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Preface to ”New Trends in Fuzzy Set Theory and

Related Items”

Fuzzy set theory is one of the main trend topics in Mathematics and Computer Sciences nowadays.

Its wide, multidisciplinary applications, as well as the recent developments in its theoretical bases,

provide an excellent set of frameworks for researchers interested in different scientific disciplines.

Owing to these reasons, we have addressed the task of issuing this Special Issue, having in mind the

possibility of collecting new contributions devoted to this topic, from many different points of view.

In this sense, this book includes works authored by authors working from very different perspectives,

but all of them are in the first line of research of their areas.

The articles (twelve thereof) that have been included in this Special Issue cover a large set of the

newest developments in this framework of research. Thus, always bearing in mind the notion of a

fuzzy set, we can find ideas and new results on orderings, logic, aggregation of functions, functional

equations, operators, metric, etc. We have also included some works devoted to applications in, e.g.,

social choice.

Of course, the field of fuzzy sets theory is so broad nowadays that it is not possible to cover all of

them, but we consider that the book provides a rather complete view of the state-of-the-art in the field.

Esteban Induráin, Humberto Bustince, Javier Fernandez

Special Issue Editors
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Introduction to Special Issue: New Trends in Fuzzy
Set Theory and Related Items

Humberto Bustince 1 ID , Javier Fernandez 1 ID and Esteban Induráin 2,* ID

1 Institute of Smart Cities (ISC), Departamento de Estadística, Matemáticas e Informática, Universidad Pública
de Navarra, 31006 Pamplona, Spain; bustince@unavarra.es (H.B.); fcojavier.fernandez@unavarra.es (J.F.)

2 Institute for Advanced Materials (InaMat), Departamento de Estadística, Matemáticas e Informática,
Universidad Pública de Navarra, 31006 Pamplona, Spain

* Correspondence: steiner@unavarra.es; Tel.: +34-948-169-551

Received: 10 May 2018; Accepted: 1 June 2018; Published: 5 June 2018

Abstract: We focus on the articles recently published in the special issue of Axioms devoted to “New
Trends in Fuzzy Set Theory and Related Items”.

Keywords: fuzzy set theory and its applications

Since the launch, in 1965, of the key notion of a fuzzy subset by Lotfi A. Zadeh (see [1]),
this concept has succeeded in growing interest and development. Nowadays, it is undoubtedly
one of the most powerful and appealing branches of mathematics. Its range of applications is wide
and multidisciplinary, starting from computer sciences and artificial intelligence, but also touching on
a vast set of scientific disciplines (physics, engineering, medicine, economics, social choice, etc.).

Bearing in mind this fact, we accepted the task of organizing an special issue forf the journal,
Axioms, to collect and introduce new ideas and trends based on the notion of a fuzzy set. To do
so, we suggested possible authors, working in different settings and covering an exhaustive set of
possible applications.

Incidentally, as this special issue was starting to become a reality, we received a really sad piece of
news: Prof. Lotfi A. Zadeh passed away in September 2017, aged 96. Therefore, this special issue was
also, in a way, a homage and tribute to the person who had the clever idea of launching the important
concept of a fuzzy set. All of us are scientific heirs of him.

Concerning this special issue, twelve papers have been accepted and published. Five of them
come from Spain. Two of them come from Italy. One manuscript has coauthors both from Spain and
Venezuela. Other papers come from South Korea, U.S.A., Poland and Pakistan (one from each of
these countries).

The topics covered, of course all of them related to fuzzy sets theory and its applications, were
quite different from one another. Namely, we received contributions regarding the following items:

1. Scoring and decision-making using linguistic expressions, and suitable orderings (paper by
M.J. Campión et al.).

2. Theoretical and practical studies on orderings defined with type-2 fuzzy numbers and their
applications in decision-making in models of inference processes where uncertainty, imprecision
or vagueness is present (paper by P. Hernández et al.).

3. Aggregation functions and several kinds of operators acting on fuzzy sets, studied from an
algebraic point of view (paper by L. Legarreta et al.).

4. Numerical representability of fuzzy binary relations and preferences (paper by P. Bevilacqua et al.).
5. The relationship between indistinguishability operators, introduced with the aim of fuzzifying

the crisp notion of equivalence relations, and fuzzy metrics. (paper by J.J. Miñana and O. Valero).

Axioms 2018, 7, 37; doi:10.3390/axioms7020037 www.mdpi.com/journal/axioms1
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6. Analysis of environmental evaluation practices in a context of multi-criteria decision-making, through
managing interacting criteria based on Choquet integrals (paper by T. González-Arteaga et al.).

7. Studies on interval-valued intuitionistic fuzzy sets with applications to different kinds of algebra
(paper by Y.B. Jun et al.).

8. Category theory and foundations of Mathematics, where, instead of the basic category of sets,
a similar category of fuzzy sets is considered (paper by C. Servin et al.).

9. Studies on ordered fuzzy numbers with a revision of Kosiński’s theory (paper by K. Piasecki).
10. Interplay between aggregation functions and aggregation operators, providing a link to social

choice theory based on the Arrow’s impossibility theorem, using functional equations and
presenting some interpretation of the fuzzy framework (paper by J.C. Candeal).

11. Fuzzy graph theory: studying graphs in an intuitionistic fuzzy soft environment to be used then
in developing algorithms to deal with some decision-making problems (paper by S. Shahzadi and
M. Akram).

12. An study on quantiles in abstract convex structures through a new quantitative framework that
generalizes previous ones for the analysis and handling of aggregation operators (paper by
M. Cardin).

We want to thank all the authors of these works, which provide a wide view of some of the most
recent topics in the field of fuzzy set theory. Also, we acknowledge with thanks the work done by the
reviewers who collaborated to make this special issue possible. Our gratitude goes also to the editors
of Axioms for the support and help with the preparation of this special issue.

Acknowledgments: This work was partially supported by the research projects MTM2015-63608-P and
TIN2016-77356-P (MINECO/ AEI-FEDER, UE).

Conflicts of Interest: The authors declare no conflict of interest.
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c© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).
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Assigning Numerical Scores to Linguistic Expressions

María Jesús Campión 1, Edurne Falcó 2, José Luis García-Lapresta 3,* and Esteban Induráin 4
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Abstract: In this paper, we study different methods of scoring linguistic expressions defined on a
finite set, in the search for a linear order that ranks all those possible expressions. Among them,
particular attention is paid to the canonical extension, and its representability through distances in
a graph plus some suitable penalization of imprecision. The relationship between this setting and
the classical problems of numerical representability of orderings, as well as extension of orderings
from a set to a superset is also explored. Finally, aggregation procedures of qualitative rankings and
scorings are also analyzed.

Keywords: decision making; imprecision; qualitative scales; linguistic expressions; scores;
orderings; aggregation

MSC: 62C86 (Primary); 03E72; 06A06; 91B06; 91B14 (Secondary)

1. Introduction

Let U stand for a nonempty set, called universe. It is clear that comparing the elements of U
through some sort of binary relation R such that uR v is immediately understood as “the element u
is not worse than the element v” gives less information than assigning scores to each element of U.
A scoring function is a real-valued function S : U → R. The interpretation is obvious: if the score S(u)
of the element u ∈ U is not smaller than the score S(v) of the element v, then the above conclusion,
namely, “the element u is not worse than the element v” is also achieved. However, if an ordering
given on U through a binary relation R is also represented by a scoring function, say S : U → R,
the composition of f ◦ S of the map S with no matter what strictly increasing function f : R→ R also
represents the same ordering R on U. In other words: uR v ⇔ S(u) ≥ S(v) ⇔ f (S(u)) ≥ f (S(v))
holds true for all u, v ∈ U.

Despite the ordering being the same, the scores have important consequences and collateral
meanings. A typical example corresponds to a firm that wants to hire people, and prepares a test or
exam consisting of one hundred tasks to be done. Suppose the scores of two candidates u and v have
been just S(u) = 1 and S(v) = 2 (out of 100). Obviously, we would say that v is better than u, but both
of them having such poor results, the firm would reject hiring anyone among them. If, instead, the
scores were S(u) = 99 and S(v) = 100, again we would say that v is better than u, but now, quite
probably, the firm would be willing to hire both candidates.

Axioms 2017, 6, 19; doi:10.3390/axioms6030019 www.mdpi.com/journal/axioms3
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The most typical scoring procedures consist of numerical scales. Nevertheless, due to the
vagueness and imprecision involved in a wide variety of practical situations in which some sort
of evaluation is made, sometimes the use of finite measurement scales based on linguistic terms or
expressions seems to be more suitable than just using numerical scales. In this case, if L is a set of
linguistic terms (also known as labels), such as {very bad, bad, poor, fair, good, very good, excellent},
a scoring function on U taking values on L is a function S : U → L that can obviously be interpreted
as a qualitative scale of measurement.

From a pure mathematical point of view, whenever L is given a linear order �L, a scoring
procedure on U taking values on L can equivalently be understood through a numerical scoring
function f : U → R, which is obviously a quantitative scale of measurement. Indeed, if
L = {l1, l2, . . . , lg} denotes the set of linguistic terms and we understand that lh �L lk holds true if
and only if h ≥ k, then a scoring function S : U → L can be immediately interpreted by means of the
numerical scoring function T ◦ S : U → R, where T : L → R is given by T(lh) = h, h ∈ {1, . . . , g}.
In this situation, namely when L is given a linear order, the use of a scoring function taking values on L
or an equivalent numerical scoring function is, perhaps, a matter of taste (see García-Lapresta et al. [1]).

However, sometimes, in a higher degree of vagueness or imprecision, and even in the case of
using a set L = {l1, l2, . . . , lg} of linguistic terms, it could happen that the agents that assign scores to
the elements of a nonempty set U may hesitate when, given an element u ∈ U, the score S(u) needs to
be determined. A typical example is an approximation (based on data as climate, composition of soil,
amount of rain water per year, etc.) of the quality of the wine produced in a vineyard. An expert could
hesitate here, and instead of saying “no doubt, it will be very good”, she/he could declare something
as “from good to excellent”, so using a linguistic expression instead of just a linguistic term.

Our approach concerning the imprecision is based on an adaptation of the absolute order of
magnitude spaces introduced by Travé-Massuyès and Dague [2] and Travé-Massuyès and Piera [3];
more specifically in the extensions devised by Roselló et al. [4–6] (see also Agell et al. [7] and
Falcó et al. [8,9]).

At this stage, several mathematical problems appear, namely

(i) If a set L = {l1, l2, . . . , lg} of linguistic terms has been endowed with a linear order �L, try to
define a linear order on the set of linguistic expressions based on L. Needless to say, this “extended”
order should preserve or be compatible with �L when acting on the labels of L considered as
special cases of linguistic expressions.

(ii) Compare different linear orders (when available) defined on a set of linguistic expressions,
trying to explain which is the most suitable one to be used in some practical concrete situation.

(iii) Study problems of aggregation of a finite number of scorings based on linguistic terms
and expressions.

Having in mind these questions, the structure of the paper goes as follows. After the Introduction
(Section 1) and a compulsory Section 2 of preliminaries, previous results and necessary background,
in Section 3, we study sets of linguistic expressions and define suitable orderings on these kinds of sets.
In Section 4, we analyze some questions relative to the aggregation of rankings and scorings based on
qualitative scales. A final Section 5 of concluding remarks, suggestions for further research and open
questions closes the paper.

2. Previous Concepts and Results

Intuitively, a ranking on a universe U is some kind of ordering defined on U, usually defined
through a binary relation R on U, such that uR v means “the element u is at least as good as the
element v”. A scoring function on U is a map S : U → R. Notice that a scoring function S immediately
defines a ranking R on U, by declaring uR v ⇔ S(u) ≥ S(v), for all u, v ∈ U. For finite sets, a sort of
converse is also true, namely, each ranking can be represented by a scoring function (see e.g., the first
three chapters in Bridges and Mehta [10] for further details).

4
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Let us formalize all this through some definitions.

Definition 1. Let U denote a universe. A preorder � on U is a binary relation on U which is ref lexive
and transitive.

An antisymmetric preorder is said to be a partial order. A total preorder � on U is a preorder such that
u � v or v � u holds true for all u, v ∈ U. A total order is also called a linear order.

If � is a preorder on U, then the associated asymmetric relation is denoted by �, whereas ∼ stands
for the associated equivalence relation. These relations are respectively defined by u � v ⇔

(
(u � v)

and not (v � u)
)
, and u ∼ v ⇔

(
(u � v) and (v � u)

)
, for all u, v ∈ U. Notice that if � is a linear

order, then u � v ⇔
(
(u � v) and (u 
= v)

)
.

Definition 2. Let U denote a universe. Let � stand for a total preorder defined on U. We say that � is
representable if there exists a real-valued function S : U → R such that u � v ⇔ S(u) ≥ S(v) holds true
for all u, v ∈ U.

As commented before, it happens that, provided that U is finite, any total preorder defined on U
is representable (see Bridges and Mehta [10]). A function S that represents a total preorder � defined
on U is usually said to be a utility function for �.

Remark 1. Notice that a ranking (e.g., a total preorder) on a universe U is a qualitative scale of measurement,
whereas a scoring function is a quantitative scale. Other typical sorts of qualitative scales are those based on
labels and linguistic expressions (see next Definition 3). If S is a utility function that represents a total preorder
� on a universe U, and T : R → R is a strictly increasing function, it is straightforward to see that the
composition T ◦ S : U → R is also a utility function that represents �. Consequently, there are infinitely many
utility functions that represent a given total preorder � on a finite universe U.

Definition 3. Let L = {l1, l2, . . . , lg} denote a finite nonempty set of linguistic terms (labels), with g ≥ 3.
The set of linguistic expressions associated with L is defined as

L = {[lh, lk] | lh, lk ∈ L , 1 ≤ h ≤ k ≤ g},

where [lh, lk] = {lh, lh+1, . . . , lk}. Since the linguistic expression [lh, lh] is the singleton {lh}, by convention,
it can be replaced by the label lh. In this way, L ⊂ L.

Remark 2. The set of linguistic expressions can be represented by a graph GL. In the graph, the lowest layer
represents the linguistic terms lh ∈ L ⊂ L, the second layer represents the linguistic expressions created by two
consecutive labels [lh, lh+1], the third layer represents the linguistic expressions generated by three consecutive
labels [lh, lh+2], and so on up to last layer, where we represent the linguistic expression [l1, lg]. As a result,
the higher an element of the graph GL is, the more imprecise it becomes.

The vertices in GL are the elements of L and the edges E − F , where E = [lh, lk]
and F = [lh, lk+1], or E = [lh, lk] and F = [lh+1, lk]. Figure 1 shows the graph representation
for g = 5.

5
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[l1, l5]

[l2, l5][l1, l4]

[l3, l5][l2, l4][l1, l3]

[l4, l5][l3, l4][l2, l3][l1, l2]

l5l4l3l2l1

Figure 1. Graph representation of the linguistic expressions for g = 5.

3. Defining Orderings on Sets of Linguistic Expressions

Suppose that the set L = {l1, l2, . . . , lg} of linguistic terms is endowed with the linear order �
given by lh � lk ⇔ h ≥ k, for all h, k ∈ {1, . . . , g}.

We want now to extend the linear order � to a new linear order defined on the whole set L of
linguistic expressions on L. This problem has several positive solutions.

Remark 3. To extend the linear order � on L to a new linear order defined on L, first, we may
consider a partial order �1 defined on L as follows: [lh, lk] �1 [lh, lk] (ref lexivity), and also
{lh} = [lh, lh] �1 [lk, lk] = {lk} ⇔ h ≥ k, for all h, k ∈ {1, . . . , g} (compatibility with � on L).

Then, we may apply the well-known Szpilrajn’s theorem ([11]) that ensures that any partial order
on a given set can be extended to a linear order on that set.

3.1. Constructive Extensions: The Lexicographic Order and the Canonical Order

Instead of using a powerful result as Szpilrajn’s theorem as commented in Remark 3,
when L = {l1, l2, . . . , lg}, we can directly furnish some extensions in a constructive way, as stated
in Proposition 1 and Proposition 2, whose straightforward proofs are omitted for the sake of brevity.

Proposition 1. The binary relation �� on L defined as

[lh, lk] �� [lh′ , lk′ ] ⇔

⎧⎪⎨⎪⎩
h > h′

or
h = h′ and k ≥ k′

is a linear order that preserves the given order � on L ⊂ L. It is called the lexicographic order on L.

Notice that the real valued function S : L → R given by S([lh, lk]) = (g · h) + k is a utility
representation for ��.

Proposition 2. ([8]) The binary relation �c on L defined as

[lh, lk] �c [lh′ , lk′ ] ⇔

⎧⎪⎨⎪⎩
h + k > h′ + k′

or
h + k = h′ + k′ and k− h ≤ k′ − h′

6
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is a linear order, and it is called the canonical order on L. It also preserves the given order � on L ⊂ L.

Example 1. For g = 5, the elements of L are ordered as follows with respect to the lexicographic order:

l5 �� [l4, l5] �� l4 �� [l3, l5] �� [l3, l4] �� l3 �� [l2, l5] �� [l2, l4] ��

�� [l2, l3] �� l2 �� [l1, l5] �� [l1, l4] �� [l1, l3] �� [l1, l2] �� l1.

Moreover, through the canonical order (see also Figure 2), we get:

l5 �c [l4, l5] �c l4 �c [l3, l5] �c [l3, l4] �c [l2, l5] �c l3 �c [l2, l4] �c

�c [l1, l5] �c [l2, l3] �c [l1, l4] �c l2 �c [l1, l3] �c [l1, l2] �c l1.

[l1, l5]

[l2, l5][l1, l4]

[l3, l5][l2, l4][l1, l3]

[l4, l5][l3, l4][l2, l3][l1, l2]

l5l4l3l2l1

Figure 2. Canonical order in L for g = 5.

3.2. Numerical Representation of the Canonical Order Based on the Geodesic Metric

The canonical order on L can be represented by utility functions u : L −→ R in such a way that
E �c F ⇔ u(E) > u(F ), for all E ,F ∈ L.

Among the infinite possible utility representations of the canonical order on L, we are interested
in those based on distances. In addition, concerning metrics on a graph, perhaps the most typical one
is the so-called geodesic metric.

Definition 4. The geodesic metric dG : L2 → R is defined as

dG
(
[lh, lk], [lh′ , lk′ ]

)
= |h− h′|+ |k− k′| (1)

for all E = [lh, lk], F = [l′h, l′k] ∈ L.

Remark 4. Notice that dG(lh, lh+1) = 2 for every h ∈ {1, . . . , g}, so that L becomes uniform, in the
sense that adjacent linguistic terms are equidistant (see e.g., Herrera et al. [12] and García-Lapresta and
Pérez-Román [13,14] for dealing with non uniform qualitative scales).

Given E = [lh, lk] ∈ L, with #E , we denote the cardinality of E , i.e., the number of labels in the
interval [lh, lk]: #E = k + 1− h.
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In the following result, we establish that the canonical order on L introduced in Proposition 2 can
be defined through the geodesic distances to the highest possible assessment and the cardinality of the
linguistic expressions.

Proposition 3. For all E ,F ∈ L, it holds

E �c F ⇔

⎧⎪⎨⎪⎩
dG(E , lg) < dG(F , lg),

or

dG(E , lg) = dG(F , lg) and #E < #F .

Proof. It follows from Proposition 2 and Equation (1).

Remark 5. To distinguish between elements E ,F ∈ L, the second condition that appears in the statement of
Proposition 3, namely the one that reads “or dG(E , lg) = dG(F , lg) and #E < #F” is crucial. In fact, suppose
that on L we use only a scoring function S based on the geodesic metric, and given by S(E) = dG(E , lg). Then,
it is straightforward to see that two nodes E , F that appear in the same vertical in the graph GL are assigned the
same score, which is S(E) = dG(E , lg) = dG(F , lg) = S(F ). This scoring function S defines an ordering �∗

on L by declaring E �∗ F ⇔ S(E) ≥ S(F ), for all E ,F ∈ L. However, since g ≥ 3, it happens that �∗ is
a total preorder, but not a linear order. In other words, the geodesic distance is, so-to-say, miopic since it cannot
detect the difference between two elements in the same vertical in GL. For instance, if L = {very bad, bad, poor,
fair, good, very good, excellent}, the linguistic expressions “very good” and “from good to excellent” would be
assigned the same score through the geodesic metric.

3.3. GeodesIc Metric Matching Penalization of Imprecision

Another important feature that carries the second condition in the statement of Proposition 3 and
says “or dG(E , lg) = dG(F , lg) and #E < #F” is warning us about the role played by imprecision. If a
linguistic expression F consists of more labels than another one E , we understand that “F is more
imprecise than E” or, equivalently, “E is more accurate than F”. Taking this fact into account, it seems
interesting to search for measurements or scoring methods that, someway, penalize the imprecision
when comparing terms in L, as next Proposition 4 does.

Proposition 4. For every α ≥ 0, the function dα : L2 −→ R, defined as

dα(E ,F ) = dG(E ,F ) + α |#E − #F|,

i.e.,
dα

(
[lh, lk], [lh′ , lk′ ]

)
= |h− h′|+ |k− k′|+ α |h′ − h + k− k′| (2)

for all E = [lh, lk],F = [l′h, l′k] ∈ L, is a metric, and it is called the metric associated with α.

Proof. Since dα is a positive linear combination of the geodesic metric dG and the pseudometric
d : L2 −→ R defined as d(E ,F ) = |#E − #F|, then dα is a metric.

Proposition 5. Given α ≥ 0, the following statements are equivalent:

1. ∀E ,F ∈ L
(
E �c F ⇔ dα(E , lg) < dα(F , lg)

)
.

2. α ∈ Ig, where Ig =
(

0, 1
g−2

)
, if g is odd, and Ig =

(
0, 1

g−1

)
, if g is even.

Proof. 1 ⇒ 2) Consider g is odd. By Proposition 2, we have

[l1, lg] �c

[
l g−1

2
, l g+1

2

]
.

8
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Then, by hypothesis, we have

dα

(
[l1, lg], lg

)
< dα

([
l g−1

2
, l g+1

2

]
, lg

)
. (3)

Taking into account Equation (2),

dα

(
[l1, lg], lg

)
= |1− g|+ |g− g|+ α |g− 1 + g− g| = g− 1 + α (g− 1)

and

dα

([
l g−1

2
, l g+1

2

]
, lg

)
=

∣∣∣∣ g− 1
2

− g
∣∣∣∣+ ∣∣∣∣ g + 1

2
− g

∣∣∣∣+ α

∣∣∣∣g− g− 1
2

+
g + 1

2
− g

∣∣∣∣ = g + α.

Then, from Inequality (3), we obtain g− 1 + α(g− 1) < g + α, i.e.,

α <
1

g− 2
.

In order to prove that α > 0, suppose by way of contradiction that α = 0. By Proposition 2,
we have

l g+1
2
�c [l1, lg].

Then, by hypothesis, we have

dα

(
l g+1

2
, lg

)
< dα([l1, lg], lg).

Taking into account Equation (2),

dα

(
l g+1

2
, lg

)
= g− 1 = dα([l1, lg], lg),

which is a contradiction. Consequently, α ∈ Ig =
(

0, 1
g−2

)
.

We now consider that g is even. By Proposition 2, we have[
l g

2
, l g

2 +1

]
�c [l1, lg].

Then, by hypothesis, we have

dα

([
l g

2
, l g

2 +1

]
, lg

)
< dα

(
[l1, lg], lg

)
. (4)

Taking into account Equation (2),

dα

([
l g

2
, l g

2 +1

]
, lg

)
=
∣∣∣ g
2
− g

∣∣∣+ ∣∣∣ g
2
+ 1− g

∣∣∣+ α
∣∣∣g− g

2
+

g
2
+ 1− g

∣∣∣ = g.

Then, from Inequality (4), we obtain g− 1 + α(g− 1) < g, i.e.,

α <
1

g− 1
.

In order to prove that α > 0, suppose by way of contradiction that α = 0. As mentioned above,
we have

dα

([
l g

2
, l g

2 +1

]
, lg

)
< dα([l1, lg], lg).

9
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However, taking into account Equation (2),

dα

([
l g

2
, l g

2 +1

]
, lg

)
= g− 1 = dα([l1, lg], lg),

we obtain a contradiction. Consequently, α ∈ Ig =
(

0, 1
g−1

)
.

2 ⇒ 1) It is a routine.

Definition 5. Given α ∈ Ig, the scoring function Sα : L −→ R is defined as

Sα(E) = dα(l1, lg)− dα(E , lg),

for every E ∈ L.

It is easy to see that, for every [lh, lk] ∈ L , it holds

Sα

(
[lh, lk]

)
= h + k− 2− α (k− h). (5)

Proposition 6. Given α ∈ Ig, for all E ,F ∈ L , it holds

E �c F ⇔ Sα(E) > Sα(F ).

Proof. By Proposition 5.

Example 2. Taking into account the condition appearing in Proposition 5 for g = 5, i.e., 0 < α < 1
3 ,

and Equation (5), we have

Sα(l5) = 8 > Sα([l4, l5]) = 7− α > Sα(l4) = 6 > Sα([l3, l5]) = 6− 2α >

Sα([l3, l4]) = 5− α > Sα([l2, l5]) = 5− 3α > Sα(l3) = 4 >

Sα([l2, l4]) = 4− 2α > Sα([l1, l5]) = 4− 4α > Sα([l2, l3]) = 3− α >

Sα([l1, l4]) = 3− 3α > Sα(l2) = 2 > Sα([l1, l3]) = 2− 2α >

Sα([l1, l2]) = 1− α > Sα(l1) = 0 .

3.4. Extensions Based on Different Criteria

As we have already seen, both the lexicographic and the canonical linear orders on L extend the
given order on L. Although it is always possible to extend a linear order from a given finite set U to its
power set, a typical question that, as a matter of fact, gave rise to a battery of classical papers from
the 1970s (see e.g., Gärdenfors [15], Kannai and Peleg [16], Barberà and Pattanaik [17], Fishburn [18],
Bossert [19] and Bossert et al. [20]) is whether or not it is possible to perform an extension that follows
a list of criteria imposed a priori.

Sometimes, the extension is not possible because the criteria used are, so-to-say, contradictory.
However, perhaps surprisingly, there are other situations in which the extension is not possible because
of a combinatorial explosion, which, due to the much bigger cardinality 2#U of the power set of U, does
not leave room to accommodate all terms of the power set, in an extended linear order, accomplishing
all the criteria. Perhaps the most famous result in this direction is the so-called theorem of impossibility
of extension due to Kannai and Peleg [16] (for a detailed account, see Barberà et al. [21]).

Consider the following example.

Example 3. Let U = {u1, u2, . . . , up} be a finite universe. Assume that U is endowed with a linear order �
such that ui � uj ⇔ i ≥ j. Consider the following two criteria for an extension, say �ext of � to the power
set of U.

10
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(i) A criterion [M] based on the idea of a mean value, so that if ui � uj in U, then {ui} �ext
{ui, uj} �ext {uj} holds true.

(ii) A criterion [C] based on the idea of cardinality, in the sense “the bigger, the better”, so that given
ui, uj ∈ U such that ui 
= uj, then {ui, uj} �ext {ui} and also {ui, uj} �ext {uj} hold true.

In this example, it is clear that these two criteria are contradictory. Unless the set U is a singleton,
no extension �ext can at the same time satisfy [M] and [C].

By the way, suppose that we use the criterion [C], jointly with a rule [B] that pays attention to the
best elements of the corresponding subsets, as follows: when two subsets A, B ⊂ U have the same
cardinality, pay attention to the best elements max A, max B as regards �. If max A = max B = ui,
then pay attention to max(A \ {ui}) and max(B \ {ui}), and so on. We proceed this way until we
declare A � B or B � A.

Starting with the set of labels L = {l1, l2, . . . , lg}, we extend the usual ordering not to the whole
power set of L, but to the set of linguistic expressions L, and accomplishing the criteria [C] and [B], and
it is well understood that [C] is accomplished in this context if, for every [lh, lk] ∈ L such that k < g it
holds [lh, lk+1] �ext [lh, lk], and for every [lh, lk] ∈ L such that h > 1 , it holds that [lh−1, lk] �ext [lh, lk].

Calling �cm to the extended linear order on L, for g = 5 , we get:

[l1, l5] �cm [l2, l5] �cm [l1, l4] �cm [l3, l5] �cm [l2, l4] �cm

[l1, l3] �cm [l4, l5] �cm [l3, l4] �cm [l2, l3] �cm [l1, l2] �cm

l5 �cm l4 �cm l3 �cm l2 �cm l1.

The linear order �cm is said to be the cardinality-maximality extension of �.

Remark 6. The canonical order �c on L only satisfies the criterion [M], well understood that [M] is
accomplished in this context if, for every lh ∈ L such that h < g , it holds that {lh+1} �ext [lh, lh+1] �ext {lh}.

The lexicographic order �� fails to satisfy both [M] and [C].
The cardinality-maximality extension �cm satisfies [C], but not [M].

Taking into account the last ideas in Example 3, in which an extended order was defined on L but
not necessarily on the whole power set of L, we may realize that, at this stage, an interesting question
appears. Suppose that we are given a set of criteria for extension of a linear order from a set U to
its power set. Assume also that, as it is the case of Kannai–Peleg’s theorem ([16]), such set of criteria
provokes an impossibility result. Even if this happens, when we try to extend the ordering � defined
on the set L = {l1, l2, . . . , lg} of labels, to its corresponding set L of linguistic expressions, it may still
happen that an extension that accomplishes the criteria is possible. The reason is that L is much smaller
than the whole power set of L. Sometimes, due to this restriction of domain, the extension could still
be obtained. Similar questions, namely impossibility theorems in which the intrinsic impossibility
actually disappears when a suitable restriction of domain is done, have been analyzed in depth in the
contexts of Social Choice (see e.g., Gaertner [22]).

Let us explore this fact in more detail. Given a finite set U = {u1, u2, . . . , up} endowed with a
linear order � such that ui � uj ⇔ i ≥ j, suppose that we want to define an extension �ext on the
power set of U. We say that �ext satisfies:

(i) The Gärdenfors principle [G] (see Gärdenfors [15]) if, for all A ⊆ U and ui ∈ U , it holds that
ui � max(A) ⇒ A ∪ {ui} �ext A and min(A) � ui ⇒ A �ext A ∪ {ui}.

(ii) The weak monotonicity principle [W] if, for all A, B ⊆ U and ui /∈ A ∪ B , it holds that A �ext B ⇒
A ∪ {ui} �ext B ∪ {ui}.

A version of the key Kannai–Peleg impossibility theorem (see Kannai and Peleg [16], Fishburn [18],
Barberà et al. [17] and Bossert [19]) reads as follows.
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Theorem 1. Let U = {u1, u2, . . . , up} be a finite set with at least six elements (p ≥ 6), endowed with the
linear order � defined as ui � uj ⇔ i ≥ j. Then, there is no extension �ext that satisfies both [G] and [W]
and is a total preorder on the power set of U.

However, after a suitable restriction of domain, the impossibility stated in the Kannai–Peleg
theorem could actually disappear, if built in our context of linguistic terms and expressions, as the next
Remark 7 clearly shows.

Remark 7. When we consider the set of labels L = {l1, l2, . . . , l6} endowed with the usual linear order �,
we may observe that the canonical order �c on L satisfies both [G] and [W], well understood that here in this
context where a restriction of domain plays a crucial role, [G] and [W] should read as follows:

(i) [G] is accomplished in this context if, for every [lh, lk] ∈ L, the following conditions hold:

[lh, lk+1] �ext [lh, lk], whenever k < g,
[lh, lk] �ext [lh−1, lk], whenever h > 1.

(ii) [W] is satisfied in this context if for all [lh, lk], [lh, lk′ ] ∈ L, the following conditions hold:

[lh, lk] �ext [lh, lk′ ] ⇒ [lh−1, lk] �ext [lh−1, lk], whenever h > 1,
[lh, lk] �ext [lh′ , lk] ⇒ [lh, lk+1] �ext [lh′ , lk+1], whenever k < g.

The extension �ext is a total preorder order because it is indeed a linear order. Therefore,
Kannai–Peleg impossibility theorem is no longer valid when we extend linear orders from L to L, that,
obviously, is much smaller than the power set of L.

Another classical question in this approach consists in, starting from a finite set U endowed with
a linear order, in order to characterize orderings on the power set of U (but not necessarily extensions
of the given order on U) that satisfy a set of criteria imposed a priori.

Let us see an example of this situation.

Example 4. Suppose that a total preorder �, defined directly on the power set of a finite set U, satisfies the
following conditions:

(i) {ui} ∼ {uj} and also {ui, uj} � {ui} hold true for all ui, uj ∈ U such that ui 
= uj.
(ii) For all A, B ⊂ U and ui /∈ A ∪ B , it holds that A � B ⇒ A ∪ {ui} � B ∪ {ui}.

Then, it can be straightforwardly proved that � is, exactly, the so-called cardinal ordering on the
power set of U, namely A � B ⇔ #A ≥ #B holds true for all A, B ⊆ U (see Pattanaik and Xu [23]
for a proof of this last fact).

Having these ideas in mind, and coming back to our context of labels and linguistic expressions,
we may see that the lexicographic extension �� on L is characterized as follows.

Proposition 7. Consider the set of labels L = {l1, l2, . . . , lg}, endowed with the usual linear order �.
An extension �ext to the set L of linguistic expressions satisfies the following conditions:

(i) For all h, k ∈ {1, . . . , g}, it holds that {lh} �ext {lk} ⇔ h ≥ k.
(ii) For all [lh, lk], [lh′ , lk′ ] ∈ L, it holds that h > h′ ⇒ [lh, lk] �ext [lh′ , lk′ ].

(iii) For all [lh, lk], [lh, lk′ ] ∈ L, it holds that k > k′ ⇒ [lh, lk] �ext [lh, lk′ ],

if and only if �ext = ��.

Proof. It is in immediate consequence of the mere definition of the lexicographic extension �� on L.
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The cardinality-maximality extension �cm can be characterized as follows.

Proposition 8. Consider the set of labels L = {l1, l2, . . . , lg}, endowed with the usual linear order �.
An extension �ext to the set L of linguistic expressions satisfies the following conditions:

(i) For all h, k ∈ {1, . . . , g}, it holds that {lh} �ext {lk} ⇔ h ≥ k.
(ii) For all E = [lh, lk], F = [lh′ , lk′ ] ∈ L, it holds that #E > #F ⇒ E �ext F .

(iii) For all E = [lh, lk], F = [lh′ , lk′ ] ∈ L with #E = #F , it holds k > k′ ⇒ E �ext F ,

if and only if �ext = �cm.

Proof. It is in immediate consequence of the mere definition of the cardinality-maximality extension
�cm on L.

We may also point out that these characterizations can reflect practical situations. In fact, they
could reflect particular methods of assigning scores, perhaps discriminating between expressions that
have the same score, as the next Examples 5 and 6 show. Notice that sometimes people use more than
one score: first, there is one method of scoring, but if this leads to a tie, then a second method of scoring
is used, and so on, using more methods of scorings if necessary, until the tie is broken.

Example 5. Consider the set of labels L = {l1, l2, . . . , lg}, two scoring functions S, T : L → R and the
following total preorder on L

[lh, lk] �ext [lh′ , lk′ ] ⇔

⎧⎪⎪⎨⎪⎪⎩
S
(
[lh, lk]

)
> S

(
[lh′ , lk′ ]

)
or

S
(
[lh, lk]

)
= S

(
[lh′ , lk′ ]

)
and T

(
[lh, lk]

)
≥ T

(
[lh′ , lk′ ]

)
.

(6)

(i) If S
(
[lh, lk]

)
= h + k and T

(
[lh, lk]

)
= h− k, then �ext is the canonical extension �c on L.

(ii) If S
(
[lh, lk]

)
= h and T

(
[lh, lk]

)
= k, then �ext is the lexicographic extension �� on L.

(iii) If S
(
[lh, lk]

)
= k − h and T

(
[lh, lk]

)
= k, then �ext is the cardinality-maximality extension

�cm on L.

Example 6. An expert is forecasting the quality of the forthcoming new harvest in a piece of land. To do so,
she/he uses labels as {very bad, bad, poor, fair, good, very good, excellent}. Moreover she/he can hesitate and
show imprecision, so that the forecast could be an expression as, for instance, “from fair to very good”. From the
point of view of the land keepers, a forecast is more positive than another one if the “average” is more favorable.
Among two forecasts with identical average, it is important to avoid imprecision so that the most accurate is
declared the more positive. The extension �ext defined this way is the lexicographic one, ��, on L.

4. Aggregation of Qualitative Assessments and Scorings

4.1. Some Facts about the Aggregation of Assessments and Scorings

Suppose now that a finite number of experts, agents, decision-makers or individuals show
their assessments on a finite set, called universe of alternatives, X = {x1, x2, . . . , xn}. To do so,
each individual could establish a qualitative ranking on X, based on linguistic terms L = {l1, l2, . . . , lg},
or perhaps they show some imprecision and use the set L of linguistic expressions that come from L.
Once the opinions of all the individuals have been established, a typical problem consists in aggregating
them into a social ranking that somewhat reflects a decision that could be shared by all the individuals,
as a society or collective, following some rules of “common sense” on which all the agents could
agree. To put a trivial example, if each agent has ranked the elements of X in an identical manner,
it seems compulsory that the social ranking should keep this, making no changes on the label or
linguistic expression assigned to each one of the alternatives, and consequently showing respect for
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unanimity. It could also happen that each agent has already defined a sort of numerical scoring on
the alternatives, so that the problem of aggregation translates in defining some sort of average of the
individual numerical scores.

Notice that any scoring function S : X → R immediately defines a total preorder � on X by
just declaring xi � xj ⇔ S(xi) ≥ S(xj), for all xi, xj ∈ X. An important fact that comes from the
aggregation problem is that, even in the case of any individual scoring function defining a linear order
on X—that is, provided that ties never occur at the individual level—the final social aggregated scoring
function could fail to be a linear order. Ties could appear after aggregation, so that total preorder is all
the best that we may expect a priori as the ordering coming from a social scoring function.

Moreover, at this stage, it is relevant to say that even imposing mild restrictions of so-to-say
“common sense” to the rules that aggregate individual preferences into a social one, the existence
of a social rule in those conditions could become impossible, as proved in the famous Arrow’s
impossibility theorem in Social Choice (see e.g., Arrow [24], Kelly [25], Campbell and Kelly [26] and
Campión et al. [27] for further information on this topic).

In the present Section 4, we will not pay attention to these last kinds of questions. Instead, we will
introduce some aggregation procedures for qualitative assessments and/or scorings over a finite set,
disregarding the fact of the aggregation procedure satisfying the typical conditions (e.g., independence
of irrelevant alternatives, non-dictatorship, etc.) arising in the Arrovian model or similar settings.

Let us introduce now some necessary concepts to deal with an aggregation procedure.

Definition 6. Let X = {x1, x2, . . . , xn} be a finite set of alternatives. Suppose that a finite set of agents
A = {1, 2, . . . , m} declare their assessments on the elements of X by means of linguistic expressions. A profile
V is a matrix

(
va

i
)

consisting of m rows and n columns (Notice that here the superindex a will correspond to a
row (that depends on agents), whereas the subindex i corresponds to a column (that depends on alternatives)) of
linguistic expressions, where the element va

i ∈ L represents the linguistic assessment given by the agent a ∈ A
to the alternative xi ∈ X. Then,

V =

⎛⎜⎜⎜⎜⎜⎝
v1

1 · · · v1
i · · · v1

n
· · · · · · · · · · · · · · ·
va

1 · · · va
i · · · va

n
· · · · · · · · · · · · · · ·
vm

1 · · · vm
i · · · vm

n

⎞⎟⎟⎟⎟⎟⎠ = (va
i ) .

Therefore, each entry va
i is a linguistic expression [lh, lk] ∈ L, which corresponds to the assessment

that the a-th agent or expert has done on the i-th element xi of the set X of alternatives. Both lh and
lk will depend on the position in which va

i is located in the matrix V, namely in the a-th row and
i-th column.

Taking into account the interval Ig appearing in Proposition 5 and the scoring function
Sα : L −→ R introduced in Definition 5, we now define the scoring function Tα : X → R as

Tα(xi) =
1
m

m

∑
a=1

Sα (va
i ) ,

for each profile V =
(
va

i
)
.

We now establish the procedure for ranking the alternatives.

Proposition 9. Given α ∈ Ig and a profile V =
(
va

i
)
, the binary relation �α on X defined as

xi �α xj ⇔ Tα(xi) ≥ Tα(xj)

is a total preorder on X.
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Proof. Just notice that any scoring function T : X → R immediately defines a total preorder � on X
by declaring xi � xj ⇔ T(xi) ≥ T(xj).

Consider now that agents should assess each alternative from different criteria, so that
C = {c1, c2, . . . , cr} represents the set of criteria available to the agents. Then, we have r profiles
V1 =

(
va,1

i
)
, V2 =

(
va,2

i
)
, . . . , Vr =

(
va,r

i
)
, where va,q

i ∈ L is the assessment given by the agent a ∈ A
to the i-th alternative xi ∈ X with respect to the q-th criterion cq ∈ C.

Since each criterion may have different importance in the decision, we will also consider a
weighting vector w = (w1, w2, . . . , wr) ∈ [0, 1]r, satisfying w1 + w2 + · · ·+ wr = 1.

Given α ∈ Ig, the profiles V1 =
(
va,1

i
)
, V2 =

(
va,2

i
)
, . . . , Vr =

(
va,r

i
)

and a weighting
vector w = (w1, w2, . . . , wr) satisfying w1 + w2 + · · ·+ wr = 1, we now define the scoring function
Tα,w : X → R as

Tα,w(xi) =
1
r

r

∑
q=1

wq

(
1
m

m

∑
a=1

Sα

(
va,q

i
))

.

Proposition 10. Given α ∈ Ig, the profiles V1 =
(
va,1

i
)
, V2 =

(
va,2

i
)
, . . . , Vr =

(
va,r

i
)

and a weighting
vector w = (w1, w2, . . . , wr) satisfying w1 + w2 + · · ·+ wr = 1, the binary relation �α,w on X defined as

xi �α,w xj ⇔ Tα,w(xi) ≥ Tα,w(xj)

is a total preorder on the set X of alternatives.

Proof. The proof is immediate and leans on the same fact as the proof of Proposition 9.

Remark 8. Similar constructions could also be done using, instead of the arithmetic mean, other kinds of
aggregation functions as, e.g., medians, trimmed means and so on.

We note that García-Lapresta and González del Pozo [28] propose a multi-criteria decision-making
procedure in the same framework, but using a purely ordinal approach.

4.2. A Field Experiment

As described with more detail in García-Lapresta et al. [1], the proposed use of qualitative
rankings and scorings based on linguistic expressions, their numerical representation by means of the
geodesic distance plus a penalization of imprecision, as well as the subsequent method of aggregation
just described in Proposition 10, have actually been tested in a field experiment carried out in Trigo
restaurant in Valladolid, Spain (30 November 2013), under appropriate conditions of temperature,
light and service.

A total of six experts trained in the sensory analysis of wines and wild mushrooms were recruited
through the Gastronomy and Food Academy of Castile and Leon. When the test was being carried out,
there was no communication between the experts and the samples were given to them without
any identification.

The six experts assessed the products included in Table 1 through the five linguistic terms of Table 2
(or the corresponding linguistic expressions, when they hesitated) under three criteria: appearance (A),
smell (S) and taste (T).

Five of the six experts sometimes hesitated about their opinions, and they assigned linguistic
expressions with two labels. This happened in 19 of the 108 ratings, i.e., 17.59 % of the cases. The ratings
provided by the experts appear in Table 3.
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Table 1. Alternatives.

x1 White wine ‘Rueda Zascandil 2012’
x2 Red wine ‘Toro Valdelacasa 2007’
x3 Raw Boletus pinophilus
x4 Raw Tricholoma portentosum
x5 Cooked Boletus pinophilus
x6 Cooked Tricholoma portentosum

Table 2. Linguistic terms.

l1 I don’t like it at all
l2 I don’t like it
l3 I like it
l4 I rather like it
l5 I like it so much

Table 3. Ratings.

Expert 1 Expert 2 Expert 3 Expert 4 Expert 5 Expert 6

x1

A l3 l4 l4 l5 l3 l3
S [l3, l4] l3 l4 l4 l4 l4
T l3 l3 l4 l4 l3 l3

x2

A l4 l4 l2 l5 l4 l4
S [l4, l5] l5 l2 l5 l3 l5
T [l4, l5] l5 l2 l5 l3 [l4, l5]

x3

A l4 l4 l5 l5 l3 l4
S [l4, l5] l3 [l4, l5] l5 l3 l5
T l5 l5 [l4, l5] l5 l4 [l4, l5]

x4

A l4 l3 l4 l5 l3 [l2, l3]
S l3 [l2, l3] l4 l3 l2 [l2, l3]
T l3 l3 [l4, l5] l4 l2 l4

x5

A l5 l4 l4 l4 l3 l4
S l5 l5 l5 l4 l3 [l4, l5]
T [l4, l5] l5 l5 l5 l4 [l4, l5]

x6

A l5 l3 [l4, l5] l5 [l2, l3] l4
S l5 l3 l5 l3 [l3, l4] l4
T l4 l4 l5 l3 l4 [l3, l4]

We now show the outcomes in five cases.

1. When only considering appearance, i.e., w = (1, 0, 0), and the parameter α = 0.3, we obtain:

Tα,w(x1) = 5.333, Tα,w(x2) = 5.666, Tα,w(x3) = 6.333,

Tα,w(x4) = 5.116, Tα,w(x5) = 6.000, Tα,w(x6) = 5.900.

Then, x3 �α,w x5 �α,w x6 �α,w x2 �α,w x1 �α,w x4.
2. When only considering smell, i.e., w = (0, 1, 0), and the parameter α = 0.3, we obtain:

Tα,w(x1) = 5.450, Tα,w(x2) = 6.116, Tα,w(x3) = 6.233,

Tα,w(x4) = 3.566, Tα,w(x5) = 6.783, Tα,w(x6) = 5.783.

Then, x5 �α,w x3 �α,w x2 �α,w x6 �α,w x1 �α,w x4.
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3. When only considering taste, i.e., w = (0, 0, 1), and the parameter α = 0.3, we obtain:

Tα,w(x1) = 4.666, Tα,w(x2) = 5.900, Tα,w(x3) = 7.233,

Tα,w(x4) = 4.783, Tα,w(x5) = 7.233, Tα,w(x6) = 5.783.

Then, x3 ∼α,w x5 �α,w x2 �α,w x6 �α,w x4 �α,w x1.
4. Taking into account the weights (These weights are quite usual in this kind of tasting.), w1 = 0.2

for appearance, w2 = 0.3 for smell and w3 = 0.5 for taste, i.e., w = (0.2, 0.3, 0.5), and the
parameter α = 0.3, we obtain:

Tα,w(x1) = 5.035, Tα,w(x2) = 5.918, Tα,w(x3) = 6.753,

Tα,w(x4) = 4.485, Tα,w(x5) = 6.852, Tα,w(x6) = 5.807.

Then, x5 �α,w x3 �α,w x2 �α,w x6 �α,w x1 �α,w x4.
5. Taking into account the weights w1 = 0.4 for appearance, w2 = 0.2 for smell and w3 = 0.4 for

taste, i.e., w = (0.4, 0.2, 0.4), and the parameter α = 0.3, we obtain the following outcomes:

Tα,w(x1) = 5.090, Tα,w(x2) = 5.850, Tα,w(x3) = 6.673,

Tα,w(x4) = 4.673, Tα,w(x5) = 6.650, Tα,w(x6) = 5.830.

Then, x3 �α,w x5 �α,w x2 �α,w x6 �α,w x1 �α,w x4.

Although we have considered the specific value of α = 0.3 in the previous calculations, we have to
notice that in all cases the alternatives are ranked in the same way for all the values of α ∈ I5 = (0, 1/3).
Thus, the parameter α has been irrelevant in this field experiment. The reason is the low number
of assessments with more than one linguistic term (17.59 % of the cases). However, if applying the
procedure of Proposition 9 to the field experiment presented in Agell et al. [29], where five experts
assessed five fruits with respect to their suitability to combine with dark chocolate, and 40% of the
assessments were linguistic expressions with two or more linguistic terms, the ranking depending on
the value of the parameter α.

We may conclude that this method, based on geodesic distances on linguistic expressions, plus a
penalization of imprecision, and using a weighting vector according to different criteria, could be
considered as a suitable one in these practical experiments, at least in the field of sensory analysis.

5. Conclusions

The definition of ratings and/or scorings on a finite set has been associated with a wide sort of
theoretical questions, namely:

(i) The existence of a numerical representation for a total preorder on a finite set, so translating
qualitative scales into quantitative (numerical) ones.

(ii) The selection of a suitable method of scoring or numerical representation of a qualitative scale.
(iii) The search for a compatible extension of a ranking defined on a finite set to its power set—or at

least to a suitable superset of the given set—following a list of criteria established a priori.
(iv) The implementation of aggregation procedures on profiles of individual ratings and/or scorings,

in the search for a new scoring that reflects a social average.
(v) The comparison between different ways of rating, scoring and aggregating, in the search for the

most suitable one in view of some practical circumstances to be used in field experiments, and
so on.

As a matter of fact, each of these questions, studied separately, could give raise to a wide sort
of results in the literature. Indeed most of them have already been considered and analyzed, at least
partially, by many authors.
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However, many open problems remain. To provide only a few examples, we could say at this
point that:

(i) A systematic study of criteria to extend a linear order from a set to its power set, trying to classify
the criteria in, so-to-say, contradictory families, so that any two criteria coming from different
families give raise to an impossibility result.

(ii) The systematic development of a standard procedure to determine which rating, scoring and/or
aggregation procedure is the most suitable, maybe taking into account some previous criteria.

Needless to say, all of this leaves enough room for further research to be developed in the future.
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Abstract: Since Lotfi A. Zadeh introduced the concept of fuzzy sets in 1965, many authors have
devoted their efforts to the study of these new sets, both from a theoretical and applied point of
view. Fuzzy sets were later extended in order to get more adequate and flexible models of inference
processes, where uncertainty, imprecision or vagueness is present. Type 2 fuzzy sets comprise one of
such extensions. In this paper, we introduce and study an extension of the fuzzy numbers (type 1), the
type 2 generalized fuzzy numbers and type 2 fuzzy numbers. Moreover, we also define a partial order
on these sets, which extends into these sets the usual order on real numbers, which undoubtedly
becomes a new option to be taken into account in the existing total preorders for ranking interval
type 2 fuzzy numbers, which are a subset of type 2 generalized fuzzy numbers.

Keywords: type 2 fuzzy sets; fuzzy numbers; partial order

1. Introduction

In the framework of fuzzy systems, in order to give a response or to make a decision, fuzzy numbers
(FNs) and fuzzy quantities (FQs) need to be compared, i.e., to be ranked. In a sense, fuzzy numbers
can be considered as real values with degrees of uncertainty, imprecision or vagueness. They are
represented as fuzzy sets on the real line, that is, in general, they are not simply real numbers.
Therefore, they cannot be compared by means of the usual total order on the set of real numbers.
On the other hand, the pointwise partial order of functions, which is the standard order in the fuzzy sets,
does not adequately (see Section 2.1) extend the order of real numbers. However, from the horizontal
representation of the extension principle, a partial order has been established (see Equation (4)) in the
FNs that extends the order of real numbers. Since Jain [1,2] and Dubois and Prade [3] introduced the
concept of fuzzy numbers, many authors (see, for example, [2,4–11]) have given different methods that,
although they do not produce total orders, allow one to compare the FNs and to order some of their
subsets. Among these approaches are: statistical methods (see [7,10]), geometric methods (see [8]),
analytical methods (e.g., in [6], the authors work with bounded variation functions), computational
methods (e.g., artificial neural networks are applied in [11]) or the combination of some of these.

Bortolan et al. [12], Cheng et al. [13] and, recently, Wang et al. [14,15] reviewed a variety of
existing methods for comparing FNs. Moreover, the properties that every method must satisfy to
compare reasonably FNs were discussed in [14,15].

On the other hand, since the introduction of extensions of fuzzy sets, the need to define and
analyze fuzzy numbers in these extensions has been pointed out. For example, intuitionist fuzzy
numbers (IFNs) and generalized intuitionist fuzzy numbers (GIFNs), which are intuitionistic sets on
the real line satisfying certain conditions, were defined and studied in [16–18]. Recently, interval type
2 fuzzy numbers (IT2FNs) have been defined in [19–22], as interval type 2 fuzzy sets (IT2FSs) on the
real line fulfilling some properties. Besides, in [19,22], total preorders were given to ranking IT2FNs,

Axioms 2017, 6, 22; doi:10.3390/axioms6030022 www.mdpi.com/journal/axioms20



Axioms 2017, 6, 22

but such preorders do not hold the property of antisymmetry, which is a theoretical and practical
weakness. Moreover, the total preorder given in [19] does not effectively extend the order of real
numbers (see Example 2).

Type 2 fuzzy sets (T2FSs) are an extension of type 1 fuzzy sets (FSs), and IT2FSs are a particular
case of T2FSs. Because the membership degrees of T2FSs are fuzzy, they are better able to model
uncertainty than FSs [23]. Fortunately, new methods have been introduced for the purpose of achieving
a computationally-efficient and viable framework for representing T2FSs, as well as the T2FLS (type 2
fuzzy logic system) inference processes (see, for example, [24–27]). Thanks to these computational
simplifications, the first applications of generalized T2FSs and not just interval type 2 fuzzy sets
(IT2FSs), which is a subset of T2FSs, are now being reported, such as, for example, [24,26,27].

In this paper, we define and compare type 2 fuzzy numbers (T2FNs) and type 2 generalized
fuzzy numbers (T2GFNs), which are type 2 fuzzy sets (T2FSs) on the real line, with certain conditions.
These sets are more general than the ones considered in [19,20,22], so that in each application, the
expert can choose the linguistic labels that best fit the specifications of the problem. We obtain a partial
order in T2GFNs and in T2FNs, extending the order of real numbers, as a first step to obtain in future
investigations a total order (or a preorder).

The paper is organized as follows. In Section 2, we recall some definitions, basic concepts, partial
orders and properties of the FNs and generalized fuzzy numbers (GFNs) of type 1 (Section 2.1) and
the T2FSs (Section 2.2). In Section 2.2, a partial order is introduced in the subset of T2FSs with convex
membership degrees and with the same height. In Section 3, we define and study the T2FNs and
T2GFNs. A partial order is determined on the T2GFNs extending the order of the real numbers.
Furthermore, among other examples, two IT2GFNs are ordered with our partial order, and the result
is compared with the one obtained applying the preorder established in [19]. Section 4 is devoted to
some conclusions.

2. Preliminaries

2.1. Definitions and Properties of Fuzzy Numbers

Throughout the paper, X stands for a non-empty set that represents the universe of discourse.
Additionally, ≤ denotes the usual order relation in the lattice of real numbers. The operators ∧ and ∨
are, respectively, the minimum and maximum operations on real numbers.

Definition 1. [5,6,28] A fuzzy set (of type 1, FS) A, is characterized by a membership function fA,

fA : X → [0, 1],

where fA(x) is called the membership degree of the element x ∈ X in the set A.

Let F(X) denote the set of all fuzzy sets on X. For each A ∈ F(R), the height of A is:

wA = sup
≤

{
fA(x) : x ∈ R

}
,

and the support is:

supp(A) = supp( fA) =
{

x ∈ R : fA(x) > 0
}

.

We say that A is strongly normal if fA(x) = 1 for some x ∈ R and that it is normal if wA = 1. If A
is strongly normal, then it is normal, but the opposite in general is not true. For example, the fuzzy set
B on R, with membership function:
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fB(x) =

⎧⎪⎨⎪⎩
1 + x if − 1 ≤ x < 0;
0.5− x if 0 ≤ x ≤ 0.5;
0 otherwise,

is normal, but it is not strongly normal, since there is no x ∈ R such that fB(x) = 1 (see Figure 1).

Figure 1. Normal, but non-strongly normal fuzzy set.

The α-cut of an FS A on R, with 0 ≤ α ≤ 1, is Aα =
{

x ∈ R : fA(x) ≥ α
}

. We say that A is convex

if fA(y) ≥
(

fA(x) ∧ fA(z)
)

, for all x ≤ y ≤ z (to simplify the notation, we will also say that fA is
convex). In addition, A is convex if and only if for all α with 0 ≤ α ≤ 1, we have that Aα is a convex
subset of the real line, that is an interval or the empty set.

