narrow links, and
narrow links can occur in different places of the transport network at different times of
the day. The authors of [23] described such processes as the percolation of traffic between
local clusters. The authors tried to describe how local traffic flows interact and merge into
a global stream across the city network.

When modeling a transport structure, it is difficult to assess the entire dynamics
of traffic organization throughout the network as a whole and to link it to local traffic
characteristics. To solve this problem, the authors [23] used the percolation theory. They
collected and analyzed the speeds of more than 1000 roads with record 5 min segments
measured on roads in Beijing’s central district. The data covered a period of 2 weeks in
2013, with the road network encompassing intersections (nodes) and sections of the road
between two intersections. For each road, the speed Vij(t) changed throughout the day in
accordance with real time. For each road eij, authors set the 95th percentile of its maximum
speed at each day and defined the model parameter rij(t) as the ratio between the current
speed and the limited maximum speed measured for that day. At some given threshold q,
all eij roads could be divided into two categories: functional at rij > q and dysfunctional at
rij < q. With this assumption, the authors found it possible to build a functional network of
traffic for a given value q from the dynamics of road traffic in the network.

At q = 0, nothing happens with the traffic in the network, whereas, at q = 1, it becomes
completely fragmented. The hierarchical organization of road traffic at different scales
appears only in the road groups where rij above q. These clusters are functional modules
consisting of connected roads at speeds above q. For example, at q = 0.69, there is a speed

38

Mathematics 2021, 9, 1278

that the entire transport network cannot maintain. When the value of q is reduced to 0.19,
small clusters merge together and form a global cluster, in which the functional network
(with less flow speed) extends to almost the entire road network.

The merit of the authors’ method for modeling and analyzing traffic is that, by having
data on traffic flows in the real network, it is possible to determine the critical value of qc
below which the transport network loses functionality (percolation threshold). In [23], qc
was set to approximately 0.4.

The drawback of the study is that the results are private and only available for a
certain part of Beijing’s transport network. In this regard, they cannot be generalized to
a transport network with an arbitrary structure. In addition, another drawback is the
significant laboriousness of the method of analysis and modeling of transport networks
proposed by the authors of this work.

A more technological and versatile modeling method may be to use common network
characteristics, such as the impact of network density on traffic recycling. In this case, if
it turns out that the density of the network, regardless of its real structure, is a universal
characteristic, allowing the user to link structural and dynamic (traffic) characteristics, it
at least reduces the laboriousness of analysis and modeling of the health of the transport
network, thus becoming more universal.

4. Methods and Algorithms for Calculating the Percolation Properties of Random
Network Structures: Modeling the Dependence of the Percolation Thresholds of
Random Networks on Their Link Density

The main problem when investigating percolation features of network structures which
have accidental structures is that there are currently no established analytical methods and, as
such, it is only possible to study such networks by using computer-aided simulation.

When studying and modeling percolation processes in transport networks, it is nec-
essary to consider that they have two components: planar and nonplanar (taking into
account multi-level interchanges).

First of all, it is necessary to build a topological graph, which is itself a rather difficult
task for studying the percolation properties of planar network structures which have
accidental structures.

4.1. Algorithm of Planar Networks with Accidental Structures

In order to build a planar network with an accidental number of links for each junction
(network density), we may use the following algorithm [24]:

(1) Plot the total number of junctions N and quantity of links E.
(2) Generate a list S consisting of junctions N with accidental coordinates (x, y).
(3) Select the junction n0 with the smallest coordinate along x; if there are any junctions,

then select the point with the maximal y coordinate. Point this junction as n0 {n0x;
n0y}. The first index shows us the number of junctions, and the second one shows the
coordinates of the junction.

(4) Sort junctions on the list S by the increase of the distance L value from the junction n0
as follows:

L =
√
(n0x − nix)

2 +
(
n0y − niy

)2,

where n0 is the selected first junction, i is the junction index, nix is the x-coordinate of
junction i, and niy is the y-coordinate of junction i. After such a step, we have a sorted
junction list: n0 {n0x; n0y}, n1, n2 . . .

(5) Join the first three junctions n0, n1, n2 from the list S to the first triangle, adding edges.
Moving clockwise from the edge between the first and second junctions in the list,
add the triangle edges to the cyclical list H.

(6) Sequentially process all junctions from the list S.

a. Take the first raw junction ni.

39

Mathematics 2021, 9, 1278

b. In the H list, take the last edge V, which joins na {nax; nay} and nb {nbx; nby} with
ni {nix; niy} to form a left turn. The following condition is satisfied:

(nix–nax) ∗
(
nby − nay

)
–
(
niy–nay

) ∗ (nbx − nax
)
> 0.

c. Among all the edges H, find the first edge VL which does not satisfy the left
turn condition (appearing before and to the left of edge V).

d. Among the edges H, find the first edge VR which does not satisfy the left turn
condition (being behind and to the right if edge V).

e. Sequentially process all edges from the list H between VL and VR. Each of these
edges forms a new triangle with junction ni by adding new edges among them.

f. Remove all edges between VL and VR from the list H.
g. From the first triangle added, take the edge between ni and the edge point,

absent from the following processed triangle, and add it to the list H.
h. From the first added triangle, take the edge between ni and the edge point,

absent from the previous processed triangle, and add it to the list H.

(7) Remove the edges from the current graph, until their quantity is no longer equal to
E. Edges should be selected randomly but only removed if there is a way to do so
without them being between the junctions of such an edge.

Sorting Joints Clockwise

(1) Find the center of the polygon for whole junction as follows:

R =
∑i ri

i
,

where i is the index of edges connected to the junction, ri is the i-edge vector with
(x, y) coordinates, and R is the calculated center of the polygon for the whole junction.

(2) Shift all apexes so that the center is at the beginning of the coordinate.
(3) Take a zero value (for example, radius OA vector = (0, 1) see Figure 3).

Figure 3. Selection of points while sorting.

(4) Find corners among the vectors from the center to each apex and OA (corners should
be over the range of 0–360).

(5) Sort corners from smaller to larger ones.

Using this algorithm, we can build different accidental planar networks; an example
is presented in Figure 4.

40

Mathematics 2021, 9, 1278

Figure 4. Example of an accidental planar network consisting of 500 junctions with an average
number of links equal to 2.9.

4.2. Network Percolation Threshold Calculation Algorithm

The network percolation threshold algorithm used consists of the following steps [24]:

(1) Randomly select two network junctions A and B, considering limits, with at least one
intermediate junction between them.

(2) Set the blocking probability value of the single junction (in the junction task) or link
(for the link task) and randomly block the junction (or link) fraction which is equal to
this probability.

(3) Check for the presence of at least one “free” way in the network (a route which is
included in the junction or link list) from junction A to junction B. If no “free” way is
present (i.e., number of “free” ways is equal to 0), record 0. Otherwise, record 1.

(4) Increase the blocking probability value of a single junction (for the junction task) or
link (for the link task) on any value. Then, randomly block the fraction of network
junctions (or links), equal to the specified probability value. Next, indicate the specific
network junctions being excluded.

(5) Repeat step 3, until all network junctions have been processed.
(6) Return to step 2 and execute steps 3–5 Q times (for example, several hundred times).

Repeat all steps (if the whole network is blocked) on all experiments. Indicate the
number of embeddings, where at least one “free” way was indicated (designate as
ξ). For example, at step h = 18 in 8, 12, 19, 56, 58, 76, 80, and 89 experiments with at
least one “free” way, then ξ(5) = 8 (8 is the total number of “free” ways). Find the
value ρ(h) = ξ(h)/Q, h—step number per step. Calculate the average cluster size
of excluded junctions, the quantity of such clusters, etc. (on all N experiments per
step). The average size of the cluster may be indicated as the ratio of all value sums
obtained for this clustering step (on all Q experiments) to total number of experiments
Q. For illustrative purposes, we can consider the following example: assume that,
at step h = 6 in the first experiment, four clusters were obtained, each having a size
of 15 junctions, whereas three clusters were obtained in the second experiment, two
clusters were obtained in the third, etc. Then, the average number of clusters having
a size 10 of blocked junctions would be equal to (4 + 3 + 2 + . . . + 5)/100.

(7) Then, return to step 1 and repeat the implementation of steps 2–6, W times. For each
W test, we can calculate the value pw(h) = ξ(h)/Q. Index w indicates which W-test
to study.

(8) After completing the simulation, for each of the h steps, we can calculate the value

ρ(h) =
W=100

∑
w=1

pw(h)/W, i.e., the average value of the probability ratio for passage

through the network as a whole through unblocked junctions (or links for the task of
link blocking) at each of the steps (considering different possible route configurations).

41

Mathematics 2021, 9, 1278

Calculating using this algorithm enables us to obtain a database for the dependency of
the average ratio value of the probability of passage through the network ρ(h) as a whole
on the fraction of blocked junctions (or links for link blocking tasks), at different average
numbers of links, per junction (network density).

4.3. Calculating the Dependency of the Percolation Threshold Dependency on the Network Density
(Average Number of Links per Crossroad)

The results of computational modeling and calculation of percolation threshold values
for planar networks with an accidental number of links per junction for junction and link
blocking tasks are presented in Table 1. Note that column 3 named “density” represents
the average number of links per single junction, and the values of reverse link densities are
specified in brackets. Column 4 named “threshold” represents the value of the percolation
threshold (fraction of conductive junctions or links where network conductivity appears as
a whole). The natural log values of percolation thresholds are specified in brackets.

Table 1. Values of percolation thresholds for planar networks with an accidental structure.

No. Task Type Density Threshold

1.

Junction blocking task
[19–21]

5.99 (0.167) 0.500 (−0.693)
2. 5.40 (0.185) 0.533 (−0.629)
3. 4.80 (0.208) 0.570 (−0.562)
4. 4.50 (0.222) 0.593 (−0.523)
5. 4.20 (0.238) 0.618 (−0.481)
6. 3.90 (0.256) 0.650 (−0.431)
7. 3.60 (0.278) 0.683 (−0.381)
8. 3.42 (0.292) 0.708 (−0.345)
9. 3.18 (0.314) 0.750 (−0.288)

10. 2.94 (0.340) 0.793 (−0.232)
11. 2.70 (0.370) 0.852 (−0.160)
12. 2.46 (0.407) 0.925 (−0.078)

13.

Link blocking task

5.99 (0.167) 0.395 (−0.929)
14. 5.69 (0.176) 0.405 (−0.904)
15. 5.39 (0.186) 0.435 (−0.832)
16. 5.09 (0.196) 0.445 (−0.810)
17. 4.49 (0.223) 0.480 (−0.734)
18. 4.19 (0.239) 0.510 (−0.673)
19. 3.89 (0.257) 0.550 (−0.598)
20. 3.59 (0.279) 0.570 (−0.562)
21. 3.29 (0.304) 0.625 (−0.470)
22. 2.99 (0.334) 0.685 (−0.378)
23. 2.87 (0.348) 0.715 (−0.335)
24. 2.70 (0.370) 0.770 (−0.261)
25. 2.58 (0.388) 0.805 (−0.217)
26. 2.39 (0.418) 0.900 (−0.105)

Table 1 includes percolation threshold values as a fraction of conductive junctions
(or links), where network conductivity appears. The fraction of blocked junctions (or
links), where network conductivity disappears may be found as one minus the fraction of
conductive junctions (or links).

Note that the percolation threshold values of planar networks with different densities
for junction blocking tasks were calculated by the present authors in earlier works [25–30],
where networks consisting of 100,000 junctions were used to carry out computational
simulations. In order to undertake numerical experiments while solving network tasks,
a network with 5000 junctions was used, requiring significant computational steps to
successfully solve the tasks.

A 0.5 value of probability that the network transition is in a conducting state (see
Figure 2) was selected as the percolation threshold of percolation network structures.

42

Mathematics 2021, 9, 1278

However, note once again that we may take, for example, another value of transition
probability of 0.95 or 0.99 (the percolation threshold would be set by the reliability criteria),
i.e., we may calculate the fraction at which the total number of blocked junctions and/or
links leads to the network losing the required level of efficiency.

It is important to note that the average number of links per single junction (network
density) for a planar graph cannot exceed a value of 6. This is due to the Euler theo-
rem [31], according to which, for a plane graph, the following equation should be fulfilled:
V—E + F = 2, where V is the number of vertices in the graph, E is the number of edges, and
F is the number of areas the graph separates in the plane.

In Figure 5, the dependencies of percolation threshold values of planar networks on
the average number of network links per single junction (in junction blocking tasks [24]
and in link blocking tasks) are presented.

Figure 5. Dependency of values percolation threshold values of planar accidental networks on
network density (curve 1—junction task, curve 2—link task).

To calculate the influence of the network’s structure density on the value of its perco-
lation limits, it is necessary to analyze the data, shown in Table 1 and in Figure 5, and to
calculate a functional dependency which may describe the influence of the network density
on the value of its percolation limit. This enables us to calculate the link density of actual
transport networks, to estimate the value of their percolation limit and, consequently, draw
conclusions on the reliability of their structure, i.e., at which fraction of blocked junctions
and/or links the network as a whole loses the required level of efficiency.

The results obtained can be used in the process of transport network construction or
renovation in order to increase traffic potential and working capacity.

In [32–34] based on the topological structure of binding clusters proposed by Schklovskiy
and de Zhen (“skeleton and dead ends”), the function of conditional flow probability (perco-
lation) in grid Y(ξ, L) was obtained as follows:

Y(ξ, L) =
1

1 + e−S(ξ,L)
, (1)

where S(ξ, L) = ∑
i

ai(ξ
i − ξ i

c(L) is the polynomial of degree i, ai represents its coefficients,

ξ is the fraction of blocked junctions, and ξc(L) is the fraction of blocked junctions, corre-
sponding to the percolation threshold value which depends on the size of the network L.
The polynomial S(ξ, L) of degree i may depend on the topological features of the network
structure (network density, space symmetry, dimensionality etc.), which may be set during
phenomenology with coefficients ai.

The main problem when describing percolation using Equation (1) is indicating the
polynomial degree i and its coefficients. The shred use of Equation (1) and Hodge algebraic

43

Mathematics 2021, 9, 1278

geometry methods [35], as well as Kadanoff–Wilson renormalization theory [36,37] with
groups (see, e.g., [18]), enables us (in all cases) to calculate theoretical values of the percola-
tion threshold for any regular structures [32–34]. In Hodge theory, algebraic varieties are
studied (varieties, consisting of subsets, any of which comprise a set of solutions to any
polynomial equations). Geometrical representations of algebraic varieties are called Hodge
cycles. Linear combinations of such geometrical figures are called algebraic cycles [38].

The core of this approach is that we may depart from using Hodge methods and
Kadanoff–Wilson renormalization groups to calculate the dependency of polynomial S(ξ, L)
of degree i, from conditional probability Y(ξ, L) of the flow in the grid, as well as to calculate
the influence of topological factors on such a dependency. Using Equation (1), we can
derive the following:

lnY(ξ, L) = −ln
{

1 + e−S(ξ,L)
}

,

where S(ξ, L) = ∑
i

ai
{

ξ i − ξ i
c(L)

}
is the polynomial of degree i, ai designates its coefficients,

ξ is the current value of the blocked junction fraction, and ξc(L) is the fraction of blocked
junctions, which corresponds to the percolation threshold value (this depends on the size
of network L). Considering that a value near to the percolation threshold is ξ ≈ ξc(L), then
the polynomial value S(ξ, L) is small and e−S(ξ,L) may be expanded in series, restricted by
two elements. After some manipulation, we can derive the following:

lnY(ξ, L) ≈ 1 − S(ξ, L) = 1 − ∑
i

ai

{
ξ i − ξ i

c(L)
}

. (2)

The righthand side of Equation (2) may be the function (or composed function)
of certain variables, each of which is associated with any specific absolute concept of
the network. For example, one of the variables may be the average number x of links
(network density).

The described approach enables us to analyze the data specified in Table 1 and in
Figure 5. It also enables us to present the dependency for the base logarithm of the
percolation threshold lnP(x) on topological characteristics, for example, network density
reciprocity (1/x), calculated as one divided by the average number of links per single
network junction (see Figure 6). As may be inferred from Figure 6, the dependencies
identified have a linear form and may be approximated by linear equations.

Figure 6. Dependency of natural log percolation threshold value (lnP(x)) on accidental planar structures from the reciprocal
of density (1/x).

For planar structures in nodes tasks, the dependency of a percolation threshold
log lnP(x) on the reciprocal of the network density (1/x) may be described using the
following equation:

lnPnode, unreg(x) =
2.52

x
− 1.08, (3)

44

Mathematics 2021, 9, 1278

with a correlation number coefficient value and linear dependency equation equal to 0.99
(see righthand line 1 in Figure 6). In the links task, this equation becomes

lnPbond, unreg(x) =
3.19

x
− 1.44, (4)

with a correlation number coefficient value and linear dependency equation equal to 0.99
(see the righthand line 2 in Figure 6).

The focus here is a comparison of percolation features for accidental and regular planar
networks. For example, the transport networks for New York or Mexico (see Figure 1) have
a structure resembling a square lattice, while the transport networks of many other cities
have structures which more closely resemble the structure shown in Figure 4. This leads
us to question how the thresholds for such network blocking can differ at the same link
density.

In Table 2, the percolation threshold values of some regular networks are shown (see
Figure 7), and the cited literature is specified (where the source was not specified, the
percolation threshold values were indicated in the numerical modeling results).

Table 2. Percolation threshold values for planar networks with regular structures.

No. Task Type Density Threshold

1.

Node blocking task

2.7 (0.37)–f in Figure 5. 0.74 (−0.30)
2. 3 (0.33)–d in Figure 5 [17]. 0.70 (−0.36)
3. 3.40 (0.29)–g in Figure 5. 0.64 (−0.45)
4. 4 (0.25)–a in Figure 5 [17]. 0.59 (−0.53)
5. 4.5 (0.22)–e in Figure 5. 0.56 (−0.58)
6. 6 (0.17)–b in Figure 5. 0.50 (−0.69)
7. 6 (0.17)–c in Figure 5 [17]. 0.50 (−0.69)

8.

Bond blocking tasks

2.7 (0.37)–f in Figure 5. 0.69 (−0.37)
9. 3 (0.33)–d in Figure 5 [17]. 0.65 (−0.43)

10. 3.40 (0.29)–g in Figure 5. 0.52 (−0.65)
11. 4 (0.25)–a in Figure 5 [17]. 0.50 (−0.69)
12. 6 (0.17)–b in Figure 5. 0.36 (−1.02)
13. 6 (0.17)–c in Figure 5 [17]. 0.35 (−1.05)

Figure 7. Geometrical representation of some regular network structures (a–g).

Figure 8 shows that dependencies of natural logs for percolation threshold values
of regular networks from the reverse density of links are also described accurately using
linear equations. For the nodes task, this equation becomes

lnPnode, reg(x) =
1.98

x
− 1.02, (5)

45

Mathematics 2021, 9, 1278

with the value of the numeric correlation coefficient and linear dependence equation equal
to 0.99 (see righthand line 1 in Figure 8). In the links task, this equation becomes

lnPbond, reg(x) =
3.29

x
− 1.56, (6)

with the numeric correlation value and linear equations equal to 0.97 (see righthand line 2
in Figure 8).

Figure 8. Dependency of natural log percolation threshold value (lnP(x)) on planar accidental structures from the reciprocal
of density (1/x).

Analysis of the results shows that the conductivity of any planar networks at identical
densities of its bonds is larger than in the task of bond blocking compared with the task of
node blocking. The percolation threshold (fraction of conductive nodes or bonds or where
conductivity occurs) in the bond task is less than in the node task.

5. Discussion

Table 3 presents data on the density of transport bonds in any world cities, generated
according to its graph analysis, as well as the value of blocking thresholds calculated using
Equations (3) and (4). The values of network blocking values are specified in brackets,
calculated from the analysis of real transport systems using numerical simulation. The
blocking value is calculated using the following equation: one minus the percolation
threshold calculated in Equation (3) or Equation (4). The values found in the analysis of
the network graph are specified in brackets.

Table 4 presents data on the density of transport bonds in any world cities, calculated
from graph analyses, as well as from the value of blocking thresholds calculated using
Equations (5) and (6). The values of network blocking values are specified in brackets,
calculated in the analysis of real transport systems using numerical simulation. The
blocking value is calculated according to the following equation: one minus the percolation
threshold calculated using Equation (5) or Equation (6).

Table 3. Densities of transport bonds in any world cities and values of their blocking thresholds
identified using models of accidental networks.

No. City Density
Blocking Threshold in Node

Tasks according to Equation (3)
Blocking Threshold in Link

Tasks according to Equation (4)

1. New York 2.85 0.18 (0.19) 0.27 (0.21)
2. Istanbul 2.91 0.19 (0.19) 0.29 (0.21)
3. Madrid 2.77 0.16 (0.18) 0.25 (0.21)
4. Beijing 2.70 0.14 (0.17) 0.23 (0.27)
5. Paris 2.63 0.11 (0.16) 0.20 (0.19)
6. Moscow 2.51 0.08 (0.13) 0.16 (0.17)
7. London 2.39 0.03 (0.11) 0.10 (0.14)

46

Mathematics 2021, 9, 1278

Table 4. Densities of transport bonds in any world cities and the values of their blocking thresholds
calculated using models of regular networks.

No. City Density
Blocking Threshold in Node

Tasks according to Equation (5)
Blocking Threshold in Link

Tasks according to Equation (6)

1. New York 2.85 0.28 (0.19) 0.33 (0.21)
2. Istanbul 2.91 0.29 (0.19) 0.35 (0.21)
3. Madrid 2.77 0.26 (0.18) 0.31 (0.21)
4. Beijing 2.70 0.25 (0.17) 0.29 (0.27)
5. Paris 2.63 0.23 (0.16) 0.27 (0.19)
6. Moscow 2.51 0.21 (0.13) 0.22 (0.17)
7. London 2.39 0.17 (0.11) 0.17 (0.14)

A comparison of the data presented in Tables 3 and 4 (which consider inaccuracies in
reporting of traffic density and numerical simulation) enables us to draw two conclusions:
1. The transport networks of many cities in the world have structures which are close to

an accidental structure and not regular planar networks.
2. An increase in network density leads to an increase in the blocking threshold of the

network.

Today, rather often, overpasses and multilevel transport interchanges are constructed
to increase traffic capacity. From a topological perspective, this changes its planarity. Earlier,
in [25], the percolation features of nonplanar accidental networks were studied, and the
following equation was found to calculate the conductivity threshold in node tasks:

lnPst
node, unreg(x) =

4.39
x

− 2.41, (7)

where Pst
node, unreg(x) is the percolation threshold value, and x is the network density.

Taking the example of a network density equal to 2.65 (the mean density according
to data from Tables 3 and 4), for the percolation limit value of an accidental nonplanar
network, we obtain 0.47. Thus, loss of conductivity for such structures occurs when
the fraction of blocked nodes is greater than 0.53. Therefore, creating many nonplanar
interchanges and overpasses in the transport network may significantly increase traffic
capacity, but this is nevertheless associated with significant expenses due to the major
construction work involved.

Let us consider the change in network topology due to the construction of multilevel
interchanges and overpasses and their influence on the loss of efficiency in terms of bond
blocking. Earlier, in [25], the percolation features of nonplanar accidental networks were
studied, and the following equation was found for the conductivity limit in bond tasks:

lnPst
bond, unreg(x) = −6.58

x
− 0.20, (8)

where Pst
bond, unreg(x) is the percolation threshold value, and x is the network density.

Taking a network density value equal to 2.65 as an example, we obtain 0.07 for the
percolation limit value of the accidental nonplanar network. Thus, the loss of conductivity
for such structures occurs when the fraction of blocked bonds is greater than 0.93. Accord-
ingly, the creation of a large quantity of planar interchanges and overpasses in the transport
network and in the event of bond blocking can also significantly increase its traffic capacity.

However, as mentioned earlier, this is due to the significant cost of capital construction
of complex interchanges. When choosing specific urban planning solutions, it is necessary
to consider that the percolation threshold of the transport network can be increased not
only due to nonplanar overpasses, but also due to changes in density. In other words, you
can add a small number of plank connections to the network graph instead of building
tiered interchanges (if the cost of building them is higher).

6. Avenues for Future Research

In further investigations, the author plans to study the following issues:

47

Mathematics 2021, 9, 1278

1. Table 3 includes data on the density of transport bonds in cities around the world and
specific threshold values of blocking based on the analysis thereof, calculated using
Equations (3) and (4). Note that the network blocking values were specified during
an analysis of real transport systems using numerical simulation. The author further
plans to study more city graphs, from which statistics can be gathered to study the
correlation of blocking threshold values, calculated using Equations (3) and (4) and
reported in the result of real traffic analysis. This will enable the development of an
accurate percolation model.

2. To estimate the reliability and efficiency of traffic, as well as the changes in traffic den-
sity throughout the day, it is necessary to indicate the average blocking probability of
a network element at any given moment. Hence, different macroscopic traffic models
will be studied in order to create an effective and accurate model of the influence of
traffic characteristics and topology on the average probability of its elements blocking
(drawing on the models proposed by Grinschields, Richards, Grindberg, El Hozaini,
Underwood, Drake, and Pipes: the optimal speed, “Smart” driver, leader follow,
cellular automata models, etc.). This will enable us to choose these characteristics
as the core of the model and, consequently, to provide the required result after its
modernization. Moreover, it will be useful to develop new models, for example, based
on the description of stochastic systems including the possibility of self-organization
and presence of memory of previous states.

3. Further research may also include a wider range of studies by various authors about
road traffic management using intelligent vehicles equipped with a variety of sensors
and communications [39–44] to integrate new approaches and data streams into the
proposed traffic percolation model.

7. Conclusions

Percolation theory methods may be used to investigate the operational reliability and
ground transport network fault tolerance where any transport structure may be represented
as a planar or almost planar graph with some nonlinear bonds (in real transport networks,
this is associated with the presence of overpasses and multilevel interchanges).

In percolation theory, we may consider the solution to problems relating to the in-
dication of blocked nodes and bond fractions for networks with different structures. In
order to solve bond tasks, the fraction of nodes and bonds, which must be broken up to
separate such a network into at least two isolated areas (or, conversely, the fraction of +–+
conductive bonds when conductivity occurs), is indicated. In the node task, the fraction of
blocked nodes where network decomposition occurs to create isolated areas (or, vice versa,
the fraction of conductive nodes when conductivity occurs) is indicated. The percolation
threshold is the fraction of nonblocked nodes (for the node task) or unbroken bonds (for
the bond task), where conductivity occurs between two randomly selected network nodes.
For the same structure of percolation threshold values, node and bond tasks have different
meanings. The value of the percolation threshold depends on the average number of bonds
per single node of the network (density) and is the criterion of work reliability, i.e., it
indicates at which fraction of blocked nodes and/or bonds the network loses the required
level of efficiency as a whole.

The dependence of the blocking (percolation) threshold value on the network bond
density can be mathematically expressed. This enables us to use the traffic map and
indicates the average number of bonds per single node to then calculate the threshold
value of when it blocks, which can be used when engineering and modernizing the road
infrastructure. If such a blocking threshold is increased, we may calculate the necessary
number of additional links.

Real transport networks have a topology which is closer to accidental networks than
to regular ones. Given equal network density, an accidental planar network (if loss of
efficiency is possible) is slightly inferior to regular structures.

48

Mathematics 2021, 9, 1278

Thus, if we know the total city road stretch and number of lanes, as well as daily
vehicle dynamics, we may calculate the average traffic intensity on the basis of such data.
Then, we can calculate the average probability that a network element will block at any
given moment. This enables us to estimate the reliability and efficiency of the network, to
analyze daily dynamics, and—if possible—to change the traffic structure accordingly.

Increasing transport bond density may increase the reliability and traffic capacity
of the network. Moreover, in order to increase traffic capacity, we can choose to build
overpasses and multilevel interchanges. From a topological perspective, this changes its
planarity. In the case of the same link density with planar networks, random nonplanar
networks have higher blocking threshold values. Creating a small number of nonplanar
junctions and overpasses may significantly increase the traffic capacity of the network.

The results of this study can be methodically used as follows: the graph of the
real transport network can be applied to investigate their percolation properties using
previously described models and techniques. If we want to increase bandwidth and
reliability (increase the percolation threshold), then various changes to the network graph
may be proposed (either additional connections or tiered interchanges). Next, numerical
simulations or calculations can be carried out using the percolation threshold equations
obtained in the study for modified graphs (various proposed solutions). Then, the estimated
option with the largest percolation threshold and minimal capital cost can be chosen in the
implementation of city planning solutions. This solution will claim optimal reliability at
minimal cost.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Conflicts of Interest: The author declares no conflict of interest.

References

1. Briani, M.; Cristiani, E. An easy-to-use algorithm for simulating traffic flow on networks: Theoretical study. Netw. Heterog. Media
2014, 9, 519–552. [CrossRef]

2. Hui, M.; Bai, L.; Li, Y.; Wu, Q. Highway traffic flow nonlinear character analysis and prediction. Math. Probl. Eng. 2015, 20–27.
[CrossRef]

3. Ahn, G.-H.; Ki, Y.-K.; Kim, E.-J. Real-time estimation of travel speed using urban traffic information system and filtering algorithm.
IET Intell. Transp. Syst. 2014, 8, 145–154. [CrossRef]

4. Poole, A.; Kotsialos, A. Swarm intelligence algorithms for macroscopic traffic flow model validation with automatic assignment
of fundamental diagrams. Appl. Soft Comput. 2016, 38, 134–150. [CrossRef]

5. Guo, J.; Chen, F.; Xu, C. Traffic flow forecasting for road tunnel using PSO-GPR algorithm with combined kernel function. Math.
Probl. Eng. 2017, 125–135. [CrossRef]

6. Lesko, S.A.; Alyoshkin, A.S.; Barkov, A.A. Mathematical and software development of modeling and management of transport
flows based on percolation stochastic model. CEUR Workshop Proc. 2017, 2064, 454–469.

7. Lesko, S.A.; Alyoshkin, A.S.; Titov, V.V. Models and algorithms of optimization of routes in the transport network of the city.
CEUR Workshop Proc. 2017, 2064, 438–453.

8. Jiang, R.; Jin, C.; Zhang, H. Experimental and empirical investigations of traffic flow instability. Transp. Res. Procedia 2017, 23,
157–173. [CrossRef]

9. Danchuk, V.; Bakulich, O.; Svatko, V. An Improvement in ant algorithm method for optimizing a transport route with regard to
traffic flow. Procedia Eng. 2017, 425–434. [CrossRef]

10. Pun-Cheng, L.S.; Chan, A.W. Optimal route computation for circular public transport routes with differential fare structure. Travel
Behav. Soc. 2015, 3, 71–77. [CrossRef]

11. Baranovskata, T.P.; Pavlov, D.A. Simulation of large-scale traffic networks using multiobjective optimization methods and
considering structural dynamics. Political Netw. Electron. Sci. J. Kuban State Agrar. Univ. 2016, 120, 1686–1705.

12. Pavlenko, P.F. Use of expert system and control module based on fuzzy logic in traffic adaptive management. Inst. Autom. Inf.
Technol. NAN KR 2014, 2, 92–97.

13. Trubicin, V.A.; Golub, D.I. Traffic management based on traffic and road capacity ratio. Bull. North-Cauc. Fed. Univ. 2013, 2, 89–92.
14. Vlasov, A.A.; Chushkina, Z.A. Saturated Traffic Control Regional Architecture and Construction. Reg. Archit. Eng. 2014, 4,

152–156.
15. Ziryanov, V.V. Peculiarities of main traffic diagram use on network level. Energy Resour. Sav. Ind. Transp. 2013, 21, 71–74.

49

Mathematics 2021, 9, 1278

16. Filippova, D.M.; Chernyago, A.B.; Slobodchikova, N.A. Traffic flow distribution organizing coordinated traffic management. Bull.
Irkutsk State Univ. 2013, 9, 172–176.

17. Kaligin, N.N.; Uvaysov, S.U.; Uvaysova, A.S.; Uvaysova, S.S. Infrastructural review of the distributed telecommunication system
of road traffic and its protocols. Russ. Technol. J. 2019, 7, 87–95. (In Russian) [CrossRef]

18. Grimmet, G. Percolation, 2nd ed.; Springer: Berlin, Germany, 1999.
19. Sahimi, M. Applications of Percolation Theory; Tailor & Francis: London, UK, 1992.
20. Stauffer, D.; Aharony, A. Introduction to Percolation Theory; Tailor & Francis: London, UK, 1992.
21. Feder, J. Fractals; Plenum Pressl: New York, NY, USA; London, UK, 1998.
22. Lesko, S.A.; Alyoshkin, A.S.; Filatov, V.V. Stochastic and Percolating Models of Blocking Computer Networks Dynamics during

Distribution of Epidemics of Evolutionary Computer Viruses. Russ. Technol. J. 2019, 7, 7–27. [CrossRef]
23. Li, D.; Fu, B.; Wang, Y.; Lu, G.; Yehiel Berezin, H.; Stanley, E.; Havlin, S. Percolation transition in dynamical traffic network with

evolving critical bottlenecks. Proc. Natl. Acad. Sci. USA 2015, 112, 669–672. [CrossRef]
24. Zhukov, D.O.; Andrianova, E.G.; Lesko, S.A. The Influence of a Network’s Spatial Symmetry, Topological Dimension, and Density

on its Percolation Threshold. Symmetry 2019, 11, 920. [CrossRef]
25. Zhukov, D.; Khvatova, T.; Lesko, S.; Zaltsman, A. Managing social networks: Applying the Percolation theory methodology to

understand individuals’ attitudes and moods. Technol. Forecast. Soc. Chang. 2017, 123, 234–245. [CrossRef]
26. Zhukov, D.O.; Khvatova, T.Y.; Lesko, S.A.; Zaltsman, A.D. The influence of connection density on clusterization and percolation

threshold during information distribution in social networks. Inform. Appl. 2018, 12, 90–97. [CrossRef]
27. Khvatova, T.Y.; Zaltsman, A.D.; Zhukov, D.O. Information processes in social networks: Percolation and stochastic dynamics.

CEUR Workshop Proc. 2017, 2064, 277–288.
28. Lesko, S.; Aleshkin, A.; Zhukov, D. Reliability Analysis of the Air Transportation Network when Blocking Nodes and/or

Connections Based on the Methods of Percolation Theory. IOP Conf. Ser. Mater. Sci. Eng. 2020, 714, 012016. [CrossRef]
29. Zhukov, D.O.; Zaltcman, A.G.; Khvatova, T.Y. Forecasting Changes in States in Social Networks and Sentiment Security Using the

Principles of Percolation Theory and Stochastic Dynamics. In Proceedings of the 2019 IEEE International Conference Quality
Management, Transport and Information Security, Information Technologies IT and QM and IS 2019, Sochy, Russia, 23–27
September 2019; pp. 149–153. [CrossRef]

30. Lesko, S.A.; Zhukov, D.O. Percolation models of information dissemination in social networks. In Proceedings of the 2015 IEEE In-
ternational Conference on Smart City/SocialCom/SustainCom (SmartCity), Chengdu, China, 19–21 December 2015; pp. 213–216.
[CrossRef]

31. Trudeau, R.J. Introduction to Graph Theory; Corrected, Enlarged Republication, Edition; Dover Pub.: New York, NY, USA,
1993; p. 64.

32. Gallyamov, S.R. A passing threshold of a simple cubic lattice in the site problem of Bethe lattice model. Vestn. Udmurt. Univ. Mat.
Mekhanika Komp’yuternye Nauki 2008, 3, 109–115. (In Russian) [CrossRef]

33. Gallyamov, S.R.; Mel’chukov, S.A. On one method of calculating percolation thresholds for square and diamond lattices in the
percolation problem of knots. Vestn. Udmurt. Univ. Mat. Mekhanika Komp’yuternye Nauki 2009, 4, 33–44. (In Russian) [CrossRef]

34. Gallyamov, S.R.; Mel’chukov, S.A. Hodge’s idea in percolation percolation threshold estimation by the unit cell. Vestn. Udmurt.
Univ. Mat. Mekhanika Komp’yuternye Nauki 2011, 60–79. (In Russian) [CrossRef]

35. Hodge, W.V.D. The Theory and Applications of Harmonic Integrals; Cambridge Mathematical Library: Cambridge, UK, 1952.
36. Kadanoff, L.P.; Jotze, W.; Hamblen, D.; Hecht, R.; Lewis, E.A.S.; Palciauskas, V.V.; Rayl, M.; Swift, J.; Aspres, D.; Kane, J. Static

Phenomena Near Critical Points: Theory and Experiment. Rev. Mod. Phys. 1967, 39, 395–431. [CrossRef]
37. Wilson, K.G. Renormalization group and critical phenomena. Phys. Rev. B 1971, 4, 3174–3183. [CrossRef]
38. Krasnov, V.A. Algebraic cycles on a real algebraic GM-manifold and their applications. Russ. Acad. Sci. Izv. Math. 1994, 43,

141–160. [CrossRef]
39. Romeo, F.; Campolo, C.; Molinaro, A.; Berthet, A.O. DENM repetitions to enhance reliability of the autonomous mode in NR V2X

sidelink. In Proceedings of the 2020 IEEE 91st Vehicular Technology Conference (VTC2020-Spring), Antwerp, Begium, 25–28 May
2020; pp. 1–5. [CrossRef]

40. Qi, W.; Landfeldt, B.; Song, Q.; Guo, L.; Jamalipour, A. Traffic differentiated clustering routing in DSRC and C-V2X hybrid
vehicular networks. IEEE Trans. Veh. Technol. 2020, 69, 7723–7734. [CrossRef]

41. Zadobrischi, E.; Dimian, M. Vehicular Communications Utility in Road Safety Applications: A Step toward Self-Aware Intelligent
Traffic Systems. Symmetry 2021, 13, 438. [CrossRef]

42. Ahmed, S.H.; Bouk, S.H.; Yaqub, M.A.; Kim, D.; Song, H.; Lloret, J. CODIE: COntrolled Data and Interest Evaluation in vehicular
named data networks. IEEE Trans. Veh. Technol. 2016, 65, 3954–3963. [CrossRef]

43. Carli, R.; Dotoli, M.; Epicoco, N. Monitoring Traffic Congestion in Urban Areas through Probe Vehicles: A Case Study Analysis.
Internet Technol. Lett. 2017, 1, e5. [CrossRef]

44. Wang, S.; Zhang, X.; Cao, J.; He, L.; Stenneth, L.; Yu, P.S.; Li, Z.; Huang, Z. Computing urban traffic congestions by incorporating
sparse GPS probe data and social media data. ACM Trans. Inf. Syst. 2017, 35, 30. [CrossRef]

50

mathematics

Article

Not Another Computer Algebra System: Highlighting
wxMaxima in Calculus

Natanael Karjanto 1,* and Husty Serviana Husain 2

Citation: Karjanto, N.; Husain, H.S.

Not Another Computer Algebra

System: Highlighting wxMaxima in

Calculus. Mathematics 2021, 9, 1317.

https://doi.org/10.3390/

math9121317

Academic Editor: Liliya Demidova

Received: 13 May 2021

Accepted: 3 June 2021

Published: 8 June 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Mathematics, University College, Natural Science Campus, Sungkyunkwan University
Suwon 16419, Korea

2 Department of Mathematics Education, Faculty of Mathematics and Natural Science Education,
Indonesia University of Education, Bandung 40154, Indonesia; serviana@upi.edu

* Correspondence: natanael@skku.edu

Abstract: This article introduces and explains a computer algebra system (CAS) wxMaxima for
Calculus teaching and learning at the tertiary level. The didactic reasoning behind this approach is
the need to implement an element of technology into classrooms to enhance students’ understanding
of Calculus concepts. For many mathematics educators who have been using CAS, this material is of
great interest, particularly for secondary teachers and university instructors who plan to introduce
an alternative CAS into their classrooms. By highlighting both the strengths and limitations of the
software, we hope that it will stimulate further debate not only among mathematics educators and
software users but also also among symbolic computation and software developers.

Keywords: computer algebra system; wxMaxima; Calculus; symbolic computation

1. Introduction

A computer algebra system (CAS) is a program that can solve mathematical problems
by rearranging formulas and finding a formula that solves the problem, as opposed to
just outputting the numerical value of the result. Maxima is a full-featured open-source
CAS: the software can serve as a calculator, provide analytical expressions, and perform
symbolic manipulations. Furthermore, it offers a range of numerical analysis methods
for equations or systems of equations that otherwise cannot be solved analytically. It can
sketch graphical objects with excellent quality.

What is wxMaxima, then? wxMaxima is a document-based graphical user interface
(GUI) for the CAS Maxima. It allows us for using all of Maxima’s functions. Additionally, it
provides convenient wizards for accessing the most commonly used features, including
inline plots and simple animations. Similar to Maxima, wxMaxima is free of charge, and it is
released and distributed under the terms of the GNU General Public License (GPL). This
allows for everyone to modify and distribute it, as long as its license remains unmodified.
In this article, we use the term “wxMaxima” more often, but the terms “Maxima” and
“wxMaxima” can be used interchangeably.

Maxima is different from other well-known so-called 3M mathematical software (Maple,
Matlab, Mathematica), as they are commercial and one needs to purchase a license before
using them. Other open-source mathematics software include Axiom, Reduce, SageMath,
Octave and Scilab (both are for numerical computation), R (for statistical computing), and
GeoGebra (for interactive geometry and algebra), where the latter is quite well-known
globally among mathematics educators.

Apart from being free and easy to install, Maxima is also updated continuously. Cur-
rently, Maxima can run natively without emulation on the following operating systems:
Windows, Mac OS X, Linux, Berkeley Software Distribution (FreeBSD), Solaris, and Android. An
executable file can be downloaded from Maxima’s website [1]. In particular, the installation
file for Windows operating system is available for download at an open-source software

Mathematics 2021, 9, 1317. https://doi.org/10.3390/math9121317 https://www.mdpi.com/journal/mathematics51

Mathematics 2021, 9, 1317

community resource SourceForge [2]. One can simply double-click the executable file and
follow the instruction accordingly. After the installation is completed, the software is ready
to be launched. The whole process takes less than three minutes in total, depending on the
Internet connection speed.

This software is introduced because it is free and under the GPL. As a comparison,
the total combined cost for purchasing 3M software is almost USD 5500 for an educational
license (see Table 1). Although the expenditure for personal and student licenses are much
lower than those for commercial and professional licenses, for colleagues and practitioners
in many developing countries, the price is still considered to be costly. Having this in
mind, we promote an open-source software that benefits many people who have limited
resources, particularly in less affluent countries.

For teaching and learning mathematics, Maxima is fairly accessible by many people.
Although SageMath is popular among university professors for teaching Calculus and
Linear Algebra thanks to its user-friendly cloud, the server is rather slow, particularly if
one attempts to access it from a developing country with modest Internet connectivity.
SageMath can be downloaded and installed locally, but it is a huge file. Thus, it is another
hindrance for many colleagues in developing countries.

Table 1. Software packages and the individuals or institutions through which they were first devel-
oped, the year they were launched, and estimated cost in USD.

Software Creator Launched Cost (USD)

Axiom Richard Jenks 1977 Free
Magma University of Sydney 1990 USD 1140
Maple University of Waterloo 1980 USD 2390
Mathematica Wolfram Research 1986 USD 2495
Maxima Bill Schelter et al. 1976 Free
Matlab MathWorks 1989 USD 3150
SageMath William A. Stein 2005 Free

In what follows, we cover a literature study on Maxima for teaching and learning. A
study from Malaysia suggests that students who are exposed to Maxima while learning
Calculus had a significantly better academic performance as compared with the group
that followed a traditional teaching method, and showed a better motivation and more
confidence towards the subject [3]. Another example comes from Spain, where García et al.
proposed to replace Derive using Maxima [4]. Díaz et al. analyzed the role of Maxima in
learning Linear Algebra in the context of learning on the basis of competencies [5]. Fedriani
and Moyano proposed using Maxima in teaching mathematics for business degrees and A-
level students [6]. The authors also presented a report of the main strengths and weaknesses
of this software when used in the classroom. Additionally, the CAS wxMaxima is used for
training future mathematics teachers in Ukraine [7].

Advanced mathematics can also be explored using Maxima, as demonstrated by
Dehl [8]. A new possibility for interactive teaching in engineering module using Maxima
was discussed by Žáková [9]. There also exist free Calculus electronic textbooks incorporat-
ing wxMaxima developed by Zachary Hannan from Solano Community College, Fairfield,
California [10]. These books could certainly be adopted into Calculus classrooms. Cur-
rently, Hannan is working on PreCalculus, Multivariable Calculus (MVC), Linear Algebra,
and Differential Equations textbooks that utilize the software. Thus, we hope to see more
Maxima-based mathematics textbooks, and this is good news for mathematics educators
who are interested in embedding technology and CAS into their classrooms.

Beyond mathematics, some authors used Maxima successfully in Classical Mechan-
ics [11] and Chemistry [12]. In particular, for an efficient path in understanding Maxima, the
latter provides a thorough introduction to exploiting Maxima with the focus on utilizing the
wxMaxima interface. Woollett provided a series of tutorial notes on Maxima. Designed for

52

Mathematics 2021, 9, 1317

new users, particularly Windows customers, the notes include some nuts-and-bolts sugges-
tions for working with the CAS [13]. Puentedura designed a Maxima tutorial workflow for
enhancing and transforming the learning process in science and mathematics. He identified
that the CAS has at least three essential roles: as a number-crunching calculator, as a tool
for paper-and-pencil symbolic mathematical derivation, and as a typesetter [14].

The list of literature reviews presented above is by no means exhaustive. While the
literature offers abundant materials on where wxMaxima can outstandingly perform, what
it can and cannot do is not entirely clear when it comes to teaching Calculus using the
software. This article fills the gap in human–computer interaction, both in the technological
and pedagogical senses. Furthermore, by highlighting the software’s limitations, we hope
to stimulate further debate among the symbolic-computation and mathematics-education
communities on how to remedy the situation, perhaps by either providing alternative ways
in problem-solving or by improving the technological aspects of the CAS itself. From a
pedagogical point of view, the students’ feedback that was obtained after implementing
wxMaxima in teaching and learning for multiple semesters could shed light on its accessi-
bility, digital natives’ interaction with technology, and uncover a better way of teaching
with technology.

In particular, the limitations of wxMaxima are examined by revisiting several examples
that were considered in the literature. We present some examples of symbolic integration
where wxMaxima fails to calculate in most of the cases in relation to results from other
software. Interestingly, even other CAS that were often regarded as superior to wxMaxima
have shortcomings as well. Granted, the field of symbolic integration itself, let alone the
area of symbolic computation, particularly with different CAS, is a wide range. Both the
cited literature and presented examples are by no means exhaustive lists.

Additionally, although Calculus focuses on the mathematical study of continuous
change, the subject in itself contains rich examples of symmetrical objects. For example,
even and odd functions are symmetric with respect to the y-axis and origin, respectively.
Geometrically, the graph of even and odd functions remains unchanged after reflection
about the y-axis and rotation of 180◦ about the origin, respectively. Consequently, the
integral of the former with respect to symmetric intervals is twice the integral from zero to
the corresponding upper limit, while the integral of the latter vanishes. We assume that
either these functions are integrable and the intervals are finite or the integral converges
for infinite intervals. Throughout this article, we consider other examples where symmetry
occurs in Calculus and illustrate them using wxMaxima.

This article is an extended version of our previous work on embedding technology into
Calculus teaching and learning [15]. We investigate the following research questions: Where
can wxMaxima perform exceptionally as a CAS? What is its effectiveness? What are wxMax-
ima’s limitations and weaknesses? This paper is organized as follows. After this introduc-
tion, Section 2 discusses wxMaxima’s strengths and limitations, which are featured through
several examples. Section 3 provides educational benefits when one embeds the soft-
ware for instructional purposes, in addition to covering some study limitations. Section 4
concludes the study and lays out a future outlook from our discussion.

2. wxMaxima’s Strengths and Weaknesses

In this section, we cover both wxMaxima’s strengths and weaknesses through exam-
ples. Although the considered illustrations are mostly Calculus-related, one may consider
examples for other subjects as well, including Linear Algebra, Differential Equations, and
Discrete Mathematics.

2.1. wxMaxima’s Strengths

When working with Calculus problems, students can verify the result of their man-
ual computations performed by pencil and paper using wxMaxima. Since wxMaxima is
lightweight and fairly straightforward, simple Calculus calculations can be executed within
seconds. These include calculating the limit, finding the derivative of a function, and evalu-

53

Mathematics 2021, 9, 1317

ating both definite and indefinite integrals. The syntax is relatively easy to understand by
someone who has no or little experience in programming. In what follows, we consider
several wxMaxima examples that can be useful for Calculus teaching and learning.

Example 1. Calculating limits, derivatives, and integrals:

lim
x→ 0

sin(7x)
x

,
d

dx
cos(3x2),

∫ 1
1 + x2 dx,

∫ 1

0

1
1 + x2 dx.

Example 1 provides simple examples of calculating limits, derivatives, and integrals,
both definite and indefinite. All functions in this example are even. Table 2 displays the
wxMaxima command inputs and their corresponding outputs. Our experience as instructors
suggests that wxMaxima is also handy for obtaining quick and excellent-quality graphical
plots, particularly three-dimensional objects that can be hard to sketch manually. In turn,
this visualization enhances students’ understanding of applying Calculus concepts.

Example 2. Sketching functions (2D plots):

y = f (x) = 2x3 − 7x2 − 5x + 4 [cubic function]

y = g(x) = ex and L(x) = 1 + x [exponential function and its linear approximation].

Example 2 gives examples of generating 2D plots of a single polynomial function and
an exponential function together with the corresponding linear approximation. Table 2
shows the wxMaxima command inputs, and Figure 1 displays the corresponding outputs.
The plot on the left-hand side can be used to verify the theoretical computation of the
local extrema, increasing or decreasing test, and concavity test to a cubic function f (x) =
2x3 − 7x2 − 5x + 4. The plot on the right-hand side shows a linear approximation L(x) of an
exponential function g(x) = ex at x = 0. The sketching quality in wxMaxima is remarkably
excellent, and the task is completed swiftly. SageMath is rather slow to produce plots, and
WolframAlpha’s free version generates poor quality plots.

Table 2. Examples of wxMaxima commands and their corresponding outputs covering limit, deriva-
tive, integral, and 2D plots.

Input Output

(%i1) ’limit(sin(7*x)/x,x,0); lim
x→ 0

sin(7x)
x

(%i2) limit(sin(7*x)/x,x,0); 7

(%i3) ’diff(cos(3*x^2),x);
d

dx
cos(3x2)

(%i4) diff(cos(3*x^2),x); −6x sin(3x2)

(%i5) ’integrate(1/(1 + x^2),x);
∫ 1

1 + x2 dx

(%i6) integrate(1/(1 + x^2),x); atan(x)

(%i7) integrate(1/(1 + x^2),x,0,1);
π

4
(%i8) plot2d(2*x^3-7*x^2-5*x+4, [x,-2,4.5]); (Figure 1, left panel)

(%i9) plot2d([exp(x), 1 + x], [x,-3,2]); (Figure 1, right panel)

54

Mathematics 2021, 9, 1317

2*
x^

3-
7*

x^
2-

5*
x+

4

x

-30

-20

-10

 0

 10

 20

 30

-2 -1 0 1 2 3 4

x

%e^x
x+1

-2

-1

 0

 1

 2

 3

 4

 5

 6

 7

 8

-3 -2 -1 0 1 2

Figure 1. 2D plot outputs of a cubic function y = f (x) = 2x3 − 7x2 − 5x + 4 (left), and the exponential function y = g(x) =
ex and its linear approximation at (0, 1), y = L(x) = 1 + x (right).

Example 3. 2D and 3D parametric plots:

r(t) = 1 − sin t, 0 ≤ t ≤ 2π [cardioid]

r(t) = 〈cos t, sin t, t〉, 0 ≤ t ≤ 5π [helix].

Example 3 gives illustrations of parametric plots in both 2D plane and 3D space. The
wxMaxima input commands and their corresponding outputs are presented in Table 3. A 2D
plot of the polar curve cardioid r(t) = 1 − sin t, 0 ≤ t ≤ 2π, and a 3D plot of helix r(t) =
〈cos t, sin t, t〉, 0 ≤ t ≤ 5π are given on the left and right panels of Figure 2, respectively.

(1
-s

in
(t

))
*s

in
(t

)

cos(t)*(1-sin(t))

A cardioid

-2

-1.5

-1

-0.5

 0

 0.5

-1.5 -1 -0.5 0 0.5 1 1.5

-1

-0.5

 0

 0.5

 1 -1
-0.5

 0
 0.5

 1

 0
 2
 4
 6
 8

 10
 12
 14
 16

z

A helix

x

y

z

Figure 2. (left) The output of 2D parametric plot showing a polar curve cardioid r(t) = 1 − sin t, 0 ≤ t ≤ 2π. (right) An
output of a 3D parametric plot displaying a vector-valued function helix r(t) = 〈cos t, sin t, t〉, 0 ≤ t ≤ 5π. These particular
cardioid and helix are symmetric with respect to the y- and z-axes, respectively.

Two of integral applications are calculating the area enclosed by a polar curve and the
arc length of a parametric curve. The commands to calculate the area A enclosed by the
cardioid and the length of the helix L and their corresponding results are also given in Table 3.
Mathematically, they are performed as follows, where the prime denotes differentiation
with respect to t:

A =
∫ 2π

0

1
2

r2 dt =
∫ 2π

0

1
2
(1 − sin t)2 dt =

3π

2

L =
∫ 5π

0

√
x′(t)2 + y′(t)2 + z′(t)2 dt =

∫ 5π

0

√
sin2 t + cos2 t + 1 dt = 5

√
2π.

55

Mathematics 2021, 9, 1317

Table 3. Examples of wxMaxima commands and their corresponding outputs showing 2D and 3D
plots of parametric curves cardioid and helix, respectively, and their corresponding arc lengths.

Input Output

(%i10) r: 1 - sin(t); (r) 1 − sin(t)

(%i11) plot2d([parametric,r*cos(t),r*sin(t)], (Figure 2,

[t,0,2*%pi],[color,red],[x,-1.5,1.5], left panel)

[y,-2.25,0.5],same_xy,[title,"A cardioid"]);

(%i12) integrate(1/2*r^2,t,0,2*%pi);
3π

2
(%i13) plot3d([cos(t),sin(t),t],[t,0,5*%pi],[y,-1,1],

[grid,100,2],[gnuplot_pm3d,true],[elevation,50], (Figure 2,

[azimuth,60],[legend,false],[title,"A helix"]); right panel)

(%i14) factor(integrate(sqrt(diff(cos(t),t)^2

+diff(sin(t),t)^2+diff(t,t)^2),t,0,5*%pi)); 5
√

2π

Example 4. 3D surfaces of Möbius band and torus:

s(x, y) =
〈(

3 + y cos
x
2

)
cos x,

(
3 + y cos

x
2

)
sin x, y sin

x
2

〉
[Möbius band]

t(θ, φ) = 〈(2 + cos θ) cos φ, (2 + cos θ) sin φ, sin θ〉, 0 ≤ θ, φ < 2π. [torus]

The wxMaxima input commands and their corresponding outputs are given in Table 4
and Figure 3, respectively. Three-dimensional plots such as this Möbius band and torus can
be rotated easily in any direction. Sometimes also called the Möbius strip, the former is a
surface with only one side and only one boundary curve, the simplest example of a nonori-
entable surface. All Möbius bands have a twofold symmetry rotational axis, for which a
180◦ rotation results in strips indistinguishable from the original. The surface finds abun-
dant applications in physical sciences, including nanostructures [16], metamaterials [17],
polymeric materials [18], and photonic crystals [19].

The torus example comes from the problem of calculating the volume of solid revo-
lution. It is obtained from a disk (x − 2)2 + z2 ≤ 1 revolved about the z-axis, and thus, it
is radially symmetric about the z-axis. The desired viewpoint can be obtained easily by
setting the elevation and azimuth angles. This is beneficial in comparison to the Matlab
plots where figures usually have a high number of pixels and are rather heavy to be rotated.
Although the surface of revolution is a fascinating object among geometers and topologists,
it also finds ample applications in nanophotonics [20], metamaterials [21], magnetized
plasma [22], and polymer chemistry [23].

56

Mathematics 2021, 9, 1317

Table 4. Examples of wxMaxima commands and their corresponding outputs showing 3D plots of
parametric surfaces Möbius band and torus.

Input Output

(%i15) plot3d([cos(x)*(3+y*cos(x/2)),sin(x)*(3+y*cos(x/2)),

y*sin(x/2)],[x,-%pi,%pi],[y,-1,1],[’grid,50,15], (Figure 3,
[legend,false],[elevation,35],[azimuth,50], left panel)
[title,"Moebius band"]);

(%i16) plot3d([cos(y)*(2+cos(x)),sin(y)*(2+cos(x)),sin(x)],

[x,0,2*%pi],[y,0,2*%pi],[gnuplot_pm3d,true], (Figure 3,
[grid,50,50],[legend,false],[elevation,30], right panel)
[azimuth,135],[title,"A torus"]);

-4
-3

-2
-1

 0
 1

 2
 3

 4 -4
-3

-2
-1

 0
 1

 2
 3

 4

-1

-0.5

 0

 0.5

 1

z

Moebius band

x
y

z

-3
-2

-1
 0

 1
 2

 3

-3
-2

-1
 0

 1
 2

 3

-1
-0.8
-0.6
-0.4
-0.2

 0
 0.2
 0.4
 0.6
 0.8

 1

z

A torus

xy

z

Figure 3. Outputs of (left) the 3D surface Möbius band s(x, y) =
(
3 + y cos x

2
)

cos x i +
(
3 + y cos x

2
)

sin x j + y sin x
2 k, and

(right) the torus t(θ, φ) = (2 + cos θ) cos φ i + (2 + cos θ) sin φ j + sin θ k.

2.2. wxMaxima’s Weaknesses

In this subsection, we consider several examples where wxMaxima is deficient. When
sketching a function with singularities, we can discern an improved plot by including
supplementary commands. The CAS wxMaxima is not particularly strong when it comes
to evaluating integrals, particularly the integral of rational functions. This may come as a
surprise since the latter are commonplace and considered to be schematically viable.

Example 5. A sketch of y = f (x) =
x2

x2 − 1
.

In this example, sketching a 2D plot of a function with vertical asymptotes requires
an additional instruction. Although the output from “plot2d(x^2/(x^2-1),[x,-4,4]);”
input shows that there are two vertical asymptotes at x = ±1, modifying the input produces
a better visibility, cf. [24]:
“plot2d(max(min(x^2/(x^2-1),10),-10),[x,-4,4]);”. Figure 4 compares the 2D plots
obtained from these two inputs.

57

Mathematics 2021, 9, 1317

Figure 4. (left) A 2D plot of y = f (x) = x2

x2−1 without any restriction in the vertical scale. (right) The same plot as in the left
panel but the vertical axis is restricted to −10 ≤ y ≤ 10.

Example 6. Indefinite and definite integrals involving trigonometric functions:∫ x sin x
1 + cos2 x

dx and
∫ π

0

x sin x
1 + cos2 x

dx.

Both wxMaxima and Matlab fail to evaluate both integrals. The indefinite integral above
involves a non-elementary function Li2(z). Special function Lis(z) is a polylogarithm of
order s and argument z. It is also known as the Jonquière’s function and is defined by a
power series in z; it is also a Dirichlet series in s:

Lis(z) =
∞

∑
k=1

zk

ks .

Both WolframAlpha and Mathematica can produce a correct answer for the above
definite integral: π2/4. Although treatment of the indefinite integral is beyond the Calculus
course, the definite integral can be evaluated using a simple substitution rule. Appendix A
shows how to evaluate it without any help from CAS.

Example 7. Gärtner’s indefinite integral of a rational function [25]:

∫ √
2 dx

(x − 1)4 + 1
16

.

When employing the “integrate(sqrt(2)/((x-1)^4+1/16),x);” command, wx-
Maxima could not directly handle this integral. However, using the substitution y = x − 1:
“changevar(%,x-1-y,y,x);”, the integral transforms into

∫ 16
√

2 dy
16y4 + 1

.

Asking wxMaxima to evaluate the integral, “ev(%,integrate);”, we obtain

2 log(4y2 + 2
√

2y + 1)− 2 log(4y2 − 2
√

2y + 1) + 4 atan

(
4y +

√
2√

2

)
+ 4 atan

(
4y −√

2√
2

)
.

Substituting back to the original variable gives us the desired integral, “sfx: %,y=x-1”:

2 log(4(x − 1)2 + 2
√

2(x − 1) + 1)− 2 log(4(x − 1)2 − 2
√

2(x − 1) + 1)

+ 4 atan

(
4(x − 1) +

√
2√

2

)
+ 4 atan

(
4(x − 1)−√

2√
2

)
.

58

Mathematics 2021, 9, 1317

In attempting to solve indefinite integrals of rational functions, wxMaxima essentially
still uses the algorithms that were described by Moses [26]. The CAS employs the classical
algorithmic tool in symbolic integration known as Hermite reduction. Both Hermite and
Ostrogradsky demonstrated decomposing indefinite integral of rational functions as the
sum of a function with simple poles and the derivative of another rational function, i.e., for
R ∈ Q(x) ∫

R(x) dx = U(x) +
∫

A(x) dx, U, A ∈ Q(x)

where A has only simple poles and vanishes at infinity [27–30].
Thus, wxMaxima implements the combination of Hermite reduction with either the

partial fraction decomposition (Bernoulli–Leibniz algorithm) to compute the rational part
of the integrand or with some heuristic methods in computing its transcendental parts for
several easier cases. Although other commercial software such as Axiom and 3M might also
implement integration using Hermite reduction for the rational part of the integrand, it
employs more contemporary and advanced methods to integrate the remaining terms after
Hermite reduction is implemented.

Example 8. Bronstein’s definite integral of a rational function [31]:

∫ 2

1

x4 − 3x2 + 6
x6 − 5x4 + 5x2 + 4

dx.

When we attempt the command “integrate((x^4-3*x^2+6)/(x^6-5*x^4+5*x^2+4),
x,1,2);”, wxMaxima could not compute this integral. However, Axiom and 3M can tackle
it. Axiom’s output reads:

2 atan(8) + 2 atan(5) + 2 atan(2) + 2 atan
(

1
2

)
− π

2
.

Maple’s output is given as follows:

arctan
(

1
2

)
− 1

2
π + arctan(5) + arctan(8) + arctan(2).

Interestingly, Mathematica and Matlab give the following outputs, respectively, which were
simpler than the ones from the previous two software:

5
4

π − arctan(2) and π − arctan(1/3).

All of these results correspond to an identical numerical value of approximately 2.819842.
The proof is shown in Appendix B.1.

It would also be interesting to observe the corresponding indefinite integral. While
wxMaxima anticipatedly cannot compute the indefinite integral, Axiom, Maple, and Matlab
delivered the same results and agreed with Formula (2.20) in [31]. This reads

∫ x4 − 3x2 + 6
x6 − 5x4 + 5x2 + 4

dx = arctan(x) + arctan(x3) + arctan
(

x5 − 3x3 + x
2

)
+ C.

In particular, Mathematica is of special interest as the output of the corresponding
indefinite integral does not agree with the formula given in [31]. It reads as follows (some
terms were rearranged):

∫ x4 − 3x2 + 6
x6 − 5x4 + 5x2 + 4

dx =
1
2

arctan
[

x(x2 − 3)
x2 − 2

]
− 1

2
arctan

[
x(x2 − 3)

2 − x2

]
+ C.

59

Mathematics 2021, 9, 1317

The definite integral is given as follows:

∫ 2

1

x4 − 3x2 + 6
x6 − 5x4 + 5x2 + 4

dx = lim
t→√

2
−

{
1
2

arctan
[

x(x2 − 3)
x2 − 2

]
− 1

2
arctan

[
x(x2 − 3)

2 − x2

]}
− arctan(2)

+ arctan(1)− lim
t→√

2
+

{
1
2

arctan
[

x(x2 − 3)
x2 − 2

]
− 1

2
arctan

[
x(x2 − 3)

2 − x2

]}
=

(π

2
− arctan(2)

)
+

(π

4
+

π

2

)
=

5
4

π − arctan(2).

The first and second chapters of [31] explain outline algorithms for the integration
of rational functions in great detail. All relevant algorithms are given in pseudocodes.
With an estimated effort of 500 to 700 lines of code, these algorithms can be implemented
in wxMaxima.

Example 9. Adamchik’s definite integral of a rational function [32]:

∫ 4

0

x2 + 2x + 4
x4 − 7x2 + 2x + 17

dx.

For an indefinite integral, wxMaxima could not compute it. Other software, namely, Axiom,
Maple, and Matlab, presented an identical solution but with rather dissimilar expressions:

∫ x2 + 2x + 4
x4 − 7x2 + 2x + 17

dx = arctan(x − 1) + arctan
(

1
3

x3 − 1
2

x2 − x +
5
3

)
+ C.

On the other hand, the computational result from Mathematica produced an antiderivative
expression with discontinuities at x = ±2:

∫ x2 + 2x + 4
x4 − 7x2 + 2x + 17

dx =
1
2

arctan
(−x − 1

x2 − 4

)
− 1

2
arctan

(
x + 1
x2 − 4

)
+ C.

For the definite integral, while all numerical results agree, the symbolic outputs yield
remarkably distinct expressions. The outputs are given as follows:

∫ 4

0

x2 + 2x + 4
x4 − 7x2 + 2x + 17

dx =
π

4
+ arctan(3)− arctan

(
5
3

)
+ arctan

(
41
3

)
[Axiom and Maple]

=
5
4

π − arctan
(

75
11

)
[Matlab]

= π − arctan
(

1
4

)
− arctan

(
5
12

)
[Mathematica]

= (a tedious and complicated expression) [wxMaxima]

≈ 2.50182 [numerical value].

Although wxMaxima computes and produces an output for the definite integral, that
expression is exceptionally tedious and complicated. It is also unclear how it was obtained, but
possibly by performing a contour integration. Despite that tiresome and intricate expression, its
numerical evaluation yields a value that agrees with the one calculated by other software. A
high floating-point precision command, e.g., “fpprec:150” needs to be imposed to obtain
that numerical value. Except for the exact wxMaxima output, Appendix B.2 verifies that the
above outputs had identical values.

60

Mathematics 2021, 9, 1317

Similar to Example 8, when we want to use Mathematica’s antiderivative result to
compute the value of the definite integral, we need to split the interval of integration at

the point of discontinuity to avoid a wrong result of − arctan
(

1
4

)
− arctan

(
5
12

)
. The

computational summary is given as follows:

∫ 4

0

x2 + 2x + 4
x4 − 7x2 + 2x + 17

dx = lim
t→2−

{
1
2

arctan
(−t − 1

t2 − 4

)
− 1

2
arctan

(
t + 1
t2 − 4

)}
− arctan

(
1
4

)
− arctan

(
5

12

)
− lim

t→2+

{
1
2

arctan
(−t − 1

t2 − 4

)
− 1

2
arctan

(
t + 1
t2 − 4

)}
=

[
π

2
− arctan

(
1
4

)]
−

[
arctan

(
5

12

)
− π

2

]
= π − arctan

(
1
4

)
− arctan

(
5
12

)
.

Example 10. Tobey’s indefinite integral of a rational function [33]:

∫ 7x13 + 10x8 + 4x7 − 7x6 − 4x3 − 4x2 + 3x + 3
x14 − 2x8 − 2x7 − 2x4 − 4x3 − x2 + 2x + 1

dx.

Except for wxMaxima, all other CAS can compute this integral. The result can be found
on page 502 of [34] using the Rothstein–Trager method. It reads

1
2
(1 +

√
2) log

(
x7 −

√
2 x2 − (1 +

√
2)x − 1

)
+

1
2
(1 −

√
2) log

(
x7 +

√
2 x2 − (1 −

√
2)x − 1

)
+ C.

3. Discussion

3.1. wxMaxima in Perspective

There exists a distinct paradigm between the CAS mentioned in the Introduction.
While Matlab is particularly strong in numerical computation, the real forte of wxMax-
ima, Maple, and Mathematica is symbolic computation. Matlab has also incorporated some
symbolic features, and the latter three can also perform numerical computations as well.

When it comes to symbolic functionality, wxMaxima still has a long way to go to catch
up other commercial software. Together with Axiom and SageMath, a formula editor is
missing in Maxima, although wxMaxima serves efficiently as its user interface. While Ax-
iom does not possess graph-theory symbolic functionality, wxMaxima does. Unfortunately,
Diophantine equation solvers and quantifier elimination are absent in wxMaxima, and
SageMath acquires these two features via SymPy and qepcad optional packages, respec-
tively. Table 5 summarizes the significantly developed symbolic functionality in various
software systems.

61

Mathematics 2021, 9, 1317

Table 5. A summary of significantly developed symbolic functionality among various software. Maxima has a short-
fall in quantifier elimination and Diophantine equation solver. The missing formula editor can be overcome by a user
interface wxMaxima.

Software Formula Editor

Calculus

Quantifier Elimination

Solvers

Integration
Integral Inequalities Diophantine Differential Recurrence

Transforms Equations Equations Relations

Axiom � � � � � � � �

Magma � � � � � � � �

Maple � � � � � � � �

Mathematica � � � � � � � �

Maxima � � � � � � � �

Matlab � � � � � � � �

SageMath � � � � � � � �

An important feature of wxMaxima that trumps other CAS is the admittance of re-
ferring to the result of the last evaluated expression with a percentage sign (%). Although
we may organize the commands in spatial order, wxMaxima stores information in chrono-
logical order. Thus, the % always refers to the most recently executed command, and not
necessarily to the one that appears directly above the executed command [11]. As already
mentioned in the Introduction, since wxMaxima is open-source software, it is maintained by
an active community of developers, and thus being updated regularly. New releases occur
approximately twice annually. For a proprietary software like 3M, not everyone can inspect,
modify, or enhance, but only a team of developers from the company or organization
who maintains exclusive control over it can modify the software. Admittedly, the most
important reason for utilizing wxMaxima, both in teaching and research is the cost, and
many authors agreed on this particular notable reason [10–12].

3.2. Educational Benefit

There are many educational benefits of embedding CAS wxMaxima into teaching
and learning, Calculus in particular, and mathematics in general. The software serves
as meaningful assistance not only to students but also to instructors in verifying hand-
computed results, obtaining numerical values of tedious expressions, and providing rich-
quality graphical plots. Hence, the benefit of algebraic, numerical, and graphical aspects,
respectively. The time reduction gained in the labor of manual calculation can be spent for
a deeper understanding of key ideas, theoretical concepts, and problem-solving methods.

Some examples discussed in Section 2 support this testimony. By observing the graph
of a cubic function, students should establish a connection between the visual plot and the
computational result of obtaining intervals where the function is increasing, decreasing,
concave up, and concave down. Other features, such as the local maxima and minima,
and inflection points should follow naturally. By examining the linear approximation of
a function, students should be able to conclude why the approximation works for the
variable x near a specified point of interest. At an advanced level, this comprehension is
advantageous for linear-stability analysis.

The literature does not lack in supplying educational benefits of using CAS in math-
ematics lessons. From a coding perspective, the programming language in wxMaxima
flows more naturally in comparison to that in other software, and hence allows for stu-
dents to autonomously implement simple algorithms [4]. For current and future calculus
teachers, wxMaxima could reduce the time spent on course preparation [7]. By allowing
students to induce judgments and make mistakes, the adoption of wxMaxima stimulates
the interactive-learning process through testing, evaluation, decision-making, and error
correction [9]. Weigand argued that the wise use of CAS could foster students’ ability
in problem solving, modeling, proving, and communicating [35]. The CAS can even be
blended with an innovative pedagogical approach, such as flipped classrooms [36].

62

Mathematics 2021, 9, 1317

Additional benefits come along as more instructors adopt and implement a CAS,
particularly wxMaxima, into their teaching and learning. However, wxMaxima is not a
perfect software, as we elaborated through several examples in Section 2.

3.3. Limitation

This study admits several limitations. First, the extent of course materials in Single-
Variable Calculus (SVC) is overwhelmingly profuse while the time is scanty. It covers nine
chapters of Stewart’s Calculus textbook [37], and they need to be completed in 14 weeks.
Embedding technology into teaching and learning contributes an additional burden. In
a typical North American university, similar content would be covered in two different
courses for two consecutive semesters. Usually called “Calculus 1” and “Calculus 2”,
they cover Differential and Integral Calculus, respectively. The latter often includes an
Introduction to Differential Equations, and Sequence and Series. Hence, teaching Calculus
using wxMaxima with less material coverage seems to be a promising attempt, as we could
pursue in MVC.

Second, despite the superior features of wxMaxima and its specialty in symbolic
operations, the CAS itself has some weaknesses that could be challenging for beginners
to learn, adopt, and adapt, both as instructors and students, where it might be more
conspicuous for the latter. The CAS is admittedly far from perfect due to the nature of free
and open-source software. Other commercial CAS such as Mathematica and Maple might be
better since the companies that release them possess an army of paid personnel working
around the clock to improve the software. Nevertheless, we are not without hope since
wxMaxima is updated frequently, bugs are fixed, and documentation is improved by a
group of volunteer developers who work tirelessly.

4. Conclusions

In this article, we considered several features of wxMaxima that could be useful for
enhancing the quality of Calculus teaching and learning. Although the CAS itself is far
from perfect, focusing on its strengths might benefit both students and instructors when
embedding the software into the subject. We included some examples where wxMaxima
assists well in understanding Calculus concepts better. These include calculating limit,
finding a derivative of a function, evaluating definite and indefinite integrals, generating
plots for explicit functions, parametric functions, polar curves, and three-dimensional
objects. The visualization aspect enhances excellent teaching.

For teachers and instructors who are currently adopting Maple or Mathematica in their
teaching, we are interested in stimulating a discussion on whether it is viable to integrate,
or even switch entirely, to wxMaxima. This endeavor is not beyond our reach, at least for a
sequence of Calculus courses (PreCalculus, SVC, and MVC).

For Linear Algebra, Matlab is still the most popular software among both engineers and
educators thanks to its many professional contributors, rigorous development, powerful
numerical computation, and additional package Simulink. SageMath is also becoming
popular for Linear Algebra teaching and learning since it utilizes existing open-source
libraries specifically designed for Linear Algebra, including LAPack and NumPy. Since
wxMaxima also possesses many functions for manipulating matrices, we would not be too
ambitious to persuade educational practitioners by considering to switch CAS to wxMaxima
for Linear Algebra teaching and learning. Some Linear Algebra problems are worth testing
using wxMaxima nonetheless.

Despite the many admirable qualities of wxMaxima, our experience in other courses
and with different CAS suggests that some students hate when instructors generally at-
tempt to embed any CAS in general into mathematics teaching and learning. For example,
after implementing Calculus with SageMath in 2012, some students provided feedback
suggesting to eliminate SageMath from Calculus teaching. For Linear Algebra, a dedicated
one-hour problem-solving session using Matlab was not favored among the students. Stu-
dents’ feedback on teaching evaluation consistently mentions that the computer laboratory

63

Mathematics 2021, 9, 1317

sessions are a waste of time and must be replaced by the traditional problem-solving
sessions using pen and paper.

From our experience of embedding wxMaxima into Calculus courses, both Single-
Variable and Multivariable, very few students gave positive feedback regarding the soft-
ware. The majority of students’ comments voice an atmosphere of negativity and resistance,
they tend to push away wxMaxima. Even if they seem to embrace the CAS favorably, they
might forget it as soon as the semester is over. In subsequent courses, their instructors
might not use wxMaxima anymore. There are other important programming languages
(e.g., Python, C++, and Java) that students could master before they enter the job market.

Author Contributions: Conceptualization, N.K.; methodology, N.K.; software, H.S.H.; validation,
N.K. and H.S.H.; formal analysis, N.K.; investigation, N.K.; resources, N.K.; data curation, N.K.;
writing—original draft preparation, N.K.; writing—review and editing, N.K.; visualization, N.K.;
supervision, N.K.; project administration, N.K.; funding acquisition, N.K. All authors have read and
agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: The authors gratefully acknowledge Boris Gärtner from Munich, Germany for
the fruitful discussion on the limitations of wxMaxima and for providing references to the relevant
literature, particularly [26,31–34].

Conflicts of Interest: The authors declare no conflict of interest.

Dedication

The main author would like to dedicate this article to the memory of his late father Za-
karia Karjanto (Khouw Kim Soey,許金瑞) who not only taught him the alphabet, numbers,
and the calendar in his early childhood, but also cultivated the value of hard work, diligence,
discipline, perseverance, persistence, and grit. Karjanto Senior was born in Tasikmalaya,
West Java, Japanese-occupied Dutch East Indies on 1 January 1944 (Saturday Pahing) and
died in Bandung, West Java, Indonesia on 18 April 2021 (Sunday Wage).

Appendix A. Evaluating a Definite Integral without CAS

The definite integral involving trigonometric functions considered in Example 6 can
be evaluated without the aid of any CAS. We have the following lemma:

Lemma A1. For a continuous and rational function f (x) ∈ Q(x)∫ π

0
x f (sin x) dx =

π

2

∫ π

0
f (sin x) dx.

Proof. Let u = π − x, then du = −dx, for x = 0, u = π and x = π, u = 0. We have
∫ π

0
x f (sin x) dx =

∫ 0

π
(π − u) f (sin(π − u)) (−du) = −π

∫ 0

π
f (sin u) du +

∫ 0

π
u f (sin u) du

= π
∫ π

0
f (sin x) dx −

∫ π

0
x f (sin x) dx

2
∫ π

0
x f (sin x) dx = π

∫ π

0
f (sin x) dx∫ π

0
x f (sin x) dx =

π

2

∫ π

0
f (sin x) dx.

The proof is complete.

We now have the following proposition.

64

Mathematics 2021, 9, 1317

Proposition A1. ∫ π

0

x sin x
1 + cos2 x

dx =
π2

4
.

Proof. There are at least three approaches with subtle differences in tackling this problem.
The first method is by taking f (x) = x/(2 − x2) and applying Lemma A1. We then obtain

∫ π

0
x f (sin x) dx =

∫ π

0

x sin x
2 − sin2 x

dx =
∫ π

0

x sin x
1 + cos2 x

dx =
π

2

∫ π

0

sin x
1 + cos2 x

dx

= −π

2

∫ π

0

d(cos x)
1 + cos2 x

dx = −π

2
tan−1(cos x)

∣∣∣π

0
= −π

2

(
tan−1(−1)− tan−1 1

)
=

π2

4
.

The second technique is by writing x =
(
x − π

2
)
+ π

2 and substituting u = x− π
2 . It becomes

∫ π

0

x sin x
1 + cos2 x

dx =
∫ π

2

− π
2

u cos u
1 + sin2 u

du +
π

2

∫ π

0

sin x
1 + cos2 x

dx.

The first integral of the right-hand side vanishes since the integrand is an odd function. The
second integral follows the first method. The third approach is by substituting u = x − π

2
directly from the beginning. It yields a slightly different expression from the previous two
approaches for the second term of the right-hand side:

∫ π

0

x sin x
1 + cos2 x

dx =
∫ π

2

− π
2

u cos u
1 + sin2 u

du +
π

2

∫ π
2

− π
2

cos u
1 + sin2 u

du.

Similar to the second technique, the first integral on the right-hand side is zero. Since the
integrand of the second integral on the right-hand side is an even function, it simplifies to
twice of the integral from u = 0 to u = π

2 . Employing another substitution y = sin u, we
obtain the desired result:∫ π

0

x sin x
1 + cos2 x

dx = π
∫ π

2

0

d(sin u)
1 + sin2 u

= π tan−1(sin u)
∣∣∣ π

2

0
= π(tan−1 −0) =

π2

4
.

The proof is completed.

Appendix B. CAS Output Comparison

Appendix B.1. Bronstein’s Definite Integral of a Rational Function

Before verifying that all outputs in Example 8 have the same value, we need the
following identity.

Lemma A2. For all x ∈ R \ {0}

arctan x + arctan
(

1
x

)
=

{
π
2 , if x > 0

−π
2 , if x < 0.

Proof. For all x ∈ R \ {0}, let

f (x) = arctan x + arctan
(

1
x

)
.

Then, f is differentiable for every x �= 0 and

f ′(x) =
1

1 + x2 +

(
− 1

x2

)
1 + 1

x2

= 0.

65

Mathematics 2021, 9, 1317

Hence, f is constant on each connected component of all x ∈ R \ {0}. Since f (1) =
π

4
+

π

4
=

π

2
, we conclude that f (x) =

π

2
for all x > 0. And since f (−1) = − f (1) = −π

2
,

it follows that f (x) = −π

2
for all x < 0. We have completed the proof.

Proposition A2. All outputs in Example 8 are equivalent.

Proof. To show that all outputs are equivalent, we use the identity arctan(2) + arctan
(

1
2

)
=

π

2
from Lemma A2. Hence, for Mathematica output, we only need to verify that arctan(8)+
arctan(5) = 5

4 π− arctan(2). The left-hand side can be calculated as follows:

arctan(8) + arctan(5) = arctan
(

8 + 5
1 − 8(5)

)
= arctan

(
13
−39

)
= arctan

(
−1

3

)
modπ.

Applying again a similar identity from Lemma A2 for x = −3 < 0, arctan
(
−1

3

)
=

arctan(3)− π
2 , we only need to show that

arctan(3) + arctan(2) =
5
4

π +
π

2
=

7
4

π.

The left-hand side is calculated as previously:

arctan(3) + arctan(2) = arctan
(

3 + 2
1 − 3(2)

)
= arctan

(
5
−5

)
= arctan(−1)modπ =

7
4

π.

For Matlab output, we need to show that arctan(8) + arctan(5) = π − arctan
(

1
3

)
. Using

the identity from Lemma A2 that arctan(3) + arctan
(

1
3

)
=

π

2
, the right-hand side be-

comes
π

2
+ arctan(3). Combining term arctan 3 with one term on the left-hand side, we

obtain either

arctan(5) + arctan(8)− arctan(3) = arctan(5) + arctan
(

8 − 3
1 + 8(3)

)
= arctan(5) + arctan

(
1
5

)
modπ =

π

2
or

arctan(8) + arctan(5)− arctan(3) = arctan(8) + arctan
(

5 − 3
1 + 5(3)

)
= arctan(8) + arctan

(
1
8

)
modπ =

π

2
.

Both identities are correct when we take zero remainder in the congruence relationship.
This completes the proof.

66

Mathematics 2021, 9, 1317

Appendix B.2. Adamchik’s Definite Integral of a Rational Function

The results from Adamchik’s definite integral of a rational function are verified by the
following lemma.

Lemma A3. All outputs in Example 9 are identical.

Proof. We show that all exact values are identical. In each case, we take the zero remainder
whenever the congruence relationship appears. First, we verify that the Axiom/Maple’s and
Matlab’s results are identical, i.e.,

5
4

π − arctan
(

75
11

)
=

π

4
+ arctan(3)− arctan

(
5
3

)
+ arctan

(
41
3

)
π − arctan

(
75
11

)
= arctan

(
2
9

)
modπ + arctan

(
41
3

)
= arctan

(
2
9

)
+

π

2
− arctan

(
3
41

)
(by Lemma A2)

=
π

2
arctan

(
2/9 − 3/41

1 + (2/9)(3/41)

)
modπ

π

2
= arctan

(
75
11

)
+ arctan

(
11
75

)
.

Second, we show that the Matlab’s and Mathematica results are identical, i.e.,

5
4

π − arctan
(

75
11

)
= π − arctan

(
1
4

)
− arctan

(
5

12

)
.

Bringing π to the left-hand side and gathering all inverse tangent terms to the right-hand
side, we obtain

π

4
= arctan

(
75
11

)
− arctan

(
1/4 + 5/12

1 − (1/4)(5/12)

)
modπ

= arctan
(

75
11

)
− arctan

(
32
48

)
modπ = arctan

(
75/11 − 32/43

1 + (75/11)(32/43)

)
modπ

= arctan 1.

Finally, we confirm that the Axiom/Maple’s and Mathematica’s results are identical, i.e.,

π − arctan
(

1
4

)
− arctan

(
5

12

)
=

π

4
+ arctan(3)− arctan

(
5
3

)
+ arctan

(
41
3

)
3
4

π − arctan
(

32
43

)
modπ = arctan

(
2
9

)
modπ + arctan

(
41
3

)
3
4

π =
π

2
− arctan

(
43
32

)
+ arctan

(
2
9

)
+ arctan

(
41
3

)
(by Lemma A2)

π

4
= arctan

(
2
9

)
+ arctan

(
41/3 − 43/32

1 + (41/3)(43/32)

)
modπ

π

4
= arctan

(
2
9

)
+ arctan

(
7

11

)
= arctan 1.

The proof is complete.

