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Editorial

Editorial for Special Issue “3D/4D Geological Modeling for
Mineral Exploration”
Gongwen Wang

School of Earth Sciences and Resources, China University of Geosciences Beijing, Beijing 100083, China;
gwwang@cugb.edu.cn

With the development of high-precision geological observation technology, in situ
mineral microanalysis technology, isotope geochemical analysis technology, deep geo-
physical exploration technology, deep drilling, real-time mining, remote sensing high-
resolution hyperspectral image technology, and supercomputer and industrial intelligence,
geoscience has entered an era of big data and artificial intelligence in the 21st century. Three-
dimensional/four-dimensional (3D/4D) geoscience modeling with the multi-disciplinary
intersection of geosciences has been used as the basis for mineral exploration and the
extraction of geosciences information for mineral resources assessment. The European Geo-
sciences Union launched the second phase of the OneGeology plan using 3D/4D modeling,
artificial intelligence technology, and a big data methodology at the Resources for Future
Generations conference (RFG2018) [1].

Three-dimensional/four-dimensional geological modeling is a key technology and
methodology for geologists to understand geological events and quantitatively analyze
multiscale metallogenic models for mineral exploration. The Special Issue aims to improve
decision-making processes using 3D/4D geological modeling for mineral exploration
and multiple innovative methodologies and technologies (e.g., conventional explicit and
implicit modeling, real-time mining and 5G+ information technology, artificial intelligence
decision-making, 3D/4D simulation, and digital twin). The geological concept model can
be quantitatively analyzed by typical deposit research with an exploration engineer; thus,
3D/4D models can be built, simulated, and integrated via multisource geosciences datasets
or big data from the field survey and the analysis of geosciences methods. Constructing
3D/4D certainty models for mineral exploration using multiscale and multisource datasets
can be challenging [1,2]; mineral resource assessment and environment protection are
associated with regional mining development and strategic planning.

Lv et al. [2] used GIS technology to integrate geological information, geophysical,
geochemical, and remote sensing data and then applied RBFLN model in-depth learning
to carry out two-dimensional metallogenic prediction and finally successfully delineated
favorable 3D target zones. It can be seen that the deep metallogenic prediction method
based on machine learning provides a scientific basis for the exploration and deployment
of mineral resources. Mineral resource prediction and evaluation methods are developing
toward the direction of model integration and intelligent information analysis. In addition
to 3D geological modeling and metallogenic prediction of solid minerals, Zhang et al. [3]
applied 3D Structural Modeling (3D SM) and Joint Geophysical Characterization to hydro-
carbon reservoir characterization. The results show that this method is helpful in better
understanding the structural and stratigraphic characteristics of the reservoir, the spatial dis-
tribution of associated facies and the petrophysical properties to conduct reliable reservoir
characterization. Liu et al. [4] discussed the mineralization and oxidation transformation
process of Shangfanggou molybdenite in the supergene stage by using three-dimensional
(3D) multi-parameter geological modeling and microanalysis. Meanwhile, from macro
to micro, the temporal–spatial–genetic correlation and exploration constraints are also
established through the 3D geological modeling of industrial Mo orebodies and Mo oxide
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orebodies. This Special Issue also includes a study on Micro-Mechanisms and Implications
of Continental Red Beds by He et al. [5].

The method for deep targeting based on a stepped metallogenic model and the method
for predicting the deep mineral resource potential of gold deposits based on the shallow re-
sources of ore-controlling faults, Song et al. [6] predicted five deep prospecting target areas
of the Jiaojia fault and Sanshandao fault, and the total gold resources of three ore-controlling
faults, Sanshandao, Jiaojia, and Zhaoping, are about 3377–6490 tons at −5000 to −2000 m.
Wu et al. [7] proposed the bi-Coons interpolation surface modeling method for an ore body
model based on a set of cross-contour polylines (geological polylines interpreted from the
raw geological sampling data) in his article, which can be used to effectively recover the
complex ore body model from a set of cross contours polylines, providing a new technology
for the establishment of the ore body model. With the development of deep prospecting,
Short-Wave Infrared-spectrum 3D alteration mapping has been applied. With the rise of ar-
tificial intelligence, the combination of machine learning and geological big data has become
a hot issue in the field of 3D Mineral prospectivity modeling (3DMPM) [8]. On the basis
of quantitative extraction of metallogenic characteristics, Meng et al. [8], Kong et al. [9],
and Yu et al. [10] constructed the deep 3D geological model of the Xuancheng-Mashan
area and the deep geochemical model of the Zaozigou gold deposit, and then adopted the
machine learning method to predict the deep quantitative mineral resources, and evaluated
their effects. The results indicate that the machine learning method has good performance
in the quantitative prediction of deep mineral resources, which is worthy of popularization
and application in 3D quantitative metallogenic prediction. Li et al. [11] combined 3D
spectral modeling and 3D geological modeling techniques to establish the altered mineral
model and the multi-parameter model of the ore body of the Zhaoxian gold deposit in the
northwestern Jiaodong Peninsula and then extracted and synthesized the metallogenic
information to analyze the exploration targeting.

Abbassi et al. [12] developed a 3D statistical tool to extract geological features from
inverted physical property models based on the synergy between independent component
analysis and continuous wavelet transform. Multiple 3D geophysical images are also auto-
matically interpreted by a hybrid Spectral Feature Subset Selection (SFSS) algorithm based
on a generalized supervised neural network algorithm to reconstruct limited geological
targets from 3D geophysical maps. Therefore, 3D geological and geophysical modeling are
key exploration criteria for mineral resources [1,12].

Generally, 4D numerical simulations based on 3D geological models are used to
extract the 3D exploration criteria for 3D targeting and mineral resources assessment [1].
In addition, machine learning and high-grade geostatistics can be used to extract 3D
exploration criteria. It is hoped that this Special Issue is a valuable learning and research
resource for anyone interested in the study of 3D/4D geological modeling research for
mineral exploration and that it will serve as the basis for further research, including real-
time mining and wisdom mine.

Funding: National Key R&D Program: 2022YFC2903604; No.51 of Shandong Provincial Department
of Natural Resources. Provincial geological exploration project in 2022.

Conflicts of Interest: The author declares no conflict of interest.
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Applications of Radial Basis Functional Link Networks in the
Exploration for Lala Copper Deposits in Sichuan
Province, China
Xiumei Lv * , Wangdong Yang, Xiaoning Liu and Gongwen Wang

School of Earth Sciences and Resources, China University of Geosciences Beijing, Beijing 100083, China;
yangwdcugb@163.com (W.Y.); 15605219798@163.com (X.L.); gwwang@cugb.edu.cn (G.W.)
* Correspondence: lvxm163@163.com; Tel.: +86-18810616595

Abstract: The Lala copper area in Huili County, Sichuan Province, China, is favored by superior
regional metallogenic geological conditions due to its location in an extremely important copper–
iron metallogenic belt in southwest China, and it has witnessed the formation of a series of unique
iron–copper deposits following the superposition of multiple tectonic events. In recent years, major
mineral exploration breakthroughs have been achieved in the deep and peripheral zones of this
area. Using the Lala copper mining area in Sichuan as an example, this paper describes metallogenic
prediction research carried out based on multivariate geoscience information (geological information,
geophysics, geochemistry, and remote sensing data) and the application of geographic information
system (GIS) technology and the radial basis function neural network (RBFLN) model. The five spe-
cific aspects covered in this paper are as follows: (1) we collected geology–geophysics–geochemistry
remote sensing data and other information, adopted GIS technology to extract multivariate geo-
science ore-forming anomaly information, and established a geoscience prospecting information
database; (2) we applied the RBFLN algorithm for information on integrated analysis of ore-forming
anomalies in the study area; (3) we applied a statistical method to divide the threshold value to
delineate favorable ore-prospecting target areas; (4) we applied three-dimensional (3D) visualization
technology, through which sample assistance was verified, to evaluate the performance of the RBFLN
model; and (5) the results revealed that the RBFLN model can integrate multivariate and multi-type
geoscience information and effectively predict metallogenic prospective areas and delineate favorable
target areas. The metallogenic prediction method based on RBFLN technology provides a scientific
basis for the exploration and deployment of minerals in the study area. It is obvious that the methods
to predict and evaluate mineral resources are developing towards model integration and information
intelligent analysis.

Keywords: GIS; multivariate geoscience datasets; RBFLN; metallogenic prospective area

1. Introduction

Mineral resources play a significant role in China’s economic development. At present,
China is relatively limited in terms of mineral resource storage, and will especially be
reliant on the importation for copper for a period in the future. This has affected China’s
industrial development to a large extent. Therefore, scientific predictions and evaluations
of potential mineral resources are essential and serve as a key guarantee for the sustainable
development of China’s national economy. Currently, resource prediction and evaluation
has become a research focus in the field of mineral exploration [1].

Geostatistics is a branch of statistics established by French statistician G. Matheorn.
Based on the theory of regionalized variables and with variation functions as a tool, it is a
science that explores natural phenomena which occur both at random and with a certain
structure in spatial distribution [2]. It initially targeted the single spatial parameter statisti-
cal model as a focus, which gave rise to linear geostatistics [2–4]. With the development of
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spatial parameters that tend to be more complex and diverse, nonlinear geostatistics [5,6]
have emerged when linear geostatistics failed to provide solutions.

Since the 1970s, the development of methodological systems of regional metallogenic
prediction has accelerated. It mainly covers three directions, two of which are regional
metallogenic predictions based on the research of geological metallogenic theory and
one which is based on the research of metallogenic dynamics theory [7]. The regional
metallogenic prediction method adopted in this study relies on comprehensive geological
research as the foundation, deposit models or geological anomalies as the bases, the
computer as a means of research, and comprehensive quantitative analysis of multivariate
information, such as geology, geophysics, geochemistry, and remote sensing data, as key
approaches [8–10].

GIS technology, a computer system which integrates collection, storage, management,
analysis, display, and application, is a general technology for analyzing and processing mul-
tivariate geographic data [11]. In metallogenic prediction, its application has advantages
such as the integrated management of multivariate geoscience data, data space simulation
analysis, and data quantification [12]. In recent years, the methodology system of metallo-
genic predictions based on GIS technology has been continuously deepened and developed.
In the late 1980s, the Geological Survey of Canada used GIS technology for the potential
mapping of mineral resources, mineral exploration, and mineral resource evaluation [13].
In 1988, Wyborn et al., from Australia, adopted GIS technology to evaluate mineral resource
potentials [14]. In 2012, Silva et al. applied the ArcGIS-SDM fuzzy logic method to generate
mineral exploration maps and evaluate potential exploration areas [15,16]. Additionally, Li
et al. successfully developed the GeoCube software by integrating mathematical modeling
methods [17] and quantitatively extracted and integrated 3D geoscience prospecting infor-
mation of the Luanchuan mining area in Henan Province with the help of the software in
question [18]. Combining GIS resource evaluation technology and 3D modeling technology,
Wang et al. extracted and integrated comprehensive metallogenic information from the
zones at different depths in the mining area [19].

Artificial neural networks (ANNs) have been widely applied in regional metallogenic
prediction as a nonlinear classification method [20]. It classifies and recognizes data by
imitating human biological neurons with the capacity to process complex nonlinear spatial
datasets. To date, a wide range of ANNs has been developed, such as RBFLN, generalized
regression neural networks (GRNNs), and probabilistic neural networks (PNNs) [21–23].
Previous studies have revealed that RBFLN is superior in metallogenic prediction.

Based on the metallogenic geological conditions and the metallogenic model of the
Lala copper concentration area in Sichuan (Figure 1), this paper describes how multivariate
geoscience ore-forming information was integrated with the help of GIS technology and the
use of the RBFLN model. Predictive prospective outcomes and superimposed verification
results of ore body models indicated that this method is capable of rendering theoretical
bases and practical suggestions for mineral prospecting effort at deep zones in this area.
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Figure 1. Geological model for prospecting predictions of the Lala copper deposit (modified
from [24]).

2. Geological Setting
2.1. Regional Geology

The Lala region is located on the eastern edge of the midsection of the Kangding–
Yunnan Axis of the Yangtze Platform which extends from north to south, and north of the
Huili–Eastern Sichuan Aulacogen, which stretches from east to west (Figure 2). Spreading
across the border between China and Vietnam, the Kangding–Yunnan copper belt lies on
the western fringe of the Yangtze Plate, with a length of about 300 km. A famous iron-
oxide copper gold (IOCG) metallogenic area [25,26], the province has more than 50 IOCG
deposits, the most representative of which are the Luodang Copper Mine and Hongnipo
Copper Mine (Figure 3).

The strata in this region developed from the Early Proterozoic Erathem to the Cenozoic
Erathem. Except for the Ordovician–Carboniferous strata, all other strata can be found
here, with those of the Proterozoic Erathem and the Mesozoic Erathem most developed.
Stratigraphic combinations in this region mainly cover the Pre-Sinian System, the Sinian to
Silurian Systems, the Permian System, the Triassic to Cretaceous Systems, and the Cenozoic
Erathem [24]. The Hekou Group and the Huili Group are the major ore-bearing strata,
whereas the industrial ore bodies are mainly hosted in the middle and lower parts of the
Luodang Subgroup of the Hekou Group.

This region is typical of frequent and intense magmatic activities, which feature
multiple cycles and multiple stages—the major stages are Jinning, Chengjiang, Variscan,
and Indosinian Periods. Due to its unique tectonic–magmatic conditions and relatively
developed fluid activities, this region is abundant in metal minerals [24].
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2.2. Deposit Geology
2.2.1. Luodang Copper Deposit

Comprising 32 ore bodies, the Luodang copper deposit is 1960 miles long from east
to west and 900 miles wide from north to south, covering an area of 1.76 km2. The upper
section of the volcanic sedimentary cycle—Luodang formation complex, in the middle of
the Hekou Group—is the major ore-bearing stratum. The ore body is stratiform, stratiform-
like, and lentoid, and is generated in an overlapping-imbricate shape [28]. The attitude of
the ore body, basically resembling that of the surrounding rocks, is controlled by lithology
and stratum position and fluctuates with the folds of the surrounding rocks. The ore
body presents an overall trend from east to west and tilts southward with an angle of
15◦–40◦ [29].

2.2.2. Hongnipo Copper Deposit

The Hongnipo deposit sits about 5 km south of the Luodang deposit, with the ore
body hosted in the Hekou Group strata in the Early Proterozoic metamorphic–volcanic
sedimentary sequence and controlled by stratum position and lithology to a large extent [30].
The Tianshengba Group is the primary ore-bearing stratum, followed by the Luodang
Group. The ore body is stratiform, stratiform-like, and podiform, and is generated in a
bedding mode. The ore-bearing surrounding rocks mainly comprise carbonaceous quartz
albitite, dolomitic quartz albitite, and quartz albitite at the bottom of the lower section of
the Tianshengba Group.

3. Radial Basis Functional Link Networks

RBFLN, proposed by Broomhead in 1988 [31], is a kind of ANN that can process
complex nonlinear spatial datasets. RBFLN is of great importance in dealing with the
nonlinear relationship between known deposits and evidence factor layers. Taking the
known deposits and non-deposits as training samples [32–34], RBFLN identifies the RBF
network relationship between these samples and evidence factors as a nonlinear neural
network algorithm (NNA), comprising a three-layer feedforward structure: input layer,
hidden layer, and output layer [35,36] (Figure 4). The RBFLN structure includes an input
layer composed of N nodes which receive the input feature vector x and a hidden layer
comprising M neurons, each of which is represented by a Gaussian RBF. Each neuron in the
hidden layer receives the input feature vector x and outputs the value y. If xq is inputted
into the mth neuron, the output value yq

m can be expressed as [37]:

yq
m = e[−‖x

q−vm‖2/2σm
2], 0 < y ≤ 1 (1)

where the value q ranges from 1 to N (N is the number of training samples), and the value
M ranges from 1 to M (M is the number of neurons in the hidden layer). xq represents the
nth input feature vector, vm refers to the center of the mth RBF in the hidden layer, which
corresponds to the maximum likelihood point of the RBF, and σm represents the width or
spread function of the mth neuron [34,38].

The overall output feature vector z contributes to the linear combination of output
weights. If the abovementioned yq

m is output to the jth output neuron, the formula can be
expressed as [37]:

zq
j =

[
1

M + N

]{[
∑ umj × yq

m

]
+ ∑[wnj × x + bj]← t

}
(2)

where umj represents the synaptic weight between the hidden layer and the input layer,
whereas wnj represents the synaptic weight between the input layer and the output layer.
Additionally, the constant bj is added to the formula. The two synaptic weights were
repeatedly modified through iteration processes until the output layer Z approached the
target T.
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4. Extraction and Integration of Geoscience Datasets

GIS technology was used to extract and process information on ore-forming anomalies
based on the collected data of mineral geology (1:50,000), aeromagnetic anomalies (1:50,000),
copper geochemistry in the Huili–Huidong area, comprehensive anomalies of chemical
elements, and the remote sensing images presented in this paper.

The Beijing 54 projection coordinate system (PCS) was adopted in datasets, and the
storage format was a grid (unit: m).

The information extraction of multivariate geoscience datasets in the study area is
shown below:

(1) Geological Information Extraction and Interpretation

Using the mineral geological map (1:50,000) as a reference, we used MorPAS and
ArcGIS software to extract four kinds of information on ore-forming anomalies: strata
configuration entropy (Figure 5a), tectonic fracture isodensity (Figure 5b), tectonic fractal
dimension (Figure 5c), and rock buffering (Figure 5d). Specifically, entropy can reflect
the complexity of the structure. For instance, strata configuration entropy reveals the
complexity of strata. There is a positive correlation between strata complexity and strata
configuration entropy, and the latter changes with changes in the former [39]. From the
perspective of space, tectonic fracture isodensity can be used to construct the development
degree of information on anomalies in certain areas, which represents the cumulative sum
of the tectonic length in a specific unit grid. Tectonic fractal dimension, an indicator to
evaluate the complexity of fault structure, is positively correlated with the metallogenetic
probability and has advantages over tectonic fracture isodensity. Magma intrusion is
intense in this study area, and some magmatic rocks are occurrence ores. In addition, ores
can be produced through magmatic rocks’ contact metasomatism with the surrounding
rocks; thus, the peripheral parts of magmatic rocks are also favorable metallogenic sites.
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(2) Geophysical Information Extraction and Interpretation

According to the aeromagnetic anomaly data (1:50,000), information on the aeromag-
netic ore-forming anomalies of the study (Figure 6) area was extracted. In our research, we
collected physical property data measured by our predecessors in this study [26], providing
an important reference for interpreting magnetic anomalies. From the aeromagnetic isoline
map, most deposits were located in the zero-line area at the junction of positive and negative
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anomalies. In terms of the magnetic field characteristics, we found that the gentle negative
magnetic fields in the study area were a comprehensive reflection of a weak magnetic
basement and sedimentary cover; the strong magnetic arched, beaded, and disordered
magnetic anomalies were a reflection of basic volcanic rocks; and some relatively regular
strong magnetic anomalies were a reflection of basic and intermediate-basic intrusive rocks.
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Figure 6. Aeromagnetic anomaly map.

(3) Geochemical Information Extraction and Interpretation

The Cu element anomaly map (Figure 7a) and the comprehensive anomaly map
(Figure 7b) of Cu–Co–Mo elements in this study area were provided by the Development
and Research Center of the National Geological Archives of China. The Cu anomaly
directly indicated the existence of Cu deposits or mineralization, and the comprehensive
Cu–Co–Mo anomaly indirectly indicated the existence of Cu deposits or mineralized zones.

(4) Remote Sensing Information Extraction and Interpretation

Different surface features of the earth display various spectral characteristics, and the
altered surrounding rocks characterizing the existence of deposits and mineralized zones
are no exception. Remote sensing technology can detect the altered surrounding rocks
(if any) exposed on the earth’s surface. The abnormal data of remote sensing alteration
information are also an important basis for indicating mineralization. The distribution map
of iron-stained alterations (Figure 8a) and remote sensing tectonic information in this study
area were provided by the Development and Research Center of the National Geological
Archives of China. In ArcGIS, we first divided the study area into grids, in accordance with
a certain grid size. After that, we counted the total degree of linear fracture in each grid,
and we assigned this value to the center point of the grid. Finally, we spatially interpolated
the point data, and we obtained the isodensity map of the line–ring structure (Figure 8b).
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5. Application of RBFLN in the Lala Copper Deposit
5.1. Training and Classification

According to the aforementioned geology–geophysics–geochemistry–remote sensing
ore-forming information, we used GeoXplore 5.1 software, the SDM module of ArcGIS 10.5
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software, which were both developed by Environmental Systems Research Institute (ESRI),
and the RBFLN model to perform metallogenic prospect predictions in the study area.

Twenty-five deposit sites and twenty-four non-deposit sites were involved in this re-
search. A common way to evaluate the trained RBFLN was to use one-third of the training
sites for verification and use the rest of the training sites to evaluate the network perfor-
mance. Therefore, seven deposits and eight non-deposits were selected for verification, and
eighteen deposits and sixteen non-deposits were chosen for training (Figure 9).

The nine abovementioned geoscience layers were combined by rasterization and
reclassification, thus forming a unique grid. We divided the study area into a 100 m× 100 m
grid scale, and the cumulative number of grids was 33,864. Each pixel in the grid data
comprised feature vectors X (X1, X2, X3, X4, X5, X6, X7, X8, and X9) in the nine-dimensional
space, which served as the input layer of the RBFLN model.

In the training stage, the number of RBFs and the number of iterations were changed
to obtain the minimum sum of squared error (SSE) between the output result and the target
vector [34]. SSE represented the mismatch degree between the output result and the target
vector, and a smaller value contributed to a higher matching degree. With the gradual
increase in the number of iterations, SSE showed a downward trend and tended to be
stable (Figure 10). When the number of iterations increased by more than 160, the network
seemed to be affected by over-learning, which led to overfitting [32,34].
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5.2. Validation

Accordingly, the results obtained through the RBFLN model with 40 RBFs and 120 it-
erations were selected to generate a probability output table with a value range of 0–1.577,
which was normalized between 0 and 1. A relation graph of probability values and cu-
mulative percentages of the study area was drawn (Figure 11), and the inflection points
on the graph were calibrated to define the category intervals. Specifically, the posterior
probability interval of the higher metallogenic target area was p ≥ 0.65, whereas that of
the medium metallogenic target area was 0.49 < p < 0.65. Based on the features of the
abovementioned intervals and the geological characteristics of the Lala concentration area,
eight ore-prospecting prospective areas were delineated in this paper (Figure 12).

The validation data in the previous section were used to evaluate the performance
of the RBFLN. The results demonstrated that five of the seven verification deposits were
delineated in high prospective areas, indicating that the classification accuracy of unknown
features was 71%. Additionally, one verification deposit and all non-verification deposits
were delineated in low prospective areas, and one verification deposit was delineated in
a medium prospective area. The comprehensive verification manifested that 86% of the
verification deposits were in high and medium prospective areas (Figure 12).

Moreover, 3D visualization technology can be used to verify the prediction results and
the existing ore bodies in the Luodang mining area, further proving the performance of
the RBFLN model (Figure 13). The results showed that the distribution range of ore bodies
was consistent with the prediction results of the RBFLN model.
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6. Conclusions

(1) We established a multivariate comprehensive ore-prospecting information model of
geology–geophysics–geochemistry–remote sensing in the study area based on GIS
technology, and we determined the existence of several ore-prospecting indicators
(strata configuration entropy, tectonic fracture isodensity, tectonic fractal dimension,
rock buffering 1 km, Cu geochemical anomalies, Cu–Co–Mo composite anomalies,
aeromagnetic anomalies, alteration information, etc.). We adopted the RBFLN algo-
rithm to conduct the metallogenic prediction of the Lala ore concentration area in
Sichuan Province. Consequently, we successfully divided the secondary intervals of
the higher metallogenic target area and medium metallogenic target area, and we
determined eight ore-prospecting prospective areas by taking the above variables
as predictors;

(2) The distribution of high and middle prospective areas in the metallogenic prospective
map revealed that the metallogenic conditions would be more favorable and the
possibility of deposits would be higher if the strata were more complex, the fracture
intersection was denser, and the aeromagnetic anomaly was higher;

(3) In contrast to traditional metallogenic prediction methods, the RBFLN algorithm can
solve complex nonlinear classification problems effectively and quickly. This algo-
rithm features a simple calculating process, a rapid training speed, and an optimum
approximation ability, which is conducive to processing a large amount of geological
data and carrying out metallogenic prediction research;

(4) The cross-validation of multivariate geoscience information in favorable ore-prospecting
areas was made possible by 3D visualization technology, which provides a better
reference for ore prospecting in deep areas. However, the disadvantage of this research
lies in the absence of on-site verification. No on-the-spot investigations have been
conducted because of the impacts of the COVID-19 pandemic. Therefore, the reliability
of the RBFLN model results should be further verified through field exploration.
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Abstract: A complex structural geology generally leads to significant consequences for hydrocarbon
reservoir exploration. Despite many existing wells in the Kadanwari field, Middle Indus Basin (MIB),
Pakistan, the depositional environment of the early Cretaceous stratigraphic sequence is still poorly
understood, and this has implications for regional geology as well as economic significance. To
improve our understanding of the depositional environment of complex heterogeneous reservoirs
and their associated 3D stratigraphic architecture, the spatial distribution of facies and properties,
and the hydrocarbon prospects, a new methodology of three-dimensional structural modeling (3D
SM) and joint geophysical characterization (JGC) is introduced in this research using 3D seismic
and well logs data. 3D SM reveals that the field in question experienced multiple stages of complex
deformation dominated by an NW to SW normal fault system, high relief horsts, and half-graben and
graben structures. Moreover, 3D SM and fault system models (FSMs) show that the middle part of the
sequence underwent greater deformation compared to the areas surrounding the major faults, with
predominant one oriented S30◦–45◦ E and N25◦–35◦ W; with the azimuth at 148◦–170◦ and 318◦–345◦;
and with the minimum (28◦), mean (62◦), and maximum (90◦) dip angles. The applied variance edge
attribute better portrays the inconsistencies in the seismic data associated with faulting, validating
seismic interpretation. The high amplitude and loss of frequency anomalies of the sweetness and root
mean square (RMS) attributes indicate gas-saturated sand. In contrast, the relatively low-amplitude
and high-frequency anomalies indicate sandy shale, shale, and pro-delta facies. The petrophysical
modeling results show that the E sand interval exhibits high effective porosity (∅eff) and hydrocarbon
saturation (Shc) compared to the G sand interval. The average petrophysical properties we identified,
such as volume of shale (Vshale), average porosity (∅avg), ∅eff, water saturation (SW), and the Shc of the
E sand interval, were 30.5%, 17.4%, 12.2%, 33.2% and, 70.01%, respectively. The findings of this study
can help better understand the reservoir’s structural and stratigraphic characteristics, the spatial
distribution of associated facies, and petrophysical properties for reliable reservoir characterization.

Keywords: 3D structural modeling (3D SM); 3D fault system models (FSMs); seismic attribute models;
reservoir properties; facies; hydrocarbon-bearing zones

1. Introduction

The recent global increase in fuel demand has increased hydrocarbon production at
established reservoirs [1,2]. According to the United States Energy Information Adminis-
tration (USEIA), Pakistan may have over 9 billion barrels of oil and 105 trillion cubic feet
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of natural gas (including shale gas) reserves [3]. Pakistan’s gas fields are only expected to
last for about another 20 years at the most due to heavy industrial usage. Therefore, many
recent works on the Lower Indus Basin (LIB) are focused on unconventional resources such
as shale gas and coal seam gas [4–6]. However, focused characterization and re-evaluations
of already-discovered petroleum systems are also required to evaluate reservoirs’ abilities
to meet the hydrocarbon requirements [7].

Reservoir characterization is a scheme that quantifies the physical and fluid properties
of rock [8–12]. It also involves an understanding of reservoir structure, sedimentological
heterogeneity, facies, and the quantity of hydrocarbon that exist in structural traps driven
by tectonic movements, discontinuities such as faults, folds, anticlinal structures, horst and
graben pop-up geometries, and duplex structures [13–18]. Advancements in 3D seismic
data analysis and borehole geophysics have made it possible to characterize structural and
stratigraphic features and their associated petrophysical properties with high reliability
and precision, thereby reducing the risks associated with hydrocarbon exploration [19,20].

The development of three-dimensional structure models (3D SMs) is essential for
reservoir description, e.g., true structural dip, fault system models (FSMs), up-dip hydro-
carbon migration pathways, and quantitative geometric characterization in 3D space [21,22].
Three-dimensional structural modeling (3D SM) is divided into entity-based modeling and
volume-based modeling (VBM) [23–28]. The former develops 3D SMs using a combination
of four different geometric entities, i.e., point, line, surface, and body. It emphasizes the
shape of geological structures and the relationship among geological bodies [29]. The
latter subdivides the 3D space into discrete fields by regular or irregular voxels and em-
phasizes the spatial distribution of geophysical and geochemical properties. With the
continuous development of reservoir geological modeling technology, the VBM, objective
function, variation function, multipoint geostatistics, and static geological modeling with
knowledge-driven methodology have been widely applied, significantly promoting the
development and technology of 3D reservoirs geological modeling [30–36]. However, VBM
is a step-change reservoir geological modeling technique that creates horizons based on
depositional sequence instead of considering horizons as discrete surfaces [2,13,37].

Identifying reservoir facies and properties using seismic attributes and petrophysical
analyses play an essential role in reservoir characterization. Reservoir facies classification
and properties evaluation can be achieved via laboratory studies on core plugs, which are
costly and time-consuming. However, seismic attributes can be used for stratigraphic-based
basin depiction within a composite deposition-based structure and classify reservoir facies,
thereby increasing the rate for adequate reservoir characterization. Seismic attributes,
such as dip magnitude, edge enhancement, variance edge, sweetness, and root mean
square (RMS) amplitude, are essential tools for delineating structural and stratigraphic
characteristics, lithofacies changes, and hydrocarbon potential zones [19,38,39]. On the
other hand, petrophysical analysis based on well logs offers practically continuous reservoir
properties, e.g., lithology, the volume of shale (Vshale), average porosity (∅avg), effective
porosity (∅eff), water saturation (SW), and hydrocarbon saturation (Shc). The proper analysis
of these properties can significantly improve the ability to distinguish hydrocarbon-bearing
zones [18,20,40,41].

The Middle Indus Basin (MIB) and Lower Indus Basin (LIB) are well known for
hydrocarbon exploration in Pakistan [40]. The Kadanwari field in MIB is a significant
hydrocarbon-producing field, with the early–late Cretaceous Lower Goru formation (LGF)
acting as the potential reservoir. The previous studies conducted on the Kadanwari field
were based on the assessment and development of the 2D fault system, porosity pre-
diction [42], formation evaluation [40,43], and impact of diagenesis on reservoir quality
prediction [44].

A systematic review of prospective observational studies found that the Kadanwari
field in MIB has not yielded sufficient results for understanding the complex structural
depositional environment [45]. Moreover, the distribution of key petrophysical properties
and facies in the Kadanwari field are difficult to predict due to fluctuating deltaic condi-
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tions, mutable geological influences, varying hydrocarbon concentrations, regional tectonic
settings, and changes in geometries. However, comprehensive research on the structural
characteristics and associated tectonic extensional fault system models (FSMs) and the
evaluation of reservoir characteristics and sweet spots for future drillings in the Kadanwari
field is still missing.

This study, therefore, aims at evaluating the complex and heterogeneous depositional
environment broadly comprised of structural and stratigraphic characteristics, distribution
of associated facies, and petrophysical properties for reliable reservoir characterization,
which was lacking in the previous studies. This was achieved by utilizing three-dimensional
structural modeling (3D SM) and joint geophysical characterization (JGC) using seismic
and well logs data. In this study, 3D SM and JGC have made novel contributions and
facilitated a clearer representation of the complex and heterogeneous depositional envi-
ronments, with the lateral and horizontal structural extent of reservoir horizons, FSMs
(including fault geometry and orientation in 3D space), spatial facies, reservoir properties
(e.g., lithology, Vshale, ∅avg, ∅eff, SW, and Shc), and direct hydrocarbon indicators (DHIs). In
short, our presented study is crucial to characterize and evaluate reservoirs’ geometrical
characteristics, facies, and properties, in order to reduce uncertainties and improve the
success rate of future exploration and development plans pertaining to hydrocarbons in
the study area, as well as potentially in other regions around the world.

2. Background Geology

Pakistan is located at the triple junction of the Indian, Eurasian and Arabian plates
(Figure 1a). During the middle/late Jurassic to early Cretaceous, the Indian plate rifted
away from the Gondwana landmass, forming an island continent that drifted northwards
into the Tethyan Ocean [46]. This tectonic event predominantly influenced the structures
and sedimentation of the MIB and LIB, which could have resulted in NE—SW to N—S
rift systems. The Kadanwari field is located in the District Khairpur of Sindh Province,
southeast MIB, a prolific gas-prone basin in Pakistan (Figure 1b). The latitude of the study
area ranges from 27◦04′83′′ N to 27◦07′12′′ N, and its longitude varies from 69◦12′98′′ E to
69◦17′57′′ E. Tectonically, the Kadanwari field lies between two extensive regional highs,
i.e., the Mari-Kandhkot High and the Jacobabad-Khairpur High (Figure 1b). In the east, it is
bounded by the Indian shield; in the north by the Sargodha high; in the west by the fold and
thrust belt of the Kirthar and Sulaiman Ranges, and in the south by the Jacobabad-Khairpur
High [7,45–47]. Three tectonic events were responsible for the structural configuration of
the study area, i.e., the late Cretaceous uplift and erosion, the late Paleocene wrench faulting,
and the late Tertiary to Quaternary uplift/inversion of Jacobabad High (Figure 1b) [46]. The
Jacobabad-Khairpur High was a primary contributor to the study area’s structural traps
and surroundings [45,47]. The final tectonic event of the late Tertiary to Quaternary was
an inversion of the Jacobabad-Khairpur High, which significantly affected the Kadanwari
area [45,46]. In the Kadanwari field and its surroundings, the trapping mechanism is a
complex combination of structural dip, sealing faults, and loss of reservoir quality to the
north. The Kadanwari field consists of several low-relief faults, forming dip closures in the
subsurface and providing a stratigraphic trapping component [7,45]. The fault dip closures
and the wrench faults are particularly significant as they divide the Kadanwari field into
reservoir compartments [40].

The lithology stack of MIB is depicted in Figure 2a, highlighting the basin fill sedi-
mentary deposits. The lithostratigraphic columns show the rock units encountered in the
Kadanwari-10 and Kadanwari-11 wells (Figure 2b). According to [48], the shales of the
Sember Formation serve as the source rock for the regional petroleum systems of the MIB.
However, the reservoir sections (e.g., G and E sands) in the Kadanwari field belong to the
lower Goru sand (the Cretaceous age), while the sealing is provided by the upper Goru
shaly sequence [43].

23



Minerals 2022, 12, 363

Minerals 2022, 12, x  4 of 27 
 

 

the Kadanwari-10 and Kadanwari-11 wells (Figure 2b). According to [48], the shales of the 
Sember Formation serve as the source rock for the regional petroleum systems of the MIB. 
However, the reservoir sections (e.g., G and E sands) in the Kadanwari field belong to the 
lower Goru sand (the Cretaceous age), while the sealing is provided by the upper Goru 
shaly sequence [43]. 

 
Figure 1. (a) Location of the study area; (b) generalized tectonic map with the location of major oil- 
and gas-producing fields in the study area, bounded by other gas fields, modified from [49]; (c) 
the base map shows the orientation and general information of the 3D seismic lines and wells in 
the Kadanwari field, MIB, Pakistan. 

Figure 1. (a) Location of the study area; (b) generalized tectonic map with the location of major oil-
and gas-producing fields in the study area, bounded by other gas fields, modified from [49]; (c) the
base map shows the orientation and general information of the 3D seismic lines and wells in the
Kadanwari field, MIB, Pakistan.

24



Minerals 2022, 12, 363
Minerals 2022, 12, x  5 of 27 
 

 

 
Figure 2. (a) Generalized stratigraphic column of the study area, modified from [48]; (b) 
lithostratigraphic columns showing the rock units encountered in Kadanwari-10 and Kadanwari-11 
wells. 

3. Material and Methods 
3.1. Datasets Description and Processing 

A vast volume of seismic reflection data was acquired from the MIB, Pakistan, to 
facilitate hydrocarbon exploration activities at different times, from the 1970s up to the 
modern-day [7]. The Pakistan branch of OMV (www.omv.com, Vienna, Austria) recently 
began a new exploration phase in the Kadanwari field by conducting a 3D seismic survey. 
The seismic data used in this study are 3D post-stack time migrated seismic reflection 
cubes stored in the SEG-Y format, wherein approximately 116 seismic inlines and 
approximately 181 cross-lines were used. The geometric information, e.g., total coverage 
area, inline interval, crossline interval, and time slice range of available 3D seismic data, 
were 12 km2, 24.17, 25.17, and 1800–2600 (ms), respectively. The well logs data comprise 
lithology, resistivity, and porosity logs (e.g., GR, SP, LLD, LLS, MSFL, RHOB, NPHI, and 
DT) of the Kadanwari-10 and Kadanwari-11 wells (Table 1). The available 3D seismic data 
and well log data were collected from the Landmark Resources (LMKR) (www.lmkr.com, 
Calgary, Canada) upon the request of the Directorate General of Petroleum Concessions 
(DGPC) (www.mpnr.gov.pk, Islamabad, Pakistan); which are available to the public 

Figure 2. (a) Generalized stratigraphic column of the study area, modified from [48]; (b) lithostrati-
graphic columns showing the rock units encountered in Kadanwari-10 and Kadanwari-11 wells.

3. Material and Methods
3.1. Datasets Description and Processing

A vast volume of seismic reflection data was acquired from the MIB, Pakistan, to
facilitate hydrocarbon exploration activities at different times, from the 1970s up to the
modern-day [7]. The Pakistan branch of OMV (www.omv.com, Vienna, Austria) recently
began a new exploration phase in the Kadanwari field by conducting a 3D seismic survey.
The seismic data used in this study are 3D post-stack time migrated seismic reflection cubes
stored in the SEG-Y format, wherein approximately 116 seismic inlines and approximately
181 cross-lines were used. The geometric information, e.g., total coverage area, inline
interval, crossline interval, and time slice range of available 3D seismic data, were 12 km2,
24.17, 25.17, and 1800–2600 (ms), respectively. The well logs data comprise lithology,
resistivity, and porosity logs (e.g., GR, SP, LLD, LLS, MSFL, RHOB, NPHI, and DT) of the
Kadanwari-10 and Kadanwari-11 wells (Table 1). The available 3D seismic data and well
log data were collected from the Landmark Resources (LMKR) (www.lmkr.com, Calgary,
Canada) upon the request of the Directorate General of Petroleum Concessions (DGPC)
(www.mpnr.gov.pk, Islamabad, Pakistan); which are available to the public domain and
can be utilized for scientific and research purposes. The dataset quality was first checked
and harmonized in a clearly defined database. Accordingly, a base map of the 42-N Trans-
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Mercator Macrocosm (UTM) zone was created using navigation and SEG-Y records to
determine the orientation (dip or strike) and location of seismic lines and wells (Figure 1c).

Table 1. Metadata of the utilized well logs and their uses in this study.

Well Logs Measured Property Petrophysical Properties Estimated Product

Caliper Diameter Borehole structure with depth CALI
Gamma-ray Radioactivity Shale volume (Vshale) GR

Laterolog deep Resistance to electric current Uninvaded resistivity LLD
Laterolog shallow Resistance to electric current Invaded zone resistivity LLS

Micro-spherical focused log Resistance to electric current Mud cake resistivity MSFL
Sonic Velocity of sound waves Porosity DT

Spontaneous Potential Electric potential Formation water resistivity SP
Neutron Hydrogen concentration Porosity NPHI
Density Bulk density Porosity RHOB

3.2. Methods

In this study, three-dimensional structural modeling (3D SM) and joint geophysical
characterization (JGC) use an integrated 3D SM approach, involving structurally con-
strained geological models and seismic attribute implications and petrophysical properties
that significantly enhance the understanding of the reservoir characteristics leading to reli-
able reservoir assessment. Figure 3 shows the complete workflow of the present case study.
Firstly, seismic and well log data interpretation was carried out, which involves synthetic
seismogram generation, and extracting and interpreting specific stratigraphic interfaces
(geological period) and faults as geometric features in 2D cross-sectional (i.e., vertical) slices
of a 3D seismic volume. Secondly, 3D FSMs and their attribute models such as dip angles,
fault rose diagram and histogram were constructed to evaluate the fault mechanics and
geometric distribution. Thirdly, 3D SMs of the early Cretaceous stratigraphic sequence
were constructed using the VBM algorithm, incorporating all geometrical definitions (e.g.,
constraints from well tops, geologic horizons, and FSMs). Fourthly, several seismic at-
tributes such as variance edge, sweetness, and RMS amplitude were incorporated into the
3D seismic data, which involves extracting the corresponding qualitative and quantitative
geological features to validate the interpreted spatial forecasts of the geological structure,
and to then evaluate the lithofacies distribution and direct hydrocarbon indicators (DHIs).
Finally, petrophysical modeling based on various well logs (CALI, GR, SP, LLD, LLS, MSFL,
DT, NPHI, and RHOB, explained in Table 1) was performed to determine the reservoir
properties (e.g., lithology, Vshale, ∅avg, ∅eff, SW, and Shc).

3.2.1. Seismic Data Interpretation

Seismic interpretation in this study is focused on a particular area of interest within the
two-way time (TWT) range of −1800 to −2600 (ms) (Figure 4). Depending on the seismic
reflection discontinuities and terminations, manual horizon picking followed by seeded
horizon auto-tracking was adopted to interpret the target horizons on 2D cross-sectional
(i.e., vertical) slices of a 3D seismic volume (Figure 4a). In the middle parts of the seismic
cross-sections, the reflections are mostly moderately chaotic and difficult to correlate due to
the complexity of the geology and faults resulting from tectonic compression (Figure 4b).
The modeling step of the seismic interpretation involves 3D TWT contour surfaces construc-
tion. Consequently, 3D TWT contour surfaces were constructed by marking the tops of each
stratigraphic interface on the extended 3D seismic volume. The smooth function was then
applied to the generated surfaces at three iteration levels to produce geologically reasonable
stratigraphic surfaces. These 3D TWT contour surfaces were then used to interpret the
prevailing structural trends in the study area via conventional methods.
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interval, and the Sembar Formation, respectively.

3.2.2. Three-Dimensional Structural Modeling (3D SM)

Employing 3D fault system modeling (FSM) in seismic analysis is a crucial step to con-
strain horizon interpretation [21,50]. One recent significant advance in FSM is the rendering
available of 3D seismic data that provide detailed images of large volumes of rock and
the often-complex 3D fault networks [51]. Meanwhile, most seismic datasets have signal
disturbance zones, particularly in highly faulted areas. Furthermore, the discontinuities
in seismic reflectors can be poorly resolved, resulting in the approximate localization or
misinterpretation of faults. However, seismic discontinuities can be more clearly defined
if the detection is based on multiple attributes and suitable filters [51,52]. Therefore, in
this study, before proceeding to the 3D FSM, the precision of the geologic fault boundaries
was assessed first for accuracy using dip magnitude and seismic edge enhancement at-
tributes (Figure 5). Accordingly, the dominance of a normal fault system was inferred in the
dip magnitude and edge enhancement cross-sections by aligning reflector discontinuities
and degree of displacement. In the modeling phase, the fault surfaces were constructed
by employing the fault polygon in PetrelTM software for each type of fault with various
geometrical structures. Finally, 3D FSMs and their attribute models (e.g., dip angle, fault
rose diagram and histogram) were constructed to evaluate the fault system’s geometric
distribution and mechanics within the early Cretaceous stratigraphic sequence.
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Three-dimensional SM aims to better image and understand complex reservoirs’
geological structures. The local tectonics of the Kadanwari field in MIB have resulted
in various structural deformations that produce many uncertainties when assessing the
reservoirs’ 3D structural framework [7]. Understanding such deformations can be better
achieved via 3D SM using relevant algorithm models, e.g., the volume-based modeling
(VBM) approach in the PetrelTM software based on inferred seismic data integrated with
borehole information [50,53,54]. Traditional modeling methods generally involve the
oversimplification of geological settings; however, grid-generated VBM captures a realistic
reservoir architecture [2]. This can be easily transferred into the dynamic realm, providing
a better understanding of the reservoir for future field management and development
activities [50]. In this study, 3D SM based on the VBM approach was performed in three
main steps (e.g., fault modeling, pillar gridding, and horizon creation).

3.2.3. Three-Dimensional Seismic Attribute Analysis

The seismic attributes were computed via mathematical manipulation of the origi-
nal seismic data to highlight specific geological, physical, or reservoir properties [50,55].
Variations in the amplitude, phase, frequency, and bandwidth of the seismic waves were
subsequently used to validate the spatial forecasts of the geological structure and to eval-
uate the spatial distribution of the facies and the DHIs in the G sand interval, the E sand
interval, and the Sember Formation time windows.

The variance edge attribute can visualize seismic amplitude discontinuities related
to faulting or stratigraphy. It delineated the prominent faults and seismic amplitude
discontinuity in both the horizon slices and the vertical seismic profiles, thereby validating
the manual interpretation of faults. The sweetness attribute was applied to both horizon
slices and vertical seismic profiles to identify sweet spot zones that are hydrocarbon-prone.
It can be defined as the reflection strength (instantaneous amplitude) divided by the square
root of the instantaneous frequency. The high sweetness anomalies highlight a seismic
signal’s high amplitudes and low-frequency contents and vice versa. Therefore, combining
these two physical quantities helps distinguish sand bodies from shale and predicted gas-
prone zones [56]. The RMS amplitude attribute was also applied to both horizon slices and
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vertical seismic profiles to measure amplitude anomalies to identify the spatial distribution
of facies and DHIs at the G and E sand reservoir intervals. The RMS amplitude computes
the square root of the sum of squared amplitudes divided by the number of samples within
the window used [19].

3.2.4. Petrophysical Modeling

Petrophysical modeling is critical in a reservoir study because it represents a primary
input data source for integrated reservoir characterization and resource evaluation [54,57].
This study performed petrophysical modeling based on well log data and internal geologi-
cal reports to evaluate the G and E sand reservoir intervals’ properties, e.g., lithology, Vshale,
∅avg, ∅eff, SW, and Shc (Table 1). Successful evaluation of these properties is necessary when
determining the hydrocarbon potential of a reservoir system. The detailed plots of the well
log curves and their depth ranges within the G and E sand reservoir intervals are shown in
Figure 6. These log curves express the physical motifs of the stacked geological strata as
a function of depth, which can help identify lithologies and porosities, and differentiate
between porous and non-porous rocks and pay zones.
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The following five key steps were followed to evaluate the reservoirs’ fundamental
properties.

(1) Volume of Shale (Vshale)—The presence of shale in the productive zone severely
impacts the petrophysical properties and can cause a reduction in the ∅eff, ∅avg,
and permeability [58]. We used the GR log technique for Vshale estimation by firstly
estimating the gamma ray index (IGR). The IGR was initially adopted using Equation
(1) to estimate Vshale, utilizing the GRlog in track 1 of Figure 6. Secondly, to obtain
a realistic Vshale estimation without overestimating the content of shale (first-order
approximation: Vshale = IGR), a non-linear relationship (Equation (2)) proposed by
Dolan was employed [59].