Definition 2. [5,6] Let X be a subset of R, and let f : X → R be a function. We say that f is upper
semicontinuous at a point x0 if, given ε > 0, there exists a neighborhood U of x0 such that f (x) < f (x0) + ε,
for all x ∈ U. We say that f is upper semicontinuous if it is upper semicontinuous at any x ∈ X.

Intuitively, a function f is upper semicontinuous at x0 if, when approximating to x0, f (x) approximates
to f (x0) or is below f (x0). That is, if limx→x+0

f (x) ≤ f (x0) and limx→x−0
f (x) ≤ f (x0).

See Figures 2 and 3.

(a) (b) (c)

Figure 2. Upper semicontinuous functions: (a) Discontinuous from the right; (b) Discontinuous from
the left; (c) Discontinuous from the right and from the left.
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(a) (b) (c)

Figure 3. Non-upper semicontinuous functions: (a) Discontinuous from the right and from the left;
(b) Discontinuous from the left; (c) Discontinuous from the right.

Definition 3. [5,6] A generalized fuzzy number (GFN) A is a convex FS on R whose membership function fA
is upper semicontinuous and with bounded support.

Any GFN A is determined by a membership function of the form [6]:

fA(x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
LA(x) if a ≤ x ≤ b;
wA if b ≤ x ≤ c;
RA(x) if c ≤ x ≤ d;
0 otherwise,

where LA : [a, b]→ [0, wA] is an increasing function and RA : [c, d]→ [0, wA] is a decreasing function.
Note that the fuzzy set B of the previous example (see Figure 1) is not a GFN since its membership
function is not upper semicontinuous. The functions shown in Figure 2 are GFNs, since each function
is upper semicontinuous, convex and with bounded support. On the other hand, the functions shown
in Figure 3 are not GFNs, because they are not upper semicontinuous functions.

A GFN A is normal if and only if its height wA equals one. In addition, if a GFN A is normal, then
it is also strongly normal, because its membership function, fA, is upper semicontinuous.

Definition 4. [4–6] A fuzzy number (FN) A is a GFN that is strongly normal.

Because a fuzzy number A is strongly normal and convex, then Aα is an interval for all 0 ≤
α ≤ 1, and since it is upper semicontinuous and with bounded support, Aα is a closed interval (see
[5,6]). The function fB defined above and shown in Figure 1 is not upper semicontinuous at zero.
Consequently, there exists some α, such that Bα is not closed (for example, B0.8 = [−0.2, 0)). Therefore,
B is not a fuzzy number.

A real number a can be extended as a generalized fuzzy number with membership function equal
to the characteristic function with height w, āw : R→ [0, 1] where:

āw(x) =

{
w if x = a;
0 if x 
= a.

If w = 1, the characteristic function ā1, denoted ā, will be the extension of the real number a as
a fuzzy number (type 1).

Similarly, a closed interval [a, b] can be extended as a generalized fuzzy number
with the membership function equal to the characteristic function with height w,
[a, b]w : R→ [0, 1], where:
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[a, b]w(x) =

{
w if x ∈ [a, b];
0 if x /∈ [a, b].

If w = 1, the characteristic function [a, b]1 will be denoted by [a, b].
The usual partial order in the fuzzy sets, which is the partial order defined pointwise, is given by:

let A, B ∈ F(X); we say:

A ≤ B ⇔ fA ≤ fB,
(

fA(x) ≤ fB(x), ∀x ∈ X
)

. (1)

As is well known, this partial order is not total, and it is not the most appropriate when comparing
fuzzy numbers, since it does not extend the order of real numbers. In fact, suppose we consider two
different real numbers a and b, with a < b, as fuzzy numbers, by means of their characteristic functions
ā and b̄. It is not true that ā ≤ b̄, since b̄(a) = 0 < ā(a) = 1. Analogously, b̄ ≤ ā is not true either. As a
consequence, ā and b̄ are not comparable with this partial order. To summarize, the usual partial order
(1) does not extend the usual order (≤ ) of the real numbers.

By means of the Zadeh extension principle ([29]), many operations on the real numbers have been
extended to the fuzzy numbers. For example, let ◦ be a binary and surjective operation on R, then its
extension • on the fuzzy numbers is defined by any of the following equivalent expressions ([30–32]):

1. Vertical representation:

fA•B(x) =
(

fA • fB

)
(x) = sup

{
fA(y) ∧ fB(z) : y ◦ z = x

}
. (2)

2. Horizontal representation:(
A • B

)
α
= Aα • Bα =

{
a ◦ b : a ∈ Aα, b ∈ Bα

}
. (3)

Since ◦ is surjective, then the function fA•B is defined for all x ∈ R and for all fuzzy sets A and B.
From the extensions in horizontal form (3) of the operations ∨ and ∧, a new partial order ([9]) is

established in the fuzzy numbers:

A � B ⇔ Aα ≤I Bα, ∀α ∈ [0, 1] (4)

where ≤I is the usual partial order in the closed intervals, that is [a, b] ≤I [c, d] ⇔ a ≤ c y b ≤ d.
As (2) and (3) are equivalent on the fuzzy numbers, the partial order that is obtained from (2), denoted
� (see Section 2.2), on the fuzzy numbers is equivalent to �. Let us remark that the order � only
is defined on fuzzy numbers, while the order � and the order given in (1) can be applied to any
fuzzy sets.

The orders � and � are not total, but they are more adequate than the punctual order given in (1)
to compare fuzzy numbers, since they extend the usual order of the real numbers.

2.2. About Type 2 Fuzzy Sets

From now on, we denote by M the set of functions from [0, 1] to [0, 1], i.e., M =

Map
(
[0, 1], [0, 1]

)
= [0, 1][0,1].

Definition 5. [33,34] A type 2 fuzzy set (T2FS) A is characterized by a membership function:

μA : X → M,

where μA(x) is the membership degree of an element x ∈ X in the set A and a fuzzy set in [0, 1]. Thus,

μA(x) = fx, where fx : [0, 1]→ [0, 1].

24



Axioms 2017, 6, 22

Let F2(X) = Map
(

X, M
)

denote the set of all type 2 fuzzy sets on X. It is worthwhile to remember
that T2FSs are defined in a different way in [35]; however, both definitions are equivalent.

Example 1. The following membership function determines a T2FS on R:

(μ(x)) (y) = fx(y) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

− xy
5

if − 5 ≤ x < 0, y ∈ [0, 1];

xy
7

if 0 ≤ x ≤ 7, y ∈ [0, 1];

0 if x /∈ [−5, 7], y ∈ [0, 1].

Definition 6. [20,36] An interval type 2 fuzzy set (IT2FS) A is a T2FS whose membership degrees μA(x), for
all x ∈ X, are characteristic functions (with height w = 1) of closed intervals in [0,1].

Note that these sets are isomorphic to the interval-valued fuzzy sets. Moreover, the IT2FSs given
in Definition 6 are a particular case of IT2FSs defined in [37]; however, here, we always use Definition 6.

Walker and Walker show in [36] that the operations on Map(X, M) can be defined naturally from
the operations on M and have the same properties. In fact, given the operation ∗ : M×M → M,
we can define the operation � : Map(X, M) × Map(X, M) → Map(X, M) such that, for each pair
f , g ∈ Map(X, M), we have ( f � g)(x) = f (x) ∗ g(x), for all x ∈ X, where f (x), g(x) ∈ M (see [36]).
This pointwise extension of operations also allows us to define an order in type 2 fuzzy sets from an
order on their membership degrees as follows: given two T2FSs A and B with membership functions
μA, μB ∈ Map

(
X, M

)
, we have A � B if μA(x) � μB(x) for all x ∈ X, where � is an order in M.

However, when X = R, this way of defining an order in Map(R, M) does not extend the order of R,
as happened with the usual order ≤ of the type 1 fuzzy sets. This is our motivation to define a new
partial order in Map

(
R, M

)
(see Definition 15) that extends the order of real numbers (see Example 2

and Remark 6).
The following definition introduces algebraic operations on M by means of the vertical form (2)

of Zadeh’s principle of extension [28,29,33,34].

Definition 7. [36,38,39] In M, the operations � (generalized maximum), � (generalized minimum),
¬ (complementation) and the elements 0̄ and 1̄ are defined as follows:

( f � g)(x) = sup
{

f (y) ∧ g(z) : y ∨ z = x
}

;

( f � g)(x) = sup
{

f (y) ∧ g(z) : y ∧ z = x
}

;

¬ f (x) = sup
{

f (y) : 1− y = x
}
= f (1− x);

0̄(x) =

{
1 if x = 0;
0 if x 
= 0;

1̄(x) =

{
1 if x = 1;
0 if x 
= 1.

The algebra M =
(

M,�,�,¬, 0̄, 1̄
)

does not have a lattice structure, since the absorption
law ([36,39]) is not fulfilled. However, both operations � and � define a partial order on M.

Definition 8. [34,36] In M, the following two partial orders are defined:

f � g if f � g = f and f � g if f � g = g.
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Generally, these two partial orders do not coincide [34,36]. The map 1̄ is the greatest element of
partial order �, and the map 0̄ is the least element of partial order �. It is also verified that the constant

function g = 0
(

g(x) = 0, for all x ∈ [0, 1]
)

is the least element of � and the greatest element of �.
In order to facilitate operations on M, the following definition is given.

Definition 9. [36,38,39] For f ∈ M, the functions f L, f R ∈ M are defined as:

f L(x) = sup
≤

{
f (y) : y ≤ x

}
and f R(x) = sup

≤

{
f (y) : x ≤ y

}
.

f L and f R are increasing and decreasing, respectively, and ( f R)L = ( f L)R is a constant function,
equal to the supremum of f .

We denote by C the set of all convex functions of M. In [36], it is shown that f ∈ C if and only if
f = f L ∧ f R, and Cw will represent the set of all convex functions with given height w.

The set of all normal and convex functions of M is denoted by L. Obviously, L = C1. The algebra
L =

(
L,�,�,¬, 0̄, 1̄

)
is a subalgebra of M. In L, the partial orders � and � are equivalent, and L

is a bounded and complete lattice
(
0̄ and 1̄ are the minimum and the maximum, respectively

)
;

see [34,36,39,40]. It should be noted that the characteristic functions of closed intervals in [0, 1],
which are just the membership degrees of the IT2FSs, belong to L.

The following characterization of the partial order on L is very helpful to establish new results.

Theorem 1. [39,40] Let f , g ∈ L. Then, f � g if and only if:

gL ≤ f L and f R ≤ gR.

In [36,39], the authors did not consider Cw for any 0 < w < 1; however, the study on L can be
extended to Cw, where the partial orders � and � are also equivalent. Thus,

(
Cw,�,�,¬, 0̄w, 1̄w

)
is

a bounded and complete lattice, where:

0̄w(x) =

{
w if x = 0;
0 if x 
= 0;

and 1̄w(x) =

{
w if x = 1;
0 if x 
= 1,

are the minimum and the maximum, respectively. In addition, � in Cw satisfies Theorem 1. From here
on, the order � is denoted by �w when working in Cw. Note, however, that we denote it by � to
simplify the notation when there is no chance of confusion.

3. Type 2 Fuzzy Numbers

Haven et al. introduce in [20] an extension of the fuzzy numbers, the interval type 2 fuzzy
numbers (IT2FNs).

Definition 10. [20,22] An interval type 2 fuzzy number (IT2FN) is an IT2FS on R, with membership function
μ given by μ(x) = [a(x), b(x)], where the functions a, b : R→ [0, 1] are (type 1) fuzzy numbers.

The function a is the lower membership function, and b is the upper membership function.

It is worth mentioning that this definition is also given in [19] with a, b : R → [0, 1], where b is
a (type 1) fuzzy number, and a is a (type 1) generalized fuzzy number (see Definition 3), i.e., a can
be non-normal. Then, we call to these numbers given in [19] the interval type 2 generalized fuzzy
numbers (IT2GFNs).

Note that the set of IT2FNs is a subset of IT2GFNs.
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Next, we introduce the definitions of type 2 generalized fuzzy number (T2GFN) and type 2 fuzzy
number (T2FN). These sets are new extensions of fuzzy numbers and are also extensions of interval
type 2 fuzzy numbers (see Proposition 1).

Definition 11. Given a T2FS on R, with membership function μ : R→ Cw, the support of μ is defined as:

Supp(μ) =
{

x ∈ R : μ(x) 
= 0̄w

}
.

In addition, μ has bounded support if there exists a, b ∈ R such that
μ(x) = 0̄w, for all x /∈ [a, b].

Remark 1. Given two closed intervals [a, b] and [c, d], then [a, b]w �w [c, d]w, for all w, if and only if
[a, b] ≤I [c, d].

Definition 12. A type 2 generalized fuzzy number (T2GFN) in
(
Cw,�w

)
is a T2FS on R, such that its

membership function μ :
(
R,≤

)
→

(
Cw,�w

)
has bounded support, and moreover, there exists a zμ ∈ R such

that μ is increasing in (−∞, zμ] and decreasing in [zμ, ∞).

Example 3 shows two type 2 generalized fuzzy numbers.

Remark 2. Given a T2GFN in Cw, with membership function μ, we have that:

μ(x) �w μ(zμ) for x ∈ (−∞, zμ] and μ(x) �w μ(zμ) for x ∈ [zμ, ∞)

and therefore, for all x ∈ R, μ(x) �w μ(zμ). Consequently, μ
(
zμ

)
= sup

�w

{
μ(x) : x ∈ R

}
.

Besides, the set Zμ =
{

z ∈ R : μ(z) = sup
�w

{
μ(x) : x ∈ R

}}
is a point or an interval (not-empty)

where μ is constant.

Remark 3. A type 2 fuzzy set on R with membership function,

μ(x) =

{
x̄w if x ∈ [0, 1);
0̄w otherwise,

(5)

is not a T2GFN, since there is no zμ with the required conditions. Note that μ is increasing in (−∞, 1), but not

in (−∞, 1], since, for instance, 1
2 < 1, but μ(1) = 0̄w �w

( 1
2
)

w = μ( 1
2 )

(
see Figure 4; in this figure, only the

image of the support of the functions corresponding to membership degrees μ(x) has been drawn
)
.

Figure 4. Example of a type 2 fuzzy set (T2FS) that is not a type 2 generalized fuzzy number (T2GFN).
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Definition 13. A type 2 fuzzy number (T2FN) in (Cw,�w) is a T2GFN, such that:

sup
�w

{
μ(x) : x ∈ R

}
= 1̄w.

Remark 4. A type 2 fuzzy set on R with membership function,

μ(x) =

{
( x

2 )w if x ∈ [0, 1];
0̄w otherwise,

(6)

is a type 2 generalized fuzzy number, but not a type 2 fuzzy number, since sup�w

{
μ(x) : x ∈ R

}
= ( 1

2 )w
(see Figure 5; in this figure, only the image of the support of the functions corresponding to the membership
degrees μ(x) has been painted).

Figure 5. Example of a T2FS that is a T2GFN in Cw.

Proposition 1. An interval type 2 fuzzy number (IT2FN), defined as in Definition 10, is a T2FN in (C1,�1).

Proof. The membership degree μ(x) of any IT2FN is the characteristic function of an interval. That is,
μ(x) = [a(x), b(x)] ∈ C1 = L, where a(x) ≤ b(x) for all x ∈ R. The functions a and b are fuzzy
numbers of type 1 (see Definition 4). Since a is strongly normal, we have a(z) = 1 for some z ∈ R.
In addition, because a(z) ≤ b(z), then a(z) = b(z) = 1, which implies that μ(z) = 1̄1 = 1̄.

On the other hand, because a and b are fuzzy numbers and a(z) = b(z) = 1, we have that a and b
are increasing in (−∞, z] and decreasing in [z, ∞). Thus, a(x1) ≤ a(x2) and b(x1) ≤ b(x2) for all x1 ≤
x2 ≤ z, which implies that [a(x1), b(x1)] � [a(x2), b(x2)]. Consequently, μ :

(
(−∞, z],≤

)
→

(
Cw,�

)
is increasing.

In a similar way, we can prove that μ is decreasing in [z, ∞).
Therefore, the IT2FNs given in Definition 10 are a particular case of the T2FNs of Definition 13.

Proposition 2. An interval type 2 generalized fuzzy number (IT2GFN) is a T2GFN in (C1,�1).

Proof. This is similar to the proof made for Proposition 1.

It should be noted that the set of T2GFNs is a subset of the set of T2FSs on R, whose membership
degrees are functions in Cw, so the following partial order, pointwise defined, can be induced:
given two T2GFNs A, B, we say that A �w B if and only if μA(x) �w μB(x) for all x ∈ R. However,
this order is not convenient to compare T2GFNs, since it does not extend the natural order of real
numbers, when these are represented as T2GFN, as is shown in Example 2.

28



Axioms 2017, 6, 22

Example 2. Let A and B represent the extension of real numbers 2 and 3 to the T2FSs, respectively,
with membership degrees:

μA(x) =

{
1̄ if x = 2;
0̄ otherwise,

and μB(x) =

{
1̄ if x = 3;
0̄ otherwise.

Figure 6a shows the membership degrees μA(1) and μA(2) and only the image of the support of
the rest of the membership degrees μA(x). Figure 6b displays the membership degrees μB(1), μB(2)
and μB(3) and only the image of the support of the rest of the membership degrees μB(x).

It would be expected that A � B as 2 ≤ 3, but this does not happen since μB(2) = 0̄ � 1̄ = μA(2)
and μA(3) = 0̄ � 1̄ = μB(3), which implies that A and B are not comparable with that partial order.

Furthermore, the preorder given in [19] does not extend the order of R either. In fact, in the above
paper, the authors, before comparing numbers, transform the membership function of any real number,
i.e., x̄, to the real 1̄ or −1, obtaining in this example that A = B.

(a) (b)

Figure 6. (a) Number 2 extended as a T2FN; (b) Number 3 extended as a T2FN.

Consequently, a partial order extending the total order of R needs to be obtained on the T2GFNs.
Before, we define two auxiliary functions.

Definition 14. Given a T2GFN with membership degree μ(x) ∈
(
Cw,�w

)
, ∀x ∈ R, we define the functions

μL, μR :
(
R,≤

)
→

(
Cw,�w

)
as follows:

μL(x) = sup
�w

{
μ(y) : y ≤ x

}
=

⊔
y≤x

μ(y),

μR(x) = sup
�w

{
μ(y) : y ≥ x

}
=

⊔
y≥x

μ(y).

Proposition 3. Given a T2GFN in Cw with membership function μ, we have μL(x), μR(x) ∈ Cw for all x,
and μL, μR are increasing and decreasing functions, respectively, with respect to the partial order �w.

Proof. Since μ is increasing in (−∞, zμ] and decreasing in [zμ, ∞) for some zμ ∈ R, then μL(x) =

μ(x) ∈ Cw, ∀x ≤ zμ and μL(x) = μ(zμ) ∈ Cw, for all x ≥ zμ; therefore μL(x) ∈ Cw, for all x ∈ R.
Similarly, we have μR(x) = μ(x) ∈ Cw for all x ≥ zμ and μR(x) = μ(zμ) ∈ Cw for all x ≤ zμ;

therefore μR(x) ∈ Cw, for all x ∈ R. In addition, it follows that μL and μR are increasing and decreasing
functions, respectively, with respect to the partial order �w.

Remark 5. Given a T2GFN in Cw with membership function μ and zμ ∈ R a point where μ reaches the

supremum, as μ(x) � sup
�

{
μ(x) : x ∈ R

}
= μ

(
zμ

)
, it is clear that:
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sup
�

{
μL(x) : x ∈ R

}
= sup

�

{
μR(x) : x ∈ R

}
= sup

�

{
μ(x) : x ∈ R

}
= μL(zμ

)
= μR(zμ

)
.

Definition 15. Let A and B be T2GFNs in Cw, with membership function μA and μB respectively. We define
the relation �̃ as:

A �̃ B
(

ó μA �̃ μB
)
⇔ μR

A(x) �w μR
B(x) and μL

B(x) �w μL
A(x),

for all x ∈ R.

Proposition 4. Let A and B be T2GFNs in Cw, with membership functions μA and μB, respectively. If A and
B are comparable with �̃, then:

sup
�w

{
μA(x) : x ∈ R

}
= sup

�w

{
μB(x) : x ∈ R

}
.

Proof. If A �̃ B then μR
A(x) � μR

B(x) and μL
B(x) � μL

A(x) for all x ∈ R. From the Remark 5, we have:

sup
�

{
μA(x) : x ∈ R

}
= sup

�

{
μR

A(x) : x ∈ R
}
� sup

�

{
μR

B(x) : x ∈ R
}

= sup
�

{
μB(x) : x ∈ R

}
,

sup
�

{
μB(x) : x ∈ R

}
= sup

�

{
μL

B(x) : x ∈ R
}
� sup

�

{
μL

A(x) : x ∈ R
}

= sup
�

{
μA(x) : x ∈ R

}
.

Since � is antisymmetric, we have:

sup
�w

{
μA(x) : x ∈ R

}
= sup

�w

{
μB(x) : x ∈ R

}
.

Proposition 5. Let A and B be two T2GFNs in Cw, with membership functions μA and μB, respectively.
If A�̃B, then zμA ≤ zμB , being zμA = inf≤{x ∈ R : μA(x) = sup�w

μA} and zμB = inf≤{x ∈ R :
μB(x) = sup�w

μB}.

Proof. If A�̃B, then μL
B(x) �w μL

A(x). Suppose zμB < zμA , then there exists x ∈ R such that
zμB < x < zμA and μL

B(x) = sup�w
μB = sup�w

μA by Proposition 4, but μL
A(x) sup�w

μA.
Therefore, μL

A(x) μB(x), which is impossible.

Proposition 6. �̃ is a partial order in the set of T2GFNs in Cw.

Proof. Let A, B, C be three T2GFNs in Cw, with membership functions μA, μB and μC, respectively.

Reflexivity: As � is a partial order in Cw, it is reflexive, and thus, μR
A(x) � μR

A(x) and
μL

A(x) � μL
A(x), for all x. Therefore, A �̃ A.

Transitivity: If C �̃ A and A �̃ B, then, for all x ∈ R, we have that:

μR
C(x) � μR

A(x), μL
A(x) � μL

C(x),

μR
A(x) � μR

B(x), μL
B(x) � μL

A(x).
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Since � is transitive, we have that:

μR
C(x) � μR

B(x) and μL
B(x) � μL

C(x),

for all x. Therefore, C �̃ B.

Antisymmetry: If A �̃ B, then μR
A(x) � μR

B(x) and μL
B(x) � μL

A(x). Additionally, if B �̃ A,
then μR

B(x) � μR
A(x) and μL

A(x) � μL
B(x).

Since � is antisymmetric, then:

μR
A(x) = μR

B(x) and μL
A(x) = μL

B(x),

for all x.

As A and B are T2GFNs, their membership functions are increasing in (−∞, za] and (−∞, zb],
respectively, and decreasing in [za, ∞) and [zb, ∞), respectively, for some za, zb ∈ R. Therefore,
μL

A(x) = μA(x), for all x ≤ za; μL
B(x) = μB(x), for all x ≤ zb; μR

A(x) = μA(x), for all x ≥ za;
and μR

B(x) = μB(x), for all x ≥ zb.

Without loss of generality, we suppose za ≤ zb. If x ∈ (−∞, za], then we have μA(x) = μL
A(x) =

μL
B(x) = μB(x). If x ∈ [zb, ∞), then we have μA(x) = μR

A(x) = μR
B(x) = μB(x).

On the other hand, if za < x < zb, we obtain μB(x) � μR
B(x) = μR

A(x) = μA(x) and
μA(x) � μL

A(x) = μL
B(x) = μB(x). Since � is antisymmetric, we have that μA(x) = μB(x) for

all x. Therefore, A = B.

Remark 6. The partial order of Definition 15 extends the order of R. In fact, let A and B be the extensions in
the T2FNs, of the real numbers a and b, respectively, such that a ≤ b, with membership functions:

μA(x) =

{
1̄ if x = a;
0̄ otherwise,

and μB(x) =

{
1̄ if x = b;
0̄ otherwise.

In this case, we have that:

μL
A(x) =

{
1̄ if x ≥ a;
0̄ otherwise,

μL
B(x) =

{
1̄ if x ≥ b;
0̄ otherwise,

μR
A(x) =

{
1̄ if x ≤ a;
0̄ otherwise,

μR
B(x) =

{
1̄ if x ≤ b;
0̄ otherwise.

One can prove that μL
B(x) � μL

A(x) and μR
A(x) � μR

B(x) for all x. Then, A�̃B, but
A 
� B and B 
� A

(
see Example 2

)
.

Note that the methods provided in [19,22] for ranking IT2FNs are total preorders; however, to the
best of our knowledge, there is no previous work where a partial order is established extending the
order of the real numbers to T2FNs and not just to IT2FNs or IT2GFNs. Moreover, as has already been
pointed out, the preorder in [19] does not extend the order of R; meanwhile, it can be proven that the
preorder in [22] does extend it. Example 3 shows the ranking of two T2GFNs that are not IT2FNs.

Example 3. Consider the two T2GFNs A and B given by the degrees of membership μ(x), ϕ(x) ∈ C1/2,
respectively, defined below. Note that A and B are not IT2FNs (see Definition 10), because w = 0.5 
= 1,
and some membership degrees of A are not characteristic functions of a point or an interval.

Let μ(x) : [0, 1]→ [0, 1] be defined by:
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• if x ∈ R\(0, 7), then μ(x) = 0̄1/2;

• if x ∈ (0, 3), then (μ(x))(y) =

⎧⎪⎪⎨⎪⎪⎩
10y

x
− 1 if y ∈ [ x

10 , 15x
100 ];

2− 10y
x if y ∈ [ 15x

100 , 2x
10 ];

0 if y /∈ [ x
10 , 2x

10 ];
• if x ∈ [3, 5], then μ(x) = [0.7, 0.9]1/2;
• if x ∈ (5, 7), then μ(x) = (2.1− 0.3x)1/2.

In Figure 7, we only show the membership degrees of the set A, μ(x), when x ∈ (0, 3). In the other
case, when x 
∈ (0, 3), the membership degrees are characteristic functions of a point or an interval with
height w = 0.5. In Figure 8, on the left, we have drawn the images of the supports of the membership
degrees of the set A, as well as the projection of these values on the plane xy.

Figure 7. Membership degrees μ(x), for all x ∈ (0, 3).

(a) (b)

Figure 8. Membership functions of T2GFNs (a,b) given in Example 3.

Additionally, let ϕ(x) : [0, 1]→ [0, 1] be defined by:

• if x ∈ R\[0, 4], then ϕ(x) = 0̄1/2;
• if x ∈ [0, 1), then ϕ(x) = (0.6x + 0.1)1/2;
• if x = 1 then ϕ(1) = [0.7, 0.9]1/2;
• if x ∈ (1, 4], then ϕ(x) = 7

30 (4− x)1/2.
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All membership degrees of the set B are characteristic functions of a point or an interval with
height w = 0.5. On the right of Figure 8, we have drawn the image of the support of each membership
degree of the set B, as well as the projection of these values on the plane xy.

In this example, w = 1/2, Zμ = [3, 5] and Zϕ = {1}; therefore, for all zμ ∈ [3, 5] and zϕ = 1, it is:

sup
{

μ(x) : x ∈ R
}
= μ

(
zμ

)
= [0.7, 0.9]1/2 = ϕ

(
1
)
= sup

{
ϕ(x) : x ∈ R

}
,

In addition, we have:

μL : R→ [0, 1][0,1] is such that (see Figure 9):

• if x < 3, then μL(x) = μ(x);
• if x ≥ 3, then μL(x) = μ(3) = [0.7, 0.9]1/2;

(a) (b)

Figure 9. (a) μL and (b) ϕL according to Example 3.

μR : R→ [0, 1][0,1] is such that (see Figure 10):

• if x ≤ 5, then μR(x) = μ(5) = [0.7, 0.9]1/2;
• if x > 5, then μR(x) = μ(x).

(a) (a)

Figure 10. (a) μR and (b) ϕR according to Example 3.

ϕL : R→ [0, 1][0,1] is such that (see Figure 9):

• if x < 1, then ϕL(x) = ϕ(x);
• if x ≥ 1, then ϕL(x) = ϕ(1) = [0.7, 0.9]1/2;

ϕR : R→ [0, 1][0,1] is such that (see Figure 10):

• if x ≤ 1, then ϕ(1) = [0.7, 0.9]1/2;
• if x > 1, then ϕR(x) = ϕ(x).
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Comparing μL(x) with ϕL(x) and μR(x) with ϕR(x) respect to the partial order �1/2, we can
prove μL(x) �1/2 ϕL(x) and ϕR(x) �1/2 μR(x) for all x ∈ R. Therefore,

B �̃ A.

For example, from Figure 11, it follows that (μL(2))R(y) ≤ (ϕL(2))R(y) and (ϕL(2))L(y) ≤
(μL(2))L(y), for all y ∈ [0, 1], and then, μL(2) �1/2 ϕL(2).

Figure 11. μL(2) and ϕL(2) according to Example 3.

Remark 7. As mentioned before, in [19,22], total preorders for ranking IT2FNs were provided. One of the
disadvantages of these preorders is that they do not satisfy the property of antisymmetry; therefore, two elements
can be considered as equal, when they are not, which undoubtedly affects the decision making. On the other
hand, from a theoretical point of view, operating or working with preorders adversely affects the consolidation of
a consistent and coherent algebraic structure. A solid algebraic structure allows, among other things, the correct
determination and application of operators (e.g., negations, t-norms, aggregation operators, among others).
Besides, these preorders given in [19,22] reduce each IT2FN to a real value and finally compare these real values
with the order of the real numbers, which implies some loss of the information (representation of the uncertainty,
impression and vagueness) contained in the original form of each IT2FN. On the other hand, the partial order
guarantees the algebraic properties of posets. Furthermore, with the partial order �̃, the loss of information is
minor compared to those preorders. One of the disadvantages of this partial order is that it is not total; therefore,
there are elements that are non-comparable with it. Considering the above, the ideal is to have a total order,
extending the order of the real numbers in the T2FNs; however, a partial order is a good starting point to obtain
some total order. Anyway, it would be suitable, for ranking IT2FNs or IT2GFNs, firstly to apply the order �̃,
and if they are not comparable, then to apply the above-mentioned preorders.

It should be noted that in [19], it was established that any method to ranking IT2FNs must be consistent
with the human intuition, in the sense that the more to the right an IT2FN is, the greater it will be. That is, the more
to the right the centroid of an IT2FN is, the greater it will be. This property is satisfied by the order �̃.

Example 4 shows two IT2GFNs previously ranked in [19] with the preorder CPS (centroid point
and spread). We rank them with �̃, obtaining the same decision as the one achieved with the CPS
method. However, before, in the next Proposition 7, we give the characterization of �̃, when ranking
IT2GFNs exclusively.

Proposition 7. Let A, B be two IT2GFNs, with membership degrees μ(x) = [a1(x), b1(x)] and
φ(x) = [a2(x), b2(x)], respectively, ∀x ∈ R, then:

A�̃B ⇔ aL
2 (x) ≤ aL

1 (x), aR
1 (x) ≤ aR

2 (x), bL
2 (x) ≤ bL

1 (x), bR
1 (x) ≤ bR

2 (x), ∀x ∈ R(⇔ a1 �w a2, b1 � b2).

Proof. This is directly according to Definition 15, Remark 1, Proposition 5 and the usual partial order
in the closed intervals, ≤I .
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Example 4. Let A, B be two IT2GFNs, with membership degrees A(x) = [a1(x), b1(x)] and
B(x) = [a2(x), b2(x)], ∀x, respectively, whose supports are shown in Figure 12. In [19], Section 4, Case 3,
these IT2GFNs, A, B, were ranked with the CPS method, and it was obtained that B is greater than A. On the
other hand, we apply the order �̃, according to Figures 13 and 14 and Proposition 7, and we obtain the
same above result, i.e, A�̃B (A 
= B). In Figures 13 and 14, note that aL

2 (x) ≤ aL
1 (x), aR

1 (x) ≤ aR
2 (x),

bL
2 (x) ≤ bL

1 (x), bR
1 (x) ≤ bR

2 (x), ∀x; therefore, A�̃B (A 
= B).

Figure 12. Support of two IT2GFNs A and B, with the functions a1, b1, a2, b2.

Figure 13. Functions aL
1 , bL

1 , aL
2 , bL

2 .

Figure 14. Functions aR
1 , bR

1 , aR
2 , bR

2 .

Now, comparing the IT2FNs A and B in Figure 15 with the preorder given in [22] (≺PD ), it results
A ≺PD B and B ⊀PD A and also A˜B. Moreover, it can be proven that for any IT2FNs A and B,
if A�̃B, then A ≺PD B.
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Figure 15. Support of two IT2FNs A and B.

Finally, Table 1 shows the properties fulfilled by each ranking method mentioned in this paper.
Remember that:

�̃ denotes the relation defined in Definition 15;
�w denotes pointwise extension of the partial order �w;
≤I denotes pointwise extension of the partial order of the intervals ≤I ;
≺PCPS denotes the relation given in [19];
≺PD denotes the relation given in [22].

Table 1. Comparative results for several ranking methods, “Y” = Yes, “N” = Not.

Method
Properties Sets Can Be Compared Extends Order

of RReflex. Antisymmetry Trans. Total IT2Ns IT2GFNs T2GFNs-T2FNs

�̃ Y Y Y N Y Y Y Y
�w Y Y Y N Y (�=≤I) Y (�=≤I) Y N
≤I Y Y Y N Y (�=≤I) Y (�=≤I) N N
≺PD Y N Y Y Y N N Y
≺CPS Y N Y Y Y Y N N

4. Conclusions

In this work, we have defined, within the type 2 fuzzy sets (T2FSs), the fuzzy numbers (T2FNs)
and the generalized fuzzy numbers (T2GFNs). It has been shown that the order on these sets naturally
induced from the order on their membership degrees (pointwise extension) is not adequate, since it
does not extend the usual order of real numbers. That is why a new partial order has been proposed
on T2GFNs. Previously, taking into account this goal, we have generalized the partial order on L

(set of convex and normal functions from [0, 1] to [0, 1]) to the set of convex functions with the same
height. Although, there are methods to ranking interval type 2 fuzzy numbers, the partial order
obtained becomes a new option to be applied to ranking such type 2 fuzzy numbers and not only
IT2FNs or IT2GFNs.

Some topics remain open for future research. Among them to study some properties of the
proposed order and to obtain different ways to compare T2GFNs, allowing us to rank as many type 2
fuzzy sets as possible.
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Abstract: Aggregation functions are mathematical operators that merge given data in order to obtain
a global value that preserves the information given by the data as much as possible. In most practical
applications, this value is expected to be between the infimum and the supremum of the given
data, which is guaranteed only when the aggregation functions are idempotent. Ordered weighted
averaging (OWA) operators are particular cases of this kind of function, with the particularity that
the obtained global value depends on neither the source nor the expert that provides each datum,
but only on the set of values. They have been classified by means of the orness—a measurement of
the proximity of an OWA operator to the OR-operator. In this paper, the concept of orness is extended
to the framework of idempotent aggregation functions defined both on the real unit interval and on a
complete lattice with a local finiteness condition.

Keywords: aggregation functions; lattice operators; idempotence; orness

1. Introduction

Aggregation functions [1] are a family of operators that allow us to fuse data—either quantitative
or qualitative—in order to obtain a global value that captures the information of the given data as
faithfully as possible.

These functions have been widely used in decision making [2,3], where it is necessary to merge
the different opinions of several experts, or in image processing tasks [4], where the values of different
pixels must be fused in order to obtain a single one.

OWA (Ordered weighted averaging) operators, defined by Yager in [5] for real values, are a kind
of aggregation function that include the most widely used ones, such as the arithmetic mean or the
order statistics. An OWA operator is simply a weighted average of data which have been previously
ordered in a descending way. The main property of OWA operators is the symmetry, which makes
them independent of the order in which the data are provided.

Real OWA operators have been classified by Yager in [6] by means of the orness—a measurement
of their proximity to the OR-operator. In this way, the orness of the OR-operator is 1, while the orness
of the AND-operator is 0 and the orness of the arithmetic mean is equal to 1/2.

In [7], OWA operators have been extended from [0, 1] to a complete lattice (L,≤L) endowed
with both a t-norm T and a t-conorm S. The concept of orness has also been generalized to this
kind of operator in two ways. On the one hand, a qualitative orness has been defined for OWA
operators when the lattice L is finite [4]. On the other hand, when the lattice satisfies a weaker
locally-finiteness condition, each OWA operator may be assigned a quantitative orness [8].

The present paper analyzes the possibility of extending both concepts of orness to the wider set of
all the aggregation functions lying between the AND and the OR-operators, for which the measurement
of their proximity to the OR-operator has sense. These aggregation functions—not necessarily
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symmetric—are precisely those that are idempotent (see Remark 1). Such maps will be the object of
our study when they are defined both on the real case and on some lattices that satisfy the necessary
conditions of finiteness.

The extension of the concept of orness to all of the idempotent aggregation functions makes it
possible to classify two wide classes of operators: the class consisting of all the Choquet integrals
defined on the real unit interval on the one hand, and all the discrete Sugeno integrals defined on an
appropriate lattice on the other hand.

The rest of the paper is organized as follows. Section 2 presents the preliminary concepts that will
be used further. In Section 3, Yager’s concept of orness is extended to idempotent aggregation functions
defined on the real unit interval. Section 4 generalizes the concept of qualitative orness to idempotent
aggregation functions defined on finite lattices. The extension of the concept of quantitative orness to
this kind of function is analyzed in Section 5 where they are defined on lattices with a local finiteness
condition. The paper finishes with some conclusions and references.

2. Preliminaries

In this paper, (L,≤L) denotes a complete lattice (i.e., a partially ordered set in which all subsets
have both a supremum and an infimum). The least element of L is denoted by 0L and the greatest
one by 1L. When L is finite, we will refer to (L,≤L) as a finite bounded lattice. In some cases, we will
require the lattice (L,≤L) to be distributive, which means that any of the following two equivalent
properties holds:

a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c) for any a, b, c ∈ L

a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c) for any a, b, c ∈ L

A map T : L× L → L (resp. S : L× L → L) is said to be a t-norm (resp. t-conorm) on (L,≤L) if it
is commutative, associative, increasing in each component, and has a neutral element 1L (resp. 0L).
For any n > 2, S(a1, . . . , an) will be used to denote S(S(. . . (S(S(a1, a2), a3), . . . ), an−1), an).

Throughout this paper, (L,≤L, T, S) will denote a complete lattice endowed with a t-norm and
a t-conorm.

Recall that an n-ary aggregation function is a map M : Ln → L such that:

(i) M(a1, . . . , an) ≤L M(a′1, . . . , a′n) whenever ai ≤L a′i for 1 ≤ i ≤ n.
(ii) M(0L, . . . , 0L) = 0L and M(1L, . . . , 1L) = 1L.

The function M is said to be idempotent if M(a, . . . , a) = a for every a ∈ L. Besides, M is
said to be symmetric if for every permutation σ of the set {1, . . . , n}, the equality M(a1, . . . , an) =

M(aσ(1), . . . , aσ(n)) holds for every (a1, . . . , an) ∈ Ln.
For example, the AND-operator, the OR-operator and, for L = [0, 1] (or L ⊂ R) the arithmetic

mean are symmetric idempotent aggregation functions.

Remark 1. Note that by using property (i) of the definition of aggregation function, we have the
following equivalence:

M is idempotent ⇐⇒ inf {a1, . . . , an} ≤L M(a1, . . . , an) ≤L sup {a1, . . . , an},

for any (a1, . . . , an) ∈ Ln,

i.e., the aggregation function M is idempotent iff it lies in between the AND and the OR-operators.
Indeed, if M is idempotent, inf {a1, . . . , an} = M(inf {a1, . . . , an}, . . . , inf {a1, . . . , an}) ≤ M(a1, . . . , an) ≤
M(sup {a1, . . . , an}, . . . , sup {a1, . . . , an}) = sup {a1, . . . , an}. Conversely, for any a ∈ L,
a=inf {a, . . . , a} ≤ M(a, . . . , a) ≤ sup {a,. . . ,a}=a.
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A particular case of idempotent symmetric aggregation functions are OWA operators, which were
defined by Yager for values in the real unit interval [0, 1] as follows:

Definition 1 (Yager [5]). For each weighting vector α = (α1, . . . , αn) ∈ [0, 1]n, with α1 + · · ·+ αn = 1,
the map Fα : [0, 1]n → [0, 1] given by

Fα(a1, . . . , an) = α1aσ(1) + · · ·+ αnaσ(n)

is called an ordered weighted averaging operator or OWA operator, where the n-tuple (aσ(1), . . . , aσ(n)) is
a rearrangement of the set (a1, . . . , an) of inputs such that aσ(1) ≥ · · · ≥ aσ(n).

Note that both the AND-operator and the OR-operator are some examples of OWA operators,
provided respectively by the weighting vector (0, . . . , 0, 1) and by the weighting vector (1, 0, . . . , 0).
The arithmetic mean is also an OWA operator, provided by the weighting vector (1/n, . . . , 1/n).

OWA operators were generalized to complete lattices in [7] in the following way.

Definition 2. Let (L,≤L, T, S) be a complete lattice endowed with a t-norm and a t-conorm. A vector
α = (α1, . . . , αn) ∈ Ln is said to be a distributive weighting vector if conditions S(α1, . . . , αn) = 1L and

T(a, S(α1, . . . , αn)) = S(T(a, α1), . . . , T(a, αn)) for any a ∈ L

are satisfied.

Definition 3 ([7]). Let (L,≤L, T, S) be a complete lattice endowed with a t-norm and a t-conorm. For each
distributive weighting vector α = (α1, . . . , αn) ∈ Ln, the n-ary OWA operator Fα : Ln → L is defined by

Fα(a1, . . . , an) = S(T(α1, b1), . . . , T(αn, bn)),

where for each (a1, . . . , an) ∈ Ln, the elements bn ≤L · · · ≤L b1 are calculated by means of the n-ary k-th
statistics {Ak : Ln → L | 1 ≤ k ≤ n} given below:

• b1 = A1(a1, . . . , an) = a1 ∨ · · · ∨ an ∈ L.

• b2 = A2(a1, . . . , an) =
(
(a1 ∧ a2)∨ · · · ∨ (a1 ∧ an)

)
∨
(
(a2 ∧ a3)∨ · · · ∨ (a2 ∧ an)

)
∨ · · · ∨

(
an−1 ∧

an

)
∈ L.

...
• bk = Ak(a1, . . . , an) =

∨{aj1 ∧ · · · ∧ ajk | j1 < · · · < jk ∈ {1, . . . , n}} ∈ L.

...
• bn = An(a1, . . . , an) = a1 ∧ · · · ∧ an ∈ L.

It is worth mentioning that when (L,≤L) is a distributive lattice and the t-norm and t-conorm
considered on L are, respectively, the meet and the join (i.e., T = ∧ and S = ∨), OWA operators are
particular cases of a wider class of idempotent aggregation functions: the discrete Sugeno integrals.

Definition 4 ([9]). Let (L,≤L) be a complete lattice, Pn = {1, . . . , n} and let Pn be the set of all the subsets
of Pn.

(i) An L-fuzzy measure on Pn is a map μ : Pn → L with μ(∅) = 0L, μ(Pn) = 1L and μ(E) ≤ μ(F)
whenever E ⊆ F ⊆ Pn.
In particular, if L = [0, 1], it is called a fuzzy measure [10,11].

41



Axioms 2017, 6, 25

(ii) The discrete Sugeno integral Sμ : Ln → L is given by

Sμ(a1, . . . , an) =
∨{∧

{ai | i ∈ X} ∧ μ(X) : X ∈ Pn

}
.

In fact, when L is a distributive complete lattice, a discrete Sugeno integral is an OWA operator if
and only if it is symmetric (see [7]).

3. Orness for Idempotent Aggregation Functions Defined on the Real Unit Interval

The great deal of weighting vectors that can define an OWA operator on the real interval [0, 1]
makes difficult the election for each particular situation.

With the purpose of classifying OWA operators defined on the real unit interval, in [6] Yager
introduced an orness measure for each OWA operator Fα. This measure depends only on the weighting
vector α = (α1, . . . , αn), in the following way:

orness(Fα) =
1

n− 1

n

∑
i=1

(n− i)αi. (1)

It is easy to check that the orness of each OWA operator is a real value situated between 0,
corresponding to the AND-operator given by the infimum, and 1, corresponding to the OR-operator
given by the supremum. In general, the orness is a measure of the proximity of each OWA operator to
the OR-operator. For instance, the orness of the arithmetic mean, provided by the weighting vector
(1/n, . . . , 1/n), is equal to 1/2.

In order to extend this concept to any idempotent aggregation function, note that for any OWA
operator Fα : [0, 1]n → [0, 1], we can write

orness(Fα) = Fα

(
1,

n− 2
n− 1

, · · · ,
1

n− 1
, 0
)

,

which leads to the following generalization.

Definition 5. Let F : [0, 1]n → [0, 1] be an idempotent aggregation function. Define

orness(F) = F
(

1,
n− 2
n− 1

, · · · ,
1

n− 1
, 0
)

.

Remark 2. (i) Since F always takes values in [0, 1], it is clear that 0 ≤ orness(F) ≤ 1. Moreover, the orness of
the AND-operator is equal to 0, whereas the orness of the OR-operator is 1.

(ii) It is immediate to see that orness(F) ≤ orness(G) if F ≤ G (with the pointwise order).
However, as Example 1 below will show, the converse is not true.

(iii) Definition 5 could have been given for any aggregation function F : [0, 1]n → [0, 1], but it does not
make any sense to measure the proximity of F to the OR-operator when there does not exist any order relation
between them.

Moreover, if F(a1, . . . , an) ≤ in f (a1, . . . , an) for all (a1, . . . , an), we would have orness(F) = 0.
Similarly, if F(a1, . . . , an) ≥ sup(a1, . . . , an) for all (a1, . . . , an), then orness(F) would be equal to 1.

For the aforementioned reasons, we have extended the definition of orness only to the class of idempotent
aggregation functions, which are exactly those lying between the AND and the OR-operators.

The previous extension of the concept of orness makes it possible to classify a wider kind of
idempotent aggregation functions which include OWA operators: the so called discrete Choquet
integrals. Their definition is as follows:
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Definition 6 ([12]). Let m : Pn → [0, 1] be a fuzzy measure. The discrete Choquet integral with respect to m
is the map Cm : [0, 1]n → [0, 1] defined by

Cm(x1, . . . , xn) =
n

∑
i=1

xσ(i) (m({σ(i), . . . , σ(n)})−m({σ(i + 1), . . . , σ(n)}))

where σ : {1, . . . , n} → {1, . . . , n} is a permutation such that xσ(1) ≤ · · · ≤ xσ(n) and {σ(n+ 1), σ(n)} = ∅
by convention.

Remark 3. As was shown in [13], a discrete Choquet integral is an OWA operator if and only if it is symmetric.
The latter is equivalent to the fuzzy measure being symmetric, i.e., m(E) = m(F) for any E, F ⊆ Pn such that
card(E) = card(F).

Example 1. Let n = 4 and consider the fuzzy measures m, ν : P4 → [0, 1] given by

m({1}) = m({4}) = 0 = ν({1}) = ν({2})
m({2}) = m({3}) = 1

4 = ν({3}) = ν({4});
m({i, j}) = 1

3 = ν({i, j}) 1 ≤ i < j ≤ 4;

m({i, j, k}) = 1
2 = ν({i, j, k}) 1 ≤ i < j < k ≤ 4;

m(P4) = 1 = ν(P4).

The orness of each of the corresponding non-symmetric discrete Choquet integrals Cm, Cν : [0, 1]4 → [0, 1]
is given by

orness(Cm) = Cm

(
1, 2

3 , 1
3 , 0

)
= 1

3

(
1
2 − 1

3

)
+ 2

3

(
1
3 − 0

)
= 5

18

= Cν

(
1, 2

3 , 1
3 , 0

)
= orness(Cν)

so, in particular, orness(Cν) ≤ orness(Cm). However,

Cm

(
0, 0, 1

2 , 1
)

= 1
2

(
1
3 − 0

)
= 1

6

Cν

(
0, 0, 1

2 , 1
)

= 1
2

(
1
3 − 1

4

)
+ 1

(
1
4 − 0

)
= 7

24

and therefore, Cν 
≤ Cm. The latter shows that the converse of Remark 2(ii) is not true.

4. Qualitative Orness for Idempotent Aggregation Functions Defined on Finite Lattices

In this section, (L,≤L) will be a bounded finite lattice.
In order to classify OWA operators when they are defined on this kind of lattice, a qualitative

orness was introduced in [4] generalizing the one given by Yager for the real case. In this section,
this concept is extended to any idempotent aggregation function defined on (L,≤L). Note that, by [4],
Remark 3, the definition given in [4] can be reformulated so that it still has sense in this wider context.

Definition 7. Let L = {a1, . . . , al} be a finite bounded lattice and let 1L = b1 ≥L · · · ≥L bl = 0L be the
descending chain introduced in Definition 3, involving all the elements of the lattice. For any idempotent n-ary
aggregation function F : Ln → L, a qualitative orness measure is calculated by means of a descending chain
d1 ≥L · · · ≥L dn that consists of some equidistant elements in the lattice, which are performed following
some steps:

(i) Call s = l(n− 1).
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(ii) Consider the descending chain c1 ≥L · · · ≥L cs defined by

c1 = · · · = cn−1 = b1; cn = · · · = c2(n−1) = b2; . . .; c(l−1)(n−1)+1 = · · · = cl(n−1) = bl.

Note that c1 = b1 = 1L and cl(n−1) = bl = 0L.
(iii) Build a descending subchain of {c1, . . . , cs}, d1 ≥L · · · ≥L dn by means of

d1 = 1L, d2 = cl , d3 = c2l , . . . , dn = c(n−1)l = 0L;

i.e., d1 = 1L, and for each j ∈ {1, . . . , n− 1}, dj+1 = cjl = bk with k = 1 +

⌊
jl − 1
n− 1

⌋
, where the

symbol
⌊ a

b

⌋
denotes the integer part of

a
b

.

(iv) Call orness(F) = F(d1, . . . , dn).

As in [4], we have the following observations.

Remark 4. (i) Note that the same chain d1 ≥L · · · ≥L dn is obtained if we let s be any common multiple of
{l, n− 1}. In that case, if s = le with e ∈ N, the chain c1 ≥L · · · ≥L cs must be

c1 = · · · = ce = b1; ce+1 = · · · = c2e = b2; . . .; c(l−1)e+1 = · · · = cle = bl and, if s = (n− 1)h with
h ∈ N, then the chain d1 ≥L · · · ≥L dn must be

d1 = 1L, d2 = ch, d3 = c2h, . . . , dn = c(n−1)h = 0L.

Therefore, the chain d1 ≥L · · · ≥L dn obtained in this way is the same as that obtained in Definition 7.

Indeed, for each j ∈ {1, . . . , n− 1}, dj+1 = cjh = bk with k = 1 +
⌊

jh− 1
e

⌋
.

(ii) When the aggregation function is an OWA operator, the previous definition agrees with that given
in [4] for OWA operators. Hence, in particular, the orness corresponding to the AND-operator is 0, and the one
corresponding to the OR-operator is 1.

(iii) Definition 7 could have been given for any aggregation function (not necessarily idempotent), but the
same reasons explained in Remark 2(iii) lead us to consider this restriction.

Example 2. Let L = {0L, a, b, c, 1L} be a partially ordered set with the relation given by 0L ≤ a ≤ b ≤ 1L and
0L ≤ c ≤ 1L. Note that (L,≤L) is a non-distributive lattice with l = 5. Consider the discrete Sugeno integral
Sμ : L3 → L defined by means of the L-fuzzy measure μ : P3 → L with

μ({1}) = μ({3}) = 0L; μ({2}) = a;

μ({i, j}) = a, 1 ≤ i < j ≤ 3; μ({1, 2, 3}) = 1L,

Sμ(a1, a2, a3) = (a2 ∧ a) ∨ (a1 ∧ a2 ∧ a) ∨ (a1 ∧ a3 ∧ a) ∨ (a2 ∧ a3 ∧ a) ∨ (a1 ∧ a2 ∧ a3).

Note that since Sμ is not symmetric, it is not an OWA operator. Nevertheless, we can compute its qualitative
orness with the new definition we have just given. In order to calculate it, we follow the next steps:

Find b1 = 1L, b2 = 1L, b3 = a, b4 = 0L, b5 = 0L.

Call s = l(n− 1) = 5 · 2 = 10.

Consider the descending chain c1 ≥L · · · ≥L c10 defined by

c1 = c2 = b1; c3 = c4 = b2; c5 = c6 = b3; c7 = c8 = b4; c9 = c10 = b5.

Build the descending subchain d1 ≥L d2 ≥L d3, by means of

d1 = 1L; d2 = c5 = a; d3 = c10 = 0L.
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Therefore, orness(Sμ) = Sμ(1L, a, 0L) = a.

In [14] it is shown that the class of all the n-ary aggregation functions defined on a complete lattice
(L,≤L)—denoted by An(L)—is also a complete lattice with the pointwise order relation; i.e., with the
relation ≤ defined for any F, G ∈ An(L) as F ≤ G if and only if F(a1, . . . , an) ≤ G(a1, . . . , an) for every
(a1, . . . , an) ∈ Ln.

The smallest and the greatest aggregation functions in An(L) are, respectively (see [15]):

A⊥(a1, . . . , an) =

{
1, if ai = 1 for all 1 ≤ i ≤ n
0, otherwise

A�(a1, . . . , an) =

{
0, if ai = 0 for all 1 ≤ i ≤ n
1, otherwise

We use the symbols ∧, ∨ to denote both the meet and the join on L and the following operations
on An(L):

(F ∧ G)(a1, . . . , an) = F(a1, . . . , an) ∧ G(a1, . . . , an)

(F ∨ G)(a1, . . . , an) = F(a1, . . . , an) ∨ G(a1, . . . , an),

for any (a1, . . . , an) ∈ Ln.

Note [14] that if (L,≤L) is a distributive lattice, then
(
An(L),≤

)
is a distributive lattice as well.

Proposition 1. Let (L,≤L) be a bounded finite lattice and consider F, G : Ln → L,
idempotent aggregation functions.

(i) If F ≤ G, then orness(F) ≤ orness(G).
(ii) Both F ∧ G and F ∨ G are idempotent.

(iii) It holds that

orness
(

F ∧ G
)
= orness(F) ∧ orness(G)

orness
(

F ∨ G
)
= orness(F) ∨ orness(G)

Proof. Consider the chain d1 ≥L · · · ≥L dn obtained in Definition 7.

(i) Since F ≤ G, then orness(F) = F(d1, . . . , dn) ≤L G(d1, . . . , dn) = orness(G).

(ii) For any a ∈ L, (F ∧ G)(a, . . . , a) = F(a, . . . , a) ∧ G(a, . . . , a) = a ∧ a = a by using the
idempotency of F and G. In the same way, the idempotency of F ∨ G can be proved.

(iii) By Definition 7, orness(F ∧ G) = (F ∧ G)(d1, . . . , dn) = F(d1, . . . , dn) ∧ G(d1, . . . , dn) =

orness(F) ∧ orness(G). Analogously, orness(F ∨ G) = (F ∨ G)(d1, . . . , dn) = F(d1, . . . , dn) ∨
G(d1, . . . , dn) = orness(F) ∨ orness(G).

Remark 5. As for the orness messure of Section 3, the converse of Proposition 1 (i) is not true. Indeed, let
L = {0L, a, b, c, 1L} and Sμ be, respectively, the lattice and the discrete Sugeno integral defined in Example 2.

Consider now the non-symmetric discrete Sugeno integral Sν : L3 → L defined by means of the L-fuzzy
measure ν : P3 → L with

ν({i}) = 0L, 1 ≤ i ≤ 3; ν({1, 2}) = a, ν({1, 3}) = ν({2, 3}) = c; ν({1, 2, 3}) = 1L,

Sν(a1, a2, a3) = (a1 ∧ a2 ∧ a) ∨ (a2 ∧ a3 ∧ c) ∨ (a1 ∧ a3 ∧ c) ∨ (a1 ∧ a2 ∧ a3).
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Therefore, orness(Sν) = Sν(1L, a, 0L) = a = orness(Sμ).
However, Sμ(c, a, c) = a 
≤ c = Sν(c, a, c).