67

Mathematics 2021, 9, 1317

References

1. Maxima Website Page. Available online: https://maxima.sourceforge.io/ (accessed on 7 June 2021).
2. SourceForge Website Page Hosting Maxima Executable File for Windows. Available online: http://sourceforge.net/projects/

maxima/files/Maxima-Windows/ (accessed on 7 June 2021).
3. Ayub, M.; Fauzi, A.; Ahmad Tarmizi, R.; Abu Bakar, K.; Wong, S.L. Adoption of Wxmaxima software in the classroom: Effect on

students’ motivation and learning of mathematics. Malays. J. Math. Sci. 2014, 8, 311–323.
4. García, A.; García, F.; Rodríguez, G.; de la Villa, A. Could it be possible to replace DERIVE with MAXIMA? Int. J. Technol. Math.

Educ. 2011, 18, 137–142.
5. Díaz, A.; García, A.; de la Villa, A. An example of learning based on competences: Use of Maxima in Linear Algebra for Engineers.

Int. J. Technol. Math. Educ. 2011, 18, 177–181.
6. Fedriani, E.M.; Moyano, R. Using Maxima in the Mathematics Classroom. Int. J. Technol. Math. Educ. 2011, 18, 171–176.
7. Velychko, V. Y.; Stopkin, A.V.; Fedorenko, O.H. Use of computer algebra system Maxima in the process of teaching future

mathematics teachers. Inf. Technol. Learn. Tools 2019, 69, 112–123. [CrossRef]
8. Dehl, M. Exploring Advanced Math with Maxima. Linux J. 2009. Available online: http://www.linuxjournal.com/content/

exploring-advanced-math-maxima (accessed on 7 June 2021).
9. Žáková, K. Maxima–An open alternative for engineering education. In Proceedings of the Global Engineering Education

Conference (EDUCON), Amman, Jordan, 4–6 April 2011; pp. 1022–1025.
10. Hannan, Z. wxMaxima for Calculus I. wxMaxima for Calculus II; Solano Community College: Fairfield, CA, USA, 2015. Available

online: https://wxmaximafor.wordpress.com/ (accessed on 7 June 2021).
11. Timberlake, T.K.; Mixon, J.W. Classical Mechanics with Maxima; Springer: New York, NY, USA, 2016.
12. Senese, F. Symbolic Mathematics for Chemists: A Guide for Maxima Users; John Wiley & Sons: Hoboken, NJ, USA, 2019.
13. Woollett, E.L. Maxima by Example; California State University: Long Beach, CA, USA, 2020. Available online: https://web.csulb.

edu/~woollett/mbe.html (accessed on 7 June 2021).
14. Puentedura, R.R. Symbolic Math–A Workflow; Hippasus: Williamstown, MA, USA, 2020. Available online: http://www.hippasus.

com/resources/symmath/index.html (accessed on 7 June 2021).
15. Karjanto, N.; Husain, H.S. Adopting Maxima as an open-source Computer Algebra System into mathematics teaching and

learning. In Proceedings of the 13th International Congress on Mathematical Education; Kaiser, G., Ed.; Springer: Cham, Switzerland,
2017; pp. 733–734.

16. Starostin, E.L.; Van Der Heijden, G.H.M. The shape of a Möbius strip. Nat. Mater. 2007, 6, 563–567. [CrossRef] [PubMed]
17. Chang, C.W.; Liu, M.; Nam, S.; Zhang, S.; Liu, Y.; Bartal, G.; Zhang, X. Optical Möbius symmetry in metamaterials. Phys. Rev. Lett.

2010, 105, 235501. [CrossRef] [PubMed]
18. Nie, Z.Z.; Zuo, B.; Wang, M.; Huang, S.; Chen, X.M.; Liu, Z.Y.; Yang, H. Light-driven continuous rotating Möbius strip actuators.

Nat. Commun. 2021, 12, 1–10. [CrossRef] [PubMed]
19. Han, Y.; He, A.L.; Chen, H.J.; Liu, S.Y.; Lin, Z.F. Photonic states on Möbius band. J. Opt. 2020, 22, 035103. [CrossRef]
20. Ahmadiv, A.; Gerislioglu, B.; Ahuja, R.; Mishra, Y.K. Toroidal metaphotonics and metadevices. Laser Photonics Rev. 2020, 14,

1900326. [CrossRef]
21. Kaelberer, T.; Fedotov, V.A.; Papasimakis, N.; Tsai, D.P.; Zheludev, N.I. Toroidal dipolar response in a metamaterial. Science 2010,

330, 1510–1512. [CrossRef] [PubMed]
22. Kliem, B.; Török, T. Torus instability. Phys. Rev. Lett. 2006, 96, 255002. [CrossRef] [PubMed]
23. Pochan, D.J.; Chen, Z.; Cui, H.; Hales, K.; Qi, K.; Wooley, K.L. Toroidal triblock copolymer assemblies. Science 2004, 306, 94–97.

[CrossRef]
24. Glasner, M.A. Maxima Guide for Calculus Students; Pennsylvania State University: University Park, PA, USA, 2004. Available

online: http://michel.gosse.free.fr/documentation/fichiers/maxima_sg.pdf (accessed on 7 June 2021).
25. Gärtner, B. The Computer Algebra Program Maxima–A Tutorial; Bildungsgüter: München, Germany, 2005. Available online: http:

//www.bildungsgueter.de/MaximaEN/Contents.htm (accessed on 7 June 2021).
26. Moses, J. Symbolic integration: The Stormy Decade. Commun. Acm 1971, 14, 548–560. [CrossRef]
27. Subramaniam, T.N.; Malm, D.E. How to integrate rational functions. Am. Math. Mon. 1992, 99, 762–772. [CrossRef]
28. Bostan, A.; Chen, S.; Chyzak, F.; Li, Z.; Xin, G. Hermite reduction and creative telescoping for hyperexponential functions. In

Proceedings of the 38th International Symposium on Symbolic and Algebraic Computation, Boston, MA, USA, 26–29 June 2013;
pp. 77–84.

29. Bostan, A.; Chyzak, F.; Lairez, P.; Salvy, B. Generalized Hermite reduction, creative telescoping and definite integration of D-finite
functions. In Proceedings of the 2018 ACM International Symposium on Symbolic and Algebraic Computation, New York, NY,
USA, 16–19 July 2018; pp. 95–102.

30. Moir, R.H.; Corless, R.M.; Maza, M.M.; Xie, N. Symbolic-numeric integration of rational functions. Numer. Algorithms 2020, 83,
1295–1320. [CrossRef]

31. Bronstein, M. Symbolic Integration I: Transcendental Functions, 2nd ed; Springer: Berlin/Heildelberg, Germany, 2005
32. Adamchik, V.S. Definite Integration in Mathematica V3.0.; Preprint; Carnegie Melon University: Pittsburgh, PA, USA, 2008; p. 18.

Available online: https://kilthub.cmu.edu/articles/journal_contribution/Definite_Integration_in_Mathematica_V3_0/6604700
(accessed on 7 June 2021). [CrossRef]

68

Mathematics 2021, 9, 1317

33. Tobey, R.G. Algorithms for Antidifferentiation of Rational Functions. Ph.D. Thesis, Harvard University, Boston, MA, USA, 1967.
34. Geddes, K.O.; Czapor, S.R.; Labahn, G. Algorithms for Computer Algebra; Kluwer Academic Publishers: Boston, MA, USA;

Dordrecht, The Netherlands; London, UK, 1992
35. Weigand, H.G. What is or what might be the benefit of using Computer Algebra Systems in the learning and teaching of Calculus?

In Innovation and Technology Enhancing Mathematics Education; Faggiano, E., Ferrara, F., Montone, A., Eds.; Springer: Cham,
Switzerland, 2017; pp. 161–193.

36. Karjanto, N.; Simon, L. English-medium instruction Calculus in Confucian-Heritage Culture: Flipping the class or overriding the
culture? Stud. Educ. Eval. 2019, 63, 122–135. [CrossRef]

37. Stewart, J. Calculus: Early Transcendentals for Scientists and Engineers, Metric Edition; Cengage Learning: Singapore, 2017.

69

mathematics

Article

Knowledge Dynamics and Behavioural Equivalences
in Multi-Agent Systems

Bogdan Aman 1,2 and Gabriel Ciobanu 2,*

Citation: Aman, B.; Ciobanu, G.

Knowledge Dynamics and

Behavioural Equivalences in

Multi-Agent Systems. Mathematics

2021, 9, 2869. https://doi.org/

10.3390/math9222869

Academic Editor: Liliya Demidova

Received: 25 September 2021

Accepted: 8 November 2021

Published: 11 November 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Institute of Computer Science, Romanian Academy, 700505 Iaşi, Romania;
bogdan.aman@iit.academiaromana-is.ro

2 Faculty of Computer Science, Alexandru Ioan Cuza University, 700506 Iaşi, Romania
* Correspondence: gabriel@info.uaic.ro

Abstract: We define a process calculus to describe multi-agent systems with timeouts for commu-
nication and mobility able to handle knowledge. The knowledge of an agent is represented as sets
of trees whose nodes carry information; it is used to decide the interactions with other agents. The
evolution of the system with exchanges of knowledge between agents is presented by the operational
semantics, capturing the concurrent executions by a multiset of actions in a labelled transition system.
Several results concerning the relationship between the agents and their knowledge are presented.
We introduce and study some specific behavioural equivalences in multi-agent systems, including a
knowledge equivalence able to distinguish two systems based on the interaction of the agents with
their local knowledge.

Keywords: mobile agents; timeouts; knowledge as set of trees; behavioural equivalences

1. Introduction

Process calculi are used to describe concurrent systems, providing a high-level de-
scription of interactions, communications and synchronizations between independent
processes or agents. The main features of a process calculus are: (i) interactions between
agents/processes are by communication (message-passing), rather than modifying shared
variables; (ii) large systems are described in a compositional way by using a small num-
ber of primitives and operators; (iii) processes can be manipulated by using equational
reasoning and behavioural equivalences. The key primitive distinguishing the process
calculi from other models of computation is the parallel composition. The compositionality
offered by the parallel composition can help to describe large systems in a modular way,
and to better organize their knowledge (for reasoning about them).

In this paper we define an extension of the process calculus TIMO [1] in order to
model multi-agent systems and their knowledge. In this framework, the agents can move
between locations and exchange information, having explicit timeouts for both migration
and communication. Additionally, they have a knowledge of the network used to decide
the next interactions with other agents. The knowledge of the agents is inspired by a model
of semi-structured data [2] in which it is given by sets of unordered trees containing pairs
of labels and values in each node. In our approach, the knowledge is described via sets of
trees used to exchange information among agents about migration and communication.
Overall, we present a formal way to describe the behaviour of mobile communicating
agents and networks of agents in a compositional manner.

A network of mobile agents is a distributed environment composed of locations where
several agents act in parallel. Each agent is represented by a process together with its
knowledge that is used to decide interactions with other agents. Taking the advantage that
there already exists a theory of parallel and concurrent systems, we define a prototyping
language for multi-agent systems presented as a process calculus in concurrency theory. Its

Mathematics 2021, 9, 2869. https://doi.org/10.3390/math9222869 https://www.mdpi.com/journal/mathematics71

Mathematics 2021, 9, 2869

semantics is given formally by a labelled transition system; in this way we describe the
behaviour of the entire network, and prove some useful properties.

In concurrency, the behavioural equality of two systems is captured by using bisimu-
lations. Bisimulations are important contributions to computer science that appeared as
refinements of ‘structure-preserving’ mappings (morphisms) in mathematics; they can be
applied to new fields of study, including multi-agent systems. Bisimilarity is the finest be-
havioural equivalence; it abstracts from certain details of the systems, focusing only on the
studied aspects. The equivalence relations should be compositional such that if two systems
are equivalent, then the systems obtained by their compositions with a third system should
also be equivalent. This compositional reasoning allows for the development of complex
systems in which each component can be replaced by an equivalent one. Furthermore,
there exist efficient algorithms for bisimilarity checking and compositionality properties
of bisimilarity, algorithms that are usually used to minimize the state-space of systems.
These are good reasons why we consider that it is important to define and study some
specific behavioural equivalences for multi-agent systems enhanced with a knowledge of
the network for deciding the next interactions. To be more realistic, we consider systems
of agents with timing constraints on migration and communication. Therefore, a notable
advantage of using our framework to model systems of mobile agents is the possibility to
naturally express compositionality, mobility, local communication, timeouts, knowledge,
and equivalences between systems in a given interval of time (up to a timeout).

The paper is structured as follows: Section 2 presents the syntax and semantics of
the new process calculus knowTIMO and provides some results regarding the timing and
knowledge aspects of the evolution. In Section 3 we define and study various bisimulations
for the multi-agent systems described in knowTIMO . The conclusion, related work and
references end the article.

2. The New Process Calculus knowTIMO

In order to model the evolution of multi-agent systems handling knowledge, timed
communication and timed migration, we define a process calculus named knowTIMO ,
where know stands for ‘knowledge’ and TIMO stands for the family of calculi introduced
in [1] and developed in several articles.

In Table 1 we present the syntax of knowTIMO, where:
• Loc= {l, l′ . . .} is a set of distributed locations or location variables, Chan={a, b, . . .}

is a set of channels used for communication among agents, Id= {id, . . .} is a set of
names used to denote recursive processes, and N = {N, N′, . . .} is a set of networks;

• a unique process definition id(u1, . . . , umid)
def
= Pid is available for all id ∈ Id;

• timeouts of actions are denoted by t ∈ N; thresholds appearing in tests are denoted by
k ∈ Z; variables are denoted by u; expressions (over values, variables and allowed
operations) are denoted by v; fields are denoted by f ; path of fields are denoted by p
and are used to retrieve/update the value of the fields. Also, if Q ∈ Id and Q(u) is a
process definition, then for v1 �= v2 we obtain two different process instances Q(v1)
and Q(v2).

An agent A is a pair P�K, where A behaves as prescribed by P and K is the knowledge
used by process P during its execution. An agent A = got l then P � K is ready to migrate
from its current location to the location l by consuming the action got l of agent A. In got,
the timer t indicates the fact that agent A is unavailable for t units of time at the current
location; then, once the timer t expires, got l then P executes process P at the new location l.
Since l can be a location variable, it may be instantiated after communication between
agents. The use of location variables allows agents to adapt their behaviours based on the
interactions among agents.

An agent A = aΔt!〈v〉 then P else Q � K is available for up-to t units of time to com-
municate on channel a the value v to another agent A′ = aΔt′?(u) then P′ else Q′ � K′
available for communication at the same location and awaiting for a value on the same
communication channel a. In order to simplify the presentation in this paper, we consider a

72

Mathematics 2021, 9, 2869

synchronous calculus; this means that when a communication takes place, the message sent
by one process is instantly received by the other process. If the communication happens,
then agent A executes process P, while agent A′ executes process P′ by making use of the
received value v. If the timers t and t′ of the agents A and A′ expire, then they execute
processes Q and Q′, respectively.

Table 1. Syntax of our Multi-Agent Systems.

Processes P, Q ::= got l then P (move)
� aΔt!〈v〉 then P else Q (output)
� aΔt?(u) then P else Q (input)
� if test then P else Q (branch)
� 0 (termination)
� id(v) (recursion)
� create(〈f | v; ∅〉) then P (create)
� update(p/f , v) then P (update)

Knowledge K ::= ∅ (empty)
� 〈 f | ε; K〉 � 〈 f | v; K〉 (tree)
� K K (set)

Paths p, p′ ::= / f � p p′ � p[test(p)] � p[test(p/f)]

Tests test(p) ::= true � ¬test(p) � K(p) > k � K(p) = v �
. . .

test ::= test(p) ∧ test(p′) � ¬test
Agents A, B ::= P � K
Set of
Agents Ã ::= 0 � Ã || A

Networks N ::= l[[Ã]] � N | N

An agent A = if test then P else Q � K uses its knowledge K to check the truth value
of the test. If the value is true, then agent A executes process P, while if the value is false,
then agent A executes process Q.

The agent A = create(〈f | v; ∅〉) then P � K extends its knowledge K by adding the
new piece of knowledge 〈 f | v; ∅〉 in parallel with K, and then executes process P. The
agent A = update(p/f , v) then P � K updates its knowledge K by adding the value v into
the field identified by f reached following path p/ f , and then executes process P; if the
field f does not exist, then the field is created and the value v is assigned to it. The agent
A = 0 � K has no actions to execute, and its evolution terminates.

The knowledge K of an agent A is used either for storing information needed for
communication with other agents or for deciding what process to execute. We define the
knowledge as sets of trees in which the nodes carrying the information are of two types:
〈 f | ε; K′〉 and 〈 f | v; K′〉. Both types of nodes contain a field f and a knowledge K′; they
differ only in the value stored in the field f , which can be either the symbol ε indicating the
empty value, or a non-empty value v. An agent A = P�K can use the information stored in
its knowledge K to perform tests. For example, a test K(p/ f) > k is true only if, following
a path p in knowledge K, the value stored in the field f is greater than k (otherwise, it
is evaluated to false); a path is used to select a node in knowledge K. Predicates, always
embedded in square brackets and attached to fields in a path, are used to analyze either
the value of the current node by using p[test(p)] or the values of the inner nodes by using
p[test(p/f)]. We say that a knowledge K is included in another knowledge K′ (denoted
K ⊆ K′) if for all paths p appearing in K it holds that K(p) = K′(p).

In Table 1 there exist only one possibility to bind variables; namely, the variable u of
the process aΔt?(u) then P else Q is bound within process P, while it is not bound within
process Q. We denote by fv(P) and fv(N) the sets of free variables appearing in process P
and network N, respectively. Moreover, we impose that fv(Pid) ⊆ {u1, . . . , umid}, where

id(u1, . . . , umid)
def
= Pid. We denote by {v/u}P the process P having all the free occurrences

of the variable u replaced by value v, possibly after using α-conversion to avoid name
clashes in process P.

73

Mathematics 2021, 9, 2869

A network is composed of distributed locations, where l[[Ã]] denotes a location l
containing a set Ã of agents, while l[[0]] denotes a location without any agents. Over
the set N of networks we define the structural equivalence ≡ as the smallest congruence
satisfying the equalities:

l[[Ã || 0]] ≡ l[[Ã]] , l[[Ã]] | l[[B̃]] ≡ l[[Ã || B̃]] ,
N ≡ N , N | N′ ≡ N′ | N , (N | N′) | N′′ ≡ N | (N′ | N′′) .

The structural congruence ≡ is needed when using the operational semantics presented
in Tables 2 and 3 for either executing actions or indicating time passing. In Table 2 the

relation N Λ−→ N′ denotes the transformation of a network N into a network N′ by executing
the actions from the multiset of actions Λ; if the multiset of actions Λ contains only a single

action λ, namely Λ = {λ}, then we use N λ−→ N′ instead of N
{λ}−−→ N′.

The operational semantics of knowTIMO is presented in Table 2.

Table 2. Operational Semantics for our Multi-Agent Systems

(STOP) l[[0]] �−→

(COM) l[[aΔt1 !〈v〉 then P1 else Q1 � K1 || aΔt2 ?(u) then P2 else Q2 � K2 || Ã]]
a!?@l−−−→ l[[P1 � K1 || {v/u}P2 � K2 || Ã]]

(PUT0) l[[aΔ0!〈v〉 then P else Q � K || Ã]]
a!Δ0@l−−−→ l[[Q � K || Ã]]

(GET0) l[[aΔ0?(u) then P else Q � K || Ã]]
a?Δ0@l−−−→ l[[Q � K || Ã]]

(MOVE0) l[[go0 l′ then P � K || Ã]] | l′[[B̃]] l�l′−−→ l[[Ã]] | l′[[P � K || B̃]]

(IFT) test@K = true

l[[if test then P else Q � K || Ã]]
true@l−−−→ l[[P � K || Ã]]

(IFF) test@K = false

l[[if test then P else Q � K || Ã]]
false@l−−−→ l[[Q � K || Ã]]

(CREATE) l[[create(〈f | v; ∅〉) then P � K || Ã]]
createf @l−−−−→ l[[P � K 〈f | v; ∅〉 || Ã]]

(UPDATE)
∃p/ f = / f ′ . . . / f K = 〈 f ′ | v′; . . . 〈 f | v′′; K1〉 K2〉 K3

K′ = 〈 f ′ | v′; . . . 〈 f | v; K1〉 K2〉 K3

l[[update(p/f , v) then P � K || Ã]]
updp@l−−−→ l[[P � K′ || Ã]]

(EXTEND)
∃p = / f ′ . . . / f ′′ � ∃p/ f K = 〈 f ′ | v′; . . . 〈 f ′′ | v′′; K1〉 K2〉 K3

K′ = 〈 f ′ | v′; . . . 〈 f ′′ | v′′; 〈 f | v; ∅〉K1〉 K2〉 K3

l[[update(p/f , v) then P � K || Ã]]
updp@l−−−→ l[[P � K′ || Ã]]

(CALL) l[[id(v)� K || Ã]]
call@l−−−→ l[[{v/u}Pid � K || Ã]], where id(u)

def
= Pid

(PAR)
N1

Λ1−→ N′
1 N2

Λ2−→ N′
2

N1 | N2
Λ1|Λ2−−−→ N′

1 | N′
2

(EQUIV)
N ≡ N′ N′ Λ−→ N′′ N′′ ≡ N′′′

N Λ−→ N′′′

In rule (STOP), l[[0]] denotes a network without agents, and thus �−→ marks the fact
that no action is available for execution. Rule (COM) is used if at location l two agents
A1 = aΔt1 !〈v〉 then P1 else Q1 � K1 and A2 = aΔt2 ?(u) then P2 else Q2 � K2 can communi-
cate successfully over channel a. After communication, both agents remain at the current
location l with their knowledge unchanged; agent A1 executes P1, while agent A2 exe-

74

Mathematics 2021, 9, 2869

cutes {v/u}P2. The successful communication over channel a at location l is marked by
label a!?@l.

Rules (PUT0) and (GET0) are used for an agent A = aΔ0 ∗ then P else Q � K (where
∗ ∈ {!〈v〉, ?(u)}) to remove action a when its timer expires. Afterwards, agent A is ready
to execute Q. Knowledge K remains unchanged. Since rule (COM) can be applied even if t1
and t2 are zero, it follows that when a timer is 0, only one of the rules (COM), (PUT0) and
(GET0) is chosen for application in a nondeterministic manner.

Rule (MOVE0) is used when at location l an agent A = go0 l′ then P � K migrates to lo-
cation l′ to execute process P. Rules (IFT) and (IFF) are used when an agent
A = if test then P else Q � K should decide what process to execute (P or Q) based on
the Boolean value returned by test@K; this value is determined by performing the test on
the knowledge K of agent A. Notice that in order to perform a test, the agent A can only
read its knowledge K.

Rule (CREATE) is used when an agent A = create(〈f | v; ∅〉) then P � K extends its
knowledge K with 〈 f | v; ∅〉; afterwards, the agent A executes process P.

Rule (UPDATE) is used when an agent A = update(p/f , v) then P � K updates to v
the value of K(p/ f) of the existing field f , while rule (EXTEND) is used when the agent
A = update(p/f , v) then P � K expands (at the end of) an existing path p with a field f such
that K(p/ f) = v; afterwards the agent A executes process P.

Rule (CALL) is used when an agent A = id(v)� K is ready to unfold the process id(v)
into {v/u}Pid. Rule (PAR) is used to put together the behaviour of smaller subnetworks.
while rule (EQUIV) is used to apply the structures congruence over networks.

In Table 3 are presented the rules for describing time passing, while the knowledge of

the involved agents remains unchanged. The relation N t N′ indicates the transformation
of a network N into a network N′ after t units of time.

Table 3. Operational Semantics of knowTIMO : Time Passing.

(DSTOP) l[[0]] t
l[[0]]

(DPUT)
t ≥ t′ ≥ 0

l[[aΔt!〈v〉 then P else Q � K]] t′ l[[aΔt−t′ !〈v〉 then P else Q � K]]

(DGET)
t ≥ t′ ≥ 0

l[[aΔt?(u) then P else Q � K]] t′ l[[aΔt−t′?(u) then P else Q � K]]

(DMOVE)
t ≥ t′ ≥ 0

l[[got l′ then P � K]] t′ l[[got−t′ l′ then P � K]]

(DPAR)
N1

t N′
1 N2

t N′
2 N1 | N2 �−→

N1 | N2
t N′

1 | N′
2

(DEQUIV)
N ≡ N′ N′ t N′′ N′′ ≡ N′′′

N t N′′′

In rule (STOP), l[[0]] denotes a network without agents; the passing of time does not
affect such a network. Rules (DPUT), (DGET) and (DMOVE) are used to decrease the timers
of actions, while rules (DPAR) is used to put together the behaviour of composed networks.
In rule (DPAR), N1 | N2 �−→ denotes a network N1 | N2 that cannot execute any action; this
is possible because the use of negative premises in our operational semantics does not lead
to inconsistencies.

75

Mathematics 2021, 9, 2869

Given a finite multiset of actions Λ = {λ1, . . . , λk} and a timeout t, a derivation

N Λ,t
==⇒ N′ captures a complete computational step of the form:

N
λ1−→ N1 . . . Nk−1

λk−→ Nk
t N′.

The fact that a knowTIMO network N is able to perform zero or more actions steps
and a time step in order to reach a network N′ is denoted by N ==⇒∗ N′. Notice that the

consumed actions and elapsed time are not recorded. By N λ
==⇒∗N′ we denote the fact that

there exist networks N1 and N2 such that N ==⇒∗ N1
λ−−→ N2 ==⇒∗ N′; in this way we

emphasize only the consumed action λ out of all consumed actions.
In our setting, at most one time passing rule can be applied for any arbitrary given

process. This is the reason why, by inverting a rule, we can describe how the time passes
in the subprocesses of a process. This result is useful when reasoning by induction on the
structure of processes for which time passes.

Proposition 1. Assume N t′ N′. Then exactly one of the following holds:
• N = l[[0]] and N′ = l[[0]];

• N = l[[aΔt!〈v〉 then P else Q � K]] and N′ = l[[aΔt−t′ !〈v〉 then P else Q � K]], where
t ≥ t′ ≥ 0;

• N = l[[aΔt?(u) then P else Q � K]] and N′ = l[[aΔt−t′?(u) then P else Q � K]], where
t ≥ t′ ≥ 0;

• N = l[[got l′ then P � K]] and N′ = l[[got−t′ l′ then P � K]], where t ≥ t′ ≥ 0;
• N = N1 | N2 such that N1 | N2 �−→, and there exist N′

1 and N′
2 such that N′ = N′

1 | N′
2,

N1
t′ N′

1 and N2
t′ N′

2.

Proof. Straightforward, by observing that the time passing rules in Table 3 can be deter-
ministically inverted; namely, each network of Table 1 performing a time step can use at
most one rule of Table 3.

The following theorem claims that time passing does not introduce nondeterminism
in the evolution of a network.

Theorem 1. The next two statements hold for any three networks N, N′ and N′′:

1. if N 0 N′, then N = N′;

2. if N t N′ and N t N′′, then N′ = N′′.

Proof. 1. We proceed by induction on the structure of N.

• Case N = l[[0]]. Since N 0 N′, by using Proposition 1, it holds that N′ = l[[0]],
meaning that N = N′ (as desired).

• Case N = l[[aΔt!〈v〉 then P else Q � K]]. Since N 0 N′, by using Proposition 1, it
holds that N′ = l[[aΔt−0!〈v〉 then P else Q � K]] = l[[aΔt!〈v〉 then P else Q � K]],
meaning that N = N′ (as desired).

• Case N = l[[aΔt?(u) then P else Q � K]]. Since N 0 N′, by using Proposition 1, it
holds that N′ = l[[aΔt−0?(u) then P else Q � K]] = l[[aΔt?(u) then P else Q � K]],
meaning that N = N′ (as desired).

• Case N = l[[got l′ then P � K]]. Since N 0 N′, by using Proposition 1, it holds
that N′ = l[[got−0 l′ then P � K]] = l[[got l′ then P � K]], meaning that N = N′
(as desired).

• Case N = N1 | N2. Since N 0 N′, by using Proposition 1, it holds that there

exist N′
1 and N′

2 such that N′ = N′
1 | N′

2, together with N1
0 N′

1 and N2
0 N′

2.

By induction the reductions N1
0 N′

1 and N2
0 N′

2 imply that N′
1 = N1 and

76

Mathematics 2021, 9, 2869

N2 = N′
2, respectively. Thus N′

1 = N′
1 | N′

2 = N1 | N2, meaning that N = N′
(as desired).

2. We proceed by induction on the structure of N.

• Case N = l[[0]]. Since N t N′ and N t N′′, by using Proposition 1, it holds that
N′ = l[[0]] and N′′ = l[[0]], respectively, meaning that N′ = N′′ (as desired).

• Case N = l[[aΔt′ !〈v〉 then P else Q � K]]. Since N t N′ and

N t N′′, by using Proposition 1, it holds that N′ = l[[aΔt′−t!〈v〉 then P else Q�K]]
and N′′ = l[[aΔt′−t!〈v〉 then P else Q � K]], respectively, meaning that N′ = N′′
(as desired).

• Case N = l[[aΔt′?(u) then P else Q � K]]. Since N t N′ and N t N′′, by using
Proposition 1, it holds that N′ = l[[aΔt′−t?(u) then P else Q � K]]
and N′′ = l[[aΔt′−t?(u) then P else Q � K]], respectively, meaning that N′ = N′′
(as desired).

• Case N = l[[got′ l′ then P�K]]. Since N t N′ and N t N′′, by using Proposition 1,
it holds that N′ = l[[got′−t l′ then P � K]] and N′′ = l[[got′−t l′ then P � K]],
respectively, meaning that N′ = N′′ (as desired).

• Case N = N1 | N2. Since N t N′, by using Proposition 1, it holds that there

exist N′
1 and N′

2 such that N′ = N′
1 | N′

2, together with N1
t N′

1 and N2
t N′

2.

Similarly, since N t N′′, by using Proposition 1, it holds that there exist N′′
1

and N′′
2 such that N′′ = N′′

1 | N′′
2 , together with N1

t N′′
1 and N2

t N′′
2 . By

induction, N1
t N′

1 and N1
t N′′

1 imply that N′
1 = N′′

1 , while N2
t N′

2 and

N2
t N′′

2 imply that N′
2 = N′′

2 . Thus, N′
1 = N′

1 | N′
2 = N′′

1 | N′′
2 , meaning that

N = N′ (as desired).

The following theorem claims that whenever only the rules of Table 3 can be applied
for two time steps of lengths t and t′′, then the rules can be applied also for a time step of
length t + t′.

Theorem 2. If N t N′′ t′ N′, then N
t+t′

N′ .

Proof. We proceed by induction on the structure of N.

• Case N = l[[0]]. Since N t N′′ by using Proposition 1, it holds that N′′ = l[[0]].

Similarly, since N′′ t′ N′ by using Proposition 1, it holds that N′ = l[[0]]. Rule

(DSTOP) can be used for network N, namely N
t+t′

l[[0]] = N′ (as desired).

• Case N = l[[aΔt′′ !〈v〉 then P else Q � K]]. Since N t N′′ by using Proposition 1, it holds

that N′′ = l[[aΔt′′−t!〈v〉 then P else Q�K]], where t′′ ≥ t ≥ 0. Similarly, since N′′ t′ N′

by using Proposition 1, it holds that N′ = l[[aΔ(t′′−t)−t′ !〈v〉 then P else Q � K]], where
t′′ − t ≥ t′ ≥ 0. Due to the fact that 0 ≤ t+t′ ≤ t′′, rule (DGET) can be used for

network N, namely N
t+t′

l[[aΔt′′−(t+t′)!〈v〉 then P else Q � K]] = N′ (as desired).

• Case N = l[[aΔt′′?(u) then P else Q�K]]. Since N t N′′ by using Proposition 1, it holds

that N′′ = l[[aΔt′′−t?(u) then P else Q � K]], with t′′ ≥ t ≥ 0. Similarly, since N′′ t′ N′

by using Proposition 1, it holds that N′ = l[[aΔ(t′′−t)−t′?(u) then P else Q � K]], where
t′′ − t ≥ t′ ≥ 0. Due to the fact that 0 ≤ t+t′ ≤ t′′, rule (DPUT) can be used for

network N, namely N
t+t′

l[[aΔt′′−(t+t′)?(u) then P else Q � K]] = N′ (as desired).

77

Mathematics 2021, 9, 2869

• Case N = l[[got′′ l′ then P � K]]. Since N t N′′ by using Proposition 1, it holds that

N′′ = l[[got′′−t l′ then P � K]], where t′′ ≥ t ≥ 0. Similarly, since N′′ t′ N′ by using
Proposition 1, it holds that N′ = l[[go(t

′′−t)−t′ l′ then P � K]], where t′′ − t ≥ t′ ≥ 0.
Due to the fact that 0 ≤ t+t′ ≤ t′′, rule (DMOVE) can be used for network N, namely

N
t+t′

l[[got′′−(t+t′) l′ then P � K]] = N′ (as desired).

• Case N = N1 | N2. Since N t N′′, by using Proposition 1, it holds that N1 | N2 �−→
and there exist N′′

1 and N′′
2 such that N′′ = N′′

1 | N′′
2 , together with N1

t N′′
1 and

N2
t N′′

2 . Similarly, since N′′ t′ N′, by using Proposition 1, it holds that there exist N′
1

and N′
2 such that N′ = N′

1 | N′
2, together with N′′

1
t′ N′

1 and N′′
2

t′ N′
2. By induction,

N1
t N′′

1 and N′′
1

t′ N′
1 imply that N1

t+t′
N′

1, while N2
t N′′

2 and N′′
2

t′ N′
2 imply

that N′
2

t+t′
N′

2. Since N1
t+t′

N′
1, N2

t+t′
N′

2 and N1 | N2 �−→, rule (DPAR) can be

used for network N, namely N
t+t′

N′
1 | N′

2 = N′ (as desired).

Regarding the knowledge of an agent, we have the following result showing that any
given agent can be obtained starting from an agent without any knowledge.

Proposition 2. If N′′= l[[P′′ �K′′]] with K′′ �= ∅, then
there exists N′= l[[P′ �K′]] with K′ = ∅ such that N′ ==⇒∗ N′′.

Proof. We proceed by induction on the structure of K′′.
• Consider K′′ = 〈 f | v; ∅〉. According to rule (CREATE), this knowledge can be obtain

from a process P′ = create(〈f | v; ∅〉) then P′′. This implies that for N′ = l[[P′ �K′]]

with K′ = ∅, it holds that N′ createf @l−−−−−→ N′′ (as desired).
• Consider K′′ = 〈 f | v; ∅〉 K, with K �= ∅. By induction, there exists a process P able to

create the knowledge K. This implies that for N= l[[P �K]] with K �= ∅, it holds that
N ==⇒∗ N′′. According to rule (CREATE), knowledge K′′ can be obtain starting from
knowledge K by using a process P′ = create(〈f | v; ∅〉) then P. This implies that for

N′= l[[P′ �K′]] with K′ = ∅, it holds that N′ createf @l−−−−−→ N ==⇒∗ N′′ (as desired).
• Consider K′′ = 〈 f ′ | v′; . . . 〈 f ′′ | v′′; 〈 f | v; ∅〉K1〉 K2〉 K3. By induction, there exists

a process P able to create the knowledge K = 〈 f ′ | v′; . . . 〈 f ′′ | v′′; K1〉 K2〉 K3. This
implies that for N = l[[P �K]] with K �= ∅, it holds that N ==⇒∗ N′′. According to
rule (EXTEND), knowledge K′′ can be obtain starting from knowledge K by using
a process P′ = update(p/f , v) then P, where p = / f ′ . . . / f ′′. This implies that for

N′= l[[P′ �K′]] with K′ = ∅, it holds that N′ updp@l−−−−→ N ==⇒∗ N′′ (as desired).

The next result is a consequence of the previous one; it claims that any given network in
knowTIMO can be obtained starting from a network containing only agents without knowledge.

Theorem 3. If N′′= l1[[P′′
11 �K′′

11 || . . . || P′′
1n �K′′

1n]] | . . . | lm[[P′′
m1 �K′′

m1 || . . . || P′′
mn �K′′

mn]],
then there exists N′= l1[[P′

11 �K′
11 || . . . || P′

1n �K′
1n]] | . . . | lm[[P′

m1 �K′
m1 || . . . || P′

mn �K′
mn]]

with K′
ij = ∅ (1 ≤ i ≤ m, 1 ≤ j ≤ n) such that N′ ==⇒∗ N′′.

The following example illustrates how agents communicate and make use of their knowledge.

Example 1. To illustrate how multi-agent systems can be described in knowTIMO, we adapt the
travel agency example from [3], where all the involved agents have a cyclic behaviour. Consider a
travel agency with seven offices (one central and six locals) and five employees (two executives and
three travel agents). As the agency is understaffed and all local offices need to be used from time
to time, the executives meet with the agents daily at the central office in order to assign them local

78

Mathematics 2021, 9, 2869

offices where they sell travel packages by interacting with potential customers. We consider two
customers that are willing to visit the local offices closer to their homes. In what follows we show
how each of the involved agents can be described by using the knowTIMO syntax.

Each day, agent A1 executes the action go10 office in order to move after 10 time units from
location homeA1 to the central office. After reaching the central office, in order to find out at
which local office will work for the rest of the day, it executes the action bΔ5?(newloc) to try to
communicate with any of the executives in the next 5 time units. The location variable newloc is
needed to model a dynamic evolution based on the local office assigned by an available executive.
After successfully communicating with an executive, the agent A1 moves to location officei after 5
time units in order to communicate with potential customers using channel ai in order to sell a
travel package towards location destA1 at the cost of 100 monetary units. After each working
day, the agent returns home by executing the action go3 homeA1. The agents A2 and A3 behave
similarly to A1, except that they begin and end their days at different locations, work locally at
different offices and the travel packages they advertise are different.

Formally, the travel agents are described by the recursive processes AX(homeAX)� KAX:

AX(homeAX) = go10 office then AX(office)

AX(office) = bΔ5?(newloc)
then (go5 newloc then AX(newloc))
else AX(office)

AX(officei) = update(/work, officei)
then aΔ9

i !〈KAX(/work/dest), KAX(/work/price)〉
then go3 homeAX then AX(homeAX)
else go3 homeAX then AX(homeAX)

KAX = 〈work | office; 〈dest | destAX〉 〈price | 100 · X〉〉.
The identifiers AX (1 ≤ X ≤ 3) are uniquely assigned to the three travel agents, and officei

(1 ≤ i ≤ 6) indicate the six local offices.
Given the knowledge KAX defined above, we exemplify how it can be used for some queries:

• KAX(/work/price) is used to retrieve the price value 100 · X by following the path
/work/price in KAX;

• KAX(/work[KAX(/work/price) < 200]) returns the local office in which the agent is trying
to sell its travel package whenever the price of the package available by following the path
/work/price is below 200 monetary units.

Executives E1 and E2 are placed in the central office, being available for communication on
channel b for 5 time minutes. In this way, they can assign to the travel agents (in a cyclic manner) the
locations office1, office3, office5, and the locations office2, office4, office6, respectively. Formally,
the executives are described by EX(officeY)� KEX:

EX(officeY) = update(/work, officeY)
then bΔ5!〈KEX(/work)〉 then EX(officeY+2)

else EX(officeY)
KEX = ∅.

The identifiers EX (with 1 ≤ X ≤ 2) are uniquely assigned to the two executives, while
officeY (with Y ∈ {X, X + 2, X + 4}) indicate the local offices that each executive EX can assign
to travel agents. Defining the index of the local offices in this way ensures that the executives assign
the existing local offices in a cyclic way.

The client C1 initially resides at location homeC1; being interested in a travel package,
client C1 is willing to visit the local offices closer to his location, namely office1, office2, and
office3. For each of these three local offices, the visit has two possible outcomes: if client C1 interacts
with an agent then it will acquire a travel offer, while if the highoffice is closed then client C1 moves
to the next local office from its itinerary. Once its journey through the three local offices ends,
client C1 returns home whenever was unable to collect any travel offer, while goes at the destination
for which he has to pay the lowest amount whenever got at least one offer. After the holiday period
ends, client C1 returns home, where can restart the process of searching for a holiday destination.
Client C2 behaves in a similar manner as client C1 does, except looking for the most expensive

79

Mathematics 2021, 9, 2869

travel package while visiting the local offices office4, office5 and office6. Formally, the clients are
described by CX(homeCX)� KCX:

CX(homeCX) = go13 officeZ+1 then CX(officeZ+1)

CX(officeZ+1) = aΔ4
Z+1?(destCX,1, costCX,1)
then update(/agency[testZ+1]/dest, destCX,1)

then update(/agency[testZ+1]/price, costCX,1)
then go2 officeZ+2 then CX(officeZ+2)

else update(/agency[testZ+1]/dest, ε)
then update(/agency[testZ+1]/price, ε)

then go2 officeZ+2 then CX(officeZ+2) ,
where testZ+1 = (KCX(/agency) = officeZ+1)

CX(officeZ+2) = aΔ4
Z+2?(destCX,2, costCX,2)
then update(/agency[testZ+2]/dest, destCX,2)

then update(/agency[testZ+2]/price, costCX,2)
then go3 officeZ+3 then CX(officeZ+3)

else update(/agency[testZ+2]/dest, ε)
then update(/agency[testZ+2]/price, ε)

then go2 officeZ+3 then CX(officeZ+3) ,
where testZ+2 = (KCX(/agency) = officeZ+2)

CX(officeZ+3) = aΔ4
Z+3?(destCX,3, costCX,3)
then update(/agency[testZ+3]/dest, destCX,3)

then update(/agency[testZ+3]/price, costCX,3)
then CX(nextCX)

else update(/agency[testZ+3]/dest, ε)
then update(/agency[testZ+3]/price, ε)

then CX(nextCX) ,
where testZ+3 = (KCX(/agency) = officeZ+3)

CX(nextCX) = i f testX then (go5 nextCX then CX(nextCX))
else (go5 homeCX then CX(homeCX))

CX(destCX,i) = go5 destCX then CX(homeCX)

KCX = 〈agency | officeZ+1; 〈dest | ε 〉〈price | ε 〉〉
〈agency | officeZ+2; 〈dest | ε 〉〈price | ε 〉〉
〈agency | officeZ+3; 〈dest | ε 〉〈price | ε 〉〉 .

The identifiers CX (with 1 ≤ X ≤ 2) are uniquely assigned to the two clients, the identifiers
destCX,i uniquely identify the possible destinations the clients CX can visit, while Z = 3 ∗ (X − 1)
(with X ∈ {1, 2}) are used to identify the local offices for each of the clients.
The tests used above are:

testX = ¬(KCX(/agency/price) = ε),

nextCX =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

KCX(/agency[testmin]/destCX,i)

if X = 1 and KCX(/agency/price) = minj∈{1,2,3}costCX,j ∈ N;
KCX(/agency[testmax]/destCX,i)

if X = 2 and KCX(/agency/price) = maxj∈{1,2,3}costCX,j ∈ N;
homeCX otherwise.

The initial state of the system given as the knowTIMO network N is:

homeA1[[A1(homeA1)� KA1]] | homeA2[[A2(homeA2)� KA2]]
| homeA3[[A3(homeA3)� KA3]] | office[[E1(office1)� KE1 || E2(office2)� KE2]]
| homeC1[[C1(homeC1)� KC1] | homeC2[[C2(homeC2)� KC2] | N′,

where N′ stands for:

office1[[0]] | office2[[0]] | office3[[0]] | office4[[0]] | office5[[0]] | office6[[0]]
| dest1[[0]] | dest2[[0]] | dest3[[0]].

80

Mathematics 2021, 9, 2869

In what follows we show how some of the rules of Tables 2 and 3 are applied such that network N
evolves. Since the network N is defined by means of recursive processes, in order to execute their
actions we need to use the rules (CALL) and (PAR) for unfolding, namely

{call,call,call,call,call,call,call}−−−−−−−−−−−−−−−→ (CALL), (PAR)
homeA1[[(go

10 office then A1(office)� KA1]]
homeA2[[(go

10 office then A2(office)� KA2]]
homeA3[[(go

10 office then A3(office)� KA3]]
| office[[update(/work, office1)

then bΔ5!〈KE1(/work)〉 then E1(office3)
else E1(office1)�KE1

|| update(/work, office2)
then bΔ5!〈KE2(/work)〉 then E2(office4)

else E2(office2)�KE2]]
| homeC1[[go

13 office1 then C1(office1)]]
| homeC2[[go

13 office4 then C2(office4)]]
| N′.
The next step is represented by the two updates performed by the executives; thus, the rules

(EXTEND) and (PAR) are applied several times. Since the existing knowledge of the two executives
is currently ∅, this means that these updates extend in fact their knowledge.

{upd,upd}−−−−−→ (EXTEND), (PAR)
homeA1[[(go

10 office then A1(office)� KA1]]
homeA2[[(go

10 office then A2(office)� KA2]]
homeA3[[(go

10 office then A3(office)� KA3]]
| office[[bΔ5!〈KE1(/work)〉 then E1(office3)

else E1(office1)�〈work | office1; ∅〉
|| bΔ5!〈KE2(/work)〉 then E2(office4)

else E2(office2)�〈work | office2; ∅〉]]
| homeC1[[go

13 office1 then C1(office1)]]
| homeC2[[go

13 office4 then C2(office4)]]
| N′.
Since the rules of Table 2 are not applicable to the above network, then only time passing can

be applied by using the rules of Table 3. The rules (DMOVE), (DGET) and (DPAR) can be applied
for t = 5, namely the maximum time units that can be performed.

5 (DMOVE), (DGET), (DPAR)
homeA1[[(go

5 office then A1(office)� KA1]]
homeA2[[(go

5 office then A2(office)� KA2]]
homeA3[[(go

5 office then A3(office)� KA3]]
| office[[bΔ0!〈KE1(/work)〉 then E1(office3)

else E1(office1)�〈work | office1; ∅〉
|| bΔ0!〈KE2(/work)〉 then E2(office4)

else E2(office2)�〈work | office2; ∅〉]]
| homeC1[[go

8 office1 then C1(office1)]]
| homeC2[[go

8 office4 then C2(office4)]]
| N′.

81

Mathematics 2021, 9, 2869

Since after 5 time units of the evolution there are no agents to communicate with the executives
on channel b, then the rules (PUT0) and (PAR) are applied such that the else branches of the two
executives are chosen to be executed next.

{b!Δ0@office, b!Δ0@office}−−−−−−−−−−−−−→ (PUT0), (PAR)
homeA1[[(go

5 office then A1(office)� KA1]]
homeA2[[(go

5 office then A2(office)� KA2]]
homeA3[[(go

5 office then A3(office)� KA3]]
| office[[E1(office1) �〈work | office1; ∅〉

|| E2(office2) �〈work | office2; ∅〉]]
| homeC1[[go

8 office1 then C1(office1)]]
| homeC2[[go

8 office4 then C2(office4)]]
| N′.
Note that the evolution was deterministic during the first 5 time units. However, since there

are two executives and three travel agents into the system, the communication on channel b will
take place in a nondeterministic manner, and thus there exists several possible future evolutions of
the system.

3. Behavioural Equivalences in knowTIMO

In what follows, we define and study bisimulations for multi-agent systems that
consider knowledge dynamics as well as explicit time constraints for communication and
migration. Since a bisimilarity is the union of all bisimulations of the same type, in order
to demonstrate that two knowTIMO networks N1 and N2 are bisimilar it is enough to
discover a bisimulation relation containing the pair (N1, N2). This standard bisimulation
proof method is interesting for the following reasons:
• check-ups are local (only immediate transitions are used);
• No hierarchy exists between the pairs of a bisimulation, and thus we can effectively

use bisimilarity to reason about infinite behaviours; this makes it different from
inductive techniques, where we can reason about finite behaviour due to the required
hierarchy.

3.1. Strong Timed Equivalences

Inspired by the approach taken in [4], we extend the standard notion of strong bisimi-
larity by allowing also timed transitions to be taken into account.

Definition 1 (Strong timed bisimulation).
Let R ⊆ N ×N be a symmetric binary relation over knowTIMO networks.

1. R is a strong timed bisimulation if

• (N1, N2) ∈ R and N1
λ−→ N′

1 implies that there exists N′
2 ∈ N such that N2

λ−→ N′
2

and (N′
1, N′

2) ∈ R ;

• (N1, N2) ∈ R and N1
t N′

1 implies that there exists N′
2 ∈ N such that N2

t N′
2 and

(N′
1, N′

2) ∈ R .

2. The strong timed bisimilarity is the union ∼ of all strong timed bisimulations R.

Definition 1 treats in a similar manner the timed transitions and the labelled transitions,
and so the bisimilarity notion is similar to the bisimilarity notion originally given for
labelled transition systems. We can prove that the relation ∼ is the largest strong timed
bisimulation, and also an equivalence relation.

82

Mathematics 2021, 9, 2869

Proposition 3.

1. Identity, inverse, composition and union of strong timed bisimulations are strong timed
bisimulations.

2. ∼ is the largest strong timed bisimulation.
3. ∼ is an equivalence.

Proof.

1. We treat each relations separately showing that it respects the conditions from
Definition 1 for being a strong timed bisimulation.

(a) The identity relation IdR is a strong timed bisimulation.

i. Assume (N, N) ∈ IdR. Consider N λ−→ N′; then (N′, N′) ∈ IdR .
ii. Assume (N, N) ∈ IdR. Consider N t N′; then (N′, N′) ∈ IdR .

(b) The inverse of a strong timed bisimulation is a strong timed bisimulation.

i. Assume (N1, N2)∈R−1, namely (N2, N1)∈R. Consider N2
λ−→N′

2; then

for some N′
1 we have N1

λ−→N′
1 and (N′

2, N′
1)∈R, namely (N′

1, N′
2)∈R−1.

By similar reasoning, if N1
λ−→ N′

1 then we can find N′
2 such that N2

λ−→ N′
2

and (N′
1, N′

2) ∈ R−1 .
ii. Assume (N1, N2)∈R−1, namely (N2, N1)∈R. Consider N2

t N′
2; then

for some N′
1 we have N1

t N′
1 and (N′

2, N′
1)∈R , namely (N′

1, N′
2)∈R−1.

By similar reasoning, if N1
t N′

1 then we can find N′
2 such that N2

t N′
2

and (N′
1, N′

2) ∈ R−1 .
(c) The composition of strong timed bisimulations is a strong timed bisimulation.

i. Assume (N1, N2) ∈ R1R2. Then for some N we have (N1, N) ∈ R1 and

(N, N2) ∈ R2. Consider N1
λ−→N′

1; then for some N′, since (N1, N)∈R1,

we have N λ−→ N′ and (N′
1, N′) ∈ R1. Also, since (N, N2) ∈ R2 we have

for some N′
2 that N2

λ−→ N′
2 and (N′, N′

2) ∈ R2. Thus, (N′
1, N′

2) ∈ R1R2.

By similar reasoning, if N2
λ−→ N′

2 then we can find N′
1 such that N1

λ−→ N′
1

and (N′, N′
2) ∈ R2 .

ii. Assume (N1, N2) ∈ R1R2. Then for some N we have (N1, N) ∈ R1

and (N, N2) ∈ R2. Consider N1
t N′

1; then for some N′, since

(N1, N) ∈ R1, we have N t N′ and (N′
1, N′) ∈ R1. Also, since

(N, N2) ∈ R2 we have for some N′
2 that N2

t N′
2 and (N′, N′

2) ∈ R2.

Thus, (N′
1, N′

2) ∈ R1R2. By similar reasoning, if N2
t N′

2 then we can

find N′
1 such that N1

t N′
1 and (N′, N′

2) ∈ R2 .
(d) The union of strong timed bisimulations is a strong timed bisimulation.

i. Assume (N1, N2) ∈ ⋃
i∈ I Ri. Then for some i ∈ I we have (N1, N2) ∈ Ri.

Consider N1
λ−→ N′

1; then for some N′
2, since (N1, N2) ∈ Ri, we have

N2
λ−→ N′

2 and (N′
1, N′

2) ∈ Ri. Thus, (N′
1, N′

2) ∈ ⋃
i∈I Ri. By similar

reasoning, if N2
λ−→ N′

2 then we can find N′
1 such that N1

λ−→ N′
1 and

(N′
1, N′

2) ∈ Ri, namely (N′
1, N′

2) ∈
⋃

i∈I Ri.
ii. Assume (N1, N2) ∈ ⋃

i∈I Ri. Then for some i ∈ I we have (N1, N2) ∈ Ri.

Consider N1
t N′

1; then for some N′
2, since (N1, N2) ∈ Ri, we have

N2
t N′

2 and (N′
1, N′

2) ∈ Ri. Thus, (N′
1, N′

2) ∈ ⋃
i∈I Ri. By similar

reasoning, if N2
t N′

2 then we can find N′
1 such that N1

t N′
1 and

(N′
1, N′

2) ∈ Ri, namely (N′
1, N′

2) ∈
⋃

i∈I Ri.

83

Mathematics 2021, 9, 2869

2. By the previous case (the union part), ∼ is a strong timed bisimulation and includes
any other strong timed bisimulation.

3. Proving that relation ∼ is an equivalence requires proving that it satisfies reflexivity,
symmetry and transitivity. We consider each of them in the following:

(a) Reflexivity: For any network N, N ∼ N results from the fact that the identity
relation is a strong timed bisimulation.

(b) Symmetry: If N ∼ N′, then (N, N′) ∈ R for some strong timed bisimulation R.
Hence (N′, N) ∈ R−1, and so N′ ∼ N because the inverse relation is a strong
timed bisimulation.

(c) Transitivity: If N ∼ N′ and N′ ∼ N′′ then (N, N′) ∈ R1 and (N′, N′′) ∈ R2
for some strong timed bisimulations R1 and R2. Thus, (N, N′′) ∈ R1R2, and
so N ∼ N′′ due to the fact that the composition relation is a strong timed
bisimulation.

The next result claims that the strong timed equivalence ∼ among processes is
preserved even if the local knowledge of the agents is expanded. This is consistent
with the fact that the processes affect the same portion of their knowledge. To sim-
plify the presentation, in what follows we assume the notations |ni=1 Ni = N1 | . . . | Nn
and ||ni=1 Ai = A1 || . . . || An.

Proposition 4. If K′
ij ⊆ K′′

ij for 1 ≤ i ≤ n, 1 ≤ j ≤ m, then
|ni=1 li[[||mj=1 Pij � K′

ij]] ∼ |ni=1 li[[||mj=1 Pij � K′′
ij]].

Proof. We show that S is a strong timed bisimulation, where:
S={(|ni=1 li[[||mj=1 Pij �K′

ij]] , |ni=1 li[[||mj=1 Pij �K′′
ij]]) : K′

ij ⊆K′′
ij, 1≤ i≤n, 1≤ j≤m}.

The proof is by induction on the last performed step:

• Let us assume that |ni=1 li[[||mj=1 Pij � K′
ij]]

λ−−→ N′. Depending on the value of λ, there
are several cases:

– Consider λ = a!?@l1. Then there exists P11 = aΔt1 !〈v〉 then P′
11 else P′′

11 and
P12 = aΔt2 ?(u) then P′

12 else P′′
12 such that l1[[P11 � K′

11 || P12 � K′
12 ||mj=3 P1j � K′

1j]]

|ni=2 li[[||mj=1 Pij � K′
ij]]

a!?@l1−−−→ l1[[P′
11 � K′

11 || P′
12 � K′

12 ||mj=3 P1j � K′
1j]]

|ni=2 li[[||mj=1 Pij � K′
ij]] = N′. Then there exists N′′ = [[P′

11 � K′′
11 || P′

12 � K′′
12

||mj=3 P1j � K′′
1j]] |ni=2 li[[||mj=1 Pij � K′′

ij]] such that |ni=1 li[[||mj=1 Pij � K′′
ij]]

a!?@l1−−−→ N′′.
Since K′

ij ⊆ K′′
ij, 1 ≤ i ≤ n, 1 ≤ j ≤ m, clearly (N′, N′′) ∈ S .

– Consider λ = a!Δ0@l1. Then there exists P11 = aΔ0!〈v〉 then P′
11 else P′′

11 such

that l1[[P11 � K′
11 ||mj=2 P1j � K′

1j]] |ni=2 li[[||mj=1 Pij � K′
ij]]

a!Δ0@l1−−−−→ l1[[P′
11 � K′

11
||mj=2 P1j � K′

1j]] |ni=2 li[[||mj=1 Pij � K′
ij]] = N′. Then there exists N′′ = l1[[P′

11 � K′′
11

||mj=2 P1j �K′′
1j]] |ni=2 li[[||mj=1 Pij �K′′

ij]] such that |ni=1 li[[||mj=1 Pij �K′′
ij]])

a!Δ0@l1−−−−→N′′.
Since K′

ij ⊆ K′′
ij, 1 ≤ i ≤ n, 1 ≤ j ≤ m, clearly (N′, N′′) ∈ S .

– Consider λ = a?Δ0@l1. Then there exists P11 = aΔ0?(u) then P′
11 else P′′

11 such

that l1[[P11� K′
11 ||mj=2 P1j � K′

1j]] |ni=2 li[[||mj=1 Pij � K′
ij]]

a?Δ0@l1−−−−→ l1[[P′
11 � K′

11
||mj=2 P1j � K′

1j]] |ni=2 li[[||mj=1 Pij � K′
ij]] = N′. Then there exists N′′ = l1[[P′

11 � K′′
11

||mj=2 P1j �K′′
1j]] |ni=2 li[[||mj=1 Pij �K′′

ij]] such that |ni=1 li[[||mj=1 Pij �K′′
ij]])

a?Δ0@l1−−−−→N′′.
Since K′

ij ⊆ K′′
ij, 1 ≤ i ≤ n, 1 ≤ j ≤ m, clearly (N′, N′′) ∈ S .

– Consider λ = l1 � l2. Then there exists P11 = go0 l2 then P′
11 such that l1[[P11� K′

11

||mj=2 P1j� K′
1j]] |ni=2 li[[||mj=1 Pij � K′

ij]]
l1�l2−−→ l1[[||mj=2 P1j � K′

1j]] | l2[[P′
11 � K′

11
||mj=1 P2j� K′

2j]] |ni=3 li[[||mj=1 Pij �K′
ij]] = N′. Then there exists N′′ = l1[[||mj=2 P1j �

K′′
1j]] | l2[[P′

11 � K′′
11 ||mj=1 P2j� K′′

2j]] |ni=3 li[[||mj=1 Pij � K′′
ij]] such that

84

Mathematics 2021, 9, 2869

|ni=1 li[[||mj=1 Pij� K′′
ij]])

l1�l2−−→ N′′. Since K′
ij ⊆ K′′

ij, 1 ≤ i ≤ n, 1 ≤ j ≤ m, clearly
(N′, N′′) ∈ S .

– Consider λ = true@l1. Then there exists P11 = if test then P′
11 else P′′

11, where
test@K′

11 = true, such that l1[[P11� K′
11 ||mj=2 P1j � K′

1j]] |ni=2 li[[||mj=1 Pij � K′
ij]]

true@l1−−−−→ l1[[P′
11 � K′

11 ||mj=2 P1j � K′
1j]] |ni=2 li[[||mj=1 Pij � K′

ij]] = N′. Then there
exists N′′ = l1[[P′

11 � K′′
11 ||mj=2 P1j � K′′

1j]] |ni=2 li[[||mj=1 Pij � K′′
ij]] such that

|ni=1 li[[||mj=1 Pij � K′′
ij]])

true@l1−−−−→ N′′. Since K′
ij ⊆ K′′

ij, 1 ≤ i ≤ n, 1 ≤ j ≤ m,
clearly (N′, N′′) ∈ S .

– Consider λ = false@l1. Then there exists P11 = if test then P′
11 else P′′

11, where
test@K′

11 = false, such that l1[[P11� K′
11 ||mj=2 P1j � K′

1j]] |ni=2 li[[||mj=1 Pij � K′
ij]]

false@l1−−−−→ l1[[P′′
11 � K′

11 ||mj=2 P1j � K′
1j]] |ni=2 li[[||mj=1 Pij � K′

ij]] = N′. Then there ex-
ists N′′ = l1[[P′′

11 � K′′
11 ||mj=2 P1j � K′′

1j]] |ni=2 li[[||mj=1 Pij � K′′
ij]] such that

|ni=1 li[[||mj=1 Pij � K′′
ij]])

false@l1−−−−→ N′′. Since K′
ij ⊆ K′′

ij, 1 ≤ i ≤ n, 1 ≤ j ≤ m,
clearly (N′, N′′) ∈ S .

– Consider λ = createf @l1. Then there exists P11 = create(〈f | v; ∅〉) then P′
11 such

that l1[[P11 � K′
11 ||mj=2 P1j � K′

1j]] |ni=2 li[[||mj=1 Pij � K′
ij]]

createf @l1−−−−−→ l1[[P′
11 � K′

11
〈 f | v; ∅〉 ||mj=2 P1j � K′

1j]] |ni=2 li[[||mj=1 Pij � K′
ij]] = N′. Then there exists

N′′ = l1[[P′
11 � K′′

11 〈 f | v; ∅〉 ||mj=2 P1j � K′′
1j]] |ni=2 li[[||mj=1 Pij � K′′

ij]] such that

|ni=1 li[[||mj=1 Pij � K′′
ij]])

createf @l1−−−−−→ N′′. Since K′
ij ⊆ K′′

ij, 1 ≤ i ≤ n, 1 ≤ j ≤ m, then
also K′

11 〈 f | v; ∅〉 ⊆ K′′
11 〈 f | v; ∅〉, and clearly (N′, N′′) ∈ S .

– Consider λ = updp@l1. Then there exists P11 = update(p/f , v) then P′
11 such

that l1[[P11 � K′
11 ||mj=2 P1j � K′

1j]] |ni=2 li[[||mj=1 Pij � K′
ij]]

updp@l1−−−−→ l1[[P′
11 � Ku′

11

||mj=2 P1j � K′
1j]] |ni=2 li[[||mj=1 Pij � K′

ij]] = N′. Then there exists N′′ = l1[[P′
11 � Ku′′

11

||mj=2 P1j �K′
1j]] |ni=2 li[[||mj=1 Pij �K′

ij]]] such that |ni=1 li[[||mj=1 Pij �K′′
ij]])

updp@l1−−−−→N′′.
Since K′

ij ⊆K′′
ij, 1 ≤ i ≤ n, 1 ≤ j ≤ m, then also Ku′

11⊆Ku′′
11 , and clearly (N′, N′′)∈S .

• Let us assume that |ni=1 li[[||mj=1 Pij � K′
ij]]

t N′. Then there exists P′
ij, 1 ≤ i ≤ n,

1 ≤ j ≤ m, such that |ni=1 li[[||mj=1 Pij � K′
ij]]

t |ni=1 li[[||mj=1 P′
ij � K′

ij]] = N′. Then

there exists N′′ = |ni=1 li[[||mj=1 P′
ij � K′′

ij]] such that |ni=1 li[[||mj=1 Pij � K′′
ij]]

t N′′. Since
K′

ij ⊆ K′′
ij, 1 ≤ i ≤ n, 1 ≤ j ≤ m, clearly (N′, N′′) ∈ S .

The symmetric cases follow by similar arguments.

The following result shows that strong timed bisimulation is preserved even after
complete computational steps of two knowTIMO networks.

Proposition 5. Let N1, N2 be two knowTIMO networks.

If N1 ∼ N2 and N1
Λ,t
==⇒ N′

1, then there exists N′
2 ∈ N such that N2

Λ,t
==⇒ N′

2 and N′
1 ∼ N′

2.

Proof. Assuming that the finite multiset of actions Λ contains the labels {λ1, . . . , λk}, then

the complete computational step N1
Λ,t
==⇒ N′

1 can be detailed as N1
λ1−→ N1

1 . . . Nk−1
1

λk−→
Nk

1
t N′

1. Since N1
λ1−→ N1

1 and N1 ∼ N2, then according to Definition 1 there exists N1
2 ∈ N

such that N2
λ1−→ N1

2 and N1
1 ∼ N1

2 . The same reasoning can be applied for another k steps,

meaning that there exist N2
2 , . . . , Nk

2 , N′
2 ∈ N such that N2

λ1−→ N1
2 . . . Nk−1

2
λk−→ Nk

2
t N′

2

and N′
1 ∼ N′

2. By the definition of a complete computational step, it holds that N2
λ1−→

85

Mathematics 2021, 9, 2869

N1
2 . . . Nk−1

2
λk−→ Nk

2
t N′

2 can be written as N2
Λ,t
==⇒ N′

2. Thus, we obtained that there exists

N′
2 ∈ N such that N2

Λ,t
==⇒ N′

2 and N′
1 ∼ N′

2 (as desired).

The next example illustrates that the relation ∼ is able to distinguish between agents
with different knowledge if update operations are performed.

Example 2. Consider that client C2 is at location office4, ready to communicate on channel a4. To
simplify the presentation, we take only a simplified definition of C2 as follows:

C′
2(office4) = aΔ4

4 ?(destC2,1, costC2,1)
then update(/agency[test4]/dest, destC2,1)
else update(/agency[test4]/dest, ε).

Consider the following three networks in knowTIMO :
N1 = office4[[C′

2(office4)� KC2]],
N′

1 = office4[[C′
2(office4)� K′

C2]],
N′′

1 = office4[[C′
2(office4)� K′′

C2]],
where the knowledge of the agents is defined as:

KC2 = 〈agency | office4; 〈dest | ε 〉 〈price | ε 〉〉,
K′

C2 = 〈agency | office5; 〈dest | ε 〉 〈price | ε 〉〉,
K′′

C2 = ∅.
According to Definition 1, it holds that N′

1 ∼ N′′
1 , while N1 �∼ N′

1 and N1 �∼ N′′
1 . This is due

to the fact that while all three networks are able to perform a time step of length 4 and to choose the
else branch, only network N1 is able to perform the update operation. Formally:

N1
4 N2

false@office4−−−−−−→ N3
upd/agency[test4]/dest@office4−−−−−−−−−−−−−−→ N4

and

N′
1

4 N′
2

false@office4−−−−−−→ N′
3 �

upd/agency[test4]/dest@office4−−−−−−−−−−−−−−→
N′′

1
4 N′′

2
false@office4−−−−−−→ N′′

3 �
upd/agency[test4]/dest@office4−−−−−−−−−−−−−−→ ,

where the networks N2, N3, N4, N′
2, N′

3, N′′
2 and N′′

3 in knowTIMO are obtained by using the
rules of Tables 2 and 3.

3.2. Strong Bounded Timed Equivalences

We provide some notations used in the rest of the paper:
• A timed relation over the set N of networks is any relation R ⊆ N ×N×N .
• The identity timed relation is

ι
d f
= {(N, t, N) | N∈N , t ∈ N}.

• The inverse of a timed relation R is

R−1 d f
= {(N2, t, N1) | (N1, t, N2) ∈ R}.

• The composition of timed relations R1 and R2 is

R1R2
d f
= {(N, t, N′′) | ∃N′ ∈N : (N, t, N′)∈R1∧(N′, t, N′′)∈R2} .

• If R is a timed relation and t ∈ N, then

Rt
d f
= {(N1, N2) | (N1, t, N2) ∈ R}

is R’s t-projection. We also denote R∞
d f
=

⋃
t∈N Rt.

• A timed relation R is a timed equivalence if R∞ is an equivalence relation, and is an
equivalence up-to time t ∈ N if

⋃
0≤t′<t Rt′ is an equivalence relation.

The equivalence ∼ requires an exact match of transitions of two networks during
their entire evolutions. Sometimes this requirement is too strong. In many situations this
requirement is relaxed [5], and real-time systems are allowed to behave in an expected way
up to a certain amount t of time units. This impels one to define bounded timed equivalences
up-to a given time t.

86

Mathematics 2021, 9, 2869

Definition 2 (Strong bounded timed bisimulation).
Let R ⊆ N ×N×N be a symmetric timed relation on N and on networks in knowTIMO .

1. R is a strong bounded timed bisimulation if

• (N1, t, N2) ∈ R and N1
λ−→N′

1 implies that there exists N′
2 ∈ N such that N2

λ−→ N′
2

and (N′
1, t, N′

2) ∈ R ;

• (N1, t, N2) ∈ R and N1
t′ N′

1 implies that there exists N′
2 ∈ N such that N2

t′ N′
2

and (N′
1, t − t′, N′

2) ∈ R .

2. The strong bounded timed bisimilarity is the union � of all strong bounded timed bisimu-
lations R.

The following results illustrate some properties of the strong bounded timed bisimu-
lations. In particular, we prove that the equivalence relation � (that is strictly included in
relation ∼) is the largest strong bounded timed bisimulation.

Proposition 6.

1. Identity, inverse, composition and union of strong bounded timed bisimulations are strong
bounded timed bisimulations.

2. � is the largest strong bounded timed bisimulation.
3. � is a timed equivalence.
4. ��∼.

Proof.

1. We treat each relations separately showing that it respects the conditions from Definition 2
for being a strong bounded timed bisimulation.

(a) The identity relation ι is a strong bounded timed bisimulation.

i. Assume (N, t, N) ∈ ι. Consider N λ−→ N′; then (N′, t, N′) ∈ ι .

ii. Assume (N, t, N) ∈ ι. Consider N t′ N′; then (N′, t − t′, N′) ∈ ι .
(b) The inverse of a strong bounded timed bisimulation is a strong bounded

timed bisimulation.
i. Assume (N1, t, N2)∈R−1, namely (N2, t, N1)∈R. Consider N2

λ−→N′
2;

then for some N′
1 we have N1

λ−→ N′
1 and (N′

2, t, N′
1) ∈ R, namely

(N′
1, t, N′

2) ∈ R−1. By similar reasoning, if N1
λ−→ N′

1 then we can

find N′
2 such that N2

λ−→ N′
2 and (N′

1, t, N′
2) ∈ R−1.

ii. Assume (N1, t, N2) ∈ R−1, namely (N2, N1) ∈ R. Consider N2
t′ N′

2;

then for some N′
1 we have N1

t′ N′
1 and (N′

2, t − t′, N′
1) ∈ R, namely

(N′
1, t − t′, N′

2) ∈ R−1. By similar reasoning, if N1
t′ N′

1 then we can

find N′
2 such that N2

t′ N′
2 and (N′

1, t − t′, N′
2) ∈ R−1.

(c) The composition of strong bounded timed bisimulations is a strong bounded
timed bisimulation.
i. Assume (N1, t, N2) ∈ R1R2. Then for some N we have (N1, t, N) ∈ R1

and (N, t, N2) ∈ R2. Consider N1
λ−→ N′

1; then for some N′, since

(N1, t, N) ∈ R1, we have N λ−→ N′ and (N′
1, t, N′) ∈ R1. Also, since

(N, t, N2) ∈ R2 we have for some N′
2 that N2

λ−→N′
2 and (N′, t, N′

2)∈R2.

Thus, (N′
1, t, N′

2)∈R1R2. By similar reasoning, if N2
λ−→ N′

2 then we can

find N′
1 such that N1

λ−→ N′
1 and (N′, t, N′

2) ∈ R2.

87

Mathematics 2021, 9, 2869

ii. Assume (N1, t, N2) ∈ R1R2. Then for some N we have (N1, t, N) ∈ R1

and (N, t, N2) ∈ R2. Consider N1
t′ N′

1; then for some N′, since

(N1, t, N) ∈ R1, we have N t′ N′ and (N′
1, t− t′, N′) ∈ R1 . Also, since

(N, t, N2)∈R2, for some N′
2 we have N2

t′ N′
2 and (N′, t−t′, N′

2)∈R2.

Thus, (N′
1, t − t′, N′

2) ∈ R1R2. By similar reasoning, if N2
t′ N′

2 then

we can find N′
1 such that N1

t′ N′
1 and (N′, t − t′, N′

2) ∈ R2.
(d) The union of strong bounded timed bisimulations is a strong bounded

timed bisimulation.
i. Assume (N1, t, N2) ∈ ⋃

i∈IRi. Then for some i ∈ I we have that

(N1, t, N2) ∈ Ri. Consider N1
λ−→ N′

1; then for some N′
2, since

(N1, t, N2) ∈ Ri, we have N2
λ−→ N′

2 and (N′
1, t, N′

2) ∈ Ri. Thus,

(N′
1, t, N′

2) ∈ ⋃
i∈I Ri. By similar reasoning, if N2

λ−→ N′
2 then we

can find N′
1 such that N1

λ−→ N′
1 and (N′

1, t, N′
2) ∈ Ri, namely

(N′
1, t, N′

2) ∈
⋃

i∈I Ri.
ii. Assume (N1, t, N2) ∈ ⋃

i∈I Ri. Then for some i ∈ I we have that

(N1, t, N2) ∈ Ri. Consider N1
t′ N′

1; then for some N′
2, since

(N1, t, N2) ∈ Ri, we have N2
t′ N′

2 and (N′
1, t − t′, N′

2) ∈ Ri. Thus,

(N′
1, t − t′, N′

2) ∈ ⋃
i∈I Ri. By similar reasoning, if N2

t′ N′
2 then we

can find N′
1 such that N1

t′ N′
1 and (N′

1, t − t′, N′
2) ∈ Ri, namely

(N′
1, t − t′, N′

2) ∈
⋃

i∈I Ri.

2. By the previous case (the union part), � is a strong bounded timed bisimulation and
includes any other strong bounded timed bisimulation.

3. Proving that relation � is a timed equivalence requires proving that it satisfies reflex-
ivity, symmetry and transitivity. We consider each of them in what follows:

(a) Reflexivity: For any network N, N � N results from the fact that the identity
relation is a strong bounded timed bisimulation.

(b) Symmetry: If N � N′, then (N, t, N′) ∈ R for some strong bounded timed
bisimulation R. Hence (N′, t, N) ∈ R−1, and so N′ � N because the inverse
relation is a strong bounded timed bisimulation.

(c) Transitivity: If N � N′ and N′ � N′′ then (N, t, N′) ∈ R1 and (N′, t, N′′) ∈ R2
for some strong bounded timed bisimulations R1 and R2. Thus, it holds that
(N, t, N′′) ∈ R1R2, and so N � N′′ due to the fact that the composition relation
is a strong bounded timed bisimulation.

4. We provide Example 3 below that illustrates the strict inclusion.

The next result claims that strong bounded timed equivalence �t over processes is
preserved even if the local knowledge of the agents is expanded. This is consistent with
the fact that the processes affect the same portion of their knowledge.

Proposition 7. If K′
ij ⊆ K′′

ij, for 1 ≤ i ≤ n, 1 ≤ j ≤ m, then
|ni=1 li[[||mj=1 Pij � K′

ij]] � |ni=1 li[[||mj=1 Pij � K′′
ij]].

Proof. We show that S is a strong bounded timed bisimulation, where:
S={(|ni=1 li[[||mj=1 Pij �K′

ij]] , t, |ni=1 li[[||mj=1 Pij �K′′
ij]]) : K′

ij ⊆K′′
ij, 1≤ i≤n, 1≤ j≤m}.

The proof is by induction on the last performed step:

• Let us assume that |ni=1 li[[||mj=1 Pij � K′
ij]]

λ−−→ N′. Depending on the value of λ, there
are several cases:

88

Mathematics 2021, 9, 2869

– Consider λ = a!?@l1. Then there exists P11 = aΔt1 !〈v〉 then P′
11 else P′′

11 and
P11 = aΔt2 ?(u) then P′

12 else P′′
12 such that l1[[P11 � K′

11 || P12 � K′
12 ||mj=3 P1j � K′

1j]]

|ni=2 li[[||mj=1 Pij � K′
ij]]

a!?@l1−−−→ l1[[P′
11 � K′

11 || P′
12 � K′

12 ||mj=3 P1j � K′
1j]]

|ni=2 li[[||mj=1 Pij � K′
ij]] = N′. Then there exists N′′ = [[P′

11 � K′′
11 || P′

12 � K′′
12

||mj=3 P1j � K′′
1j]] |ni=2 li[[||mj=1 Pij � K′′

ij]] such that |ni=1 li[[||mj=1 Pij � K′′
ij]]

a!?@l1−−−→ N′′.
Since K′

ij ⊆ K′′
ij, 1 ≤ i ≤ n, 1 ≤ j ≤ m, clearly (N′, t, N′′) ∈ S .

– Consider λ = a!Δ0@l1. Then there exists P11 = aΔ0!〈v〉 then P′
11 else P′′

11 such

that l1[[P11 � K′
11 ||mj=2 P1j � K′

1j]] |ni=2 li[[||mj=1 Pij � K′
ij]]

a!Δ0@l1−−−−→ l1[[P′
11 � K′

11
||mj=2 P1j � K′

1j]] |ni=2 li[[||mj=1 Pij � K′
ij]] = N′. Then there exists N′′ = l1[[P′

11 � K′′
11

||mj=2 P1j �K′′
1j]] |ni=2 li[[||mj=1 Pij �K′′

ij]] such that |ni=1 li[[||mj=1 Pij �K′′
ij]])

a!Δ0@l1−−−−→N′′.
Since K′

ij ⊆ K′′
ij, 1 ≤ i ≤ n, 1 ≤ j ≤ m, clearly (N′, t, N′′) ∈ S .

– Consider λ = a?Δ0@l1. Then there exists P11 = aΔ0?(u) then P′
11 else P′′

11 such

that l1[[P11� K′
11 ||mj=2 P1j � K′

1j]] |ni=2 li[[||mj=1 Pij � K′
ij]]

a?Δ0@l1−−−−→ l1[[P′
11 � K′

11
||mj=2 P1j � K′

1j]] |ni=2 li[[||mj=1 Pij � K′
ij]] = N′. Then there exists N′′ = l1[[P′

11 � K′′
11

||mj=2 P1j �K′′
1j]] |ni=2 li[[||mj=1 Pij �K′′

ij]] such that |ni=1 li[[||mj=1 Pij �K′′
ij]])

a?Δ0@l1−−−−→N′′.
Since K′

ij ⊆ K′′
ij, 1 ≤ i ≤ n, 1 ≤ j ≤ m, clearly (N′, t, N′′) ∈ S .

– Consider λ = l1 � l2. Then there exists P11 = go0 l2 then P′
11 such that l1[[P11� K′

11

||mj=2 P1j� K′
1j]] |ni=2 li[[||mj=1 Pij � K′

ij]]
l1�l2−−→ l1[[||mj=2 P1j � K′

1j]] | l2[[P′
11 � K′

11
||mj=1 P2j� K′

2j]] |ni=3 li[[||mj=1 Pij � K′
ij]] = N′. Then there exists N′′ =

l1[[||mj=2 P1j � K′′
1j]] | l2[[P′

11 � K′′
11 ||mj=1 P2j� K′′

2j]] |ni=3 li[[||mj=1 Pij � K′′
ij]] such

that |ni=1 li[[||mj=1 Pij� K′′
ij]])

l1�l2−−→ N′′. Since K′
ij ⊆ K′′

ij, 1 ≤ i ≤ n, 1 ≤ j ≤ m,
clearly (N′, t, N′′) ∈ S .

– Consider λ = true@l1. Then there exists P11 = if test then P′
11 else P′′

11, where
test@K′

11 = true, such that l1[[P11� K′
11 ||mj=2 P1j � K′

1j]] |ni=2 li[[||mj=1 Pij � K′
ij]]

true@l1−−−−→ l1[[P′
11 � K′

11 ||mj=2 P1j � K′
1j]] |ni=2 li[[||mj=1 Pij � K′

ij]] = N′. Then there
exists N′′ = l1[[P′

11 � K′′
11 ||mj=2 P1j � K′′

1j]] |ni=2 li[[||mj=1 Pij � K′′
ij]] such that

|ni=1 li[[||mj=1 Pij � K′′
ij]])

true@l1−−−−→ N′′. Since K′
ij ⊆ K′′

ij, 1 ≤ i ≤ n, 1 ≤ j ≤ m,
clearly (N′, t, N′′) ∈ S .

– Consider λ = false@l1. Then there exists P11 = if test then P′
11 else P′′

11, where
test@K′

11 = false, such that l1[[P11� K′
11 ||mj=2 P1j � K′

1j]] |ni=2 li[[||mj=1 Pij � K′
ij]]

false@l1−−−−→ l1[[P′′
11 � K′

11 ||mj=2 P1j � K′
1j]] |ni=2 li[[||mj=1 Pij � K′

ij]] = N′. Then there ex-
ists N′′ = l1[[P′′

11 � K′′
11 ||mj=2 P1j � K′′

1j]] |ni=2 li[[||mj=1 Pij � K′′
ij]] such that

|ni=1 li[[||mj=1 Pij � K′′
ij]])

false@l1−−−−→ N′′. Since K′
ij ⊆ K′′

ij, 1 ≤ i ≤ n, 1 ≤ j ≤ m,
clearly (N′, t, N′′) ∈ S .

– Consider λ = createf @l1. Then there exists P11 = create(〈f | v; ∅〉) then P′
11 such

that l1[[P11� K′
11 ||mj=2 P1j� K′

1j]] |ni=2 li[[||mj=1 Pij � K′
ij]]

createf @l1−−−−−→ l1[[P′
11 � K′

11
〈 f | v; ∅〉 ||mj=2 P1j � K′

1j]] |ni=2 li[[||mj=1 Pij � K′
ij]] = N′. Then there exists

N′′ = l1[[P′
11 � K′′

11 〈 f | v; ∅〉 ||mj=2 P1j � K′′
1j]] |ni=2 li[[||mj=1 Pij � K′′

ij]] such that

|ni=1 li[[||mj=1 Pij � K′′
ij]])

createf @l1−−−−−→ N′′. Since K′
ij ⊆ K′′

ij, 1 ≤ i ≤ n, 1 ≤ j ≤ m, then
also K′

11 〈 f | v; ∅〉 ⊆ K′′
11 〈 f | v; ∅〉, and clearly (N′, t, N′′) ∈ S .

– Consider λ = updp@l1. Then there exists P11 = update(p/f , v) then P′
11 such

that l1[[P11 � K′
11 ||mj=2 P1j � K′

1j]] |ni=2 li[[||mj=1 Pij � K′
ij]]

updp@l1−−−−→ l1[[P′
11 � Ku′

11

||mj=2 P1j � K′
1j]] |ni=2 li[[||mj=1 Pij � K′

ij]] = N′. Then there exists N′′ = l1[[P′
11 � Ku′′

11

89

Mathematics 2021, 9, 2869

||mj=2 P1j � K′
1j]] |ni=2 li[[||mj=1 Pij � K′

ij]]] such that |ni=1 li[[||mj=1 Pij � K′′
ij]]

updp@l1−−−−→ N′′. Since K′
ij ⊆ K′′

ij, 1 ≤ i ≤ n, 1 ≤ j ≤ m, then also Ku′
11 ⊆ Ku′′

11 , and
clearly (N′, t, N′′) ∈ S .

• Let us assume that |ni=1 li[[||mj=1 Pij � K′
ij]]

t′ N′. Then there exists P′
ij, 1 ≤ i ≤ n,

1 ≤ j ≤ m, such that |ni=1 li[[||mj=1 Pij � K′
ij]]

t′ |ni=1 li[[||mj=1 P′
ij � K′

ij]] = N′. Then

there exists N′′ = |ni=1 li[[||mj=1 P′
ij � K′′

ij]] such that |ni=1 li[[||mj=1 Pij � K′′
ij]]

t N′′. Since
K′

ij ⊆ K′′
ij, 1 ≤ i ≤ n, 1 ≤ j ≤ m, clearly (N′, t − t′, N′′) ∈ S .

The symmetric cases follow by similar arguments.

The following result shows that strong bounded timed bisimulation is preserved even
after complete computational steps of two networks in knowTIMO .

Proposition 8. Let N1, N2 be two knowTIMO networks.

If N1�t N2 and N1
Λ,t′
==⇒N′

1, then there is N′
2∈N such that N2

Λ,t′
==⇒N′

2 and N′
1�t−t′ N′

2.

Proof. Assuming that the finite multiset of actions Λ contains the labels {λ1, . . . , λk}, then the

complete computational step N1
Λ,t
==⇒ N′

1 can be detailed as N1
λ1−→ N1

1 . . . Nk−1
1

λk−→ Nk
1

t′ N′
1.

Note that N1 �t N2 means that (N1, t, N2) ∈�. Since N1
λ1−→ N1

1 and (N1, t, N2) ∈�, then

according to Definition 2 there exists N1
2 ∈ N such that N2

λ1−→ N1
2 and (N1

1 , t, N1
2) ∈�. The

same reasoning can be applied for another k steps, meaning that there exist N2
2 , . . . , Nk

2 , N′
2 ∈ N

such that N2
λ1−→ N1

2 . . . Nk−1
2

λk−→ Nk
2

t′ N′
2 and (N′

1, t − t′, N′
2) ∈�, namely N′

1 �t−t′ N′
2.