IGR =
GRlog − GRmin

GRmax − GRmin
(1)

Vshale = 1.7− [(3.38− (IGR + 0.7)2)]
1
2 (2)

where IGR stands for gamma ray index, GRlog shows the reading of the gamma
ray log, GRmin and GRmax are the lower and upper limits of the GRlog value in
shale, respectively.

(2) Average Porosity (∅avg)—Total porosity or ∅avg represents all the voids or pore spaces
of the rock, including interconnected and isolated pores and pore spaces occupied
by clay-bound water [2]. In this study, DT, RHOB, and NPHI logs that are sensitive
to sedimentary micro-facies were selected to calculate ∅avg, by which process the
conventional logging responses of the G and E sand reservoir intervals can be sum-
marized (Figure 6). The DT log measures the sound waves’ traveling times in the rock
unit. The sound waves in the rock unit depend on the shape, matrix material, and
cementation (Equation (3)). Accordingly, the Sonic–Raymer (SR) porosity model was
used to evaluate sonic porosity (∅S) (Equation (4)) [40].

tlog = tm − [(1−∅S) + t f ∅S] (3)

∅S =
∆tlog − ∆tm

∆tm − ∆tm
(4)

where ∅S represents sonic porosity, tlog represents the log reading in µsec/m, tm
represents the matrix interval transient time, ∆tlog represents the formation interval
transient time in µsec/m, and ∆tm represents formation fluids’ interval transient
time in µsec/m. The density porosity (φD) was calculated using the RHOB log
via Equation (5) [2].

φD = [(ρmat − ρb)/(ρm − ρ f )] (5)

where ρmat represents the density of the matrix, ρ f represents the fluid density, and ρb
is the bulk density. The NPHI log measures the neutron porosity (∅N) by assuming
that the pores are filled with fluid. Therefore, it measures the hydrogen concentration
and energy loss. The ∅N can be expressed via Equation (6).

φN = [aN + b] (6)

where φN is the neutron-derived porosity, a and b are constants, and N is the neutron
count in the formation intervals. In addition, the density–neutron cross-plot in track
4 in Figure 6 determines the cross-over gas effects. After identifying the porosities
(e.g., ∅S, ∅D, and ∅N) from the DT, RHOB, and NPHI logs, Equation (7) was used to
calculate ∅avg.

∅avg =
∅S +∅D +∅N

3
(7)
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(3) Effective Porosity (∅eff)—The ∅eff was calculated using Equation (8) [40,43].

φe f f =
[(

φavg
)
× (1−Vshale)

]
(8)

where ∅avg represents the average porosity, and Vshale is the shale content in volume units.
(4) Water Saturation (SW)—The Poupon–Leveaux Indonesian (PLI) model is one of the

best models for estimating SW in a shaly sand reservoir [60]. In this study, the
constraints of Vshale (Equation (2)) and ∅eff (Equation (8)), and the resistivity variation
in Vshale and water formation, were subsequently integrated using the PLI model, as
in Equation (9), to determine SW .

Sw =







(

Vshale
2−Vshale

Rshale

)2

+

(
∅e f f

2

Rw

) 1
2



2

Rt





2

(9)

where Rt is the true resistivity of the formation obtained from the LLD log re-
sponse, Rshale is the resistivity variation in the Vshale, and Rw is the resistivity of
water formation.

(5) Hydrocarbon Saturation (Shc)—The Shc was calculated by subtracting the percentage
of pore volume occupied by Sw from 1; the remaining percentage pore volume gives
the Shc (Equation (10)).

Shc = 1− Sw, (10)

4. Results
4.1. Stratigraphic Interfaces Interpretation

The interpretation of the stratigraphic interfaces of the early Cretaceous sequence
is integrated into an internally consistent 3D workflow, which is easy to incorporate
and use to form conclusions that exceed known points by constraining 3D structural
models. The interpreted cross-sectional (i.e., vertical) slices of a 3D seismic volume show
the displacement and deformation of the stratigraphic interface (Figure 4b). The structural
variations in the stratigraphic interfaces are predicated primarily on the TWT contour
surfaces because contour lines connect the same elevation; this is why they are essential
tools for analyzing and interpreting seismic data. The time surfaces plot the TWT of seismic
signals from the surface to the horizon and reflect the interpreted stratigraphic interface’s
distribution. In Figure 7, the TWT surfaces indicate the extension and propagation of
the regional stratigraphic structure in the subsurface. The TWT values of the interpreted
stratigraphic interfaces decrease towards the central part of the field, which gives rise to
structural highs in the southwestern and southeastern portions. The southwestern and
southeastern portions of the interpreted stratigraphic interfaces are structurally high; hence,
this is a region of interest for hydrocarbon exploration. The minimum, mean and maximum
TWT variations of the G sand interval, the E sand interval, and the Sembar Formation in
the southwestern and southeastern transect are presented in Table 2.

Table 2. Minimum, mean, and maximum TWT variations of the stratigraphic interfaces in the
study area.

Stratigraphic Interfaces TWT
Minimum

TWT
Mean

TWT
Maximum

Shallow Structure
(TWT)

Deep Structure
(TWT)

G sand interval −1900 (ms) −2037.5 (ms) −2175 (ms) −1900 to −2025 (ms) −2026 to −2175 (ms)
E sand interval −2025 (ms) −2187.5 (ms) −2350 (ms) −2025 to −2100 (ms) −2101 to −2350 (ms)

Sembar Formation −2250 (ms) −2400 (ms) −2550 (ms) −2250 to −2375 (ms) −2376 to −2550 (ms)
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structural distributions: (a) TWT top surface of the G sand interval; (b) TWT top surface of the E sand
interval; (c) TWT top surface of the Sembar formation in 3D space.

4.2. Three-Dimensional Fault System Models (3D FSMs)

The study area’s complex and composite subsurface morphology resulted from multi-
ple episodes of tectonic activity. Multi-stage tectonic movements contribute to the intersec-
tion of faults formed simultaneously or at different stages of tectonic movement (Figure 8a).
These faults occurred during various phases of adjustment and deformation, along with
the structure inversion and loss of reservoir quality in the Kadanwari field, MIB. In order to
effectively represent the spatial distribution of the fault system and its influence on the frag-
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mentation of the stratigraphic interfaces, individual 3D fault surfaces have been illustrated,
along with the 3D seismic volume (Figure 8a). The orientation and spatial distribution
of the fault surfaces reveal that the intact depositional environment of the Kadanwari
field was influenced by the tectonic regime of the surrounding plate boundary, which has
continuously influenced the stratigraphic structure (Figure 8a). The 3D seismic volume
interpretation at the field scale shows that the middle part of the field has undergone
greater deformation than both sides. This is why the number of faults and their complexity
decrease from the center to either field side. These faults have been interpreted as normal
faults, generally showing NW to SE directions, controlling the distribution of depositional
facies, reservoir compartmentalization, and hydrocarbon up-dip migration in the study
area. These NW–SE normal faults have governed the complex structural configuration of
the stratigraphic sequence (e.g., G sand interval, E sand interval, and the Sembar Forma-
tion). The overall pattern of these faults can be regarded as a negative flower structure,
which significantly increases the likelihood of the successful positioning of hydrocarbon
traps. The degree of completion of these negative flower structures is positively correlated
with improved hydrocarbon migration and abundance in the reservoir window (e.g., G
and E sand intervals) (Figure 8b). In addition, the presence of a negative flower structure
indicates the combined effects of extensional and strike-slip motions. The fault orientation
results derived from the 3D dip angle models, the stereonet, the rose diagram, and the
histogram show that most of the faults are oriented S30◦–45◦ E and N25◦–35◦ W, with an
azimuth of 148◦–170◦ and 318◦–345◦, and exhibiting minimum, mean and maximum dip
angles of 28◦, 62◦, and 90◦ respectively (Figure 9a). The histogram in Figure 9b displays
the relationship between fault frequency in percentage and dip angle in degrees, which
shows that most of the faults have dips ranging between 35◦ and 75◦. In comparison, 20%
of the total fault planes have dips in the range 80◦–90◦, and the lowest fault dip observed is
approximately 28◦ (Figures 8a and 9a).
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Figure 9. (a) Steroenet showing the distribution of faults’ dips and orientations identified, along with
the entire seismic survey in the Kadanwari field, MIB, Pakistan; (b) a histogram showing the dip
angles of the interpreted faults along with their frequency.

4.3. Three-Dimensional Structural Models (3D SMs)

The 3D SMs and several 2D time-domain structural cross-sections have been derived
to illustrate the detailed structural and stratigraphic setting of the sequence in the study
area. Figure 10a displays the southwestern and southeastern transects of the 3D TWT
model, while Figure 10b represents the 2D TWT cross-sections derived from the 3D TWT
model result. Figure 11a displays the southwestern and southeastern transect of the 3D SMs
derived from VBM. Moreover, the fault system is incorporated into the 2D cross-sections
during model computation to constrain the horizons at each fault offset (Figure 11b).
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Detailed structural analysis reveals that the geological structural complexity is a
consequence of different tectonic phases of deformation (e.g., extensional and strike-slip
deformation from the early Cretaceous to Quaternary). The complex structural mechanics
of both extensional and strike-slip movements have been observed in the 3D SMs. These
complex structural mechanics were controlled by the normal fault system’s NW–SE dipping.
The above-explained normal fault patterns (e.g., negative flower structure) show brittle
deformation features, where the interpreted sequences have been displaced relative to each
other (amount of displacement) (Figure 11b). These significantly control the structural
domains, consisting mainly of half-graben, horst, half-graben, graben, half-graben, and
horst, from SW to NE. The thickness of the sequence increases towards the NE. The
thickness decreases in the central portion of the region from the top E sand interval to
the top Sembar Formation. The hydrocarbon migration direction can be determined from
the spatial distribution and composition of the fault system within the early Cretaceous
sequences. The geometrical trend of these fault systems creates a pathway that is crucial for
hydrocarbon migration in the vertical direction. This up-dip migration of the hydrocarbons
from the Sembar formation towards the G and E sand intervals has resulted in hydrocarbon
accumulation, validated through seismic attribute analysis and petrophysical modeling.

4.4. Seismic Attributes Interpretation
4.4.1. Variance Edge Attribute

The variance edge attribute indicates discontinuities related to faulting or stratigraphy
in the vertical seismic cross-sections and is proved to help depict significant fault zones
and fractures, thereby validating fault interpretation. Figure 12 shows the results of the
variance edge attribute calculated from the 3D seismic volume, appropriate cross-sections
(e.g., A–A′, B–B′, C–C′, D–D′, E–E′ and F–F′), and horizon slices. The horizon slices include
the G sand interval, the E sand interval, and the Sembar Formation. The variance edge
attribute values in the 2D variance cross-sections and horizon slices range from 0.0 to 1.0.
A variance value equal to 1 indicates discontinuity (fault), while a value of 0 variances

36



Minerals 2022, 12, 363

represents continuous seismic events. The darkest regions (e.g., values ranging from 0.8 to
1) in vertical strips can be interpreted as faults or fractures (Figure 12c). These faults and
fractures create an essential pathway for vertical hydrocarbon migration.
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showing discontinuities.

4.4.2. Sweetness Attribute

Figure 13 shows the sweetness attribute computed from the 3D seismic volume,
corresponding cross-sections (e.g., A–A′, B–B′, C–C′, D–D′, E–E′ and F–F′), and sweetness
horizon slices. The high sweetness anomalies (at −1900 to −2300 ms) on the 2D sweetness
cross-sections (Figure 13b) and the 3D horizon slices (e.g., G sand and E sand intervals)
(Figure 13c) contributed to the high amplitude and low frequency. In contrast, the low
sweetness anomalies (at −2300 to −2500 ms) on the 2D sweetness cross-sections and the
SW—NE parts of the 3D horizon slices (e.g., the Sembar Formation) due to the seismic
reflection low amplitude and high frequency. The high amplitude (high acoustic impedance
as opposed to shale) and low-frequency anomalies on the 2D sweetness cross-sections and
the 3D sweetness horizon slices represent cleaner and more payable sand zones. These
sweet spots suggest the presence of a high proportion of porous sand and seem to hold
potential for producing gas in the SW and NE parts of the G and E sand reservoir intervals
(Figure 13c). In contrast, areas with low amplitude and high-frequency anomalies within
the −2100 to −2300 (ms) in the 2D sweetness cross-sections non-reservoir window (e.g.,
the Sembar Formation) are shale-prone; the sands here may be interbedded with shale.
Although the sweetness attribute effectively distinguishes sand bodies from shale, it does
so via the high acoustic impedance contrast between sand and shale.
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4.4.3. RMS Amplitude Attribute

Figure 14 shows the results of RMS amplitude inferred from the 3D seismic volume,
appropriate 2D cross-sections (e.g., A–A′, B–B′, C–C′, D–D′, E–E′ and F–F′), and 3D horizon
slices (e.g., G sand interval, E sand interval, and the Sembar Formation). The extracted
2D RMS amplitude cross-section anomalies range from 0 to 4000 ms. These amplitude
variations evaluated the structure’s influence on depositional facies. The moderate to
high-amplitude anomalies, e.g., between 2500 and 4000 (ms), are often associated with
channel sand bodies, high porosity (porous sands), and sand-rich sand shoreward facies,
especially gas saturated sand zones. The lateral and horizontal spatial distributions of
facies show that faults and fractures significantly reduce the reservoir quality (G and E sand
intervals). The gas-saturated sand in the SW and NE parts have high reflectivity, indicating
high porosity within the G and E sand intervals (Figure 14c). These sand-rich gas-saturated
zones can be considered for future gas exploration in the study area. In comparison, low
amplitude anomalies, e.g., between 0 and 2000 (ms), may indicate that these zones contain
sandy shale, making them unfavorable for gas production. Such unfavorable zones mainly
include the Cretaceous organic-rich shales of the Sembar Formation (Figure 14c).

4.5. Petrophysical Modeling

Petrophysical modeling unveils the reservoir traits and offers suggestions of hydrocarbon-
bearing zones. The average petrophysical properties such as Vshale, ∅avg, ∅eff, and SW of the G
sand interval in both wells are 36.11%, 12.5%, 7.5%, and 45%, respectively (Table 3). Similarly,
the derived average petrophysical properties for the E sand interval in both wells are 30.5%,
17.4%, 12.2%, and 33.2%, respectively (Table 4). A graphical representation of these properties is
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presented in Figure 15. The overall description of the G and E sand reservoir intervals depends
on these petrophysical properties. This may significantly influence the decision-making process
in all phases of the planning and executing hydrocarbon activities in the Kadanwari field,
MIIB, Pakistan.
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Table 3. Petrophysical properties of the Cretaceous G sand interval in the Kadanwari-10 and
Kadanwari-11 wells.

Well No. Intervals Volume of Shale
(Vshale) %

Effective Porosity
(∅eff) %

Average Porosity
(∅avg) %

Water Saturation
(Sw) %

Kadanwari-10 G sand interval 36.11 7.8 12.2 45.4
Kadanwari-11 G sand interval 36.11 8 12.56 45.4

Table 4. Petrophysical properties of the Cretaceous E sand interval in the Kadanwari-10 and
Kadanwari-11 wells.

Well No. Intervals Volume of Shale
(Vshale) %

Effective Porosity
(∅eff) %

Average Porosity
(∅avg) %

Water Saturation
(Sw) %

Kadanwari-10 E sand interval 27.02 13.2 18.1 30.09
Kadanwari-11 E sand interval 34.05 11.3 16.7 36.42
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Figure 15. Relationship between the Vshale and volume of sand (track 1), distribution of ∅avg (track 2),
distribution of ∅eff (track 3), and the relationship between SW and Shc with respect to the depth at
the G sand interval in (a) Kadanwari 10 and (b) Kadanwari-11 wells, and at the E sand interval in
(c) Kadanwari 10 and (d) Kadanwari-11 wells.

The GR log response is sensitive to the radioactive emissions predominantly con-
centrated in the clay minerals of shale and clean sand (feldspar-rich) [43]. The GR re-
sponse in track 1 of each understudy well confirms the reservoir lithology to be sand-
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stone (Figure 15a). Figure 15a represents the relationship between Vshale and sand content
(track 1), ∅avg distribution (track 2), ∅eff distribution (track 3), and the relation between
SW and Shc (track 4) at the G sand interval in the Kadanwari-10 and 11 wells. Similarly,
Figure 15b represents the relationship between Vshale and sand content (track 1), ∅avg distri-
bution (track 2), ∅eff distribution (track 3), and the relation between SW and Shc (track 4) at
the E sand interval in the Kadanwari-10 and 11 wells.

5. Discussion
5.1. Integration of 3D SM and JGC for Hydrocarbon Evaluation

Knowledge of structural, lithological, and petrophysical characteristics is essential to
reducing the uncertainties associated with reservoir description. Herein, 3D seismic data
and well logs data have been critically analyzed to evaluate the complex and heteroge-
neous depositional environment of the early Cretaceous stratigraphic sequence, along with
structural and stratigraphic characteristics, distribution of associated petrophysical proper-
ties, and spatial facies for reliable reservoir characterization. The result indicates that the
early Cretaceous stratigraphic sequence appears irregularly, with faulted structural highs
bounded by extension-related normal faults, heterogeneous nature of reservoir intervals,
and potential gas-saturated zones.

The structural interpretation of the early Cretaceous stratigraphic sequence indicates
that the interpreted horizons (e.g., G sand, E sand, and the Sembar Formation) appear
normal faulted extension-related horsts, half-graben, and graben structures (Figure 11).
The normal faulted inversion-related horsts, half-graben, and graben structures show how
the sedimentary layer’s structural features have contributed to the formation of traps and
conduit mechanisms. In general, due to the exact kinematic mechanisms involved in the
sequential deformation of the Kadanwari field, the structural deformation of each horizon is
equal in orientation and extent (Figure 11b). However, the E sand interval seems to be more
deformed than the G sand interval and the Sembar Formation. The geometric tendency
of the extension-related normal fault in the early Cretaceous stratigraphic sequence is
essential because it has created channels for hydrocarbon migration in the vertical direction.
Hydrocarbon enrichment in the G and E sand reservoir intervals was positively related to
the complexity of the internal structure of normal faults. The hydrocarbon concentration
and dominance of these normal faults are more intense towards the central part of the
seismic volume, where the faults are closely spaced. The normal fault plane profiles
show the hanging wall and footwall cutoffs (Figure 11b). These profiles are useful for
understanding the seal behavior for hydrocarbon potential and prospect evaluation.

Using 3D SM, we determined that the extension–related normal faults’ geometrical
trend created an essential pathway for the up-dip migration of hydrocarbons from the
source rock (the Sembar Formation) towards the G and E sand reservoir intervals, resulting
in hydrocarbon accumulation. These statements are validated here, as the moderate
to high RMS amplitude anomalies are often associated with gas–saturated sand zones
(Figure 14c). The hydrocarbon prospects have high reflectivity, indicating high porosity,
which can be seen on both the sweetness (Figure 13b) and RMS amplitude (Figure 14b)
attributes within the G and E sand intervals. In addition, the RMS amplitude attribute is
advantageous compared with the sweetness attribute because the RMS amplitude attribute
has a higher resolution when depicting the porous zones and DHIs. These results can
significantly reduce the risk associated with hydrocarbon exploration and development in
the Kadanwari field, MIB.

The calculated values of the Shc form the basis of future production forecasts and the
determination of the economic viability of a discovered reservoir. Therefore, high accuracy
is needed when determining SW, as it is used to calculate the estimated Shc reserves. The
low values found for Vshale content in the Kadanwari 10 and 11 wells indicate the cleanliness
of the sandstone. Accordingly, the shale and sandstone facies were separated by a 40%
cutoff value in the targeted reservoir intervals, i.e., G and E sands. The Vshale contents in
the G and E sand intervals are influenced by clay minerals, which reduce the ∅avg and ∅eff.
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The high values of ∅eff refer to better volume estimation, and thus, a theoretically good
reservoir, and vice versa. These high values of ∅eff indicate the amounts of connected pore
spaces in the reservoir intervals [43]. The G and E sand reservoir interval properties, as
derived from our petrophysical modeling, are in good agreement with the results of the
regional study conducted by [40,43].

5.2. Analysis of Gas Reserve of the Kadanwari Field

Graphical representations of the Shc at the G and E sand reservoir intervals are pre-
sented in track 4 in Figure 15. The petrophysical modeling results show that these intervals
have good Shc, as the SW is below 60% (Table 5). A comparison between the G and E sand
interval petrophysical properties shows that the E sand interval has good ∅eff and Shc,
with an apparent gas effect revealed by the cross-overs of the DT and NPHI logs curves
(Figure 6). Therefore, it can be considered as an economically viable reservoir interval. The
Shc percentage of the E sand interval is satisfactory for exploration purposes.

Table 5. Depth range, thickness, and Shc (%) of the Cretaceous G and E sand intervals in Kadanwari-10
and 11 wells.

Well No. Intervals Depth Range (m) Thickness (m) Hydrocarbon Saturation (Shc) %

Kadanwari-10
G sand interval 3145–3240 95 54.6
E sand interval 3320–3350 30 70.01

Kadanwari-11
G sand interval 3167–3260 93 55.02
E sand interval 3337–3360 23 63.58

The annual report (2010–2011) of petroleum exploration and production activities in
Pakistan analyzed the reserves of the Kadanwari field (Table 6) [7]. The Kadanwari field
exhibits a significant amount of original recoverable gas reserves, i.e., 1110 billion cubic feet
(Bcf) equivalent to 190 million barrels of oil equivalent (Mboe), respectively. From these
original recoverable gas reserves, 420 (Bcf) has been extracted from the Kadanwari field. As
of 30 June 2011, the balance recoverable gas reserves were 690 Bcf, equivalent to 110 Mboe.
The collective original recoverable reserves of the Kadanwari field—280 Mboe—are now
limited to 129 Mboe [7]. Thus, many hydrocarbon reserves are present in the Kadanwari
field. The high level of gas reserves in the Kadanwari field compared to other fields (such
as the Miano field) may be attributed to its complex structural configuration (e.g., negative
flower structure of fault system), reservoir compartmentalization, and the up-dip migration
of the hydrocarbons into the reservoir intervals (e.g., G and E sands).

Table 6. The gas reserves of the Kadanwari and Miano fields as of 30 June 2011.

Fields Original Recoverable Cumulative Production Balance Recoverable

Kadanwari 1110 BCF 420 BCF 690 BCF
Miano 552 BCF 438 BCF 114 BCF

5.3. Comparative Analysis with Other Reservoirs

The detailed structural interpretation of the 3D SMs and appropriate 2D cross-sections
has revealed that the geological structural complexity is a consequence of different tectonic
phases of deformation (compressional regimes of the surrounding plate boundary). The
structural and stratigraphic characteristics results derived from the 3D FSMs, the 3D TWT
model, the 3D SMs, the dip angle models, the rose diagram, and the histogram agree with
the regional studies conducted by other researchers [7,45,49]. These studies show similar
structural and stratigraphic characteristics and patterns. According to [7], most faults dip
towards the southwest, with an average throw in the order of about 50 m and a maximum
throw of 113 m in the Kadanwari area. Wrench or strike-slip faults are absent, except for
one potential one wrench fault (F3) to the south in the Kadanwari field (Figure 9a). Based
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on this, the possibility of strike-slip deformation may also be inferred. References [7,45,49]
also stressed that the Kadanwari field is structurally essential due to the presence of
fault-bounded structures, which may be considered as potential prospects. The structural
characteristics of the nearby fields within the MIB and LIB, such as the Miano, Sawan, and
Zamzama fields, can also be correlated with the conducted study of the Kadanwari field.

The adopted methods of 3D SM and JGC can also be utilized in the international
basins having the same geology of extensional regimes featuring the horst and graben
structures as a petroleum play. These include the Bach Ho oilfield in Cuu Long Basin of
Vietnam [61] and the Mannar frontier sedimentary basin of Sri Lanka [62]. In addition, this
study is helpful to characterize and evaluate reservoir geometrical characteristics, facies,
and properties to reduce uncertainties and improve the success rate of future exploration
and development plans pertaining to hydrocarbons in the regions having the same geology
globally. In general, conventional methods remain inadequate in individual or integrated
form. Therefore, machine learning tools may provide guidance for detailed structural and
petrophysical evaluation. In future work, the manual structural interpretation, seismic
attributes maps, and petrophysical properties can be used as input databases of machine
learning, especially deep learning, models for subsequent automated 3D structural, facies,
and petrophysical modeling.

6. Conclusions

We introduced a novel methodology of 3D structural modeling (3D SM) and joint geo-
physical characterization (JGC), which comprises seismic interpretation-aided 3D structural
modeling, seismic attributes, and petrophysical modeling for reservoir characterization in
the Kadanwari field, Middle Indus Basin (MIB), Pakistan. Our main findings are as follow:

(1) The 3D structural interpretation illustrates the complex structural mechanics, con-
trolled by the NW–SE dipping normal faults system, operating in the early Cretaceous
stratigraphic sequence. The identified features include horsts, half-graben, and graben
structures. The spatial distribution of the fault system shows that the overall pattern
of the interpreted fault system can be regarded as a negative flower structure. The
negative flower structure incorporates the combined effects of extensional and strike-
slip motion in the study area. In general, the horsts, half-graben, and graben, along
with the faults, have geometrically determined reservoir (G and E sand intervals)
geomorphology, up-dip hydrocarbon migration, the development of the local strata,
the distribution of facies and properties, and internal structural deformation;

(2) The variance edge attribute enhanced the geometric distribution of the faults within
the seismic data. The sweetness attribute distinguished the sand facies from shale,
as the increased amplitude and lower frequency content represent cleaner and more
payable sand zones. In contrast, areas with low amplitude and high-frequency anoma-
lies are susceptible to shale. The RMS amplitude and sweetness attribute results
indicate the hydrocarbon zones. Relatively high RMS amplitude attribute values are
usually connected with lithological changes, sand-rich shoreward facies, bright spots,
and especially gas-saturated sand zones. In comparison, low amplitudes anomalies
indicate the zones of sandy-shale, shale, and pro-delta facies;

(3) Petrophysical modeling reveals the important parameters of G and E sand reservoir
intervals. The ∅avg values calculated via the Sonic–Raymer (SR) porosity model, the
RHOB log, and the NPHI log show that the G and E sand reservoir intervals have
good porosities. Moreover, the E sand interval has good ∅eff and Shc and displays
clear signs of gas effects verified by the cross-overs of density and neutron log curves.
Therefore, it can be considered an economically viable reservoir interval for future
hydrocarbon production.
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Abstract: The Shangfanggou Mo–Fe deposit is a typical and giant porphyry–skarn deposit located in
the East Qinling–Dabie molybdenum (Mo) polymetallic metallogenic belt in the southern margin of
the North China Block. In this paper, three-dimensional (3D) multi-parameter geological modeling
and microanalysis are used to discuss the mineralization and oxidation transformation process of
molybdenite during the supergene stage. Meanwhile, from macro to micro, the temporal–spatial–
genetic correlation and exploration constraints are also established by 3D geological modeling of
industrial Mo orebodies and Mo oxide orebodies. SEM-EDS and EPMA-aided analyses indicate the
oxidation products of molybdenite are dominated by tungsten–powellite at the supergene stage.
Thus, a series of oxidation processes from molybdenite to tungsten–powellite are obtained after
the precipitation of molybdenite; eventually, a special genetic model of the Shangfanggou high
oxidation rate Mo deposit is formed. Oxygen fugacity reduction and an acid environment play an
important part in the precipitation of molybdenite: (1) During the oxidation process, molybdenite is
first oxidized to a MoO2·SO4 complex ion and then reacts with a carbonate solution to precipitate
powethite, in which W and Mo elements can be substituted by complete isomorphism, forming a
unique secondary oxide orebody dominated by tungsten–powellite. (2) Under hydrothermal action,
Mo4+ can be oxidized to jordisite in the strong acid reduction environment at low temperature
and room temperature during the hydrothermal mineralization stage. Ilsemannite is the oxidation
product, which can be further oxidized to molybdite.

Keywords: oxidation of molybdenite; ore-forming process; 3D multi-parameter geological modeling;
microanalysis; Shangfanggou

1. Introduction

Three-dimensional (3D) geological modeling is a prominent technology that can be
used to calculate or extract key parameters from 3D information on ore deposits [1]. Apply-
ing the theory of a metallogenic system, combined with multi-parameter or multi-source
(geological, geophysical, geochemical, and hyperspectral) and multi-method modeling and
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analysis of a 3D ore-forming geologic body, the capabilities of quantitative and big data
collation, mineral exploration, and mining are greatly improved [2,3]. It has been proved
that 3D GIS or modeling packages (e.g., Micromine, GOCAD, and Surpac) are excellent
means of data representation and interpretation [4].

3D geological modeling provides distinct advantages in assisting geologists in deter-
mining the geological background, mineralization, and mineral exploration in a compre-
hensive and effective manner [5–18].

Porphyry–skarn-type molybdenum (Mo) deposits are one of the strategic and eco-
nomic resources in China. The East Qinling Mo belt (EQMB; Figure 1B) is referred to as
one of the most significant Mo provinces in the world, containing reserves of about 6 Mt
Mo [19,20]. The Shangfanggou Mo–Fe deposit is an important deposit in the East Qinling
Mo polymetallic metallogenic belt. It is adjacent to the Nannihu–Sandaozhuang Mo–W
polymetallic deposit in the northeast (Figure 1D), which together constitute the main body
of the Nannihu Mo ore field in Luanchuan district, China. In 2000, the estimated Mo
reserves of the three major deposits (Nannihu, Sandaozhuang, and Shangfanggou) were
about 2.4 × 106 tons (with an average Mo grade of 0.109%) [21], while the Shangfanggou
deposit contained 0.72 million tons of Mo and 59.91 million tons of Fe metal, with average
grades of 0.135% Mo [22,23] and 30.14% Fe [24].

Although there have been many studies on 3D geological modeling of the Luanchuan
ore district [25,26], they have been insufficient to construct 3D multi-parameter geological
modeling of the study area. Moreover, the formation of the Shangfanggou porphyry–skarn
deposit is mainly controlled by strong tectonic magmatic movement in the Mesozoic. The
complex geological background, multiple geological factors, and multi-scale and multi-
format data sources pose challenges to 3D geological modeling and deep prediction.

Currently, the industrial Mo ores used by the mine are mainly the primary molybdenite;
the onefold Mo oxide ores nearly cannot be recycled and utilized because they are difficult
to beneficiate, and the ore-forming process (supergene oxidation process) of this kind of
ore type also lacks research. In recent years, global Mo ore output has tended to decline,
and the situation of rapid economic and social development has led to a demand for
Mo. Therefore, it has become an important and urgent topic to study the genesis and
prospecting of Mo ores in the oxidation zone and to utilize Mo oxide ores comprehensively
and efficiently. On the basis of previous studies, this paper systematically discusses the
mineralization and oxidation process of Mo orebodies in the Shangfanggou porphyry–
skarn Mo–Fe deposit. The temporal–spatial–genetic correlation and exploration constraints
of magnetite and gangue minerals to Mo and Mo oxide orebodies are discovered, and the
distribution characteristics of the oxidation zone are further investigated (Figure 2). These
findings provide a reference for the genesis and exploration, as well as the recovery and
utilization, of oxidized ores for mining and beneficiation of the mine.

2. Geological Setting
2.1. Regional Geology

The EQMB is part of the Central China orogenic belt which is bounded by the San-Bao
Fault to the north and the Shang-Dan Fault to the south [27,28] (Figure 1B). As the “Mo
capital of China”, more than 30 polymetallic deposits and ore spots are densely distributed
in the Luanchuan ore district. This is consistent with the horizontal zoning of geochemical
anomaly elements in the district. Namely, they are regularly distributed from inside to
outside around the porphyry pluton: the porphyry–skarn Mo–W deposits and skarn sulfur
polymetallic deposits mainly developed in the central zone of geochemical anomalies,
while the hydrothermal vein Pb–Zn–Ag deposits are mainly distributed in the middle zone
of geochemical anomalies [29]. Of course, both the ore district scale and the deposit scale
have favorable prospecting potential at depth.
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Figure 1. (A) Tectonic map of China, showing the location of the Qinling Orogen Belt; (B) tectonic 
subdivision of the Qinling Orogen Belt, showing the location of the Luanchuan ore district; (C) Figure 1. (A) Tectonic map of China, showing the location of the Qinling Orogen Belt; (B) tectonic sub-

division of the Qinling Orogen Belt, showing the location of the Luanchuan ore district; (C) geological
map of the Luanchuan ore district, showing the Shangfanggou Mo–Fe deposit (modified after [39]);
(D) sketch of the Shangfanggou, Nannihu, and Sandaozhuang deposits (modified after [22,23]).
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The Luanchuan ore district has a typical double-crust structure composed of basement
and sedimentary cover. The basement is the Neoarchean Taihua Group deep metamorphic
rock series, and the caprock series is mainly the “trident-rift” volcanic formation of the Mid-
dle Proterozoic Xiong’er Group [30], the Guandaokou group of the Middle Proterozoic, the
passive continental clastic rock formation of the Luanchuan Group of the New Proterozoic,
and the clastic rock–carbonates sedimentary formation of the slope facies of the Taowan
Group, Lower Paleozoic [31]. The Nannihu Mo ore field, discovered in the 1960s and 1970s,
is located in the north of the ore district, which is one of Mo’s major places of production in
China and even the world. The Nannihu Mo ore field, the Shangfanggou Mo–Fe deposit
included, is mainly hosted in the Luanchuan Group.

Magmatism mainly concentrated in the Neoarchean, early Mesoproterozoic, and
Mesozoic. Thereinto, the Mesozoic (Yanshanian) mineralization related to small porphyry
was intense [32]. The main Mo mineralization is involved with the late Mesozoic granitic
magmatism in the EQMB [33–36], forming giant porphyry–skarn Mo deposits, including
the Nannihu, Shangfanggou mine, etc.

The main regional faults are the Luanchuan and Machaoying faults, which are dis-
tributed in a NWW-trending, and there are NE-trending secondary faults. These faults
control the distribution of magmatic rocks and ore deposits, and giant deposits are of-
ten formed at the intersection of them [37,38]. That is, a series of NW-trending thrusts
at a regional scale controlled the formation of major Mo deposits, which were formed
by the regional Indosinian Qinling orogenic events. The secondary NW-trending folds
and NE-trending faults and intrusive stock structures were formed by the thrusts during
the Caledonian–Indosinian orogenic event. They are ore-bearing belts and ore-forming
structures [2].

2.2. Deposit Geology

The Shangfanggou porphyry–skarn Mo–Fe deposit, located in the northwest of Lu-
anchuan County, is world-renowned for its large scale, high grade, and suitability for
open-pit mining. It is adjacent to the Sandaozhuang–Nannihu Mo–W polymetallic deposit
in the northeast, constituting the main part of the Nannihu ore field in Luanchuan, a part of
the world-famous district (Figure 1D). The deposit is located in the Sanchuan–Luanchuan
fold belt in the southern margin of the North China Block, controlled by the Zenghekou–
Shibaogou syncline. The genesis of the deposit is closely related to structure, granite
porphyry pluton, wall rocks, strata (dolomite marble, skarn), and alteration, which are
mainly distributed in NW- and NWW-trending (Figure 1C,D and Figure 2).

Metasediment of the upper Nannihu and the Meiyaogou Formation of the Luanchuan
Group mainly crop out in the area, which belongs to the sedimentary environment of
a shallow sea shelf-confined platform supratidal–subtidal zone. Under the influence of
contact thermometamorphism and contact metasomatism caused by the intrusion of the
Shangfanggou pluton, various types of hornfels and skarnization developed, respectively
(for details of the lithology, see Section 3.1). Moreover, the alteration of wall rocks is
composed of potassic alteration, silicification, and phlogopitization (Figures 2 and 3). With
the intrusion of the pluton, the magnesian skarn formed from the dolomite marble of
the middle Meiyaogou Formation (divided into three layers), which is the predominant
ore-hosted position.
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Figure 2. Geological sketch and location of Shangfanggou Mo–Fe deposit: (A) the open pit (red
points, sample spots collected and analyzed in the fieldwork); (B) DEM of the mine; (C,D) geologic
profile of the deposit, showing the Mo oxide orebodies and geology at 1132 m level and prospecting
line NO. 5 (modified after [22,23,40–42]); (E) geological map of the deposit (after [43]).
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Magmatism in the mining area is controlled by the fault structure, which mainly in-
cludes Caledonian metagabbro (in the south and north), syenite porphyry, and Yanshanian
intermediate–acid granite porphyry (central part of the mining area). The metagabbro
dikes yield K–Ar ages of ca. 743 Ma [44] and zircon SHRIMP U-Pb ages of ca. 830 Ma [45],
which are associated with the rifting background at the southern margin of the North China
Continent [46]. Therefore, the intrusive, alkali–feldspar granite porphyry in the middle
Yanshanian, a time when the predominate mineralization was undergoing (Shangfanggou
pluton, distributed in the center of the study area), is related to metallogenesis.

The deposit is controlled by the Shangfanggou syncline, which is located in the north-
ern wing of the Shangfanggou syncline in the Sanchuan–Luanchuan County depression
fold fault belt. NW–NWW- and NE–NNE-trending faults are developed, and the former
controls the distribution characteristics of the plutons in the area, while the latter provides
the conditions for migration and accumulation of Yanshanian ore-bearing hydrothermal
fluid as a migration pathway. The NW–NWW trending dominates in magmatic rocks and
various structures in the area, superimposing the later NNE–NE-trending faults. The NWW–
NW-trending structure is mainly composed of the Zenghekou–Shibaogou syncline and a
series of thrust nappe faults with NWW trending, in which the thrusts with southward
thrusting and NE dip are developed. NNE–NE faults are intruded by the granitic porphyry
dikes in both directions that control the formation of the Mo–Fe deposit and the intersection
area of the two different directions is the occurrence site of the Shangfanggou orebody.

The Shangfanggou Mo–Fe polymetallic deposit occurs in the inner and outer contact
zone of the alkali–feldspar granite porphyry. That is, the Mo ore bodies are hosted not only
in the magnesium skarn but in the porphyry pluton and adjacent metagabbro and hornfels,
which shows the controlling effect of the pluton on the deposit, while the Fe ore bodies
occur in the former more often.

The ores can be divided into skarn, granite porphyry, hornfels and metagabbro types,
according to the different host rocks (Figure 3A–G). The ore minerals consist of molybdenite,
magnetite, and pyrite, followed by pyrrhotite, chalcopyrite, sphalerite, galena, etc. The
gangue minerals are mainly quartz, diopside, garnet, tremolite, talc, serpentine, chlorite,
feldspar, followed by sericite, carbonates, fluorite, etc. (Table 1; after [47]).

Table 1. Stages of mineralization and paragenesis for the Shangfanggou Mo-Fe deposit.

Stages Minerals

Protolith Dolomite, K-feldspar, plagioclase, quartz,
biotite, ilmenite, wollastonite

Late magmatism (silicification and potassic
alteration) stage (1) K-feldspar, quartz, biotite . . .

Early skarn stage (2) Garnet, diopside, forsterite . . .

Late skarn stage (3)
Tremolite, magnetite, phlogopite, serpentine,
calcite, actinolite, chlorite, talc, fluorite,
serpentine . . .

Hydrothermal stage (4)
Quartz, pyrite, molybdenite, K-feldspar,
chalcopyrite, galena, sphalerite, epidote,
scheelite, fluorite, pyrrhotite . . .

Supergene stage (5) Molybdite, ilsemannite, scheelite, limonite,
tungsten–powellite . . .

The gabbro in the northern part of the mine serves as part of the main orebody that is
affected by mineralization. The Mo orebody occurs in (meta-)gabbro as well, accompanied
by magnetite. In this kind of ore, pyroxene alteration is developed and widespread, which
can be altered into amphibole and chlorite, giving rise to the partially argillated surface,
and pyrite is mostly weathered into limonite (Figure 3G,H).
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small amount of rock footwall, which is the dominant ore type of the deposit. Stellate and 
disseminated Mo mineralization can be observed, showing obvious metasomatism among 
this kind of ore. Molybdenite often occurs in the intergranular or fissure of skarn minerals 
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area; the veinlet is not straight and has poor continuity. The ore texture is dominated by a 
granular texture, followed by a metasomatic relict texture (Figure 4). 

Figure 3. Photographs of alteration and mineralization characteristics in different ore types: (A) por-
phyry Mo ore and potassic alteration; (B) molybdenite with leaf-like texture unevenly embedded in
gangue minerals such as quartz and K-feldspar or in veinlets in granite porphyry; (C) quartz veins
(silicification) and potassic alteration in the granitic porphyry; (D) marble-type Mo ore; (E) skarn-
type Mo ore with disseminated structure; (F) garnet diopside skarn-type Mo ore with epidotization;
(G) metagabbro-type Mo ore with ferritization; (H) the alteration of pyroxene to amphibole in
metagabbro and contiguous magnetite developed; (I) phlogopitization (colorful interference color
of phlogopite).

The skarn-type Mo ores are distributed around the granite porphyry in the hanging
wall (south) and on both sides of the east and west of the granite porphyry pluton, with a
small amount of rock footwall, which is the dominant ore type of the deposit. Stellate and
disseminated Mo mineralization can be observed, showing obvious metasomatism among
this kind of ore. Molybdenite often occurs in the intergranular or fissure of skarn minerals
such as diopside and garnet (Figure 3E,F).

The ore is dominated by a veinlet stockwork structure, followed by a disseminated
structure. The veinlet structure is the most widespread and predominant structure in the
area; the veinlet is not straight and has poor continuity. The ore texture is dominated by a
granular texture, followed by a metasomatic relict texture (Figure 4).
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member is quartzite intercalated with mica schist and marble, etc., the middle part is thick 
dolomite marble, and the upper member is mainly dolomite marble. Granite porphyry 
pluton is distributed in the central part of the mining area, which is irregularly divided 
by faults and wall rocks on the surface and has a distinct contact boundary with the wall 
rocks. 

Figure 4. Photographs of ore petrography of the Shangfanggou Mo–Fe deposit: (A) quartz–
molybdenite veinlet and pyrite veinlets crosscut by the late quartz veinlet; (B) banded structure;
(C) membranous structure of the Mo oxide ore; (D) stockwork structure showing multistage min-
eralization; (E) disseminated Mo mineralization in the garnet-skarns; (F) the curved lepidosome
molybdenite and paragenetic pyrite, magnetite, and chalcopyrite unevenly distributed between
gangue minerals. Abbreviations: Q, quartz; Mo, molybdenite; Py, pyrite; Grt, garnet; Mt, magnetite;
Ccp, chalcopyrite.

3. 3D Geological Modeling

Construct 3D geological model at the deposit scale using a variety of datasets such as
strata, lithology, regional and deposit structures, geological section, boreholes, ore grade,
and so on. 3D geological modeling usually consists of the following three steps: (i) geo-
science data extraction and processing, (ii) 3D geological modeling, and (iii) interpretation
and verification [1].

3.1. 3D Lithology Modeling

In GOCAD software, a 3D model of the lithology is established based on the datasets
of geological section and stratum histogram. In Figure 5, the lithology of the three strata
of the Luanchuan Group’s Meiyaogou Formation can be visually recognized: the lower
member is quartzite intercalated with mica schist and marble, etc., the middle part is thick
dolomite marble, and the upper member is mainly dolomite marble. Granite porphyry
pluton is distributed in the central part of the mining area, which is irregularly divided by
faults and wall rocks on the surface and has a distinct contact boundary with the wall rocks.
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3.2. 3D Structural Model

A structural model is established mainly based on the profile of prospecting lines and
adjusted and verified by the horizontal geologic map. The software is mainly divided into
the following four parts: fault, outline, contact, and surface. It is important to note that the
definition of fault properties is critical.

The NWW–NW-trending faults dominating the study area and a series of NW-trending
thrust structures control the formation of the main Mo orebodies (Figure 6). They are ore-
bearing belts and ore-forming structures [2]. Moreover, NNE–NE trending also controls the
formation of the deposit.
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3.3. 3D Orebodies and Grade Modeling

3D orebody geological modeling involves the delineation of the alteration zone, the
identification of centers and boundaries of the orebody, and the mapping of fractures and
faults. 3D orebody grade modeling is based on the borehole dataset through the application
of indicator kriging (IK), a geostatistical interpolation tool from the GOCAD software [48].
In the case of the datasets with a favorable structure and a large amount of data, kriging
interpolation with variogram function is more advantageous. The variation function has a
good effect on analyzing the continuity of spatial data. Indeed, Mo orebodies are controlled
by the diverse structures in the deposit, and the 3D orebody grade model is beneficial for
inferring the geological events associated with mineralization. In addition, 3D orebody
grade modeling by IK is helpful in identifying and extracting the different orebodies in one
deposit [49,50].

The primary orebody is distributed in the form of an ‘inverted cup,’ with Mo oxide
orebodies on the shallow surface. The orebody’s border is uneven, and there are several
branchings on the east and west sides. The thickness of the orebody varies on both sides,
with the southwest being thinner and the northeast being thicker. The Mo orebodies are
basically distributed above 600 m elevation but are mainly concentrated above 900 m, and
the Mo oxide orebodies are typically found over 1300 m.

The skarn-type Fe orebodies are distributed in lenticular, irregular cystic, and saddle
forms, with the shape determined by the occurrence of the pluton’s contact zone. Analyzing
both Figure 5 and Figure 8, the conclusion that can be drawn is that the depression and the
roof of the pluton are favorable places for the enrichment of Fe mineralization. In the mine,
the Fe orebodies are mostly found above 1000 m, with a downward trend, which is similar
to the distribution characteristics of the Mo orebodies (Figures 7 and 8). Therefore, through
the superposition of Mo mineralization, Fe, as an associated element, constitutes the Mo–Fe
orebodies together with the Mo orebodies, indicating the spatial correlation between the Fe
orebodies and the Mo orebodies and further speculating that the two are also related in
genesis. The relative grade information of the two is shown in Figures 9 and 10.

Minerals 2022, 12, x FOR PEER REVIEW 11 of 21 
 

 

Figure 6. Spatial relationship between rich orebody and main faults (superposition of main faults 
with ore shoot). 

3.3. 3D Orebodies and Grade Modeling 
3D orebody geological modeling involves the delineation of the alteration zone, the 

identification of centers and boundaries of the orebody, and the mapping of fractures and 
faults. 3D orebody grade modeling is based on the borehole dataset through the 
application of indicator kriging (IK), a geostatistical interpolation tool from the GOCAD 
software [48]. In the case of the datasets with a favorable structure and a large amount of 
data, kriging interpolation with variogram function is more advantageous. The variation 
function has a good effect on analyzing the continuity of spatial data. Indeed, Mo 
orebodies are controlled by the diverse structures in the deposit, and the 3D orebody 
grade model is beneficial for inferring the geological events associated with 
mineralization. In addition, 3D orebody grade modeling by IK is helpful in identifying 
and extracting the different orebodies in one deposit [49,50]. 

The primary orebody is distributed in the form of an ‘inverted cup,’ with Mo oxide 
orebodies on the shallow surface. The orebody’s border is uneven, and there are several 
branchings on the east and west sides. The thickness of the orebody varies on both sides, 
with the southwest being thinner and the northeast being thicker. The Mo orebodies are 
basically distributed above 600 m elevation but are mainly concentrated above 900 m, and 
the Mo oxide orebodies are typically found over 1300 m. 