5. Quantitative Orness for Idempotent Aggregation Functions

In this section, (L,≤L) will be a complete lattice satisfying the following additional condition of
local finiteness, which is called maximal finite chain condition or simply condition (MFC):

(MFC) For any a, b ∈ L with a ≤L b, there exists some maximal chain with a finite length, named l,
between a and b,

a = a0 <L a1 <L · · · <L al = b.

The maximality means that for any 0 ≤ i ≤ l− 1 there is no c ∈ L with ai <L c <L ai+1. Obviously,
if a = b, the maximal chain has length l = 0. The length of the shortest maximal chain between a and
b—which will be denoted by d(a, b)—will be called distance from a to b.

Remark 6. Note that any finite lattice satisfies condition (MFC).

A quantitative orness was defined in [8] in the following way for any OWA operator defined on
(L,≤L, T, S).

Definition 8 ([8]). Let (L,≤L, T, S) be a complete lattice, endowed with a t-norm and a t-conorm satisfying
condition (MFC). For any distributive weighting vector, α = (α1, . . . , αn) ∈ Ln, define the qualitative
quantifier Qα : {0, 1, . . . , n} → L by means of

Qα(0) = 0L,

Qα(k) = S(α1, . . . , αk) for k = 1, . . . , n.

Definition 9 ([8]). Let (L,≤L, T, S) be a complete lattice satisfying condition (MFC). For any distributive
weighting vector α = (α1, . . . , αn) ∈ Ln, let Fα be the n-ary OWA operator associated to it.
Consider the qualitative quantifier Qα : {0, 1, . . . , n} → L defined in Definition 8. For each k = 1, . . . , n,
call m(k) = d (Qα(k− 1), Qα(k)). If m = m(1) + · · ·+ m(n), then define

orness(Fα) =
1

n− 1

n

∑
i=1

(n− i)
m(i)

m
.

The following remark contains the key points that allow us to generalize this concept to the setting
of idempotent aggregation functions.

Remark 7 ([8]). Let α = (α1, . . . , αn) ∈ Ln be a distributive weighting vector in (L,≤L, T, S). Then

(i) Qα is a monotonically increasing function.

(ii) For any k = 1, . . . , n, Qα(k) = Fα(1L, . . . ,
(k)
1L, 0L, . . . , 0L).

(iii) Consequently, if β = (β1, . . . , βn) ∈ Ln is a distributive weighting vector in (L,≤L) with Fα = Fβ,
then Qα = Qβ.

Definition 10. Let (L,≤L) be a complete lattice satisfying condition (MFC). For any idempotent aggregation
function F : Ln → L, consider the qualitative quantifier Q : {0, 1, . . . , n} → L defined by means of

Q(0) = 0L,

Q(k) = F(1L, . . . ,
(k)
1L, 0L, . . . , 0L) for k = 1, . . . , n.
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For each k = 1, . . . , n, call m(k) = d (Q(k− 1), Q(k)). If m = m(1) + · · ·+ m(n), then define

orness(F) =
1

n− 1

n

∑
i=1

(n− i)
m(i)

m
.

Remark 8. (i) Note that for arbitrary idempotent aggregation functions, the definition of orness does not directly
depend on the t-norm and the t-conorm considered on the lattice L.

(ii) When the aggregation function is an OWA operator, Remark 7(ii) shows that the previous definition
agrees with the one given in [8] for OWA operators. In particular, as shown in [8], Proposition 3.6, the orness
corresponding to the AND-operator is 0 and the one corresponding to the OR-operator is 1.

(iii) Observe that, contrary to the case of OWA operators (see [8]), Proposition 3.6(ii), there might be
idempotent aggregation functions different from the AND-operator whose orness is 0. For instance, take
L = {0L, c, 1L} with 0L ≤ c ≤ 1L. Define F : L3 → L as F(a1, a2, a3) = a3. Then, F is an idempotent
aggregation function different from the AND-operator whose orness is 0.

(iv) Definition 10 could have been given for any aggregation function, not necessarily idempotent, but the
same reasons explained in Remark 2(iii) lead us to consider this restriction.

Proposition 2. Let (L,≤L) be a complete lattice satisfying condition (MFC). For any idempotent aggregation
function F : Ln → L, it is satisfied that orness(F) ∈ [0, 1].

Proof. Clearly, orness(F) ≥ 0. Moreover,

orness(F) =
1

m(n− 1)

n

∑
i=1

(n− i)m(i) ≤ 1
m(n− 1)

n

∑
i=1

(n− 1)m(i) = 1

as desired.

Example 3. Let L = {0L, a, b, 1L} ∪ {ci : i ∈ N}, with ci 
= cj for i 
= j, be the lattice described as follows:
0L ≤ a ≤ b ≤ 1L and 0L ≤ ci ≤ 1L for any i ∈ N. Then, L is a non-finite lattice satisfying condition (MFC).
Consider the discrete Sugeno integral Sμ : L3 → L defined by means of the L-fuzzy measure μ : P3 → L with

μ({1}) = μ({3}) = 0L; μ({2}) = a;

μ({i, j}) = a, 1 ≤ i < j ≤ 3; μ({1, 2, 3}) = 1L,

Sμ(a1, a2, a3) = (a2 ∧ a) ∨ (a1 ∧ a2 ∧ a) ∨ (a1 ∧ a3 ∧ a) ∨ (a2 ∧ a3 ∧ a) ∨ (a1 ∧ a2 ∧ a3).

Even if Sμ is not an OWA operator (since it is not symmetric), we can compute its quantitative orness with
the new definition we have just given. In order to calculate it, we follow these steps:

Define Q : {0, 1, 2, 3} → L by means of Q(0) = 0L, Q(1) = Sμ(1L, 0L, 0L) = 0L,

Q(2) = Sμ(1L, 1L, 0L) = a, Q(3) = Sμ(1L, 1L, 1L) = 1L.

Calculate m(1) = d (Q(0), Q(1)) = 0; m(2) = d (Q(1), Q(2)) = 1;

m(3) = d (Q(2), Q(3)) = 2 and m = m(1) + m(2) + m(3) = 3.

Therefore, orness(Sμ) =
1
2

(
2 · m(1)

3
+ 1 · m(2)

3

)
=

1
6

.

6. Conclusions

The concept of orness defined by Yager for OWA operators on the real interval [0, 1] can be
extended to the more general setting of idempotent aggregation functions, all of them lying between
the AND and the OR-operators. This includes the class of all the discrete Choquet integrals, which are
not necessarily symmetric. In addition, on finite bounded lattices, the concept of qualitative orness
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defined for OWA operators can be extended to this wide set of all the idempotent aggregation
functions. Finally, for complete lattices satisfying a weaker condition of local finiteness, the concept
of quantitative orness defined for OWA operators can be extended to all the idempotent aggregation
functions. The latter includes the set of all the discrete Sugeno integrals defined on that kind of lattice,
which are not necessarily symmetric.

For future research, the application of these concepts of orness to practical situations may
be analyzed.
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Abstract: Looking at decisiveness as crucial, we discuss the existence of an order-preserving function
for the nontotal crisp preference relation naturally associated to a nontotal fuzzy preference relation.
We further present conditions for the existence of an upper semicontinuous order-preserving function
for a fuzzy binary relation on a crisp topological space.
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1. Introduction

The literature concerning the (continuous) real representation of a fuzzy binary relation
R : X × X �→ [0, 1] is concentrated on the cases of fuzzy total preorders (see e.g., Billot [1],
Fono and Andjiga [2], Fono and Salles [3], and Agud et al. [4]), and respectively fuzzy interval
orders (see e.g., Mishra et Srivastava [5]). For any two points x, y ∈ X, R(x, y) is interpreted as
“the degree to which the alternative x ∈ X is at least as good as the alternative y ∈ X”, or equivalently
as “the degree to which x ∈ X is weakly preferred to y ∈ X”.

We recall that a fuzzy binary relation is said to be total (or connected, or else complete) if R(x, y) +
R(y, x) ≥ 1 for all x, y ∈ X. Some authors call “complete” a fuzzy binary relation satisfying the stronger
property according to which max(R(x, y), R(y, x)) = 1 for all x, y ∈ X (see e.g., Beg et Ashraf [6]).
Such definitions of completeness clearly correspond to the concept of completeness of a crisp binary
relation � (a particular case of a fuzzy binary relation R such that R(x, y) ∈ {0, 1} for all x, y ∈ X).
Clearly, the existence of a utility function for a fuzzy binary relation R : X × X �→ [0, 1] (i.e., u is
a real-valued function on X such that R(x, y) ≥ R(y, x) is equivalent to u(x) ≥ u(y) for all x, y ∈ X) is
strictly related to different definitions of transitivity of R (like bin-transitivity, min-transitivity, and
product transitivity, among the others).

On the other hand, it should be noted that there is a large number of contributions to the
representation of nontotal binary relations � (in particular nontotal preorders) in the crisp case
(see e.g., Chapter 5 in Bridges amd Mehta [7], Herden and Levin [8], Herden [9], Mehta [10], Bosi et al. [11],
Bosi and Mehta [12], and Bosi and Zuanon [13]). This is the case when there are elements x, y ∈ X such
that neither x � y nor y � x. In this case a utility function (i.e., a real-valued function u on X such that
x � y is equivalent to u(x) ≥ u(y) for all x, y ∈ X) cannot exist, and one can only ask for the existence
of an order-preserving function (i.e., of a real-valued function u on X such that, for all x, y ∈ X, x � y
implies u(x) ≥ u(y), and x � y implies u(x) > u(y), where � stands for the strict part of �).
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While the literature is mainly concerned with the existence of order-preserving functions for not
necessarily total preorders (i.e., for reflexive and transitive binary relation), it should be noted that
the existence of an order-preserving function for a binary relation � on a set X does not imply the
transitivity of �, but only the property called Suzumura consistency (see Suzumura [14]), according
to which, for example, (x � y) and (y � z) imply not(z � x) for all x, y, z ∈ X. This property is
much weaker than transitivity, which—as it is well known—requires that, for all x, y, z ∈ X, x � z
whenever (x � y) and (y � z). Suzumura introduced this sort of consistency in order to generalize
the Szpilrajn theorem (see Szpilrajn [15]), and, for example, Bosi and Herden [16]), according to which
every (pre)order admits an extension by means of a total (pre)order (see also Cato [17]).

In this paper, we present some initial results concerning the existence of an order-preserving
function u : (X, R) �→ (R,≥) for a nontotal fuzzy binary relation R on a set X under decisiveness.
This means that we look for the existence of a real-valued function u on X such that for all
(x, y) ∈ X × X with R(x, y) + R(y, x) ≥ 1, R(x, y) ≥ R(y, x) implies u(x) ≥ u(y), and respectively
R(x, y) > R(y, x) implies u(x) > u(y). We refer to decisiveness since the presence of a fuzzy
binary relation which is nontotal in our sense is related to the existence of pairs (x, y) ∈ X × X
such that R(x, y) + R(y, x) < 1. In other cases, the representation of nontotal (or else partial) (fuzzy)
binary relations is performed by allowing partial definition of some utility representation functions
(see e.g., Bosi et al. [18]) or of the fuzzy binary relation R itself (see e.g., Khalid and Beg [19]).

It is clear that if R is total in the sense above, then an order-preserving function u is a utility for
R, and this clearly implies that every result concerning the existence of an order-preserving function
for a fuzzy binary relation generalizes the corresponding result for a fuzzy total binary relation,
where “corresponding” essentially means “under the same assumptions of transitivity of R”.

We use this kind of argument in order to present conditions for the existence of an upper
semicontinuous order-preserving function u for a fuzzy binary relation R on a crisp topological space
(X, τ), which guarantees the existence of a maximal element for R whenever τ is a compact topology.

The paper is structured as follows. Section 2 contains the notation and the preliminary results
concerning crisp binary relations. Section 3 concerns the existence of an order-preserving function for
fuzzy binary relations under decisiveness. In Section 4 we present a condition for the existence of an
upper semicontinuous order-preserving function for a fuzzy binary relation on a crisp topological
space. The conclusions are contained in Section 5.

2. Notation and Preliminary Results on the Real Representation of Crisp Binary Relations

We start with the presentation of the classical definitions and properties concerning the real
representation of (crisp) binary relations, which are needed in this paper.

Definition 1. A binary relation R on a nonempty crisp set X is a (crisp) subset of the Cartesian product
X × X; i.e., a mapping R : X × X �→ {0, 1}. For any pair (x, y) ∈ X × X, we write, for the sake of simplicity,
xRy instead of (x, y) ∈ R. xRy has to be read as “the alternative x ∈ X is at least as good as the alternative
y ∈ X”, or equivalently “x ∈ X is weakly preferred to y ∈ X”.

For the sake of convenience, and since our agreement on the interpretation of the binary relation
R, from now on we shall denote by � a (crisp) binary relation on a set X. The following definitions are
found, for example, in Herden and Levin [8].

Definition 2. The strict relation �, the indifference relation ∼, and the incomparability relation �� associated
to a binary relation � on a set X are defined as follows for all x, y ∈ X:

(i) x � y ⇔ (x � y) and not(y � x);
(ii) x ∼ y ⇔ (x � y) and (y � x);

(iii) x �� y ⇔ not(x � y) and not(y � x).

The following definition of transitive closure is found, for example, in Suzumura [14].
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Definition 3. The transitive closure �T of a binary relation � on a set X is defined as follows for every
x, y ∈ X:

x �T y ⇔ ∃n ∈ N+, ∃x0, x1, ..., xn ∈ X such that [x = x0 � x1 � ... � xn = y].

Definition 4. Consider a binary relation �⊂ X × X. Then � is said to be:

(i) reflexive if x � x for all x ∈ X;
(ii) transitive if (x � y) and (y � z) imply x � z for all x, y, z ∈ X;

(iii) Suzumura consistent if for all x, y ∈ X, x �T y implies not(y � x);
(iv) a preorder if � is reflexive and transitive;
(v) a quasi-preorder if � is reflexive and Suzumura consistent;

(vi) total if (x � y) or (y � x) for all x, y ∈ X.

Please notice that all the above definitions are standard and very well-known in utility theory
(see e.g., Herden [9]), despite for the concept of a quasi-preorder. Indeed, Suzumura consistency was
introduced by Suzumura [14] in order to generalize Szpilrajn theorem (see Szpilrajn [15]) by introducing
a condition which is more general than the classical transitivity assumption, but it does not appear
specifically in connection with the real representation of binary relations (see Example 1 below).

Definition 5. Given a quasi-preorder � on a set x, let us define, for every point x ∈ X, the following subsets
of X:

l�(x) = {y ∈ X | x � y}, r�(x) = {y ∈ X | y � x}

d�(x) = {z ∈ X | x � z}, i�(x) = {z ∈ X | z � x}.

We say that l�(x) (r�(x)) is the strict lower section (respectively, strict upper section) associated to
x ∈ X, while d�(x) (i�(x)) is the weak lower section (respectively, weak upper section) associated to x ∈ X
(see e.g., Bridges and Mehta [7]).

Definition 6. A subset D of a quasi-preordered set (X,�) is said to be �-decreasing if d�(x) ⊂ D for
all x ∈ D.

In the sequel, R stands for the real line, and ≥ is the natural (total) order on R.

Definition 7. Consider a binary relation � on a set X, and a mapping u : (X,�) �→ (R,≥). Then u is said
to be:

(i) �-increasing, if for all pairs (x, y) ∈ X × X, [x � y ⇒ u(x) ≥ u(y)];
(ii) a weak utility for �, if for all pairs (x, y) ∈ X × X, [x � y ⇒ u(x) > u(y)];

(iii) �-order-preserving, if u is both �-increasing and a weak utility for �;
(iv) a utility for �, if for all pairs (x, y) ∈ X × X, [x � y ⇔ u(x) ≥ u(y)].

Let us recall the concept of a maximal element for a (quasi-)preorder (see e.g., Bosi and Zuanon [20]).

Definition 8. Let � be a quasi-preorder on a set X. Then an element x0 ∈ X is said to be a maximal element
for � if for no z ∈ X it happens that z � x0.

It is immediate to check that a binary relation admitting a utility (representation) is a total preorder.
The distinction between the concept of a �-order-preserving function and that of a weak utility for
the strict part � of � proved to be useful in connection with the existence of maximal elements of
a preorder (see Bosi and Zuanon [20]).

It is very well known that the existence of an order-preserving function u does not characterize
a nontotal (quasi-)preorder �, since whenever u(x) > u(y) it may happen that either (x � y) or
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(x �� y). Nevertheless, it is enough for optimization purposes; i.e., in order to guarantee the existence
of maximal elements (see e.g., the introduction in Alcantud et al. [21]). More generally, it is clear that if
u is a weak utility for the strict part � of a quasi-preorder � on a set X, and u attains its maximum at
a point x0, then x0 is a maximal element for �.

Let us consider the following very simple proposition, which illustrates the importance of
Suzumura consistency in connection with the existence of �-order-preserving functions.

Proposition 1. If there exists a �-order-preserving function u : (X,�) �→ (R,≥) for a (reflexive) binary
relation � on a set X, then � is Suzumura consistent (a quasi-preorder).

Proof. Let u : (X,�) �→ (R,≥) be a �-order-preserving function for a (reflexive) binary relation �
on a set X. By contraposition, assume that � is not Suzumura consistent. Then there exist n ∈ N+,
and elements x0, x1, ..., xn ∈ X such that (x = x0 � x1 � ... � xn = y) and (y � x), implying that
u(x) = u(x0) ≥ u(x1) ≥ ... ≥ u(xn) = u(y) > u(x), a contradiction.

The following example shows that the existence of a�-order-preserving function u : (X,�) �→ (R,≥)
does not imply that � is a preorder (in particular, does not imply that � is transitive) on X.

Example 1. Consider the binary relation � on the real interval X = [0, 1] defined as follows:

x � y ⇔

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(x ≥ y) and (x, y ∈ [0, 1
2 ])

or
(x ≥ y) and (x, y ∈ [ 1

2 , 1])
or
(x ≥ 3

4 ) and (y ≤ 1
4 )

It is clear that � is reflexive. Notice that x �� y for all x, y ∈ [0, 1] such that 3
4 > x ≥ 1

2 > y > 1
4 .

We have that � is not transitive since, for example, 3
5 � 1

2 � 1
3 but 3

5 �� 1
3 . On the other hand, it is easily

seen that the identity function id[0,1] on [0, 1] is a �-order-preserving function, and therefore � is Suzumura
consistent (actually a quasi-preorder) on [0, 1] by Proposition 1.

The following concept of an extension (or refinement) of a binary relation by a total preorder is well
known since the seminal work of Szpilrajn [15].

Definition 9. A total preorder �∗ is said to be an extension of a quasi-preorder � on a set X if, for all x, y ∈ X,
[(x � y ⇒ x �∗ y) and (x � y ⇒ x �∗ y)].

The following concept of separability is found, for example, in Herden and Levin [8].

Definition 10. A quasi-preorder � on a set X is said to be separable if there exists a countable subset D of X
such that, for all pairs (x, y) ∈ X × X such that x � y, there exists d ∈ D such that x � d � y.

The following proposition provides an immediate characterization of the existence of
a �-order-preserving function in terms of the existence of a representable (i.e., admitting a utility
function u : (X,�) �→ (R,≥)) total preorder �∗ providing an extension of �. Please notice that in the
sequel, the symbol � will stand for a quasi-preorder on a (nonempty) set X.

Proposition 2. The following conditions are equivalent on a quasi-preorder � on a set X:

(i) There exists a �-order-preserving function u : (X,�) �→ (R,≥);
(ii) There exists a representable total preorder �∗ which is an extension of �;

(iii) There exists a total preorder �∗ which is a separable extension of �.
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Proof. The equivalence of conditions (ii) and (iii) is well known (see e.g., Theorem 1.4.8 in
Bridges and Mehta [7]). Therefore, we only have to show the equivalence of conditions (i) and (ii). In order
to show that (i) implies (ii), just consider that if u : (X,�) �→ (R,≥) is a �-order-preserving function,
the representable total preorder �∗ on X defined as follows for all x, y ∈ X: [x �∗ y ⇔ u(x) ≥ u(y)] is an
extension of �. In order to show that (ii) implies (i), let �∗ be a representable extension of �, and let u
be a utility function for �∗. Then, it is immediate to check that u is in particular a �-order-preserving
function. This consideration completes the proof.

Conditions for the existence of an upper semicontinuous and respectively continuous
order-preserving function u for a preorder � on a set X endowed with a (crisp) topology τ are found,
for example, in Bosi and Mehta [12].

Corollary 1. Let � be a reflexive binary relation on a countable set X. Then the following conditions
are equivalent:

(i) There exists a �-order-preserving function u : (X,�) �→ (R,≥);
(ii) � is a quasi-preorder.

Proof. The implication “(i) ⇒ (ii)” is a consequence of Proposition 1. The implication “(ii) ⇒ (i)”
is a consequence of Proposition 2, implication “(iii) ⇒ (i)”, and of Suzumura’s extension theorem [14]
(see also Theorem 2 in Cato [17]), which states that a binary relation � is Suzumura consistent if and
only if it admits an extension by means of a total preorder �∗. On the other hand, such a total preorder
�∗ is separable since X is a countable set, and therefore it is representable by means of a utility function
u, which is clearly a �-order-preserving function.

3. Order-Preserving Functions for Fuzzy Binary Relations under Decisiveness

We first recall the classical concept of a fuzzy binary relation R, in order to then introduce the
definition of its strict part under decisiveness PR.

Definition 11. A fuzzy subset h of a nonempty crisp set X is a mapping h : X �→ [0, 1] from X into the closed
bounded real interval [0, 1]. We denote by F(X) the set of all the fuzzy subsets of X.

Definition 12. A fuzzy binary relation R on a nonempty crisp set X is a fuzzy subset of the Cartesian product
X × X; i.e. a mapping X × X �→ [0, 1]. For any pair (x, y) ∈ X × X, R(x, y) has to be thought of as “the
degree to which the alternative x ∈ X is at least as good as the alternative y ∈ X”. We write R ∈ F(X, X).

Definition 13. Consider R ∈ F(X, X). Then the strict part PR of R (PR ∈ F(X, X)) is defined to be, for all
x, y ∈ X,

PR(x, y) :=

{
R(x, y) if (R(x, y) > R(y, x)) and (R(x, y) + R(y, x) ≥ 1)
0 otherwise

Therefore, for any pair (x, y) ∈ X×X, PR(x, y) has to be thought of as “the degree to which the alternative
x ∈ X is strictly preferred to the alternative y ∈ X with decisiveness”.

Remark 1. Our definition of the strict part PR of a fuzzy binary relation R takes into account the possibility of
dealing with nontotal fuzzy relations R on X (i.e., when there exist x, y ∈ X such that R(x, y) + R(y, x) < 1),
in such a way that “decisiveness applies” (i.e., only pairs at which R is decisive are considered as important).
Clearly, when we consider total binary relations (preorders) (i.e. when R(x, y) + R(y, x) ≥ 1 for all x, y ∈ X),
the above definition coincides with the usual definition of the strict part of a binary relation, as found for example
in Fono and Salles [3].
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Definition 14. A fuzzy binary relation R ∈ F(X, X) is said to be decisive at a pair (x, y) ∈ X × X if
R(x, y) + R(y, x) ≥ 1.

Let us now define the binary relation �R on X which is naturally associated to a fuzzy binary
relation R on X in the case when “decisiveness” applies.

Definition 15. Let R : X × X �→ [0, 1] be a fuzzy binary relation on a set X. Then the binary relation �R on
X which is naturally associated to R in the case of decisiveness is defined to be, for all x, y ∈ X,

x �R y ⇔ (R(x, y) ≥ R(y, x)) and (R is decisive at (x, y)).

Definition 16. Consider R ∈ F(X, X). Then R is said to be:

(i) reflexive if R(x, x) = 1 for all x ∈ X;
(ii) min-transitive if R(x, z) ≥ min{R(x, y), R(y, z)} for all x, y, z ∈ X;

(iii) bin-transitive if (R(x, y) ≥ R(y, x)) and (R(y, z) ≥ R(z, y)) imply R(x, z) ≥ R(z, x) for all x, y, z ∈ X;
(iv) fuzzy decisively Suzumura consistent if for every positive integer n, and for all elements x0, x1, ..., xn ∈ X

such that R is decisive at (xh, xh+1) for all h ∈ {0, ...n− 1},

[R(xh, xh+1) ≥ R(xh+1, xh) for all h ∈ {0, ...n− 1}]⇒ PR(xn, x0) = 0;

(v) a fuzzy preorder if R is reflexive and min-transitive;
(vi) a fuzzy decisive quasi-preorder if R is reflexive and fuzzy decisively Suzumura consistent;

(vii) total if R is decisive at every point (x, y) ∈ X × X.

The reader can notice that all the previous definitions are classical and frequently found in
the literature (perhaps with slightly different terminologies), except for the fuzzy decisive Suzumura
consistency. In particular the term “total” is replaced by “connected” in Fono and Andjiga [2] and
Fono and Salles [3].

Remark 2. In the particular case when R : X × X �→ {0, 1} is a (crisp) binary relation on the set
X (i.e., R ⊂ X × X), axioms (i), (ii) (equivalently (iii)) and (iv) in Definition 16 become axioms (i), (ii),
and respectively (iii) in Definition 4.

Remark 3. It should be noted that �R is not transitive in general, even if there exists a �R-order-preserving
function u on X. Further, �R is reflexive if and only if the fuzzy binary relation R ∈ F(X, X) is reflexive.
On the other hand, it is clear that if R ∈ F(X, X) is total, then the associated binary relation �R in Definition 15
is the total preorder �R on X defined as follows for all x, y ∈ X:

x �R y ⇔ R(x, y) ≥ R(y, x).

This is precisely the case of the utility representation of a fuzzy total preorder considered in Billot [1],
Fono and Andjiga [2], and Fono and Salles [3].

Remark 4. It is immediate to observe that a reflexive binary relation R ∈ F(X, X) is a fuzzy quasi-preorder if
and only if the associated binary relation �R in Definition 15 is a quasi-preorder according to Definition 4, (v).

Definition 17. Consider a fuzzy binary relation R ∈ F(X, X), and mapping u : (X, R) �→ (R,≥). Then u is
said to be:

(i) R-increasing, if, for all pairs (x, y) ∈ X× X at which R is decisive, [R(x, y) ≥ R(y, x)⇒ u(x) ≥ u(y)];
(ii) a weak utility for PR, if for all pairs (x, y) ∈ X × X, [PR(x, y) > 0 ⇒ u(x) > u(y)];

(iii) R-order-preserving, if u is both R-increasing and a weak utility for PR;
(iv) a utility for R if R is total and, for all pairs (x, y) ∈ X × X, [R(x, y) ≥ R(y, x)⇔ u(x) ≥ u(y)].
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It should be noted that the terminology above is perfectly coherent with the usual one recalled in
Definition 7 concerning crisp relations (preorders), since in this case R(x, y) + R(y, x) ≥ 1 is equivalent
to max(R(x, y), R(y, x)) = 1.

The following definition of separability of a fuzzy binary relation is found in Fono and Salles [3].

Definition 18. A fuzzy binary relation R ∈ F(X, X) is said to be separable if there exists a countable subset D
of X such that, for all pairs (x, y) ∈ X × X at which R is decisive and R(x, y) > R(y, x) there exists d ∈ D
such that R is decisive both at (x, d) and (d, y) and R(x, d) ≥ R(d, x), R(d, y) ≥ R(y, d).

As an immediate consequence of the above definitions and Proposition 2, we get the following
proposition, whose immediate proof is left to the reader.

Proposition 3. The following conditions are equivalent on fuzzy binary relation R ∈ F(X, X) and a real-valued
function u on X:

(i) u : (X, R) �→ (R,≥)) is an R-order-preserving function;
(ii) u : (X,�R) �→ (R,≥)) is a �R-order-preserving function, where �R is the binary relation naturally

associated to R according to Definition 15;
(iii) u is the utility function for some total preorder �∗ which is an extension of �R.

Proposition 4. Consider a fuzzy binary relation R ∈ F(X, X). Then there exists an R-order-preserving
function u : (X, R) �→ (R,≥) provided that there exists a fuzzy total preorder R∗ : X × X �→ [0, 1] satisfying
the following conditions:

(i) R∗ is separable;
(ii) The following conditions are verified for all (x, y) ∈ X × X at which R is decisive,

(a) R(x, y) ≥ R(y, x) implies R∗(x, y) ≥ R∗(y, x);

(b) PR(x, y) > 0 implies PR∗(x, y) > 0;

(iii) For every x, y, z ∈ X, R∗(x, y) = R∗(y, x) = R∗(y, z) = R∗(z, y)⇒ R∗(x, z) = R∗(z, x).

Proof. Assume that there exists a fuzzy total preorder R∗ : X × X �→ [0, 1] satisfying the above
conditions (i), (ii), and (iii). Then, from Proposition 2 in Fono and Salles [3], since conditions (i)
and (iii) hold true, there exists a utility function u : (X, R∗) �→ (R,≥). Such utility function u is
R-order-preserving by condition (ii). This consideration completes the proof.

The following theorem provides a characterization of the existence of an R-order-preserving
function for a fuzzy binary relation R ∈ F(X, X) in case that the set X is countable.

Theorem 1. Consider a fuzzy binary relation R ∈ F(X, X). If R is reflexive and X is countable, then the
following conditions are equivalent:

(i) There exists an R-order-preserving function u : (X, R) �→ (R,≥);
(ii) R is a fuzzy decisive quasi-preorder.

Proof. (i) ⇒ (ii). If there exists an order-preserving function u : (X, R) �→ (R,≥), then,
by Proposition 3, u : (X,�R) �→ (R,≥)) is an �R-order-preserving function, where �R is the binary
relation naturally associated to R according to Definition 15. Hence, we have that �R is a quasi-preorder
by Proposition 2, and therefore R is a fuzzy decisive quasi-preorder from the definition of �R.

(ii) ⇒ (i). If R ∈ F(X, X) is a fuzzy decisive quasi-preorder, then �R is a quasi-preorder,
and therefore there exists a �R-order-preserving function by Corollary 1. Clearly, u is also
R-order-preserving. This consideration completes the proof.
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Since for a fuzzy total binary relation R ∈ F(X, X) a function u : (X, R) �→ (R,≥) is
R-order-preserving if and only if it is a utility function for R, we immediately get as a corollary
the following result proved by Billot [1] (see also Proposition 2 in Fono and Andjiga [2]).

Corollary 2. Consider a fuzzy total binary R ∈ F(X, X). If X is countable, then the following conditions
are equivalent:

(i) There exists a utility function u : (X, R) �→ (R,≥);
(ii) R is bin-transitive.

4. Upper Semicontinuous Order-Preserving Functions for Fuzzy Binary Relation on A Topological Space

In order to motivate the contents of this section, let us first introduce the concept of a
maximal element for a fuzzy binary relation under decisiveness.

Definition 19. A point x0 ∈ X is said to be maximal with respect to fuzzy binary relation R ∈ F(X, X) if for
no z ∈ X it occurs that PR(z, x0) > 0 (i.e., r�R

(x0) = ∅).

It is clear that if a binary relation R ∈ F(X, X) admits a representation by means of
an R-order-preserving u, and u attains its maximum at a point x0 ∈ X, then x0 is a maximal element for
R. In the sequel, the symbol �T

R stands for the transitive closure of the binary relation �R associated to
some R ∈ F(X, X).

Definition 20. Let R ∈ F(X, X) be a fuzzy binary relation on a set X, endowed with a topology τ. Then R is
said to be:

(i) T-τ-upper semicontinuous, if l�T
R
(x) is an open subset of X for all x ∈ X:

(ii) T-τ-upper semiclosed, if i�T
R
(x) is a closed subset of X for all x ∈ X.

It should be noted that if R is a crisp binary relation, then the above definitions of T-τ-upper
semicontinuity and T-τ-upper semiclosedness slightly generalize the concepts of upper semicontinuity
of type 1 and respectively upper semicontinuity of type 2 as defined in Herden and Levin [8] in the case of
a preorder � on a topological space (X, τ).

We recall that a (crisp) topology τ on a set X is a family of subsets of X which contains X and the
empty set ∅ and is closed under arbitrary unions and finite intersections. A set O ∈ τ is said to be open.
We denote by τnat the natural (interval) topology on R. Further, a real-valued function u on a topological
space (X, τ) is said to be τ-upper semicontinuous if the set u−1(]−∞, α[) = {z ∈ X : u(z) < α} is open
for every α ∈ R.

Proposition 5. Let R be a fuzzy decisive quasi-preorder on a set X, endowed with a topology τ. Then there
exists a τ-upper semicontinuous R-order-preserving function u : (X, R, τ) �→ (R,≥, τnat) provided that the
following conditions are verified:

(i) There exists a countable subset D of X such that for all pairs (x, y) ∈ X×X such that x �R y, there exists
d ∈ D such that x �R d �T

R y;
(ii) R is either T-τ–upper semicontinuous or T-τ–upper semiclosed.

Proof. Let R be a fuzzy decisive quasi-preorder on a set X, endowed with a topology τ, and assume
that R satisfies the above conditions (i) and (ii). Let D = {dn : n ∈ N+} be a countable subset of X
verifying the above condition (i), and define the function un : X �→ [0, 1]R as follows for every n ∈ N+:

un(x) =

{
0 if x ∈ l�T

R
(dn) (x ∈ X \ i�T

R
(dn))

1 otherwise
.
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Then define u :=
∞

∑
n=1

2−nun. Observe that u is �R-increasing since the fact that l�T
R
(z) (X \ i�T

R
(z))

is �T
R-decreasing for all z ∈ X implies that un is �T

R-increasing for all n ∈ N+, and therefore that u
is �R-increasing. Further, it is easily seen that the above condition (i) implies that u is a weak utility
for �R. Indeed, if x �R y, then there exists n ∈ N+ such that x �R dn �T

R y, implying that un(y) = 0
and un(x) = 1. Since R is T-τ-upper semicontinuous (T-τ-upper semiclosed), it is easy to be seen
that un is τ-upper semicontinuous for all n ∈ N+, implying that u is also τ-upper semicontinuous.
This consideration completes the proof.

Since every upper semicontinuous function u attains its maximum on a compact topological space
(X, τ) (i.e., when for every family O = {Oα}α∈I of open subsets of X such that

⋃
α∈I

Oα = X there

exists a finite subfamily O′ = {O1, ..., On} of O such that
n⋃

n=1

On = X), we immediately get the

following corollary.

Corollary 3. Let R be a fuzzy decisive quasi-preorder on a set X, endowed with a topology τ. If R satisfies the
assumptions of Proposition 5, and the topology τ is compact, then there exists a maximal element x0 for R.

5. Conclusions

In this paper we have presented conditions for the existence of an order-preserving function u for
a fuzzy not necessarily total binary relation R on a set X when decisiveness applies, in the sense that u
is required to “preserve” and “to strictly preserve” the inequalities R(x, y) ≥ R(y, x) and respectively
R(x, y) > R(y, x) only in the case of a pair (x, y) ∈ X × X such that R(x, y) + R(y, x) ≥ 1 (i.e., when R
is decisive at (x, y) according to the terminology adopted here). By using this approach, it is possible
to generalize the corresponding results concerning the existence of a utility function u for a fuzzy total
preorder R on X; i.e., when R(x, y) + R(y, x) ≥ 1 for all pairs (x, y) ∈ X × X.

We have also presented conditions implying the existence of an upper semicontinuous
order-preserving function in case that the set X is endowed with a crisp topology.

The possibility of characterizing the existence of an (upper semicontinuous or continuous)
order-preserving function for a not necessarily total fuzzy preference relation under decisiveness
will hopefully be examined in a future paper.
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Abstract: The notion of indistinguishability operator was introduced by Trillas, E. in 1982, with the
aim of fuzzifying the crisp notion of equivalence relation. Such operators allow for measuring the
similarity between objects when there is a limitation on the accuracy of the performed measurement or
a certain degree of similarity can be only determined between the objects being compared. Since Trillas
introduced such kind of operators, many authors have studied their properties and applications.
In particular, an intensive research line is focused on the metric behavior of indistinguishability
operators. Specifically, the existence of a duality between metrics and indistinguishability operators
has been explored. In this direction, a technique to generate metrics from indistinguishability
operators, and vice versa, has been developed by several authors in the literature. Nowadays, such a
measurement of similarity is provided by the so-called fuzzy metrics when the degree of similarity
between objects is measured relative to a parameter. The main purpose of this paper is to extend
the notion of indistinguishability operator in such a way that the measurements of similarity are
relative to a parameter and, thus, classical indistinguishability operators and fuzzy metrics can be
retrieved as a particular case. Moreover, we discuss the relationship between the new operators and
metrics. Concretely, we prove the existence of a duality between them and the so-called modular
metrics, which provide a dissimilarity measurement between objects relative to a parameter. The new
duality relationship allows us, on the one hand, to introduce a technique for generating the new
indistinguishability operators from modular metrics and vice versa and, on the other hand, to derive,
as a consequence, a technique for generating fuzzy metrics from modular metrics and vice versa.
Furthermore, we yield examples that illustrate the new results.

Keywords: indistinguishability operator; fuzzy (pseudo-)metric; modular (pseudo-)metric;
continuous Archimedean t-norm; additive generator; pseudo-inverse

1. Introduction

Throughout this paper, we will use the following notation. We will denote by R the set of real
numbers, and we will denote by [a, b], ]a, b], [a, b[ and ]a, b[, open, semi-open and closet real intervals,
respectively, whenever a, b ∈ R∪ {−∞, ∞} with a < b.

In 1982, Trillas, E. introduced the notion of indistinguishability operator with the purpose
of fuzzifying the classical (crisp) notion of equivalence relation (see [1]). Let us recall that an
indistinguishability operator, for a t-norm ∗, on a non-empty set X is a fuzzy set E : X × X → [0, 1],
which satisfies, for each x, y, z ∈ X, the following axioms:

(E1) E(x, x) = 1; (Reflexivity)
(E2) E(x, y) = E(y, x); (Symmetry)
(E3) E(x, y) ∗ E(y, z) ≤ E(x, z). (Transitivity)

If, in addition, E satisfies for all x, y ∈ X the following condition:
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(E1’) E(x, y) = 1 implies x = y,

then it is said that E separates points.
According to [1] (see also [2]), the numerical value E(x, y) provides the degree up to which x is

indistinguishable from y or equivalent to y. Thus, the greater E(x, y), the more similar x and y are.
In particular, E(x, y) = 1 when x = y.

In the light of the preceding definition, the concept of t-norm plays an essential role in the
framework of indistinguishability operators. In fact, t-norms are involved in axiom (E3) in order to
express that x is indistinguishable from z whenever x is indistinguishable from y and z. Throughout
this paper, we will assume that the reader is familiar with the basics of triangular norms (see [3] for a
deeper treatment of the topic).

Since Trillas introduced the indistinguishability operators, many authors have studied their
properties and applications. We refer the reader to [2], and references therein, for an exhaustive
treatment of the topic. Among the different properties that such operators enjoy, the metric behavior
can be highlighted. In particular, the existence of a duality relationship between metrics and
indistinguishability operators in [2–8] has been explored. In this direction, a technique to generate
metrics from indistinguishability operators, and vice versa, has been developed by several authors in
the literature. Concretely, an indistinguishability operator can be provided from a (pseudo-)metric
as follows:

Theorem 1. Let X be a non-empty set and let ∗ be a t-norm with additive generator f∗ : [0, 1]→ [0, ∞]. If � is
a t-norm, then the following assertions are equivalent:

(1) ∗ ≤ � (i.e., x ∗ y ≤ x � y for all x, y ∈ [0, 1]).
(2) For any indistinguishability operator E on X for �, the function dE, f∗ : X × X → [0, ∞] defined, for each

x, y ∈ X, by
dE, f∗(x, y) = f∗(E(x, y)),

is a pseudo-metric on X.
(3) For any indistinguishability operator E on X for � that separates points, the function dE, f∗ : X×X → [0, ∞]

defined, for each x, y ∈ X, by
dE, f∗(x, y) = f∗(E(x, y)),

is a metric on X.

Reciprocally, a technique to construct an indistinguishability operator from a (pseudo-)metric can
be given as the next result shows.

Theorem 2. Let X be a non-empty set and let ∗ be a continuous t-norm with additive generator
f∗ : [0, 1]→ [0, ∞]. If d is a pseudo-metric on X, then the function Ed, f∗ : X × X → [0, 1] defined, for
all x, y ∈ X, by

Ed, f∗(x, y) = f (−1)
∗ (d(x, y)),

is an indistinguishability operator for ∗, where f (−1)
∗ denotes the pseudo-inverse of the additive generator f∗.

Moreover, the indistinguishability operator Ed, f∗ separates points if and only if d is a metric on X.

It must be stressed that, in the statement of the preceding results, and, throughout this
paper, the considered (pseudo-)metrics can take the value ∞, which are also known as extended
(pseudo-)metrics in [9].

Recently, applications of the techniques exposed in Theorems 1 and 2 to the task allocation
problem in multi-agent (multi-robot) systems have been given in [10–12]. In particular, in the preceding
references, indistinguishability operators have shown to be appropriate to model response functions
when response threshold algorithms (in swarm-like methods) are under consideration in order to solve
the aforesaid task allocation problem.
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Nowadays, in many applications, the degree of similarity is measured relative to a parameter
(see, for instance, [13–15]). In this case, the indistinguishability operators are not able to measure
such a graded similarity and so a new measurement becomes indispensable instead. The aforesaid
measurements are called fuzzy metrics and they were introduced in 1975 by Kramosil, I. and Michalek, J.
in [16]. However, currently, the fuzzy metric axioms used in the literature are those given by Grabiec, M.
in [17] and by George, A. and Veeramani, P. in [18]. It must be pointed out that the axioms by Grabiec
and by George and Veeramani, P. are just a reformulation of those given by Kramosil and Michalek.

Let us recall, on account of [17,18], that a fuzzy metric on a non-empty set X is a pair (M, ∗)
such that ∗ is a continuous t-norm and M is a fuzzy set on X × X × [0, ∞[, satisfying the following
conditions, for all x, y, z ∈ X and s, t > 0:

(KM1) M(x, y, 0) = 0;
(KM2) M(x, y, t) = 1 for all t > 0 if and only if x = y;
(KM3) M(x, y, t) = M(y, x, t);
(KM4) M(x, y, t) ∗ M(y, z, s) ≤ M(x, z, t + s);
(KM5) The function Mx,y : [0, ∞[→ [0, 1] is left-continuous, where Mx,y(t) = M(x, y, t).

Similar to the classical case, we will say that (M, ∗) is a fuzzy pseudo-metric on X provided that
axiom (KM2) is replaced by the following weaker one:

(KM2’) M(x, x, t) = 1 for all t > 0.

Moreover, given a fuzzy (pseudo-)metric (M, ∗) on X, we will also say that (X, M, ∗) is a fuzzy
(pseudo-)metric space.

According to [18], the numerical value M(x, y, t) yields the degree of similarity between x and y
relative to the value t of the parameter. Of course, it must be clarify that, according to the exposed
interpretation, axiom (KM1) does not provide any information from a measurement framework
because the rest of axioms are enough in order to define a fuzzy measurement. Motivated by this
fact, we will assume that a fuzzy metric (M, ∗) is a fuzzy set M on X × X×]0, ∞[ that satisfies all
the preceding axioms except the axiom (KM1). Of course, the left-continuity of axiom (KM5) will be
satisfied for the the function Mx,y :]0, ∞[→ [0, 1].

The following is a well-known example of fuzzy metric.

Example 1. Let d be a metric on a non-empty set X. Let Md be a fuzzy set on X × X×]0, ∞[ defined, for each
x, y ∈ X, by

Md(x, y, t) =
t

t + d(x, y)
,

whenever t > 0. On account of [18], (Md,∧) is a fuzzy metric on X, where ∧ denotes the minimum t-norm.
The fuzzy metric Md is called the standard fuzzy metric induced by d.

Following [19], a fuzzy metric (M, ∗) is said to be stationary provided that the function
Mx,y :]0, ∞[→ [0, 1] defined by Mx,y(t) = M(x, y, t) is constant for each x, y ∈ X.

The next example gives an instance of stationary fuzzy metric.

Example 2. Let X be a non-empty set X and let G : X× X →]0, 1
2 [ be a function such that G(x, y) = G(y, x)

for all x, y ∈ X. Consider the fuzzy set MG on X × X×]0, ∞[ given by MG(x, y, t) = G(x, y) for all t > 0
and x, y ∈ X such that x 
= y and MG(x, x, t) = 1 for all t > 0. According to [13], (MG, ∗L) is a stationary
fuzzy metric, where ∗L is the Luckasievicz t-norm.

Notice that, as in the case of indistinguishability operators, t-norms are crucial in the definition
of a fuzzy metric. However, now the unique t-norms under consideration are the continuous ones.
Thus, it constitutes a considerable difference between indistinguishability operators and fuzzy metrics.
Moreover, another significant difference between these two kinds of fuzzy measurement is that
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fuzzy metrics include in their definition a parameter. Therefore, none of these types of similarity
measurements generalizes the other.

In the light of the preceding fact, it seems natural to try to unify both notions, fuzzy
(pseudo-)metrics and indistinguishability operators, under a new one. Thus, the aim of this
paper is twofold. On the one hand, we introduce a new type of operator, which we have called
modular indistinguishability operator (the name will be justified in Section 3), which provides a
degree of similarity or equivalence relative to a parameter and retrieves as a particular case fuzzy
(pseudo-)metrics and classical indistinguishability operators. On the other hand, we explore the
metric behavior of this new kind of operators. Specifically, we study the duality relationship between
modular indistinguishability operators and metrics in the spirit of Theorems 1 and 2. The new
results extend the aforementioned results to the new framework and, in addition, allow us to
explore also the aforesaid duality relationship when fuzzy (pseudo-)metrics are considered instead of
indistinguishability operators.

2. The New Indistinguishability Operators

As we have mentioned before, we are interested in proposing a new type of operator that unify
the notion of fuzzy (pseudo-)metric and indistinguishability operator in such a way that a unique
theoretical basis can be supplied to develop a wide range of applications. To this end, we introduce the
notion of modular indistinguishability operator as follows:

Definition 1. Let X be a non-empty set and let ∗ be a t-norm, we will say that fuzzy set
F : X × X×]0, ∞[→ [0, 1] is a modular indistinguishability operator for ∗ if for each x, y, z ∈ X and t, s > 0
the following axioms are satisfied:

(ME1) F(x, x, t) = 1;
(ME2) F(x, y, t) = F(y, x, t);
(ME3) F(x, z, t + s) ≥ F(x, y, t) ∗ F(y, z, s).

If, in addition, F satisfies for all x, y ∈ X, the following condition:

(ME1’) F(x, y, t) = 1 for all t > 0 implies x = y,

we will say that F separates points.
Moreover, we will say that F is stationary provided that the function Fx,y :]0, ∞[→ [0, 1] defined by

Fx,y(t) = F(x, y, t) is constant for each x, y ∈ X.

Notice that the numerical value F(x, y, t) can understood as the degree up to which x is
indistinguishable from y or equivalent to y relative to the value t of the parameter. Moreover, the greater
F(x, y, t), the more similar are x and y relative to the value t of the parameter. Clearly, F(x, y, t) = 1 for
all t > 0 when x = y.

It is worth mentioning that the classical notion of indistinguishability operator is recovered
when the modular indistinguishability operator F is stationary. In addition, it is clear that a
modular indistinguishability operator can be considered as a generalization of the concept of fuzzy
(pseudo-)metric. However, there are examples of modular indistinguishability operators that are not a
fuzzy (pseudo-)metrics such as the next example shows.

Example 3. Consider a metric d on a non-empty set X. Define the fuzzy set Fd on X × X×]0, ∞[ as follows:

Fd(x, y, t) =

⎧⎪⎨⎪⎩
0, if 0 < t < d(x, y) and d(x, y) 
= 0,
1, if t ≥ d(x, y) and d(x, y) 
= 0,
1, if d(x, y) = 0.

.
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It is easy to check that Fd is a modular indistinguishability operator for the product t-norm ∗P.
Nevertheless, (Fd, ∗P) is not a fuzzy (pseudo-)metric because the function Fdx,y :]0, ∞[→ [0, 1], defined by
Fdx,y(t) = Fd(x, y, t) is not left-continuous.

The concept of modular indistinguishability operator also generalizes the notion of fuzzy
(pseudo-)metric in another outstanding aspect. Observe that, in Definition 1, the continuity on
the t-norm is not required. Naturally, the assumption of continuity of the t-norm is useful from
a topological viewpoint, since the continuity is necessary in order to define a topology by means
of a family of balls in a similar way like in the pseudo-metric case. However, such an assumption
could be limiting the range of applications of such fuzzy measurements in those case where (classical)
indistinguishability operators works well. In this direction, modular indistinguishability operators
present an advantage with respect to fuzzy (pseudo-)metrics because the involved t-norms are not
assumed to be continuous.

The following example illustrates the preceding remark providing an instance of modular
indistinguishability operator for the Drastic t-norm ∗D, which is not a modular indistinguishability
operator for any continuous t-norm.

Example 4. Let ϕ be the function defined on ]0, ∞[ by ϕ(t) = t
1+t . We define the fuzzy set FD on

[0, 1[×[0, 1[×]0, ∞[ as follows:

FD(x, y, t) =

{
1, for each t > 0, if x = y,
max{x, y, ϕ(t)}, for each t > 0, if x 
= y.

First of all, note that, for each x, y ∈ [0, 1[ and t > 0, we have that FD(x, y, t) ∈ [0, 1[, since
x, y, ϕ(t) ∈ [0, 1[. Thus, FD is a fuzzy set on [0, 1[×[0, 1[×]0, ∞[.

Now, we will see that FD is a modular indistinguishability operator on [0, 1[ for ∗D. To this end, let us
recall that ∗D is defined by

a ∗D b =

{
0, if a, b ∈ [0, 1[,
min{a, b}, elsewhere.

It is clear that FD satisfies axioms (ME1) and (ME2). Next, we show that FD satisfies (ME3), i.e.,

FD(x, z, t + s) ≥ FD(x, y, t) ∗D FD(y, z, s)

for all x, y, z ∈ [0, 1[ and t, s > 0.
Notice that we can assume that x 
= z. Otherwise, the preceding inequality holds trivially. Next, we

distinguish two cases:

1. Case 1. x 
= y and y 
= z. Then, FD(x, y, t) = max{x, y, ϕ(t)} < 1 and FD(y, z, s) =

max{y, z, ϕ(s)} < 1, since x, y, z ∈ [0, 1[ and ϕ(t) < 1 for each t > 0. Thus, FD(x, y, t) ∗D
FD(y, z, s) = 0 attending to the definition of ∗D. It follows that FD(x, z, t + s) ≥ FD(x, y, t) ∗D
FD(y, z, s).

2. Case 2. x = y or y = z (suppose, without loss of generality, that x = y). Then, FD(x, y, t) = 1 and so

FD(x, z, t + s) = FD(y, z, t + s) = max{y, z, ϕ(t + s)} ≥ max{y, z, ϕ(s)} = FD(y, z, s),

since ϕ is an increasing function. Thus, FD(x, z, t + s) ≥ FD(y, z, s) = FD(x, y, t) ∗D FD(y, z, s).

Furthermore, the modular indistinguishability operator FD separates points. Indeed, let x, y ∈ [0, 1[ and
t > 0. Since x, y, ϕ(t) ∈ [0, 1[ for each t > 0, we have that, if x 
= y, then FD(x, y, t) = max{x, y, ϕ(t)} < 1.
Thus, FD(x, y, t) = 1 implies x = y.

Finally, we will prove that FD is not a modular indistinguishability operator for any continuous t-norm.
To this end, we will show that axiom (ME3) is not fulfilled for any t-norm continuous at (1, 1).
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Let ∗ be a continuous t-norm at (1, 1). Then, for each ε ∈]0, 1[, we can find δ ∈]0, 1[ such that δ ∗ δ >

1− ε.
Now, consider x = 0, z = 1

2 and t = s = 1. Then,

FD(x, z, t + s) = max
{

0,
1
2

,
2
3

}
=

2
3

.

Taking ε = 1
3 , we can find δ ∈]0, 1[ such that δ ∗ δ > 2

3 . Note that, in this case, δ > 2
3 . Therefore, if we

take y = δ, we have that

FD(x, y, t) ∗ FD(y, z, s) = max
{

0, y,
1
2

}
∗max

{
y,

1
2

,
1
2

}
= y ∗ y >

2
3
= FD(x, z, t + s).

Thus, (ME3) is not satisfied.

We end the section with a reflection on axiom (KM1). When such an axiom is considered in the
definition of fuzzy (pseudo-)metric (i.e., the fuzzy (pseudo-)metric is considered as a fuzzy set on
X × X × [0, ∞[ instead on X × X×]0, ∞[), one could wonder whether modular indistinguishability
operators would be able to extend the notion of fuzzy (pseudo-)metric in that case. The answer to the
posed question is affirmative. In fact, in order to define a new indistinguishability operator for that
purpose, we only need to include in the axiomatic in Definition 1 the following axiom:

(ME0) F(x, y, 0) = 0 for all x, y ∈ X.

Notice that, even in such a case, there exist modular indistinguishability operators that are not
fuzzy (pseudo-)metrics. An example of such a kind of operators is given by an easy adaptation of the
fuzzy set Fd introduced in Example 3. Indeed, we only need to consider such a fuzzy set defined as in
the aforesaid example and, in addition, satisfying Fd(x, y, 0) = 0 for all x, y ∈ X. Of course, it is easy
to check that Fd is a modular indistinguishability operator for the product t-norm ∗P, which satisfies
(ME0) but (Fd, ∗P) is not a fuzzy (pseudo-)metric.

3. The Duality Relationship

This section is devoted to explore the metric behavior of the new indistinguishability operators.
Concretely, we extend, on the one hand, the technique through which a metric can be generated
from an indistinguishability operator by means of an additive generator of a t-norm (in Section 3.1)
and, on the other hand, the technique that allows for inducing an indistinguishability operator
from a metric by means of the pseudo-inverse of the additive generator of a t-norm (in Section 3.2).
The same results are also explored when fuzzy (pseudo-)metrics are considered instead of modular
indistinguishability operators.

3.1. From Modular Indistinguishability Operators to Metrics

In order to extend Theorem 1 to the modular framework, we need to propose a metric class as
a candidate to be induced by a modular indistinguishability operator. We have found that such a
candidate is known in the literature as modular metric. Let us recall a few basics about this type
of metrics.

According to Chytiakov, V.V. (see [20]), a function w :]0, ∞[×X × X → [0, ∞] is a modular metric
on a non-empty set X if, for each x, y, z ∈ X and each λ, μ > 0, the following axioms are fulfilled:

(MM1) w(λ, x, y) = 0 for all λ > 0 if and only if x = y;
(MM2) w(λ, x, y) = w(λ, y, x);
(MM3) w(λ + μ, x, z) ≤ w(λ, x, y) + w(μ, y, z).

If the axiom (MM1) is replaced by the following one,
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(MM1’) w(λ, x, x) = 0 for all λ > 0,

then w is a called modular pseudo-metric on X.
Of course, the value w(λ, x, y) can be understood as a dissimilarity measurement between objects

relative to the value λ of a parameter.
Following [20], given x, y ∈ X and λ > 0, we will denote from now on the value w(λ, x, y) by

wλ(x, y).
Notice that, as was pointed out in [20], a (pseudo-)metric is a modular (pseudo-)metric, which

is “stationary”, i.e., it does not depend on the value t of the parameter. Thus, (pseudo-)metrics on X
are modular (pseudo-)metrics w :]0, ∞[×X× X → [0, ∞] such that the assignment wx,y :]0, ∞[→ [0, ∞],
given by wx,y(λ) = wλ(x, y) is a constant function for each x, y ∈ X.

The following are well-known examples of modular (pseudo-)metrics.