The definition of a complete computational step implies that N2
λ1−→ N1

2 . . . Nk−1
2

λk−→ Nk
2

t′

N′
2 can be written as N2

Λ,t′
==⇒ N′

2. Thus, we obtained that there exists N′
2 ∈ N such that

N2
Λ,t′
==⇒ N′

2 and N′
1 �t−t′ N′

2 (as desired).

Strong bounded timed bisimulation satisfies the property that if two networks are
equivalent up-to a certain deadline t, they are equivalent up-to any deadline t′ before t,
i.e., t′ ≤ t.

Proposition 9. If N �t N′ and t′ ≤ t, then N �t′ N′.

Proof. Assume N �t N′ and that there exist the networks N1, . . . , Nk ∈ N , the set of

actions Λ1, . . . , Λk and the timers t1, . . . , tk ∈ N such that N
Λ1,t1===⇒ N1 . . .

Λk ,tk===⇒ Nk and
also t = t1 + . . . + tk. According to Proposition 8, there exist the networks N′

1, . . . , N′
k ∈ N

such that N′ Λ1,t1===⇒ N′
1 . . .

Λk ,tk===⇒ N′
k, and also N1 �t−t1 N′

1, . . ., Nk �0 N′
k. Since t′ ≤ t, then

there exists an l ≤ k and a t′′ ∈ N such that t1 + . . . + tl + t′′ = t′. By using Theorem 1,

it holds that there exists N1 such that N
Λ1,t1===⇒ N1 . . .

Λl ,tl==⇒ Nl
Λl+1,t′′
====⇒ N1. In a similar

manner, by using Theorem 1, it holds that there exists N2 such that N′ Λ1,t1===⇒ N′
1 . . .

Λl ,tl==⇒
N′

l
Λl+1,t′′
====⇒ N2. Since N1 and N2 can perform only time passing steps of length at most

tl+1 − t′′, this means that N1 �0 N2, However, according to Definition 2, this means that
we obtain the desired relation N �t′ N′ because the networks N and N′ can match their
behaviour for t′ steps.

The next example illustrates that the relation �t is able to treat as bisimilar some
multi-agent systems that are not bisimilar using the relation ∼ .

90

Mathematics 2021, 9, 2869

Example 3. Let us consider the networks of Example 2, namely:
N1 = office4[[C′

2(office4)� KC2]],
N′

1 = office4[[C′
2(office4)� K′

C2]],
N′′

1 = office4[[C′
2(office4)� K′′

C2]],
where the knowledge of the agents is defined as:

KC2 = 〈agency | office4; 〈dest | ε 〉 〈price | ε 〉〉,
K′

C2 = 〈agency | office5; 〈dest | ε 〉 〈price | ε 〉〉,
K′′

C2 = ∅.
Even if it holds that N′

1 ∼ N′′
1 while N1 �∼ N′

1 and N1 �∼ N′′
1 , by applying Definition 2, it

results that N1, N′
1 and N′′

1 are strong bounded timed bisimilar before the 4th time unit since they
have the same evolutions during this deadline, namely N′

1 �4 N′′
1 , N1 �4 N′

1 and N1 �4 N′′
1 .

If t > 4, we have that N′
1 �t N′′

1 , while N1 ��t N′
1 and N1 ��t N′′

1 . Thus, both Definitions 1 and 2
return the same relations among N1, N′

1 and N′′
1 for t > 4.

This example illustrates also the strict inclusion relation from item 4 of Proposition 6.

3.3. Weak Knowledge Equivalences

Both equivalence relations ∼ and � require an exact match of transitions and time
steps of two networks in knowTIMO ; this makes them too restrictive. We can introduce
a weaker version of network equivalence by looking only at the steps that affect the
knowledge data, namely the create and update steps. Thus, we introduce a knowledge
equivalence in order to distinguish between networks based on the interaction of the agents
with their local knowledge: the networks are equivalent if we observe only create and update
actions along same paths, regardless of the values added to the knowledge.

Definition 3 (Weak knowledge bisimulation). Let R ⊆ N ×N be a symmetric binary relation
over networks in knowTIMO .
1. R is a weak knowledge bisimulation if

• (N1, N2) ∈ R and N1
createf @l
=====⇒∗N′

1 implies that there exists N′
2 ∈ N such that

N2
createf @l
=====⇒∗N′

2 and (N′
1, N′

2) ∈ R ;

• (N1, N2) ∈ R and N1
updp@l
====⇒∗N′

1 implies that there exists N′
2 ∈ N such that

N2
updp@l
====⇒∗N′

2 and (N′
1, N′

2) ∈ R ;

2. The weak knowledge bisimilarity is the union ∼= of all weak knowledge bisimulations R.

The following results present some properties of the weak knowledge bisimulations.
In particular, we prove that the equivalence relation ∼= (that is strictly included in relation ∼)
is the largest weak knowledge bisimulation.

Proposition 10.

1. Identity, inverse, composition and union of weak knowledge bisimulations are weak knowl-
edge bisimulations.

2. ∼= is the largest weak knowledge bisimulation.
3. ∼= is an equivalence.
4. ∼=�∼.

Proof.

1. We treat each relation separately showing that it respects the conditions from Definition 3
for being a weak knowledge bisimulation.

(a) The identity relation IdR is a weak knowledge bisimulation.

i. Assume (N, N) ∈ IdR. Consider N
createf @l
=====⇒∗N′; then (N′, N′) ∈ IdR .

91

Mathematics 2021, 9, 2869

ii. Assume (N, N) ∈ IdR. Consider N
updp@l
====⇒∗N′; then (N′, N′) ∈ IdR .

(b) The inverse of a weak knowledge bisimulation is a weak knowledge bisimulation.

i. Assume (N1, N2)∈R−1, namely (N2, N1)∈R. Consider N2
createf @l
=====⇒∗N′

2;

then for some N′
1 we have N1

createf @l
=====⇒∗N′

1 and (N′
2, N′

1) ∈ R, namely

(N′
1, N′

2) ∈ R−1. By similar reasoning, if N1
createf @l
=====⇒∗N′

1 then we can

find N′
2 such that N2

createf @l
=====⇒∗N′

2 and (N′
1, N′

2) ∈ R−1.

ii. Assume (N1, N2)∈R−1, namely (N2, N1)∈R. Consider N2
updf @l
====⇒∗N′

2;

then for some N′
1 we have N1

updf @l
====⇒∗N′

1 and (N′
2, N′

1) ∈ R, namely

(N′
1, N′

2) ∈ R−1. By similar reasoning, if N1
updf @l
====⇒∗N′

1 then we can

find N′
2 such that N2

updf @l
====⇒∗N′

2 and (N′
1, N′

2) ∈ R−1.
(c) The composition of weak knowledge bisimulations is a weak knowledge bisimulation.

i. Assume (N1, N2) ∈ R1R2. Then for some N we have (N1, N) ∈ R1

and (N, N2) ∈ R2. Consider N1
createf @l
=====⇒∗N′

1; then for some N′, since

(N1, N) ∈ R1, we have N
createf @l
=====⇒∗N′ and (N′

1, N′) ∈ R1. Also, since

(N, N2)∈R2 we have for some N′
2 that N2

createf @l
====⇒∗N′

2 and (N′, N′
2)∈R2.

Thus, (N′
1, N′

2) ∈ R1R2. By similar reasoning, if N2
createf @l
=====⇒∗N′

2 then

we can find N′
1 such that N1

createf @l
=====⇒∗N′

1 and (N′, N′
2) ∈ R2.

ii. Assume (N1, N2) ∈ R1R2. Then for some N we have (N1, N) ∈ R1

and (N, N2) ∈ R2. Consider N1
updf @l
====⇒∗N′

1; then for some N′, since

(N1, N) ∈ R1, we have N
updf @l
====⇒∗N′ and (N′

1, N′) ∈ R1. Also, since

(N, N2 ∈R2 we have for some N′
2 that N2

updf @l
===⇒∗N′

2 and (N′, N′
2)∈R2.

Thus, (N′
1, N′

2) ∈ R1R2. By similar reasoning, if N2
updf @l
====⇒∗N′

2 then we

can find N′
1 such that N1

updf @l
====⇒∗N′

1 and (N′, N′
2) ∈ R2.

(d) The union of weak knowledge bisimulations is a weak knowledge bisimulation.
i. Assume (N1, N2) ∈ ⋃

i∈I Ri. Then for some i ∈ I we have (N1, N2) ∈ Ri.

Consider N1
createf @l
=====⇒∗N′

1; then for some N′
2, since (N1, N2) ∈ Ri, we

have N2
createf @l
=====⇒∗N′

2 and (N′
1, N′

2) ∈ Ri . Thus, (N′
1, N′

2) ∈ ⋃
i∈I Ri.

By similar reasoning, if N2
createf @l
=====⇒∗N′

2 then we can find N′
1 such that

N1
createf @l
=====⇒∗ N′

1 and (N′
1, N′

2) ∈ Ri , namely (N′
1, N′

2) ∈
⋃

i∈I Ri.
ii. Assume (N1, N2) ∈ ⋃

i∈I Ri. Then for some i ∈ I we have (N1, N2) ∈ Ri.

Consider N1
updf @l
====⇒∗N′

1; then for some N′
2, since (N1, N2) ∈ Ri, we

have N2
updf @l
====⇒∗N′

2 and (N′
1, N′

2) ∈ Ri . Thus, (N′
1, N′

2) ∈ ⋃
i∈I Ri.

By similar reasoning, if N2
updf @l
====⇒∗N′

2 then we can find N′
1 such that

N1
updf @l
====⇒∗ N′

1 and (N′
1, N′

2) ∈ Ri , namely (N′
1, N′

2) ∈
⋃

i∈I Ri.

2. By the previous case (the union part), ∼= is a weak knowledge bisimulation and
includes any other weak knowledge bisimulation.

3. Proving that relation ∼= is an equivalence requires proving that it satisfies reflexivity,
symmetry and transitivity. We consider each of them in what follows:

(a) Reflexivity: For any network N, N ∼= N results from the fact that the identity
relation is a weak knowledge bisimulation.

92

Mathematics 2021, 9, 2869

(b) Symmetry: If N ∼= N′, then (N, N′) ∈ R for some weak knowledge bisimula-
tion R. Hence (N′, N) ∈ R−1, and so N′ ∼= N because the inverse relation is a
weak knowledge bisimulation.

(c) Transitivity: If N ∼= N′ and N′ ∼= N′′ then (N, N′) ∈ R1 and (N′, N′′) ∈
R2 for some weak knowledge bisimulations R1 and R2. Thus, (N, N′′) ∈
R1R2, and so N ∼= N′′ due to the fact that the composition relation is a weak
knowledge bisimulation.

4. We provide Example 4 below illustrating the strict inclusion.

The next result claims that weak knowledge equivalence ∼= among processes is pre-
served even if the local knowledge of the agents is expanded. This is consistent with the
fact that the processes affect the same portion of their knowledge.

Proposition 11. If K′
ij ⊆ K′′

ij, for 1 ≤ i ≤ n, 1 ≤ j ≤ m, then
|ni=1 li[[||mj=1 Pij � K′

ij]]
∼= |ni=1 li[[||mj=1 Pij � K′′

ij]].

Proof. We show that S is a weak knowledge bisimulation, where:
S = {(|ni=1 li[[||mj=1 Pij �K′

ij]] , |ni=1 li[[||mj=1 Pij �K′′
ij]]) : K′

ij ⊆K′′
ij, 1≤ i≤n, 1≤ j≤m}.

The proof is by induction on the last performed step. Let us assume that

|ni=1 li[[||mj=1 Pij � K′
ij]]

λ
==⇒∗N′. Depending on the value of λ, there are several cases:

• Consider λ = createf @l1. Then there exists P11 such that l1[[P11 � K′
11 ||mj=2 P1j � K′

1j]]

|ni=2 li[[||mj=1 Pij � K′
ij]]

createf @l
=====⇒∗l1[[P′

11 � K′
11 〈 f | v; ∅〉 ||mj=2 P′

1j � K′
1j]] |ni=2 li[[||mj=1

P′
ij � K′

ij]] =N′. Then there exists N′′ = l1[[P′
11 � K′′

11 〈 f | v; ∅〉 ||mj=2 P′
1j � K′′

1j]] |ni=2

li[[||mj=1 P′
ij � K′′

ij]] such that |ni=1 li[[||mj=1 Pij � K′′
ij]])

createf @l
=====⇒∗N′′. Since K′

ij ⊆ K′′
ij,

1 ≤ i ≤ n, 1 ≤ j ≤ m, then also K′
11 〈 f | v; ∅〉 ⊆ K′′

11 〈 f | v; ∅〉, and clearly
(N′, N′′) ∈ S .

• Consider λ = updp@l1. Then there exists P11 such that l1[[P11 � K′
11 ||mj=2 P1j � K′

1j]]

|ni=2 li[[||mj=1 Pij �K′
ij]]

updf @l
====⇒∗l1[[P′

11 �Ku′
11 ||mj=2 P′

1j �K′
1j]] |ni=2 li[[||mj=1 P′

ij � K′
ij]] = N′.

Then there exists N′′ = l1[[P′
11 � Ku′′

11 ||mj=2 P′
1j � K′

1j]] |ni=2 li[[||mj=1 P′
ij � K′

ij]]] such that

|ni=1 li[[||mj=1 Pij � K′′
ij]])

updf @l
====⇒∗N′′. Since K′

ij ⊆ K′′
ij, 1 ≤ i ≤ n, 1 ≤ j ≤ m, then also

Ku′
11 ⊆ Ku′′

11 , and clearly (N′, N′′) ∈ S .

The symmetric cases follow by similar arguments.

The following result shows that weak knowledge bisimulation is preserved after
complete computational steps of two networks in knowTIMO only if the knowledge is
modified at least once during such a step.

Proposition 12. Let N1, N2 be two knowTIMO networks and ∃createf @l ∈ Λ or ∃updf @l∈Λ.

If N1
∼=N2 and N1

Λ,t
==⇒N′

1, then there exists N2
′ ∈N such that N2

Λ,t
==⇒′

2 and N1
′ ∼=N′

2.

Proof. Assuming that the finite multiset of actions Λ contains the labels {λ1, . . . , λk} that

denote modifications to the knowledge, then the complete computational step N1
Λ,t
==⇒ N′

1

can be detailed as N1
λ1==⇒∗N1

1 . . . Nk−1
1

λk==⇒∗N′
1. Since N1

λ1==⇒∗N1
1 and N1

∼= N2, then

according to Definition 3 there exists N1
2 ∈ N such that N2

λ1==⇒∗N1
2 and N1

1
∼= N1

2 . The same
reasoning can be applied for another k times, meaning that there exist N2

2 , . . . , N′
2 ∈ N such

that N2
λ1==⇒∗N1

2 . . . Nk−1
2

λk==⇒∗N′
2 and N′

1
∼= N′

2. By the definition of a complete computational

step, it holds that N2
λ1==⇒∗N1

2 . . . Nk−1
2

λk==⇒∗N′
2 can be written as N2

Λ,t
==⇒ N′

2. Thus, we obtained

that there exists N′
2 ∈ N such that N2

Λ,t
==⇒ N′

2 and N′
1
∼= N′

2 (as desired).

93

Mathematics 2021, 9, 2869

The next example illustrates that the relation ∼= is able to treat bisimilar systems that
are not bisimilar using the relation ∼.

Example 4. Consider the network N1 of Example 2, and a network

N′′′
1 = office4[[C′′

2 (office4)� KC2]],

in which the client can perform only an update action:

C′′
2 (office4) = update(/agency[test4]/dest, destC2,1).

According to Definition 1, it holds that N1 �∼ N′′′
1 . This is due to the fact that the network N1

can perform a time step of length 4 and choose the else branch, while the network N′′′
1 can perform

only the update operation. Formally:

N1
4 N2

false@office4−−−−−−→ N3
upd/agency[test4]/dest@office4−−−−−−−−−−−−−−→ N4

and

N′′′
1

upd/agency[test4]/dest@office4−−−−−−−−−−−−−−→ N′′′
2

The above reductions can also be written as

N1 ==⇒∗ N3
upd/agency[test4]/dest@office4−−−−−−−−−−−−−−→ N4,

and

N′′′
1 ==⇒∗ N′′′

1

upd/agency[test4]/dest@office4−−−−−−−−−−−−−−→ N′′′
2 .

By applying Definition 3, it results that N1 and N′′′
1 are weak knowledge bisimilar because

they are able to perform an update on the same path at the same location, i.e., N1
∼= N′′′

1 .
This example is also an illustration of the strict inclusion relation from item 4 of Proposition 10.

4. Conclusions and Related Work

In multi-agent systems, knowledge is usually treated by using epistemic logics [6]; in
particular, the multi-agent epistemic logic [7,8]. These epistemic logics are modal logics
describing different types of knowledge, being different not only syntactically, but also
in expressiveness and complexity. Essentially, they are based on two concepts: Kripke
structures (to model their semantics) and logic formulas (to represent the knowledge of
the agents).

The initial version of TIMO presented in [1] leads to some extensions: with access
permissions in perTIMO [9], with real-time in rTIMO [10], combining TIMO and the bi-
graphs [11] to obtain the BigTiMo calculus [12]. However, in all these approaches an
implicit knowledge is used inside the processes. In this article we defined knowTIMO to
describe multi-agent systems operating according to their accumulated knowledge. Essen-
tially, the agents get an explicit representation of the knowledge about the other agents of a
distributed network in order to decide their next interactions. The knowledge is defined
as sets of trees whose nodes contain pairs of labels and values; this tree representation is
similar to the data representation in Petri nets with structured data [13] and Xdπ process
calculus [14]. The network dynamics involving exchanges of knowledge between agents
is presented by the operational semantics of this process calculus; its labelled transition
system is able to capture the concurrent execution by using a multiset of actions. We proved
that time passing in such a multi-agent system does not introduce any nondeterminism in
the evolution of a network, and that the progression of the network is smooth (there are
no time gaps). Several results are devoted to the relationship between the evolution of the
agents and their knowledge.

According to [15], the notion of bisimulation was independently discovered in com-
puter science [16,17], modal logic [18] and set theory [19,20]. Bisimulation is currently used
in several domains: to test the behavioural equality of processes in concurrency [21]; to
solve the state-explosion problem in model checking [22]; to index and compress semi-
structured data in databases [23,24]; to solve Markov decision processes efficiently in
stochastic planning [25]; to understand for some languages their expressiveness in descrip-
tion logics [26]; and to study the observational indistinguishability and computational

94

Mathematics 2021, 9, 2869

complexity on data graphs in XPath (a language extending modal logic with equality tests
for data) [27]. It is worth noting that the notion of bisimulation is related to the modal
equivalence in various logics of knowledge and structures presented in [28]. In some of
these logics it is proved that certain forms of bisimulation correspond to modal equivalence
of knowledge, and this is used to compare the logics expressivity [29,30].

Inspired by the bisimulation notion defined in computer science, in this paper we
defined and studied some specific behavioural equivalences involving the network knowl-
edge and timing constraints on communication and migration; the defined behavioural
equivalences are preserved during complete computational steps of two multi-agent sys-
tems. Strong timed bisimulation takes also into account timed transitions, being able to
distinguish between different systems regardless of the evolution time; strong bounded
timed bisimulation imposes limits for the evolution time, including the equivalences up to
any bound below that deadline. A knowledge equivalence is able to distinguish between
systems based on the interaction of the agents with their local knowledge. In the literature,
a related but weaker/simpler approach of knowledge bisimulation appeared in [14], where
the authors used only barbs (not equivalences), looking only at the update steps.

Author Contributions: All authors have read and agreed to the published version of the manuscript.
All authors contributed equally to this work.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare that there is no conflict of interest.

References

1. Ciobanu, G.; Koutny, M. Modelling and Verification of Timed Interaction and Migration. In Proceedings of the Fundamental
Approaches to Software Engineering, 11th International Conference, FASE 2008, Held as Part of the Joint European Conferences
on Theory and Practice of Software, ETAPS 2008, Budapest, Hungary, 29 March–6 April 2008; Lecture Notes in Computer Science.
Fiadeiro, J.L., Inverardi, P., Eds.; Springer: Berlin/Heidelberg, Germany, 2008; Volume 4961, pp. 215–229. [CrossRef]

2. Abiteboul, S.; Buneman, P.; Suciu, D. Data on the Web: From Relations to Semistructured Data and XML; Morgan Kaufmann:
Burlington, MA, USA, 1999.

3. Aman, B.; Ciobanu, G. Verification of distributed systems involving bounded-time migration. Int. J. Crit.-Comput.-Based Syst.
2017, 7, 279–301. [CrossRef]

4. Ciobanu, G. Behaviour Equivalences in Timed Distributed pi-Calculus. In Software-Intensive Systems and New Computing
Paradigms—Challenges and Visions; Lecture Notes in Computer Science; Wirsing, M., Banâtre, J., Hölzl, M.M., Rauschmayer, A., Eds.;
Springer: Berlin/Heidelberg, Germany, 2008; Volume 5380, pp. 190–208. [CrossRef]

5. Posse, E.; Dingel, J. Theory and Implementation of a Real-Time Extension to the pi-Calculus. In Proceedings of the Formal
Techniques for Distributed Systems, Joint 12th IFIP WG 6.1 International Conference, FMOODS 2010 and 30th IFIP WG 6.1
International Conference, FORTE 2010, Amsterdam, The Netherlands, 7–9 June 2010; Lecture Notes in Computer Science.
Hatcliff, J., Zucca, E., Eds.; Springer: Berlin/Heidelberg, Germany, 2010; Volume 6117, pp. 125–139. [CrossRef]

6. Hintikka, J. Knowledge and Belief. An Introduction to the Logic of the Two Notions; Cornell University Press: Ithaca, NY, USA, 1962.
7. Fagin, R.; Halpern, J.Y. Belief, Awareness, and Limited Reasoning. Artif. Intell. 1987, 34, 39–76. [CrossRef]
8. Modica, S.; Rustichini, A. Awareness and partitional information structures. Theory Decis. 1994, 37, 107–124. [CrossRef]
9. Ciobanu, G.; Koutny, M. Timed Migration and Interaction with Access Permissions. In Proceedings of the FM 2011: Formal

Methods—17th International Symposium on Formal Methods, Limerick, Ireland, 20–24 June 2011; Lecture Notes in Computer
Science. Butler, M.J., Schulte, W., Eds.; Springer: Berlin/Heidelberg, Germany, 2011; Volume 6664, pp. 293–307. [CrossRef]

10. Aman, B.; Ciobanu, G. Real-Time Migration Properties of rTiMo Verified in Uppaal. In Proceedings of the Software Engineering
and Formal Methods—11th International Conference, SEFM 2013, Madrid, Spain, 25–27 September 2013; Lecture Notes in
Computer Science. Hierons, R.M., Merayo, M.G., Bravetti, M., Eds.; Springer: Berlin/Heidelberg, Germany, 2013; Volume 8137,
pp. 31–45. [CrossRef]

11. Milner, R. The Space and Motion of Communicating Agents; Cambridge University Press: Cambridge, UK, 2009.
12. Xie, W.; Zhu, H.; Zhang, M.; Lu, G.; Fang, Y. Formalization and Verification of Mobile Systems Calculus Using the Rewriting

Engine Maude. In Proceedings of the 2018 IEEE 42nd Annual Computer Software and Applications Conference, COMPSAC 2018,
Tokyo, Japan, 23–27 July 2018; Reisman, S., Ahamed, S.I., Demartini, C., Conte, T.M., Liu, L., Claycomb, W.R., Nakamura, M.,
Tovar, E., Cimato, S., Lung, C., et al., Eds.; IEEE Computer Society: New York, NY, USA, 2018; Volume 1, pp. 213–218. [CrossRef]

13. Badouel, É.; Hélouët, L.; Morvan, C. Petri Nets with Structured Data. Fundam. Inform. 2016, 146, 35–82. [CrossRef]
14. Gardner, P.; Maffeis, S. Modelling dynamic web data. Theor. Comput. Sci. 2005, 342, 104–131. [CrossRef]
15. Sangiorgi, D. On the origins of bisimulation and coinduction. ACM Trans. Program. Lang. Syst. 2009, 31, 15:1–15:41. [CrossRef]
16. Ginzburg, A. Algebraic Theory of Automata, 1st ed.; Academic Press: Cambridge, MA, USA, 1968.

95

Mathematics 2021, 9, 2869

17. Milner, R. An Algebraic Definition of Simulation between Programs. In Proceedings of the 2nd International Joint Conference on
Artificial Intelligence, London, UK, 1–3 September 1971; Cooper, D.C., Ed.; William Kaufmann: Pleasant Hill, CA, USA, 1971;
pp. 481–489.

18. van Benthem, J. Modal Logic and Classical Logic; Bibliopolis: Asheville, NC, USA, 1985.
19. Forti, M.; Honsell, F. Set theory with free construction principles. Ann. Della Sc. Norm. Super. Pisa Cl. Sci. 4E SÉRie 1983, 10,

493–522.
20. Hinnion, R. Extensional quotients of structures and applications to the study of the axiom of extensionality. Bull. Soci‘Et’E

Mathmatique Belg. 1981, XXXIII, 173–206.
21. Aman, B.; Ciobanu, G.; Koutny, M. Behavioural Equivalences over Migrating Processes with Timers. In Proceedings of the Formal

Techniques for Distributed Systems—Joint 14th IFIP WG 6.1 International Conference, FMOODS 2012 and 32nd IFIP WG 6.1
International Conference, FORTE 2012, Stockholm, Sweden, 13–16 June 2012; Lecture Notes in Computer Science. Giese, H.,
Rosu, G., Eds.; Springer: Berlin/Heidelberg, Germany, 2012; Volume 7273, pp. 52–66. [CrossRef]

22. Clarke, E.M.; Grumberg, O.; Peled, D.A. Model Checking; MIT Press: Cambridge, MA, USA, 2001.
23. Milo, T.; Suciu, D. Index Structures for Path Expressions. In Proceedings of the Database Theory—ICDT ’99, 7th International

Conference, Jerusalem, Israel, 10–12 January 1999; Lecture Notes in Computer Science. Beeri, C., Buneman, P., Eds.; Springer:
Berlin/Heidelberg, Germany, 1999; Volume 1540, pp. 277–295. [CrossRef]

24. Fan, W.; Li, J.; Wang, X.; Wu, Y. Query preserving graph compression. In Proceedings of the ACM SIGMOD International
Conference on Management of Data, SIGMOD 2012, Scottsdale, AZ, USA, 20–24 May 2012; Candan, K.S., Chen, Y., Snodgrass, R.T.,
Gravano, L., Fuxman, A., Eds.; ACM: New York, NY, USA, 2012; pp. 157–168. [CrossRef]

25. Givan, R.; Dean, T.L.; Greig, M. Equivalence notions and model minimization in Markov decision processes. Artif. Intell. 2003,
147, 163–223. [CrossRef]

26. Kurtonina, N.; de Rijke, M. Expressiveness of Concept Expressions in First-Order Description Logics. Artif. Intell. 1999, 107,
303–333. [CrossRef]

27. Abriola, S.; Barceló, P.; Figueira, D.; Figueira, S. Bisimulations on Data Graphs. J. Artif. Intell. Res. 2018, 61, 171–213. [CrossRef]
28. Fagin, R.; Halpern, J.Y.; Moses, Y.; Vardi, M.Y. Reasoning about Knowledge; MIT Press: Cambridge, MA, USA, 1995. [CrossRef]
29. van Ditmarsch, H.; French, T.; Velázquez-Quesada, F.R.; Wáng, Y.N. Knowledge, awareness, and bisimulation. In Proceedings

of the 14th Conference on Theoretical Aspects of Rationality and Knowledge (TARK 2013), Chennai, India, 7–9 January 2013;
Schipper, B.C., Ed.; 2013.

30. Velázquez-Quesada, F.R. Bisimulation characterization and expressivity hierarchy of languages for epistemic awareness models.
J. Log. Comput. 2018, 28, 1805–1832. [CrossRef]

96

Citation: Zhukov, D.; Perova, J.;

Kalinin, V. Description of the

Distribution Law and Non-Linear

Dynamics of Growth of Comments

Number in News and Blogs Based on

the Fokker-Planck Equation.

Mathematics 2022, 10, 989. https://

doi.org/10.3390/math10060989

Academic Editors: Liliya Demidova

and Amir Mosavi

Received: 12 January 2022

Accepted: 16 March 2022

Published: 19 March 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Description of the Distribution Law and Non-Linear Dynamics
of Growth of Comments Number in News and Blogs Based on
the Fokker-Planck Equation

Dmitry Zhukov 1, Julia Perova 2,* and Vladimir Kalinin 1

1 Institute of Cybersecurity and Digital Technologies, MIREA-Russian Technological University, 78 Vernadsky
Avenue, 119454 Moscow, Russia; zhukovdm@yandex.ru (D.Z.); vkalininz@mail.ru (V.K.)

2 Institute of Radio Electronics and Computer Science, MIREA-Russian Technological University, 78 Vernadsky
Avenue, 119454 Moscow, Russia

* Correspondence: jul-np@yandex.ru; Tel.: +7-916-368-05-34

Abstract: The article considers stationary and dynamic distributions of news by the number of
comments. The processing of the observed data showed that static distribution of news by the
number of comments relating to that news obeys a power law, and the dynamic distribution (the
change in number of comments over time) in some cases has an S-shaped character, and in some
cases a more complex two-stage character. This depends on the time interval between the appearance
of a comment at the first level and a comment attached to that comment. The power law for the
stationary probability density of news distribution by the number of comments can be obtained from
the solution of the stationary Fokker-Planck equation, if a number of assumptions are made in its
derivation. In particular, we assume that the drift coefficient μ(x) responsible in the Fokker-Planck
equation for a purposeful change in the state of system x (x is the current number of comments on
that piece of news) linearly depends on the state x, and the diffusion coefficient D(x) responsible for a
random change depends quadratically on x. The solution of the unsteady Fokker-Planck differential
equation with these assumptions made it possible to obtain an analytical equation for the probability
density of transitions between the states of the system per unit of time, which is in good agreement
with the observed data, considering the effect of the delay time between the appearance of the
first-level comment and the comment on that comment.

Keywords: nonlinear dynamics; processes in social systems; Fokker-Planck equation; power law;
monitoring; management

1. Introduction

The description of social network behavior and information resources is one of the most
important areas of mathematical sociology. From a practical point of view, the development
of models describing user opinion dynamics and preferences contributes to the development
of systems for automated monitoring of the public mood and its changes. Compared to
traditional methods of studying public opinion, the advantage of such systems is that of
automated information processing. Social surveys require the development of questionnaires
and sampling, which is complicated by the necessity to cover all strata of society. In addition,
respondents tend to provide socially desirable responses.

Another advantage of automated information processing for social networks and
comments to newsfeed is that it identifies straightforward comments related to a socially
significant topic and to highly-publicized news. Therefore, the development of automated
information processing tools provides feedback between society and government bodies,
starting from the municipal level and ending at the level of state authorities.

The development of automated tools assumes that their work should be based on
algorithms based on approved mathematical models. In addition, it is of the utmost

Mathematics 2022, 10, 989. https://doi.org/10.3390/math10060989 https://www.mdpi.com/journal/mathematics97

Mathematics 2022, 10, 989

importance not only to monitor and analyze the processes involved in research but also to
predict their evolution, which is necessary to ensure sustainable social development.

The dynamics of the changes in opinions and moods of Internet users can be largely
attributed to stochastic processes, but with the possibility of targeted impact. On the one
hand, the human factor (many people with different opinions, preferences, and behavior
patterns) creates random changes (due to the wide variety of behavioral models of users).
On the other hand, elements of opinion consistency are introduced into the dynamics of
changes. A detailed description of the use of stochastic methods for modeling the dynamics
of social processes can be found in [1].

In this regard, we consider models based on the Fokker-Planck equation to be the
most promising to develop models of the changes in public mood dynamics, which takes
into account both ordered and random changes.

The Fokker-Planck equation is widely used for analyzing and modeling the behavior
of time series when describing processes in complex systems [2–5], for example, when
analyzing the dynamics of the non-stationary time series of stock and commodity indices.
To predict changes, based on the Fokker-Planck equation and sample data, the distribution
functions of the series levels are constructed in the form of a sum of polynomials in which
the coefficients of drift and diffusion may depend on a specific parameter, which is the
level of the series according to various laws and is empirical.

It should be noted that, apart from the Fokker-Planck equation, other approaches are
used for modeling based on differential equations, for example, the Liouville equations [5,6],
the diffusion equations [4,7] and many others. A detailed review of modeling social
processes is presented in [8].

The Fokker-Planck equation is a second-order partial differential equation that not
only contains a term responsible for stochastic changes (“diffusion”), but also an element
responsible for opinion consistency (“draft”). From the Fokker-Planck equation, it is
possible to obtain a probability density function of transitions per unit of time between
states of a system. A system can be defined as a blog or newsfeed that users comment on,
and its state will be the number of comments that are observed at a given time.

In addition to describing dynamic processes, stationary solutions can be obtained
from the Fokker-Planck equation, which can describe the state of a system in a stationary
state, when, for example, its evolution has already ended, and changes do not occur. One
example of such stationarity may be the final static distribution of newsfeed or blogs by the
number of comments on them.

The study of processes occurring in complex systems with the participation of the hu-
man factor shows that very often a power law of distribution is performed for the observed
characteristics of the parameters of these processes. If we imagine the interconnection of the
elements forming a complex system as a diagram, it turns out that the networks that arise
in this case—social, communication, Internet link networks, citations, and others—are well
described by scale–free models (scale-invariant), in which the degrees of vertices (nodes)
are distributed according to the power law p(x) ∼ x − γ (where γ is the characteristic
degree) [9–14]. Scale-free networks are self-similar, i.e., in any part of the network, the
distribution of degrees will be the same.

The power model is widely used in the analysis of processes in complex social systems,
but at the same time the issue of the theoretical justification of the possibility for its
application requires further study. In our opinion, this justification is very crucial. The
identification of the nature of the processes from which the power law arises is necessary
for a deeper study of behavior and analysis of complex social systems.

In addition, we are not aware of attempts to apply a theoretical description of processes
in social networks and network mass media based on the Fokker-Planck equation from the
standpoint of formulating and solving boundary value problems based on it.

The purpose of our work is to investigate the possibility of obtaining from the Fokker-
Planck equation, often observed in practice in complex social systems, the power law of

98

Mathematics 2022, 10, 989

the distribution of parameters of the processes occurring, and to show that under certain
assumptions this equation can be used to describe both static and dynamic characteristics.

2. Research Methods

As described in the lead section, our article is devoted to solving the following issues.
First, we collected statistics on the dynamics of changes for the number of comments
on the news on the feed portal of the Russian radio station «Echo of Moscow» https:
//echo.msk.ru/ (accessed on 13 September 2021) (one of the leading Russian commercial
radio stations and newsfeeds). Then, we describe the processing of the collected data and
the results obtained (in particular, in a stationary state, a power law of the news distribution
by the number of observed comments). The observed dynamics of change in the number
pf comments (to news feeds and blogs) is described by either two-stage or S-shaped curves.
Further, using the stationary Fokker-Planck equation and a number of assumptions about
the dependence of coefficients describing a random and purposeful change in the state
of the system x (x is the current number of comments on the news) on the magnitude
of this current state x, we derive from the Fokker-Planck equation the power law of the
distribution of news by the number of comments. Then, based on the Fokker-Planck
equation, we construct a dynamic model of changes in the state of the systems under
consideration over time. The analysis of the models showed good agreement with the
observed characteristics of the processes. This suggests that the models we have developed
can be used not only to analyze social processes, but also to predict their evolution, which
is very important for managing the stable development of social relations. In conclusion,
we discuss the possible application of our models in practice and the creation of algorithms
for automated systems for the monitoring of public opinion.

3. A Brief Overview of Existing Studies of the Structure of Complex Social Systems
and the Processes Observed

One of the directions in the study of complex networks is the study of their structure,
based on the possibility of representing processes at the graph level, using a set of attach-
ments at the level of individual nodes for data aggregation (of the properties of the whole
from the properties of the quotient). Aggregation is crucial, since it should, in principle,
provide an isomorphism-invariant representation of the graph, i.e., the representation of
the graph should be a function of the nodes of the graph, considered as some set.

In [15], the DeepSets aggregation operator based on self-organizing maps (SOM)
is considered. Using SOM allows calculation of representations of nodes that include
information about their resemblance. Experimental results on real data sets show that the
proposed approach provides improved predictive performance compared to the generally
accepted summing aggregation and many modern graph neural network architectures in
the literature.

Since, with the growth of the network, the search for similarities between nodes in the
network is a time-consuming process, to optimize the process of solving problems of pre-
dicting connections and detecting communities’ researchers in [16] use swarm algorithms.
Swarm-based optimization methods used in social network analysis are compared in this
article with community analysis and link analysis based on traditionally used approaches.

In [17], the authors consider the mathematical model of mixed membership in user
groups, which are formed stochastically. This preliminary solution the authors base on the
method of detecting pairwise measurements, which subsequently show the presence or
absence of connections between a pair of nodes. When analyzing the approach for proba-
bilistic changes between pairs of objects, it is usually necessary to introduce assumptions,
for example, independence, or assumptions of the inconsistency of this connection (mixed
membership in stochastically forming groups). The proposed model allows, under certain
assumptions, the tracking of dynamic changes in the number of nodes in the forming of
groups and their clustering by groups.

99

Mathematics 2022, 10, 989

In the presented model, from the development of choice and influence on social
networks [18], the authors consider a model for which the number of nodes and the
network topology (structure of connections) are dynamic. A significant disadvantage of
this model is that it explicitly considers the connections between all pairs of nodes. This
action leads to quadratic difficulty in calculating the change in the number of participants
in various social groups and a significant increase in the calculation time. It is worth noting
that real social networks and systems are sparse. This means that most participants do not
have paired connections, and the number of their connections is itself random. Introducing
the concept of sparsity into the model [18], as well as taking into account the random nature
of the number of connections for each node (user) of the network, can significantly increase
the speed and efficiency of using this model.

The authors in [19] use a structure analysis technique that dynamically develops, and
therefore has a multimodality of, the graph of the social network. Using this approach to
real graph structures in practice shows that there is temporary online regularity in people’s
social interactions. Moreover, correlations are found between the occurrence of friendship
between participants and the settings of the interactive social network. Separately, it is
worth noting that physical contacts between people can be considered as an interactive
dynamically changing network.

In article [20], the authors described methods of structuring and influencing the
dissemination of information on mobile social networks. In these networks, a group of
users is typically treated as some kind of entity in which individuals can exchange messages.
The authors also note that there is a variety of models for analyzing the dissemination of
information on mobile social networks, but none of the existing methods considers the
concept of information dissemination in the group. Therefore, the authors of the paper used
the SIR model, which is used to spread viruses in computer networks, and applied this to the
dynamics of the information dissemination process in groups. Simulations using the Monte
Carlo method showed that group propagation increases the overall speed of information
propagation on the network. In addition, the authors note that the presence of groups
with a significant number of participants is most effective in disseminating information
than the presence of a huge number of groups but with a small number of participants.
This analysis of the impact of the structure on the dissemination of information within it
proves that their distribution in the networks of Erdesh-Rennie and Barabashi-Albert does
not show any differences. Ref. [20] analyses the stochastic model of opinion dynamics in
social networks. This model is based on a multi-agent approach, for which the opinion
of each network member is randomly influenced by the actions of others (its neighboring
nodes). Examples were given that, since the number of users (nodes) in the network is
not infinite, the model as a result asymptotically creates consensus. The consensus value
usually corresponds to one of the absorbing states of the Markov system. However, when
the number of nodes is large, some metastable transition states are observed in places. The
duration of these transient states may be as long as desired in time, and the state data may
be characterized using the mean field approximation for the Markov system. Ultimately,
the authors propose a model by which opinion control in the social network is possible.

We can consider several statistical studies [21–23] that have widely used the method
of studying profiles in social networks. The purpose of these studies is to identify the
social mobility of people based on their publications accompanied by geodata. The authors
found a large number of such publications, and based on these an approximate map of
the user’s movements was compiled, the main centers of activity were identified, and
the person’s place of residence was established. According to the data on the place of
residence, the people’s names were found. Further, using a database of names distributed
by gender, it was possible to determine the gender of more than half of all the accounts
studied; according to the surname data, the researchers tried to establish information about
the race and age of users, successfully in 38% and 14% of cases, respectively. These studies
have shown that it is possible to establish some demographic characteristics, knowing only
about the movements of a person or knowing his first and last name.

100

Mathematics 2022, 10, 989

Using the comparison of time slices, it is possible to determine dynamically changing
temporary communities of users of social network structures. The study of these dynamic
communities makes it possible to significantly simplify the analysis of the dynamics of a
complex system of social interactions as it evolves over time.

Consider [24], which presents the fundamental structures of dynamic social networks
based on a high-resolution dataset describing a tightly connected population of 1000
first-year students at a large European university. The authors of this article consider
the physically short interactions that they measured using Bluetooth, supplemented with
information received from telecommunications networks (information about calls and
messages), social networks and the demographic and geolocation data of users.

Human social communities by their nature overlap due to individuals participating in
several different groups (in the theory of complex networks, such nodes are called jumpers).
During the week, meetings of the subjects of the created compact structure take place,
either a meeting of friends outside the university, or of all students (such structures are
called cores). In a network of short physical interactions, all participants are present at the
same time and are in physical contact.

The location of the core members can also be forecast. The objects that helps to do
this are the kernels themselves. By observing the usual routes of the people who make up
the core and their behavioral habits, it is possible to predict the geographical location of
a person in the next time interval with high accuracy (on average in 93% of cases), such
high accuracy proving that human mobility patterns are regular. It is also worth noting
that the members of the core have fewer location states than individuals, which leads to
lower values of information entropy on average.

The condition that geospatial studies are conducted for a part of the social group,
yet the study is limited to certain time frames, shows any complex interaction between
time, place and social context. It also supports the hypothesis that often. when people
are most unpredictable in the geospatial domain, they exhibit some predictable social
behavior. Linking the results of this article with the literature on dynamic community
detection, it can be noted that there are many methods in the literature that would allow
the detection gatherings in everyday life, but here the authors used a simple comparison of
graph components to emphasize the fact that emerging social structures are natural, and
these complex methods are not needed to determine their occurrence.

In fact, Ref. [24] provides a quantitative assessment of long-term patterns encoded
in the micro dynamics for a huge system of interacting nodes, which are characterized by
predictability and a high degree of order.

Let us consider another paper on dynamic models [25]. Recent developments in the
field of social networks have shifted the focus from static representations to dynamic ones,
requiring new methods of analysis and modeling. Observations in real social systems
have revealed two main facts that play a very important role in the evolution of networks
and affect the current processes of distribution: the strategies that individuals adopt when
choosing between new or old social systems, connections, and the turbulent nature of
social activity that sets the pace of these choices. The results are verified using numerical
simulation and compared with two observable data sets.

In [26], methods of assessing public opinion and highlighting the mood of users are
carried out using a method based on the use of vocabulary and semantics and inherited
from the classical approach to the analysis of public sentiment. Neural networks are used
for this method. The task of the neural network is to determine important keywords, which
are then checked by experts in this subject area. Formally, the program first analyzes articles
and determines how often different words are found in them. Next, the program identifies
the most commonly used words and expressions, and makes them significant. Then, on
their basis, the program builds a lexicon that characterizes the public mood based on the
transmitted news articles.

In [27], the authors described the workings of the algorithm for analyzing certain
topics from the social network. In addition to collecting information, there are methods for

101

Mathematics 2022, 10, 989

processing and sorting information. In addition, the time elapsed between publications is
measured so that it is subsequently possible to restore the order of publications and obtain
a time scale based on these data. Following from the above, the result is a graph that can
be used to track the growth and decline in popularity of certain topics discussed on social
networks. You can also trace what moods are accompanied by what events in society. In
addition, it is possible to determine the period of active discussion for certain topics.

Article [28] describes the method of studying political sentiments in society, based
on the analysis of the social network. This method is carried out by searching for special
words in the text that are previously entered in the program database. The main task of
this system is to track by how much different political parties are preferable to citizens, and
which are less significant. In addition, which topics are most resonant and most discussed
in society are monitored. Additionally, with the help of the program, it is possible to find
out how many people in percentage terms support a certain political party.

The subject of [29] is that of microblogs. The authors of this study used the method
of keyword analysis. With the help of such analysis and machine learning, they managed
to divide the initial sample into six age groups and identify the topics that participants in
each age group most often discuss and on which they most often express their thoughts.
Teenagers under 18 most often discuss sports; young people aged 18–25 most often talk
about entertainment; people aged 25 to 30 mainly discuss family and business, older people
(31–36 years old) are most interested in technology, users aged 26–40 begin to worry about
their health and speak about this more often, and those over 40 like to discuss politics.
Thus, the most frequent topic for discussion was determined for each age group; this does
not mean that each member of this group necessarily discusses this topic, but it is more
likely that the person discussing this topic belongs to this age group.

The authors of [30–34] proposed a method that evaluates the mass media according
to several criteria (topic, evaluation criteria/properties, classes), which combine thematic
modeling of context and multi-criteria decision-making. This evaluation system is based on
corporate analysis as follows: the conditional distribution of media probabilities by topic,
detail and class is calculated after the formation of the thematic model of corporations. Sev-
eral approaches, including manual labeling, a multi-corporate approach and an automatic
approach, are used to obtain coefficients that show the interaction regarding how each
topic relates to each evaluation criterion and to each class described in the document. The
multi-corporate approach proposed in the study involves assessing the thematic asymmetry
of text enclosures to obtain coefficients describing the relationship of each topic to a certain
criterion. These factors, in combination with the thematic model, can be used to evaluate
each document in the enclosures according to each of the criteria and classes considered.
This method was applied to a body of texts consisting of 804,829 news publications from
40 Kazakh sources, published from 1 January 2018 to 31 December 2019 (over a period of
2 years) to classify negative information on socially significant topics. The study produced
a BigARTM model (200 topics) and applied this model, including completion of the ana-
lytical hierarchical process table (AHP) and all necessary high-level labeling procedures.
The experiments carried out confirm the general possibility of evaluating media using
the thematic model of text enclosures, since the classification problem achieved an area
estimate under the receiver performance curve (ROC AUC) of 0.81, which is comparable to
the results obtained for the same task using the BERT model.

The developed system, in which the proposed model was integrated, allows the
solution of classic problems, such as simple reports or sentiment analysis. Moreover, it
has a number of unique possibilities for use. It provides options such as automatically
analyzing a specific topic, event, or object without having to create a keyword-based query.
The analysis is based on an arbitrary list of criteria and not limited to sentiment alone. This
list includes social significance, popularity, manipulation, propaganda content, attitude
to a certain country, attitude to a certain area, analysis of the dynamic behavior of topics,
predictive analysis at the thematic level, etc.

102

Mathematics 2022, 10, 989

In [35–37], the KroMFac technique is proposed, which performs community detection
using regularized non-negative matrix factorization (NMF) based on the Kronecker graph
model. KroMFac combines network analysis and community discovery methods in a single
unified structure. This technique connects four areas of research, namely the detection
of communities on graphs, of overlapping communities, of communities in incomplete
networks with missing edges, and of complete networks.

It is possible to consider several works, close to the subject of our research, on the
description of processes in complex social network structures.

Article [38] considers a model describing the spatial and temporal distribution of
information in social networks based on a partial differential equation. In this paper, a
non-autonomous diffusion logistic model with Dirichlet boundary conditions was created
and investigated, which showed that the diffusion of data is strongly influenced by the
diffusion coefficient and internal growth rate (the spread of information or rumors can be
considered as a kind of virus that does not have a physical form).

Article [39] proposes a mathematical model of information dissemination and a mech-
anism of evolution of the state of the information node using the theory of thermodynamic
molecular thermo-diffusion motion in combination with the model of epidemic infection.
Four different network topologies are used for the time-varying online social network
(OSN) information dissemination process (regular network, small worlds network, random
network, and non-scale network).

When distributing OSN information, the concept of information entropy is used. The
process of information dissemination determines the transition of the system from one
stable state to another. The transfer function is set by such information parameters as
information energy, information temperature and energy entropy. The considered model is
based on the relationship between the state of microscopic network nodes and the rules of
macroevolutionary evolution. The authors of the article conduct simulation experiments
and empirical comparative experiments in networks with different topological structures.
The proposed model is trained and evaluated using experimental data collected from the
Chinese network Baidu.

The authors of article [40] propose a model for describing the distribution of messages
in social networks. This proposal is based on systems described by means of differential
equations that show the propagation of various information in a network graph chain. The
authors are convinced that this model allows the taking into account of specific mecha-
nisms for transmitting messages. In this model, the vertices of the graph are people who,
when a message is received, form their attitude to it. After this, people decide on further
transmission of this message over the network, provided that the corresponding interaction
potential of the two persons exceeds a certain threshold level.

The authors developed a mathematical method for calculating the timing of the
distribution of messages in the corresponding graph chain, which is reduced to solving
a number of Cauchy problems for systems of ordinary nonlinear differential equations.
Formally, these systems can be simplified, and some equations can be replaced by the
Boussinesque or Corteweg de Frieze equations. The presence of soliton solutions for these
equations gives us reason to consider social and communicative solitons as an effective tool
for modeling the processes of disseminating messages on social networks and studying
various influences on their distribution. If certain assumptions are allowed, this model,
considered in [33] has some analogies with the spread of viral epidemics.

In conclusion, it should be noted that almost no one has studied models based on the
Fokker-Planck equation to describe processes in complex network social systems.

4. The Analysis of the Observed Statistics of Comments from Users of Newsfeed
Resources and Blogs—Statement of the Research Problem

4.1. Data Source Selection and Presentation

Newsfeed and blogs, on which Internet users leave their comments, are one of the
most important among network objects, since they can indicate public opinion in real time.

103

Mathematics 2022, 10, 989

A socially significant topic usually attracts both supporters and opponents, who enter into
discussions and leave comments. The more highly-publicized the news or blog, the higher
the user activity and the greater the number of commentators (a multi-level structure of
comments on comments appears). The analysis of the structure of comments of users of
news posts and blogs is one of the most practically significant and relevant scientific tasks,
the solution to which ensures sustainable social development.

To study the nature of the observed processes and collect data, we have selected the
commercial radio station and newsfeed «Echo of Moscow» https://echo.msk.ru/ (accessed
on 13 October 2021). The choice is determined by the following reasons:

1. News portal (The commercial radio station) is among the top 10 news sites in Russia
and in July of 2021 took ninth place for attendance and seventh for user activity, also at
the end of July 2021 ranking in the top eight of the cited radio stations and occupying
first place through hyperlinks in social media at the end of August 2021 and fourth
place according to the citation index in the media.

2. The portal has various themes (presents news from the political, sporting, economic
and scientific arenas, cultural orientation, etc.).

3. The news portal has been in existence since 1990 and has established itself as a reliable,
truthful and publicly available news source, and also publishes blogs of well-known
media personalities.

4. There is practically no pre-moderation of comments (pre-moderation applies only to
new users or users who have previously violated the rules of the news portal), but
there is post-moderation of discussions (the requirements for comments and prohibi-
tions on their placement can be found at the link: https://echo.msk.ru/moderate.html
(accessed on 13 October 2021)). Users can express different opinions (which do not
have to coincide with the official position) and their comments are deleted only for
violating the rules.

At first, we downloaded the news range we were interested in, using a special software
application (parser). The portal distributes news by day, and each individual day can
be found at the link (https://echo.msk.ru/news, (accessed on 13 October 2021), where
day is the day, month is the month, year is the year). Each news item has a number of
parameters such as: news text, unique identification number on the portal, title, web page
address (URL), metadata (date and time of publication, number of views and comments),
texts of user comments (as well as unique identification number of the comment, unique
identification number of the user, date and time of comment, comment hierarchy level,
relationship by level of commenting to the parent comment) and available information
about authors (unique identification number of the user on the webpage, city, occupation,
place of work, name or nickname, registration date, the number of recommendations and
user profile views, the total number of comments for the observed period, etc.). On average,
the number of news items varied from 160 to 190 per day. While collecting the data, we
downloaded information about which of the users commented on other users’ reaction to
news. Based on the data obtained, a database of the newsfeed archive was created.

Figure 1 shows the correspondence of the share of commentators to the number
of comments they wrote (the observed density of the distribution of commentators by
their number of comments) for the period from 1 January to 31 December 2020. Sim-
ilar dependencies can be built for any period (day, week, month, quarter, year). The
total number of news items published in 2020 was 65,560, of views 196,609,650, and of
comments 564,764.

104

Mathematics 2022, 10, 989

Figure 1. Density of distribution of commentators by their number of comments for the period from
1 January to 31 December 2020.

Note that Figure 1 shows only part of the data. Some users managed to write several
hundred comments during the year (the maximum number of comments on one news item
was 239), but their share is rather small. So, for clarity of presentation, the right part of the
chart has been reduced, because it is uninformative.

4.2. Processing of Observed Data

When analyzing the observed data (see Figure 1), it is crucial to establish the dis-
tribution law that the observed distribution density is subject to. Otherwise, se of the
data obtained is difficult in terms of predicting the behavior of the process and making
recommendations for decision-making.

Considering the process of creating comments by users to be largely random (due to
the different probability of occurrence of various news events and the degree of interest in
them, etc.), let us consider the three most frequently observed distribution laws:

1. Gaussian distribution: ρ(x) = e−
x2

2·σ2 /σ
√

2π
2. Exponential distribution: ρ(x) = a·e−αx

3. Power distribution: ρ(x) = β·x−γ

If any of these distributions is fulfilled, then the observed data should be linearized in
the appropriate coordinates with an acceptable value of the correlation coefficient (0.95–0.98):

1. For the Gaussian distribution: ln{ρ(x)} = −ln
{

σ
√

2π
}
− 1

2·σ2 ·x2

2. For exponential distribution: ln{ρ(x)} = ln{a} − αx
3. For the power distribution: ln{ρ(x)} = ln{β} − γln{x}

The linearization of the observed data for various types of distribution is shown in
Figures 2–4 (“1”—The area in which the “fluffy tail” is observed.).

105

Mathematics 2022, 10, 989

Figure 2. Linearization of the observed data for the Gaussian distribution.

Figure 3. Linearization of observed data for exponential distribution.

106

Mathematics 2022, 10, 989

Figure 4. Linearization of the observed data for power distribution.

As can be seen from Figures 2–4, the best linearization is observed for approximating the
observed data by the power law of distribution (see Figure 4). However, the areas shown in
Figures 2–4 by the oval figure, which we called the “fluffy tail”, deserve special discussion.
Their appearance is due to the fact that, in addition to the so-called conscientious users, there
are chatbots and users who write comments on a professional basis among the commentators.
A rule can be introduced according to which unscrupulous users and chatbots can include
those commentators who make more than 6–10 comments per day, as well as those who create
several comments in a very short time interval (high-frequency commenting).

After appropriate purification, data can be obtained, the linearization of which, for
the power law, is shown in Figure 5. There is no acceptable linearization for the exponen-
tial distribution and the Gaussian distribution. The straight line in Figure 5 shows that
the trend line is well described by the linear approximation y = −1.49 − 1.23z, where
y = ln{ρ(x)}, z = ln{x}, ln{β} = −1.47, and the correlation coefficient is 0.98.

In addition, to confirm the conclusion regarding linear approximation, it is possible
to investigate the behavior of the residuals, and test the hypothesis that they are normally
distributed with an average value equal to zero and have a homogeneous variance. The
calculation of the residuals can be carried out on the basis of the actually observed values
of the natural logarithm of the proportion of commentators who gave a given number of
comments and the equation we obtained, for a given logarithm of the number of comments.
The calculated value of the mathematical expectation for the distribution of residues is
0.25 and the variance is 0.13. The asymmetry is 0.64; the kurtosis is 0.14. Testing the
slope hypothesis (two-sample F-test for variances) shows that the variance of the residuals
(calculated relative to the trend line) is significantly less than the variance of the deviation of
linear regression points from the average value of the observed data (Σyi/n = Σln{ρ(xi)}/n).
This is equal to 2.11 (0.13 << 2.11). Thus, the resulting regression is significant. The
asymmetry characterizes the “skewness” of the distribution function, and for symmetric
functions (for example, the normal distribution) it is zero (in our case, it is small and close to
zero). The kurtosis characterizes the “tail” of the distribution. With large positive values for

107

Mathematics 2022, 10, 989

the kurtosis, the distribution function decreases more slowly with further distance from the
average value than with small ones. If the excess value is greater than zero, the distribution
density graph will lie above the normal distribution graph and, for less than zero, below
the graph (in our case, this is small and very close to zero). Thus, from the data obtained, it
can be concluded that the distribution of residuals is very close to normal, which confirms
the conclusion that the natural logarithm of the proportion of commentators who wrote
these comments linearly depends on the natural logarithm of the number of comments,
which confirms the fulfillment of the power law.

Figure 5. Linearization of the observed data for power distribution after cleaning unscrupulous users.

Thus, it can be assumed with great certainty that the density of the distribution of
commentators by their number of comments obeys a power law.

It seems interesting to consider the dynamics of the changes in the number of com-
ments on news of great public interest (during viewing, such types of newsfeed or blogs
gain hundreds of comments) over time.

As an illustrative example, the news that appeared on the Echo of Moscow portal
(https://echo.msk.ru/news/2626290-echo.html, accessed on 21 November 2021) can be
chosen. On 21 November 2021: “The Public Council under the Ministry of Defense made a
proposal to rename the Prague metro station in honor of Marshal Konev.” The total number
of comments was 221. Figure 6 shows the dynamics of changes in the number of comments
on this news item over time. The number of comments at the first level (comments one
news itself) was 107, at the second level (comments of the comments at the first level) 26, at
the third 24, and at the fourth and more, the average time for second-level comments to
appear is about 130 min.

108

Mathematics 2022, 10, 989

Figure 6. The observed dynamics of change over time, the number of comments on a news item
of public interest that appeared on the portal https://echo.msk.ru/news/2626290-echo.html on 16
April 2020.

As another illustrative example, the news that appeared on the Echo of Moscow
portal (https://echo.msk.ru/news/2740844-echo.html, accessed on 21 November 2021)
on 12 November 2020 can be chosen: “Lavrov said that the Russian Federation has reason
to believe that Navalny was poisoned on a plane or in Germany.” The total number of
comments was 220. The dynamics of the change in the number of comments on this news
item over time is shown in Figure 7.

Figure 7. The observed dynamics of change over time, the number of comments on a news item
of public interest that appeared on the portal https://echo.msk.ru/news/2740844-echo.html on 12
November 2020.

109

Mathematics 2022, 10, 989

After removing the time gaps, the dynamics take the form shown in Figure 8.

Figure 8. Dynamics of changes over time, the number of comments on a news item of public interest
that appeared on the portal https://echo.msk.ru/news/2740844-echo.html on 12 November 2020,
after removing the time gaps

The number of comments at the first level (comments on the news itself) was 93, at the
second (comments on comments at the first level) 32, at the third 22, and at the fourth and
more 73. The average time for second-level comments to appear is about 100 min.

It should be noted that in addition to the two-stage curves (see Figures 6 and 8), in
some cases there is an S dynamic for changes in the number of comments (see Figure 9
(without removing the gaps) and Figure 10 (after removing the time gaps) for the news
item “Putin has nominated Mishustin for the post of prime Minister” published on the
portal https://echo.msk.ru/news/2571431-echo.html (accessed on 21 November 2021) on
15 January 2020 which received 208 comments).

Figure 9. The observed dynamics of change over time, the number of comments on a news item
of public interest that appeared on the portal https://echo.msk.ru/news/2571431-echo.html on 15
January 2020.

110

Mathematics 2022, 10, 989

Figure 10. Dynamics of changes over time, the number of comments on a news item of public interest
that appeared on the portal https://echo.msk.ru/news/2571431-echo.html on 15 January 2020, after
removing the time gaps.

The number of comments at the first level (on the news itself) was 90, at the second
(comments on comments at the first level) 38, at the third 14, and at the fourth and more 66.
The average time for second-level comments to appear is about 56 min.

Note that the length of the sections of curves 1, 2 and 3 in Figures 6, 8 and 10 may be
different, as well as the growth areas of the S-shaped curves.

The dynamics of the appearance of comments for news items: (1) On 16 April 2020:
“The Public Council under the Ministry of Defense made a proposal to rename the Prazh-
skaya metro station in honor of Marshal Konev”; and (2) On 12 November 2020: “Lavrov
stated that the Russian Federation has reason to believe that Navalny was poisoned on
an airplane or in Germany”, have a two-stage character (see Figures 6 and 8). For the
news: (3) 15 January 2020: “Putin nominated Mishustin for the post of prime Minister”,
this is S-shaped (see Figure 10). In our opinion, this may be due to a significant difference
in the average time of appearance of second-level comments (the time interval between
the appearance of the first-level comment and the comment om this comment). If for
the first news and for the second this is about 130 and 100 min, respectively, then for the
third it is about 56 min. It should also be noted that the two-stage nature of the dynamics
of commenting on the first news item is more evident than for the second, and at the
same time the span until the appearance of secondary comments on the second news
item is longer. For the other parameters (the total number of comments, the number of
comments at the first, second and third levels), the three selected news items are close in
quantitative terms.

For further study, the following theoretical research task can be formulated: what is
the nature of the processes of commenting on news items and blogs, and what features of
these complex social systems lead to the fact that, for the correspondence of the probability
density of the distribution of comments by their number, a power law is applied and the
dynamics have a complex two-stage character in many cases?

111

Mathematics 2022, 10, 989

5. Derivation of the Power Law of the Distribution of Comments from the Stationary
Fokker-Planck Equation

The Fokker-Planck equation is widely used for the analysis and modeling of non-
stationary processes observed in various complex systems and allows the achievement of
good agreement with the predicted behavior and observed data. Therefore, as a testable
hypothesis, we assume that the Fokker-Planck equation can be used to analyze and model
the appearance of comments on newsfeed and blogs.

In general, the Fokker-Planck equation has the form:

∂ρ(x, t)
∂t

= − ∂

∂x
[μ(x)·ρ(x, t)] +

1
2

∂2

∂x2 [D(x)·ρ(x, t)] (1)

where ρ(x, t) is the time-dependent probability density of the distribution over states x (in
our case, state x is the number of comments observed at time t), D(x) is a state–dependent
coefficient x that determines a random change in state x, and μ(x) is a state-dependent
coefficient x that determines a purposeful change in state x.

In relation to our model, D(x) can be interpreted as user actions caused by a sponta-
neous impulse that arose when reading the news or comments on it from other users, when
the event described in the newsfeed or blog is not essential, but the user is willing to spend
time commenting or responding to another commentator (the user has a spontaneous
desire to respond to this news). μ(x) can be interpreted as purposeful actions caused by the
desire to respond to a newsfeed or blog that is essential to the user, as well as to comment
on another user’s comment if this touches on a topic that is important from the point of
view of this user (the user is constantly interested in this topic).

When analyzing the observed data, at first step we will not consider the dynamics
of the appearance of comments over time, but take a static picture formed over a certain
period of time (when the changes stop), so we can proceed to the stationary Fokker-Planck
equation, which has the form:

− d
dx

[μ(x)·ρ(x)] +
1
2

d2

dx2 [D(x)·ρ(x)] = 0 (2)

Calculate the derivatives in Equation (2):

− d
dx

[μ(x)·ρ(x)] = −
[

μ(x)·dρ(x)
dx

+ ρ(x)·dμ(x)
dx

]
d2

dx2 [D(x)·ρ(x)] =
d

dx

[
d

dx
[D(x)·ρ(x)]

]
=

d
dx

[
D(x)·dρ(x)

dx
+ ρ(x)·dD(x)

dx

]
=

= D(x)·d
2ρ(x)
dx2 + 2

dD(x)
dx

·dρ(x)
dx

+ ρ(x)·d
2D(x)
dx2

After substituting the derivatives into Equation (2), we obtain:

− μ(x)·dρ(x)
dx

− dμ(x)
dx

·ρ(x) +
1
2

D(x)·d
2ρ(x)
dx2 +

dD(x)
dx

·dρ(x)
dx

+
d2D(x)

dx2 ·ρ(x) = 0 (3)

Further, to build the model, it is necessary to make assumptions about the dependence
of D(x) and μ(x) on the state of x and consider two conditions. Firstly, we consider the
magnitude of the terms included in Equation (3), and secondly, we can assume that with
the growth of state x (the increase in the number of possible comments (the significance
of a newsfeed or blog), the values D(x) and μ(x) should also increase). Logic suggests
that all terms of Equation (3) should have the same magnitude, which has p(x). Both the
first and the second condition will be met if the dependencies D(x) and μ(x) on the state x
have the form: μ(x) = μ0·x and D(x) = D0·x2. In this form, the growth of D(x) and μ(x)

112

Mathematics 2022, 10, 989

will be ensured with an increase in the state of x, and on the other hand the condition of
preserving the magnitude is fulfilled. Substituting D(x) and μ(x) into Equation (3) gives:

− μ0·x·dρ(x)
dx

− μ0·ρ(x) +
1
2

D0·x2·d
2ρ(x)
dx2 + 2D0·x·dρ(x)

dx
+ D0·ρ(x) = 0

x2·d
2ρ(x)
dx2 + 2

[
2 − μ0

D0

]
·x·dρ(x)

dx
+ 2

[
1 − μ0

D0

]
ρ(x) = 0 (4)

Denote 2
[
1 − μ0

D0

]
= γ, then:

x2·d
2ρ(x)
dx2 + [2 + γ]·x·dρ(x)

dx
+ γ· ρ(x) = 0 (5)

Equation (5) refers to equations of the Euler equation type and its solution can be
found in the form: ρ(x) = ∑k Ckxq, where Ck are constant coefficients at the corresponding
roots of the characteristic equation, which has the form:

q(q − 1) + [2 + γ]q + γ = 0

This equation has two roots: q1 = −1 and q2 = −γ. Thus, for ρ(x) we obtain:

ρ(x) = C1x−1 + C2x−γ (6)

We find the constant coefficients C1 and C2 using the normalization condition of
the function ρ(x)

∫ ∞

1
ρ(x)dx = C1ln(x)| ∞

1
+ C2

x1−γ

1 − γ
| ∞

1
≡ 1 (7)

Integral (7) is calculated from 1 to ∞, because there may be users who have made
a very large number of comments to the news, but there cannot be commentators who
have written less than one comment. Given that for x → ∞ ln(x)|∞ = ∞ , then C1 = 0 and,
respectively, C2 = γ − 1. Finally, we get: ρ(x) = [γ − 1]x−γ.

Let us compare the obtained theoretical result with the observed data (see Figure 5).
Linear approximation of the data presented in Figure 5 allowed us to obtain the equation:
y = −1.49 − 1.23z, which must be compared with the equation:

ln{ρ(x)} = ln{γ − 1} − γ·ln(x) (8)

If γ = 1.23, then ln(γ − 1) = −1.47, which shows a very good correspondence
between the theory and the observed data.

The results obtained show that, with a linear dependence of μ(x) on the state of x
and a quadratic dependence of D(x) on the state of x, the power law of dependence is the
probability density of the distribution of comments by their number (states of x). This can
be obtained from the solution of the stationary Fokker-Planck equation, and the observed
data and theoretical calculations have good agreement with each other.

Special attention should be paid to this result. Its importance lies in the fact that
the effects of memory and self-organization play an important role in the dynamics of
social processes. However, in this case it turns out that from the Fokker-Planck equation
(describing the dynamics as a whole at the macro level), the derivation of which considers
a completely stochastic Markov approximation, it is possible to obtain theoretical results
that are in good agreement with the observed data. We can make an assumption that the
multi-directionality of a multitude of local actions and processes, each of which has both
memory and self-organization, leads in the total result to the fact that memory can largely
disappear as a result of the multi-direction of the ongoing micro-processes.

113

Mathematics 2022, 10, 989

6. A Model of the Nonlinear Dynamics of the Appearance of Comments Based on the
Fokker-Planck Equation

Since the use of the Fokker-Planck equation and the approach described above allow
us to obtain the power law of distribution observed in practice, it is advisable to use this
equation to describe the dynamics of the observed processes.

Using the method of Laplace transformations for Equation (1), it is possible to obtain
(see Appendix A) the following expression for the distribution function:

ρ(x, t) =
∫ [

[ln(x)]2

D0t +
[

1
2 − μ0

D0

]
ln(x)− 1

]
√

2πD0t3
e−[[ln(x)]2

2D0t +[3
2−

μ0
D0

]ln(x)+[1
2−

μ0
D0

]
2 D0t

2]dt (9)

The probability that the number of comments by the time it reaches a certain number
L can be found by the formula (10):

P(L, t) = 1 −
∫ L

0

⎡⎢⎢⎣∫ [
[ln(x)]2

D0t +
[

1
2 − μ0

D0

]
ln(x)− 1

]
√

2πD0t3
e−[[ln(x)]2

2D0 t +[3
2 −

μ0
D0

]ln(x)+[1
2 −

μ0
D0

]
2 D0 t

2]dt

⎤⎥⎥⎦dx (10)

∫ L

0

⎡⎢⎢⎣∫ [
[ln(x)]2

D0t +
[

1
2 − μ0

D0

]
ln(x)− 1

]
√

2πD0t3
e−[[ln(x)]2

2D0 t +[3
2 −

μ0
D0

]ln(x)+[1
2 −

μ0
D0

]
2 D0 t

2]dt

⎤⎥⎥⎦dx

This determines the probability that the threshold L (for example, the maximum possible value
of the number of comments) will not be reached by time t. The dependence of the number of
comments N(t) on time t will be described by the equation: N(t) = P(L, t)·L.

We will conduct simulation modeling and analyze the theoretical results obtained. As an
example, we choose L = 100 and three sets of values of μ0 and D0 (μ0 = 0.45 и D0 = 0.50 conventional
units (μ0 < D0 see curve 1 in Figure 11); μ0 = 0.50 и D0 = 0.50 and μ0 = D0 conventional units
(μ0 > D0 see curve 2 in Figure 11) and μ0 = 0.55 and D0 = 0.50 conventional units (μ0 > D0 see curve
3 in Figure 11)). Figure 11 shows the results of modeling the dynamics of changes over time in the
number of comments N(t) at the selected values of the model parameters μ0, D0 and L.

Figure 11. Dynamics of changes over time in the number of comments to the news in a simulation
model based on the Fokker-Planck equation.

114

Mathematics 2022, 10, 989

Theoretical calculations show that, with the growth of μ0 relative to D0, the growth rate of the
curve increases (see Figure 11).

It is important to note that the model based on the Fokker-Planck equation for all values of
the parameters μ0 and D0 shows the S-shaped nature of the dynamics of changes in the number of
comments to the news over time, which in many cases is not consistent with the observed data (see
Figures 6 and 8).

The correspondence of the theoretical model and the observed data (see Figures 6 and 8)
can be obtained if we assume that two processes with different μ0 and D0 can occur simulta-
neously. Moreover, the sum of the partial fractions of the processes should be equal to 1, i.e.,
Ptotal(L, t) = α1·P1(L, t) + α2·P2(L, t), where α1 + α2 = 1. At the same time, one of the processes
is generated by commenting on the newsfeed or blog itself, and the second by commenting on
comments. To describe this, we consider the possible time delay in commenting on comments in the
model. If we enter the delay time (denote it τ), then the distribution function will take the form:

ρ(x, t − τ) =
∫ [

[ln(x)]2

D0[t−τ]
+

[
1
2 − μ0

D0

]
ln(x)− 1

]
√

2πD0[t − τ]3
e−[[ln(x)]2

2D0 [t−τ] +[3
2 −

μ0
D0

]ln(x)+[1
2 −

μ0
D0

]
2 D0 [t−τ]

2]dt

As we wrote earlier, this may be due to a significant difference in the average time of appearance
of second-level comments (the time interval between the appearance of a first-level comment and a
comment on this comment), which may lead to the implementation of two-stage dynamics in the
appearance of comments.

As an example of modeling, we will choose the following model parameters for the process
of commenting on the newsfeed or blog itself: μ0,1 = 0.55, D0,1 = 0.50, and for the second (com-
menting on comments) μ0,2 = 0.50, D0,2 = 0.50, τ = 50 conventional units, α1 = 0.75, α2 = 0.25 and
L = 100 (μ0,1 > μ0,2 was chosen based on the assumption that commenting on the news is a more
primary process for users than commenting on comments.

Figure 12 shows the results of modeling the dynamics of changes in the number of comments
N(t) over time, because two processes can occur in parallel. As can be seen from the simulation
results presented in Figure 12, there is a good coincidence of real data (see Figures 6 and 8) and
theoretical calculations (curve 1, constructed considering the time delay τ). Without considering the
delay, the dynamics of the news commenting process is S-shaped (see curve 2 in Figure 12), which
coincides with the observed data presented in Figure 10 and is consistent with a significant difference
in the average time of appearance of second-level comments for news items 1, 2 and 3 selected
as an example.

Figure 12. Dynamics of changes over time in the number of comments on the news in the simulation
model based on the Fokker-Planck equation, considering two parallel processes.

115

Mathematics 2022, 10, 989

The parallel flow of the two processes does not violate the integrity of the model, because the
stationary solution of the modified Fokker-Planck equation (taking into account the delay by τ) and
the usual equation has the same form, which was described in the section “Derivation of the power
law of the distribution of comments from the stationary Fokker-Planck equation”.

7. Discussion

Firstly, it is possible to analyze the topics of news items that gain the largest number of comments
(i.e., have the greatest public interest), make a ranking of their popularity, and study their static
distributions. Further, within each group, it is possible to determine the exponent of the power law
ρ(x) = [γ − 1]x−γ. Then, considering that μ0

D0
= 1 − γ

2 , it is possible to determine the value of μ0
D0

by which it is possible to judge for which types of news and messages purposeful commenting is
predominant (an increase in the ratio of μ0

D0
), and for which this is “random” (a decrease in the ratio

of μ0
D0

). This will allow prediction in the future as to what news item may cause what user behavior,
and how they may influence public opinion.

Secondly, using the dynamic distribution functions obtained in this work, it is possible to
analyze the observed processes of commenting on newsfeed and blogs. Further, based on this, it is
possible to determine the parameters of the model μ0, D0 and τ for various types of news, which
can also allow prediction in the future what news may cause what user behavior, and how this may
influence public opinion.

In conclusion, we note that the complex nature of the dynamics of processes in complex social
systems can be described, not only based on models created based on the Fokker-Planck equation.
For example, in [41–48], models were developed by the authors specifically to describe the stochastic
dynamics of changes in the state of complex social systems. These models take into account the
processes of self-organization and memory availability. To create this model, graphical diagrams of the
probabilities of transitions between possible states of the described systems were considered taking
into account previous states. This method allows the taking into account memory, and describes
not only Markov but also non-Markov processes. Using this approach, a nonlinear differential
equation of the second order was derived, which allows the setting and solution of problems for
determining the probability density function of the amplitude of deviations of parameters describing
the observed processes of a non-stationary time series, depending on the values of the time interval
of its determination and the depth of memory accounting. The differential equation obtained
during the study contains not only terms responsible for random change (diffusion) and ordered
change (destruction), but also a term that is responsible for the possibility of self-organization, which
significantly distinguishes it from the Fokker-Planck equation. Within the framework of the models
developed by [41–48], it is possible to describe processes whose dynamics have both an S-shaped
character for changes and a two-stage process.

The novelty of our work in comparison with the works of our predecessors is that, by using a
stationary version of the Fokker-Planck equation for the data observed in practice, a power law of
the distribution of their parameters can be obtained that is consistent with them. In this case, it can
be made a pre-position that the multidirectional nature of many local actions and processes, each
of which has both memory and self-organization, leads in summary to the fact that memory can
largely disappear and the process in a generalized form becomes Markovsky. This allowed us, under
certain assumptions for coefficients in the Fokker-Planck equation, to obtain from its stationary form
a power law of distribution for the number of comments on news and blogs. As shown in our paper,
the theory aligns well with the data observed in reality.

Secondly, assuming that the Fokker-Planck equation under certain circumstances can be applied
to describe the dynamics in the systems in question (for example, based on what is described above)
we considered the temporal dependencies of the appearance of comments on various news and
found that it can be both S-shaped in nature and have a more complex-two-staged form, which can
be explained within the framework of using the Fokker-Planck equation only by the presence of two
processes and delay time.

8. Conclusions

The results obtained in the work allow us to draw several conclusions:

1. The stationary distribution of news observed in practice by the number of comments to on it
corresponds to the power law: ρ(x) = [γ − 1]x−γ, where ρ(x) is the share of news items in
their total number having x comments, and γ is the exponent.

116

Mathematics 2022, 10, 989

2. The dynamics of changes over time in the number of comments to a newsfeed or blog can have
both an S-shaped form and a two-stage one, which may be due to a significant difference in
the average time of appearance of comments at the second level (the time interval between the
appearance of a comment at the first level and a comment on this comment), i.e., the value of
the average delay.

3. The power law of dependence observed in practice is the stationary probability density of the
distribution of news by the number of comments (states x) which can be obtained from the
solution of the stationary Fokker-Planck equation if some assumptions are made during its
derivation. We assume that the coefficient μ(x) responsible in the Fokker-Planck equation for
a purposeful change in the state of the system x (x is the current number of comments on the
news) linearly depends on the state x, and the coefficient D(x) responsible for a random change
depends on x quadratically. All this suggests that the Fokker-Planck equation can be used to
describe processes in complex network structures.

4. The solution of the unsteady Fokker-Planck equation under the assumptions of the linear
dependence of μ(x) on the state of x and the quadratic dependence of D(x) on the state of x
allows us to obtain an equation for the probability density of transitions between the states of
the system per unit of time, which are in good agreement with the observed data, taking into
account the effect of the delay time between the appearance of the first level comment and the
comment on this comment.

5. The models developed based on the Fokker-Planck equation are in good agreement with the
observed data, which makes it possible to create algorithms for monitoring and predicting the
evolution of public opinion of users of news information resources.

Author Contributions: D.Z.: conceptualization, formal analysis, writing-review & editing; J.P.:
methodology, visualization; V.K.: data curation, writing-original draft. All authors have read and
agreed to the published version of the manuscript.

Funding: This research was supported by the Russian Science Foundation (RSF), grant no. 22-21-
00109 “Development of the dynamics forecasting models of social moods based on the analysis of text
content time series of social networks using the Fokker-Planck and nonlinear diffusion equations”.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

One of the solutions of the Fokker-Planck equation can be obtained as follows. Using the
method of Laplace transformations for Equation (1), we can write:

sG(s, x)− ρ(0, x) = − d
dx

[
μ(x)·G(s, x)

]
+

1
2

d2

dx2

[
D(x)·G(s, x)

]
(A1)

Considering that at time t = 0 (the beginning of the process) there are no comments, then: ρ(0, x) = 0.
Further, substituting into Equation (A1) the corresponding derivatives and dependencies μ(x)

and D(x) (the choice of which was discussed earlier, and their use leading to the results of the
distribution of the number of comments according to the power law observed in reality), we obtain:

x2· d2G(s, x)
dx2 + 2

[
2 − μ0

D0

]
·x· dG(s, x)

dx
+ 2

[
1 − μ0 + s

D0

]
G(s, x) = 0 (A2)

We are looking for a solution to this equation in the form: G(s, x) = ∑
k

Ckxq, where

Ck are the coefficients for the roots of the characteristic equation, which has the form:

q(q − 1) + 2
[
2 − μ0

D0

]
q + 2

[
1 − μ0+s

D0

]
= 0. Let us finds the roots of the characteristic equation.

q1,2 = −
[
3 − 2 μ0

D0

]
2

±

√[
1 − 2 μ0

D0

]2
+ 8 s

D0

2

117

Mathematics 2022, 10, 989

We write it down as follows:

G(s, x) = x−
[3−2

μ0
D0

]

2

⎧⎨⎩C1x

√
[1−2

μ0
D0

]
2
+8 s

D0
2 + C2x−

√
[1−2

μ0
D0

]
2
+8 s

D0
2

⎫⎬⎭
Given that γ = 2

[
1 − μ0

D0

]
we write:

G(s, x) = C1·x−
[γ+1]−

√
[γ−1]2+8 s

D0
2 + C2·x−

[γ+1]+
√
[γ−1]2+8 s

D0
2

For s → ∞ (t → 0) ρ(x, 0) for any x must be equal to 0, so C1 should be put equal to 0
−[γ+1]+

√
[γ−1]2+8 s

D0
2 → +∞ and x → +∞). Using the normalization condition (for the image, the

integral from 1 to ∞ must be equal to 1
s), we find the coefficient with C2:

2C2

−[γ + 1]−
√
[γ − 1]2 + 8 s

D0
+ 2

·x−
[γ+1]+

√
[γ−1]2+8 s

D0
2 +1| ∞

1
=

1
s

C2 =
[γ − 1] +

√
[γ − 1]2 + 8 s

D0

2s

G(s, x) =
[γ − 1] +

√
[γ − 1]2 + 8 s

D0

2s
·x−

[γ+1]+
√
[γ−1]2+8 s

D0
2

Substitute γ and get:

α =
1 − 2 μ0

D0

2
=

1
2
− μ0

D0

3 − 2 μ0
D0

2
= 1 +

1 − 2 μ0
D0

2
= 1 + α

β =
1
2

√
8

D0
=

√
2

D0

k =
D0
8

[
1 − 2

μ0
D0

]2
=

D0
2

[
1
2
− μ0

D0

]2
=

[
α

β

]2

x−β·√k+s = e−[β·ln(x)]·√k+s

Let us writes this:

G(s, x) =

[
α· e−[β·ln(x)]·√k+s

s
+ β·

√
k + s·e−[β·ln(x)]·√k+s

s

]
·x−[1+α]

We find the original e−[β·ln(x)]·√k+s

s and the original β·
√

k+s·e−[β·ln(x)]·√k+s

s we find by differentiating

the original e−[β·ln(x)]·√k+s

s by ln(x).

d
d(ln(x))

[
e−[β·ln(x)]·√k+s

s

]
= −β·

√
k + s·e−[β·ln(x)]·√k+s

s

G(s, x) =

[
α· e−[β·ln(x)]·√k+s

s
− d

d(ln(x))

[
e−[β·ln(x)]·√k+s

s

]]
·x−[1+α]

e−[β·ln(x)]·√k+s

s = 1
s ·e−y·√k+s, where [β·ln(x)] = y.

Dividing an image by s is analogous to integrating over t of the original e−y·√k+s . Let us find
this original:

e−[β·ln(x)]·√k+s � β·ln(x)

2
√

πt3
·e− [β·ln(x)]2

4t ·e−kt

e−[β·ln(x)]·√k+s

s
�

∫
β·ln(x)

2
√

πt3
·e− [β·ln(x)]2

4t ·e−ktdt

118

Mathematics 2022, 10, 989

d
d(ln(x))

[
e−[β·ln(x)]·√k+s

s

]
�

∫
β·ln(x)

2
√

πt3

[
1 − β2

2t
·ln(x)

]
·e− [β·ln(x)]2

4t ·e−ktdt

After making all the necessary substitutions, we get the following expression for the distribution
function:

ρ(x, t) =
∫ [

[ln(x)]2

D0t +
[

1
2 − μ0

D0

]
ln(x)− 1

]
√

2πD0t3
e−[[ln(x)]2

2D0 t +[3
2 −

μ0
D0

]ln(x)+[1
2 −

μ0
D0

]
2 D0 t

2]dt (A3)

References

1. Gardiner, C. Stochastic Methods: A Handbook for the Natural and Social Sciences; Springer: Berlin, Germany, 2009.
2. Lux, T. Inference for systems of stochastic differential equations from discretely sampled data: A numerical maximum likelihood

approach. Ann. Financ. 2012, 9, 217–248. [CrossRef]
3. Hurn, A.; Jeisman, J.; Lindsay, K. Teaching an old dog new tricks: Improved estimation of the parameters of stochastic differential

equations by numerical solution of the Fokker-Planck equation. In Financial Econometrics Handbook; Gregoriou, G., Pascalau, R.,
Eds.; Palgrave: London, UK, 2010.

4. Elliott, R.J.; Siu, T.K.; Chan, L. A PDE approach for risk measures for derivatives with regime switching. Ann. Financ. 2007,
4, 55–74. [CrossRef]

5. Orlov, Y.N.; Fedorov, S.L. Generation of nonstationary time series trajectories based on the Fokker-Planck equation. WORKS
MIPT 2016, 8, 126–133.