The skarn-type Fe orebodies are distributed in lenticular, irregular cystic, and saddle 
forms, with the shape determined by the occurrence of the pluton’s contact zone. 
Analyzing both Figures 5 and 8, the conclusion that can be drawn is that the depression 
and the roof of the pluton are favorable places for the enrichment of Fe mineralization. In 
the mine, the Fe orebodies are mostly found above 1000 m, with a downward trend, which 
is similar to the distribution characteristics of the Mo orebodies (Figures 7 and 8). 
Therefore, through the superposition of Mo mineralization, Fe, as an associated element, 
constitutes the Mo–Fe orebodies together with the Mo orebodies, indicating the spatial 
correlation between the Fe orebodies and the Mo orebodies and further speculating that 
the two are also related in genesis. The relative grade information of the two is shown in 
Figures 9 and 10. 

 

Figure 7. 3D model of Mo orebodies and Mo oxide orebodies.

56



Minerals 2022, 12, 769

Minerals 2022, 12, x FOR PEER REVIEW 12 of 21 
 

 

Figure 7. 3D model of Mo orebodies and Mo oxide orebodies. 

 
Figure 8. 3D model of Fe orebodies. 

 
Figure 9. Distribution of Mo orebodies with different grades: (A) the grade > 0.10%; (B) the grade > 
0.15%; (C) the grade > 0.20%; (D) the grade > 0.25%; (E) the grade > 0.30%; (F) the grade > 0.35%. 

Figure 8. 3D model of Fe orebodies.

Minerals 2022, 12, x FOR PEER REVIEW 12 of 21 
 

 

Figure 7. 3D model of Mo orebodies and Mo oxide orebodies. 

 
Figure 8. 3D model of Fe orebodies. 

 
Figure 9. Distribution of Mo orebodies with different grades: (A) the grade > 0.10%; (B) the grade > 
0.15%; (C) the grade > 0.20%; (D) the grade > 0.25%; (E) the grade > 0.30%; (F) the grade > 0.35%. 
Figure 9. Distribution of Mo orebodies with different grades: (A) the grade > 0.10%; (B) the
grade > 0.15%; (C) the grade > 0.20%; (D) the grade > 0.25%; (E) the grade > 0.30%; (F) the
grade > 0.35%.

57



Minerals 2022, 12, 769Minerals 2022, 12, x FOR PEER REVIEW 13 of 21 
 

 

 
Figure 10. 3D grade model of Fe orebodies. 

Figures 5, 7 and 9 illustrate that there is no ore in the core of the pluton. Although the 
orebodies are found on both sides, those toward the southwest are thick, concentrated, 
and of high grade. 

The average grade of total Fe (TFe) in the Fe orebodies in the area is normally 20–
30%, which is mostly concentrated in the hanging wall of the pluton or the top wall rock 
(magnesian skarn) within the range of 100–150 m from the intrusion contact zone of the 
pluton (Figure 10). 

4. Sampling and Analysis Methods 
4.1. Sampling 

Mo oxide ores were collected from the oxide zone of the deposit for microscopic 
identification (Figure 2), SEM (scanning electron microscope)-EDS (energy dispersive X-
ray spectroscopy), and EPMA (electron microprobe analysis) composition analysis. 

The determination of major elements and high-resolution surface scanning and 
backscattering images were carried out at the Central Laboratory of Genetic Minerals, 
China University of Geosciences, Beijing, using FE-SEM Tescan. In addition, EPMA was 
performed at the Beijing Institute of Geology of Nuclear Industry, Beijing, China. 

4.2. SEM-EDS 
SEM-EDS was utilized to conduct a semi-quantitative analysis of molybdenite and 

its oxides, as well as the gangue minerals associated with them, in order to preliminarily 
explore their composition, content, and distribution (e.g., Figure 11D–I). FE-SEM Tescan: 
MIRA 3 XMU field emission scanning electron microscope equipped with OXFORD X-
Max 20 mm2 X-ray energy spectrometer; backscattering electron image resolution was 2.0 
nm@30 KV with beam drift ≤ 0.2% h; and energy dispersive spectroscopy was equipped 
with an electric refrigeration detector and peak to back ratio was better than 20,000:1. 
Moreover, Mn-ka is superior to 127 eV with an energy resolution of 20,000 CPS. The data 
were analyzed and processed using an Inca system with Inca X-Stream and Inca Mics 
microanalysis processors. The conditions of point analysis were as follows: high voltage, 
20 KV; emission current, 83 μA; electron beam intensity, 18.36; absorption current, 4.0 nA; 
spot size, 85 nm; acquisition time, 30 s; process time, 3; dead time, less than 30%; count 
rate, higher than 20 Kcps. 

  

Figure 10. 3D grade model of Fe orebodies.

Figures 5, 7 and 9 illustrate that there is no ore in the core of the pluton. Although the
orebodies are found on both sides, those toward the southwest are thick, concentrated, and
of high grade.

The average grade of total Fe (TFe) in the Fe orebodies in the area is normally 20–30%,
which is mostly concentrated in the hanging wall of the pluton or the top wall rock
(magnesian skarn) within the range of 100–150 m from the intrusion contact zone of the
pluton (Figure 10).

4. Sampling and Analysis Methods
4.1. Sampling

Mo oxide ores were collected from the oxide zone of the deposit for microscopic
identification (Figure 2), SEM (scanning electron microscope)-EDS (energy dispersive X-ray
spectroscopy), and EPMA (electron microprobe analysis) composition analysis.

The determination of major elements and high-resolution surface scanning and backscat-
tering images were carried out at the Central Laboratory of Genetic Minerals, China Univer-
sity of Geosciences, Beijing, using FE-SEM Tescan. In addition, EPMA was performed at the
Beijing Institute of Geology of Nuclear Industry, Beijing, China.

4.2. SEM-EDS

SEM-EDS was utilized to conduct a semi-quantitative analysis of molybdenite and
its oxides, as well as the gangue minerals associated with them, in order to preliminarily
explore their composition, content, and distribution (e.g., Figure 11D–I). FE-SEM Tescan:
MIRA 3 XMU field emission scanning electron microscope equipped with OXFORD X-
Max 20 mm2 X-ray energy spectrometer; backscattering electron image resolution was
2.0 nm@30 KV with beam drift≤ 0.2% h; and energy dispersive spectroscopy was equipped
with an electric refrigeration detector and peak to back ratio was better than 20,000:1.
Moreover, Mn-ka is superior to 127 eV with an energy resolution of 20,000 CPS. The data
were analyzed and processed using an Inca system with Inca X-Stream and Inca Mics
microanalysis processors. The conditions of point analysis were as follows: high voltage,
20 KV; emission current, 83 µA; electron beam intensity, 18.36; absorption current, 4.0 nA;
spot size, 85 nm; acquisition time, 30 s; process time, 3; dead time, less than 30%; count rate,
higher than 20 Kcps.

4.3. EPMA

Representative measuring points were selected for more accurate component analysis
of the samples preliminarily analyzed by SEM-EDS to determine the oxidation products
of molybdenite: instrument (electron microprobe analyzer) model, JXA-8100. The im-
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plementation standard is GB/T 15074-2008 “General Principles of Quantitative Analysis
Methods for Electron Probe”, China. In addition, the analysis conditions are as follows:
an acceleration voltage of 20 kV was used for the experiment while the beam current was
1 × 10−8 A and the exit angle was 40◦. Meanwhile, the spectral analysis method and ZAF
correction method were adopted.

5. Discussion
5.1. Compositions
5.1.1. EPMA

The composition data are listed in Table 2. The content of WO3 ranges from 11.21 to
32.40, with an average of 22.35 (unit: wt.%, and all of the following). The concentration
of MoO3 varies from 39.80 to 60.03, with an average of 49.64; it contains 24.18–27.08 CaO,
with an average of 25.70 and a relatively uniform distribution; and the SO3 content ranges
from 1.18 to 1.93, with an average of 1.42.

Table 2. Representative analysis results (wt.%) of Mo oxide ores.

Points 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

F / / / / / / / / / / / / / / /
SiO2 / / / / / / / / / / / / / / /
WO3 12.59 32.40 32.24 14.11 23.93 17.32 11.21 17.67 28.22 30.08 27.38 18.55 29.50 25.17 31.76
SO3 1.66 1.26 1.41 1.49 1.33 1.64 1.48 1.49 1.18 1.24 1.19 1.45 1.34 1.35 1.93
Al2O3 / / / 0.02 / / / / / / / / / 0.02 /
MgO / / / / / / / / / / / 0.13 / / /
MoO3 58.51 40.91 40.65 57.55 48.86 53.66 60.03 54.21 43.81 42.54 45.56 51.85 43.74 47.59 39.80
CaO 26.73 24.35 24.37 26.36 25.07 26.69 27.08 26.05 25.97 25.29 25.03 26.77 24.18 25.17 24.80
SeO2 0.10 0.63 0.66 0.14 0.51 0.26 0.13 0.31 0.44 0.77 0.64 0.34 0.54 0.60 0.63
FeO 0.07 0.10 0.05 0.03 0.12 0.03 / 0.06 0.11 0.07 0.07 0.14 0.20 0.09 0.06
Cl 0.16 0.08 0.11 0.19 0.15 0.14 0.13 0.16 0.14 0.10 0.12 0.13 0.14 0.12 0.07

MnO / / 0.04 / / / / / 0.04 0.07 0.03 0.04 / / /
P2O5 / / / / / / 0.06 / / / / / / / /
CuO / / / / / / / / / / / / / / /
PbO / / / / / / / / / / / / / / /
TeO2 / / / / / / / / / / / / / / /
Total 99.82 99.73 99.53 99.89 99.97 99.74 100.12 99.95 99.91 100.16 100.02 99.40 99.64 100.11 99.05

/: Not detected.

Within the detection limit of the instrument, the mineral does not contain Cu, Pb, Zn,
Si, F, Te, etc. Mn, Al, etc. were found on occasion. In terms of the contents, Mo is the
predominant element in the oxide mineral granule, while Mo elements are mainly present
in the tungsten–powellite.

The relative contents of Mo and Ca at the seventh site are the highest, which are 60.03%
and 27.08%, respectively, while the content of W is the lowest at only 11.21%. A minor
quantity of P is contained, and Fe, Mn, etc. are not included.

5.1.2. SEM-EDS

The tungsten–powellite is finely granular and is irregularly dispersed in the oxide ores
(Figure 12).
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Mo oxide minerals are primarily found in the skarnized marble, which is usually 
associated with phlogopitization and serpentinization. The tungsten–powellite is found 
between the grains and veins of calcite or hydrothermal alteration minerals such as 
phlogopite and serpentine, indicating a later stage of tungsten–powellite development 
rather than the skarn stage or earlier. 

Figure 11. Photographs showing the characteristics of field and hand specimens of Mo oxide ores as
well as SEM analysis results: (A–C) Mo oxide ores; (D,G) molybdenite and associated with magnetite;
(E,H) the test points of EDS and BSE of the Mo oxide minerals and accompanying gangue minerals;
(F,I) results of EDS. Abbreviations: Mo, molybdenite; Mt, magnetite; Cc, calcite; Phl, phlogopite;
Srp, serpentine.

Mo oxide minerals are primarily found in the skarnized marble, which is usually
associated with phlogopitization and serpentinization. The tungsten–powellite is found
between the grains and veins of calcite or hydrothermal alteration minerals such as phlogo-
pite and serpentine, indicating a later stage of tungsten–powellite development rather than
the skarn stage or earlier.

In Figure 12, compared with Mo, the distribution of the W element is not uniform, and
obvious Mo and W bands are visible, while for the element, Mo distribution is relatively
uniform, and the Mo content of molybdenite in the (almost) unoxidized margin is higher
than that in the middle of the mineral.

The element distribution of Ca, Fe, and O is uniform, while the content of Fe is
significantly lower than that of Ca. In addition, S is mainly distributed in the margin
molybdenite. All of these are consistent with the results in Table 2 and the characteristics of
tungsten–powellite, indicating the incomplete oxidation or dynamic oxidation process of
molybdenite. The contents of Mo, Ca, and W are higher than that of O, Mg, and Si, which
further confirms the oxidation of molybdenite. The characteristics of the zonal concentration
of W content also demonstrate the distribution of a W-bearing hydrothermal solution.
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When molybdenite is not completely oxidized, it can be observed that the pseu-
domorph of molybdenite is retained in the granules and distributed along the edge of
tungsten–powellite (Figures 11D and 12). Moreover, unoxidized molybdenite is sporad-
ically present in the samples. Magnetite is disseminated and indicates a high oxygen
fugacity environment.

5.2. Mineralization and Supergene Oxidation Process

Mineralization is intimately linked to temperature and oxygen fugacity (f(O2)). Pre-
vious research has revealed that the ore-forming fluids of many of the East Qinling’s
magmatic–hydrothermal deposits are strong oxidizing fluids with high temperature, salin-
ity, and oxygen fugacity [51–53].

The crystallization temperature and f(O2) of biotite in the Shangfanggou pluton are
750 ◦C–860 ◦C and −8.0–−6.5, respectively, indicating a relatively high temperature and
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f(O2) environment. The crystallization temperature and f(O2) of biotite related to Mo min-
eralization are significantly greater than those of other ore-forming plutons. It is speculated
that the pluton related to Mo mineralization also originates from a high temperature and
f(O2) environment [54].

The K–Ar, Rb–Sr, and zircon U–Pb ages of the Shangfanggou porphyry pluton are
all between 134 and 158 Ma [33,55–58], similar to the Re–Os isotopic dating of molyb-
denite (metallogenic age, 143.8~145.8 Ma) [59], suggesting the deposit is of magmatic–
hydrothermal genesis in Yanshanian. The Yanshanian magmatism provides hydrothermal
and metallogenic material sources for Mo polymetallic mineralization in the study area [54].
Meanwhile, the magma source is mixed crust and mantle-derived (with I-type granite
characteristics, rich in Mg and poor in Fe) [60].

The ore-forming fluid of the Shangfanggou Mo–Fe deposit is mostly magmatic water,
with a tiny quantity of metamorphic water in the strata, according to H–O isotope research.
The S isotope composition is rather consistent and is characterized by deep source sulfur,
which might come from the pluton. The Pb isotopic composition of the Nannihu ore field
granite porphyry is notably different from that of the Shangfanggou pluton, which may
inherit the Pb isotopic composition features of the Shangfanggou pluton [61].

In general, during the mineralization stage, the fluid system evolved from oxidation to
reduction, and the composition changed from complex to simple [51]. A simplified deposit
exploration model is described in Figure 13.
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To sum up, in such a metallogenic environment, a decrease in f(O2) and an increase
in sulfur fugacity play an important role in molybdenite precipitation. With local redox
reaction or neutralization on the contact zone between the hydrothermal solution and
carbonates, plenty of sulfides began to precipitate. At the high to medium temperature
stage, a substantial quantity of molybdenites developed, resulting in high-grade orebodies
dominated by molybdenite.

Under hydrothermal action, molybdenite precipitates under acidic conditions; that
is, molybdenite is the most stable under acidic conditions. Under the condition of a
supergene environment, molybdenite is oxidized, leached, and migrated with the medium
in the state of a MoO2·SO4 complex ion, and then contacted with carbonate solution to
precipitate powethite. Therefore, W and Mo elements can be completely replaced by
complete isomorphism, forming unique secondary orebodies dominated by tungsten–
powellite with a high oxidation rate in the Shangfanggou Mo–Fe deposit. The basic reaction
process is as follows:
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2MoS2 + 9O2 + 2H2O = 2 (MoO2·SO4) + 2H2SO4; (1)

MoO2·SO4 + Ca (HCO3) 2 = CaMoO4 + H2SO4 + 2CO2 (2)

Moreover, powethite also metasomatized tungsten–powellite. The light and dark
bands alternately formed by Mo-rich or W-rich bands in the mineral grains can be observed
in SEM (Figure 12); the percentage of tungsten–powellite to total Mo changes depending
on the oxidation degree of molybdenite.

While under hydrothermal action, Mo4+ can be oxidized to jordisite in a strong acid
reduction environment at low temperature and room temperature during the metallogenic
epoch. Ilsemannite is the oxidation product, which can be further oxidized to molybdite.

6. Conclusions

Combined with the 3D model, (1) it can be confirmed that the surrounding rocks
of the gently inclined upper contact zone and the top of the pluton are more conducive
to the formation of high-grade orebodies, the form of Mo orebodies is mostly related to
spatial morphology and the occurrence of small plutons, and there is no ore in the core
of the pluton. (2) Molybdenite began to be generated after the precipitation of magnetite,
resulting in the formation of Fe orebodies earlier than that of Mo, while the Fe orebodies
normally formed Mo–Fe orebodies caused by the superimposed Mo mineralization. In
general, magnetite-dominated Fe orebodies have a temporal, spatial, and genetic relevance
and/or control effect on Mo and its oxide orebodies.

The Shangfanggou Mo–Fe deposit was formed in an environment of high temperature
and high oxygen fugacity in Yanshanian, provided by a crust–mantle mixed source and
magmatic–hydrothermal and ore-forming source. The ore-forming fluid is given priority
to magmatic water, with the possible addition of a small quantity of metamorphic water
from the strata. With the precipitation of molybdenite, it experiences the following two
different oxidation processes with a decrease in temperature, oxygen fugacity, and acid-
ity: (1) Supergene oxidation (Stage 5)—molybdenite-MoO2·SO4 complex ion–Mo oxide
minerals aggregate dominated by powethite–tungsten–powellite. During the oxidation
process, molybdenite is first oxidized to a MoO2·SO4 complex ion and then reacts with a
carbonate solution to precipitate powethite, in which W and Mo elements can be substi-
tuted by complete isomorphism, forming unique secondary oxide orebodies dominated by
tungsten–powellite. (2) Metallogenic epoch (Stage 4)—when the solution is strongly acidic,
molybdenite is first transformed into jordisite, and the oxidation product is ilsemannite,
which finally can be completely oxidized to molybdite.
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Abstract: Continental red beds, widely formed at various geologic timescales, are sedimentary
rocks and sediments with red as the main color. Geoscientists have analyzed the geomorphology,
paleomagnetism, paleoenvironments, paleontology, energy, and minerals in continental red beds.
Despite the agreement that fine-grained hematite is closely related to the color of continental red beds,
controversies and problems still exist regarding the micro-mechanism of their formation. As a review,
this paper details the composition and color properties of pigmentation in red beds, analyzes the
existence and distribution of authigenic hematite, and summarizes the iron sources and the formation
of hematite. In addition, we introduce the fading phenomenon observed in continental red beds,
including three types of secondary reduction zones: reduction spots, reduction strips, and reduction
areas. Lastly, this paper summarizes the evolution of color in continental red beds, emphasizes the
relationship between authigenic hematite and the diagenetic environment, and proposes possible
research directions for future red bed-related issues.

Keywords: continental red beds; hematite; secondary reduction zone; Danxia landform

1. Introduction

Red beds can be classified as continental or oceanic red beds according to the de-
positional environment in which they formed. At present, most are continental; oceanic
ones are few due to their special formation conditions [1–3]. Continental red beds are not
lithologically different from ordinary clastic sedimentary rocks, but they are of interest to
geologists and geomorphologists because of their bright colors and unique landform types.
According to erosion characteristics especially in China, red bed landforms are divided into
Danxia landforms, red bed mountains, red bed hills, and red bed plateaus or platforms [4].

Research on continental red beds can be traced back to the 19th century [5–7]. Geolo-
gists have conducted a wide range of research regarding geomorphology, paleomagnetism,
paleontology, energy, and minerals [8–15]. However, debates on the formation mecha-
nism of their color still exist. Early geologists held two views on the origin of red beds.
Some researchers believed that red sandstone formed in desert environments and was
analogous to the red sand dunes of some modern tropical desert conditions, whereby the
color was inherited from the fine-grained hematite film wrapped around the periphery of
the sand particles [16], while other researchers suggested that red beds originated from
lateritic weathering and formed in warm and humid environments where weathering of
the nearby parent rocks produced the color originating from the residual red clay rich
in iron oxides [17–21]. Thus, for a long time, the formation of continental red beds was
assigned some paleoclimatic significance. However, geologists subsequently found that
red beds formed in both arid and humid tropical climates [22–24]. The color of the red
beds was formed during diagenesis, and the pigment hematite was derived from in situ
alterations of iron-bearing mineral fragments or iron oxyhydroxide dihydroxylation [25].
Paleoclimatic conditions were not critical for the formation of the red color [7].

67



Minerals 2022, 12, 934

Geologists have confirmed that fine-grained hematite is the main cause of the red
color through study of secondary reduction zones and the extraction of pigmentary min-
erals [21,26,27]. Confusion remains as to its source, existence, and formation process. In
recent years, the genesis of red beds has once again become of interest to geoscientists,
because the presence of hematite could be indicative of the iron cycle, water storage, and
the existence of life on Mars [28–30]. Therefore, this paper attempts to review the progress
of research on issues related to the continental red beds, summarize the mechanisms of its
color formation, and explore future development directions.

2. Red Substance
2.1. Color-Rendering Characteristics

The color of red beds depends mainly on its inherited color and oxidized color, with
the inherited color being the color exhibited by the clastic minerals themselves in the rock,
while the oxidized color is usually caused by iron oxides or oxyhydroxides contained in its
matrix and cement. It is generally accepted that the red color in the red beds originates from
hematite, but there is some fluctuation in the hue of the red layer from different places. If
the Munsell color system is used to describe the red beds, the color of most red beds usually
varies between 5YR and 5 RP [16,31–33]. This is mainly because the red beds also include
other iron oxides or oxyhydroxides such as goethite, ferrihydrite, and lepidocrocite. Table 1
shows the color variation values of eight synthetic samples measured by Scheinost and
Schwertmann (1999) using the Munsell color system [34]. Hematite has the most reddish
hue on average and goethite shows a yellowish-brown color, while the remaining iron
oxides or oxyhydroxides are in between, which would explain the reddish-brown color
of many red beds. However, different iron oxides differ greatly in tinting strength and
hiding power. For example, the tinting strength of hematite is much greater than that of
goethite at the same particle size and distribution, even though all iron oxides have strong
tinting strength [33]. Even a small percentage of hematite mixed with goethite can mask
the color of goethite [35]. Moreover, hematite has a greater covering power than goethite
(30–60 m2·kg−1 and 15–20 m2·kg−1, respectively) [36]. Therefore, it is necessary to study
hematite in the red beds and, thus, its color genesis.

Table 1. Munsell colors of the Fe oxides (median and range) (Reprinted with permission from Ref. [34].
1999, John Wiley and Sons).

N Hue Value Chroma

Hematite 59
1.2 YR 3.6 5.2

3.5 R–4.1 YR 2.4–4.4 1.5–7.9

Goethite 82
0.4 Y 6.0 6.9

7.3 YR–1.6 Y 4.0–6.8 6.0–7.9

Lepidocrocite 32
6.8 YR 5.5 8.2

4.9 YR–7.9 YR 4.6–5.9 7.1–9.9

Ferrihydrite 59
6.6 YR 4.9 6.3

2.8 YR–9.2 YR 2.3–6.3 1.9–7.3

Akaganéite 8
5.2 YR 3.8 5.8

1.2 YR–6.8 YR 2.8–4.3 4.4–7.3

Schwertmannite 16
8.5 YR 5.9 6.9

6.2 YR–0.3 Y 4.7–6.7 4.0–9.1

Feroxyhyte 10
4.2 YR 3.8 6.0

3.7 YR–5.4 YR 3.4–4.7 5.5–7.0

Maghemite 7
8.3 YR 3.1 3.2

6.2 YR–9.4 YR 2.5–3.6 2.5–4.1
Note: N = number of samples.
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The shape and size, distribution, aggregation, and cation substitution of hematite
particles can also lead to changes in color. Franz (1981) showed that acicular hematite has
higher reflectance and scattering ability in the long-wavelength region of the spectrum
than more symmetrical hematite particles and, therefore, tends to have a more yellowish
hue [26]. The tinting strength of hematite powder increases with decreasing particle size,
and the strongest coloring ability of hematite is achieved when the particle size decreases to
the optimal particle size, i.e., the particle size with the largest scattering cross-section (about
1 µm) [33]. Therefore, even in very brightly colored red beds, hematite is often difficult
to detect by XRD. In contrast, large crystals or dense aggregates of hematite are usually
dark brown or black, due to much greater absorption than scattered throughout the visible
region. The arrangement of hematite aggregates likewise affects the color variation. In the
Devonian red beds of Scotland, Turner and Archer (1977) observed oriented aggregates of
platelet-like hematite crystals epitaxially growing on altered biotite, and the combination
of such small lamellar hematite crystals into oriented aggregates causes a color shift to
purple [27,37]. In addition, other metal substitutions of some Fe in the crystals can also
modify the color of hematite. For example, manganese- and titanium-substituted hematite
is black, while, in the case of aluminum substitution, it shifts to a more reddish hue due to
the reduction in particle size [38,39].

2.2. Distribution and Existence of Hematite

There are two main forms of authigenic hematite in red beds. One is in the form
of single or polycrystalline aggregates coexisting with other authigenic minerals around
the clastic particles, forming along the cleavage planes of mica (mainly biotite) or filling
the pores between the particles; a small number of hematite particles are also present in
fractures [40–43]. The crystal form of this hematite ranges from semi-hedral to euhedral,
usually with relatively small quantities but large particles, mainly on the micrometer
scale. There are also some submicron crystals. For example, Eren et al. (2013) discovered
rhombohedral hematite crystal cross-sections with a grain size of about 0.3 mm in the
red sandstones of the Early Cambrian Hüdai Formation in the Aydıncık (Mersin) Zone,
central Taurides, southern Turkey (Figure 1a) [44]. Rasmussen and Muhling (2019) found
radiolarian aggregates (Figure 1c) and slatted hematite filling granular voids (Figure 1d) in
metamorphic red sandstones and shales in the Stirling Formation of Western Australia [45].
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Figure 1. (a) Hematite in a thin section illustrating a euhedral hexagonal crystal form; (b) hematite
outgrowths aligned in the fabric defined by strain fringes on quartz grains; (c) hematite plates partly
filling a grain-shaped cavity; (d) hematite grain with large radiating blades. (a) is reprinted with
permission from Ref. [44]. 2013, Turkish Journal of Earth Sciences; (b–d) are reprinted with permission
from Ref. [45]. 2019, Elsevier.
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Another type of hematite is distributed as microfine grained crystals mixed with clay
minerals in clusters disseminated in the matrix and cement of the red beds [46], partially
forming a thin film of iron-bearing clay around individual clastic particles; clay films are
present on clastic particles in almost all red beds. Films are sometimes developed at the con-
tacts with detrital grains and are covered by quartz secondary overgrowth or wrapped by
carbonate cement; clay-containing films formed after quartz overgrowth also exist [42]. This
hematite is distributed microscopically and diffusely on montmorillonite and illite/smectite
wafers or filled among the micropores between the illite/smectite layers (Figure 2a,b). Most
of the hematite is in tiny crystal agglomerates or in individual microcrystals form in the
pores of the montmorillonite and exhibit a variety of shapes (Figure 2d) [47]. There are
spherical, rod-shaped, leaf-shaped, and well-developed hexagonal flake hematite single
crystals, as well as fibrous to lath-shaped, rosette clusters and spherical hematite/goethite
aggregates (Figure 2c–f) [47,48]. These morphological features are closely related to the
relative abundance of the iron-bearing mineral precursors in the rocks. Hematite particles
dispersed in clay minerals are usually small but very abundant and are the main source
of coloring of the red beds. The hematite mainly constitutes submicron or even nanoscale
crystals; hence, it is difficult to identify it using conventional detection methods [49].
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Figure 2. (a) Hematite scattered over illite/smectite layers; (b) fine and dispersed hematite distributed
among clay minerals; (c) hematite pigment showing a patchy coating on detrital grains; (d) plated
hexagonal hematite crystals distributed on the surface of a detrital mineral; (e) spherical hematite
particles; (f) rod-shaped (or bacillus-shaped) hematite particles disseminated on the grain surface.
(a,b,d) are reprinted with permission from Ref. [47]. 2020, Geoscience; (c,e,f) are reprinted with
permission from Ref. [44]. 2013, Turkish Journal of Earth Sciences.

The form of authigenic hematite in the red beds seems to correspond to the age
of the red beds. Compared with the hematite in the form of single or polycrystalline
aggregates, the latter (mixed with clay minerals) is more widely distributed in time and
space, appearing in red beds of all ages. In Mesozoic and Cenozoic red beds, hematite
is almost only adsorbed on the surface and/or in the voids of clay minerals [41,48,50].
In older red beds, hematite can be depleted to varying degrees due to later tectonics,
groundwater penetration, or the participation of hydrothermal fluids, and then replaced by
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euhedral to semi-hedral authigenic hematite grains formed in situ and secondary pores or
aggregates [42,43]. Residues at the grain contacts or the edges of some reddish iron-bearing
clays are surrounded by quartz secondary enlarged edges. Older red beds have a greater
proportion of granular hematite particles and a darker overall color.

3. The Source and Formation of Hematite
3.1. Source

Almost all Fe-containing minerals are potential sources of Fe for red-bed chromogenic
substances. During oxidative weathering, Fe is released from these minerals, mainly
forming Fe-bearing clay minerals and Fe oxides/hydroxides. However, under reducing
conditions, Fe carbonates, sulfides, and phosphates may also be formed [33,51]. During the
formation of red beds, the alteration of unstable iron-rich particles is an important source
of Fe for hematite [24,25,52–54].

The commonly altered mineral grains are iron–magnesium silicates (e.g., hornblende,
pyroxene, and biotite), volcanic rock fragments and glass, magnetite, and ilmenite [45].
These grains formed at high temperature or high pressure during magmatism and meta-
morphism became unstable at surface and near-surface conditions in the sedimentary
basin. During grain alteration, under reducing conditions, released iron goes into solution
as Fe+2 and precipitates as iron oxide or oxyhydroxide under oxidizing conditions [55].
Walker et al. (1967, 1978) [22,56] elaborated on the formation mechanism of red beds during
burial diagenesis and pointed out that the alteration of the interior of the iron–magnesium
silicate layers by oxygen-containing groundwater during the burial process is the key. They
showed that the hydrolysis of iron-bearing detrital minerals follows the Goldich dissolution
reaction series and is governed by the Gibbs free energy of the specific reaction [22,56].

Mucke (1994) indicated that alteration after diagenesis can also occur through the
oxidation of pyrite and siderite [57].

3O2 + 4FeS2 → Fe2O3 (hematite) + 8S; E = −789 kJ/mol.

O2 + 4FeCO3 → 2Fe2O3 (hematite) + 4CO2; E = −346 kJ/mol.

Dissolution and displacement are the main processes leading to grain alteration in
red beds. Partial dissolution of unstable minerals such as amphibole and pyroxene may
proceed inward from the grain edges, while minerals such as plagioclase may preferentially
disrupt the grain interior [32]. The different morphologies of partially dissolved minerals
are an abiotic result of selective dissolution along lattice planes. Xiao et al. (2018), suggested
that Fe and Ti-bearing silicate minerals such as biotite gradually release various elements
during low-temperature alteration, with water-soluble elements such as K and Na being
carried away with the transport of pore water, while water-insoluble iron–titanium oxides
are deposited in situ around these altered minerals [49]. Clay mineral replacement of clastic
particles is also a common alteration phenomenon in red beds, where the replaced clay
forms in situ and shows random sheet crystal orientation [23].

Apart from the inheritance of parent minerals such as ferromagnesian silicates, clastic
and clay minerals mechanically permeated by groundwater can also provide a direct source
of iron for staining [7,54,58,59]. The mixing of hematite with clay minerals in the form of
very fine-grained crystals is an important feature of red beds, and the relative proportions
of hematite and clay vary considerably. In some cases, iron-bearing films may consist only
of granular crystals of hematite that have precipitated in situ. In other cases, a thicker
iron-containing clay film may be present. These Fe-bearing clays may have originated from
surface soils or, more likely, from loose sediments formed in the adjacent floodplain [60].
An important feature of mechanical infiltration is that clay is not red when deposited, but
reddens over time after contact with oxygenated groundwater [25]. In Cenozoic alluvium,
the usual sediment color is yellow or red orange, due to iron oxyhydroxide, of which
goethite and ferrihydrite are the main chromogenic minerals. Thus, the reddening of
permeable clays represents an early stage of red material formation in red beds.
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In addition, Blodgett et al. (1993) suggested that recirculation of red material may be
the source of hematite in some red beds [32]. Such red beds would be produced by the
erosion and redeposition of pre-existing red beds. These often have irregular color zoning,
which is related to an unconformity in the weathering profile. Color boundaries cross
lithological contacts and show more intense reddening near unconformities. Secondary red
beds formed in this way are representative of late diagenesis, associated with previously
deposited uplift, erosion, and surface weathering, requiring similar primary and diagenetic
conditions [61].

3.2. Hematite Formation

There are two main potential mineralogical pathways for the formation of hematite
during diagenesis: ferrihydrite transformation and ferric oxyhydroxide dehydroxylation.
Ferrihydrite is the most common precursor for the occurrence of iron oxides in soils and
sediments, and the transformation from ferrihydrite to hematite in red beds is an important
process [62]. The conversion of ferrihydrite to hematite appears to start with the inter-
nal rearrangement and dehydroxylation of ferrihydrite aggregates, which are converted
to hematite over time [63]. This transition may occur faster than the new formation of
ferrihydrite and may occur too quickly to be detected in most geological settings [33].
Jiang et al. (2018), proposed a new model for the transformation of ferrihydrite to hematite
in soils and sediments, which can be divided into five stages according to the chronological
order of transformation: (I) magnetically ordered (or core-shell structured) superparam-
agnetic (SP) ferrihydrite formation, (II) rapid hematite formation from SP ferrihydrite,
(III) relative hematite stabilization, (IV) maghemite nanoparticle neoformation, and (V)
completion of the transformation from maghemite to hematite [64]. This model provides a
new framework for interpreting the formation of iron oxides and their paleoenvironmen-
tal significance.

The transformation of goethite to hematite has long been considered the important
pathway for red beds [65,66]. Weibel et al. (1999) observed pseudo-crystals of goethite
transforming to hematite in red sandstone samples from the Triassic Skagerak Formation
in Denmark. Withing increasing burial depth (550 m to 2500 m), the ground temperature
increased from 47 ◦C to >105 ◦C [67]. Berner (1969) pointed out that goethite and iron
hydroxides are generally unstable relative to hematite, and goethite is easily dehydroxy-
lated under water shortage or high-temperature conditions (2FeOOH (goethite)→ Fe2O3
(hematite) + H2O). Experiments show that, at 250 ◦C, the Gibbs free energy (G) of goethite-
hematite reaction is 2.76 kJ/mol [68]. Langmuir (1971) concluded that G becomes more and
more negative as particle size decreases. The smaller the mineral particle, the easier it is
for goethite to undergo dehydroxylation to form hematite [69]. Dehydroxylation of fine-
grained goethite may occur quickly, especially during deposition [7]. Thus, it appears that
clastic iron oxyhydroxides (such as goethite) spontaneously dehydrate into red hematite
over time. This process helps to explain not only the gradual reddening of the alluvium
but also why desert dunes of older geological ages are redder than the newer ones.

In addition, other processes leading to the formation of diagenetic hematite may
include the pseudo-crystalline substitution of hematite for minerals such as magnetite [7,70]
and microbial interactions [44,71]. It should be noted that usually the formation of hematite
in red beds may not be caused by a single mechanism of action but is the result of a
combination of mechanisms. On long geological time scales, the origin of hematite in some
older red beds may even be more complex because of the possibility of dissolution and
reprecipitation of hematite during one or more earlier tectonic or crustal fluid events [43,45].

4. Reduction and Leaching

The local development of light bands of white, gray, or green color in many red-
dominated stratigraphic sequences is a typical feature of continental red beds. Many
researchers refer to such light bands as secondary reduction zones [7]. Geologists have been
observing secondary reduction zones for almost as long as the color has been discussed in
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the literature [32,72–75]. According to the mineralogical characteristics and geochemical
properties of secondary reduction zones in red beds, two categories have been identified:
leaching zones and reduction zones. Rocks in the leaching zone tend to be white, as the
iron content is depleted relative to the surrounding red host rock, due to leaching of soluble
iron [7,76]. In contrast, rocks in the reduction zone are mainly gray or green and show a
slight deficit in iron content relative to the peripheral red host rock. There, Fe2+ /Fe3+ values
can be significantly higher and can be attributed to the formation of sulfides, carbonates, or
clay minerals (mainly chlorite) [74]. Some red beds are characterized by both leaching and
reduction, which are manifested by the coexistence of multiple-colored sediments in such
secondary reduction zones.

According to scale of development and morphological characteristics, secondary re-
duction zones can exhibit three common forms in field outcrops: reduction spots, reduction
strips, and reduction areas.

4.1. Reduction Spots

Light-colored zones having a circular or elliptical shape can be referred to as reduction
spots or reduction points. Spatially, these reduction spots are a series of irregularly shaped
reduction spheres or ellipsoidal spheres, which are early reduction features formed by
diffusion of reduced material from the core of reduction spots to the surrounding area. Most
reduction spheres in red beds are near-perfect spheres showing clear boundaries with the
outer red host rock (Figure 3a,d,e). Some of the ellipsoidal spheres have long axes extending
parallel to the stratigraphy (Figure 3e,f), mostly between 1 and 3 cm in diameter [32,59].
Their colors range from white to off-white or light green to blue-green. Reduction spots
can occur in both impermeable argillaceous limestone and pore-rich conglomerates; they
are like the surrounding red host rock in terms of sediment composition, particle size,
roundness, porosity, and sedimentary structure [9]. In terms of chemical composition, the
red host rock has a higher total iron content and a lower Fe2+/Fe3+ value than the reduction
spot, but the Fe2+ content in the reduction spot is not necessarily higher than the Fe3+ value.
Hematite is usually present in the matrix and cement of the red beds as microcrystalline
particles or mixed with clay minerals, but is rarely present in reduction spots [7,59,77].
The formation of reduction spots is usually attributed to the in situ reduction of Fe3+ to
Fe2+ from the dissolution of iron oxides. Some researchers have suggested that reduction
spots form after the crystallization of pigment hematite, i.e., the sediment is red before the
formation of reduction spots, and the hematite is converted to the corresponding reduction
products by reduction [78,79]. Other researchers have suggested that the area where the
reduction spots form never become red, i.e., the spots formed before the surrounding host
rocks become pigmented, preventing the precipitation of hematite and preserving the
original color of the sediment or reducing it further [7,25,55,59,77,80].

In some red beds, dark cores of black, brown, or red colors are also observed in the
center of the reduced spots (Figure 3b). The dark core is often enriched with metallic
elements such as Cu, V, U, and Ni and nonmetallic elements such as S and As [74,79,81,82].
Some researchers have suggested that the higher concentration of metallic elements such
as copper in the reduction spots may be due to adsorption by organic matter [76–78]. More
researchers have suggested that the formation of reduction spots containing dark cores
is better attributed to the activity of bacteria or microorganisms that use organic matter
as an energy source and reducing agent, allowing the dissolution of metallic elements
and their precipitation in the cores of the reduction spots through bacterial-mediated
reduction [74,75,81,83–85].

We note that carbonatite-bearing rock chip conglomerates also commonly appear in
the center of the reduction spot in some conglomerate red beds. The formation of such
reduction spots is closely related to the composition of the rock chips (Figure 3c,f).
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Figure 3. (a) A large perfectly round white reduction spot in reddish-brown sandstone; (b) many
reduction spots of different sizes in reddish-brown sandstone (note red core exists at center of a
white reduction spot); (c) reduction ring around carbonate fragments in red sandstone; (d) sub-
circular gray-white reduced spot in the red bed; (e) sub-elliptical light green reduction spot in red
conglomerate (note its long axis is parallel to bedding); (f) gravelly debris in center of sub-elliptical
reduction spot and crossed by late-forming fractures. Reduction spot photo from Danxia Mountain,
Guangdong, China.

4.2. Reduction Strips

Secondary reduction zones distributed parallel to bedding planes, along with uncon-
formity contacts and structural deformation zones or fractures, usually appear as strips
or irregular bands in field outcrops. these are collectively referred to as reduction strips
in this paper (Figure 4b,d). Compared with the surrounding red host rocks, the main
composition of sediments in the reduction strip is similar, but with greater grain size,
porosity, and permeability [59]. Therefore, the reduction strip is often developed on the
sides of the relatively coarse-grained laminated units or tectonic fissures. The colors of
the reduction strip are mainly white, gray, or off-white, followed by light pink, dark gray,
green, etc. [42,54,86,87]. Reduction fluids use the pores or fissures in the reduction strips as
channels and leach the free iron oxide from the sediments by reduction [88,89]. According
to the chemical composition, reducing fluids can be divided into the following categories:
(1) hydrocarbons (hydrocarbon organics associated with hydrocarbons) [90,91]; (2) organic
acids (associated with surface facies formation) [54]; (3) acidic reduction fluids such as
CO2 and H2S (associated with volcanism and hydrothermal action) [92,93]. In addition,
reduction fluids from reservoirs occasionally contain high H2S contents (>5 vol.%) as a
result of thermochemical sulfate reduction of methane with capping anhydrite [94]. Most
secondary reduction zones in red beds may not be a result of a single reduction, but include
a variety of reducing fluids with multiple stages of reduction and leaching, and even the
participation of bacteria or other microbial activities [54,87,95].
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Figure 4. (a) Coal measures within the green facies; (b) green facies and relicts of red facies in outcrop
showing bleaching of red sandstone to green; (c) gray sandstones and conglomerates separated by
red mudstone interbeds; (d) reduction strips in the red bed are distributed along the bedding plane.
(a,b) are reprinted with permission from Ref. [15]. 2019, Elsevier; (c) is reprinted with permission
from Ref. [91]. 2019, Elsevier; (d) is from Danxia Mountain, Guangdong, China.

4.3. Reduction Areas

Reduction areas have a similar genesis mechanism to reduction strips but require an
adequate source of reduction fluids to enable the reduction of larger-scale zones and even
entire stratigraphic units (Figure 4a,c). Reduction areas must involve the transport and
storage of large-scale reduction fluids. The formation of large reductive areas is primarily
related to hydrocarbon reservoirs. The reductive fluids are mainly hydrocarbons, followed
by CO2. Most Jurassic and Cretaceous red beds in the Colorado Plateau of the United States
developed abundant reducing areas with hydrocarbons as the main reducing fluid. These
are closely related to nearby oil and gas reservoirs in space [89,96–98]. However, in other
areas such as the red sandstone reduction zones near Green River, Utah, the reduction fluids
were dominated by CO2. Fe and other trace metal elements in the matrix and cement were
dissolved in low-pH reduction fluids and eventually reprecipitated near the redox front
with fluid transport [93,99,100]. In addition, because the creation of reduction areas usually
consumes large amounts of fluids, when they carry dissolved metals such as Cu, U, V, Co,
and Au, creating enrich mineralization near redox fronts, geologists often locate copper,
uranium, and other sedimentary minerals near the reduction areas [7,15,42,82,101–104].

5. Conclusions and Future Work

Since the Mesoproterozoic Great Oxidation Event (GOE), the free oxygen content
of the atmosphere has increased sharply, and most of the Earth’s surface is generally an
oxidizing environment. All iron oxides or oxyhydroxides have high tinting strength and
hiding power. Even if their content is less than 1% iron oxides, it is enough to stain the
sediment. Therefore, the color of most iron-bearing continental sediments is reddish or
yellowish. It is certain that hematite has stronger coloring and covering power than other
iron oxides and oxyhydroxides; hence, the color of the red beds is almost dependent on
microfine hematite. Thus, the color evolution of the red beds is essentially the evolution of
hematite. In the evolution of these red beds, hematite is mainly formed during diagenesis,
and iron originates from iron-rich mineral particles such as iron-bearing silicates, sulfides,
and oxides, which are released into pore solutions through alterations, and then precip-
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itated under suitable geochemical conditions forming hematite or precursors. Hematite
can also be formed by dehydroxylation of iron oxyhydroxides such as goethite, an im-
portant pathway for hematite formation during red-bed burial and diagenesis, although
the intermediate product of the dehydration process remains controversial [39,105–107].
Even though the free energies of the different surfaces of hematite crystals are roughly
similar and their relative stability is easily modified by environmental conditions, crystal
morphology usually shows great variability [63,108]. Therefore, authigenic hematite in
red beds exhibit various shapes such as spherical, rod, flake, and lath, likely caused by
different diagenetic environments. The reductive leaching phenomenon of red beds is
often accompanied by the interaction between reducing fluids and iron oxides. Thus, the
secondary reduction zone not only indicates the redox state of iron ions but also allows
the color evolution history of the red beds to be probed by the redistribution traces of
iron phases.

According to the progress and existing problems of previous research on the color
origin of continental red beds, the authors believe that more in-depth and detailed research
related to red beds in the future needs to consider the following topics:

(1) Distinguishing the difference and connection between hematite formed by alteration
of minerals such as iron silicates or oxides and hematite formed by iron-bearing clay
to explore the influence of provenance on the color of red beds;

(2) Combining the thermodynamic behavior of iron oxide in the red beds, as well as the
microscopic mechanism of formation of hematite and iron oxyhydroxide, to reveal
the microscopic kinetic process of red sediments;

(3) Detailed quantifying of hematite and other iron oxyhydroxides in red beds to provide a
more accurate scientific basis for the definition of red beds and to clarify the similarities
and differences between red beds and other sedimentary strata;

(4) Exploring the relationships among the size, shape, and diagenetic environment of
hematite crystals in the red beds;

(5) Studying the color fading phenomena to further deepen understanding of the history
and kinetic process leading to red-bed color formation.
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Abstract: With the rapid depletion of mineral resources, deep prospecting is becoming a frontier field
in international geological exploration. The prediction of deep mineral resources is the premise and
foundation of deep prospecting. However, conventional metallogenic predictive methods, which
are mainly based on surface geophysical, geochemical, and remote sensing data and geological
information, are no longer suitable for deep metallogenic prediction due to the large burial depth
of deep-seated deposits. Consequently, 3D metallogenic prediction becomes a critical method for
delineating deep prospecting target areas. As a world-class giant gold metallogenic province, the
Jiaodong Peninsula is at the forefront in China in terms of deep prospecting achievements and
exploration depth. Therefore, it has unique conditions for 3D metallogenic prediction and plays an
important exemplary role in promoting the development of global deep prospecting. This study
briefly introduced the method, bases, and results of the 3D metallogenic prediction in the northwest
Jiaodong Peninsula and then established 3D geological models of gold concentration areas in the
northwest Jiaodong Peninsula using drilling combined with geophysics. Since gold deposits in the
northwest Jiaodong Peninsula are often controlled by faulting in the 3D space, this study proposed a
method for predicting deep prospecting target areas based on a stepped metallogenic model and a
method for predicting the deep resource potential of gold deposits based on the shallow resources of
ore-controlling faults. Multiple characteristic variables were extracted from the 3D geological models
of the gold concentration areas, including the buffer zone and dip angle of faults, the changing rate of
fault dip angle, and the equidistant distribution of orebodies. Using these characteristic variables,
five deep prospecting target areas in the Jiaojia and Sanshandao faults were predicted. Moreover,
based on the proven gold resources at an elevation of −2000 m and above, the total gold resources of
the Sanshandao, Jiaojia, and Zhaoping ore-controlling faults at an elevation of −5000–−2000 m were
predicted to be approximately 3377–6490 t of Au. Therefore, it is believed that the total gold resources
in the Jiaodong Peninsula are expected to exceed 10,000 t. These new predicted results suggest that
the northwest Jiaodong Peninsula has huge potential for the resources of deep gold deposits, laying
the foundation for further deep prospecting.