Example 5. Let d be a (pseudo-)metric on X and let ϕ :]0, ∞[→]0, ∞[ be a non-decreasing function.
The functions defined on ]0, ∞[×X × X as follows:

(i) w1
λ(x, y) =

{
∞, if x 
= y,
0, if x = y,

(ii) w2
λ(x, y) =

⎧⎪⎨⎪⎩
∞, if 0 < λ < d(x, y) and d(x, y) > 0,
0, if λ ≥ d(x, y) and d(x, y) > 0,
0, if d(x, y) = 0,

(iii) w3
λ(x, y) = d(x,y)

ϕ(λ)
,

are modular (pseudo-)metrics on X.

Next, we provide an example of modular metric that will be crucial in Section 3.2.

Proposition 1. Let d be a metric space on X. Then, the function w :]0, ∞[×X × X → [0, ∞] is a modular
metric on X, where

wλ(x, y) =
d2(x, y)

λ

for each x, y ∈ X and λ ∈]0, ∞[ (in the last expression, d2(x, y) denotes (d(x, y))2, as usual).

Proof. It is clear that axioms (MM1) and (MM2) are satisfied. It remains to show that axiom (MM3)
holds. Let x, y, z ∈ X and λ, μ ∈]0, ∞[. Note that

d2(x, z) ≤
(

d(x, y) + d(y, z)
)2

= d2(x, y) + 2d(x, y)d(y, z) + d2(y, z),

since d is a metric and satisfies the triangle inequality.
From the preceding inequality, we deduce the following one:

d2(x, y)
λ

+
d2(y, z)

μ
− d2(x, z)

λ + μ
=

μ(λ + μ)d2(x, y) + λ(λ + μ)d2(y, z)− λμd2(x, z)
λμ(λ + μ)

=

=
μλd2(x, y) + μ2d2(x, y) + λ2d2(y, z) + λμd2(y, z)− λμd2(x, z)

λμ(λ + μ)
≥

≥ μλd2(x, y) + μ2d2(x, y) + λ2d2(y, z) + λμd2(y, z)− λμ(d2(x, y) + 2d(x, y)d(y, z) + d2(y, z))
λμ(λ + μ)

=

=
μ2d2(x, y) + λ2d2(y, z)− 2λμd(x, y)d(y, z)

λμ(λ + μ)
=

(μd(x, y)− λd(y, z))2

λμ(λ + μ)
≥ 0.
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Therefore,

wλ+μ(x, z) =
d2(x, z)
λ + μ

≤ d2(x, y)
λ

+
d2(y, z)

μ
= wλ(x, y) + wμ(y, z).

Hence, w satisfies (MM3).

After a brief introduction to modular metric spaces we are able to yield a modular version of
Theorem 1.

Theorem 3. Let X be a non-empty set and let ∗ be a continuous t-norm with additive generator
f∗ : [0, 1]→ [0, ∞]. If � is a t-norm, then the following assertions are equivalent:

(1) ∗ ≤ � (i.e., x ∗ y ≤ x � y for all x, y ∈ [0, 1]).
(2) For any modular indistinguishability operator F on X for �, the function (wF, f∗) :]0, ∞[×X×X → [0, ∞]

defined by
(wF, f∗)λ(x, y) = f∗(F(x, y, λ)),

for each x, y ∈ X and λ > 0, is a modular pseudo-metric on X.
(3) For any modular indistinguishability operator F on X for � that separates points, the function (wF, f∗) :

]0, ∞[×X × X → [0, ∞] defined by

(wF, f∗)λ(x, y) = f∗(F(x, y, λ)),

for each x, y ∈ X and λ > 0, is a modular metric on X.

Proof. (1)⇒ (2) Suppose that ∗ ≤ � and let F be a modular indistinguishability operator on X
for �. We will see that (wF, f∗) is a modular pseudo-metric on X.

(MM1’) Let x ∈ X. Since F(x, x, λ) = 1 for each λ > 0, then (wF, f∗)λ(x, x) = f∗(F(x, x, λ)) =

f∗(1) = 0 for each λ > 0.
(MM2) It is obvious because F(x, y, λ) = F(y, x, λ) for all x, y ∈ X and λ > 0.
(MM3) Let x, y, z ∈ X and λ, μ > 0. We will show that the following inequality

(wF, f∗)λ+μ(x, z) ≤ (wF, f∗)λ(x, y) + (wF, f∗)μ(y, z)

holds. First of all, note that F is also a modular indistinguishability operator for ∗ on X due
to � ≥ ∗. Then, the following inequality is satisfied:

F(x, z, λ + μ) ≥ F(x, y, λ) ∗ F(y, z, μ) = f (−1)
∗ ( f∗(F(x, y, λ)) + f∗(F(y, z, μ))) .

Taking into account that f∗ is an additive generator, and thus a decreasing function, we
have that

f∗(F(x, z, λ + μ)) ≤ f∗
(

f (−1)
∗ ( f∗(F(x, y, λ)) + f∗(F(y, z, μ)))

)
.

Now, we will distinguish two different cases:

(a) Suppose that f∗(F(x, y, λ)) + f∗(F(y, z, μ)) ∈ Ran( f∗).
Since f∗ is an additive generator of the t-norm ∗, we have that
f∗ ◦ f (−1)

∗ |Ran( f∗) = id|Ran( f∗). Then,

f∗
(

f (−1)
∗ ( f∗(F(x, y, λ)) + f∗(F(y, z, μ)))

)
= f∗(F(x, y, λ)) + f∗(F(y, z, μ)).
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It follows that

(wF, f∗)λ+μ(x, z) = f∗(F(x, z, λ + μ)) ≤ f∗(F(x, y, λ)) + f∗(F(y, z, μ)) =

= (wF, f∗)λ(x, y) + (wF, f∗)μ(y, z).
(b) Suppose that f∗(F(x, y, λ)) + f∗(F(y, z, μ)) /∈ Ran( f∗). Since f∗ is an additive generator

of the t-norm ∗, we have that f∗(a) + f∗(b) ∈ Ran( f∗) ∪ [ f∗(0), ∞] for each a, b ∈ [0, 1].
Then,

f∗(F(x, y, λ)) + f∗(F(y, z, μ)) > f∗(0).

Thus, we obtain

f∗(F(x, z, λ + μ)) ≤ f∗(0) < f∗(F(x, y, λ)) + f∗(F(y, z, μ)),

where we have that

(wF, f∗)λ+μ(x, z) ≤ (wF, f∗)λ(x, y) + (wF, f∗)μ(y, z),

as we claimed.

Therefore, (wF, f∗) is a modular pseudo-metric on X.

(2) ⇒ (3) Let F be a modular indistinguishability operator on X for � that separates points.
By our assumption, (wF, f∗) is a pseudo-modular metric on X. We will see that (wF, f∗) is a
modular metric on X.

Let x, y ∈ X such that (wF, f∗)λ(x, y) = 0 for all λ > 0. By definition, we have that
f∗(F(x, y, λ)) = 0 for all λ > 0. Then, F(x, y, λ) = 1 for all λ > 0, since f∗ is an additive
generator of ∗. Therefore, x = y, since F is a modular indistinguishability operator on X for �
that separates points.
(3)⇒ (1) Suppose that, for any modular indistinguishability operator F on X for � that separates
points, the function (wF, f∗) is a modular metric on X. We will show that � ≥ ∗. To this end,
we will prove that a � b ≥ a ∗ b provided a, b ∈ [0, 1[. Note that the preceding inequality is
obvious whenever either a = 1 or b = 1.

Let a, b ∈ [0, 1[. Consider a set constituted by three distinct points X = {x, y, z}. We define a
fuzzy set F on X × X×]0, ∞[ as follows:

F(u, v, t) = F(v, u, t) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1, if u = v,
a � b, if u = x and v = z,
a, if u = x and v = y,
b, if u = y and v = z,

for all t > 0.

It is easy to verify, attending to its definition, that F is a modular indistinguishability operator on
X for � that separates points. Thus, (wF, f∗) is a modular metric on X. Therefore, given λ > 0, we
have that

f∗(a � b) = (wF, f∗)2λ(x, z) ≤ (wF, f∗)λ(x, y) + (wF, f∗)λ(y, z) = f∗(a) + f∗(b).

Notice that, for each c ∈ [0, 1], we have that ( f (−1)
∗ ◦ f∗)(c) = c, a ∗ b = f (−1)

∗ ( f∗(a) + f∗(b)) and
that f (−1)

∗ is decreasing, since f∗ is an additive generator of the t-norm ∗. Taking into account the
preceding facts and, from the above inequality, we deduce that

a � b = f (−1)
∗ ( f∗(a � b)) ≥ f (−1)

∗ ( f∗(a) + f∗(b)) = a ∗ b,
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as we claimed.
This last implication concludes the proof.

In order to illustrate the technique introduced in the above theorem, we provide two corollaries
that establish the particular cases for the Luckasievicz t-norm and the usual product. With this aim,
we recall that an additive generator f∗L of ∗L and f∗P of ∗P is given by

f∗L(a) = 1− a,
f∗P(a) = − log(a),

for each a ∈ [0, 1], respectively. Of course, we have adopted the convention that log(0) = −∞.

Corollary 1. Let X be a non-empty set. If � is a t-norm, then the following assertions are equivalent:

(1) ∗L ≤ �.
(2) For any modular indistinguishability operator F on X for �, the function (wF, f∗L ) :]0, ∞[×X×X → [0, ∞]

defined by
(wF, f∗L )λ(x, y) = 1− F(x, y, λ),

for each x, y ∈ X and λ > 0, is a modular pseudo-metric on X.
(3) For any modular indistinguishability operator F on X for � that separates points, the function

(wF, f∗L ) :]0, ∞[×X × X → [0, ∞] defined by

(wF, f∗L )λ(x, y) = 1− F(x, y, λ),

for each x, y ∈ X and λ > 0, is a modular metric on X.

Corollary 2. Let X be a non-empty set. If � is a t-norm, then the following assertions are equivalent:

(1) ∗P ≤ �.
(2) For any modular indistinguishability operator F on X for �, the function

(wF, f∗P ) :]0, ∞[×X × X → [0, ∞] defined by

(wF, f∗P )λ(x, y) = −log(F(x, y, λ)),

for each x, y ∈ X and λ > 0, is a modular pseudo-metric on X.
(3) For any modular indistinguishability operator F on X for � that separates points, the function

(wF, f∗P ) :]0, ∞[×X × X → [0, ∞] defined by

(wF, f∗P )λ(x, y) = −log(F(x, y, λ)),

for each x, y ∈ X and λ > 0, is a modular metric on X.

Theorem 3 also gives a specific method to generate modular metrics when we focus our attention
on fuzzy (pseudo-)metrics instead of modular indistinguishability operators in general.

Corollary 3. Let X be a non-empty set and let ∗ be a t-norm with additive generator f∗ : [0, 1]→ [0, ∞]. If �
is a continuous t-norm, then the following assertions are equivalent:

(1) ∗ ≤ �.
(2) For any fuzzy pseudo-metric (M, �) on X, the function (wM, f∗) :]0, ∞[×X × X → [0, ∞] defined by

(wM, f∗)λ(x, y) = f∗(M(x, y, λ)),

for each x, y ∈ X and λ > 0, is a modular pseudo-metric on X.
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(3) For any fuzzy metric (M, �) on X, the function (wM, f∗) :]0, ∞[×X × X → [0, ∞] defined by

(wM, f∗)λ(x, y) = f∗(M(x, y, λ)),

for each x, y ∈ X and λ > 0, is a modular metric on X.

As a consequence of the preceding result, we obtain immediately the following one.

Corollary 4. Let X be a non-empty set and let ∗ be a continuous t-norm with additive generator
f∗ : [0, 1]→ [0, ∞]. Then, the following assertions are equivalent:

(1) For any fuzzy pseudo-metric (M, ∗) on X, the function (wM, f∗) :]0, ∞[×X × X → [0, ∞] defined by

(wM, f∗)λ(x, y) = f∗(M(x, y, λ)),

for each x, y ∈ X and λ > 0, is a modular pseudo-metric on X.
(2) For any fuzzy metric (M, ∗) on X, the function (wM, f∗) :]0, ∞[×X × X → [0, ∞] defined by

(wM, f∗)λ(x, y) = f∗(M(x, y, λ)),

for each x, y ∈ X and λ > 0, is a modular metric on X.

It is clear that, when we consider stationary modular indistinguishability operators in the
statement of Theorem 3, we obtain as a particular case Theorem 1 and, thus, the classical technique
to induce a metric from an indistinguishability operator by means of an additive generator. Clearly,
if we replace modular indistinguishability operators by stationary fuzzy metrics, we obtain a more
restrictive version of the classical technique, provided by Theorem 3, because it only remains valid for
continuous t-norms.

3.2. From Modular (Pseudo-)Metrics to Modular Indistinguishability Operators

As was mentioned above, the main goal of this subsection is to provide a version of Theorem 2
when we consider a modular (pseudo-)metric instead of a (pseudo-)metric. Thus, we give a technique
to induce a modular indistinguishability operator from a modular (pseudo-)metric by means of
the pseudo-inverse of the additive generator of a t-norm. To this end, let us recall the following
representation result, which will be crucial in our subsequent discussion, holds for continuous t-norms:

Theorem 4. A binary operator ∗ in [0, 1] is a continuous Archimedean t-norm if and only if there exists a
continuous additive generator f∗ such that

x ∗ y = f (−1)
∗ ( f∗(x) + f∗(y)), (1)

where the pseudo-inverse f (−1)
∗ is given by

f (−1)
∗ (y) = f−1(min{ f∗(0), y}) (2)

for all y ∈ [0, ∞].

In the next result, we introduce the promised technique.

Theorem 5. Let ∗ be a continuous t-norm with additive generator f∗ : [0, 1] → [0, ∞]. If w is a modular
pseudo-metric on X, then the function Fw, f∗ : X × X×]0, ∞[→ [0, 1] defined, for all x, y ∈ X and t > 0, by

Fw, f∗(x, y, t) = f (−1)
∗ (wt(x, y))
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is a modular indistinguishability operator for ∗. Moreover, the modular indistinguishability operator Fw, f∗

separates points if and only if w is a modular metric on X.

Proof. Let ∗ be a continuous Archimedean t-norm with additive generator f∗ : [0, 1] → [0, ∞] and
consider w a modular pseudo-metric on X.

We define the function Fw, f∗ : X × X×]0, ∞[→ [0, 1] as follows:

Fw, f∗(x, y, t) = f (−1)
∗ (wt(x, y)),

for all x, y ∈ X and t > 0. We will see that Fw, f∗ is a modular inidistinguishability operator for ∗.

(ME1) Let x ∈ X. Since w is a modular pseudo-metric on X, we have that wt(x, x) = 0 for all t > 0.
Therefore, Fw, f∗(x, x, t) = f (−1)

∗ (wt(x, x)) = f (−1)
∗ (0) = 1 for all t > 0.

(ME2) Is a consequence of the definition of Fw, f∗ , since w is a modular pseudo-metric and so it satisfies
that wt(x, y) = wt(y, x) for each x, y ∈ X and t > 0.

(ME3) Let x, y, z ∈ X and t, s > 0. On the one hand, by expression (2), we deduce that

Fw, f∗(x, z, t + s) = f (−1)
∗ (wt+s(x, z)) = f−1

∗ (min{ f∗(0), wt+s(x, z)}) .

Now, since w is a modular pseudo-metric on X, then

wt+s(x, z) ≤ wt(x, y) + ws(y, z)

and, hence,
Fw, f∗(x, z, t + s) ≥ f−1

∗ (min{ f∗(0), wt(x, y) + ws(y, z)}) .

On the other hand, we have that

Fw, f∗(x, y, t) ∗ Fw, f∗(y, z, s) = f (−1)
∗

(
f∗
(

Fw, f∗(x, y, t)
)
+ f∗

(
Fw, f∗(y, z, s)

))
=

= f−1
∗

(
min

{
f∗(0), f∗

(
Fw, f∗(x, y, t)

)
+ f∗

(
Fw, f∗(y, z, s)

)})
.

Moreover, by expression (2), we obtain that

f∗
(

Fw, f∗(x, y, t)
)
= f∗

(
f (−1)
∗ (wt(x, y))

)
= min{ f∗(0), wt(x, y)}

and
f∗
(

Fw, f∗(y, z, s)
)
= f∗

(
f (−1)
∗ (ws(y, z))

)
= min{ f∗(0), ws(y, z)}.

To finish the proof, we will see that

min{ f∗(0), wt(x, y) + ws(y, z)} = min{ f∗(0), min{ f∗(0), wt(x, y)}+ min{ f∗(0), ws(y, z)}}.

To this end, we will distinguish three cases:

Case 1. f∗(0) ≤ wt(x, y) and f∗(0) ≤ ws(y, z). Then, we have that

min{ f∗(0), wt(x, y) + ws(y, z)} = f∗(0)

and

min{ f∗(0), min{ f∗(0), wt(x, y)}+min{ f∗(0), ws(y, z)}} = min{ f∗(0), f∗(0)+ f∗(0)} = f∗(0).
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Case 2. f∗(0) > wt(x, y) and f∗(0) ≤ ws(y, z) (the case f∗(0) ≤ wt(x, y) and f∗(0) > ws(y, z)
runs following the same arguments). It follows that

min{ f∗(0), wt(x, y) + ws(y, z)} = f∗(0)

and

min{ f∗(0), min{ f∗(0), wt(x, y)}+min{ f∗(0), ws(y, z)}} = min{ f∗(0), wt(x, y)+ f∗(0)} = f∗(0).

Case 3. f∗(0) > wt(x, y) and f∗(0) > ws(y, z). Then, we have that

min{ f∗(0), min{ f∗(0), wt(x, y)}+min{ f∗(0), ws(y, z)}} = min{ f∗(0), wt(x, y)+wS(y, z)}.

Therefore,

Fw, f∗(x, z, t + s) ≥ f−1
∗

(
min

{
f∗(0), f∗

(
Fw, f∗(x, y, t)

)
+ f∗

(
Fw, f∗(y, z, s)

)})
= Fw, f∗(x, y, t) ∗ Fw, f∗(y, z, s),

whence we deduce that Fw, f∗ is a modular indistinguishability operator for ∗ on X.
Finally, it is clear that Fw, f∗(x, y, t) = 1 for all x, y ∈ X and t > 0 if, and only if, f (−1)

∗ (wt(x, y)) = 1
for all x, y ∈ X and t > 0. Since f (−1)

∗ (wt(x, y)) = 1 for all x, y ∈ X and t > 0 if, and only if, wt(x, y) = 0
for all x, y ∈ X and t > 0, we immediately obtain that Fw, f∗ is a modular indistinguishability operator
that separates points if, and only if, w is a modular metric on X.

Next, we specify the method given in Theorem 5 for the t-norms ∗L and ∗P. Note that the
pseudo-inverse of the additive generator f∗L and f∗P is given by

f (−1)
∗L (b) =

{
1− b, if b ∈ [0, 1[,
0, if b ∈ [1, ∞],

and

f (−1)
∗P (b) = e−b,

for each b ∈ [0, ∞], respectively, where we have adopted the convention that e−∞ = 0.

Corollary 5. If w is a modular pseudo-metric on X, then the function Fw, f∗L : X × X×]0, ∞[→ [0, 1] defined,
for all x, y ∈ X and t > 0, by

Fw, f∗L (x, y, t) =

{
1− wt(x, y), if wt(x, y) ∈ [0, 1[,
0, if wt(x, y) ∈ [1, ∞],

is a modular indistinguishability operator for ∗L. Moreover, the modular indistinguishability operator Fw, f∗L

separates points if and only if w is a modular metric on X.

Corollary 6. If w is a modular pseudo-metric on X, then the function Fw, f∗P : X × X×]0, ∞[→ [0, 1] defined,
for all x, y ∈ X and t > 0, by

Fw, f∗P (x, y, t) = e−wt(x,y),

is a modular indistinguishability operator for ∗P. Moreover, the modular indistinguishability operator Fw, f∗L

separates points if and only if w is a modular metric on X.
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In the light of Theorem 5, it seems natural to ask if the continuity of the t-norm can be eliminated
from the assumptions of such a result. The next example gives a negative answer to that question.
In particular, it proves that there are fuzzy sets Fw, f∗ , given by Theorem 5, that are not modular
indistinguishability operators when the t-norm ∗ under consideration is not continuous.

Example 6. Consider the Euclidean metric dE on R. By Proposition 1, the function wE is a modular metric on
R, where

wE
λ(x, y) =

(dE(x, y))2

λ

for all x, y ∈ R and λ > 0. Consider the additive generator f∗D of the non-continuous t-norm ∗D. Recall that
f∗D is given by

f∗D (x) =

{
0, if x = 1,
2− x, if x ∈ [0, 1[.

An easy computation shows that its pseudo-inverse is given by

f (−1)
∗D (x) =

⎧⎪⎨⎪⎩
1, if x ∈ [0, 1],
2− x, if x ∈]1, 2],
0, if x ∈]2, ∞[.

Next, we show that we can find x, y, z ∈ R and λ, μ ∈]0, ∞[ such that

FwE , f∗D (x, z, λ + μ) < FwE , f∗D (x, y, λ) ∗D FwE , f∗D (y, z, μ).

Let x = 0, y = 1 and z = 2, and consider λ = μ = 1. Then,

wE
λ+μ(x, z, λ) =

(dE(x, z))2

λ + μ
=

22

2
= 2,

wE
λ(x, y) =

(dE(x, y))2

λ
=

12

1
= 1,

and

wE
μ(y, z) =

(dE(y, z))2

μ
=

12

1
= 1.

Therefore,

0 = f (−1)
∗D (2) = FwE , f∗D (x, z, λ + μ) < FwE , f∗D (x, y, λ) ∗D FwE , f∗D (y, z, μ) = f (−1)

∗D (1) ∗D f (−1)
∗D (1) = 1.

Since the continuity is a necessary hypothesis in the statement of Theorem 5, one could expect
that the following result would be true.

“Let ∗ be a continuous Archimedean t-norm with additive generator f∗ : [0, 1]→ [0, ∞]. If w is a
modular pseudo-metric on X, then the pair (Mw, f∗ , ∗) is a fuzzy (pseudo-)metric, where the fuzzy set
Mw, f∗ : X × X×]0, ∞[ is given, for all x, y ∈ X and t > 0, by

Mw, f∗(x, y, t) = f (−1)
∗ (wt(x, y)).

Moreover, (Mw, f∗ , ∗) is a fuzzy metric if and only if w is a modular metric on X.”
Nevertheless, the following example proves that such a result does not hold. In fact, the technique

provided by Theorem 5 does not give in general a fuzzy (pseudo-)metric.
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Example 7. Let d be a metric on a non-empty set X. Consider the modular metric w2 on X introduced in
Example 5, that is,

w2
t (x, y) =

⎧⎪⎨⎪⎩
∞, if 0 < t < d(x, y) and d(x, y) > 0,
0, if t ≥ d(x, y) and d(x, y) > 0,
0, if d(x, y) = 0,

for all x, y ∈ X and t > 0. Then, it is not hard to check that the pair (Mw2, f∗P , ∗P) is not a fuzzy (pseudo-)metric,
where the fuzzy set Mw2, f∗P is given by

Mw2, f∗P (x, y, t) = f (−1)
∗P (w2

t (x, y)) =

⎧⎪⎨⎪⎩
0, if 0 < t < d(x, y) and d(x, y) > 0,
1, if t ≥ d(x, y) and d(x, y) > 0,
1, if d(x, y) = 0,

for all x, y ∈ X and t > 0. Notice that (Mw2, f∗P , ∗P) fails to fulfill axiom (KM5), i.e., the function M
w2, f∗P
x,y :

]0, ∞[→ [0, 1] is not left-continuous.

The preceding example suggests the study of those conditions that a modular (pseudo-)metric
must satisfy in order to induce a fuzzy (pseudo-) metric by means of the technique exposed in
Theorem 5. The following lemma, whose proof was given in [20], will help us to find it.

Lemma 1. Let w be a modular (pseudo-)metric on X. Then, for each x, y ∈ X, we have that ws(x, y) ≥ wt(x, y)
whenever s, t ∈]0, ∞[ with s < t.

Taking into account the preceding lemma, the next result provides a condition that is useful for
our target.

Proposition 2. Let w be a modular pseudo-metric on X. The function w̃ :]0, ∞[×X × X → [0, ∞] given,
for each x, y ∈ X and t > 0, by

w̃λ(x, y) = inf
0<t<λ

wt(x, y)

is a modular pseudo-metric on X such that for each x, y ∈ X the function w̃x,y :]0, ∞[→]0, ∞[ is left continuous,
where w̃x,y(λ) = w̃λ(x, y) for each λ ∈]0, ∞[. Furthermore, w̃ is a modular metric on X if and only if w it
is so.

Proof. It is obvious that w̃ satisfies axiom (MM2). Next, we show that w̃ satisfies axioms (MM1’)
and (MM3).

(MM1’) Fix x ∈ X and let λ ∈]0, ∞[. Since w is a modular pseudo-metric on X, then wt(x, x) = 0 for
each t > 0. Therefore,

w̃λ(x, x) = inf
0<t<λ

wt(x, x) = 0.

(MM3) Let x, y, z ∈ X and λ, μ ∈]0, ∞[. Next, we prove that

w̃λ+μ(x, z) ≤ w̃λ(x, y) + w̃μ(y, z).

With this aim, note that, given u, v ∈ X and α ∈]0, ∞[, we have that, for each ε ∈]0, ∞[, we can
find t ∈]0, α[ satisfying wt(u, v) < w̃α(u, v) + ε.

Fixing an arbitrary ε ∈]0, ∞[, we can then find t ∈]0, λ[ and s ∈]0, μ[ such that wt(x, y) <

w̃λ(x, y) + ε/2 and ws(y, z) < w̃μ(y, z) + ε/2. Therefore,

w̃λ+μ(x, z) ≤ wt+s(x, z) ≤ wt(x, y) + ws(y, z) < w̃λ(x, y) + w̃μ(y, z) + ε,

73



Axioms 2017, 6, 34

since w is a pseudo-metric on X. Taking into account that ε ∈]0, ∞[ is arbitrary, we conclude that

w̃λ+μ(x, z) ≤ w̃λ(x, y) + w̃μ(y, z).

Thus, w̃ is a modular pseudo-metric on X.
We will continue showing that, for each x, y ∈ X, the function w̃x,y :]0, ∞[→]0, ∞[ is left continuous.

Fix x, y ∈ X and consider an arbitrary λ0 ∈]0, ∞[. Then, given ε ∈]0, ∞[, we can find δ ∈]0, ∞[ such that

w̃λ(x, y)− w̃λ0(x, y) < ε,

for each λ ∈]λ0 − δ, λ0] (note that w̃λ(x, y) ≥ w̃λ0(x, y) for each λ ∈]λ0 − δ, λ0] by Lemma 1). Indeed,
let ε ∈]0, ∞[. As before, we can find t ∈]0, λ0[ such that

wt(x, y) < w̃λ0(x, y) + ε

and, again by Lemma 1, we have that ws(x, y) < w̃λ0(x, y) + ε for each s ∈]t, λ0]. Therefore, taking
δ = λ0 − t, we have that

w̃λ(x, y)− w̃λ0(x, y) ≤ wλ(x, y)− w̃λ0(x, y) < ε,

for each λ ∈]λ0 − δ, λ0], as we claimed. Thus, w̃x,y is left-continuous on ]0, ∞[ since λ0 is arbitrary.
Finally, it is easy to verify that w̃ is a modular metric on X, if and only if w, it is so. Indeed, w̃ is

a modular metric on X if and only if w̃λ(x, y) = 0 for each λ ∈]0, ∞[ implies x = y, but w̃λ(x, y) =
inf0<t<λ wt(x, y) = 0 for each λ ∈]0, ∞[ if and only if wt(x, y) = 0 for each t ∈]0, ∞[, which concludes
the proof.

Observe that, in the preceding result, w̃ coincides with w, whenever wx,y is a left-continuous
function, for each x, y ∈ X.

Proposition 2 and Theorem 5 allow us to give the searched method for constructing a fuzzy
pseudo-metric from a modular pseudo-metric.

Theorem 6. Let ∗ be a continuous t-norm with additive generator f∗ : [0, 1] → [0, ∞]. If w is a modular
pseudo-metric on X, then the pair (Mw, f∗ , ∗) is a fuzzy pseudo-metric on X, where the fuzzy set Mw, f∗ :
X × X × [0, ∞[ is defined, for all x, y ∈ X, by

Mw, f∗(x, y, t) = f (−1)
∗ (w̃t(x, y)) ,

where w̃t(x, y) = inf0<λ<t wλ(x, y). Moreover, (Mw, f∗ , ∗) is a fuzzy metric on X if and only if w is a modular
metric on X.

Proof. By Proposition 2, we deduce that w̃x,y is a modular pseudo-metric on X. Theorem 5 guarantees

that Mw, f∗ is a modular indistinguishability operator for ∗ on X. Moreover, continuity of f (−1)
∗ and the

left-continuity, provided by Proposition 2, of the function w̃x,y guarantee that axiom (KM5) is fulfilled.
Thus, the pair (Mw, f∗ , ∗) is a fuzzy pseudo-metric on X. Finally, by Proposition 2 and Theorem 5, it is
obvious that (Mw, f∗ , ∗) is a fuzzy metric on X if and only if w is a modular metric on X.

4. Discussion

In the literature, there are two tools that allow for measuring the degree of similarity between
objects. They are the so-called indistinguishability operators and fuzzy metrics. The former provide
the degree up to which two objects are equivalent when there is a limitation on the accuracy of
measurement between the objects being compared. The fuzzy metrics provide the degree up to which
two objects are equivalent when the measurement is relative to a parameter. Motivated by the fact
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that none of these types of similarity measurements generalizes the other, we have introduced a new
notion of indistinguishability operator that unifies both notions, fuzzy metric and indistinguishability
operator under a new one. Moreover, we have explored the metric behavior of this new kind of
operator in such a way that the new results extend the classical results to the new framework and, in
addition, allow for exploring the aforesaid duality relationship when fuzzy metrics are considered
instead of indistinguishability operators. The fact that the new notion of indistinguishability operator
does not involve the continuity on the t-norm in their axiomatic presents an advantage with respect
to the fuzzy metrics. The assumption of continuity could be limiting the range of applications of
fuzzy metrics in those cases where (classical) indistinguishability operators work well. A future work
remains open to study which properties of classical indistinguishability operators are also verified in
the new framework. In addition, the utility of the new operators in applied problems must be explored.

5. Conclusions

In the present paper we have introduced a new type of indistinguishability operators which
generalize the notion of fuzzy metric and the classical notion of indistinguishability operator. Moreover,
we have discussed the relationship between the new operators and metrics. Specifically, we have
proved the existence of a duality between them and the so-called modular metrics, which provide a
dissimilarity measurement between objects relative to a parameter. Furthermore, we have yielded
examples that illustrate the new results.
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Abstract: The need for organizations to evaluate their environmental practices has been recently
increasing. This fact has led to the development of many approaches to appraise such practices. In this
paper, a novel decision model to evaluate company’s environmental practices is proposed to improve
traditional evaluation process in different facets. Firstly, different reviewers’ collectives related to
the company’s activity are taken into account in the process to increase company internal efficiency
and external legitimacy. Secondly, following the standard ISO 14031, two general categories of
environmental performance indicators, management and operational, are considered. Thirdly, since
the assumption of independence among environmental indicators is rarely verified in environmental
context, an aggregation operator to bear in mind the relationship among such indicators in the
evaluation results is proposed. Finally, this new model integrates quantitative and qualitative
information with different scales using a multi-granular linguistic model that allows to adapt diverse
evaluation scales according to appraisers’ knowledge.

Keywords: environmental performance; criteria relationship; Choquet integral; uncertainty information

1. Introduction

Corporate Social Responsibility has a pivotal role in Business models and although it has been
differently defined along years, all definitions have five dimensions on common: The environmental,
the social, the economic, the stakeholder and the voluntariness dimension. Focusing on the
environmental dimension, in recent years companies and institutions have born environmental
pressures from regulators. This fact has forced many corporations to expand their attention to
environmental responsible practices and to manage their environmental issues as a strategic
competitive issue. Therefore, companies need to implement strategies to reduce their environmental
impacts and to contribute to environmental sustainability. As a result, the environmentally conscious
practices have emerged in form of systems (environmental management systems) and programs
to improve processes and products by means of internal policies, actions and plans like design for
environment, recycling, waste management, life cycle analysis, green supply chain management and
so on (e.g., see [1,2]). Aside from environmental pressures from regulators, companies implement
environmentally conscious practices due to the fact that there is a link between carrying on
environmental strategies and improving business performance (see [3–5], among other).

In order to reflect the company’s efforts and achievements in relation with its environmental
performance, many environmental performance indicators (EPI) have been developed. These are
used for environmental performance evaluation because they allow communication at different
organizational levels and also they provide a basis for making decisions to reach specific goals.

Axioms 2018, 7, 4; doi:10.3390/axioms7010004 www.mdpi.com/journal/axioms77
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Traditionally, environmental indicators are composite indicators, that is, they are a mathematical
combination of a set of indicators or criteria that have no common meaningful unit of measurement.
EPIs have taken a great importance and they are being used in different ways like the considerable
literature in this area shows (e.g., see [6,7], among other). Moreover, there are many works focused
on examining some specific indicators (see [7–15]). From another angle, the existence of intertwined
relations among the components and elements of the environmental practices is a relevant aspect of
environmental evaluation problem and it has called attention in the technical literature (see [16–19]).
Such relationships are not easy to take into account in the evaluation process and they have been
partially addressed by hierarchical process (see [1,20]).

From the methodology perspective, the evaluation of companies’ environmental performance
has been addressed from different approaches (see [12,21–23], among other). This paper follows the
viewpoint of the Multi-Criteria Decision Making Theory because it facilitates an structured approach
to identify solutions to complex evaluation problems (see Figure 1). Decision Analysis is a renowned
discipline to accomplish this kind of processes since allows to consider different criteria and
several experts. In detail, this contribution is influenced by the Fuzzy Set Theory because it allows
to handle simultaneously the qualitative and quantitative information included in environmental
performance evaluation process and it has got good results in similar context (see [24,25]).

Figure 1. Scheme of the novel evaluation model.

Taking into account the aforementioned wide spectrum of issues, the main aims of this
contribution can be summarized as follows. Firstly, proposing a new environmental integral
evaluation model for companies, general enough to integrate indicators built over diverse standpoints.
Non-focused on selecting a particular environmental indicator set. Secondly, overcoming the
limitations associated with some previous models to evaluate environmental practices proposing
a model where different sets of reviewers could evaluate company’s environmental practices attending
to different criteria. Thirdly, presenting a flexible evaluation framework allowing appraisers may
express their assessments by means of numerical or linguistic information according to the criteria
nature. Finally, for addressing the interdependence among criteria/EPIs in a flexible way, the discrete
Choquet integral is adopted in the model-like aggregation operator (see [26]).
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The novelty of this model is not only its generality but also its capacity to deal with evaluation
frameworks in which different set of reviewers (internal and external, experts and non-experts) can
assess criteria of diverse nature conforming a flexible heterogeneous framework where different
domains of information (numerical, linguistic) are allowed. Finally another important improvement
offered by this novel procedure is the management of interdependence among criteria by using the
discrete Choquet integral. Therefore, this proposal for an environmental integral evaluation model is
versatile enough to be applied under various settings.

The outline of this paper is as follows. In Section 2, we present a roughly overview of previous
works. Section 3 is devoted to detail our proposal of environmental integral evaluation model and
Section 4 provides with an illustrative application on a manufacturing company. The paper ends
pointing out some concluding remarks.

2. Related Works

Before proposing our new approach to carry out evaluation of company’s environmental
practices, a short review of the context of environmental evaluation and previous works are included.
Initially environmental issues are alluded and then the methodology traditionally used it.

2.1. Evaluating Corporate Environmental Practices

Companies have usually performed different environmental policies from reactive to proactive
strategies, some of them react to institutional pressures and stringent environmental regulations
(see [9,27]). In many instances, companies respond to influences from large corporate buyers,
that demand environmental information to their suppliers. However, a lot of companies voluntarily
implement environmental programs, in some cases devoting attention to diverse stakeholder or
pursuing environmental reputation (e.g., see [2,28]). For these reasons different authors agree to
include stakeholder in the environmental evaluation process (see [1,2,29,30]). Therefore, it is relevant
to take into account multiple viewpoints of the concerned parties in the evaluation.

From another point of view, the increasing acceptance of ISO 14001 environmental standards, has
caused thousands of facilities worldwide to have adopted Environmental Management System (EMS)
that is required to be certified to ISO 14001 (see [31,32]). The environmental standards involve an explicit
commitment for improvement of environmental performance (EP). Although there is not a compulsory
way of building performance indicators, ISO 14001 gives guidance in environmental performance
evaluation through environmental performance indicators, defined as the “specific expression that
provides information about an organization’s environmental performance”. In the standard ISO 14031,
there are three basic types of EP indicators (EPI): operational (OEPI), management (MEPI) and
environmental condition indicators (ECI) (see [33]). The latter intend to provide information
about the local, regional, national or global condition of the environment. The MEPIs provide
information about management activities in reference to the strategic policy, staffing policy, practices,
procedures, decisions and actions at all levels of the organization. The OEPIs provide information
about environmental performance of the operations of the organization relative to organization’s
physical facilities and equipment (material and energy flows).

Although there is not a discussion about this classification, the ECIs are rarely applied by
companies while the OEPIs have been reported more widely than the MEPIs, as is shown in different
works (see e.g., [16,18,21,34]). It is relevant to point out that those indicators are quite general and
they can encompass results of other more specific environmental evaluation tools such as life cycle
assessment, environmental risk assessment and so on.

Diverse approaches have been introduced and a great variety of measurement items may be used
in the construction of environmental performance indicators (EPIs) (see [16,17,35]). In the literature,
a large number of studies have reported a broad range of such indicators (see [7–14], among other).

Another relevant aspect of environmental evaluation context is the existence of intertwined
relations among the components and elements of the environmental practices. This is a notable
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feature and it has deserved certain attention in the literature (see [16–19]). It is not easy to take into
account such relationships in the evaluation procedure. One way of addressing partially this issue
has been through organizing environmental aspects or factors or components that arise from other
subcomponents or elements in a hierarchical way. This common practice has also an inherent interest
in the environmental matter (see [1,20]).

2.2. Evaluation Methodologies

Many works have addressed the evaluation of corporate environmental performance with
different tools (see e.g., [21,23], among other). This contribution focuses on the use of the Multi-Criteria
Decision Making Theory to deal with environmental issues. Some approaches are based on traditional
methods like Multi-Attribute Analysis technique (MAA) (see e.g., [12]), Analytical Hierarchy Process
(AHP) (see e.g., [10,36]), Analytical Network Process (ANP) (see [1,11]) and others specifically
developed models (see e.g., [22]). Several references to diverse applications of multi-criteria analysis
can be foun to specific issues in corporate environmental evaluation in [15].

Usually it is necessary to handle qualitative information as well as quantitative one in
environmental performance evaluation. Given the difficulty of mixing imprecise knowledge in a
common way, the Fuzzy Set Theory is expanding in this area. Some proposals in this line are the
Fuzzy Extended Analytical Hierarchy Process (see e.g., [36]), the Fuzzy TOPSIS (Technique for Order
Performance by Similarity to Ideal Solution ) (see e.g., [37]), the adaptation of Grey Relational Analysis
(see e.g., [38]) and another more general works such as [39].

Some contributions in the environmental evaluation context discuss how to integrate the
interdependence relations in the evaluation process (e.g., see [19,20,40,41]).

3. A Multi-Criteria Decision Integral Model for Evaluating Environmental Practices

Taking into account the aforementioned goals of the paper, a new proposal of environmental
integral evaluation model is introduced in further detail below and its novelties and improvements.

Generally speaking, the main issue of an evaluation process is to compute a set of overall
assessments that summarizes information and provides useful knowledge on evaluated elements.
Decision analysis is an excellent field to carried out evaluation processes since includes a wide variety
of methods for appraising a set of alternatives considering different criteria and involving several
experts. It has got good results as it can be seen in the literature (see [24,25]).

Therefore, in this paper an environmental evaluation process based on a classical decision
analysis approach is proposed. It consists of three main stages: establishing a framework suitable
for the environmental evaluation, gathering information and rating process. In an heterogeneous
information context like environmental evaluation, the rating process begins with a normalization
of the information [42]. After that, it is possible to carry out an aggregation in an appropriate way.
And, finally, we are in the position to make an assessment of the outcomes. Figure 1 shows a graphical
scheme of the proposed model. All this steps are going to be explained in coming subsections.

3.1. Evaluation Framework

The evaluation framework fixes actors and elements that may be considered to evaluate
environmental practices of a company with n facility sites, X = {x1, ..., xn}. The type of criteria,
appraisers and domains used in our proposal are described below.

3.1.1. Criteria Selection

EPIs depict vast quantity of environmental information, relevant attributes or environmental
criteria, in a comprehensive and concise way (see [12,13]).

According to the standard ISO 14031, this contribution considers two general categories of EPIs:
management performance indicators (MEPI) and operational performance indicators (OEPI). Hence, two types
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of criteria associated to them are distinguished: management performance criteria, CM = {cM
1 , . . . , cM

p }
and operational performance criteria, CO = {cO

1 , . . . , cO
q }. Consequently, there are almost p + q criteria.

Both sets of criteria could have a qualitative and quantitative nature. Due to this fact, the set
of all criteria C is split into two subsets: one subset of quantitative criteria, C1, and another one of
qualitative, C2. The criteria structure is then the following one:

• Management performance criteria:

CM = CM
1 + CM

2 , CM = {cM
k | cM

k ∈ CM
1 or cM

k ∈ CM
2 }, k = 1, . . . , p.

• Operational performance criteria:

CO = CO
1 + CO

2 , CO = {cO
k | cO

k ∈ CO
1 or cO

k ∈ CO
2 }, k = 1, . . . , q.

Notice CM
1 ∩ CM

2 = ∅ and CO
1 ∩ CO

2 = ∅.
Generally, information provided by reviewers is expressed by means of crisp values (to evaluate

quantitative criteria) or by means of words based on Liker’s methodology (see [43]) (to evaluate qualitative
criteria) (see [14,22]). In this novel model the appraisers express their assessments with different
linguistic descriptors to asses qualitative criteria. So, our proposal is to manage the qualitative criteria
using different scales with a multi-granular linguistic model that allow to adapt the evaluation scales
and model the linguistic information by using the fuzzy linguistic approach (see [44]).

3.1.2. Reviewers’ Selection

Following the standard ISO 14001, company’s environmental practices are assessed from diverse
collectives related to the company activity and not only from the top technical environmental managers.
This fact increases company internal efficiency and external legitimacy (see [27,30]).

Thus, a method that distinguishes between experts and non-experts reviewers is developed.
Moreover, two general set of reviewers, the internal and the external ones are considered due to the
importance to include several information sources related to the company environmental practices.
These reviewers are classified based on their knowledge and their information about criteria.
Therefore, the following collectives of reviewers take part in the evaluation process (see Figure 2
for a symbolic summary):

• A set of internal reviewers:

– A set of company’s internal experts: AE = {aE
1 , . . . , aE

m}.
– A set of company’s internal non-expert (such as managers, staff, employees, etc.):

ANE = {aNE
1 , . . . , aNE

r }.

• A set of external reviewers:

– A set of company’s external experts such as auditors: BE = {bE
1 , . . . , bE

s }.
– A set of company’s external non-experts evaluators, BNE, which is split in two types

depending on their relation to the company:

1. A set of general stakeholders (shareholders, suppliers, government regulators,
local communities, intermediate customers, large retailers, final consumers):
BNE−G = {bNE−G

1 , . . . , bNE−G
t }.

2. A set of social constituents (community groups, trade associations, labor unions,
environmental groups): BNE−S = {bNE−S

1 , . . . , bNE−S
u }.

Therefore, BNE = BNE−G ⋃
BNE−S.
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Figure 2. Reviewers of a facility site.

3.2. Gathering Information

Once criteria and reviewers have been established, the next step consists of gathering reviewer’s
assessments about each facility site with regards to each criterion and attending to their knowledge on
them. These evaluations are denoted as follows:

• Let aE
i,j,k and aNE

i,j,k be the internal reviewers’ evaluations, experts and non-experts respectively,

on the facility site xi by the j-th reviewer regarding the criterion c−k . Abusing notation, on occasions
we refer to criterion k as c−k , where superscript denotes M or O, the criterion type.

aE
i,j,k ∈

{
R+, if c−k ∈ C−1 ,

Sk
AE , if c−k ∈ C−2 .

aNE
i,j,k ∈

{
R+, if c−k ∈ C−1 ,

Sk
ANE , if c−k ∈ C−2 .

where R+ is the set of non-negative real numbers and Sk
AE and Sk

ANE are the linguistic term sets
used by the internal experts and non-experts reviewers, respectively, to evaluate the criterion k.

• In the same way, let bE
i,j,k , bNE−G

i,j,k , and bNE−S
i,j,k be the external reviewers’ evaluations, experts and

non-experts from stakeholders and social constituencies, respectively, on the facility site xi by the
j-th reviewer with regard to the criterion c−k .

bE
i,j,k ∈

{
R+ if c−k ∈ C−1 ,

Sk
BE if c−k ∈ C−2

bNE−G
i,j,k ∈

{
R+ if c−k ∈ C−1 ,

Sk
BNE−G if c−k ∈ C−2

bNE−S
i,j,k ∈

{
R+ if c−k ∈ C−1 ,

Sk
BNE−S if c−k ∈ C−2

where R+ is the set of non-negative real numbers and Sk
BE , Sk

BNE−G and Sk
BNE−S are the linguistic

term sets used by the external experts and non-experts reviewers, respectively, to evaluate the
criterion k.

Note that any appropriate linguistic term set , Sk , is characterized by its cardinality |Sk |. In order
to keep the notation as simple as possible we use Sk , the subscript denotes the reviewers collective.

3.3. Rating Process

To deal with the information gathered, we adapt the proposal presented in [42] to our aim.
Each step of this process is described in the following subsections and its scheme is depicted in Figure 1.
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3.3.1. Normalization Phase

In order to manage properly the assessments from reviewers, all gathered heterogeneous
information should be unified in the normalization phase. Due to the fact that criteria used to evaluate
environmental practices could have different domains, it is necessary to achieve the normalization
process by means of different ways, depending on the criterion nature.

Firstly, if the compiled information is regarded to a qualitative criterion c−k ∈ C−2 , the registered
values are linguistic labels that belong to a linguistic term set. Each collective of reviewers can use
different linguistic term sets to evaluate qualitative criteria for each facility site. Therefore, we need to
bring all the linguistic labels into a unique expression domain, a common linguistic term set called
Basic Linguistic Term Set (BLTS). The BLTS is selected with the aim of keeping as much knowledge
as possible. It is denoted by S = {s0, . . . , sg} and its granularity |S| is g (see [42]). This procedure
conducts the heterogeneous information into fuzzy sets and later into linguistic 2-tuples in the BLTS
(see [44,45] for more details). The definition of the 2-tuples is recalled below.

Definition 1. ([44]) Let S = {s0, . . . , sg} be a set of linguistic terms. The 2-tuple set associated with S is
determined for 〈S〉 = S× [−0.5, 0.5). The function ΔS : [0, g] −→ 〈S〉 is given by,

ΔS(β) = (si, α), with

{
i = round (β),

α = β− i,

where round assigns to β the integer number i ∈ {0, 1, . . . , g} closest to β.

Secondly, if gathered information is on a quantitative criterion c−k ∈ C−1 , we have to distinguish
between benefit or cost criterion to accomplish accurately the normalization process.

Let yi,j,k be the assessment to the facility site xi of the reviewer j, on the criterion k, c−k ∈ C−1 .
This assessment is normalized in [0, 1]:

ỹi,j,k =

⎧⎪⎨⎪⎩
yi,j,k

yk max
, if c−k ∈ C−1 is a benefit criterion,(

1− yi,j,k
yk max

)
, if c−k ∈ C−1 is a cost criterion,

where yk max is the maximum assessment expressed for all reviewers over all facility sites attending to
the k-th criterion, that is, ỹi,j,k.

Then, ỹi,j,k is conducted it into the BLTS by means of linguistic 2-tuples following [42,46].
Once the information is normalized and unified, we proceed to the next step of the rating process,

the aggregation.

3.3.2. Aggregation Phase

In this phase, the individual assessments are aggregated by means of aggregation operators
according to the step of the aggregation phase and considering their properties. We focus especially
on proposing the OWA and discrete Choquet integral as aggregation operators. The former does not
distinguish the origin of the values (they are anonymous). This allows to manage properly information
from different reviewers. The latter operator is useful to manage interdependence among criteria
which are commonly found in environmental evaluation.

In the environmental evaluation literature the existence of relations among environmental
indicators is well-known but it is rarely explicitly defined. Obviously, not to take into account these
relations it could have consequences over outcomes and it could disturb company’s environmental
final decisions. With the aim of overcoming this drawback, our proposal manages such a relationship
by means of discrete Choquet integral (see [26,47,48]). This aggregation operator allows us to take into
account interactions among criteria or EPIs and, also, the global importance of each criteria or EPI.
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Then, each stage of the aggregation process is developed. The Figure 3 displays an outline of
this phase.

1. Computing EPIs for each reviewers’ collective and each criterion.

Since we assume that the reviewers give their evaluations individually, we propose to use the
2-tuple OWA operator from [46]. We reproduce its definition below.

Definition 2. Let ((l1, α1), . . . , (lm, αm)) ∈ 〈S〉m be a vector of linguistic 2-tuples and
W = (w1, . . . , wm) ∈ [0, 1]m be a weighting vector such that ∑m

i=1 wi = 1. The 2-tuple OWA operator
associated with w is the function Gw : 〈S〉m −→ 〈S〉 defined by

Gw
(
(l1, α1), . . . , (lm, αm)

)
= ΔS

(
m

∑
i=1

wi β∗i

)
,

where β∗i is the i-th largest element of
{

Δ−1
S

(l1, α1), . . . , Δ−1
S

(lm, αm)
}

.

In order to apply this operator, the weighting vector can be computed using the well-known
non-decreasing quantifiers proposed by Yager (see [49]). It is important to note that each
concrete aggregation procedure with OWA operators can use a different quantifier, in other
words, a different weighting vector. This adds flexibility to the model.

The reviewers’ assessments are aggregated for each criterion and each collective (see Figure 3)
by means of a 2-tuple OWA operator, G−

− . Then, for each collective and for every criterion c−k ,
the process is conducted as follows:

- For internal reviewers (experts and non-experts, respectively):

IAE

k (xj) = G
WAE
k (ãE

1,j,k , . . . , ãE
m,j,k ),

IANE

k (xj) = G
WANE
k (ãNE

1,j,k , . . . , ãNE
r,j,k ).

- For external reviewers (experts and non-experts, respectively):

IBE

k (xj) = G
WBE
k (b̃E

1,j,k , . . . , b̃E
s,j,k ),

IBNE

k (xj) = G
WBNE
k

(
IBNE−G

k (xj), IBNE−S

k (xj)
)

,

where IBNE−G

k (xj) is the environmental performance indicator for stakeholder reviewers:

IBNE−G

k (xj) = G
WBNE−G
k (b̃NE−G

1,j,k , . . . , b̃NE−G
t,j,k ),

and IBNE−S

k (xj) is the environmental performance indicator for social constituents reviewers:

IBNE−S

k (xj) = G
WBNE−S
k (b̃NE−S

1,j,k , . . . , b̃NE−S
u,j,k ).

2. Computing EPIs for experts/non-experts reviewers and each criterion.

As in the preceding step, the OWA operator is used. The previous environmental performance
indicators for the xj facility site: IAE

k (xj), IANE

k (xj), IBE

k (xj) and IBNE

k (xj) are aggregated for each
criterion taking into account if the reviewers are experts or not (see Figure 3). The previous
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indicators belonging to the experts reviewers are then aggregated by means of an OWA operator
for each criterion c−k .

IE
k (xj) = GWE

k

(
IAE

k (xj), IBE

k (xj)
)

.

Analogously to the experts reviewers, an environmental performance indicator is computed for
each criterion c−k by aggregating the opinions of all non-experts reviewers.

INE
k (xj) = GWNE

k

(
IANE

k (xj), IBNE

k (xj)
)

.

3. Computing global EPIs.

The proposed environmental integral evaluation model puts forward the computation of
three global environmental performance indicators: an overall that includes all the issues,
a management one relative to management issues and an operational one for the operational
issues considered. In this way, the major recommendations issued by the ISO 14001 is followed
and the model takes the most advantage of the gathered information.

From the previous step, there are two values for every single criterion, one from experts reviewers
and another from non-experts reviewers for each facility site.

Now to aggregate the values corresponding to different criteria, we propose to use the discrete
Choquet integral as aggregation operator. It allows for consideration of the interrelations among
criteria through the choice of an specific fuzzy measure.

(a) An overall global EPI.

In order to cover better the possible interdependences among criteria when we compute
an overall global EPI, we do not distinguish between management and operational
criteria because we could have interdependences among some management criteria with
some operational criteria. Therefore, we do not limit to consider the interdependence
among management criteria on the one hand, or only among operational criteria on the
another hand.

We propose to determine a fuzzy measure, μ, over the set of all criteria,

C = CM ⋃
CO = {cM

1 , . . . , cM
p , cO

1 , . . . , cO
q }.

And then, this fuzzy measure is used to calculate the associated Choquet integrals.
Theoretical aspects of Choquet Integral are included in Appendix A. We must do twice,
one for the values coming from the experts reviewers and another one for the values
coming from the non-experts reviewers. Afterwards, a convex linear combination
of both is computed which is the overall global EPI. The parameter β ∈ (0, 1) is
chosen arbitrary taking into account the interest of the company. It stands for the
relative importance assigned for the expert reviewers assessments versus the non-expert
reviewers assessments.

IE(xj) = μ IC
(

IE
1M (xj), . . . , IE

pM (xj), IE
1O(xj), . . . , IE

qO(xj)
)

.

INE(xj) = μ IC
(

INE
1M (xj), . . . , INE

pM (xj), INE
1O (xj), . . . , INE

qO (xj)
)

.

I(xj) = βIE(xj) + (1− β)INE(xj)).

(b) Management and operational global EPIS.
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At this point we are interested in calculating two more global indicators, a management
global EPI and an operational global EPI, with the aim of conforming to the standard
ISO 14001. The criteria are divided according to their type, management and operational.
Each type of criteria is aggregated separately by means of two discrete Choquet integrals
because it can have interrelations (see Figure 3).

In this case, we take the fuzzy measure previously built on the set of all criteria, C, and we
derive from it two new fuzzy measures, one on the set of management criteria, CM,
and another on the set of operational criteria, CO, called μM and μO, respectively. So,
they are coherent to the previous one, μ. These are defined as follows

μM : P(CM) −→ [0, 1] μM(T) =
μ(T

⋂
CM)

μ(CM)
where T ⊆ CM

μO : P(CO) −→ [0, 1] μO(S) =
μ(S

⋂
CO)

μ(CO)
where S ⊆ CO

Now, from these fuzzy measures we proceed to calculate the mentioned indicators using
a discrete Choquet integral for each one.

• Management global environmental performance indicator (MEPI). In order to calculate
this indicator we aggregate the experts and non-experts indicators for management
criteria, cM = {cM

1 , . . . , cM
p } by means of a Choquet integral based on the fuzzy

measure μM previously defined. We then compute a convex linear combination
of both of them. γ ∈ (0, 1) is selected depending on the interest of the company
(see Figure 3).

IE
M(xj) = μM ICM

(
IE
1M (xj), . . . , IE

pM (xj)
)

.

INE
M (xj) = μM ICM

(
INE
1M (xj), . . . , INE

pM (xj)
)

.

IM(xj) = γIE
M(xj) + (1− γ)INE

M (xj)).

• Operational global environmental performance indicator (OEPI). Analogously to
management global EPI, an operational global environmental performance indicator
is computed for operational criteria, cO = {cO

1 , . . . , cO
q } adopting the same strategy

to aggregate the experts and no-experts indicators for such criteria. We use the
Choquet integral based on the fuzzy measure μO defined above and a convex linear
combination of both with a constant δ ∈ (0, 1) chosen according of the interest of the
company (see Figure 3).

IE
O(xj) = μO ICO

(
IE
1O(xj), . . . , IE

qO(xj)
)

.

INE
O (xj) = μO ICO

(
INE
1O (xj), . . . , INE

qO (xj)
)

.