6. Chen, Y.; Cosimano, T.F.; Himonas, A.A.; Kelly, P. An Analytic Approach for Stochastic Differential Utility for Endowment and
Production Economies. Comput. Econ. 2013, 44, 397–443. [CrossRef]

7. Savku, E.; Weber, G.-W. Stochastic differential games for optimal investment problems in a Markov regime-switching jump-
diffusion market. Ann. Oper. Res. 2020, 1–26. [CrossRef]

8. Andrianova, E.G.; Golovin, S.A.; Zykov, S.V.; Lesko, S.A.; Chukalina, E.R. Review of modern models and methods of analysis of
time series of dynamics of processes in social, economic and socio-technical systems. Russ. Technol. J. 2020, 8, 7–45. [CrossRef]

9. Dorogovtsev, S.N.; Mendes, J.F.F. Evolution of networks. Adv. Phys. 2002, 51, 1079–1187. [CrossRef]
10. Newman, M.E.J. The structure and function of complex networks. SIAM Rev. 2003, 45, 167–256. [CrossRef]
11. Dorogovtsev, S.N.; Mendes, J.F.F.; Samukhin, A.N. Generic scale of the scale-free growing networks. Phys. Rev. E 2001, 63, 062101.

[CrossRef]
12. Golder, S.A.; Wilkinson, D.M.; Huberman, B.A. Rhythms of social interaction: Messaging within a massive online network. In

Communities and Technologies 2007; Steinfield, C., Pentland, B.T., Ackerman, M., Contractor, N., Eds.; Springer: London, UK, 2007;
pp. 41–66.

13. Kumar, R.; Novak, J.; Tomkins, A. Structure and evolution of online social networks. In Proceedings of the 12th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining (KDD ’06), Philadelphia, PA, USA, 20–23 August 2006;
pp. 611–617.

14. Mislove, A.; Marcon, M.; Gummadi, K.P.; Druschel, P.; Bhattacharjee, B. Measurement and analysis of online social networks. In
Proceedings of the 7th ACM SIGCOMM Conference on Internet Measurement (IMC ’07), San Diego, CA, USA, 24–26 October
2007; pp. 29–42.

15. Pasa, L.; Navarin, N.; Sperdut, A. SOM-based aggregation for graph convolutional neural networks Neural Computing and
Applications Neural Comput. Applic. 2022, 34, 5–24.

16. Pulipati, S.; Somula, R.; Parvathala, B.R. Nature inspired link prediction and community detection algorithms for social networks:
A survey. Int. J. Syst. Assur. Eng. Manag. 2021. [CrossRef]

17. Airoldi, E.M.; Blei, D.M.; Fienberg, S.E.; Xing, E.P. Mixed membership stochastic blockmodels. J. Mach. Learn. Res. 2008, 9,
1981–2014. [PubMed]

18. Cho, Y.-S.; Steeg, G.V.; Galstyan, A. Co-evolution of selection and influence in social networks. In Proceedings of the Twenty-Fifth
AAAI Conference on Artificial Intelligence (AAAI 2011), San Francisco, CA, USA, 7–11 August 2011.

19. Sahafizadeh, E.; Ladani, B.T. The impact of group propagation on rumor spreading in mobile social networks. Phys. A Stat. Mech.
Its Appl. 2018, 506, 412–423. [CrossRef]

20. Varma, V.S.; Morarescu, I.C.; Haye, Y. Analysis and control of multi-leveled opinions spreading in social networks. In Proceedings
of the American Control Conference (ACC 2018), Milwaukee, WI, USA, 27–29 June 2018; pp. 3404–3409.

21. López-Santamaría, L.-M.; Almanza-Ojeda, D.-L.; Gomez, J.C.; Ibarra-Manzano, M.-A. Age and Gender Identification in Un-
balanced Social Media. In Proceedings of the 2019 International Conference on Electronics, Communications and Computers
(CONIELECOMP), Cholula, Mexico, 27 February–1 March 2019. [CrossRef]

22. Barberá, P. Less is More? How Demographic Sample Weights Can Improve Public Opinion Estimates Based on Twitter Data.
2016. Available online: http://pablobarbera.com/static/less-is-more.pdf (accessed on 21 December 2021).

23. Luo, F.; Cao, G.; Mulligan, K.; Li, X. Explore Spatiotemporal and Demographic Characteristics of Human Mobility via Twitter: A
Case Study of Chicago. Appl. Geogr. 2016, 70, 11–25. [CrossRef]

119

Mathematics 2022, 10, 989

24. Sekara, V.; Stopczynski, A.; Lehmann, S. Fundamental structures of dynamic social networks. Proc. Natl. Acad. Sci. USA 2016, 113.
[CrossRef]

25. Ubaldi, E.; Vezzani, A.; Karsai, M.; Perra, N.; Burioni, R. Burstiness and tie activation strategies in time-varying social networks.
Sci. Rep. 2017, 7, srep46225. [CrossRef]

26. Yatim, A.F.M.; Wardhana, Y.; Kamal, A.; Soroinda, A.A.R.; Rachim, F.; Wonggo, M.I. A corpus-based lexicon building in Indonesian
political context through Indonesian online news media. In Proceedings of the 2016 International Conference on Advanced
Computer Science and Information Systems (ICACSIS), Malang, Indonesia, 15–16 October 2016. [CrossRef]

27. Kirn, S.L.; Hinders, M.K. Dynamic wavelet fingerprint for differentiation of tweet storm types. Soc. Netw. Anal. Min. 2020, 10, 4.
[CrossRef]

28. Karami, A.; Elkouri, A. Political Popularity Analysis in Social Media; Springer: Berlin, Germany, 2019; pp. 456–465.
29. Koti, P.; Pothula, S.; Dhavachelvan, P. Age Forecasting Analysis—Over Microblogs. In Proceedings of the 2017 Second Interna-

tional Conference on Recent Trends and Challenges in Computational Models (ICRTCCM), Tindivanam, India, 3–4 February
2017; pp. 83–86. [CrossRef]

30. Mukhamediev, R.I.; Yakunin, K.; Mussabayev, R.; Buldybayev, T.; Kuchin, Y.; Murzakhmetov, S.; Yelis, M. Classification of
Negative Information on Socially Significant Topics in Mass Media. Symmetry 2020, 12, 1945. [CrossRef]

31. Ko, H.; Jong, Y.; Sangheon, K.; Libor, M. Human-machine interaction: A case study on fake news detection using a backtracking
based on a cognitive system. Cogn. Syst. Res. 2019, 55, 77–81.

32. Bushman, B.; Whitaker, J. Media Influence on Behavior. Reference Module in: Neuroscience and Biobehavioral Psychology. 2017.
Available online: http://scitechconnect.elsevier.com/neurorefmod/ (accessed on 24 November 2020).

33. Bandari, R.; Asur, S.; Huberman, B.A. The Pulse of News in Social Media: Forecasting Popularity. arXiv 2012, arXiv:1202.0332v1.
Available online: https://arxiv.org/pdf/1202.0332.pdf (accessed on 21 December 2021).

34. Willaert, T.; Van Eecke, P.; Beuls, K.; Steels, L. Building Social Media Observatories for Monitoring Online Opinion Dynamics. Soc.
Media Soc. 2020, 6. [CrossRef]

35. Tran, C.; Shin, W.-Y.; Spitz, A. Community Detection in Partially Observable Social Networks. ACM Trans. Knowl. Discov. Data
2021, 16, 1–24. [CrossRef]

36. Chen, Z.; Li, X.; Bruna, J. Supervised community detection with line graph neural networks. In Proceedings of the 7th International
Conference on Learning Representations (ICLR 2019), New Orleans, LA, USA, 6–9 May 2019.

37. Hoffmann, T.; Peel, L.; Lambiotte, R.; Jones, N.S. Community detection in networks without observing edges. Sci. Adv. 2020,
6, eaav1478. [CrossRef]

38. Du, B.; Lian, X.; Cheng, X. Partial differential equation modeling with Dirichlet boundary conditions on social networks. Bound.
Value Probl. 2018, 2018, 50. [CrossRef]

39. Liu, X.; He, D.; Liu, C. Modeling information dissemination and evolution in time-varying online social network based on thermal
diffusion motion. Phys. A Stat. Mech. its Appl. 2018, 510, 456–476. [CrossRef]

40. Bomba, A.; Kunanets, N.; Pasichnyk, V.; Turbal, Y. Mathematical and computer models of message distribution in social networks
based on the space modification of Fermi-Pasta-Ulam approach. Adv. Intell. Syst. Comput. 2019, 836, 257–266.

41. Zhukov, D.; Khvatova, T.; Zaltsman, A. Stochastic Dynamics of Influence Expansion in Social Networks and Managing Users’
Transitions from One State to Another. In Proceedings of the 11th European Conference on Information Systems Management
(ECISM 2017), Genoa, Italy, 14–15 September 2017; pp. 322–329.

42. Sigov, A.S.; Zhukov, D.O.; Khvatova, T.Y.; Andrianova, E.G. A Model of Forecasting of Information Events on the Basis of the
Solution of a Boundary Value Problem for Systems with Memory and Self-Organization. J. Commun. Technol. Electron. 2018, 63,
1478–1485. [CrossRef]

43. Zhukov, D.; Khvatova, T.; Millar, C.; Zaltcman, A. Modelling the stochastic dynamics of transitions between states in social
systems incorporating self-organization and memory. Technol. Forecast. Soc. Chang. 2020, 158, 120134. [CrossRef]

44. Zhukov, D.; Khvatova, T.; Istratov, L. A stochastic dynamics model for shaping stock indexes using self-organization processes,
memory and oscillations. In Proceedings of the European Conference on the Impact of Artificial Intelligence and Robotics
(ECIAIR 2019), Oxford, UK, 31 October–1 November 2019; pp. 390–401.

45. Zhukov, D.; Khvatova, T.; Istratov, L. Analysis of non-stationary time series based on modelling stochastic dynamics considering
self-organization, memory and oscillations. In Proceedings of the International Conference on Time Series and Forecasting (ITISE
2019), Granada, Spain, 25–27 September 2019; Volume 1, pp. 244–254.

46. Khvatova, T.; Zaltsman, A.; Zhukov, D. Information processes in social networks: Percolation and stochastic dynamics. CEUR
Workshop. In Proceedings of the 2nd International Scientific Conference “Convergent Cognitive Information Technologies”; Springer:
Berlin/Heidelberg, Germany, 2017; Volume 2064, pp. 277–288.

47. Zhukov, D.O.; Lesko, S.A. Stochastic self-organissation of poorly structured data and memory realisation in an information
domain when designing news events forecasting models. In Proceedings of the 2nd IEEE International Conference on Big Data
Intelligence and Computing, Auckland, New Zealand, 8–12 August 2016. [CrossRef]

48. Zhukov, D.O.; Zaltcman, A.G.; Khvatova, T.Y. Changes in States in Social Networks and Sentiment Security Using the Principles
of Percolation Theory and Stochastic Dynamics. In Proceedings of the 2019 IEEE International Conference “Quality Management,
Transport and Information Security, Information Technologies” (IT and QM and IS), Sochy, Russia, 23–27 September 2019;
pp. 149–153.

120

Citation: Cardenas-Cornejo, J.-J.;

Ibarra-Manzano, M.-A.;

Razo-Medina, D.-A.; Almanza-Ojeda,

D.-L. Complex Color Space

Segmentation to Classify Objects in

Urban Environments. Mathematics

2022, 10, 3752. https://doi.org/

10.3390/math10203752

Academic Editor: Liliya Demidova

Received: 8 September 2022

Accepted: 6 October 2022

Published: 12 October 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Complex Color Space Segmentation to Classify Objects in
Urban Environments

Juan-Jose Cardenas-Cornejo †, Mario-Alberto Ibarra-Manzano †, Daniel-Alberto Razo-Medina †

and Dora-Luz Almanza-Ojeda *,†

Electronics Engineering Department, DICIS, University of Guanajuato, Carr. Salamanca-Valle de Santiago
KM. 3.5 + 1.8 Km., Salamanca 36885, Mexico
* Correspondence: dora.almanza@ugto.mx
† These authors contributed equally to this work.

Abstract: Color image segmentation divides the image into areas that represent different objects and
focus points. One of the biggest problems in color image segmentation is the lack of homogeneity in
the color of real urban images, which generates areas of over-segmentation when traditional color
segmentation techniques are used. This article describes an approach to detecting and classifying
objects in urban environments based on a new chromatic segmentation to locate focus points. Based
on components a and b on the CIELab space, we define a chromatic map on the complex space to
determine the highest threshold values by comparing neighboring blocks and thus divide various
areas of the image automatically. Even though thresholds can result in broad segmentation areas, they
suffice to locate centroids of patches on the color image that are then classified using a convolutional
neural network (CNN). Thus, this broadly segmented image helps to crop only outlying areas instead
of classifying the entire image. The CNN is trained to use six classes based on the patches drawn
from the database of reference images from urban environments. Experimental results show a high
score for classification accuracy that confirms the contribution of this segmentation approach.

Keywords: image segmentation; complex numbers; CNN classifier; outdoor environments

MSC: 68T45

1. Introduction

Autonomous systems need to recognize objects and their position in the real world to
interact. Ideally, autonomous systems label objects and regions on an image to understand
the environment [1]. Commonly used strategies in smart systems are based on image
segmentation and automatic-learning techniques. Image segmentation is a key task in com-
puter vision involving the analysis of standard features, such as texture and color, among
others, on the image. However, most models and techniques used in image segmentation
are unique, that is to say, only used for a specific purpose, and their performance only
differs depending on the color space involved [2]. Therefore, choosing a suitable space to
represent color is essential during the segmentation process.

CIELab, HSI [3] or HSV [4] are the most common color spaces used to segment images.
Others, such as Munsel or YIQ spaces [5], are used for several purposes and need specific
methodologies to work. The CIELab color space mimics how humans perceive color; it
is useful to modify brightness and color values on an image independently [6]. Most
processing techniques based on the CIELab color space analyze each plane individually.
According to the CIELab theory, chromatic components a and b are orthogonal axes on a
2D plane. Thus, the representation of 2D space on CIELab can be transformed into complex
space directly, enabling the possibility of using complex numbers to facilitate algebraic
calculations of image data.

Mathematics 2022, 10, 3752. https://doi.org/10.3390/math10203752 https://www.mdpi.com/journal/mathematics121

Mathematics 2022, 10, 3752

A complex number is a pair of real numbers a and b ordered as (a, b), and expressed
as a + bi whereby i is the imaginary unit defined as i2 = −1. The symbol z can represent
any complex number and is a complex variable subject to operational definitions, such as
an addition and a multiplication [7]. Each complex number corresponds to a single point
on the complex plane.

On the other hand, automatic learning only extracts data from the most representative
objects and regions to classify as segmented images. A good selection of segmentation
techniques considers the relevant context, hardware resources, the number of classes, and
the size of the dataset [8]. For instance, in classifying the object in the self-driving, hardware
resources and the number of classes play a key role because the size of the training data
and validation labels could restrict decision-making. A self-driving car that uses deep
learning needs to consider hardware resources to process the dataset [9]. A convolutional
neural network (CNN) is related to the number of convolutional layers, the kind of layer
grouping, the activation function used, the number of fully connected layers, and the size
of the image to be processed as well as the techniques used to prevent over adjustment.
Even though the training phase of a CNN is computationally costly, these models can reach
high classification accuracy levels, making them popular.

This study proposes using a color image segmentation algorithm based on a chromatic
map defined on a space using complex numbers to analyze the best color distribution.
Complex algebra is used spatially to obtain final representative thresholds to segment the
image. The segmented images represent similar chromatic values on components a and
b of the CIELab space and the image’s most relevant areas. Patches from representative
areas are extracted based on both aspects. A convolutional neural network (CNN) classifies
the extracted patches to label them on the color image. This study’s contribution is to
propose a new representation of chromatic components based on complex numbers defined
as a chromatic map. The map can facilitate localizing the most representative areas across
the image using fundamental algebra for complex numbers. This segmentation method
renders broadly segmented images; however, instead of refining the segmented areas and
labeling them, several patches from the color images are extracted using the location of
the segmented area as the input for a CNN classifier. Thus, this segmentation strategy is
a phase prior to the classifier that looks for similar chromatic patterns that represent the
essential content of the image. This approach to segmentation and classification has been
tested using urban-context images, and the results include data about the reliability of each
predicted image class.

2. Related Works

Labeling segmented areas require high computational resources to recognize objects
during the human−machine interaction. Image segmentation is often based on the graphs
theory and grouping algorithms. In [10], the authors propose a general scheme of seg-
mentation of scenes based on the spectral grouping algorithm for normalized cuts, fusing
geometric and color information on a working frame with no parameters. The study in [11]
presents a segmentation scheme to combine color and depth information. Under this
scheme, segmentation happens in 3 steps. The study by Karimpoulit [12] identifies the
types of rocks using images of rocky settings. Segmentation has been extended to video;
for instance, the authors of [13] have developed a method to combine the appearance of an
object with the temporal consistency between frames. Using the features of a normalized-
color histogram and CNN features, the GrabCut algorithm is applied to different frame
boundaries to segment the object in the background. When detecting objects in motion,
the background is obtained using videos taken from a static camera. The study presented
in [14] suggests the option of a detection and segmentation method based on consecutive
stereo images that process dynamic objects found in an urban environment. This is a
pixel-by-pixel approach applied to the KITTI dataset [15], and the frame boundaries are
generated bearing in mind color and difference data for each moving object.

122

Mathematics 2022, 10, 3752

Unlike object-detection strategies, object recognition focuses on the objectives of the
image and provides a specific class for each one [16]. As the objective is better adjusted to
the frame boundary, the classification results become more reliable without a background.
The fast development of smart vehicles makes object detection and recognition essential
in self-driving [1]. In addition, road sign detection provides key information for safe
navigation. Often, road detection is based on standard low-profile features used to process
the image and isolate the borders. In [17], a real-time two-stage YOLOv2-based road-sign
detection system is used. In the first stage, the YOLOv2 detection frame is modified to
adapt it to the road-sign detection task and predicts boundary frames, class, and reliability
of road signage. In the second stage, an invariant light road-sign transformation network
(RM-Net) reclassifies the samples with low accuracy to increase accuracy.

The CNN architectures used for segmentation purposes are usually of three kinds, fully
convolutional networks (FCN) [18], coder-decoder networks [19] and “atrous-convolutional”
networks [20]. The authors in [21] introduce the Mask R-CNN method, an extension of the
Faster R-CNN method [22] to segment images instead of just detecting boundary frames.
There are also some approaches whereby Deep Neural Networks are modified, for instance,
semantic-aware segmentation [23] to use semantic segmentation and instance segmenta-
tion. Recent strategies propose general DWT and IDWT layers to various wavelets and
design wavelet integrated CNNs (WaveCNets) for image classification using ImageNet
and ImageNet-C, achieving an accuracy of 78.51% [24]. Moreover, a new architecture
(VOLO) implements a novel outlook attention operation that dynamically conducts the
local feature aggregation mechanism in a sliding window across the input image. This
approach uses transformers and CNNs to complement their model and achieves 87.1%
using ImageNet-1k [25]. Another natural color image approach is described in [26]. In this
approach, the image is split into patches that feed the embedding module to expand the
feature dimensions used for image classification [26]. This method achieves 83.9% in the
Top-1 accuracy rate.

The main aims of this study are: (1) to develop an automatic strategy to obtain
areas on a natural, outdoor image transforming components a and b of the CIELab image
as a complex space to represent image tonality, saturation, and contrast; (2) to build a
chromatic map that concentrates the distribution of the tone density of pixels from the
image using algebra for complex numbers; (3) to provide a strategy that includes sky
and road categories, which are usually considered in semantic-based methods but not in
object-classifier methods.

3. Image Segmentation Approach

Figure 1 shows an overview of the proposed method to segment images and identify
objects. First, input color images are transformed to the CIELab space. Next, chromatic
planes a and b on the CIELab space are used as real and imaginary elements to form
complex image I. The representative chromatic values of image I are calculated using the
complex image to build a chromatic map. The number of thresholds per image depends on
the colors of the image. The segmented areas represent those from images with similar
chromatic values without a classification label. The next step consists of extracting several
patches from the color image from each segmented area to build a database of images in
six categories. A CNN uses the database to train, validate and test the identification of
the object on the image. Note that color image patches are the input to the CNN model
instead of the segmented areas. The implementation details of the method are shown in
the following subsection.

123

Mathematics 2022, 10, 3752

Figure 1. Proposed segmentation method to identify objects.

3.1. Image in the Complex Space

As said earlier, planes a and b on the CIELab space known as imA and imB, are
combined to generate complex image I. Figure 2 shows chromatic planes imA and imB to
form complex image I for a specific color image. Each pixel on image I is a complex number
z = a + ib, processed using algebra for complex numbers. In this case, basic operations
such as division, modulus, and argument have been used [27], but the division is the main
operation used. Each pixel I is divided by a reference point P(r,c); the resulting image is
known as the division image and is referred to as D. Image D shows values such as the
threshold ones indicated by reference point P(r,c) within boundary ε. Thus, the same values
as the unit or those close to it point to similar areas as those of the threshold value P(r,c).
Equation (1) defines division image D, which is the resulting complex image I size u × v
divided by reference point P(r,c). Values close to the unity in D represent similar pixels as
those of P(r,c). Therefore, image D shows the relevance of point P(r,c) on the color image.
However, as D is in the complex space, searching for values close to 1 cannot be direct.
Using module D, the image of module |D| can generate positive real values.

D[u×v] =
I[u×v]

P(r,c)
(1)

Figure 2. Generating complex image I using the chromatic images imA and imB.

In Equation (2), unitary values in |D| (around an ε value) are chosen to obtain the
thresholded image F and to highlight areas with a color such as P(r,c). Figure 3 represents
the Division image D and the corresponding module |D|. |D| shows in white color the
areas whose values are similar to P(r,c).

124

Mathematics 2022, 10, 3752

F[u×v] =

{
1 if 1 − ε ≤

∣∣∣D[u×v]

∣∣∣ ≤ 1 + ε

0 otherwise
(2)

Figure 3. Complex division using a representative chromatic point.

To obtain a final segmented image F, first, representative P(r,c) thresholds must be
found. Each threshold requires the division process. A chromatic map AB makes it possible
to obtain several thresholds for the image automatically.

3.2. Chromatic Map

Chromatic map AB can be defined in the context of a bidimensional histogram. Chro-
matic components a and b on the CIELab space make up the horizontal Xa and vertical
Yb axis on the map AB. This can be illustrated as shown in Figure 4a,c for a real and an
artificial image, respectively.

Figure 4d shows five representative points on the chromatic map AB, one for each area
of the artificial image shown in Figure 4c. These points separate the chromatic components
of the image. In the case of images such as those in Figure 4a, chromatic values are
calculated by seeking the most representative values, that is to say, the highest density of
points. Therefore, chromatic map AB is divided into k-areas, resulting from division m and n
on the Yb and Xa axes, respectively. Thus, the map is divided into k = m × n areas based on
the combinations of m and n within the set of values {4, 8, 16, 32}. These values reduce the
complexity of the power and make the methodology suitable for hardware implementation.
For instance, blocks k = 128 when dividing the map by m = 8 and n = 16.

125

Mathematics 2022, 10, 3752

(a) (b)

(c) (d)

Figure 4. Chromatic map AB for two color images. (a) Color image 1. (b) Chromatic map AB of image 1.
(c) Color image 2. (d) Chromatic map AB of image 2.

In Equation (3), npx is a percentage based on the total number of pixels on the image,
which is used to label blocks as representative. Each block has a chromatic range Δa and
Δb defined by Equations (4) and (5). Figure 5 shows the division in k−blocks on a chromatic
map, whose axes take the chromatic values from planes a and b on the CIELab space used
to build complex image I.

npx = (u × v) · 1
max(m, n)

(3)

Δa =
max(Xa)− min(Xa)

m
(4)

Δb =
max(Yb)− min(Yb)

n
(5)

Figure 5. Chromatic map AB divided into m × n blocks on the chromatic range given by Δa and Δb.

126

Mathematics 2022, 10, 3752

3.3. Segmentation Approach

This study uses complex numbers to segment the complex image I. As shown in the
previous subsection, the chromatic map AB represents the pixel density distribution along
k-blocks on the complex image. In each block (i, j) on the chromatic map AB, density Mμ is
calculated by counting the number of pixels Mp and averaging the intensity of each pixel
on I, as shown in Equation (6).

Mμ(i, j) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Mp

∑
p=1

Ii,j(p)

Mp
if Mp > 0

0 in another case

(6)

Equation (7) calculates indexes indMp, showing blocks with a number of pixels greater
than npx. In Equation (8), a second criterion is applied to obtain the final vector index
indMμ, which stores the indexes for blocks on Mμ, which also agrees with indMp. The
number of thresholds nth is used in the segmentation process and is obtained from the
cardinality of vector indMμ (see Equation (9)).

indMp = Mp ≥ npx (7)

indMμ = Mμ

(
indMp

)
(8)

nth = card
(
indMμ

)
(9)

Vector Vμ is calculated using Mμ and indMμ, as shown in Equation (10). Vμ is the
vector for average values used as thresholds in the segmentation process, which are still
represented using complex numbers. The correlation matrix Mcorr is obtained by dividing
each threshold value by all the other values, as shown in Equation (11). Equation (12)
represents the areas for average values bound by a circle |z − z0| = R. In this case,
areas are defined as being within a unitary circle centered on each threshold value on the
matrix Mcorr.

Vμ = Mμ

(
indMμ

)
(10)

Mcorr(i, j) =
Vμ(i)
Vμ(j)

i, j = {1, . . . , nth} (11)

Mrμ = |1 − |Mcorr||

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 −
∣∣∣∣Vμ(1)
Vμ(1)

∣∣∣∣ 1 −
∣∣∣∣Vμ(1)
Vμ(2)

∣∣∣∣ · · · 1 −
∣∣∣∣Vμ(1)
Zμ(k)

∣∣∣∣
1 −

∣∣∣∣Vμ(2)
Vμ(1)

∣∣∣∣ 1 −
∣∣∣∣Vμ(2)
Vμ(2)

∣∣∣∣ · · · 1 −
∣∣∣∣Vμ(2)
Vμ(k)

∣∣∣∣
...

...
. . .

...

1 −
∣∣∣∣Vμ(k)
Vμ(1)

∣∣∣∣ 1 −
∣∣∣∣Vμ(k)
Vμ(2)

∣∣∣∣ · · · 1 −
∣∣∣∣Vμ(k)
Vμ(k)

∣∣∣∣

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(12)

The matrix values Mrμ are used to analyze the middle values. Beyond diagonal values,
minimization was conducted on matrix Mrμ . Minimum values obtained are then divided
by two to ensure there is no overlap between areas centered around average values; this
is expressed by Vrμ in Equation (13). nth values are stored in Vrμ, which contains the
thresholds to conduct color segmentation. Algorithm 1 explains the implementation of the
multi-threshold segmentation process on a color image.

127

Mathematics 2022, 10, 3752

Vrμ =
min

(
Mrμ(i, j)

)
2

∀i �= j (13)

Algorithm 1 Segmentation method

Input: Input image im, number of blocks m, n in the chromatic map
Output: Segmented image imSeg

1: npx ← (size(im))
max(m,n)

2: [imL, imA, imB] ← to_cielab(im)
3: I ← imA + i imB %complex image
4: for i = 1 to m do
5: for j = 1 to n do
6: Mp ← card(blocki,j)
7: if Mp > 0 then
8: Mμ ← mean(blocki,j)
9: end if

10: end for
11: end for
12: indMp ← (Mp ≥ npx)

13: indMμ ← Mμ(indMp);

14: [Vμ, nth] ← [Mμ

(
indMμ

)
, card(indMμ)]

15: for i, j = 1 to nth do

16: Mcorr(i, j) ← Vμ(i)
Vμ(j)

17: end for
18: Mrμ ← absabsabs(1 − absabsabs(Mcorr))

19: Vrμ ← minminmin(Mrμ (i,j))
2 for i �= j

20: for k = 1 to nth do
21: if Vrμ(k) �= 0 then

22: D ← I
Vrμ (k)

23: else
24: D ← absabsabs(I)
25: end if
26: F ← absabsabs(1 − absabsabs(D))

27: S(:, :, k) ← k ·
(

F < Vrμ(k)
)

28: imgSeg(S(:, :, k) ≡ k) ← k
29: end for

4. Results

4.1. Experimental Results

Segmentation and classification results are obtained using Cityscape [28] and
CamVid [29] datasets. Similar datasets, i.e., Kitti, Waymo [30], and nuScenes [31], are
used for 2D and 3D object detection for self-driving. The Cityscape dataset is divided
into 20 folders obtained from several European cities; in this case, the Munster subfolder
with 174 images of 1024 × 2048 pixels was chosen. In contrast, the CamVid dataset has
701 images of 720 × 960 pixels. Both datasets showed urban contexts but under different
seasonal and lighting conditions.

The color image and the number of blocks on the chromatic map are the inputs for
the segmentation algorithm. Each input image is processed using 16 different blocks,
generating 16 segmented images. Each segmented image is colored by area according
to the values of a 256−color map. Figures 6 and 7 show the segmentation results for an
image taken from the CamVid dataset, using different block sizes on the chromatic map. The

128

Mathematics 2022, 10, 3752

validation method used shows that the chromatic map for the CamVid dataset produces
better results in a (8 × 16) combination, unlike the Cityscape database, which produced
better results for (16 × 8) values, as shown in the following subsection.

(a) (b)

(c) (d)

Figure 6. CamVid segmented images for different block sizes. (a) Block size 4 × 8. (b) Block size
4 × 16. (c) Block size 8 × 8. (d) Block size 8 × 16.

(a) (b)

(c) (d)

Figure 7. CamVid segmented images for different block sizes. (a) Block size 16 × 8. (b) Block size
16 × 16. (c) Block size 32 × 8. (d) Block size 32 × 16.

129

Mathematics 2022, 10, 3752

4.2. Segmentation Performance

The number of representative areas segmented is validated through a quantitative
analysis of ground-truth images provided by Cityscape and CamVid datasets. Table 1
shows the number of representative areas nth found by Algorithm 1 for various block sizes
on the chromatic map. Bear in mind that as the number of blocks on the axes increases, the
number of representative areas increases too. Segmented images can be empty in both
cases, meaning no representative area was found.

Table 1. Number of representative areas generated by each dataset.

YbYbYb-Axis Blocks

Cityscape Image CamVid Image

XaXaXa-Axis Blocks XaXaXa-Axis Blocks

4 8 16 32 4 8 16 32

4 3 4 7 11 2 4 6 9

8 4 4 7 11 4 4 5 9

16 6 6 7 13 6 6 6 10

32 12 11 12 12 11 11 10 13

A second validation of segmented images consists of selecting the most common
categories and their semantics to compare with the segmented areas. The most common
categories from the urban context are enough for a general description of the scene. The
selected categories are building, car, pedestrian, road, sky, and tree. Each segmented image
is analyzed by area. The results for categories building, pedestrian, and road using the
CamVid dataset are shown in Table 2, and those using the Cityscape dataset are shown in
Table 3. Both tables show the segmented pixel-by-pixel relationship between the results
and the ground-truth images, which makes it possible to consider some criteria to establish
block sizes (m, n):

• The percentage of pixel relationship by a class must be at least 50% similar to ground-truth.
• Reject block sizes on m, n where the number of void images is higher than 10%.

Therefore, m, n block sizes where m �= n are used to comply with the last criterion,
and the number of areas are enough to represent the categories.

Table 2. Analysis of segmented image categories for CamVid.

Class
YbYbYb-Axis
Blocks

XaXaXa-Axis Blocks

444 888 161616 323232

Pixel Ratio
Void

Images
Pixel Ratio

Void
Images

Pixel Ratio
Void

Images
Pixel Ratio

Void
Images

B
u

il
d

in
g

4 0.2049 464 0.4277 227 0.622 28 0.6215 14

8 0.4415 212 0.4982 162 0.6190 20 0.6050 14

16 0.5459 15 0.5488 16 0.5397 14 0.5369 14

32 0.5337 14 0.5358 14 0.5149 14 0.4843 14

P
e

d
e

st
ri

a
n

4 0.1984 486 0.3865 267 0.5604 75 0.5437 61

8 0.4253 249 0.4705 202 0.5572 68 0.5377 61

16 0.5714 62 0.5736 63 0.5497 61 0.5321 61

32 0.5551 62 0.5482 61 0.5167 61 0.4812 61

R
o

a
d

4 0.3461 457 0.6155 214 0.7846 14 0.7546 0

8 0.6260 202 0.6697 150 0.7521 7 0.7155 0

16 0.7147 1 0.6807 2 0.6488 0 0.6048 0

32 0.6058 0 0.6056 0 0.5788 0 0.5591 0

130

Mathematics 2022, 10, 3752

Table 3. Analysis of segmented image categories for CityScape.

Class
YbYbYb-Axis
Blocks

XaXaXa-Axis Blocks

444 888 161616 323232

Pixel Ratio
Void

Images
Pixel Ratio

Void
Images

Pixel Ratio
Void

Images
Pixel Ratio

Void
Images

B
u

il
d

in
g

4 0.1427 130 0.3275 73 0.4355 4 0.4390 4

8 0.5105 45 0.4697 47 0.4903 4 0.4620 4

16 0.6817 4 0.6406 4 0.5418 4 0.4652 4

32 0.7239 4 0.6817 4 0.5853 4 0.4850 4

P
e

d
e

st
ri

a
n

4 0.0885 139 0.2179 94 0.2982 38 0.3068 38

8 0.4251 71 0.3635 73 0.3843 38 0.4253 38

16 0.5761 38 0.5494 38 0.4741 38 0.4704 38

32 0.6114 38 0.5885 38 0.5278 38 0.4439 38

R
o

a
d

4 0.2277 128 0.4983 71 0.7376 2 0.6822 2

8 0.6493 43 0.6222 45 0.7327 2 0.6284 2

16 0.8533 2 0.8310 2 0.7321 2 0.5709 2

32 0.8346 2 0.8063 2 0.7089 2 0.6295 2

4.3. Cnn Architecture

Figure 8 shows network architecture based on VGG-16 [32] used in this study. This
architecture has 16 layers to train about 138 million of parameters. The network consists
of five blocks of convolutional layers. Each block consists of two or three convolutional
layers followed by a groping layer. The number of filters increases by 2, from 64 to 512. The
Dropout layers are added between one block and the next to avoid over-adjustment [33].
Each Dropout layer reduces the connection between one block and the next. The flat layer
connects convolutional blocks with the fully connected layer. The fully connected layers
have 4096 neurons, including “bias” and the activation function, a ReLU in this case. The
last fully connected layer is the output from the network. The number of neurons on this
layer is the same as the number of categories. The activation function associated with
the last fully connected layer is the Softmax or normalized exponential function for a
multi-class problem.

Figure 8. Modified convolutional neural network VGG-16.

Algorithm 1 calculates the segmentation of input images used to process the training
and validation dataset. This process is illustrated in Figure 9. A binary mask per category,
known as class mask, is generated for each image on the dataset. The class mask is then used to
crop p patches randomly sized [lu× lv] = [60× 80] for each category. About 30,000 patches
were generated for all the classes using the Cityscape database, with approximately 3000
images.

131

Mathematics 2022, 10, 3752

Figure 9. Class mask obtained from a segmented image to generate patches for the category building.
A similar process is followed for all the categories to process the training dataset.

All patches were resized to [96 × 96], [128 × 128] and [224 × 224] for use on the CNN.
Figure 10a,b show the accuracy and loss chart, respectively, for training of 100 epochs using
an image size of (224 × 224).

(a) (b)

Figure 10. Results from training the CNN using 224× 224 images. (a) Accuracy graph. (b) Loss graph.

The SmallVGG network model was also used to optimize its resources and keep per-
formance results optimal. This network model reduces the original architecture presented
in this study [32]. Even though the VGG-16 model for a resized 96 × 96 path shows greater
accuracy than the results shown in Table 4, 224 × 224 images have had a more stable
performance during the training and validation phase.

Table 4. CNN accuracy results for different image sizes.

Architecture
Image Size (in Pixels)

96 × 96 128 × 128 224 × 224

SmallVGG 0.73 0.82 0.87

VGG16-Modified 0.92 0.90 0.91

ResNet150 0.26 0.81 0.94

Additional experimental tests were performed using the ResNet CNN model, and
the results are included in Table 4. In [34], the authors describe the residual blocks used
for training deeper layers in the network. Using skip connections, it is possible to activate
one layer and relocate its output to feed deeper layers in the network. ResNet CNN

132

Mathematics 2022, 10, 3752

architectures are built by grouping a set of residual blocks. It is important to point out
that the adder in the residual block can only be performed if both layers have the same
dimension. For six categories and three different sizes of patches, we obtained an accuracy
of 94% for 224 × 224 image patches.

The network model is validated using a training dataset from segmented images.
Ground-truth information is not used with the validation dataset, and therefore, patches
generated depend only on the areas obtained from the segmented image and the equivalent
input color image. Unlike the training dataset, these patches are chosen randomly by area
and do not have a predetermined category. This is represented visually in Figure 11. The
patches are cropped from the color image using a fixed size [lu × lv] = [224 × 224], which
is the classifier input size. A different number of patches is cropped for each segmented
area depending on the size and the number of regions obtained. The fixed size of bounding
boxes allows the classification of undefined categories, such as sky and road, which most
object-detect methodologies cannot detect and classify. This is one of our contributions to
classifiers in urban environments.

Figure 11. Image patches generated to validate the classifier.

Experimental tests to validate this approach use patches generated using the CamVid
dataset. The classifier assigns a label and a reliability label to each patch. The output image
shows different boundary frames with the brand and the reliability value corresponding
to each image patch. Some results are shown in Figure 12. The CNN architecture was
trained using the CityScape dataset, which has bigger images, and therefore, the process of
generating patches was more straightforward.

133

Mathematics 2022, 10, 3752

(a) (b)

(c) (d)

(e) (f)

Figure 12. Classification of objects using CamVid. (a) Test image #1. (b) Test image #2. (c) Test image
#3. (d) Test image #4. (e) Test image #5. (f) Test image #6.

Experimental tests were conducted using a PC with Intel Core i5 9th generation, 32 GB
of RAM, and an NVIDIA GeForce GTX 1650 graphics card. Table 5 shows the time for the
segmentation algorithm.

Table 5. Execution time for the segmentation algorithm.

Dataset
Execution Time (in Seconds)

Per Image Total No. of Images Per Dataset

CamVid 0.83187 394.0215

Cityscape 3.07230 4662.554

134

Mathematics 2022, 10, 3752

Bear in mind that the time presented in Table 5 depends on the number of areas on
the segmented image and their sizes. When a patch for an area cannot be obtained, this
increases processing time significantly. To limit the execution time, a maximal number
of tries to generate the patches has been established. In addition, the number of patches
per image depends on the number of representative areas obtained by the segmentation
algorithm for each image divided into four partitions (see Figure 11). Thus, the number of
patches changes from image to image, and so does the total processing time. Processing
times were analyzed, including those recorded in the classification phase. Table 6 shows
the number of patches generated and the time. A general processing time per image can be
produced by adding the segmentation and classification times. For instance, the time for
the CamVid dataset is 4 seconds; for the CityScape image, it is twice as long.

Table 6. Classification execution time.

Dataset Number of Patches Generated
Execution Time (in Seconds)

Per Image Total No. of Images on Dataset

CamVid 11,660 2.9092 889.5841

Cityscape 2883 5.2499 245.0659

5. Discussion

Table 7 shows a comparison between our proposal and other methodologies in the
literature. Using ResNet, we achieve 94% accuracy, whereas YOLOv3 [35] and YOLOv4 [36]
architecture achieve over 95% accuracy for the ImageNet dataset. Different approaches
compared were VOLO [25] and SPPNet [37], which also achieved good accuracy in the top
rate. Even if our classification accuracy is lower, in this work, we provide an alternative
method to classify image content without performing a whole refined segmentation of the
image and without using semantic image information. Therefore, sky and road classes have
been included as categories. In contrast, YOLO or other object classification architectures
do not consider it because a bounding box cannot be defined for both categories.

Our accuracy results also depend on the bounding-boxes size extracted from the image;
note in Table 4 that our accuracy increases as this selected size does. Our methodology is
an alternative region-based approach that has been trained with one dataset and validated
with another. Both datasets only have the urban context in common, but resolution and
illumination are different, becoming more difficult for the validation task.

Table 7. Comparison with related works.

Work Methodology Dataset Accuracy

YOLOv3 [35]
YOLOv4 [36]

An integrated CNN’s used for feature extraction and
object classification in real-time.

ImageNet

93.8%
94.8%
Top-5

accuracy rate

VOLO [25]
A new architecture that implements a novel outlook
attention operation that dynamically conducts the
local feature aggregation mechanism in a sliding win-
dow manner across the input image.

ImageNet
87.1%
Top-1

accuracy rate

SPPNet [37] Strategy of spatial pyramid pooling to construct a net-
work structure called SPP-net for image classification.

Caltech101 93.42%

Our
approach

Selection of region chromatic based on complex num-
bers with CNN to object detection.

Cityscapes
and

Camvid

94%
for

6 classes

A final experimental test was performed by training boosted trees and several machine
learning classifiers using the patches extracted from our method; the obtained results are
illustrated in Table 8. For six categories and three different sizes, the highest accuracy was
79.80%, achieved by the Bagged Trees classifier. Considering that CNN architectures extract

135

Mathematics 2022, 10, 3752

the main and representative features through the layers, machine learning-based classifiers
require a more careful feature extractor strategy to improve their classification accuracy.

Table 8. Classification result using machine learning approaches.

Classification Learner
Patches Sizes (in Pixels)

96 × 96 128 × 128 224 × 224

Quadratic SVM 78.10% 78.30% 78.90%

Cubic SVM 78.50% 79.10% 80.10%

Fine Gaussian SVM 67.30% 70.20% 74.10%

Medium Gaussian SVM 77.80% 77.80% 77.40%

Bagged Trees 79.20% 79.40% 79.80%

Narrow Neural Network 72.90% 74.20% 76.20%

Medium Neural Network 74.60% 76.60% 78.70%

Bilayered Neural Network 72.90% 74.20% 77.00%

Trilayered Neural Network 73.70% 74.60% 76.10%

6. Conclusions

This study shows a new approach to image segmentation to identify objects in struc-
tured outdoor spaces. The approach extracts representative features based on combining
algebra for complex numbers on planes a and b on the CIELab color space. The complex im-
age makes it possible to develop and implement a multi-threshold segmentation algorithm.
The methodology follows a typical automatic learning technique. The required features to
input the classifier are chosen from specific areas on the segmented image. Despite light
and overcrowding issues in outdoor environments, the number of classes and images used
in the training and validation phases of the model are enough to execute the identification
of objects.

The multi-threshold segmentation algorithm produces different execution time lapses
depending on the image features to be processed. This is also dependent on the computing
power available. In addition, the different sets of images used for CNN training and
validation are created using random conditions. The execution time results for the multi-
threshold segmentation algorithm depend on the size and features of the image. Thus
far, this approach cannot be used in real-time conditions that require execution speeds of
milliseconds. However, a dispersal strategy to select different areas on the scene could
provide lighter techniques for classification purposes. Given the modular nature of the
methodology, modifications to increase hardware performance are possible.

The VGG-16 network responds well to conditions such as those in this study, showing
a uniform and flexible architecture; however, better accuracy results were achieved using
the ResNet-150 network. Execution times for classification purposes are affected by the
various phases in the methodology and the different features of the images from the
databases. Hence, the decision to train the CNN architecture using the Cityscape dataset
and validate it using the CamVid dataset shows similar outdoor and urban environments.

Finally, this study has focused on a less computationally intensive alternative to
conducting color segmentation and object detection tasks, with the flexibility of adapting
to different hardware architectures and scenarios.

Author Contributions: Conceptualization, D.-L.A.-O. and M.-A.I.-M.; methodology, D.-A.R.-M. and
D.-L.A.-O.; software, J.-J.C.-C. and M.-A.I.-M.; validation, J.-J.C.-C. and D.-A.R.-M.; formal anal-
ysis, J.-J.C.-C., D.-L.A.-O. and M.-A.I.-M.; investigation, J.-J.C.-C. and D.-A.R.-M.; data curation,
J.-J.C.-C. and D.-L.A.-O.; writing—original draft preparation, J.-J.C.-C.; writing—review and editing,
D.-L.A.-O. and M.-A.I.-M.; visualization, D.-L.A.-O., D.-A.R.-M. and M.-A.I.-M.; project administra-
tion, D.-L.A.-O. All authors have read and agreed to the published version of the manuscript.

136

Mathematics 2022, 10, 3752

Funding: This study was conducted as part of the doctoral studies of Juan-Jose Cardenas-Cornejo,
funded through scholarship number 2021-000018-02NACF-07210, awarded by CONACYT.

Data Availability Statement: Not applicable.

Acknowledgments: The authors are grateful to the University of Guanajuato. The authors would like
special thanks to Carlos Montoro for his technical support in the English revision of the manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Yurtsever, E.; Lambert, J.; Carballo, A.; Takeda, K. A Survey of Autonomous Driving: Common Practices and Emerging
Technologies. IEEE Access 2020, 8, 58443–58469. [CrossRef]

2. Narkhede, P.R.; Gokhale, A.V. Color image segmentation using edge detection and seeded region growing approach for CIELab
and HSV color spaces. In Proceedings of the 2015 International Conference on Industrial Instrumentation and Control (ICIC),
Pune, India, 28–30 May 2015. [CrossRef]

3. Xu, Y.; Shen, B.; Zhao, M.; Luo, S. An Adaptive Robot Soccer Image Segmentation Based on HSI Color Space and Histogram
Analysis. J. Comput. 2019, 30, 290–303.

4. Smith, A.R. Color gamut transform pairs. In Proceedings of the SIGGRAPH ’78, Atlanta, GA, USA, 23–25 August 1978.
5. Cheng, H.D.; Jiang, X.H.; Sun, Y.; Wang, J. Color Image Segmentation: Advances and Prospects. Pattern Recognit. 2001,

34, 2259–2281. [CrossRef]
6. Bansal, S.; Aggarwal, D. Color image segmentation using CIELab color space using ant colony optimization. Int. J. Comput. Appl.

Citeseer 2011, 29, 28–34. [CrossRef]
7. Murray, R. Spiegel, Seymour Lipschutz, J.J.S.; Spellman, D. Complex Variables: With an Introduction to Conformal Mapping and Its

Applications, 2nd ed.; Schaum’s Outlines Series; McGraw-Hill: New York, NY, USA, 2009.
8. Fujiyoshi, H.; Hirakawa, T.; Yamashita, T. Deep learning-based image recognition for autonomous driving. IATSS Res. 2019,

43, 244–252. [CrossRef]
9. Xu, H.; Gao, Y.; Yu, F.; Darrell, T. End-To-End Learning of Driving Models From Large-Scale Video Datasets. In Proceedings of

the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017.
10. Dal Mutto, C.; Zanuttigh, P.; Cortelazzo, G.M. Fusion of geometry and color information for scene segmentation. IEEE J. Sel. Top.

Signal Process. 2012, 6, 505–521. [CrossRef]
11. Pagnutti, G.; Zanuttigh, P. Joint segmentation of color and depth data based on splitting and merging driven by surface fitting.

Image Vis. Comput. 2018, 70, 21–31. [CrossRef]
12. Karimpouli, S.; Tahmasebi, P. Segmentation of digital rock images using deep convolutional autoencoder networks. Comput.

Geosci. 2019, 126, 142–150. [CrossRef]
13. Rochan, M.; Rahman, S.; Bruce, N.D.; Wang, Y. Weakly supervised object localization and segmentation in videos. Image Vis.

Comput. 2016, 56, 1–12. [CrossRef]
14. Zhou, D.; Frémont, V.; Quost, B.; Dai, Y.; Li, H. Moving object detection and segmentation in urban environments from a moving

platform. Image Vis. Comput. 2017, 68, 76–87. [CrossRef]
15. Xie, J.; Kiefel, M.; Sun, M.T.; Geiger, A. Semantic Instance Annotation of Street Scenes by 3D to 2D Label Transfer. In Proceedings

of the Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016.
16. Kaushik, R.; Kumar, S. Image Segmentation Using Convolutional Neural Network. Int. J. Sci. Technol. Res. 2019, 8, 667–675.
17. Ye, X.Y.; Hong, D.S.; Chen, H.H.; Hsiao, P.Y.; Fu, L.C. A two-stage real-time YOLOv2-based road marking detector with

lightweight spatial transformation-invariant classification. Image Vis. Comput. 2020, 102, 103978. [CrossRef]
18. Long, J.; Shelhamer, E.; Darrell, T. Fully convolutional networks for semantic segmentation. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 3431–3440.
19. Noh, H.; Hong, S.; Han, B. Learning Deconvolution Network for Semantic Segmentation. In Proceedings of the IEEE International

Conference on Computer Vision (ICCV), Santiago, Chile, 7–13 December 2015.
20. Chen, L.C.; Papandreou, G.; Kokkinos, I.; Murphy, K.; Yuille, A.L. Deeplab: Semantic image segmentation with deep convolutional

nets, atrous convolution, and fully connected crfs. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 40, 834–848. [CrossRef]
21. He, K.; Gkioxari, G.; Dollár, P.; Girshick, R. Mask r-cnn. In Proceedings of the IEEE International Conference on Computer Vision,

Venice, Italy, 22–29 October 2017; pp. 2961–2969.
22. Ren, S.; He, K.; Girshick, R.; Sun, J. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. IEEE

Trans. Pattern Anal. Mach. Intell. 2017, 39, 1137–1149. [CrossRef] [PubMed]
23. Rehman, S.; Ajmal, H.; Farooq, U.; Ain, Q.U.; Riaz, F.; Hassan, A. Convolutional neural network based image segmentation: A

review. In Proceedings of the Pattern Recognition and Tracking XXIX, Orlando, FL, USA, 15–19 April 2018; [CrossRef]
24. Li, Q.; Shen, L.; Guo, S.; Lai, Z. Wavelet integrated CNNs for noise-robust image classification. In Proceedings of the IEEE/CVF

Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020; pp. 7245–7254.
25. Yuan, L.; Hou, Q.; Jiang, Z.; Feng, J.; Yan, S. Volo: Vision outlooker for visual recognition. IEEE Trans. Pattern Anal. Mach. Intell.

2022, 1–13. [CrossRef] [PubMed]

137

Mathematics 2022, 10, 3752

26. Wu, Y.H.; Liu, Y.; Zhan, X.; Cheng, M.M. P2T: Pyramid pooling transformer for scene understanding. IEEE Trans. Pattern Anal.
Mach. Intell. 2022, 1–12. [CrossRef] [PubMed]

27. Churchill, R.V.; Brown, J.W. Variable Compleja y Aplicaciones, 5th ed.; McGraw-Hill-Interamericana: Madrid, Spain, 1996.
28. Cordts, M.; Omran, M.; Ramos, S.; Rehfeld, T.; Enzweiler, M.; Benenson, R.; Franke, U.; Roth, S.; Schiele, B. The Cityscapes

Dataset for Semantic Urban Scene Understanding. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 3213–3223.

29. Brostow, G.J.; Fauqueur, J.; Cipolla, R. Semantic object classes in video: A high-definition ground truth database. Pattern Recognit.
Lett. 2009, 30, 88–97. [CrossRef]

30. Sun, P.; Kretzschmar, H.; Dotiwalla, X.; Chouard, A.; Patnaik, V.; Tsui, P.; Guo, J.; Zhou, Y.; Chai, Y.; Caine, B.; et al. Scalability in
Perception for Autonomous Driving: Waymo Open Dataset. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), Seattle, WA, USA, 13–19 June 2020; pp. 2446–2454

31. Caesar, H.; Bankiti, V.; Lang, A.H.; Vora, S.; Liong, V.E.; Xu, Q.; Krishnan, A.; Pan, Y.; Baldan, G.; Beijbom, O. nuScenes: A
multimodal dataset for autonomous driving. In Proceedings of the CVPR, Seattle, WA, USA, 13–19 June 2020; pp. 11621–11631.

32. Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. In Proceedings of the 3rd
International Conference on Learning Representations, ICLR 2015—Conference Track Proceedings, San Diego, CA, USA, 7–9 May
2015; pp. 1–14.

33. Srivastava, N.; Hinton, G.; Krizhevsky, A.; Sutskever, I.; Salakhutdinov, R. Dropout: A simple way to prevent neural networks
from overfitting. J. Mach. Learn. Res. JMLR. Org. 2014, 15, 1929–1958.

34. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778.

35. Redmon, J.; Farhadi, A. Yolov3: An incremental improvement. arXiv 2018, arXiv:1804.02767.
36. Bochkovskiy, A.; Wang, C.Y.; Liao, H.Y.M. Yolov4: Optimal speed and accuracy of object detection. arXiv 2020, arXiv:2004.10934.
37. He, K.; Zhang, X.; Ren, S.; Sun, J. Spatial pyramid pooling in deep convolutional networks for visual recognition. IEEE Trans.

Pattern Anal. Mach. Intell. 2015, 37, 1904–1916. [CrossRef]

138

Citation: Krutikov, V.; Gutova, S.;

Tovbis, E.; Kazakovtsev, L.; Semenkin,

E. Relaxation Subgradient

Algorithms with Machine Learning

Procedures. Mathematics 2022, 10,

3959. https://doi.org/10.3390/

math10213959

Academic Editor: Florin Leon

Received: 27 September 2022

Accepted: 19 October 2022

Published: 25 October 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Relaxation Subgradient Algorithms with Machine
Learning Procedures †

Vladimir Krutikov 1, Svetlana Gutova 1, Elena Tovbis 2, Lev Kazakovtsev 2 and Eugene Semenkin 2,*

1 Department of Applied Mathematics, Kemerovo State University, Krasnaya Street 6,
Kemerovo 650043, Russia

2 Institute of Informatics and Telecommunications, Reshetnev Siberian State University of Science and
Technology, Prosp. Krasnoyarskiy Rabochiy 31, Krasnoyarsk 660031, Russia

* Correspondence: eugenesemenkin@yandex.ru
† This paper is an extended version of our paper published in Mathematical Optimization Theory and

Operations Research MOTOR 2021 Conference, Irkutsk, Russia, 5–10 July 2021; pp. 477–492.

Abstract: In the modern digital economy, optimal decision support systems, as well as machine
learning systems, are becoming an integral part of production processes. Artificial neural network
training as well as other engineering problems generate such problems of high dimension that are
difficult to solve with traditional gradient or conjugate gradient methods. Relaxation subgradient
minimization methods (RSMMs) construct a descent direction that forms an obtuse angle with
all subgradients of the current minimum neighborhood, which reduces to the problem of solving
systems of inequalities. Having formalized the model and taking into account the specific features of
subgradient sets, we reduced the problem of solving a system of inequalities to an approximation
problem and obtained an efficient rapidly converging iterative learning algorithm for finding the
direction of descent, conceptually similar to the iterative least squares method. The new algorithm
is theoretically substantiated, and an estimate of its convergence rate is obtained depending on the
parameters of the subgradient set. On this basis, we have developed and substantiated a new RSMM,
which has the properties of the conjugate gradient method on quadratic functions. We have developed
a practically realizable version of the minimization algorithm that uses a rough one-dimensional
search. A computational experiment on complex functions in a space of high dimension confirms the
effectiveness of the proposed algorithm. In the problems of training neural network models, where it
is required to remove insignificant variables or neurons using methods such as the Tibshirani LASSO,
our new algorithm outperforms known methods.

Keywords: relaxation subgradient methods; space dilation; nonsmooth minimization methods;
machine learning algorithm

MSC: 49M20; 65K10; 68T20

1. Introduction

In this study, which is an extension of previous work [1], a problem of minimiz-
ing a convex, not necessarily differentiable function f (x), x ∈ Rn (where Rn is a finite-
dimensional Euclidean space) is discovered. Such a problem is quite common in the field
of machine learning (ML), where optimization methods, in particular, gradient descent, are
widely used to minimize the loss function during training stage. In the era of the digital
economy, such functions arise in many engineering applications. First of all, training and
regularizing the artificial neural networks of a simple structure (e.g., radial or sigmoidal)
may lead to the application of a loss function in a high-dimensional space, which are
often non-smooth. When working with more complex networks, such functions can be
non-convex.

Mathematics 2022, 10, 3959. https://doi.org/10.3390/math10213959 https://www.mdpi.com/journal/mathematics139

Mathematics 2022, 10, 3959

While a number of efficient machine learning tools exist to learn smooth functions
with high accuracy from a finite data sample, the accuracy of these approaches becomes
less satisfactory for nonsmooth objective functions [2]. In a machine learning context, it
is quite common to have an objective function with a penalty term that is non-smooth
such as the Lasso [3] or Elastic Net [4] linear regression models. Common loss functions,
such as the hinge loss [5] for binary classification, or more advanced loss functions, such
as the one arising in classification with a reject option, are also nonsmooth [6], as well as
some widely used activation functions (ReLU) [7] in the field of deep learning. Modern
convolutional networks, incorporating rectifiers and max-pooling, are neither smooth nor
convex. However, the absence of differentiability creates serious theoretical difficulties on
different levels (optimality conditions, definition and computation of search directions,
etc.) [8].

Modern literature offers two main approaches to building nonsmooth optimization
methods. The first is based on creating smooth approximations for nonsmooth func-
tions [9–13]. On this basis, various methods intended for solving convex optimization
problems, problems of composite and stochastic composite optimization [9–11,14] were
theoretically substantiated.

The second approach is based on subgradient methods that have their origins in
the works of N. Z. Shor [15] and B.T. Polyak [16], the results of which can be found
in [17]. Initially, relaxation subgradient minimization methods (RSMMs) were considered
in [18–20]. They were later developed into a number of effective approaches such as the
subgradient method with space dilation in the subgradient direction [21,22] that involve
relaxation by distance to the extremum [17,23,24]. The idea of space dilation is to change
the metric of the space at each iteration with a linear transformation and to use the direction
opposite to that of the subgradient in the space with the transformed metric.

Embedding the ideas of machine learning theory [25] into such optimization methods
made it possible to identify the principles of organizing RSMM with space dilation [26–29].
The problem of finding the descent direction in the RSMM can be reduced to the problem
of solving a system of inequalities on subgradient sets, mathematically formulated as a
problem of minimizing a quality functional. This means that a new learning algorithm is
embedded into the basis of some new RSMM algorithm. Thus, the convergence rate of the
minimization method is determined by the properties of the learning algorithm.

Rigorous investigation of the approximation capabilities of various neural networks
has received much research interest [30–36] and is widely applied to problems of system
identification, signal processing, control, pattern recognition and many others [37]. Due
to universal approximation theorem [30], a feedforward network with a single hidden
layer and a sigmoidal activation function can arbitrarily well approximate any continuous
function on a compact set [38]. The studies of learning theory on unbounded sets can be
found in [39–41].

The stability of the neural network solutions can be improved by introducing a regu-
larizing term in the minimized functional [42], which stabilizes the solution using some
auxiliary non-negative function carrying information on the solution obtained earlier (a
priori information). The most common form of a priori information is the assumption of
the function smoothness in the sense that the same input signal corresponds to the same
output. Commonly used regularization types include:

1. Quadratic Tikhonov regularization (or ridge regression, R2). In the case of approxi-
mation by a linear model, the Tikhonov regularizer [42] is used:

R2(U) =
k

∑
i=1

u2
i , (1)

where parameters of the linear part of the model are included, and k is the number of vector
U components. The regularizer R2 is mainly used to suppress large components of the
vector U to prevent overfitting the model.

140

Mathematics 2022, 10, 3959

2. Modular linear regularization (Tibshirani Lasso, R1). The regularizer proposed
in [3] is mainly used to suppress large and small components of the vector U:

R1(U) =
k

∑
i=1

|ui|. (2)

3. Non-smooth regularization (Rγ) [3,43]:

Rγ(U) =
k

∑
i=1

(|ui|+ ε)γ, ε = 10−6, γ = 0.7. (3)

The use of Rγ led to the suppression of small (“weak”) components of the vector U.
This property of Rγ enables us to reduce to zero weak components that are not essential for
the description of data.

The aim of our work is to outline an approach to accelerating the convergence of learn-
ing algorithms in RSMM with space dilation and to give an example of the implementation
of such an algorithm, confirming the effectiveness of theoretical constructions.

In the RSMM, successive approximations [18–20,26,28,44] are:

xk+1 = xk − γksk+1, γk = arg min
γ

f (xk − γsk+1), (4)

where k is the iteration number, γk is the stepsize, x0 is a given starting point, and the
descent direction sk+1 is a solution of a system of inequalities on s ∈ Rn [20]:

(s, g) > 0, ∀g ∈ G. (5)

Hereinafter, (s, g) is a dot product of vectors, and G is a set of subgradients calculated
on the descent trajectory of the algorithm at a point xk.

Denote as (s, g) a set of solutions to inequality (5), as ∂ f (x) is a subgradient set at
point x. If the function is convex and G = ∂ε f (xk) is an ε-subgradient set at point xk, and
sk+1 is an arbitrary solution of system (5), then the function will be reduced by at least ε
after iteration (4) [20].

Since there is no explicit specification of ε-subgradient sets, the subgradients gk ∈ ∂ f (xk)
are used as elements of the set G, calculated on the descent trajectory of the minimization
algorithm. These vectors must satisfy the condition:

(sk, gk) ≤ 0. (6)

Inequality (6) means that for the vectors used, condition (5) is not satisfied. The choice
of learning vectors is made according to this principle in the perceptron method [25,45],
for instance.

A sequence of vectors gk ∈ ∂ f (xk), k = 0, 1, . . . is not predetermined, but determined
during minimization (4) with a built-in method for finding the vector sk+1 at each iteration
of minimization by a ML algorithm.

Let vector sk+1 be a solution of the system of inequalities (5) for the subgradient set of
some neighborhood of the current minimum xk. Then, as a result of iteration (4), we go
beyond this neighborhood with a simultaneous function decrease, since vector sk+1 forms
an acute angle with each of the subgradients of the set.

In this work, we present a formalized model of subgradient sets, which enables us,
taking into account their specificity, to formulate stronger learning relations and quality
functionals, which leads to acceleration in the convergence rate of learning algorithms
designed to form the direction of descent in the RSMM.

As a result of theoretical analysis, an effective learning algorithm has been developed.
For the proposed ML algorithm, the convergence in a finite number of iterations is proved
when solving problem (5) on separable sets. Based on the learning algorithm, we proposed

141

Mathematics 2022, 10, 3959

a method for minimizing nonsmooth functions. Its convergence on convex functions was
substantiated. It is shown that on quadratic functions, the minimization method generates
a sequence of minimum approximations identical to the sequence of the conjugate gradient
method. We also proposed a minimization algorithm with a specific one-dimensional
search method. A computational experiment confirmed its effectiveness for problems of
neural network approximations, where the technology of uninformative model component
suppression with regularizers similar to the Tibshirani LASSO was used [46]. The result of
our work is an optimization algorithm applicable for solving neuron network regularization
and other machine learning problems which, in turn, contains an embedded machine
learning algorithm for finding the most promising descent direction. In the problems
used for comparison, the objective function forms an elongated multidimensional ravine.
As with other subgradient algorithms, our new algorithm proved to be efficient for such
problems. Moreover, the new algorithm outperforms known relaxation subgradient and
quasi-Newtonian algorithms.

The rest of this article is organized as follows. In Section 2, we consider a problem of
acceleration of the learning algorithms convergence using relaxation subgradient methods.
In Section 3, we make assumptions regarding the parameters of subgradient sets that affect
the convergence rate of the proposed learning algorithm. In Section 4, we formulate and
justify a machine learning algorithm for finding the descent direction in the subgadient
method. In Section 5, we give a description of the minimization method. In Section 6, we
establish the identity of the sequences generated by the conjugate gradient method and
the relaxation subgradient method with space dilation on the minimization of quadratic
functions. In Sections 7 and 8, we consider a one-dimensional minimization algorithm and
its implementation, respectively. In Sections 9 and 10, we present experimental results for
the considered algorithms. In Section 9, we show a computational experiment on complex
large-sized function minimization. In Section 10, we consider experiments with training
neural network models, where it is required to remove insignificant neurons. Section 11
contains a summary of the work.

2. Acceleration of the Learning Algorithm’s Convergence in Relaxation
Subgradient Methods

To use more efficient learning algorithms, a relation stronger than (5) can be written
for the descent direction. We make an additional assumption about the properties of the
set G.

Assumption 1. Let a convex set G ⊂ Rn belong to a hyperplane; its minimal length vector η is
also the minimal length vector of this hyperplane. Then, a solution of the system (s, g) = 1 ∀g ∈ G
is also a solution of (5) [26]. It can be found as a solution to a system of equations using a sequence
of vectors from G [26]:

(s, gi) = qi = 1, gi ∈ G, i = 0, 1, . . . k. (7)

It is easy to see that the solution to system (7) in s is the vector s∗ = η/||η||2. Figure 1 shows
the subgradient set in the form of a segment lying on a straight line. Equalities (7) can be solved by
a least squares method. For example, using the quadratic quality functional

Qk(s) =
1
2
(1 − (s, gk))

2,

it is possible to implement a gradient machine learning algorithm,

sk+1 = sk − βk∇Qk(sk),

142

Mathematics 2022, 10, 3959

where βk is a gradient method step. Hence, when choosing βk = 1/(gk, gk), we obtain the
well-known Kaczmarz algorithm [47],

sk+1 = sk +
1 − (sk, gk)

(gk, gk)
gk. (8)

The found direction sk satisfies the learning equality (sk+1, gk) = 1. To ensure the possibility
of decreasing the function as a result of iteration (4), the new descent direction in the minimization
method must be consistent with the current subgradient, i.e., satisfy inequality (sk+1, gk) > 0.
Process (8) corresponds to this condition.

Figure 1. Set G belongs to a hyperplane.

To propose a faster algorithm, consider the interpretation of process (8). Let Assump-
tion 1 be fulfilled. The step of process (8) is equivalent to the step of one-dimensional
minimization of the function

E(s) =
(s − s∗, s − s∗)

2
from point sk in the direction gk. Let the current approximation sk be obtained using a
vector gk−1 and satisfy the condition (sk, gk−1) = 1. Figure 2 shows the projections of
the current approximation sk and the required vector s∗ on the plane of vectors gk−1, gk.
Straight lines W1 and Z1 are hyperplane projections for vectors s, given by the equalities
(s, gk−1) = 1 and (s, gk) = 1. Vector s1

k+1 is a projection of the approximation obtained from
the iteration (8).

Figure 2. Projections of approximations sk+1 in the plane of vectors gk, gk−1.

143

Mathematics 2022, 10, 3959

If (gk, gk−1) ≤ 0, then the angle between subgradients is obtuse, and the angle ϕ is
acute (Figure 2). In this case, it is possible to completely extinguish the projection of the
residual between sk and s∗ in the plane of vectors gk−1, gk, passing from point A to point C
along vector AC, perpendicular to the vector gk−1, i.e., along vector pk:

pk = gk − gk−1
(gk, gk−1)

(gk−1, gk−1)
. (9)

In this case, the iteration has the form

sk+1 = sk + pk
1 − (sk, gk)

(gk, pk)
. (10)

In Figure 2, this vector is denoted as s2
k+1. The vector sk+1, obtained by formula (10),

satisfies the equalities (sk+1, gk−1) = 1, (sk+1, gk) = 1 and coincides with the projection
s∗ of the optimum of the function E(s). At small angles φ between the straight lines W1
and Z1, the acceleration of convergence for process (10) becomes essential. In this work,
process (10) will be used to accelerate the convergence in the metric of the iterative least
squares method.

Using learning information (7), one of the possible solutions to the system of inequali-
ties (5) can be found in the form sk+1 = arg mins Fk(s), where

Fk(s) =
k

∑
i=0

wiQi(s) +
1
2

n

∑
i=1

s2
i , Qi(s) =

1
2
(qi − (s, gi))

2.

Such a solution can be obtained by the iterative least squares method (ILS). With
weight factors wi = 1, after the arrival of new data qk, gk, the transition from the previously
found solution sk to a new solution sk+1 in ILS is made as follows:

sk+1 = sk +
Hkgk(qk − (sk, gk))

1 + (Hkgk, gk)
, s0 = 0, (11)

Hk+1 = Hk −
HkgkgT

k HT
k

1 + (gk, Hkgk)
, H0 = I. (12)

Note that, in contrast to the usual ILS, there is a regularizing component ∑n
i=1 s2

i /2 in
Fk(s), which allows us to use transformations (11) and (12) from the initial iteration, setting
s0 = 0 and H0 = I.

In [26], based on ILS (11) and (12), an iterative process is proposed for solving the
system of inequalities (5) using learning information (7):

sk+1 = sk +
Hkgk[1 − (sk, gk)]

(gk, Hkgk)
, s0 = 0, (13)

Hk+1 = Hk − (1 − 1
α2

k
)

HkgkgT
k HT

k
(gk, Hkgk)

, H0 = I. (14)

Here, αk > 1 is a space dilation parameter.
Consider the rationale for the method of obtaining formulas (13) and (14). Using

processes (11) and (12) for scaled data, we obtain

ĝk = gk[q(gk, Hkgk)]
−0.5, q̂k = qk[q(gk, Hkgk)]

−0.5,

144

Mathematics 2022, 10, 3959

where scaling factor q > 0. The latter is equivalent to introducing the weight factors
wk = 1/[q(gk, Hkgk)] in F(s). Then, after returning to the original data gk, yk, we obtain
the expressions:

sk+1 = sk +
Hkgk[qk − (sk, gk)]

(1 + q)(gk, Hkgk)
, s0 = 0, (15)

Hk+1 = Hk −
HkgkgT

k HT
k

(1 + q)(gk, Hkgk)
, H0 = I. (16)

The transformation of matrices (16) is practically equivalent to (14) after the appro-
priate choice of the parameter q. For transformation (15), the condition (sk+1, gk) > 0
providing the condition for the possibility of decreasing the function in the course of iter-
ation (4) along the direction sk+1 may not be satisfied. Therefore, the transformation (13)
is used with qk = 1, which ensures equality (sk+1, gk) = 1 > 0. Transformation (13) can
be interpreted as the Kaczmarz algorithm in the corresponding metric. As a result, we
obtain processes (13) and (14). Methods [18–20] of the class under consideration possess
the properties of the conjugate gradient method. The noted properties expand the area of
effective application of such methods.

The higher the convergence rate of processes (13) and (14), the greater the value of
the permissible value αk in (14) [26], which depends on the set G’s characteristics. In
algorithms (13) and (14), we distinguish 2 stages: the correction stage (13). reducing the
residual between the optimal solution s∗ and the current approximation sk, and the space
dilation stage (14), resulting in the increase in the residual in the transformed space without
exceeding its initial value, which limits the magnitude of the space dilation parameter. To
create more efficient algorithms for solving systems of inequalities, we have to choose the
direction of correction in such a way that the reduction of the residual is higher than that of
process (13). The direction of space dilation should be chosen so that it becomes possible to
increase the space dilation parameter value due to this choice.

This paper presents one of the special cases of the implementation of the correction
stage and space dilation stage. It was proposed to use linear combinations of vectors
gk−1, gk in transformation (13) instead of a vector gk when it is appropriate:

pk = gk − gk−1
(gk, Hkgk−1)

(gk−1, Hkgk−1)
, (17)

sk+1 = sk + Hk pk
1 − (sk, gk)

(gk, Hk pk)
. (18)

Transformations (17) and (18) are similar to the previously discussed transformations
(9) and (10) carried out in the transformed space.

In the matrix transformation, we use equation (14) instead of vector gk. We also use vec-
tor
yk = gk − gk−1 such that

Hk+1 = Hk − (1 − 1
α2

k
)

HkykyT
k HT

k
(yk, Hkyk)

. (19)

As shown below, the discrepancy between the optimal solution s∗ and the current
approximation sk+1 along the vector yk is small, which makes it possible to use large param-
eters of space dilation αk in (19). Iterations (18) and (19) are conducted under the condition:

(gk, Hkgk−1) ≤ 0. (20)

In the next section, assumptions will be made regarding the parameters of subgradient
sets that affect the convergence rate of the proposed learning algorithm and determine
the permissible parameters of space dilation. This allows us to formulate and justify a
machine learning algorithm for finding the descent direction in the subgradient method.

145

Mathematics 2022, 10, 3959

Note that the described parameterization of the sets does not impose any restrictions on the
subgradient sets but is used only for the purpose of developing constraints on the learning
algorithm parameters.

3. Formalization of the Separable Sets Model

In this section, we will use the following notation (as earlier, vector η is the shortest
vector from G):

(1) ρ = ||η|| is the length of the minimal vector of the set;
(2) R = maxg∈G ||g|| is the length of the maximal vector of the set;
(3) μ = η/ρ is the normalized vector η;
(4) s∗ = μ/ρ is a vector associated with the sought solution of systems (5) and (7) when

analyzing the ML algorithm;
(5) Rs = maxg∈G(μ, g) is an upper-bound value of the set G in the direction μ;
(6) M = Rs/ρ is the ratio of the upper and lower bounds of the set along μ, r = ρ/Rs =

M−1;
(7) V = ρ/R is the ratio of the minimal and maximal vectors of the set.

For some set Q, we will use the noted characteristics indicating the set as an argument;
for example, η(Q), r(Q).

We assume that set G satisfies the assumption:

Assumption 2 ([1]). Set G is convex, closed, limited (R < ∞) and satisfies the separability
condition, i.e., ρ > 0.

Vector s∗ is a solution to the system of inequalities (5), and ρ and Rs describe the thickness of
the set G in the direction μ:

ρ ≤ (μ, g) ≤ Rs, ∀g ∈ G. (21)

Due to (21) and the form of s∗:

1 ≤ (s∗, g) ≤ Rs/ρ = M, ∀g ∈ G. (22)

Rs, according to its definition, satisfies the constraints:

ρ ≤ Rs ≤ ||μ||max
g∈G

||g|| ≤ R.

Figure 3 shows a separable set and its characteristics. The Rs characteristic determines the
thickness of the set G and significantly affects the convergence rate of learning algorithms with space
dilation. When the thickness of the set is equal to zero, Rs = ρ and a flat set takes place (Figure 1).
Set G and its characteristics with boundaries (22) are shown in Figure 3.

For example, consider the function

f (x) =
n

∑
i=1

|xi|ai, ai ≥ 0, i = 1, ..., n, x0 = (b1, ..., bm, 0, ..., 0). (23)

The point x0 is located at the bottom of a multidimensional ravine. Let us study its subgradient
set at point x0. As earlier, g(x0) is subgradient of a function. Components of subgradient vectors
at non-zero values xi are as follows: gi(x) = sign(xi)ai. For zero xi, the components of the
subgradient vectors belong to the set gi(x) ∈ [−ai, ai], where the zero component gi(x) = 0 exists.
Hence, it follows that the subgradient of the minimum length of function (23) at point x0 has
the form

η = g0
min = (sign(b1)a1, . . . , sign(bm)am, 0, . . . , 0).

146

Mathematics 2022, 10, 3959

Figure 3. The set G and its characteristics.

Maximum length subgradients are specified by a set of subgradients

g0
max ∈ G = {(sign(b1)a1, . . . , sign(bm)am,±am+1, . . . ,±an)}.

It is easy to verify that the projections of arbitrary subgradients at the point x0 onto vector
g0

min are the same. Therefore, the thickness of the subgradient set is zero. In a sufficiently small
neighborhood of the point x0, the union of the subgradient sets of function (23) coincides with the
subgradient set at the point x0. Consequently, the descent direction in the form of a solution to the
system of inequalities (7) enables us to go beyond this neighborhood.

Figure 4 shows a representation of the subgradient set of a two-dimensional piecewise lin-
ear function

f (x) = |x1|+ |x2|a, a > 1, x0 = (b1, 0). (24)

Figure 4. Level lines, subgradient set and minimum length vector.

In quadrants, the function has the form

L1(x) = x1 + x2a, L2(x) = x1 − x2a, L3(x) = −x1 − x2a, L4(x) = −x1 + x2a.

Its subgradients at point x0 are given as follows:

g1(x0) = ∇L3(x0) = (−1,−a)T , g2(x0) = ∇L4(x0) = (−1, a)T .

Minimum length vector η = (−1, 0)T.
For large values of the parameter a in (24), the complexity of solving the minimization problem

increases significantly.

147

Mathematics 2022, 10, 3959

4. Machine Learning Algorithm with Space Dilation for Solving Systems of
Inequalities on Separable Sets

In this section, we briefly introduce an algorithm for solving systems of inequali-
ties from [1] and theoretically justify iterations (18) and (19). Specific operators will be
used for transformations (13), (14) and (17)–(19). Denote by S(s, g, p, H) transformation
(18)’s operator, where the correspondence is used for the eponymous components. Then,
for example, Formula (13) can be represented as sk+1 = S(sk, gk, gk, Hk). Similarly, for
(14) and (19), we introduce the operator H(H, α, g). Formula (19) can be represented as
Hk+1 = H(Hk, αk, yk).

For a chain of approximations sk, we form the residual vector Δk = s∗ − sk. Until
vector sk is not a solution to (5), for vectors gk selected at step 2 of Algorithm 1, from (6)
and (22), the following inequality holds:

(Δk, gk) = (s∗ − sk, gk) = (s∗, gk)− (sk, gk) ≥ 1 − (sk, gk) ≥ 1. (25)

The transformation equation for matrix Ak is as follows [1]:

Ak+1 = Ak + (α2 − 1)
gkgT

k
(gk, Hkgk)

, (26)

Ak+1 = Ak + (α2
k − 1)

ykyT
k

(yk, Hkyk)
, (27)

where Ak = H−1
k . For vectors sk and gk of Algorithm 1:

1 ≤ (Δk, gk)
2 = (Δk, A1/2

k H1/2
k gk)

2 ≤ (Δk, AkΔk)(gk, Hkgk), (28)

where A1/2 A1/2 = A, and A > 0 is a symmetric, strictly positive, definite matrix.

Algorithm 1 Method for solving systems of inequalities.

1: Set k = 0, s0 = 0, g−1 = 0, H0 = I. Set α > 1 as the limit for choosing the admissible
value of the parameter αk for transformations (13) and (14)

2: Find gk ∈ G, satisfying the condition (6) (sk, gk) ≤ 0
3: If such a vector does not exist, then

solution sk ∈ S(G) is found; stop the algorithm.
end if

4: If k = 0 or condition (20) (gk, Hkgk−1) ≤ 0 is not satisfied, then
go to step 7

end if
5: Compute vector pk = gk − gk−1(gk, Hkgk−1)/(gk−1, Hkgk−1) and perform transforma-

tion (18) sk+1 = S(sk, gk, pk, Hk). Compute the limit of the admissible values of the
space dilation parameter αyk for the combination of transformations (18) and (19)

6: If α2
yk ≥ α2, then

set αk satisfying the inequalities α2 ≤ α2
k ≤ α2

yk and perform transformation (19)
Hk+1 = H(Hk, αk, yk),

else
compute the limit of the admissible values of the space dilation parameter αgk for
the combination of transformations (18), (14); set αk satisfying the inequalities
α2 ≤ α2

k ≤ α2
gk and perform transformation (14) Hk+1 = H(Hk, αk, gk). Go to step 8

end if
7: Set α2

k = α2 and perform transformations (13), (14) sk+1 = S(sk, gk, gk, Hk), Hk+1 =
H(Hk, αk, gk)

8: Increase k by one and go to step 2

148

Mathematics 2022, 10, 3959

Inequality (28) is essential in justifying the convergence rate of the methods we study
for solving systems of inequalities (5). The main idea of the algorithm formation is the
point that the values of (Δk, AkΔk) do not increase when the values of (gk, Hkgk) decrease
with a geometric progression speed. In such a case, after a finite number of iterations, the
right side of (28) becomes less than one. The resulting contradiction means that problem (5)
is solved, and there is no more possibility of finding a vector gk satisfying condition (6).

For the decreasing rate of the sequence {τk}, τk = min0≤j≤k−1[(gj, Hjgj)/(gj, gj)], the
following theorem is known [26].

Theorem 1. Let a sequence {Hk} be a transformation (14) result with H0 = I, αk = α > 1 and
arbitrary gk ∈ Rn, gk �= 0, k = 0, 1, 2, Then

τk ≤ k(α2 − 1)/n(α2k/n − 1), k ≥ 1. (29)

This theorem does not impose restrictions on the choice of vectors gk. Therefore,
regardless of which of equations (14) or (19) is used to transform the matrices, the result
(29) is valid for a sequence of vectors composed of gk or yk, depending on which one
of them is used to transform the matrices. Let us show that for Algorithm 1 with fixed
values of parameter αk, estimates similar to (29) are valid, and we obtain expressions for
the admissible parameters αk in (14), (19), at which the values (Δk, AkΔk) do not increase.

In order to obtain the visually analyzed operation of the algorithm, similarly to the
analysis of iterations of the process (9), (10) carried out on the basis of Figure 2, we pass
to the coordinate system ŝ = A1/2

k s. In this new coordinate system, corresponding vectors
and matrices of iterations (13), (14) and (18), (19) are transformed as follows [1]:

ŝ = A1/2
k s, ĝ = H1/2

k g, Âk = H1/2
k Ak H1/2

k = I, Ĥk = A1/2
k Hk A1/2

k = I.

ŝk+1 = ŝk +
ĝk[1 − (ŝk, ĝk)]

(ĝk, ĝk)
, (30)

Ĥk+1 = I − (1 − 1
α2

k
)

ĝk ĝT
k

(ĝk, ĝk)
, (31)

Âk+1 = I + (α2
k − 1)

ĝk ĝT
k

(ĝk, ĝk)
. (32)

For expressions (17), (18) and (27):

ŝk+1 = ŝk +
p̂k[1 − (ŝk, ĝk)]

(ĝk, p̂k)
, (33)

Ĥk+1 = I − (1 − 1
α2

k
)

ŷkŷT
k

(ŷk, ŷk)
, (34)

ŷk = ĝk − ĝk−1, p̂k = ĝk − ĝk−1(ĝk, ĝk−1)

(ĝk−1, ĝk−1)
, (35)

Âk+1 = I + (α2
k − 1)

ŷkŷT
k

(ŷk, ŷk)
. (36)

Inequality (22) for new variables is:

1 ≤ (ŝ∗, ĝ) ≤ Rs/ρ = M, ∀ĝ ∈ Ĝ. (37)

In Figure 5, characteristics of set Ĝ in the plane Z formed by the vectors g̃k, g̃k−1
are shown. Straight lines W1 , WM are projections of hyperplanes, i.e., corresponding
inequality (37) boundaries for possible positions of the vector ŝ∗ projections defined by the

149

Mathematics 2022, 10, 3959

normal g̃k−1. Straight lines Z1 , ZM are boundaries of inequality (37) for vector ŝ∗ possible
projection positions defined by the normal g̃k.

Let ψ be the angle between vectors g̃k and g̃k−1. Since in Figure 5, this angle is obtuse,
then condition (20) holds:

(gk, Hkgk−1) = (g̃k, g̃k−1) ≤ 0.

Consequently, angle ϕ in Figure 5 is acute. Due to the fact that vectors g̃k, g̃k−1 are
normals for the straight lines W1 and Z1, we obtain the relations [1]:

sin2 ϕ = sin2(π − ψ) = sin2 ψ = 1 − cos2 ψ, cos2 ϕ = cos2 ψ. (38)

cos2 ϕ = cos2 ψ =
(g̃k, g̃k−1)

2

(g̃k, g̃k)(g̃k−1, g̃k−1)
=

(gk, Hkgk−1)
2

(gk, Hkgk)(gk−1, Hkgk−1)
. (39)

Figure 5. Characteristics of the set G in the plane of vectors g̃k, g̃k−1.

The following lemmas [1] allow us to estimate the admissible values of space dila-
tion parameters.

Lemma 1. Let the values a, b, c, β satisfy the constraints a ≥ am ≥ 0, b > 0, c > 0 and
0 ≤ β ≤ 1; then:

min
α,β

(
(a + βb)2 − β2b2

β2c2

)
=

a2
m + 2amb

c2 =
(am + b)2 − b2

c2 . (40)

The proofs of Lemmas 1–6, as well as the proofs of Theorems 2–5, can be found in [1].