Keywords: deep prospecting; 3D metallogenic prediction; characteristic variables; stepped metallogenic
model; resource potential; Jiaodong Peninsula
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1. Introduction

The supply of gold in China does not meet the present demand. In 2021, the gold pro-
duction in China was 330 t, while the gold consumption was 1121 t. As the shallow-surface
mineral resources in East China are increasingly low, deep prospecting has inevitably
become a method for resolving the resource crisis. The prediction of deep mineral resources
is the premise and foundation of deep prospecting. However, metallogenic prediction is a
complex engineering task [1,2]. As relevant methods, technologies progress and geological
understandings deepen, the predicted and prospecting results will change significantly.
As the most important base of gold in China, the Jiaodong Peninsula has witnessed the
complexity and uncertainty of metallogenic prediction in its prospecting and metallogenic
prediction history. At the beginning of the 21st century, the gold resources in the northwest
Jiaodong Peninsula were predicted to be 2492 t of Au in total, based on previous regional
metallogenic predictions [3,4]. During 2007–2012, the gold resources at a depth of 0–2000 m
in the Jiaodong Peninsula were predicted to be 3963 t of Au using the “three-in-one”
prospecting prediction theory that integrates metallogenic geological bodies, metallogenic
structural plane, and metallogenic characteristics [5]. At present, the accumulative proven
gold resources in the Jiaodong Peninsula total more than 5000 t of Au [6], far exceeding
previously predicted results. Since the Jiaodong Peninsula is a world-class giant gold
metallogenic province, the scientific and accurate assessment of gold resource potential
in this area plays an important exemplary role in promoting the development of deep
prospecting.

Deep-seated gold orebodies are covered by rock layers with a thickness of more than
1000 m or even thousands of meters. The mineralization information is strongly suppressed,
thus, metallogenic predictive methods based on surface geophysical, geochemical, remote-
sensing data and geological information are ineffective. High-precision deep geophysical
exploration (gravity, electromag, seismic) and 3D visualization analysis are effective for
predicting and exploring deep resources [7–11]. Furthermore, 3D metallogenic prediction
based on 3D geological modeling and fault ore-controlling law has achieved important
research achievements in many areas of the world [12–19]. Based on the deep geophysical
exploration and 3D modeling of gold concentration areas in the northwest Jiaodong Penin-
sula, this study proposed two new methods: a method for predicting deep prospecting
target areas based on a stepped metallogenic model and a method for predicting the deep
resource potential based on gold resources in shallow parts. Applying both methods,
this study predicted the deep prospecting target areas and resource potential of major
gold metallogenic belts in the northwest Jiaodong Peninsula, revealing an exciting deep
prospecting prospect. This study lays the foundation for further deep prospecting in the
Jiaodong Peninsula.

2. Geological Background and Overview of Gold Deposits

The Jiaodong Peninsula lies at the southeastern margin of the North China Craton and
at the northeastern end of the Dabie-Sulu ultrahigh-pressure (UHP) metamorphic belt [20].
The Jiaobei terrane in the western Jiaodong Peninsula and the Weihai terrane in the eastern
Jiaodong Peninsula fall in the North China Craton and the Sulu UHP metamorphic belt,
respectively. Moreover, the Jiaolai Basin is superimposed on the Jiaobei terrane and the
southern part of the Weihai terrane (Figure 1). The Jiaobei terrane mainly consists of
Neoarchean granite-greenstone belts and Paleoproterozoic-Neoproterozoic metamorphic
strata, the Weihai terrane is mainly composed of Neoproterozoic granitic gneiss bearing
UHP eclogites, and the Jiaolai Basin mainly includes Cretaceous volcanic-sedimentary
rock series [21–24]. Jurassic-Cretaceous granitic intrusive rocks are widely emplaced in the
Jiaobei and Weihai terranes [25–32], whereas only a small number of Triassic granitoids are
exposed in the Weihai terrane.

Faults are well-developed in the Jiaodong Peninsula. Among them, NE-NNE-trending
faults with dip of SE or NW are the most developed. They are followed by nearly EW-
NEE-trending faults. Additionally, EW-trending faults are sporadically exposed, showing
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poor continuity. The gold deposits in the Jiaodong Peninsula are mainly controlled by
NE-NNE faults including the Sanshandao, Jiaojia, Zhaoping, Xilin-Douya, and Jinniushan
faults [32–35].

There are more than 200 gold deposits with proven resources in the Jiaodong Peninsula
(Figure 1), with gold resources greater than 5000 t [6]. The gold deposits in this peninsula are
intensively distributed and are divided into three metallogenic sub-regions, namely Jiaox-
ibei (Laizhou-Zhaoyuan), Qipengfu (Qixia-Penglai-Fushan), and Muru (Muping-Rushan).
These three regions consist of six metallogenic belts, namely Sanshandao, Jiaojia, Zhaoping,
Qixia-Daliuhang, Taocun, and Muru. These metallogenic belts are composed of 13 gold ore-
fields, namely Sanshandao, Jiaojia, Lingbei, Anshi, Dazhuangzi, Linglong, Dayingezhuang,
Jiudian, Qixia, Daliuhang, Laishan, Pengjiakuang, and Denggezhuang. The gold miner-
alization in the Jiaodong Peninsula primarily include altered rock in fractured zones and
quartz vein, followed by a small quantity of altered breccia, altered conglomerate, inter-
layer decollement-detachment zone, and pyrite-carbonate vein types. The characteristics,
ore-controlling regularity and genesis of Jiaodong gold deposits have been studied exten-
sively by predecessors [36–41]. The deep prospecting carried out in the peninsula since the
beginning of this century has discovered more than 3000 t of proven gold resources at a
depth of 600–2000 m, exceeding the previously proven gold resources at a depth of 500 m
and less [6,42].
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3. 3D Predictive Method of Deep-Seated Gold Deposits
3.1. 3D Modeling of Main Gold Concentration Areas in the Northwest Jiaodong Peninsula

This study established the geological models of the Sanshandao supergiant gold
deposit in the Sanshandao fault zone, the Jiaojia supergiant gold deposit in the Jiaojia
fault zone, and the Lingnan-Shuiwangzhuang and Dayingezhuang gold deposits in the
Zhaoping fault zone.

The basic data used for modeling included regional geological data on scales of
1:50,000 and 1:10,000, exploration line sections, borehole histograms, digital elevation data,
and high-precision geophysical profiles. The modeling parameters included the scale of
planar geological maps of 1:10,000, the scale of exploration line sections of 1:2000, and
the grid density in the horizontal direction of 60 m × 60 m. Meanwhile, the minimum
thickness was set to be 0.1 m.

The 3D geological models of the Sanshandao, Jiaojia, Lingnan-Lijiazhuang, and
Dayingezhuang gold deposits were established using data of 311, 500, 680, and 291 bore-
holes, respectively, as well as the basic data used for modeling. For example, Figure 2
shows the 3D geological model of the Sanshandao gold deposit (Figure 2a) and the super-
position of gold orebodies on the plane of the Sanshandao fault (Figure 2b). Each of the
3D geological models was composed of two parts: the known model of the shallow part
and the inferred model of the deep part. The former was controlled by systematic drilling
engineering. As a known part, it was used to summarize metallogenic rules and extract
favorable metallogenic information through spatial comprehensive analysis. The latter,
which was constructed based on the former and relevant geophysical interpretation and
inference, was used to provide intuitive attributes for deep metallogenic prediction.

Minerals 2022, 12, x FOR PEER REVIEW 4 of 22 
 

 

This study established the geological models of the Sanshandao supergiant gold de-

posit in the Sanshandao fault zone, the Jiaojia supergiant gold deposit in the Jiaojia fault 

zone, and the Lingnan-Shuiwangzhuang and Dayingezhuang gold deposits in the 

Zhaoping fault zone. 

The basic data used for modeling included regional geological data on scales of 

1:50,000 and 1:10,000, exploration line sections, borehole histograms, digital elevation 

data, and high-precision geophysical profiles. The modeling parameters included the 

scale of planar geological maps of 1:10,000, the scale of exploration line sections of 1:2000, 

and the grid density in the horizontal direction of 60 m × 60 m. Meanwhile, the minimum 

thickness was set to be 0.1 m. 

The 3D geological models of the Sanshandao, Jiaojia, Lingnan-Lijiazhuang, and Day-

ingezhuang gold deposits were established using data of 311, 500, 680, and 291 boreholes, 

respectively, as well as the basic data used for modeling. For example, Figure 2 shows the 

3D geological model of the Sanshandao gold deposit (Figure 2a) and the superposition of 

gold orebodies on the plane of the Sanshandao fault (Figure 2b). Each of the 3D geological 

models was composed of two parts: the known model of the shallow part and the inferred 

model of the deep part. The former was controlled by systematic drilling engineering. As 

a known part, it was used to summarize metallogenic rules and extract favorable metal-

logenic information through spatial comprehensive analysis. The latter, which was con-

structed based on the former and relevant geophysical interpretation and inference, was 

used to provide intuitive attributes for deep metallogenic prediction. 

 

Figure 2. 3D geological model of the Sanshandao supergiant gold deposit (a) and superposition map 

of fault plane on gold orebodies (b). 1—Sea area; 2—Quaternary; 3—Early Precambrian metamor-

phic rock series; 4—Linglong-type granite; 5—Alteration zone of Sanshandao fault. 

3.2. Method for Predicting Deep Metallogenic Target Areas Based on a Stepped Metallogenic 

Model 

3.2.1. Overview of Predictive Method 

Breakthroughs have been made in deep prospecting in the Jiaodong Peninsula since 

the beginning of the 21st century, leading to the discovery of large-scale gold resources 

mainly at a depth of 700–2000 m. Based on the study of the characteristics and ore-hosting 

regularity of deep faults, Song MC et al. [41] proposed a stepped metallogenic model of 

deep-seated gold deposits. Specifically, ore-controlling faults show a stepped pattern due 

to alternate steep-gentle dip angles, and gold orebodies are mainly rich in stepped fault 

parts with gentle dip angles and the fault parts with a transition between steep-gentle dip 

angles. Given that it is difficult to capture the mineralization-related predictive infor-

mation on the ground surface due to the large burial depth of deep-seated gold deposits, 

this study proposed a method based on the stepped metallogenic model according to the 

following three characteristics [43]. First, ore-controlling faults of gold deposits have large 

scales. Second, the hanging walls and footwalls of the faults are composed of Early Pre-

cambrian metamorphic rock series and Jurassic-Cretaceous granitoids, which greatly dif-

fer in physical properties. Third, the deep locations and morphological characteristics of 

Figure 2. 3D geological model of the Sanshandao supergiant gold deposit (a) and superposition map
of fault plane on gold orebodies (b). 1—Sea area; 2—Quaternary; 3—Early Precambrian metamorphic
rock series; 4—Linglong-type granite; 5—Alteration zone of Sanshandao fault.

3.2. Method for Predicting Deep Metallogenic Target Areas Based on a Stepped Metallogenic Model
3.2.1. Overview of Predictive Method

Breakthroughs have been made in deep prospecting in the Jiaodong Peninsula since
the beginning of the 21st century, leading to the discovery of large-scale gold resources
mainly at a depth of 700–2000 m. Based on the study of the characteristics and ore-hosting
regularity of deep faults, Song MC et al. [41] proposed a stepped metallogenic model of
deep-seated gold deposits. Specifically, ore-controlling faults show a stepped pattern due
to alternate steep-gentle dip angles, and gold orebodies are mainly rich in stepped fault
parts with gentle dip angles and the fault parts with a transition between steep-gentle
dip angles. Given that it is difficult to capture the mineralization-related predictive infor-
mation on the ground surface due to the large burial depth of deep-seated gold deposits,
this study proposed a method based on the stepped metallogenic model according to
the following three characteristics [43]. First, ore-controlling faults of gold deposits have
large scales. Second, the hanging walls and footwalls of the faults are composed of Early
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Precambrian metamorphic rock series and Jurassic-Cretaceous granitoids, which greatly
differ in physical properties. Third, the deep locations and morphological characteristics
of faults can be detected using high-precision geophysical methods (gravity, electromag,
seismic). This predictive method is designed to extract the predictive factors for identifying
ore-controlling faults and the characteristics of metallogenic plane based on deep explo-
ration and 3D geological modeling and to delineate the favorable ore-hosting locations of
faults as prospecting target areas.

The 3D geological models of known gold concentration areas and their deep parts
were divided into large numbers of 3D cubic blocks (120 m × 120 m × 10 m or 120 m ×
120 m× 15 m). Each block was regarded as a homogeneous body with consistent properties,
and thus the regularity of change in the properties of all blocks approximately reflected
the regularity of internal change in geological bodies. Such cube blocks are called cell
blocks. The storage address in a computer of each cell block corresponds to its location
in the natural deposit. The prospecting target areas were determined as follows. Firstly,
various quantitative information for deep prospecting assessment was comprehensively
analyzed and processed according to the ore-controlling geological conditions of known
deposits and the regularity of spatial (especially deep) change in prospecting indicators,
and accordingly, 3D prospecting predictive models were established. Subsequently, the
quantitative information described in Section 3.2.2. was assigned to each cell block, i.e., each
favorable indicator is coded. Once the coding of the many prospective indicators is finished,
a global favorable indicator is computed by combining the favorable coded indicator
on each cell. Finally, the areas with higher prospective global scores were identified as
prospecting target areas.

3.2.2. Main Predictive Bases

a. Favorable ore-hosting parts of faults. 1© The altered-rock-type gold deposits in frac-
tured zones in the Jiaodong Peninsula are mainly controlled by large-scale regional
detachment faults in the NNE trending [33,44–46]. The fissure space in the fractured
zones is favorable for the enrichment of gold-rich fluids [26]. The gold orebodies in
these gold deposits mainly occur in the fractured alteration zones on the footwall of
the main fault plane, which has fault gouges as the roof; 2© The junctions of EW- and
NE-trending faults; 3© The bending and turning parts of faults along fault strikes.
4© The development parts of the secondary faults on the footwall of main fault plane,

fault junctions, and parts where fault branches combine. By comparison, the parts
closer to the major faults are more favorable ore-hosting parts. 5© Gold orebodies
occur in fault parts where the dip directions and dip angles of faults change, and
fault sections with gentle dip angles are favorable ore-hosting parts [41,46–48]. For
example, the gold orebodies in the Sanshandao gold concentration area mainly occur
in fault sections with a steep-to-gentle transition of fault dip angle and fault concave
sections with a gentle fault dip (Figure 2b), i.e., open space in faulting/striking faults
allowing mineralized fluid circulation;

b. Distribution patterns of orebodies. 1© The equidistant distribution pattern of ore-
bodies. That is, deposits, orebodies, and mineralization enrichment zones in the
Jiaodong Peninsula are roughly equidistantly distributed at about 500 m intervals.
They are some similitudes with the Abitibi zone [13,14]; 2© Pitching characteristics
of orebodies [49,50]. Orebodies occurring in the NE- and NNE-trending faults pitch
southwestward when the fault dip direction is NW and pitch northeastward when the
fault dip direction is SE. Therefore, the orebodies roughly pitch in an SW-NE-trending
straight line;

c. Ore-hosting geological bodies. 1© The gold deposits in the Jiaodong Peninsula mainly
occur in Jurassic Linglong-type granites, followed by Cretaceous Guojialing-type
granites and Neoarchean-Paleoproterozoic metamorphic rock series. In addition, a
few gold deposits occur at the bottom of the Early Cretaceous Laiyang Group. 2© The
contact zones between different geological bodies, especially those between the Early
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Precambrian metamorphic rock series and the Mesozoic granitoids, are favorable
ore-hosting parts;

d. Geophysical bases. The efficiency of geophysical methods on gold prospecting is
obvious [51–60]. The main geophysical indicators of gold prospecting in the Jiaodong
Peninsula include the following aspects. 1© Linear gradient zones of gravity anoma-
lies. Favorable metallogenic parts mainly include the edges of zones with low gravity
(i.e., the transition zones between gravity highs and gravity lows could indicate fossil
hydrothermal zone with dissolved rocks) and the contact zones between large-scale
gravity lows and gravity highs, especially the turning parts of the gradient zones.
The favorable metallogenic parts of deep-seated gold deposits include moniliform
and elongate zones with high-amplitude magnetic anomalies, especially the bending
parts of magnetic anomaly contours (protruding and concave parts), the edges of
blocky gravity and magnetic anomaly zones, and the edges of small-scale blocky
and moniliform positive magnetic anomaly zones. The magnetic anomaly would be
associated to magnetite/pyrrhotite minerals often associated to gold mineralization.
2© The boundaries between high- and low-resistance electric fields. On the appar-

ent resistivity sections, the sparse and wide contour lines that synchronously bend
downward and show U- or V-shaped low resistance mark the parts favorable for the
occurrence of gold deposits. Boundaries between low/high resistivity zones could be
linked to the presence of conductive minerals such pyrite often pathfinder minerals
for gold mineralization.

3.2.3. Prediction Process

a. Analysis and processing of the modeling data on typical ore deposits and their
surrounding mining areas

Comprehensively collect the geological, geophysical, geochemical, and mineral data
of prediction areas and their surrounding areas, and determine the basic characteristics of
typical deposits. Then, study metallogenic geological bodies, metallogenic structures, met-
allogenic characteristics, and prospective indicators, as well as the vertical and horizontal
mineralization zoning characteristics of deposits. Based on this, summarize metallogenic
rules and establish metallogenic models;

b. Deep geophysical exploration

Study the physical properties of ores and minerals and the geophysical fields of pre-
diction areas; carry out measurements of deep geophysical profiles; extract key information
for prospecting, and establish geophysical models. Classify different geological bodies and
identify faults according to the main physical properties and geophysical models;

c. 3D modeling and 3D analysis of ore-hosting structures

Construct 3D geological models of deposits; emphatically analyze the coupling re-
lationships between the changing characteristics of fault surfaces and the distribution
and enrichment of orebodies; extract and assess predictive factors; identify areas with
high prospecting information amounts as prospecting favorable areas and prospecting
target areas.

3.3. Method for Predicting Deep Gold Resource Potential in the Ore-Controlling Fault Zones Based
on Shallow Resources
3.3.1. Methodological Overview

According to the trend extrapolation principle, this predictive method was designed to
extrapolate the resources in the deep prediction areas with metallogenic conditions similar
to the shallow parts from the statistical analysis of the proven resources in the shallow
parts.
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3.3.2. Predictive Factors

The main predictive factors include ore-controlling faults, the cumulative proven
gold resources at an elevation of approximately −2000 m and above, the average gold
content per unit area at an elevation of approximately −2000 m and above, and the area
of ore-controlling faults at an elevation of −5000–−2000 m on the vertical longitudinal
projection map.

The deep resources were estimated using this equation: deep resources = ore-bearing
rate× the area of the deep prediction areas. In this equation, the ore-bearing rate is equal to
the average gold content per unit area in the shallow part, and the area of the deep predic-
tion areas is equal to the area of ore-controlling faults at an elevation of −5000–−2000 m on
the vertical longitudinal projection map. In other words, the vertical longitudinal projection
map was obtained by cutting a 3D geological model. Then, the average gold content per
unit area (i.e., ore-bearing rate) was determined based on the distribution of orebodies at
different depths in the vertical longitudinal projection map. Subsequently, the boundaries
of the ore-controlling faults in the vertical longitudinal projection map were reasonably
determined based on the prediction depth, and then the area of the faults was accordingly
calculated. Finally, the potential gold resources in the deep part were estimated by making
an analogy with those in the known shallow area.

3.3.3. Prediction Process

The resource potential of deep-seated gold deposits of a fault was predicted as follows:
3D geological modeling→ obtaining the statistics of accumulative proven resources in the
shallow part using the 3D geological model→ obtaining the vertical longitudinal projection
map by cutting the 3D geological model→ obtaining the statistics of the ore-bearing rate
→ determining the area of the deep prediction areas → estimating the resources in the
deep part.

4. Prediction of Deep Prospecting Target Areas
4.1. Deep Prospecting Target Areas in the Jiaojia Fault
4.1.1. Determining Cell Blocks and Extracting Favorable Mineralization Information

The range and basic parameters of the modeling of the Jiaojia fault were determined
based on the existing geological data of orebodies in the fault (especially the distribution of
exploration lines), as well as the morphology, attitude, and spatial distribution of known
orebodies. The established 3D geological model was divided into 660,800 cell blocks based
on the line spacing × column spacing × layer spacing of 120 m × 120 m × 10 m. Among
these cell blocks, 7263 were occupied by orebodies (also referred to as ore-hosting cell
blocks). Ore-hosting cell blocks were assigned 1, while other cell blocks were assigned 0.
Subsequently, the ore-controlling factors of ore-hosting cell blocks were extracted and their
statistics were obtained, and accordingly, a quantitative predictive model was determined.
Then, the predictive parameters were assigned to each cell block as per its attributes.

a. Cell blocks with favorable information of ore-hosting faults.

1© Structural buffer zones. Gold deposits are strictly controlled by faults, and gold
orebodies mainly occur in the fractured alteration zones on the footwall of the main fault
plane with fault gouges as the roof, with a small number of gold orebodies occurring
on the hanging walls of the main fault plane. Therefore, the zone between 300 m above
the footwall and 100 m below the hanging wall of the main fault plane was defined as a
structural buffer zone favorable for mineralization. In this study, the structural buffer zones
covered 108,572 cell blocks (Figure 3), which accounted for 16.43% of the total cell blocks in
the model (660,800). Moreover, the structural buffer zones included 7124 ore-hosting cell
blocks, accounting for 98.09% of the total ore-hosting cell blocks (7263) in the model. 2© The
turning parts of the fault dip angles. Orebodies are mainly rich in stepped fault parts with
gentle dip angles. In this study, the fault parts with a steep-to-gentle transition of fault dip
angle covered 53,285 cell blocks, which accounted for 8.06% of the total cell blocks in the
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model. These parts included 2866 ore-hosting cell blocks, which accounted for 39.46% of the
total ore-hosting cell blocks in the model. 3© The changing rate of fault dip angle. The fault
surfaces were divided into a number of square blocks, to each of which a slope attribute
was assigned. The variance of the slope values of square blocks within a fixed range was
calculated to determine the changes in the fault surface. The changing rate of fault dip
angle involved 99,776 cell blocks, which accounted for 15.10% of the total cell blocks in the
model. Furthermore, the changing rate of fault dip angle involved 5670 ore-hosting cell
blocks, which accounted for 78.07% of the total ore-hosting cell blocks in the model;

b. Cell blocks with favorable information of orebody distribution.

By extracting the distribution range of ore bodies and mineralization enrichment
areas, it can be seen that the ore body enrichment areas are nearly equally spaced along
the strike and dip at about 500 m intervals (Figure 4). Accordingly, 273,240 cell blocks
were divided along the strike with equal spacing, which accounted for 41.35% of the total
cell blocks in the model. These cell blocks included 5932 ore-hosting cell blocks, which
accounted for 81.67% of the total ore-hosting cell blocks. The orebody concentration areas
showing equidistant distribution along fault dip directions included 251,856 cell blocks,
which accounted for 38.11% of the total cell blocks in the model. These cell blocks included
5884 ore-hosting cell blocks, which accounted for 81.01% of the total ore-hosting cell blocks
in the model.
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Figure 4. Horizontal projection of orebodies along fault strikes (a) and dip directions (b) in the
Jiaojia deposit concentration area. The red dotted line in figure (a) and the green dotted line in figure
(b) show the equally spaced distribution of orebody enrich areas.

4.1.2. 3D Predictive Model and Statistics of Information Amounts

The deep prospecting predictive model of the Jiaojia fault (Table 1) was established
based on the 3D geological model and the favorable metallogenic information extracted
from the geological model. This predictive model involved eight characteristic variables
for statistical analysis. They include Early Precambrian metamorphic rock series, Linglong
granite, contact zone of Early Precambrian metamorphic rock series and Linglong granite,
fault buffer zone, gentle part of a fault section with a steep-to-gentle transition of fault
dip angle, changing rate of fault dip angle, equidistant distribution along fault strike and
equidistant distribution along fault dip direction, respectively. Each characteristic variable
was assigned 1 if it was true for a cell block and 0 otherwise. Based on the statistics of
these characteristic variables of each cell block, the sum of the values of these characteristic
variables of each cell block was calculated as the information amount for metallogenic
prediction).

4.1.3. Predicted Results

All the eight characteristic variables were assessed using the information amount
method, obtaining metallogenic information amounts, which were then assigned to block
models. Cell blocks with high information amounts have a high mineralization probability.
Table 2 shows the statistics of the proportion of various information amount intervals
of cell blocks. The information amount scopes where the information amounts tend to
stabilize and converge are favorable for mineralization. According to the stability analysis
of the proportion statistics, the information amounts tended to stabilize and converge when
they were ≥3.222 (Figure 5). Therefore, the information amount interval of ≥3.222 was
the favorable interval for mineralization (Figure 6a). This information amount interval
was divided into three grades: 3.222–4.184, 4.184–5.018, and ≥5.018. The information
amount range of ≥5.018 was regarded as the range of predicted target areas based on the
comparison with known mineralized zones which are generally greater than 4.5 (Figure 7).
As a result, two predicted target areas were delineated in the Jiaojia fault (Figure 6b).
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Table 1. Deep predictive model of the Jiaojia fault.

Ore-Controlling
Condition Predictive Factor Characteristic Variable Characteristic Value

Geologic condition Favorable geological body
for mineralization

Early Precambrian metamorphic rock
series

Direct screening
and utilization

Linglong granite Direct screening
and utilization

Contact zone of Early Precambrian
metamorphic rock series and

Linglong granite
500 m width

Structural conditions

Ore-controlling faults Fault buffer zone 500 m

Fault plane

Gentle part of a fault section with a
steep-to-gentle transition of fault

dip angle

Direct screening and
utilization

Changing rate of fault dip angle
Characteristic value of the

changing rate of fault
dip angle

Ore-hosting conditions Orebody distribution
pattern

Equidistant distribution along
fault strike

About 1.5 km along
fault strike

Equidistant distribution along fault
dip direction

About 1.8 km along fault
dip direction

Table 2. Proportion of metallogenic information amount intervals of cell blocks of the Jiaojia fault.

S.N. Information
Amount

Number of
Cell Blocks

Proportion
(%) S.N. Information

Amount
Number of
Cell Blocks

Proportion
(%)

1 ≥0.000 660,800 100.00 17 ≥3.231 69,024 10.45
2 ≥0.681 429,566 65.01 18 ≥3.375 68,023 10.29
3 ≥0.754 365,257 55.27 19 ≥3.430 66,996 10.14
4 ≥1.435 298,945 45.24 20 ≥3.912 64,178 9.71
5 ≥1.588 181,999 27.54 21 ≥3.985 59,866 9.06
6 ≥1.643 180,484 27.31 22 ≥4.056 57,437 8.69
7 ≥1.787 175,404 26.54 23 ≥4.111 57,117 8.64
8 ≥2.269 121,332 18.36 24 ≥4.129 53,276 8.06
9 ≥2.324 120,369 18.22 25 ≥4.184 51,412 7.78

10 ≥2.342 112,905 17.09 26 ≥4.666 48,310 7.31
11 ≥2.397 110,896 16.78 27 ≥4.810 37,228 5.63
12 ≥2.468 106,281 16.08 28 ≥4.865 35,688 5.40
13 ≥2.541 99,034 14.99 29 ≥5.018 23,389 3.54
14 ≥3.023 94,558 14.31 30 ≥5.699 22,072 3.34
15 ≥3.078 92,210 13.95 31 ≥5.772 17,072 2.58
16 ≥3.222 73,592 11.14 32 ≥6.453 12,779 1.93
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Target area I (Beijueyujia) is located in Beijueyujia Village, Jincheng Town, Laizhou
City. It has an elevation of −2349–−1154 m and included 1201 predicted ore-hosting cell
blocks. Target area II (Xiji) lies in Xiji Village, Jincheng Town, Laizhou City. It has an
elevation range of −2490–−2000 m and includes 1588 predicted ore-hosting cell blocks.

4.1.4. Probability and Verification of Prediction Results

The information amount used in this paper to delineate the predicted target area is
determined according to the information amount of the known ore body. Statistics show
that the information amount of the known ore body unit is generally ≥4.5. The above
information content ≥3.222 is taken as the range of favorable metallogenic area, and the
probability of ore occurrence is estimated to be more than 70%. Taking the information
amount ≥5.018 as metallogenic target area, the theoretical probability of ore occurrence
should be 100%. At present, the two predicted metallogenic target areas have been verified
by deep drilling. For example, the 3266.06 m deep drilling in target area 2 revealed multi-
layer industrial ore bodies at 2810–2854 m [61].

4.2. Deep Prospecting Target Areas in the Sanshandao Fault Zone
4.2.1. Determining Cell Blocks and Extracting Favorable Mineralization Information

The 3D geological model of the Sanshandao fault zone was divided into 1,747,886 cell
blocks based on the line spacing× column spacing× layer spacing of 120 m × 120 m × 15 m.
These cell blocks included 5323 ore-hosting cell blocks. Ore-hosting cell blocks were as-
signed 1, while other cell blocks were assigned 0. The favorable metallogenic information
of this fault was extracted in the same manner as in the Jiaojia fault.

4.2.2. 3D Predictive Model and Statistics of Information Amounts

The deep prospecting predictive model of the Sanshandao fault (Table 3) was es-
tablished based on the 3D geological model of deposits and the favorable metallogenic
information extracted from the geological model. This predictive model involved eight
characteristic variables for statistical analysis. Each characteristic variable was assigned 1 if
it was true for a cell block and 0 otherwise. The statistics of these characteristic variables of
each cell block were obtained (Table 4).

4.2.3. Predicted Results

The proportion of metallogenic information amount intervals of cell blocks (Table 5)
in the 3D predictive model showed that the information amounts tended to stabilize and
converge when they were ≥9.597 (Figure 8). Therefore, the information amount interval
of ≥9.597 was favorable for mineralization (Figure 9a). This interval was divided into
three grades: 9.597–12.303, 12.303–13.080, and ≥13.080. The information amount range
of ≥13.080 was considered the range of predicted target areas based on the comparison
with known mineralized zones which are generally greater than 12 (Figure 10). As a result,
three predicted target areas were delineated (Figure 9b).

Table 3. Deep predictive model of the Sanshandao fault.

Ore-Controlling
Condition Predictive Factor Characteristic Variable Characteristic Value

Geologic condition Favorable geological
body for mineralization

Early Precambrian metamorphic rock series Direct screening and
utilization

Linglong granite Direct screening and
utilization

Contact zone of Early Precambrian
metamorphic rock series and Linglong

granite
500 m width
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Table 3. Cont.

Ore-Controlling
Condition Predictive Factor Characteristic Variable Characteristic Value

Structural conditions

Ore-controlling faults Fault buffer zone 500 m

Fault plane

Gentle part of a fault section with a
steep-to-gentle transition of fault dip angle

Direct screening and
utilization

Changing rate of fault dip angle
Characteristic value of the
changing rate of fault dip

angle

Ore-hosting
conditions

Orebody distribution
pattern

Equidistant distribution along fault strike About 1.5 km along fault
strike

Equidistant distribution along fault dip
direction

About 1.0 km along fault dip
direction

Table 4. Calculated results of prospecting information amounts of the Sanshandao fault.

Favorable Factor
Number

Ore-Hosting Cell
Blocks

Number of Cell
Blocks with

Favorable Factor

Number of
Ore-Hosting Cell

Blocks with
Favorable Factor

Total Cell Block
Number of the

Geological Model

Information
Amount

Fault buffer zones 5323 25,781 2556 1,747,886 3.483
Fault parts with a

steep-to-gentle
transition of fault dip

angle

5323 33,935 3215 1,747,886 3.438

Changing rate of fault
dip angle 5323 36,466 2344 1,747,886 3.050

Equidistant distribution
along fault strike 5323 29,964 2044 1,747,886 3.109

Equidistant distribution
along fault dip direction 5323 120,981 5273 1,747,886 2.661

Table 5. Proportion of metallogenic information amount intervals of cell blocks of the Sanshandao
fault.

S.N. Information
Amount

Number of
Cell Blocks

Proportion
(%) S.N. Information

Amount
Number of
Cell Blocks

Proportion
(%)

1 ≥2.661 18,150 100.00 17 ≥9.149 2379 29.77
2 ≥3.050 2007 72.30 18 ≥9.194 712 26.14
3 ≥3.109 196 69.24 19 ≥9.208 1495 25.06
4 ≥3.438 570 68.94 20 ≥9.253 412 22.78
5 ≥3.483 4171 68.07 21 ≥9.582 5946 22.15
6 ≥5.711 2505 61.71 22 ≥9.597 159 13.07
7 ≥5.777 1490 57.89 23 ≥9.642 226 12.83
8 ≥6.099 7279 55.61 24 ≥9.971 38 12.49
9 ≥6.144 3343 44.51 25 ≥10.030 9 12.43

10 ≥6.159 210 39.40 26 ≥12.258 2971 12.41
11 ≥6.488 189 39.08 27 ≥12.303 1003 7.88
12 ≥6.533 320 38.80 28 ≥12.632 1511 6.35
13 ≥6.547 23 38.31 29 ≥12.691 1162 4.05
14 ≥6.592 117 38.27 30 ≥13.080 19 2.27
15 ≥6.921 201 38.09 31 ≥15.741 1470 2.24
16 ≥8.820 5252 37.79

Target area I is located 3.8 km northeast (in the direction of 85◦) of Sanshandao Town,
Laizhou City (Figure 9b). It has an elevation of−3122–−2349 m and included 440 predicted
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ore-hosting cell blocks. Target area II is located 3.5 km southeast (in the direction of 100◦)
of Sanshandao Town, Laizhou City. It has an elevation range of −3121 to −2306 m and
included 368 predicted ore-hosting cell blocks. Target area III is located 3.0 km southeast
(in the direction of 120◦) of Sanshandao Town, Laizhou City. It has an elevation range of
−2701 to −2291 m and includes 181 predicted ore-hosting cell blocks.
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5. Prediction of Deep Resource Potential
5.1. Resource Potential of the Sanshandao Fault
5.1.1. Proved Resources

Based on the previous exploration results [6], the proved gold resources in the San-
shandao fault are analyzed in this paper. The Sanshandao fault has cumulative proved
gold ore reserves of 333.65 Mt, gold metal reserves of 1,240,679 kg, an average orebody
thickness of 7.93 m, and an average grade of 3.72 g/t. The first mineralization enrichment
zone (elevation: −500–0 m) has gold ore reserves of 81.50 Mt, gold resources of 238,503 kg,
an average orebody thickness of 8.10 m, and an average grade of 2.93 g/t. The second
enrichment zone (elevation: −2000–−500 m) has gold ore reserves of 252.14 Mt, gold metal
reserves of 1,002,176 kg, an average orebody thickness of 7.90 m, and an average grade
of 3.98 g/t. The ratio of the resources of the second enrichment zone to those of the first
enrichment zone is 4.20.

5.1.2. Predictive Parameters of Resources

Prediction range: The prediction range was determined by extrapolating the distribu-
tion range of identified deposits to deep parts. The distribution range of identified deposits
in the Sanshandao fault was determined as follows. Its southern boundary was exploration
line No. 171 on the southernmost side of the Xinli ore block and its northern boundary was
exploration line No. 70 on the northernmost side of the sea-area ore block in the northern
Sanshandao fault. Moreover, its western part was the outcrops of the Sanshandao fault,
and its eastern part was the projection on the ground surface of the junction of the −2000 m
elevation line and the deep part of the Sanshandao fault (Figure 11). The prediction range
had the same southern, northern, and western boundaries as the distribution range of
identified deposits, and its elevation was −5000–−2000 m.

Ore-bearing rates: the ore-bearing rates corresponding to the elevations of −500 to
0 m and −2000 to −500 m were calculated using the ratio of the proven resources to the
projection area of the distribution range of identified deposits on the vertical longitudinal
projection map (Figure 12, Table 6).
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Figure 11. Planar range of the prediction areas of deep resource potential. 1—Quaternary; 2—Early
Precambrian metamorphic rock; 3—Cretaceous Weideshan granite; 4—Cretaceous Guojialing granite;
5—Jurassic Linglong granite; 6—Fault; 7—Range of ore-forming prediction areas.
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Figure 12. Vertical longitudinal projection map for the deep resource prediction of the Sanshandao
fault. 1—Range of controlled gold orebodies; 2—Scope for the calculation of the shallow ore-bearing
rate; 3—Scope for the calculation of the deep ore-bearing rate; 4—Prediction range at an elevation of
−3000–−2000 m; 5—Prediction range at an elevation range of −5000–−3000 m; 6—Exploration lines
and their numbers.
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Table 6. Ore-hosting rates of the Sanshandao fault.

Elevation (m)

Proven Resource Reserves
Area
(m2)

Grade
(g/t)

Thickness
(m)

Ore-Bearing
RateOre Reserves

(Mt)
Metal Reserves

(kg)

−500–0 81.5 238,503 5,516,844 2.93 8.10 0.0432
−2000–−500 252.14 1,002,176 11,443,156 3.98 7.90 0.0876

5.1.3. Resources Prediction

The area of the deep prediction areas at an elevation of −5000 to −2000 m was
calculated based on the vertical longitudinal projection map. Subsequently, the gold
resources in the deep prediction areas were estimated according to the ore-bearing rates
at elevations of −500 to 0 m and −2000 to −500 m. The predicted gold resources of
the deep prediction areas at an elevation of −5000 to −2000 m in the Sanshandao fault
included approximately (375–560) Mt of ore reserves and 1100–2228 t of gold metal reserves
(Figure 12, Table 7).

Table 7. Statistics of predicted resources in the Sanshandao fault.

Elevation
(m)

Area
(km2)

Ore-Bearing Rate
Predicted Resources

Ore Reserves (Mt) Metal Reserves (t)

Shallow
Part Deep Part Minimum Maximum Minimum Maximum

−3000–−2000 8.48 0.0432 0.0876 125 187 367 743
−5000–−3000 16.96 0.0432 0.0876 250 373 733 1485

Total 375 560 1100 2228

5.2. Resource Potential of the Jiaojia and Zhaoping Faults

The prediction range of the Jiaojia fault is as follows. Its southern boundary was
the exploration line No. 408 on the southernmost side of the Qianchen ore block and
its northern boundary was the exploration line No. 201 on the northernmost side of the
Xincheng ore block. Its eastern and eastern parts were the outcrops of the Jiaojia fault and
the production of the Jiaojia fault on the ground surface, respectively. Moreover, it had an
elevation of −5000 to −2000 m.

For the purposes of this study, the Zhaoping fault was divided into two prediction
sections: the northern section and the central-southern section. The prediction range of
the Lingnan-Shuiwangzhuang gold concentration area in the northern Zhaoping fault is
as follows. Its southern boundary was exploration line No. 9 of the Lingnan ore block
and its northern boundary was exploration line No. 29 on the northernmost side of the
Shuiwangzhuang ore block. Moreover, its western and eastern parts were the outcrops
of the Zhaoping fault and the projection of the Zhaoping fault on the ground surface,
respectively. The prediction range of the Dayin’gezhuang gold concentration area in the
central-southern section of the Zhaoping fault is as follows. Its southern and northern
boundaries were exploration lines No. 54 and No. 120 of the Dayin’gezhuang gold orefield,
and its western and eastern parts were the outcrops of the Zhaoping fault and the projection
of the Zhaoping fault on the ground surface, respectively. The prediction range of the
Xiadian ore block concentration area in the central-southern section of the Zhaoping fault
is as follows. Its southern boundary was exploration line No. 441 of the Xiadian ore block,
and its northern boundary was exploration line No. 35 of the Daobeizhuangzi ore block.
Moreover, its western and eastern parts were the outcrops of the Zhaoping fault and the
projection of the outcrops on the ground surface, respectively. The elevation range of the
prediction areas of the Zhaoping fault was −5000 to −2000 m. The proven resources and
the parameters for resources prediction of Jiaojia and Zhaoping faults were determined
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using the same procedure as the Sanshandao fault zone. The predicted results are listed in
Table 8.

Table 8. Predicted gold resources of major ore-controlling faults in the northwest Jiaodong Peninsula.

Name

Proved Resources
Predicted Resources of Deep Parts at an

Elevation of −5000–−2000 m
Total Resources at an Elevation of

−5000 m and Above

Ore Reserves (Mt) Metal Reserves (kg) Ore Reserves (Mt) Metal Reserves (t)

Ore
Reserves

(Mt)

Metal
Reserves

(kg)
Minimum Maximum Minimum Maximum Minimum Maximum Minimum Maximum

Sanshandao fault 334 1241 375 560 1100 2228 709 894 2341 3469
Jiaojia fault 429 1334 495 912 1433 2379 924 1341 2767 3713

Northern section
of the Zhaoping

fault
202 700 200 319 619 1146 402 521 1319 1846

Central-southern
section of the

Zhaoping fault
128 385 147 446 255 737 275 383 831 1122

Total 1093 3660 1217 2237 3377 6490 2310 3330 7073 10,150

In sum, for the metallogenetic belts of the Sanshandao, Jiaojia, and Zhaoping faults in
the Jiaodong Peninsula, their predicted gold ore reserves and predicted gold metal reserves
at an elevation of −5000 to −2000 m were approximately 1217–2237 ×Mt and 3377–6490 t,
respectively, and their total gold ore reserves and gold metal reserves at an elevation of
−5000 m and above were approximately 2310–3330 ×Mt and 7073–10,150 t, respectively.
As the metallogenic conditions in the deep prediction area are different from those in the
shallow area, the accuracy of the geophysical method will decrease with the increase in the
depth, so the error of the prediction results is uncertain.

The above forecast data are only the predicted results of the deep parts of the main
known gold deposits in the northwest Jiaodong Peninsula. In combination with the future
prediction and prospecting of other areas in the Jiaodong Peninsula with great potential
for deep prospecting, the total resources of gold deposits in the Jiaodong Peninsula will
possibly double in quantity and increase from the current 5000 t to 10,000 t. Therefore, the
Jiaodong gold concentration area is expected to become the world’s second largest gold
metallogenic area.

At present, the exploration depths of identified gold deposits in the Jiaodong Peninsula
are mostly less than 2000 m, with only a few exploratory boreholes reaching a depth of more
than 3000 m [61,62]. For example, exploratory borehole ZK96-5 in the Xiling mining area in
the northern Sanshandao fault has a final hole depth of 4006.17 m, making it the deepest
borehole for gold exploration in China [62]. This borehole revealed a fractured alteration
zone with a thickness of tens of meters at a depth of approximately 3500 m. Borehole K01
drilled in the deep part of the Jiaojia supergiant gold deposit in the middle part of the Jiaojia
fault by the Shandong Institute of Geological Sciences has a depth of 3266.06 m. It revealed
multi-layer industrial orebodies at a depth of 2810–2854 m [61]. Borehole K3401 drilled in
the deep part of the Shuiwangzhuang mining area in the northern Zhaoping fault by the
Shandong Provincial No. 6 Exploration Institute of Geology and Mineral Resources has a
final hole depth of 3000.58 m. It revealed a fractured zone in the Jiuqujiangjia 208 fault at
an elevation of approximately −2700 m. The sampling analysis indicated that the fractured
zone has a maximum gold grade of nearly 7 g/t. The metallogenic information obtained
from these deep exploratory boreholes is consistent with the predicted results of this study,
indicating that the deep parts at an elevation of −2000 m and below have great potential
for deep prospecting. In addition, geological and geophysical explorations show that the
Jiaojia and Sanshandao faults’ dip angles gradually decrease towards their deep parts
along their dip directions and that the two faults intersect at the elevation of approximately
−4500 m [42,43,59]. These findings, combined with the comprehensive analysis of the
evidence of denudation degree, metallogenic depth, deep drilling verification, and the
extension of faults towards deep parts, have led to the conclusion that the Jiaojia and

98



Minerals 2022, 12, 935

Sanshandao faults have favorable gold metallogenic conditions and enormous prospecting
potential at an elevation of −4500 m and below.

6. Conclusions

a. Since deep-seated deposits cannot be predicted using conventional metallogenic
predictive methods, it has become an important means of deep metallogenic pre-
diction to establish a 3D geological model based on high-precision geophysical
exploration and the drilling engineering in known areas. Through the dissection of
the ore-controlling regularities of gold deposits in the Jiaodong Peninsula, this study
proposed a method for predicting deep prospecting target areas based on a stepped
metallogenic model and a method for predicting the deep resource potential of gold
deposits based on the shallow resources of ore-controlling faults;

b. The information amounts of eight characteristic variables, including Early Precam-
brian metamorphic rock series, Linglong granite, contact zone of Early Precambrian
metamorphic rock series and Linglong granite, fault buffer zone, gentle part of a
fault section with a steep-to-gentle transition of fault dip angle, changing rate of fault
dip angle, equidistant distribution along fault strike and equidistant distribution
along fault dip direction, were extracted from the 3D geological models of main gold
concentration areas. Using the statistics of the information amounts, a total of five
deep prospecting target areas in the Jiaojia and Sanshandao faults were predicted;

c. Based on the proven gold resources at an elevation of −2000 m and above, the total
gold resources at an elevation of −5000 to −2000 m in the Sanshandao, Jiaojia, and
Zhaoping ore-controlling faults were predicted to be approximately 3377–6490 t of
Au. Therefore, it is very likely that the total gold resources in the Jiaodong Peninsula
are expected to exceed 10,000 t. However, due to the high ground temperature and
pressure environment of deep resources, future mining will face great challenges.
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Abstract: This paper presents a surface modeling method for interpolating orebody models based on
a set of cross-contour polylines (geological polylines interpreted from the raw geological sampling
data) using the bi-Coons surface interpolation method. The method is particularly applicable to
geological data with cross-contour polylines acquired during the geological and exploration processes.
The innovation of this paper is that the proposed method can automatically divide the closed loops
and automatically combine the sub-meshes. The method solves the problem that it is difficult to
divide closed loops from the cross-contour polylines with complex shapes, and it greatly improves
the efficiency of modeling based on complex cross-contour polylines. It consists of three stages:
(1) Divide closed loops using approximate planes of contour polylines; each loop is viewed as a
polygon combined with several polylines, that is the n-sided region. (2) After processing the formed
n-sided regions, Coons surface interpolation is improved to complete the modeling of every single
loop (3) Combine all sub-meshes to form a complete orebody model. The corresponding algorithm
was implemented using the C++ programing language on 3D modeling software. Experimental
results show that the proposed orebody modeling method is useful for efficiently recovering complex
orebody models from a set of cross-contour polylines.

Keywords: geological modeling; orebody modeling; coons surface interpolation; contour interpolation;
polygon triangulation

1. Introduction

Three-dimensional geological modeling and visualization is one of the hot topics in the
field of geosciences [1]. As a geological body with high economic value, orebody modeling
is also one of the current research hot topics and is of great significance for promoting
mine digitization and improving mining efficiency [2]. In 2002, Mallet [3] proposed a new
method called discrete smooth interpolation (DSI), based on which a number of orebody
modeling works have been published [4–7]. Additionally, some commercial software [8]
has been developed using different technologies including triangulate surfaces, radial
functions, and parametric surfaces [9]. However, due to the complex shape of the orebody,
much research work still needs to be done in orebody modeling. Our research is dedicated
to developing the software for modeling orebody using small triangles based on the Coons
surface [10].