IO(xj) = δIE
O(xj) + (1− δ)INE

O (xj)).

All these indicators obtained in each step of the aggregation process, IAE

k (xj), IANE

k (xj), IBE

k (xj),

IBNE−G

k (xj), IBNE−S

k (xj), IE
k (xj), INE

k (xj), IM(xj), IO(xj) and I(xj) are used for evaluating company
environmental practices, not only the overall global EPI for each facility site.
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Figure 3. Multi-step aggregation scheme.

3.3.3. Rating Phase

In the rating phase, the management team shall classify and order facility sites according to the
environmental performance indicators obtained in the previous phase. Since those values are linguistic
2-tuples over the BLTS, the sorting and ranking of facility sites are carried out according to the ordinary
lexicographic order presented in [46].

One of the most important points of an environmental practices evaluation process is providing
feedback to facility sites. With this environmental integral evaluation model, several indicators are
obtained for each facility site. Among them are the MEPI and OEPI recommended in the standard
ISO14001. In this way, manager team know comprehensive results in the process evaluation and
they can use them to formulate environmental policy and programs in order to improve company’s
environmental practices.

4. An Illustrative Application

A manufacturing company which is carrying out an evaluation on their environmental practices
is considered. This company involves in the evaluation process assessments from internal and
external reviewers.

To begin with, the evaluation framework is presented. Without loss of generality a company with
two facility sites to be evaluated: X = {x1, x2} is considered according to the criteria described below.

• cM
1 : Extension in pollution control initiatives.

• cM
2 : Green purchasing. Assessing how far they incorporate environmental considerations in the

purchasing process.
• cM

3 : Proportion of research and development funds applied to projects with environmental significance.
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• cO
1 : The amount of CO2 emissions measured in Kg of CO2/m2.

• cO
2 : The scope of use of renewable power sources.

• cO
3 : The electric power consumption in KWh/m2.

The criteria can be sorted out according to different issues. We can classify them by the
criteria nature and based on the type of information gathered (see Section 3.1.1). In this case,
these classifications of the cited criteria are shown in Table 1.

Table 1. Criteria along with their classifications considered in the example.

Criteria Classification

cM
1 Pollution control initiatives M Qualitative Granularity 7

cM
2 Green purchasing M Qualitative Granularity 7

cM
3 Funds in research projects with environmental significance M Quantitative Benefit

cO
1 CO2 emissions O Quantitative Cost

cO
2 The scope of renewable power source O Qualitative Granularity 5

cO
3 The electric power consumption O Quantitative Cost

Abbreviations: M: Management, O: Operational.

These criteria are assessed by diverse reviewers’ collectives:

• Internal reviewers. This reviewers’ collective is made up of:

– A set of three company’s internal experts: AE = {aE
1 , aE

2 , aE
3 }.

– A set of two company’s internal non-experts: ANE = {aNE
1 , aNE

2 }.

• External reviewers. This collective consists of:

– A set of two company’s external experts such as auditors: BE = {bE
1 , bE

2 }.
– A set of five company’s external non-experts evaluators which is made up of two different

reviewers’ collectives:

1. A set of three general stakeholders: BNE−G = {bNE−G
1 , bNE−G

2 , bNE−G
3 }.

2. A set of two social constituents: BNE−S = {bNE−S
1 , bNE−S

2 }.

It is worth noticing that each group of reviewers express their appraisals on the facility sites,
but not necessarily attending to the same criteria. For example, the non-experts do not assess the
criterion cM

3 relative to funds in research projects because they do not have enough knowledge.
In relation with the expression domains used specifically in the assessments, there are three

quantitative and three qualitative criteria. The term set referred to criteria cM
1 , cM

2 (S1
AE , S1

ANE , S1
BE ,

S1
BNE−G , S1

BNE−S ) have seven linguistic terms whose semantics {Very poor (VP), Medium poor (MP), Fair(F),
Medium good (MG), Very good (VG)} is shown in Figure 4 (left). For the criterion cO

2 the term sets
(S2

AE , S2
ANE , S2

BE , S2
BNE−G , S2

BNE−S ) have five linguistic terms {Very poor (VP), Medium poor(MP), Fair(F),
Medium good (MG), Very good (VG)} whose semantics is included in Figure 4 (right).
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Figure 4. Left: label set for criteria cO
2 and its associated fuzzy numbers; Right: label set for criteria cM

1
and cM

2 and its associated fuzzy numbers.

When the evaluation framework has been fixed, the reviewers express their opinions about each
facility site in relation to each criterion. The values are shown in Tables 2–7.

Table 2. Appraisals from the reviewers for criterion cM
1 .

aE
1 aE

2 aE
3 aNE

1 aNE
2 bE

1 bE
2 bNE−G

1 bNE−G
2 bNE−G

3 bNE−S
1 bNE−S

2

Site x1 P VP P VP P MP VP VP P P P P
Site x2 P P VP VP P P VP P P VP MP P

Table 3. Appraisals from the reviewers for criterion cM
2 .

aE
1 aE

2 aE
3 aNE

1 aNE
2 bE

1 bE
2 bNE−G

1 bNE−G
2 bNE−G

3 bNE−S
1 bNE−S

2

Site x1 MG G MG MG MG F MG G F MG G G
Site x2 MG G G G MG MG F MG MG F MG G

Table 4. Appraisals from the reviewers for criterion cM
3 .

aE
1 aE

2 aE
3 bE

1 bE
2

Site x1 0.150 0.135 0.156 0.105 0.087
Site x2 0.291 0.300 0.300 0.243 0.219

Table 5. Appraisals from the reviewers for criterion cO
1 .

aE
1 aE

2 aE
3 bE

1 bE
2

Site x1 134 120 134 112 88
Site x2 88 112 156 146 200
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Table 6. Appraisals from the reviewers for criterion cO
2 .

aE
1 aE

2 aE
3 aNE

1 aNE
2 bE

1 bE
2 bNE−G

1 bNE−G
2 bNE−G

3 bNE−S
1 bNE−S

2

Site x1 MP MP F MP F MG F MP F F F F
Site x2 VP MP VP VP MP MP VP MP MP VP MP MP

Table 7. Appraisals from the reviewers for criterion cO
3 .

aE
1 aE

2 aE
3 bE

1 bE
2

Site x1 182.4 163.4 186.2 167.2 133.0
Site x2 357.2 372.4 380.0 326.8 330.6

After gathering the appraisals, the rating process begins. According to the proposed environmental
evaluation process in Section 3, the three phases of the rating process are carried out.

The first phase of the rating process is the normalization phase, whose target is unified all
the information gathered from reviewers. We begin by transforming the numerical values into the
interval [0, 1] as it was stated in Section 3.3.1. Let us recall that cO

1 and cO
3 are cost criteria and cM

3 is
a benefit criterion. After that, both numerical and linguistic values will be conducted into a unique
linguistic term set called BLTS by means of fuzzy sets. In this case the BLTS is S = {VP, . . . , VG}.
Following the procedure described previously, all the values are conducted into linguistic 2-tuples
in 〈S〉. The results are not shown here because of the length (see complementary material).

Now, a global assessment for each facility site in a multi-step aggregation process is computed
like it was proposed in Section 3.3.2 (see Figure 3).

1. Computing environmental performance indicators for each reviewers’ collective and each criterion.

In the first step of this process, we apply the 2-tuple OWA operator, which requires a weighting
vector. This vector can be chosen in different ways. Particularly, in this example, we use the
weighting vector determined by a fuzzy linguistic quantifier (see [50]), the quantifier “most”
whose parameters are (0.3, 0.8).

The aggregation value with these OWA operators is computed for each criterion for the collectives
of internal expert and internal non-experts and for each site (IAE

k (xj) and IANE

k (xj)), see Table 8.

Table 8. Environmental indicators for internal reviewers for each criterion.

cM
1 cM

2 cM
3 cO

1 cO
2 cO

3

IAE
(x1) (P, 0) (MG, 0.27) (F, 0.03) (MP, 0.06) (MP, −0.09) (F, 0.21)

IANE
(x1) (P, −0.4) (MG, 0) (MP, 0.4)

IAE
(x2) (P, 0) (G, 0) (VG, 0) (F, −0.17) (P, −0.18) (VP, 0.19)

IANE
(x2) (P, −0.4) (G, −0.4) (P, 0.13)

The environmental performance indicators for general stakeholder reviewers and for social
constituents reviewers are obtained by aggregating the values associated to them for each criterion
and for each site IBNE−S

k (xj) and IBNE−G

k (xj)). They are used to compute the indicators for each

criterion for external non-experts and for each site (IBNE

k (xj). In addition, the aggregation value is

obtained for each criterion for the external experts and for each site (IBE

k (xj)). As noted above,
all these calculations have been made using OWA operators with the appropriated weights.
The results are showed in Table 9.
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Table 9. Environmental indicators for external reviewers for each criterion.

cM
1 cM

2 cM
3 cO

1 cO
2 cO

3

IBE
(x1) (P, 0.2) (MG, −0.4) (MP, −0.07) (F, 0.08) (MG, −0.1) (MG, −0.29)

IBNE
(x1) (P, 0) (G, −0.29) (F, 0)

IBE
(x2) (P, −0.4) (MG, −0.4) (G, −0.34) (P, −0.03) (P, 0.13) (P, −0.15)

IBNE
(x2) (P, 0.36) (MG, 0.36) (MP, −0.5)

2. Computing environmental performance indicators for experts/non-experts reviewers and each criterion.

In the second step of the process, the 2-tuple OWA operator is also applied using the weighting
vector calculated before. It is worth pointing out that there is the possibility to use another
one attending to the specific characteristics of a particular case study. After these calculations,
an environmental performance indicator is computed for experts and non-experts, for each
criterion about each facility site. These results are shown in Table 10. The Figure 5a, displays
those values for each criteria.

Table 10. EPIs for experts and non experts for each criterion.

cM
1 cM

2 cM
3 cO

1 cO
2 cO

3

IE(x1) (P, 0.12) (MG, 0) (F, −0.41) (F, −0.33) (F, 0.1) (MG, −0.49)
INE(x1) (P, −0.16) (MG, 0.42) (F, −0.24)
IE(x2) (P, −0.16) (MG, 0.44) (G, 0.46) (MP, 0.08) (P, 0) (P, −0.41)

INE(x2) (P, 0.06) (G, −0.5) (P, 0.35)

(a)

Figure 5. Cont.
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(b)

Figure 5. EPIs for site x1 and x2. (a) EPIs for each criteria for experts and non-experts; (b) Partial and
global EPIs.

3. Computing global environmental performance indicators.

In this step, the values in Table 10 are aggregated for each facility site. At this point, it is
needed to aggregate the indicators from different criteria. Therefore, according to the proposed
environmental integral evaluation model, the 2-tuple Choquet integral operator is used, which is
able to cope with interaction among criteria. Consequently, specific fuzzy measures suited for
this example are required and included in Appendix B.

(a) An overall global environmental performance indicator.

Now, the fuzzy measures from Table A2 and from Table A4 are employed to calculate the
associated 2-tuple Choquet integral for experts and for non experts, respectively, in each site
(IE and INE). These computed values are shown in Table 11.

Table 11. Experts and non-experts EPIs for sites x1 and x2.

Experts Non Experts

Site x1 (F, −0.18) (F, −0.38)
Site x2 (MP, 0.47) (MP, 0.34)

Finally, the overall global environmental performance indicator for each facility site is
computed from previous indicators as it was established in the Section 3.3.2, using for
example β = 0.75. They are shown in Table 12.
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Table 12. Overall global EPI for sites x1 and x2.

Overall EPI

Site x1 (F, −0.23)
Site x2 (MP, 0.44)

(b) Management and operational global environmental performance indicators.

In the last step of the process, a management global indicator and an operational global
indicator for each facility site are derived. In a similar way to the previous step, the values
for several criteria are aggregated using a 2-tuple Choquet integral separately for the
management criteria and for operational criteria. In the latter calculation it is used
both the fuzzy measure for management μM and the fuzzy measure for operational
criteria μO, respectively. The results are in Table 13. In order to compute the final values by the
proposed procedure, both types of criteria are aggregated for experts and non experts using
γ = δ = 0.75. The resultant management and operational global performance indicators are
shown in Table 14.

Table 13. Partial EPIs for sites x1 and x2.

Site x1 Site x2

Experts Non Experts Experts Non Experts

Manag. (MP, 0.08) (F, −0.16) (MP, 0.42) (F, −0.02)
Opera. (F, 0.04) (F, −0.24) (P, 0.29) (P, 0.35)

Table 14. Management and operational global EPIs for sites x1 and x2.

MEPI OEPI

Site x1 (MP, 0.27) (F, −0.03)
Site x2 (F, −0.44) (P, 0.31)

In order to ease the evaluation of the outcomes, the partial and global results obtained in the
aggregation process are displayed in Figure 5b.

Finally, a classification between the facility sites is established with the purpose of identifying
the best one, both overall as global management and operational issues. Using the ordinary
lexicographic order on 〈S〉, the facility site x1, with a value (Fair,−0.4) ∈ 〈S〉, is the best globally
carrying out environmental practices with this evaluation. As well, the results show the facility
site x2 is slightly better than facility site x1 in management issues, but not in operational ones.
These indicators make visible different facets of the environmental strategies, as suggested by the
standard ISO 14001 guidelines. Also note that both experts and non-experts consider better the
site x1. The company now knows the partial and global results which indicate the weak points
of the facility sites and it allows to synchronize environmental facility site goals with company’s
environmental goals.

5. Conclusions

The evaluation of environmental practices allows companies and organizations to determine
their efficiency and effectiveness of their efforts concerning environmental aspects. In this paper,
an environmental integral evaluation model has been presented facilitating the comprehensive analysis.
This new approach ensures the most relevant issues are regarded in the evaluation process. So, it can
deal with different reviewers’ collectives related to the company’s activity. These reviewers express
their objective and subjective perceptions presenting different degrees of knowledge about evaluated
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facility sites. Thus in our proposal, appraisers could express their assessments in different scales
according to their knowledge and criteria nature. In addition, this model handles the interdependence
among environmental criteria by means of the use of the discrete Choquet integral. It is worth
emphasizing that the proposed model is quite flexible to be adapted easily to different settings.
A computational experiment for making sensitivity analysis on fuzzy measures could be considered
as future research.

Finally, the proposed model not only produces an overall global environmental performance
indicator for each facility site, but also a management global and an operational global environmental
performance indicators. In addition, it generates intermediate environmental performance indicators
according to the opinions of each set of reviewers and each criterion. These are useful for the
organization in its environmental improvement effort.

In the following appendixes some definitions and explanations are included to better understand
our approach and our illustrative application.
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Appendix A. A Short Survey on Discrete Choquet Integral for Dealing with Dependencies of EPIs

The application of the Choquet integral in multiple criteria decision making problems has
been expanding and the main advances can be seen in [26,47]. When criteria have inter-dependent
characteristics, it is not suitable to aggregate them by traditional aggregation operators based on
additive measures because it would cause some bias effects in results. Then, we can use alternative
operators that has been developed for this distinctive feature. These operators are based on fuzzy
measures (or capacities), which only fulfil a monotonicity instead of additivity property. In this
appendix, some definitions and important needed results are included for this application.

Definition A1. Let C = {c1, . . . , cn} be a finite universe. A fuzzy measure or capacity is a set function μ :
P(C) −→ [0, 1] which satisfies:

1. μ(∅) = 0 and μ(C) = 1,
2. A ⊆ B ⇒ μ(A) ≤ μ(B),

where P(C) is the set of all subsets of C.

Definition A2. Let μ a fuzzy measure on C, the Möbius representation of μ is a set function mμ : P(C) −→ #
given by

mμ(S) = ∑
T⊆S

(−1)|S|−|T|μ(T), ∀S ⊆ C

We note that if it is known the Möbius representation, it is easy to recover the fuzzy measure from
which was derived μ(T) = ∑S⊆T mμ(S), ∀T ⊆ C.

Definition A3. Let f : C −→ R+ be a function with xk = f (ck) for k ∈ {1, . . . , n}. The discrete Choquet
integral of f with respect to a fuzzy measure μ is given by

μ IC (x1, . . . , xn) = ∑
T⊆C

(
mμ(T)

∧
i∈T

xi

)
where

∧
denote the minimum.
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Remark A1. From a mathematical point of view, the discrete Choquet integral is a linear expression up
to a reordering of the elements. In addition, as it has been proved in several references such as [26,51,52],
among others, the Choquet integral fulfills very significant mathematical properties like idempotence, continuity,
non-decreasing monotonicity, stability under the same positive linear transformation, decomposability and
compensativeness.

In this paper, we underscore the importance of the latter because it is essential for our application.
Compensativeness indicates that:

min(x1, . . . , xn) ≤ μ IC(x1, . . . , xn) ≤ max(x1, . . . , xn).

This allows us to transform the results of the aggregation by means of the Choquet integral into
2-tuples in the linguistic term set using the results in [46], faciliting understanding. It proves suitable the
following definition.

Definition A4. [53] Let (l1, α1), . . . , (lm, αn) be a vector of linguistic 2-tuple, C = {1, 2, . . . , n} a finite
universe and μ a fuzzy measure on C, then the 2-tuples Choquet integral operator is defined as:

μ IC((l1, α1), . . . , (ln, αn)) = Δ

(
∑

T⊆C

(
mμ(T)Δ−1(

∧
i∈T

(li, αi)

))

here
∧

denote the minimum.

It is relevant to point out that the fuzzy measure plays a key role in the Choquet integral
comparable with the choice of weights in the weighted mean. Moreover, the weighted mean and the
OWA aggregation operator are special cases of the Choquet integral for specific fuzzy measures which
are connected with the weighting vector (see [52]).

The value, which the fuzzy measure assigns to a set A of criteria, μ(A) defines the weight of one
combination of criteria, but it does not give the global importance of the criteria not either the degree
of interaction among them. The overall importance of one or more criteria is given through all the
measures μ(A) where A contains such criteria. On the basis of this idea, it has been proposed different
indexes being the most common the Shapley index, which expresses the relative importance of a single
criterion or a number of criteria into the decision problem. Thus, those indexes help to analyse the
behavioral properties of the aggregation operator (see [51]).

In order to use the Choquet integral in our approach, we need to have at our disposal a
fuzzy measure. Since it is convenient to choose one adjusted to our decision problem, we put forward
identifying an appropriate fuzzy measure from its concrete characteristics. The main possibilities to do
that are enclosed below. Once a fuzzy measure is identified the associated Choquet integral can be
used as an aggregation tool.

Identification of the Fuzzy Measure

The identification of a suitable fuzzy measure to a particular Multi-Criteria Decision problem is the
great importance since all the knowledge concerning the criteria is embedded into the fuzzy measure.
As we manage a problem with n criteria, 2n − 2 real numbers in [0, 1] is needed to be completely
determined. It seems obvious that these coefficients are hard to be provided by the decision makers.
In order to address this issue a number of strategies have been considered in the literature. The fuzzy
measure identification methods have been studied by many authors (see [26,47,54,55]). The key point
is to use optimization methods to build the fuzzy measure belonging to a particular family with the
aim of reducing the initial requirements. The most relevant family is the k-additive fuzzy measures.
This allows us to model interaction among at most k criteria.

A fuzzy measure μ is k-additive if its Möbius representation verifies for each A ⊆ C with |A| > k
mμ(A) = 0 and there exist at least one subset A of cardinality k such that mμ(A) 
= 0.
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An optimization problem in order to obtain an specific fuzzy measure is posed for our problem.
The alternative optimization methods differ among them with respect to the objective function and
with respect to the input information used to establish constrains. The latter usually come from the
monotonicity of fuzzy measures, the particular characteristics of the family of fuzzy measures used.
It is also usual to use learning data that may include semantical considerations. An overview is
provided in [47].

From a practical point of view these methods can be applied by means of the Kappalab R package
(see [56]). This package contains high-level routines for R, which is free software environment
release under GNU (GNU is a recursive acronym for “GNU is Not Unix”) for statistical computing
and graphics [57]. As a consequence, this software smooths the way for the applications of the Choquet
integral, in particular, in the environmental context.

Finally, it is important to emphasize the advantage of allowing decision makers the flexibility to
incorporate major interdependencies among criteria through the formulation of the fuzzy measure
identification problem.

Appendix B. Computing Some Fuzzy Measures for the Illustrative Example

This appendix is devoted to computing the needed fuzzy measures used in the illustrative
application of Section 4.

As we stated in Appendix A, there are several methods to achieve a suited fuzzy measure which
collects the distinctive features of the evaluation context. In order to build a particular fuzzy measure
for the application, we look for a 2-additive fuzzy measures using the minimum variance method
(see [47]). Therefore, some initial requirements are considered. The choice made is just to show some
potentials that may be interesting, but there are plenty of possibilities.

• Firstly, we have a clear orientation to criteria relative to practices in outputs of the company
(cM

1 , cO
1 , cO

3 ). We translate this through some constrains in the optimization problem. Let us
consider Table A1 that contains a learning set of possible normalized criteria values. We demand
that the aggregated values, with Choquet integral for its rows, satisfy this order

μ IC(Row 1) ≥ μ IC(Row 2) ≥ μ IC(Row 3) ≥ μ IC(Row 4) ≥ μ IC(Row 5)

Here the aggregation values for rows 1 and 2 are greater than for rows 3, 4, and 5 because the
outputs criteria have bigger values whatever are the rest of criteria. Besides, when the output
criteria have equal values we prefer to have a greater value in criteria cM

2 , cO
2 , relative to practices

in inputs of the company than in cM
3 . This implies that Row 1 has an aggregation value greater

than Row 2 and the same happens with Rows 4 and 5.

Table A1. A learning set used for determining the fuzzy measure (criteria reordered).

Output Input

cM
1 cO

1 cO
3 cM

2 cO
2 cM

3

Row 1 G MP MP G MP MP
Row 2 G MP MP MP MP G
Row 3 MP MP MP G MP G
Row 4 MP MP MP G MP MP
Row 5 MP MP MP MP MP G

This means the following constraints:

μ IC(Row 1)− μ IC(Row 2) ≥ 0, μ IC(Row 2)− μ IC(Row 3) ≥ 0,
μ IC(Row 3)− μ IC(Row 4) ≥ 0, μ IC(Row 4)− μ IC(Row 5) ≥ 0.
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• Secondly, the decision maker brings some ideas about the interactions of some criteria. The pairs
(cM

1 , cO
1 ) and (cM

1 , cO
3 ) have to interact in a redundancy way. That is, the contribution of the pair

should be inferior to the sum of the contribution of the criterion into it. However, the pair (cM
1 , cO

2 )

has to interact in a complementary way, i.e., it has a contribution superior to the sum of the
contributions of the criteria in it. This means the following constraints on the Shapley indexes:

Iμ(cM
1 , cO

1 ) < 0, Iμ(cM
1 , cO

3 ) < 0 and Iμ(cM
1 , cO

2 ) > 0
• Thirdly, due to the fact that the CO2 emissions are the great importance for the company, it is

imposed that the overall importance of this criterion should be at least 0.15 over 1. This adds a
new constraint through the Shapley value for this criterion.

This implies the constraint on the Shapley value Iμ(cO
1 ) ≥ 0.15.

In order to get the fuzzy measure we are looking for we incorporate all the previous requirements
in the routine for minimum variance method implemented in the kappalab R package. As the
resulting fuzzy measure μ has 26 = 64 values we show its Mobius transformation, which is shorter,
in Table A2. Analogously, Table A3 contains the Mobius transformation of the associated fuzzy
measures μM and μO.

Table A2. Möbius transformation for the fuzzy measure μ for expert reviewers.

Subset {cM
1 } {cM

2 } {cM
3 } {cO

1 } {cO
2 } {cO

3 }
mμ(subset) 0.503 0.203 0.036 0.266 0.109 0.222

Subset {cM
1 ,cM

2 } {cM
1 ,cM

3 } {cM
1 ,cO

1 } {cM
1 ,cO

2 } {cM
1 ,cO

3 } {cM
2 ,cM

3 }
mμ(subset) −0.003 −0.003 −0.219 0.100 −0.197 0.131

Subset {cM
2 ,cO

1 } {cM
2 ,cO

2 } {cM
2 ,cO

3 } {cM
3 ,cO

1 } {cM
3 ,cO

2 } {cM
3 ,cO

3 }
mμ(subset) −0.047 −0.099 −0.025 0.000 −0.010 0.000

Subset {cO
1 ,cO

2 } {cO
1 ,cO

3 } {cO
2 ,cO

3 }
mμ(subset) 0.006 0.028 0.000

Table A3. Mobius for μM and μO for management and for operational criteria, respectively (for experts).

Subset {cM
1 } { cM

2 } { cM
3 } {cM

1 , cM
2 } {cM

1 , cM
3 } { cM

2 , cM
3 }

mμM (subset) 0.58 0.23 0.04 −0.00 −0.00 0.15

Subset {cO
1 } { cO

2 } { cO
3 } {cO

1 , cO
2 } {cO

1 , cO
3 } { cO

2 , cO
3 }

mμO (subset) 0.42 0.17 0.35 0.01 0.04 0.00

Besides, since some of the criteria cannot be assessed by non-experts, we need to compute another
fuzzy measure suited for the aggregation step that implies those criteria appraised by non-experts
(cM

1 , cM
2 , cO

2 ). Hence, we adapt the previous requirements in appropriate way. The results are shown
in Table A4

Table A4. Mobius transformation for the fuzzy measure μ for non-expert reviewers.

Subset {cM
1 } {cM

2 } {cO
2 } {cM

1 , cM
2 } {cM

1 , cO
2 } {cM

2 , cO
2 }

mμ(subset) 0.29 0.35 0.29 −0.01 0.10 −0.01
mμM (subset) 0.47 0.56 - −0.02 - -
mμO (subset) - - 1 - - -

In order to understand better the role of each criteria in the aggregation operator we obtain the
Shapley values associated to those previous fuzzy measures (see Table A5). These values shows the
global involvement of each criteria in the results obtained with the Choquet integral. So, the criterion cM

1
(pollution control initiatives) is the more relevant for the expert reviewers but not for the non experts.
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Table A5. Shapley values for fuzzy measure μ, μMand μM for experts (right) and non-experts (left).

Non-Experts Experts

cM
1 cM

2 cM
3 cO

1 cO
2 cO

3 cM
1 cM

2 cO
2

μ 0.34 0.18 0.10 0.15 0.11 0.12 μ 0.33 0.33 0.33
μM 0.58 0.31 0.12 μM 0.45 0.55
μO 0.45 0.18 0.37 μO 1
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1. Introduction

In 2012, Jun et al. [1] introduced cubic sets, and then this notion is applied to several algebraic
structures (see [2–11]).

The aim of this paper is to introduce the notion of a cubic IVIF set which is an extended concept
of a cubic set. We introduce cubic interval-valued intuitionistic fuzzy set which is an extension of
cubic set, and apply it to BCK/BCI-algebra. We investigate P-union, P-intersection, R-union and
R-intersection of α-internal and α-external cubic IVIF sets.

We define cubic IVIF subalgebra and ideal in BCK/BCI-algebra, and investigate related properties.
We consider relations between cubic IVIF subalgebra and cubic IVIF ideal. We discuss characterizations
of cubic IVIF subalgebra and cubic IVIF ideal.

2. Preliminaries

A fuzzy set in a set X is defined to be a function μ : X → [0, 1]. For I = [0, 1], denote by IX the
collection of all fuzzy sets in a set X. Define a relation ≤ on IX as follows:

(∀μ, λ ∈ IX) (μ ≤ λ ⇐⇒ (∀x ∈ X)(μ(x) ≤ λ(x))). (1)

The complement of μ ∈ IX , denoted by μc, is defined by

(∀x ∈ X) (μc(x) = 1− μ(x)). (2)

Axioms 2018, 7, 7; doi:10.3390/axioms7010007 www.mdpi.com/journal/axioms101
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For a family {μi | i ∈ Λ} of fuzzy sets in X, we define the join (∨) and meet (∧) operations
as follows: ∨

i∈Λ

μi : X → [0, 1], x �→ sup{μi(x) | i ∈ Λ},

∧
i∈Λ

μi : X → [0, 1] x �→ inf{μi(x) | i ∈ Λ}.

An interval-valued intuitionistic fuzzy set (briefly, IVIF set) A over a set X (see [12]) is an object
having the form

Ã = {〈x, α[Ã](x), β[Ã](x)〉 | x ∈ X}

where α[Ã](x) ⊆ [0, 1] and β[Ã](x) ⊆ [0, 1] are intervals and for every x ∈ X,

sup α[Ã](x) + sup β[Ã](x) ≤ 1

Especially, if

sup α[Ã](x) = inf α[Ã](x) and sup β[Ã](x) = inf β[Ã](x), (3)

then the IVIF set Ã is reduced to an intuitionistic fuzzy set (see [13]).
Given two closed subintervals D1 = [D−

1 , D+
1 ] and D2 = [D−

2 , D+
2 ] of [0, 1], we define the order

“$” as follows:

D1 $ D2 ⇔ D−
1 ≤ D−

2 and D+
1 ≤ D+

2 .

We also define the refined minimum (briefly, rmin) and refined maximum (briefly, rmax)
as follows:

rmin{D1, D2} =
[
min{D−

1 , D−
2 }, min{D+

1 , D+
2 }

]
,

rmax{D1, D2} =
[
max{D−

1 , D−
2 }, max{D+

1 , D+
2 }

]
.

For a family {Di = [D−
i , D+

i ] | i ∈ Λ} of closed subintervals of [0, 1], we define rinf (refined
infimum) and rsup (refined supermum) as follows:

rinf
i∈Λ

Di =

[
inf
i∈Λ

D−
i , inf

i∈Λ
D+

i

]
and rsup

i∈Λ
Di =

[
sup
i∈Λ

D−
i , sup

i∈Λ
D+

i

]
.

In this paper we use the interval-valued intuitionistic fuzzy set

Ã = {〈x, α[Ã](x), β[Ã](x)〉 | x ∈ X}

over X in which α[Ã](x) and β[Ã](x) are closed subintervals of [0, 1] for all x ∈ X, that is, α[Ã] :
X → D[0, 1] and β[Ã] : X → D[0, 1] are interval-valued fuzzy (briefly, IVF) sets in X where D[0, 1]
is the set of all closed subintervals of [0, 1]. Also, we use the notations α[Ã]−(x) and α[Ã]+(x) to
mean the left end point and the right end point of the interval α[Ã](x), respectively, and so we have
α[Ã](x) = [α[Ã]−(x), α[Ã]+(x)]. The interval-valued intuitionistic fuzzy set

Ã = {〈x, α[Ã](x), β[Ã](x)〉 | x ∈ X}

over X is simply denoted by Ã(x) = (α[Ã](x), β[Ã](x)) for x ∈ X or Ã = (α[Ã], β[Ã]).
An algebra (X; ∗, 0) of type (2, 0) is called a BCI-algebra if it satisfies the following axioms:
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(I) (∀x, y, z ∈ X) (((x ∗ y) ∗ (x ∗ z)) ∗ (z ∗ y) = 0),
(II) (∀x, y ∈ X) ((x ∗ (x ∗ y)) ∗ y = 0),

(III) (∀x ∈ X) (x ∗ x = 0),
(IV) (∀x, y ∈ X) (x ∗ y = 0, y ∗ x = 0 ⇒ x = y).

If a BCI-algebra X satisfies the following identity:

(V) (∀x ∈ X) (0 ∗ x = 0),

then X is called a BCK-algebra. We can define a partial ordering ≤ on X by x ≤ y if and only if x ∗ y = 0.
Any BCK/BCI-algebra X satisfies the following conditions:

(∀x ∈ X) (x ∗ 0 = x), (4)

(∀x, y, z ∈ X) (x ≤ ⇒ x ∗ z ≤ y ∗ z, z ∗ y ≤ z ∗ x), (5)

(∀x, y, z ∈ X) ((x ∗ y) ∗ z = (x ∗ z) ∗ y), (6)

(∀x, y, z ∈ X) ((x ∗ z) ∗ (y ∗ z) ≤ x ∗ y). (7)

A nonempty subset S of a BCK/BCI-algebra X is called a subalgebra of X if x ∗ y ∈ S for all
x, y ∈ S. A subset I of a BCK/BCI-algebra X is called an ideal of X if 0 ∈ I and the following condition
is valid.

(∀x, y ∈ X) (x ∗ y ∈ I, y ∈ I ⇒ x ∈ I) . (8)

We refer the reader to the books [14,15] and the paper [16] for further information regarding
BCK/BCI-algebras.

3. Cubic Interval-Valued Intuitionistic Fuzzy Sets

Definition 1. Let X be a nonempty set. By a cubic interval-valued intuitionistic fuzzy set (briefly, cubic IVIF set)
in X we mean a structure

A = {〈x, μ(x), Ã(x)〉 | x ∈ X}

in which μ is a fuzzy set in X and Ã is an interval-valued intuitionistic fuzzy set in X.

A cubic IVIF set A = {〈x, μ(x), Ã(x)〉 | x ∈ X} is simply denoted by A = 〈μ, Ã〉.
Let A = 〈μ, Ã〉 be a cubic IVIF set in a nonempty set X. Given ε ∈ [0, 1] and

([sα, tα], [sβ, tβ]) ∈ D[0, 1]× D[0, 1], we consider the sets

μ[ε] := {x ∈ X | μ(x) ≥ ε},

α[Ã][sα, tα] := {x ∈ X | α[Ã](x)$ [sα, tα]},

β[Ã][sβ, tβ] := {x ∈ X | β[Ã](x)% [sβ, tβ]}.

Definition 2. Let X be a nonempty set. A cubic IVIF set A = 〈μ, Ã〉 is said to be

• α-internal if μ(x) ∈ α[Ã](x) for all x ∈ X,
• β-internal if μ(x) ∈ β[Ã](x) for all x ∈ X,
• internal if it is both α-internal and β-internal.
• α-external if μ(x) /∈ (α[Ã]−(x), α[Ã]+(x)) for all x ∈ X.
• β-external if μ(x) /∈ (β[Ã]−(x), β[Ã]+(x)) for all x ∈ X.
• external if it is both α-external and β-external.

It is clear that if A = 〈μ, Ã〉 is a cubic IVIF set in X with α[Ã](x) ∩ β[Ã](x) = ∅ for some x ∈ X,
then A = 〈μ, Ã〉 cannot be internal.
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Example 1. Let A = 〈μ, Ã〉 be a cubic IVIF set in I in which Ã(x) = ([0.3, 0.5], [0.1, 0.4]) and μ(x) = k
for all x ∈ X.

(1) If k ∈ (0.4, 0.5], then A = 〈μ, Ã〉 is α-internal which is not β-internal.
(2) If k ∈ [0.1, 0.3), then A = 〈μ, Ã〉 is β-internal which is not α-internal.
(3) If k ∈ [0.3, 0.4], then A = 〈μ, Ã〉 is internal.
(4) If either k ≥ 0.5 or k ≤ 0.1, then A = 〈μ, Ã〉 is external.
(5) If either k ≥ 0.5 or k ≤ 0.3, then A = 〈μ, Ã〉 is α-external but may not be β-external.
(6) If either k ≥ 0.4 or k ≤ 0.1, then A = 〈μ, Ã〉 is β-external but may not be α-external.

Proposition 1. Let A = 〈μ, Ã〉 be a cubic IVIF set in a nonempty set X in which
β[Ã]−(x) ≤ α[Ã]−(x) < α[Ã]+(x) ≤ β[Ã]+(x) for all x ∈ X. If A = 〈μ, Ã〉 is α-internal, then it is
β-internal and so internal. Also, if A = 〈μ, Ã〉 is β-external, then it is α-external and so external.

Proof. Straightforward.

Proposition 2. If A = 〈μ, Ã〉 is a cubic IVIF set in X which is not external, then there exist x, y ∈ X such that
μ(x) ∈ α[Ã](x) or μ(y) ∈ β[Ã](y).

Proof. Straightforward.

Theorem 1. Let A = 〈μ, Ã〉 be a cubic IVIF set in X in which the right end point of α[Ã](x) (or β[Ã](x)) is
equal to the left end point of β[Ã](x) (or α[Ã](x)) for all x ∈ X. If we define μ by

(∀x ∈ X)
(
μ(x) = α[Ã]+(x) = β[Ã]−(x) or μ(x) = α[Ã]−(x) = β[Ã]+(x)

)
,

then A = 〈μ, Ã〉 is external.

Proof. Straightforward.

For any cubic IVIF set A = 〈μ, Ã〉 in X, let

Uα(Ã) := {α[Ã]+(x) | x ∈ X}, Lα(Ã) := {α[Ã]−(x) | x ∈ X},

Uβ(Ã) := {β[Ã]+(x) | x ∈ X}, Lβ(Ã) := {β[Ã]−(x) | x ∈ X}.

Theorem 2. Let A = 〈μ, Ã〉 be a cubic IVIF set in X. If A = 〈μ, Ã〉 is both α-internal and α-external (resp.,
both β-internal and β-external), then μ(x) ∈ Uα(Ã) ∪ Lα(Ã) (resp., μ(x) ∈ Uβ(Ã) ∪ Lβ(Ã)) for all x ∈ X.

Proof. Assume that A = 〈μ, Ã〉 is both α-internal and α-external. Then μ(x) ∈ α[Ã](x) and
μ(x) /∈

(
α[Ã]−(x), α[Ã]+(x)

)
for all x ∈ X. It follows that μ(x) = α[Ã]−(x) or μ(x) = α[Ã]+(x),

that is, μ(x) ∈ Lα(Ã) or μ(x) ∈ Uα(Ã). Hence μ(x) ∈ Uα(Ã) ∪ Lα(Ã) for all x ∈ X. Similarly,
if A = 〈μ, Ã〉 is both β-internal and β-external, then μ(x) ∈ Uα(Ã) ∪ Lα(Ã) for all x ∈ X.

Given an IVIF set Ã = (α[Ã], β[Ã]) in X, the complement of Ã is denoted by Ãc and is defined
as follows:

Ãc : X → D[0, 1]× D[0, 1], x �→ 〈α[Ãc], β[Ãc]〉 (9)

where

α[Ãc] : X → D[0, 1], x �→ [α[Ãc]−(x), α[Ãc]+(x)] (10)
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and

β[Ãc] : X → D[0, 1], x �→ [β[Ãc]−(x), β[Ãc]+(x)] (11)

with α[Ãc]−(x) = 1 − α[Ã]+(x), α[Ãc]+(x) = 1 − α[Ã]−(x), β[Ãc]−(x) = 1 − β[Ã]+(x),
and β[Ãc]+(x) = 1− β[Ã]−(x).

Definition 3. For any cubic IVIF sets A = 〈μ, Ã〉 and B = 〈λ, B̃〉 in X, we define

(Equality) A = B ⇔ Ã = B̃ and μ = λ, (12)

(P-order) A �P B ⇔ Ã ⊆ B̃ and μ ≤ λ, (13)

(R-order) A �R B ⇔ Ã ⊆ B̃ and μ ≥ λ, (14)

where Ã ⊆ B̃ means that α[Ã]$ α[B̃] and β[Ã]% β[B̃], that is,

(∀x ∈ X)

(
α[Ã]−(x) ≤ α[B̃]−(x), α[Ã]+(x) ≤ α[B̃]+(x)

β[Ã]−(x) ≥ β[B̃]−(x), β[Ã]+(x) ≥ β[B̃]+(x)

)
.

It is clear that the set of all cubic IVIF sets in X forms a poset under the P-order �P and the
R-order �R.

For any Ãi =
{
〈x, α[Ãi](x), β[Ãi](x)〉

}
where i ∈ Λ, we define

⋃
i∈Λ

Ãi =

{
〈x, α[ ∪

i∈Λ
Ãi](x), β[ ∪

i∈Λ
Ãi](x)〉 | x ∈ X

}
(15)

and

⋂
i∈Λ

Ãi =

{
〈x, α[ ∩

i∈Λ
Ãi](x), β[ ∩

i∈Λ
Ãi](x)〉 | x ∈ X

}
(16)

where α[ ∪
i∈Λ

Ãi](x) = rsup
i∈Λ

α[Ãi](x), β[ ∪
i∈Λ

Ãi](x) = rinf
i∈Λ

β[Ãi](x), α[ ∩
i∈Λ

Ãi](x) = rinf
i∈Λ

α[Ãi](x),

and β[ ∩
i∈Λ

Ãi](x) = rsup
i∈Λ

β[Ãi](x).

Definition 4. Given a family {Ai = 〈μi, Ãi〉 | i ∈ Λ} of cubic IVIF sets in X, we define

(1) �P
i∈Λ

Ai :=
〈 ∨

i∈Λ
μi,

⋃
i∈Λ

Ãi

〉
(P-union)

(2) �R
i∈Λ

Ai :=
〈 ∧

i∈Λ
μi,

⋃
i∈Λ

Ãi

〉
(R-union)

(3) �P
i∈Λ

Ai :=
〈 ∧

i∈Λ
μi,

⋂
i∈Λ

Ãi

〉
(P-intersection)

(4) �R
i∈Λ

Ai :=
〈 ∨

i∈Λ
μi,

⋂
i∈Λ

Ãi

〉
(R-intersection)

Proposition 3. For any cubic IVIF sets A = 〈μ, Ã〉, B = 〈λ, B̃〉, C = 〈ν, C̃〉 and D = 〈ρ, D̃〉 in X, we have

(1) A �P B, A �P C ⇒ A �P B �P C.
(2) A �R B, A �R C ⇒ A �R B �R C.
(3) A �P C, B �P C ⇒ A�P B �P C.
(4) A �R C, B �R C ⇒ A�R B �R C.
(5) A �P B, C �P D ⇒ A�P C �P B �P D, A�P C �P B �P D.
(6) A �R B, C �R D ⇒ A�R C �R B �R D, A�R C �R B �R D.
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Proof. Straightforward.

Theorem 3. Let A = 〈μ, Ã〉 be a cubic IVIF set in X. If A = 〈μ, Ã〉 is α-internal (resp., α-external), then so
is the complement of A = 〈μ, Ã〉.

Proof. Assume that A = 〈μ, Ã〉 is α-internal. Then μ(x) ∈ α[Ã](x), that is,
α[Ã]−(x) ≤ μ(x) ≤ α[Ã]+(x) for all x ∈ X. Thus 1− α[Ã]+(x) ≤ 1− μ(x) ≤ 1− α[Ã]−(x), that is,
μc(x) ∈ α[Ãc](x) for all x ∈ X. Hence Ac = 〈μc, Ãc〉 is α-internal. If A = 〈μ, Ã〉 is α-external,
then μ(x) /∈ (α[Ã]−(x), α[Ã]+(x)) for all x ∈ X, and so μ(x) ∈ [0, α[Ã]−(x)] or μ(x) ∈ [α[Ã]+(x), 1].
It follows that 1− α[Ã]−(x) ≤ 1− μ(x) ≤ 1 or 0 ≤ 1− μ(x) ≤ 1− α[Ã]+(x), and so that

μc(x) = 1− μ(x) /∈ (1− α[Ã]+(x), 1− α[Ã]−(x))

= (α[Ãc]−(x), α[Ãc]+(x))

Therefore Ac = 〈μc, Ãc〉 is α-external.

Theorem 4. Let A = 〈μ, Ã〉 be a cubic IVIF set in X. If A = 〈μ, Ã〉 is β-internal (resp., β-external), then so
is the complement of A = 〈μ, Ã〉.

Proof. It is similar to the proof of Theorem 3.

Corollary 1. If a cubic IVIF set A = 〈μ, Ã〉 in X is internal, then so is Ac = 〈μc, Ãc〉.

Theorem 5. If {Ai = 〈μi, Ãi〉 | i ∈ Λ} is a family of α-internal cubic IVIF sets in X, then the P-union and
the P-intersection of {Ai = 〈μi, Ãi〉 | i ∈ Λ} are also α-internal cubic IVIF sets in X.

Proof. Since Ai is α-internal, we have μi(x) ∈ α[Ãi](x), that is,

α[Ãi]
−(x) ≤ μi(x) ≤ α[Ãi]

+(x)

for all x ∈ X and i ∈ Λ. It follows that

α[ ∪
i∈Λ

Ãi]
−(x) ≤

(∨
i∈Λ

μi

)
(x) ≤ α[ ∪

i∈Λ
Ãi]

+(x)

and

α[ ∩
i∈Λ

Ãi]
−(x) ≤

(∧
i∈Λ

μi

)
(x) ≤ α[ ∩

i∈Λ
Ãi]

+(x).

Therefore �P
i∈Λ

Ai and �P
i∈Λ

Ai are α-internal cubic IVIF sets in X.

The following example shows that the R-union and R-intersection of α-internal cubic IVIF sets
need not be α-internal.

Example 2. Let A = 〈μ, Ã〉 and B = 〈λ, B̃〉 be cubic IVIF sets in I = [0, 1] with Ã(x) = ([0.2, 0.45], [0.3, 0.5])
and B̃(x) = ([0.6, 0.8], [0.1, 0.2]) for all x ∈ I. Then Ã ∪ B̃ = (α[Ã ∪ B̃], β[Ã ∪ B̃]) and
Ã ∩ B̃ = (α[Ã ∩ B̃], β[Ã ∩ B̃]), where

α[Ã ∪ B̃](x) = rmax{α[Ã](x), β[B̃](x)}
= rmax{[0.2, 0.45], [0.6, 0.8]} = [0.6, 0.8]
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β[Ã ∪ B̃](x) = rmin{β[Ã](x), β[B̃](x)}
= rmin{[0.3, 0.5], [0.1, 0.2]} = [0.1, 0.2]

α[Ã ∩ B̃](x) = rmin{α[Ã](x), α[B̃](x)}
= rmin{[0.2, 0.45], [0.6, 0.8]} = [0.2, 0.45]

β[Ã ∩ B̃](x) = rmax{β[Ã](x), β[B̃](x)}
= rmin{[0.3, 0.5], [0.1, 0.2]} = [0.3, 0.5].

If μ(x) = 0.4 and λ(x) = 0.7 for all x ∈ I, then A and B are α-internal. The R-union of A and B is

A�R B = {〈x, μ(x), B̃(x)〉 | x ∈ I}

and it is not α-internal. The R-intersection of A and B is

A�R B = {〈x, λ(x), Ã(x)〉 | x ∈ I}

which is not α-internal.

We provide a condition for the R-union of two α-internal cubic IVIF sets to be α-internal.

Theorem 6. Let A = 〈μ, Ã〉 and B = 〈λ, B̃〉 be cubic IVIF sets in X such that

(∀x ∈ X)
(
max{α[Ã]−(x), α[B̃]−(x)} ≤ (μ ∧ λ)(x)

)
. (17)

If A = 〈μ, Ã〉 and B = 〈λ, B̃〉 are α-internal, then so is the R-union of A = 〈μ, Ã〉 and B = 〈λ, B̃〉.

Proof. Assume that A = 〈μ, Ã〉 and B = 〈λ, B̃〉 are α-internal cubic IVIF sets in X that satisfies the
condition (17). Then

α[Ã]−(x) ≤ μ(x) ≤ α[Ã]+(x)

and

α[B̃]−(x) ≤ λ(x) ≤ α[B̃]+(x)

for all x ∈ X, which imply that (μ ∧ λ)(x) ≤ α[Ã ∪ B̃]+(x). It follows from (17) that

α[Ã ∪ B̃]−(x) = max{α[Ã]−(x), α[B̃]−(x)} ≤ (μ ∧ λ)(x) ≤ α[Ã ∪ B̃]+(x)

for all x ∈ X. Therefore

A�R B = {〈x, (μ ∧ λ)(x), (Ã ∪ B̃)(x)〉 | x ∈ X}

is an α-internal cubic IVIF set in X.

We provide a condition for the R-intersection of two α-internal cubic IVIF sets to be α-internal.

Theorem 7. Let A = 〈μ, Ã〉 and B = 〈λ, B̃〉 be cubic IVIF sets in X such that

(∀x ∈ X)
(
min{α[Ã]+(x), α[B̃]+(x)} ≥ (μ ∨ λ)(x)

)
. (18)

If A = 〈μ, Ã〉 and B = 〈λ, B̃〉 are α-internal, then so is the R-intersection of A = 〈μ, Ã〉 and B = 〈λ, B̃〉.
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Proof. LetA = 〈μ, Ã〉 and B = 〈λ, B̃〉 be α-internal cubic IVIF sets in X which satisfy the condition (18).
Then α[Ã]−(x) ≤ μ(x) ≤ α[Ã]+(x) and α[B̃]−(x) ≤ λ(x) ≤ α[B̃]+(x) for all x ∈ X. It follows
from (18) that

α[Ã ∩ B̃]−(x) ≤ (μ ∨ λ)(x) ≤ min{α[Ã]+(x), α[B̃]+(x)} = α[Ã ∩ B̃]+(x)

for all x ∈ X. Therefore

A�R B = {〈x, (μ ∨ λ)(x), (Ã ∩ B̃)(x)〉 | x ∈ X}

is an α-internal cubic IVIF set in X.

The following example shows that the P-union and the P-intersection of α-external cubic IVIF sets
need not be α-external.

Example 3. Let A = 〈μ, Ã〉 and B = 〈λ, B̃〉 be cubic IVIF sets in X which are given in Example 2.
If μ(x) = 0.7 and λ(x) = 0.4 for all x ∈ I, then A and B are α-external. The P-union of A and B is

A�P B = {〈x, μ(x), B̃(x)〉 | x ∈ I}

and it is not α-external. The P-intersection of A and B is

A�P B = {〈x, λ(x), Ã(x)〉 | x ∈ I}

which is not α-external.

We consider conditions for the P-union and P-intersection of two α-external cubic IVIF sets to be
α-external.

Theorem 8. Let A = 〈μ, Ã〉 and B = 〈λ, B̃〉 be cubic IVIF sets in X such that

{x ∈ X | μ(x) ≤ α[Ã]−(x), λ(x) ≥ α[B̃]+(x)} = ∅ (19)

and

{x ∈ X | μ(x) ≥ α[Ã]+(x), λ(x) ≤ α[B̃]−(x)} = ∅. (20)

If A = 〈μ, Ã〉 and B = 〈λ, B̃〉 are α-external, then so are the P-union and P-intersection of A = 〈μ, Ã〉
and B = 〈λ, B̃〉.

Proof. If A = 〈μ, Ã〉 and B = 〈λ, B̃〉 are α-external, then μ(x) /∈
(
α[Ã]−(x), α[Ã]+(x)

)
and

λ(x) /∈
(
α[B̃]−(x), α[B̃]+(x)

)
, that is,

μ(x) ≤ α[Ã]−(x) or μ(x) ≥ α[Ã]+(x)

and

λ(x) ≤ α[B̃]−(x) or λ(x) ≥ α[B̃]+(x)

for all x ∈ X. It follows from conditions (19) and (20) that

(∀x ∈ X)
(
μ(x) ≤ α[Ã]−(x), λ(x) ≤ α[B̃]−(x)

)
(21)
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or

(∀x ∈ X)
(
μ(x) ≥ α[Ã]+(x), λ(x) ≥ α[B̃]+(x)

)
. (22)

The conditions (21) and (22) induce

(μ ∨ λ)(x) ≤ max{α[Ã]−(x), α[B̃]−(x)}

and

(μ ∨ λ)(x) ≥ max{α[Ã]+(x), α[B̃]+(x)}

respectively, for all x ∈ X. Hence

(μ ∨ λ)(x) /∈
(
α[Ã ∪ B̃]−(x), α[Ã ∪ B̃]+(x)

)
for all x ∈ X, and therefore

A�P B = {〈x, (μ ∨ λ)(x), (Ã ∪ B̃)(x)〉 | x ∈ I}

is an α-external cubic IVIF set in X. Also, (21) and (22) imply that

(μ ∧ λ)(x) ≤ min{α[Ã]−(x), α[B̃]−(x)}

and

(μ ∧ λ)(x) ≥ min{α[Ã]+(x), α[B̃]+(x)}

respectively, for all x ∈ X. Therefore

A�P B = {〈x, (μ ∧ λ)(x), (Ã ∩ B̃)(x)〉 | x ∈ I}

is an α-external cubic IVIF set in X.

The following example shows that the R-union and R-intersection of α-external cubic IVIF sets in
X may not be α-external.

Example 4. Let A = 〈μ, Ã〉 and B = 〈λ, B̃〉 be cubic IVIF sets in I = [0, 1] with Ã(x) = ([0.2, 0.4], [0.3, 0.5])
and B̃(x) = ([0.3, 0.6], [0.2, 0.4]) for all x ∈ I. Then Ã ∪ B̃ = (α[Ã ∪ B̃], β[Ã ∪ B̃]) and
Ã ∩ B̃ = (α[Ã ∩ B̃], β[Ã ∩ B̃]), where

α[Ã ∪ B̃](x) = rmax{α[Ã](x), α[B̃](x)}
= rmax{[0.2, 0.4], [0.3, 0.6]} = [0.3, 0.6]

β[Ã ∪ B̃](x) = rmin{β[Ã](x), β[B̃](x)}
= rmin{[0.3, 0.5], [0.2, 0.4]} = [0.2, 0.4]

α[Ã ∩ B̃](x) = rmin{α[Ã](x), α[B̃](x)}
= rmin{[0.2, 0.4], [0.3, 0.6]} = [0.2, 0.4]

β[Ã ∩ B̃](x) = rmax{β[Ã](x), β[B̃](x)}
= rmin{[0.3, 0.5], [0.2, 0.4]} = [0.3, 0.5].
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If μ(x) = 0.5 and λ(x) = 0.7 for all x ∈ I, then A and B are both α-external. The R-union of A and B is

A�R B = {〈x, μ(x), B̃(x)〉 | x ∈ I}

and it is not α-external. If μ(x) = 0.1 and λ(x) = 0.3 for all x ∈ I, then A and B are α-external.
The R-intersection of A and B is

A�R B = {〈x, λ(x), Ã(x)〉 | x ∈ I}

which is not α-external.

We discuss conditions for the R-union and R-intersection of two cubic IVIF sets to be α-external.
Let A = 〈μ, Ã〉 and B = 〈λ, B̃〉 be cubic IVIF sets in X such that

(∀x ∈ X)
(
α[Ã]−(x) ≤ α[B̃]−(x) ≤ α[Ã]+(x) ≤ α[B̃]+(x)

)
. (23)

If μ(x) ≤ α[Ã]−(x) for all x ∈ X, then

(μ ∧ λ)(x) ≤ α[Ã]−(x) ≤ max{α[Ã]−(x), α[B̃]−(x)}

and so (μ ∧ λ)(x) /∈
(
α[Ã ∪ B̃]−(x), α[Ã ∪ B̃]+(x)

)
.

If (μ ∧ λ)(x) ≥ α[B̃]+(x) for all x ∈ X, then

(μ ∧ λ)(x) ≥ α[B̃]+(x) = max{α[Ã]+(x), α[B̃]+(x)}

and thus (μ ∧ λ)(x) /∈
(
α[Ã ∪ B̃]−(x), α[Ã ∪ B̃]+(x)

)
.

If (μ ∨ λ)(x) ≤ α[Ã]−(x) for all x ∈ X, then

(μ ∨ λ)(x) ≤ α[Ã]−(x) = min{α[Ã]−(x), α[B̃]−(x)}

which implies that (μ ∨ λ)(x) /∈
(
α[Ã ∩ B̃]−(x), α[Ã ∩ B̃]+(x)

)
.

If μ(x) ≥ α[B̃]+(x) for all x ∈ X, then

(μ ∨ λ)(x) ≥ μ(x) ≥ α[B̃]+(x) ≥ min{α[Ã]+(x), α[B̃]+(x)}

which induces (μ ∨ λ)(x) /∈
(
α[Ã ∩ B̃]−(x), α[Ã ∩ B̃]+(x)

)
.

Therefore we have the following theorem.

Theorem 9. Let A = 〈μ, Ã〉 and B = 〈λ, B̃〉 be cubic IVIF sets in X satisfying the condition (23). If μ and λ

satisfies any one of the following conditions.

(∀x ∈ X)
(
μ(x) ≤ α[Ã]−(x)

)
, (24)

(∀x ∈ X)
(
(μ ∧ λ)(x) ≥ α[B̃]+(x)

)
, (25)

then the R-union of A = 〈μ, Ã〉 and B = 〈λ, B̃〉 is α-external. If μ and λ satisfies any one of the
following conditions.