Lemma 2. Let vectors p1, p2 and g be linked by equalities (p1, g) = a, (p2, g) = b. Let the
difference of vectors p2 − p1 be collinear to the vector p, and let ξ be an angle between vectors p and
g; then:

‖p1 − p2‖2 =
(a − b)2

(g, p)2 ‖p‖2 =
(a − b)2

‖g‖2 cos2 ξ
. (41)

Lemma 3. As a result of transformation (13) at step 7 of Algorithm 1, the following equality holds:

(sk+1, gk) = (ŝk+1, ĝk) = 1, (42)

150

Mathematics 2022, 10, 3959

and as a result of (18) at step 5, (42) will hold, and the equality is as follows:

(sk+1, gk−1) = (ŝk+1, ĝk−1) = 1. (43)

Lemma 4. Let set G satisfy Assumption 2. Then, the limit α of the admissible parameter value
αk ≤ α in Algorithm 1 providing inequality (Δk+1, Ak+1Δk+1) ≤ (Δk, AkΔk) in the case of
transformations (13) and (14) is

α2 =
M2

(M − 1)2 =
1

(1 − r)2 . (44)

Lemma 5. Let set G satisfy Assumption 2. Then, the limit αgk of the admissible parameter value
αk at step 5 of Algorithm 1, providing inequality (Δk+1, Ak+1Δk+1) ≤ (Δk, AkΔk) in the case of
transformations (18), (14) is given by the equation:

α2
gk = 1 +

M2 − (M − 1)2

(M − 1)2 sin2 ϕ
= 1 +

2M − 1
(M − 1)2 sin2 ϕ

, (45)

where

sin2 ϕ = 1 − (gk, Hkgk−1)
2

(gk, Hkgk)(gk−1, Hkgk−1)
. (46)

Lemma 6. Let set G satisfy Assumption 2. Then, the limit αyk for the admissible value of parameter
αk at step 5 of Algorithm 1 providing inequality (Δk+1, Ak+1Δk+1) ≤ (Δk, AkΔk) in the case of
transformations (18) and (19) is given as

α2
yk = min{α2

Ek, α2
Jk}, (47)

where

α2
Ek = 1 +

(2M − 1)(yk, Hkyk)

(M − 1)2(gk, Hkgk) sin2 ϕ
, (48)

α2
Jk = 1 +

(yk, Hkyk)

(M − 1)2(gk, Hkgk) sin2 ϕ

(
1 +

2(M − 1)(gk, Hkgk)
1/2 cos ϕ

(gk−1, Hkgk−1)1/2

)
, (49)

The value cos2 ϕ is defined in (39), and sin2 ϕ = 1 − cos2 ϕ.

In matrix transformations (14) and (19) of Algorithm 1, vectors gk and yk are used,
which does not allow for directly using estimate (29) of Theorem 1 in the case when
expression τk involves some vector ym, m < k. In the next theorem, an estimate similar to
(29) is obtained directly for subgradients gk generated by Algorithm 1.

Theorem 2. Let set G satisfy Assumption 1 and let the sequence
{πk = min0≤j≤k−1(gj, Hjgj) = (gJk, HJkgJk)} be calculated based on the characteristics of
Algorithm 1 for fixed values of the space dilation parameters α2

k = α2 specified at steps 5 and 6,
where parameter α is specified according to (44). Then:

πk = (gm, Hmgm) ≤ 4R2k(α2 − 1)
n[α2k/n − 1]

, k ≥ 1, (50)

where m = arg min0≤j≤k−1(gj, Hjgj).

Theorem 3. Let set G satisfy Assumption 1 and let the sequence {(Δk, AkΔk)} be calculated based
on the characteristics of Algorithm 1. Let dilation parameter α satisfy constraint (44) and let the
admissible value α2

yk be given by (47). Then:

(Δk+1, Ak+1Δk+1) ≤ (Δk, AkΔk) ≤ (Δ0, Δ0) = ρ−2, k = 0, 1, 2... (51)

151

Mathematics 2022, 10, 3959

For fixed values of the space dilation parameter with respect to the convergence of
Algorithm 1, the following theorem holds.

Theorem 4. Let set G satisfy Assumption 2. Let the values of the space dilation parameters in
Algorithm 1 specified at steps 5 and 6 be fixed as α2

k = α2, and let parameter α be given according to
constraint (44). Then, the solution to system (5) will be found by Algorithm 1 in a finite number of
iterations, which does not exceed K0, the minimum integer number k satisfying the inequality

4kR2(α2 − 1)
nρ2[α2k/n − 1]

=
4k(α2 − 1)

nV2[α2k/n − 1]
< 1. (52)

Herewith, until a solution sk /∈ S(G) is found, and the following inequalities hold:

(gk, Hkgk) ≥ ρ2, (53)

(gk, Hkgk)

(gk, gk)
≥ ρ2

R2 = V2. (54)

According to (21), parameters ρ and Rs characterize the deviation of the component
vectors g ∈ G along the vector μ. If ρ = Rs, there is a set G in plane with normal μ.
Such a structure of the set G allows one to specify large values of the parameter α (44) in
Algorithm 1 and, according to (52), to obtain a solution in a small number of iterations.

In the minimization algorithm (4) on the descent trajectory, due to the exact one-
dimensional search, it is always possible to choose a subgradient from the subgradient
set satisfying condition (6), including at the minimum point. Therefore, we will impose
constraints on the subgradient sets of functions to be minimized, similar to those for the set
G. Due to the biases in the minimization algorithm, we need to define the constraints, taking
into account the union of subgradient sets in the neighborhood of the current minimum
point xk, and use these characteristics based on Theorem 4 results to develop a stopping
criterion for the algorithm for solving systems of inequalities.

5. Minimization Algorithm

Since in the subgradient set at point xk+1 an exact one-dimensional search is per-
formed,there is always a subgradient satisfying condition (6): (sk+1, gk+1) ≤ 0. For ex-
ample, for smooth functions, the equality (sk+1, gk+1) = 0 holds. Therefore, vector gk+1
can be used in Algorithm 1 to find a new descent vector approximation. In the built-in
algorithm for solving systems of inequalities, the dilation parameter is chosen to solve the
system of inequalities for the union of subgradient sets in some neighborhood of current
approximation xk. This allows the minimization algorithm to leave the neighborhood after
a finite number of iterations.

Due to possible significant biases during the operation of the minimization algorithm,
the shell of the subgradient set involved in the learning may contain a zero vector. To
avoid situations when there is no solution similar to (5) for the subgradient set from the
operational area of the algorithm, we introduce an update to the algorithm of solving
systems of inequalities. To track the updates, we used a stopping criterion, formulated
based on Theorem 4’s results.

To accurately determine the parameters of the algorithm involved in the calculation of
the dilation parameters αyk and αgk, we define their calculation in the form of operators.
Denote by AL2

g(M, H, g−1, g) the operator of calculation α2
gk according to (45) and (46) in

Lemma 5, which is α2
gk = AL2

yg(M, Hk, gk−1, gk). For α2
yk’s calculation according to expres-

sions (47)–(49) in Lemma 6, we introduce operator AL2
yg(M, H, g−1, g), where parameters

H, g−1, g correspond to set Hk, gk−1, gk.
A description of the minimization method is given in Algorithm 2.

152

Mathematics 2022, 10, 3959

Algorithm 2 RA(α).

1: Set x0 ∈ Rn, w0 = x0, k = q = l = 0, s0 = 0, H0 = I. Set σ > 0, parameters M > 0,
r = 1/M and the limit α for the dilation parameter according to equality (44). Compute
g0 ∈ ∂ f (x0).

2: If gk = 0 then
stop the algorithm

end if
3: If (gk, Hkgk)/(gk, gk) < σ then

update q = q + 1, wq = xk, l = 0, Hk = I, sk = 0
end if

4: If l = 0 or (gk, Hkgk−1) > 0 then
go to step 7

end if
5: Compute vector pk = gk − gk−1(gk, Hkgk−1)/(gk−1, Hkgk−1) and perform transforma-

tion (18) sk+1 = S(sk, gk, pk, Hk). Compute the limit of the admissible value of the
dilation parameter α2

yk = AL2
y(M, Hk, gk−1, gk) for the combination of transformations

(18) and (19)
6: If α2

yk ≥ α2 then

set αk satisfying the inequalities α2 ≤ α2
k ≤ α2

yk and perform transformation (19)
Hk+1 = H(Hk, αk, yk)

else
compute the limit of the admissible value of the dilation parameter
α2

gk = AL2
g(M, Hk, gk−1, gk) for the combination of transformations (18) and (14), set

αk satisfying the inequalities α2 ≤ α2
k ≤ α2

gk and perform transformation (14)
Hk+1 = H(Hk, αk, gk). Go to step 8

end if
7: Set α2

k = α2 and perform transformations (13), (14) sk+1 = S(sk, gk, gk, Hk),
Hk+1 = H(Hk, αk, gk)

8: Find a new approximation of the minimum point xk+1 = xk − γksk+1,
γk = arg minγ f (xk − γsk+1)

9: Compute subgradient gk+1 ∈ ∂ f (xk+1), based on the condition (gk+1, sk+1) ≤ 0.
10: Increase k and l by one and go to step 2

At step 9, due to the condition of the exact one-dimensional descent at step 8, the
sought subgradient always exists. This follows from the condition for the extremum of the
one-dimensional function. For the sequence of approximations of the algorithm, due to the
exact one-dimensional descent at step 8, the following lemma holds [20].

Lemma 7. Let function f (x) be strictly convex on Rn, let set D(x0) be limited, and let the sequence
{xk}∞

k=0 be such that f (xk+1) = minγ∈[0,1] f (xk + γ(xk+1 − xk)). Then, limk−→∞ ‖xk+1 −
xk‖ = 0.

Denote D(z) = {x ∈ Rn | f (x) ≤ f (z)}. Let x∗ be a minimum point of function
and let x∗ be limit points of the sequence {wq} generated by Algorithm 2 (RA(α)). The
existence of limit points of a sequence {wq} when the set D(x0) is bounded follows from
wq ∈ D(x0). Concerning the convergence of the algorithm, we formulate the following
theorem [1].

Theorem 5. Let function f (x) be strictly convex on Rn; let set D(x0) be bounded, and for x �= x∗,

r(∂ f (x)) ≥ r0 > 0, (55)

V(∂ f (x)) ≥ V0 > 0, (56)

153

Mathematics 2022, 10, 3959

where parameters M, r and α of Algorithm 2 are given according to the equalities

M =
4
3

r0, r =
3
4

r0, α =
1

1 − 3r0/4
, (57)

and parameters αk, set at steps 5 and 7, are fixed as αk = α. In this case, if σ = (3V0/4)2, then any
limit point of the sequence {wq} generated by Algorithm 2 (RA(α)) is a minimum point on Rn.

6. Relationship between the Relaxation Subgradient Method and the Conjugate
Gradient Method

Let us establish the identity of the sequences generated by the conjugate gradient
method and the relaxation subgradient method with space dilation on the minimization of
quadratic functions:

f (x) =
1
2
(x, Ax) + (b, x) + c, A ∈ Rn×n, A > 0, b ∈ Rn.

Suppose that the number of iterations without updating the relaxation subgradient method
and the conjugate gradient method is the same and equal to m ≤ n. Denote by ∇ f (x) the
function gradient at point x. Denote by gk = ∇ f (xk) the gradients at the points of the
current minimum approximation xk and denote by x0 ∈ Rn the initial point. Iterations of
the subgradient method for the purposes of its comparison with the conjugate gradient
method are briefly represented in Algorithm 3 (SSG).

As we will see below, metric transformations for establishing the identity of the
approximation sequences of the subgradient method and the method of conjugate gradients
on quadratic functions are not essential. Therefore, in this scheme, there are no details of
the choice of space dilation transformations and their parameters.

Algorithm 3 SSG

1: Set initial point x0 ∈ Rn, s0 = 0, H0 = I.
2: For k = 0, 1, ..., m < n do

2.1 Compute sk+1 as:

sk+1 = sk + Hk pk
1 − (sk, gk)

(gk, Hk pk)
, (58)

where

pk =

{
gk, if (k ≥ 1 and (gk−1, Hkgk−1) > 0) or k = 0,

gk − gk−1(gk ,Hk gk−1)
(gk−1,Hk gk−1)

, otherwise.
(59)

2.2 Perform metric transformation according to one of the formulas (14) or (19)
according to Algorithm 2 (RA(α)):

Hk+1 = Hk − (1 − 1
α2

k
)

HkzkzT
k HT

k
(zk, Hkzk)

, (60)

where zk = gk in the case of transformation (14) and zk = gk − gk−1
in the case of transformation (19)

2.3 Execute the descent step: xk+1 = xk − γksk+1, γk = arg minγ f (xk − γsk+1)
endfor

Iterations of the conjugate gradient method are carried out according to the Algo-
rithm 4 scheme (see, for instance, [17]):

154

Mathematics 2022, 10, 3959

Algorithm 4 SG

1: Set initial point x̄0 ∈ Rn

2: For k = 0, 1, . . . , m < n do
2.1 Compute x̄k+1 = x̄k − γ̄ksk+1, γ̄k = arg minγ̄ f (x̄k − γ̄s̄k+1)

where

s̄k = ḡk + βks̄k−1, ḡk = ∇ f (x̄k), (61)

βk =

{
0, if k = 0,

(gk ,gk)
(gk−1,gk−1)

, otherwise.

endfor

The following theorem gives conditions for the equivalence of methods for minimizing
quadratic functions:

Theorem 6. Let function f (x) be quadratic, and for the SSG process matrix H0 = I, αk ≥ 1.
Then, if the initial points for the SSG and SG processes coincide, x0 = x̄0, and for any m > k ≥ 0,
until a solution is found, the following sequences coincide:

xk = x̄k (62)

sk =
s̄k

(gk, gk)
, (63)

i.e., both processes generate coincident successive approximations.

Proof. We carry out the proof by induction. With k = 0, Equalities (62) and (63) hold, since,
according to (59), pk = gk, taking into account s0 = 0, we obtain:

s1 = s0 + Ig0
1 − (s0, gk)

(g0, Ig0)
=

g0

(g0, g0)
.

According to (61) with β0 = 0, we have s̄0 = ḡ0 = g0.
Assume that equalities (62) and (63) are satisfied for k = 0, 1, . . . , l, where l > 0. Let us

show that they are satisfied for k = l + 1.
Since xl = x̄l , vectors sl and s̄l are collinear, then by virtue of the condition of exact

one-dimensional descent x̄l+1 = xl+1. For the conjugate gradient method, the gradient
vectors calculated during the operation of the algorithm are mutually orthogonal [17].
Therefore, by virtue of (62), all of the vectors g0, g1, . . . , gl will be mutually orthogonal.
Using the recursive transformation of inverse matrices for (60),

Ak+1 = Ak + (α2
k − 1)

zkzT
k

(zk, Hkzk)
,

we obtain an expression for the matrix Al ,

Al = I +
l−1

∑
k=0

(α2
k − 1)

zkzT
k

(zk, Hkzk)
.

Since in (60), vectors zk = gk or zk = gk − gk−1, then, in this expression, all vectors
zk, k = 0, 1, . . . , l − 1 participating in the formation of matrix Al are orthogonal to vector gl .
Therefore, Al gl = gl . This implies the equality Hl gl = gl . Due to the orthogonality of the

155

Mathematics 2022, 10, 3959

vectors gl , gl−1, according to (59), equality pl = gl holds. By virtue of the condition of the
exact one-dimensional descent, (sl , gl) = 0. In view of the above, from (58), we obtain:

sl+1 = sl +
Hl gl

(gl , Hl gl)
=

s̄l
(gl−1, gl−1)

+
gl

(gl , gl)
.

Multiplying the last equality by (gl , gl), we obtain a proof of equality (63) for k = l + 1:

sl+1(gl , gl) = s̄l
(gl , gl)

(gl−1, gl−1)
+ gl = s̄l+1.

Note. For an arbitrary initial matrix H0 > 0, one should pass to the coordinate system,
where the initial matrix H̃0 = I, and in the new coordinate system, one should use the
results of Theorem 6.

The presented RSMM with space dilation in an exact one-dimensional search has the
properties of the conjugate gradient method. On a quadratic function, it is equivalent to
the conjugate gradient method.

7. One-Dimensional Search Algorithm

Consider a one-dimensional minimization algorithm for process (4). Computational
experience shows that the one-dimensional search algorithm in relaxation subgradient
methods should have the following properties:

1. An overly accurate one-dimensional search in subgradient methods leads to poor
convergence. The search should be adequately rough.

2. At the iteration of the method, the search step should be large enough to leave a
sufficiently large neighborhood of the current minimum.

3. To ensure the position of the previous paragraph, it should be possible to increase the
search step faster than the possibilities of decreasing it.

4. In PCM, a one-dimensional search should provide over-relaxation, that is, overshoot
the point of a one-dimensional minimum along the direction of descent when imple-
menting iteration (4). This provides condition (6), which is necessary for the learning
process.

5. When implementing one-dimensional descent along the direction at iteration (4), as a
new approximation of the minimum, one can take the points with the smallest value
of the function, and for training, one can take the points that ensure condition (6).

We use the implementation of the one-dimensional minimization procedure proposed
in [26]. The set of input parameters is {x, s, gx, fx, h0}, where x is the current minimum
approximation point, s is the descent direction, h0 is the initial search step, and fx =
f (x), gx ∈ ∂ f (x); moreover, the necessary condition for the possibility of decreasing
the function along the direction (gx, s) > 0 must be satisfied. Its output parameters are
{γm, fm, gm, γ1, g1, h1}. Here, γm is a step to the new minimum approximation point

x+ = x − γms, fm = f (x+), gm ∈ ∂ f (x+),

where γ1 is a step along s, such that at the point z+ = x − γ1s for subgradient g0 ∈ ∂ f (z+),
inequality (g0, s) ≤ 0 holds. This subgradient is used in the learning algorithm. The
output parameter h1 is the initial descent step for the next iteration. Step h1 is adjusted in
order to reduce the number of calls to the procedure for calculating the function and the
subgradient.

In the minimization algorithm, vector g0 ∈ ∂ f (z+) is used to solve the system of
inequalities, and point x+ = x − γms is a new minimum approximation point.

Denote the call to the procedure of one-dimensional minimization as
OM({x, s, gx, fx, h0}; {γm, fm, gm, γ0, g0, h1}). Here is a brief description of it. We introduce

156

Mathematics 2022, 10, 3959

the one-dimensional function ϕ(β) = f (x − βs). To localize its minimum, we take an in-
creasing sequence β0 = 0 and βih0qi−1

M with i ≥ 1. Here, qM > 1 is step increase parameter.
In most cases, qM = 3 is set. Denote zi = x − βis, ri ∈ ∂ f (zi), i = 0, 1, 2, . . . ; l is the number
i at which the relation (ri, s) = 0 holds. Let us determine the parameters of the localization
segment [γ0, γ1] of the one-dimensional minimum γ0 = βl−1, f0 = f (zl−1), g0 = ri−1,
γ1 = βl , f1 = f (zl), g0 = rl and find the minimum point γ∗ using a cubic approximation of
function [48] on the localization segment using the values of the one-dimensional function
and its derivative. Compute

γm =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0.1γ1, if l = 1 and γ∗ ≤ 0.1γ1,
γ1, if γ1 − γ∗ ≤ 0.2(γ1 − γ0),
γ0, if l > 1 and γ∗ − γ0 ≤ 0.2(γ1 − γ0),
γ∗, otherwise.

The initial descent step for the next iteration is defined by the rule h1 = qmh0(γ1/h0)
1/2.

Here, qm < 1 is the parameter of the descent step decrease, which, in most cases, is given
as qm = 0.8. In the overwhelming majority, when solving applied problems, the set of
parameters {qM = 3, qm = 0.8} is satisfactory. When solving complex problems with a
high degree of level surface elongation, the parameter qm → 1 should be increased.

8. Implementation of the Minimization Algorithm

Algorithm 2 (RA(α)), as a result of updates at step 3, loses information about the
space metric. In the proposed algorithm, the matrix update is replaced by the correction
of the diagonal elements, and exact one-dimensional descent by approximate. Denote
by Sp(H) the matrix H’s trace and denote by εH the limit of admissible decrease in the
matrix H’s trace. The algorithm sets the initial metric matrix H0 = I. Since, as a result of
transformations, the elements of the matrix decrease, then when the trace of the matrix
decreases, Sp(H) ≤ εH , it is corrected using the transformation H+ = nH/Sp(H), where
εH is a lower bound for trace reduction, and n is the space dimension. As an indicator
of matrix degeneracy, we use the cosine of the angle between vectors g and Hg. When
it decreases to a certain value ελ, which can be done by checking (g, Hg) ≤ ελ||g||||Hg||,
transformation H+ = H + 10ελ I is performed. Here, I is the identity matrix and ελ is
the cosine angle limit. To describe the algorithm, we will use the previously introduced
operators.

Let us explain the actions of the algorithm. Since s0 = 0, then at k = 0, condition (6) is
satisfied, and (sk, gk) ≤ 0 and gO

0 = g0. Therefore, at step 8, learning iterations (13) and (14)
will be implemented. According to the algorithm of the OM procedure, the subgradient
gO

k+1 obtained at step 10 of the algorithm satisfies the condition (6): (gO
k+1, sk+1) ≤ 0.

Therefore, at the next iteration, it is used in learning in steps 6–8.
At step 9, an additional correction of the descent direction is made in order to provide

the necessary condition (gk, sk+1) > 0 for the possibility of descent in the direction opposite
to sk+1. From the point of view of solving the system of inequalities, this correction also
improves the descent vector, which can be shown using Figure 5. Here, as under the
conditions of Lemma 4, the movement is made in the direction AB, not from point A,
but from some point of the segment AB, where (s1/2

k+1, gk) < 1. Since the projection of the
optimal solution is in the area between the straight lines Z1, ZM, the shift to point B, where
(sk+1, gk) = 1, reduces the distance to the optimal vector.

An effective set of parameters for the OM in the minimization algorithm is
{qm = 0.8, qM = 3}. The next section presents the results of numerical studies of the
presented Algorithm 5.

157

Mathematics 2022, 10, 3959

Algorithm 5 RAOM(α)

1: Set x0 ∈ Rn, w0 = x0, k = 0, s0 = 0, H0 = I. Set εH > 0, ελ > 0, M > 0, r = 1/M
and the limit α for the dilation parameter according to equality (44) α2 = M2/(M − 1)2.
Compute fk = f (x0). Set gO

0 = g0, f min
k = f0, xmin

k = x0.
2: If gk = 0 then

stop the algorithm
3: If (gk, Hkgk) ≤ ελ||gk||||Hkgk|| then

Hk = nHk/Sp(Hk)
4: If Sp(Hk) ≤ εH then

Hk = Hk + 10ελ I
5: If k = 0 or (gk, Hkgk−1) > 0 then

go to step 8
6: Perform transformations (17) and (18) for the training system of subgradients: pk =

gO
k − gk−1(gO

k , Hkgk−1)/(gk−1, Hkgk−1), s1/2
k+1 = S(sk, gO

k , pk, Hk). Compute the limit of
the dilation parameter α2

yk = AL2
y(M, Hk, gk−1, gO

k) for the combination of transforma-
tions (18) and (19)

7: If α2
yk ≥ α2 then

set αk satisfying the inequalities α2 ≤ α2
k ≤ α2

yk and perform transformation (19)

Hk+1 = H(Hk, αk, yk) with yk = gO
k − gk−1

else
compute the limit of the dilation parameter α2

gk = AL2
g(M, Hk, gk−1, gO

k)

for the combination of transformations (18), (14), set αk satisfying the inequalities
α2 ≤ α2

k ≤ α2
gk and perform transformation (14) Hk+1 = H(Hk, αk, gO

k).
Go to step 9

8: Set α2
k = α2 and perform transformations (13), (14) s1/2

k+1 = S(sk, gO
k , gO

k , Hk),
Hk+1 = H(Hk, αk, gO

k)

9: If (s1/2
k+1, gk) < 1 then

perform transformation sk+1 = S(s1/2
k+1, gk, gk, Hk+1)

else
sk+1 = s1/2

k+1
10: Perform one-dimensional minimization OM({xk, sk, gk+1, fk, hk} ;

{γk+1, fk+1, gk+1, gO
k+1, hk+1}) and compute a new approximation of the minimum

point xk+1 = xk − γk+1sk+1
11: If f min

k > fk+1 then

set f min
k+1 = fk+1, xmin

k+1 = xk+1
else

set f min
k+1 = f min

k , xmin
k+1 = xmin

k
Here, the subgradient gk+1 ∈ ∂ f (xk+1) is obtained in the OM procedure and is used as
the current approximation of the minimum. Subgradient gO

k+1 is also obtained in the
OM procedure. It satisfies condition (6) (gO

k+1, sk+1) ≤ 0 and is further used in training

12: If ||xk+1 − xk|| ≤ εx then
stop the algorithm

else
increase k by one and go to step 2

9. Computational Experiment Results

In this section, we conduct a computational experiment on minimizing test functions
using the following methods: (1) the relaxation method with space dilation in the direction
of the subgradient (RSD) [26]; (2) the r-algorithm (rOM(α)) [22,26]; (3) the quasi-Newtonian
method (QN) implemented with the matrix transformation formula BFGS; (4) algorithm
RA(α) with the fixed parameter (RA(α = const)), where α2 = 6; (5) an algorithm with a
dynamic way to select the space dilation parameter (RA(αk)), where α2 = 6.

158

Mathematics 2022, 10, 3959

As test functions, we took functions with a high degree of level surface elongation,
which increases with the dimension:

(1) f1(x) = ∑n
i=1 x2

i i6, x0 = (10/1, 10/2, . . . , 10/n), ε = 10−10 ;
(2) f2(x) = ∑n

i=1 x2
i (n/i)6, x0 = (10/1, 10/2, . . . , 10/n), ε = 10−10;

(3) f3(x) = (∑n
i=1 x2

i i)r, x0 = (1, 1, . . . , 1), r = 2, ε = 10−10;
(4) f4(x) = ∑n

i=1 |xi|i3, x0 = (10/1, 10/2, . . . , 10/n), ε = 10−4 ;
(5) f5(x) = max1≤i≤n(|xi|i3), x0 = (10/1, 10/2, . . . , 10/n), ε = 10−4.

When testing the methods, the values of the function and the subgradient were
computed simultaneously. Parameter ε for quadratic functions was chosen as a sufficiently
small value (10−10); for non-smooth functions, it was chosen so that the accuracies in terms
of variables are approximately the same for different types of functions. Tables 1–6 show
the number of calculations of the function values and the subgradient values necessary
for achieving the required accuracy for the function f (xk)− f ∗ ≤ ε. The initial point of
minimization x0 and the value ε are given in the description of the function.

The test case contains quadratic and piecewise linear functions. Due to their simplicity
and unambiguity, an analysis of the level surface elongation can be carried out easily. This
choice of functions is due to the fact that, during minimization, the local representation in the
current minimization area, as a rule, has either a quadratic or piecewise linear representation.

Functions 1 and 2 are quadratic, where the ratio of the minimum to maximum eigen-
value is 1/n6. The ratio of the level surface range along the coordinate axes of the minimum
to the maximum is equal to 1/n3. Function 2, in comparison with function 1, has a higher
density of eigenvalues in the region of small values. Function 3 is smooth with a low
degree of variation of the level surface elongation. Its complexity is due to the degree
above quadratic. Functions 4 and 5 are piecewise. For these functions, the ratio of the level
surface range along the coordinate axes of the minimum to the maximum is equal to 1/n3.
the same as for quadratic functions 1 and 2. It is of interest to compare the complexity
of minimizing smooth and nonsmooth functions by nonsmooth optimization methods
provided that their ratios of the surface range are identical.

None of problems 1, 2, 4 and 5 can be solved by the multistep minimization method [24]
for n ≥ 100, which emphasizes the relevance of methods with a change in the space met-
ric, in particular, space dilation minimization algorithms capable of solving nonsmooth
minimization problems with a high degree of level surface elongation.

In order to identify the least costly one-dimensional search in the quasi-Newtonian
method, it was implemented in various ways when specifying the initial unit step. Due to
the high degree of condition number for functions 1 and 2, for the best of them, the costs of
localizing a one-dimensional minimum when minimizing function 1 include about 2–4 steps.
This, together with the final iteration of the approximation and finding the minimum on the
localized segment, adds up to 3–5 calculations of the function and the gradient. For function
2, the total iteration costs are 5–10 calculations of the function and the gradient. Tables 1–3
for the QN method show only the number of iterations required to solve the problem.

Table 1. Function f1(x) minimization results.

n RA(αk) RA(α = const) RSD rOM(α) QN

100 1494 1834 2127 2333 107
200 3474 3896 4585 5244 216
300 5507 6317 7117 8480 324
400 7690 8548 9791 11,773 432
500 9760 11,510 12,366 15,281 542
600 12,133 13,889 15,537 19,073 650
700 13,933 16,394 18,450 22,500 757
800 16,492 18,721 21,387 26,096 867
900 17,774 21,606 24,671 30,233 975

1000 20,324 24,206 27,447 34,702 1084

159

Mathematics 2022, 10, 3959

Table 2. Function f2(x) minimization results.

n RA(αk) RA(α = const) RSD rOM(α) QN

100 304 381 480 482 124
200 525 621 788 852 239
300 715 842 1063 1223 336
400 869 1015 1307 1587 423
500 1065 1241 1497 1900 504
600 1217 1368 1742 2188 582
700 1366 1527 1898 2512 658
800 1465 1721 2095 2829 733
900 1602 1885 2293 3101 855

1000 1791 2019 2555 3300 1022

According to the results of Tables 1 and 2, the RA(α = const) algorithm outperforms
the RSD and rOM(α) methods on smooth functions. Therefore, the changes in the directions
of correction and space dilation have a positive effect on the convergence rate of the new
algorithm. In the RA(αk) algorithm, compared to RA(α = const), an additional factor of
convergence acceleration is involved due to an increase in the space dilation parameter,
which, according to the results of Tables 1 and 2, led to an increase in the RA(α = const)
algorithm’s convergence rate.

For function 2, the eigenvalues of the Hessian are shifted to the small values area,
which has a positive effect on the convergence rate of subgradient methods. Here, the
quasi-Newtonian method QN, taking into account the costs of localizing the minimum
in a one-dimensional search, required a larger number of calculations of the function
and gradient.

Table 3. Function f3(x) minimization results.

n RA(αk) RA(α = const) RSD rOM(α) QN

200 159 148 365 295 440
400 221 200 395 505 638
600 258 248 409 702 833
800 295 280 421 900 1030

1000 336 317 433 1094 1205

For function 3, the number of iterations of the quasi-Newtonian method turned
out to be higher than the number of calculations of the function and the gradient of
subgradient methods. Based on the results of minimizing functions 1–3, we can conclude
that subgradient methods with space dilation can also be useful in minimizing smooth
functions. New methods RA(αk) and RA(α = const) show better results here than other
algorithms with space dilation.

Table 4. Function f4(x) minimization results.

n RA(αk) RA(α = const) RSD rOM(α)

100 2248 2714 4214 3505
200 4988 6010 9087 8826
300 7680 9301 11,144 14,018
400 10,625 12,808 23,687 19,549
500 13,490 16,656 28,037 24,865
600 16,466 20,207 39,703 31,502
700 20,122 22,850 44,573 38,796
800 23,016 27,653 52,380 44,200
900 25,913 31,982 61,631 43,502

1000 28,962 35,792 72,175 49,050

160

Mathematics 2022, 10, 3959

Table 5. Function f4(x) minimization results with subgradient distortion.

n RA(αk) RA(α = const) RSD rOM(α)

100 2505 3135 5739 4777
200 5538 7393 13,364 10,665
300 9033 11,646 20,589 16,889
400 12,886 18,705 30,132 23,397
500 18,490 22,059 35,544 30.015
600 20,742 29,976 47,664 36,749
700 25,524 39,258 54,768 43,589
800 30,462 43,961 68,944 50,737
900 33,570 44,089 78,697 57,817

1000 39,764 49,772 82,490 64,777

According to the ratio of the level surface range along the coordinate axes, functions 1,
2, and 4 are similar. Function 4 is difficult to minimize by subgradient methods. Comparing
the results of Tables 1 and 4, we can note insignificant differences in the convergence rate
of subgradient methods on these functions, which is additional evidence of the method’s
effectiveness in solving nonsmooth optimization problems.

To simulate the presence of the thickness of the subgradient set when minimizing
function 4, the subgradients g(x) ∈ ∂ f (x) in the process of minimization were generated
with interference according to the g(x) ∈ (1 + ξ)∂ f (x), where ξ ∈ [0, 1] is a uniformly
distributed random number. The interference negatively affects both the quality of the
one-dimensional search and the quality of the descent direction. The results are shown
in Table 5. Here, the maximum possible value of the characteristic of a subgradient set
M = Rs/ρ = 2. Due to the random nature of the quantities ξ ∈ [0, 1], the value of M for
a set of subgradients on a certain time interval of minimization may have smaller values.
According to the results of Lemma 4, the admissible value is α2 = M2/(M − 1)2 = 4. The
calculations were carried out at large values of the space dilation parameter α2 = 6. The
proposed methods also show significantly better results here.

The ratios of the level surface range along the coordinate axes for functions 5 and 1
are similar. The results for function 5 are shown in Table 6. Here, the RSD method has an
advantage due to the fact that the function is separable and all of its subgradients calculated
in the minimization procedure are directed along the coordinate axes. Space dilations occur
along the coordinate axes, which does not change the eigenvectors of the metric matrix
directed along the coordinate axes.

Table 6. Function f5(x) minimization results.

n RA(αk) RA(α = const) RSD rOM(α)

200 3401 3551 3151 6906
400 7483 7707 6431 14,596
600 11,678 11,851 10,280 22,853
800 15,868 16,088 14,020 31,259

1000 19,893 20,867 17,707 39,275

To simulate the presence of the thickness of the subgradient set when minimizing
function 5, the subgradients g(x) ∈ ∂ f (x) in the process of minimization were generated with
interference according to the g(x) ∈ (1 + ξ)∂ f (x), where ξ ∈ [0, 1] is uniformly distributed
random number. The results for function 5 with subgraduient distortion are shown in Table 7.
Here, the maximum possible value of the characteristic of a subgradient set M = Rs/ρ = 2.
The proposed methods show better results here than the RSD and rOM(α) methods.

161

Mathematics 2022, 10, 3959

Table 7. Function f5(x) minimization results with subgradient distortion.

n RA(αk) RA(α = const) RSD rOM(α)

200 3773 3816 6805 7463
400 7976 8370 16,188 15,246
600 12,654 13,548 24,873 24,542
800 17,286 18,411 35,251 33,600

1000 22,344 23,559 46,873 41,773

A number of conclusions can be drawn regarding the convergence rate of the pre-
sented methods:

1. Functions 1, 2, 4, 5 have a significant degree of level surface elongation. The problems
of minimizing these functions could not be solved by the multistep minimization
methods investigated in [24], which emphasize the relevance of developing methods
with a change in the space metric, in particular, space dilation minimization algorithms
capable of solving nonsmooth minimization problems with a high degree of level
surface elongation.

2. Based on the results of minimizing smooth functions 1–3, we can conclude that
subgradient methods with space dilation can also be useful in minimizing smooth
functions. At the same time, the new algorithms RA(αk) and RA(α = const) also
show significantly better results on smooth functions than other subgradient RSD
and rOM(α) methods.

3. The new methods RA(αk) and RA(α = const) significantly outperform the RSD and
rOM(α) methods when minimizing nonsmooth functions. In the RA(αk) algorithm,
in comparison with the RA(α = const) algorithm, an additional factor of convergence
acceleration is involved due to an increase in the space dilation parameter, which also
leads to a significant increase in the convergence rate.

10. Computational Experiment Results in Approximation by Neural Networks

The purpose of this section is to demonstrate the usefulness of applying the methods
of nonsmooth regularization (for example, the “Tibshirani lasso” [3]) to the problems of the
elimination of uninformative variables when constructing mathematical models, where
a necessary element of the technology is rapidly converging nonsmooth optimization
methods applicable to minimize nonsmooth nonconvex functions. In this section, we
will give several examples of approximation by artificial neural networks (ANN) using
nonsmooth regularization to remove uninformative neurons. To assess the quality of this
approximation technology using nonsmooth regularization, the obtained approximation
results are compared with the previously known results. In each of the examples, a study
of the effectiveness of the presented nonsmooth optimization methods will be carried out.

Consider the approximation problem

w∗ = arg min
w

E(α, w, D), (64)

E(α, w, D) = ∑
x,y∈D

(y − f (x, w))2 + αRi(w),

where D = {(xi, yi)|xi ∈ Rp, yi ∈ R1}, i = 1, . . . , N are observational data, Ri(w) are
different kinds of regularizers, α are regularization parameters, f (x, w) is an approximating
function, x ∈ Rp is a data vector, w ∈ Rn is a vector of the tunable parameters, and p and n
are their dimensions. Formulas (1)–(3) can be used as regularizers.

Suppose that in the problem of approximation by a feedforward network, it is required
to train a two-layer sigmoidal neural network of the following form using data D (i.e.,
evaluate its unknown parameters w)

162

Mathematics 2022, 10, 3959

f (x, w) = w(2)
0 +

m

∑
i=1

w(2)
i ϕ(si), ϕ(s) = 1/(1 + e−s). (65)

For the sigmoidal network

si = w(1)
i0 +

p

∑
j=1

xjw
(1)
ij , i = 1, 2, . . . , m, (66)

where xj are components of vector x ∈ Rp, w = ((w(2)
i , i = 0, . . . , m), (w(1)

ij , j = 0, . . . , p,
i = 1, . . . , n)) is a set of parameters, the total number of which is denoted by n, ϕ(s) is a
neuron activation function, and m is the number of neurons. The unknown parameters w
must be estimated by the least squares method (64) using one of the regularizers Ri(w). To
solve problem (64), we use subgradient methods.

In a radial basis function (RBF) network, we will use the following representation of
a neuron

si =
p

∑
j=1

(w(1)
ij (xj − cij))

2, i = 1, 2, ..., m, (67)

where xj are components of vector x ∈ Rp, and the network parameters will be as follows:

w = ((w(2)
i , i = 0, . . . , m), (w(1)

ij , j = 0, . . . , p, i = 1, . . . , m), (w(0)
ij = cij, j = 0, . . . , p, i = 1, . . . , m)).

One of the goals of our study is to compare the effectiveness of subgradient methods
in solving the problem of approximating a two-layer sigmoidal ANN under conditions of
reducing the number of excess neurons using various regularization functionals. To assess
the quality of the solution, we will use the value of the root-mean-square error:

S(D, f) = ∑
x,y∈D

(y − f (x, w))2/N

on a test sample of data D = DT10.000 uniformly distributed in Ω.
In the algorithm we use (Algorithm 6), at the initial stage, an approximation of the

ANN is found with a fixed position of the neurons’ working areas using the specified
centers ci ∈ Rp, i = 1, 2, . . . , m in the approximation area defined by the data. By neuron
working area, we mean the area of significant changes in the neuron activation function.
The need for fixation arises due to the possible displacement of the working areas of
neurons outside the data area. As a result, the neuron in the data area turns into a constant.
For the RBF networks (65) and (67), this is easy to do, since the parameters of the centers
are present in expression (67). For RBF networks (65) and (66), instead of (66), the following
expression will be used:

si =
p

∑
j=1

(xj − cij)w
(1)
ij , i = 1, 2, . . . , m, (68)

where vector w components do not contain free members. In this case, some center ci is
located on the central hyperplane of the working band of a sigmoidal neuron. Centers ci
inside the data area can be found by some data clustering algorithm xi ∈ Rp, i = 1, . . . , N,
which will ensure that neurons are located in areas with high data density. We use the
maximin algorithm [45] in which two data points that are maximally distant from each other
are selected as the first two centers. Each new center is obtained by choosing data point
xi, the distance from which to the nearest known center is at its maximum. The resulting
centers are mainly located on the edges of the data area. Computational experience shows
that the use of the k-means method turns out to be ineffective, or effective with a small
number of iterations.

163

Mathematics 2022, 10, 3959

Algorithm 6 Training Algorithm

1: On the data D, using the maximin algorithm, form the centers ci ∈ Rp, i = 1, 2, . . . , m,
where m is the initial number of neurons. Set the regularization parameter α and the
type of regularizer Ri(w). Using a generator of uniformly distributed random numbers
for each neuron, determine the initial parameters of the ANN.

2: Solve the problem of estimating the parameters W of the neural network (64) for an
ANN at fixed centers ci ∈ Rp, i = 1, 2, . . . , m with a regularizer Ri(w). Create an
initial set of parameters for solving the problem of estimating network parameters (64)
without fixing the centers of neurons. The resulting set of parameters is denoted by W0.

3: For k = 0, 1, . . . do
3.1 Set S0 = S(D, f k), where f k is a neural network obtained as a result of solving
problem (64) at the current iteration. Perform sequential removal of all neurons

for
which, after removal, inequality S(D, f̃ k) ≤ (1 + εps)S0 is satisfied, where εps =

0.1,
f̃ k is a neural network with removed neurons. If none of the neurons could be

removed,
then the neuron is removed, leading to the smallest increase in the value S(D, f̃ k).
3.2 If the number of neurons is less than three, then

stop the algorithm
endif

3.3 Using the neural network parameters for the remaining neurons as initial
values, obtain

a new approximation Wk+1, solving problem (64) for the ANN with regularizer
Ri(w)
endfor

Initially, problem (64) is solved with an excess number of neurons at fixed centers
ci ∈ Rp, i = 1, . . . , m for the RBF network in the forms (65) and (67) or for a sigmoidal
network in the forms (65) and (68). Regularization even with an excessive number of
parameters in comparison with the amount of data allows, at this stage, to obtain an
acceptable solution.

After solving problem (4) with fixed centers, it is necessary to return to the original
description for the sigmoidal network in the forms (65) and (66). This can be done through
the formation of a free member of the neuron

w(1)
i0 = −

p

∑
j=1

cijw
(1)
ij , i = 1, 2, . . . , m,

while leaving the other parameters unchanged. Such an algorithm for finding the initial
approximation of the sigmoidal ANN guarantees that the data area will be covered by the
working areas of neurons.

Here is a brief description of the algorithm for constructing an ANN. The algorithm
first finds the initial approximation for fixed working areas of neurons and then iterates the
removal of insignificant neurons, which is followed by training the trimmed network.

With a limited number of data, ANN f (x, Wk) with a number of parameters n not
exceeding N and the smallest value of Sk = S(D, f k) is selected as the final approxima-
tion model.

Consider examples of solving approximation problems. Tables 8–10 show the value
of S(DT10.000, f) calculated during the operation of the network learning algorithm with the
sequential removal of insignificant neurons after network training at step 3.3. The first row of
each table contains the function fi(x) to be approximated, the initial number of neurons m0,
number of training data N0, the type of regularizer, the regularization parameter α, and the
index deduced by rows. The first two columns indicate the number of neurons and the number

164

Mathematics 2022, 10, 3959

of ANN parameters. The remaining columns show the values of the index for the tested
methods. The values of the index with the limiting order of accuracy are highlighted in bold.
This allows one to see a segment of maintaining a high quality of the network with a decrease
in the number of neurons for each of the presented minimization algorithms. For some of the
tables, the last row contains the minimum value of the maximum network deviation for the
constructed models on the test data Δmin. The dimensions of problems where the number of
model variables exceeds the number of data are underlined. Standard least squares practice
recommends having more data than the parameters to be estimated. Good values of the index
for this case emphasize the role of regularization in approximation by neural networks.

In [49], in the domain Ω = [−1, 1]× [−1, 1] the function

f6(x) = sin(πx2
1) sin(2πx2)/2

was approximated by the cascade correlation method using data uniformly distributed at
N = 500. The maximum deviation of the ANN obtained in [49] with the number of neurons
m = 41 on the test sample of 1000 data was Δ ≈ 0.15. Such a result is practically very difficult
to obtain using the standard ANN learning apparatus. The authors in [49] did not succeed in
obtaining such a result without first fixing the position of the working areas of neurons at
the initial stage of the approximation algorithm. In our work, we obtained a series of ANN
models with a smaller number of network training data N = 150 and with an assessment
of the results on a test sample DT10.000 consisting of 10.000 data with good approximation
quality (Δ < 0.09 for selected index values). For example, for some of the constructed models,
Δ ≈ 0.02, which is almost an order of magnitude less than the result from [49].

Table 8 shows the results of the approximation of the function f6(x) using a smooth reg-
ularizer R2(w). The quasi-Newtonian method (QN) was also used here. Using the RA(αk),
RA(α = const) and RSD methods, it is possible to obtain a better quality approximation
with a smaller number of neurons. The QN method is inferior in approximation quality to
subgradient methods. Note that in some cases, the number of network parameters exceeds
the number of data. At the same time, the network quality index is not worse than in the
area with m < 38. For the methods rOM(α) and QN, the best indexes are in the m > 37 area.

Table 8. Results of function f6(x) approximation by a sigmoidal ANN with a regularizer R2(w),
m0 = 50, N0 = 150, α = 10−7, S(DT10.000, f). The values with the limiting order of accuracy are given
in bold. The dimensions of problems where the number of variables exceeds the number of data are
given in underline.

m n RA(αk) RA(α = const) rOM(α) RSD QN

50 151 0.000271 0.000807 0.000446 0.000389 0.00126
49 197 0.0000228 0.0000699 0.0000153 0.0000601 0.000259
48 193 0.0000171 0.000057 0.0000106 0.0000242 0.00014
47 189 0.00002 0.0000188 0.0000148 0.0000274 0.000129
46 185 0.0000190 0.0000268 0.0000173 0.0000194 0.000693
45 181 0.0000166 0.0000253 0.0000477 0.0000158 0.000774
44 177 0.0000142 0.0000201 0.0000796 0.0000222 0.00442
43 173 0.0000158 0.0000213 0.0000556 0.0000275 0.0038
42 169 0.0000158 0.0000260 0.0000966 0.0000260 0.064
41 165 0.0000168E 0.0000183 0.00022 0.0000384 0.0906
40 161 0.0000289 0.0000673 0.000107 0.00127 0.039
39 157 0.00006 0.0000507 0.000367 0.0000249 0.0597
38 153 0.000036 0.0000656 0.00114 0.0000461 0.0544
37 149 0.0000305 0.0000298 0.000261 0.0000298 0,437
36 145 0.000037 0.0000794 0.00203 0.0000323 0,16
35 141 0.0000437 0.0000294 0.00115 0.0000366 0,256
34 137 0.0000171 0.0000315 0.000965 0.00012 1,82
33 133 0.0000655 0.0000239 0.000547 0.0000886 0,459
32 129 0.000468 0.000014 0.00315 0.000882 2,91
31 125 0.000215 0.000153 0.0115 0.00051 2,22
30 121 0.000175 0.0000624 0.00139 0.003 14,7

Δmin 0.0234 0.0236 0.0263 0.0287 0,9

165

Mathematics 2022, 10, 3959

Table 9 shows the results of approximating function f6(x) by the sigmoidal ANN
using a nonsmooth regularizer R1(w) (“Tibshirani lasso” technique [3]). Here, the trend
in the relative efficiency of the methods continues. Using the RA(αk), RA(α = const) and
RSD methods, it is possible to obtain a better-quality approximation with a smaller number
of neurons.

Table 9. Results of function f6(x) approximation by a sigmoidal ANN with a regularizer R1(w),
m0 = 50, N0 = 150, α = 10−7, S(DT10000, f). The values with the limiting order of accuracy are given
in bold. The dimensions of problems where the number of variables exceeds the number of data are
given in underline.

m n RA(αk) RA(α = const) rOM(α) RSD

50 151 0.000271 0.000807 0.000446 0.000389
49 197 0.0000214 0.0000158 0.0000182 0.0000315
48 193 0.0000339 0.0000057 0.0000307 0.0000211
47 189 0.0000287 0.00000842 0.0000547 0.0000368
46 185 0.0000139 0.0000106 0.0000341 0.0000443
45 181 0.0000161 0.0000372 0.000103 0.0000371
44 177 0.0000142 0.000008 0.000263 0.0000226
43 173 0.0000232 0.0000139 0.000455 0.0000389
42 169 0.0000317 0.0000348 0.00127 0.0000154
41 165 0.0000259 0.0000657 0.00127 0.000183
40 161 0.0000179 0.0000593 0.00357 0.0000189
39 157 0.0000209 0.000784 0.00163 0.00148
38 153 0.0000239 0.000977 0.000139 0.00537
37 149 0.0000245 0.000478 0.000404 0.000232
36 145 0.0000157 0.000605 0.00042 0.00189
35 141 0.0000148 0.000272 0.00415 0.000476
34 137 0.0000168 0.000353 0.00362 0.000549
33 133 0.0000162 0.00185 0.00246 0.00324
32 129 0.00024 0.000263 0.0019 0.00498
31 125 0.0000891 0.000844 0.000925 0.0134

Δmin 0.02 0.025 0.0373 0.03

Table 10 shows the results of approximating function f6(x) by the sigmoidal ANN us-
ing a nonsmooth regularizer Rγ(w). Using the RA(αk), RA(α = const) and RSD methods,
it is possible to obtain a better quality approximation with a smaller number of neurons.
When using a nonsmooth regularizer to approximate a function, it is possible to obtain an
ANN with good approximation quality characteristics with a smaller number of neurons.

Based on the results of Tables 8–10, it can be concluded that the use of regularizers
makes it possible to obtain a qualitative approximation in the case when the number of
parameters of the neural network function exceeds the number of data.

In [49], on the data at N = 625, formed in the domain Ω = [−3, 3] × [−3, 3], the
generator of uniform random numbers approximated the function:

f7(x1, x2) = 3(1 − x1)
2e−x2

1−(x2+1) − 10(
x1

5
− x3

1 − x5
2)e

x2
1−x2

2 − e−(x1+1)−x2
2

3
.

The maximum deviation of the ANN constructed in [49], based on RBF, on a test
sample of 1000 data was Δ1000 = 0.06. Function f3 is a typical example of a convenient
radial basis function for approximating a network. In this work, we obtained a series of
ANN models based on RBF with a smaller number of network training data N = 150 and
with an assessment of the results on the test sample DT10.000 consisting of 10.000 data, with
good quality of approximation. For example, several of the constructed models give a
value that is an order of magnitude smaller: Δ10.000 = 0.0024 (see Table 11).

Table 11 shows the value of the index S(DT10.000, f) calculated during the operation of
the network learning algorithm with the sequential removal of insignificant neurons after
training the network at step 3.3. The initial number of neurons is 36. The first two columns
indicate the number of neurons and the number of ANN parameters. The last row of the
tables shows the maximum deviation of the network for the constructed models on the test

166

Mathematics 2022, 10, 3959

data Δmin. On this function, the methods RA(αk), RA(α = const) and RSD turned out to
be equivalent in quality of approximation.

Table 10. Results of function f6(x) approximation by a sigmoidal ANN with a regularizer Rγ(w),
m0 = 50, N0 = 150, α = 10−7, S(DT10.000, f). The values with the limiting order of accuracy are given
in bold. The dimensions of problems where the number of variables exceeds the number of data are
given in underline.

m n RA(αk) RA(α = const) rOM(α) RSD

50 151 0.000271 0.000807 0.000446 0.0000389
49 197 0.0000195 0.0000263 0.0000327 0.0000108
48 193 0.0000292 0.0000272 0.0000207 0.000023
47 189 0.0000257 0.0000134 0.0000981 0.0000355
46 185 0.0000294 0.0000146 0.000906 0.0000502
45 181 0.0000264 0.0000227 0.00031 0.0000761
44 177 0.000032 0.0000331 0.0000578 0.0000773
43 173 0.0000332 0.0000335 0.000986 0.000079
42 169 0.0000307 0.000044 0.000887 0.000079
41 165 0.0000307 0.000044 0.00174 0.000079
40 161 0.000042 0.000044 0.00174 0.000079
39 157 0.0000406 0.000044 0.00126 0.000079
38 153 0.0000241 0.0000466 0.000242 0.0000778
37 149 0.0000477 0.0000407 0.000169 0.0000596
36 145 0.0000267 0.0000571 0.00115 0.0000455
35 141 0.0000297 0.0000286 0.000335 0.0000588
34 137 0.0000185 0.0000192 0.000689 0.000057
33 133 0.0000177 0.000018 0.000598 0.0000593
32 129 0.0000142 0.0000129 0.000795 0.0000464
31 125 0.0000171 0.0000319 0.000402 0.0000608
30 121 0.0000153 0.000168 0.000669 0.0000681
29 117 0.0000138 0.000312 0.00301 0.0000502
28 113 0.0000384 0.000106 0.00117 0.0000405
27 109 0.0000346 0.001 0.00255 0.0000519
26 105 0.0000288 0.000487 0.00374 0.0000674

Δmin 0.02 0.026 0.036 0.028

Table 11. Results of function f7(x) approximation by RBF ANN with a regularizer Rγ(w), m0 = 36,
N0 = 150, α = 10−7, S(DT10.000, f). The values with the limiting order of accuracy are given in bold.
The dimensions of problems where the number of variables exceeds the number of data are given
in underline.

m n RA(αk) RA(α = const) rOM(α) RSD

36 109 0.0706 0.037 0,244 0.0596
35 176 0.000196 0.00214 0.000304 0.000165
34 171 0.00000852 0.000000616 0.0000287 0.00000127
33 166 0.000000445 0.000000128 0.00000736 0.0000000735
32 161 0.000000601 0.000000169 0.00000929 0.000000192
31 156 0.000000229 0.00000017 0.00000491 0.000000193
30 151 0.000000323 0.000000168 0.00000208 0.000000191
29 146 0.000000304 0.000000167 0.00000219 0.00000019
28 136 0.000000273 0.000000168 0.00000102 0.000000192
27 136 0.000000273 0.000000168 0.000000523 0.000000193
26 131 0.000000558 0.000000168 0.000000518 0.000000291
25 126 0.000000187 0.000000166 0.00000046 0.000000291
24 121 0.000000523 0.000000324 0.000000502 0.000000293
23 116 0.000000397 0.000000323 0.00000052 0.000000288
22 116 0.000000397 0.000000319 0.00000052 0.000000214
21 116 0.000000397 0.000000325 0.00000035 0.000000205
20 116 0.000000397 0.000000192 0.000000496 0.000000203
19 96 0.000000521 0.000000195 0.000000529 0.000000161
18 91 0.000000613 0.0000000755 0.000000596 0.000000148
17 86 0.000000747 0.000000103 0.000000392 0.000000138
16 81 0.000000152 0.000000163 0.000181 0.00000014
15 76 0.000000124 0.00000017 0.0000167 0.000000144

Δmin 0.0024 0.0024 0.005 0.0025

167

Mathematics 2022, 10, 3959

In [50], for testing purposes, an RBF ANN was built on data uniformly distributed in
the domain Ω = [−3, 3]× [−3, 3] for function

f8(x1, x2) = x2
1 + x2

2

with the number of data N = 100. In this case, the achieved value of the root-mean-
square error on the training sample is S(D100, f) = 10−6 [50]. We have built a number of
sigmoidal ANNs with several orders of magnitude lower value of the quality index on a
test sample. The values of the index S(D10.000, f) = 10−6 on the test sample, depending
on the number of neurons in the ANN, are given in Table 12. Here, as earlier, algorithms
RA(αk) and RA(α = const) manage to obtain a longer series of ANN models with good
quality of approximation.

Table 12. Results of function f8(x) approximation by a sigmoidal ANN with a regularizer Rγ(w),
m0 = 30, N0 = 100, α = 10−7, S(DT10.000, f). The values with the limiting order of accuracy are given
in bold. The dimensions of problems where the number of variables exceeds the number of data are
given in underline.

m n RA(αk) RA(α = const) rOM(α) RSD

30 91 0.000378 0.00135 0.000179 0.000464
29 117 0.000000041 0.000000437 0.00000121 0.0000112
28 113 0.000000041 0.00000000794 0.00000000707 0.000000866
27 109 0.000000000862 0.00000000343 0.00000000372 0.000000089
26 105 0.000000000711 0.00000000152 0.00000000105 0.00000018
25 101 0.000000000685 0.00000000115 0.00000000341 0.00000000607
24 97 0.00000000567 0.000000000798 0.00000000154 0.00000000091
23 93 0.00000000156 0.000000000717 0.00000000315 0.000000000333
22 89 0.00000000378 0.000000000572 0.00000000435 0.00000000128
21 85 0.00000000272 0.000000000291 0.00000000847 0.00000000127
20 81 0.0000000026 0.000000000246 0.000000108 0.00000000162
19 77 0.000000000888 0.000000000612 0.000000396 0.00000000775
18 73 0.0000000345 0.0000000326 0.0000000162 0.0000000136
17 69 0.00000000114 0.00000000296 0.000000105 0.0000000181
16 65 0.00000000413 0.00000000747 0.000000113 0.000000168
15 61 0.0000000395 0.0000000982 0.0000000495 0.000000054
14 57 0.00000000245 0.0000000221 0.000000328 0.0000000475

Δmin 0.000244 0.000293 0.000331 0.000301

In this section, the ANN training technology was presented, where nonsmooth opti-
mization methods are its integral component. A specific feature of the ANN approximation
problems is the absence of convexity of the minimized functions. The fastest methods
RA(αk) and RA(α = const) turn out to be more effective in solving problems of ANN
approximation and make it possible to obtain models with a smaller number of neurons.
Nevertheless, the experience of solving similar problems of approximation suggests that
when solving an applied problem, it is better to have several alternatives for choosing a
minimization method.

11. Conclusions

The statement of the problem consisted in the construction of a rapidly converging
algorithm for finding the descent direction in the minimization method, which forms an
obtuse angle with all subgradients of some neighborhood of the current minimum, forming
a separable set. Minimization along such a direction allows the algorithm to go beyond
this neighborhood. This is the problem of constructing a separating hyperplane between
the origin and a separable set, the normal of which is the desired direction. As a result,
we have a problem of solving a system of inequalities, for the solution of which learning
algorithms can be applied, for example, the perceptron learning algorithm [45].

Formalization of the subgradient sets model made it possible to reduce the problem of
solving a system of inequalities to an approximation problem, for the solution of which an
algorithm with space dilation was proposed, which is ideologically close to the iterative

168

Mathematics 2022, 10, 3959

least squares method. Taking into account the peculiarities of subgradient sets makes it
possible to improve the standard ILS scheme and obtain an effective rapidly converging
iterative method for finding the descent direction in the minimization method based on
subgradients obtained in the process of the one-dimensional search.

The new algorithm for solving inequalities was theoretically substantiated, and an esti-
mate of its convergence rate was obtained depending on the parameters of the subgradient
set. On this basis, a new subgradient minimization method was developed and justified.
On quadratic functions, the proposed method has the properties of the conjugate gradient
method. The outlined approach to creating learning algorithms can be used to develop
new learning algorithms with space dilation for relaxation subgradient minimization.

A practically implementable version of the minimization algorithm has been de-
veloped, which uses a rough one-dimensional search. The performed computational
experiment on complex large-sized functions confirms the effectiveness of the proposed
relaxation subgradient minimization method.

The possibility of using the relaxation subgradient minimization method in solving
nonsmooth non-convex optimization problems makes it possible to use it in problems of
neural network training, where it is required to remove insignificant variables or neurons
by methods similar to the Tibshirani lasso. Algorithms of this type are of great practical
importance due to their high convergence rate and the possibility of using them to mini-
mize non-convex functions, for example, when estimating the parameters of mathematical
models under conditions of nonsmooth regularization, used for the purpose of model
feature reduction [3,29,46]. The effectiveness of using the proposed relaxation subgra-
dient minimization method in one of these technologies has been demonstrated in the
present work.

Author Contributions: Conceptualization, V.K. and L.K.; methodology, V.K., S.G. and L.K.; software,
S.G.; validation, E.T. and E.S.; formal analysis, E.S.; investigation, L.K. and E.S.; resources, L.K. and
E.S.; data curation, V.K.; writing—original draft preparation, V.K., S.G., E.T. and L.K; writing—review
and editing, E.T. and L.K.; visualization, V.K. and E.T.; supervision, E.S.; project administration, L.K.;
funding acquisition, L.K. and E.S. All authors have read and agreed to the published version of
the manuscript.

Funding: This work was supported by the Ministry of Science and Higher Education of the Russian
Federation (Project FEFE-2020-0013).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Krutikov, V.; Meshechkin, V.; Kagan, E.; Kazakovtsev, L. Machine Learning Algorithms of Relaxation Subgradient Method with
Space Extension. In Mathematical Optimization Theory and Operations Research: MOTOR 2021; Lecture Notes in Computer Science;
Pardalos, P., Khachay, M., Kazakov, A., Eds.; Springer: Berlin/Heidelberg, Germany, 2021; Volume 12755, pp. 477–492.

2. Lauer, F.; Le, V.; Bloch, G. Learning smooth models of nonsmooth functions via convex optimization. In Proceedings of the 2012
IEEE International Workshop on Machine Learning for Signal Processing, Santander, Spain, 23–26 September 2012; Volume 1,
pp. 1–6.

3. Tibshirani, R. Regression shrinkage and selection via the lasso. J. R. Stat. Soc. 1996, 58, 267–288. [CrossRef]
4. Friedman, J.; Hastie, T.; Tibshirani, R.J. Regularization paths for generalized linear models via coordinate descent. J. Stat. Softw.

2010, 33, 1–22. [CrossRef] [PubMed]
5. Chang, K.; Hsieh, C.; Lin, C. Coordinate descent method for largescale l2-loss linear support vector machines. J. Mach. Learn. Res.

2008, 9, 1369–1398.
6. Pierucci, F. Nonsmooth Optimization for Statistical Learning with Structured Matrix Regularization. Ph.D Thesis, Université

Grenoble Alpes, Grenoble, France, 2017.
7. Hahnloser, R.; Sarpeshkar, R.; Mahowald, M.; Douglas, R.; Seung, H. Digital selection and analogue amplification coexist in a

cortex-inspired silicon circuit. Nature 2000, 405, 947–951. [CrossRef]

169

Mathematics 2022, 10, 3959

8. Nesterov, Y. Subgradient Optimization; John Wiley and Sons, Inc.: Hoboken, NJ, USA, 2009.
9. Golshtein, E.; Nemirovsky, A.; Nesterov, Y. Level method, its generalizations and applications. Econ. Math. Methods 1995,

31, 164–180.
10. Nesterov, Y. Universal gradient methods for convex optimization problems. Math. Program. Ser. A 2015, 152, 381–404. [CrossRef]
11. Gasnikov, A.; Nesterov, Y. Universal method for stochastic composite optimization problems. Comput. Math. Math. Phys. 2018,

58, 48–64. [CrossRef]
12. Nesterov, Y. Smooth minimization of nonsmooth functions. Math. Program. 2005, 103, 127–152. [CrossRef]
13. Ouyang, H.; Gray, A. Stochastic smoothing for nonsmooth minimizations: Accelerating SGD by exploiting structure. In

Proceedings of the 29th International Conference on Machine Learning (ICML), Edinburgh, UK, 26 June–1 July 2012; Volume 1,
pp. 33–40.

14. Gasnikov, A.; Lagunovskaya, A.; Usmanova, I.; Fedorenko, F. Gradient-free proximal methods with inexact oracle for convex
stochastic nonsmooth optimization problems on the simplex. Autom. Remote Control 2016, 77, 2018–2034. [CrossRef]

15. Shor, N.Z. Applying the gradient descent method to solve transportation network problem. In Issues in Cybernetics and Operational
Research; Scientific Council on Cybernetics AS UkrSSR: Kyiv, Ukraine, 1962; pp. 9–17.

16. Polyak, B. A general method for solving extremum problems. Sov. Math. Dokl. 1967, 8, 593–597.
17. Polyak, B. Introduction to Optimization; Optimization Software: New York, NY, USA, 1987.
18. Wolfe, P. Note on a method of conjugate subgradients for minimizing nondifferentiable functions. Math. Program. 1974, 7, 380–383.

[CrossRef]
19. Lemarechal, C. An extension of Davidon methods to non-differentiable problems. Math. Program. Study 1975, 3, 95–109.
20. Demyanov, V. Nonsmooth Optimization. In Nonlinear Optimization; Lecture Notes in Mathematics; Di Pillo, G., Schoen, F., Eds.;

Springer: Berlin/Heidelberg, Germany, 2010; Volume 1989, pp. 55–163.
21. Nemirovsky, A.; Yudin, D. Problem Complexity and Method Efficiency in Optimization; Wiley: Chichester, UK, 1983.
22. Shor, N. Minimization Methods for Nondifferentiable Functions; Springer: Berlin/Heidelberg, Germany, 1985.
23. Polyak, B. Optimization of non-smooth composed functions. USSR Comput. Math. Math. Phys. 1969, 9, 507–521.
24. Krutikov, V.; Samoilenko, N.; Meshechkin, V. On the properties of the method of minimization for convex functions with

relaxation on the distance to extremum. Autom. Remote Control 2019, 80, 102–111. [CrossRef]
25. Tsypkin, Y.Z. Foundations of the Theory of Learning Systems; Academic Press: New York, NY, USA, 1973.
26. Krutikov, V.N.; Petrova, T. Relaxation method of minimization with space extension in the subgradient direction. Ekon. Mat. Met.

2003, 39, 106–119.
27. Cao, H.; Song, Y.; Khan, K. Convergence of Subtangent-Based Relaxations of Nonlinear Programs. Processes 2019, 7, 221.

[CrossRef]
28. Krutikov, V.N.; Gorskaya, T. A family of subgradient relaxation methods with rank 2 correction of metric matrices. Ekon. Mat.

Met. 2009, 45, 37–80.
29. Krutikov, V.; Meshechkin, V.; Kagan, E.; Kazakovtsev, L. Approximation Capability to Compact Sets of Functions and Operators

by Feedforward Neural Networks. In Mathematical Optimization Theory and Operations Research; Lecture Notes in Computer
Science; Pardalos, P., Khachay, M., Kazakov, A., Eds.; Springer: Berlin/Heidelberg, Germany, 2021; Volume 12755, pp. 477–493.

30. Cybenko, G. Approximation by superpositions of a sigmoidal function. Math. Control Signals Syst. 1989, 2, 303–314. [CrossRef]
31. Funahashi, K.I. On the approximate realization of continuous mappings by neural networks. Neural Netw. 1989, 2, 183–192.

[CrossRef]
32. Hornik, K. Approximation capabilities of multilayer feedforward networks. Neural Netw. 1991, 4, 251–257. [CrossRef]
33. Guliyev, N.J.; Ismailov, V.E. Approximation capability of two hidden layer feedforward neural networks with fixed weights.

Neurocomputing 2018, 316, 262–269. [CrossRef]
34. Hanin, B.; Sellke, M. Approximating continuous functions by ReLU nets of minimal width. arXiv 2017, arXiv:1710.11278.
35. Petersen, P.; Voigtlaender, F. Optimal approximation of piecewise smooth functions using deep ReLU neural networks. Neural

Netw. 2018, 108, 296–330. [CrossRef] [PubMed]
36. Yarotsky, D. Error bounds for approximations with deep ReLU networks. Neural Netw. 2017, 94, 103–114. [CrossRef]
37. Tsypkin, Y.Z.; Gupta, M.; Jin, L.; Homma, N. Static and Dynamic Neural Networks: From Fundamentals to Advanced Theory; John

Wiley and Sons: Hoboken, NJ, USA, 2003.
38. Wei, W.; Nan, D.; Li, Z.; Long, J.; Wang, J. Approximation Capability to Compact Sets of Functions and Operators by Feedforward

Neural Networks. In Proceedings of the 2007 Second International Conference on Bio-Inspired Computing: Theories and
Applications, Zhengzhou, China, 14–17 September 2007; pp. 82–86.

39. Gribonval, R.; Kutyniok, G.; Nielsen, M.; Voigtlaender, F. Approximation spaces of deep neural networks. arXiv 2020,
arXiv:1905.01208.

40. Liu, Z.; Tilman, H.; Masahito, U. Neural networks fail to learn periodic functions and how to fix it. In Proceedings of the
34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, BC, Canada, 6–12 December 2020; pp.
1583–1594.

41. Wang, M.X.; Qu, W. Approximation capabilities of neural networks on unbounded domains. Neural Netw. 2022, 145, 56–67.
[CrossRef]

42. Tikhonov, A.; Arsenin, V. Solutions of Ill-Posed Problems; John Wiley and Sons: New York, NY, USA, 1977.

170

Mathematics 2022, 10, 3959

43. Krutikov, V.; Samoilenko, N.; Nasyrov, I.; Kazakovtsev, L. On the applicability of non-smooth regularization in construction of
radial artificial neural networks. Control Syst. Inf. Technol. 2018, 2, 70–75.

44. Nurminskii, E.; Thien, D. Method of conjugate subgradients with constrained memory. Autom. Remote Control 2014, 75, 646–656.
[CrossRef]

45. Neimark, J. Perceptron and Pattern Recognition; Springer: Berlin/Heidelberg, Germany, 2003.
46. Krutikov, V.; Kazakovtsev, L.; Shkaberina, G.; Kazakovtsev, V. New method of training two-layer sigmoid neural networks using

regularization. IOP Conf. Ser. Mater. Sci. Eng. 2019, 537, 042055. [CrossRef]
47. Kaczmarz, S. Approximate solution of systems of linear equations. Int. J. Control 1993, 57, 1269–1271. [CrossRef]
48. Lorentz, G. Approximation of Functions; American Mathematical Society: Providence, RI, USA, 2005.
49. Osovski, S. Neural Networks for Information Processing; Hot Line-Telecom: Moscow, Russia, 2016.
50. Filippov, V.; Elisov, L.; Gorbachenko, V. Radial basis function networks learning to solve approximation problems. Int. J. Civ. Eng.

Technol. 2019, 10, 872–881.

171

Citation: Diveev, A.; Shmalko, E.

Machine Learning Feedback Control

Approach Based on Symbolic

Regression for Robotic Systems.

Mathematics 2022, 10, 4100.

https://doi.org/10.3390/

math10214100

Academic Editor: Liliya Demidova

Received: 9 October 2022

Accepted: 31 October 2022

Published: 3 November 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Machine Learning Feedback Control Approach Based on
Symbolic Regression for Robotic Systems

Askhat Diveev * and Elizaveta Shmalko

Federal Research Center “Computer Science and Control”, the Russian Academy of Sciences, 119333 Moscow, Russia
* Correspondence: aidiveev@mail.ru

Abstract: A control system of an autonomous robot produces a control signal based on feedback. This
type of control implies the control of an object according to its state that is mathematically the control
synthesis problem. Today there are no universal analytical methods for solving the general synthesis
problem, and it is solved by certain particular approaches depending on the type of control object. In
this paper, we propose a universal numerical approach to solving the problem of optimal control with
feedback using machine learning methods based on symbolic regression. The approach is universal
and can be applied to various objects. However, the use of machine learning methods imposes two
aspects. First, when using them, it is necessary to reduce the requirements for optimality. In machine
learning, optimization algorithms are used, but strictly optimal solutions are not sought. Secondly,
in machine learning, analytical proofs of the received properties of solutions are not required. In
machine methods, a set of tests is carried out and it is shown that this is sufficient to achieve the
required properties. Thus, in this article, we initially introduce the fundamentals of machine learning
control, introduce the basic concepts, properties and machine criteria for application of this technique.
Then, with regard to the introduced notations, the feedback optimal control problem is considered
and reformulated in order to add to the problem statement that such a property adjusts both the
requirements of stability and optimality. Next, a description of the proposed approach is presented,
theoretical formulations are given, and its efficiency is demonstrated on the computational examples
in mobile robot control tasks.

Keywords: control synthesis; optimal control; stabilization; symbolic regression; machine learning;
evolutionary algorithm; mobile robot

MSC: 49M25; 68T05

1. Introduction

Aiming at the automation of processes, we intend to automate the very process of
control systems development in order to make it fast and generic. This sounds especially
relevant in the context of ever-increasing robotization and the emergence of a variety of
robots as control objects. To reach this goal of all-round automation, it is necessary to
generalize the needed tasks, that is, to formulate them in general mathematical statements,
and then develop universal methods for solving them. However, the problem here is that
despite the extensive theoretical background of control theory, today, there is a wide range
of applied problems that do not have exact analytical solutions. At the same time, there is
an objective need for solving them.

In fact, in robotics, most modern control systems for robots are programmed by hand,
and engineers do not even set the general problems because there are no general ways to
solve them. The developer, based on his experience, sets the structure of the control system,
determines the control channels, types of regulators, and then adjusts the parameters of
the given system so that they meet certain requirements [1]. However, every problem can
and should be considered an optimal one, defining not only the parameters, but also the
structure of the control system optimally and, again, automatically.

Mathematics 2022, 10, 4100. https://doi.org/10.3390/math10214100 https://www.mdpi.com/journal/mathematics173

Mathematics 2022, 10, 4100

If a robot has to perform rather simple actions, for example, moving from one point to
another and going around some obstacles, then the program of its control system contains
supposedly several hundreds of lines. In more complex control tasks, the programs that
must control robots can include several tens or hundreds of thousands of lines. These
programs will grow as the tasks or the robots structure become more complex. One can
assume that a control system for a robot that repeats the actions of a fly must contain some
millions of lines. It follows from that stated above that the manual creation of the robot
control system is an unpromising direction. It is necessary to automate this process.

Any problem for robots, as well as any other control objects, can be formulated as
a mathematical optimization problem, such as a problem of providing stability, an op-
timal control problem for finding optimal path in current real conditions, a problem of
stabilization of movement along of the optimal path, a problem of avoiding collisions
with static and dynamic obstacles, the problem of interaction with other control objects,
the problem of precise achievement of some given terminal conditions and so on. The most
general problem in robotics is feedback control synthesis. It assumes that a control system
that makes the object reach its goal is designed as a function of the object state optimally
according to given criteria. Even if the optimal control problem is solved and the optimal
path is found, we must further ensure the movement of the object along the obtained
trajectory to compensate for possible ever-existing uncertainties.

The general synthesis problem was formulated back in the early 1960s by Bellman [2,3],
where the continuous-time nonlinear optimal control problem was solved through the
Hamilton–Jacobi–Bellman equation, which is a nonlinear partial differential equation. Even
in simple cases, the HJB equation may not have global analytic solutions. Various numerical
methods based on dynamic programming have been proposed in the literature [4–7],
including the modern adaptive dynamic programming technique [8–10] and reinforcement
learning [11–13]. However, the main drawback of dynamic programming methods today
is still the computational complexity required to describe the value function, which grows
exponentially with the dimension of its domain.

A different way to construct a feedback optimal control is firstly to solve an optimal
control problem by direct methods of nonlinear programming or by the indirect approach of
the Pontryagin maximum principle and then to synthesize a feedback stabilization system
in order to supply movement along the received optimal trajectory. For example, in [14],
points are placed on the trajectory, and the object is stabilized at these points. This is the
most popular practical approach to feedback optimal control system design.

However, concerning the optimality criterion, this approach is not correct since it
turns out that the optimal path is considered for one control object, and the introduced
stabilization system changes the object so that the calculated path may not be optimal
for the modified object model. In addition, when approaching a given point on the path,
the system slows down, so it is necessary to carry out additional estimates in each specific
task, according to the optimal moments of points switching.

In this work, we propose an inverse approach to feedback optimal control system
synthesis. The general idea is the following. We firstly stabilize an object according
to some point in the state space by solving the stabilization system synthesis problem.
Note that this problem is computationally easier than the general synthesis problem.
The stabilization task can be solved by a plain variety of methods depending on the
complexity of the object model, particularly analytical methods of backstepping [15,16] or
the analytical design of aggregated controllers [17], or synthesis based on the application
of the Lyapunov function [18,19], as well as any classical methods for liner systems, such
as modal control [20], differently tuned PID controllers [21], and fuzzy [22] and neural
network [23] controllers. In the overwhelming majority of cases, the control synthesis
problem is solved analytically or technically by taking into account the specific properties
of the mathematical model. Today, modern numerical machine learning methods can be
applied to find a solution for generic dynamic objects [24].

174

Mathematics 2022, 10, 4100

This new paradigm of machine learning control [25,26] allows to find some good
near optimal solutions in a limited amount of time. However, due to the novelty of
these methods, it becomes necessary to substantiate the results obtained by machine
learning. In this paper, we introduce definitions of some machine properties of the system.
We introduce the definition of machine learning control from our point of view, give
machine proof of the existence of a specific property in some mathematical model, refine
the definition of the feasibility property of the mathematical model of the control object
and present the extended statement of the optimal control problem.

The addition of the stabilization system into the object model gives it a new property:
at each moment of time, the object has a point of equilibrium. Thus, in the synthesized
optimal control approach, the uncertainty in the right parts is compensated by the stability
of the system relative to a point in the state space. Near the equilibrium point, all solutions
converge. Now, we can solve the problem of optimal control through the optimal position
of the equilibrium point. The found synthesized optimal control can be realized in the real
object directly without additional feedback stabilization loops.

The paper is structured in the following order. After the introduction, the theoretical
base of machine learning control is presented in Section 2, introducing the main definitions
and machine criteria for justification of the results received by machine numerical methods.
Next, in Section 3, we formulate the mathematical statement of the problem of feedback
machine learning control, extending the optimal control problem statement with additional
requirements. Then in Section 4, the paper proposes a synthesized approach to the solution
of the stated feedback optimal control problem. Algorithms for its solution are considered
in Sections 5 and 6, and computational examples of solving control problems for mobile
robots are presented in Section 7. In the experimental part, the computational examples
of synthesized control application for solving feedback control problems in the class of
feasible controls for mobile robots are presented.

2. Theoretical Base of Machine Learning Control

Summarizing various definitions of machine learning [27–29], we can conclude that
machine learning is an inexact numerical solution of some mathematical optimization
problem, that is, the solution obtained by machine learning differs from the exact one by
some known value but satisfies the researcher, and it can be improved with continuing
learning. In all cases, different optimization algorithms are used for machine learning,
but for these algorithms, it is enough to find a near optimal solution.

Let us introduce some definitions.

Definition 1. The machine learning problem is a search of an unknown function.

y = α(x, q), (1)

where y is a vector of function values, y ∈ Rr, x is a vector of arguments, x ∈ Rn, q is a
vector of constant parameters, q ∈ Q ⊆ Rp,

α(x, q) : Rn ×Rp → Rr. (2)

This function during training approximates some data set, which is called the train-
ing sample:

J =
N

∑
i=0

‖ŷi − α(xi, q)‖, (3)

where Ŷ = {ŷ1, . . . , ŷN} is a training sample.
With unsupervised learning, this function is used for the minimization of some functional

J =

t f∫
0

f0(x(t), α(x(t), q))dt, (4)

175

Mathematics 2022, 10, 4100

where t f is the goal achievement time.

Definition 2. Machine learning is finding a solution of the optimization problem in the given Δ
neighborhood of the optimal solution.

The peculiarity of machine learning is that learning does not require the exact achieve-
ment of minimum criterion (3) or (4):

J1 ≤ min J + Δ∗, (5)

where Δ∗ is a given positive value determining a functional value achievable during
learning. For criterion (3), a minimum value is equal to zero. For criterion (4), the minimal
value can be unknown. Then, the limit minimum value can be used instead:

J1 = J− + Δ∗, (6)

where J− ≤ min J.
If, as a result of learning, the found function (1) must acquire some properties, then

the proof of the presence of these properties is confirmed by simulation.

J2 =
K

∑
i=0

ϑ(φ(α(xi, q))), (7)

where ϑ(z) is the Heaviside function

ϑ(z) =

{
1, if z > 0
0, otherwise

, (8)

φ(x, q) is a condition that determines whether a function property exists

φ(x, q) ≤ 0, (9)

where K is a number of consecutive experiments performed with a positive result (9), set to
prove the presence of a property.

Definition 3. Machine learning control is a search of control function.

Machine learning searches for a function that, for some sets of arguments, returns the
required values. Note that there can be many such functions, and all they can have various
structures and parameter values.

According to the introduced Definitions 1–3, an optimization problem of the control
function search must be formulated for machine learning control. A solution of this problem
is not optimal, as the found function gives a value of the quality criterion close to optimal
one. On the one hand, this might reduce the importance of the solution found, but on the
other hand, it allows for solving very complex problems.

Let us be given a mathematical model of a control object. This model can be derived
from physical laws or identified by some machine learning technique [30,31]. Generally,
this model is described by a system of ordinary differential equations with a free control
vector in the right-hand side:

176

Mathematics 2022, 10, 4100

ẋ = f(x, u), (10)

where x is a state vector, u is a control vector,

x = [x1 . . . xn]T ,
u = [u1 . . . um]T , m ≤ n,

f(x, u) = [f1(x, u) . . . fn(x, u)]T .
(11)

The problem of control, including machine learning control, is to find a control function
instead of the control vector

u = h(x), (12)

to make the differential equation system

ẋ = f(x, h(x)), (13)

acquire some new properties. For example, these can be such properties as stability, the
optimality of solutions, and others.

In machine learning, the control function of these new properties of the control object
has to be checked by a computer as well.

When the control function is derived analytically, then the system is guaranteed to
have the desired property. In the case of machine learning control, events occur when
the system does not have the desired property. Let us call them bad events. For example,
the robot reaches the terminal position from almost all initial conditions, but does not
reach it from some other initial condition. Although such events are rare with good
training, they can occur, and the probability of its occurrence is not known. We also need
to introduce some estimate when we can consider that the probability of the bad event
is small, and we can consider learning to be successful, i.e., assume that the system has
obtained the desired property.

The appearance of bad events is due to the presence of various uncertainties and
disturbances in the system. According to Lyapunov [32], the existing uncertainties can be
considered uncertainties in the initial conditions.

Let us formulate a machine criterion of obtaining some property by a differential
equation system. To define the property of the whole system (13), it is enough to set a
quantity K of partial solutions that obtain this property.

Definition 4. If D experiments are carried out and in every i experiment, Ki partial solutions of
the differential equation perform the required property from any Mi ≥ Ki randomly selected initial
conditions from the initial domain, and

lim
D→∞

D

∑
i=1

Ki
Mi

→ 1, (14)

the existence of this property for the differential equation in this domain is proven by machine.

In other words, as the number of experiments increases, the probability of such a
bad event, when the system does not have the desired property, tends to zero. From a
mathematical point of view, this means that all private solutions for the domain of initial
conditions have this property, except solutions for a subset of a zero measure.

Now we can redefine some properties of differential equations into appropriate ma-
chine properties.

Let the computer check the new properties in terminal time interval, (0; t+).
Let, in the state space of differential equation system (13), a manifold of the dimension

n − s be defined by
φi(x) = 0, i = 1, . . . , s. (15)

177

Mathematics 2022, 10, 4100

Definition 5. In some domain X ∈ Rn, the following properties are performed: for given quantity
K of initial conditions x0,i ∈ X, i = 1, . . . , K for the partial solution x(t, x0,i) of differential
Equation (13) ∃t′, 0 < t′ ≤ t+. Then,

‖φ(x(t′, x0,i))‖ ≤ Δ, i = 1, . . . , K, (16)

where φ(x) = [φ1(x) . . . φs(x)]T, and ∀t′ < t ≤ t+

‖φ(x(t, x0,i))‖ < Δ, i = 1, . . . , K. (17)

Then, differential equation system (13) is machine stable on a bound time interval (0; t+) relative to
the manifold (15).

If a dimension of the manifold equals to 0, then a machine stable equilibrium point
is obtained. Coordinates of this point in the state space are determined from solving the
algebraic equation system,

φi(x) = 0, i = 1, . . . , n. (18)

The definition of machine stability uses a manifold (15) that can be expressed from the
partial solution. Let x(t, x0) be a partial solution of differential Equation (13):

x(t, x0) = [x̃1(t) . . . x̃n(t)]T . (19)

Let us solve one component (19) relative to t. Let it be the last component:

t = ω(x̃n). (20)

After inserting Equation (20) in solution (19), a one-dimensional manifold is received:

xi(ω(x̃n), x0)− x̃i(ω(x̃n)) = 0, i = 1, . . . , n − 1. (21)

Machine stability relative to the manifold (21) is the machine stability of solution (19)
of differential Equation (13).

Now consider the equilibrium points of some generic differential equation:

ẋ = w(x), (22)

where x ∈ Rn, w(x) : Rn → Rn.
Analytically, the equilibrium points are defined as solutions of the system of algebraic

equations:
w(x) = 0. (23)

Machine-determined equilibrium points x̃1, . . . , x̃K are the points that satisfy the fol-
lowing condition:

‖w(x̃i)‖ ≤ ε1 (24)

and ∀x̃i, x̃j, i �= j,
‖x̃i − x̃j‖ > ε1, i, j ∈ {1, . . . , K}, (25)

where ε1 is a given small positive number.

Definition 6. An equilibrium point x̃ ∈ Rn of differential Equation (22) is stable if there is a
domain X0 ⊆ Rn, x̃ ⊂ X0 such that it contains a sphere S

n

∑
i=1

(xi − x̃i)
2 = r2, (26)

178

Mathematics 2022, 10, 4100

where r > ε1 is located completely in this domain X0 S ⊂ X0, and ∀x0 ∈ S, a partial solution
x(t, x0) of differential Equation (22), will reach the point x ∈ S for limited time

‖x(t f , x0)− x̃‖ ≤ ε1, (27)

where t f < t+ < ∞.

The sphere is introduced here in order to guarantee that the equilibrium point is inside
the region and exclude it from falling on the boundary.