We can often obtain the cross-contour polylines of planes and sections of orebodies
through geological logging in the geological exploration and production exploration of
mines, especially of some precious metal mines with flat orebody shapes. These contour
polylines are interlaced with complex shapes. Therefore, if the explicit modeling method
based on the contour stitching method is used, the model will be constructed with poor
quality and low efficiency [11]. Modeling orebodies with high speed and great quality is
of great significance to improving the production efficiency of mines [12]. The orebody
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modeling method we propose based on Coons surface interpolation can automatically
divide the contour polylines into closed loops and interpolate and model the formed n-sided
regions; then, the constructed sub-meshes will be combined without manual intervention.
Based on the above steps, the complete orebody model can be quickly constructed.

1.1. Related Research Work

Based on the above analysis, we transform the 3D modeling of the orebody into the
Coons surface interpolation of the interpreted contour polylines. Therefore, we will briefly
summarize the research work on free-form surface reconstruction, contour interpolation
modeling, and orebody modeling.

1.1.1. Free-Form Surface Reconstruction

Free-form surface reconstruction is a key technology of orebody 3D modeling [13–15].
In practical application, the commonly used surface reconstruction methods include implicit
function surface, triangular Bezier surface, B-spline surface, NURBS surface, Coons surface,
polygon model, and so on.

The implicit function surface [16–18] refers to the surface represented by equation
F(x, y, z) = 0, which can represent quadric surfaces such as spherical surfaces, cylindrical
surfaces, and more complex surfaces. When reconstructing the surface, the implicit function
equations are constructed using the existing data, and then the surface model can be
generated by obtaining isosurfaces through the Marching Cube method or other methods.
Though using the implicit function to reconstruct a surface has the advantages of small
calculation and easy solution, there are also some problems such as unclear geometric
meaning. In the future, a great amount of research work needs to be carried out to make
extensive use of implicit modeling.

In 1982, Farin [19] proposed the method of constructing the triangular Bezier surface
based on the triangulation of scattered data. This surface is explicit and C1 continuous with
flexible construction. Using the triangular Bezier surface for surface reconstruction requires
less manual intervention and is easy to automate. However, it also has some disadvantages,
such as the insufficient ability for surface modification and poor controllability.

The B-spline curve and surface [20–22] have many excellent properties, such as geo-
metric invariance, convex hull, convexity preservation, and local support, which lead to
the powerful function of representing and designing free-form curves and surfaces. It is a
commonly used free-form surface suitable for engineering shape design, but it cannot be
well applied to represent and design elementary curves and surfaces. Therefore, researchers
proposed the NURBS surface method [23–25] for surface reconstruction, which both has
the powerful function of representing and designing free-form curves and surfaces like
B-spline and can accurately represent quadric arcs and quadric surfaces. The unification
of analytical geometry and free-form curves and surfaces is well realized by this method.
Due to the introduction of a weight factor and a manipulation control vertex, it provides
sufficient flexibility for various shape designs. However, the parameterization effect will
become very poor with an inappropriate weight factor. In addition, there are still many
problems to be further solved in the calculation of NURBS surface intersection.

In 1964, Professor S. A. Coons of the Massachusetts Institute of Technology (MIT) pro-
posed a general method to describe surfaces, the Coons surfaces method [10], which
has unique advantages in engineering applications. Given the boundary conditions,
Coons patches of the corresponding degree can be constructed. Therefore, in theory,
the Coons method can be used to construct arbitrary order patches through boundary
constraints [26,27], which makes Coons surfaces show strong advantages in representing
and designing surfaces. However, in the Coons surface method, it is difficult to control the
surface shape. When the boundary curve is determined, the shape can only be modified by
changing the torsion vector [28].
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The most commonly used polygon model method is the triangle model method based
on triangulation. The triangulation technology in the plane has matured [29], and great
research progress has been made in the triangulation of surface data and tetrahedrons of
spatial scattered data [30,31]. The characteristics of the polygon model are: (1) adjacent
surface patches can only be C0 continuous and (2) data amounts are large. When there
needs high accuracy of a model, a large number of polygons need to be used to represent
the surface approximately, which has a huge amount of data. As a result, this method is
not suitable for constructing complex models with high accuracy. Therefore, in this paper,
the polygon model method is used only in the modeling of simple single-sided regions.

1.1.2. Contour Interpolation Modeling

Visualization based on contour interpolation refers to the modeling of three-dimensional
entities using a sequence of two-dimensional contours, which is an important research
direction in scientific computing visualization. According to the number of contour
polylines of two adjacent layers, it can be divided into single contour modeling and
multi-contour modeling.

Single contour modeling refers to the three-dimensional model reconstruction of the
contour polylines when there is only one contour polyline in each layer on two adjacent
planes, which is relatively simple. Researchers have proposed many optimization methods
for single contour modeling, such as the minimum surface product method [32], the
maximum volume method [33] based on the global search strategy, the shortest diagonal
method [34], and the synchronous advance method of adjacent contours [35] based on local
calculation and decision.

Multi-contour modeling refers to 3D model reconstruction when there are multiple
contour polylines on two adjacent planes, which difficulty is the correspondence and
branch processing between contour polylines. In terms of the correspondence of contour
polylines, Meyers et al. [36] proposed the minimum spanning tree method, but this method
still has some limitations. In some special cases, the contour polylines cannot correctly
correspond, and subsequent manual processing is required. For the branching problem
between contour lines, Ekoule et al. [37] proposed a method for constructing the middle
contour polyline in the middle of the two adjacent planes of contour polylines. This method
transforms the branching problem into the connection problem between a series of single
contour polylines. However, in some cases, this method will leave holes on the constructed
model surface.

Jones et al. [38] proposed an isosurface construction method using volume data, which
requires that contour polylines have simple shapes and be completely closed. There is
no need to judge the corresponding relationship and branch relationship when using
this method for surface reconstruction, and it is suitable for both convex and non-convex
contour polylines. However, it also has the disadvantage of a large amount of calculation.
Additionally, Zhong et al. [39] proposed a method of reconstructing the 3D orebody by
cross-section contour polylines, which allows for adding geometric constraints and can
easily control the shape of the model, but many discontinuous parts may be generated
after reconstruction if the data are relatively sparse. Moreover, Wu et al. [40] proposed a
3D orebody modeling method based on the normal estimation of cross-contour polylines.
First, the normals of the cross-contour polylines will be estimated, based on which the
radial basis function will be used for interpolating and modeling. This method improves
the modeling automation of contour polylines, but it requires strict intersection between
contour polylines, and they can be completely broken at intersections.
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1.1.3. Orebody Modeling

The 3D modeling of the orebody is to interpret the topological information and de-
termine the geometric shape of the orebody using mine geological exploration data and
production exploration data [41]. According to the different principles of model con-
struction, it can be divided into explicit modeling and implicit modeling [42]. In explicit
modeling, first, the contour polylines of the orebody should be delineated manually, and
then the 3D reconstruction of two-dimensional contour polylines can be realized by the
contour stitching method [37]. Because explicit modeling requires a great deal of manual
interaction, the limitation of low efficiency of this method is gradually highlighted for
orebodies with a large number of sections and complex shapes. In addition, when the mod-
eling data change locally, the modelers need to reinterpret the data, delineate the orebody,
and model through contour stitching. This process is complex, which is not conducive
to the dynamic updating of the model [43]. In contrast with explicit modeling, implicit
modeling is based on the implicit function. The relationships of the spatial sampling data
are used to construct an implicit function, and the 3D model can be constructed by the
spatial interpolation algorithm [18]. This method not only greatly reduces the manual
interaction but also realizes the dynamic editing of the model, which also improves the
automation and efficiency of modeling [44].

1.2. Solution Strategy

In this paper, we consider transforming the problem of orebody modeling into a
modeling problem based on the Coons surface interpolation of n-sided regions. The
proposed method requires the contour polylines to be in an approximate plane within the
tolerance range. Firstly, we creatively propose a closed-loop division method for contour
polylines interpreted from data obtained in mine production and exploration. In this
method, the approximate plane of each contour polyline is used to cut all polylines, and
the polylines in the final subspace are connected and grouped within the tolerance range
to form closed loops. Secondly, we preprocess the formed n-sided region. For the simple
single-sided region, the method based on constrained Delaunay triangulation is used for
modeling. In terms of complex single-sided regions and non-quadrilateral regions, they
are transformed into four-sided regions by different methods. Finally, the Coons surface is
used for interpolation and modeling based on the processed four-sided regions to realize
the 3D visualization of the orebody. In summary, we creatively propose a closed-loop
division and modeling method of orebody contour polylines.

2. Overview of the Method

The basic idea of this modeling method using Coons surface interpolation is as follows.
Through the steps of n-sided region processing and function solving, the Coons surface
interpolation is used to construct sub-meshes through the formed closed loops, which are
obtained by interpreted cross-contour polylines. Finally, the sub-meshes will be combined
to realize the modeling of the complete orebody.

The proposed method mainly consists of the following three steps. Figure 1 shows the
overall process of the method.

1. Use approximate planes of each contour polyline to cut all polylines for the closed-
loop division.

2. Preprocess the formed loops and separately model the processed four-sided regions
through Coons surface interpolation.

3. Combine all the sub-meshes to construct a complete orebody model.
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3. Method
3.1. Coons Surface

With the continuous development of computer technology and modern industry, the
application scope of Coons surfaces has gradually expanded from the shape design of
cars, ships, and aircraft to various fields such as architectural design, medical research,
and geological modeling. Coons surfaces can be divided into three categories according
to boundary control conditions. The boundary control conditions of the first kind of
Coons surface only contain four boundary curves or part of them. The boundary control
conditions of the second kind of Coons surface include both boundary curves and boundary
tangent vectors. For the third kind of Coons surface, the boundary control conditions
include boundary curves and boundary tangent vectors, as well as boundary second-order
derivative vectors. The bicubic Coons surface used in interpolation in this paper belongs to
the second kind of Coons surface, which can ensure the interpolated patches are continuous
both in position and slope.

To satisfy the slope continuity and the position continuity at the four boundaries,
the four boundaries P(u, j) and P(i, v) and their cross-border tangent vectors Pv(u, j) and
Pu(i, v) must be given at the same time, as shown in Figure 2.
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Under these constraints, the second kind of Coons surface equation [10] can be derived:

Q(u, v) = −
[
−1 F0(u)F1(u)G0(u)G1(u)

]
×




0 P(u, 0) P(u, 1) Pv(u, 0) Pv(u, 1)
P(0, v) P(0, 0) P(0, 1) Pv(0, 0) Pv(0, 1)
P(1, v) P(1, 0) P(1, 1) Pv(1, 0) Pv(1, 1)
Pu(0, v) Pu(0, 0) Pu(0, 1) Puv(0, 0) Puv(0, 1)
Pu(1, v) Pu(1, 0) Pu(1, 1) Puv(1, 0) Puv(1, 1)







−1
F0(v)
F1(v)
G0(v)
G1(v)




, u, v ∈ [0, 1] (1)

This fifth-order matrix is the boundary information matrix of the second kind of Coons
patches (Coons patches with given boundaries and cross-border tangent vectors). F0, F1, G0
and G1 are mixed functions, which meet the following conditions [10]:

Fi(j) = G′i(j) =
{

1, i = j
0, i 6= j

F′i (j) = Gi(j) = 0, i, j = 0, 1
(2)

Based on Equation (2), we can solve that [10]:





F0(u) = 2u3 − 3u2 + 1
F1(u) = −2u3 + 3u2

G0(u) = u3 − 2u2 + u
G1(u) = u3 − u2

(3)

The above methods and formulas are extremely rigorous in theory, but too much
boundary information is needed, which is not convenient for calculation and application.
To meet its application requirements and simplify the calculation process as much as
possible, Professor Coons proposed using corner information and mixed functions to define
the boundary curves and their cross-border tangent vectors.

If the point vectors, tangent vectors of u direction, tangent vectors of v direction, and
mixed partial derivative vectors of the four corners are known, as shown in Figure 3, by
applying the mixed function F0, F1, G0 and G1, we can express the four boundaries of the
surface patch and their cross-border tangent vectors as follows [10].





P(0, v)= F0(v)P(0, 0) + F1(v)P(0, 1) + G0(v)Pv(0, 0) + G1(v)Pv(0, 1)

P(1, v)= F0(v)P(1, 0) + F1(v)P(1, 1) + G0(v)Pv(1, 0) + G1(v)Pv(1, 1)

P(u, 0)= F0(u)P(0, 0) + F1(u)P(0, 1) + G0(u)Pu(0, 0) + G1(u)Pu(0, 1)

P(u, 1)= F0(u)P(1, 0) + F1(u)P(1, 1) + G0(u)Pu(1, 0) + G1(u)Pu(1, 1)

Pu(u, 0)= F0(u)Pu(0, 0) + F1(u)Pu(0, 1) + G0(u)Puv(0, 0) + G1(u)Puv(0, 1)

Pu(u, 1)= F0(u)Pu(1, 0) + F1(u)Pu(1, 1) + G0(u)Puv(1, 0) + G1(u)Puv(1, 1)

Pv(u, 0)= F0(u)Pv(0, 0) + F1(u)Pv(0, 1) + G0(u)Puv(0, 0) + G1(u)Puv(0, 1)

Pv(u, 1)= F0(u)Pv(1, 0) + F1(u)Pv(1, 1) + G0(u)Puv(1, 0) + G1(u)Puv(1, 1)

(4)
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 (4)

After bringing Equation (2) into Equation (1) and simplifying it, we can obtain the 
simplified surface equation [10]: 

⎩⎨
⎧𝑄(𝑢, 𝑣) = [𝐹(𝑢) 𝐹ଵ(𝑢) 𝐺(𝑢) 𝐺ଵ(𝑢)] × ⎣⎢⎢

⎡ 𝑃(0,0) 𝑃(0,1) 𝑃௩(0,0) 𝑃௩(0,1)𝑃(1,0) 𝑃(1,1) 𝑃௩(1,0) 𝑃௩(1,1)𝑃௨(0,0)𝑃௨(1,0) 𝑃௨(0,1)𝑃௨(1,1) 𝑃௨௩(0,0)𝑃௨௩(1,0) 𝑃௨௩(0,1)𝑃௨௩(1,1)⎦⎥⎥
⎤

⎣⎢⎢
⎡𝐹(𝑣)𝐹ଵ(𝑣)𝐺(𝑣)𝐺ଵ(𝑣)⎦⎥⎥

⎤ , 𝑢, 𝑣 ∈ [0,1] (5)

where 𝐹, 𝐹ଵ, 𝐺 and 𝐺ଵ are the same as Equation (3). 
The cubic mixed function and Equation (3) can be written as [10]: 𝑄(𝑢, 𝑣) = 𝑈𝑀𝐵𝑀்𝑉் (6)

where: 𝑈 = [𝑢ଷ 𝑢ଶ 𝑢 1], 𝑉 = [𝑣ଷ 𝑣ଶ 𝑣 1],   𝑢, 𝑣 ∈ [0,1] (7)

𝑀 =    2 −2    1    1−301     3 −2 −1   0    1     0   0    0     0 (8)

𝐵 = ⎣⎢⎢
⎡ 𝑃(0,0) 𝑃(0,1) 𝑃௩(0,0) 𝑃௩(0,1)𝑃(1,0) 𝑃(1,1) 𝑃௩(1,0) 𝑃௩(1,1)𝑃௨(0,0)𝑃௨(1,0) 𝑃௨(0,1)𝑃௨(1,1) 𝑃௨௩(0,0)𝑃௨௩(1,0) 𝑃௨௩(0,1)𝑃௨௩(1,1)⎦⎥⎥
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boundaries, and their cross-border tangent vectors of the surface patch; (b) the interpolated surface.

After bringing Equation (2) into Equation (1) and simplifying it, we can obtain the
simplified surface equation [10]:





Q(u, v) = [F0(u)F1(u)G0(u)G1(u)]×




P(0, 0) P(0, 1) Pv(0, 0) Pv(0, 1)
P(1, 0) P(1, 1) Pv(1, 0) Pv(1, 1)
Pu(0, 0) Pu(0, 1) Puv(0, 0) Puv(0, 1)
Pu(1, 0) Pu(1, 1) Puv(1, 0) Puv(1, 1)







F0(v)
F1(v)
G0(v)
G1(v)


, u, v ∈ [0, 1] (5)

where F0, F1, G0 and G1 are the same as Equation (3).
The cubic mixed function and Equation (3) can be written as [10]:

Q(u, v) = UMBMTVT (6)

where:
U =

[
u3 u2 u 1

]
, V =

[
v3 v2 v 1

]
, u, v ∈ [0, 1] (7)

M =




2 −2 1 1
−3 3 −2 −1
0 0 1 0
1 0 0 0


 (8)

B =




P(0, 0) P(0, 1) Pv(0, 0) Pv(0, 1)
P(1, 0) P(1, 1) Pv(1, 0) Pv(1, 1)

Pu(0, 0)
Pu(1, 0)

Pu(0, 1)
Pu(1, 1)

Puv(0, 0)
Puv(1, 0)

Puv(0, 1)
Puv(1, 1)


 (9)

The parametric equation of the Coons surface is [10]:




x(u, v) = UMBx MTVT

y(u, v) = UMBy MTVT

z(u, v) = UMBz MTVT
(10)

where Bx, By, and Bz are the coordinate components of boundary information matrix B.

3.2. Closed-Loop Division

Cut all contour polylines using the approximate planes where each contour polyline is
located. The contour polyline on the positive side (the positive and negative sides can be
specified arbitrarily without affecting the final dividing result) is coded as 1 in this plane
bit. The contour polyline on the negative side is coded as 2 in this plane bit. The contour
polyline on the approximate plane is coded as 0 because it belongs to both positive and
negative sides, and it will be expanded in the subsequent steps. Each time an approximate
plane is added for cutting, the length of each polyline mark string is increased by 1, whose
value is 0, 1, or 2.
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As shown in Figure 4, there are six contour polylines in the figure, of which the bottom
two are coplanar. Cut the contour polylines with the five approximate planes α, β, γ, δ, ε
where the contour polylines are located and divide them into four subspaces 1©, 2©, 3©, 4©.
The direction indicated by the arrow is the positive direction of the plane, and the tag array
length of each contour polyline is 5.
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Figure 4. Schematic diagram of the closed-loop division: (a) the example model and the cross-contour
polylines of it; (b) the formed subspace after using approximate planes to cut polylines.

As shown in Figures 4 and 5, the contour polylines a, b, c, d are cut by the approximate
planes and coded according to the above rules. The initial coding result is shown in Table 1.
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view of the divided contour polylines.

Table 1. Initial coding table after cutting polylines with the approximate planes.

Segments

Plane Bit
α β γ δ ε

a 1 0 2 1 1

b 1 1 2 1 0

c 1 1 0 1 1

d 1 1 2 0 1

Copy the contour polyline containing 0 in the code array. On the plane bit where 0 is
located, two contour polylines are coded as 1 and 2, and the other codes remain unchanged.
For example, expand a: 10,211 to a1: 11,211 and a2: 12,211. After processing all the contour
polylines, the final coding result is obtained as shown in Table 2.

The contour polylines with the same code array are the contour polylines in the same
subspace. As shown in Table 2, a1, b1, c2, d1 marked by red have the same code arrays,
which means that they are in the same subspace. Then, in the same subspace, the contour
polylines within the specified tolerance are connected to form the closed loops.
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Table 2. Final coding table after extending the side whose code array contains 0.

Segments

Plane Bit
α β γ δ ε

a1 1 1 2 1 1

a2 1 2 2 1 1

b1 1 1 2 1 1

b2 1 1 2 1 2

c1 1 1 1 1 1

c2 1 1 2 1 1

d1 1 1 2 1 1

d2 1 1 2 2 1

It is worth noting that if the topological adjacency relationship between some contour
polylines is too complex, the above automatic closed-loop division algorithm may not be
able to obtain the required results. At this time, it is necessary to manually process and
group the contour polylines to complete the closed-loop division.

3.3. Process n-Sided Regions

Using Coons surface for interpolation calculation needs the boundary information
of four sides. However, many of the closed loops divided before are non-quadrilateral.
Therefore, we need to preprocess the n-sided regions before interpolation calculation.

3.3.1. Process the Single-Sided Region

For the simple single-sided region, the polygon triangulation method based on con-
strained Delaunay triangulation is used to directly model it, as shown in Figure 6. For
the complex single-sided region, we consider transforming it into a four-sided region by
analyzing its shape characteristics and then performing the Coons surface interpolation.
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Figure 6. Schematic diagram of polygon triangulation: (a) the original polygon; (b,c) the process and
the result of polygon triangulation.

3.3.2. Process the Two-Sided and the Three-Sided Regions

For the two-sided and the three-sided regions, we consider generating the virtual sides
to transform them into four-sided regions.

As shown in Figure 7, for the two-sided region, two virtual edges are generated at
two common intersections A and B on both sides. Then, n transition lines are generated
between A and B, which means n virtual points are inserted on the two virtual sides. When
performing interpolation calculation, the coordinate values of n points on the same virtual
side are the same. The coordinates of Ai, i = 1, 2, . . . , n are the same as A. The coordinates
of Bi, i = 1, 2, . . . , n are the same as B.
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(b,c) the process and result of adding virtual sides and virtual points. The black dotted lines are
omitted lines.

For the three-sided region, a virtual side is constructed at the intersection of any two
sides. The transition lines are generated, whose number is the same as the number of
vertices on the third side. Then, the same number of virtual points are inserted on the
virtual side, and the coordinates of the virtual points are the same as that of the intersection
where the virtual side is inserted.

3.3.3. Process Other Regions

For the five-sided region and regions that have more than five sides, first, search for
the shortest side among all sides, and then search for the shorter side adjacent to this side
for merging and connection. Repeat the above operation until this region is merged into a
four-sided region.

3.3.4. Process All the Four-Sided Regions

After the above preprocessing, all the regions are transformed into four-sided regions.
Since the synchronous forward method is used for interpolation, the number of vertices
on the opposite side is required to be the same. However, the vertices cannot be directly
added to the sides because of the requirement of forming manifold graphics. In this paper,
we consider translating the sides of the four-sided region to the middle according to the
specified distance, which will generate four new sides. As shown in Figure 8b, the same
numbers of vertices are inserted on the opposite sides, which makes the same t of the
vertices at the same position on the opposite sides. The t is the ratio of the distance from the
vertice to the starting point to the side length. At last, the polygon triangulation method is
used to model the newly formed sides and old sides, as shown in Figure 8c.
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3.4. Sided Region Modeling

After preprocessing, the four-sided regions can be modeled using bicubic Coons
surface interpolation. Since the synchronous forward method is used to perform the Coons
surface interpolation, the numbers of the vertices on the opposite sides are the same, which
are m and n. This means that the number of the formed interpolation points in the grid will
be m× n. As shown in Figure 9, set the first group of opposite sides respectively as u0 and
u1, the second group of opposite sides respectively as v0 and v1.
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Based on Equation (9), the x, y, and z of each vertex can be calculated respectively by
harmonic function, according to the coordinates of four corners and four relevant points,
as well as the t of the four relevant points. Because the synchronous forward method is
adopted, the t values of the opposite sides are the same.

Set the t of the first group sides u0 and u1 as {Ti|0 ≤ i < m, 0 ≤ Ti ≤ 1}, and the
t of the second group sides v0 and v1 as {ti|0 ≤ i < n, 0 ≤ ti ≤ 1}. Then, set the point
interpolated by the i point on the u0 and the j point on the v0 as Aij, whose calculation
formulas of coordinates are:

x = u0(i)x × F0
(
tj
)

+v0(j)x × F0(Ti) + u1(i)x × F1
(
tj
)
+ v1(j)x × F1(Ti)

−(u0(0)x × F0(Ti) + u0(m− 1)x × F1(Ti))× F0
(
tj
)

+(u1(0)x × F0(Ti) + u1(m− 1)x × F1(Ti))× F1
(
tj
) (11)

y = u0(i)y × F0
(
tj
)

+v0(j)y × F0(Ti) + u1(i)y × F1
(
tj
)
+ v1(j)y × F1(Ti)

−(u0(0)y × F0(Ti) + u0(m− 1)y × F1(Ti))× F0
(
tj
)

+(u1(0)y × F0(Ti) + u1(m− 1)y × F1(Ti))× F1
(
tj
) (12)

z = u0(i)z × F0
(
tj
)

+v0(j)z × F0(Ti) + u1(i)z × F1
(
tj
)
+ v1(j)z × F1(Ti)

−(u0(0)z × F0(Ti) + u0(m− 1)z × F1(Ti))× F0
(
tj
)

+(u1(0)z × F0(Ti) + u1(m− 1)z × F1(Ti))× F1
(
tj
) (13)
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where the harmonic function is:
{

F0(t) = 2t3 − 3t2 + 1
F1(t) = −2t3 + 3t2 (14)

u0(0)x, u0(0)y, u0(0)z refers to respectively x, y, z coordinates of the first point on the u0;
u0(m− 1)x, u0(m− 1)y, u0(m− 1)z refer to, respectively, x, y, z coordinates of the last point
on the u0; u1(0)x, u1(0)y, u1(0)z refers to respectively x, y, z coordinates of the first point
on the u1; u1(m− 1)x, u1(m− 1)y, u1(m− 1)z refer to, respectively, x, y, z coordinates of
the last point on the u1; u0(i)x, u0(i)y, u0(i)z refer to, respectively, x, y, z coordinates of the
point on the u0, whose t is Ti; v0(j)x, v0(j)y, v0(j)z refer to, respectively, x, y, z coordinates
of the point on the v0, whose t is tj;u1(i)x, u1(i)y, u1(i)z refer to, respectively, x, y, z coordi-
nates of the point on the u1, whose t is Ti; v1(j)x, v1(j)y, v1(j)z refer to, respectively, x, y, z
coordinates of the point on the v1, whose t is tj.

Performing the interpolation calculation according to Equations (10)–(13), the model-
ing of this four-sided region can be completed, as shown in Figure 10.
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interpolated by the 𝑖  point on the 𝑢  and the 𝑗  point on the 𝑣  as 𝐴 , whose 
calculation formulas of coordinates are: 𝑥 = 𝑢(𝑖)௫ × 𝐹൫𝑡൯ + 𝑣(𝑗)௫ × 𝐹(𝑇) + 𝑢ଵ(𝑖)௫ × 𝐹ଵ൫𝑡൯ + 𝑣ଵ(𝑗)௫ × 𝐹ଵ(𝑇)− (𝑢(0)௫ × 𝐹(𝑇) + 𝑢(𝑚 − 1)௫ × 𝐹ଵ(𝑇)) × 𝐹൫𝑡൯+ (𝑢ଵ(0)௫ × 𝐹(𝑇) + 𝑢ଵ(𝑚 − 1)௫ × 𝐹ଵ(𝑇)) × 𝐹ଵ൫𝑡൯ 

(11)

𝑦 = 𝑢(𝑖)௬ × 𝐹൫𝑡൯ + 𝑣(𝑗)௬ × 𝐹(𝑇) + 𝑢ଵ(𝑖)௬ × 𝐹ଵ൫𝑡൯ + 𝑣ଵ(𝑗)௬ × 𝐹ଵ(𝑇)− (𝑢(0)௬ × 𝐹(𝑇) + 𝑢(𝑚 − 1)௬ × 𝐹ଵ(𝑇)) × 𝐹൫𝑡൯+ (𝑢ଵ(0)௬ × 𝐹(𝑇) + 𝑢ଵ(𝑚 − 1)௬ × 𝐹ଵ(𝑇)) × 𝐹ଵ൫𝑡൯ 
(12)

𝑧 = 𝑢(𝑖)௭ × 𝐹൫𝑡൯ + 𝑣(𝑗)௭ × 𝐹(𝑇) + 𝑢ଵ(𝑖)௭ × 𝐹ଵ൫𝑡൯ + 𝑣ଵ(𝑗)௭ × 𝐹ଵ(𝑇)− (𝑢(0)௭ × 𝐹(𝑇) + 𝑢(𝑚 − 1)௭ × 𝐹ଵ(𝑇)) × 𝐹൫𝑡൯+ (𝑢ଵ(0)௭ × 𝐹(𝑇) + 𝑢ଵ(𝑚 − 1)௭ × 𝐹ଵ(𝑇)) × 𝐹ଵ൫𝑡൯ 
(13)

where the harmonic function is: ൜𝐹(𝑡) = 2𝑡ଷ − 3𝑡ଶ + 1𝐹ଵ(𝑡) = −2𝑡ଷ + 3𝑡ଶ  (14)𝑢(0)௫、𝑢(0)௬、𝑢(0)௭  refers to respectively 𝑥、𝑦、𝑧  coordinates of the first point 
on the 𝑢 ; 𝑢(𝑚 − 1)௫、𝑢(𝑚 − 1)௬、𝑢(𝑚 − 1)௭  refer to, respectively, 𝑥、𝑦、𝑧 
coordinates of the last point on the 𝑢; 𝑢ଵ(0)௫、𝑢ଵ(0)௬、𝑢ଵ(0)௭ refers to respectively 𝑥、𝑦、𝑧 coordinates of the first point on the 𝑢ଵ; 𝑢ଵ(𝑚 − 1)௫、𝑢ଵ(𝑚 − 1)௬、𝑢ଵ(𝑚 − 1)௭ 
refer to, respectively, 𝑥、𝑦、𝑧 coordinates of the last point on the 𝑢ଵ; 𝑢(𝑖)௫、𝑢(𝑖)௬
、𝑢(𝑖)௭ refer to, respectively, 𝑥、𝑦、𝑧 coordinates of the point on the 𝑢, whose 𝑡 is 𝑇 ; 𝑣(𝑗)௫、𝑣(𝑗)௬、𝑣(𝑗)௭ refer to, respectively, 𝑥、𝑦、𝑧  coordinates of the point on 
the 𝑣 , whose 𝑡  is 𝑡 ; 𝑢ଵ(𝑖)௫、𝑢ଵ(𝑖)௬、𝑢ଵ(𝑖)௭  refer to, respectively, 𝑥、𝑦、𝑧 
coordinates of the point on the 𝑢ଵ , whose 𝑡  is 𝑇 ; 𝑣ଵ(𝑗)௫、𝑣ଵ(𝑗)௬、𝑣ଵ(𝑗)௭  refer to, 
respectively, 𝑥、𝑦、𝑧 coordinates of the point on the 𝑣ଵ, whose 𝑡 is 𝑡. 

Performing the interpolation calculation according to Equations (10)–(13), the 
modeling of this four-sided region can be completed, as shown in Figure 10. 

(a) (b) (c) 

The inserted point 

The new formed 
side 

The interpolation point 

 
Figure 10. Schematic diagram of the four-sided region modeling:(a) the preprocessed four-sided 
region; (b,c) the process and the result of the Coons surface interpolation and modeling. 

3.5. Combine Sub-Meshes 

Figure 10. Schematic diagram of the four-sided region modeling:(a) the preprocessed four-sided
region; (b,c) the process and the result of the Coons surface interpolation and modeling.

3.5. Combine Sub-Meshes

Multiple polygon data sets are set into one complete data set using the mature polygon
data merging technology, which means all the sub-meshes are merged into a complete
triangular mesh model. In the process of merging, all the polygon data will be extracted,
but the extraction and expansion of point and cell attributes (scalar, vector, and normal)
can only be carried out when multiple data sets contain them. As shown in Figure 11, we
can obtain a complete triangular mesh model.

We use C++ to implement the relevant algorithms of the modeling method based
on the Coons surface interpolation and test them on a 64-bit computer with Windows 10
professional edition. This computer has 3.70 Ghz Intel (R) Core (TM) i7-8700u, 32GB ram,
and NVIDIA GeForce RTX 2080 GPU.
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Figure 11. Schematic diagram of the sub-mesh combination: (a) the sub-meshes; (b–d) the complete model.

4. Results and Discussion

In this paper, five groups of different data are used to test the modeling method pro-
posed in this work. These data are from the orebody of a tin mine in Yunnan, China, and are
obtained in production and exploration. Based on these data, the original contour polylines
can be produced through geological logging. The following experimental figures clearly
show the process and the result of single closed-loop modeling and sub-mesh combination.

4.1. Examples

Figure 12 shows the processes of closed-loop division, single closed-loop modeling,
and sub-mesh combination of the first group of cross-contour polylines. Figure 12a shows
the original cross contour polylines of the orebody, each of which is in the same plane
within the tolerance range. Then, the contour polylines are cut with the approximate planes.
As shown in Figure 12b, each contour polyline is divided and grouped. After that, single
closed-loop modeling is carried out on the contour polylines through the Coons surface
interpolation, and the results are shown in Figure 12c. It can be seen that every closed loop
has been modeled, but the sub-meshes are separate from each other. Finally, the sub-meshes
are combined into a complete orebody model using polygon data merging technology, as
shown in Figure 12d.

Figures 13 and 14 show the modeling process on contour polylines with different
shapes. It can be seen that the algorithm implemented here can still carry out closed-
loop division, single closed-loop modeling, and sub-mesh combination on more complex
contour lines with good effects.
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Figure 12. Experimental results of the first set of contour polylines: (a) the original contour polylines;
(b) closed-loop division; (c) single closed-loop modeling; (d) sub-mesh combination.
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Figure 14. Experimental results of the third set of contour polylines: (a) the original contour 
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Figure 14. Experimental results of the third set of contour polylines: (a) the original contour polylines;
(b) closed-loop division; (c) single closed-loop modeling; (d) sub-mesh combination.

Figure 15 shows the modeling process of more complex contour polylines, in which
most of the contour polylines do not strictly intersect. Figure 15a shows the original contour
polylines. First, search the original intersections of the contour polylines, and the result is
shown in Figure 15b. The green points are the original intersections that need no further
processing. It can be seen that only a few polylines possess the original intersections. Red
points are isolated points that have no other contour polylines within the specified scope.
Then, the contour polylines are moved to intersect within the tolerance range. Figure 15c
shows the intersections after processing, and most of the contour polylines have intersected
with each other. After that, the closed-loop division is carried out based on the intersected
contour polylines, and the result is shown in Figure 15d. Based on the closed loops, sub-
meshes can be constructed through the Coons surface interpolation. Figure 15e shows the
modeling result of every closed loop. The sub-meshes are smooth but split from each other.
Finally, the sub-meshes are combined to obtain a complete orebody model, as shown in
Figure 15f.

As shown in Figure 16, the method is applied to complex orebodies with different shapes,
and good orebody models are obtained, showing that this method has strong adaptability.

4.2. Discussion

The above experimental results show that the proposed method can deal with the
contour polylines obtained by geological logging in mine production with good effects.
Firstly, the constructed model conforms to the geological trend and is smooth in every
mesh. Secondly, the closed-loop division can be carried out automatically, which will
greatly improve the efficiency of modeling. Thirdly, since modeling between different
regions will not affect each other, it can be carried out at the same time, which will greatly
reduce the overall modeling time. However, this method still has some limitations that
need to be further studied and solved. Firstly, due to the inherent limitations of the Coons
technology, the model constructed by Coons surface interpolation is difficult to update,

117



Minerals 2022, 12, 997

and it is difficult to take faulting crosscutting into account, which will affect the accuracy of
the model. In mine production, many orebodies are cross-cut by faults. For these orebodies,
we should choose other modeling methods. Secondly, due to the complexity of the data
in actual production, when this method is applied to some complex contour polylines,
as shown in Figure 15, it can not complete all closed-loop divisions well, which needs
to be specified manually. Finally, before Coons surface interpolation, all regions except
simple single-sided regions need to be transformed into four-sided regions, which may
affect the final modeling results by introducing numerical instability issues when adding
virtual edges and vertexes. Therefore, to further improve the efficiency and accuracy of
the modeling of cross-contour polylines, it is necessary to develop a closed-loop division
method with higher precision and an n-sided regions expansion method with less effect on
interpolation modeling in the future.
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5. Conclusions

We propose a modeling method based on bicubic Coons surface interpolation, which
needs the contour polyline to be in an approximate plane within the tolerance range. The
innovation of this paper is that we proposed a creative method of automatically dividing
the closed loops, which will greatly reduce the modeling time. Additionally, the constructed
sub-meshes can be combined without manual intervention. This method solves the problem
that it is difficult to divide closed loops based on contour polylines with complex shapes,
and it greatly improves the efficiency of modeling based on complex cross-contour polylines.
Firstly, the contour polylines are cut by the approximate planes to divide the subspaces.
Then, the divided polylines are grouped and connected according to the specified tolerance
to form closed loops. Secondly, the Coons surface interpolation is used for modeling based
on the closed-loop information. Finally, the constructed sub-meshes are combined to form
a complete orebody model. Through experiments with multiple groups of cross-contour
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polylines, the results show that the proposed method can accurately divide closed loops
and model the contour polylines with good effects.
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Abstract: The Middle–Lower Yangtze River Metallogenic Belt is an important copper and iron poly-
metallic metallogenic belt in China. Today’s economic development is inseparable from the support
of metal mineral resources. With the continuous exploitation of shallow and easily identifiable mines
in China, the prospecting work of deep and hidden mines is very important. Mineral prospectivity
modeling (MPM) is an important means to improve the efficiency of mineral exploration. With the
increase in resource demands and exploration difficulty, the traditional 2DMPM is often difficult to
use to reflect the information of deep mineral deposits. More large-scale deposits are needed to carry
out 3DMPM research. With the rise of artificial intelligence, the combination of machine learning
and geological big data has become a hot issue in the field of 3DMPM. In this paper, a case study of
3DMPM is carried out based on the Xuancheng–Magushan area’s actual data. Two machine learning
methods, the random forest and the logistic regression, are selected for comparison. The results show
that the 3DMPM based on random forest method performs better than the logistic regression method.
It can better characterize the corresponding relationship between the geological structure combination
and the metallogenic distribution, and the accuracy in the test set reaches 96.63%. This means that the
random forest model could provide more effective and accurate support for integrating predictive
data during 3DMPM. Finally, five prospecting targets with good metallogenic potential are delineated
in the deep area of the Xuancheng–Magushan area for future exploration.

Keywords: 3D mineral prospectivity modeling; random forest; logistic regression; Xuancheng–
Magushan area

1. Introduction

A huge prospecting potential is in concealed and deep mines, especially in the so-
called “Second depth space” (500 m–2000 m); there are very likely to be abundant mineral
resources there [1,2]. At present, some domestic and foreign examples of deep mineral
exploration have proved the views of experts and scholars [3,4]. Although a series of deep
mine exploration results show the prospecting potential of concealed and deep mines,
there are also many problems, such as difficulty in exploration and imperfect exploration
methods [5–7]. Therefore, more reasonable and effective technology is needed at this stage
to adapt to the prospecting work in the large-scale Quaternary strata coverage area and the
lower-cost method to find hidden and deep mines.

In recent years, with the development of computer technology and the support of
geophysical methods, 3D modeling technology can fully integrate multivariate and mul-
tidimensional data to accurately depict deep geological structures [8–11]. At present, the
wide application of artificial intelligence, especially machine learning technology, can
provide a new way to process massive geological big data. Compared with traditional
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methods, machine learning often has higher prediction accuracy, especially for geological
data with massive and high-dimensional characteristics, which can effectively explore
the complex nonlinear relationship between ore-control characteristics and ore-forming
mechanisms. At present, machine learning methods include the probabilistic neural net-
work, the support vector machine, the random forest, adaptive learning, the restricted
Boltzmann machine, etc.; most of them have been applied and developed in the field of
2DMPM. Oh et al. [12] analyzed the potential of hydrothermal gold–silver mineral de-
posits in the Taebaeksan mineralized district, Korea, and the Artificial neural network
(ANN) method and selected factors related to the occurrence of gold and silver minerals
as ore-control factors, including magnetic anomaly geophysical data, geological and fault
structure geological data, geochemical data, etc. Good results have been achieved [12].
Xiong et al. [13] identified multiple geochemical anomalies related to Fe polymetallic min-
eralization in the southwestern Fujian district (China) by using the limited Boltzmann
machine. The research shows that most of the known skarn-type iron deposits are located
in geochemical anomaly areas, which can provide reference for further exploration [13]. In
order to effectively delineate favorable exploration targets for Cu-Au mineralization in the
Moalleman District, NE Iran, Ghezelbash et al. [14] integrated several effective evidence
layers such as geochemistry, geology, structure, and hydrothermal alteration in the study
area; used SVM with radial basis function kernel to predict mineralization; and delineated
the metallogenic prospect area [14]. However, the above methods are only based on two-
dimensional geological data for prediction, which cannot fully characterize the multiple
geological characteristics and may be difficult to make fine prediction of deep mines and
hidden mines. The combination of 3D technology and artificial intelligence is beneficial to
more fully excavate and integrate 3D prediction information and achieve more accurate
positioning and quantitative predictions of deeply hidden ore bodies [15–18].

Compared with other mineralized areas in the Middle-Lower Yangtze River Metal-
logenic Belt, the Quaternary strata in the Xuancheng–Magushan area within the Middle-
Lower Yangtze River Metallogenic Belt have a large coverage area and shallow geological
exploration. The deep geological structure is not yet clear. It is difficult to describe the
deep geological structure in this area in detail, which seriously affects the research of deep
ore prospecting and prediction there [19]. Aiming at the Xuancheng–Magushan area, this
paper firstly builds a 3D geological model that can accurately describe the deep geological
structure with the support of geophysical methods and geological data. Based on this, two
machine learning methods, the logistic regression model and the random forest model,
were used to predict skarn deposits in the study area in three dimensions. Then, we divide
the training set and the test set according to the data, the former trains the model, and
the latter evaluates the performance of the model. The optimal results were selected to
delineate the prospecting. Finally, the target area is expected to provide a new prospecting
direction for further deep prospecting and exploration work in this area.

2. Methods
2.1. 3D Mineral Prospectivity Modeling

In recent years, the MPM has become an important means of prospecting and explo-
ration. It can guide on-site prospecting work, thereby reducing the risk of prospecting. With
the development of computer technology, a quantitative-based MPM method system has
been put forward at home and abroad, which promotes the development of MPMfrom qual-
itative to quantitative and can more accurately delineate the metallogenic target area [20–24].
However, the above-mentioned quantitative MPM methods are mainly oriented towards
the traditional two-dimensional prediction, which mostly uses two-dimensional geological
data. However, the deep metal mineral resources have experienced multiple periods of geo-
logical evolution, resulting in weak surface indication information and complex geological
structures. It is difficult to indicate prospecting work with traditional prediction methods
based on two-dimensional geological data [25]. As deep ores and hidden ores have become
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the focus of prospecting in recent years, the research on the quantitative prediction of
mineralization has moved from “two-dimensional” to “three-dimensional” [26].

The rise of artificial intelligence also provides a new way to process and mine massive
geological data contained in 3D models [27]. Machine learning simulates human learning
behavior through computers. It utilizes its nonlinear learning ability to characterize poten-
tial complex geological features by continuously training models and fitting parameters. In
recent years, many scholars have begun to try to carry out 3DMPM research, including us-
ing the evidence weight model, the logistic regression model, the random forest model, and
the artificial neural network model [28–31]. The above methods have shown good research
potential in the field of 3DMPM. They can effectively process massive multi-dimensional
geological data and have become an important development trend in this field.

In this paper, 3D geological modeling, 3D spatial analysis and 3DMPM based on
machine learning are integrated. First, a 3D geological model is established based on
geological data, and then a variety of 3D spatial analysis methods are used to analyze the
3D geological model and relevant metallogenic indicative characteristics, so as to obtain
quantitative ore control and indicative characteristic information. Then, the prediction
method based on machine learning is used to predict the mineralization of the deep edge of
the mining area, and its effect is evaluated. Finally, the prediction results are used to divide
the metallogenic prospective area, to realize the positioning and quantitative prediction of
the hidden ore bodies at the deep edge of the known deposits. The forecast flow chart is
shown in Figure 1.
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2.2. Logistic Regression Algorithm

Logistic regression is a representative algorithm in machine learning. This algorithm
has been applied in many fields such as medicine, biology, and geology [32–34]. It can
calculate the correlation between the independent input variable and the dependent vari-
able through the regression principle and calculate the specific probability value of the
dependent variable belonging to a certain category according to the existing state of the
independent variable. As a multivariate nonlinear regression model, it can better fit the
nonlinear relationship between various ore-controlling characteristics and metallogenic
facts [35,36]. In this paper, metallogenic facts are used as the dependent variable, and
various ore -controlling factors related to the metallogenic mechanism are used as the
independent variables. The logistic regression method calculates the probability of ore
bodies’ existence in the corresponding blocks.

P(Z) =
1

(1 + e−Z)
(1)

Z = α + βixj (2)

In the above formulas: P(Z) is the favorable degree of mineralization, xi is the i-th
ore control or indicator element, (i = 1, 2, . . . , n), α is a constant, βi is a regression factor,
that is, each control contribution of ore elements to the existence of ore bodies. It can be
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determined by fitting with the maximum likelihood estimation method. Each parameter is
optimally solved using the gradient descent method.

2.3. Random Forest Algorithm

In the ensemble learning model [37,38], first proposed by Leo Breiman, the essence
of the random forest is a classifier or regression model composed of multiple unrelated
decision trees: i.e., determine the category and, if it is a regression scenario, take the average
of the solution parameters as the final result. The algorithm has two important randomness
characteristics. The first point is to randomize the samples. By performing multiple random
extractions with replacements from the total data set, multiple subsets of the same number
of data samples are obtained as training sets to reduce the phenomenon of overfitting. The
second point is to randomize the features. For each decision tree, a different subset of
features is extracted from the feature set for learning. In this way, the robustness of the
feature selection can be enhanced, so that the user does not need to deliberately filter the
features. At the same time, the important indicators of all of the features of the model’s
results can be obtained.

Each decision tree in the random forest selects the feature that can maximize the infor-
mation gained in the feature subset as the current split node. Multiple regression decision
trees constitute the random forest regression algorithm. Based on the idea of ensemble
learning, the mean value of the decision tree is taken as the prediction result, namely

−
h(x) =

1
T ∑T

t=1 h(x, θt), (3)

where
−
h(x) is the model prediction result; is h(x, θt) the output x based on x sum, is the

independent θt variable, θt is the independent and identically distributed random vector,
and T is the number of regression decision trees.

3. Case Study Area and Data
3.1. Geological Background

The stratigraphic area of the study area belongs to the Changzhou–Xuancheng strati-
graphic community in the Jiangnan stratigraphic subdivision of the Yangtze stratigraphic
area (Figure 2). Neritic and littoral clastic rocks dominate the Silurian and Devonian
strata, the Permian early and middle Triassic strata are dominated by carbonate rocks, and
subsequent continental by clastic rock and pyroclastic rock series. The accumulated total
thickness reaches more than 3000 m [39,40].
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The structure of the study area is complex, and numerous faults have developed. The
faults are mainly concentrated in the vicinity of Magushan and the southeastern part of the
area. The magmatic rock activity in the area is strong, consisting of mid-acid intrusions in
the late Yanshan period.

The deposits of Magushan Cu-Mo, Xishishan Au-Pb, Beishan Cu-Mo and Fenghuang-
shan Cu-Mo have been discovered in the study area. Among them, the Magushan Cu-Mo
deposit (Figure 3) is a typical skarn deposit in the area, with a large scale and a relatively
high degree of research [44].
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Figure 3. Geological map of Magushan Cu-Mo deposit. (Modified from Bian. [19], Ye. [43],
and Hong et al. [44]).