(∀x ∈ X)
(
(μ ∨ λ)(x) ≤ α[Ã]−(x)

)
, (26)

(∀x ∈ X)
(
μ(x) ≥ α[B̃]+(x)

)
, (27)

then the R-intersection of A = 〈μ, Ã〉 and B = 〈λ, B̃〉 is α-external.
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Let A = 〈μ, Ã〉 and B = 〈λ, B̃〉 be cubic IVIF sets in X such that

(∀x ∈ X)
(
α[B̃]−(x) ≤ α[Ã]−(x) ≤ α[Ã]+(x) ≤ α[B̃]+(x)

)
. (28)

If μ(x) ≤ α[B̃]−(x) for all x ∈ X, then

(μ ∧ λ)(x) ≤ α[B̃]−(x) ≤ max{α[Ã]−(x), α[B̃]−(x)}

and so (μ ∧ λ)(x) /∈
(
α[Ã ∪ B̃]−(x), α[Ã ∪ B̃]+(x)

)
.

If (μ ∧ λ)(x) ≥ α[B̃]+(x) for all x ∈ X, then

(μ ∧ λ)(x) ≥ α[B̃]+(x) = max{α[Ã]+(x), α[B̃]+(x)}

and thus (μ ∧ λ)(x) /∈
(
α[Ã ∪ B̃]−(x), α[Ã ∪ B̃]+(x)

)
.

If {x ∈ X | μ(x) ≥ α[B̃]+(x)} = X, then

(μ ∨ λ)(x) ≥ μ(x) ≥ α[B̃]+(x) ≥ min{α[Ã]+(x), α[B̃]+(x)}

which induces (μ ∨ λ)(x) /∈
(
α[Ã ∩ B̃]−(x), α[Ã ∩ B̃]+(x)

)
for all x ∈ X.

If {x ∈ X | (μ ∨ λ)(x) ≤ α[B̃]−(x)} = X, then

(μ ∨ λ)(x) ≤ α[B̃]−(x) = min{α[Ã]−(x), α[B̃]−(x)}

and so (μ ∨ λ)(x) /∈
(
α[Ã ∩ B̃]−(x), α[Ã ∩ B̃]+(x)

)
for all x ∈ X.

Therefore we have the following theorem.

Theorem 10. Let A = 〈μ, Ã〉 and B = 〈λ, B̃〉 be cubic IVIF sets in X satisfying the condition (28). If μ and
λ satisfies

{x ∈ X | μ(x) ≤ α[B̃]−(x)} = X

or

{x ∈ X | (μ ∧ λ)(x) ≥ α[B̃]+(x)} = X,

then the R-union of A = 〈μ, Ã〉 and B = 〈λ, B̃〉 is α-external. Also, if

{x ∈ X | μ(x) ≥ α[B̃]+(x)} = X

or

{x ∈ X | (μ ∨ λ)(x) ≤ α[B̃]−(x)} = X,

then the R-intersection of A = 〈μ, Ã〉 and B = 〈λ, B̃〉 is α-external.

4. Cubic IVIF Subalgebras and Ideals

In what follows, let X be a BCK/BCI-algebra unless otherwise specified.

Definition 5. A cubic IVIF set A = 〈μ, Ã〉 in X is called a cubic IVIF subalgebra of X if the following
conditions are valid.

(∀x, y ∈ X) (μ(x ∗ y) ≥ min{μ(x), μ(y)}) , (29)

(∀x, y ∈ X)

(
α[Ã](x ∗ y)$ rmax{α[Ã](x), α[Ã](y)}
β[Ã](x ∗ y)% rmin{β[Ã](x), β[Ã](y)}

)
. (30)
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Example 5. Let X = {0, a, b, c} be a BCK-algebra with the Cayley table (Table 1).

Table 1. Tabular representation of the binary operation ∗.

∗ 0 a b c

0 0 0 0 0
a a 0 0 a
b b a 0 b
c c c c 0

Define a cubic IVIF set A = 〈μ, Ã〉 in X by the tabular representation in Table 2.

Table 2. Tabular representation of A = 〈μ, Ã〉.

X μ Ã =
(
α[Ã], β[Ã]

)
0 0.8 ([0.1, 0.4], [0.3, 0.5])
a 0.3 ([0.2, 0.4], [0.2, 0.4])
b 0.6 ([0.2, 0.5], [0.1, 0.3])
c 0.5 ([0.3, 0.5], [0.2, 0.5])

It is routine to verify that A = 〈μ, Ã〉 is a cubic IVIF subalgebra of X.

Proposition 4. If A = 〈μ, Ã〉 is a cubic IVIF subalgebra of X, then μ(0) ≥ μ(x), α[Ã](0) $ α[Ã](x) and
β[Ã](0)% β[Ã](x) for all x ∈ X.

Proof. Since x ∗ x = 0 for all x ∈ X, we have

μ(0) = μ(x ∗ x) ≥ min{μ(x), μ(x)} = μ(x),

α[Ã](0) = α[Ã](x ∗ x)$ rmax{α[Ã](x), α[Ã](x)} = α[Ã](x),

β[Ã](0) = β[Ã](x ∗ x)% rmin{β[Ã](x), β[Ã](x)} = β[Ã](x).

This completes the proof.

Proposition 5. If A = 〈μ, Ã〉 is a cubic IVIF subalgebra of a BCI-algebra X, then μ(0 ∗ x) ≥ μ(x),
α[Ã](0 ∗ x)$ α[Ã](x) and β[Ã](0 ∗ x)% β[Ã](x) for all x ∈ X.

Proof. It follows from Definition 5 and Proposition 4.

Proposition 6. For a cubic IVIF subalgebra A = 〈μ, Ã〉 of X, if there exists a sequence {xn} in X such that
lim

n→∞
μ(xn) = 1, lim

n→∞
α[Ã](xn) = [0, 0] and lim

n→∞
β[Ã](xn) = [1, 1], then μ(0) = 1, α[Ã](0) = [0, 0] and

β[Ã](0) = [1, 1].

Proof. Using Proposition 4, we have μ(0) ≥ μ(xn), α[Ã](0) $ α[Ã](xn) and β[Ã](0) % β[Ã](xn).
It follows from hypothesis that

1 ≥ μ(0) ≥ lim
n→∞

μ(xn) = 1,

[0, 0]$ α[Ã](0)$ lim
n→∞

α[Ã](xn) = [0, 0],

[1, 1]% β[Ã](0)% lim
n→∞

β[Ã](xn) = [1, 1],

Hence μ(0) = 1, α[Ã](0) = [0, 0] and β[Ã](0) = [1, 1].
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Theorem 11. If A = 〈μ, Ã〉 is a cubic IVIF subalgebra of X, then the sets μ[ε], α[Ã][s, t] and β[Ã][s, t],
are subalgebras of X for all ε ∈ [0, 1] and [s, t] ∈ D[0, 1].

Proof. For any ε ∈ [0, 1] and [s, t] ∈ D[0, 1], let x, y ∈ X be such that

x, y ∈ μ[ε] ∩ α[Ã][s, t] ∩ β[Ã][s, t].

Then μ(x) ≥ ε, μ(y) ≥ ε, α[Ã](x) $ [s, t], α[Ã](y) $ [s, t], β[Ã](x) % [s, t] and β[Ã](y) % [s, t].
It follows that

μ(x ∗ y) ≥ min{μ(x), μ(y)} ≥ min{ε, ε} = ε,

α[Ã](x ∗ y)$ rmax{α[Ã](x), α[Ã](y)} $ rmax{[s, t], [s, t]} = [s, t],

β[Ã](x ∗ y)% rmin{β[Ã](x), β[Ã](y)} % rmin{[s, t], [s, t]} = [s, t],

that is, x ∗ y ∈ μ[ε], x ∗ y ∈ α[Ã][s, t] and x ∗ y ∈ β[Ã][s, t]. Therefore μ[ε], α[Ã][s, t] and β[Ã][s, t] are
subalgebras of X for all ε ∈ [0, 1] and [s, t] ∈ D[0, 1].

Corollary 2. If A = 〈μ, Ã〉 is a cubic IVIF subalgebra of X, then μ[ε] ∩ α[Ã][s, t] ∩ β[Ã][s, t] is a subalgebra
of X for all ε ∈ [0, 1] and [s, t] ∈ D[0, 1].

The following example shows that the converse of Corollary 2 is not true in general.

Example 6. Let X = {0, 1, 2, 3, 4} be a set with the Cayley table (Table 3).

Table 3. Tabular representation of the binary operation ∗.

∗ 0 1 2 3 4

0 0 0 0 0 0
1 1 0 0 0 0
2 2 1 0 1 0
3 3 3 3 0 0
4 4 4 4 4 0

Then X is a BCK-algebra (see [15]). Define a cubic IVIF set A = 〈μ, Ã〉 in X by the tabular representation in
Table 4.

Table 4. Tabular representation of A = 〈μ, Ã〉.

X μ Ã =
(
α[Ã], β[Ã]

)
0 0.8 ([0.1, 0.3], [0.3, 0.6])
1 0.3 ([0.2, 0.4], [0.2, 0.4])
2 0.8 ([0.2, 0.5], [0.1, 0.3])
3 0.5 ([0.3, 0.5], [0.2, 0.5])
4 0.3 ([0.3, 0.5], [0.2, 0.5])

It is routine to verify that μ[ε] ∩ α[Ã][s, t] ∩ β[Ã][s, t] is a subalgebra of X for all ε ∈ [0, 1] and [s, t] ∈ D[0, 1].
But, A = 〈μ, Ã〉 is not a cubic IVIF subalgebra of X since μ(2 ∗ 3) = μ(1) = 0.3 < 0.5 = min{μ(2), μ(3)}.

We provide conditions for a cubic IVIF set A = 〈μ, Ã〉 in X to be a cubic IVIF subalgebra of X.

Theorem 12. Let A = 〈μ, Ã〉 be a cubic IVIF set in X such that μ[ε], α[Ã][sα, tα] and β[Ã][sβ, tβ] are
subalgebras of X for all ε ∈ [0, 1], and ([sα, tα], [sβ, tβ]) ∈ D[0, 1]× D[0, 1]. Then A = 〈μ, Ã〉 is a cubic IVIF
subalgebra of X.
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Proof. For any x, y ∈ X, putting

min{μ(x), μ(y)} := ε

rmax{α[Ã](x), α[Ã](y)} := [sα, tα],

rmin{β[Ã](x), β[Ã](y)} := [sβ, tβ],

imply that μ(x) ≥ ε, μ(y) ≥ ε, α[Ã](x) $ [sα, tα], α[Ã](y) $ [sα, tα], and β[Ã](x) % [sβ, tβ],
β[Ã](y) % [sβ, tβ]. Hence x ∈ μ[ε], y ∈ μ[ε], x ∈ α[Ã][sα, tα], y ∈ α[Ã][sα, tα], x ∈ β[Ã][sβ, tβ],
and y ∈ β[Ã][sβ, tβ]. It follows from hypothesis that x ∗ y ∈ μ[ε], x ∗ y ∈ α[Ã][sα, tα], x ∗ y ∈ β[Ã][sβ, tβ],
and so that

μ(x ∗ y) ≥ ε = min{μ(x), μ(y)}
α[Ã](x ∗ y)$ [sα, tα] = rmax{α[Ã](x), α[Ã](y)},

β[Ã](x ∗ y)% [sβ, tβ] = rmin{β[Ã](x), β[Ã](y)}.

Therefore A = 〈μ, Ã〉 is a cubic IVIF subalgebra of X.

The following theorem gives us a way to establish a new cubic IVIF subalgebra from old one in
BCI-algebras.

Theorem 13. Given a cubic IVIF subalgebra A = 〈μ, Ã〉 of a BCI-algebra X, let A∗ = 〈μ∗, A∗〉 be a cubic
IVIF set in X defined by μ∗(x) = μ(0 ∗ x), α[Ã]∗(x) = α[Ã](0 ∗ x) and β[Ã]∗(x) = β[Ã](0 ∗ x) for all
x ∈ X. Then A∗ = 〈μ∗, A∗〉 is a cubic IVIF subalgebra of X.

Proof. Since 0 ∗ (x ∗ y) = (0 ∗ x) ∗ (0 ∗ y) for all x, y ∈ X, it follows that

μ∗(x ∗ y) = μ(0 ∗ (x ∗ y)) = μ((0 ∗ x) ∗ (0 ∗ y))

≥ min{μ(0 ∗ x), μ(0 ∗ y)}
= min{μ∗(x), μ∗(y)},

α[Ã]∗(x ∗ y) = α[Ã](0 ∗ (x ∗ y)) = α[Ã]((0 ∗ x) ∗ (0 ∗ y))

$ rmax{α[Ã](0 ∗ x), α[Ã](0 ∗ y)}
= rmax{α[Ã]∗(x), α[Ã]∗(y)},

and

β[Ã]∗(x ∗ y) = β[Ã](0 ∗ (x ∗ y)) = β[Ã]((0 ∗ x) ∗ (0 ∗ y))

% rmin{β[Ã](0 ∗ x), β[Ã](0 ∗ y)}
= rmin{β[Ã]∗(x), β[Ã]∗(y)}

for all x, y ∈ X. Therefore A∗ = 〈μ∗, A∗〉 is a cubic IVIF subalgebra of X.
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Definition 6. A cubic IVIF set A = 〈μ, Ã〉 is called a cubic IVIF ideal of X if the following conditions are valid.

(∀x ∈ X) (μ(0) ≥ μ(x)) , (31)

(∀x ∈ X)
(
α[Ã](0)$ α[Ã](x), β[Ã](0)% β[Ã](x)

)
(32)

(∀x, y ∈ X) (μ(x) ≥ min{μ(x ∗ y), μ(y)}) (33)

(∀x, y ∈ X)

(
α[Ã](x)$ rmax{α[Ã](x ∗ y), α[Ã](y)}
β[Ã](x)% rmin{β[Ã](x ∗ y), β[Ã](y)}

)
(34)

Example 7. Let X = {0, a, 1, 2, 3} be a BCI-algebra with the Cayley table in Table 5.

Table 5. Tabular representation of the binary operation ∗.

∗ 0 a 1 2 3

0 0 0 3 2 1
a a 0 3 2 1
1 1 1 0 3 2
2 2 2 1 0 3
3 3 3 2 1 0

Define a cubic IVIF set A = 〈μ, Ã〉 in X by Table 6.

Table 6. Tabular representation of A = 〈μ, Ã〉.

X μ Ã =
(
α[Ã], β[Ã]

)
0 0.7 ([0.1, 0.3], [0.5, 0.6])
a 0.7 ([0.2, 0.4], [0.4, 0.5])
1 0.2 ([0.3, 0.6], [0.2, 0.3])
2 0.5 ([0.3, 0.6], [0.3, 0.4])
3 0.2 ([0.3, 0.6], [0.2, 0.3])

Then A = 〈μ, Ã〉 is a cubic IVIF ideal of X.

Proposition 7. Every cubic IVIF ideal A = 〈μ, Ã〉 of X satisfies:

μ(x) ≥ min{μ(y), μ(z)}.

α[Ã](x)$ rmax{α[Ã](y), α[Ã](z)},

β[Ã](x)% rmin{β[Ã](y), β[Ã](z)},

(35)

for all x, y, z ∈ X with x ∗ y ≤ z.

Proof. Let x, y, z ∈ X be such that x ∗ y ≤ z. Then (x ∗ y) ∗ z = 0, and so

μ(x ∗ y) ≥ min{μ((x ∗ y) ∗ z), μ(z)} = min{μ(0), μ(z)} = μ(z),

α[Ã](x ∗ y)$ rmax{α[Ã]((x ∗ y) ∗ z), α[Ã](z)} = rmax{α[Ã](0), α[Ã](z)} = α[Ã](z),

β[Ã](x ∗ y)% rmin{β[Ã]((x ∗ y) ∗ z), β[Ã](z)} = rmin{β[Ã](0), β[Ã](z)} = β[Ã](z).

It follows that

μ(x) ≥ min{μ(x ∗ y), μ(y)} ≥ min{μ(y), μ(z)},

α[Ã](x)$ rmax{α[Ã](x ∗ y), α[Ã](y)} $ rmax{α[Ã](y), α[Ã](z)},

β[Ã](x)% rmin{β[Ã](x ∗ y), β[Ã](y)} % rmin{β[Ã](y), β[Ã](z)}.
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This completes the proof.

We provide conditions for a cubic IVIF set to be a cubic IVIF ideal.

Theorem 14. Let A = 〈μ, Ã〉 be a cubic IVIF set in X in which conditions (31) and (32) are valid.
If A = 〈μ, Ã〉 satisfies the condition (35) for all x, y, z ∈ X with x ∗ y ≤ z, then A = 〈μ, Ã〉 is a cubic
IVIF ideal of X.

Proof. Since x ∗ (x ∗ y) ≤ y for all x, y ∈ X, it follows from (35) that

μ(x) ≥ min{μ(x ∗ y), μ(y)},

α[Ã](x)$ rmax{α[Ã](x ∗ y), α[Ã](y)},

β[Ã](x)% rmin{β[Ã](x ∗ y), β[Ã](y)},

Therefore A = 〈μ, Ã〉 is a cubic IVIF ideal of X.

Lemma 1. Every cubic IVIF ideal A = 〈μ, Ã〉 in X satisfies the following condition.

(∀x, y ∈ X)
(
x ≤ y ⇒ μ(x) ≥ μ(y), α[Ã](x)$ α[Ã](y), β[Ã](x)% β[Ã](y)

)
. (36)

Proof. Assume that x ≤ y for all x, y ∈ X. Then x ∗ y = 0, and so

μ(x) ≥ min{μ(x ∗ y), μ(y)} = min{μ(0), μ(y)} = μ(y),

α[Ã](x)$ rmax{α[Ã](x ∗ y), α[Ã](y)} = rmax{α[Ã](0), α[Ã](y)} = α[Ã](y),

β[Ã](x)% rmin{β[Ã](x ∗ y), β[Ã](y)} = rmin{β[Ã](0), β[Ã](y)} = β[Ã](y)

by (31)–(34).

Theorem 15. In a BCK-algebra X, every cubic IVIF ideal is a cubic IVIF subalgebra.

Proof. Let A = 〈μ, Ã〉 be a cubic IVIF ideal of a BCK-algebra X. Since x ∗ y ≤ x for all x, y ∈ X,
we have μ(x ∗ y) ≥ μ(x), α[Ã](x ∗ y) $ α[Ã](x), β[Ã](x ∗ y) % β[Ã](x) by Lemma 1. It follows
from (33) and (34) that

μ(x ∗ y) ≥ μ(x) ≥ min{μ(x ∗ y), μ(y)} ≥ min{μ(x), μ(y)},

α[Ã](x ∗ y)$ α[Ã](x)$ rmax{α[Ã](x ∗ y), α[Ã](y)} $ rmax{α[Ã](x), α[Ã](y)},

β[Ã](x ∗ y)% β[Ã](x)% rmin{β[Ã](x ∗ y), β[Ã](y)} % rmin{β[Ã](x), β[Ã](y)}.

Therefore A = 〈μ, Ã〉 is a cubic IVIF subalgebra of X.

The converse of Theorem 15 is not true in general as seen in the following example.

Example 8. The cubic IVIF subalgebra A = 〈μ, Ã〉 in Example 5 is not a cubic IVIF ideal of X since
μ(a) = 0.3 < 0.6 = min{μ(a ∗ b), μ(b)}.

We establish a characterization of a cubic IVIF ideal in a BCK-algebra.

Theorem 16. For a cubic IVIF set A = 〈μ, Ã〉 in a BCK-algebra X, the following assertions are equivalent.

(1) A = 〈μ, Ã〉 is a cubic IVIF ideal of X.
(2) A = 〈μ, Ã〉 is a cubic IVIF subalgebra of X satisfying (35) for all x, y, z ∈ X with x ∗ y ≤ z.
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Proof. (1) ⇒ (2). It follows from Proposition 7 and Theorem 15.
(2) ⇒ (1). It is by Proposition 4 and Theorem 14.

5. Conclusions

We have introduced a cubic interval-valued intuitionistic fuzzy set which is an extension of a
cubic set, and have applied it to BCK/BCI-algebra. We have investigated P-union, P-intersection,
R-union and R-intersection of α-internal and α-external cubic IVIF sets. We have defined cubic
IVIF subalgebra and ideal in BCK/BCI-algebra, and have investigated related properties. We have
considered relations between cubic IVIF subalgebra and cubic IVIF ideal. We have discussed
characterizations of cubic IVIF subalgebra and cubic IVIF ideal. In the consecutive research, we
will discuss P-union, P-intersection, R-union and R-intersection of β-internal and β-external cubic IVIF
sets. We will apply this notion to several kind of ideals in BCK/BCI-algebras, for example, (positive)
implicative ideal, commutative ideal, associative ideal, q-ideal, etc. We will also apply this notion to
several algebraic substructures in various algebraic structures, for example, MV-algebra, BL-algebra,
R0-algebra, residuated lattice, MTL-algebra, semigroup, semiring, near-ring, etc. We will try to study
this notion in the neutrosophic environment.
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Abstract: In modern mathematics, many concepts and ideas are described in terms of category theory.
From this viewpoint, it is desirable to analyze what can be determined if, instead of the basic category
of sets, we consider a similar category of fuzzy sets. In this paper, we describe a natural fuzzy analog
of the category of sets and functions, and we show that, in this category, fuzzy relations (a natural
fuzzy analogue of functions) can be determined in category terms—of course, modulo 1-1 mapping
of the corresponding universe of discourse and 1-1 re-scaling of fuzzy degrees.

Keywords: fuzzy set; ordered category; category of fuzzy sets

1. Introduction

Category theory is one of the main tools of modern mathematics.

Many mathematical theories can be naturally described in terms of a directed graph, where vertices
are objects studied in this theory (e.g., sets in set theory, topological spaces in topology, linear spaces in
linear algebra), and edges relate different objects: e.g., functions map one set into another, continuous
mappings map one topological space into another, linear mapping maps one linear space into another,
etc. The corresponding graph is known as a category; see, e.g., [1].

In precise terms, a category is a tuple (Ob, Mor, :, id, ◦), where:

• Ob is the set whose elements are called objects,
• Mor is a set whose elements are called morphisms,
• : Mor → Ob × Ob is a mapping that assigns, to each morphism f ∈ Mor a pair of objects

(a, b) ∈ Ob×Ob; this is denoted by f : a → b; the object a is called f ’s domain, and b is called
f ’s range;

• id is a mapping that assigns, to each object a ∈ Ob, a morphism ida : a → a; and
• ◦ is a mapping that assigns, to each pair of morphisms f : a → b and g : b → c for which the

range of f is equal to the domain of g, a new morphism g ◦ f : a → c so that for every f : a → b,
we have idb ◦ f = f ◦ ida = f .

Because of its universal character, category theory plays an important role in modern
mathematics [1]. Many new mathematical concepts are defined in category terms, and many original
concepts are re-formulated in category terms—such a reformulation in very general terms often enables
mathematicians to generalize their ideas and results to a more general context.

As we have mentioned, different areas of mathematics can be described in terms of
different categories:
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• Set theory is naturally described in terms of a category Set in which objects are sets and morphisms
are functions.

• Topology is described in terms of a category Top in which objects are topological spaces and
morphisms are continuous mappings.

• Linear algebra is naturally described in terms of a category Lin, in which objects are linear spaces,
and morphisms are linear mappings, etc.

Many mathematical concepts can be reformulated in terms of an appropriate category;
see, e.g., [2–11] and references therein.

What happens in the fuzzy case?

If we allow fuzzy sets (see, e.g., [12–16]), what is a natural analog of the category Set? In the
category Set, morphisms from a to b are functions. In the crisp case, for each function f : a → b and for
each element x ∈ a, we have a unique value of y = f (x) ∈ b.

Fuzzy means that for each x ∈ a, instead of a single value y = f (x) ∈ b, we may have different
possible values y ∈ b, with different degrees of confidence. In general, we can have all possible values
y ∈ b. For each x ∈ a and for each y ∈ b, we have a degree R f (x, y) ∈ [0, 1] to which y is a possible
value of f (x). Thus, a natural fuzzy analog of a function is a fuzzy relation.

Composition g ◦ f of fuzzy relations f : a → b and g : b → c can be defined in the usual way.
Namely, we want to know, for each pair of elements x ∈ a and c ∈ z, to what extent there exists a y ∈ b
for which f brings us from a to b and g brings us from y to z. If we interpret “and” as min and there
exists (an infinite “or”) as max, then the above description translates into the following formula:

Rg◦ f (x, z) = max
y

min(R f (x, y), Rg(y, z)). (1)

Since we have fuzzy relations, there is no need to explicitly describe the domain of each morphism:
if for some x 
∈ a, the value f (x) is not defined, this simply means that for this x, we have R f (x, y) = 0
for all y ∈ b. Similarly, there is no need to describe the range.

Thus, without losing generality, we can assume that we have only one object—the universal
set U—and that the relation R f (x, y) is defined for all x ∈ U and y ∈ U. Morphisms are then fuzzy
relations, with the usual composition relation (1).

Need for an ordered category.

In the crisp case, every property is either true or false.
As we gain more information, we may become more confident in our knowledge. For example,

we may start with the situation in which, for a given x, several different values f (x) are possible, but
after acquiring new information, we become more and more confident that there is only one possible
value y0 of f (x). This means that for the remaining value y0, the degree of possibility R f (x, y0) remains
the same, but for all y 
= y0, the corresponding degree R f (x, y) decreases. To capture this phenomenon,
it is reasonable to supplement the category structure with the corresponding component-wise ordering
between fuzzy relations (morphisms): f ≤ f ′ if and only if R f (x, y) ≤ R f ′(x, y) for all x and y.

Formulation of the problem.

What can be defined based on this category-theory formulation? Can we uniquely determine
the elements of the Universe of discourse U and the corresponding relations based on the
categorical information?

What we do in this paper.

In this paper, as an answer to the above questions, we present an axiomatic description of fuzzy
sets in the language of categories, with a proof of the soundness of this description.
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2. Results

Towards a precise formulation of the problem. It is easy to see that if we have a 1-1 mapping
π : U → U of the Universe of discourse U onto itself (i.e., a bijection), then the corresponding
transformation R(x, y)→ R(π(x), π(y)) is an automorphism of the corresponding category in the sense
that it preserves the identity, composition, and order.

Similarly, if we have a 1-1 monotonically increasing mapping H : [0, 1] → [0, 1], then the
transformation R(x, y)→ H(R(x, y)) is also such an automorphism. Indeed, since we only consider
order between degrees, monotonic transformation of degrees should not change anything.

It turns out that modulo this simple equivalence, we can uniquely determine all the elements
x ∈ U and all the relations R(x, y) from the ordered category, i.e., in precise terms, that every
automorphism is a composition of the automorphisms of the above two types. The proof of this
result will be based on an explicit description of elements of U and relations R f (x, y) in category terms.

Let us describe the problem in precise terms.

Definition 1. By an ordered category, we mean a category in which for every two objects a and b, there is
a partial order ≤ on the set Mor(a, b) of all morphisms from a to b.

Definition 2. Let U be a set; we will call it the Universe of discourse. By a U-fuzzy ordered category, we mean
an ordered category in which

• the only object is the set U,
• morphisms are fuzzy relations, i.e., mappings R : U ×U → [0, 1],
• the morphism id is defined as the mapping for which id(x, x) = 1 and id(x, y) = 0 for x 
= y,
• the composition of morphisms is defined by the formula

(g ◦ f )(x, z) = max
y

min( f (x, y), g(y, z)),

and
• the order between the morphisms is the component-wise order: f ≤ g means that f (x, y) ≤ g(x, y) for all

x and y.

The U-fuzzy ordered category will be denoted by FU.

Comment. One can easily see that this is indeed a category, i.e., that the composition of morphisms
is associative, and the composition of any morphism f with the identity morphism id is equal to f :
f ◦ id = id ◦ f = f .

Definition 3. An automorphism of an ordered category is a pair consisting of bijections F : Ob → Ob and
G : Mor → Mor for which:

• for all f , a, and b, we have f : a → b if and only if G( f ) : F(a)→ F(b);
• for all f and g, we have G( f ◦ g) = G( f ) ◦ G(g),
• for all a, we have G(ida) = idF(a), and
• for all f and g, we have f ≤ g if and only if G( f ) ≤ G(g).

Comment. This definition is a natural generalization of the standard definition of automorphism
of categories (see, e.g., [17–19]) to ordered categories.

Proposition 1. Let π : U → U be a bijection of U, and let H : [0, 1] → [0, 1] be an increasing
bijection of the interval [0, 1]. Then, the mapping Gπ,H that maps each morphism f (x, y) into a morphism
(Gπ,H( f ))(x, y) = H( f (π(x), π(y))) is an automorphism of the category FU.

Our main result is that these are the only automorphisms of the category FU .
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Theorem 1. For every set U, every automorphism of the ordered category FU has the form Gπ,H for some
bijection π : U → U and for some monotonic bijection H : [0, 1]→ [0, 1].

Comment. This may not be very clear from the formulation of the result, but the proof will show
that we can determine elements of the set U and values of the mappings f (x, y) in category terms,
i.e., we can indeed define fuzzy relations—a natural fuzzy analogue of functions—in category terms.

3. Proofs

3.1. Proof of the Proposition

This proposition is easy to prove: a permutation π does not change anything, and the increasing
bijection does not change the order.

3.2. Proof of the Theorem

1◦. First, we can describe the morphism f0 for which f0(x, y) = 0 for all x and y in ordered-category
terms, as the only morphism f for which f ≤ g for all morphisms g.

Indeed, clearly f0 ≤ g for all g. Vice versa, if f ≤ g for all g, then, in particular, f ≤ f0,
i.e., f (x, y) ≤ f0(x, y) = 0 for all x and y, and since f (x, y) ∈ [0, 1], this means that indeed f (x, y) = 0
for all x and y.

2◦. Let us first characterize all the morphisms f 
= f0 for which the set {g : g ≤ f } is linearly
ordered. Since an automorphism preserves order, every automorphism maps such morphisms into
morphisms with the same property.

Specifically, we will prove that a morphism has this property if and only if we have f (x, y) > 0
only for one pair (x, y), and we have f (x′, y′) = 0 for all other pairs (x′, y′).

Indeed, one can easily check that for such morphisms f , the only morphisms g ≤ f are the
morphisms which also have g(x′, y′) = 0 for all pairs (x′, y′) 
= (x, y). Such morphisms g are uniquely
described by the corresponding value g(x, y). For every two such morphisms g and g′, depending on
whether g(x, y) ≤ g′(x, y) or g′(x, y) ≤ g(x, y), we have g ≤ g′ or g′ ≤ g, i.e., the set {g : g ≤ f } is
indeed linearly ordered.

Vice versa, let us prove that if a morphism has this property, then it has f (x, y) > 0 only for one
pair (x, y). Indeed, if we have f (x, y) > 0 and f (x′, y′) > 0 for two different pairs (x, y) 
= (x′, y′),
then we would be able to construct two different morphisms g ≤ f and g′ ≤ f for which g 
≤ g′ and
g′ 
≤ g. Namely, we take:

• g(x, y) = f (x, y) > 0 and g(x′′, y′′) = 0 for all pairs (x′′, y′′) 
= (x, y), and
• g′(x, y) = f (x′, y′) > 0 and g(x′′, y′′) = 0 for all pairs (x′′, y′′) 
= (x′, y′).

This contradicts our assumption that the set {g : g ≤ f } is linearly ordered.

3◦. Let us now describe, in ordered-category terms, morphisms f for which f (x, x) > 0 for some
x ∈ U and f (x′, y′) for all other pairs (x′, y′) 
= (x, x).

Indeed, out of all morphisms described in Part 2 of this proof, such morphisms can be determined
by the additional condition that f ◦ f = f . This condition is clearly satisfied for such morphisms,
while for morphisms for which f (x, y) > 0 for some y 
= x, the composition f ◦ f is, as one can see,
identically 0 and thus, different from f .

4◦. One can see that two morphisms f and f ′ of the type described in Part 3 are connected by the
relation ≤ (i.e., f ≤ f ′ or f ′ ≤ f ) if and only if they correspond to the same element a ∈ U.

Thus, we can describe elements of the set U in ordered-category terms: as equivalent classes of
morphisms of the type described in Part 3 with respect to the relation ( f ≤ f ′) ∨ ( f ′ ≤ f ).

Hence, if we have an automorphism, elements are mapped into elements in a 1-1 way, i.e., indeed,
we have a bijection of the Universe of discourse.
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5◦. Let us now show that the degrees from the interval [0, 1] can also be described—modulo
increasing bijections of this interval—in ordered-category terms.

5.1◦. Indeed, for each element x ∈ U, different degrees v ∈ [0, 1] can be associated with different
morphisms f described in Part 3 of this proof, i.e., morphisms for which:

• f (x, x) > 0 for this element x and
• f (x′, y′) for all pairs (x′, y′) 
= (x, x).

Different degrees are then simply associated with different values v = f (x, x).
This construction provides us with degrees at each element x ∈ U. To obtain a general description

of degrees, we need to relate the values corresponding to different elements x, x′ ∈ U.

5.2◦. Let us denote, by fx,v, the morphism for which:

• fx,v(x, x) = v and
• fx,v(x′, y′) = 0 for all pairs (x′, y′) 
= (x, x).

We want, for every x 
= y, to connect the values v and w corresponding to functions fx,v and fy,w.
This connection comes from the following auxiliary result:

w ≤ v ⇔ ∃ fx→y ∃ fy→x ( fx→y ◦ fx,v ◦ fy→x = fy,w).

Indeed, by definition of a composition, the values of the composition g ◦ f cannot exceed the
largest value of each of the composed relations g and f . Thus, if fx→y ◦ fx,v ◦ fy→x = fy,w, then the
value fy,w(b, b) = w cannot exceed the maximum value v of the function fx,v; thus, w ≤ v.

Vice versa, if w ≤ v, then we can take the following morphisms fx→y and fy→x:

• fx→y(x, y) = w and fx→y(x′, y′) = 0 for all other pairs (x′, y′) 
= (x, y), and, similarly,
• fy→x(y, x) = w and fy→x(x′, y′) = 0 for all other pairs (x′, y′) 
= (y, x).

In this case, as one can easily check, we have fx→y ◦ fx,v ◦ fy→x = fy,w.

5.3◦. Now that we know how to describe the relation w ≤ v for functions fx,v and fy,w in
ordered-category form, we can describe equality v = w between the degrees v and w corresponding to
morphisms fx,v and fy,w as (v ≤ w)& (w ≤ v), i.e., in view of Part 5.2, as:

(∃ fx→y ∃ fy→x ( fx→y ◦ fx,v ◦ fy→x = fy,w))& (∃gy→x ∃gx→y (gy→x ◦ fy,w ◦ gx→y = fx,v)).

This enables us to identify degrees v ∈ [0, 1] in ordered-category terms—by identifying them
with the functions fx,v and taking into account the above possibility to compare degrees at different
elements x.

Hence, if we have an automorphism, degrees are mapped into degrees in a 1-1 and
order-preserving way, i.e., indeed, we have a monotonic bijection H : [0, 1]→ [0, 1].

6◦. To complete the proof, we need to show how, for each morphism f and for every two elements
a and b, we can describe the value f (x, y) in ordered-category terms. This will complete the proof that
the given automorphism has the form Gπ,H for the mappings π and H as identified in Sections 4 and 5
of this proof.

6.1◦. Let us first prove the following auxiliary result:

∃ fy→x ( fy→x ◦ fy,1 ◦ f ◦ fx,1 = fx,v)⇔ v ≤ f (x, y).

Indeed, by definition of a composition, the composition c def
= f ◦ fx,1 has the following form:

• c(x, y′) = f (x, y′) for all y′ and
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• c(x′, y′) = 0 for all y′ and for all x′ 
= a.

Similarly, the composition c′ def
= fy,1 ◦ f ◦ fx,1 = fy,1 ◦ c has the following form:

• c′(x, y) = f (x, y), and
• c′(x′, y′) = 0 for all other pairs (x′, y′) 
= (x, y).

As we have argued in Part 5 of this proof, the value of a composition function cannot
exceed the maximum value of each of the composed morphisms. Thus, for the composition
fy→x ◦ fy,1 ◦ f ◦ fx,1 = fy→x ◦ c′, the maximum value cannot exceed the maximum value f (x, y) of
the morphism c′. Thus, if fy→x ◦ c′ = fx,v, the maximum value v of the morphism fx,v cannot exceed
f (x, y): v ≤ f (x, y).

Vice versa, for every v ≤ f (x, y), we can construct a morphism fy→x for which fy→x ◦ c′ = fx,v:
namely, we can take:

• fy→x(y, x) = v, and
• fy→x(x′, y′) = 0 for all pairs (x′, y′) 
= (y, x).

One can easily check that in this case indeed fy→x ◦ c′ = fx,v.

6.2◦. For each morphism f and for every two elements x and y, we can identify the degree f (x, y)
as the largest degree v for which the inequality v ≤ f (x, y) holds.

Since, according to Part 6.1 of this proof, the inequality v ≤ f (x, y) can be described in
ordered-category terms, we can thus conclude that the degree f (x, y) can also be described in
ordered-category terms.

The proposition is proven.

4. Conclusions

Many concepts of modern mathematics, starting from the basic notions of sets and functions,
are described in terms of category theory. Many other mathematical concepts can be reformulated
in category terms. Due to the general nature of category theory, such a reformulation often helps to
extend notions and results from one area to different areas of mathematics.

Because of this potential advantage, it is reasonable to ask whether similar fuzzy notions can also
be described in category terms. In this paper, we show that fuzzy relations—i.e., fuzzy analogues of
functions—can indeed be described in category terms. Specifically, we show that, in the corresponding
fuzzy category, we can describe both:

• elements of the original universe of discourse (modulo a 1-1 permutation), and
• fuzzy degrees (modulo a 1-1 monotonic mapping from the interval [0, 1] onto itself).

This result shows the soundness of our axiomatic description of fuzzy sets in the language
of categories.

At this moment, what we have is a very theoretical paper. However, we hope that, similarly to
how the reformulation of crisp notions in category terms can help generalize the corresponding results,
our reformulation will help extend fuzzy results to more general situations—and thus, will facilitate
future applications.
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Abstract: Ordered fuzzy numbers are defined by Kosiński. In this way, he was going to supplement
a fuzzy number by orientation. A significant drawback of Kosiński’s theory is that there exist such
ordered fuzzy numbers which, in fact, are not fuzzy numbers. For this reason, a fully formalized
correct definition of ordered fuzzy numbers is proposed here. Also, the arithmetic proposed by
Kosiński has a significant disadvantage. The space of ordered fuzzy numbers is not closed under
Kosiński’s addition. On the other hand, many mathematical applications require the considered space
be closed under used arithmetic operations. Therefore, the Kosinski’s theory is modified in this way
that the space of ordered fuzzy numbers is closed under revised arithmetic operations. In addition,
it is shown that the multiple revised sum of finite sequence of ordered fuzzy numbers depends on its
summands ordering.

Keywords: ordered fuzzy number; arithmetic operator; linear space

1. Introduction

The ordered fuzzy numbers (OFNs) were introduced by Kosiński and his associates in a series
of papers [1–4] as an extension of the notion of fuzzy numbers (FNs). For this reason, ordered fuzzy
numbers are increasingly called Kosinski’s numbers [5,6]. The monograph [7] is a competent source of
information about the contemporary state of knowledge on OFN.

OFNs have already begun to find their use in operations research applied in economics and
finance. Examples of such applications can already be found in the works [8–12].

It is a common view that the theory of fuzzy sets is very extensive and very helpful in many
applications. On the other hand, the previous Kosiński’s theory of ordered fuzzy number is poor
(see [7]). Thus, it is obvious that considerations with use the theory fuzzy sets may be much more
fruitful. Kosiński [4] has shown that there exist improper OFNs which cannot be represented by a pair
of FN and orientation. It means that we cannot apply any knowledge of fuzzy sets to solve practical
problems described by improper OFN. Therefore, considerations with improper use of OFNs may not
be fruitful. Thus, the main purpose of this article is to revise Kosiński’s theory. The presented study
limits the family of all OFNs to the family of all proper OFNs which are represented by a pair of FN
and orientation. This goal will be achieved by modifying the OFNs’ definition.

Kosiński [1–3] has determined OFNs’ arithmetic as an extension of results obtained by Goetschel
and Voxman [13] for fuzzy numbers. Moreover, Kosiński [4] has shown that there exist such proper
OFNs that their Kosiński’s sum is equal to an improper OFN. This means that the family of all proper
OFNs is not closed under Kosiński’s addition. On the other hand, most mathematical applications
require the considered objects’ family be closed under used arithmetic operations. For this reason,
the revised arithmetic is introduced for OFNs.

The linear space of FNs is usually determined using dot product and sum [14] defined by means of
the Zadeh’s Extension Principle [15–17]. The last goal of this paper is to investigate the linear space of
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OFNs determined by dot products and revised sums of OFNs. In this article, the discussion on linear
space properties is limited due to exploration the perceived disadvantages associated with the revised
sums. Many mathematical applications require the finite multiple sums to be independent on summands
ordering. Any associative and commutative sum satisfies this property. Therefore, the associativity
and commutativity of revised sum will also be considered. All considerations are based on three
counterexamples with use of trapezoidal or triangle OFNs. This approach is sufficient to falsify theses
formulated for the general case of OFNs. On the other hand, all previously known uses of ordered fuzzy
number uses are limited to applications of trapezoidal OFNs.

2. Elements of Fuzzy Numbers Theory

Zadeh [18] introduced the fuzzy sets theory to deal with linguistic variables problems. A fuzzy set is
an extension of a crisp set. The crisp sets use only the notions of a full membership or non-membership,
whereas fuzzy sets allow partial membership.

Objects of any cognitive-application activities are elements of the predefined space X. The basic
tool for imprecise classification of these elements is the notion of fuzzy set A described by its
membership function μA ∈ [0; 1]X, as the set of ordered pairs

A = {(x, μA(x)); x ∈ X}. (1)

In multi-valued logic terms, the value μA(x) of membership function is interpreted as the true
value of the sentence “x ∈ A”. By F (X) we denote the family of all fuzzy subsets of the space X.
In this work, the following notions will be applied for analyzing any fuzzy subset:

- α−cut [A]α of the fuzzy subset A ∈ F (X) determined for each α ∈ [0; 1] by dependence

[A]α = {x ∈ X : μA(x) ≥ α}; (2)

- support closure [A]0+ of the fuzzy subset A ∈ F (X) given in a following way

[A]0+ = lim
α→0+

[A]α. (3)

An imprecise number is a family of values in which each considered value belongs to it to a
varying degree. A commonly accepted model of imprecise number is the fuzzy number, defined as a
fuzzy subset of the real line R. The most general definition of fuzzy number is given as follows:

Definition 1. [14] The fuzzy number (FN) is such a fuzzy subset S ∈ F (R) with bounded support closure [S ]0+
that it is represented by its upper semi-continuous membership function μS ∈ [0; 1]R satisfying the conditions:

∃x∈R μS(x) = 1, (4)

∀(x,y,z)∈R3 x ≤ y ≤ z ⇒ μS(y) ≥ min{μS(x); μS(z)}. (5)

The set of all FN we denote by the symbol F.
Dubois and Prade [19] first introduced the arithmetic operations on FN. In this paper, the

symbol ◦ means one of the usual arithmetic operations: addition +, subtraction −, multiplication ∗,
and division /. We assume that X , Y , Z ∈ F are represented respectively by their membership
functions μX, μY, μZ ∈ [0; 1]R. In [19] any arithmetic operation ◦ on R is extended to arithmetic
operation 	 on F by means of the identity

Z = X 	Y , (6)
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where we have
μZ(z) = sup

{
min{μX(x), μY(y)} : z = x ◦ y, (x, y) ∈ R2

}
. (7)

These arithmetic operations are coherent with the Zadeh’s Extension Principle [15–17].
Among other things, Dubois and Prade [20] have distinguished a special type of representation of

FN called LR-type FN which may be generalized in a following way.

Definition 2. Let us assume that for any nondecreasing sequence {a, b, c, d} ⊂ R the left reference function
LS ∈ [0, 1][a,b] and the right reference function RS ∈ [0, 1][c,d] are upper semi-continuous monotonic functions
satisfying the condition

LS(b) = RS(c) = 1. (8)

Then the identity

μS(·|a, b, c, d, LS, RS) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0, x /∈ [a, d] = [d, a],
LS(x), x ∈ [a, b] = [b, a],
1, x ∈ [b, c] = [c, b],
RS(x), x ∈ [c, d] = [d, c]

(9)

defines the membership function μS( ·|a, b, c, d, LS, RS ) ∈ [0, 1]R of the FN S(a, b, c, d, LS, RS) which is called
LR-type FN (LR-FN).

Let us note that this identity describes additionally extended notation of numerical intervals,
which is used in this work.

Remark 1. In original version of the Dubois–Prade definition [20] LR-FN was defined only for the case of any
sequence {a, b, c, d} ⊂ R fulfilling the condition

a < b ≤ c < d (10)

and reference functions given as continuous surjections.

Further generalizations have resulted from requirements imposed by the needs of
individual applications.

Goetschel and Voxman [13] showed that the Definition 1 can be replaced by following an
equivalent definition of FN:

Definition 3 [13]. FN is such fuzzy subset S ∈ F (R) with bounded support closure [S ]0+ that it fulfils the
condition

∀α∈]0;1]∃(lS(α),rS(α))∈R2:lS(α)≤rS(α)
: [S ]α = [lS(α), rS(α)]. (11)

Then Goetschel and Voxman [4] prove the following theorems:

Theorem 1 [13]. For any FN S ∈ F (R):

lS is a nondecreasing and bounded function on [0; 1]; (12)

rS is a nondecreasing and bounded function on [0; 1]; (13)

lS(1) ≤ rS(1); (14)

function lS and rS are left− continuous on ]0; 1] and right− continuous at {0}. (15)
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If a pair of functions (lS, rS) ∈ R[0;1] ×R[0;1] fulfils the conditions (12)–(15) then it is called a pair
of Goetschel–Voxman functions.

Theorem 2 [13]. For any pair of Goetschel–Voxman functions (lS, rS) there exists exactly one such FN
S ∈ F (R) that the condition (11) is fulfilled.

Therefore, the pair of Goetschel–Voxman functions representing FN S ∈ F (R) will be denoted by
the symbol (lS, rS).

Definition 4. For any upper semi-continuous and nondecreasing function H ∈ [0; 1][H(0);H(1)] its lower
pseudo-inverse function H� ∈ [H(0); H(1)][0;1] is given by the identity

H�(x) = min{x ∈ [H(0); H(1)] : H(x) ≥ α}. (16)

Definition 5. For any upper semi-continuous and nonincreasing function H ∈ [0; 1][H(1);H(0)] its lower
pseudo-inverse function H� ∈ [H(1); H(0)][0;1] is given by the identity

H�(x) = max{x ∈ [H(0); H(1)] : H(x) ≥ α}. (17)

In a special case, we can conclude that:

Theorem 3 [13]. For any LR-FN S = S(a, b, c, d, LS, RS) additionally:

function lS and rS are continuous on [0, 1], (18)

ls = L�
S, (19)

rS = R�
S. (20)

The next theorem is proved in [13] with the use of following notions:

Definition 6. For any bounded continuous and nondecreasing function h ∈ [h(0), h(1)][0;1] its upper
pseudo-inverse function h
 ∈ [0; 1][h(0), h(1)] is given by the identity

h
(x) = max{α ∈ [0; 1] : h(α) = x}. (21)

Definition 7. For any bounded continuous and nonincreasing function h ∈ [h(1), h(0)][0;1] its upper
pseudo-inverse function h
 ∈ [0; 1][h(1), h(0)] is given by the identity

h
(x) = min{α ∈ [0; 1] : h(α) = x}. (22)

Theorem 4 [13]. For any pair of Goetschel–Voxman functions (lS, rS) additionally fulfilling condition (18)
there exists exactly one such LR-FN S ∈ F (R) that condition (11) is fulfilled and we have

S = S(lS(0), lS(1), rS(1), rS(0), l
S , r
S ). (23)
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We assume that X , Y , Z ∈ F are represented respectively by their pairs of Goetschel–Voxman
functions (lX , rX), (lY, rY), (lZ, rZ) ∈ R[0;1] ×R[0;1]. Goetschel and Voxman [13] have proved that if
C ∈ F is given by the identity (6) then we have and

∀α∈[0;1] : lZ(α) = lX(α) ◦ lY(α) and rZ(α) = rX(α) ◦ rY(α). (24)

Let us note that if the bounded continuous and monotonic function h ∈ [h(1), h(0)][0;1] is bijection
then we have

∀x∈[h(0),h(1)] : h−1(x) = h
(x). (25)

3. Kosiński’s Ordered Fuzzy Numbers

The concept of ordered fuzzy numbers (OFN) was introduced by Kosiński and his co-writers in
the series of papers [1–4] as an extension of concept of FN. Thus, any OFN should be determined by
(1) as a fuzzy subset in the real line R. On the other hand, Kosiński has defined OFN as a ordered pair
of functions from the interval [0, 1] into R. This pair is not a fuzzy subset in R. Thus, we cannot accept
Kosiński’s original terminology. Then again, the intuitive Kosiński’s approach to the notion of OFN is
very useful. For these reasons, a revised definition of OFN, which fully corresponds with the intuitive
Kosiński’s will be presented below. The OFN concept of number is closely linked to the following
ordered pair.

Definition 8. For any sequence {a, b, c, d} ⊂ R , the Kosiński’s pair S(a, b, c, d) is defined as any ordered pair
( fS, gS) of monotonic continuous surjections fS : [0, 1]→ UPS = [a, b] and gS : [0, 1]→ DOWNS = [c, d]
fulfilling the condition

fs(0) = a and fs(1) = b and gs(1) = c and gs(0) = d. (26)

Remark 2. In the original final version of the Kosiński’s definition [4], the OFN is defined as ordered pair ( fS, gS)

of continuous bijections fS : [0, 1]→ UPS = [a, b] and gS : [0, 1]→ DOWNS = [c, d] . Because OFN defined
in such a way, is not fuzzy set, in Definition 8 Kosiński’s term of OFN was replaced by the term “Kosiński’s
pair”. Moreover, Kosiński has assumed implicitly that the sequence {a, b, c, d} fulfils the condition (10) or the
condition

a > b ≥ c > d. (27)

Kosiński marked the additional conditions of the above definition only on graphs. Some example of such Kosiński’s
graphs are presented in Figure 1.

a) b)

c)

x

y

1

UPS

DOWNS

x

y

fS

gS

1

UPS DOWNS x

y

fS-1 gS-1

ADDED
INTERVAL

1

Figure 1. (a) Positively oriented Kosiński’s pair; (b) Membership function of FN determined by positive
oriented OFN; (c) Arrow denotes the positive orientation of OFN. Source: [4].
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For any Kosiński pair ( fS, gS) the function fS : [0, 1]→ UPS is called the up-function. Then the
function gS : [0, 1]→ DOWNS is called the down-function. The up-function and the down-function
are collectively referred to as Kosiński’s maps.

Note that Kosiński developed his theory without using the results obtained by Goetschel and
Voxman [13]. In this article, thanks to the use of these results, we can generalize Kosiński’s theory
to the case when Kosiński’s maps are continuous surjections. This generalization is needed for
individual applications.

By means of Goetschel–Voxman results, we can define OFN in such manner which fully
corresponds to the intuitive OFN definition by Kosiński.

Definition 9. For any sequence {a, b, c, d} ⊂ R the Kosiński’s pair S(a, b, c, d) = ( fS, gS) determines

Kosiński’s ordered fuzzy number (K’s-OFN)
↔
S (a, b, c, d, f
S , g
S ) defined explicitly by its membership relation

μS( ·
∣∣a, b, c, d, f
S , g
S ) ⊂ R× [0, 1] given by (9).

The above definition is coherent to the intuitive Kosiński’s approach of the OFN notion.
Therefore, we agree with other scientists [5,6] that the OFN should be called the Kosiński’s number.

The space of all K’s-OFN is denoted by the symbol Ǩ. For any OFN
↔
S ∈ Ǩ, its up-function is denoted by

the symbol fS and its down-function is denoted by the symbol gS.
Any sequence {a, b, c, d} ⊂ R satisfies exactly one of the following conditions

b < c or (b = c and a < d), (28)

b > c or (b = c and a > d), (29)

a = b = c = d. (30)

If condition (28) is fulfilled then the K’s-OFN
↔
S (a, b, c, d, f
S , g
S ) has a positive orientation. For this

case, an example of graphs of Kosiński’s maps is presented on the Figure 1a. Then the graph of
membership function of FN S(a, b, c, d, f
S , g
S ) is presented in Figure 1b. The graph of K’s-OFN
membership function with positive orientation is shown in Figure 1c. The membership function of
K’s-OFN has an extra arrow denoting the orientation, which provides supplementary information.
Positively oriented K’s-OFN is interpreted as such imprecise number, which may increase. The space of
all positively oriented OFN is denoted by the symbol Ǩ+. An example of positively oriented K’s-OFN
is presented in Figure 2a.

 
(a) (b)

Figure 2. The membership function of K’s-OFN
↔
S (a, b, c, d, f
S , g
S ) =

↔
T ∇(a, b, c, d) with: (a) positive

orientation, (b) negative orientation. Source: Own elaboration

If the condition (29) is fulfilled, then the K’s-OFN
↔
S (a, b, c, d, f
S , g
S ) has a negative orientation.

Negatively oriented K’s-OFN is interpreted as such imprecise number, which may decrease. The space
of all negatively oriented OFN is denoted by the symbol Ǩ−. Some example of negatively oriented
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K’s-OFN is presented in the Figure 2b. If condition (30) is fulfilled, then the K’s-OFN
↔
S (a, b, c, d, f
S , g
S )

describes a ∈ R which is not oriented.
If the sequence {a, b, c, d} ⊂ R is not monotonic, then the membership relation

μS( ·
∣∣a, b, c, d, f
S , g
S ) ⊂ R × [0, 1] is not a function. Then, this membership relation cannot be

considered as a membership function of any fuzzy set. Therefore, for any non-monotonic sequence

{a, b, c, d} ⊂ R the K’s-OFN
↔
S (a, b, c, d, f
S , g
S ) is called an improper K’s-OFN [4].An example of

negatively oriented improper K’s-OFN is presented in Figure 3. The remaining K’s-OFNs are called
proper ones. Some examples of proper K’s-OFNs are presented in Figure 2.

Figure 3. Membership relation of improper K’s-OFN
↔
S (a, b, c, d, f
S , g
S ) =

↔
T ∇(d, c, b, a).

Source: Own elaboration.

The difference relation between K’s-OFN
↔
S (a, b, c, d, f
S , g
S ) and crisp zero is defined in the

following way

↔
S (a, b, c, d, f
S , g
S ) 
= 0 ⇔ min{a, b, c, d} ·max{a, b, c, d } > 0. (31)

We assume that
↔
X ,

↔
Y ,

↔
Z ∈ Ǩ are represented respectively by their Kosiński’s

pairs ( fX, gX), ( fY, gY), ( fZ, gZ) ∈ R[0;1]. Any arithmetic operation ◦ on R is extended by Kosiński
to arithmetic operation 	 on Ǩ by means of the identity

↔
Z =

↔
X 	

↔
Y , (32)

where we have

∀α∈[0;1] : fZ(α) = fX(α) ◦ fY(α) and gZ(α) = gX(α) ◦ gY(α). (33)

The division ( is defined only for K’s-OFN
↔
Y 
= 0.

The above Kosinski’s definition of arithmetic operations is coherent with the Goetschel and
Voxman identity (24). On the other hand, due to the significant expansion of the arithmetic operations
domain, Kosiński’s definition is an important extension of the identity (24). Therefore, the above
defined arithmetic operations will be called Kosiński’s operations.

Due to (24), it is very easy to check that if proper K’s-OFNs have identical orientation then
results obtained by Kosiński’s arithmetic are identical with the results obtained by means of arithmetic
introduced by Dubois and Prade [19]. Moreover, Kosiński [4] has shown that if K’s-OFNs have different
orientation then results obtained by his arithmetic may be different form results obtained by arithmetic
introduced by Dubois and Prade [19].