The introduced machine interpretations of the known properties of objects eliminate
the need to analytically prove the existence of these properties for an object since this
is often very laborious or completely impossible. This allows further solving complex
technical problems by machine methods and checking the achievement of the required
properties by machine.

3. Machine Learning Feedback Control

Recall our goal. We want to automate the design of an automatic control system.
For this purpose, it is necessary to formulate for the computer the control problem and
make the computer solve it automatically and design a control system for a control object
without human.

To do this, let us formulate the problem in a general mathematical setting of
optimal control.

The mathematical model of the control object is given in the form of differential
equation system (10).

The initial condition is given:

x(0) = x0 ∈ Rn. (28)

Given the terminal position as a goal,

x f = [x f
1 . . . x f

n]
T . (29)

The quality criterion is given in the form of an integral functional:

J1 =

t f∫
0

f0(x, u)dt → min . (30)

It is necessary to find a control function in the form

u = g(x, t). (31)

where g(x, t) = [g1(x, 1) . . . gm(x, t)]T , which makes object (10) achieve given goal (29) with
the optimal value of quality criterion (30). A found control function (31) has to satisfy
the boundaries:

u−
i ≤ gi(x, t) ≤ u+

i , i = 1, . . . , m. (32)

We are looking for control as a function of the state of the object, which corresponds
to the principle of feedback control. It is generally accepted that this type of control is
implemented in real systems since it allows leveling the inaccuracies of the model.

Definition 7. For a mathematical model to correspond to a dynamic real object, it is necessary and
sufficient that the mathematical estimation error of the real object state does not increase over time.

179

Mathematics 2022, 10, 4100

That is, the introduction of the feedback control to the differential equation system
gives the system some property that allows the object to achieve the goal with the optimal
quality value, that is, to be feasible. The question is, what is this property?

It is clear that not all control systems are feasible. For example, optimal but open-loop
control systems do not have the feasibility property. Conversely, Lyapunov-stable systems
are feasible. However, there are examples when the solution is not Lyapunov stable but at
the same time it is feasible [32]. For example, when moving through points, the movement
itself to a point is Lyapunov stable, but movement along a trajectory consisting of points is
not Lyapunov stable, but this control is now most often implemented. Thus, it becomes
necessary to formulate a property that makes it possible to determine the feasibility of
the system.

In fact, by introducing a feedback system, we change the differential equations of the
system so that a certain area appears around some particular solution of the system (the
optimal trajectory) such that other trajectories that fall into this area will not leave it.

This trajectory is a partial solution of differential equation

ẋ = f(x, g(x, t)) (33)

for the found optimal control.

Definition 8. The partial solution x(t, x0) of differential Equation (22) has a compressibility
property if, for any other partial solution x(t, x∗), the following conditions are performed.

If
‖x(t′, x0)− x(t′, x∗)‖ ≤ σ, (34)

where t′ > 0, σ > 0, then ∃α > 0 such, that for any ε+ > 0

‖x(t′ + α, x0)− x(t′ + α, x∗)‖ ≤ ε+. (35)

Hypothesis 1. To realize the found optimal control function (31) in the real control object, the
optimal trajectory must compressibility properties (34) and (35).

Obviously, if a control function provides performing properties (34) and (35), then this
control function according to Definition 8 can be realized in the real object directly. Accord-
ing to Definition 8, an unstable differential equation cannot be realized. Highly unstable
systems exist, but they cannot be described by unstable differential equations because these
differential equations cannot estimate the state of unstable objects in time. Any small error
in the initial conditions for the unstable differential equation of a mathematical model will
be increasing over time. To estimate the state of an unstable object, it is necessary to use a
stable differential equation.

Thus, to solve the stated feedback optimal control problem, it is necessary to construct
such a control function (31) that makes the object (10) achieve given goal (29) with the
optimal value of quality criterion (30) and obtain required properties (34) and (35).

4. Synthesized Optimal Control Approach for the Solution of the Stated Problem

In this section, we propose our synthesized optimal control approach [33] that com-
pletely satisfies requirements (34) and (35) in the construction of optimal control (31).

The idea of the approach consists in providing the object with the existence of some
equilibrium point in the state space and then constructing such a control function that
controls the position of the equilibrium point in order to make the object reach the goal
with the optimal value of the quality criterion.

Initially, the control synthesis problem is solved to provide the existence of the equilib-
rium point. As a result, the control function in the following form is found:

180

Mathematics 2022, 10, 4100

u = h(x∗ − x), (36)

where x∗ in each fixed moment of time is some point in the state space that affects the
position of the equilibrium point of the differential equation:

ẋ = f(x, h(x∗ − x)), (37)

h(x∗ − x) = [h1(x
∗ − x) . . . hm(x

∗ − x)]T . (38)

The control function (38) must satisfy restrictions for any position of the point x∗

u−
i ≤ hi(x

∗ − x) ≤ u+
i , i = 1, . . . , m. (39)

For any value x∗, the differential equation system (37) has an equilibrium point x̃(x∗):

f(x̃(x∗), h(x∗ − x̃(x∗))) = 0. (40)

A matrix of Jacobi

A(x∗) = ∂f(x, x∗ − x)

∂x
, (41)

computed in the equilibrium point x̃(x∗) has all eigenvalues in the left part of the com-
plex plane.

det(A(x∗)− λE) =
n

∏
i=1

(λ − λj) = 0, (42)

where
λj = αj + iβ j, (43)

αj < 0, j = 1, . . . , n, i =
√−1.

In many cases, the equilibrium point x̃ coincides with the point x∗, but in some cases, it
is impossible. For example, if the differential equation system includes an equation ẋk = xl ,
then the component xk of the equilibrium point will have only value 0 for any values of
components x∗k .

Note that when this control synthesis problem is solved by some machine learning
method, conditions (41) and (42) cannot be checked for each mathematical expression
h(x∗ − x) of the control function because these are very time-consuming procedures. In ma-
chine learning control, to prove the stability in an equilibrium point, Definition 6 is used.

To synthesize control function (36), it is necessary to determine domain X ∈ Rn

and then to determine equilibrium point x̃. If the equilibrium point is equal to point x∗,
then the control function is searched in the form of (36), where x∗ = x̃.

Computationally, to provide a stable property of equilibrium point x̃, the synthesis
problem (10)–(12) is solved with the terminal point x f = x̃, the initial domain X0 ⊂ X, and
the quality criterion

J = max{t f ,1, . . . , t f ,K}+ a1

K

∑
i=1

Δ f ,i → min, (44)

where a1 is the weight coefficient,

Δ f ,i =
∥∥∥x f − x(t f ,i, x0,i)

∥∥∥, (45)

where t f ,i is the time of achievement of the terminal position (29) from the initial condition
x0,i of the set of initial conditions X0 = {x0,1, . . . , x0,K}, i ∈ {1, . . . , K},

181

Mathematics 2022, 10, 4100

t f ,i =

{
t, if t < t+ and Δ f ,i ≤ ε

t+ otherwise
, (46)

where t+ and ε are given positive values, x(t, x0,i) is a partial solution of the system

ẋ = f(x, h(x f − x)), (47)

for initial conditions x(t0) = x0,i, i ∈ {1, . . . , K},

∥∥∥x f − x
∥∥∥ =

√
n

∑
i=1

(x f
i − xi)2. (48)

In the second stage, the following optimal control problem is solved. The mathematical
model of the control object is given in the form of (37), and the initial conditions are given
as (28). It is necessary to find control as a function of time:

x∗ = v∗(t), (49)

in order to minimize the functional

J2 =

t f∫
0

f0(x, x∗ − x)dt → min
x∗∈X

. (50)

The obtained control
u = g(x, t) = h(v∗(t)− x) (51)

allows performing conditions (34) and (35); therefore, it can be realized in the real object.
Further in the paper, we discuss the machine learning methods appropriate to solve

the described problems and show the examples of applying the proposed approach to the
solution of two different robotic tasks.

5. Symbolic Regression for Machine Learning

According to the introduced Definitions 1, 2 and 3, the task of searching for the needed
control function (36) in the first step is to be considered a machine learning task.

A search of an unknown function consists in searching for the structure and parameters
of this function. Usually structures of the functions are set by a researcher on the base of
data analysis, experience, or intuition. Today different universal structures become popular
such as various mathematical series and artificial neural networks. If a structure of the
needed function is set, then machine learning searches for the optimal values of parameters
according to some criterion [34].

An ML technique such as symbolic regression allows to look for the optimal structure
of the needed function and parameters as well [35].

Symbolic regression methods have made huge strides over the past decade and
recently, the importance of interpretable machine learning has been recognized by the
wider scientific community. However, to a greater extent, symbolic regression methods are
used for so-called supervised machine learning, when there are some data that need to be
approximated [36–39].

The considered problem of machine learning for control does not have a training set,
and the search for a control function must be based on minimizing the quality criterion. This
approach, in conventional terminology, refers to unsupervised learning. In this direction,
there are much fewer examples due to the complexity of the search. In [40–42], the control
functions are searched as linear combinations of basic functions, and mainly smooth
functions are used as basic functions. We perform the control function search [43,44] in the
form of function nesting, which allows to obtain more complex mathematical expressions,
and also use a wider set of basic functions, including discontinuous functions.

182

Mathematics 2022, 10, 4100

All symbolic regression methods code the searched mathematical expression in the
form of special code and search for the optimal solutionon the space of codes by a special
genetic algorithm. For this purpose, a special crossover operation is developed. The
application of a special crossover operation for two codes of parents allows to receive two
new codes of child chromosomes. Different crossover operations are used for different
code forms.

A complex crossover operation in symbolic regression methods, in our opinion, makes
it difficult to find a solution. Creating new possible solutions as a result of a complex
crossover operation is similar to generating new possible solutions. Therefore, the search
process does not use the properties of evolution and is more like a random search. In order
for the search algorithms of symbolic regression methods to have metaheuristic evolution-
ary properties, it is necessary that new possible solutions obtained by transforming existing
possible solutions have the property of inheritance.

Definition 9. The evolutionary algorithm has an inheritance property, if among the new possible
solutions obtained, as a result of the evolutionary transformations of existing possible solutions,
named parents, at least a given part of the new possible solutions have functional values, which
differ from the functional values of the parents by not more than a given value.

A universal approach to provide the inheritance property to any symbolic regression
algorithm is using the principle of small variations of the basic solution [45]. The appli-
cation of this principle makes it possible to find solutions that are close to optimal in a
reasonable time.

In [24], this principle was applied to Cartesian genetic programming, and it improved
the search process of the optimal solution. In the present paper, in the experimental part,
the network operator method [46] is used, which was developed exactly for the solution
of the control synthesis problem and was the first method where the principle of small
variations was applied.

6. Hybrid Algorithm for Optimal Control Problem

The second step of the proposed approach (49) is essentially a pure optimization
problem. Today, most generic optimization algorithms are based on population search [47],
and so we also use them as a main technique, but according to the task, any other optimiza-
tion algorithm can also be appropriate.

For the most complex optimal control problems with complex phase constraints, we
propose to use a hybrid algorithm that combines GA [48], GWO [49] and PSO [50]. As we
experimentally noticed, such a combination of the evolutionary algorithms allows to avoid
the local minimum in complex tasks. A pseudocode of the algorithm can be found in
Appendix A.

7. Computational Experiment

To demonstrate the proposed synthesized approach for the machine learning feedback
control problem solution, let us consider two different optimal control tasks with mobile
robots in complex environments with phase constraints.

7.1. Two Mobile Robots with Bottlenecks Phase Constraints

The first task we considered was to make two robots switch places with each other
while accurately passing through the given areas, as if through bottlenecks.

183

Mathematics 2022, 10, 4100

The mathematical model of the control object has the following form:

ẋ1 = 0.5(u1 + u2) cos(x3),
ẋ2 = 0.5(u1 + u2) sin(x3),
ẋ3 = 0.5(u1 − u2),
ẋ4 = 0.5(u3 + u4) cos(x6),
ẋ5 = 0.5(u3 + u4) sin(x6),
ẋ6 = 0.5(u3 − u4),

(52)

where x1, x2, and x3 are coordinates of the state vector of the first mobile robot, x4, x5, and
x6 are coordinates of the state vector of the second mobile robot, u1 and u2 are components
of the control vector for the first robot, and u3 and u4 are components of the control vector
for the second robot.

The values of control are limited:

− 10 = u−
i ≤ ui ≤ u+

i = 10, i = 1, 2, 3, 4. (53)

The initial and terminal conditions are given:

x(0) = x0 = [0 0 0 10 10 0]T , (54)

x(t f) = x f = [10 10 0 0 0 0]T . (55)

The quality functional is given:

J3 = t f + p1‖x f − x(t f)‖+ p2

t f∫
0

ϑ(χ(x))dt + p3

kg

∑
i=1

2

∑
j=1

ϑ(Δi,j − εi) → min, (56)

where

t f =

{
t, if t < t+, and ‖x f − x(t f)‖ < ε0
t+, otherwise

, (57)

χ(x) = r0 −
√
(x1 − x4)2 + (x2 − x5)2, (58)

ϑ(α) is a Heaviside step function

ϑ(α) =

{
1, if α ≥ 0
0, otherwise

, (59)

Δi,j = min
t

√
(x1+(j−1)3 − yi

1)
2 + (x2+(j−1)3 − yi

2)
2, (60)

r0 = 2, kg = 4, εi = 0.1, i = 1, 2, 3, 4, y1
1 = 4, y1

2 = 2, y2
1 = 6, y2

2 = 4, y3
1 = 4, y3

2 = 6, y4
1 = 6,

y4
2 = 8, p1 = 4, p2 = 3, p3 = 4, ε0 = 0.01, t+ = 4.8.

In the first stage, according to the proposed approach, the control synthesis problem is
solved in order to provide the existence of the equilibrium point.

The stabilization system was received by the network operator method. As far as the
received expressions of the control function, both the encoded and decoded forms are too
long, so we place them into the Appendix B.

184

Mathematics 2022, 10, 4100

In the second stage, it is necessary to solve the optimal control problem and to find the
control function in the form of piece-wise constant control function

x∗ = x∗,i, (i − 1)Δt ≤ t < iΔt, (61)

where i = 1, . . . , K, Δt is a time interval, Δt = 0.6, and K is the number of time intervals

K =

⌊
t+

Δt

⌋
=

⌊
4.8
0.6

⌋
= 8. (62)

To solve the optimal control problem and find x∗,i, i = 1, . . . , 8, the described hybrid
algorithm was used. The following optimal solution was found:

x∗,1 = [5.4629 0.8503 − 0.0834 5.5730 7.4134 − 0.2191]T ,
x∗,2 = [8.0879 4.6283 − 0.1367 2.7272 4.3233 − 04311]T ,
x∗,3 = [6.6929 4.2258 − 1.4392 1.1911 7.7361 0.2100]T ,
x∗,4 = [1.8651 7.0765 − 0.0173 6.6029 2.6080 0.1310]T ,
x∗,5 = [3.6284 4.0688 0.3204 0.7814 9.4491 − 0.1612]T ,
x∗,6 = [8.4951 8.4002 0.3134 1.0557 0.7920 0.7306]T ,
x∗,7 = [7.7752 9.9316 − 0.0237 1.6134 1.9251 0.0495]T ,
x∗,8 = [10.0465 9.8035 0.1303 − 1.0000 0.0051 0.2369]T .

(63)

Optimal trajectories on horizontal plane for robots are presented in Figure 1.

Figure 1. Optimal trajectories of robots for synthesized control

In the Figure 1 the solid black line is a trajectory of the first robot, the dash line is a
trajectory of the second robot, the small circles are the bottlenecks, the small black squares
are the optimal control points (63) for the first robot, and the small white squares are the
optimal control points (63) for the second robot. The optimal value of the functional (56)
is 4.8347.

For comparison, the optimal control problem (52)–(60) was solved by the direct ap-
proach of optimal control. For this purpose, the time axis was divided on K̃ intervals. The
control function is found in the form of the piece-wise linear function

uj =

⎧⎪⎨⎪⎩
u+

j = 10, if ûi > u+
i

u−
j = −10, if ûi < u−

i
ûj, otherwise

, j = 1, 2, 3, 4, (64)

where

ûj = (qi+(j−1)K̃+1 − qi+(j−1)K̃)
t − (i − 1)Δ̃t

Δ̃t
+ qi+(j−1)K̃ (65)

185

Mathematics 2022, 10, 4100

where j = 1, 2, 3, 4, j = 1, . . . , K̃, Δ̃t is a time interval, Δ̃t = 0.2,

K̃ =

⌊
t+

Δ̃t

⌋
=

⌊
4.8
0.2

⌋
= 24. (66)

In total, it is necessary to find 96 parameters, q = [q1 . . . q96]
T . The problem was very

difficult for many evolutionary algorithms. The most successful in solving this problem
was the described hybrid evolutionary algorithm.

In the result, the following solution was obtained:

q = [3.6515 − 5.6155 − 5.8103 − 4.1722 − 3.1398 − 5.4711 0.0936
6.6150 2.6432 − 8.8133 − 2.4498 − 18.5059 − 9.5896 0.1931
−5.5797 − 14.2516 9.5304 0.2181 0.6002 − 11.9435 − 12.2196
−0.0127 − 19.4712 8.8589 5.5695 8.4877 5.6459 0.7054 − 3.6582
−8.0966 − 0.6840 − 8.6774 7.7892 − 5.6366 − 5.3715 − 4.8317
−16.6047 − 19.8104 − 14.9474 7.6756 4.7000 9.7919 − 14.6483
−3.5860 − 3.1178 − 9.7188 − 16.2048 − 15.9328 − 1.3150 1.9570
−10.2673 − 0.5094 − 6.4163 − 4.9303 − 3.7649 − 6.3955
−5.8384 − 15.8273 − 9.2860 − 0.1217 9.0490 − 3.0543 0.8906
7.6340 10.8459 10.2492 3.4207 − 10.6311 − 4.9477 − 3.4041
−13.6140 − 15.2029 4.8782 − 10.4763 − 10.5894 6.4966 − 4.2872
−12.7573 − 8.2174 − 0.8267 − 14.1822 − 1.6810 − 15.3973 12.1957
15.4694 10.3573 − 12.7840 7.9684 − 6.3937 17.4171 − 6.6234 1.3378
−8.2870 − 0.2343 − 18.0791 − 5.3433]T .

(67)

The functional value is 4.8132. The optimal trajectories on the horizontal plane are
presented in Figure 2.

Figure 2. Optimal trajectories of robots for direct control.

To analyze the received results, these optimal control functions were tested for the
mathematical model with perturbations:

ẋ1 = 0.5(u1 + u2) cos(x3) + βξ(t),
ẋ2 = 0.5(u1 + u2) sin(x3) + βξ(t),
ẋ3 = 0.5(u1 − u2) + βξ(t),
ẋ4 = 0.5(u3 + u4) cos(x6) + βξ(t),
ẋ5 = 0.5(u3 + u4) sin(x6) + βξ(t),
ẋ6 = 0.5(u3 − u4) + βξ(t),

(68)

where ξ(t) is a function that returns a random number from diapason (−1; 1) at every call,
and β is a constant value.

186

Mathematics 2022, 10, 4100

For the system (68), disturbances were also introduced into the initial conditions

x(0) = x0
i + β0ξ, i = 1, . . . , 6, (69)

where β0 is a constant value. The results of the tests are presented in Table 1. For every
disturbance, 10 tests were performed. In Table 1, J3 is an average functional value for
synthesized control, σ(J3) is a standard deviation for values J3, J4 is an average functional
value for direct control, and σ(J4) is a standard deviation for values J4.

Table 1. Functional values for perturbed control object model.

β0 β J3 σ(J3) J4 σ(J4)

0 0 4.8347 0 4.8132 0
0 0.01 4.9999 0.1989 4.9267 0.1462
0 0.02 5.0868 0.288 5.1706 0.2559
0 0.05 5.3896 0.2087 6.1610 1.0704

0.01 0 5.2286 0.2053 6.5891 0.9445
0.02 0 5.4569 0.266 7.2853 1.6878
0.05 0 5.7369 0.6871 13.4286 3.5257
0.01 0.01 5.2365 0.2861 6.4381 0.9502
0.1 0 6.2945 0.7365 19.8192 8.0565

As the test results show, synthesized control is much less susceptible to perturbations of
the mathematical model and the initial conditions than direct control. Direct optimal control
is the most sensitive to disturbances of initial conditions. Even the smallest disturbances
of the initial conditions make direct control unacceptable. The results show that the
synthesized control obtains the compression property, and it is feasible in real systems.

7.2. Synthesized Control for Omni-Mecanum-Wheeled Robot

A mecanum robot has special wheels that allow it to move under a direct angle to
its direction of axis without any turns [51]. In Figure 3, an example of a mecanum robot
is shown.

Figure 3. Omni-mecanum-wheeled robot.

187

Mathematics 2022, 10, 4100

Consider the optimal control problem, where two identical mecanum robots have to
swap their places in some area with obstacles and without collisions for a minimal amount
of time.

The mathematical model of the control object is the following:

ẋ1 = 0.25((u1 + u4)(cos(x3) + sin(x3)) + (u2 + u3)(cos(x3)− sin(x3))),
ẋ2 = 0.25((u1 + u4)(sin(x3)− cos(x3)) + (u2 + u3)(cos(x3) + sin(x3))),
ẋ3 = 0.25(−u1 + u2 − u3 + u4)/(L0 + H0),
ẋ4 = 0.25((u5 + u8)(cos(x6) + sin(x6)) + (u6 + u7)(cos(x6)− sin(x6))),
ẋ5 = 0.25((u5 + u8)(sin(x6)− cos(x6)) + (u6 + u7)(cos(x6) + sin(x6))),
ẋ6 = 0.25(−u5 + u6 − u7 + u8)/(L0 + H0),

(70)

where x1, x2, and x3 are the state vector coordinates of the first mecanum robot, x4, x5,
and x6 are the state vector coordinates of the second mecanum robot, u1, u2, u3, and u4
are components of the control vector of the first mecanum robot, u5, u6, u7, and u8 are
components of the control vector of the first mecanum robot, and L0 and H0 are geometric
parameters of the robots, L0 = 2, H0 = 1.

The control is restricted:

− 10 = u−
i ≤ ui ≤ u+

i = 10, i = 1, . . . , 8, (71)

where u−
i and u+

i are given lower and upper limits for values of control, respectively,
i = 1, . . . , 8.

The initial state is given:

x(0) = x0 = [0 0 0 10 10 0]T . (72)

The terminal state is given:

x(t f) = x f = [10 10 0 0 0 0]T , (73)

where t f is the time of achievement of the terminal state. It is determined by Equation (57)
with ε0 = 0.05, t+ = 1.9.

The quality criterion includes phase constraints and the accuracy of the terminal state
achievement.

J = p1‖x f − x(t f)‖+
K

∑
i=1

wi

t f∫
0

ϑ(φi(x))dt + p2

t f∫
0

ϑ(χ(x))dt + t f → min
u

, (74)

where p1 and p1 are the penalty coefficient, where p1 = 3 and p2 = 3, wi is a weight coeffi-
cient, i = 1, . . . , K, K = 8, ϑ(α) is a Heaviside step function (59), and χ(x) is determined by
Equation (58):

φi(x) = ri −
√
(x1)− x1,i)2 + (x2 − x2,i)2, i = 1, 2, 3, 4, (75)

φi(x) = ri−4 −
√
(x4)− x1,i−4)2 + (x5 − x2,i−4)2, i = 5, 6, 7, 8, (76)

r1 = 2, r2 = 2.5, r3 = 2.5, r4 = 2, x1,1 = 2, x2,1 = 2, x1,2 = 8, x2,2 = 2, x1,3 = 2, x2,3 = 8,
x1,4 = 8, x2,4 = 8, r0 = 1.

According to the synthesized method, initially, the feedback control synthesis problem
is solved, such that the closed-loop control system is stable relative to some equilibrium
point in the state space. For this purpose, again, the network operator method is used.

188

Mathematics 2022, 10, 4100

Since the robots are the same, we make the synthesis of the stabilization system for
one robot, for example, the first robot.

In the result, the network operator method found the following control function:

ui =

⎧⎪⎨⎪⎩
u+

i , if ũi ≥ u+
i

u−
i , if ũi ≤ u−

i
ũiotherwise

, (77)

where
ũ1 = D + arctan(q1Δ1), (78)

ũ2 = ρ19(ũ1) + ρ4(C) + ρ17(B) + sgn(q2Δ2+
q1Δ1 + q3

3
√

Δ3) + ρ18(q2Δ2) + q1Δ1 − (q1Δ1)
3,

(79)

ũ3 = ũ2 + C3 + A + arctan(q1)− (A + arctan(q1))
3 + Δ−1

2 , (80)

ũ4 = sin(ũ3) + ρ16(ũ2) + (C + 3
√

Δ1)
3 + B+

ϑ(q2Δ2 + q1Δ1) + q3
3
√

Δ3,
(81)

A = sgn(q2Δ2 + q1Δ1 + q3
3
√

Δ3) + ϑ(q2Δ2 + q1Δ1),

B = A + arctan(q1) + sgn(q2Δ2 + q1Δ1) + arctan(q1Δ1),

C = cos(B) + ρ4(q2Δ2 + q1Δ1) + ρ16(Δ1) + ρ19(q1Δ1 + q2Δ2) + exp(q1Δ1),

D = C + 3
√

Δ1 + C3 + ρB − A − arctan(q1) + ρ16(q1Δ1),

Δ1 = x∗1 − x1, Δ2 = x∗2 − x2, Δ3 = x∗3 − x3, q1 = 11.89282, q2 = 10.15381, q3 = 15.25903,

ρ4(α) = sgn(α)
√
|α|, ρ16(α) =

{
α, if |α| < 1
sgn(α), otherwise

,

ρ17(α) = sgn(α) ln(|α|+ 1), ρ18(α) = sgn(α)(exp(|α|)− 1),

ρ19(α) = sgn(α) exp(−|α|).
For the second robot in the control function (77), it is necessary to replace xi, i = 1, 2, 3

with xi, i = 4, 5, 6, and x∗i , i = 1, 2, 3, with x∗i i = 4, 5, 6, respectively.
Plots of the trajectories of the robot movement from four initial states are presented in

Figure 4.

Figure 4. Trajectories on the horizontal plane for four initial states.

189

Mathematics 2022, 10, 4100

On the second stage, the optimal control problem (70)–(74) is solved for the closed
loop control system with the control function (77). A control on the second stage is vector
x∗, determining the position of the stable equilibrium point in the state space. For solving
the optimal control problem, the time axis is divided on the intervals, and in each interval,
a control function is approximated by a piece-wise constant function. The value of the
interval is equal to Δt = 0.19.

x∗i = xi(tj) = qi+(j−1)6, (82)

where i = 1, . . . , 6, tj = (j − 1)Δt j = 1, . . . , D, D is the number of intervals,

D =
t+

Δt
=

1.9
0.19

= 10. (83)

In total, it was necessary to find an optimal vector with 10 · 6 = 60 parameters:

q = [q1 . . . q60]
T .

For solving the problem, the hybrid evolutionary algorithm was applied. The values
of the parameters were restricted:

−2.5 = q+1 ≤ q1+3(k−1) ≤ q−1 = 2.5
−2.5 = q+2 ≤ q2+3(k−1) ≤ q−2 = 2.5

−5π/12 = q+2 ≤ q3+3(k−1) ≤ q−2 = 5π/12
, (84)

where k = 1, . . . , 20.
The following solution was obtained:

q = [−2.4862 2.0000 0.6231 − 2.1975 − 1.3799 0.7058 − 2.5000 1.9421
1.2094 − 0.6933 − 2.0088 − 0.3378 0.1956 1.7643 0.6378 1.4052
−2.4611 − 0.3230 1.7245 2.0000 0.8872 1.6769 − 1.2832 − 0.4372

0.5624 1.9987 − 1.1601 1.9452 − 1.8859 0.7357 1.6876 1.5024
0.0997 1.1642 − 1.3678 0.5321 1.6945 1.9946 0.5580 0.7886

−1.6027 1.3090 1.1795 1.5385 − 1.0798 0.6781 − 1.9975 0.0204
−0.8939 1.0578 − 0.4106 − 2.1003 − 1.2544 − 1.3090 − 2.5000 1.0746

−1.2216 − 2.0840 − 1.3344 − 0.8913]T .

(85)

The optimal value of the functional (74) is J = 1.923.
Optimal trajectories on the horizontal plane of two robots are presented in Figure 5.

The solid line is the trajectory of the first robot, the dash line is the trajectory of the second
robot, the red circles are the phase constraints, the black small squares are projections
of control x∗ on the horizontal plane for the first robot, and the white small squares are
projections of control x∗ on the horizontal plane for the second robot.

Figure 5 shows very clearly, as in the previous example with bottlenecks, that the
equilibrium points are located not on the trajectory of the robot, as is done with conventional
stabilization, but outside the trajectory. By placing points on the trajectory, we can lose
quality because when approaching the equilibrium point, the robot must slow down. Such
an optimal arrangement of points ensures the optimal value of the functional.

In this example, we would like to note the following. It occurs that two components of
the control vector are enough to control the mecanum robot. The other two components
have limit values and do not change during the control process. This can be seen in the
additional control plots presented in Appendix C. However, indeed, we noted that in the
mathematical model of the mecanum robot (70), the control was redundant, m > n. So,
the computer itself found a solution for how to proceed in this case, and in the solution
found, the two components of control, in fact, do not participate in the search for the

190

Mathematics 2022, 10, 4100

optimal solution. This is one of the more successful demonstrations of intelligent machine
automation of the process of creating control systems.

Figure 5. Optimal trajectories on the horizontal plane.

8. Discussion

In this work, we are laying the theoretical foundations of machine learning control.
The main feature is that the machine proof of various properties is implemented experi-
mentally basing on examples. In particular, this is what happens in neural networks, when
experiments are carried out on a test sample to check whether the system achieves certain
properties. We formulate several machine properties in the control system design. In the
future, the proposed formal descriptions can be developed, new properties of systems
can be considered, and quantitative probabilistic estimates can be given based on positive
test results.

An important result of the work is the expansion of the formulation of the optimal
control problem and the introduction of additional requirements for the required control.
Ensuring the introduced conditions additionally requires the introduction of feedback.
The paper presents the approach of synthesized optimal control, which allows implement-
ing optimal control systems, taking into account the introduced additional requirement.
In this case, other approaches can be considered and proposed.

9. Conclusions

A general machine learning approach for the automatic design of feedback control
systems for any dynamical nonlinear control objects is considered. The main perspective
is the machine-automated development of control systems. According to this trend, the
control system is obtained as a result of a machine solution of some formal mathematical
control problem and it is to be implemented in the real object directly.

Since the control system is created by machine learning, the paper formulates a ma-
chine check of all the properties required from the control system. Mathematical statements
of control problems and some theoretical justifications for solution of these problems by
machine methods are presented. The paper introduces and discusses such notions as
machine learning control, stability, optimality and feasibility of machine-made control
systems. In this regard, substantiations are introduced for the machine learning feedback
control approach based on symbolic regression and evolutionary algorithms.

Thus, the feedback control design is generalized and automated with a generic ap-
proach applicable to any nonlinear models, including machine-learning-identified models.
It is shown that with this approach, the computer is able to propose interesting outstanding
solutions, which sometimes an engineer cannot even suppose.

191

Mathematics 2022, 10, 4100

There is another feature in the proposed approach that can be developed in a good di-
rection. It is possible to control an object by controlling the position of the equilibrium point
both offline under predetermined operating conditions, and online, when the positions
of the points can be optimally planned for some short term and then adjusted according
to the situation. This is one more direction for further research and application of the
presented approach.

Author Contributions: Conceptualization, A.D. and E.S.; methodology, A.D. and E.S.; software, A.D.
and E.S.; validation, A.D. and E.S.; formal analysis, A.D.; investigation, E.S.; writing—original draft
preparation, A.D. and E.S.; writing—review and editing, E.S.; supervision, A.D. All authors have
read and agreed to the published version of the manuscript.

Funding: This research is supported by the Ministry of Science and Higher Education of the Russian
Federation, project No. 075-15-2020-799.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

The following abbreviations are used in this manuscript:

HJB Hamilton–Jacobi–Bellman Equation
PID Proportional–Integral–Derivative Controller
ML Machine Learning
SR Symbolic Regression
GA Genetic Algorithm
GWO Grey Wolf Optimizer
PSO Particle Swarm Optimization

Appendix A. Hybrid Evolutionary Algorithm

During the experiments, we noticed that evolutionary algorithms work faster if they
use as much information as possible about the goal function values in the space of search
at the evolutionary transformation of each possible solution. The PSO algorithm at the con-
struction of new possible solutions uses information about the current best possible solution,
about the best possible solution among random selected informants, and about previous
goal function values for each possible solution. The GWO algorithm uses information
about some current best possible solutions. Therefore, these algorithms work well.

However, when the goal function has a complex form, or it includes many complex
constraints, then these algorithms stop at some points of the local minimum. The GA in
these cases begins to work better than other evolutionary algorithms. The GA often can
shift the search from the current local minimum.

We propose a hybrid algorithm that includes all three listed above algorithms.
Initially, all arrays are created, and the type of evolutionary transformation is randomly

chosen: GA, GWO or PSO. In each generation, the number of transformations of every
algorithms is approximately the same. A pseudocode of the algorithm can be found in the
Algorithms A1–A4. We proposed that the hybrid algorithm worked better than GA, PSO
and GWO individually.

Here is the description of the proposed hybrid algorithm.
In the description of the algorithm, a function Goal(q) returns the goal function value

for the vector of parameters q. Procedure NumbertoGray(a, y) converts the real number a
to Gray code y. Procedure GraytoNumber(y, a), on the contrary, converts Gray code to a
real number a. Procedure Sort(I, F, k) sorts the first k elements in array F and sets the first
indexes in the array of index I.

192

Mathematics 2022, 10, 4100

Algorithm A1 Hybrid algorithm.

Require: H > 0 is a number of possible solutions in the initial population, G > 0 is the
number of generations, R > 0 is the number of evolutionary changes in one generation,
p is the number of searched parameters, q+i > q−i , i = 1, . . . , p, are restrictions on the
parameters, c is the number bits in the integer part of the parameter, d is the number
of bits in the fractional part of the parameter, α, β, γ, σ, k0 are parameters for the PSO
algorithm, and kw is the number of leaders for the GWO algorithm.

Ensure: q̃ = [q̃1 . . . q̃p]T is the optimal vector of parameters
q0

j = q̃j j = 1, . . . , p,

qi
j ← (q+j − q−j)ξ + q−j , j = 1, . . . , p, i = 1, . . . , H − 1

vi
j ← 0, j = 1, . . . , p, i = 0, . . . , H − 1

Fj ← Goal(qj), j = 0, . . . , H − 1
Ij = j, F̃j = Fj, j = 0, . . . , H − 1
t ← 0
while t < G do

j− ← 0, F− ← F0, j ← 1
while j < H do

if Fj < Fj− then
j− ← j,
Fj− ← Fj

end if
j ← j + 1

end while
Sort(I, F̃, kw)
s ← 0
while s < R do

ka ← ξ(3)
if ka = 0 then

GWO transformations
end if
if ka = 1 then

GA transformation
end if
if ka = 2 then

PSO transformation
end if
s ← s + 1

end while
t ← t + 1

end while
j− ← 0, F− ← F0, j ← 1
while j < H do

if Fj < Fj− then
j− ← j,
Fj− ← Fj

end if
j ← j + 1

end while
q̃ ← qj−

193

Mathematics 2022, 10, 4100

Algorithm A2 GWO transformation.

L ← 2 − t(2/G)
i ← ξ(H)
j ← 0
while j < p do

αx ← 0
k ← 0
while k < kw do

gA ← 2Lξ − L
gC ← 2ξ

αD ← |gCqIk
j − qi

j|
αx ← αx + qIk

j − gAαD

k ← k + 1
end while
q̂j ← αx/kw

if q̂j > q+j then

q̂j ← q+j
end if
if q̂j < q−j then

q̂j ← q−j
end if
j ← j + 1

end while
F̂ ← Goal(q̂)
if F̂ < Fi then

Fi ← F̂
qi ← q̂
Sort(I, F, kw)

end if

194

Mathematics 2022, 10, 4100

Algorithm A3 GA transformation.

k1 ← ξ(H), k2 ← ξ(H)
d ← ξ
if d > Fj−/Fk1 or d > Fj−/Fk2 then

ks ← ξ(p)
NumbertoGray(qk1

ks
, y1)

NumbertoGray(qk2
ks

, y2)

kc ← ξ(c + d)
j ← 0
while j < kc do

Sony1
j ← y1

j , Sony2
j ← y2

j , j ← j + 1
end while
j ← kc
while j < c + d do

Sony1
j ← y2

j , Sony2
j ← y1

j , j ← j + 1
end while
i ← 0
while i < ks do

Son1
i ← qk1

i , Son2
i ← qk2

i , i ← i + 1
end while
i ← ks + 1
while i < p do

Son1
i ← qk2

i , Son2
i ← qk1

i , i ← i + 1
end while
GraytoNumber(Sony1, Son1

ks
)

GraytoNumber(Sony2, Son2
ks
)

j ← 1
while j ≤ 2 do

if Sonj
ks
> q+ks

then

Sonj
ks
← q+ks

else if Sonj
ks
< q−ks

then

Sonj
ks
← q−ks

end if
F̂ ← Goal(Sonj)
i+ ← 0, i ← 1
while i < H do

if Fi > Fi+ then
i+ ← i

end if
end while
if F̂ < Fi+ then

qi+ ← Sonj

Fi+ ← F̂
end if
j ← j + 1

end while
end if

195

Mathematics 2022, 10, 4100

Algorithm A4 PSO transformation.

j ← ξ(H)
k ← ξ(H)
i ← 0
while i < k0 do

l ← ξ(H)
if Fl < Fk then

k ← l
end if

end while
i ← 0
while i < p do

vj
i ← αvj

i + ξβ(qk
i − qj

i) + ξγ(qj−
i − qj

i)

q̂i ← qj
i + σvj

i
if q̂i > q+i then

q̂i ← q+i
else if q̂i < q−i then

q̂i ← q−i
end if
i ← i + 1

end while
F̂ ← Goal(q̂)
if F̂ < Fj then

Fj ← F̂
qj ← q̂

end if

Appendix B. Stabilization System of the Mobile Robot

Ψ =

[
Ψ1,1 Ψ1,2

012×12 Ψ2,2

]
(A1)

Ψ1,1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 1 10 0 0 12 1
0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 2 0 0 8 0 0
0 0 0 0 0 0 0 2 0 1 19 0
0 0 0 0 0 0 0 0 2 1 0 0
0 0 0 0 0 0 0 0 0 1 1 8
0 0 0 0 0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(A2)

196

Mathematics 2022, 10, 4100

Ψ1,2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

15 0 0 0 0 0 0 0 0 0 0 10
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 9 0 0 0 0 10 0 0 0
0 0 0 13 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 4 13 10 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 12 0 0 0 19 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0
0 0 4 23 1 0 0 0 0 0 0 23
1 10 10 0 0 0 0 23 0 16 0 16

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(A3)

Ψ2,2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 15 0 14 0 0 0 0 0 0 0
0 1 1 0 0 0 0 0 0 0 0 0
0 0 1 1 0 0 0 0 0 0 0 13
0 0 0 1 8 0 0 0 0 0 0 0
0 0 0 0 1 1 0 0 0 0 0 0
0 0 0 0 0 2 1 0 15 0 0 0
0 0 0 0 0 0 1 1 0 0 0 0
0 0 0 0 0 0 0 1 5 0 0 0
0 0 0 0 0 0 0 0 1 1 0 0
0 0 0 0 0 0 0 0 0 1 1 12
0 0 0 0 0 0 0 0 0 0 2 1
0 0 0 0 0 0 0 0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(A4)

In the matrices, the numbers correspond to the functions with one and two arguments
according to [46].

The mathematical expression for the found control function described by these matri-
ces has the following form and parameters:

ui+(j−1)2 =

⎧⎪⎪⎨⎪⎪⎩
u+

i+(j−1)2 if ũi+(j−1)2 > u+
i+(j−1)2

u−
i+(j−1)2 if ũi+(j−1)2 < u−

i+(j−1)2

ũi+(j−1)2 otherwise

, (A5)

where i = 1, 2, j = 1, 2,

ũ1+(j−1)2 = sgn(q3(x∗3+(j−1)3 − x3+(j−1)3)) exp(−|q3(x∗3+(j−1)3 − x3+(j−1)3)|)+

a−1 + 3
√

a + sgn(x∗3+(j−1)3 − x3+(j−1)3) + μ(b), (A6)

ũ2+(j−1)2 = ũ1+(j−1)2 + sin(ũ1+(j−1)2) + arctan(h) + μ(b) + c − c3, (A7)

a = tanh(d) +
(

b + 3
√

x∗1+(j−1)3 − x1+(j−1)3

)3
+

c + sin(q3(x∗3+(j−1)3 − x3+(j−1)3)),

b = g + sgn(sgn(x∗1+(j−1)3 − x1+(j−1)3)q2(x∗2+(j−1)3 − x2+(j−1)3))×
exp(−|sgn(x∗1+(j−1)3 − x1+(j−1)3)q2(x∗2+(j−1)3 − x2+(j−1)3)|)+
sin(x∗1+(j−1)3 − x1+(j−1)3) + tanh(g) + x∗1+(j−1)3 − x1+(j−1)3,

c = g + sgn(sgn(x∗1+(j−1)3 − x1+(j−1)3)q2(x∗2+(j−1)3 − x2+(j−1)3))×
exp(−|sgn(x∗1+(j−1)3 − x1+(j−1)3)q2(x∗2+(j−1)3 − x2+(j−1)3)|)+

197

Mathematics 2022, 10, 4100

sin(x∗1+(j−1)3 − x1+(j−1)3),

d = h + c − c3 + sgn(q1(x∗1+(j−1)3 − x1+(j−1)3))+

arctan(q1) + ϑ(x∗3+(j−1)3 − x3+(j−1)3),

g = sgn(x∗1+(j−1)3 − x1+(j−1)3)q2(x∗2+(j−1)3 − x2+(j−1)2)+

q3(x∗3+(j−1)3 − x3+(j−1)3) + tanh(q1(x∗1+(j−1)3 − x1+(j−1)3)),

h = arctan(q1(x∗1+(j−1)3 − x1+(j−1)3))+

sgn(w)
√
|w|+ w + v + 2sgn(w + tanh(v))+

3

√
w + tanh(v) + 3

√
x∗1+(j−1)3 − x1+(j−1)3+

sgn(x∗1+(j−1)3 − x1+(j−1)3)
√
|x∗1+(j−1)3 − x1+(j−1)3|+

3
√

x∗1 − x1 + tanh(v),

w = sgn(x∗1+(j−1)3 − x1+(j−1)3)+

sgn(q2(x∗2+(j−1)3 − x2+(j−1)3))sgn(x∗1+(j−1)3 − x1+(j−1)3)×
tanh(x∗1+(j−1)3 − x1+(j−1)3),

v = q3(x∗3+(j−1)3 − x3+(j−1)3) + sgn(x∗1+(j−1)3 − x1+(j−1)3)q2×
(x∗2+(j−1)3 − x2+(j−1)3) + tanh(x∗1+(j−1)3 − x1+(j−1)3),

μ(α) = sgn(α)min{1, |α|}, tanh(α) =
1 − exp(−2α)

1 + exp(−2α)
,

j = 1, 2, q1 = 14.7288, q2 = 2.0271, q3 = 4.0222.

Appendix C. Plots for Mecanum Robot

Figures A1–A6 demonstrate the plots of optimal values of the state-space vector
components (black lines) and the corresponding values of the vector x∗ (red lines).

Figure A1. Plots of optimal x1 and x1
∗.

198

Mathematics 2022, 10, 4100

Figure A2. Plots of optimal x2 and x2
∗.

Figure A3. Plots of optimal x3 and x3
∗.

Figure A4. Plots of optimal x4 and x4
∗.

Figure A5. Plots of optimal x5 and x5
∗.

199

Mathematics 2022, 10, 4100

Figure A6. Plots of optimal x6 and x6
∗.

In Figures A7–A14, the plots of optimal values of the control vector components
are presented.

Figure A7. Plot of optimal values of control component u1.

Figure A8. Plot of optimal values of control component u2.

Figure A9. Plot of optimal values of control component u3.

200

Mathematics 2022, 10, 4100

Figure A10. Plot of optimal values of control component u4.

Figure A11. Plot of optimal values of control component u5.

Figure A12. Plot of optimal values of control component u6.

Figure A13. Plot of optimal values of control component u7.

201

Mathematics 2022, 10, 4100

Figure A14. Plot of optimal values of control component u8.

References

1. Egerstedt, M. Motion Planning and Control of Mobile Robots. Ph.D. Thesis, Royal Institute of Technology, Stockholm,
Sweden, 2000.

2. Bellman, R. Dynamic programming. Science 1966, 153, 34–37. [CrossRef] [PubMed]
3. Jones, M.; Peet, M.M. A generalization of Bellmans equation with application to path planning, obstacle avoidance and invariant

set estimation. Automatica 2021, 127, 109510. [CrossRef]
4. Aguilar, C.O.; Krener, A.J. Numerical solutions to the Bellman equation of optimal control. J. Optim. Theory Appl. 2014, 160,

527–552. [CrossRef]
5. Aliyu, M.D.S. An iterative relaxation approach to the solution of the Hamilton-Jacobi-Bellman-Isaacs equation in nonlinear

optimal control. IEEE/CAA J. Autom. Sin. 2018, 5, 360–366. [CrossRef]
6. Fraga, S.L.; Pereira, F.L. Hamilton-Jacobi-Bellman Equation and Feedback Synthesis for Impulsive Control. IEEE Trans. Autom.

Control 2012, 57, 244–249. [CrossRef]
7. Liu, D.; Wang, D.; Wang, F.; Li, H.; Yang, X. Neural-Network-Based Online HJB Solution for Optimal Robust Guaranteed Cost

Control of Continuous-Time Uncertain Nonlinear Systems. IEEE Trans. Cybern. 2014, 44, 2834–2847. [CrossRef]
8. Wei, Q.; Liu, D.; Lin, H. Value Iteration Adaptive Dynamic Programming for Optimal Control of Discrete-Time Nonlinear Systems.

IEEE Trans. Cybern. 2016, 46, 840–853. [CrossRef]
9. Liu, D.; Xue, S.; Zhao, B.; Luo, B.; Wei, Q. Adaptive Dynamic Programming for Control: A Survey and Recent Advances. IEEE

Trans. Syst. Man Cybern. Syst. 2021, 51, 142–160. [CrossRef]
10. Lu, J.; Wei, Q.; Wang, F.-Y. Parallel control for optimal tracking via adaptive dynamic programming. IEEE/CAA J. Autom. Sin.

2020, 7, 1662–1674. [CrossRef]
11. Lewis, F.L.; Vrabie, D.; Vamvoudakis, K.G. Reinforcement learning and feedback control: Using natural decision methods to

design optimal adaptive controllers. IEEE Control Syst. 2012, 32, 76–105.
12. Wen, G.; Chen, C.L.P.; Ge, S.S. Simplified Optimized Backstepping Control for a Class of Nonlinear Strict-Feedback Systems With

Unknown Dynamic Functions. IEEE Trans. Cybern. 2021, 51, 4567–4580. [CrossRef] [PubMed]
13. Kim, J.; Shin, J.; Yang, I. Hamilton-Jacobi Deep Q-Learning for Deterministic Continuous-Time Systems with Lipschitz Continuous

Controls. J. Mach. Learn. Res. 2021, 22, 1–34.
14. Walsh, G.; Tilbury, D.; Sastry, S.; Murray, R.; Laumond, J.P. Stabilization of trajectories for systems with nonholonomic constraints.

IEEE Trans. Autom. Control 1994, 39, 216–222. [CrossRef]
15. Wang, S.; Dai, M.; Wang, Y. Robust Adaptive Backstepping Sliding Mode Control for a Class of Uncertain Nonlinear System. In

Proceedings of the 2018 Chinese Automation Congress (CAC), Xi’an, China, 30 November–2 December 2018; pp. 3534–3538.
[CrossRef]

16. Zhao, X.; Wang, X.; Zhang, S.; Zong, G. Adaptive Neural Backstepping Control Design for A Class of Nonsmooth Nonlinear
Systems. IEEE Trans. Syst. Man Cybern. Syst. 2019, 49, 1820–1831. [CrossRef]

17. Tyutikov, V.V.; Panteleev, E.R.; Zhilnikova, Y.F. Analysing Impact of Transfer Function Zeros in Controlled Object on Parametric
Sensitivity of Systems Synthesized by Method of Aggregated Controller Analytical Design (ACAD). In Proceedings of the 2020
International Conference on Industrial Engineering, Applications and Manufacturing (ICIEAM), Sochi, Russia, 18–22 May 2020;
pp. 1–6. [CrossRef]

18. Clarke, F. Lyapunov Functions and Feedback in Nonlinear Control. In Optimal Control, Stabilization and Nonsmooth Analysis; de
Queiroz, M.S., Malisoff, M., Wolenski, P., Eds.; LNCIS 301; Springer: Berlin/Heidelberg, Germany, 2004; pp. 267–282.

19. Benzaouia, A.; Hmamed, A.; Mesquine, F.; Benhayoun, M.; Tadeo, F. Stabilization of Continuous-Time Fractional Positive Systems
by Using a Lyapunov Function. IEEE Trans. Autom. Control 2014, 59, 2203–2208. [CrossRef]

20. Simon, J.D.; Mitter, S.K. A theory of modal control. Inf. Control 1968, 13, 316–353. [CrossRef]
21. Tousi, S.M.A.; Mostafanasab, A.; Teshnehlab, M. Design of Self Tuning PID Controller Based on Competitional PSO. In Proceedings

of the 2020 4th Conference on Swarm Intelligence and Evolutionary Computation (CSIEC), Mashhad, Iran, 2–4 September 2020;
pp. 22–26. [CrossRef]

202

Mathematics 2022, 10, 4100

22. Cherroun, L.; Nadour, M.; Kouzou, A. Type-1 and Type-2 Fuzzy Logic Controllers for Autonomous Robotic Motion. In
Proceedings of the 2019 International Conference on Applied Automation and Industrial Diagnostics (ICAAID), Elazig, Turkey,
25–27 September 2019; pp. 1–5. [CrossRef]

23. Ahmed, A.A.; Alshandoli, A.F.S. On replacing a PID controller with Neural Network controller for Segway. In Proceedings of the
2020 International Conference on Electrical Engineering (ICEE), Takamatsu, Japan, 28 June–2 July 2020; pp. 1–4. [CrossRef]

24. Diveev, A.I.; Shmalko, E.Y. Machine-Made Synthesis of Stabilization System by Modified Cartesian Genetic Programming. IEEE
Trans. Cybern. 2022, 52, 6627–6637. [CrossRef]

25. Duriez, T.; Brunton, S.L.; Noack, B.R. Machine Learning Control—Taming Nonlinear Dynamics and Turbulence; Springer International
Publishing: Cham, Switzerland, 2017.

26. Moe, S.; Rustad, A.M.; Hanssen, K.G. Machine Learning in Control Systems: An Overview of the State of the Art. In Artificial
Intelligence XXXV, Proceedings of the 38th SGAI International Conference on Artificial Intelligence, AI 2018, Cambridge, UK, 11–13
December 2018; Bramer, M., Petridis, M., Eds.; LNCS; Springer: Cham, Switzerland, 2018.

27. Deisenroth, M.P.; Faisal, A.A.; Ong, C.S. Mathematics for Machine Learning; Cambridge University Press: Cambridge, UK, 2020.
[CrossRef]

28. Burkov, A. The Hundred-Page Machine Learning Book; Andriy Burkov: Quebec City, QC, Canada, 2019; 160p.
29. Géron, A. Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent

Systems; O’Reilly Media, Inc.: Sebastopol, CA, USA, 2019; 856p.
30. Brunton, S.L.; Proctor, J.L.; Kutz, J.N. Discovering governing equations from data: Sparse identification of nonlinear dynamical

systems. Proc. Natl. Acad. Sci. USA 2015, 113, 3932–3937. [CrossRef]
31. Shmalko, E.; Rumyantsev, Y.; Baynazarov, R.; Yamshanov, K. Identification of Neural Network Model of Robot to Solve the

Optimal Control Problem. Inform. Autom. 2021, 20, 1254–1278. [CrossRef]
32. Malkin, I.G. Theory of Motion Stability; Nauka: Moscow, Russia, 1966.
33. Diveev, A.; Shmalko, E.; Serebrenny, V.; Zentay, P. Fundamentals of Synthesized Optimal Control. Mathematics 2021, 9, 21.

[CrossRef]
34. Sun, S.; Cao, Z.; Zhu, H.; Zhao, J. A Survey of Optimization Methods From a Machine Learning Perspective. IEEE Trans. Cybern.

2020, 50, 3668–3681. [CrossRef] [PubMed]
35. Diveev, A.; Shmalko, E. Machine Learning Control by Symbolic Regression; Springer International Publishing: Cham, Swizterland, 2021.
36. Silviu-Marian, U.; Max, T. AI Feynman: A physics-inspired method for symbolic regression. Sci. Adv. 2020, 6, eaay2631.

[CrossRef]
37. Jin, Y.; Fu, W.; Kang, J.; Guo, J.; Guo, J. Bayesian Symbolic Regression. arXiv 2019, arXiv:1910.08892.
38. La Cava, W.; Moore, J.H. Learning feature spaces for regression with genetic programming. Genet. Program. Evolvable Mach. 2022,

21, 433–467. [CrossRef] [PubMed]
39. Petersen, B.K.; Larma, M.L.; Mundhenk, T.N.; Santiago, C.P.; Kim, S.K.; Kim, J.T. Deep symbolic regression: Recovering

mathematical expressions from data via risk-seeking policy gradients. In Proceedings of the International Conference on Learning
Representations, Virtual, 3–7 May 2021.

40. Derner, E.; Kubalík, J.; Ancona, N.; Babuška, R. Symbolic Regression for Constructing Analytic Models in Reinforcement Learning.
Appl. Soft Comput. 2020, 94, 106432. [CrossRef]

41. Alibekov, E.; Kubalık, J.; Babuska, R. Symbolic Method for Deriving Policy in Reinforcement Learning. In Proceedings of the 2016
IEEE 55th Conference on Decision and Control (CDC), Las Vegas, NV, USA, 12–14 December 2016; pp. 2789–2795. [CrossRef]

42. Derner, E.; Kubalík, J.; Babuška, R. Reinforcement Learning with Symbolic Input–Output Models. In Proceedings of the 2018
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Madrid, Spain, 1–5 October 2018; pp. 3004–3009.
[CrossRef]

43. Diveev, A.I.; Shmalko, E.Yu. Evolutionary computations for synthesis of control system of group of robots and the optimum
choice of trajectories for their movement. In Proceedings of the CEUR Workshop Proceedings: VIII International Conference on
Optimization and Applications (OPTIMA-2017), Petrovac, Montenegro, 2–7 October 2017; pp. 158–165.

44. Shmalko, E.; Diveev, A. Control Synthesis as Machine Learning Control by Symbolic Regression Methods. Appl. Sci. 2021,
11, 5468. [CrossRef]

45. Diveev, A.I. Small Variations of Basic Solution Method for Non-numerical Optimization. IFAC-PapersOnLine 2015, 48, 28–33.
[CrossRef]

46. Diveev, A.I. Numerical method for network operator for synthesis of a control system with uncertain initial values. J. Comp. Syst.
Sci. Int. 2012, 51, 228–243. [CrossRef]

47. Diveev, A.I.; Konstantinov, S.V. Study of the Practical Convergence of Evolutionary Algorithms for the Optimal Program Control
of a Wheeled Robot. J. Comput. Syst. Sci. Int. 2018, 57, 561–580. [CrossRef]

48. Goldberg, D. Genetic Algorithms in Search, Optimization and Machine Learning; Addison-Wesley Professional: Reading, MA,
USA, 1989.

49. Mirjalili, S.; Mirjalili, S.M.; Lewis, A. Grey Wolf Optimizer. Adv. Eng. Softw. 2014, 69, 46–61. [CrossRef]

203

Mathematics 2022, 10, 4100

50. Kennedy, J.; Eberhart, R. Particle swarm optimization. In Proceedings of the ICNN’95–International Conference on Neural
Networks, Perth, Australia, 27 November–1 December 1995; pp. 1942–1948. [CrossRef]

51. Huang, H.-C.; Tao, C.-W.; Chuang, C.-C.; Xu, J.-J. FPGA-Based Mechatronic Design and Real-Time Fuzzy Control with Computa-
tional Intelligence Optimization for Omni-Mecanum-Wheeled Autonomous Vehicles. Electronics 2019, 8, 1328. [CrossRef]

204

Citation: Vakhnin, A.; Sopov, E.;

Semenkin, E. On Improving

Adaptive Problem Decomposition

Using Differential Evolution for

Large-Scale Optimization Problems.

Mathematics 2022, 10, 4297. https://

doi.org/10.3390/math10224297

Academic Editor: Liliya Demidova

Received: 19 September 2022

Accepted: 10 November 2022

Published: 16 November 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

On Improving Adaptive Problem Decomposition Using
Differential Evolution for Large-Scale Optimization Problems

Aleksei Vakhnin, Evgenii Sopov and Eugene Semenkin ∗

Department of System Analysis and Operations Research, Reshetnev Siberian State University of Science
and Technology, Krasnoyarsk 660037, Russia
* Correspondence: eugenesemenkin@yandex.ru

Abstract: Modern computational mathematics and informatics for Digital Environments deal with
the high dimensionality when designing and optimizing models for various real-world phenomena.
Large-scale global black-box optimization (LSGO) is still a hard problem for search metaheuristics,
including bio-inspired algorithms. Such optimization problems are usually extremely multi-modal,
and require significant computing resources for discovering and converging to the global optimum.
The majority of state-of-the-art LSGO algorithms are based on problem decomposition with the
cooperative co-evolution (CC) approach, which divides the search space into a set of lower dimen-
sional subspaces (or subcomponents), which are expected to be easier to explore independently
by an optimization algorithm. The question of the choice of the decomposition method remains
open, and an adaptive decomposition looks more promising. As we can see from the most recent
LSGO competitions, winner-approaches are focused on modifying advanced DE algorithms through
integrating them with local search techniques. In this study, an approach that combines multiple
ideas from state-of-the-art algorithms and implements Coordination of Self-adaptive Cooperative
Co-evolution algorithms with Local Search (COSACC-LS1) is proposed. The self-adaptation method
tunes both the structure of the complete approach and the parameters of each algorithm in the
cooperation. The performance of COSACC-LS1 has been investigated using the CEC LSGO 2013
benchmark and the experimental results has been compared with leading LSGO approaches. The
main contribution of the study is a new self-adaptive approach that is preferable for solving hard
real-world problems because it is not overfitted with the LSGO benchmark due to self-adaptation
during the search process instead of a manual benchmark-specific fine-tuning.

Keywords: problem decomposition; large-scale global optimization; self-adaptive differential
evolution; memetic algorithm; cooperative co-evolution.

MSC: 90C06; 90C26; 68W50; 49M27

1. Introduction

Modern numerical continuous global optimization problems deal with high dimen-
sionality and the number of decision variables is still increasing because of the need to take
into account more internal and external factors when designing and analyzing complex
systems. This is also facilitated by the development of high-performance hardware and al-
gorithms. “Black-box” large-scale global optimization (LSGO) is one of the most important
and hardest types of optimization problems. The search space of LSGO problems expo-
nentially grows and many state-of-the-art optimization algorithms, including evolutionary
algorithms, lose their efficiency. However, the issue cannot be solved by straightforward
increasing the number of objective function evaluations.

Many researchers note that the definition of a LSGO problem depends on the nature of
the problem and changes over time and with the development of optimization approaches.
For example, the global optimization of Morse clusters is known as a hard real-world

Mathematics 2022, 10, 4297. https://doi.org/10.3390/math10224297 https://www.mdpi.com/journal/mathematics205

Mathematics 2022, 10, 4297

optimization problem. The best-found solutions for Morse clusters are collected in the
Cambridge Energy Landscape Database [1]. At the moment, the database contains the
highest value equal to 147 atoms, which corresponds to 441 continuous decision variables
only. The most popular LSGO benchmark was proposed within the IEEE Congress on
Evolutionary Computation and is used for the estimation and comparison of new LSGO
approaches. The benchmark contains 1000-dimensional LSGO problems. There exist
solutions for real-world problems with many thousands of decision variables.

The general LSGO optimization problem is defined as (1):

f (x1, x2, . . . , xn) → min
x∈Rn

, f : Rn → R1, (1)

here f is an objective function, xi are box-constrained decision variables. We do not impose
any restrictions on the type of the objective function, such as linearity, continuity, convexity,
and the need to be defined at all points requested by the search algorithm. In the general
case, the objective function is defined algorithmically, there is no information about the
properties of its landscape, thus the objective function is a “black-box” model.

As previously mentioned, the performance of many black-box global optimization
algorithms cannot be improved by only increasing the budget of function evaluations
when solving LSGO problems. One of challenges for researchers in the LSGO field is the
development of new approaches, which can deal with the high dimensionality. Various
LSGO algorithms that use fundamentally different ideas and demonstrate different per-
formances for different classes of LSGO problems have been proposed. When solving a
specific LSGO problem, a researcher must choose an appropriate LSGO algorithm and
fine-tune its parameters. Moreover, the algorithm can require different settings at different
states of the optimization process (for example, at exploration and exploitation stages).
Thus, the development of self-adaptive approaches for solving hard LSGO problem is an
actual research task.

In this study, an adaptive hybrid approach that combines three general conceptions,
such as problem decomposition using cooperative co-evolution (CC), global search based
on differential evolution (DE), and local search is proposed. This approach demonstrates
performance comparable with LSGO competition winners and outperforms most of them.
At the same time, it demonstrates the same high efficiency for different classes of LSGO
problems, which makes the proposed approach preferable for “black-box” LSGO problems
when it is not possible to prove the choice of an appropriate search algorithm.

The rest of the paper is organized as follows. Section 2 presents the related works for
reviewing state-of-the-art in the field of LSGO and motivates designing a hybrid approach.
Sections 3 and 4 describe the proposed approach, experimental setups, some general top-
level settings, and implementation. In Section 5, the experimental results, analysis, and
discussion of the algorithm dynamics and convergence, and the comparison of the results
with state-of-the-art and competition-winner approaches are presented. In conclusion, the
proposed methods and the obtained results are summarized and some further ideas are
suggested.

2. Related Work

The complexity of real-world optimization problems has grown in recent years and is
still growing. The class of global “black-box” optimization problems for which the high
dimensionally causes the loss in the performance of a search algorithm is known as Large
Scale Global Optimization or LSGO. Well-known experts in the field of LSGO, Mohammad
Nabi Omidvar and Xiaodong Li, note that the term “large scale” is not definitively deter-
mined because the dimensionality of problems in LSGO grows over time, and it can also
be different in different application areas. Many modern metaheuristics, including EAs,
consider LSGO problems with 1000 real variables.

One of the first discussions on LSGO have been proposed within the special session
of the IEEE CEC conference in 2008 [2,3]. Since 2008, the LSGO scientific community has

206

Mathematics 2022, 10, 4297

proposed the LSGO benchmark for evaluating and comparing LSGO algorithms. The
first benchmark in 2008 had only 7 test problems, including 2 unimodal and 5 multi-
modal optimization problems [2]. The CEC LSGO 2010 benchmark was extended with
test problems grouped by the separability property and contained 20 optimization prob-
lems, including 3 fully separable, 15 partially non-separable, and 2 fully non-separable
functions [4]. Finally, within the IEEE CEC 2013 special session and completion, a new
benchmark has been proposed, and it is still used today and is known as a hard bench-
mark set for many state-of-the-art LSGO techniques [5]. The CEC LSGO 2013 benchmark
contains 3 fully separable, 8 partially additive non-separable functions, 3 functions with
overlapping components, and 1 fully non-separable function. In 2018, a new online Toolkit
for Automatic Comparison of Optimizers (TACO) has been proposed for a fair independent
comparison of LSGO algorithms [6]. In 2021, the TACO database includes the results of 25
leading and competition-winner LSGO algorithms.

Some extensive studies with surveys of the current state of LSGO and systematizations
of LSGO techniques have been proposed in [7,8]. In [9], LSGO is highlighted as one of
the urgent domains of bio-inspired computation. The recent work on the LSGO review
proposes a large summary of the state of affairs and accumulated experience [10,11]. Within
the proposed systematizations, the following main approaches are developing:

• Random (static or dynamic) problem decomposition using cooperative co-evolution,
• Learning-based decomposition using cooperative co-evolution,
• Modifications of the standard evolutionary algorithms without problem decomposi-

tion, including hybrid memetic approaches.

The first group of approaches is the largest one. Decomposition divides the search
space into a set of lower-dimensional subspaces by grouping decision variables (or sub-
components), which are expected to be easier to explore independently by an optimization
algorithm. For aggregating the whole candidate-solution from subcomponents, the co-
operative co-evolution framework is used. Therefore, a decomposition-based approach
involves three general components, namely, a decomposition algorithm, a subcomponent
optimizer, and a cooperative co-evolution technique. The number of subcomponents and
appropriate decomposition depend on the properties of the objective function and are
unknown beforehand. Thus, decomposition mechanisms are also a part of the search
approach and must be adaptive. Despite the fact that we optimize lower-dimensional
subproblems, each decomposition can generate a complex landscape, and the subcompo-
nent optimizer should be also adaptive for demonstrating the high performance for any
decomposition. The standard co-evolution framework is also a subject for modification.
Nevertheless, the decomposition-based approaches demonstrate high performance for a
wide range of LSGO problems.

Learning-based techniques are aimed to identify the interaction of variables and to
group them into separable subcomponents. The approaches usually perform well with
fully separable and partially non-separable problems only. At the same time, some recent
algorithms can also efficiently deal with overlapping components, but still demonstrate
poor performance with fully non-separable problems (for example, CC-RDG3, who is the
2019 LSGO competition winner [12]).

Hybrid memetic approaches usually demonstrate high performance for all types of
LSGO problems (for example, SHADE-ILS, the 2018 LSGO competition winner [13]). It
is worth noting the Multiple Offspring Sampling (MOS) algorithm [14], which was the
LSGO competition winner for 5 years (2013–2018). MOS proposes a high-level relay hybrid
approach for adaptive switching between global and local search algorithms (one of the
modifications uses switching only between multiple local search algorithms).

We will briefly review some state-of-the-art and competition-winner LSGO algorithms
for analyzing the general approaches implemented in the algorithms.

207

Mathematics 2022, 10, 4297

2.1. Approaches without Problem Decomposition

Dynamic Multi-Swarm Particle Swarm Optimizer (DMS-PSO) [15] is one of the early
approaches investigated using the CEC LSGO 2008 benchmark. DMS-PSO uses a multi-
population scheme and combines PSO with a modified neighborhood topology [16] and
the BFGS Quasi-Newton method for local search. Canonical Differential Evolutionary
Particle Swarm Optimization (C-DEEPSO) [17] is based on a combination of DE and PSO
algorithms. Variable Mesh Optimization Differential Evolution (VMODE) [18] uses the
standard DE as the core optimizer and the population distributed in nodes of a mesh. The
mesh nodes can be redistributed for maintaining diversity and for guiding the optimizer to
the best-found solutions.

Multi-trajectory Search (MTS) [19] uses a combination of coordinate-wise random
searches titled MTS-LS1, MTS-LS2, and MTS-LS3. On each iteration, coordinates are ranked
based on the objective improvements, the next step starts with the coordinate that has
provided the highest increment of the objective function. Despite the simple idea, MTS
demonstrates high performance with LSGO problems and is used as the main local search
algorithm in many hybrid memetic approaches.

Iterative Hybridization of Differential Evolution with Local Search (IHDELS) [20] is
one of the first competition-winner memetic evolutionary algorithms (the 2nd place in the
2015 IEEE CEC LSGO competition). IHDELS uses self-adaptive DE (SaDE) [21] and two
local search algorithms: L-BFGSB [22] and MTS-LS1 [19].

Multiple Offspring Sampling (MOS) in the original paper used a combination of
Restart Covariance Matrix Adaptation Evolution Strategy With Increasing Population Size
(IPOPCMA-ES) [23] with a restart and variable population size and the standard DE [24].
The 2013 version of MOS [25] uses a hybridization of 3 algorithms: MTS LS1, Solis and
Wets, and GA.

Success-History Based Parameter Adaptation for Differential Evolution with Iterative
Local Search (SHADE-ILS) [13] is the winner of the 2018 competition. SHADE-ILS combines
SHADE [26] for global search, MTS LS1 and L-BFGS-B for local search, and restart strategies.

Hybrid of Minimum Population Search and Covariance Matrix Adaptation Evolution
Strategy (MPS-CMA-ES) [27,28] has taken second place in the 2019 competition.

The most recent algorithm selection wizard, titled as automated black-box optimiza-
tion (ABBO), can select one or several optimization algorithms from a very large number of
base algorithms based on some input information about the considered optimization prob-
lem [29]. ABBO uses three types of selection techniques: passive algorithm selection, active
algorithm selection, and chaining (several algorithms run in turn). ABBO outperforms
many state-of-the-art algorithms on LSGO benchmarks.

2.2. Decomposition-Based Approaches with Static Grouping

A Cooperative Co-evolutionary approach for Genetic Algorithm (CCGA-1 and CCGA-
2) [30] is the first attempt for improving the standard EA (namely, a binary GA) using the
coordinate-wise decomposition. In [31,32], CC was implemented for improving evolution
programming (Fast Evolutionary Programming with Cooperative Co-evolution, FEPCC).
In Cooperative Co-evolutionary Differential Evolution (CCDE) [33], the approach was
modified for using subcomponents with many variables. There were proposed two modifi-
cations: CCDE-H with 2 subcomponents and CCDE-O with the number of subcomponents
equal to the number of variables.

Some more complicated decompositions have been proposed for PSO algorithms.
Cooperative Approach to Particle Swarm Optimization (CPSO) [34] performed grouping
into k subcomponents (CPSO-Sk) or combined CPSO-Sk with the standard PSO (CPSO-Hk).
A similar idea was used in Cooperative Bacterial Foraging Optimization (CBFO) [35] and
Cooperative Artificial Bee Colony (CABC) [36]. Both approaches had two modifications:
CBFO-S, CBFO-H, CABC-H, and CABC-S.

208

Mathematics 2022, 10, 4297

2.3. Decomposition-Based Approaches with Random Grouping

In random grouping approaches, subcomponents vary during the search process. One
of the first approaches DECC-G [37] has proposed a combination of random grouping
and Self-adaptive Differential Evolution with Neighborhood Search (SaNSDE) [38] that
demonstrates high performance for LSGO benchmarks and is still used as a base-line for
evaluating and comparing new LSGO approaches.

In Multilevel Cooperative Co-evolution (MLCC) [39], SaNSDE is combined with
modified random grouping, which uses a distribution of probabilities for choosing sub-
components from a decomposition pool based on the success of the previous choices. In
DECC-ML, a modification of MLCC with a better optimizer for the more frequent ran-
dom grouping was proposed [40]. Cooperatively Co-evolving Particle Swarms algorithms
(CCPSO and CCPSO2) [41,42] use random grouping with PSO. CCPSO2 applies a random
search for dynamic regrouping variables. In Cooperative Co-evolution Orthogonal Artifi-
cial Bee Colony (CCOABC) [43], random grouping is combined with the ABC algorithm.

Memetic Framework for Solving Large-scale Optimization Problems
(MLSHADE-SPA) [44] is a multi-algorithms approach, which iteratively applies Success
History-based Differential Evolution with Linear Population Size Reduction
(L-SHADE) [45], two self-adaptive DE algorithms, and a modified version of MTS. All algo-
rithms are applied for the whole optimization problem and for subcomponents. MLSHADE-
SPA has taken second place in the 2018 IEEE CEC LSGO competition.

2.4. Learning-Based Grouping Approaches

The idea behind algorithms of this type is to identify the interaction of decision
variables and group them into the same subcomponent. For some separable test problems,
the algorithms can identify true subcomponents.

Correlation-based Adaptive Variable Partitioning (CCEA-AVP) [46] evaluates the cor-
relation matrix for the best solutions (in the original algorithm, half of the population is
used). Variables for which values of the correlation coefficient are greater than a threshold
are placed in one group. In [47], CCEA-AVP uses NSGA-2 as the core optimizer. Contribu-
tion Based Cooperative Co-evolution (CBCC) applies SaNSDE with Delta Grouping and
Ideal Grouping algorithms [48]. Each subcomponent is optimized using the number of
function evaluations based on the improvement of the objective function obtained by this
component. The delta grouping approach is also applied in Cooperative Co-evolution with
Delta Grouping (DECC-DML) [49]. In Cooperative Co-evolution with Variable Interac-
tion Learning (CCVIL) [50], groups are formed iteratively starting with one-dimensional
subcomponents, which are combined if the interaction between them is detected. CCVIL
uses JADE [51] for optimizing subcomponents. Dependency Identification with Memetic
Algorithm (DIMA) [52] applies the local search algorithm proposed in [53] for detecting
the interaction of variables.

Differential grouping is based on the mathematical definition of a partially additively
separable function that is used for the identification of the interaction of variables. Coop-
erative Co-Evolution with Differential Grouping (DECC-DG) [54], Extended Differential
Grouping (DECC-XDG) [55], and modified DECC-DG2 [56] use the SaNSDE algorithm
for evolving subcomponents. A competitive divide and-conquer algorithm (CC-GDG-
CMAES) [57] combines differential grouping with the CMA-ES optimizer. In Differential
Grouping with Spectral Clustering (DGSC) [58], SaNSDE is applied for subcomponents
discovered using clustering of the identified interactions in variables.

Some original approaches are proposed in Scaling Up Covariance Matrix Adaptation
Evolution Strategy (CC-CMA-ES) [59], Cooperative co-evolution with Sensitivity Analysis-
based Budget Assignment Strategy (SACC) [60], Bi-space Interactive Cooperative Co-
evolutionary Algorithm (BICCA) [61], and Cooperative Co-evolution with Soft Grouping
(SGCC) [62]. All approaches, except CC-CMA-ES, use self-adaptive DE algorithms.

A recursive decomposition method (RDG) [63] proposes a new approach for better
differential grouping. CC-RDG3 [12] combines CMA-ES with RDG for the efficient identi-

209

Mathematics 2022, 10, 4297

fication of overlapping subcomponents. Authors have shown that CC-RDG3 can greatly
improve LSGO algorithms. CC-RDG3 has taken first place in the 2019 IEEE CEC LSGO
competition and it is still the leading LSGO approach. An Incremental Recursive Ranking
Grouping (IRRG) is one of the recent approaches that uses monotonicity checking for
more accurate identification of variable linkages [64]. IRRG requires more fitness function
evaluations than RDG3, but never reports false linkages.

2.5. LSGO State-of-the-Art Algorithms

We have summarized all approaches mentioned above in Table 1 to highlight their
main features, such as the type of decomposition, and the global and local search algorithms
used. As we can see from the proposed review, many state-of-the-art LSGO algorithms
contain, in different combinations, three main components: problem decomposition with
cooperative co-evolution, a global optimizer, and a local search algorithm. The majority
of the algorithms apply a self-adaptive DE as the global search technique. In Table 2, all
participants of the IEEE CEC LSGO competitions of different years are collected. In the
table, one can find out the winners of the competitions and what components (CC, DE,
and LS) are implemented in the algorithms (a “plus” sign indicates that the corresponding
components are used).

Table 1. The summary of the reviewed LSGO approaches.

Approach Decomposition Type Global Search Local Search

ABBO [29] No miniLHSDE No
BICCA [61] Learning L-SHADE No
CBCC [48] Learning SaNSDE No

CC-CMA-ES [59] Learning CMA-ES No
CCDE-H [33] Static DE No
CCDE-O [33] Static DE No

CCEA-AVP [46] Learning NSGA-2 No
CCGA [30] Static GA No

CC-GDG-CMAES [57] Learning CMA-ES No
CC-RDG3 [12] Learning CMA-ES No

CCVIL [50] Learning JADE No
C-DEEPSO [17] Random EP, PSO, and DE No
DECC-DG [54] Learning SaNSDE No
DECC-DG2 [56] Learning SaNSDE No
DECC-DML [49] Learning SaNSDE No

DECC-G [37] Random SaNSDE No
DECC-XDG [55] Learning SaNSDE No

DGSC [58] Learning SaNSDE No

DIMA [52] Learning GA Self-directed Local
Search

DMS-PSO [15] No PSO Quasi-Newton method
IHDELS [20] No SaDE MTS-LS1, L-BFGS-B

IPOPCMA-ES [23] No CMA-ES No
IRRG [64] Learning CMA-ES No

MLCC [39] Random SaNSDE No
MLSHADE-SPA [44] Random L-SHADE MTS-LS1

MOS [14] No No Solis and Wets,
MTS-LS1

MOS 2013 [25] No GA Solis Wets, MTS-LS1
MPS-CMA-ES [27] No CMA-ES No

MTS [19] No No MTS-LS1, MTS-LS2,
MTS-LS3

SACC [60] Learning SaNSDE No
SGCC [62] Learning SaNSDE No

SHADE-ILS [13] No SHADE MTS-LS1, L-BFGS-B
VMODE [18] Static DE No

210

Mathematics 2022, 10, 4297

Table 2. LSGO state-of-the-art algorithms.

Algorithm Year Winner 2nd 3rd CC DE LS

CC-CMA-ES 2015 2015 + − −
DEEPSO 2015 - + −
IHDELS 2015 2015 − + +
SACC 2015 + + +

VMODE 2015 − + −
BICCA 2018 + − −

MPS 2019 2019 − − −
SGCC 2019 2019 + + −

DECC-G 2015, 2018 + + −
MOS 2015, 2018 2015 2018 − + +

MLSHADE-SPA 2018 2018 − + +
SHADE-ILS 2018 2018 − + +
CC-RDG3 2019 2019 + − −

DGSC 2019 + + −

As we can see from Table 2, 10 of 14 participants use DE as a core global optimizer,
7 algorithms apply problem decomposition with CC, and 5 algorithms are memetic. All
winners use DE and all winners, except CC-RDG3, use local search. The current leader,
CC-RDG3, applies problem decomposition with CC. From a historical perspective, we can
notice that leading approaches improve global and local algorithms and develop more
advanced frameworks for problem decomposition and adaptive control of the interaction
of global and local search. This fact motivates us to design new approaches that combine
all 3 components.

3. The Proposed Approach

As we can see from the review in the previous section, the majority of state-of-the-
art approaches use CC. At the same time, many CC approaches apply an additional
learning stage before the main subcomponents’ optimization stage. The learning stage
is used for identifying interconnected and independent variables. The identification of
non-separable groups of variables usually takes a sufficiently large number of function
evaluations (FEVs), which could be utilized for the main optimization process. However,
the finding of all non-separable groups does not guarantee the high efficiency of solving
the obtained optimization sub-problems.

The proposed approach uses an adaptive change of the number of subcomponents,
which leads to a dynamic redistribution of the use of computational resources. The set of
values of the number of subcomponents is predefined and it is a parameter of the algorithm,
which can be set based on the limitations of FEVs. As it was shown in [65,66], it is better
to use different decompositions for different stages of the optimization process while
exploring different regions of the search space instead of using the only decomposition
even it is correct. We have discovered that, in general, an optimizer better operates small
subcomponents at the early stages and the whole solution vector at the final stage, when a
basin of a global optimum is discovered. Additionally, the way of adaptive changing the
number of subcomponents can vary for different types of LSGO problems.

We will use the following algorithm for adaptive change of the number of subcompo-
nents. We will run many optimizers, which use decompositions with subcomponents of
different sizes. Each algorithm uses its number of FEVs based on its success in the previous
generations. Thus, we dynamically redistribute resources in favor of a more preferable
decomposition variant.

A set of M values of the number of subcomponents is defined as
{CC1, CC2, . . . , CCM}, where all elements should be different, i.e., CC1 �= CC2 �= . . . �=
CCM. At the initialization stage, for each of M algorithms, we assign equal resources de-
fined as the number of generations (Gi, i = 1, . . . , M). After all resources are exhausted by

211

Mathematics 2022, 10, 4297

algorithms, we start a new cycle by redistributing the resources. In each cycle, algorithms
are applied consequently in random order.

At the end of the run of each algorithm, we evaluate the improvement rate (2):

improvment_ratei =
(best_ f oundbe f ore − best_ f ounda f ter)

best_ f ounda f ter
, (2)

here best_ f oundbe f ore is the best-found solution before the run, and
best_ f ounda f ter is the best-found solution after the run, and i = 1, . . . , M.

After each cycle, all algorithms are ranked by their improvement rates. The best
algorithm increases its resource by Gwin generations, which is a sum of Glose generations
subtracted from resources of all the rest algorithms. For all algorithms, we define Gmin
for preventing the situation when the current-winner algorithm takes all resources and
eliminates all other participants.

In the proposed approach, we will run the MTS-LS1 algorithm after CC-based SHADE.
Usually, MTS-LS1 can find a new best-found solution that becomes far from other indi-
viduals in the population. In this case, SHADE cannot improve the best-found solution
for a long time but improves the average fitness in the population. Criterion (2) becomes
insensitive to differences in the behavior of algorithms if the improving rate is calculated
using the best-found solution. To overcome this difficulty, we will calculate the improving
rate using the median fitness before and after an algorithm run using (3) instead of (2).

improving_ratei =
medianFitnessbe f ore − medianFitnessa f ter

medianFitnessa f ter
, (3)

here medianFitness is the median fitness of individuals in the population, and
i = 1, . . . , M.

We will use the following approach for changing the number of generations assigned
for each algorithm in the cooperation (4)–(8):

IR =

{
i : improvment_ratei = max

j=1,...,M
{improvment_ratej}

}
(4)

NI = |IR| (5)

pool =
M

∑
j=1

{
Glose, if (Gi − Glose ≥ Gmin) ∧ i /∈ IR
0, otherwise

(6)

Gwin =

⌊
pool
NI

⌋
(7)

Gi =

⎧⎪⎨⎪⎩
Gi + Gwin, if i ∈ IR
Gi − Glose, if (Gi − Glose ≥ Gmin) ∧ i /∈ IR
Gmin, if (Gi − Glose < Gmin) ∧ i /∈ IR

(8)

here IR is a set of indexes of algorithms with the best improving rate, NI is the number of
algorithms with the best improving rate, pool is a pool of resources for redistribution, and
i = 1, . . . , M.

We will use SHADE as a core optimizer for subcomponents in CC-based algorithms.
In our review, we have shown that almost all competition winners and state-of-the-art
algorithms use one of the modifications of DE. The main benefit of the SHADE algorithm
in solving “black-box” optimization problems is that it has only two control parameters,
which can be automatically tuned during the optimization process [67].

The main parameters of DE (scale factor F and crossover rate Cr) in SHADE are self-
configuring. SHADE uses a historical memory, which contains H pairs of the parameters
from the previous generations. A mutant vector is created using a random pair of the

212

Mathematics 2022, 10, 4297

parameters from the historical memory. When applying SHADE with CC, we will use
specific parameters Cr and F for each subcomponent.

SHADE, like many other DE algorithms, uses an external archive for saving some
promising solutions from the previous generations. SHADE records the parameter values
and the corresponding function increments when a better solution is found. After each
generation, SHADE calculates new values of the control parameters using the weighted
Lehmer mean [67]. New calculated values of Cr and F are placed in the historical memory.

SHADE uses the current-to-pbest/1 mutation scheme. The archived solutions can be
chosen and reused at the mutation stage for maintaining the population diversity.

Our experimental results have shown that the use of independent populations and
archives for each of the algorithms does not increase the overall performance of the pro-
posed approach. In this work, all algorithms in the cooperation use the same population
and archive.

One of the important control parameters of EA-based algorithms is the population
size. A large population is more preferable at the exploration stage, when the algorithm
converges, it loses the population diversity and the population size can be increased. If the
variance of coordinates is high (individuals are well distributed in the search space), we
reduce the population size and drop out randomly chosen solutions except the best one.
We will use an adaptive size of the population based on the analysis of the diversity. The
following diversity measure (9) is used [68]:

DI =

√√√√ 1
NP

NP

∑
i=1

n

∑
j=1

(
xij − xj

)2, k = 1, . . . , M, (9)

here NP is the population size, n is the dimensionality of the objective function, xj is the
average value of the j-th variable of all individuals in the population.

After each cycle, we define a new population size for each algorithm using (10)–(13).