3.2. Database

In previous studies [43], 2D geological profiles covering the whole area were first
established in the Magushan ore field, and these geological profiles were interpreted
using the gravity and magnetic joint inversion method. Combined with prior geological
constraints and based on the collected regional physical property data, the joint inversion of
gravity and magnetic fields finally obtains a 2D profile that can show the thickness, depth,
extension direction, hidden rock mass shape, and geological structure of each layer in the
region. After the gravity and magnetic joint inversion, a set of verification methods based on
the 3D visualization function of the profile is used to verify the rationality of the interpreted
profile, and the unreasonable parts in the profile are modified. The whole process of gravity
and magnetic inversion interpretation and profile verification and modification is shown in
Figure 4. Then, based on the two-dimensional geological profile, geological map, borehole,
and other geological information interpreted by gravity and magnetic joint inversion, a 3D
geological model of the Magushan ore field with a depth of 3km is established. The 3D
geological model can realize the 3D visualization of each geological body in the region and
can better display the geological information of the study area, such as the thickness and
depth of the strata, the shape of the hidden rock mass, and the geological structure in the
region. After completing the 3D geological model, the study further uses the geophysical
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forward modeling method to verify the rationality of the 3D geological model and modify
and improve the 3D geological model. The modeling results are shown in Figure 5. The
relevant modeling results will provide an important data basis for 3DMPM research.
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3.3. 3D Prospectivity Modeling Model and 3D Prediction Data Set Construction

The 3DMPM method is mainly based on expert experience, the metallogenic model,
and the exploration model summarized by the predecessors to obtain the MPM model.
Various spatial analysis methods are used to analyze the deep 3D geological model and
related metallogenic indicative features and obtain quantitative results. Based on this
information, prediction information is constructed. Finally, the metallogenic favorable
degree is calculated. The prospecting target area is delineated for the position with the high
metallogenic favorable degree. Thus, it provides a new quantitative prediction support for
ore prospecting on the deep edge of the mining area.

We took the skarn type deposit represented by Magushan Cu-Mo deposit in the study
area as the research object. Firstly, according to the geological and metallogenic character-
istics of the Magushan skarn Cu-Mo deposit [43], the metallogenic law and prospecting
signs of the skarn copper deposit in the study area were summarized. A 3DMPM model
was constructed. It includes prediction elements such as the Carboniferous stratigraphic
contact surface, the Permian stratigraphic contact surface, the Triassic stratigraphic contact
surface, the rock mass contact zone, and the diorite uplift position.

After that, combined with the 3DMPM model in the study area, the 3D geological
model was further analyzed in 3D space. The 3D prediction elements were extracted. The
3D geological body surface extraction method is mainly used for the Triassic stratigraphic
contact surface, and rock mass contact zone are extracted, respectively; the 3D geological
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structure surface analysis function extracts the uplift position of the diorite rock mass. The
analysis and extraction methods are shown in Table 1:

Table 1. 3DMPM model and analysis and extraction method of ore control and indicator elements.
(Modified from Ye [43]).

Classification Exploration Criteria Spatial Analysis Methods

Strata

Carboniferous stratigraphic contact
surface distance field

3D geological body surface
extraction function

3D Distance Field Analysis

Permian stratigraphic contact surface
distance field

3D geological body surface
extraction function

3D Distance Field Analysis

Triassic stratigraphic contact surface
distance field

3D geological body surface
extraction function

3D Distance Field Analysis

Intrusions Rock mass contact zone distance field
3D geological body surface

extraction function
3D Distance Field Analysis

Structures Distance field of diorite uplift location
3D Mathematical

Morphological Methods
3D Distance Field Analysis

Based on the constructed 3D block model of the Xuancheng–Magushan area, this
paper constructs the sample data period. The parameters of the 3D model are defined
as shown in Table 2. The predicted depth is in the shallow space range of −3000 m. A
single predicted cubic unit is defined as 100 m × 100 m × 25 m. The predicted space has
7.0735 million cubic units (Figure 6).

Table 2. Definition of spatial parameters for 3DMPM in Xuancheng–Magushan Area.

Parameter Value (m)

North-south extent (x axis) 23,500
East-west extent (y axis) 21,500
Vertical extent (z axis) 500~−3000

X axis block size 100
Y axis block size 100
Z axis block size 25
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Based on the geological and metallogenic characteristics of the Magushan skarn Cu-Mo
deposit, this study summarizes the metallogenic regularity and prospecting markers of the
skarn copper deposit in the study area. Prediction factors include the stratigraphic contact
surface, the Triassic stratigraphic contact surface, the rock mass contact zone, and the diorite
uplift position. A sample dataset for MPM was constructed by combining the metallogenic
facts. In order to verify the generalization ability of the prediction model in the study area,
a north–south division was made according to the known ore body locations. The south
is used as a training area for the model to learn nonlinear ore-controlling characteristics,
and the north is used as a test area to test the model’s performance. There are 730 known
ore body unit blocks in the study area, all of which are used as positive sample units, of
which 614 were placed in the training set, and 116 were placed in the test set. To ensure a
balance of positive and negative samples, 1500 non-ore body units around the known ore
body were selected as negative samples. Of these, 1200 were put into the training set, and
300 were put into the test set.

4. Prospectivity Modeling Process and Results
4.1. Predictive Model Building

In order to fully explore the nonlinear relationship between the 3D ore-controlling
factors and the ore-forming facts, based on the sample data set established above, this
paper selects two machine learning methods, logical regression and random forest, to carry
out 3D ore-forming predictions in the deep part of the mining area.

In addition to the support of a large number of effective datasets, the machine learning
model also needs to set the model’s parameters for the current dataset, which is an impor-
tant factor in determining the model’s performance. The random forest algorithm includes
the two most important parameters: the number of decision trees M and the number of
attributes K in the randomly selected attribute set. In this paper, the sampling dataset will
be used to determine the appropriate number of decision trees and attributes of the random
forest classification model using cross-validation. Due to the regression model adopted in
this paper, after obtaining the error estimates of the results of each cross-validation set, the
standard deviation is taken as the evaluation standard to evaluate the consistency of the
model on different data sets (Figure 7).
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According to the results, this paper uses logistic regression and random forest (M = 200,
K = 12) methods to carry out a 3DMPM on the deep edge of the Xuancheng–Magushan
area and obtains the distribution map of favorable areas (Figure 8).
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4.2. Model Performance Analysis

The confusion matrix is a standard format for expressing the accuracy evaluation. It
is often used in binary classification scenarios. Each column of the matrix represents the
prediction of the sample, and each row of the matrix represents the real situation of the
sample. To more intuitively express the quality of the model’s performance, we extend
three metrics from the matrix: precision, recall, and specificity. The trained model is used
in the test set divided above to test the performance of the model. According to the results,
the blocks with favorable degrees of mineralization greater than 0.5 predicted in the test set
are selected as favorable units for mineralization. Finally, we compare the real value and
the predicted value of each block in the test set and use these three prediction indicators to
compare the model (Table 3).

Table 3. Comparison of performance indicators.

Models Accuracy Recall Speciality

Logistic regression 90.625% 83.62% 93.33%
Random forest 96.63% 93.97% 97.67%

Comparing the three performance indicators, it can be concluded that the random
forest model performs better than the logistic regression model, which can effectively
distinguish non-ore body units in the case of predicting more known ore bodies in the test
set and has a good generalization ability.

The ROC curve is also often used in the performance evaluation of the two-class
network [46]. It can indicate the ability to identify the sample at a certain threshold. The
vertical and horizontal coordinates of the points on the curve represent the true positive
rate (TPR) and the false positive rate (FPR) of the output results under different thresholds,
respectively. The ROC curve indicates the percentage of true positive units in the known
mineralization units in the different positive prediction ranges of the model. The area under
the curve is called the AUC value. The larger the AUC value, the better the model effect.
This paper compares the ROC curves of the two models (Figure 9) and finds that the image
of the MPM method based on the random forest is more inclined to the upper left corner
than the logistic regression model. The AUC values of the two models are 0.989 and 0.969,
indicating the random forest model has better performance and more reliable results.
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The performance of the two models was further quantitatively evaluated by plotting
the capture efficiency curves [47,48] (Figure 10). First, the predicted metallogenic favorable-
ness of all blocks is sorted in descending order. Then various thresholds are set according
to the sorting results to reclassify the unit blocks in the study area. Finally, the capture effi-
ciency is calculated by counting the number of known ore body units in different sections.
The calculation process of the capture efficiency is to perform the statistical calculation
on all blocks in the study area. From the capture efficiency curve, it can be obtained that
the blocks in the top 4‰ of the metallogenic favorable degree predicted by the random
forest model in the study area can cover all the known ore bodies. In the logistic regression
model results, only the blocks in the top 20‰ of the favorable degree of mineralization in
the study area can cover all known ore bodies. It can be shown that the random forest can
contain more known ore body units in the block unit with high posterior probability and
can screen out the metallogenic prospect area more finely.
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5. Discussion

After analyzing the indicators of the logistic regression model and the random forest
model, it can be seen that the prediction results of the random forest model are better. The
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accuracy of the random forest model in the test set is 96.63%, which is higher than that
of the logistic regression model by 6.005%, i.e., 10.35% higher in recall and 4.34% higher
in specificity, indicating that random forest can better characterize the characteristics of
the mineral control in the study area. At the same time, compared with logistic regression,
the random forest model can better identify ore body characteristics and can cover more
known ore body units in the same number of block units with high metallogenic favorable
degrees. By comparing the distributions and shapes of favorable areas predicted by the two
methods, it can be seen that the random forest can constrain the specific locations of the
prospectivity targets more finely, thereby effectively improving the efficiency of prospecting
and exploration.

In this paper, the prediction results of random forest are used to delineate the metallo-
genic target area, and the unit block with a metallogenic favorable degree greater than 0.5
is selected as the potential metallogenic unit.

According to the prediction results, there are 7652 favorable areas in the study area,
accounting for 1.08 % of the whole study area, including 96.71 % of the known ore bodies.
Therefore, the random forest model can not only effectively identify the known ore bodies,
but also screen out Blocks with greater metallogenic potential. Then five metallogenic
potential areas are divided (Figure 11).
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The five metallogenic prospective areas classified in this paper all have high metal-
logenic potential. The No. I and No. II target areas are located in the prospecting area
of Magushan. The burial depth of the No. I target area is about −900 m~−1200 m, and
the burial depth of the No. II target area is about −1500 m~−2000 m. The target area is
located in the middle of the high gravity anomaly in Magushan as a whole, with a trend
near east–west, and the isolines on the north and south sides change rapidly; in terms of the
aeromagnetization pole anomaly, the Magushan anomaly clearly shows a high magnetic
anomaly, with a trend near the pear-shaped distribution in the north and the south: the
contour changes smoothly, the gradient changes rapidly on the north side, and extends to
the south, showing the subsidence direction of the concealed rock mass. The measurement
anomalies of 1:200,000 water system sediments show that Cu, Hg, and W are anomalous
in the vicinity of the Magushan deposit. The No. III target area is located on the surface
of the high-density body, and the burial depth is about −2100 m~−2800 m. The No. IV
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target area is generally controlled by structural forms, such as the uplift and depression
of the rock mass, and the buried depth is about −1100 m~−1500m. The No. V target area
is located at the intersection of the faults, and there are certain magnetic anomalies on
the surface of this area, and the burial depth is about −2100 m~−2900 m. Therefore, the
five prospectivity targets classified in this paper can be the priority exploration targets for
future mineral exploration in this area.

6. Conclusions

(1) The 3DMPM is an important tool for deep targets delineation for future exploration.
This paper delineates five prospectivity targets with good mineralization potentials in the
deep area of the Xuancheng–Magushan area, which can be used for future exploration.

(2) In the Xuancheng–Magushan area, the favorable areas divided by the random
forest model contain 96.71% of known ore bodies and only account for 1.08% of the study
area, which can show that the random forest model can perform better than the logistic
regression model in the 3DMPM using the dataset of the study area. It means that the
random forest model could provide more effective and accurate support for integrating
predictive data during the 3DMPM.
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Abstract: This paper focuses on researching the scientific problem of deep extraction and inference of
favorable geological and geochemical information about mineralization at depth, based on which a
deep mineral resources prediction model is established and machine learning approaches are used to
carry out deep quantitative mineral resources prediction. The main contents include: (i) discussing the
method of 3D geochemical anomaly extraction under the multi-fractal content-volume (C-V) models,
extracting the 12 element anomalies and constructing a 3D geochemical anomaly data volume model
for laying the data foundation for researching geochemical element distribution and association;
(ii) extracting the element association characteristics of primary geochemical halos and inferring
deep metallogenic factors based on compositional data analysis (CoDA), including quantitatively
extracting the geochemical element associations corresponding to ore-bearing structures (Sb-Hg)
based on a data-driven CoDA framework, quantitatively identifying the front halo element association
(As-Sb-Hg), near-ore halo element association (Au-Ag-Cu-Pb-Zn) and tail halo element association
(W-Mo-Co-Bi), which provide quantitative indicators for the primary haloes’ structural analysis at
depth; (iii) establishing a deep geological and geochemical mineral resources prediction model, which
is constructed by five quantitative mineralization indicators as input variables: fracture buffer zone,
element association (Sb-Hg) of ore-bearing structures, metallogenic element Au anomaly, near-ore
halo element association Au-Ag-Cu-Pb-Zn and the ratio of front halo to tail halo (As-Sb-Hg)/(W-Mo-
Bi); and (iv) three-dimensional MPM based on the maximum entropy model (MaxEnt) and Gaussian
mixture model (GMM), and delineating exploration targets at depth. The results show that the C-V
model can identify the geological element distribution and the CoDA method can extract geochemical
element associations in 3D space reliably, and the machine learning methods of MaxEnt and GMM
have high performance in 3D MPM.

Keywords: 3D mineral prospectivity mapping; quantitative mineral resources prediction model;
maximum entropy model; Gaussian mixture model; Zaozigou gold deposit

1. Introduction

The main task of quantitative mineral prediction is to conduct comprehensive analysis
of geological, geophysical, geochemical and remote sensing data and drilling engineering
data in the study area based on the research of the geological background and metallogenic
regularity, and then construct mathematical models to effectively extract and identify fa-
vorable information on mineralization, carry out data fusion of quantitative mineralization
information, construct mineral prediction models, perform potential mineral resources
quantitative assessment and exploration targets delineation [1–3].
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Quantitative mineral resource prediction is developing toward deep 3D quantita-
tive prediction. The framework of 3D quantitative mineral prediction has been basically
completed, among which the representative works include Xiao [4–10], who studied the
characteristics of large-scale three-dimensional mineralization prediction and summa-
rized the combined prediction process of mine concession structure, mineral exploration
model, metallogenic series and quantitative analysis methods, which laid the founda-
tion for three-dimensional mineral resource prediction; Chen [11–14] proposed the “cubic
prediction model” for mineralization prediction by 3D-comprehensive 3D modeling of
geology, geophysics, geochemistry and remote sensing [15–17]; Mao [18–22] proposed
a three-dimensional prediction process for deep mineral resources prediction, the three-
dimensional morphological analysis of geological bodies, geological anomaly extraction
and three-dimensional quantitative prediction methods [23]; Yuan [24,25] proposed a
“four-step” three-dimensional mineralization prediction method, which summarizes the
three-dimensional mineralization prediction work into four key steps: three-dimensional
geological database construction, three-dimensional geological modeling and mapping,
three-dimensional prediction information deep mining and three-dimensional geosciences
data fusion and prediction.

In this study, three-dimensional quantitative mineral resources prediction is executed
from a geological and geochemical perspective. It is a common understanding in the last
century that the distribution of rock geochemical elements follows normal or lognormal
distribution, based on which classical statistical theories and methods have been widely ap-
plied in the field of geochemical data analysis [26]. Since the 1990s, fractal and multifractal
methods have been developed rapidly, with representative achievement from Cheng’s team,
who proposed the content-area (C-A) model [26,27], the spectrum-area (S-A) model [28]
and Local Singularity Analysis (LSA) [26,29–32], and it is believed that the multifractal
distribution has the ability to simultaneously portray the normal distribution, lognormal
distribution, Zipf’s law, Pareto’s law, etc., and can be used as the basic law of geochemical
element distribution [26,29]. Based on the theoretical research of fractal and multifractal
methods, its application in geochemical spatial distribution pattern research is blossom-
ing [10,33–37]. The multifractal-related methods have achieved many successful cases in
regional geochemical anomaly extraction [32,38–45]. With the improvement of 3D software
and hardware performance, as well as the development of 3D modeling technology, fractal
models used in 3D data have made some progress [34,46,47]. Three-dimensional primary
halo geochemical survey is an effective tool for deep mineral resources prediction. In fact,
the spatial zonation pattern of primary haloes is the pattern of element clustering regularity
in 3D space, and the anomalous structure of elements is an intuitive indicator of deep
mineral prediction. Especially, Cheng [27] proposed that the distribution of geochemical
elements in either horizontal or vertical directions is consistent with the fractal distribution,
based on which Afzal [34] proposed the C-V model, which is a powerful tool to delineate
the nonlinear characteristics of element distribution in a 3D space.

Geochemical data are typically compositional data, which gives rise to the problem
of “closure effects” due to the lack of scale consistency in the covariance matrix of the
compositional data [48–50], and, in practice, classical geostatistical methods that ignore
the compositional properties of geochemical data often yield poor results [51–60]. Since
the introduction of Aitchison geometry and the application of additive log-ratio transfor-
mation (alr) [61], the theory and methods of log-ratio transformation of compositional
data have been gradually improved, making the application of classical statistical methods
more reasonable [33,35]. The geochemical elemental association extraction method based
on Sequential Binary Partition (SBP) [50] can design elemental associations based on the
geological background and mineralization knowledge, which is easy to interpret, and pro-
vides solutions for geochemical inference of lithology, tectonics, alteration, mineralization,
etc. Therefore, the CoDA method provides new ideas for analyzing the relationship of
geochemical data and extracts geochemical associations for evaluating mineral resources
rapidly [51,55,62–67].
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Geosciences is a data-intensive science, and geological survey and mineral explo-
ration have accumulated a large amount of multi-source geosciences data, and the in-
troduction of big data and its application of machine learning-related methods can ef-
fectively support mineral resources exploration [26,68–73]. During the past decade or
so, a large number of achievements related to machine learning have been published in
geosciences [37,57,74–85]. For example, based on metallogenic regularity, an intelligent
geology and intelligent mine model is established on a big data platform combined with
high-performance computers [70,86]; big data methods are used to realize the automatic
collection of geological prospecting thematic data, machine learning- and deep learning-
related methods development for deep mining of geological data, intelligent prospecting,
etc. [37,87–89]; and three-dimensional prediction methods of hidden orebodies can be based
on deep learning [17,72,90–98]. Numerous studies have shown that big data and machine
learning have good performance in mineralization prediction, and machine learning-related
algorithm research has greatly enriched the approaches of geological data processing and
analysis. Meanwhile, data cleaning, data screening and deep mining of geological big
data can enrich the information sources for mineralization information inference and
quantitative mineral prediction at depth.

This study focuses on the scientific problems of deep extraction and inference of
favorable geological and geochemical information about mineralization at depth and
quantitative mineralization prediction at large depth. Specifically, the C-V model will
be used to extract the spatial distribution pattern of primary halo geochemical element
anomalies, and the CoDA will be employed to identify and infer the element associations
for tracing the extension of deep ore-controlling information. Moreover, the machine
learning methods of the MaxEnt model and GMM will be carried out for mineral resources
prediction at the large depth of the Zaozigou gold deposit.

2. Geological Setting and Datasets
2.1. Geological Setting

West Qinling is located at the western part of the Qinling orogenic belt, with the Qilian
orogenic belt to the north, the Qaidam block to the west and the songpan block to the south
(Figure 1a) [99–102].

The geotectonic position of the Xiahe–Hezuo area is located at the northwestern part of
the West Qinling orogenic belt and at the western extension of the Qinling–Qilian–Kunlun
central orogenic belt, whose complex geological structure creates a superior mineralization
environment [103].

The Zaozigou gold deposit is located within the West Qinling fold belt and is a typical
epithermal-type gold deposit in the Xiahe–Hezuo area (Figure 1a). The main controlling
factors for mineral resources formation within the region are tectonic movement and
magmatism [104], with the regional tectonics spreading in a NW direction with developing
folds and fractures. Complex geological structure and magmatism are dominated by
Yanshan period intermediate-acid intrusive rocks, which are widely distributed in the form
of the batholith, stock, apophysis and veins [104] (Figure 1b).

The Triassic strata are the main stratigraphy for gold deposits. The genesis and spatial-
temporal evolution of the intermediate-acidic dike is closely related to gold mineralization
in the area, and during the mineralization process, the magmatic rocks not only provide
the mineralized material, but also their internal environment is very suitable as an ore-
bearing space, which can be regarded as a significant mineralization indicator for gold
mineralization [105].

The spatial distribution of mineral deposits is directly controlled by the geotectonic
position in the Xiahe–Hezuo area, which plays a major role in the formation of different
types of gold deposits and is the boundary of the belt from a spatial perspective. The
most important types of mineral-controlling structures are fractures and folds in this
area [106,107]. The main orebodies of the Zaozigou deposit are produced in NE, NW
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and near-SN oriented fracture zones, with two apparent mineralization periods, and post-
formation fractures have modified and destroyed the orebodies [108–112].
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Figure 1. (a) Geotectonic location of the study area. NQL: North Qinling tectonic belt; SDS: Shangdan
suture zone; CBS: Caibei suture zone; AMS: A’nyemaqen suture zone. (b) Geological map of
Xiahe–Hezuo area (modified from [104]). 1. Quaternary; 2. Neogene; 3. Cretaceous; 4. Upper Triassic
Huari group; 5. Middle-Lower Triassic Daheba group; 6. Lower Triassic Jiangligou group; 7. Lower
Triassic Guomugou group; 8. Upper Permian Shiguan group; 9. Lower Permian Daguanshan group;
10. Upper Carboniferous Badu group; 11. Intermediate-acid intrusive rocks; 12. Fracture; 13. Angular
unconformity; 14. Gold deposit; 15. Copper deposit; 16. Lead deposit; 17. Antimony deposit;
18. Mercury deposit; 19. Iron deposit; 20. Iron-copper deposit; 21. Copper-molybdenum deposit;
22. Copper-tungsten deposit.

The Zaozigou gold deposit is a typical representative of gold deposits associated
with intermediate-acid dike rocks in the south of the Xiahe–Hezuo fracture. It is located
approximately 9 km southwest of Hezuo city, Gansu Province, with convenient access to
the mine site (Figure 2a). The main ore-bearing position is between Gully 1 and Gully 4,
with a total area of approximately 2.6 km2 (Figure 2b).
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Figure 2. (a) Regional location of study area. QLA = Qilian tectonic belt; WQL: West Qinling tectonic
belt; NQL: North Qaidam tectonic belt; SF1: Wushan–Tianshui–Shangdan suture zone; SF2: Maqu–
Nanping–Lueyang suture zone; SG: Songpan–Ganzi tectonic belt; YZ: Yangtze block. (b) Geological
map of Zaozigou gold deposit (modified from [113]). 1. Quartz diorite porphyrite; 2. Granodiorite-
porphyry; 3. Plagioclase granite porphyry; 4. Gold orebody; 5. Fracture; 6. Mineral exploration line;
7. Drilling Hole.

There are only Triassic and Quaternary strata exposed in the Zaozigou gold deposit
(Figure 2b). The strata of the area are mainly the lower part of the Gulangdi group (T2g1) of
the Middle Triassic formation, and the Quaternary (Qh

alp) is developed in the intermountain
valley. The lower part of the Gulangdi group (T2g1) is the main ore-bearing rock, which
is a set of fine clastic rocks consisting of siliceous slate, clastic feldspathic fine sandstone
with interbedded siltstone slate and argillaceous slate. The formation is composed of a
large sedimentary cycle from bottom to top consisting of siltstone→ argillaceous slate→
calcareous slate [108,114].

The fractures are well developed and have a complex morphology, forming an in-
tersecting trend, indicating that the area has experienced multiple phases of geological
activity. Fractures strictly control the distribution of orebodies and vein rocks within the
deposit. They can be classified into five groups of orientations, namely NW, N-S, NE, E-W
and NNE [115,116]. Fracture structures are the structural surfaces of mineralization and
these structural surfaces control the spreading characteristics of the orebodies [117].

Intermediate-acid dike, including fine crystalline diorite, diorite porphyrite, biotite
dioritic porphyrite and quartz diorite porphyrite densely produced with a porphyritic
structure, spreads in NNE direction, turning to a nearly N-S direction in the western part of
the deposit and a few NW directions. Influenced by the regional multi-period deep fracture
activity, the multi-period magmatism has overlapped on multi-phases mineralization
within the deposit [118].
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There are 147 gold orebodies that have been found in the Zaozigou gold deposit, of
which 17 orebodies are main orebodies with gold reserves greater than 1 tonne and the total
gold reserves amount to more than 100 tonnes [113]. According to the spatial distribution
and combination of the mineralization, the Zaozigou deposit can be divided into eastern
and western ore groups.

The eastern ore group is mainly located between Gully 1 and Gully 3 with the strike
of NE orientation, containing Au1 controlled by F24, Au9 controlled by F21 and Au15
controlled by F25. These orebodies extend over 1000m long and 300m wide, with a NW
direction tendency and steep dip near the ground surface, locally nearly upright. In
the deep, these orebodies have been staggered by a gently dipping fracture, causing the
tendency to change to a SE orientation (Figure 2b). In addition, orebodies M4 and M6 are
laying underground, with the strike of NWW orientation, the tendency of SW orientation
and a dip of 8◦~26◦. These orebodies cross the NE-striking orebodies obliquely, staggering
them, and their own mineralization behavior occurs simultaneously [119].

The western ore group is mainly distributed between Gully 3 and Gully 4, spreading in
a nearly N-S direction, with Au29~Au31 as the main orebodies. The orebodies extend over
1000 m long and are wider than 500 m, with a strike of 350◦~10◦, varying tendency and
dips greater than 75◦, locally subvertical. These orebodies extend, and the mineralization is
weaker in the steeper parts and stronger in the shallower parts.

2.2. Datesets Description

Historical geological and geochemical data were completed, including geological
reports, geological exploration maps, drills geochemical data, etc., from the Development
Research Center of China Geological Survey and No. 3 Geological and Mineral Exploration
team, Gansu Provincial Bureau of Geology and Mineral Exploration and Development; the
coordinate system used in the mine-scale is Gaussian Kruger projection coordinates.

This study collects data from 72 drillings in the Zaozigou gold deposit and estab-
lishes a drilling location database, an assay database, an inclinometry database and a
lithology database. The 3D model of drillings is constructed based on the drill hole data
database (Figure 3).
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The primary geochemical halo data from the drillings are collected from the “Zaozigou
gold successive resources exploration project in Hezuo city, Gansu Province”, with a total
of 72 drillings and 5028 samples with 12 elements of Ag, As, Au, Cu, Hg, Pb, Zn, Sb, W,
Bi, Co and Mo (the element detection methods can be seen in the literature [113]). The
sampling method was the continuous picking method with sample intervals generally
within 10m. Some orebodies or strongly altered areas were sampled at decreased intervals.

3. Methodology
3.1. Concentration-Volume (C-V) Model

Geochemical anomalies are a concept relative to geochemical background, and the mul-
tifractal approach provides an effective tool to separate anomalies from the background. For
hydrothermal mineralization processes, multi-phase mineralization is common, which will
result in multi-phase superposed element spatial distribution [38,120,121]. The C-V model
can process the nonlinear primary geochemical halo data with the following equation:

V(ρ < v) ∝ kv−D1 V(ρ ≥ v) ∝ kv−D2 (1)

where V(ρ < v) and V(ρ ≥ v) are the volumes of the element content less than v and
greater than v; D1 and D2 are the fractal dimension values, also called the singularity index;
k is a constant coefficient, which can be calculated by the least square method; v is the
threshold value of element contents, and several element content intervals are divided by v.
The curves V(ρ < v) and V(ρ ≥ v) of the volumes corresponding to different v follow a
power-law relationship. Taking the natural logarithm of both sides of the equation, the lg-lg
plots have a linear relationship in different v intervals. The fractal dimensions in different v
intervals can be calculated by the least square method. The geochemical anomalies and
backgrounds can be extracted by different fractal dimensions [39].

In practice, the C-V model is used on the primary geochemical halo data volume
model for anomaly identification, where the threshold of fractal dimensions may indicate
the boundary between different mineralization.

3.2. Compositional Data Analysis

Geochemical data, as typical of compositional data, should be properly transformed
before data analysis [122–125] to eliminate the effects of “closure effects”. The “opened
(transformed)” data can often be analyzed by classical statistical methods to obtain perfor-
mance improvements [36,53,61,122].

3.2.1. Central Log-Ratio Transformation (clr)

The calculation of this method is: (i) calculate the geometric mean of all compositional
subvectors; (ii) divide each subvector by the geometric mean separately; (iii) take the
natural logarithm. Its calculation formula is shown as follows.

clr(x) =


ln

x1

D
√

∏D
i=1 xi

, ln
x2

D
√

∏D
i=1 xi

, · · · , ln
xD

D
√

∏D
i=1 xi


 (2)

3.2.2. Sequential Binary Partition (SBP)

The common isometric log-ratio transformation (ilr) is difficult to interpret. Egozcue [50]
proposed the sequential binary partition (SBP) technique based on the ilr transformation,
which can provide geochemical interpretation reasonably [66,123,124].

The sequential binary partition technique performs non-overlapping dichotomous
classification continuously by the relative information between variables. In practice,
positive (+) and negative (−) signs are used to represent two different classifications of
compositional variables, and ‘0’ is used to represent the unconcerned variables in one
time. By performing continuous non-overlapping dichotomy in a simplex space, a basis
vector is formed and then transformed. The results, called compositional balance, can be
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geologically interpreted according to dichotomy clusters. Especially, the technique provides
an important tool to identify element associations [66,123,124,126].

The relevant formula is [50]:

Bi =

√
risi

ri + si
ln

(∏+ xj)
1
r

(∏− xk)
1
s

i = 1, 2, . . . , D− 1; j = 1, 2, . . . , r; k = 1, 2, . . . , s (3)

where Bi denotes the new compositional vector defined by the standard orthogonal basis,
∏+ xj is the product of the variables labeled (+) involved in the ith binary partition and
∏− xk is the product of the variables labeled (−) involved in the ith binary partition.

3.2.3. Geochemical Compositional Data Analysis Framework Based on CoDA

The log-ratio transformation of geochemical data can solve the problem of the “closure
effect” caused by the lack of scale consistency in the covariance matrix of the compositional
data. The clr-biplot and compositional balance methods developed based on the clr and SBP
have their advantages in the geochemical associations’ extraction, especially in inferring
lithology, faults, alteration and mineralization, and the corresponding frameworks have
been well applied [65,66,124].

This study uses a data-driven and knowledge-driven framework of compositional
data analysis to identify the geochemical associations of the primary halo. The data-driven
framework infers the data characteristics by measuring elemental statistical correlations
to gain the element associations, while the knowledge-driven framework is based on
geological and geochemical understanding to design the element associations (Figure 4).
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In Figure 4, the closure and centering are necessary preprocess steps, which can can be
seen in the literature [51]. The data-driven framework in this study used clr transformation
to “open” geochemical data, and the factor analysis and correlativity methods are used to
explore the relationship among elements and extract element associations. Meanwhile, the
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knowledge-driven framework designs the element associations through deep research of
the geological features, such as the element concentrations in different rocks, the primary
geochemical halo associations, and so on. Then, the SBP is performed to quantitatively
extract the value of corresponding geochemical associations. Eventually, the results of the
CoDA can be employed to infer metallogenic information in an unknown area.

3.3. Machine Learning-Based Quantitative Mineral Prediction Methods

Machine learning algorithms could highlight hidden details in datasets without ex-
plicit search and have the ability to identify complex spatial patterns [127]. Given this,
scholars have attempted to use machine learning algorithms to extract mineralization infor-
mation by integrating multi-source geosciences data for identifying mineralization-related
anomalies and their variation that cannot be detected by traditional methods [128–135].
Machine learning algorithms can be roughly categorized as supervised learning algorithms
and unsupervised algorithms. For better validating the suitability of 3D MPM, this study
discusses the application of the supervised algorithm MaxEnt model and unsupervised
algorithm GMM.

3.3.1. MaxEnt Model

The principle of MaxEnt is a criterion of probabilistic model learning for making
predictions based on incomplete information. The main idea is that, when predicting
the probability distribution of a random event, all known constraints need to be satis-
fied without subjective assumptions so that the probability distribution is most uniform,
the prediction risk is minimal and the entropy value of the probability distribution is
maximum [136].

Let T = {(x1, y1), (x2, y2), . . . (xn, yn} be the training dataset and fi(x, y), i = 1, 2, . . . , n
be the eigenfunction, and the learning process of the MaxEnt model is equivalent to the
constrained optimization problem:

max
P∈C

H(P) =−∑x,y P̃(x)P(y|x )ln(P(y|x ))
s.t. EP( fi) =EP̃( fi) i = 1, 2, . . . , n

∑
y

P(y|x ) = 1
(4)

where EP̃( fi) = ∑x,y P̃(x, y) fi(x, y) is the expected value of n eigenfunction fi(x, y) related
to the empirical distribution P̃(x, y); EP̃( fi) = ∑x,y P̃(x)P(y|x ) fi(x, y) is the expected value
of n eigenfunctions fi(x, y) related to the P(Y|X ) with the empirical distribution P̃(X).

Following the custom of optimization problems, the problem of finding the maximum
value is rewritten as the equivalent problem of finding the minimum value:

min
P∈C
−H(P) =∑x,y P̃(x)P(y|x )ln(P(y|x ))

s.t. EP( fi)− EP̃( fi) =0 i = 1, 2, . . . , n

∑
y

P(y|x ) = 1
(5)

The solution resulting from solving the constrained optimization problem is the so-
lution learned by the MaxEnt model. However, the empirical distribution expectation
is usually not equal to the true expectation but will be approximate to the true expec-
tation. If the solution is solved strictly according to the above constraints, it is easy to
cause overfitting of the training data during the learning process. Therefore, the con-
straints can be appropriately relaxed in practice, such as replacing the above equation with
EP( fi)− EP̃( fi) ≤ βi, βi is the modulation multiplier, which is a constant.
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3.3.2. Gaussian Mixture Model (GMM)

GMM is a quantified model which generated through Gaussian probability density
function fitting. This model decomposes objective distribution into several Gaussian proba-
bility density functions. By using enough Gaussian functions and tuning the parameters,
the model can generate a very complex probability density to approximate to almost any
continuous probability. Theoretically, any objective distribution can be fitted by a combi-
nation of multiple Gaussian density functions, and the higher the number of probability
density sub-functions, the more closely it approximates to the actual data distribution.
GMM has the advantages of good flexibility, is not limited by the sample size and can
accurately describe the data structure.

When the dataset X = (X1, X2, . . . , XT) of the training data can be divided into k
classes and each class obeys Gaussian distribution, the k order probability distribution of
the GMM is

P(X|θ ) = ∑k
i=1 wiP(X|θi ) (6)

P(X|θi ) =
1

(2π)
D
2 |∑i|

1
2

exp
(
−1

2
(X− µi)

T ∑−1
i (X− µi)

)
(7)

∑k
i=1 wi = 1, wi > 0 (8)

where P(X|θi ) is the probability density of the ith Gaussian model, wi is the weight of
the ith model in the whole GMM, µi is the mean vector and ∑i is the covariance matrix.
After the parameter initialization, the Expectation-Maximization (EM) algorithm based on
the maximum likelihood estimation is often chosen for the parameter estimation of the
GMM [137].

In the geological point of view, the GMM is an unsupervised machine learning algorithm;
it divides the data into two categories (mineralization and non-mineralization) and then
makes category judgments on samples by learning information about unlabeled samples.

As for the dataset D = {x1, x2, . . . , xm}, which contains k Gaussian mixture compo-
nents, the algorithm steps are as follows.

1. Initializing the k multivariate Gaussian distributions and their weights.
2. Estimating the posterior probability of each sample generated by each component

according to Bayes’ theorem.
3. Updating the mean vector, covariance matrix and the weights according to the step 2.
4. Repeating steps 2–3 until the increase in the likelihood function has been less than the

convergence threshold, or the maximum number of iterations is reached.
5. For each sample point, calculating its posterior probability of belonging to each cluster

according to Bayes’ theorem and classifying the sample into the cluster with the
largest posterior probability.

4. Results
4.1. Three-Dimensional Primary Geochemical Halo Anomaly Data Volume Modeling Based on the
C-V Model

This section adopts the multifractal C-V model to analyze the spatial anomalous
structure of elements and provides single-element anomaly signatures for the subsequent
deep prediction.

Taking the ore-forming element Au as an example:
Using the ordinary kriging interpolation method [138–140], with the experimental

variogram fitted to build a 3D data volume model of Au (Figure 5), the Au content value
observably does not obey the normal distribution (Figure 6a). Therefore, the multifractal
C-V model was carried out to identify Au anomalies.

Through counting the variation of volume with Au content, the lgAu-lgV scatter
diagram was generated and lg-lg lines were fitted by the least square method (Figure 3b).
Meanwhile, the fractal dimension can be obtained as follows:
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The slopes of the lines correspond to fractal dimensions, and the inflection points are
threshold values of geochemical abnormal intensity as shown in Table 1 and Figure 6b.
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Figure 6. (a) Histogram of the frequency distribution of Au. (b) lgAu-lgV curve of the 3D data
volume model.

Table 1. Fractal characteristics of 3D Au data volume model.

Anomaly Classes Fractal Dimension R Square (R2) Inflection Point Au (ppb)

Background area 0.2375 0.7304 1.0876 12.2349
Outer anomalies 2.6262 0.9816 2.5137 326.3623
Middle anomaly 10.697 0.9878 2.9049 803.3411
Internal anomaly 59.571 0.9707 3.0202 1047.6108

The orebody is compared with the outside anomalies, central anomaly and internal
anomaly area by superposition, as shown in Figure 7b,c, and the three show a good spatial
correlation with the orebody.
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Figure 7. Three-dimensional model of Au anomaly data volume in Zaozigou gold deposit. (a) outer
anomalies of Au. (b) Middle anomalies of Au. (c) Inner anomalies of Au.

The middle and inner anomalies are mainly distributed inside and around the orebody,
which accurately reflects the spatial spreading of the orebody and its trend.

On this basis, this study analyzed and visualized the 3D anomalous structures of the
remaining 11 elements using the above model (Figure 8; Table 2).
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Table 2. Fractal characteristics of remaining elements in 3D data volume model.

Element Anomaly Classes Fractal Dimension R Square (R2) Inflection Point Cut-Off Value

As

Background area 0.7877 0.9742 1.8621 72.7949
Outer anomalies 2.5417 0.9944 2.5595 362.653
Middle anomaly 7.1778 0.9316 3.5762 3768.486
Internal anomaly 7.1332 0.8924 3.6731 4710.524

Sb

Background area 2.8084 0.9906 2.0003 100.091
Outer anomalies 1.3802 0.9977 2.6022 400.0882
Middle anomaly 2.1265 0.9732 −0.4559 3500.06
Internal anomaly 9.7587 0.8478 −0.1079 7800

Hg

Background area 0.3416 0.7344 0.9318 8.5462
Outer anomalies 3.0623 0.9985 1.5123 32.5296
Middle anomaly 3.9887 0.9814 2.4599 288.3531
Internal anomaly 2.1553 0.7624 2.6814 480.2207

Ag

Background area 0.1975 0.7174 −1.5708 0.0289
Outer anomalies 3.8416 0.9923 −1.0079 0.0982
Middle anomaly 8.8291 0.9867 −0.0403 0.9114
Internal anomaly −3.1223 0.8456 0.0287 1.0683

Cu

Background area 0.4997 0.7448 0.864 7.312
Outer anomalies 7.8425 0.9744 1.6271 42.372
Middle anomaly 2.995 0.9921 1.9266 84.444
Internal anomaly 1.7321 0.9297 2.4374 273.768

Pb

Background area 0.1789 0.5279 0.1436 1.392
Outer anomalies 5.0613 0.9921 1.3684 23.356
Middle anomaly 11.571 0.9881 1.7353 54.364
Internal anomaly 3.4226 0.9896 1.8362 68.576

Zn

Background area 0.0352 0.6439 0.2996 1.993
Outer anomalies 0.7062 0.8446 0.7904 6.172
Middle anomaly 12.592 0.978 1.9663 92.538
Internal anomaly 43.05 0.9284 2.0954 124.577

W

Background area 0.2629 0.8334 0.3484 2.2303
Outer anomalies 1.5296 0.984 0.8215 6.6297
Middle anomaly 3.0193 0.9973 1.343 22.0275
Internal anomaly 7.7309 0.9441 2.175 149.6098

Mo

Background area 0.3775 1 −0.3907 0.4067
Outer anomalies 1.5056 0.9729 −0.1184 0.7614
Middle anomaly 8.1548 0.9923 1.1745 14.9466
Internal anomaly 25.728 0.9634 1.4696 29.4864

Bi

Background area 0.7603 1 −0.3087 0.4913
Outer anomalies 3.2299 0.9943 −0.0116 0.9737
Middle anomaly 3.0016 0.9905 1.2518 3.8681
Internal anomaly 1.7831 0.8475 1.5919 17.8579

Co

Background area 0.1171 0.6058 0.1909 1.5524
Outer anomalies 2.3832 0.9903 1.2625 18.3011
Middle anomaly 1.2849 0.9527 1.4756 29.8963
Internal anomaly 7.2045 0.9606 1.8749 74.9889

Note: The cut-off value unit of Hg and Ag is ppb, others are ppm.

Figure 9 shows that the middle anomalies of As and Sb are mainly distributed near the
elevation of 1700~1900 m. The middle anomalies of Ag, Cu, Pb and Zn have close relation-
ship to the orebody. W, Mo, Co and Bi have two concentrations, the first one is located near
the surface and the second one is distributed near the elevation of 2500 m. The Zaozigou
gold deposit has multi-phase mineralization, forming a complicated spatial distribution of
elements, while the C-V model can better identify the anomaly for recognizing the pattern
of the primary geochemical halo in the Zaozigou gold deposit.
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4.2. Data-Driven CoDA and Its Based Element Association Extraction
4.2.1. Correlation Analysis

The primary halos were processed by cluster analysis (Figure 10). The elements can
be roughly divided into two groups: Au, As, Sb, Ag, W, Hg and Cu, Zn, Bi, Pb, Co, Mo.
Among them, the elements most closely associated with Au are As, Sb and Ag; the Au, As,
Sb and Cl are moderate volatile elements [141] often associated in gold mineralization like
Hg (indicator of volcanism). Ag is often associated to gold as electrum. Hg should be the
front halo indicating element of the gold orebody; the correlation coefficient between Au
and As reaches 0.8, and most of the As exists within arsenopyrite, which is an important
gold-bearing mineral. Therefore, this Au-As-Sb should be the element association of
mineralization reflecting a middle- and low-temperature metallogenic environment.

4.2.2. Element Associations Identification Based on clr-Biplot

Geochemical data are typically compositional data, and if traditional multivariate
statistical methods (e.g., principal component analysis, factor analysis, etc.) are applied
directly to the raw geochemical data, it may lead to erroneous results. Therefore, the raw
data should be properly transformed before data analysis is performed.

Data from 12 geochemical elements were clr-transformed, and the skewness values
of the clr-transformed data were statistically obtained (Figure 11). Compared with the
raw data, clr-transformed data has the lower skewness value around zero, indicating
that the data distribution after clr transformation tends to be more normal in character
(Figures 11 and 12).
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Factor analysis (FA) is used to extract element associations. Four factors are extracted
as element associations to indicate different geological and geochemical meanings. From
the view of the loadings of FA, factor F1 (34.95%, five variables) represents Cu, Pb, Zn,
Ag and Bi, which are a group of medium-temperature elements; factor F2 (12.83%, three
variables) is the element association of Au, As and Sb, representing the Au-polymetallic
sulfide phase, which is the most dominant phase of gold mineralization; factor F3 (11.13%,
one variable) indicates Mo, which is a high-temperature element and may be related to
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magmatism; factor F4 (9.26%, two variables) is Sb and Hg association, where Sb mainly
exists within the form of stibnite within the quartz-stibnite veins and Hg is closely related
to fractures (Figure 13). The distribution of each factor in the three-dimensional space is
shown in Figure 14a.
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To analyze and show the geological meaning of each factor more clearly, the 85# profile
was selected for analysis by profile cutting (Figure 14). It can be intuitively understood that
the F2 factor is closely related to mineralization, and its spatial distribution is well matched
with the known orebodies in the exploration profile. The F4 factor is closely related to
ore-bearing fractures, so that the Sb-Hg element association could be used as evidence of
deep fracture extension.

4.3. Knowledge-Driven CoDA and Its Based Element Association Extraction

From the anomaly data volume model based on the C-V method in this paper, it is
clear to recognize the distribution of each element in a three-dimensional space.

1. In the mid-shallow part and the deeper part of elevation at 2500 m, As, Sb and Hg are
concentrated as the front halo of the orebodies. The anomalies of Au, Ag, Cu, Pb and
Zn linked to sulphurs (pyrite, arsenopyrite, galena and covelline) and are superposed
with the orebodies and can be regarded as the near-ore halo elements. At the shallow
position of 2500 m, the anomaly locations of W, Mo and Bi linked to magmatism are
at the tail of the orebodies, which can be regarded as the tail halo element association.

2. In terms of Au, its anomalies are controlled by fractures observably, and observable
fractures certainly cross-cut orebodies. Especially, the abnormal intensity is larger
along the depth indicating the deep mineralization.

Based on the analysis above, the knowledge of the element associations of the front
halo, near-ore halo and tail halo can be summarized. Moreover, corresponding element
associations are quantitatively extracted as compositional balances by the knowledge-
driven CoDA framework (Figure 4), that is, the front halo association is B1 (As-Sb-Hg vs
Au-Ag-Cu-Pb-Zn-W-Bi-Co-Mo), the near-ore halo association is B2 (Au-Ag-Cu-Pb-Zn vs
As-Sb-Hg-W-Bi-Co-Mo), and the tail halo association is B3 (W-Bi-Co-Mo vs As-Sb-Hg-Au-
Ag-Cu-Pb-Zn) (Figure 15).
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4.4. Geological and Geochemical Quantitative Prediction Model at Depth of Zaozigou Gold Deposit

The mineral resources prediction model is usually summarized as text, diagrams,
and tables by integrating comprehensive metallogenic information, such as orebodies,
ore deposits, ore fields and even metallogenic zones. Establishing a mineral resources
prediction model is an effective way to discover potential deposits and has significantly
important meaning for guiding mineral exploration [142].

Orebodies are strictly controlled by fractures in the Zaozigou gold deposit. The 30 m
buffer zone of the fractures can effectively reflect the influence range of the fracture, which
can be used as a mineral prediction indicator. Factor F4 is an element association of Sb-Hg,
which has close relationship with fractures, and can be used as a favorable indicator for
inferring deep fractures [143–146] (Figure 14a).