All our further considerations will be illustrated by examples with use of the following type of
K’s-OFNs.
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Definition 10. For any sequence {a, b, c, d} ⊂ R Kosiński’s trapezoidal ordered fuzzy number (K’s-TrOFN)
↔
T ∇(a, b, c, d) is defined explicitly by its membership relation μTr( ·|a, b, c, d ) ⊂ R× [0, 1] given by the identity

μTr (x|a, b, c, d) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
0, x /∈ [a, d] = [d, a],
x−a
b−a , x ∈ [a, b[=]b, a],

1, x ∈ [b, c] = [c, b],
x−d
c−d , x ∈] c, d] = [d, c[.

(34)

Examples of proper K’s-TrOFNs are presented in Figure 2. An example of improper K’s-TrOFN is

given in Figure 3. For any K’s-TrOFN
↔
T ∇(a, b, c, d) its up-function fTr and down-function gTr are given

by the identities
fTr(α) = (b− a) · α + a, (35)

gTr(α) = (c− d) · α + d. (36)

Among other things, it implies, that for any triple of K’s-TrOFN we have

↔
T ∇(a1, b1, c1, d1)⊕

↔
T ∇(a2, b2, c2, d2) =

↔
T ∇(a1 + a2, b1 + b2, c1 + c2, d1 + d2). (37)

4. Revision of the Kosiński’s Theory

In general, if OFN is determined by such membership relation which is not a function then, it is
called an improper OFN. On the other hand, if OFN is determined by such a membership relation that
it is a function then it is called a proper OFN. Only in case of a proper OFN can we apply all knowledge
of fuzzy sets to solve practical problems described by OFN. In this way, our practical considerations
will be more fruitful. Therefore, in my opinion, limiting the OFNs’ family to the family of proper OFNs
is useful and absolutely necessary. Thus, the cognitive paradigm of limiting the OFNs’ family to the
family of proper OFNs is well justified. For this reason, the revised definition of OFN is proposed
as follows.

Definition 11. For any monotonic sequence {a, b, c, d} ⊂ R the Kosiński’s pair S(a, b, c, d) = ( fS, gS)

determines an ordered fuzzy number (OFN)
↔
S (a, b, c, d, f
S , g
S ) defined explicitly by its membership function

μS( ·
∣∣a, b, c, d, f
S , g
S ) ∈ [0; 1]R given by (9).

It is obvious that any above defined OFN is proper. In agreement with the above definition,
any proper K’s-TrOFN is called a trapezoidal ordered fuzzy number (TrOFN). The space of all OFNs,
the space of positively oriented OFNs, and the space of negatively oriented OFNs, are respectively
denoted by the symbols K, K+, K−. Thus we can now note the following relationships:

1. Any K’s-OFN belonging to Ǩ\K is improper.
2. Any K’s-OFN belonging to K is proper.
3. K+ = K∩ Ǩ+, K− = K∩ Ǩ−.

Let us look now at the following case.

Counterexample 1. Let us calculate the Kosiński’s sum of TrOFNs
↔
T ∇(1; 3; 7; 8 ) and

↔
T ∇(5; 4; 4; 2). Due to

the identity (37), we have

↔
T ∇(1; 3; 7; 8 )⊕

↔
T r(5; 4; 4; 2 ) =

↔
T r(6; 7; 11; 10 ).

It means that the sum of TrOFNs may be equal to improper K’s-TrOFN.
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Similarly, the above conclusion was obtained by Kosiński [4]. We can generalize this conclusion
as follows:

Conclusion: The space K of all OFNs is not closed under Kosiński’s operations 	.

Therefore, we ought to modify arithmetic of OFN in such a way that the space K of all OFN will
be closed under revised arithmetic operations.

Let us consider the OFNs
↔
X ,

↔
Y ,

↔
W ∈ K described as follows

↔
X =

↔
X (aX , bX , cX , dX , f
X , g
X),

↔
Y =

↔
X (aY, bY, cY, dY, f
Y , g
Y ),

↔
W =

↔
X (aW , bW , cW , dW , f
W , g
W). (38)

Any arithmetic operations ◦ on R is extended now to revised arithmetic operation ◦ on K by
the identity

↔
W =

↔
X ◦

↔
Y , (39)

where we have
ǎW = aX ◦ aY, (40)

bW = bX ◦ bY, (41)

cW = cX ◦ cY, (42)

ďW = dX ◦ dY, (43)

aW =

{
min{ǎW , bW}, (bW < cW) ∨ (bW = cW ∧ ǎW ≤ ďW),
max{ǎW , bW}, (bW > cW) ∨ (bW = cW ∧ ǎW > ďW),

(44)

dW =

⎧⎨⎩ max
{

ďW , cW

}
, (bW < cW) ∨ (bW = cW ∧ ǎW ≤ ďW),

min
{

ďW , cW

}
, (bW > cW) ∨ (bW = cW ∧ ǎW > ďW),

(45)

∀α∈[0;1] : fW(α) =

{
fX(α) ◦ fY(α), aW 
= bW ,
bW , aW = bW ,

(46)

∀α∈[0;1] : gW(α) =

{
gX(α) ◦ gY(α), cW 
= dW ,
cW , cW = dW .

(47)

Example 1. Some cases of modified sum � are presented below. Let us observe that in all these cases the
Kosiński’s sum ⊕ does not exist.

↔
Tr(1; 2; 4; 6)�

↔
Tr(5; 3; 2; 1) =

↔
Tr(5; 5; 6; 7),

↔
Tr(6; 4; 2; 1)�

↔
Tr(1; 2; 3; 5) =

↔
Tr(7; 6; 5; 5),

↔
Tr(1; 2; 4; 4)�

↔
Tr(5; 3; 2; 1) =

↔
Tr(5; 5; 6; 6),

↔
Tr(4; 4; 2; 1)�

↔
Tr(1; 2; 3; 5) =

↔
Tr(6; 6; 5; 5),

↔
Tr(1; 2; 3; 4)�

↔
Tr(6; 3; 2; 2) =

↔
Tr(7; 5; 5; 5),

↔
Tr(1; 3; 7; 8)�

↔
Tr(5; 4; 4; 2) =

↔
Tr(6; 7; 11; 11).

Theorem 5. Any revised arithmetic operation ◦ satisfies the condition

∀↔
X ,

↔
Y∈K2

:
↔
X 	

↔
Y ∈ K⇒

↔
X 	

↔
Y =

↔
X ◦

↔
Y . (48)

Proof. We take into account such OFNs
↔
X ,

↔
Y ,

↔
W ∈ K described by (38) that the condition (39) is

fulfilled. Let K’s-OFN
↔
Z ∈ Ǩ be given by the identity (32). Then, according to (33), the sum

↔
Z is

described by K’s-OFN
↔
Z(ǎW , bW , cW , ďW , f
Z , g
Z ), where the sequence

{
ǎW , bW , cW , ďW

}
is determined
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by Equations (40)–(43) and the Kosiński’s pair ( fZ, gZ) is determined by (32). Additionally, let us
note that

ǎW = bW ⇒ ∀α∈[0;1] : fZ(α) = bW , (49)

ďW = cW ⇒ ∀α∈[0;1] : gZ(α) = cW . (50)

If
↔
Z ∈ K then the sequence

{
ǎW , bW , cW , ďW

}
is monotonic. For this reason, it is sufficient to

consider the following three cases
ǎW ≤ bW ≤ cW ≤ ďW , (51)

ǎW ≥ bW ≥ cW ≥ ďW and ǎW > ďW , (52)

ǎW ≥ bW ≥ cW ≥ ďW and ǎW = ďW . (53)

For case (51), by (44) and (45), we obtain

aW = min {ǎW , bW} = ǎW and dW = max
{

ďW , cW

}
= ďW .

Thanks to this, from Equations (46), (47), (49) and (50) we obtain following conclusions

∀α∈[0;1] : fW(α) =

{
fX(α) ◦ fY(α), ǎW < bW
bW , ǎW = bW

}
= fZ(α),

∀α∈[0;1] : gW(α) =

{
gX(α) ◦ gY(α), cW 
= ďW
cW , cW = ďW

}
= gZ(α).

All this together implies that for the case (51) we have

↔
Z =

↔
Z(aW , bW , cW , dW , f
W , g
W) =

↔
W . (54)

For case (52), given by (44) and (45), we obtain

aW = max {ǎW , bW} = ǎW and dW = min
{

ďW , cW

}
= ďW .

Then using (46), (47), (49), and (50) we obtain

∀α∈[0;1] : fW(α) = fX(α) ◦ fY(α) = fZ(α),

∀α∈[0;1] : gW(α) = gX(α) ◦ gY(α) = gZ(α).

It implies that also for the case (52) we have (54). For the case (53) we have ǎZ = bZ = cZ = ďZ. It
means that the condition (53) implies the condition (51). The proof is completed. �

Along with the Kosiński’s definition (32) and (33) and the Goetschel–Voxman combined together,
the thesis the above theorem shows that the revised arithmetic operations are well defined for each
corresponding operation on R.

Theorem 6. If for any pair (
↔
X ,

↔
Y) ∈ K2 the K’s-OFN

↔
Z =

↔
Z(aZ, bZ, cZ, dZ, f
Z , g
Z ) is calculated by (32)

then the OFN
↔
W determined by (39) is given as follows

↔
W =

↔
W(aW , bZ, cZ, dW , f
W , g
W), (55)
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where we have

|aW − aZ|+ |dW − dZ| = γ(
↔
Z) = min

{
|a− aZ|+ |d− dZ| :

↔
S (a, bZ, cZ, d, f
S , g
S ) ∈ K

}
, (56)

∀α∈[0;1] : fW(α) =

{
fZ(α), aW 
= bZ,
bZ, aW = bZ,

(57)

∀α∈[0;1] : gW(α) =

{
gZ(α), cZ 
= dZ,
cZ, cZ = dZ.

(58)

Proof. The identity (57) immediately follows (46) together with (33) and (41). Similarly, taking into
account (47) together with (33) and (42) we obtain the identity (58).

If
↔
Z ∈ K then any OFN

↔
S (aZ, bZ, cZ, dZ, f
S , g
S ) ∈ K. It implies that aW = aZ and dW = dZ

because we have

γ(
↔
Z) = min{|aZ − aZ|+ |dZ − dZ| :

↔
S (aZ, bZ, cZ, dZ, f
S , g
S ) ∈ K} = |aZ − aZ|+ |dZ − dZ|.

Taking into account all above simple conclusions, we obtain
↔
W =

↔
W(aZ, bZ, cZ, dZ, f
Z , g
Z ) which

is in accordance with the Theorem 5 If
↔
Z /∈ K, then we ought to consider the following 10 cases

bZ > cZ ≥ dZ and aZ < bZ, (59)

aZ ≥ bZ > cZ and dZ > cZ, (60)

bZ > cZ and aZ< bZ and dZ >cZ, (61)

bZ = cZ and aZ ≤ dZ < bZ, (62)

bZ = cZ and dZ < aZ < bZ, (63)

bZ = cZ and dZ ≥ aZ > bZ, (64)

bZ = cZ and aZ > dZ > bZ, (65)

bZ< cZ ≤ dZ and aZ >bZ, (66)

aZ ≤ bZ < cZ and dZ < cZ. (67)

bZ < cZ and aZ > bZ and dZ < cZ. (68)

For case (59), we see that if a ≥ bZ then any OFN
↔
S (a, bZ, cZ, dZ, f
S , g
S ) ∈ K. Thus, we obtain

γ(
↔
Z) = min{|a− aZ|+ |dZ − dZ| :

↔
S (a, bZ, cZ, dZ, f
S , g
S ) ∈ K, a ≥ bZ} = |bZ − aZ|+ |dZ − dZ|.

We see that aW = bZ and dW = dZ. For case (60), we notice that if d ≤ cZ then any OFN
↔
S (aZ, bZ, cZ, d, f
S , g
S ) ∈ K. Thus we obtain

γ(
↔
Z) = min{|aZ − aZ|+ |d− dZ| :

↔
S (aZ, bZ, cZ, d, f
S , g
S ) ∈ K, d ≤ cZ} = |aZ − aZ|+ |cZ − dZ|.

We see that aW = aZ and dW = cZ. For case (61), we see that if a ≥ bZ and d ≤ cZ then any OFN
↔
S (a, bZ, cZ, d, f
S , g
S ) ∈ K. Thus we obtain

γ(
↔
Z) = min{|a− aZ|+ |d− dZ| :

↔
S (a, bZ, cZ, d, f
S , g
S ) ∈ K, a ≥ bZ, d ≤ cZ, } = |bZ − aZ|+ |cZ − dZ|.
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We see that aW = bZ and dW = cZ. For case (62), we notice that if a ≥ bZ then any OFN
↔
S (a, bZ, bZ, dZ, f
S , g
S ) ∈ K and if d ≥ cZ then any OFN

↔
S (aZ, cZ, cZ, d, f
S , g
S ) ∈ K Thus we obtain

γ(
↔
Z) = min

⎧⎪⎪⎨⎪⎪⎩
min

{
|a− aZ|+ |dZ − dZ| :

↔
S (a, bZ, bZ, dZ, f
S , g
S ) ∈ K, a ≥ bZ

}
,

min
{
|aZ − aZ|+ |d− dZ| :

↔
S (aZ, cZ, cZ, d, f
S , g
S ) ∈ K, d ≥ cZ

}
⎫⎪⎪⎬⎪⎪⎭

= min{|bZ − aZ|+ |dZ − dZ|, |aZ − aZ|+ |cZ − dZ|} = |aZ − aZ|+ |cZ − dZ|.

We see that aW = aZ and dW = cZ. For case (63), we notice that if a ≥ bZ then any OFN
↔
S (a, bZ, bZ, dZ, f
S , g
S ) ∈ K and if d ≥ cZ then any OFN

↔
S (aZ, cZ, cZ, d, f
S , g
S ) ∈ K Thus we obtain

γ(
↔
Z) = min

⎧⎨⎩ min{|a− aZ|+ |dZ − dZ| :
↔
S (a, bZ, bZ, dZ, f
S , g
S ) ∈ K, a ≥ bZ},

min{|aZ − aZ|+ |d− dZ| :
↔
S (aZ, cZ, cZ, d, f
S , g
S ) ∈ K, d ≥ cZ }

⎫⎬⎭
= min{|bZ − aZ|+ |dZ − dZ|, |aZ − aZ|+ |cZ − dZ| } = |aZ − aZ|+ |cZ − dZ|.

We see that aW = aZ and dW = cZ. For case (64), we notice that if a ≤ bZ then any OFN
↔
S (a, bZ, bZ, dZ, f
S , g
S ) ∈ K and if d ≤ cZ then any OFN

↔
S (aZ, cZ, cZ, d, f
S , g
S ) ∈ K Thus we obtain

γ(
↔
Z) = min

⎧⎨⎩ min{|a− aZ|+ |dZ − dZ| :
↔
S (a, bZ, bZ, dZ, f
S , g
S ) ∈ K, a ≤ bZ },

min{|aZ − aZ|+ |d− dZ| :
↔
S (aZ, cZ, cZ, d, f
S , g
S ) ∈ K, d ≤ cZ}

⎫⎬⎭
= min{|bZ − aZ|+ |dZ − dZ|, |aZ − aZ|+ |cZ − dZ| } = |aZ − aZ|+ |cZ − dZ|.

We see that aW = aZ and dW = cZ. For case (65), we notice that if a ≤ bZ then any OFN
↔
S (a, bZ, bZ, dZ, f
S , g
S ) ∈ K and if d ≤ cZ then any OFN

↔
S (aZ, cZ, cZ, d, f
S , g
S ) ∈ K Thus we obtain

γ(
↔
Z) = min

⎧⎪⎪⎨⎪⎪⎩
min

{
|a− aZ|+ |dZ − dZ| :

↔
S (a, bZ, bZ, dZ, f
S , g
S ) ∈ K, a ≤ bZ

}
,

min
{
|aZ − aZ|+ |d− dZ| :

↔
S (aZ, cZ, cZ, d, f
S , g
S ) ∈ K, d ≤ cZ

}
⎫⎪⎪⎬⎪⎪⎭

= min{|bZ − aZ|+ |dZ − dZ|, |aZ − aZ|+ |cZ − dZ| } = |aZ − aZ|+ |cZ − dZ|.

We see that aW = aZ and dW = cZ. For case (66), we notice that if a ≤ bZ then any OFN
↔
S (a, bZ, cZ, dZ, f
S , g
S ) ∈ K. Thus we obtain

γ(
↔
Z) = min{|a− aZ|+ |dZ − dZ| :

↔
S (a, bZ, cZ, dZ, f
S , g
S ) ∈ K, a ≤ bZ} = |bZ − aZ|+ |dZ − dZ|.

We see that aW = bZ and dW = dZ. For case (67), we notice that if d ≥ cZ then any OFN
↔
S (aZ, bZ, cZ, d, f
S , g
S ) ∈ K. Thus we obtain

γ(
↔
Z) = min{|aZ − aZ|+ |d− dZ| :

↔
S (aZ, bZ, cZ, d, f
S , g
S ) ∈ K, d ≥ cZ} = |aZ − aZ|+ |cZ − dZ|.

We see that aW = aZ and dW = cZ. For case (68), we notice that if a ≤ bZ and d ≥ cZ then any

OFN
↔
S (a, bZ, cZ, d, f
S , g
S ) ∈ K. Thus we obtain

γ(
↔
Z) = min{|a− aZ|+ |d− dZ| :

↔
S (a, bZ, cZ, d, f
S , g
S ) ∈ K, a ≤ bZ, d ≥ cZ, } = |bZ − aZ|+ |cZ − dZ|.

We see that aW = bZ and dW = cZ. For each above considered case, we have obtained results by
means of the identities (44) and (45). The proof is completed. �
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The space of all OFNs is closed under revised arithmetic operations. The last theorem shows that
results obtained by using revised arithmetic operations are the best approximations of results obtained
by means of Kosiński’s arithmetic operations.

5. Linear Space of Ordered Fuzzy Numbers

Let us presume the OFNs
↔
X ,

↔
Y ,

↔
W ∈ K described by (38). For any pair, (β,

↔
X ) ∈ R×K we

define its dot product * in a following way

β*
↔
X =

↔
S (β, β, β, β, f
S , g
S ) ∗

↔
X . (69)

Let us note that, equivalently, we can define the dot product * as follows

β*
↔
X =

↔
S (β, β, β, β, f
S , g
S )


↔
X (70)

because of the sequence {β · aX , β · bX , β · cX , β · dX} is always a monotonic one.
The sum of OFNs is determined by revised addition + defined by (39). The main link between

the revised addition + and the Kosiński’s addition ⊕ is described in the Theorem 5. Here, we can
indicate further additional relationships between the revised addition + and the Kosiński’s addition

⊕. Because for every OFNs
↔
X ,

↔
Y ∈ K+ the sequence {aX + aY, bX + bY, cX + cY, dX + dY} is always

nondecreasing, we can say that

∀↔
X ,

↔
Y∈K+

:
↔
X ⊕

↔
Y =

↔
X +

↔
Y ∈ K+. (71)

Because for every OFNs
↔
X ,

↔
Y ∈ K−the sequence {aX + aY, bX + bY, cX + cY, dX + dY} is always

nonincreasing, we can say that

∀↔
X ,

↔
Y∈K− :

↔
X ⊕

↔
Y =

↔
X +

↔
Y ∈ K−. (72)

If the sum is determined by revised addition + , then for any OFN
↔
X its opposite element

↔
−X is

defined by the identity
↔
−X = (−1)*

↔
X . (73)

Then the neutral element
↔
0 is described as follows

↔
0 =

↔
0 (0; 0; 0; 0; f
0 ; g
0 ). (74)

For Kosiński’s addition ⊕ its opposite elements and neutral elements are determined in the same
way [4]. The identities (39)–(47) together with the commutativity of addition + imply that the revised
addition + is commutative. The addition of FN and the Kosiński’s sum ⊕ of OFN are associative
and commutative [4,13,19]. The associativity of revised addition of + will be investigated using the
following special kind of TrOFN.

Definition 12. For any monotonic sequence {a, b, c} ⊂ R a triangular OFN (TOFN)
↔
T (a, b, c) is defined by

the identity
↔
T (a, b, c) =

↔
T ∇(a, b, b, c). (75)

Let us take into account the following counterexample.
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Counterexample 2. Let the following four TOFN be given by

↔
A =

↔
T (10; 40; 70);

↔
B =

↔
T (110; 100; 60);

↔
C =

↔
T (50; 65; 105);

↔
D =

↔
T (120; 90; 67).

The number of different ways of associating three applications of the addition operator + is equal the Catalan
number C3 = 5. Therefore, we have the following five different associations of four summands [21]

(
↔
A +

↔
B) + (

↔
C +

↔
D); ((

↔
A +

↔
B) +

↔
C ) +

↔
D; (

↔
A + (

↔
B +

↔
C )) +

↔
D; (

↔
A + (

↔
B +

↔
C )) +

↔
D;

↔
A + (

↔
B + (

↔
C +

↔
D)).

In [22], it is shown that we have

(
↔
A +

↔
B) + (

↔
C +

↔
D) =

↔
A + (

↔
B + (

↔
C +

↔
D)) =

↔
T (275; 295; 302),

(
↔
A + (

↔
B +

↔
C )) +

↔
D =

↔
A + ((

↔
B +

↔
C ) +

↔
D) =

↔
T (290; 295; 302),

((
↔
A +

↔
B) +

↔
C ) +

↔
D =

↔
T (290; 295; 312).

Many mathematical applications require a finite multiple sum to be independent of summands’
ordering. Any associative and commutative sum satisfies this property. The results of above
counterexample prove that revised addition + of OFN is not associative. Therefore, we should
check whether the multiple sum determined by + depends on its summands’ ordering.

Counterexample 3. For all permutations of TOFN
↔
A,

↔
B ,

↔
C ,

↔
D ∈ K described in the Counterexample 2,

we determine their multiple sum. In [22], it is shown that

↔
C +

↔
D +

↔
A +

↔
B =

↔
C +

↔
D +

↔
B +

↔
A =

↔
D +

↔
A +

↔
B +

↔
C =

↔
D +

↔
C +

↔
A +

↔
B =

↔
D +

↔
C +

↔
B +

↔
A

=
↔
T (275; 295; 302),

↔
A +

↔
C +

↔
B +

↔
D =

↔
A +

↔
C +

↔
D +

↔
B =

↔
A +

↔
D +

↔
B +

↔
C =

↔
A +

↔
D +

↔
C +

↔
B =

↔
B +

↔
C +

↔
D +

↔
A

=
↔
B +

↔
D +

↔
A +

↔
C =

↔
B +

↔
D +

↔
C +

↔
A =

↔
C +

↔
A +

↔
B +

↔
D =

↔
C +

↔
A +

↔
D +

↔
B =

↔
C +

↔
B +

↔
A +

↔
D

=
↔
C +

↔
B +

↔
D +

↔
A =

↔
D +

↔
A +

↔
B +

↔
C =

↔
D +

↔
A +

↔
C +

↔
B =

↔
D +

↔
B +

↔
A +

↔
C =

↔
D +

↔
B +

↔
C +

↔
A

=
↔
T (290; 295; 302),

↔
A +

↔
B +

↔
C +

↔
D =

↔
A +

↔
B +

↔
D +

↔
C =

↔
B +

↔
A +

↔
C +

↔
D =

↔
B +

↔
A +

↔
D +

↔
C =

↔
B +

↔
C +

↔
A +

↔
D

=
↔
T (290; 295; 312).

The results of above counterexample prove that multiple sum calculated using addition +

depends on its summands’ ordering.

6. Conclusions

The main goals of the article have been achieved as follows. The Definition 11 describes the OFN
in a way that any OFN is proper. The arithmetic operations are revised using the identities (38)–(47).
The assumption of conditions (44) and (45) guarantees that the family of all proper OFN is closed under
revised arithmetic operations. An interpretation of the revised operations is described by Theorem
6, which shows that results obtained using revised arithmetic operations are the best approximation
of results obtained by means of Kosiński’s arithmetic operations. Thanks to this, we can apply all
knowledge of fuzzy sets to solve practical problems described by proper OFN.
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Unfortunately, the OFN linear space has one annoying drawback. Counterexample 3 shows that
multiple sum determined by revised addition, depends on its summands’ ordering. Therefore, the
summands ordering should be clearly defined for each practical application of the multiple sum of
finite sequence of OFN. This summands ordering must be sufficiently justified in the field of application.
Some examples of such justification can be found in [23]. This proves that from a practical view point,
the revised sum is useful in applications despite the fact that it is dependent on its summands’ ordering.

Further research on the OFN theory should be devoted to the following problems:

- preorders on the family of all proper OFNs;
- equations determined by OFNs;
- imprecision measurement for OFN;
- reorientation of OFN.

Acknowledgments: The author is very grateful to the anonymous reviewers for their insightful and constructive
comments and suggestions. Using these comments allowed me to improve this article.

Conflicts of Interest: The author declares no conflicts of interest.

References
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1. Introduction

This short note aims to further contribute to the study of the interplay existing among aggregation
functions, aggregation operators and social choice. Specifically, this paper provides a general
characterization result of projective aggregation functions defined on an abstract set by using a
purely social choice approach; to wit, a suitable version of Arrow’s theorem (see [1]).

An aggregation process basically consists of merging pieces of information (input data) to yield
some output. The information is often symbolized by means of some numerical or abstract value,
and the output obtained, via the data fusion, is made by means of the so-called aggregation functions.
Classical aggregation functions include those of weighted means, t-norms or t-conorms, where all
the input and output variables considered are real numbers. Generalizations of the concept of an
aggregation function appear when considering, for example, aggregation with ordinal and nominal
scales, aggregation on posets and lattices or aggregation of preferences (see, e.g., [1–5]).

All these developments have been closely linked to an increasing number of applications to many
different topics such as image processing, decision making, pattern recognition, fuzzy control and
social sciences, just to mention a few of them. In addition, aggregation operators theory has particular
significance in all these fields of knowledge when considering, for instance, L-fuzzy sets or fuzzy
sets of type 2 (for details, see [6–9]; see, also, [10–12] for certain applications of aggregation operators
theory to social choice).

Aggregation functions play an important role in measurement theory, as well (see [13] for a
detailed account of this discipline). In this context, a key feature has to do with the preservation of
particular numerical scales used to measure both the input and the output variables, which are, in turn,
real variables. The concept that reflects this property is the so-called comparison meaningfulness.
Built on the seminal work of Luce (1959) (see [14]), it was shown by Kim (1990) in [15] that the only
real-valued aggregation functions of n real variables that are continuous (continuity refers to the
Euclidean topology), idempotent and comparison meaningful with respect to independent interval
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scales are the projections. This result was later generalized by other authors in several respects,
noting that, in particular, continuity turned out to be an entirely redundant assumption in the previous
statement. For details, see [16–21] and, more recently, [10].

In the current article, I provide a further generalization of the latter result in a much more abstract
setting by studying conditions under which an aggregation function W : Xn → X turns out to be
a projection, X being an arbitrary nonempty set. Whenever X has, at least, three elements, the two
conditions found, that characterize such a property on W, are fullness and idempotency. This is the
content of Theorem 2. Fullness tells us that, for a given n-tuple, which consists of nominal scales
(a nominal scale is a bijection from X onto X) in X, the range of W over the subset of Xn obtained by
the action of the given n-tuple over X, is the whole X. Thus, fullness turns out to be a property about
how rich the codomain of W is under the action of a profile of nominal scales. Idempotency is a more
familiar condition and tells us that whenever W is restricted to the diagonal of Xn, then the resulting
function is the identity map. The main result of the paper, namely Theorem 2, appears in Section 3.
It should be noted that its proof makes use of a particular version of Arrow’s theorem. This version is
included in Section 2 together with some basic definitions. The fact that the cardinality of X is, at least,
three follows from the call to Arrow’s result. In Section 4, certain consequences of Theorem 2 are shown.
Firstly, a simple generalization of it is obtained in the framework of multi-valued aggregation functions,
and secondly, a new characterization of projective bijection aggregators is presented. Although not
developed in the article, these two consequences could be applied to the context of aggregation of
preferences and aggregation of classifications, as seen, for example, in [22].

2. Preliminaries

Throughout the paper, the notations n ∈ N and N := {1, . . . , n} will be used. Typical elements of
N will be denoted by j, k, i.

Let X be a nonempty set. Vectors of length n with values in X will be recurrently employed.
The notation a = (aj)j∈N , or simply a = (aj), will stand for such a typical a vector.

The set of all bijections from X onto X will be denoted by B(X), and the symbols φ, ψ, ϕ will
represent typical elements of B(X). Note that, if X is finite and φ ∈ B(X), then φ(X) := {φ(x) : x ∈ X}
can be viewed as a rearrangement of X. The notation |X| stands for the cardinal number (for details on
cardinals, see, e.g., [23]) of X.

An aggregation function is an X-valued function of n variables, each of them taking values in X;
i.e., is a map W : Xn → X. Certain properties on aggregation functions, that will be required in the
main result of Section 3 are now presented.

Definition 1. An aggregation function W : Xn → X is said to be:

(1) full if {W(φ1(x), . . . , φn(x)) : x ∈ X} = X, for every φ1, . . . , φn ∈ B(X),
(2) idempotent if W(x, . . . , x) = x, for every x ∈ X,
(3) projective if it is a projection, i.e., if there is k ∈ N such that W(a) = ak, for every a = (aj) ∈ Xn.

Another key and helpful concept that will be needed later is that of a bijection aggregator, or simply
an aggregator. In order to define this concept, some previous notations will be useful. A profile is
meant to be an element of B(X)n. A typical profile will be denoted by (φ1, . . . , φn). An aggregator is
a map F : B(X)n → B(X). I now present certain properties on bijection aggregators, some of which
parallel those included in Definition 1 above for aggregation functions.

Definition 2. An aggregator F : B(X)n → B(X) is, or satisfies:

(1) binary independence if for every (φ1, . . . , φn), (ψ1, . . . , ψn) ∈ B(X)n, x, y ∈ X such that φj(x) =

ψj(y), for all j ∈ N, it holds that F(φ1, . . . , φn)(x) = F(ψ1, . . . , ψn)(y),
(2) unanimous if for every (φ1, . . . , φn) ∈ B(X)n, x, y ∈ X such that φj(x) = y, for all j ∈ N, it holds that

F(φ1, . . . , φn)(x) = y,

142



Axioms 2018, 7, 17

(3) projective if it is a projection, i.e., if there is k ∈ N such that F(φ1, . . . , φn) = φk, for every
(φ1, . . . , φn) ∈ B(X)n.

I conclude this section by showing a version of Arrow’s theorem that will be employed in a
decisive manner in the proof of the main result of the paper. Arrow’s theorem can be considered the
cornerstone of social choice theory and has strongly influenced a large number of disciplines such as
logic, mathematics, economics, psychology, sociology and politics, among others. In order to prepare
such a version, certain concepts need to be introduced.

A transitive and complete (hence, reflexive) binary relation � defined on X is said to be a total
preorder. A total order on X is an antisymmetric total preorder. Associated with �, the asymmetric
part, also called the strict part, denoted by ≺, is defined as the following binary relation on X: x ≺ y
if and only if x � y and ¬(y � x) (or, equivalently, since � is a total preorder, x ≺ y if and only if
¬(y � x)). Note that the asymmetric part of a total order defined on X turns out to be a linear order
on X. Similarly, its symmetric part, denoted by ∼, is defined by: x ∼ y if and only if x � y and y � x.
The symmetric part of a total preorder turns out to be an equivalence relation on X. The binary relation
defined on quotient set X/ ∼ as: [x] � [y]⇔ x � y, (x, y ∈ X), is a total order on it (In the economics
literature, a total preorder is also referred to as a preference and as a social welfare ordering in social
choice theory. In addition, the asymmetric part and the symmetric part of a total preorder are called in
economics the strict preference and the indifference relation, respectively. The set X is usually termed
in these fields as the choice set, or the set of alternatives, or the set of social outcomes, and N stands for
the individuals in the society.). A well ordering, or an ordinal, on X is a total order with the additional
property that each nonempty subset of X has a first element.

Denote by R, T and W the set of all total preorders, total orders and well orderings, respectively,
defined on X. Obviously, W ⊆ T ⊆ R.

Following Arrow (see [1]), a social welfare function turns out to be a map G : Rn → R.
Each n-tuple (�1, . . . ,�n) ∈ Rn is said to be a profile of individual preferences. The interpretation
is that G maps profiles of individual preferences into social preferences. For each element of G(Rn),
say G(�1, . . . ,�n), the somewhat unpleasant notation �G(�1,...,�n) and ≺G(�1,...,�n) for its asymmetric
part, will be used.

Definition 3. A social welfare function G satisfies:

(i) the condition of independence of irrelevant alternatives if for any two profiles of individuals preferences
(�1

1, . . . ,�n
1 ), (�1

2, . . . ,�n
2 ) ∈ Rn and any two alternatives x, y ∈ X such that x �j

1 y ⇔ x �j
2

y, and y �j
1 x ⇔ y �j

2 x, for all j ∈ N, it holds that x �G(�1
1,...,�n

1 )
y ⇔ x �G(�1

2,...,�n
2 )

y
and y �G(�1

1,...,�n
1 )

x ⇔ y �G(�1
2,...,�n

2 )
x,

(ii) the Pareto condition if for any profile (�1, . . . ,�n) ∈ Rn and any pair of alternatives x, y ∈ X such
that x ≺j y, for all j ∈ N, it holds that x ≺G(�1,...,�n) y.

Theorem 1. Suppose that the cardinality of X is, at least, three. Let G : Rn → R be a social welfare function
that satisfies the condition of independence of irrelevant alternatives and the Pareto condition. Then, there is
k ∈ N such that for any profile (�1, . . . ,�n) ∈ Rn and any pair of alternatives x, y ∈ X, it holds that x ≺k y
entails x ≺G(�1,...,�n) y [1].

Arrow’s statement can be reinforced provided that certain qualifications on the domain of the
social welfare function G are done while maintaining the meaning of both conditions that appear
in Definition 3 and the fact that |X| ≥ 3. Let S ⊆ R. If the domain of G is restricted to Sn,
then the resulting map is called a partial social welfare function. A partial social welfare function
G : Sn → R is said to be projective whenever there is k ∈ N such that G(�1, . . . ,�n) =�k, for every
(�1, . . . ,�n) ∈ Sn. In the social choice literature, a projective partial social welfare function is usually
referred to as a strong dictatorship, and individual k is called a strong dictator.
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I now comment on two important cases where a partial social welfare function turns out to be
projective. In both situations, the proof is a direct consequence of the original proof of Arrow’s theorem
(see [1] or [24] for an alternative view). The first one is S = T . The second one, which actually is the
variant I will use later, involves ordinals. Let ≤ ∈ W be a well ordering defined on X which does
exist by Zorn’s lemma. Let φ ∈ B(X). Consider the binary relation, denoted by φ≤, on X defined
by: x φ≤ y ⇔ φ(x) ≤ φ(y), (x, y ∈ X). Clearly, φ≤ ∈ W . Let W≤ stand for the following subset of
W , W≤ := {φ≤ : φ ∈ B(X)}. Let S = W≤. Then, a partial social welfare function G : Sn → R that
satisfies the condition of independence of irrelevant alternatives and the Pareto condition is projective.

3. The Main Result

In this section, the statement of the major result of the paper is presented. As already said in the
Introduction, it turns out to be a characterization of projective aggregation functions on an abstract set,
which contains, at least, three elements. In addition, certain variants of this result are also included,
which require slight modifications of the concept of being full.

Theorem 2. Let |X| ≥ 3. Then, for an aggregation function W : Xn → X, the following conditions
are equivalent:

(i) W is projective.
(ii) W is idempotent and full.

Proof. That (i) entails (ii) is obvious, so I will focus on the other implication, which will be developed
in four steps.

Step 1. For each a = (aj) ∈ Xn, W(a) ∈ {a1, . . . , an}. Indeed, take the elements of {a1, . . . , an}
avoiding repetitions. Therefore, without loss of generality, it may be assumed that ai 
= aj, for all
i 
= j. Let A := {a1, . . . , an}. Then, for each j ∈ N, consider the function φj : X → X defined by:
φj(ai) = ai+j−1(modulo n) and φj(x) = x, for all x ∈ X \ A (In this definition, I use the convention
a0 = an. Note that each φj maps the set {a1, . . . , an} into itself in a bijective way starting from aj
following the usual order in N. In addition, observe that if there was any repetition in {a1, . . . , an},
say ak = al , with k 
= l, then φk = φl .). Clearly, φj ∈ B(X), for every j ∈ N.

Now, because W is idempotent, it holds that {W(φ1(x), . . . , φn(x)) : x ∈ X \ A} = X \ A.
Hence, since W is full, {W(φ1(x), . . . , φn(x)) : x ∈ A} = A. Thus, for x = a1, it holds that
W(a) = W(a1, . . . , an) = W(φ1(a1), . . . , φn(a1)) ∈ {a1, . . . , an}, which proves Step 1.

Step 2. Let there be given a = (aj), b = (bj) ∈ Xn such that aj 
= bj, for all j ∈ N. Then,
W(a) 
= W(b). In order to see this, first take the elements of {a1, . . . , an} and {b1, . . . , bn}, avoiding
repetitions. Therefore, as above, it may be assumed that ai 
= aj and also that bi 
= bj, for all i 
= j.
Let A := {a1, . . . , an}, B := {b1, . . . , bn} and C := A ∪ B. Then, for each j ∈ N, consider a function
φj : X → X accomplishing the following requirements: φj is a bijection from C onto C such that
φj(a1) = aj, φj(b1) = bj and φj(x) = x, for all x ∈ X \ C. Note that such a function can be easily built
and also that φj ∈ B(X), for every j ∈ N.

Thus, since W is idempotent, it holds that {W(φ1(x), . . . , φn(x)) : x ∈ X \ C} = X \ C.
Hence, since W is full, {W(φ1(x), . . . , φn(x)) : x ∈ C} = C. Note that, for x = a1 ∈ C,
W(a) = W(a1, . . . , an) = W(φ1(a1), . . . , φn(a1)) and for x = b1 ∈ C, W(b) = W(b1, . . . , bn) =

W(φ1(b1), . . . , φn(b1)). Thus, necessarily, W(a) 
= W(b).
Step 3. Let ≤ ∈ W be a (fixed) well ordering on X. The inequalities “<” and “>”, between

elements of X, have the usual meanings. I now prove that W is strongly monotone in the following
sense: for any a = (aj), b = (bj) ∈ Xn such that aj < bj, for all j ∈ N, it holds that W(a) < W(b).
Suppose, by way of contradiction, that there are a = (aj), b = (bj) ∈ Xn such that aj < bj, for all
j ∈ N and W(a) > W(b) (note that the situation W(a) = W(b) violates the condition of W being
full as seen in Step 2 above). Let ak, al and bm be defined as follows: ak = minj∈N aj, al = W(a)
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and bm = W(b). Note that the latter two numbers exist by Step 1, and also, it holds that ak < bm < al .
Define α = (αj), β = (β j) ∈ Xn in the following way:

αj =

{
al if j ∈ A
ak otherwise

, β j =

{
al if j ∈ B
bm otherwise

where A := {j ∈ N : aj = al} and B := {j ∈ N : bj = bm}. Note that αj 
= β j, for all j. Thus, by Step 2,
it holds that W(α) 
= W(β). Now, a contradiction will be reached by showing that W(α) = W(β).

In order to see this, define γ = (γj) ∈ Xn as follows: γj =

{
ak if j ∈ A
al otherwise

. Then, because

W(a) = al , W(γ) ∈ {ak, al} and γj 
= aj, for all j, it holds that W(γ) = ak. Similarly, W(α) ∈ {al , ak}
and γj 
= αj, for all j. Hence, W(α) = al . With a similar argument, by using now W(b) = bm,
W(β) ∈ {al , bm} and β j 
= bj, for all j, it holds that W(β) = al , which gives the desired contradiction.

Step 4. To finish the proof, consider the aggregator F : B(X)n → B(X) defined as follows
F(φ1, . . . , φn)(x) = W(φ1(x), . . . , φn(x)), for every (φ1, . . . , φn) ∈ B(X)n, x ∈ X. By Step 2, joint to the
fact that W is full, it follows that F(B(X)n) ⊆ B(X). I now prove that F satisfies binary independence.
In order to see this, let (ϕ1, . . . , ϕn), (ψ1, . . . , ψn) ∈ B(X)n such that there are x, y ∈ X for which
ϕj(x) = ψj(y), for all j ∈ N. Then, F(ϕ1, . . . , ϕn)(x) = W(ϕ1(x), . . . , ϕn(x)) = W(ψ1(y), . . . , ψn(y)) =
F(ψ1, . . . , ψn)(y), and so, F satisfies binary independence. Moreover, since by Step 3 above, W is
strongly monotone, F satisfies the following monotonicity property: for every (φ1, . . . , φn) ∈ B(X)n,
x, y ∈ X such that φj(x) < φj(y), for all j ∈ N, it holds F(φ1, . . . , φn)(x) < F(φ1, . . . , φn)(y).

Now, consider the set S = W≤ introduced in the last paragraph of Section 2. Define the
partial social welfare function G : Sn → R as follows: G(φ1

≤, . . . , φn
≤) := F(φ1, . . . , φn)≤, for every

(φ1
≤, . . . , φn

≤) ∈ Sn. The two properties of F proven in the above paragraph clearly entail that G
satisfies both the Pareto condition and the condition of independence of irrelevant alternatives.
Therefore, by the second variant of Arrow’s theorem mentioned at the end of Section 2, there is
k ∈ N such that G(φ1

≤, . . . , φn
≤) = φk

≤, for every (φ1
≤, . . . , φn

≤) ∈ Sn. However, then, it clearly holds
that F(φ1, . . . , φn) = φk, for every (φ1, . . . , φn) ∈ B(X)n. Hence, W(a) = ak, for every a = (aj) ∈ Xn,
and the proof is finished.

The next two examples show that fullness and idempotency are independent conditions.

Example 1. (i) Let X = R, and define W : R2 → R as follows: W(x, y) = max {x, y}. Obviously, W is a
non-projective and idempotent aggregation function. However, it is not full since by taking the two bijections
φ(x) = x and ψ(x) = −x, it holds that {W(φ(x), ψ(x)) : x ∈ R} = [0, ∞) � R.
(ii) Let X = R, and define W : R2 → R as follows: W(x, y) = x3. Obviously, W is a non-projective and full
aggregation function, which fails to be idempotent.

Remark 1. (i) The assumption |X| ≥ 3 cannot be ruled out from the statement of Theorem 2.
Indeed, take X = {x, y}. Define W : X3 → X as follows: W(x, x, x) = x, W(y, y, y) = y,
W(x, x, y) = x, W(x, y, x) = x, W(y, x, x) = x, W(y, y, x) = y, W(y, x, y) = y, W(x, y, y) = y.
Clearly, W so-defined is idempotent and full. However, it is not projective.

(ii) Alternative characterizations of projective functions can be shown provided that the concept of fullness
is suitably modified. For instance, suppose that Z is a nonempty set such that |Z| = |X|, and denote
by B(Z, X) the set of all bijections from Z onto X. An aggregation function W : Xn → X is said to be
full with respect to bijections if {W(b1(z), . . . , bn(z)) : z ∈ Z} = X, for every b1, . . . , bn ∈ B(Z, X).
Then, following the proof of Theorem 2 with the obvious modifications, the next result is in order: assume
|X| ≥ 3. Then, W is projective iff it is idempotent and full with respect to bijections.

(iii) In relation to Remark 1(ii) above, suppose now that |Z| ≥ |X|. Let S(Z, X) stand for the set of all
surjections from Z onto X. An aggregation function W : Xn → X is said to be full with respect to
surjections if {W(s1(z), . . . , sn(z)) : z ∈ Z} = X, for every s1, . . . , sn ∈ S(Z, X). Translating into
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this context the arguments used in the proof of Theorem 2, the following result can be proven: assume
|X| ≥ 3. Then, W is projective iff it is idempotent and full with respect to surjections (This result requires
consideration of a well ordering, say ≤, on X. Then, for every s ∈ S(Z, X), define the binary relation,
denoted by s≤, on Z as follows: z s≤ t ⇔ s(z) ≤ s(t), (z, t ∈ Z). Consider the following subset of
binary relations on Z, W≤ := {s≤ : s ∈ S(Z, X)}. Note that, for each s ∈ S(Z, X), s≤ is a total
preorder on Z that induces a well ordering on the quotient set Z/ ∼s≤ . Then, the variant of Arrow’s
theorem used in this situation states that a partial social welfare function G : (W≤)n → R that satisfies
the condition of independence of irrelevant alternatives and the Pareto condition is projective.). A similar
result can be given by adapting the fullness condition to the context of injections from Z into X provided
that |Z| ≤ |X|.

4. Some Consequences of the Main Result

I conclude the paper with two applications of Theorem 2. The first one is a simple generalization
of this result to the context of multi-valued aggregation functions. Let X be a nonempty set and n ∈ N.
Denote by P(X) = 2X \ ∅. Then, a multi-valued aggregation function is a map G : Xn → P(X).
A multi-valued aggregation function G is projective if there is k ∈ {1, . . . , n} such that ak ∈ G(a),
for every a = (aj) ∈ Xn. An aggregation function V : Xn → X is said to be a selection of G if
V(a) ∈ G(a), for every a = (aj) ∈ Xn.

The next result, which is an obvious consequence of Theorem 2, is now in order.

Corollary 1. Let |X| ≥ 3. Then, for a multi-valued aggregation function G : Xn → P(X), the following
conditions are equivalent:

(i) G is projective.
(ii) G admits a selection that is idempotent and full.

As the second application of Theorem 2, the following characterization of a (bijection) aggregator
is shown.

Corollary 2. Let |X| ≥ 3. Then, for an aggregator F : B(X)n → B(X), the following conditions are equivalent:

(i) F is projective.
(ii) F is unanimous and satisfies binary independence.

Proof. That (i) implies (ii) is obvious. In order to see the converse, assume that F : B(X)n → B(X)

is a unanimous aggregator that satisfies binary independence. Define the aggregation function
W : Xn → X as follows: for each a = (aj) ∈ Xn, W(a) = F(φ1, . . . , φn)(x), where (φ1, . . . , φn) ∈ B(X)n,
x ∈ X are such that φj(x) = aj, for all j ∈ N. Since F satisfies binary independence, W is well defined
(i.e., the value F(φ1, . . . , φn)(x) does not depend on the particular (φ1, . . . , φn) ∈ B(X)n and x ∈ X
chosen). In addition, the unanimity of F entails that W is idempotent. Moreover, since the image of F
lies on B(X), it clearly follows that W is full. Hence, by Theorem 2, W is projective, and so, F is.

Remark 2. (i) It should be noted that, according to Remarks 1(ii) and 1(iii), alternative versions of
Corollary 2 can be established by replacing B(X) with B(Z, X) and S(Z, X), respectively.

(ii) Corollary 2 can be given an interpretation in the fuzzy framework. Assume U is a finite universe,
with states {u1, . . . , um}, and denote by X a set of fuzzy numbers defined on U such that |X| ≥ 3
(Note that each number in X can be identified with a vector in the m-dimensional unit cube where, for
every l ∈ {1, . . . , m}, the l-component might be interpreted as the uncertainty, or vagueness, that state
ul occurs. Then, X could be thought of as the set of possible uncertain situations to be managed.).
Then, B(X) represents the set of all possible rearrangements of the referenced uncertain situations.
Further, suppose that there are n individuals, n ∈ N, each of them presenting a particular arrangement
of the uncertain situations, and a final arrangement needs to be reached as an aggregation procedure
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of the individual proposals. Then, Corollary 2 provides necessary and sufficient conditions for such an
aggregation procedure to coincide with the proposal of some individual.

5. Conclusions

In this paper, a very general characterization result concerning projective aggregation functions is
presented. This result is motivated by a theorem obtained by Kim (1990), for real-valued aggregation
functions defined on the n-dimensional Euclidean space, in the measurement theory context. A key
feature of the approach followed in the paper is that the proof of the core result is based on a particular
version of Arrow’s theorem, thus providing a link between aggregation functions theory and social
choice theory. Some extensions and consequences are presented, as well; in particular, a generalization
of the main result to the framework of multi-valued aggregation functions and a characterization of
projective bijection aggregators. Although not developed in the article, it is pointed out that these
consequences could have certain applications to the environment of the aggregation of preferences
and aggregation of classifications.
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Abstract: In this research article, we present a novel framework for handling intuitionistic fuzzy
soft information by combining the theory of intuitionistic fuzzy soft sets with graphs. We introduce
the notion of certain types of intuitionistic fuzzy soft graphs including neighbourly edge regular
intuitionistic fuzzy soft graphs and strongyl edge irregular intuitionistic fuzzy soft graphs. We illustrate
these novel concepts by several examples, and investigate some of their related properties. We present
an application of intuitionistic fuzzy soft graph in a decision-making problem and also present our
methods as an algorithm that is used in this application.
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1. Introduction

Atanassov [1,2] introduced the concept of intuitionistic fuzzy sets as an extension of Zadeh’s fuzzy
set [3]. The concept of an intuitionistic fuzzy set can be viewed as an alternative approach in such cases
where available information is not sufficient to define the impreciseness by the conventional fuzzy set.
In fuzzy sets, only the degree of acceptance is considered, but an intuitionistic fuzzy set is characterized
by a membership function and a non-membership function. The only requirement is that the sum
of both values is not more than one. Intuitionistic fuzzy sets are being studied and used in different
fields of science [4–7]. Mathematical modeling, analysis and computing of problems with uncertainty
is one of the hottest areas in interdisciplinary research, involving applied mathematics, computational
intelligence and decision-making. It is worth noting that the uncertainty that arises from various
domains has a very variable nature and cannot be captured within a single mathematical framework.
Molodtsov’s soft set theory provide us a new mathematical tool for dealing with uncertainty from the
viewpoint of parameterizations. Molodtsov [8] introduced the concept of soft set theory. He gave us
a new technique for dealing with uncertainty from the viewpoint of parameters. Soft set theory has
been extended with potential applications in several fields [9–14]. Maji et al. [15] introduced fuzzy soft
sets. By using this definition of fuzzy soft sets, many interesting applications of fuzzy soft set theory
have been discussed by researchers [16–21]. Maji et al. [22,23] introduced the concept of intuitionistic
fuzzy soft set and presented some operations on intuitionistic fuzzy soft sets. The intuitionistic fuzzy
soft set theory has been extended with applications in [24–26].

Fuzzy graph theory involves finding an increasing number of applications in modeling real time
systems where the level of information inherent in the system varies with different levels of precision.
Fuzzy models are becoming useful because of their aim in reducing the differences between the
traditional numerical models used in engineering and sciences and the symbolic models used in expert
systems. Kaufmann’s initial definition of a fuzzy graph [27]. Rosenfeld [28] described the structure
of fuzzy graphs obtaining analogs of several graph theoretical concepts. Bhattacharya [29] gave
some remarks on fuzzy graphs and several concepts were introduced by Mordeson and Nair in [30].
Santhimasheswari and Sekar [31] introduced the idea of strongly edge irregular fuzzy graph. Several
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concepts and applications of fuzzy graphs and their extensions have been discussed in [32–39]. In this
research article, we introduce the notion of certain types of intuitionistic fuzzy soft graphs including
neighbourly edge regular intuitionistic fuzzy soft graphs and strongly edge irregular intuitionistic
fuzzy soft graphs. We illustrate these novel concepts by several examples, and investigate some of their
related properties. We present an application of intuitionistic fuzzy soft graph in the decision-making
process. We describe our methods as algorithms that are used in our application.

For other notations and applications that are not mention in this paper, readers are refereed
to [40–45].

2. Graphs in Intuitionistic Fuzzy Soft Environment

We consider P(V) as the set of all intuitionistic fuzzy sets (IFSs) of V and P(E) denotes the set of
all IFSs of E. The notion of intuitionistic fuzzy soft graphs was presented in [34–36].

Definition 1. An intuitionistic fuzzy soft graph on a nonempty set V is an ordered 3-tuple G = (Φ, Ψ, M)

such that

(i) M is a non-empty set of parameters,
(ii) (Φ, M) is an intuitionistic fuzzy soft set over V,
(iii) (Ψ, M) is an intuitionistic fuzzy soft relation on V, i.e., Ψ : M → P(V ×V)

where P(V ×V) is intuitionistic fuzzy power set,
(iv) (Φ(e), Ψ(e)) is an intuitionistic fuzzy graph, for all e ∈ M.

That is,
Ψμ(e)(uv) ≤ min(Φμ(e)(u), Φμ(e)(v)),

Ψν(e)(uv) ≤ max(Φν(e)(u), Φν(e)(v))

such that Ψμ(e)(uv) + Ψν(e)(uv) ≤ 1, ∀ e ∈ M, u, v ∈ V.
Note that Ψμ(e)(uv) = Ψν(e)(uv) = 0, ∀uv ∈ V ×V − E, e ∈ M.

(Φ, M) is called an intuitionistic fuzzy soft vertex and (Ψ, M) is called an intuitionistic fuzzy soft edge. Thus,
((Φ, M), (Ψ, M)) is called an intuitionistic fuzzy soft graph if

Ψμ(e)(uv) ≤ min(Φμ(e)(u), Φμ(e)(v)), Ψν(e)(uv) ≤ max(Φν(e)(u), Φν(e)(v))

such that Ψμ(e)(uv) + Ψν(e)(uv) ≤ 1, ∀ e ∈ M, u, v ∈ V. In other words, an intuitionistic fuzzy soft graph
is a parameterized family of intuitionistic fuzzy graphs.

Definition 2. Let G = (Φ, Ψ, M) be an intuitionistic fuzzy soft graph of G∗. G is said to be a neighbourly
edge irregular intuitionistic fuzzy soft graph if H(e) is a neighbourly edge irregular intuitionistic fuzzy graph
for all e ∈ A.

Equivalently, an intuitionistic fuzzy soft graph G is called a neighborly edge irregular intuitionistic fuzzy
soft graph if every two adjacent edges have distinct degrees in H(e) for all e ∈ M.

Definition 3. Let G = (Φ, Ψ, M) be an intuitionistic fuzzy soft graph of G∗. G is said to be a neighbourly
edge totally irregular intuitionistic fuzzy soft graph if H(e) is a neighbourly edge totally irregular intuitionistic
fuzzy graph for all e ∈ A.

Equivalently, an intuitionistic fuzzy soft graph G is called a neighborly edge totally irregular intuitionistic
fuzzy soft graph if every two adjacent edges have distinct total degrees in H(e) for all e ∈ M.

Example 1. Consider a crisp graph G = (V, E) such that V = {u1, u2, u3, u4} and E = {u1u2, u2u3, u3u1,
u1u4, u2u4, u3u4}. Let P = {e1, e2, e3, e4} be a set of all parameters and M = {e1, e2, e3} ⊂ P. Let (Φ, M)

be an intuitionistic fuzzy soft set over V with intuitionistic fuzzy approximation function Φ : M → P(V)
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defined by
Φ(e1) = {(u1, 0.5, 0.2), (u2, 0.6, 0.4), (u3, 0.3, 0.1), (u4, 0.5, 0.2)},
Φ(e2) = {(u1, 0.6, 0.4), (u2, 0.7, 0.2), (u3, 0.7, 0.1), (u4, 0.5, 0.4)},
Φ(e3) = {(u1, 0.4, 0.6), (u2, 0.3, 0.1), (u3, 0.3, 0.6), (u4, 0.4, 0.1)}.

Let (Ψ, M) be an intuitionistic fuzzy soft set over E with intuitionistic fuzzy approximation function

Ψ : M → P(E) defined by
Ψ(e1) = {(u1u2, 0.4, 0.4), (u2u3, 0.2, 0.2), (u1u3, 0.0, 0.0), (u1u4, 0.2, 0.2), (u2u4, 0.3, 0.3),

(u3u4, 0.0, 0.0)},
Ψ(e2) = {(u1u2, 0.4, 0.4), (u2u3, 0.0, 0.0), (u1u3, 0.2, 0.1), (u1u4, 0.2, 0.3), (u2u4, 0.0, 0.0),

(u3u4, 0.4, 0.4)},
Ψ(e3) = {(u1u2, 0.1, 0.1), (u2u3, 0.0, 0.0), (u1u3, 0.2, 0.4), (u1u4, 0.1, 0.1), (u2u4, 0.0, 0.0),

(u3u4, 0.2, 0.6)}.