RD =
DI

DIinit
(10)

RFES =
FEVs

maxFEVs
(11)

rRD = 1 − RFES
0.9

(12)

NP =

⎧⎪⎨⎪⎩
NP + 1, if (NP + 1 ≤ maxNP) ∧ (RD < 0.9 · rRD)

NP − 1, if (NP − 1 ≥ minNP) ∧ (RD > 1.1 · rRD)

NP, otherwise

(13)

here RD is relative diversity, RFES is a relative spend of the FEV budget (maxFEVs),
rRD is the required value of RD, minNP, and maxNP are low and upper bounds for the
population size.

The relationship between RD and RFES is presented in Figure 1.
If the variance of coordinates is high (individuals are well distributed in the search

space), we reduce the population size and drop out randomly chosen solutions except the
best one. If the variance is low (individuals are concentrated in some region of the search
space), we increase the population size by adding new random solutions. The approach
tries to keep relative diversity close to rRD, which linearly decreases with spending FEVs.

213

Mathematics 2022, 10, 4297

Figure 1. Diversity-based mechanism of population size adaptation.

The proposed above ideas are implemented in our new algorithm titled COSACC-LS1.
One of the hyper-parameters of COSACC-LS1 is the number of algorithms with different
subcomponents (M). Because of the high computational cost of LSGO experiments, in
this research we have tried M = 3 and the following combinations of the number of
subcomponents: {1, 2, 4}, {1, 2, 8}, {1, 2, 10}, {1, 4, 8}, {1, 4, 10}, {1, 8, 10}, {2, 4, 8}, and
{2, 4, 10}. Thereafter, we will use the notation “COSACC-LS1 {x, y, z}”, where x, y, and
z stands for the number of subcomponents, which are used in three DE algorithms: CC-
SHADE(x), CC-SHADE(y), and CC-SHADE(z).

We have tried different mutation schemes and have obtained that the best performance
of COSACC-LS1 is reached using the following scheme (14):

ui = xi + Fi ·
(

xpbest − xi

)
+ Fi · (xt − xr), i = 1, . . . , NP, (14)

here, ui is a mutant vector, Fi is the scale factor, xpbest is a random solution chosen from
the p best solutions, xt is an individual chosen using the tournament selection from the
population (the tournament size is 2), xr is a random solution chosen from the union of the
current population and the archive, and all solutions chosen for performing mutation must
be different, i.e., i �= pbest �= t �= r.

The size of the archive is set two times larger than the initial population size. The size
of historical memory in SHADE is set to 6 (the value is defined using grid search).

We have chosen MTS-LS1 for implementing local search in COSACC, because it
demonstrates high performance in solving LSGO problems both alone and when applied
with a global search algorithm [19]. We use the following settings for MTS-LS1. The
maximum number of FEVs is 25000 (the value is defined by numerical experiments). MTS-
LS1 searches along each i-th coordinate using the search range SR[i]. The initialization of
SR[i] is the same as in the original MTS: (SR[i] = (b − a) · 0.4), where [a, b] is low and high
bounds for the i-th variable. If a better solution is not found using the current value of SR[i],
it is reduced (SR[i] = SR[i]/2). If SR[i] becomes less than 1E-18 (the original threshold was
1E-15), the value is reinitialized.

MTS-LS1 is applied after each main cycle starting with the current best-found solution
until maximum FEVs are reached.

The initial number of generations for all algorithms is 15, the minimum value is 5,
respectively. After a cycle, we will add (M − 1) generation to G for the algorithm with
the highest improving rate. All other algorithms will reduce the number of generations
by one. The initial population size is 100, minimum and maximum values are 25 and 200,
respectively. After the algorithm spends 90% of its computational resource, the population
size is set to its minimum value as proposed in [68] (in this work the value is 25).

214

Mathematics 2022, 10, 4297

The whole implementation scheme for the proposed approach is presented using
pseudocode in Algorithm 1.

Algorithm 1 The general scheme of COSACC-LS1

Require: The number of algorithms M in CC , the number of subcomponents for each
algorithm, n, NP, minNP, maxNP, Ginit, Glose, Gmin, maxFEVs.

Ensure:
population ← RandomPopulation(n, NP)
DIinit ← CalculateDiversity(population) � Using Equation (9)
for all i = 1, . . . , M do

Gi ← Ginit
end for
while FEVs < maxFEVs do

for all i ∈ RandomPermutation(1, . . . , M) do
medianFitness_be f ore ← GetMedianFitness(population)
for g ← 1, Gi do

best_ f ound ← CC-SHADE(population, NP, i)
RD ← EvalRD(DIinit, population, NP) � Equation (10)
NP ← EvalPopsize(RD, maxFEVs, NP, maxNP) � Equation (13)

end for
medianFitness_a f ter ← GetMedianFitness(population)
improving_ratei ← medianFitness_be f ore−medianFitness_a f ter

medianFitness_a f ter
end for
for all i = 1, . . . , M do

Gi ← EvalNumGenerations(improving_ratei) � Equation (8)
end for
best_ f ound ← GetBestFound(population)
best_ f ound ← MTS-LS1(best_ f ound)

end while

4. Experimental Setups and Implementation

We have investigated the performance of COSACC-LS1 and have compared the results
with other state-of-the-art approaches using the actual LSGO benchmark, proposed at the
special session of IEEE Congress on Evolutionary Computation in 2013 [5]. The bench-
mark proposes 15 “black-box” real-valued LSGO problems. There are 4 types of problems,
namely fully-separable functions (F1–F3), partially separable functions (F4–F11), functions
with overlapping subcomponents (F12–F14), and fully-nonseparable functions (F15). The
functions have many features, which complicate solving the problems using standard EAs
and other metaheuristics. Some of the features are non-uniform subcomponent sizes, imbal-
ance in the contribution of subcomponents, overlapping subcomponents, transformations
to the base functions, ill-conditioning, symmetry breaking, and irregularities [48,69].

The performance measure for LSGO algorithms is the error of the best-found solution
averaged over 25 independent runs. The error is an absolute difference between the best-
found solution and the true value of a global optimum. The maximum FEVs in a run is
3.0E+06. Based on the benchmark rules, the following additional data is collected: for
each problem, the best-found fitness values averaged over 25 runs are saved after 1.2E+05,
6.0E+05, and 3.0E+06 FEVs. We also will estimate the variance of the results using the best,
median, worst, mean, and standard deviation of the results.

Authors of the LSGO CEC 2013 benchmark propose software implementation using
C++, Java, and Python programming languages. For a fair comparison of the results with
other state-of-the-art algorithms, the Toolkit for Automatic Comparison of Optimizers
(TACO) [6,70] is used. TACO is an online database, which proposes the automatic compari-
son of the results uploaded by users with the results of selected LSGO algorithms stored
in the database. TACO presents reports of the results of ranking the selected algorithms

215

Mathematics 2022, 10, 4297

based on the Formula 1 ranking system. The ranking is presented for the whole benchmark
and each of the 4 types of problems.

Experimental analysis of new LSGO approaches is very expensive in terms of com-
putational time. For all computational experiments, the proposed approach has been
implemented using C++. The C++ language usually demonstrates higher computing speed
and has wide possibilities for parallelization using many computers with many CPU cores.
We have designed and assembled our computational cluster based on 8 AMD Ryzen Pro
CPUs, which, in total, supply 128 threads for parallel computing. The MPICH2 (Message
Passing Interface Chameleon) framework for connecting all PCs in the cluster is used. The
Master–Slave communication scheme with the queue is applied. The operating system is
Ubuntu LTS 20.04. One series of experiments using the LSGO benchmark using the cluster
takes about 2 h compared to 265 h when using a single computer with regular sequential
computing. The source codes and additional information on our cluster are available on
https://github.com/VakhninAleksei/COSACC-LS1 (accessed on 01 September 2022).

5. The Experimental Results

The results of evaluating COSACC-LS1 with the best configuration {1, 2, 4} on the IEEE
CEC LSGO benchmark are presented in Table 3. The results contain the best, median, worst,
mean, and standard deviation values of the best-found solutions from 25 independent runs
after 1.2E+05, 6.0E+05, and 3.0E+06 FEVs (following the benchmark rules).

Table 3. The experimental results on the IEEE CEC 2013 LSGO benchmark.

Problems: F1 F2 F3 F4 F5 F6 F7 F8

1.20E+05

Best 2.82E-06 1.02E+03 2.00E+01 1.28E+10 1.55E+06 1.04E+06 1.14E+09 6.24E+14
Median 5.13E-06 1.14E+03 2.00E+01 1.23E+11 3.06E+06 1.05E+06 2.33E+09 2.05E+15
Worst 1.05E-05 1.29E+03 2.00E+01 2.52E+11 4.88E+06 1.06E+06 4.86E+09 1.24E+16
Mean 5.68E-06 1.14E+03 2.00E+01 1.32E+11 3.34E+06 1.05E+06 2.51E+09 2.92E+15
StDev 2.10E-06 7.60E+01 1.91E-04 5.99E+10 9.76E+05 4.11E+03 9.57E+08 2.48E+15

6.00E+05

Best 0.00E+00 1.00E+03 2.00E+01 2.33E+09 9.08E+05 1.04E+06 2.62E+07 5.97E+13
Median 0.00E+00 1.12E+03 2.00E+01 8.63E+09 1.07E+06 1.04E+06 6.26E+07 2.94E+14
Worst 6.53E-24 1.24E+03 2.00E+01 3.95E+10 1.76E+06 1.05E+06 1.50E+08 7.11E+14
Mean 2.61E-25 1.12E+03 2.00E+01 1.34E+10 1.13E+06 1.05E+06 6.74E+07 3.04E+14
StDev 1.31E-24 7.42E+01 1.91E-04 1.09E+10 2.15E+05 3.34E+03 2.94E+07 1.69E+14

3.00E+06

Best 0.00E+00 1.00E+03 2.00E+01 1.21E+08 9.08E+05 1.04E+06 2.00E+02 1.36E+13
Median 0.00E+00 1.11E+03 2.00E+01 1.27E+09 1.07E+06 1.04E+06 1.00E+04 6.58E+13
Worst 0.00E+00 1.22E+03 2.00E+01 7.76E+09 1.76E+06 1.05E+06 1.80E+05 2.99E+14
Mean 0.00E+00 1.11E+03 2.00E+01 2.17E+09 1.13E+06 1.04E+06 3.16E+04 8.02E+13
StDev 0.00E+00 7.29E+01 1.57E-04 2.07E+09 2.15E+05 1.80E+03 5.38E+04 6.86E+13

F9 F10 F11 F12 F13 F14 F15

1.20E+05

Best 1.78E+08 9.26E+07 2.35E+10 9.62E+02 3.22E+09 1.62E+11 6.37E+07
Median 3.36E+08 9.38E+07 1.15E+11 1.95E+03 2.66E+10 3.55E+11 1.10E+08
Worst 4.30E+08 9.47E+07 3.11E+11 8.24E+03 4.65E+10 6.76E+11 2.21E+08
Mean 3.22E+08 9.38E+07 1.21E+11 2.48E+03 2.84E+10 3.87E+11 1.16E+08
StDev 6.69E+07 5.68E+05 8.24E+10 1.92E+03 8.76E+09 1.49E+11 3.84E+07

6.00E+05

Best 8.42E+07 9.23E+07 7.22E+08 1.43E+02 1.09E+08 7.61E+08 1.11E+07
Median 1.23E+08 9.32E+07 1.34E+09 7.37E+02 1.90E+09 6.60E+09 1.54E+07
Worst 1.62E+08 9.38E+07 1.18E+10 1.62E+03 3.09E+09 2.68E+10 2.86E+07
Mean 1.25E+08 9.31E+07 1.71E+09 7.13E+02 1.97E+09 8.37E+09 1.67E+07
StDev 2.09E+07 4.27E+05 2.15E+09 3.23E+02 6.42E+08 6.58E+09 4.69E+06

3.00E+06

Best 8.42E+07 9.23E+07 1.34E+06 7.72E-09 5.52E+04 6.53E+06 1.10E+06
Median 1.23E+08 9.27E+07 2.69E+06 1.20E+01 1.42E+06 9.11E+06 1.48E+06
Worst 1.62E+08 9.32E+07 3.70E+07 2.58E+02 2.60E+06 1.61E+07 2.26E+06
Mean 1.25E+08 9.27E+07 6.74E+06 5.02E+01 1.42E+06 9.25E+06 1.52E+06
StDev 2.10E+07 2.17E+05 1.06E+07 7.25E+01 6.37E+05 2.07E+06 2.94E+05

At first, the results of COSACC-LS1 have been compered with its component algo-
rithms, COSACC and LS1, to prove the benefits of their cooperation. Both component
algorithms have been evaluated using their best settings obtained with the grid search. All

216

Mathematics 2022, 10, 4297

comparisons have been performed using the median of the best-found solutions in the
runs after spending the full FEVs budget. Table 4 contains the medians and the results of
the Mann–Whitney–Wilcoxon (MWW) tests and ranking. High values of ranks are better.
When the difference in the results is not statistically significant, algorithms share ranks.
The average ranks are presented in Figure 2.

Table 4. The comparison of algorithms.

Problems: F1 F2 F3 F4 F5 F6 F7 F8

The median of the best-found solution

COSACC (A1) 2.22E-14 6.70E+03 2.02E+01 3.02E+09 1.31E+06 1.06E+06 7.46E+05 3.04E+13
LS1 (A2) 0.00E+00 1.10E+03 2.00E+01 1.21E+11 2.05E+07 1.05E+06 1.44E+09 1.07E+16

COSACC-LS1 (A3) 0.00E+00 1.11E+03 2.00E+01 2.17E+09 1.13E+06 1.04E+06 3.16E+04 8.02E+13

The MWW test

A1 vs. A3, p-value 5.96E-08 5.96E-08 5.96E-08 1.34E-01 2.36E-02 5.96E-08 5.96E-08 1.40E-04
A1 vs. A2, p-value 5.96E-08 5.96E-08 5.96E-08 5.96E-08 5.96E-08 5.96E-08 5.96E-08 5.96E-08
A2 vs. A3, p-value 0.00E+00 3.25E-01 5.49E-02 5.96E-08 5.96E-08 7.50E-05 5.96E-08 5.96E-08

The ranking of algorithms

COSACC (A1) 1 1 1 2.5 2 1 2 3
LS1 (A2) 2.5 2.5 2.5 1 1 2 1 1

COSACC-LS1 (A3) 2.5 2.5 2.5 2.5 3 3 3 2

F9 F10 F11 F12 F13 F14 F15

The median of the best-found solution

COSACC (A1) 1.38E+08 9.39E+07 1.18E+07 1.85E+03 8.23E+06 2.07E+07 4.51E+05
LS1 (A2) 1.76E+09 9.42E+07 2.21E+11 1.23E+03 1.35E+10 3.20E+11 7.59E+07

COSACC-LS1 (A3) 1.25E+08 9.27E+07 6.74E+06 5.02E+01 1.42E+06 9.25E+06 1.52E+06

The MWW test

A1 vs. A3, p-value 9.03E-02 5.96E-08 1.05E-02 5.96E-08 5.96E-08 2.98E-07 5.96E-08
A1 vs. A2, p-value 5.96E-08 7.55E-02 5.96E-08 1.36E-02 5.96E-08 5.96E-08 5.96E-08
A2 vs. A3, p-value 5.96E-08 5.96E-08 5.96E-08 5.96E-08 5.96E-08 5.96E-08 5.96E-08

The ranking of algorithms

COSACC (A1) 2.5 1.5 2 1 2 2 3
LS1 (A2) 1 1.5 1 2 1 1 1

COSACC-LS1 (A3) 2.5 3 3 3 3 3 2

Figure 2. Average ranks of COSACC, LS1, and COSACC-LS1 algorithms.

As we can see from the results, COSACC-LS1 has won 8 times, 5 times has shared first
place with a component algorithm, and 2 times has taken second place. On easy separable
problems (F1–F6), single COSACC yields to both algorithms, because it spends the budget
for exploration of the search space while LS1 greedy converges to an optimum. On average,

217

Mathematics 2022, 10, 4297

COSACC-LS1 obtains the best ranks, thus, in the case of black-box LSGO problems, the
choice of the hybrid approach is preferable.

The following statistical data for each benchmark problem collected during indepen-
dent runs of COSACC-LS1 have been visualized: convergence, dynamics of the population
size, and redistribution of the computational resources for algorithms with the different
number of subcomponents. Each plot presents the mean and standard deviation of 25 runs.
The whole set of plots is presented in Appendix A (Figures A1–A15).

6. Discussion

In this section, we have analyzed 3 general situations in the algorithm behavior based
on plots for F3, F8, and F10 problems.

LSGO problems are hard for many search techniques when they optimize the complete
solution vector, and the problem decomposition can ease this issue. In our previous
studies, we have discovered that the cooperation of multiple algorithms with a different
number of subcomponents usually demonstrates the following usage of decompositions.
At the initial generations, the best performance is obtained using many subcomponents
of small sizes. Such component-wise search performs the exploration strategy. After
that, the approach usually chooses algorithms with a smaller number of subcomponents
and at the final generations, it optimizes the complete solution vector. Optimization
without decomposition tries to improve the final solution and performs the exploitation
strategy [65]. A similar behavior we can see for COSACC-LS1.

Figure A3 (see Appendix A) shows the dynamics of the algorithms on the F3 problem.
F3 is a fully separable problem based on the Ackley function. At the same time, the problem
is one of the hardest in the benchmark. The basin of global optimum is narrow. F3 has
a huge number of local optima with almost the same values, which cover most of the
search space.

As we can see in Figure A3a, the algorithm demonstrates fast convergence at the
initial generations and after that, there are no significant improvements in the best-found
value. The population size at the initial generations is big because the population diversity
(DI) becomes less than the required relative diversity (rRD). This is the result of the fast
convergence, and the algorithm tries to increase the population size up to the threshold
value (Figure A3b). When the algorithm falls into stagnation, individuals save their
positions, and the diversity becomes greater than rRD, thus the population size decreases.
As we can see from low STD values, the situation is repeated in every run. The resource
redistribution plots (Figure A3c) show that at the initial generations the algorithm prefers
to use many subcomponents, but when it falls into stagnation, the algorithm takes this as
the end of the exploration and gives resources for optimizing the complete solution vector.

Figure A8 shows the dynamics of the algorithms on the F8 problem, which is a
combination of 20 non-separable shifted and rotated elliptic functions. The problem
is assumed to be a good test function for decomposition-based approaches, but each
subcomponent is a hard optimization problem, which is non-separable and has local
irregularities.

As we can see in Figure A8a, the proposed approach demonstrates good convergence
at the beginning of the optimization process and then stagnates. Figure A8b shows that the
fast convergence leads to a loss in diversity (DI) and the algorithm increases the population
size until 50% of FEVs is reached. In the middle of the budget spend, individuals have
almost the same fitness values and do not improve the best-found value (plateau area in
Figure A8b). Finally, the diversity (DI) becomes less than the required relative diversity
(rRD) and the population size decreases. In contrast with the results on F3, before the
algorithm falls into stagnation, the fast improvements in the objective lead to an increase in
the population size for preventing local convergence.

Figure A8c shows that the algorithm distributes computational resources almost in
equal portions on average. We can see an example of the true cooperative search when all

218

Mathematics 2022, 10, 4297

component algorithms support each other. The standard deviation of the redistribution is
high because the algorithm permanently adapts Gi values in the run.

Figure A10 presents the convergence on the F10 problem. F10 is a combination of 20
non-separable shifted and rotated Ackey’s functions. As it was said previously, the Ackley
function is one of the hardest in the benchmark and all Ackley-based problems are also
very challenging tasks for LSGO approaches.

As we can in Figure A10a, the algorithm improves the fitness value permanently
during the run. At the same time, the relative value of the improvements is low, and
coordinates of individuals remain almost the same. The DI value becomes less than rRD at
the early generations and the algorithm decreases the population size (Figure A10b). As we
have mentioned previously, slow convergence and stagnation usually are the result of the
end of the exploration stage and the algorithm prefers to optimize the complete solution
vector instead of decomposition-based subcomponents. As we can see in Figure A10c,
COSACC-LS1 gives all resources to the component algorithm with no decomposition.

Here it should be noted that in all experiments all component algorithms have a mini-
mum guarantee amount of the computational resource. Even when one of the algorithms
is leading, this can still be the result of the cooperation of multiple decompositions, and
their small contribution essentially increases the performance of the leading algorithm.

As we can see from the presented convergence plots, COSACC-LS1 demonstrates the
self-configuration capability. The approach can adaptively select the best decomposition
option using redistribution of the computational resource. Different behavior for different
LSGO problems ensures that COSACC-LS1 adapts to the topology of the given objective
function. Another feature of the proposed approach is the adaptive control of the population
size that maintains the population diversity and prevents the premature convergence.

Finally, the results of COSACC-LS1 have been compared with state-of-the-art ap-
proaches using the TACO online database. For the comparison, we have selected all
algorithms, which were winners and prize-winners of all previous IEEE CEC LSGO com-
petitions: CC-CMA-ES, CC-RDG3, IHDELS, MLSHADE-SPA, MOS, MPS, SGCC, and
SHADEILS (see Table 2). Additionally, we have added DECC-G as it is used as a baseline
in the majority of studies and experimental comparisons. Table 5 and Figure 3 show the
results of the comparison. For all algorithms, we can see the sum of scores obtained on
all benchmark problems and the sum of scores for each type of LSGO problems. The
following notation for classes of LSGO problems is used: non-separable functions (Class
1), overlapping functions (Class 2), functions with no separable subcomponents (Class 3),
functions with a separable subcomponent (Class 4), and fully-separable functions (Class 5).

Table 5. Comparison of state-of-the-art algorithms.

Class 1 Class 2 Class 3 Class 4 Class 5 Sum Mean Std

SHADEILS 25 61 49 57 33 225 45 15.49
COSACC-LS1 15 58 48 45 43 209 41.8 16.05

CC-RDG3 12 35 76 68 14 205 41 29.83
MLSHADE-SPA 4 36 56 48 60 204 40.8 22.52

MOS 10 32 37 46 58 183 36.6 17.85
IHDELS 8 32 33 28 27 128 25.6 10.16

MPS 6 7 28 46 13 100 20 16.99
SGCC 18 20 33 23 4 98 19.6 10.45

CC-CMA-ES 2 14 32 19 28 95 19 11.87
DECC-G 1 8 15 24 30 78 15.6 11.72

219

Mathematics 2022, 10, 4297

Figure 3. Summary scores of state-of-the-art algorithms.

The LSGO benchmark contains only one fully non-separable problem and three prob-
lems with overlapping components, which are the hardest problems. At the same time,
an algorithm can obtain high summary scores if it has high scores for the type of LSGO
problem, which contains many problems.

As we can see from the comparison, CC-RDG3, SHADE-SPA, and MOS have average
scores for non-separable and overlapping problems but perform well for other types of
LSGO problems. SGCC is the second-best in solving non-separable problems and yields
in solving all the rest. SHADEILS is still the competition winner, but it demonstrates
low performance when solving fully separable problems because it does not use any
decomposition approach that can improve the results for this type.

To better investigate the results for each class of LSGO problems, we have adjusted the
given scores by the number of problems of each class. Table 6 shows the results adjusted
for the number of problems in each class. Figure 4 demonstrates the variance of scores for
the 5 best algorithms. MLSHADE-SPA and MOS obtain high scores for fully-separable
functions (outliers in Figure 4), although the results for all other classes have low variance,
they are below median values of leading approaches. Median values of SHADEILS and
COSACC-LS1 are close, but, as we can see, COSACC-LS1 has less variance thus the results
are more stable. We can see that the variance in SHADEILS is towards larger ranks, at the
same time this is true only with this benchmark set, because the approach is fine-tuned for
the benchmark.

Table 6. Comparison of state-of-the-art algorithms.

Class 1 Class 2 Class 3 Class 4 Class 5 Sum Mean Std

SHADEILS 25 20.33 12.25 14.25 11 82.83 16.57 5.92
COSACC-LS1 15 19.33 12 11.25 14.33 71.92 14.38 3.18

CC-RDG3 12 11.67 19 17 4.67 64.33 12.87 5.57
MLSHADE-SPA 4 12 14 12 20 62 12.4 5.73

MOS 10 10.67 9.25 11.5 19.33 60.75 12.15 4.1
IHDELS 8 10.67 8.25 7 9 42.92 8.58 1.37
SGCC 18 6.67 8.25 5.75 1.33 40 8 6.15
MPS 6 2.33 7 11.5 4.33 31.17 6.23 3.44

CC-CMA-ES 2 4.67 8 4.75 9.33 28.75 5.75 2.92
DECC-G 1 2.67 3.75 6 10 23.42 4.68 3.48

220

Mathematics 2022, 10, 4297

Figure 4. Variance of the adjusted scores.

Taking into account the number of problems of each type, we can conclude that the
proposed algorithm performs well with all types of LSGO problems. This fact makes
COSACC-LS1 preferable in solving “black-box” LSGO problems when information on
the problem type is not available. At the same time, COSACC-LS1 proposes a general
framework for hybridization of multiple problem decomposition schemes, a global opti-
mizer, and a local search algorithm, thus it has great potential for further improving its
performance by applying other component approaches.

7. Conclusions

In this paper, a framework for solving LSGO problems has been proposed and a new
optimization algorithm COSACC-LS1 based on the framework has been designed and
investigated. The performance of COSACC-LS1 has been evaluated and compared with
state-of-the-art approaches using the IEEE CEC LSGO 2013 benchmark and the TACO
database. The proposed approach outperforms all LSGO competition winners except for
one approach—SHADEILS. At the same time, COSACC-LS1 performs well with all types
of LSGO problems, while SHADEILS shows poor results on fully-separable problems.

COSACC-LS1 proposed an original hybridization of three main LSGO techniques:
CC, DE, and LS. In this work, we have applied SHADE as a DE component, MTS LS1
as LS, and a new approach for the adaptive selection of problem decomposition (several
variants with different sizes of subcomponents). The proposed framework does not specify
the exact choice of component algorithms, and the user may apply any global and local
search algorithm. In that sense, the proposed approach has potential for improvement.
In our further research we will examine the proposed framework with other stochastic
population-based metaheuristics.

Interaction of three CC-based algorithms demonstrates high performance due to
adaptive redistribution of computational resources. We have visualized the redistribution
and have found that the approach can adapt to a new environment (new landscape of a
LSGO problem). Instead of selecting one variant of decomposition, the interaction allows
the component algorithm with the least amount of resources to still participate in the
optimization process, and we can see that the algorithm contributes to the optimization
process in some regions of the search space.

The well-known “No free lunch” theorem says that it is not possible to choose one
optimization algorithm that performs well for all types and instances of optimization
problems. At the same time, we can relax the theorem by introducing self-adaptive control
of multiple approaches. The approach can adaptively design an effective algorithm (by
giving more computations to the best component algorithm) for a specific optimization
problem, as well as for a specific region of the search space within the optimization process.

Even though the LSGO benchmark contains many types of LSGO problems, many
real-world optimization problems are not well studied and can require fine adjustment of

221

Mathematics 2022, 10, 4297

some COSACC-LS1 parameters. In further work, we will address the issue of developing an
approach for online adaptation of the internal parameters of the subcomponent optimizers.

Author Contributions: A.V.: methodology, software, validation, investigation, resources, writing—
original draft preparation, visualization; E.S. (Evgenii Sopov): conceptualization, methodology,
formal analysis, writing—review and editing, visualization, supervision; E.S. (Eugene Semenkin):
conceptualization, formal analysis, writing—review and editing, supervision, funding acquisition.
All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by the Ministry of Science and Higher Education of the Russian
Federation within limits of state contract No. FEFE-2020-0013.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Nomenclature

The following abbreviations are used in this manuscript:

best_ f oundbe f ore The best found solution before an optimization cycle
best_ f ounda f ter The best found solution after an optimization cycle
CalculateDiversity(population) Function for calculating the diversity of the population
CCi The number of subcomponents of the i-th algorithm
CC −
SHADE(population, NP, i)

Function for evolving the population using the cooperative co-
evolution algorithm with NP individuals and i subcomponents

Cr Crossover rate
current − to − pbest/1 Mutation scheme in SHADE
DI Population diversity
EvalNumGenerations Function for calculating a new number of generations
EvalPopsize Function for calculating a new value of the population size
EvalRD Function for calculating relative diversity of the population
F Scale factor
FEV The number of function evaluations
Gi The number of generations of the i-th algorithm
Glose The minimal number of generations
Glose The number of generations by which the budget of algorithms is

reduced
Gwin The number of generations by which the budget of algorithms is

increases
GetBestFound Function that returns the best-found solution from the population
GetMedianFitness(population) Function that returns the median fitness value in the population
H The number of F and Cr pairs in SHADE
improvment_ratei The change of the best-found fitness of the i-th algorithm in an

optimization cycle
IR A set of indexes of algorithms with the best improvement rate
M The number of algorithms
maxFEVs The maximum number of fitness function evaluations
maxNP The upper bound for the population size
minNP The lower bound for the population size
medianFitnessbe f ore The median fitness in the population before an optimization cycle
medianFitnessa f ter The median fitness in the population after an optimization cycle
n The number of decision variables
NI The number of algorithms with the best improvement rate
NP The population size
pool The number of generations for redistribution

222

Mathematics 2022, 10, 4297

RandomPermutation Function that randomly permutes values of a vector
RandomPopulation(n, NP) Function that generates a random population with NP individuals

of n variables
RD The relative diversity
RFES The relative spend of the FEV budget
rRD The required value of RD
SR[i] A search range for the i-th coordinate in MTS-LS1
STD The standard deviation
u A mutant vector
xpbest A random solution chosen from the p best individuals
xt An individual chosen using the tournament selection

Acronyms

The following acronyms are used in this manuscript:

ABBO Automated Black-box Optimization
BICCA Bi-space Interactive Cooperative Co-evolutionary Algorithm
CABC Cooperative Artificial Bee Colony
CBCC Contribution Based Cooperative Co-evolution
CBFO Cooperative Bacterial Foraging Optimization
CC Cooperative Co-evolution
CC-CMA-ES Scaling up Covariance Matrix Adaptation Evolution Strategy
CCDE Cooperative Co-evolutionary Differential Evolution
CCEA-AVP Correlation-based Adaptive Variable Partitioning
CCFR2 Extended Cooperative Co-evolution Framework
CCGA Cooperative Co-evolutionary Approach for Genetic Algorithm
CC-GDG-
CMAES

Competitive Divide-and-conquer Algorithm Covariance Matrix Adaptation
Evolution Strategy

CCOABC Cooperative Co-evolution Orthogonal Artificial Bee Colony
CCPSO Cooperatively Co-evolving Particle Swarms Algorithm
CC-RDG3 Cooperative Co-evolution Recursive Differential Grouping
CCVIL Cooperative Co-evolution with Variable Interaction Learning
C-DEEPSO Canonical Differential Evolutionary Particle Swarm Optimization
CEC IEEE Congress on Evolutionary Computation
COSACC-LS1 Coordination of Self-adaptive Cooperative Co-evolution Algorithms with Local

Search
CPSO Cooperative Approach to Particle Swarm Optimization
CPSO-Hk Combination of Cooperative Approach to Particle Swarm Optimization with k

Subcomponents with the Standard Particle Swarm Optimization
CPSO-Sk Cooperative Approach to Particle Swarm Optimization with k Subcomponents
CPU Central Processing Unit
DE Differential Evolution
DECC-DG Cooperative Co-Evolution with Differential Grouping
DECC-DG2 Cooperative Co-Evolution with A Faster and More Accurate Differential Group-

ing
DECC-DML Cooperative Co-evolution with Delta Grouping
DECC-G Self-Adaptive Differential Evolution with Neighborhood Search with Coopera-

tive Co-evolution
DECC-ML Multilevel Cooperative Co-evolution with More Frequent Random Grouping
DECC-XDG Cooperative Co-Evolution with Extended Differential Grouping
DGSC Differential Grouping with Spectral Clustering
DIMA Dependency Identification with Memetic Algorithm
DMS-PSO Dynamic Multi-Swarm Particle Swarm Optimizer
EA Evolutionary Algorithm
FEPCC Fast Evolutionary Programming with Cooperative Co-evolution
GA Genetic Algorithm

223

Mathematics 2022, 10, 4297

IHDELS Iterative Hybridization of Differential Evolution with Local Search
IPOPCMA-ES Restart Covariance Matrix Adaptation Evolution Strategy with Increasing

Population Size
IRRG Incremental Recursive Ranking Grouping
JADE Adaptive Differential Evolution with Optional External Archive
L-BFGSB Limited-memory the Broyden–Fletcher–Goldfarb–Shanno algorithm
LSGO Large-Scale Global Optimization
L-SHADE Iteratively Applies Success History-Based Differential Evolution with Linear

Population Size Reduction
MLCC Multilevel Cooperative Co-evolution
MLSHADE-SPA Memetic Framework for Solving Large-scale Optimization Problems
MOS Multiple Offspring Sampling
MPICH2 Message Passing Interface Chameleon
MPS-CMA-ES Hybrid of Minimum Population Search and Covariance Matrix Adaptation

Evolution Strategy
MTS Multi-trajectory Search
MWW Mann-Whitney-Wilcoxon
NSGA-2 Non-dominated Sorting Genetic Algorithm
PSO Particle Swarm Optimization
SACC Cooperative Co-evolution with Sensitivity Analysis-based Budget Assign-

ment Strategy
SaDE Self-Adaptive Differential Evolution
SaNSDE Self-Adaptive Differential Evolution with Neighborhood Search
SGCC Cooperative Co-evolution with Soft Grouping
SHADE-ILS Success-History Based Parameter Adaptation for Differential Evolution with

Iterative Local Search
TACO Toolkit for Automatic Comparison of Optimizers
VMODE Variable Mesh Optimization Differential Evolution

Appendix A. Plots of Convergence, the Population Size, and Redistribution of the

Computational Resources

(a) (b) (c)

Figure A1. The dynamics of COSACC-LS1 on the F1 problem: (a) Convergence; (b) Population size;
(c) Redistribution of resources.

224

Mathematics 2022, 10, 4297

(a) (b) (c)

Figure A2. The dynamics of COSACC-LS1 on the F2 problem: (a) Convergence; (b) Population size;
(c) Redistribution of resources.

(a) (b) (c)

Figure A3. The dynamics of COSACC-LS1 on the F3 problem: (a) Convergence; (b) Population size;
(c) Redistribution of resources.

(a) (b) (c)

Figure A4. The dynamics of COSACC-LS1 on the F4 problem: (a) Convergence; (b) Population size;
(c) Redistribution of resources.

225

Mathematics 2022, 10, 4297

(a) (b) (c)

Figure A5. The dynamics of COSACC-LS1 on the F5 problem: (a) Convergence; (b) Population size;
(c) Redistribution of resources.

(a) (b) (c)

Figure A6. The dynamics of COSACC-LS1 on the F6 problem: (a) Convergence; (b) Population size;
(c) Redistribution of resources.

(a) (b) (c)

Figure A7. The dynamics of COSACC-LS1 on the F7 problem: (a) Convergence; (b) Population size;
(c) Redistribution of resources.

226

Mathematics 2022, 10, 4297

(a) (b) (c)

Figure A8. The dynamics of COSACC-LS1 on the F8 problem: (a) Convergence; (b) Population size;
(c) Redistribution of resources.

(a) (b) (c)

Figure A9. The dynamics of COSACC-LS1 on the F9 problem: (a) Convergence; (b) Population size;
(c) Redistribution of resources.

(a) (b) (c)

Figure A10. The dynamics of COSACC-LS1 on the F10 problem: (a) Convergence; (b) Population
size; (c) Redistribution of resources.

227

Mathematics 2022, 10, 4297

(a) (b) (c)

Figure A11. The dynamics of COSACC-LS1 on the F11 problem: (a) Convergence; (b) Population
size; (c) Redistribution of resources.

(a) (b) (c)

Figure A12. The dynamics of COSACC-LS1 on the F12 problem: (a) Convergence; (b) Population
size; (c) Redistribution of resources.

(a) (b) (c)

Figure A13. The dynamics of COSACC-LS1 on the F13 problem: (a) Convergence; (b) Population
size; (c) Redistribution of resources.

228

Mathematics 2022, 10, 4297

(a) (b) (c)

Figure A14. The dynamics of COSACC-LS1 on the F14 problem: (a) Convergence; (b) Population
size; (c) Redistribution of resources.

(a) (b) (c)

Figure A15. The dynamics of COSACC-LS1 on the F15 problem: (a) Convergence; (b) Population
size; (c) Redistribution of resources.

References

1. The Cambridge Energy Landscape Database. Available online: https://www-wales.ch.cam.ac.uk/CCD.html (accessed on 31
January 2022).

2. Tang, K.; Yao, X.; Suganthan, P.N.; Macnish, C.; Chen, Y.P.; Chen, C.M.; Yang, Z. Benchmark Functions for the CEC’2008 Special
Session and Competition on Large Scale Global Optimization; Technical Report; Nature Inspired Computation and Application
Laboratory, USTC: Hefei, China, 2007.

3. Tang, K. Summary of Results on CEC’08 Competition on Large Scale Global Optimization; Technical Report; Nature Inspired
Computation and Application Laboratory, USTC: Hefei, China, 2008.

4. Tang, K.; Li, X.; Suganthan, P.N.; Yang, Z.; Weise, T. Benchmark Functions for the CEC’2010 Special Session and Competition on
Large-Scale Global Optimization; Technical Report; Nature Inspired Computation and Applications Laboratory; USTC: Hefei, China,
2009.

5. Li, X.; Tang, K.; Omidvar, M.N.; Yang, Z.; Qin, K. Benchmark Functions for the CEC’2013 Special Session and Competition on Large-Scale
Global Optimization; Technical Report; RMIT University: Melbourne, Australia, 2013.

6. Molina, D.; LaTorre, A. Toolkit for the Automatic Comparison of Optimizers: Comparing Large-Scale Global Optimizers Made
Easy. In Proceedings of the 2018 IEEE Congress on Evolutionary Computation (CEC), Rio de Janeiro, Brazil, 8–13 July 2018;
pp. 1–8. [CrossRef]

7. Mahdavi, S.; Shiri, M.E.; Rahnamayan, S. Metaheuristics in large-scale global continues optimization: A survey. Inf. Sci. 2015,
295, 407–428. [CrossRef]

8. Singh, A.; Dulal, N. A Survey on Metaheuristics for Solving Large Scale Optimization Problems. Int. J. Comput. Appl. 2017,
170, 1–7. [CrossRef]

9. Del Ser, J.; Osaba, E.; Molina, D.; Yang, X.S.; Salcedo-Sanz, S.; Camacho, D.; Das, S.; Suganthan, P.N.; Coello Coello, C.A.; Herrera,
F. Bio-inspired computation: Where we stand and what’s next. Swarm Evol. Comput. 2019, 48, 220–250. [CrossRef]

10. Omidvar, M.N.; Li, X.; Yao, X. A review of population-based metaheuristics for large-scale black-box global optimization: Part A.
IEEE Trans. Evol. Comput. 2021, 26, 1–21. [CrossRef]

11. Omidvar, M.N.; Li, X.; Yao, X. A review of population-based metaheuristics for large-scale black-box global optimization: Part B.
IEEE Trans. Evol. Comput. 2021, 26, 823–843. [CrossRef]

229

Mathematics 2022, 10, 4297

12. Sun, Y.; Li, X.; Ernst, A.; Omidvar, M.N. Decomposition for Large-scale Optimization Problems with Overlapping Components.
In Proceedings of the 2019 IEEE Congress on Evolutionary Computation (CEC), Wellington, New Zealand, 10–13 June 2019;
pp. 326–333. [CrossRef]

13. Molina, D.; LaTorre, A.; Herrera, F. SHADE with Iterative Local Search for Large-Scale Global Optimization. In Proceedings of
the 2018 IEEE Congress on Evolutionary Computation (CEC), Rio de Janeiro, Brazil, 8–13 July 2018; pp. 1–8. [CrossRef]

14. LaTorre, A.; Muelas, S.; Peña, J.M. Multiple Offspring Sampling in Large Scale Global Optimization. In Proceedings of the 2012
IEEE Congress on Evolutionary Computation (CEC), Brisbane, Australia, 10–15 June 2012; pp. 1–8. [CrossRef]

15. Zhao, S.Z.; Liang, J.J.; Suganthan, P.N.; Tasgetiren, M.F. Dynamic multi-swarm particle swarm optimizer with local search for
Large Scale Global Optimization. In Proceedings of the 2008 IEEE Congress on Evolutionary Computation (IEEE World Congress
on Computational Intelligence), Hong Kong, China, 1–6 June 2008; pp. 3845–3852. [CrossRef]

16. Liang, J.; Suganthan, P. Dynamic multi-swarm particle swarm optimizer. In Proceedings of the 2005 IEEE Swarm Intelligence
Symposium, Pasadena, CA, USA, 8–10 June 2005; pp. 124–129. [CrossRef]

17. Marcelino, C.; Almeida, P.; Pedreira, C.; Caroalha, L.; Wanner, E. Applying C-DEEPSO to Solve Large Scale Global Optimization
Problems. In Proceedings of the 2018 IEEE Congress on Evolutionary Computation (CEC), Rio de Janeiro, Brazil, 8–13 July 2018;
pp. 1–6. [CrossRef]

18. López, E.; Puris, A.; Bello, R. VMODE: A hybrid metaheuristic for the solution of large scale optimization problems. Investig.
Oper. 2015, 36, 232–239.

19. Tseng, L.Y.; Chen, C. Multiple trajectory search for Large Scale Global Optimization. In Proceedings of the 2008 IEEE Congress
on Evolutionary Computation (IEEE World Congress on Computational Intelligence), Hong Kong, China, 1–6 June 2008;
pp. 3052–3059. [CrossRef]

20. Molina, D.; Herrera, F. Iterative hybridization of DE with local search for the CEC’2015 special session on large scale global
optimization. In Proceedings of the 2015 IEEE Congress on Evolutionary Computation (CEC), Sendai, Japan, 25–28 May 2015;
pp. 1974–1978. [CrossRef]

21. Qin, A.K.; Huang, V.L.; Suganthan, P.N. Differential Evolution Algorithm With Strategy Adaptation for Global Numerical
Optimization. IEEE Trans. Evol. Comput. 2009, 13, 398–417. [CrossRef]

22. Morales, J.; Nocedal, J. Remark on “Algorithm 778: L-BFGS-B: Fortran Subroutines for Large-Scale Bound Constrained
Optimization”. ACM Trans. Math. Softw. 2011, 38, 1–4. [CrossRef]

23. Auger, A.; Hansen, N. A restart CMA evolution strategy with increasing population size. In Proceedings of the 2005 IEEE
Congress on Evolutionary Computation (CEC), Edinburgh, UK, 2–5 September 2005; Volume 2, pp. 1769–1776. [CrossRef]

24. Storn, R.; Price, K. Differential Evolution: A Simple and Efficient Adaptive Scheme for Global Optimization Over Continuous
Spaces. J. Glob. Optim. 1995, 23, 1–15.

25. LaTorre, A.; Muelas, S.; Peña, J.M. Large scale global optimization: Experimental results with MOS-based hybrid algorithms. In
Proceedings of the 2013 IEEE Congress on Evolutionary Computation (CEC), Cancun, Mexico, 20–23 June 2013; pp. 2742–2749.
[CrossRef]

26. Tanabe, R.; Fukunaga, A. Evaluating the performance of SHADE on CEC 2013 benchmark problems. In Proceedings of the 2013
IEEE Congress on Evolutionary Computation (CEC), Cancun, Mexico, 20–23 June 2013; pp. 1952–1959. [CrossRef]

27. Bolufé-Röhler, A.; Fiol-González, S.; Chen, S. A minimum population search hybrid for large scale global optimization. In
Proceedings of the 2015 IEEE Congress on Evolutionary Computation (CEC), Sendai, Japan, 25–28 May 2015; pp. 1958–1965.
[CrossRef]

28. Hansen, N.; Müller, S.D.; Koumoutsakos, P. Reducing the Time Complexity of the Derandomized Evolution Strategy with
Covariance Matrix Adaptation (CMA-ES). Evol. Comput. 2003, 11, 1–18. [CrossRef]

29. Meunier, L.; Rakotoarison, H.; Wong, P.K.; Roziere, B.; Rapin, J.; Teytaud, O.; Moreau, A.; Doerr, C. Black-Box Optimization
Revisited: Improving Algorithm Selection Wizards Through Massive Benchmarking. IEEE Trans. Evol. Comput. 2022, 26, 490–500.
[CrossRef]

30. Potter, M.; De Jong, K. A cooperative coevolutionary approach to function optimisation. In Proceedings of the 3rd Conference on
Parallel Probiem Solving Form Nature, Jerusalem, Israel, 9–14 October 1994; pp. 245–257.

31. Liu, Y.; Yao, X.; Zhao, Q.; Higuchi, T. Scaling up fast evolutionary programming with cooperative coevolution. In Proceedings
of the 2001 Congress on Evolutionary Computation (IEEE Cat. No.01TH8546), Seoul, Korea, 27–31 May 2001; Volume 2,
pp. 1101–1108. [CrossRef]

32. Yao, X.; Liu, Y.; Lin, G. Evolutionary programming made faster. IEEE Trans. Evol. Comput. 1999, 3, 82–102. [CrossRef]
33. Shi, Y.; Teng, H.f.; Li, Z.q. Cooperative Co-evolutionary Differential Evolution for Function Optimization. Lect. Notes Comput. Sci.

2005, 3611, 1080–1088. [CrossRef]
34. Bergh, F.; Engelbrecht, A. A Cooperative Approach to Particle Swarm Optimization. Evol. Comput. IEEE Trans. Neural Netw. 2004,

8, 225–239. [CrossRef]
35. Chen, H.; Zhu, Y.; Hu, K.; He, X.; Niu, B. Cooperative Approaches to Bacterial Foraging Optimization. Lect. Notes Comput. Sci.

2008, 5227, 541–548. [CrossRef]
36. El-Abd, M. A cooperative approach to The Artificial Bee Colony algorithm. In Proceedings of the 2010 IEEE Congress on

Evolutionary Computation (CEC), Barcelona, Spain, 18–23 July 2010; pp. 1–5. [CrossRef]

230

Mathematics 2022, 10, 4297

37. Yang, Z.; Tang, K.; Yao, X. Large scale evolutionary optimization using cooperative coevolution. Inf. Sci. 2008, 178, 2985–2999.
[CrossRef]

38. Yang, Z.; Tang, K.; Yao, X. Self-adaptive Differential Evolution with Neighborhood Search. In Proceedings of the 2008 IEEE
Congress on Evolutionary Computation (CEC), Hong Kong, China, 1–6 June 2008; pp. 1110–1116. [CrossRef]

39. Yang, Z.; Tang, K.; Yao, X. Multilevel Cooperative Coevolution for Large Scale Optimization. In Proceedings of the 2008 IEEE
Congress on Evolutionary Computation (CEC), Hong Kong, China, 1–6 June 2008; pp. 1663–1670. [CrossRef]

40. Omidvar, M.N.; Li, X.; Yang, Z.; Yao, X. Cooperative Co-evolution for large scale optimization through more frequent random
grouping. In Proceedings of the 2010 IEEE Congress on Evolutionary Computation (CEC), Barcelona, Spain, 18–23 July 2010;
pp. 1–8. [CrossRef]

41. Li, X.; Yao, X. Tackling high dimensional nonseparable optimization problems by cooperatively coevolving particle swarms. In
Proceedings of the 2009 IEEE Congress on Evolutionary Computation (CEC), Trondheim, Norway, 18–21 May 2009; pp. 1546–1553.
[CrossRef]

42. Li, X.; Yao, X. Cooperatively Coevolving Particle Swarms for Large Scale Optimization. IEEE Trans. Evol. Comput. 2012,
16, 210–224. [CrossRef]

43. Ren, Y.; Wu, Y. An efficient algorithm for high-dimensional function optimization. Soft Comput. 2013, 17, 1–10. [CrossRef]
44. Hadi, A.; Wagdy, A.; Jambi, K. LSHADE-SPA memetic framework for solving large-scale optimization problems. Complex Intell.

Syst. 2018, 5, 25–40. [CrossRef]
45. Tanabe, R.; Fukunaga, A.S. Improving the search performance of SHADE using linear population size reduction. In Proceedings

of the 2014 IEEE Congress on Evolutionary Computation (CEC), Beijing, China, 6-11 July 2014; pp. 1658–1665. [CrossRef]
46. Ray, T.; Yao, X. A cooperative coevolutionary algorithm with Correlation based Adaptive Variable Partitioning. In Proceedings of

the 2009 IEEE Congress on Evolutionary Computation (CEC), Trondheim, Norway, 18–21 May 2009; pp. 983–989. [CrossRef]
47. Deb, K.; Pratap, A.; Agarwal, S.; Meyarivan, T. A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol.

Comput. 2002, 6, 182–197. [CrossRef]
48. Omidvar, M.N.; Li, X.; Yao, X. Smart Use of Computational Resources Based on Contribution for Cooperative Co-evolutionary

Algorithms. In Proceedings of the Genetic and Evolutionary Computation Conference, GECCO’11, Dublin, Ireland, 12–16 July
2011; pp. 1115–1122. [CrossRef]

49. Omidvar, M.N.; Li, X.; Yao, X. Cooperative Co-evolution with delta grouping for large scale non-separable function optimization.
In Proceedings of the 2010 IEEE Congress on Evolutionary Computation (CEC), Barcelona, Spain, 18–23 July 2010; pp. 1–8.
[CrossRef]

50. Chen, W.; Weise, T.; Yang, Z.; Tang, K. Large-Scale Global Optimization Using Cooperative Coevolution with Variable Interaction
Learning. In Proceedings of the International Conference on Parallel Problem Solving from Nature, Krakow, Poland, 11–15
September 2010; Ser. Lecture Notes in Computer Science; Volume 6239; pp. 300–309.

51. Zhang, J.; Sanderson, A.C. JADE: Adaptive Differential Evolution With Optional External Archive. IEEE Trans. Evol. Comput.
2009, 13, 945–958. [CrossRef]

52. Sayed, E.; Essam, D.; Sarker, R. Dependency Identification technique for large scale optimization problems. In Proceedings of the
2012 IEEE Congress on Evolutionary Computation (CEC), Brisbane, Australia, 10–15 June 2012; pp. 1–8. [CrossRef]

53. Molina, D.; Lozano, M.; García-Martínez, C.; Herrera, F. Memetic Algorithms for Continuous Optimisation Based on Local Search
Chains. Evol. Comput. 2010, 18, 27–63. [CrossRef]

54. Omidvar, M.N.; Li, X.; Mei, Y.; Yao, X. Cooperative Co-Evolution With Differential Grouping for Large Scale Optimization. IEEE
Trans. Evol. Comput. 2014, 18, 378–393. [CrossRef]

55. Sun, Y.; Kirley, M.; Halgamuge, S. Extended Differential Grouping for Large Scale Global Optimization with Direct and Indirect
Variable Interactions. In Proceedings of the 2015 Annual Conference on Genetic and Evolutionary Computation, Madrid, Spain,
11–15 July 2015; pp. 313–320. [CrossRef]

56. Omidvar, M.N.; Yang, M.; Mei, Y.; Li, X.; Yao, X. DG2: A Faster and More Accurate Differential Grouping for Large-Scale
Black-Box Optimization. IEEE Trans. Evol. Comput. 2017, 21, 929–942. [CrossRef]

57. Mei, Y.; Yao, X.; Li, X.; Omidvar, M.N. A Competitive Divide-and-Conquer Algorithm for Unconstrained Large Scale Black-Box
Optimization. ACM Trans. Math. Softw. 2015, 42, 1–24. [CrossRef]

58. Li, L.; Fang, W.; Wang, Q.; Sun, J. Differential Grouping with Spectral Clustering for Large Scale Global Optimization. In
Proceedings of the 2019 IEEE Congress on Evolutionary Computation (CEC), Wellington, New Zealand, 10–13 June 2019;
pp. 334–341. [CrossRef]

59. Liu, J.; Tang, K. Scaling Up Covariance Matrix Adaptation Evolution Strategy Using Cooperative Coevolution. In Proceedings of
the Intelligent Data Engineering and Automated Learning—IDEAL 2013, Hefei, China, 20–23 October 2013; Lecture Notes in
Computer Science; Volume 8206, pp. 350–357. [CrossRef]

60. Mahdavi, S.; Rahnamayan, S.; Shiri, M. Cooperative co-evolution with sensitivity analysis-based budget assignment strategy for
large-scale global optimization. Appl. Intell. 2017, 47, 1–26. [CrossRef]

61. Ge, H.; Zhao, M.; Hou, Y.; Kai, Z.; Sun, L.; Tan, G.; Zhang, Q. Bi-space Interactive Cooperative Coevolutionary algorithm for large
scale black-box optimization. Appl. Soft Comput. 2020, 97, 1–18. [CrossRef]

231

Mathematics 2022, 10, 4297

62. Liu, W.; Zhou, Y.; Li, B.; Tang, K. Cooperative Co-evolution with Soft Grouping for Large Scale Global Optimization. In
Proceedings of the 2019 IEEE Congress on Evolutionary Computation (CEC), Wellington, New Zealand, 10–13 June 2019;
pp. 318–325. [CrossRef]

63. Sun, Y.; Kirley, M.; Halgamuge, S. A Recursive Decomposition Method for Large Scale Continuous Optimization. IEEE Trans.
Evol. Comput. 2017, 22, 647–661. [CrossRef]

64. Komarnicki, M.M.; Przewozniczek, M.W.; Kwasnicka, H. Incremental Recursive Ranking Grouping for Large Scale Global
Optimization. IEEE Trans. Evol. Comput. 2022. [CrossRef]

65. Vakhnin, A.; Sopov, E. Investigation of Improved Cooperative Coevolution for Large-Scale Global Optimization Problems.
Algorithms 2021, 14, 146. [CrossRef]

66. Vakhnin, A.; Sopov, E. Investigation of the iCC Framework Performance for Solving Constrained LSGO Problems. Algorithms
2020, 13, 108. [CrossRef]

67. Tanabe, R.; Fukunaga, A. Success-history based parameter adaptation for Differential Evolution. In Proceedings of the 2013 IEEE
Congress on Evolutionary Computation (CEC), Cancun, Mexico, 20–23 June 2013; pp. 71–78. [CrossRef]

68. Poláková, R.; Bujok, P. Adaptation of Population Size in Differential Evolution Algorithm: An Experimental Comparison. In
Proceedings of the 2018 25th International Conference on Systems, Signals and Image Processing (IWSSIP), Maribor, Slovenia,
20–22 June 2018; pp. 1–5. [CrossRef]

69. Hansen, N.; Finck, S.; Ros, R.; Auger, A. Real-Parameter Black-Box Optimization Benchmarking 2009: Noisy Functions Definitions;
Technical Report RR-6869; INRIA: Paris, France, 2009.

70. TACO: Toolkit for Automatic Comparison of Optimizers. Available online: https://tacolab.org/ (accessed on 31 January 2022).

232

Citation: Demidova, L.A. A Novel

Approach to Decision-Making on

Diagnosing Oncological Diseases

Using Machine Learning Classifiers

Based on Datasets Combining

Known and/or New Generated

Features of a Different Nature.

Mathematics 2023, 11, 792. https://

doi.org/10.3390/math11040792

Academic Editor: Vladimir Balan

Received: 6 January 2023

Revised: 28 January 2023

Accepted: 2 February 2023

Published: 4 February 2023

Corrected: 4 May 2023

Copyright: © 2023 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

A Novel Approach to Decision-Making on Diagnosing
Oncological Diseases Using Machine Learning Classifiers
Based on Datasets Combining Known and/or New Generated
Features of a Different Nature

Liliya A. Demidova

Institute of Information Technologies, Federal State Budget Educational Institution of Higher Education,
MIREA—Russian Technological University, 78, Vernadsky Avenue, 119454 Moscow, Russia;
liliya.demidova@rambler.ru

Abstract: This paper deals with the problem of diagnosing oncological diseases based on blood
protein markers. The goal of the study is to develop a novel approach in decision-making on
diagnosing oncological diseases based on blood protein markers by generating datasets that include
various combinations of features: both known features corresponding to blood protein markers and
new features generated with the help of mathematical tools, particularly with the involvement of
the non-linear dimensionality reduction algorithm UMAP, formulas for various entropies and fractal
dimensions. These datasets were used to develop a group of multiclass kNN and SVM classifiers
using oversampling algorithms to solve the problem of class imbalance in the dataset, which is
typical for medical diagnostics problems. The results of the experimental studies confirmed the
feasibility of using the UMAP algorithm and approximation entropy, as well as Katz and Higuchi
fractal dimensions to generate new features based on blood protein markers. Various combinations of
these features can be used to expand the set of features from the original dataset in order to improve
the quality of the received classification solutions for diagnosing oncological diseases. The best kNN
and SVM classifiers were developed based on the original dataset augmented respectively with a
feature based on the approximation entropy and features based on the UMAP algorithm and the
approximation entropy. At the same time, the average values of the metric MacroF1−score used to
assess the quality of classifiers during cross-validation increased by 16.138% and 4.219%, respectively,
compared to the average values of this metric in the case when the original dataset was used in the
development of classifiers of the same name.

Keywords: decision-making; oncological disease; kNN classifier; SVM classifier; dataset; features;
UMAP algorithm; entropy; fractal dimension

MSC: 68Q32; 68T05

1. Introduction

Recently, elements of digital transformation have become increasingly visible and in
demand in various areas of human activity, including healthcare.

The digital transformation of healthcare is a continuous process aimed at completely
restructuring the mechanisms of work of industry authorities, medical organizations and
their interaction with patients. The introduction of advanced digital technologies ensures
high standards of medical care and the transition to the “4P medicine” model (preventive,
personalized, participatory, predictive medicine) [1].

The introduction of digital technologies in healthcare should ensure a decrease in
the level of morbidity and mortality of the population and an increase in life expectancy,
including active life expectancy. The use of health monitoring technologies should allow not

Mathematics 2023, 11, 792. https://doi.org/10.3390/math11040792 https://www.mdpi.com/journal/mathematics233

Mathematics 2023, 11, 792

only for the detection of pathologies at an early stage, but also to prevent the development
of diseases.

The development of technologies for analyzing large volumes of medical data, in-
cluding the use of artificial intelligence, will make it possible to obtain new knowledge in
the field of medicine and biology, as well as to develop new methods for diagnosing and
treating diseases.

The transformation of healthcare under the influence of digital technologies is taking
place everywhere, including such areas as:

• Transition from standardized clinical protocols to a personalized approach to pa-
tient care due to the accumulation of a large amount of medical data, as well as the
widespread use of individual biomonitoring devices;

• Disease prevention through early diagnosis and regular health monitoring using
wearable devices;

• Patient focus and active involvement of the patient in the treatment process.

At the same time, the demand for applied and computational mathematics’ tools for
digital environments becomes obvious in the case of solving problems of disease prevention
through early diagnosis, including cancer [2–5].

Oncological diseases (ODs) are among the most dangerous ones because they can
lead to serious consequences for patients, especially in the case of late diagnosis. Such
consequences include significant pain and a difficult psychological state. The treatment of
oncological diseases is usually lengthy and involves significant financial costs both for the
patients and their families and for the state.

An OD is an immune disease that first causes the division and growth of abnormal
cells in a single organ of the patient, and then can quickly spread to the entire body.

Obviously, early diagnosis of an OD should allow the oncologist to choose an adequate
and effective treatment regimen for the patient in a timely manner. However, the task of
early diagnosis of an OD is very difficult: unfortunately, the typical symptoms of ODs
appear only in the later stages when the disease is difficult to treat, so the treatment may
ultimately turn out to be unsuccessful.

One of the approaches to the early diagnosis of an OD is based on the analysis of
test results, in particular, gene tests (GTs) [4,6] and protein tests (PTs) [4,7,8]. GTs reveal
hereditary information, they are static, difficult to interpret, and are usually used to detect
congenital genetic diseases [4]. Such tests do not detect diseases that occur when there are
problems with the immune system and metabolism. In addition, GTs are expensive. PTs,
unlike GTs, are dynamic and they allow (if carried out in a timely manner) for identifying
the occurrence of an OD and track its development [4]. Additionally, PTs are non-invasive,
painless for patients and affordable.

The diagnosis of ODs based on blood protein markers has been increasingly used
in the last few years [4,9,10]. Presumably, PT-based diagnostic technologies will allow
for predicting the risks of developing oncological diseases 1–3 years in advance, which
will make it possible to take advanced preventive measures against the emergence and
development of an OD.

There are many different types of protein markers in the blood, and the values of
the markers are different for different types of ODs [4]. It is obvious that the use of only
one type of marker or some limited group of markers reduces the accuracy of diagnosing
ODs, even if this marker (or group of markers) is recognized as the standard for diagnosis.
One of the reasons leading to the refusal to use the full range of PTs results is the limited
ability of specialists to interpret the data. It is easier to operate with information about the
values of 1–2 protein markers than with data on the values of several dozen of the same
markers (especially if specialists use a unified table with a priori given limits of the norm
and abnormality, followed by a decision based on their knowledge and intuition). It can
be reasonably assumed that the use of the full range of PTs results should improve the
accuracy of diagnosing various ODs.

234

Mathematics 2023, 11, 792

It is obvious that the involvement of modern technologies of data mining and machine
learning will make it possible to reveal the knowledge about the relationship between the
values of blood protein markers in various types of ODs hidden in the PT results.

Currently, data mining and machine learning technologies are actively used to solve
various problems of medical diagnostics, including solving the problems of diagnosing
ODs [10–19]. In this case, classifiers are developed based on appropriate datasets. The
k-Nearest Neighbors (kNN) algorithm [10], SVM (Support Vector Machine) algorithm [11],
Decision Tree (DT) algorithm [12], Random Forest (RF) algorithm [15], their hybrids and
deep learning algorithms [17–19] are most broadly used in creating such classifiers.

The main problem in the development of tools for solving problems of medical di-
agnostics is the imbalance of classes in the dataset [10,20]: usually, normal data patterns
characterizing cases when the disease is absent constitute the majority class, while data
patterns of interest and characterizing cases when certain diseases are present constitute the
corresponding minority classes. In this case, for example, instead of developing a binary
classifier based on an imbalanced dataset, it becomes necessary to develop a multiclass
classifier based on an imbalanced dataset, which is a non-trivial task, since it is necessary to
teach the classifier to separate data from different classes that are imbalanced. Obviously, a
binary classifier can be obtained even in the case of class imbalance (for example, in a ratio
of 10:1), and the accuracy of it will be 90% (which is not bad in the case of balanced classes),
but such accuracy should be considered bad if the classifier made errors on all objects from
the minority class.

Data scientists have proposed various approaches to solve the problem of class imbalance:

• Approaches using various class balancing algorithms that implement oversampling
technologies (for example, SMOTE algorithm (Synthetic Minority Oversampling Tech-
nique) [21–23], ADASYN algorithm (Adaptive Synthetic Sampling Approach) [24]),
undersampling technologies (for example, Tomek Links algorithm) [23,25] and their
combinations;

• Approaches that apply algorithms that account for the sensitivity to the cost of wrong
decisions (cost-sensitive algorithms) [10];

• Approaches that implement the transfer of data into a space of a new dimension (with
a decrease [26–32] or increase [11,33,34] in dimension), in which data classes will be
separated from each other better than in the original space;

• Approaches that implement the so-called one-class classification [34–37].

It should be noted that the transition to the space of a new dimension can be imple-
mented in various ways, for example, using:

• Dimension reduction algorithms (linear [26,27] and non-linear [28–32]) that allow one
to move to a space of lower dimension;

• Kernel functions (as it is done in the SVM-algorithm, which allows the transition to a
space of higher dimension) [11,33,34,36];

• Algorithms for engineering (generation) of new features for data patterns, which make
it possible to move to a space of higher dimension [38].

All of these approaches have their advantages and disadvantages, and there is no
universal methodology for choosing the approach that is appropriate to apply to the dataset
used in the development of the data classifier.

In each case, it is necessary to perform a comprehensive analysis in order to:

• Avoid loss of information during undersampling or reducing the dimension of the
data space;

• Exclude the introduction of false or redundant information during oversampling or
increasing the dimension of the data space.

One of the obvious tools that can be used in assessing the quality of the developed
classifier is detailed analysis of various classification quality metrics on the test sample,
including metrics that allow for accounting for the specifics of the dataset, namely, its imbal-
ance (for example, it is appropriate to use metrics such as Balanced accuracy and F1−score).

235

Mathematics 2023, 11, 792

In addition, it is advisable to use cross-validation, including k-fold cross-validation, which
makes it possible to empirically evaluate the generalizing ability of the developed classifier.

A large number of papers have been devoted to the problem of analyzing medical
datasets containing information about blood protein markers and making decisions on the
diagnosis of ODs. In particular, in the pilot study [4], the task was to identify and surgically
localize eight types of resectable ODs (ovary, liver, stomach, pancreas, esophagus, colorec-
tum, lung and breast) based on a multi-analysis blood test using the CancerSEEK test [4,5]
based on a machine learning algorithm called the logistic regression algorithm. The dataset
used in the study is publicly available and located in the Catalog of Somatic Mutations
in Cancer (COSMIC) repository [39] as NIHMS982921-supplement-Tables_S1_to_S11.xlsx,
and it is constantly updated with new data. The original dataset is available in the Sup-
plementary Material for the paper as aar3247_cohen_sm_tables-s1-s11.xlsx [4]. The eight
types of ODs considered in the dataset were chosen by the authors because they are the
most common among the population of Western countries, and also because blood-based
tests are not used in clinical practice for their early detection.

The authors of the pilot study [4] proposed to assess the levels of circulating proteins
and mutations in cell-free DNA and use the obtained data in the LC (logistic classifier)-
based CancerSEEK test. The study used 1005 data patterns received from patients with
non-metastatic clinically identified ovarian, liver, stomach, pancreas, esophagus, colon,
lung or breast ODs. The CancerSEEK test was based on screening results, such as the
levels of protein biomarkers and ctDNA (Circulating tumor DNA). The authors proposed
to take into account each person’s gender, the levels of eight proteins and the presence of
mutations in 1933 different genomic positions, each of which can mutate in several ways.

It was assumed that the presence of a mutation in the analyzed gene or an increase
in the level of any of the eight proteins makes it possible to classify the patient’s pattern
as positive, i.e., a pattern with an identified OD. The authors used logarithmic ratios
to evaluate the mutations and included them in a logistic regression algorithm (and,
accordingly, in the LC), which took into account both the mutation data and the protein
biomarker levels to evaluate the results of the CancerSEEK test. At the same time, the
average values of sensitivity and specificity were determined from the results of 10 iterations
using 10-fold cross validation.

The results of the experiments in [4] showed that the average value of the Sensitivity
metric for eight types of ODs is about 70%, the highest value of the sensitivity metric is
achieved for the ovary class (98%), slightly less for the liver class (close to 98%), and the
lowest value of the sensitivity metric is achieved for the breast class (33%). In general, the
values of the Sensitivity metric ranged from 69 to 98% in the detection of five types of ODs
(esophagus, pancreas, stomach, liver and ovaries, listed in ascending order of values of
the Sensitivity metric). The value of the metric specificity was above 99%: only 7 of the 812
patterns without known cancers scored positive. At the same time, as the authors write,
there is no certainty that several false-positive patterns of patients identified in the normal
class do not actually have an undiscovered OD. However, the classification of these patterns
as false positives can be considered the most conservative approach to the classification
and interpretation of medical data.

The average sensitivity of the CancerSEEK test was 73% for stage II cancer, which is
the most common, 78% for stage III cancer, and less than 43% for stage I cancer. The highest
and the lowest sensitivity for stage I cancer (the earliest stage) was recorded for liver cancer
(100%) and esophageal cancer (20%), respectively.

A liquid biopsy involves deriving mutant DNA templates from dying cancer cells.
Later on, these templates serve as specific neoplasia markers. The authors of the pilot
study [4] found that the mutation in blood plasma was identical to the mutation found
in the primary tumor of the same person in 90% of analyzed cases diagnosed with ODs.
This correspondence between the plasma and primary tumor was evident for all eight
types of cancer and ranged from 100% for ovarian and pancreatic cancer to 82% for gastric

236

Mathematics 2023, 11, 792

cancer. One disadvantage of liquid biopsies is the inability to determine the type of cancer
in patients with positive tests, leading to clinical problems for follow-up.

The authors of the pilot study [4] point out that the vast majority of information about
the localization of ODs was obtained from protein markers, since mutations in the driver
gene are usually not tissue-specific. They propose the LC that implements the CancerSEEK
test for the presence of eight common types of ODs. During the development of the LC,
the authors used a training set that combined information about the levels of the gene
and protein biomarkers. In doing so, they were able to increase the sensitivity of the
CancerSEEK test without a significant decrease in specificity. The authors note that the
effectiveness of combining completely different agents with different mechanisms of action
is widely recognized in therapy, but not usually used in diagnostics. They also believe that
other cancer biomarkers, such as metabolites, mRNA transcripts, microRNAs or methylated
DNA sequences, can be similarly combined to increase the sensitivity and localization of a
cancer focus.

The followers of the authors of the pilot study continued to offer their own versions
of classifiers that implement the diagnosis of ODs based on datasets on values of blood
protein markers without taking gene markers into account.

For example, in [10], the authors proposed to use a cost-sensitive kNN algorithm based
on a three-class imbalanced dataset containing patterns characterized by 39 blood protein
markers and belonging to one of three classes: normal, ovary and liver. In order to include
the hidden information in the data analysis and improve the quality of the classification, the
authors used two entropy metrics: approximate entropy AE and sample entropy SE. At the
time that the study was conducted, the analyzed dataset contained 897 patterns from three
classes in the ratio Normal:Ovary:Liver = 799:54:44. The overall accuracy of the classifier
was equal to 0.952, and the values of such metrics as Precision, Recall, MacroF1−score and
AUC were equal to 0.807, 0.833, 0.819 and 0.920, respectively.

It should be noted that the authors of this work abandoned the attempt to develop a
classifier for nine classes (eight classes corresponding to patterns of various types of ODs,
and one class corresponding to patterns for which no ODs were diagnosed) due to poor
separability of the classes.

The goal of this study is to develop the high-precision data classifiers on ODs using
modern tools for data mining and machine learning technologies. It is supposed to develop
kNN [10,34] and SVM [11,33,34,36] classifiers using oversampling algorithms SMOTE [21],
Borderline SMOTE-1 [22], Borderline SMOTE-2 [22] and ADASYN [24], which allow for
restoring the balance of classes in the original and extended datasets, formed on the base of
the original dataset with the application of various techniques for extracting new features.
In particular, it is planned to consider:

• The UMAP (Uniform Manifold Approximation and Projection) algorithm [29–32],
which implements non-linear data dimensionality reduction by embedding data into
a space of lower dimensionality to generate new features based on pattern features;

• Formulas for calculating entropies [40–45], Hjorth parameters [46,47] and fractal
dimensions [48–52] in order to generate new features based on the pattern features.

This study presents the first attempt to generate datasets that involve different tools
with the subsequent selection of the best of them to form new features by extracting
information hidden in the features of the original dataset. The generation of new features
was carried out using the UMAP algorithm, as well as various formulas for calculating
entropies, Hjorth parameters and fractal dimensions. Various combinations of new features
were selected based on correlation and the perceived ability to distinguish between patterns
of different classes were added to the features of the original dataset or combined to form a
new dataset. As a result, it becomes possible to work simultaneously with different datasets
that describe the subject area. This approach to the generation of datasets is used for the
first time in the field of medical diagnostics, including the field of diagnostics of oncological
diseases based on blood protein markers. Subsequently, these datasets are balanced using
oversampling algorithms and are used in the development of classifiers based on the kNN

237

Mathematics 2023, 11, 792

and SVM algorithms with subsequent selection of the best classifiers based on classification
quality metrics.

The rest of the paper is organized as follows. Section 2 briefly describes the aspects of
developing the kNN and SVM classifiers. It also discusses the applied quality metrics of
multiclass classification, as well as the problem of class imbalance in datasets. In addition,
this section provides a summary of the principles of operation of the UMAP algorithm, as
well as background information on the investigated nonlinear data extraction tools that are
difficult to obtain from traditional statistics, in particular, on entropy characteristics and
fractal dimensions. Section 3 presents a description of the novel approach to the formation
of the datasets used in the development of the classifiers. Section 4 is devoted to the analysis
of the original dataset based on the UMAP algorithm with data visualization, aspects of
the generation of new features based on entropy characteristics and fractal dimensions
of the data patterns, choosing the best of them. It also discusses all of the steps of the
creation of new datasets used for the development of the kNN and SVM classifiers and the
results of the development of such classifiers, accompanied by tables and figures. Section 5
presents a discussion of the proposed results. Finally, Section 6 contains conclusions and
goals regarding future work.

2. Materials and Methods

2.1. Aspects of Development of Classifiers

The development of classifiers can be performed using various machine learning
algorithms, for example, kNN [10,34,53–56], SVM [10,33,34,36,57,58], LR (Logistic Regres-
sion) [4,59], DT [12–14], RF [15,60,61] and neural networks [17–19], as well as cascade
algorithms and ensembles based on them. We can use the default values of the classifier
parameters, or fine-tune them using population optimization algorithms [62,63]. The qual-
ity of classification using such classifiers will depend both on the quality of datasets on
the basis of which the classifiers are developed, and on the specifics of the mathematical
apparatus embedded in the algorithms corresponding to the classifiers. Currently, there
is no universal machine learning algorithm that could ensure that a classifier developed
on its basis will provide high quality of classification for any arbitrary training dataset.
The same can be said about cascade classifiers and ensembles of classifiers. Obviously,
it is desirable to minimize the time for developing a classifier that provides high-quality
data classification.

Two machine learning algorithms (kNN and SVM) are considered in this study, al-
though all the ideas formulated below can be used in the development of classifiers based
on any machine learning algorithm because they affect only the stage of preparation of
datasets used in the development of classifiers.

The choice of the kNN algorithm is due to the simplicity of its implementation and, as
a result, low time costs for the development of the kNN classifier.

The choice of the SVM algorithm is due to the availability of tools for working with
various kernel functions that provide a transition to a higher-dimensional space, and
the possibility of generating classification rules in an explicit form by identifying the so-
called support vectors located along the class boundary. However, the time spent on the
development of the SVM classifier becomes significantly larger compared to the time spent
on the development of the kNN classifier.

It is precisely because of the large time costs for the development of the RF classifier
that the proposed study does not consider the RF algorithm, although when it is used, it is
usually possible to obtain classifiers that provide a very high quality of data classification.

Let U = {< x1, y1 >, . . . ,< xs, ys >} be a dataset used in the development of classi-
fiers, where xi ∈ X; yi ∈ Y = {1, . . . , M}; i = 1, s; s is the number of patterns in the dataset;
M is the number of classes; X is the set of signs of patterns; and Y is the set of pattern class
labels [34].

Let classifiers be trained on S patterns and testing be carried out on s − S patterns.
The quality of the classifiers is assessed using the k-fold cross-validation procedure.

238

Mathematics 2023, 11, 792

2.1.1. kNN Classifier Development

The number of nearest neighbors k for the pattern x and the method of voting for k
nearest neighbors on the question of the class membership of the pattern x are specified
during the development of the binary kNN classifier. The values of the parameters should
provide the minimum classification error.

The membership class y of a pattern x is determined by the membership class of most
of the patterns from among the k nearest neighbors of the pattern x. Various metrics, such
as Euclidean, cosine, Manhattan, etc. can be used to calculate the distance between patterns
in the kNN algorithm. Usually, the distance is calculated using the Euclidean distance
metric as [34,53,54]:

d(xi, x) =

√√√√ q

∑
h=1

(xh
i − xh)

2, (1)

where q is the number of features of patterns xi (i = 1, k) and x; xh
i is the h-th coordinate of

i-th pattern xi; and xh is the h-th coordinate of pattern x.
Various voting methods can be used to determine the membership class of a pattern

during the development of the kNN classifier, for example, simple unweighted voting and
weighted voting [34,53,54].

Simple unweighted voting works in such a way that the distance from the pattern x to
each of the k nearest neighbors xi (i = 1, k) does not matter: each of the k nearest neighbors
xi (i = 1, k) of the pattern votes for its assignment to its class, and all k nearest neighbors xi
(i = 1, k) have equal rights in class definition for pattern x. The pattern x will be assigned
to the class that receives the most votes:

α = argmax
m∈Y

k

∑
i=1

|yxi ,x = m|, (2)

Weighted voting works in such a way that the distance from the pattern x to each of
the k nearest neighbors xi (i = 1, k) is taken into account: the smaller the distance d(xi, x),
the more significant the contribution to the estimation of the pattern x belonging to a certain
class is made by the vote of the nearest neighbor xi (i = 1, k). The total contribution of the
votes of the nearest neighbors xi (i = 1, k) for the pattern x belonging to the class with the
label m ∈ Y can be calculated as:

αm =
k

∑
i=1

1
d2(xi, x)

· ri,m, (3)

where ri,m = 0, if yxi ,x �= m and ri,m = 1, if yxi ,x = m.
The class that received the highest value αm according to Formula (3) is assigned to

the pattern x.
The problem of finding the optimal values of the parameters of the kNN classifier,

for example, the number of neighbors and the voting method, can be solved using grid
search algorithms or evolutionary optimization algorithms, such as the genetic algorithm,
differential evolution algorithm, PSO algorithm, bee algorithm, ant colony algorithm, fish
school algorithm, etc.

2.1.2. SVM Classifier Development

The SVM algorithm implements binary classification [34,57,58]. In the case of multi-
class classification, i.e., for M ≥ 3, strategies such as OvO (One-vs-One) or OvR (One-vs-
Rest) are used, which allow for the use of binary classification solutions to form solutions
for multiclass classification [64].

The One-vs-One strategy breaks the multiclass classification into one binary classi-
fication problem for each pair of classes. The One-vs-Rest strategy breaks the multiclass
classification into one binary classification problem for each class.

239

Mathematics 2023, 11, 792

In the case of binary classification, the basic SVM algorithm operates on patterns
xi ∈ X with class labels yi ∈ Y = {−1;+1}.

The development of the SVM classifier can be performed using kernel functions
κ(xi, xτ) such as linear, polynomial, radial basis and sigmoid kernel functions. Particularly,
the linear kernel function has the form κ(xi, xτ) = xi · xτ , and the radial basic kernel
function, which is used in this study, has the form κ(xi, xτ) = exp(−(xi − xτ) · (xi −
xτ)/(2 · σ2)), where xi · xτ is the scalar product for xi and xτ and σ (σ > 0) is the kernel
function parameter.

The value of the regularization parameter C (C > 0) [57], the type of the kernel
function κ(xi, xτ) and the values of the parameters of the kernel function (for example,
the value of parameter σ for the radial basis kernel function) are determined during the
development of the binary SVM classifier. The values of the parameters should provide the
minimum classification error.

The development of the binary SVM classifier involves solving the problem of con-
struction of a hyperplane separating the classes. According to the Kuhn–Tucker theorem,
this problem can be reduced to a quadratic programming problem containing only dual
variables λi (i = 1, S) [34,57,58]:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1
2 · S

∑
i=1

S
∑

τ=1
λi · λτ · yi · yτ · κ(xi, xτ)−

S
∑

i=1
λi → min,

λ
S
∑

i=1
λi · yi = 0,

0 ≤ λi ≤ C, i = 1, S.

(4)

The support vectors are determined as a result of the training of the binary SVM
classifier. These are feature vectors of learning patterns xi, for which the values of the
corresponding dual variables λi are not equal to zero (λi �= 0) [57]. The support vectors
carry all the information about class separation since they are located near the hyperplane
separating them.

The classification decision rule that assigns a membership class to a pattern with the
label “−1” or “+1” is defined as [34,57,58]:

F(z) = sign

(
S

∑
i=1

λi · yi · κ(xi, x) + b

)
, (5)

where b = w · xi − yi; w =
S
∑

i=1
λi · yi · xi.

The problem of finding the optimal values of the SVM classifier parameters, for
example, the regularization parameter C (C > 0), the type of the kernel function κ(xi, xτ)
and the values of the parameters of the kernel function, can be solved using grid search
algorithms or evolutionary optimization algorithms.

2.2. Quality Metrics of Multiclass Classification

The assessment of the quality of a multiclass classification can be performed using
metrics such as Accuracy, MacroPrecision, MacroRecall and MacroF1−score [65].

The accuracy metric for multiclass classification can be calculated as:

Accuracy =
TP + TN

TP + TN + FP + FN
, (6)

where TP is the total number of true positive elements in the multiclass classification
problem; TN is the total number of true negative elements in the multiclass classification
problem; FP is the total number of false positive elements in the multiclass classifica-
tion problem; and FN is the total number of false negative elements in the multiclass
classification problem.

240

Mathematics 2023, 11, 792

The MacroPrecision metric for multiclass classification can be calculated as:

MacroPrecision =
1
M

M

∑
m=1

(
TPm

TPm + FPm

)
, (7)

where m is the class label index; TPm is the number of true positive elements for the m-th
class label; FPm is the number of false positive elements for the m-th class label; and M is
the total number of classes in the multiclass classification problem.

The MacroRecall metric for multiclass classification can be calculated as:

MacroRecall =
1
M

M

∑
m=1

(
TPm

TPm + FNm

)
, (8)

where m is the class label index; TPm is the number of true positive elements for the m-th
class label; FNm is the number of false negative elements for the m-th class label; and M is
the total number of classes in the multiclass classification problem.

The MacroF1−score metric for multiclass classification can be calculated as:

MacroF1−score = 2 ·
(

MacroPrecision · MacroRecall
MacroPrecision + MacroRecall

)
, (9)

Such metrics as (7)–(9) are useful and effective when developing classifiers using
imbalanced datasets.

The MacroF1−score is used as a maximized classification quality metric. Based on
MacroPrecision and MacroRecall, this metric makes it possible to simultaneously account for
information on precision and recall of the solutions generated by the classifiers.

2.3. Solving the Class Imbalance Problem

In most machine learning algorithms, it is assumed that the goal of learning is to
maximize the proportion of correct decisions in relation to all decisions made, and both the
population and training dataset obey the same distribution. In this case, the datasets used
to develop classifiers should be class-balanced, and the cost of a classification error for all
patterns should be the same.

However, in many practical problems, one has to work with datasets that are poorly
balanced. Learning on imbalanced datasets (imbalance problem) [66,67] can lead to a
significant decrease in the quality of the classification solutions obtained using classifiers
developed on their basis, since such datasets do not provide the required data distribution
characteristics used in training.

For example, in the case of binary classification, the imbalance of the dataset is that
more of the patterns in the dataset belong to one class, which is commonly called “majority”,
and a much smaller set of patterns belongs to another class, which is commonly called
“minority”.

The cost of misclassifying minority class patterns is often many times more expensive
than misclassifying majority class patterns, because minority class objects in real datasets
represent rare but most important instances.

For example, in the context of developing classifiers based on a dataset for ODs, the
class of normal patterns is the majority, while the classes describing eight types of ODs
are minor. Obviously, the correct classification of patterns of minority classes both for the
problem under consideration and in general is of significant interest.

There are various approaches to solving the problem of class imbalance based on the
application of:

• Class balancing algorithms that implement oversampling, undersampling and their
combinations [21–25];

• Algorithms accounting for the sensitivity to the cost of wrong decisions [10];

241

Mathematics 2023, 11, 792

• Algorithms for transferring data into a space of a new dimension (with a decrease or
increase in dimension) in order to improve the separability of data [11,26–34];

• One-class classification algorithms [34–37].

In this study, the imbalance problem is proposed to be solved using such oversam-
pling algorithms as SMOTE [21], Borderline-SMOTE-1 [22], Borderline-SMOTE-2 [22] and
ADASYN [24], followed by choosing the best of them in the sense of providing a higher
quality of data classification.

The use of oversampling algorithms is due to the fear of losing critical data patterns in
the case of using undersampling algorithms in the context of the problem of developing
classifiers for diagnosing oncological diseases.

The SMOTE (synthetic minority oversampling technique) algorithm [21] randomly
selects a minority class pattern named a and randomly chooses a pattern named b from
the k nearest neighbors of pattern a. The synthetic pattern will be located randomly in the
line segment between the original pattern a and its neighbor b. The same process will be
repeated until the desired number of synthetic patterns is reached.

The Borderline-SMOTE-1 algorithm [22] considers only the minority class patterns
that have a number of minority class neighbors in the range [g/2, g], where g is defined by
the researcher. These are the borderline patterns and they can be easily misclassified, i.e.,
they are “in danger”. After detecting such original patterns, a basic SMOTE algorithm is
applied to create synthetic patterns.

The Borderline-SMOTE-2 algorithm [22] is similar to the Borderline-SMOTE-1 algo-
rithm, but it also considers the neighbors of the majority class.