Geochemical element distribution, association and zonation are favorable indicators
for mineral resources prediction. The geochemical anomalies are extracted by the multiple
fractal C-V model in Section 4.1, among which the middle anomaly of Au can well reflect
the spatial distribution of orebodies (Figure 7b) and should be used as an important
quantitative indicator. Near-ore halo element association B2 is extracted by the knowledge-
driven CoDA and also can express the location of orebodies well; it should be another
mineral prediction indicator (Figure 15). The ratio of front halo to tail halo is an important
geochemical parameter for predicting orebodies, and B1/B3 is regarded as a prediction
indicator accordingly [143] (Figure 16).
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In summary, the geological and geochemical quantitative prediction model at the
depth of the Zaozigou gold deposit is constructed as in Table 3.
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Table 3. Geological and geochemical quantitative mineral resource prediction model at depth of
Zaozigou gold deposit.

Ore-Forming Factor Description Prediction Indicator Variables

Geology Fracture
Influence range of fracture 30 m buffer zone

Element association of fracture Hg-Sb (F4)

Geochemistry
Ore-forming element Geochemical anomaly Au

Primary geochemical halo Element association of near-ore halo Au-Ag-Cu-Pb-Zn (B2)
Geochemical parameter (Front

halo/tail halo) As-Sb-Hg(B1)/W-Bi-Co-Mo (B3)

4.5. Three-Dimensional MPM Based on Machine Learning

To address the scientific problem of quantitative mineralization prediction at large
depths, the previous section quantitatively extracted the deep geochemical mineralization
signatures and constructed a geological and geochemical quantitative mineral resource pre-
diction model at depth. In this section, the MaxEnt model and GMM are applied to carry out
the 3D MPM to quantitatively predict deep mineral resources, and the uncertainty evaluation
of the two models is performed for improving the accuracy of mineralization prediction.

4.5.1. Training Sample Construction

The MaxEnt model is a supervised machine learning algorithm, which requires learn-
ing an optimal model from a given training dataset and using this model to output the
corresponding result for classification.

For mineralization prediction, the target variable of supervised learning (i.e., the
label of training samples) is either mineralized or nonmineralized (denoted by 1 and 0,
respectively). A total of 39,306 positive samples were extracted from known orebodies
and 49,686 negative samples were extracted from the nonmineralized position confirmed
by drillings, and these were used as the training dataset. In contrast to mineralization,
which generates in a concentrated way in a limited space, the non-mineralization is a
widespread phenomenon, and negative samples are selected to be distributed as randomly
and uniformly as possible in the wall rock without mineralization and alteration throughout
the study area [33] (Figure 17).
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4.5.2. Three-Dimensional MPM and Uncertainty Evaluation of MaxEnt Model

The MaxEnt method originated from statistical mechanics and was developed by
Phillips et al. using JAVA. This study uses version 3.4.1 of MaxEnt software (https://
biodiversityinformatics.amnh.org/open_source/maxent/, (accessed on 15 June 2022)) to
carry out the 3D MPM.

The MaxEnt method estimates the probability of the target variable with the maximum
entropy value and is controlled by a set of constraints representing incomplete informa-
tion about the target distribution. In mineralization prediction, the best interpretation of
unknown occurrences by the model is to maximize the entropy value of the probability
distribution for estimating the location of orebodies, and many scholars have achieved
better results in this regard [65,76,147]

When modeling with MaxEnt software, if the model parameters are not set properly,
it may lead to overfitting or redundancy [148]. The overfitting can be controlled by the
modulation multiplier β [149], and the best performance of the model is obtained by setting
the β value 2~4 [148,150]. Therefore, the study tested different values to find the best
β value of 2 for the model to reduce the influence of model overfitting.

Five prediction indicators are integrated into the MaxEnt model as input parameters,
and data were randomly selected from the dataset during simulation, with 75% of the
dataset as the training data and 25% as the test data. To reduce the randomness of the
simulation results, the model is repeated 50 times with a maximum convergence threshold
of 0.00001. A maximum background points value of 10,000 is selected, and a logical value
format output is chosen for a more favorable interpretation of the results.

The final prediction result of the MaxEnt model is evaluated using the average value of
50 iterations of the simulation, with the contribution rate of each mineral indicator shown
in Table 4.

Table 4. Contribution rate of prediction indicators.

Prediction Indicator Rate of Contribution (%)

Au 77.6
30m buffer zone 13

Au-Ag-Cu-Pb-Zn (B2) 7.7
Hg-Sb (F4) 0.9

As-Sb-Hg(B1)/W-Bi-Co-Mo(B3) 0.8

The AUC value of the test dataset is 0.844 and the AUC value of the training dataset
is 0.848, so the MaxEnt model has high accuracy in mineral resources prediction at depth
(Figure 18).

The output logical probability of the MaxEnt model is in the range of 0.000804~0.927941,
which is mapped to 0 and 1, and then the 3D MPM is formed (Figure 19).

Although the mineral prospectivity map shows a good relationship between high
probabilities and known gold orebodies (Figure 19), it is difficult to determine a certain
logistic probabilities value as the prediction threshold value.

We take the ratio of prediction volume to orebodies occupied volume as a parameter.
Observably, it must be that reverse variation of this parameter follows the greater logistic
probabilities (Figure 20). The high potential area (logical probability > 0.525) is defined by
the logistic probability of 0.525, which covers 80% of the known orebodies; the medium
potential area (0.3 < logical probability < 0.525) is defined by the logistic probability of
0.3, which is another inflection point and covers all the known orebodies (Figure 20). The
spatial distribution of mineralization potential areas by the MaxEnt model are shown in
Figure 21a, based on which two mineral exploration targets are circled (Figure 21b).
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4.5.3. Three-Dimensional MPM and Uncertainty Evaluation of GMM

When training and testing the model, the labeled data (which is used only in the
evaluation) is divided into 75% for the training dataset and 25% for the test dataset, and
the GMM is used to learn the information of the training dataset, and then the ROC curve
is used for performance evaluation of the training dataset and test dataset, respectively.
The AUC value of the test dataset is 0.75 and the AUC value of the training dataset is
0.75 (Figure 22).
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Figure 22. ROC curve of GMM.

From the point of the AUC value, 0.75 is not a high value, which may indicate that
unsupervised training methods have a shortage in prediction with big data.

However, from the mineral prospectivity map point of view, the prediction area has
covered orebodies well, and it still has a certain indication function in the mineralization
prediction. Finally, two mineral exploration targets are delineated at depth (Figure 23).
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5. Discussion

This study employed the geostatistical interpolation method to build a 3D geochemical
model and geochemical anomaly model. In addition to deterministic modeling of 3D
geology and geochemistry [151,152], geostatistical techniques also include uncertainty
modeling of spatial distribution of subsurface heterogeneous structures and dynamic
processes of fluid migration [153]. In view of the 3D heterogeneous structure, the multi-
point geostatistical method can be used to overcome the shortage of traditional geostatistical
simulations in delineating the geometric continuity of geological structures [154–159].
Meanwhile, traditional geostatistical simulation has the limitations of large computation,
complicated parameterization and difficult to characterize multi-scale data. The application
of machine learning and deep learning methods to reconstruct geological and geochemical
structures can improve the simulation efficiency and can accurately express complex
heterogeneous spatial structures [160,161], which deserves further research work.

The machine learning methods of the MaxEnt model and GMM are carried out for 3D
MPM in the Zaozigou gold deposit in this study. Compared with the GMM, the MaxEnt
model has a higher precision in detection of ore-induced anomalies, which demonstrates
a higher reliability of 3D MPM (Figures 18 and 22). The prediction results of the two
methods express a high correlation with the known orebodies, based on which two mineral
exploration targets are circled (Figures 21 and 23).

Target I of the MaxEnt model is located at an elevation of 1600~2000 m, belonging to
the NE-orientation orebody group, which should be the extension of the Au1 orebody. The
Au and Sb concentration in this position (Figure 9) and the ratio of front halo to tail halo
has been increasing (Figure 16). Additionally, it appears that the high logical probability
calculated by the MaxEnt model and GMM at this position indicates the Au1 orebody may
extend deeper or a concealed orebody exists therein. Meanwhile, the Target I of GMM is
located at the elevation of about 1300 m, reflecting the weak anomaly in the deep drill.

Target II of the two methods is similarly located at the NW-orientation orebody group
at the elevation of about 2500 m, where the fractures distribute complexly and the anomalies
of tail halo elements and front halo elements overlapped (Figure 9).

6. Conclusions

In this paper, the three-dimensional primary halo anomaly data volume model is built
based on the multifractal C-V model, which fully considers the nonlinear characteristics
of the primary geochemical data. The C-V model is a three-dimensional extension of the
two-dimensional multifractal method, according to which the geochemical concentrations
are clearly illustrated at depth. The 3D geochemical anomaly data volume model provides
an important element distribution indicator to the 3D MPM.

The data-driven CoDA method was performed in this paper by using clr transfor-
mation and factor analysis, among which factor F4 is selected as a prediction indicator.
The knowledge-driven CoDA method used the SBP approach to extract the element as-
sociations of front halo, near-ore halo and tail halo, and the association of near-ore halo
and the ratio of front halo to tail halo are selected as the other two prediction indicators.
These selected geochemical association indicators are reliable for their good reflection in
metallogenic regularity.

From the results of this paper, the MaxEnt model and the GMM are efficient machine
learning methods in 3D MPM. By comparing the spatial distribution of the orebodies and
the indication of the metallogenic regularity, the delineated mineral exploration targets can
be considered as the mineral potential areas for further investigation. However, it must be
mentioned that machine learning algorithms have fast and accurate calculation in the case
of small data but lack generalization ability compared with deep learning algorithms in
big data. As the amount of data gradually increases, the prediction ability of the MaxEnt
model and the GMM usually reach the bottleneck, while deep learning can use more
parameters to continuously optimize and improve the detection ability of the models. Deep
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learning-based 3D Mineral Prospectivity Mapping of the Zaozigou gold deposit should be
paid more attention in the further research.

Author Contributions: Ideas, Y.K., G.C. and B.L.; Methodology, Y.K., G.C., C.L. and Z.Y.; software,
M.X., S.Z. and H.Z.; writing—original draft preparation, Y.K., G.C., Y.W. and Y.G.; writing—review
and editing, G.C. and B.L.; visualization, Y.K., M.X., S.Z., H.Z., L.W. and R.T.; supervision, B.L.;
funding acquisition, B.L. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the National Key Research and Development Program
of China (Grants 2017YFC0601505); the National Natural Science Foundation of China (Grants
41602334; 42072322); the Key Laboratory of Geochemical Exploration, Ministry of Natural Resources
(Grant AS2019P02-01); Sichuan Science and Technology Program (Grant 2022NSFSC0510); and the
Opening Fund of the Geomathematics Key Laboratory of Sichuan Province (Grant scsxdz2020yb06,
scsxdz2021zd04).

Data Availability Statement: Restrictions apply to the availability of these data. Data was obtained
from the Development Research Center of China Geological Survey and No. 3 Geological and Mineral
Exploration team, Gansu Provincial Bureau of Geology and Mineral Exploration and Development
and are available from Bingli Liu with the permission of the Development Research Center of China
Geological Survey and No. 3 Geological and Mineral Exploration team, Gansu Provincial Bureau of
Geology and Mineral Exploration and Development.

Acknowledgments: The authors thank the anonymous reviewers and the editors for their hard work
on this paper. We are grateful to the Development Research Center of China Geological Survey and
No. 3 Geological and Mineral Exploration team, Gansu Provincial Bureau of Geology and Mineral
Exploration and Development for their data support.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Wang, S.C.; Yang, Y.H.; Yan, G.S.; Li, J.C. Study of large and Giant Gold Deposits: Quantitative Prognosis Method in China. Geol.

Rev. 2000, 46, 17–24, (In Chinese with English Abstract).
2. Zhao, P.D. “Three-Component” Quantitative Resource Prediction and Assessments: Theory and Practice of Digital Mineral

Prospecting. Earth Sci. 2002, 27, 482–489, (In Chinese with English Abstract).
3. Zhao, P.D. Quantitative mineral prediction and deep mineral exploration. Earth Sci. Front. 2007, 14, 1–10, (In Chinese with

English Abstract).
4. Xiao, K.Y.; Zhao, P.D. A Preliminary Discussion on Basic Problems and Researching Programming of the Large Scale Metallogenetic

Prognosis. Miner. Explor. 1994, 3, 49–56, (In Chinese with English Abstract).
5. Xiao, K.Y.; Zhang, X.H.; Chen, Z.H.; Song, G.Y.; Ge, Y.; Liu, D.L.; Wang, S.L.; Ning, S.N.; Cao, Y. Comparison of Method of Weights

of Evidence and Information. Comput. Tech. Geophys. Geochem. Explor. 1999, 21, 223–226, (In Chinese with English Abstract).
6. Xiao, K.Y.; Zhu, Y.S.; Song, G.Y. Quantitative Evaluation of Mineral Resources GIS. Geol. China. 2000, 278, 29–32. (In Chinese)
7. Xiao, K.Y.; Chen, X.G.; Li, N.; Zou, W.; Sun, L. 3D visualization technology for geological and mineral exploration evaluation and

software development for prospectors. Miner. Depos. 2010, 29, 758–760. (In Chinese)
8. Xiao, K.Y.; Li, N.; Sun, L.; Zou, W.; Li, Y. Large scale 3D mineral prediction methods and channels based on 3D information

technology. J. Geol. 2012, 36, 229–236, (In Chinese with English Abstract).
9. Xiao, K.Y.; Li, N.; Sun, L.; Zou, W.; Li, Y. 3D Digital Mineral Deposit Model Establishment Method and Its Application. Miner.

Deposits 2012, 31, 929–930. (In Chinese)
10. Xiao, K.Y.; Sun, L.; Li, N.; Wang, K.; Fan, J.F.; Ding, J.H. Mineral resources assessment under the thought of big data. Geol. Bull.

China 2015, 34, 1266–1272, (In Chinese with English Abstract).
11. Chen, J.P.; Chen, Y.; Zeng, M. 3D positioning and quantitative pre-diction of the Koktokay No. 3 pegmatite dike, Xinjiang, China,

based on the digital mineral deposit model. Geol. Bull. China 2008, 27, 552–559, (In Chinese with English Abstract).
12. Chen, J.P.; Lv, P.; Wu, W.; Zhao, J.; Hu, Q. A 3D method for predicting blind orebodies, based on a 3D visualization model and its

application. Earth Sci. Front. 2007, 14, 56–65, (In Chinese with English Abstract). [CrossRef]
13. Chen, J.P.; Wang, C.N.; Shang, B.C.; Shi, R. Three-Dimensional Metallogenic Prediction in Yongmei Region Based on Digital Ore

Deposit Model. Sci. Technol. Manag. Land Resour. 2012, 29, 14–20, (In Chinese with English Abstract).
14. Chen, J.P.; Yu, M.; Yu, P.P.; Shang, B.C.; Zheng, X.; Wang, L.M. Method and Practice of 3D Geological Modeling at Key Metallogenic

Belt with Large and Medium Scale. Acta Geol. Sin. 2014, 88, 1187–1195, (In Chinese with English Abstract).
15. Lv, P. Cube Predicting Model Based 3D Predicting Methods of Blind Orebody and Software Development. Ph.D. Thesis, China

University of Geosciences, Beijing, China, 2007. (In Chinese with English Abstract).

161



Minerals 2022, 12, 1361

16. Zhang, S.H. Deep Learning foe Mineral Prospectivity Mapping of Lala-type Copper Deposit in the Huili Region, Sichuan. Ph.D.
Thesis, China University of Geosciences, Beijing, China, 2020. (In Chinese with English Abstract).

17. Zhang, S.H.; Xiao, K.Y. Random Forest—Based Mineralization Prediction of the Lala—Type Cu Deposit in the Huili Area, Sichuan
Province. Geol. Explor. 2020, 56, 239–252, (In Chinese with English Abstract).

18. Mao, X.C.; Tang, Y.H.; Deng, H. Three-dimensional morphological analysis method for geologic bodies and its application. J.
Cent. South Univ. Sci. Technol. 2012, 43, 588–595, (In Chinese with English Abstract).

19. Mao, X.C.; Tang, Y.H.; Lai, J.Q.; Zou, Y.H.; Chen, J.; Peng, S.L.; Shao, Y.J. Three Dimensional Structure of Metallogenic Geologic
Bodies in the Fenghuangshan Ore Field and Ore-controlling Geological Factors. J. Geol. 2011, 85, 1507–1518, (In Chinese with
English Abstract).

20. Mao, X.C.; Wang, Q.; Chen, J.; Deng, H.; Liu, Z.K.; Wang, J.L.; Chen, J.P.; Xiao, K.Y. Three-dimensional Modeling of Deep
Metallogenic Structure in Northwestern Jiaodong Peninsula and Its Gold Prospecting Significance. Acta Geol. Sin. 2020, 41,
166–178, (In Chinese with English Abstract).

21. Mao, X.C.; Zhang, M.M.; Deng, H.; Zou, Y.H.; Chen, J. 3D Visualization Prediction Method for Concealed Ore Bodies in the Deep.
Mining Area. J. Geol. 2016, 40, 363–371, (In Chinese with English Abstract).

22. Mao, X.C.; Zou, Y.H.; Chen, J.; Lai, J.Q.; Peng, S.L.; Shao, Y.J.; Shu, Z.M.; Lv, J.W.; Lv, C.Y. Three-dimensional visual prediction of
concealed ore bodies in the deep and marginal parts of crisis mines: A case study of the Fenghuangshan ore field in Tongling,
Anhui, China. Geol. Bull. China 2010, 29, 401–413, (In Chinese with English Abstract).

23. Xiang, J.; Chen, J.P.; Xiao, K.Y.; Li, S.; Zhang, Z.P.; Zhang, Y. 3D metallogenic prediction based on machine learning: A case study
of the Lala copper deposit in Sichuan Province. Geol. Bull. China 2019, 38, 2010–2021, (In Chinese with English Abstract).

24. Yuan, F.; Li, X.H.; Zhang, M.M.; Jia, C.; Hu, X.Y. Research Progress of 3D Prospectivity Modeling. Gansu Geol. 2018, 27, 32–36, (In
Chinese with English Abstract).

25. Yuan, F.; Zhang, M.M.; Li, X.H.; Ge, C.; Lu, S.M.; Li, J.S.; Zhou, Y.Z.; Lan, X.Y. Prospectivity modeling: From two dimension to
three-dimension. Acta Petrol. Sin. 2019, 35, 3863–3874, (In Chinese with English Abstract).

26. Cheng, Q.M. What are Mathematical Geosciences and its frontiers? Earth Sci. Front. 2021, 28, 6–25, (In Chinese with English Abstract).
27. Cheng, Q.; Agterberg, F.P.; Ballantyne, S.B. The separation of geochemical anomalies from background by fractal methods.

J. Geochem. Explor. 1994, 51, 109–130. [CrossRef]
28. Cheng, Q.M. Multifractality and spatial statistics. Comput. Geosci. 1999, 25, 949–961. [CrossRef]
29. Chen, Z.J.; Cheng, Q.M.; Cheng, J.G.; Xie, S.Y. A novel iterative approach for mapping local singularities from geochemical data.

Nonlinear Process. Geophys. 2007, 14, 317–324. [CrossRef]
30. Cheng, Q.M. Modeling local scaling properties for multiscale mapping. Vadose Zone J. 2008, 7, 525–532. [CrossRef]
31. Cheng, Q.M.; Agterberg, F. Multifractals and singularity analysis in mineral exploration and environmental assessment. J. Geochem.

Explor. 2018, 189, 1. [CrossRef]
32. Cheng, Q.M. Multifractal and Geostatistic Methods for Characterizing Local Structure and Singularity Properties of Exploration

Geochemical Anomalies. Earth Sci. 2001, 26, 161–166, (In Chinese with English Abstract).
33. Carranza, E.J.M. Geochemical Anomaly and Mineral Prospectivity Mapping in GIS. In Handbook of Exploration and Environmental

Geochemistry; Elsevier: Amsterdam, The Netherlands, 2009; p. 11.
34. Afzal, P.; Alghalandis, Y.F.; Khakzad, A.; Moarefvand, P.; Omran, N.R. Delineation of mineralization zones in porphyry Cu

deposits by fractal concentration–volume modeling. J. Geochem. Explor. 2011, 108, 220–232. [CrossRef]
35. Zuo, R.G.; Wang, J.; Chen, G.X.; Yang, M.G. Identification of weak anomalies: A multifractal perspective. J. Geochem. Explor. 2014,

148, 12–24. [CrossRef]
36. Chen, Y.L. Mineral potential mapping with a restricted Boltzmann machine. Ore Geol. Rev. 2015, 71, 749–760. [CrossRef]
37. Chen, Y.L.; Wu, W. Mapping mineral prospectivity using an extreme learning machine regression. Ore Geol. Rev. 2017, 80, 200–213.

[CrossRef]
38. Cheng, Q.M.; Zhang, S.Y.; Zuo, R.G.; Chen, Z.J.; Xie, S.Y.; Xia, Q.L.; Xu, D.Y.; Yao, L.Q. Progress of multifractal filtering

techniques and their applications in geochemical information extraction. Earth Sci. Front. 2009, 16, 185–198, (In Chinese with
English Abstract).

39. Xiang, Z.L. Study on 3D Geological Modeling method and Prospecting Prediction of Deep Comprehensive Information in Mining
area. Ph.D. Thesis, Henan Polytechnic University, JiaoZuo, China, 2019. (In Chinese with English Abstract).

40. Chen, Y.Q.; Zhang, S.Y.; Xia, Q.L.; Li, W.C.; Lu, Y.X.; Huang, J.N. Application of Multi Fractal Filtering to Extraction of
Geochemical Anomalies from Multi Geochemical Backgrounds: A Case Study of the Southern Section of “Sanjiang Ore-Forming
Zone”, Southwestern China. Earth Sci. 2006, 31, 861–866, (In Chinese with English Abstract).

41. Sun, Z.J. Multifractal Method of Geochem Ical Threshold in Mineral Exploration. Comput. Tech. Geophys. Geochem. Explor. 2007,
29, 54–57+94, (In Chinese with English Abstract).

42. Li, X.H. 3D Prospectivity Modeling for Concealed Orebody and System Development. Ph.D. Thesis, Hefei University Of
Technology, Hefei, China, 2015. (In Chinese with English Abstract).

43. Chen, G.X. Identifying Weak But Complex Geophysical and Geochemical Anomalies Caused by Buried Ore Bodies Using Fractal
and Wavelet Methods. Ph.D. Thesis, China University of Geosciences, Wuhan, China, 2016. (In Chinese with English Abstract).

44. Liu, S.F. Fractal Analysis on Geochemical Distribution and Anomaly Separation in the Guangxi Zhuang Autonomous Region.
Ph.D. Thesis, China University of Geosciences, Beijing, China, 2017. (In Chinese with English Abstract).

162



Minerals 2022, 12, 1361

45. Carranza, E.J.M.; Zuo, R. Introduction to the thematic issue: Analysis of exploration geochemical data for mapping of anomalies.
Geochem. Explor. Env. Anal. 2017, 17, 183–185. [CrossRef]

46. Zuo, R.G.; Cheng, Q.M.; Xia, Q.L. Application of fractal models to characterization of vertical distribution of geochemical element
concentration. J. Geochem. Explor. 2009, 102, 37–43. [CrossRef]

47. Delavar, S.T.; Afzal, P.; Borg, G.; Rasa, I.; Lotfi, M.; Omran, N.R. Delineation of mineralization zones using concentration-volume
fractal method in Pb-Zn carbonate hosted deposits. J. Geochem. Explor. 2012, 118, 98–110. [CrossRef]

48. Pearson, K. On a Form of Spurious Correlation Which May Arise When Indices Are Used in the Measurement of Organs. Proc. R.
Soc. Lond. 1897, 60, 489–502.

49. Chayes, F. On correlation between variables of constant sum. J. Geophys. Res. 1960, 65, 4185–4193. [CrossRef]
50. Egozcue, J.J.; Pawlowsky-Glahn, V. Groups of Parts and Their Balances in Compositional Data Analysis. Math. Geol. 2005, 37,

795–828. [CrossRef]
51. Pawlowsky-Glahn, V.; Egozcue, J.J. Exploring Compositional Data with the CoDa-Dendrogram. Austrian J. Stat. 2011, 40, 103–113.
52. Zhou, D. Geological Compositional Data Analysis: Difficulties and Solutions. Earth Sci. 1998, 23, 41–46, (In Chinese with English

Abstract).
53. Carranza, E.J.M. Analysis and mapping of geochemical anomalies using logratio-transformed stream sediment data with censored

values. J. Geochem. Explor. 2011, 110, 167–185. [CrossRef]
54. Grunsky, E.C.; Mueller, U.A.; Corrigan, D. A study of the lake sediment geochemistry of the Melville Peninsula using multivariate

methods: Applications for predictive geological mapping. J. Geochem. Explor. 2014, 141, 15–41. [CrossRef]
55. Parent, L.E.; Parent, S.T.; Ziadi, N. Biogeochemistry of soil inorganic and organic phosphorus: A compositional analysis with

balances. J. Geochem. Explor. 2014, 141, 52–60. [CrossRef]
56. Wang, W.L.; Zhao, J.; Cheng, Q.M. Mapping of Fe mineralization-associated geochemical signatures using logratio transformed

stream sediment geochemical data in eastern Tianshan, China. J. Geochem. Explor. 2014, 141, 6–14. [CrossRef]
57. Carranza, E.J.M. Geochemical Mineral Exploration: Should We Use Enrichment Factors or Log-Ratios. Nat. Resour. Res. 2016, 26,

411–428. [CrossRef]
58. Mckinley, J.M.; Grunsky, E.; Mueller, U. Environmental Monitoring and Peat Assessment Using Multivariate Analysis of

Regional-Scale Geochemical Data. Math. Geosci. 2017, 50, 235–246. [CrossRef]
59. Reimann, C.; Filzmoser, P.; Hron, K.; Kynlová, P.; Garrett, R.G. A new method for correlation analysis of compositional

(environmental) data—A worked example. Sci. Total Environ. 2017, 607, 965–971. [CrossRef] [PubMed]
60. Thiombane, M.; Martín-Fernández, J.; Albanese, S.; Lima, A.; Doherty, A.; Vivo, B.D. Exploratory analysis of multi-element

geochemical patterns in soil from the Sarno River Basin (Campania region, southern Italy) through compositional data analysis
(CODA). J. Geochem. Explor. 2018, 195, 110–120. [CrossRef]

61. Aitchison, J. The statistical analysis of compositional data. J. R. Stat. Soc. B 1982, 44, 139–177. [CrossRef]
62. Buccianti, A.; Lima, A.; Albanese, S.; Cannatelli, C.; Esposito, R.; Vivo, B.D. Exploring topsoil geochemistry from the CoDA

(Compositional Data Analysis) perspective: The multi-element data archive of the Campania Region (Southern Italy). J. Geochem.
Explor. 2015, 159, 302–316. [CrossRef]

63. Mckinley, J.M.; Hron, K.; Grunsky, E.C.; Reimann, C.; Tolosana-Delgado, R. The single component geochemical map: Fact or
fiction. J. Geochem. Explor. 2016, 162, 16–28. [CrossRef]

64. Buccianti, A.; Lima, A.; Albanese, S.; DeVivo, B. Measuring the change under compositional data analysis (CoDA): Insight on the
dynamics of geochemical systems. J. Geochem. Explor. 2018, 189, 100–108. [CrossRef]

65. Liu, Y.; Cheng, Q.M.; Zhou, K.F. New Insights into Element Distribution Patterns in Geochemistry: A Perspective from Fractal
Density. Nat. Resour. Res. 2018, 28, 5–29. [CrossRef]

66. Zheng, W.B.; Liu, B.L.; McKinley, J.M.; Cooper, M.R.; Wang, L. Geology and geochemistry-based metallogenic exploration model
for the eastern Tethys Himalayan metallogenic belt, Tibet. J. Geochem. Explor. 2021, 224, 106743. [CrossRef]

67. Liu, Y.; Carranza, E.J.M.; Xia, Q. Developments in Quantitative Assessment and Modeling of Mineral Resource Potential: An
Overview. Nat. Resour. Res. 2022, 31, 1825–1840. [CrossRef]

68. Agterberg, F. Principles of Probabilistic Regional Mineral Resource Estimation. Earth Sci. 2011, 36, 189–200.
69. Zhou, Y.Z.; Chen, S.; Zhang, Q.; Xiao, F.; Wang, S.G.; Liu, Y.P.; Jiao, S.T. Advances and Prospects of Big Data and Mathematical

Geoscience. Acta Petrol. Sin. 2018, 34, 255–263, (In Chinese with English Abstract).
70. Zhou, Y.Z.; Wang, J.; Zuo, R.G.; Xiao, F.; Shen, W.J.; Wang, S.G. Machine learning, deep learning and Python language in field of

geology. Acta Petrol. Sin. 2018, 34, 3173–3178, (In Chinese with English Abstract).
71. Zhou, Y.Z.; Zuo, R.G.; Liu, G.; Yuan, F.; Mao, X.C.; Guo, Y.J.; Liao, J.; Liu, Y.P. The Great-leap-forward Development of Mathemati-

cal Geoscience During 2010–2019: Big Data and Artificial Intelligence Algorithm Are Changing Mathematical Geoscience. Bull.
Miner. Petrol. Geochem. 2021, 40, 556–573+777, (In Chinese with English Abstract).

72. Zuo, R.G. Deep Learning-Based Mining and Integration of Deep-Level Mineralization Information. Bull. Miner. Petrol. Geochem.
2019, 38, 53–60, (In Chinese with English Abstract).

73. Zuo, R.G.; Peng, Y.; Li, T.; Xiong, Y.H. Challenges of Geological Prospecting Big Data Mining and Integration Using Deep Learning
Algorithms. Earth Sci. 2021, 46, 350–358, (In Chinese with English Abstract).

74. Zuo, R.G.; Carranza, E.J.M. Support vector machine: A tool for mapping mineral prospectivity. Comput. Geosci. 2011, 37,
1967–1975. [CrossRef]

163



Minerals 2022, 12, 1361

75. Shabankareh, M.; Hezarkhani, A. Application of support vector machines for copper potential mapping in Kerman region, Iran. J.
Afr. Earth Sci. 2016, 128, 116–126. [CrossRef]

76. Zhang, S.; Xiao, K.Y.; Carranza, E.J.M.; Yang, F. Maximum Entropy and Random Forest Modeling of Mineral Potential: Analysis
of Gold Prospectivity in the Hezuo–Meiwu District, West Qinling Orogen, China. Nat. Resour. Res. 2018, 28, 645–664. [CrossRef]

77. Sun, T.; Chen, F.; Zhong, L.X.; Liu, W.M.; Wang, Y. GIS-based mineral prospectivity mapping using machine learning methods: A
case study from Tongling ore district, eastern China. Ore Geol. Rev. 2019, 109, 26–49. [CrossRef]

78. Wang, J.; Zuo, R.G.; Xiong, Y.H. Mapping Mineral Prospectivity via Semi-supervised Random Forest. Nat. Resour. Res. 2019, 29,
189–202. [CrossRef]

79. Sun, T.; Li, H.; Wu, K.X.; Chen, F.; Hu, Z.J. Data-Driven Predictive Modelling of Mineral Prospectivity Using Machine Learning
and Deep Learning Methods: A Case Study from Southern Jiangxi Province, China. Minerals 2020, 10, 102. [CrossRef]

80. Wang, Z.Y.; Zuo, R.G.; Dong, Y.N. Mapping Himalayan leucogranites using a hybrid method of metric learning and support
vector machine. Comput. Geosci. 2020, 138, 104455. [CrossRef]

81. Chen, J.; Mao, X.C.; Liu, Z.K.; Deng, H. Three-dimensional Metallogenic Prediction Based on Random Forest Classification
Algorithm for the Dayingezhuang Gold Deposit. Geotecton. Metallog. 2020, 44, 231–241, (In Chinese with English Abstract).

82. Li, C.B.; Xiao, K.Y.; Li, N.; Song, X.L.; Zhang, S.; Wang, K.; Chu, W.K.; Cao, R. A Comparative Study of Support Vector Machine,
Random Forest and Artificial Neural Network Machine Learning Algorithms in Geochemical Anomaly Information Extraction.
Acta Geosci. Sin. 2020, 41, 309–319, (In Chinese with English Abstract).

83. Wang, Y.; Zhou, Y.Z.; Xiao, F.; Wang, J.; Wang, K.Q.; Yu, X.T. Numerical Metallogenic Modelling and Support Vector Machine
Methods Applied to Predict Deep Mineralization: A Case Study from the Fankou Pb-Zn Ore Deposit in Northern Guangdong.
Geotecton. Metallog. 2020, 44, 222–230, (In Chinese with English Abstract).

84. Li, S.; Chen, J.P.; Liu, C.; Wang, Y. Mineral Prospectivity Prediction via Convolutional Neural Networks Based on Geological Big
Data. J. Earth Sci. 2021, 32, 327–347. [CrossRef]

85. Zhang, S.; Carranza, E.J.M.; Wei, H.T.; Xiao, K.Y.; Yang, F.; Xiang, J.; Zhang, S.H.; Xu, Y. Data-driven Mineral Prospectivity
Mapping by Joint Application of Unsupervised Convolutional Auto-encoder Network and Supervised Convolutional Neural
Network. Nat. Resour. Res. 2021, 30, 1011–1031. [CrossRef]

86. Zhou, Y.Z.; Li, P.X.; Wang, S.G.; Xiao, F.; Li, J.Z.; Gao, L. Research Progress on Big Data and Intelligent Modelling of Mineral
Deposits. Bull. Miner. Petrol. Geochem. 2017, 36, 327–331+344, (In Chinese with English Abstract).

87. Singer, D.A.; Kouda, R. Application of a feed forward neural network in the search for Kuroko deposits in the Hokuroku District.
Math. Geol. 1996, 28, 1017–1023. [CrossRef]

88. Rodriguez-Galiano, V.; Sanchez-Castillo, M.; Chica-Olmo, M.; Chica-Rivas, M. Machine learning predictive models for mineral
prospectivity: An evaluation of neural networks, random forest, regression trees and support vector machines. Ore Geol. Rev.
2015, 71, 804–818. [CrossRef]

89. Zuo, R.G.; Xiong, Y.H. Geodata science and geochemical mapping. J. Geochem. Explor. 2019, 209, 106431. [CrossRef]
90. Xiong, Y.H.; Zuo, R.G. Robust Feature Extraction for Geochemical Anomaly Recognition Using a Stacked Convolutional Denoising

Autoencoder. Math. Geosci. 2021, 54, 623–644. [CrossRef]
91. Gao, Y. Mineral Prospecting Information Mining and Mapping Mineral Prospectivity for Copper Polymetallic Mineralization

in Southwest Fujian Province, China. Ph.D. Thesis, China University of Geosciences, Wuhan, China, 2019. (In Chinese with
English Abstract).

92. Zuo, R.G. Geodata Science-Based Mineral Prospectivity Mapping: A Review. Nat. Resour. Res. 2020, 29, 3415–3424. [CrossRef]
93. Li, T.; Zuo, R.G.; Xiong, Y.H.; Peng, Y. Random-Drop Data Augmentation of Deep Convolutional Neural Network for Mineral

Prospectivity Mapping. Nat. Resour. Res. 2020, 30, 27–38. [CrossRef]
94. Cai, H.H.; Xu, Y.Y.; Li, Z.X.; Cao, H.H.; Feng, Y.X.; Chen, S.Q.; Li, Y.S. The division of metallogenic prospective areas based

onconvolutional neural network model: A case study of the Daqiao gold polymetallic deposit. Geol. Bull. China 2019, 38,
1999–2009, (In Chinese with English Abstract).

95. Wang, Z.Y. Mapping of Himalaya Leucogranites Based on Metric Learning. Ph.D. Thesis, China University of Geosciences,
Wuhan, China, 2020. (In Chinese with English Abstract).

96. Deng, H.; Wei, Y.F.; Chen, J.; Liu, Z.K.; Yu, S.Y.; Mao, X.C. Three-dimensional prospectivity mapping and quantitative analysis of
structural ore-controlling factors in Jiaojia Auore-belt with attention convolutional neural networks. J. Cent. South Univ. 2021, 52,
3003–3014, (In Chinese with English Abstract).

97. Deng, H.; Zheng, Y.; Chen, J.; Wei, Y.F.; Mao, X.C. Deep Learning-based 3D Prediction Model for the Dayingezhuang Gold
Deposit, Shandong Province. Acta Geosci. Sin. 2020, 41, 157–165, (In Chinese with English Abstract).

98. Zhang, Z.J.; Cheng, Q.M.; Yang, J.; Wu, G.P.; Ge, Y.Z. Machine Learning for Mineral Prospectivity: A Case Study of Iron-
polymetallic Mineral Prospectivity in Southwestern Fujian. Earth Sci. Front. 2021, 28, 221–235, (In Chinese with English Abstract).

99. Feng, Y.M.; Cao, X.Z.; Zhang, E.P.; Hu, Y.X.; Pan, X.P.; Yang, J.L.; Jia, Q.Z.; Li, W.M. Tectonic Evolution Framework and Nature of
The West Qinling Orogenic Belt. Northwest. Geol. 2003, 36, 1–10, (In Chinese with English Abstract).

100. Wei, L.X. Tectonic Evolution and Mineralization of Zaozigou Gold Deposit, Gansu Province. Master’s Thesis, China University of
Geosciences, Beijing, China, 2015. (In Chinese with English Abstract).

164



Minerals 2022, 12, 1361

101. Zeng, J.J.; Li, K.N.; Yan, K.; Wei, L.L.; Huo, X.D.; Zhang, J.P. Tectonic Setting and Provenance characteristics of the Lower Triassic
Jiangligou Formation in West Qinling—Constraints from Geochemistry of Clastic Rock and zircon U-Pb Geochronology of
Detrital Zircon. Geol. Rev. 2021, 67, 1–15, (In Chinese with English Abstract).

102. Li, Z.B.; Liu, Z.Y.; Li, R. Geochemical Characteristics and metallogenic Potential Analysis of Daheba Formation in Ta-Ga Area of
Gansu Province. Contrib. Geol. Miner. Resour. Res. 2021, 36, 187–194, (In Chinese with English Abstract).

103. Chen, Y.; Wang, K.J. Geological Features and Ore Prospecting Indicators of Sishangou Silver Deposit. Gansu. Metal. 2015, 37,
108–111, (In Chinese with English Abstract).

104. Di, P.F. Geochemistry and Ore-Forming Mechanism on Zaozigou gold deposit in Xiahe-Hezuo, West Qinling, China. Ph.D. Thesis,
Lanzhou University, Lanzhou, China, 2018. (In Chinese with English Abstract).

105. Li, K.N.; Li, H.R.; Liu, B.C.; Yan, K.; Jia, R.Y.; Wei, L.L. Geochemical characteristics of TTG Dick rock and the Relation with Gold
Mineralization in West Qinling Mountain. Sci. Technol. Eng. 2019, 19, 52–65, (In Chinese with English Abstract).

106. Kang, S.S. Geological Characteristics and Prospecting Criteria of Nanmougou Copper Deposit, Gansu Province. Gansu. Metal.
2018, 40, 79–85, (In Chinese with English Abstract).

107. Kang, S.S.; Dou, X.G.; Zhi, C.; Wu, X.L. Geochemical Characteristics and Genetic Analysis of the Namugou Copper Deposit in
Sunan County, Gansu. Gansu. Metal. 2019, 41, 65–72, (In Chinese with English Abstract).

108. Liu, Y. Relationship between Intermediate-acid Dike Rock and Gold Mineralization of the Zaozigou Deposit, Gansu Province.
Master’s Thesis, Chang’an University, Xi’an, China, 2013. (In Chinese with English Abstract).

109. Hu, J.Q. Mineral Control Factors, Metallogenic Law and Prospecting Direction of Integrated Gold Mine Exploration Area in
Shilijba-Yangshan Area of Gansu Province. Gansu. Sci. Technol. 2018, 34, 27–33. (In Chinese)

110. Zhao, J.Z.; Chen, G.Z.; Liang, Z.L.; Zhao, J.C. Ore-body Geochemical Features of Zaozigou Gold Deposit. Gansu. Geol. 2013, 22,
38–43, (In Chinese with English Abstract).

111. Lu, J. Study on Characteristics and Ore-host Regularity of Gold Mineral in the Western Qinling Region, Gansu Province. Master’s
Thesis, China University of Geosciences, Beijing, China, 2016. (In Chinese with English Abstract).

112. Zhang, Y.N.; Liang, Z.L.; Qiu, K.F.; Ma, S.H.; Wang, J.L. Overview on the Metallogenesis of Zaozigou gold deposit in the West
Qinling Orogen. Miner. Explor. 2020, 11, 28–39, (In Chinese with English Abstract).

113. Tang, L.; Lin, C.G.; Cheng, Z.Z.; Jia, R.Y.; Li, H.R.; Li, K.N. 3D Characteristics of Primary Halo and Deep Prospecting Prediction in
The Zaozigou Gold Deposit, Hezuo City, Gansu Province. Geol. Bull. China 2020, 39, 1173–1181, (In Chinese with English Abstract).

114. Chen, G.Z.; Wang, J.L.; Liang, Z.L.; Li, P.B.; Ma, H.S.; Zhang, Y.N. Analysis of Geological Structures in Zaozigou Gold Deposit of
Gansu Province. Gansu. Geol. 2013, 22, 50–57, (In Chinese with English Abstract).

115. Chen, G.Z.; Liang, M.L.; Wang, J.L.; Zhang, Y.N.; Li, P.B. Characteristics and Deep Prediction of Primary Superimposed Halos
in The Zaozigou Gold Deposit of Hezuo, Gansu Province. Geophys. Geochem. Explor. 2014, 38, 268–277, (In Chinese with
English Abstract).

116. Jin, D.G.; Liu, B.C.; Chen, Y.Y.; Liang, Z.L. Spatial Distribution of Gold Bodies in Zaozigou Mine of Gansu Province. Gansu. Geol.
2015, 24, 25–30+41, (In Chinese with English Abstract).

117. Zhu, F.; Wang, G.W. Study on Grade Model of Gansu Zaozigou Gold Mine Based on Geological Statistics. Acta Mineral. Sin. 2015,
35, 1065–1066. (In Chinese)

118. Chen, G.Z.; Li, L.N.; Zhang, Y.N.; Ma, H.S.; Liang, Z.L.; Wu, X.M. Characteristics of fluid inclusions and deposit formation in
Zaozigou gold mine. In Proceedings of the The 15th Annual Academic Conference of Chinese Society for Mineralogy, Petrology
and Geochemistry, Changchun, China, 24 June 2015.

119. Wu, X.M. Study on Geological Characteristics and Metallogenic Regularity of the Gelouang Gold Deposit. Master’s Thesis,
Lanzhou University, Lanzhou, China, 2018. (In Chinese with English Abstract).

120. Liu, H.T.; Jiang, Y.M.; Wu, T.J.; Chang, D.L. Application of singularity analysis to geochemical anomaly recognization in Chifeng
area. Contrib. Geol. Miner. Resour. Res. 2011, 26, 341–344, (In Chinese with English Abstract).

121. Wang, Y. The Application of Fractal Theory in Geophysical Research. Master’s Thesis, Chang’an University, Xi’an, China, 2013.
(In Chinese with English Abstract).

122. Filzmoser, P.; Hron, K.; Reimann, C. Univariate statistical analysis of environmental (compositional) data: Problems and
possibilities. Sci. Total Environ. 2009, 407, 6100–6108. [CrossRef]

123. Wang, L.; Liu, B.L.; McKinley, J.M.; Cooper, M.R.; Li, C.; Kong, Y.H.; Shan, M.X. Compositional data analysis of regional
geochemical data in the Lhasa area of Tibet, China. Appl. Geochem. 2021, 135, 105108. [CrossRef]

124. Zheng, W.B.; Liu, B.L.; Tang, J.X.; McKinley, J.M.; Cooper, M.R.; Tang, P.; Lin, B.; Li, C.; Wang, L.; Zhang, D. Exploration indicators
of the Jiama porphyry–skarn deposit, southern Tibet, China. J. Geochem. Explor. 2022, 236, 106982. [CrossRef]

125. Zuo, R.G. Identification of weak geochemical anomalies using robust neighborhood statistics coupled with GIS in covered areas.
J. Geochem. Explor. 2014, 136, 93–101. [CrossRef]

126. Liu, Y. The Study of Regional Geochemistry Data Analysis and Metallogenic Information Fusion Models. Ph.D. Thesis, China
University of Geosciences, Wuhan, China, 2015. (In Chinese with English Abstract).

127. Prado, E.; Filho, C.; Carranza, E.; Motta, J.G. Modeling of Cu-Au Prospectivity in the Carajás mineral province (Brazil) through
Machine Learning: Dealing with Imbalanced Training Data. Ore Geol. Rev. 2020, 124, 103611. [CrossRef]

128. Brown, W.M.; Gedeon, T.D.; Groves, D.I.; Barnes, R.G. Artificial neural networks: A new method for mineral prospectivity
mapping. Aust. J. Earth Sci. 2000, 47, 757–770. [CrossRef]

165



Minerals 2022, 12, 1361

129. Skabar, A. Mineral potential mapping using feed-forward neural networks. In Proceedings of the International Joint Conference
on Neural Networks IEEE, Portland, OR, USA, 20–24 July 2003.

130. Leite, E.P.; Filho, C. Probabilistic neural networks applied to mineral potential mapping for platinum group elements in the Serra
Leste region, Carajás Mineral Province, Brazil. Comput. Geosci. 2009, 35, 675–687. [CrossRef]

131. Leite, E.P.; de Souza, C.R. Artificial neural networks applied to mineral potential mapping for copper-gold mineralizations in the
Carajás Mineral Province, Brazil. Geophys. Prospect. 2009, 57, 1049–1065. [CrossRef]

132. Abedi, M.; Norouzi, G.H.; Bahroudi, A. Support vector machine for multi-classification of mineral prospectivity areas. Comput.
Geosci. 2012, 9, 272–283. [CrossRef]

133. Rodriguez-Galiano, V.F.; Chica-Olmo, M.; Chica-Rivas, M. Predictive modelling of gold potential with the integration of
multisource information based on random forest: A case study on the Rodalquilar area, Southern Spain. Int. J. Geogr. Inf. Sci.
2014, 28, 1336–1354. [CrossRef]

134. Gao, Y.; Zhang, Z.J.; Xiong, Y.H.; Zuo, R.G. Mapping mineral prospectivity for Cu polymetallic mineralization in southwest
Fujian Province, China. Ore Geol. Rev. 2016, 75, 16–28. [CrossRef]

135. Geranian, H.; Tabatabaei, S.H.; Asadi, H.H.; Carranza, E.J.M. Application of Discriminant Analysis and Support Vector Machine
in Mapping Gold Potential Areas for Further Drilling in the Sari-Gunay Gold Deposit, NW Iran. Nat. Resour. Res. 2016, 25,
145–159. [CrossRef]

136. Xie, S. Research on the prediction of potential suitable distribution of Biomphalaria straminea in Guangdong Province. Master’s
Thesis, South China Agricultural University, Guangzhou, China, 2017. (In Chinese with English Abstract).

137. Xu, C. Distribution of Vehicle Free Flow Speeds Based on Gaussian Mixture Model. J. Highw. Transp. Res. Dev. Chin. Ed. 2012, 19,
132–158, (In Chinese with English Abstract).