Thus intuitionistic fuzzy graphs H(e1) = (Φ(e1), Ψ(e1)), H(e2) = (Φ(e2), Ψ(e2)) and H(e3) =

(Φ(e3), Ψ(e3)) of G corresponding to the parameters e1, e2 and e3, respectively are shown in Figure 1.

Figure 1. Intuitionistic fuzzy soft graph G = {H(e1), H(e2), H(e3)}.

In intuitionistic fuzzy graph H(ei), for i = 1, 2, 3 degree of edges are
degG(u1u2)(e1) = (0.7, 0.7), degG(u1u4)(e1) = degG(u2u3)(e1) = (0.5, 0.6), degG(u2u4)(e1) = (0.7, 0.6),
degG(u1u2)(e2) = degG(u3u4)(e2) = (0.4, 0.4), degG(u1u3)(e2) = (1.0, 1.1), degG(u1u4)(e2) = (1.0, 0.9),
degG(u1u2)(e1) = (0.3, 0.5), degG(u1u4)(e1) = (0.5, 1.1), degG(u1u3)(e1) = (0.4, 0.8), degG(u2u4)(e1) =

(0.3, 0.5).
Clearly, every pair of adjacent edges in intuitionistic fuzzy graphs H(ei) for i = 1, 2, 3 corresponding to

the parameters ei for i = 1, 2, 3 have distinct degrees. Hence G is the neighbourly edge irregular intuitionistic
fuzzy soft graph.

Theorem 1. Let G = (Φ, Ψ, M) be a connected intuitionistic fuzzy soft graph on G∗ = (V, E) and Ψ is
a constant function. If G is a neighbourly edge irregular(neighbourly edge totally irregular) intuitionistic fuzzy
soft graph, then G is neighbourly edge totally irregular(neighbourly edge irregular) intuitionistic fuzzy soft
graph.

Proof. We assume that Ψ is a constant function, Ψei (uv) = (ci, ći), for all uv ∈ E, ei ∈ M, where ci
and ći are constants for i = 1, 2, . . . , k. Let uv and vz be any pair of adjacent edges in E. Suppose G is
a neighbourly edge irregular intuitionistic fuzzy soft graph, then degG(uv)(ei) 
= degG(vz)(ei) for all
ei ∈ M, this implies
(degμ(uv)(ei), degν(uv)(ei)) 
= (degμ(vz)(ei), degν(vz)(ei)),
(degμ(uv)(ei), degν(uv)(ei)) + (ci, ći) 
= (degμ(vz)(ei), degν(vz)(ei)) + (ci, ći),
degG(uv)(ei) + Ψ(uv)(ei) 
= degG(vz)(ei) + Ψ(vz)(ei),
tdegG(uv)(ei) 
= tdegG(vz)(ei), where uv and vz are adjacent edges in E. Hence, G is a neighbourly
edge totally irregular intuitionistic fuzzy soft graph.
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Theorem 2. Let G = (Φ, Ψ, M) be a connected intuitionistic fuzzy soft graph on G∗ = (V, E) and Ψ is
a constant function. If G is a neighbourly edge totally irregular intuitionistic fuzzy soft graph, then G is
neighbourly edge irregular intuitionistic fuzzy soft graph.

Remark 1. Let G = (Φ, Ψ, M) be a connected intuitionistic fuzzy soft graph on G∗ = (V, E) and Ψ is
a constant function. If G is both neighbourly edge irregular intuitionistic fuzzy soft graph and neighbourly edge
totally irregular intuitionistic fuzzy soft graph. Then Ψ need not be a constant function.

Example 2. Consider a simple graph G∗ = (V, E) such that V = {v1, v2, v3, v4} and E = {v1v2, v1v3,
v1v4, v2v3, v2v4, v3v4}. Let M = {e1, e2} be set of parameters.

Let G = (H, M) be an intuitionistic fuzzy soft graph (see Figure 2), where intuitionistic fuzzy graphs
H(e1) and H(e2) corresponding to the parameters e1 and e2, respectively are defined as follows:

H(e1) =
(
{(v1, 0.2, 0.5), (v2, 0.7, 0.3), (v3, 0.5, 0.1), (v4, 0.6, 0.3)}, {(v1v2, 0.1, 0.4), (v1v3, 0.2, 0.4),

(v1v4, 0.1, 0.4), (v2v4, 0.5, 0.1)}
)
,

H(e2) =
(
{(v1, 0.2, 0.4), (v2, 0.2, 0.5), (v3, 0.5, 0.1), (v4, 0.5, 0.2)}, {(v1v2, 0.2, 0.3), (v1v4, 0.2, 0.4),

(v2v3, 0.1, 0.4), (v2v4, 0.1, 0.3)}
)
.

Figure 2. Intuitionistic fuzzy soft graph G = {H(e1), H(e2)}.

The degree of each edge in H(e1) corresponding to the parameter e1 is degG(v1v2)(e1) = (1.2, 1.1),
degG(v2v4)(e1) = (0.6, 1.0), degG(v1v3)(e1) = (0.6, 1.0), degG(v1v4)(e1) = (0.8, 0.9), degG(v2v3)(e1) =

(1.0, 0.7) and degree of each edge in H(e2) corresponding to the parameter e2 is degG(v1v2)(e2) =

(0.4, 1.2), degG(v1v4)(e2) = (0.3, 0.7), degG(v2v3)(e2) = (0.3, 0.6), degG(v2v4)(e2) = (0.5, 1.1). It is
easy to see that all the edges in H(e1) and H(e2) have distincts degrees. Therefore, the intuitionistic fuzzy soft
graph G = {H(e1), H(e2)} is a neighbourly edge irregular intuitionistic fuzzy soft graph.

The total degree of each edge in H(e1) corresponding to the parameter e1 is tdegG(v1v2)(e1) = (1.3, 1.5),
degG(v2v4)(e1) = (1.1, 1.1), degG(v1v3)(e1) = (0.8, 1.4), degG(v1v4)(e1) = (0.9, 1.3), degG(v2v3)(e1) =

(1.4, 0.9) and total degree of each edge in H(e2) corresponding to the parameter e2 is degG(v1v2)(e2) =

(0.6, 1.5), degG(v1v4)(e2) = (0.5, 1.1), degG(v2v3)(e2) = (0.4, 1.0), degG(v2v4)(e2) = (0.6, 1.4). Clearly,
all the edges in H(e1) and H(e2) have distinct total degrees. Therefore, intuitionistic fuzzy soft graph
G = {H(e1), H(e2)} is a neighbourly edge totally irregular intuitionistic fuzzy soft graph. Thus, G is
both a neighbourly edge irregular and neighbourly edge totally irregular intuitionistic fuzzy soft graph but Ψ is
not a constant function.

Theorem 3. Let G = (Φ, Ψ, M) be a connected intuitionistic fuzzy soft graph on G∗ = (V, E) and Ψ is
a constant function. If G is a neighbourly edge irregular intuitionistic fuzzy soft graph, then G is an irregular
intuitionistic fuzzy soft graph.
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Proof. Let G be a connected intuitionistic fuzzy soft graph on G∗ = (V, E) and Ψ is a constant function,
Ψ(uv)(ei) = (ci, ći), where ci and ći are constants. Assume that G is a neighbourly edge irregular
intuitionistic fuzzy soft graph. Consider uv and vz are two adjacent edges in G with distinct degrees,(
degμ(uv)(ei), degν(uv)(ei)

)

=
(
degμ(vz)(ei), degν(vz)(ei)

)
,

degμ(uv)(ei) 
= degμ(vz)(ei) or degν(uv)(ei) 
= degν(vz)(ei),
degμ(u)(ei) + degμ(v)(ei)− 2ci 
= degμ(v)(ei) + degμ(z)(ei)− 2ci, or
degν(u)(ei) + degν(v)(ei)− 2ći 
= degν(v)(ei) + degν(z)(ei)− 2ći,
degμ(u)(ei) 
= degμ(z)(ei), or degν(u)(ei) 
= degν(z)(ei),(
degμ(u)(ei), degν(u)(ei),

)

=
(
degμ(z)(ei), degν(z)(ei),

)
,

degG(u)(ei) 
= degG(z)(ei),

this implies there exist a vertex v which is adjacent to the vertices u and z have distinct degrees. Hence,
G is an irregular intuitionistic fuzzy soft graph.

Theorem 4. Let G = (Φ, Ψ, M) be a connected intuitionistic fuzzy soft graph on G∗ = (V, E) and Ψ is
a constant function. If G is a neighbourly edge totally irregular intuitionistic fuzzy soft graph, then G is
an irregular intuitionistic fuzzy soft graph.

Theorem 5. Let G = (Φ, Ψ, M) be a connected intuitionistic fuzzy soft graph on G∗ = (V, E) and Ψ is
a constant function. Then, G is a neighbourly edge irregular intuitionistic fuzzy soft graph if and only if G is
highly irregular intuitionsistic fuzzy soft graph.

Proof. Let G = (Φ, Ψ, M) be a connected intuitionistic fuzzy soft graph on G∗ and Ψ is a constant
function Ψ(uv)(ei) = (ci, ći) for all uv ∈ E, where ci and ći are constants. Let u be a vertex adjacent
with v, w and x. vu, uw and ux are adjacent edges in G. Suppose G is a neighbourly edge irregular
intuitionistic fuzzy soft graph, this implies that every pair of adjacent edges in G have distinct degrees,
then

degG(vu)(ei) 
= degG(uw)(ei) 
= degG(ux)(ei)(
degμ(vu)(ei), degν(vu)(ei)

)

=
(
degμ(uw)(ei), degν(uw)(ei)

)

=
(
degμ(ux)(ei), degν(ux)(ei)

)
Consider

(
degμ(vu)(ei), degν(vu)(ei)

)

=
(
degμ(uw)(ei), degν(uw)(ei)

)
degμ(vu)(ei) 
= (degμ(uw)(ei) or degν(vu)(ei) 
= degν(uw)(ei)

degμ(u)(ei) + degμ(v)(ei)− 2ci 
= degμ(u)(ei) + degμ(w)(ei)− 2ci or
degν(u)(ei) + degν(v)(ei)− 2ći 
= degν(u)(ei) + degν(w)(ei)− 2ći
⇒ degμ(v)(ei) 
= degμ(w)(ei) or degν(v)(ei) 
= degν(w)(ei)

⇒ (degμ(v)(ei), degν(v)(ei)) 
= (degμ(w)(ei), 
= degν(w)(ei))

⇒ degG(v) 
= degG(w)

Similarly, degG(w) 
= degG(x)⇒ degG(v) 
= degG(w) 
= degG(x)
clealy, every vertex u is adjacent to the vertices v, w and x with distinct degrees. Hence G is highly
irregular intuitionistic fuzzy soft graph.

Conversly, let vu and uw are any two adjacent edges in G. Suppose that G is highly irregular
intuitionistic fuzzy soft graph, then every vertex adjacent to the vertices in H(ei) for all ei ∈ M having
distinct degrees, such that

degG(v) 
= degG(w)

(degμ(v)(ei), degν(v)(ei)) 
= (degμ(w)(ei), degν(w)(ei))

degμ(v)(ei) 
= degμ(w)(ei), or degν(v)(ei) 
= degν(w)(ei)

(degμ(v)(ei) + degμ(u)(ei)− 2ci) 
= (degμ(w)(ei) + degμ(u)(ei)− 2ci) or
(degν(v)(ei) + degν(u)(ei)− 2ći) 
= (degν(w)(ei) + degν(u)(ei)− 2ći)

degμ(uv)(ei) 
= degμ(uw)(ei) or degν(uv)(ei) 
= degν(uw)(ei)

(degμ(uv)(ei), degν(uv)(ei)) 
= (degμ(uw)(ei), degν(uv)(ei))
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⇒ degG(uv) 
= degG(uw))

⇒ every pair of adjacent edges have distinct degrees. Hence G is a neighbourly edge irregular
intuitionistic fuzzy soft graph.

Definition 4. Let G = (Φ, Ψ, M) be an intuitionistic fuzzy soft graph on G∗ = (V, E). Then, G is said to be
a strongly irregular intuitionistic fuzzy soft graph if every pair of vertices in G have distinct degrees.

Theorem 6. Let G = (Φ, Ψ, M) be a connected intuitionistic fuzzy soft graph on G∗ = (V, E) and Ψ is
a constant function. If G is strongly irregular intuitionistic fuzzy soft graph, then G is a neighbourly edge
irregular intuitionistic fuzzy soft graph.

Proof. Let G be a connected intuitionistic fuzzy soft graph on G∗ = (V, E), and Ψ is a constant function
Ψ(xy)(ei) = (ci, ći) for all ei ∈ M, xy ∈ E, where ci and ći are constants. Let xy and yz are any two
adjacent edges in E. Suppose that G is strongly irregular intuitionistic fuzzy soft graph, this implies
every pair of vertices in H(ei) for all ei ∈ M having distinct degrees, this implies

degG(x) 
= degG(y) 
= degG(z)
degG(x) + degG(y) 
= degG(y) + degG(z)
(degμ(x), degν(x)) + (degμ(y), degν(y)) 
= (degμ(y), degν(y)) + (degμ(z), degν(z))
(degμ(x) + degμ(y), degν(x) + degν(y)) 
= (degμ(y) + degμ(z), degν(y) + degν(z))
degμ(x) + degμ(y) 
= degμ(y) + degμ(z) or degν(x) + degν(y) 
= degν(y) + degν(z)
degμ(x)+ degμ(y)− 2ci 
= degμ(y)+ degμ(z)− 2ci or degν(x)+ degν(y)− 2ći 
= degν(y)+ degν(z)− 2ći
degμ(xy) 
= degμ(yz) or degν(xy) 
= degν(yz)⇒ (degμ(xy), degν(xy)) 
= (degμ(yz), degν(yz))
⇒ degG(xy) 
= degG(yz)

Clearly, every pair of adjacent edges has distinct degrees. Hence G is a neighbourly edge irregular
intuitionistic fuzzy soft graph.

Theorem 7. Let G = (Φ, Ψ, M) be a connected intuitionistic fuzzy soft graph on G∗ = (V, E) and Ψ is
a constant function. If G is strongly irregular intuitionistic fuzzy soft graph, then G is a neighbourly edge
totally irregular intuitionistic fuzzy soft graph.

Remark 2. Converse of the above theorems need not be true.

We now study strongly edge irregular intuitionistic fuzzy soft graphs.

Definition 5. Let G = (Φ, Ψ, M) be a connected intuitionistic fuzzy soft graph on G∗ = (V, E). Then G is
said to be a strongly edge irregular intuitionistic fuzzy soft graph if every pair of edges has distinct degrees.

Definition 6. Let G = (Φ, Ψ, M) be a connected intuitionistic fuzzy soft graph on G∗ = (V, E). Then G
is said to be a strongly edge totally irregular intuitionistic fuzzy graph if every pair of edges has distinct
total degrees.

Theorem 8. Let G = (Φ, Ψ, M) be a connected intuitionistic fuzzy soft graph on G∗ = (V, E) and Ψ is
constant function. If G is strongly edge irregular intuitionistic fuzzy soft graph, then G is strongly edge totally
irregular intuitionistic fuzzy soft graph.

Proof. We assume that Ψ is a constant function, let Ψ(uv)(ei) = (ci, ći) for all ei ∈ M, uv ∈ E, where ci
and ći are constants. Let uv and wz be any pair of edges in E. Suppose that intuitionistic fuzzy soft
graph G = (Φ, Ψ, M) is strongly edge irregular intuitionistic fuzzy soft graph. Then degG(uv)(ei) 
=
degG(wz)(ei), where uv and wz are any pair of edges in E,
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degG(uv)(ei) + (ci, ći) 
= degG(wz)(ei) + (ci, ći)

degG(uv)(ei) + Ψ(uv)(ei) 
= degG(wz)(ei) + Ψ(wz)(ei)

tdegG(uv)(ei) 
= tdegG(wz)(ei)

for all ei ∈ M, where uv and wz are any pair of edges in E. Hence G is strongly edge totally irregular
intuitionistic fuzzy soft graph.

Theorem 9. Let G = (Φ, Ψ, M) be a connected intuitionistic fuzzy soft graph on G∗ = (V, E) and Ψ is
constant function. If G is strongly edge totally irregular intuitionistic fuzzy soft graph, then G is strongly edge
irregular intuitionistic fuzzy soft graph.

Remark 3. Let G = (Φ, Ψ, M) be a connected intuitionistic fuzzy soft graph on G∗ = (V, E). If G is both
strongly edge irregular intuitionistic fuzzy soft graph and strongly edge totally irregular intuitionistic fuzzy soft
graph. Then Ψ need not be a constant function.

Theorem 10. Let G = (Φ, Ψ, M) be a intuitionistic fuzzy soft graph on G∗ = (V, E). If G is strongly edge
irregular intuitionistic fuzzy soft graph, then G is a neighbourly edge irregular intuitionistic fuzzy soft graph.

Proof. Let G be an intuitionistic fuzzy soft graph on G∗ = (V, E). We assume that G is strongly edge
irregular intuitionistic fuzzy soft graph, then every pair of edges in intuitionistic fuzzy soft graph G
have distinct degrees. This implies every pair of adjacent edges have distinct degrees. Hence, G is
a neighbourly edge irregular intuitionistic fuzzy soft graph.

Theorem 11. Let G = (Φ, Ψ, M) be an intuitionistic fuzzy soft graph on G∗ = (V, E). If G is strongly edge
totally irregular intuitionistic fuzzy soft graph, then G is a neighbourly edge totally irregular intuitionistic
fuzzy soft graph.

Remark 4. Converse of the above Theorems 10 and 11 need not be true.

Theorem 12. Let G = (Φ, Ψ, M) be a connected intuitionistic fuzzy soft graph on G∗ = (V, E) and Ψ
is constant function. If G is strongly edge irregular intuitionistic fuzzy soft graph, then G is an irregular
intuitionistic fuzzy soft graph.

Proof. Let G be a connected intuitionistic fuzzy soft graph on G∗ = (V, E). We assume that Ψ is
a constant function, let Ψ(uv)(ei) = (ci, ći), for all uv ∈ E, ei ∈ M, where ci and ći are constants.
Consider G is strongly edge irregular intuitionistic fuzzy soft graph, then every pair of edges in G have
distinct degrees. Let uv and vz are adjacent edges in G having distinct degrees, then for all ei ∈ M

degG(uv)(ei) 
= degG(vz)(ei)

degG(u)(ei) + degG(v)(ei)− 2Ψ(uv)(ei) 
= degG(v)(ei) + degG(z)(ei)− 2Ψ(vz)(ei)

degG(u)(ei) + degG(v)(ei)− 2(ci, ći) 
= degG(v)(ei) + degG(z)(ei)− 2(ci, ći)

degG(u)(ei) + degG(v)(ei) 
= degG(v)(ei) + degG(z)(ei)

degG(u)(ei)+ 
= degG(z)(ei)

this implies that G is an irregular intuitionistic fuzzy soft graph.

Theorem 13. Let G = (Φ, Ψ, M) be a connected intuitionistic fuzzy soft graph on G∗ = (V, E) and Ψ is
constant function. If G is strongly edge totally irregular intuitionistic fuzzy soft graph, then G is an irregular
intuitionistic fuzzy soft graph.

Remark 5. Converse of the above Theorems 12 and 13 need not be true.
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Theorem 14. Let G = (Φ, Ψ, M) be a connected intuitionistic fuzzy soft graph on G∗ = (V, E) and Ψ is
a constant function. If G is strongly edge irregular intuitionistic fuzzy soft graph, then G is highly irregular
intuitionistic fuzzy soft graph.

Proof. Let G be a connected intuitionistic fuzzy soft graph. We assume that Ψ is a constant function,
let Ψ(uv)(ei) = (ci, ći), for all ei ∈ M, uv ∈ E, where ci and ći are constants. Let u be any vertex
adjacent with vertices v, w and z. Then uv, uw, and ux are adjacent edges in G. Suppose that G is
strongly edge irregular intuitionistic fuzzy soft graph, then every pair of edges in G has distinct
degrees. This implies that every pair of adjacent edges in G has distinct degrees,

degG(uv)(ei) 
= degG(uw)(ei) 
= degG(ux)(ei)

degG(u)(ei) + degG(v)(ei)− 2Ψ(uv)(ei) 
= degG(u)(ei) + degG(w)(ei)− 2Ψ(uw)(ei) 
= degG(u)(ei) +

degG(x)(ei)− 2Ψ(ux)(ei)

degG(u)(ei) + degG(v)(ei)− 2(ci, ći) 
= degG(u)(ei) + degG(w)(ei)− 2(ci, ći) 
= degG(u)(ei) +

degG(x)(ei)− 2(ci, ći)

degG(u)(ei) + degG(v)(ei) 
= degG(u)(ei) + degG(w)(ei) 
= degG(u)(ei) + degG(x)(ei)

degG(v)(ei) 
= degG(w)(ei) 
= degG(x)(ei)

Clearly, there exists a vertex u which is adjacent to the vertices v, w and x that have distinct degrees.
Hence, G is a highly irregular intuitionistic fuzzy soft graph.

Theorem 15. Let G = (Φ, Ψ, M) be a connected intuitionistic fuzzy soft graph on G∗ = (V, E) and Φ is
a constant function. If G is strongly edge totally irregular intuitionistic fuzzy soft graph, then G is a highly
irregular intuitionistic fuzzy soft graph.

Remark 6. The converse of the above Theorems 14 and 15 need not be true.

Theorem 16. Let G = (Φ, Ψ, M) be an intuitionistic fuzzy soft graph on G∗ = (V, E), a path
on 2n(n > 1) vertices (see Figure 3). If the membership and non-membership values of the edges
s1, s2, s3, . . . , s2n−1 are, (Ψμ1(ei), Ψν1(ei)), (Ψμ2(ei), Ψν2(ei)), . . . , (Ψμ2n−1(ei), Ψν2n−1(ei)), respectively such
that Ψμ1(ei) < Ψμ2(ei) < . . . ,< Ψμ2n−1(ei) and Ψν1(ei) > Ψν2(ei) > . . . > Ψν2n−1(ei) in intuitionistic
fuzzy graph H(ei) corresponding to the parameter ei, for all ei ∈ M, then intuitionistic fuzzy soft graph G is
strongly edge irregular and strongly edge totally irregular intuitionistic fuzzy soft graph.

Figure 3. A path on 2n vertices.

Proof. Let G = (Φ, Ψ, M) be an intuitionistic fuzzy soft graph on G∗ = (V, E), a path on 2n(n > 1)
vertices. Suppose that Ψ(sk)(ei) = (Ψμ(sk)(ei), Ψν(sk)(ei)) be the membership and non-membership
values of the edges sk for k = 1, 2, . . . , 2n − 1, in intuitionistic fuzzy graph H(ei), for all ei ∈ M.
We assume that Ψμ1(ei) < Ψμ2(ei) < . . . ,< Ψμ2n−1(ei) and Ψν1(ei) > Ψν2(ei) > . . . > Ψν2n−1(ei) in
intuitionistic fuzzy graph H(ei) corresponding to the parameter ei, for all ei ∈ M. The degree of each
vertex in G is calculated as:
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degG(v1)(ei) = Ψ(s1)(ei)

degG(vk)(ei) = Ψ(sk−1)(ei) + Ψ(sk)(ei) for k = 2, 3, . . . , 2n− 1
degG(v2n)(ei) = Ψ(s2n−1)(ei) for all ei ∈ M.

The degree of each edge in G is calculated as:

degG(s1)(ei) = Ψ(s2)(ei)

degG(sk)(ei) = Ψ(sk−1)(ei) + Ψ(sk+1)(ei) for k = 2, 3, . . . , 2n− 2
degG(s2n−1)(ei) = Ψ(s2n−2)(ei) for all ei ∈ M.

Clearly, each edge in intuitionistic fuzzy graph H(ei), for all ei ∈ M has distinct degree; therefore,
G is a strongly edge irregular intuitionistic fuzzy soft graph. The total degree of each edge in G is
calculated as:

tdegG(s1)(ei) = Ψ(s2)(ei) + Ψ(s1)(ei)

tdegG(sk)(ei) = Ψ(sk−1)(ei) + Ψ(sk+1)(ei) + Ψ(sk)(ei) for k = 2, 3, . . . , 2n− 2
degG(s2n−1)(ei) = Ψ(s2n−2)(ei) + Ψ(s2n−1)(ei) for all ei ∈ M.

Since each edge in G has distinct total degree, therefore G is strongly edge totally irregular
intuitionistic fuzzy soft graph. Hence, G is a strongly edge irregular and strongly edge totally irregular
intuitionistic fuzzy soft graph.

Theorem 17. Let G = (Φ, Ψ, M) be an intuitionistic fuzzy soft graph on a simple graph G∗ = (V, E), be a star
K1,n (Figure 4). If each edge in intuitionistic fuzzy graph H(ei), for all ei ∈ M, has distinct membership and
non-membership values, then G is strongly edge irregular and edge totally regular intuitionistic fuzzy soft graph.

Figure 4. Star K1,n.

Proof. Let G = (Φ, Ψ, M) be an intuitionistic fuzzy soft graph on G∗. Let v, v1, v2, v3, . . . , vn be vertices
of G∗, v1, v2, v3, . . . , vn be the vertices adjacent to a vertex v. We assume that no two adjacent edges
have the same membership and non-membership values in intuitionistic fuzzy graph H(ei), for all
ei ∈ A, then

degG(vvk)(ei) = degG(v)(ei) + degG(vk)(ei)− 2Ψ(vvk)(ei)

= Ψ(vv1)(ei) + Ψ(vv2)(ei) + . . . + Ψ(vvn)(ei) + Ψ(vvk)(ei)− 2Ψ(vvk)(ei)

degG(vvk)(ei) = Ψ(vv1)(ei) + Ψ(vv2)(ei) + . . . + Ψ(vvn)(ei)−Ψ(vvk)(ei).

Clearly, all the edges in H(ei), for all ei ∈ A that have distinct degrees; therefore, G is a strongly
edge irregular intuitionistic fuzzy soft graph. The total degree of each edge in H(ei), for all ei ∈ A is
calculated as:

tdegG(vvk)(ei) = degG(v)(ei) + degG(vk)(ei)−Ψ(vvk)(ei)

= Ψ(vv1)(ei) + Ψ(vv2)(ei) + . . . + Ψ(vvn)(ei) + Ψ(vvk)(ei)−Ψ(vvk)(ei)

= Ψ(vv1)(ei) + Ψ(vv2)(ei) + . . . + Ψ(vvn)(ei).
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Clearly, all the edges in H(ei), for all ei ∈ A having same total degree, therefore G is edge totally
regular intuitionistic fuzzy soft graph.

Theorem 18. Let G = (Φ, Ψ, M) be an intuitionistic fuzzy soft graph on G∗ = (V, E), a barbell graph Bm,n

(connecting two complete bipartite graphs K1,m and K1,n by a bridge Figure 5). If each edge in intuitionistic
fuzzy graphs of G has distinct membership and non-membership values then G is a strongly edge irregular and
edge totally regular intuitionistic fuzzy soft graph.

Figure 5. Barbell graph.

Proof. Let G = (Φ, Ψ, M) be an intuitionistic fuzzy soft graph on G∗. Suppose that G∗ is a barbell
graph B(m,n), then there exist a bridge, say wz, connecting m vertices v1, v2, . . . , vm to a vertex w and
n vertices u1, u2, . . . , un to a vertex z. Let Ψ(wz)(ei) be the value of bridge wz in intuitionistic fuzzy
graph H(ei), for all ei ∈ M. Let Ψ(sk)(ei) be the value of the edges in H(ei), such that Ψ(s1)(ei) <

Ψ(s2)(ei) < . . . < Ψ(sm)(ei) for all ei ∈ M, k = 1, 2, . . . , m. Let Ψ( fk)(ei) be the value of the edges in
H(ei), such that Ψ( f1)(ei) < Ψ( f2)(ei) < . . . < Ψ( fn)(ei) for all ei ∈ M, k = 1, 2, . . . , n. Suppose that
Ψ(s1)(ei) < Ψ(s2)(ei) < . . . < Ψ(sm)(ei) < Ψ( f1)(ei) < Ψ( f2)(ei) < . . . < Ψ( fn)(ei) < Ψ(wz)(ei), for
all ei ∈ M. The degree of each edge in intuitionistic fuzzy soft graph G is defined as:

degG(wz)(ei) = degG(w)(ei) + degG(z)(ei)− 2Ψ(wz)(ei)

= Ψ(wv1)(ei) + Ψ(wv2)(ei) + . . . + Ψ(wvm)(ei) + Ψ(wz)(ei) + Ψ(zu1)(ei) + Ψ(zu2)(ei) +

. . . + Ψ(zun)(ei) + Ψ(wz)(ei)− 2Ψ(wz)(ei)

= Ψ(wv1)(ei)+Ψ(wv2)(ei)+ . . .+Ψ(wvm)(ei)+Ψ(zu1)(ei)+Ψ(zu2)(ei)+ . . .+Ψ(zun)(ei),
degG(wvk)(ei) = degG(w)(ei) + degG(vk)(ei)− 2Ψ(wvk)(ei), for k = 1, 2, . . . , m

= Ψ(wv1)(ei) + Ψ(wv2)(ei) + . . . + Ψ(wvm)(ei) + Ψ(wz)(ei) + Ψ(wvk)(ei)− 2Ψ(wvk)(ei)

= Ψ(wv1)(ei) + Ψ(wv2)(ei) + . . . + Ψ(wvm)(ei) + Ψ(wz)(ei)−Ψ(wvk)(ei)

degG(zuk)(ei) = degG(z)(ei) + degG(uk)(ei)− 2Ψ(zuk)(ei) for k = 1, 2, . . . , n
= Ψ(zu1)(ei) + Ψ(zu2)(ei) + . . . + Ψ(zum)(ei) + Ψ(wz)(ei) + Ψ(zuk)(ei)− 2Ψ(zuk)(ei)

= Ψ(zu1)(ei) + Ψ(zu2)(ei) + . . . + Ψ(zum)(ei) + Ψ(wz)(ei)−Ψ(zuk)(ei).

Clearly, all the edges in G have distinct degrees therefore G is strongly edge irregular intuitionistic
fuzzy soft graph. The total degree of each edge in intuitionistic fuzzy soft graph G is defined as:

tdegG(w‘1z)(ei) = degG(wz)(ei) + Ψ(wz)(ei)

= Ψ(wv1)(ei) + . . . + Ψ(wvm)(ei) + Ψ(zu1)(ei) + . . . + Ψ(zun)(ei) + Ψ(wz)(ei)

tdegG(wvk)(ei) = degG(wvk)(ei) + Ψ(wvk)(ei)

= Ψ(wv1)(ei) + Ψ(wv2)(ei) + . . . + Ψ(wvm)(ei) + Ψ(wz)(ei)−Ψ(wvk)(ei) + Ψ(wvk)(ei)

158



Axioms 2018, 7, 20

= Ψ(wv1)(ei) + Ψ(wv2)(ei) + . . . + Ψ(wvm)(ei) + Ψ(wz)(ei) for k = 1, 2, . . . , m,
tdegG(zuk)(ei) = degG(zuk)(ei) + Ψ(zuk)(ei)

= Ψ(zu1)(ei) + Ψ(zu2)(ei) + . . . + Ψ(zun)(ei) + Ψ(wz)(ei)−Ψ(zuk)(ei) + Ψ(zuk)(ei)

= Ψ(zu1)(ei) + Ψ(zu2)(ei) + . . . + Ψ(zun)(ei) + Ψ(wz)(ei) for k = 1, 2, . . . , n.

Clearly, all the edges wvk for k = 1, 2, . . . , m have the same total edge degree and all zuk for
k = 1, 2, . . . , n in G have the same total edge degree; therefore, G is not a strong edge totally irregular
intuitionistic fuzzy soft graph.

3. Application

In intuitionistic fuzzy soft set, the approximate functions are intuitionistic fuzzy subsets,
the membership value and non-membership value are used to describe the parameterized family of
intuitionistic fuzzy soft set for dealing with uncertainties. In many real applications, an intuitionistic
fuzzy graph cannot be described comprehensively because of the uncertainty of knowledge. It is more
reasonable to give simultaneously a membership degree and a non-membership degree for dealing with
complicated and uncertain knowledge from the viewpoint of parameters. From such a point of view,
intuitionistic fuzzy soft graphs are used in decision-making problems for better results. Intuitionistic
fuzzy graphs are discussed in terms of the uncertainty in various real life phenomena, but intuitionistic
fuzzy soft sets are provided for a more generalized and accurate approximate description of objects.
We present an application of an intuitionistic fuzzy soft graph in a decision-making problem.
The problem of object recognition has received paramount importance in recent times. The recognition
problem may be viewed as a decision making-problem, where the final identification of the object
is based upon the available set of information. We use the technique to calculate the score for the
selected objects on the basis of k number of parameters (e1, e2, . . . , ek) out of n number of objects
(C1, C2, . . . , Cn). A software house wants to select the best software development project, a project
with the greatest business impact, the least effort required and the highest probability of success.
Let V = {E-commerce development project, Custom development project, Applications development
project, Game development project, Browser development project, Web development project, System
integration development project} be the set of software development projects under consideration,
M = {e1 =“ensure project success”, e2 =“technological feasibility”, e3 =“economical viability”} be
a set of decision parameters correspond to the vertex set V, ssssssE = {E-commerce development
project Custom development project, E-commerce development project Applications development
project, E-commerce development project Game development project, E-commerce development
project Browser development project, Applications development project Web development project,
Application development project Browser development project, Game development project Browser
development project,Browser development project Web development project, Web development project
System integration development project, Game development project System integration development
project} ⊆ V × V describes the relationship between two applicants corresponding to the given
parameters e1, e2 and e3. Our aim is to find out the best development project with the choice of
parameters e1 = “ensure project success”, e2 = “technological feasibility”, e3 = “economical viability”.
We consider an intuitionistic fuzzy soft graph G = (Φ, Ψ, M), where (Φ, M) is an intuitionistic fuzzy
soft set over V which describes the membership and non-membership values of the projects based
upon the given parameters. (Ψ, M) is an intuitionistic fuzzy soft set over E ⊆ V × V describes the
membership and non-membership values of the relationship between two projects corresponding
to the given parameters e1, e2 and e3. An intuitionistic fuzzy soft graph G = {H(e1), H(e2), H(e3)} is
given in Table 1.

The intuitionistic fuzzy graphs H(e1), H(e2) and H(e3) of intuitionistic fuzzy soft graph
G = {H(e1), H(e2), H(e3)} corresponding to the parameters e1 =“ensure project success”,
e2 =“technological feasibility”, and e3 =“economical viability” are shown in Figure 6.
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Table 1. Tabular representation of an intuitionistic fuzzy soft graph.

Φ E-commerce Custom Browser Applications System Integration Game Web

e1 (0.6, 0.2) (0.5, 0.4) (0.8, 0.1) (0.3, 0.4) (0.7, 0.2) (0.4, 0.3) (0.2, 0.3)
e2 (0.3, 0.5) (0.6, 0.3) (0.6, 0.2) (0.6, 0.2) (0.4, 0.2) (0.7, 0.3) (0.8, 0.2)
e3 (0.7, 0.2) (0.4, 0.3) (0.6, 0.2) (0.6, 0.1) (0.8, 0.1) (0.5, 0.4) (0.4, 0.3)

Ψ E-commerce Custom E-commerce Browser E-commerce Web E-commerce System Integration Custom Game

e1 (0.4, 0.3) (0.5, 0.2) (0.2, 0.3) (0.0, 0.0) (0.4, 0.3)
e2 (0.3, 0.4) (0.0, 0.0) (0.2, 0.3) (0.0, 0.0) (0.5, 0.3)
e3 (0.0, 0.0) (0.5, 0.2) (0.4, 0.3) (0.6, 0.2) (0.3, 0.4)

Ψ System Integration Custom Applications Game Applications System Integration Applications Custom

e1 (0.4, 0.3) (0.2, 0.4) (0.3, 0.4) (0.0, 0.0)
e2 (0.4, 0.2) (0.6, 0.3) (0.0, 0.0) (0.0, 0.0)
e3 (0.0, 0.0) (0.5, 0.4) (0.0, 0.0) (0.2, 0.3)

Ψ E-commerce Applications System Integration Browser Browser Applications Game Web Browser Custom

e1 (0.3, 0.3) (0.0, 0.0) (0.0, 0.0) (0.2, 0.3) (0.4, 0.1)
e2 (0.3, 0.3) (0.4, 0.2) (0.6, 0.2) (0.0, 0.0) (0.6, 0.2)
e3 (0.6, 0.1) (0.6, 0.2) (0.0, 0.0) (0.4, 0.3) (0.4, 0.3)

Ψ Browser Web Game Browser System Integration Web Game System Integration Applications Web

e1 (0.0, 0.0) (0.0, 0.0) (0.2, 0.3) (0.0, 0.0) (0.0, 0.0)
e2 (0.5, 0.2) (0.5, 0.2) (0.0, 0.0) (0.4, 0.3) (0.0, 0.0)
e3 (0.0, 0.0) (0.0, 0.0) (0.4, 0.2) (0.0, 0.0) (0.5, 0.4)

By taking the intersection of intuitionistic fuzzy graphs H(e1), H(e2) and H(e3), we obtain
a resultant intuitionistic fuzzy graph H(e), e = e1 ∧ e2 ∧ e3 (see Figure 7). The adjacency matrix of the
resultant intuitionistic fuzzy graph is

H(e) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(0, 0) (0, 0) (0, 0) (0.3, 0.3) (0, 0) (0, 0) (0.2, 0.3)
(0, 0) (0, 0) (0.4, 0.3) (0, 0) (0, 0) (0.3, 0.4) (0, 0)
(0, 0) (0.4, 0.3) (0, 0) (0, 0) (0.4, 0.4) (0, 0) (0, 0)

(0.3, 0.3) (0, 0) (0, 0) (0, 0) (0, 0) (0.2, 0.4) (0, 0)
(0, 0) (0, 0) (0.4, 0.4) (0, 0) (0, 0) (0, 0) (0, 0)
(0, 0.0) (0.3, 0.4) (0, 0) (0.2, 0.4) (0, 0) (0, 0) (0, 0)
(0.2, 0.3) (0, 0) (0, 0) (0, 0) (0, 0) (0, 0) (0, 0)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

The score values of resultant intuitionistic fuzzy graph H(e) is computed with the score function

Sij =

√
μj

2 + (νj − 1)2 + πj
2√

μj
2 + (νj − 1)2 + πj

2 +
√
(μj − 1)2 + (νj)2 + πj

2
(1)

and Sij ∈ [0, 1] the choice values are given in Table 2.

Table 2. Decision table with score values and choice values.

E-commerce Custom Browser Applications System Integration Game Web ḿi

E-commerce 0.5 0.5 0.5 0.5 0.5 0.5 0.471 3.471
Custom 0.5 0.5 0.54 0.5 0.5 0.46 0.5 3.5
Browser 0.5 0.54 0.5 0.5 0.5 0.5 0.5 3.54

Applications 0.5 0.5 0.5 0.5 0.5 0.433 0.5 3.433
System integration 0.5 0.5 0.5 0.5 0.5 0.5 0.5 3.5

Game 0.5 0.46 0.5 0.433 0.5 0.5 0.5 3.39
Web 0.47 0.5 0.5 0.5 0.5 0.5 0.5 3.47
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Figure 6. Intuitionistic fuzzy soft graph G = {H(e1), H(e2, H(e3)}.

Figure 7. Intuitionistic fuzzy graph H(e), where e = e1 ∧ e2 ∧ e3.
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From the Table 2, it follows that the maximum choice value is ḿ3 = 3.54 and so the optimal
decision is to select the browser development project after specifying weights for different parameters.
We present our method as an algorithm (Algorithm 1) that is used in our application.

Algorithm 1 Find optimal decision for different parameters

1: Input: The choice parameters e1, e2, · · · , ek for the selection of objects.
2: Input: The intuitionistic fuzzy soft set (Φ, M) over V and intuitionistic fuzzy soft relation (Ψ, M)

on V.
3: Input: Adjacency matrices H(e1), H(e2), · · · , H(ek) with respect to the parameters.
4:
5: Compute the resultant adjacency matrix H(e) =

⋂
k

H(ek) for all ek ∈ M.
6: Calculate the the score value of resultant adjacency matrix H(e) by using score function Sij.
7: Calculate the choice values ḿi = ∑

j
Sij of each objects.

8: The decision is mj if ḿj = max
i

ḿi.
9: If j has more than one value then any one may be chosen.

4. Conclusions and Future Work

Graph theory has various applications in different areas including mathematics, science and
technology, biochemistry(genomics), electrical engineering (communication networks and coding
theory), computer science (algorithms and computation) and operations research (scheduling). Soft set
theory plays a significant role as a mathematical tool for mathematical modeling, system analysis
and computing of decision making problems with uncertainty. An intuitionistic fuzzy soft model is
a generalization of the fuzzy soft model which gives more precision, flexibility, and compatibility to
a system when compared with the fuzzy soft model. We have applied the concept of intuitionistic
fuzzy soft sets to graphs in this paper. We have presented certain types of intuitionistic fuzzy soft
graphs. In the future we intend to extend our research of fuzzification to (1) Interval-valued fuzzy
soft graphs; (2) Bipolar fuzzy soft hypergraphs, (3) Fuzzy rough soft graphs, and (4) Application of
intuitionistic fuzzy soft graphs in decision support systems.
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Abstract: In this short paper, we aim at a qualitative framework for modeling multivariate decision
problems where each alternative is characterized by a set of properties. To this extent, we consider
convex spaces as underlying universes and make use of lattice operations in convex spaces to
formalize the notion of quantiles. We also put in evidence that many important models of decision
problems can be viewed as convex spaces-based models. Several properties of aggregation operators
are translated into this general setting, and independence and invariance are used to provide
axiomatic characterizations of quantiles.
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1. Introduction

The aim of this paper is to propose a general unified framework for defining aggregation operators.
Our framework is abstract and algebraic in nature and in this framework we generalize some results
of the literature [1–4].

We consider convex structures where the notion considered here (see [5]) is not restricted to the
context of vector spaces. The basic idea of our approach is to describe the space of alternatives in terms
of a “topological” relation. We can prove that lattices, median spaces and interval spaces are convex
spaces and also that to every property spaces (see [1,2,4]) is associated with a convex structure.

We then focus on aggregation operators f : XA → X where X is convexity space and A is
a nonempty set. We study aggregation operators that satisfy properties of monotonicity and
independence and we consider aggregation operators that are based on decisive subsets of A. Moreover,
we consider operators that are componentwise compatible with the structure of convexity space of X.

We propose also a particular version of Arrow’s theorem thus considering a link between
aggregation theory and social choice theory as in [6]. It appears that there are many connections
between the work presented here with the results of [3,4,7–12]. Applications of these types of results
can be found in in [4,13,14].

The structure of the paper is as follows. In Section 2 we introduce convex spaces and we provide
the necessary definitions. Section 3 is devoted to describe some important examples. Finally in
Sections 3 and 4 we study some classes of agggregation operators acting on abstract convex structures.

2. Abstract Convex Structures

The notion of convexity is a basic mathematical structure that is used to analyze many different
problems and there are in the literature various kinds of generalized, topological, or axiomatically
defined convexities. There are generalizations that are motivated by concrete problems and those
that are stated from an axiomatic point of view, where the notion of abstract convexity is based on
properties of a family of sets.

In this paper the general notion of abstract convexity structure that is studied in [5] is considered.

Axioms 2018, 7, 35; doi:10.3390/axioms7020035 www.mdpi.com/journal/axioms165
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Definition 1. A family C of subsets of a set X is a convexity on a set X if ∅ and X belong to C and C is closed
under arbitrary intersections and closed under unions of chains.

The elements of C are called convex sets of X and the pair (X, C) is called a convex space.
Moreover, the convexity notion allows us to define the notion of the convex hull operator, which is

similar to that of the closure operator in topology.

Definition 2. If X is a set with a convexity C and A is a subset of X, then the convex hull of A ⊆ X is the set

convA =
⋂
{C ∈ C : A ⊆ C}. (1)

This operator enjoys certain properties that are identical to those of usual convexity: for instance
convA is the smallest convex set that contains set A. It is also clear that C is convex if and only if
convC = C.

The convex hull of a set {x1, . . . , xn}is called an n-polytope and is denoted by [x1, . . . , xn].
A 2-polytope [a, b] is called the segment joining a, b.

A convexity C is called N-ary (N ∈ N) if A ⊆ C whenever convF ⊆ A for all F ⊆ A where F has
at most N elements. A 2-ary convexity is called an interval convexity.

We also consider biconvex spaces, i.e., triples of the form (X,A,B) whereA,B are two convexities
on a set X, called the lower and the upper convexity. Obviously every convex space (X, C) can be
viewed as a biconvex space (X, C, C).

If X, Y are convex spaces with convexities C,D, respectively, we consider the following definition
of a compatible map between two convex spaces.

Definition 3. A map γ : X → Y is convex if γ−1(C) ∈ C for every ∈ C and such that when Ci ∈ C for i ∈ I

γ(
⋂
i∈I

Ci) =
⋂
i∈I

γ(Ci). (2)

For a general theory of convexity we refer to [5].

3. Some Examples

We present some examples and classes of convex spaces. First of all we note that every real vector
space together with the collection of all convex sets in the usual meaning, is a 2-arity convex space.

Ordered spaces The usual convexity on R can be defined in terms of ordering as follows: a set C
is convex if and only if when a, b ∈ C and a ≤ x ≤ b implies x ∈ C. We can define in the same way
a convexity on a partially ordered set (see [5], p. 6). Such a convexity is called the order convexity.

Lattices If 〈L,∧,∨〉 is a lattice we denote by L and U the collections of all ideals and all filters
respectively (the empty set and the whole lattice are treated as (non-proper) ideals and filters). Since the
union of a chain of filters (ideals) is a filter (ideal), these are two convexities on L that will be called
the lower and the upper lattice convexity respectively. Moreover there exists a convexity C generated
by L⋃U the least convexity containing all ideals and filters. This convexity will be called the lattice
convexity on L.

Please note that if L is linearly ordered then G equals the order convexity. The convexity of the
dual lattice is the same as the original one.

It is possible to consider lattices as convex spaces (with the lattice convexity) as well as bi-convex
spaces (with the lower and upper lattice convexities). It is easy to check that a proper halfspace is
either a prime filter or a prime ideal. It can be proved also that the lattice convexity is an interval
convexity and that

[a, b] = {x ∈ L : a ∧ b ≤ x ≤ a ∨ b}. (3)

166



Axioms 2018, 7, 35

Median spaces A median space is a convexity space X with an interval convexity such that for
each a, b, c ∈ X there exists a unique point in [a, b] ∩ [a, c] ∩ [b, c]. We call it the median of a, b, c and
denote by m(a, b, c). This defines a map m : X3 → X, called the median operator on X. In any convexity
space, every point in [a, b] ∩ [a, c] ∩ [b, c] is called a median of a, b, c. There is a natural way to define
the structure of a median space by means of the median operator (see [5]).

Property-based domains A property-based domain (as defined in [1]) is a pair (X,H) where X
is a non-empty set and H is a collection of non-empty subsets of X and if x, y ∈ X and x 
= y there
exists H ∈ H such that x ∈ H and y /∈ H. The elements of H are referred to as properties and if x ∈ H
we say that x has property represented by the subset H. This definition is slightly more general than
that of [3] and of [4], in fact it is not assumed that the set X is finite and we do not consider that the set
Hc is a property if H is a property.

The “property space” model provides a very general framework for representing preferences and
then aggregation of preferences. In every property-based domain we can define a convexity defined as
follows. A subset S ⊆ X is said to be convex if it is intersection of properties.

Arrowian framework The problem of preference aggregation can be viewed as a property-based
domain and then as a convex space. We consider a set of alternatives A and a set R of binary relations
in A. We can consider different requirements on the set R and so R can be the set of preorders or the
set of linear orders in A.

If we define for each pair a, b ∈ A the set

Ha,b = {R ∈ R : aRb} (4)

the family H = {Ha,b : a, b ∈ A} defines a property-based domain structure on the set R. See [4] for
more details on Arrowian framework.

4. Aggregation Functional over Convex Spaces

Aggregation operators are mathematical functions that are used to combine several inputs
into a single representative outcome; see [15] for a comprehensive overview on aggregation theory.
Aggregation operators play an important role in several fields such as decision sciences, computer
and information sciences, economics and social sciences and there are a large number of different
aggregation operators that differ on the assumptions on the inputs and about the information that we
want to consider in the model.

Definition 4. If N is an arbitrary nonempty set and X is a convex space, then an aggregation functional is
a map F : XA → P(X).

Our framework is very general, we do not assume that the sets X and A are finite or that the
map F : XA → P(X) is surjective. Moreover, we consider the case in which there are more than one
equivalent solutions and also the case in which there are no solutions. For each c ∈ X, we denote by
c the constant c map in LA.

The following properties of an aggregation functional are key to our analysis.

Monotonicity If C ∈ C, F( f ) ⊆ C and y ∈ C then F(g) ⊆ C where g(i) = y and f (j) = g(j)
if j 
= i.
Idempotence c ∈ F(c) for every c ∈ X.
Independence If C, D ∈ C F( f ) ⊆ C and for all i ∈ A, f (i) ∈ C if and only if g(i) ∈ D we have
that F(g) ⊆ D .
Invariance For every convex map γ : X → X, F(γ ◦ f ) = γ(F( f ))
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5. Quantiles in Convex Spaces

We briefly consider aggregation functionals based on a complete lattices. As it is well known
the quantile is a generalization of the concept of median and it plays an important role in statistical
and economic literature. We study quantile in an ordinal framework and we consider an axiomatic
representation of quantiles as in [1,7,8]. Here we provide a definition and characterization of quantiles
for lattice-valued operators.

If A is a nonempty set and L a bounded lattice a non-additive measure on A with values in L is
a function m : 2A → L such that m(∅) = 0, m(A) = 1 and m(C) ≤ m(D) whenever C ⊆ D.

Definition 5. If α is an element of L, then the lattice-valued quantile of level α is the functional Qα : LA → L
defined by

Qα( f , m) =
∨
{x : m({ f ≥ x}) ≥ α}.

It can be proved that this definition extends the well known definition of quantile for real-valued
functions (see [8]).

We recall the definition of completely distributive lattice. A complete lattice L is said to be
a completely distributive is the following distributive law holds

∧
i∈I

(∨
j∈J

xij

)
=

∨
f∈J I

(∧
i∈I

xi f (i)

)
,

for every doubly indexed subset {xij : i ∈ I, j ∈ J} of L. Please note that every complete chain
(in particular, the extended real line and each product of complete chains) is completely distributive.
Moreover, complete distributivity reduces to distributivity in the case of finite lattices.

A collection of sets U ⊆ 2A is said to be an upper set in A if X ∈ U and X ⊂ Y implies that Y ∈ U .
Then we can prove the following results.

Proposition 1. Let L be a completely distributive lattice. An aggregation functional F : LA → L is a lattice-
valued quantile with respect to a non-additive measure m : 2A → L if and only if there exists a upper set U
such that

F( f ) =
∨
{x ∈ L : there exists U ∈ U such that f (i) ≥ x for every i ∈ U} (5)

or if and only if there exists a upper set U such that

F( f ) =
∧
{x ∈ L : there exists U ∈ U such that f (i) ≤ x for every i ∈ U} (6)

Proof of Proposition 1. By Proposition 1 in [7] if L is a completely distributive lattice an aggregation
functional F : LA → L is a lattice-valued quantile with respect to a non-additive measure m : A → L if
and only if there exists a upper set U such that

F( f ) =
∨

U∈U

∧
i∈U

f (i)

or if and only if there exists a upper set U such that

F( f ) =
∧

U∈U

∨
i∈U

f (i).

Then we can prove that F is a lattice-valued quantile when F( f ) ≥ x if and only if there exists
U ∈ U such that f (i) ≥ x for every i ∈ U. Then we get

F( f ) =
∨
{x ∈ L : there exists U ∈ U such that f (i) ≥ x for every i ∈ U}.
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The second statement follows similarly.

Since we know that the lattice convexity is an interval convexity we can prove the following
characterization of lattice-valued quantiles.

Proposition 2. If L is a completely distributive lattice, then an aggregation functional F : LA → L is a lattice-
valued quantile with respect to a non-additive measure m : A → L if and only if there exists an upper set U
such that

F( f ) =
⋂
{C ∈ C : {i : f (i) ∈ C} ∈ U} (7)

Then the elements in F( f ) belong to a convex set C if and only if f (i) belongs to C for a “decisive ”
or a “large enough”set.

Let us define quantiles in an abstract convex structures.

Definition 6. If N is an arbitrary nonempty set and X is a convex space, then a quantile is an aggregation
functional F : XA → P(X) defined by

F( f ) =
⋂
{C ∈ C : {i : f (i) ∈ C} ∈ U} (8)

where U is an upper set in A.

Furthermore, we can characterize from an axiomatic point of view quantiles in an abstract
convex structure.

Proposition 3. If N is an arbitrary nonempty set and X is a convex space, then a quantile is a monotone,
idempotent and independent aggregation functional. Conversely an aggregation functional F : XA → P(X)

that is monotone and independent is a quantile.

Proof of Proposition 3. If C is a convex set in C and f is an element of XA we define the set N( f , C) =
{i ∈ N : f (i) ∈ C}. Let F be a quantile, C ∈ C, f an element of XA such that F( f ) ⊆ C and y ∈ C .
If we define an element g of XA by g(i) = y and f (j) = g(j) if j 
= i then N( f , C) ⊆ N(g, C) and so
F(g) ⊆ C. Moreover, if c ∈ C we have that c ∈ F(c) if F is a quantile since N(c, C) = A.

By the definition of quantile if F is a quantile, C, D ∈ C, F( f ) ⊆ C and for all i ∈ A, f (i) ∈ C
if and only if g(i) ∈ D we can easily prove that N( f , C) = N(g, D) and we get F(g) ⊆ D . So we have
proved that quantiles are monotone , idempotent and independent functionals.

We note that functional F is monotone and independent if and only if C, D ∈ C F( f ) ⊆ C ∈ C
and for all i ∈ N, if f (i) ∈ C then g(i) ∈ D we have that F(g) ∈ D .

We say that a set U ⊆ N is decisive with respect to an element C ∈ C if there exists f ∈ XA such
that N( f , C) = U and F(x) ⊆ C. Being F monotone and independent a set U is decisive with respect
to C if and only if for every f ∈ XA such that N( f , C) = U, F( f ) ⊆ C.

Since the functional F is monotone and independent then the set of decisive subset of N does not
depend on the convex set C. If U is the family of decisive subsets of N for every f ∈ XA, F( f ) ⊆ C
if and only if N(F, C) ∈ U . So we have proved that

F( f ) =
⋂
{C : N( f , C) ∈ U} =

⋂
{C ∈ C : {i : f (i) ∈ C} ∈ U}.

The following proposition presents another property of quantiles in convex spaces.

Proposition 4. f N is an arbitrary nonempty set and X is a convex space, then a quantile is an invariant
aggregation functional.
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Proof of Proposition 4. Let F : XA → P(X) be a quantile and γ : X → X a convex map.
Then F(γ ◦ f ) =

⋂{C ∈ C : {i : (γ ◦ f )(i) ∈ C} ∈ U} =
⋂{γ(C), C ∈ C : {i : f (i) ∈ γ−1C} ∈

U} = ⋂{γ(D), D ∈ C : {i : f (i) ∈ D} ∈ U} = ⋂{γ(C), C ∈ C : {i : f (i) ∈ C} ∈ U}.
If D = C ∈ C : {i : f (i) ∈ C} ∈ U} being γ continuous⋂

C∈D
γ(C) = γ(

⋂
C∈D

C)

and we get that F(γ ◦ f ) = γ(F( f )).

6. Concluding Remarks

We introduced a unified qualitative framework for studying aggregation operators. The approach
presented in this paper has taken its inspiration from social choice theory and we generalize some
results in social choice in certain respects. This setting has several appealing aspects, for it provides
sufficiently rich structures studied in the literature , which allow the definition of quantiles from
an ordinal point of view, and which do not depend on the usual arithmetical structure of the reals.

There are however many opportunities for much more detailed research in this area in particular
from the point of view of aggregation theory. An obvious topic for future research is to analyze other
aggregation functionals defined in convex spaces. There are several extensions avaiable within this
framework, for instance, one could consider Sugeno type integral defined by a class of decisive sets.
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