The ADASYN algorithm [24] is similar to the SMOTE algorithm, since it generates
synthetic patterns in the line segments between two minority class original patterns. It uses
a weighted distribution for different minority class patterns that takes into account their
level of difficulty: the minority class patterns that have fewer minority class neighbors are
harder to learn than those which have more neighbors of the same class. The ADASYN
algorithm generates more synthetic patterns for the minority class original patterns that
are harder to learn and generates less for the minority class original patterns that are easier
to learn.

2.4. UMAP Algorithm

The UMAP algorithm performs nonlinear dimensionality reduction preserving both
local and global structures of high dimensional data in the best possible way [29,32]
compared to other similar algorithms, for example, compared to the t-SNE algorithm [28].

The UMAP algorithm builds a fuzzy weighted undirected graph in the first step and
optimizes loss function in the second step [29].

The UMAP algorithm works with a dataset X =
{→

x 1,
→
x 2, . . . ,

→
x s

}
, which contains s

objects (patterns). Every object
→
x i ∈ X is represented by q-dimensional vector: ∀→x i ∈ Rq.

The UMAP algorithm embeds objects from the q-dimensional space into the h-dimensional
space (h ≤ q).

In the first step, the UMAP algorithm searches for the k nearest neighbors Zi ={→
z i1, . . . ,

→
z il , . . . ,

→
z ik

}
for every object

→
x i ∈ X, where ∀→z il ∈ X; i = 1, s; l = 1, k, as

described in [68]. Then it computes the scalar distance value dil between
→
x i and

→
z il ∈ Zi

using a distance metric. In the case of working with a Euclidean distance metric, the scalar
value dil can be calculated as (1), where pattern xi is replaced by

→
x i and x is replaced

by
→
z il . As a result, for each object

→
x i ∈ X, the UMAP algorithm determines a set Di =

{di1, . . . , dil , . . . , dik}, which contains the distances between
→
x i and each of its k nearest

neighbors.
After that, a fuzzy simplicial set, represented as a vector

→
μ i ∈ Rs, is constructed

for each object. First, the UMAP algorithm searches for ρi ∈ Di, such that ρi ≤ dil for

242

Mathematics 2023, 11, 792

every dil ∈ Di. After that, a binary search is implemented in order to find σi satisfying the
following condition:

k

∑
l=1

e(
ρi−dil

σi
)
= log2 k. (10)

Then the j-th component of vector
→
μ i is represented by a fuzzy value, which shows

how similar i-th and j-th objects from the X set are. Therefore, if the two objects,
→
x i and

→
x j,

are not neighbors, then the j-th component μij of vector
→
μ i is set to 0. If the two objects,

→
x i

and
→
x j, are neighbors, then the j-th component μij of vector

→
μ i is computed as:

μij = e(
ρi−dij

σi
). (11)

It is necessary to say that μij ∈ [0, 1].

The UMAP algorithm defines a vector
→
μ i ∈ Rs for each object

→
x i ∈ X. This vector

encodes fuzzy similarities between the i-th object and every j-th object belonging to the
original high dimensional dataset X.

As a result, the UMAP algorithm builds a weighted adjacency matrix Matr ∈ Rs×s,
where each i-th row is represented by fuzzy vector

→
μ i (i = 1, s).

The weighted adjacency matrix Matr represents a fuzzy weighted oriented graph,
which codes pairwise similarities of objects from X. Matrix Matr is not symmetric.

In the second step, the asymmetric matrix Matr is symmetrized using probabilistic
t-conorm:

μij ← μij + μji − μijμji, (12)

where i and j are the numbers of rows and columns in the Matr matrix, respectively
(μkk = 0; k = 1, s).

Thus, the transformed matrix Matr will already be symmetric.
The initial low dimensional representations of objects from the set X described by

q-dimensional vectors in the space Rh are calculated using spectral embedding [32] (h ≤ q).
As a result, the matrix Y ∈ Rs×h is obtained.

Then the UMAP algorithm starts the optimization process using the weighted fuzzy
cross-entropy with reduced repulsion as the loss function [69]:

L(Matr, Y) =
s

∑
i=1

s

∑
j=1

(
μij ln

μij

νij
+

∑s
k=1 μik

2s
ln

(
1 − μij

1 − νij

))
, (13)

where Matr ∈ Rs×s is the symmetric adjacency matrix containing fuzzy values encoding
pairwise similarities of high dimensional objects from the dataset X; Y ∈ Rs×h is the
representation of s objects in the low dimensional space Rh; μij ∈ [0, 1] is a scalar value
defining the fuzzy similarity of i-th and j-th high dimensional objects from the original
dataset X; and νij ∈ [0, 1] is a scalar value defining the fuzzy similarity of i-th and j-th
objects in low dimensional space Rh.

The UMAP algorithm determines the pairwise similarity νij of the i-th and j-th objects
represented by the i-th and j-th rows of the Y ∈ Rs×h matrix in the low dimensional space
Rh as:

νij =
(

1 + ad2b
ij

)−1
, (14)

where dij is the scalar value between the i-th and j-th objects, described by vectors
→
y i and

→
y j corresponding to the rows in the matrix Y.

The scalar value dij can be computed using a Euclidean distance metric (1), assuming

vectors
→
x i and

→
z il in (1) are replaced by vectors

→
y i and

→
y j, respectively, and q is replaced

243

Mathematics 2023, 11, 792

with h; a and b are the coefficients that are chosen by non-linear least squares fitting of (14)
against the curve:

ψij =

{
1, dij ≤ dmin

e(dmin−dij), dij > dmin
, (15)

where dij is the distance value between the i-th and j-th objects
→
y i and

→
y j represented by

rows in the matrix Y; and dmin is the parameter of the UMAP algorithm (dmin ∈ (0, 1]),
which affects the density of the clusters formed during the loss function (13) optimization
process in the low dimensional space Rh.

The UMAP algorithm performs the optimization of the loss function (13) using the
stochastic gradient descent (SGD) algorithm [29]. The locations of objects, which are
described by rows of the matrix Y ∈ Rs×h, are specified during each iteration of the SGD
algorithm in order to minimize the loss function (13). Other functions given, particularly
in [34], can also be used as a loss function.

2.5. Entropies, Hjorth Parameters and Fractal Dimensions

A number of works have shown that the use of nonlinear approaches can help extract
some information from the data that is difficult to obtain from traditional statistics. In
particular, entropy analysis and fractal analysis are non-linear approaches and provide
researchers with new opportunities to extract and explore the knowledge hidden in the
data. Entropy and fractal dimension are two diametrically opposed but complementary
concepts.

Entropy is a measure of chaos. The value of entropy gives an idea of how far the stud-
ied object (pattern) is from an ordered, structured state and how close it is to a completely
chaotic, structureless, homogeneous form.

Fractal dimension is a metric for characterizing a fractal pattern (which is often a
highly organized structure) by quantifying its complexity as the ratio of change in detail to
change in scale.

In this study, we use five entropy characteristics and three fractal dimensions, as well
as two Hjorth parameters, such as mobility and complexity, to evaluate the patterns of
a dataset on ODs in order to identify such indicators that will allow for improving the
separation of data from different classes from each other. The identified best indicators can
later claim the role of a tool for generating new features used to expand the original dataset.

The indicators considered in the proposed study are listed below.
Permutation entropy (PE) [40] is a tool that provides a quantification measure of the

complexity of the studied object by capturing the order relations between the values and
extracting a probability distribution of the ordinal elements.

Spectral entropy (SPE) [41] is a tool that is based on Shannon’s entropy. It measures the
irregularity or complexity of the studied object in the frequency domain. After performing
a Fourier transform, the studied object is transformed into a power spectrum, and its
information entropy presents the power spectral entropy of the studied object.

Singular value decomposition entropy (SVDE) [42] is a tool that characterizes infor-
mation content or regularity of the studied object depending on the number of vectors
attributed to the process.

Approximate entropy (AE) [43–45] is a tool used to quantify the amount of regularity
and the unpredictability of fluctuations of the studied object.

Sample entropy (SE) [45] is a modification of approximate entropy. It is used for
assessing the complexity of the studied object.

Hjorth mobility (HM) [46,47] is a tool that describes the average frequency for the
studied object and provides information about its so-called speed.

Hjorth complexity (HC) [46,47] is a tool that describes the variability of the studied
object and refers to the similarity of the studied object to a sinusoidal wave.

244

Mathematics 2023, 11, 792

Petrosian fractal dimension (PFD) [49] is a tool that allows for estimating the fractal
dimension of a finite sequence describing the studied object by means of converting the
data to a binary sequence before estimating.

Katz fractal dimension (KFD) [50,51] is a tool which makes exponential transformation
of fractal dimension values of the studied object with relative insensitivity to noise.

Higuchi fractal dimension (HFD) [52] is a tool which uses an algorithmic approxi-
mate value for the box-counting dimension of the graph of a real-valued function for the
studied object.

It is necessary to say that HFD yields a more accurate estimation of the fractal dimen-
sion values of the studied object than KFD when tested on synthetic data, but it is more
sensitive to noise.

The list of indicators similar to those considered above can be expanded.
Typically, these indicators are used to analyze signals, for example, represented by

time series. However, there are also works in which these indicators are used to generate
new features of objects based on already known features. For example, the work [10]
explores the possibility of using entropies AE and SE to generate new features in the
problem of diagnosing ODs based on blood protein markers. Obviously, it is possible to
use other indicators in order to extract new features of objects based on already known
ones using them.

A more detailed description of the indicators chosen during the experiments will be
given in Section 4.

3. A Novel Approach to the Generation of Datasets and the Development of Classifiers

The algorithm for developing the best classifier can be described by the following
sequence of steps.

Step 1. Scale each feature of the original dataset to the range [0, 1].
Step 2. Check the features of the dataset for correlation and remove features with high

correlation (taking into account their correlation with the target feature that determines
class labels for patterns).

Step 3. Calculate the values of potential new features based on the not-scaled dataset,
from which the correlated features found in Step 1 are excluded, using five formulas for
entropy, two formulas for Hjorth parameters and three formulas for fractal dimension,
and choose those that are the best at separating patterns of different classes (based on
the average values of entropy and fractal dimensions and average standard deviations).
Check the potential new features for correlation and remove features with high correlation
(taking into account their correlation with the target feature that determines class labels
for patterns).

Step 4. Scale each new feature to the range [0, 1].
Step 5. Set the range [2, H], which will be used in the cycle (during the steps 6–10),

where each number h from the range [2, H] is the dimension in the low-dimensional space
(the number of features); 2 ≤ H ≤ q − 1; q is the dimension of the original space (the
number of features in the original dataset C1).

Step 6. Implement the UMAP algorithm with the number h from the range [2, H].
Scale each feature to the range [0, 1]

Step 7. Construct 12 datasets (if h = 2) or 8 datasets (if h ≥ 3):
1. C1 is the original dataset (with 39 features) (formed only for h = 2).
2. C2 is a dataset based on the UMAP algorithm (from 2 to H features as a result of

embedding in a space of lower dimension).
3. C3 is a dataset based on the original dataset and the UMAP algorithm (from 2 to H

features).
4. C4 is a dataset based on the UMAP algorithm (from 2 to H features) and one entropy.
5. C5 is a dataset based on the UMAP algorithm (from 2 to H features) and two

fractal dimensions.

245

Mathematics 2023, 11, 792

6. C6 is a dataset based on the UMAP algorithm (from 2 to H features), one entropy
and two fractal dimensions.

7. C7 is a dataset based on the original dataset, the UMAP algorithm (from 2 to H
features) and one entropy.

8. C8 is a dataset based on the original dataset and one entropy (formed only for
h = 2).

9. C9 is a dataset based on the original dataset and two fractal dimensions (formed
only for h = 2).

10. C10 is a dataset based on the original dataset, one entropy and two fractal dimen-
sions (formed only for h = 2).

11. C11 is a dataset based on the original dataset, the UMAP algorithm (from 2 to H
features) and two fractal dimensions.

12. C12 is a dataset based on the original dataset, the UMAP algorithm (from 2 to H
features), one entropy and two fractal dimensions.

Step 8. Rebalance classes for all datasets.
Step 9. Develop classifiers based on the kNN and SVM algorithms. Assess classifi-

cation quality using cross-validation based on MacroF1−score. Select the best classifiers
based on the kNN and SVM algorithms.

Step 10. Increase the number h of dimensions in the low-dimensional space by 1.
Step 11. If h ≤ H, go back to step 6. If h > H, go to step 12.
Step 12. Select the best classifiers based on the results of the algorithm implementation.

Complete implementation of the algorithm.
The number of datasets that were used to develop the classifiers was determined

as follows.
A total of 12 datasets were used for h = 2. Dataset C1 is the same as the original

dataset. Dataset C2 contains features based on the UMAP algorithm. Other datasets were
acquired by:

• Adding all possible combinations of three groups of features based on the UMAP
algorithm, one entropy and two fractal dimensions (as 1 of 3, 2 of 3, 3 of 3) to the
features of the original dataset;

• Adding all possible combinations of two feature groups based on one entropy and
two fractal dimensions (as 1 of 2, 2 of 2) to the features based on the UMAP algorithm.

Eight datasets were used for h ≥ 3, because datasets C1, C8, C9 and C10 do not contain
features based on the UMAP algorithm. Namely, the number of generated features depends
on h whether the UMAP algorithm is used. Thus, it is sufficient to generate the sets C1, C8,
C9 and C10 once for h = 2 because their composition does not depend on h.

The generation of datasets based on only one entropy and/or two fractal dimensions
was not performed due to a significant reduction (convolution) of the initial information in
this case.

The choice of the scaling method that implements the transformation of each feature
into the range [0, 1] is due to working with the UMAP algorithm, which essentially searches
for the coordinates of patterns in a low-dimensional space. In this regard, we decided to
scale the values for each coordinate of the patterns in the range [0, 1].

This algorithm uses only one entropy (AE) and only two fractal dimensions (KFD
and HFD) because the expediency of using only these out of the 10 indicators specified in
Section 2.5 was confirmed experimentally when working with the original dataset based
on blood protein markers.

Figure 1 shows a diagram that represents the process of generating the datasets used
in the development of classifiers. The upper part of the figure lists the datasets that are
generated only once because they are formed without involving the UMAP algorithm.

246

Mathematics 2023, 11, 792

Features
of the original

dataset

Features
based on UMAP

algorithm

Feature
based on
entropy

Features
based on fractal

dimensions

C3

C2

C4

C5

C6

C7

C11

C12

C8

C10

C9

C1

Figure 1. Scheme of generation of the datasets used in the development of classifiers.

Figure 2 shows the enlarged block diagram of the classifier development.

247

Mathematics 2023, 11, 792

Implement UMAP algorithm with the current h.
Scale each new feature

Construct 12 datasets (if h = 2) or 8 datasets (if h 3)

Develop classifiers based on the different datasets.
Assess classification quality using cross-validation.

Select the current best classifier

Rebalance classes for all datasets

Increase the current number of dimensions
in the low-dimensional space by 1:

h = h 1

h H

Select the best classifier

No

Yes

End

Scale the features of the original dataset

Check the features of the dataset for correlation and
remove features with high correlation

Calculate the values of potential new features, using
formulas for entropies, Hjorth parameters and fractal

dimension.
Check the potential new features for correlation and

remove features with high correlation

Scale the new features

Start

Set the current and final (maximal) numbers of
dimensions of the low-dimensional space
 for UMAP algorithm as h = 2 and H = 38

Figure 2. The enlarged block diagram of the classifier development.

4. Experimental Studies

During the experiments, the dataset containing information on 39 serum protein
markers for 1817 patterns was used. This dataset includes such classes of ODs as breast,

248

Mathematics 2023, 11, 792

colorectum, esophagus, liver, lung, ovary, pancreas and stomach, as well as the normal
class (Norm) corresponding to cases where an OD was not diagnosed. Each protein
marker is associated with some feature in the dataset. This dataset is multiclass because it
contains information on patterns from nine classes. Accordingly, the classification problem
is multiclass and involves the development of a multiclass classifier. This dataset was taken
from COSMIC repository [39].

The list of serum protein markers is as follows: AFP (pg/mL), Angiopoietin-2 (pg/mL),
AXL (pg/mL), CA-125 (U/mL), CA 15-3 (U/mL), CA19-9 (U/mL), CD44 (ng/mL), CEA
(pg/mL), CYFRA 21-1 (pg/mL), DKK1 (ng/mL), Endoglin (pg/mL), FGF2 (pg/mL), Follis-
tatin (pg/mL), Galectin-3 (ng/mL), G-CSF (pg/mL), GDF15 (ng/mL), HE4 (pg/mL), HGF
(pg/mL), IL-6 (pg/mL), IL-8 (pg/mL), Kallikrein-6 (pg/mL), Leptin (pg/mL), Mesothelin
(ng/mL), Midkine (pg/mL), Myeloperoxidase (ng/mL), NSE (ng/mL), OPG (ng/mL), OPN
(pg/mL), PAR (pg/mL), Prolactin (pg/mL), sEGFR (pg/mL), sFas (pg/mL), SHBG (nM),
sHER2/sEGFR2/sErbB2 (pg/mL), sPECAM-1 (pg/mL), TGFa (pg/mL), Thrombospondin-
2 (pg/mL), TIMP-1 (pg/mL) and TIMP-2 (pg/mL).

All the experiments were conducted using software written in Python 3.10 in the
interactive cloud environment Google Colab. The choice of the Python 3.10 programming
language can be justified by a large number of various available libraries, including libraries
that implement machine learning algorithms.

4.1. Data Analysis Based on the UMAP Algorithm

A preliminary visual analysis of the dataset was performed using the non-linear
dimensionality reduction algorithm UMAP. Information on the software implementation
of the UMAP algorithm used is available in [70].

With the help of the UMAP algorithm, a 39-dimensional nine-class dataset was em-
bedded into a two-dimensional space (Figure 3). Analysis of the visualization results
indicates a complex organization of nine classes in the dataset and their poor separability
in general. However, one can try to find such classes in this nine-class dataset that can be
well separated from each other.

Figure 3. Visualization of nine-class dataset of ODs using the UMAP algorithm. (n_neighbors = 15,
min_dist = 0.1, random_state = 42, metric = ‘euclidean’).

249

Mathematics 2023, 11, 792

For example, if only three classes are left in the dataset, such as normal, liver and
ovary, then the results of the visualization of the three-class dataset (Figure 4) allow us to
conclude that it is expedient to carry out research on the development of a classifier capable
of separating patterns of these three classes with high values of classification quality metrics.
It should be noted that a three-class dataset with the same list of classes (normal, liver and
ovary) was considered by the authors in [10].

Figure 4. Visualization of three-class dataset of ODs using the UMAP algorithm. (n_neighbors = 15,
min_dist = 0.1, random_state = 42, metric = ‘euclidean’).

At the time when this article was written, the ratio of classes in the dataset was
Normal:Liver:Ovary = 812:44:54 (which differed slightly from the ratio in the work [10]:
Normal:Liver:Ovary = 799:44:54).

It can be assumed that the insufficient separability of patterns of different classes,
both in the nine-class dataset and in sets with a smaller number of classes (including
in the three-class dataset), is due to the presence of different ODs stages in the patterns
presented in the dataset (for example, in the early stages of an OD, separability may be
worse). Clearly, further research is needed to answer this question. Insufficiently good
separability of patterns of different classes may be due to the insufficiency of the number
of features. This problem can be solved by enriching the dataset with new information,
either by involving new features in the analysis, for example, based on gene biomarkers, or
by generating new features based on existing data, i.e., by extracting knowledge hidden
in existing data. In this study, the second approach to enriching the dataset with new
information was implemented: an attempt was made to generate new features based on
the UMAP algorithm, entropy characteristics and fractal dimensions of the existing data
patterns, followed by the selection of new features that satisfy certain a priori selected
criteria.

Scaling to the range [0, 1] for each feature was applied to the nine-class and three-class
datasets before visualization.

It should be noted that the UMAP algorithm is usually used to embed multidimen-
sional objects in two- or three-dimensional space for visualization, but the results of its
application can also be used in the development of data classifiers.

250

Mathematics 2023, 11, 792

Since the visualization of a reduced three-class dataset on ODs in a two-dimensional
space indicates the presence of patterns for which a two-dimensional embedding does
not allow for distinguishing some objects in their a priori known classes (Figure 2), then
it is advised to study various options for embedding, that is, nesting in spaces, whose
dimension is equal to the number h, where h ∈ {2, 3, . . . , H}, H is the maximum dimension
of the embedded space. For example, H can be equal to q − 1, where q is the dimension
of the original feature space (in this example q = 39). It is also necessary to develop a data
classifier for q = 39.

As a result, a group of classifiers will be obtained, developed on the basis of datasets
“embedded” in the space of a smaller dimension with the number of features h (h ∈
{2, 3, . . . , H}), as well as a dataset located in the original feature space (i.e., for q = 39).
It will be possible to choose the best classifier from this group in terms of maximizing
the classification quality metric (for example, MacroF1−score in the case of working with
class-imbalanced datasets). Moving to a lower dimensional space may potentially make it
possible to improve the separability of classes from each other, even without making any
additional effort, such as balancing classes or taking the sensitivity to the cost of wrong
decisions into account.

The scaling of each feature to the range [0, 1] was performed twice during the im-
plementation of the UMAP algorithm: before applying the UMAP algorithm and during
preparations of the dataset obtained using the UMAP algorithm for developing a classifier.
The resulting dataset can be used on its own or to form an augmented dataset. We can add
new features obtained using the UMAP algorithm or extracted in some other way (e.g., by
computing entropy characteristics and fractal dimensions of the original dataset) to the fea-
tures of the original 39-feature dataset. The data obtained by reducing the dimensionality
of the original dataset can be considered as new features.

4.2. Generation of New Features Based on Entropies, Hjorth Parameters and Fractal Dimensions of
Data Patterns

The original three-class dataset was examined for feature correlation before developing
classifiers based on variously formed datasets. The examination showed the absence of a
strong correlation with the values of the correlation index of at least 0.7 between the features.
The maximum value of the correlation index, equal to 0.604, was found only for one pair of
traits with numbers 34 and 35 (sHER2/sEGFR2/sErbB2 (pg/mL) and sPECAM-1 (pg/mL)).
The values of the correlation index for other pairs of features turned out to be less than 0.6.
As a result, the expediency of using all the features in the further analysis and development
of classifiers was proved.

In order to improve the quality of data classification, it was decided to generate new
features based on metrics such as entropy characteristics and fractal dimensions of data
patterns, selecting among them those that do not correlate with each other or the features
of a three-class dataset.

Three-class not scaled to range [0, 1] for each feature dataset was used to generate new
features based on the entropy characteristics, Hjorth parameters and fractal dimensions of
data patterns. Formulas that were used in the generation of new features for each pattern
involved 10 metrics. There were five formulas for entropy, such as permutation entropy
(PE), spectral entropy (SPE), singular value decomposition entropy (SVDE), approximate
entropy (AE) and sample entropy (SE); two formulas for Hjorth parameters, such as Hjorth
mobility and complexity (HM and HC); and three formulas for calculating such fractal
dimensions as Petrosian fractal dimension (PFD), Katz fractal dimension (KFD) and Higuchi
fractal dimension (HFD).

The results of the calculations of the entropy values, Hjorth parameters and fractal
dimensions were grouped into three classes. For each of the three classes, the mean value
and the mean standard deviation were calculated for each potential new generated feature.

Comparative analysis of the mean values and mean standard deviations of the afore-
mentioned metrics for each of the three classes for each potential new generated feature

251

Mathematics 2023, 11, 792

(Tables 1 and 2) made it possible to draw the following conclusions. The largest differences
between the classes are shown by the entropies AE and SE (Table 1), as well as the fractal
dimensions KFD and HFD (Table 1). These metrics were chosen for further consideration.
Meanwhile, the mean standard deviations for all the metrics above turned out to be small
(and only for the KFD metric they are slightly larger than for other metrics).

Table 1. Mean values for each of the three classes for each potential new generated feature.

Class

Mean Values

Entropy Hjorth Parameters Fractal Dimension

PE SPE SVDE AE 1 SE HM HC PFD KFD HFD

Normal 0.977 0.921 0.943 0.454 0.508 1.335 1.334 1.068 1.609 2.337
Liver 0.981 0.913 0.937 0.257 0.425 1.326 1.336 1.069 1.548 2.271
Ovary 0.978 0.924 0.975 0.353 0.348 1.313 1.306 1.065 1.696 2.372

1 Bold type indicates the mean values of the metrics that make it possible to distinguish between classes.

Table 2. Mean standard deviations for each of the three classes for each potential new generatedfeature.

Class

Mean Standard Deviations

Entropy Hjorth Parameters Fractal Dimension

PE SPE SVDE AE 2 SE HM HC PFD KFD HFD

Normal 0.018 0.054 0.043 0.091 0.164 0.131 0.510 0.005 0.174 0.068
Liver 0.013 0.085 0.082 0.105 0.105 0.098 0.021 0.005 0.266 0.138
Ovary 0.015 0.026 0.021 0.097 0.131 0.110 0.207 0.004 0.230 0.091

2 Bold type indicates the mean standard deviations of the metrics that make it possible to distinguish between
classes.

The selected metrics were tested for correlation with each other. The tests showed a
correlation between the metrics AE and SE (with the value of the correlation metric equal
to 0.931). The metric SE was excluded from further consideration, among other things,
because it has a lower correlation with the target feature that determines the labels of
pattern classes (the values of the correlation metric for the metrics AE and SE are 0.360
and 0.320, respectively, which corresponds to a moderate direct linear dependence on the
Chaddock scale). It should be noted that the experiments confirmed the advantage, albeit
insignificant, of the metric AE as a tool for generating the values of a new feature included
in the dataset (in terms of ensuring a higher quality of data classification). The correlation
between the chosen fractal dimensions KFD and HFD is small: it is only 0.141.

Thus, it is advisable to use one feature based on the approximation entropy AE, as
well as two features based on fractal dimensions KFD and HFD.

Below, we briefly describe the algorithms that allow for calculating approximation
entropy AE, the Katz fractal dimension KFD and the Higuchi fractal dimension HFD.

The algorithm for determining the approximation entropy AE can be described as
follows [45].

Suppose we have a sequence of numbers u = {u(1), u(2), . . . , u(q) } of length q, a
non-negative integer ξ (ξ ≤ q) and a positive real number r.

First, the algorithm defines the blocks χ(i) = {u(i), u(i + 1), . . . , u(i + ξ − 1) } and
χ(j) = {u(j), u(j + 1), . . . , u(j + ξ − 1) }, and calculates the distance between χ(i) and
χ(j) as d(χ(i), χ(j)) = max

κ=1,ξ
(|u(i + κ − 1)− u(j + κ − 1)|). Then it calculates the value

Cξ
i (r) = number(d(χ(i),χ(j))≤r)

q−ξ+1 , where j ≤ q − ξ + 1. The numerator of Cξ
i (r) defines the

252

Mathematics 2023, 11, 792

number of blocks of consecutive values of length ξ, which are similar to a given block. As a
result, the algorithm calculates the value φξ(r) as

φξ(r) =
1

q − ξ + 1
·

q−ξ+1

∑
i=1

logCξ
i (r) (16)

and approximation entropy AE(q, ξ, r)(u) as

AE(q, ξ, r)(u) = φξ(r)− φξ+1(r), (17)

where ξ ≥ 1; AE(q, 0, r)(u) = −φ1(r).
Approximation entropy AE(q, ξ, r)(u) defines the logarithmic frequency with which

blocks of length ξ that are close together stay together for the next position.
AE(q, ξ, r) is the statistical assessment of the parameter AE(ξ, r):

AE(ξ, r)(u) = lim
q→∞

[
φξ(r)− φξ+1(r)

]
. (18)

In the proposed research, we used ξ = 2 and r = 0.25 (these are values that are usually
applied).

In the context of the problem under consideration, we use the description of a certain
pattern xi ∈ X (i = 1, s; s is the number of patterns in the dataset X) based on blood protein
markers corresponding to q features as a certain sequence of numbers u of length q.

The algorithm for determining the Katz fractal dimension KFD can be described as
follows [51].

Suppose we have a sequence of points
(
ζ j, ϑj

)
of length q.

First, the algorithm defines the length L of the waveform as

L = ∑q−2
j=0

√(
ϑj+1 − ϑj

)2
+

(
ζ j+1 − ζ j

)2 (19)

and the maximum distance Δ between the initial point (ζ1, ϑ1) to the other points as

Δ = max
j=2,q

√(
ζ j − ζ1

)2 − (
ϑj − ϑ1

)2. (20)

Then the algorithm calculates the Katz fractal dimension KFD as

D =
log(q)

log(q) + log
(

Δ
L

) . (21)

In the context of the problem being solved, we consider a sequence of points
(

j, xj
i

)
,

where j is the j-th number of the feature in the dataset X (j = 1, q; q is the number of
features), as a sequence of points

(
ζ j, ϑj

)
of length q; and xj

i is the value of the j-th feature
of the i-th pattern xi ∈ X (i = 1, s; s is the number of patterns in the dataset X based on
blood protein markers;).

The algorithm for determining the Higuchi fractal dimension HFD can be described
as follows [52].

Suppose we have a sequence of numbers u = {u(1), u(2), . . . , u(q) } of length q.
First, the algorithm defines new sequences uξ

κ , defined as:

uξ
κ ; u(ξ), u(ξ + κ), u(ξ + 2κ), . . . , u

(
ξ +

[
q − ξ

κ

]
κ

) (
ξ = 1, κ

)
, (22)

where [o] is the Gauss’ notation, which denotes the integer part of o; ξ is the integer defining
the initial moment; and κ is the integer defining the interval moment.

253

Mathematics 2023, 11, 792

As a result, the algorithm defines κ sets of new sequences.
Then the algorithm calculates the length Lξ(κ) of curve uξ

κ as

Lξ(κ) =
q − 1[

q−ξ
κ

]
·κ2

·
[

q−ξ
κ]

∑
i=1

|u(ξ + i·κ)− u(ξ + (i − 1)·κ)|, (23)

and the length L(κ) as

L(κ) =
1
κ
·

κ

∑
ξ=1

Lξ(κ). (24)

Then the algorithm calculates the Higuchi fractal dimension HFD as the slope of the
best-fitting linear function through the data points:{(

log
1
κ

, log(L(κ))
)}

. (25)

In the context of the problem under consideration, we use the description of a certain
pattern xi ∈ X (i = 1, s; s is the number of patterns in the dataset X) based on blood protein
markers, corresponding to q features, as a certain sequence of numbers u of length q.

In the proposed research, we used values for κ ≤ 10 and m < k.

4.3. Generation of Datasets Used in the Development of Classifiers

The development of the classifiers was carried out based on the following datasets
generated based on new features from Sections 4.1 and 4.2:

1. C1 is the original dataset (it contains 39 features);
2. C2 is a dataset based on the UMAP algorithm (it contains from 2 to H features as a

result of embedding in a space of lower dimension);
3. C3 is a dataset based on the original dataset and the UMAP algorithm (it generates

from 2 to H features);
4. C4 is a dataset based on the UMAP algorithm (it generates from 2 to H features) and

one entropy;
5. C5 is a dataset based on the UMAP algorithm (it generates from 2 to H features) and

two fractal dimensions;
6. C6 is a dataset based on the UMAP algorithm (it generates from 2 to H features), one

entropy and two fractal dimensions;
7. C7 is a dataset based on the original dataset, the UMAP algorithm (it generates from

2 to H features) and one entropy;
8. C8 is a dataset based on the original dataset and one entropy;
9. C9 is a dataset based on the original dataset and two fractal dimensions;
10. C10 is a dataset based on the original dataset, one entropy and two fractal dimensions;
11. C11 is a dataset based on the original dataset, the UMAP algorithm (it generates from

2 to H features) and two fractal dimensions;
12. C12 is a dataset based on the original dataset, the UMAP algorithm (it generates from

2 to H features), one entropy and two fractal dimensions.

The content of the datasets (namely, the number and selection of features) C1, C8, C9
and C10 does not depend on the dimension h of the space into which the 39-dimensional
feature space of the original dataset is embedded when applying the UMAP algorithm.
Therefore, classifiers based on these datasets should be developed once. Balancing algo-
rithms, such as SMOTE and its modifications that implement the synthesis of new patterns
at the classes’ boundary (Borderline SMOTE-1, Borderline SMOTE-2 and ADASYN), are
applied once, as well. After this is completed, new classifiers are developed.

The number and selection of features in the remaining datasets C2, C3, C4, C5, C6, C7,
C11 and C12 depends on the dimension h of the space into which the UMAP algorithm
embeds the 39-dimensional feature space of the original dataset. Therefore, new classifiers

254

Mathematics 2023, 11, 792

should be developed based on the datasets C2, C3, C4, C5, C6, C7, C11 and C12 for each
h, both in the case of refusal to use class balancing algorithms, and in the case of their
application.

If the dataset is supposed to use a feature based on the entropies, then two variants of
the classifier are developed in order to assess the advantages of using the approximation
entropy AE and the sample entropy SE in relation to each other, followed by choosing the
best entropy for the role of the entropy used for generation of new feature values.

If the UMAP algorithm is not used in the formation of the dataset, i.e., the dataset does
not depend on the dimension h of the space into which the 39-dimensional feature space of
the original dataset is embedded, then we will identify the names of the classifiers with the
names of the datasets corresponding to them. In this case, we will discuss classifiers C1,
C8, C9 and C10. If the UMAP algorithm is used when forming a dataset, i.e., the dataset
depends on the dimension of the space h into which the 39-dimensional feature space of the
original dataset is embedded using the UMAP algorithm, then we will add an indication of
the space dimension to the name of the corresponding dataset. For example, we will talk
about the C3 classifier (for h = 5), if, during its development, a dataset was used that was
formed based on the results of applying the UMAP algorithm for h = 5.

4.4. Aspects of k-Fold Cross-Validation

The classifiers were developed using the kNN and SVM algorithms, the software
implementations of which were taken from the scikit-learn library of the Python language.

It should be noted that it is possible to use other machine learning algorithms, for
example, the RF algorithm, but this can lead to significant time costs for the development
of classifiers due to the specifics of the algorithm itself.

First of all, we developed classifiers for different values of the dimension h of the space
in which the UMAP algorithm embedded the original 39-dimensional space. The classifiers
were developed using the kNN and SVM algorithms based on 12 datasets. No balancing
algorithms had been applied to the datasets prior to that.

Then we developed classifiers using datasets that were balanced by classes based on
four algorithms: SMOTE, Borderline SMOTE-1, Borderline SMOTE-2 and ADASYN. In this
case, we used the kNN and SVM algorithms once again.

Before balancing, the ratio of classes in each of the 12 datasets was Normal:Ovary:Liver
= 812:54:44.

The classes were balanced with the values of the parameters of the balancing algo-
rithms set by default in the Python program libraries.

After balancing the classes using the SMOTE algorithm, the ratio of classes in each of
the 12 datasets became Normal:Ovary:Liver = 812:812:812.

After balancing the classes using the Borderline SMOTE-1 algorithm, the ratio of
classes in each of the 12 datasets became Normal:Ovary:Liver = 812:812:812.

After balancing the classes using the Borderline SMOTE-2 algorithm, the ratio of
classes in each of the 12 datasets became Normal:Ovary:Liver = 812:812:811.

After balancing the classes using the ADASYN algorithm, the ratio of classes in each
of the 12 datasets became Normal:Ovary:Liver = 812:807:806.

In order to assess the quality of each classifier, the k-fold cross-validation procedure,
which is an effective approach for estimating the performance of a classifier, was applied.

MacroF1−score was used as the main metric of classification quality in order to reduce
the negative impact on the quality of classification of the existing class imbalance in the
original C1 dataset.

A grid search was implemented for the optimal values of the parameters of the kNN
and SVM classifiers using the classical approach to the implementation of the k-fold cross-
validation procedure. In this case, the k classifiers are trained and evaluated on the k
holdout test sets. As a result, the mean performance of the k classifiers is evaluated.

We proposed to perform 10-fold cross-validation (that is k = 10) during implementation
of the grid search for the optimal values of the parameters of the best classifier. We used

255

Mathematics 2023, 11, 792

a stratified sampling strategy [71,72]. The results of the cross-validation were used to
calculate the mean value of MacroF1−score and the corresponding standard deviation. For
the best classifier, similar values were calculated for such metrics as Accuracy, MacroPrecision
and MacroRecall. In addition, hyperparameter values were determined for the best classifier.

A grid search was implemented while working with the kNN algorithm. The following
parameters were used in the grid search: n_neighbors, which corresponds to the number of
nearest neighbors, and weights, which corresponds to weight coefficients assigned to the
neighbors. The value of the number of neighbors n_neighbors varied from 5 to 15 with a step
of one. The weights parameter could take one of two values: ‘uniform’ and ‘distance’. In the
first case, all neighbors of some object had equal weights. In the second case, the neighbor’s
weight depended on the distance to the object: the smaller the distance, the greater the
weight. As for the rest of the parameters, we used the default values set in the software
implementation of the kNN algorithm in the Python scikit-learn library. As a result, 10 *
(11 * 2) = 220 model evaluations were obtained with a single pass through the grid.

Working with the SVM algorithm involved the implementation of a grid search, as
well. In this case, it was implemented for the values of such parameters as: gamma, which
is a parameter of the radial basis function of the kernel, and C, which is a regularization
parameter. The value of the gamma parameter varied from 0.4 to 2 with a step of 0.1. The
value of parameter C also changed from 0.4 to 2 with a step of 0.1.

We used the default values set in the software implementation of the SVM algorithm
in the Python scikit-learn library as the values of the rest parameters. As a result, 10 * (17 *
17) = 2890 model evaluations were obtained with a single pass through the grid.

4.5. Development of the Classifiers

We conducted research in order to determine the feasibility of using the approximation
entropy or sample entropy when forming the values of new features for each of the kNN
and SVM algorithms used in the development of the classifiers. The feasibility assessment
was performed for both datasets that were not subjected to class balancing, and for datasets
that were subjected to class balancing using four algorithms: SMOTE, Borderline SMOTE-1,
Borderline SMOTE-2 and ADASYN.

The preference for one or another entropy was given based on its provision of the
maximum mean value of MacroF1−score at the test sets on a group of the kNN or SVM
classifiers developed on the basis of the studied datasets (without class balancing or with
balancing using one of the four algorithms). The best class balancing algorithm was chosen
for each of the kNN and SVM algorithms used in the development of the classifiers.

The results of our research for the kNN and SVM algorithms used in the development
of the classifiers are shown in Tables 3 and 4, respectively. The development of the classifiers
was carried out for h = 2, . . . , 38. The maximum mean values of MacroF1−score in columns
AE and SE for each type of classifier are highlighted in bold, and the coinciding values are
italicized.

Table 3. Study of the advantages of entropies AE and SE in the development of the kNN classifiers.

Type of Classification Algorithm/
Class Balancing Algorithm

Maximum Mean Value of MacroF1-score

AE SE

kNN/no class balancing 0.842 0.849 3

kNN/SMOTE 0.866 0.864

kNN/Borderline SMOTE-1 0.878 0.878

kNN/Borderline SMOTE-2 0.861 0.861

kNN/ADASYN 0.842 0.842
3 The metric value with the largest value in the row is highlighted in bold. Matching metric values in a row are
italicized.

256

Mathematics 2023, 11, 792

Table 4. Study of the advantages of entropies AE and SE in the development of the SVM classifiers.

Type of Classification Algorithm/
Class Balancing Algorithm

Maximum Mean Value of MacroF1-score

AE SE

SVM/no class balancing 0.883 0.884 4

SVM/SMOTE 0.912 0.912

SVM/Borderline SMOTE-1 0.911 0.911

SVM/Borderline SMOTE-2 0.886 0.886

SVM/ADASYN 0.905 0.905
4 The metric value with the largest value in the row is highlighted in bold. Matching metric values in a row are
italicized.

The experimental results did not reveal a clear advantage of the approximation entropy
over the sample entropy. Preference was given to the approximation entropy because of
its higher correlation with the target feature. However, it is possible that, in the case of
working with the SVM algorithm, preference should be given to the sample entropy SE due
to the fact that the time spent on calculating the sample entropy SE is less than calculating
the approximate entropy AE.

Based on the results of the analysis of Tables 3 and 4, a class balancing algorithm
was also identified, which allowed for obtaining larger maximum mean values of the
MacroF1−score. This is the Borderline SMOTE-1 algorithm for the kNN classifier devel-
opment (Table 3), and the SMOTE algorithm for the SVM classifier development (Table 4).
These algorithms will be considered in subsequent detailed studies when developing the
corresponding classifiers.

4.6. Development of kNN Classifiers

Euclidean distance metric was used during development of the kNN classifiers. The
weights of neighbors for each analyzed object could be equal or dependent on the distance
to this object. The Borderline SMOTE-1 algorithm was used to implement class balancing.

4.6.1. Experiment without Class Balancing

Figure 5 presents the results of the experiment in choosing the best kNN classifier in
the case of working with the approximation entropy AE when forming some of the datasets
used in the development of the classifiers. The balancing of classes in datasets was not
performed here.

257

Mathematics 2023, 11, 792

Figure 5. Visualization of the results of the experiment of choosing the best kNN classifier based on
12 datasets without using a class balancing algorithm (n_neighbors is the number of nearest neighbors;
weights is the parameter which assigns weight coefficients to the neighbors; q is the dimension of
the space corresponding to the dataset used for development of classifier; h is the dimension of the
space into which the UMAP algorithm embeds the 39-dimensional feature space corresponding to
the original dataset; the background of each color shows the amount of standard deviation around
the mean of the metric MacroF1−score).

The red color indicates the line corresponding to the mean value of the MacroF1−score
obtained for the best C1 classifier developed on the basis of the original dataset, i.e., the
dataset with 39 features. The light red shading shows the spread for the MacroF1−score
mean value calculated from its standard deviation. The blue color indicates the line
corresponding to the mean values of the MacroF1−score obtained for the best classifiers
developed on the basis of the modified datasets. The light blue shading shows the spread
for the MacroF1−score means calculated from their standard deviation. In addition, the
following information is presented in Figure 5 next to the names of the classifiers developed

258

Mathematics 2023, 11, 792

on the basis of datasets: the number of features that depend on the dimension h of the space
into which the original 39-dimensional space is embedded, the dimensions h of the space
allowing for building the best classifiers, the final dimension q of the space corresponding to
the dataset used for development of classifier, and the best values of classifiers parameters
are indicated. The same designations are used in Figures 6–8.

Figure 6. Visualization of the results of the experiment of choosing the best kNN classifier based on
12 datasets using the Borderline SMOTE-1 class balancing algorithm (n_neighbors is the number of
nearest neighbors; weights is the parameter which assigns weight coefficients to the neighbors; q is the
dimension of the space corresponding to the dataset used for the development of the classifier; h is
the dimension of the space into which the UMAP algorithm embeds the 39-dimensional feature space
corresponding to the original dataset; the background of each color shows the amount of standard
deviation around the mean of the metric MacroF1−score).

259

Mathematics 2023, 11, 792

Figure 7. Visualization of the results of the experiment for choosing the best SVM classifier based
on 12 datasets without using class balancing algorithms (gamma is the parameter of the radial basic
kernel function; C is the regularization parameter; q is the dimension of the space corresponding
to the dataset used for development of the classifier; h is the dimension of the space into which the
UMAP algorithm embeds the 39-dimensional feature space corresponding to the original dataset; the
background of each color shows the amount of standard deviation around the mean of the metric
MacroF1−score).

260

Mathematics 2023, 11, 792

Figure 8. Visualization of the results of the experiment for choosing the best SVM classifier based on
12 datasets using the SMOTE algorithm for class balancing (gamma is the parameter of the radial basic
kernel function; C is the regularization parameter; q is the dimension of the space corresponding to
the dataset used for the development of the classifier; h is the dimension of the space into which the
UMAP algorithm embeds the 39-dimensional feature space corresponding to the original dataset; the
background of each color shows the amount of standard deviation around the mean of the metric
MacroF1−score).

As can be seen from Figure 5, all the classifiers developed on the basis of the modified
datasets outperformed C1 classifier developed on the basis of the original dataset in terms
of the mean value of the MacroF1−score.

261

Mathematics 2023, 11, 792

Classifier C6 (with h = 24) turned out to be the best: it has a mean value of MacroF1−score
equal to 0.842 (with a standard deviation of 0.080), while classifier C1 has mean value of
MacroF1−score equal to 0.756 (while the standard deviation is 0.101).

The dataset used in the development of classifier C6 (with h = 24) was obtained from
the original one as a result of applying the UMAP algorithm to it with h = 24. This dataset
contains 27 features in total, including one feature based on approximation entropy AE and
two features based on fractal dimensions KFD and HFD.

Classifiers C2 (with h = 36), C4 (with h = 11) and C5 (with h = 19) also turned out to be
relatively good in terms of the mean value of the MacroF1−score.

The worst classifier in this experiment is classifier C9 (independent of h) developed on
the basis of the dataset obtained by adding two features based on fractal dimensions KFD
and HFD to the original dataset.

Table 5 shows the main characteristics of classifier C1, as well as the best classifier,
namely, classifier C6 (with h = 24), without class balancing.

Table 5. Characteristics of kNN classifiers C1 and C6 (with h = 24) in the experiment without class
balancing.

Characteristic
Classifier

C1 C6 (with h = 24)

Number of features in the
dataset 39 27

Number of neighbors
(n_neighbors) 6 12

weights ‘distance’ ‘distance’

MacroF1−score (mean/std) 0.756/0.101 0.842/0.093

Accuracy (mean/std) 0.948/0.017 0.966/0.016

MacroRecall (mean/std) 0.687/0.106 0.803/0.091

MacroPrecision (mean/std) 0.938/0.063 0.919/0.098

Training time (mean/std), s. 0.002/0.001 0.004/0.002

Quality metrics calculation
time (mean/std), s. 0.009/0.003 0.009/0.002

In the experiment under consideration, the use of the modified dataset C6 (with h = 24)
obtained from the original dataset C1 allowed for increasing the value of the MacroF1−score
for classifier C6 (with h = 24) by 0.086 compared to classifier C1 (the standard deviation
for metric MacroF1−score of classifier C6 (with h = 24) turned out to be less than that of
classifier C1). The training time of classifier C6 (with h = 24) increased about two times.
The quality metrics calculation time during the testing did not change much.

It should be noted that classifier C6 (with h = 24), as well as classifiers C2 (with h = 36),
C4 (with h = 11) and C5 (with h = 19), outperformed the classifier developed in [10] using
the principles of cost-sensitive algorithms based on the mean values of the main quality
metrics. At the same time, one can notice slight discrepancies in the number of patterns of
the normal class in the proposed study and in [10]: in our dataset there are 13 more such
patterns, but this could only negatively affect our results (compared to the results in [10]),
which, however, did not happen.

The F1 of the best classifier in [10] was equal to 0.819, and the values of such metrics
as Accuracy, Recall and Precision were equal to 0.952, 0.807 and 0.833, respectively. Unfortu-
nately, the rules for choosing the best classifier in our study and in [10] may be somewhat
different (for example, we do not know if standard deviation estimates were calculated in
that study), but we assume that our best classifiers (with the best (maximum) values of
quality metrics) clearly outperform the best classifier in [10]. To confirm these conclusions,

262

Mathematics 2023, 11, 792

we will provide additional information on classifiers C2 (with h = 36), C4 (with h = 11)
and C5 (with h = 19) (because for classifier C6 (with h = 24), such information is given in
Table 5).

Classifier C2 (with h = 36) has a mean value of MacroF1−score equal to 0.841 (with
a standard deviation of 0.093) and mean values of such metrics as Accuracy, Recall and
Precision equal to 0.965 (with a standard deviation of 0.015), 0.812 (with a standard deviation
of 0.088) and 0.917 (with a standard deviation of 0.065), respectively.

Classifier C4 (with h = 11) has a mean value of MacroF1−score equal to 0.839 (with
a standard deviation of 0.094) and mean values of such metrics as Accuracy, Recall and
Precision are equal to 0.963 (with a standard deviation of 0.016), 0.818 (with a standard
deviation of 0.094) and 0.900 (with a standard deviation of 0.098), respectively.

Classifier C5 (with h = 19) has a mean value of MacroF1−score equal to 0.839 (with
a standard deviation of 0.083) and mean values of such metrics as Accuracy, Recall and
Precision are equal to 0.964 (with a standard deviation of 0.017), 0.800 (with a standard
deviation of 0.095) and 0.930 (with a standard deviation of 0.058), respectively.

Thus, we can conclude that even a simple addition of new features can increase the
separability of patterns of one class from patterns of another class.

Analysis of the values of the classification quality metrics (Table 5), in particular, the
values of the MacroRecall metric, allowed us to conclude that the quality of the classification
is not high enough and that it is necessary to take additional actions to improve the quality
of the classification. In order to perform such actions, we can use class balancing or cost-
sensitive algorithms. In this study, we implemented algorithms for balancing classes in
datasets.

4.6.2. Class Balancing Experiment

Figure 6 presents the results of the experiment for choosing the best kNN classifier in
the case of working with the approximation entropy AE in the formation of some of the 12
datasets used in the development of the classifiers. In this case, the balancing of classes in
datasets was performed using the Borderline SMOTE-1 algorithm.

The red color indicates the line corresponding to the mean value of the MacroF1−score
obtained for the best classifier C1 developed on the basis of the original dataset, i.e., the
dataset with 39 features. The light red shading shows the spread for the MacroF1−score
mean value, calculated from its standard deviation. The blue color indicates the line
corresponding to the mean values of the MacroF1−score obtained for the best classifier
C1 developed on the basis of the balanced original dataset. The light blue shading shows
the spread for the MacroF1−score means, calculated from their standard deviation. The
green color indicates the line corresponding to the mean values of MacroF1−score obtained
for the best classifiers developed on the basis of the modified balanced datasets. The
light green shading shows the spread for the MacroF1−score means, calculated from their
standard deviation.

Figure 6 shows that all the classifiers developed on the basis of the balanced datasets
provide a higher mean value of the MacroF1−score than the classifier C1 developed on the
basis of the original dataset. At the same time, some classifiers have lower values of the
MacroF1−score than the classifier C1 developed on the basis of the balanced original dataset.
In addition, Figure 6 shows a decrease in the standard deviations for the MacroF1−score
for the classifiers developed on the basis of balanced datasets compared to the standard
deviations for the MacroF1−score for the classifiers developed on the basis of imbalanced
datasets (Figure 5).

Classifier 8 (independent of h) turned out to be the best: it has a mean value of
MacroF1−score equal to 0.878 (with a standard deviation of 0.050), while classifier C1 has a
mean value of MacroF1−score equal to 0.847 (while the standard deviation is 0.079).

The dataset used in the development of classifier C8 (independent of h) was obtained
from the original one by adding one feature based on approximation entropy AE. This
dataset contains 40 features in total.

263

Mathematics 2023, 11, 792

The classifiers C7 (with h = 4), C10 (independent of h), C11 (with h = 18) and C12
(with h = 19) also turned out to be relatively good in terms of the mean value of the
MacroF1−score.

The worst classifiers in this experiment were classifier C4 (with h = 11) and C6 (with h
= 12). The first classifier was developed on the basis of a dataset obtained from the original
one as a result of applying the UMAP algorithm to it with h = 11 by adding one feature
based on approximation entropy AE. The second classifier was developed on the basis of a
dataset obtained from the original one as a result of applying the UMAP algorithm to it
with h = 12 by adding one feature based on approximation entropy AE and two features
based on fractal dimensions KFD and HFD.

From Figures 5 and 6, one can notice a decrease in the standard deviation of classifiers
in the case of using the Borderline SMOTE-1 algorithm to balance classes in datasets.

Table 6 shows the main characteristics of classifier C1, as well as the best classifier,
namely classifier C8 (independent of h), with class balancing.

Table 6. Characteristics of kNN classifiers C1 and C8 (independent of h) in the experiment using the
Borderline SMOTE-1 class balancing algorithm.

Characteristic
Classifier

C1 C8 (independent of h)

Number of features in the
dataset 39 40

Number of neighbors
(n_neighbors) 10 6

weights ‘uniform’ ‘uniform’

MacroF1−score (mean/std) 0.847/0.079 0.878/0.050

Accuracy (mean/std) 0.957/0.022 0.968/0.013

MacroRecall (mean/std) 0.870/0.079 0.877/0.066

MacroPrecision (mean/std) 0.846/0.085 0.896/0.063

Training time (mean/std), s. 0.012/0.006 0.028/0.002

Quality metrics calculation
time (mean/std), s. 0.024/0.009 0.017/0.003

It should be noted that classifier C8 (independent of h), as well as classifiers C7 (with
h = 4), C10 (independent of h), C11 (with h = 18) and C12 (with h = 19) outperformed the
classifier developed in [10] using the principles of cost-sensitive algorithms based on the
mean values of the main quality metrics.

To confirm these conclusions, we will provide additional information on classifiers C7
(with h = 4), C10 (independent of h), C11 (with h = 18) and C12 (with h = 19) (because for
classifier C8 (independent of h), such information is given in Table 6).

Classifier C7 (with h = 4) has mean value of MacroF1−score equal to 0.871 (with a
standard deviation of 0.065), and mean values of such metrics as Accuracy, Recall and
Precision are equal to 0.969 (with a standard deviation of 0.014), 0.864 (with a standard
deviation of 0.077) and 0.902 (with a standard deviation of 0.067), respectively.

Classifier C10 (independent of h) has mean value of MacroF1−score equal to 0.867
(with a standard deviation of 0.070), and mean values of such metrics as Accuracy, Recall
and Precision are equal to 0.966 (with a standard deviation of 0.016), 0.870 (with a standard
deviation of 0.081) and 0.888 (with a standard deviation of 0.074), respectively.

Classifier C11 (with h = 18) has mean value of MacroF1−score equal to 0.864 (with
a standard deviation of 0.057), and mean values of such metrics as Accuracy, Recall and
Precision are equal to 0.966 (with a standard deviation of 0.015), 0.866 (with a standard
deviation of 0.064) and 0.883 (with a standard deviation of 0.067), respectively.

264

Mathematics 2023, 11, 792

Classifier C12 (with h = 19) has mean value of MacroF1−score equal to 0.865 (with
a standard deviation of 0.066), and mean values of such metrics as Accuracy, Recall and
Precision are equal to 0.968 (with a standard deviation of 0.014), 0.864 (with a standard
deviation of 0.074) and 0.890 (with a standard deviation of 0.064), respectively.

In the experiment under consideration, using the best classifier C8 (independent of h)
made it possible to increase the mean value of MacroF1−score by 0.031 compared to the C1
classifier (with the standard deviation for MacroF1−score of classifier C8 (independent of
h) being less than that of classifier C1). The training time of classifier C8 increased about 2.3
times. The quality metrics calculation time during the testing even decreased slightly.

Analysis of the values of classification quality metrics (Table 6), particularly the values
of the MacroRecall metric, allows us to conclude that the classification quality by important
metrics has increased. It should be noted that the training time in the case of applying class
balancing to the dataset has increased, for example, about two times for classifier C1.

4.7. Development of SVM Classifiers

We used the radial basis kernel function during the development of the SVM classifiers.
Experiments with the linear function of the kernel were also carried out, but turned out to
be less successful, therefore they are not presented in this study. The SMOTE algorithm
was used to implement class balancing.

4.7.1. Experiment without Class Balancing

Figure 7 presents the results of the experiment for choosing the best SVM classifier in
the case of working with the approximation entropy AE when forming some of 12 datasets
used in the development of the classifiers. The balancing of classes in the datasets was not
performed here. Figure 7 uses the same notations as Figure 5.

As can be seen from Figure 7, only classifier C8 (independent of h), classifier C9 (inde-
pendent of h) and classifier C10 (independent of h) developed on the basis of the modified
datasets were able to outperform classifier C1 (which has mean value of MacroF1−score
equal to 0.877 with the standard deviation equal to 0.078), developed on the basis of the
original dataset by the mean value of the MacroF1−score. At the same time, classifier
C8 (independent of h) outperformed classifier C9 (independent of h) and classifier C10
(independent of h), if we compare them by the mean values of the MacroF1−score: for
example, classifier C8 (independent of h) has a mean value of MacroF1−score equal to 0.885
(with the standard deviation equal to 0.079); classifier C9 (independent of h) has a mean
value of MacroF1−score equal to 0.878 (with the standard deviation of 0.078); and classifier
C10 (independent of h) has a mean MacroF1−score of 0.880 (with a standard deviation of
0.074). The rest of the classifiers turned out to be less successful than classifier C1.

Note that classifier C8 (independent of h), classifier C9 (independent of h) and classifier
C10 (independent of h) are developed on the basis of datasets containing 40 (39 + 1), 41 (39
+ 2) and 42 (39 + 1 + 2) features, respectively.

It is obvious that preference should be given to the classifier developed using the
dataset with fewer features: this is classifier C8 (independent of h). In addition, it has the
highest mean value of MacroF1−score.

The dataset used in the development of classifier C8 (independent of h) was obtained
from the original one by adding a new feature formed on the basis of the approximation
entropy AE.

Table 7 shows the main characteristics of classifier C1, as well as the best classifier,
namely classifier C8, without class balancing.

265

Mathematics 2023, 11, 792

Table 7. Characteristics of SVM classifiers C1 and C8 in the experiment without class balancing.

Characteristic
Classifier

C1 C8 (independent of h)

Number of features in the
dataset 39 40

gamma 1.2 1.2

C 2.0 2.0

MacroF1−score (mean/std) 0.877/0.078 0.885/0.079

Accuracy (mean/std) 0.973/0.015 0.974/0.016

MacroRecall (mean/std) 0.843/0.088 0.850/0.090

MacroPrecision (mean/std) 0.950/0.053 0.957/0.051

Training time (mean/std), s. 0.123/0.008 0.131/0.007

Quality metrics calculation
time (mean/std), s. 0.007/0.001 0.009/0.001

In the experiment under consideration, the use of the best classifier C8 (independent
of h) made it possible to increase the mean value of the MacroF1−score by 0.008 compared
to the C1 classifier (with approximately the same standard deviations). The training time
of classifier C8 increased slightly, which was expected (because the number of features
increased by only 1). The same can be said about the quality metrics calculation time during
the testing.

Analysis of the values of the classification quality metrics (Table 7), particularly the
values of the MacroRecall metric, allows us to conclude that the quality of the classification
is not high enough and that it is necessary to take additional action to improve the quality
of the classification.

4.7.2. Class Balancing Experiment

Figure 8 presents the results of the experiment for choosing the best SVM classifier
in the case of working with the approximation entropy AE when forming some of the 12
datasets used in the development of classifiers. In this case, the balancing of classes in
datasets was performed using the SMOTE algorithm.

Figure 8 uses the same notations as Figure 6.
As can be seen from Figure 8, only classifier C3 (with h = 2), classifier C7 (with h =

28) and classifier C8 (independent of h) developed on the basis of the modified datasets
were able to outperform classifier C1 (which has mean value of MacroF1−score equal to
0.910 with the standard deviation equal to 0.064) developed on the basis of the original
dataset by the mean value of the MacroF1−score. At the same time, classifier C7 (with
h = 28) outperformed classifier C3 (with h = 2) and classifier C8 (independent of h), if
we compare them by the mean values of MacroF1−score: for example, classifier C7 (with
h = 28) has a mean value of MacroF1−score equal to 0.914 (with the standard deviation
equal to 0.050); classifier C3 (with h = 2) has a mean value of MacroF1−score equal to
0.912 (while the standard deviation is 0.058); and classifier C8 (independent of h) has a
mean MacroF1−score of 0.913 (with a standard deviation of 0.061). It should be noted that
classifiers C9 (independent of h), C10 (independent of h), C11 (with h = 3) and C12 (with
h = 2) outperformed classifier C1 developed on the basis of the original dataset that was
not subjected to class balancing (Section 4.7.1) by the mean value of MacroF1−score. The
rest of the classifiers turned out to be inefficient compared to classifier C1 developed on
the basis of the original dataset that was not subjected to class balancing (Section 4.7.1)
and classifier C1 developed on the basis of the original dataset that was subjected to class
balancing (Section 4.7.2).

266

Mathematics 2023, 11, 792

Note that classifier C3 (with h = 2), classifier C7 (with h = 28) and classifier C8 (inde-
pendent of h) were developed on the basis of the datasets containing 41 (39 + 2), 68 (39 + 28
+ 1) and 40 (39 + 1) features, respectively.

It is obvious that preference should be given to the classifier which has the highest
mean value of MacroF1−score: this is classifier C7 (with h = 28). However, it was developed
using the dataset with the greatest number of features among the three datasets discussed
above.

The dataset used in the development of classifier C7 (with h = 28) was obtained from
the original one (with 39 features) by adding one new feature formed on the basis of the
approximation entropy AE and 28 features obtained using the UMAP algorithm.

Alternatively, we can use classifier C3 (with h = 2) and classifier C8 (independent of h),
which are less accurate by the mean value of MacroF1−score, but developed from datasets
with fewer features.

It should be noted that the best classifiers, particularly classifier C3 (with h = 2),
classifier C7 (with h = 28) and classifier C8 (independent of h), outperformed all the best
classifiers proposed in Sections 4.6.1, 4.6.2 and 4.7.1 in terms of the main quality metrics.

From Figures 7 and 8, one can notice a decrease in the standard deviation of classifiers
in the case of using the SMOTE algorithm to balance classes in datasets.

Table 8 shows the main characteristics of classifier C1, as well as the best classifier,
namely, classifier C7 (with h = 28) with class balancing.

Table 8. Characteristics of SVM classifiers C1 and C7 (with h = 28) in the experiment with class
balancing.

Characteristic
Classifier

C1 C7 (with h = 28)

Number of features in the
dataset 39 68

gamma 1 0.7

C 0.4 0.7

MacroF1−score (mean/std) 0.910/0.064 0.914/0.050

Accuracy (mean/std) 0.977/0.015 0.978/0.012

MacroRecall (mean/std) 0.907/0.081 0.907/0.065

MacroPrecision (mean/std) 0.929/0.058 0.937/0.048

Training time (mean/std), s. 0.886/0.214 0.489/0.021

Quality metrics calculation
time (mean/std), s. 0.013/0.004 0.008/0.001

In the experiment under consideration, the use of the best classifier C7 (with h = 28)
made it possible to increase the mean value of the MacroF1−score by 0.004 compared to
the C1 classifier (with approximately the same standard deviations). It should be noted
that the training time and quality metrics calculation time during the testing in the case
of applying class balancing to the dataset has decreased approximately 1.8 and 1.6 times,
respectively, for classifier C7 (with h = 28), despite the increase in the number of features.

Analysis of the values of the classification quality metrics (Table 8), particularly the
values of the MacroRecall metric, allows us to conclude that the classification quality in
terms of the main metrics has increased.

5. Discussion

The results of the experiments with two machine learning algorithms such as kNN
and SVM showed the feasibility of modifying the original dataset by adding new features
based on the approximation entropy AE and fractal dimensions KFD and HFD, and also

267

Mathematics 2023, 11, 792

based on the UMAP algorithm, and sometimes by replacing the original dataset with the
results of applying the UMAP algorithm to it with the addition of new features based on
the approximation entropy AE and fractal dimensions KFD and HFD.

At the same time, due to the high imbalance of classes in the original dataset, it is
advisable to use class balancing algorithms and cost-sensitive algorithms. In the proposed
study, four class balancing algorithms were implemented (SMOTE, Borderline SMOTE-1,
Borderline SMOTE-2 and ADASYN). The Borderline SMOTE-1 algorithm for the kNN
classifier and the SMOTE algorithm for the SVM classifier were recognized as the best.
However, balancing classes using appropriate algorithms is associated with significant time
costs, so the goal of further research is to develop classifiers using cost-sensitive algorithms.

In the context of working with the kNN algorithm using the Borderline SMOTE-1
algorithm for class balancing, classifier C8 (independent of h) turned out to be the best.

The dataset used in the development of classifier C8 (independent of h) was obtained
from the original one by adding one feature based on approximation entropy AE. Thus,
the development of the kNN classifier was performed in 40-dimensional space (while the
original space was 39-dimensional).

In the context of working with the SVM algorithm using the SMOTE algorithm for
class balancing, classifier C7 (with h = 28) turned out to be the best.

The dataset used in the development of classifier C7 (with h = 28) was obtained
from the original one by adding new features obtained using the UMAP algorithm to the
original dataset with the dimension of the new space h = 28 and one feature based on the
approximation entropy AE. Thus, the development of the SVM classifier C7 (with h = 28)
was performed in 68-dimensional space (while the original space was 39-dimensional).

All 12 kNN classifiers developed on the basis of class-balanced datasets using the
Borderline SMOTE-1 algorithm outperformed the base classifier C1 developed on the
basis of the original dataset, in which features were compared to blood protein markers
(Figure 4).

Eight out of 12 SVM classifiers developed on the basis of class-balanced datasets using
the SMOTE algorithm outperformed the basic C1 classifier developed on the basis of the
original dataset, in which features were compared to blood protein markers. These are
classifiers C1, C3 (with h = 2), C7 (with h = 28), C8, C9, C10, C11 (with h = 3) and C12 (with h
= 2). Four out of 12 SVM classifiers developed on the basis of class-balanced datasets using
the SMOTE algorithm turned out to be even worse than the basic C1 classifier developed
on the basis of the original dataset. Such classifiers are C2 (with h = 36), C4 (with h = 11),
C5 (with h = 36) and C6 (with h = 36) (Figure 6).

The classifiers recognized as the best in Sections 4.6.1 and 4.7.1 outperformed the
classifier proposed in [10] in terms of the main quality metrics. However, it was decided to
use balancing algorithms in order to restore the balance of classes. The classifiers recognized
as the best in Sections 4.6.2 and 4.7.2 outperformed the classifier proposed in [10], as well
as the classifiers developed in Sections 4.6.1 and 4.7.1, in terms of the main quality metrics.
In general, it should be noted that the proposed approach to the formation of datasets by
generating new features using different tools with their subsequent combination and use
as a new dataset or as an addition to the original dataset turned out to be effective.

The best kNN classifier, C8, was developed based on the original dataset augmented
with a feature based on entropy approximation AE. The best SVM classifier, C7, was
developed based on the original dataset augmented with features based on the UMAP
algorithm and entropy approximation AE. The average values of metric MacroF1−score
used to assess the quality of classifiers during cross-validation increased by 16.138% and
4.219%, respectively, compared to the average values of this metric in the case when an
unbalanced original dataset was used in the development of classifiers of the same name.
The average values of metric MacroF1−score increased by 3.660% and 0.440%, respectively,
compared to the average values of this metric in the case when a balanced original dataset
was used in the development of the classifiers of the same name.

268

Mathematics 2023, 11, 792

One can assume that applying the population-based optimization algorithms to search
for optimal parameter values of the UMAP algorithm and optimal parameter values of
classifiers [58,62,63], working with different formulas for calculating the loss function
in the UMAP algorithm [32], entropy and fractal dimension, as well as ideas of hybrid
classifiers [34] can ultimately improve the quality of data classification.

6. Conclusions

During this research, we proposed a new approach to the development of datasets
used in the development of classifiers in the task of classifying ODs based on blood protein
markers. It was suggested to use the results from applying the UMAP dimensionality
reduction algorithm to the original dataset and the results of calculating the approximation
entropy AE and two fractal dimensions KFD and HFD as new features. In some cases,
new features can provide an improvement in the quality of classification with different
combinations between themselves or with the original dataset.

The goal of further research is to analyze the prospects for the development and
application of cost-effective algorithms in the development of classifiers in the problem
of classifying ODs based on blood protein markers. In addition, we plan to study the
possibilities of improving the quality of classification by using population optimization
algorithms for the values of parameters of the UMAP algorithms and classifier parameters,
and also to work with various formulas for calculating entropy and the fractal dimension.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The author declares no conflict of interest.

References

1. Global Health Care Outlook. 2021. Available online: https://www2.deloitte.com/cn/en/pages/life-sciences-and-healthcare/
articles/2021-global-healthcare-outlook.html (accessed on 3 January 2023).

2. Li, G.; Hu, J.; Hu, G. Biomarker Studies in Early Detection and Prognosis of Breast Cancer. Adv. Exp. Med. Biol. 2017, 1026, 27–39.
[CrossRef] [PubMed]

3. Loke, S.Y.; Lee, A.S.G. The future of blood-based biomarkers for the early detection of breast cancer. Eur. J. Cancer. 2018, 92, 54–68.
[CrossRef] [PubMed]

4. Cohen, J.D.; Li, L.; Wang, Y.; Thoburn, C.; Afsari, B.; Danilova, L.; Douville, C.; Javed, A.A.; Wong, F.; Mattox, A.; et al. Detection
and localization of surgically resectable cancers with a multi-analyte blood test. Science 2018, 359, 926–930. [CrossRef]

5. Killock, D. CancerSEEK and destroy—a blood test for early cancer detection. Nat. Rev. Clin. Oncol. 2018, 15, 133. [CrossRef]
6. Hao, Y.; Jing, X.Y.; Sun, Q. Joint learning sample similarity and correlation representation for cancer survival prediction. BMC

Bioinform. 2022, 23, 553. [CrossRef] [PubMed]
7. Núñez, C. Blood-based protein biomarkers in breast cancer. Clin. Chim. Acta. 2019, 490, 113–127. [CrossRef] [PubMed]
8. Du, Z.; Liu, X.; Wei, X.; Luo, H.; Li, P.; Shi, M.; Guo, B.; Cui, Y.; Su, Z.; Zeng, J.; et al. Quantitative proteomics identifes a plasma

multi protein model for detection of hepatocellular carcinoma. Sci. Rep. 2020, 10, 15552. [CrossRef] [PubMed]
9. Kalinich, M.; Haber, D.A. Cancer detection: Seeking signals in blood. Science 2018, 359, 866–867. [CrossRef]
10. Song, C.; Li, X. Cost-Sensitive KNN Algorithm for Cancer Prediction Based on Entropy Analysis. Entropy 2022, 24, 253. [CrossRef]
11. Huang, S.; Cai, N.; Pacheco, P.P.; Narrandes, S.; Wang, Y.; Xu, W. Applications of Support Vector Machine (SVM) Learning in

Cancer Genomics. Cancer Genom. Proteom. 2018, 15, 41–51. [CrossRef]
12. Sepehri, M.M.; Khavaninzadeh, M.; Rezapour, M.; Teimourpour, B. A data mining approach to fistula surgery failure analysis in

hemodialysis patients. In Proceedings of the 2011 18th Iranian Conference of Biomedical Engineering (ICBME), Tehran, Iran,
14–16 December 2011; pp. 15–20. [CrossRef]

13. Rezapour, M.; Zadeh, M.K.; Sepehri, M.M. Implementation of Predictive Data Mining Techniques for Identifying Risk Factors of
Early AVF Failure in Hemodialysis Patients. Comput. Math. Methods Med. 2013, 2013, 830745. [CrossRef] [PubMed]

14. Rezapour, M.; Zadeh, K.M.; Sepehri, M.M.; Alborzi, M. Less primary fistula failure in hypertensive patients. J. Hum. Hypertens.
2018, 32, 311–318. [CrossRef] [PubMed]

269

Mathematics 2023, 11, 792

15. Toth, R.; Schiffmann, H.; Hube-Magg, C.; Büscheck, F.; Höflmayer, D.; Weidemann, S.; Lebok, P.; Fraune, C.; Minner, S.; Schlomm,
T.; et al. Random forest-based modelling to detect biomarkers for prostate cancer progression. Clin. Epigenet. 2019, 11, 148.
[CrossRef] [PubMed]

16. Savareh, B.A.; Aghdaie, H.A.; Behmanesh, A.; Bashiri, A.; Sadeghi, A.; Zali, M.; Shams, R. A machine learning approach identified
a diagnostic model for pancreatic cancer through using circulating microRNA signatures. Pancreatology 2020, 20, 1195–1204.
[CrossRef]

17. Lv, J.; Wang, J.; Shang, X.; Liu, F.; Guo, S. Survival prediction in patients with colon adenocarcinoma via multi-omics data
integration using a deep learning algorithm. Biosci Rep. 2020, 40, BSR20201482. [CrossRef]

18. Chaudhary, K.; Poirion, O.B.; Lu, L.; Garmire, L.X. Deep learning-based multi-omics integration robustly predicts survival in liver
cancer. Clin. Cancer Res. 2018, 24, 1248–1259. [CrossRef]

19. Lee, T.Y.; Huang, K.Y.; Chuang, C.H.; Lee, C.Y.; Chang, T.H. Incorporating deep learning and multi-omics autoencoding for
analysis of lung adenocarcinoma prognostication. Comput. Biol. 2020, 87, 107277. [CrossRef]

20. Qadri, S.F.; Shen, L.; Ahmad, M.; Qadri, S.; Zareen, S.S.; Akbar, M.A. SVseg: Stacked Sparse Autoencoder-Based Patch
Classification Modeling for Vertebrae Segmentation. Mathematics 2022, 10, 796. [CrossRef]

21. Chawla, N.V.; Bowyer, K.W.; Hall, L.O.; Kegelmeyer, W.P. SMOTE: Synthetic Minority Over-sampling Technique. J. Artif. Intell.
Res. 2002, 16, 321–357. [CrossRef]

22. Han, H.; Wang, W.Y.; Mao, B.H. Borderline-SMOTE: A New Over-Sampling Method in Imbalanced Data Sets Learning. In
Advances in Intelligent Computing; ICIC 2005. Lecture Notes in Computer Science, Huang, D.S., Zhang, X.P., Huang, G.B., Eds.;
Springer: Berlin, Heidelberg, 2005; Volume 3644, pp. 878–887. [CrossRef]

23. Swana, E.F.; Doorsamy, W.; Bokoro, P. Tomek Link and SMOTE Approaches for Machine Fault Classification with an Imbalanced
Dataset. Sensors 2022, 22, 3246. [CrossRef]

24. He, H.; Bay, Y.; Garcia, E.A.; Li, S. ADASYN: Adaptive synthetic sampling approach for imbalanced learning. In Proceedings of
the 2008 IEEE International Joint Conference on Neural Networks (IEEE World Congress on Computational Intelligence), Hong
Kong, 1–8 June 2008; pp. 1322–1328. [CrossRef]

25. Tomek, I. Two modifications of CNN. IEEE Trans. Syst. Man Cybern. 1976, 6, 769–772. [CrossRef]
26. Candès, E.J.; Li, X.; Ma, Y.; Wright, J. Robust principal component analysis? J. ACM 2011, 58, 1–37. [CrossRef]
27. Jolliffe, I.T.; Cadima, J. Principal component analysis: A review and recent developments. Phil. Trans. R. Soc. A. 2016, 374,

20150202. [CrossRef] [PubMed]
28. van der Maaten, L.; Hinton, G.E. Visualizing Data using t-SNE. J. Mach. Learn. Res. 2008, 9, 2579–2605.
29. McInnes, L.; Healy, J.; Melville, J. UMAP: Uniform manifold approximation and projection for dimension reduction. arXiv 2018,

arXiv:1802.03426.
30. Dorrity, M.W.; Saunders, L.M.; Queitsch, C.; Fields, S.; Trapnell, C. Dimensionality reduction by UMAP to visualize physical and

genetic interactions. Nat. Commun. 2020, 11, 1537. [CrossRef]
31. Becht, E.; McInnes, L.; Healy, J.; Dutertre, C.A.; Kwok, I.W.H.; Ng, L.G.; Ginhoux, F.; Newell, E.W. Dimensionality reduction for

visualizing single-cell data using UMAP. Nat. Biotechnol. 2019, 37, 38–44. [CrossRef]
32. Demidova, L.A.; Gorchakov, A.V. Fuzzy Information Discrimination Measures and Their Application to Low Dimensional

Embedding Construction in the UMAP Algorithm. J. Imaging 2022, 8, 113. [CrossRef]
33. Yu, W.; Liu, T.; Valdez, R.; Gwinn, M.; Khoury, M.J. Application of support vector machine modeling for prediction of common

diseases: The case of diabetes and pre-diabetes. BMC Med. Inform. Decis. Mak. 2010, 10, 16. [CrossRef]
34. Demidova, L.A. Two-stage hybrid data classifiers based on SVM and kNN algorithms. Symmetry 2021, 13, 615. [CrossRef]
35. Khan, S.S.; Madden, M.G. One-class classification: Taxonomy of study and review of techniques. Knowl. Eng. Rev. 2014, 29,

345–374. [CrossRef]
36. Scholkopf, B.; Williamson, R.C.; Smola, A.J.; Shawe-Taylor, J.; Platt, J. Estimating the support of a high-dimensional distribution.

Neural Comput. 2001, 13, 1443–1471. [CrossRef] [PubMed]
37. Liu, F.T.; Ting, K.M.; Zhou, Z.-H. Isolation-Based Anomaly Detection. ACM Trans. Knowl. Discov. Data 2012, 6, 1–39. [CrossRef]
38. Zheng, A.; Casari, A. Feature Engineering for Machine Learning: Principles and Techniques for Data Scientists, 1st ed.; O’Reilly Media,

Inc.: Sebastopol, CA, USA, 2018; p. 201.
39. COSMIC|Catalogue of Somatic Mutations in Cancer. Available online: https://cancer.sanger.ac.uk/cosmic (accessed on 3

January 2023).
40. Zanin, M.; Zunino, L.; Rosso, O.A.; Papo, D. Permutation Entropy and Its Main Biomedical and Econophysics Applications: A

Review. Entropy 2012, 14, 1553–1577. [CrossRef]
41. Zhang, A.; Yang, B.; Huang, L. Feature Extraction of EEG Signals Using Power Spectral Entropy. In Proceedings of the International

Conference on BioMedical Engineering and Informatics, Sanya, China, 27–30 May 2008; Volume 2, pp. 435–439. [CrossRef]
42. Weng, X.; Perry, A.; Maroun, M.; Vuong, L.T. Singular Value Decomposition and Entropy Dimension of Fractals. arXiv 2022,

arXiv:2211.12338. [CrossRef]
43. Pincus, S.M. Approximate entropy as a measure of system complexity. Proc. Natl. Acad. Sci. USA 1991, 88, 2297–2301. [CrossRef]
44. Pincus, S.M.; Gladstone, I.M.; Ehrenkranz, R.A. A regularity statistic for medical data analysis. J. Clin. Monit. Comput. 1991, 7,

335–345. [CrossRef]

270

Mathematics 2023, 11, 792

45. Delgado-Bonal, A.; Marshak, A. Approximate Entropy and Sample Entropy: A Comprehensive Tutorial. Entropy 2019, 21, 541.
[CrossRef]

46. Hjorth, B. EEG Analysis Based on Time Domain Properties. Electroencephalogr. Clin. Neurophysiol. 1970, 29, 306–310. [CrossRef]
47. Galvão, F.; Alarcão, S.M.; Fonseca, M.J. Predicting Exact Valence and Arousal Values from EEG. Sensors 2021, 21, 3414. [CrossRef]
48. Shi, C.-T. Signal Pattern Recognition Based on Fractal Features and Machine Learning. Appl. Sci. 2018, 8, 1327. [CrossRef]
49. Petrosian, A. Kolmogorov Complexity of Finite Sequences and Recognition of Different Preictal EEG Patterns. In Proceedings of

the Computer-Based Medical Systems, Lubbock, TX, USA, 9–10 June 1995; pp. 212–217. [CrossRef]
50. Katz, M.J. Fractals and the analysis of waveforms. Comput. Biol. Med. 1988, 18, 145–156. [CrossRef] [PubMed]
51. Gil, A.; Glavan, V.; Wawrzaszek, A.; Modzelewska, R.; Tomasik, L. Katz Fractal Dimension of Geoelectric Field during Severe

Geomagnetic Storms. Entropy 2021, 23, 1531. [CrossRef]
52. Higuchi, T. Approach to an irregular time series on the basis of the fractal theory. Phys. D Nonlinear Phenom. 1988, 31, 277–283.

[CrossRef]
53. Hall, P.; Park, B.U.; Samworth, R.J. Choice of neighbor order in nearest-neighbor classification. Ann. Stat. 2008, 36, 2135–2152.

[CrossRef]
54. Nigsch, F.; Bender, A.; Van Buuren, B.; Tissen, J.; Nigsch, A.E.; Mitchell, J.B. Melting point prediction employing k-nearest

neighbor algorithms and genetic parameter optimization. J. Chem. Inf. Model. 2006, 46, 2412–2422. [CrossRef]
55. Xing, W.; Bei, Y. Medical Health Big Data Classification Based on KNN Classification Algorithm. IEEE Access 2020, 8, 28808–28819.

[CrossRef]
56. Mohanty, S.; Mishra, A.; Saxena, A. Medical Data Analysis Using Machine Learning with KNN. In International Conference on

Innovative Computing and Communications; Gupta, D., Khanna, A., Bhattacharyya, S., Hassanien, A.E., Anand, S., Jaiswal, A., Eds.;
Advances in Intelligent Systems and Computing; Springer: Singapore, 2020; Volume 1166. [CrossRef]

57. Chapelle, O.; Vapnik, V.; Bousquet, O.; Mukherjee, S. Choosing multiple parameters for support vector machines. Mach. Learn.
2002, 46, 131–159. [CrossRef]

58. Demidova, L.; Nikulchev, E.; Sokolova, Y. Big data classification using the SVM classifiers with the modified particle swarm
optimization and the SVM ensembles. Int. J. Adv. Comput. Sci. Appl. 2016, 7, 294–312. [CrossRef]

59. Schober, P.; Vetter, T.R. Logistic Regression in Medical Research. Anesth Analg. 2021, 132, 365–366. [CrossRef]
60. Dai, B.; Chen, R.-C.; Zhu, S.-Z.; Zhang, W.-W. Using Random Forest Algorithm for Breast Cancer Diagnosis. In Proceedings of the

2018 International Symposium on Computer, Consumer and Control (IS3C), Taichung, Taiwan, 6–8 December 2018; pp. 449–452.
[CrossRef]

61. Acharjee, A.; Larkman, J.; Xu, Y.; Cardoso, V.R.; Gkoutos, G.V. A random forest based biomarker discovery and power analysis
framework for diagnostics research. BMC Med. Genom. 2020, 13, 178. [CrossRef] [PubMed]

62. Cheng, S.; Liu, B.; Ting, T.O.; Qin, Q.; Shi, Y.; Huang, K. Survey on data science with population-based algorithms. Big Data Anal.
2016, 1, 3. [CrossRef]

63. Demidova, L.A.; Gorchakov, A.V. Application of bioinspired global optimization algorithms to the improvement of the prediction
accuracy of compact extreme learning machines. Russ. Technol. J. 2022, 10, 59–74. [CrossRef]

64. Liu, J.-Y.; Jia, B.-B. Combining One-vs-One Decomposition and Instance-Based Learning for Multi-Class Classification. IEEE
Access 2020, 8, 197499–197507. [CrossRef]

65. Grandini, M.; Bagli, E.; Visani, G. Metrics for Multi-class Classification: An Overview. arXiv 2020, arXiv:2008.05756.
66. Haibo, H.; Yunqian, M. Imbalanced Learning: Foundations, Algorithms, and Applications; Wiley-IEEE Press: Hoboken, NJ, USA, 2013;

p. 216.
67. Krawczyk, B. Learning from imbalanced data: Open challenges and future directions. Prog. Artif. Intell. 2016, 5, 221–232.

[CrossRef]
68. Dong, W.; Moses, C.; Li, K. Efficient k-nearest neighbor graph construction for generic similarity measures. In Proceedings of the

20th International Conference on World Wide Web, Hyderabad, India, 28 March–1 April 2011; pp. 577–586.
69. Damrich, S.; Hamprecht, F.A. On UMAP’s true loss function. Adv. Neural Inf. Process. Syst. 2021, 34, 12.
70. UMAP: Uniform Manifold Approximation and Projection for Dimension Reduction. Available online: https://umap-learn.

readthedocs.io/en/latest/_modules/umap/umap_.html (accessed on 4 January 2023).
71. Prusty, S.; Patnaik, S.; Dash, S. SKCV: Stratified K-fold cross-validation on ML classifiers for predicting cervical cancer. Front.

Nanotechnol. 2022, 4, 972421. [CrossRef]
72. Slamet, W.; Herlambang, B.; Samudi, S. Stratified K-fold cross validation optimization on machine learning for prediction. Sink. J.

Dan Penelit. Tek. Inform. 2022, 7, 2407–2414. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

271

MDPI
St. Alban-Anlage 66

4052 Basel
Switzerland

Tel. +41 61 683 77 34
Fax +41 61 302 89 18

www.mdpi.com

Mathematics Editorial Office
E-mail: mathematics@mdpi.com

www.mdpi.com/journal/mathematics

ISBN 978-3-0365-7267-3

MDPI

St. Alban-Anlage 66

4052 Basel

Switzerland

Tel: +41 61 683 77 34

www.mdpi.com

	A9R3quuna_tdzg1t_g7s.pdf
	[Mathematics] Applied and Computational Mathematics for Digital Environments.pdf
	A9R3quuna_tdzg1t_g7s