138. Matheron, G. Kriging or polynomial interpolation procedures? Trans. Can. Inst. Min. Metal. 1967, 70, 240–244.
139. Journel, A.G.; Huijbregts, C.J. Mining Geostatistics; Academic Press: London, UK, 1978.
140. Cressie, N. The origins of kriging. Math. Geosci. 1990, 22, 239–252. [CrossRef]
141. Wang, H.; Lineweaver, C.H. Chemical Complementarity between the Gas Phase of the Interstellar Medium and the Rocky

Material of Our Planetary System. In Proceedings of the 15th Australian Space Research Conference, Canberra, Australia, 29
September–1 October 2016; pp. 173–182.

142. Ye, T.Z. Theoretical Framework of Synthetic Geological Information Prediction Techniques and Methods for Mineral Deposit
Models. J. Jilin Univ. Earth Sci. Ed. 2013, 43, 1053–1072, (In Chinese with English Abstract).

143. Beus, A.A.; Grigorian, S.V. Geochemical Exploration Methods for Mineral Deposits; Applied Publishing Ltd.: Wilmette, IL, USA, 1977;
pp. 31–270.

144. Levinson, A.A. Introduction to Exploration Geochemistry; Applied Publishing Ltd.: Wilmette, IL, USA, 1974; p. 612.
145. Rabeaut, O.; Legault, M.; Cheilletz, A.; Jébrak, M.; Royer, J.J.; Cheng, L.Z. Gold Potential of a Hidden Archean Fault Zone: The

Case of the Cadillac–Larder Lake Fault. Explor. Min. Geol. 2010, 19, 99–116. [CrossRef]
146. Mejia-Herrera, P.; Royer, J.J.; Caumon, G.; Cheilletz, A. Curvature Attribute from Surface-Restoration as Predictor Variable in

Kupferschiefer Copper Potentials: An Example from the Fore-Sudetic Region. Nat. Resour. Res. 2015, 24, 275–290. [CrossRef]
147. Li, B.B.; Liu, B.L.; Guo, K.; Li, C.; Wang, B. Application of a Maximum Entropy Model for Mineral Prospectivity Maps. Minerals

2019, 9, 556. [CrossRef]
148. Kong, W.X.; Li, X.H.; Zou, H.F. Optimization of Maximum Entropy Model in Species Distribution Prediction. J. Appl. Ecol. 2019,

30, 2116–2128, (In Chinese with English Abstract).
149. Elith, J.; Phillips, S.J.; Hastie, T.; Dudik, M.; Chee, Y.E.; Yates, C.J. A statistical explanation of MaxEnt for ecologists. Divers. Distrib.

2013, 17, 43–57. [CrossRef]
150. Radosavljevic, A.; Anderson, R.P. Making better MAXENT models of species distributions: Complexity, overfitting and evaluation.

J. Biogeogr. 2013, 41, 629–643. [CrossRef]
151. Caumon, G.; Collon-Drouaillet, P.; De Veslud, C.L.C.; Viseur, S.; Sausse, J. Surface-based 3D modeling of geological structures.

Math. Geosci. 2009, 41, 927–945. [CrossRef]
152. Chen, Q.; Liu, G.; Li, X.; Zhang, Z.; Li, Y. A corner-point-grid-based voxelization method for the complex geological structure

model with folds. J. Vis. 2017, 20, 875–888. [CrossRef]
153. Yarus, J.M.; Chambers, R.L. Stochastic Modeling and Geostatistics: Principles, Methods, and Case Studies; American Association of

Petroleum Geologists: Tulsa, OK, USA, 1994; p. 379.
154. Chen, Q.; Liu, G.; Ma, X.; Li, X.; He, Z. 3D stochastic modeling framework for Quaternary sediments using multiple-point

statistics: A case study in Minjiang Estuary area, southeast China. Comput. Geosci. 2019, 136, 104404. [CrossRef]
155. Chen, Q.; Mariethoz, G.; Liu, G.; Comunian, A.; Ma, X. Locality-based 3-D multiple-point statistics reconstruction using 2-D

geological cross sections. Hydrol. Earth Syst. Sci. 2018, 22, 6547–6566. [CrossRef]
156. Gueting, N.; Caers, J.; Comunian, A.; Vanderborght, J.; Englert, A. Reconstruction of three-dimensional aquifer heterogeneity

from two-dimensional geophysical data. Math. Geosci. 2018, 50, 53–75. [CrossRef]
157. Mahmud, K.; Mariethoz, G.; Baker, A.; Treble, P.C. Hydrological characterization of cave drip waters in a porous limestone:

Golgotha Cave, Western Australia. Hydrol. Earth Syst. Sci. 2018, 22, 977–988. [CrossRef]
158. Feng, W.; Yin, Y.; Zhang, C.; Duan, T.; Zhang, W.; Hou, G.; Zhao, L. A training image optimal selecting method based on composite

correlation coefficient ranking for multiple-point geostatistics. J. Petrol. Sci. Eng. 2019, 179, 292–311. [CrossRef]

166



Minerals 2022, 12, 1361

159. Cui, Z.; Chen, Q.; Liu, G.; Mariethoz, G.; Ma, X. Hybrid parallel framework for multiple-point geostatistics on tianhe-2: A robust
solution for large-scale simulation. Comput. Geosci. 2021, 157, 104923. [CrossRef]

160. Chen, Q.; Cui, Z.; Liu, G.; Yang, Z.; Ma, X. Deep convolutional generative adversarial networks for modeling complex hydrological
structures in Monte-Carlo simulation. J. Hydrol. 2022, 610, 127970. [CrossRef]

161. Yang, Z.; Chen, Q.; Cui, Z.; Liu, G.; Dong, S.; Tian, Y. Automatic reconstruction method of 3D geological models based on deep
convolutional generative adversarial networks. Comput. Geosci. 2022, 26, 1135–1150. [CrossRef]

167





Citation: Yu, Z.; Liu, B.; Xie, M.; Wu,

Y.; Kong, Y.; Li, C.; Chen, G.; Gao, Y.;

Zha, S.; Zhang, H.; et al. 3D Mineral

Prospectivity Mapping of Zaozigou

Gold Deposit, West Qinling, China:

Deep Learning-Based Mineral

Prediction. Minerals 2022, 12, 1382.

https://doi.org/10.3390/

min12111382

Academic Editor: Martiya Sadeghi

Received: 31 July 2022

Accepted: 27 October 2022

Published: 30 October 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

minerals

Article

3D Mineral Prospectivity Mapping of Zaozigou Gold Deposit,
West Qinling, China: Deep Learning-Based Mineral Prediction
Zhengbo Yu 1 , Bingli Liu 1,2,*, Miao Xie 1, Yixiao Wu 1, Yunhui Kong 1, Cheng Li 1,3, Guodong Chen 1,
Yaxin Gao 1, Shuai Zha 1, Hanyuan Zhang 1, Lu Wang 1 and Rui Tang 1

1 Geomathematics Key Laboratory of Sichuan Province, Chengdu University of Technology,
Chengdu 610059, China

2 Key Laboratory of Geochemical Exploration, Institute of Geophysical and Geochemical Exploration, CAGS,
Langfang 065000, China

3 Institute of Mineral Resources, Chinese Academy of Geological Sciences, Beijing 100037, China
* Correspondence: liubingli@cdut.edu.cn; Tel./Fax: +86-028-8407-3610

Abstract: This paper focuses on the scientific problem of quantitative mineralization prediction at
large depth in the Zaozigou gold deposit, west Qinling, China. Five geological and geochemical
indicators are used to establish geological and geochemical quantitative prediction model. Machine
learning and Deep learning algorithms are employed for 3D Mineral Prospectivity Mapping (MPM).
Especially, the Student Teacher Ore-induced Anomaly Detection (STOAD) model is proposed based
on the knowledge distillation (KD) idea combined with Deep Auto-encoder (DAE) network model.
Compared to DAE, STOAD uses three outputs for anomaly detection and can make full use of
information from multiple levels of data for greater overall robustness. The results show that the
quantitative mineral resources prediction by applying the STOAD model has a good performance,
where the value of Area Under Curve (AUC) is 0.97. Finally, three main mineral exploration targets
are delineated for further investigation.

Keywords: 3D mineral prospectivity mapping; geological and geochemical quantitative prediction
model at depth; Deep auto-encoder network; Student Teacher Ore-induced Anomaly Detection;
Zaozigou gold deposit

1. Introduction

Geosciences is a data-intensive science, and geological survey and mineral exploration
has accumulated a large amount of multi-source geosciences data, and the introduction of
big data and its application of machine learning and deep learning can effectively support
mineral resources exploration [1–6].

3D ore-induced information has multiphase, multisource, and multivariable character-
istics, which derives the difficulty of information extraction, identification, and deduction,
posing challenges for its classification and prediction. Big data intelligent algorithms in
geosciences provide efficient tools for mineral exploration with machine learning and
deep learning methods [7–9]. The deep learning algorithms, including Convolutional
Neural Networks (CNN), Recurrent Neural Networks (RNN), Multi-Layer perceptron
(MLP), Deep Auto-encoder (DAE), and Deep Belief Networks (DBN) [10–16], have been
successfully used in geological, geochemical, geophysical, and remote sensing data analysis
and quantitative mineral resources prediction [17–31].

Convolutional Neural Network, as one of the most successful neural network models
of deep learning methods, has a number of achievements in geosciences, such as lithology
identification [32], geological mapping [33], and 3D geological structure inversion [34–36].
In recent years, many scholars have also achieved excellent results by applying CNN to the
study of mineral prediction [37–44].
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Auto-encoder network is a typical unsupervised learning algorithm for ore-induced
anomaly detection. The auto-encoder network contains two parts, that is Encoder and
Decoder, which can be used for data dimensional reduction to reconstruct sample pop-
ulation with unknown complex multivariate probability distributions, especially for big
data [45,46]. With the rise in deep learning, auto-encoder networks and related variant
networks are widely used for image classification [47–49], anomaly detection [34,50], and
data generation [51], etc.

The idea of Deep Auto-encoder network for anomaly detection in geosciences is to
learn the reconstruction ability of anomaly-free samples, and to achieve anomaly detection
by reconstructing anomaly samples with a large error. Related achievements include the
integration of auto-encoder network with density-based spatial clustering for geochemical
anomaly detection [52], physically constrained variational auto-encoder for geochemical
pattern recognition [53], and detection of geochemical anomalies related to mineralization
using the GANomaly network [54]. DAE is an unsupervised learning method, which
achieves more efficient detection of ore-induced comprehensive anomalies, and does not
need to manually label positive and negative samples, saving valuable labor costs.

Knowledge distillation (KD) is an important method to quickly deal with the problems
caused by labeled data (positive and negative sample imbalance, number of labeled samples,
etc.), which can efficiently achieve information transfer between networks, and it is also
called Student–Teacher learning framework. KD is widely used in computer vision, speech
recognition, natural language processing, etc., to achieve model compression [55] and
knowledge transfer [56]. KD is composed of the Teacher and Student network, the Teacher
network usually has certain learning ability through training, and the Student network is
used to imitate the ability of the Teacher network and thus achieve knowledge transfer. If
the Student network has a smaller network structure compared to the Teacher network, it
also achieves model compression. So far, KD methods have been less applied in geological
and geochemical data analysis or mineral resources prediction.

The main task of quantitative mineral prediction is to conduct comprehensive analysis
of geological, geophysical, geochemical, and remote sensing data and drilling engineering
data in the study area based on the research of geological background and metallogenic
regularity, and then construct mathematical models to effectively extract and identify fa-
vorable information on mineralization, carry out data fusion of quantitative mineralization
information, construct mineral prediction models, perform mineral prospectivity mapping,
and exploration targets delineation.

Compared with using the DAE to reconstruct the anomaly-free samples directly and
then detecting the test samples, the Teacher network of KD model can learn the reconstruc-
tion ability of all samples and then use the Student network to learn the reconstruction
ability of the Teacher network for the normal samples. The test process achieves the
detection of anomaly data by calculating the Mean Square Error (MSE) in the results of
Student and Teacher networks. Therefore, we propose the STOAD model based on the
module of CNN, the framework of KD and the reconstruction ability of DAE, to achieve
3D Mineral Prospectivity Mapping in Zaozigou gold deposit. Results show the STOAD
model performs more efficiently and more robustly compared to the DAE model, and three
main mineral exploration targets are delineated.

2. Geological Setting and Datasets
2.1. Geological Setting

The West Qinling is located at the western part of the Qinling orogenic belt, with the
Qilian orogenic belt to the north, the Qaidam block to the west, and the songpan block to
the south (Figure 1a) [57–60].

The geotectonic position of the Xiahe-Hezuo area is located at the northwestern part of
the West Qinling orogenic belt and at the western extension of the Qinling–Qilian–Kunlun
central orogenic belt, whose complex geological structure creates a superior mineralization
environment [61].
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The Zaozigou Gold deposit is located within the West Qinling fold belt and is a typical
epithermal-type gold deposit in the Xiahe-Hezuo area (Figure 1a). The main controlling
factors for mineral resources formation within the region are tectonic movement and mag-
matism [62], with the regional tectonics spreading in a NW direction with developing folds
and fracturs. Complex geological structure and magmatism are dominated by Yanshan
period intermediate-acid intrusive rocks, which are widely distributed in the form of the
batholith, stock, apophysis, and veins [62] (Figure 1b).
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Figure 1. (a) Geotectonic location of the study area. NQL: North Qinling tectonic belt; SDS: Shangdan
suture zone; CBS: Caibei suture zone; AMS: A’nyemaqen suture zone. (b) Geological map of Xiahe-
Hezuo area (modified from [62]). 1. Quaternary; 2. Neogene; 3. Cretaceous;4. Upper Triassic
Huari group; 5. Middle-Lower Triassic Daheba group; 6. Lower Triassic Jiangligou group; 7. Lower
Triassic Guomugou group; 8. Upper Permian Shiguan group; 9. Lower Permian Daguanshan
group; 10. Upper Carboniferous Badu group; 11. Intermediate-acid intrusive rocks; 12. Fracture;
13. Angular unconformity; 14. Gold depsit; 15. Copper deposit; 16. Lead depsit; 17. Antimony
deposit; 18. Mercury deposit; 19. Iron deposit; 20. Iron–copper deposit; 21. Copper–molybdenum
deposit; 22. Copper-tungsten deposit; 23. Polymetallic deposit.

The Triassic strata are the main stratigraphy for gold deposit. The genesis and spatial-
temporal evolution of the intermediate-acidic dike is closely related to gold mineralization
in the area, and during the mineralization process, the magmatic rocks not only provide
the mineralized material, but also their internal environment is very suitable as an ore-
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bearing space, which can be regarded as a significant mineralization indicator for gold
mineralization [63].

The spatial distribution of mineral deposits is directly controlled by the geotectonic
position in the Xiahe-Hezuo area, which plays a major role in the formation of different
types of gold deposits and is the boundary of the belt from a spatial perspective. The most
important types of mineral-controlling structures are fractures and folds in this area [64,65].
The main orebodies of the Zaozigou deposit are produced in NE, NW, and near-SN oriented
fracture zones, with two apparent mineralization periods, and post-formation fractures
have modified and destroyed the orebodies [66–70].

The Zaozigou gold deposit is a typical representative of gold deposits associated with
intermediate-acid dike rocks in the south of the Xiahe-Hezuo fracture. It is located at
approximately 9 km southwest of the Hezuo city, Gansu Province, with convenient access
to the mine site (Figure 2a). The main ore-bearing position is between Gully 1 and Gully 4,
with a total area of approximately 2.6 km2 (Figure 2b).
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Figure 2. (a) Regional location of study area. QLA = Qilian tectonic belt; WQL: West Qinling tectonic
belt; NQL: North Qaidam tectonic belt; SF1: Wushan–Tianshui–Shangdan suture zone; SF2: Maqu-
Nanping–Lueyang suture zone; SG: Songpan–Ganzi tectonic belt; YZ: Yangtze block. (b) Geological
map of Zaozigou gold deposit (modified from [71]). 1. Quartz diorite porphyrite; 2. Granodiorite-
porphyry; 3. Plagioclase granite porphyry; 4. Gold orebody; 5. Fracture; 6. Mineral exploration line;
7. Drilling Hole.

There are only Triassic and Quaternary strata exposed in the Zaozigou gold deposit
(Figure 2b). The strata of the area are mainly the lower part of the Gulangdi group (T2g1) of
the Middle Triassic formation, and the Quaternary (Qh

alp) is developed in the intermountain
valley. The lower part of the Gulangdi group (T2g1) is the main ore-bearing rock, which
is a set of fine clastic rocks consisting of siliceous slate, clastic feldspathic fine sandstone
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with interbedded siltstone slate and argillaceous slate. The formation is composed of a
large sedimentary cycle from bottom to top consisting of siltstone→ argillaceous slate→
calcareous slate [66,72].

The fractures are well developed and have a complex morphology, forming an inter-
secting trend, indicating that the area has experienced multiple phases of geological activity.
Fractures strictly control the distribution of orebodies and vein rocks within the deposit.
They can be classified into five groups of orientations, namely NW, N-S, NE, E-W, and
NNE [73,74]. Fracture structures are the structural surfaces of mineralization, and these
structural surfaces control the spreading characteristics of the orebodies [75].

Intermediate-acid dike, including fine crystalline diorite, diorite porphyrite, biotite
dioritic porphyrite, and quartz diorite porphyrite densely produced with a porphyritic
structure, spreading in NNE direction, turning to a nearly N-S direction in the western part
of the deposit and a few NW directions. Influenced by the regional multi-period deep frac-
ture activity, the multi-period magmatism has overlapped on multi-phases mineralization
within the deposit [76].

There are 147 gold orebodies have been found in the Zaozigou gold deposit, of which
17 orebodies are main ore bodies with gold reserves greater than 1 tonne, and the total gold
reserves of more than 100 tonnes [71]. According to the spatial distribution and combination
of the mineralization, Zaozigou deposit can be divided into eastern and western ore groups.

The Eastern ore group is mainly located between Gully 1 and Gully 3 with the strike
of NE orientation, containing Au1 controlled by F24, Au9 controlled by F21, and Au15
controlled by F25. These orebodies extend over 1000 m long and 300 m wide, with a NW
direction tendency and steep dip near the ground surface, locally nearly upright. In the
deep, these orebodies have been staggered by gently dipping fracture, causing the tendency
to change to SE orientation (Figure 2b). In addition, orebodies M4 and M6 are laying
underground, with the strike of NWW orientation, the tendency of SW orientation, and the
dip of 8◦~26◦. These orebodies cross the NE-striking orebodies obliquely, staggering them,
and their own mineralization behavior occurs simultaneously [77].

The Western ore group is mainly distributed between Gully 3 and Gully 4, spreading
in a nearly N-S direction, with August 29~August 31 as the main orebodies. The orebod-
ies extend over 1000 m long and wider than 500 m, with a strike of 350◦~10◦, varying
tendency and dips greater than 75◦, locally subvertical. These orebodies extend, and the
mineralization is weaker in the steeper parts and stronger in the shallower parts.

2.2. Datesets Description

Historical geological and geochemical data were completed, including geological
reports, geological exploration maps, and drills geochemical data, from the Development
Research Center of China Geological Survey and No.3 Geological and Mineral Exploration
team, Gansu Provincial Bureau of Geology and Mineral Exploration and Development, the
coordinate system used in the mine-scale is Gaussian Kruger projection coordinates.

This study collected 72 drillings data in the Zaozigou gold deposit, established a
drilling location database, an assay database, an inclinometry database, and a lithology
database. The 3D model of drillings was constructed based on the drill hole data database
(Figure 3).

The primary geochemical halo data from the drillings were collected from the “Za-
ozigou gold successive resources exploration project in Hezuo city, Gansu Province”, with
a total of 72 drillings and 5028 samples with 12 elements of Ag, As, Au, Cu, Hg, Pb, Zn, Sb,
W, Bi, Co, and Mo (the element detection methods can refer literature [71]). The sampling
method was the continuous picking method with sample intervals generally within 10 m.
Some orebodies or strongly altered areas being sampled at decreased intervals.
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3. Methodology
3.1. Deep Auto-Encoder Network
3.1.1. Network Structure Designing

The basic end-to-end structure of DAE and STOAD consists of the input layer (Input),
convolutional layer (CONV), activation function layer, and output layer (Output).

DAE is a method that uses neural networks to compress and reconstruct data, and its
core is to use an Encoder to compress the original data X to obtain the intermediate variable
Z, and then use a Decoder to reconstruct Z to obtain X’ (Figure 4). It can be widely applied
to tasks such as data dimensional reduction, feature extraction, and anomaly detection.
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3.1.2. Model Training

In the DAE model, the objective function is to measure the error between the recon-
structed sample and the real sample and back propagate to adjust the network parameters.
Mean Square Error (MSE) is usually used as the objective function in the reconstruction
problem, and the optimization process is mainly divided into three steps: (i) forward
propagation for calculating the output, (ii) calculating the loss of reconstruction, and
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(iii) back propagation to calculating the gradient according to the loss for optimizing the
model parameters.

xl = σ
(

zl
)
= σ

(
W l xl−1 + bl

)
(1)

Equation (1) express the calculation process from the l − 1th layer to the lth layer
of CNN, where xl represents the features of the lth layer (e.g., x1 represents the input
data, x2 represents the output obtained after the first layer of convolution and activation
calculation), bl represents the bias term of the lth layer, W l represents the weight parameter
of the convolution of the lth layer, Zl represents the intermediate variables of the lth layer
without the activation function calculation, and σ is the activation function. Rectified Linear
Unit (ReLU) function is used as the activation function in this paper.

Assuming that the DAE model has a total of L layers, the errors of the input data and
the reconstructed data are calculated by MSE to obtain the loss value.

Loss = J(W, b, x, y) =
1
2
‖ σ
(

zL
)
− x1 ‖2

2=
1
2
‖ σ
(

WLxL−1 + bL
)
− x1 ‖2

2 (2)

δL is the partial derivatives of Loss to zL,

δL =
∂J(W, b, x, y)

∂zL =
∂J(W, b, x, y)

∂xL � σ′
(

zL
)

(3)

δl =
∂J(W, b, x, y)

∂zl+1
∂zl+1

∂zl =

(
∂zl+1

∂zl

)T

δl+1 =
(

W l+1
)T

δl+1 � σ′
(

zl
)

(4)

The partial derivatives of W and b are calculated from the losses, and � is the
Hadamard product.

∂J(W, b, x, y)
∂W l =

∂J(W, b, x, y)
∂zl

∂zl

∂wl = δl
(

xl−1
)T

;
∂J(W, b, x, y)

∂bl =
∂J(W, b, x, y)

∂zl
∂zl

∂bl = δl (5)

The gradient of the back-propagation of each convolutional layer can be calculated by
Equation (5), and finally the convolutional kernel parameters are updated by the following
two equations. α is the learning rate.

W l+1 = W l+1 − α
∂J(W, b, x, y)

∂W l+1 (6)

bl+1 = bl+1 − α
∂J(W, b, x, y)

∂bl+1 (7)

where l = 1, 2, 3 . . . , L− 1, the above steps are repeated to achieve the training of the DAE
network.

3.1.3. Model Testing

In the testing process, the test data X are reconstructed by DAE to obtain X’, MSE
between X and X’ is normalized. Setting the threshold value µ, when the MSE value is
greater than µ, corresponding samples are judged as anomalies, otherwise, the sample is
normal. The calculation equations are as follows.

Error(X) =‖ X− X′ ‖2
2 (8)

Predict(X) = MinMax0−1

{
‖ X− X′ ‖2

2

}
=

{
1, Predict(X) ≥ µ
0, Predict(X) < µ

(9)
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3.2. KD-Based STOAD Model
3.2.1. Network Structure Design

KD [78] is a mainstream method applied to model compression, which mainly consists
of the Teacher network (T) and Student network (S). The larger T network is usually
trained first for the tasks of image classification, target detection, semantic segmentation,
etc., and then the smaller S network is trained to learn the generalization ability of the
T network. Compared with T-networks, S-networks have fewer parameters and faster
computation speed.

Different information will be contained at different depth of the network. For fully
extract metallogenic information, the STOAD model is proposed to achieve anomaly
detection of layers based on calculating the differences between T encoder and S network.
STOAD is divided into two structures: The T network and the S network, where the T
network has the same Encoder and Decoder as the DAE, and the S network has the same
structure as the Encoder in the T network. Especially, three scales output are designing to
express different information at different depth of the network.

In the training process, STOAD model uses all layers to pre-train the T network for
reconstruction. The encoder in the T network can be recognized as having the ability to
compress the layers, and thus can be seen as having the ability to handle both normal and
abnormal data [79]. If the T network is not trained, the anomaly detection can be achieved,
but the feature extraction of the T network is not clear, and the interpretability is poor.
Sequentially, taking normal data as input, training the S network, calculating the three
scale output differences of T encoder and S network using MSE, while hi, i = 1, 2, 3, are the
scales represents different depth of the network. Finally, back-propagates to update the
parameters of the S network, the S network only has the capacity of handling normal data
learned from the encoder of T network.

In the testing process, taking all data as input. Since the S network only learns the
ability of dealing with normal data from the encoder of T network, the S network is difficult
to maintain the similar multiscale output features with the T network because of a larger
MSE. Therefore, the anomaly detection can be achieved by the MSE values (Figure 5).
In contrast to DAE, STOAD not only has three outputs, but also uses multiple levels of
semantic and detailed information to make full use of the information in the data for
anomaly detection.
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3.2.2. Model Training and Testing

The training loss of STOAD consists of two parts, which are the training loss of the T
network and the S network

The overall T-network can be considered as a DAE, and MSE is used as the recon-
struction loss of the T-network, so that the encoder part of the T-network holds the data
compress capability. The training loss of the T network can be calculated as follow equation.

Lossteacher =
1
2
‖ X− X′ ‖2

2 (10)

The loss of the S network consists of the MSEs of the three scales output of the T
network. In order for the S network to learn the normal data compression ability from the
T network, let h1 = h2 = h3 = 1/3, and the training loss of the S network is calculated by
Equation (8).

Lossstudent =
3

∑
i=1

1
2

hi ‖ Xti − Xsi ‖2
2 (11)

The STOAD model training and testing process is mainly as follows.

1. The essence of T-network is a DAE, and its training process is same with DAE referring
to Section 3.1.2.

2. The S-network update is similar to the T-network, mainly in calculating the loss of the
multi-scale features output from the encoder of the T-network, and using only normal
data for training, thus letting the S-network to only learn the ability to compress
normal data. L is the depth of S network.

Lossstudent = J(W, b, x, y) =
3

∑
i=1

1
2

hi ‖ σ
(

Wt
i+1xi + bt

i+1
)
− σ

(
Ws

i+1xi + bs
i+1
)
‖2

2 (12)

δL is the partial derivatives of zL of S network.

δL =
∂J(W, b, x, y)

∂zL =
3

∑
i=1

1
2

hi
∂J(W, b, x, y)

∂xL � σ′
(

zL
)

(13)

and the δl is, i is 1 to L− 1:

δl =
∂J(W, b, x, y)

∂zl+1
∂zl+1

∂zl =

(
∂zl+1

∂zl

)T

δl+1 =
(

W l+1
)T
� σ′

(
zl
)

δl+1 (14)

∂J(W, b, x, y)
∂W l =

∂J(W, b, x, y)
∂zl

∂zl

∂wl = δl
(

xl−1
)T

(15)

∂J(W, b, x, y)
∂bl =

∂J(W, b, x, y)
∂zl

∂zl

∂bl = δl (16)

Convolutional module is updated by the following two equations. α is the learn-
ing rate.

W l+1 = W l+1 − α
∂J(W, b, x, y)

∂W l+1 (17)

bl+1 = bl+1 − α
∂J(W, b, x, y)

∂bl+1 (18)

where l = 1, 2, . . . , L− 1.
In the testing process, we used T and S networks to calculate the testing dataset,

separately. Defining the weights of three scales are Wh1 = Wh2 = Wh3 = 1/3, the weighted
sum of the output can be calculated by Equation (19), where Xti and Xsi represent the
output of the Encoder part of the T network and the S network, respectively. Predict (x) is
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the normalized Error (x), selecting a threshold µ, when the Predict (x) is greater than µ the
sample point is judged to be an abnormal sample, otherwise it is a normal sample.

Error(x) =
3

∑
i=1

hi ‖ Xti − Xsi ‖2
2 (19)

Predict(x) = MinMax0−1{
3

∑
i=1

hi ‖ Xti − Xsi ‖2
2} = {

1, Predict(x) ≥ µ
0, Predict(x) < µ

(20)

4. Results
4.1. Geological and Geochemical Quantitative Prediction Model at Depth of Zaozigou Gold Deposit

Before carrying out the deep quantitative mineral prospectivity mapping in the Za-
ozigou gold deposit, it is necessary to review the geological and geochemical quantitative
prediction model established in previous work [80].

Orebodies are strictly controlled by fractures in the Zaozigou gold deposit. The 30 m
buffer zone of the fractures can effectively reflect the influence range of fracture, which
can be used as a mineral prediction indicator. Factor F4 is an element association of Sb-Hg,
which has a close relationship with fractures, and can be used as a favorable indicator for
inferring deep fractures. The middle anomaly area of Au extracted by the multiple fractal
C-V model can well reflect the spatial distribution of orebodies, which should be used as
an important quantitative indicator. Near-ore halo element association B2 is extracted by
the knowledge-driven CoDA also can express the location of orebodies well, it should be
another mineral prediction indicator. The ratio of front halo to tail halo is an important
geochemical parameter for predicting orebodies, B1/B3 is regarded as a prediction indicator
accordingly (Table 1; Figure 6). The detailed data analysis and interpretation can refer to
the literature [80].

Table 1. Geological and geochemical quantitative mineral resource prediction model at depth of the
Zaozigou gold deposit.

Ore-Forming Factor Description Prediction Indicator Variables

Geology fracture
Influence range of fracture 30 m buffer zone

Element association of fracture Hg-Sb (F4)

Geochemistry
Ore-forming element Geochemical anomaly Au

Primary geochemical halo Element association of near-ore halo Au-Ag-Cu-Pb-Zn (B2)
Geochemical parameter (Front

halo/tail halo)
As-Sb-Hg (B1)/W-Bi-Co-Mo

(B3)
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4.2. Training Sample Selection

For mineralization prediction, the target variable (i.e., the label of training samples)
is either mineralized or nonmineralized (denoted by 1 and 0, respectively). A total of
39,306 positive samples extracted from known orebodies and 49,686 negative samples
extracted from the nonmineralized position confirmed by drillings are used as training
dataset. In contrast to mineralization generates concentrated in limited space, the non-
mineralization is a widespread phenomenon, and negative samples are selected to be
distributed as randomly and uniformly as possible throughout the study area [81] (Figure 7).

Minerals 2022, 12, x FOR PEER REVIEW 12 of 22 
 

 

 

Figure 7. Distribution of positive samples and negative samples. 

4.3. DAE-Based 3D MPM 

DAE is a widely used unsupervised model in deep learning. In this study, the DAE 

model is constructed by convolution, and the training process automatically learns to ex-

tract the semantic features of the normal evidence layer to compress and reconstruct the 

corresponding layers. In the testing process, detecting ore-induced anomalies by MSE 

value, the higher the MSE value is, the greater the loss of reconstruction is, which illus-

trates the high-probability area of ore-forming. 

This DAE model is built using python 3.8, PyTorch 1.71 framework, the optimizer is 

Adam, the batch size is 16, the learning rate is 0.001, the learning rate decay is 10% per 5 

Epochs, the CPU is 12th Gen Intel(R) Core(TM) i7-127OOKF, and the GPU is NVIDIA 

GeForce RTX 3090. 

DAE model uses 70% of the normal data for training, and the testing dataset includes 

the remaining 30% of the normal samples and the relatively small number of anomaly 

samples. The DAE model is trained for 500 Epochs and the loss function is plotted as fol-

lows. The model relatively converges at an MSE value of about 0.025, but the MSE fluctu-

ates wider (Figure 8). In Figures 4 and 6, the horizontal axis indicates the sampling order 

and the vertical axis indicates the loss of DAE. The prediction parameters of precision 

value reaches 93%, Recall value is 88%, and F1-measure is 90%, which demonstrate the 

high accuracy and reliability of DAE-based MPM. It clearly shows that the high ore-form-

ing probability at depth of Zaozigou gold deposit, which is worth for further investigation 

(Figure 9). 

Figure 7. Distribution of positive samples and negative samples.

4.3. DAE-Based 3D MPM

DAE is a widely used unsupervised model in deep learning. In this study, the DAE
model is constructed by convolution, and the training process automatically learns to
extract the semantic features of the normal evidence layer to compress and reconstruct
the corresponding layers. In the testing process, detecting ore-induced anomalies by MSE
value, the higher the MSE value is, the greater the loss of reconstruction is, which illustrates
the high-probability area of ore-forming.

This DAE model is built using python 3.8, PyTorch 1.71 framework, the optimizer is
Adam, the batch size is 16, the learning rate is 0.001, the learning rate decay is 10% per
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5 Epochs, the CPU is 12th Gen Intel(R) Core(TM) i7-127OOKF, and the GPU is NVIDIA
GeForce RTX 3090.

DAE model uses 70% of the normal data for training, and the testing dataset includes
the remaining 30% of the normal samples and the relatively small number of anomaly
samples. The DAE model is trained for 500 Epochs and the loss function is plotted as
follows. The model relatively converges at an MSE value of about 0.025, but the MSE
fluctuates wider (Figure 8). In Figures 4 and 6, the horizontal axis indicates the sampling
order and the vertical axis indicates the loss of DAE. The prediction parameters of precision
value reaches 93%, Recall value is 88%, and F1-measure is 90%, which demonstrate the high
accuracy and reliability of DAE-based MPM. It clearly shows that the high ore-forming
probability at depth of Zaozigou gold deposit, which is worth for further investigation
(Figure 9).
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4.4. STOAD-Based 3D Mineral Prospectivity Mapping

The STOAD model is implemented using python 3.8, and PyTorch 1.71 framework.
The T network is mainly composed of two parts: encoder and Decoder. The structure of T
network is symmetric for letting the number of parameters of both parts identical, and thus
the data compression ability of encoder is approximately equal to the data reconstruction
ability of Decoder.

The S network only has the encoder part, which is consistent with the T encoder. ReLU
activation function is used for its capability of dealing with nonlinear data.

The same training parameters are used in the T and S networks, with an optimizer
of Adam, a batch size of 16, a learning rate of 0.001, and a learning rate decay of 10% per
5 Epochs.

Similarly, STOAD uses 70% of the normal data for training, and the testing dataset
includes the remaining 30% of the normal samples and the relatively small number of
anomaly samples.

The STOAD model is trained with 500 Epochs, and the Teacher loss function and the
Student loss function are plotted in Figure 10, the T network converges at about MSE value
of 0.025 (similar to the above DAE), and fluctuates wider. The MSE curve of the S network
converges at a lower value of about 0.0125, and distributes more stable than T network. The
loss of the T network is the same as DAE indicating the ability to reconstruct all training
data, the loss of the S network represents the difference in output between the S and T
networks, and the more stable loss of the S network means that the S network can learn
better the ability of the T network to reconstruct normal data.
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The prediction parameter of Precision value reaches 96%, Recall value is 90%, and F1
value is 93%.

The 3D MPM based on STOAD model shows the high ore-forming probability at depth
of Zaozigou gold deposit which has the similar characteristics ore-forming probability
distribution at depth. It gives evidence for deep mineral resources prediction (Figure 11).
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5. Discussion

In this study, the deep learning methods of DAE and STOAD model are carried out
for 3D MPM in Zaozigou gold deposit.

Compared with the DAE model, STOAD model has a higher precision in detection of
ore-induced anomalies, which demonstrates a higher reliability of 3D MPM
(Figures 9 and 11).

Meanwhile, the ROCs of the two methods were used to evaluate the models, and the
AUC values of the two methods were 0.92 of DAE and 0.97 of STOAD. Observably, the
STOAD model expresses a higher performance (Figure 12).
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From the points of algorithm theory, the STOAD model is proposed based on the KD
idea combined with the DAE network, which is an improvement of DAE. So, it is better
than the conventional DAE model in terms of algorithm performance.

From the points of application, the results of quantitative mineral resources prediction
show that STOAD is more accurate and robust, which is demonstrated by prediction
parameters, the loss curve (Figures 8 and 10) and the ROC curve (Figure 12).

Furthermore, a total of 4 methods, two machine learning methods (MaxEnt model and
GMM) and two deep learning methods (DAE and STOAD model), have been carried out for
3D MPM (Figure 13). The machine learning-based 3D MPM can refer to the literature [80],
which is the previous work of our research team.
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Figure 13. Comparison of the 3D MPM of 4 methods. (a) MaxEnt mode. (b) GMM. (c) DAE model.
(d) STOAD model.

The prediction results of the four methods exhibit a high correlation with the known
orebodies in the shallow part and a slight difference in the deep part (Figure 13). From
the comparative analysis of the prediction results and model performance among the four
methods, the STOAD takes advantage of mathematical theory and has the highest AUC
value (Figure 14). Especially, the high probability area can better reflect the metallogenic
regularity at large depth. Therefore, it is decided to delineate a comprehensive mineral
exploration targets at large depth of the Zaozigou based on the prediction results of STOAD
model and supported by the prediction results of other methods. In order to improve the
prediction accuracy, the area with a logical probability greater than 0.75 and less than 0.998
is defined as a medium potential area, and the area with a logical probability greater than
0.998 is defined as a high potential area, based on which three main mineral exploration
targets are circled (Figure 15).

Target I is located at elevation 1600~2000 m, belongs to the NE-orientation orebody
group, which should be the extension of the Au1 orebody. In this position, we developed
the main ore-forming fracture. The Au and Sb concentration in this position, and the ratio
of front halo to tail halo has been increasing. Especially, it appears high logical probability
calculated by all four methods at this position, indicating the Au1 orebody may extends
deeper than the elevation of 1800 m or a concealed orebody exist therein.

Target II is located in the NW-orientation orebody group at the elevation of 2000~2400 m,
where the fractures distribute complex, and the tail halo element Co has a significant vertical
overlap with the front halo elements Sb and As. The elevated geochemical parameters
starting from 2600 m to deep indicate that there may be an extension of ore bodies or new
blind orebodies at depth. According to the theory of primary halo zonation, the front halo
indicators generally appear at the leading edge of the ore body 100–300 m, and the blind
ore body will appear at an altitude of 2400 m deep.
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Target III is located below 1600 m, it can be divided into targets III-1, III-2, and III-3.
Target III-1 is located at elevation of about 1300 m, target III-2 located at elevation of about
1000 m., target III-3 located at elevation of 700 m. The deep fracture is the main indicator. It
is worth mentioning that the deep drill for scientific research has achieved in 2021, which
is the deepest drill of Zaozigou gold deposit, which reaches to the elevation of 700 m
(Figure 15). In previous study, there may be an “upper veins and lower layers” distribution
feature of orebodies [82]. The shallow stratigraphy is strongly folded, and steeply dipping
fracture structures are developed; the orebody is controlled by fractures and vein rocks,
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while the deep orebody may be mainly controlled by intrusive mass to form laminated ore
bodies. This understanding is also reflected in the present prediction targets.

6. Conclusions

To address the scientific problem of quantitative mineralization prediction at large
depth, the geological and geochemical quantitative mineral resources prediction model
at depth of the Zaozigou gold deposit is constructed based on the quantitative extraction
of mineralization signatures, which consists of five quantitative prediction indicators,
including 30 m fracture buffer zone, element association (Sb-Hg) of ore-bearing structures,
metallogenic element Au, near-ore halo element association Au-Ag-Cu-Pb-Zn, and the
ratio of front halo to tail halo (As-Sb-Hg)/(W-Mo-Bi). Then, two machine learning methods
(MaxEnt model and GMM) and two deep learning methods (DAE and STOAD model) are
carried out for 3D MPM, and mineral exploration targets are delineated at depth (Figure 15).

Because the primary halo of drills is limited by the engineering-controlled boundaries,
this study adopts the idea of quantitative expression of ore-controlling factors by element
associations and limit the deep inference range within the modeling space to perform deep
quantitative mineral prediction. However, the accuracy of the prediction of machine learn-
ing and deep learning methods inevitably decreases rapidly with increasing depth. This
shortcoming can be supplemented by two aspects of quantitative inversion of geophysical
data and numerical simulation of deep mineralization dynamics, which is also a direction
worth further research.

In summary, a series of methods are developed in this study of 3D Mineral Prospec-
tivity Mapping of Zaozigou gold deposit, West Qinling, China. The achieved results by
machine learning and deep learning methods shows well performance in quantitative min-
eral resources prediction at depth, which is worth being promoted to similar ore deposits.
Moreover, it was concluded that the deep learning-based approach works better with larger
amounts of data, and the STOAD proposed in this paper has a higher accuracy in anomaly
detection. May the relevant ideas of this study provide a reference for related researchers.
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Abstract: The Jiaodong Peninsula hosts the main large gold deposits and was the first gold production
area in China; multisource and multiscale geoscience datasets are available. The area is the biggest
drilling mineral-exploration zone in China. This study used three-dimensional (3D) modeling,
geology, and ore body and alteration datasets to extract and synthesize mineralization information
and analyze the exploration targeting in the Zhaoxian gold deposit in the northwestern Jiaodong
Peninsula. The methodology and results are summarized as follows: The regional Jiaojia fault is the
key exploration criterion of the gold deposit. The compression torsion characteristics and concave–
convex section zones in the 3D deep environment are the main indicators of mineral exploration
using 3D geological and ore-body modeling in the Zhaoxian gold deposit. The hyperspectral detailed
measurement, interpretation, and data mining used drill-hole data (>1000 m) to analyze the vectors
and trends of the ore body and ore-forming fault and the alteration-zone rocks in the Zhaoxian gold
deposit. The short-wave infrared Pos2200 values and illite crystallinity in the alteration zone can
be used to identify 3D deep gold mineralization and potential targets for mineral exploration. This
research methodology can be globally used for other deep mineral explorations.

Keywords: 3D geological modeling; 3D ore-body modeling; spectral interpretation and 3D modeling;
mineral exploration and deep targeting; Zhaoxian gold deposit

1. Introduction

As a universal currency, gold has anti-inflation and safe-haven functions. It has always
played an important role in the global financial system, especially during financial crises,
which highlights its safe-haven function. As such, gold is currently used as a reserve by
most governments to maintain economic and material stability. In addition to the official
gold reserves, gold is essential for industry, healthcare, and high-tech fields. For China,
gold is a credit instrument related to foreign trade and economic cooperation [1]. The
Jiaodong Peninsula is the most important gold-producing area in China and the third
largest gold-mining area in the world, with proven gold resources exceeding 5000 t [2]. For
a long time, researchers have carried out geological, geophysical, and geochemical works
in the Jiaodong Gold Mine and accumulated abundant data, which provided an important
basis for deep prospecting [2–6]. Since the implementation of the exploration breakthrough
strategic action in 2011 [5–7], major exploration breakthroughs have been made in im-
portant gold belts such as Sanshandao, Jiaojia, and Zhaoping in Jiaodong [7]. By 2020,
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the prospecting depth had expanded from 500 m to 4000 m, forming large gold deposits
such as Sanshandao, Jiaojia, Linglong, and Denggezhuang. Because of the metallogenic
background, the mineralization and production environment are significantly different
from those of other types of gold deposits known in the world; this type of deposit is named
the Jiaodong-type gold deposit [5]. According to the different mineralization patterns, the
gold deposits in this area can be subdivided into Jiaojia-, Linglong-, and Pengjiakuang-type
gold deposits [6]. The Zhaoxian gold deposit is located in the northwest of the Jiaojia Gold
Mine and is currently the mining area with the largest average exploration depth in China.
In-depth analysis of the ore-body geological characteristics of this large gold mine will be
of great significance for promoting deep ore prospecting in the Jiaojia ore field [8].

Recently, short-wavelength infrared (SWIR) spectroscopy has been widely applied in
mineral exploration. Its wavelength range is between 1300 nm and 2500 nm, which can
effectively identify minerals containing hydroxyl groups, amino groups, partial carbon-
ates, and sulfates according to the difference between the reflection absorption of SWIR
light and characteristic absorption peaks of the functional groups [9–12]. This method can
quickly identify deep minerals and alteration zones in actual exploration and has been
successfully applied to porphyry deposits, epithermal deposits, volcanogenic massive
sulfide deposits, and some iron oxide–copper–gold (IOCG) deposits [13–16]. With the intro-
duction of computer three-dimensional (3D) modeling technology, geological prospecting
prediction has gradually developed from the two-dimensional (2D) plane to 3D space
prediction. Three-dimensional geological modeling is a technology that provides 3D visu-
alization through the integration of multisource and multiscale geoscience data [17–19].
Three-dimensional geological modeling allows capturing the geometry of structures at
regional and local scales, visualizing the subsurface architecture of deposits and intrusions,
and understanding fluid transport processes [20]. Data-driven geographic information
system (GIS) based methods for integrating multisource and multisource spatial geoscience
datasets have been widely used in mineral-potential mapping for exploration targeting in a
data-rich mining area [18].

With the deep mineral-exploration work, SWIR-spectrum 3D alteration mapping has
also been applied. For example, Harraden et al. (2013) carried out drill-hole SWIR explo-
ration on the pebble-porphyry Cu–Au–Mo deposit in eastern North America, divided the
wall-rock alteration zones in detail on the 3D scale of the mining area, and established
the 3D geology and alteration model of the pebble deposit [21]. Chen et al. (2019) [22]
performed mineral alteration mapping on the Tonglushan copper–gold deposit and estab-
lished 3D attribute modeling based on the parameters of chlorite Pos2250 and kaolinite
Pos2170, thus establishing altered-mineral-exploration targets in this area. Predecessors
have conducted significant research on the altered minerals in the Jiaodong area, but most of
them were based on element geochemistry, and no study has combined the SWIR spectrum
and 3D modeling in this area. Therefore, this work aimed to use the SWIR spectroscopy
measurement and interpretation of the altered-mineral datasets (depth > 1000 m) of the
Zhaoxian gold deposit to identify the altered-mineral assemblage and zonation characteris-
tics in the deep part of the mineralization area. By combining the SWIR and 3D geological
modeling, the 3D multiparameter model of the altered minerals and the ore body can be
quickly established; therefore, it is possible to compare and study the characteristics of
alteration-zone minerals in depth and the spatial distribution of the mineralization in one
dimension (1D), 2D, and 3D, and then make a 3D comprehensive prediction to optimize
the favorable finding area and provide a basis for drilling verification.

2. Deposit Geology and Mineralization

The Zhaoxian gold deposit is located in the Jiaojia ore field of the northwestern
Jiaodong Peninsula in China, which is approximately 15 km northeast of Laizhou City
(Figure 1) [23]. The gold deposits in the region are controlled by NNE-trending faults,
and their gold ore bodies are mostly hosted in the altered rocks within the footwalls of
NNE–NE-trending faults. The deep part (1400 m to 2400 m) of the mining zone is bounded
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by the Jiaojia main fault surface [2,24]. The wall-rock lithology is Linglong granite and
metamorphic rock of the Jiaodong Group, and the footwall is ore-bearing altered-rock
zones and Linglong-series monzogranite (ca. 160 Ma) and Guojialing-series granodiorite
(ca. 130 Ma) [18].
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The altered rocks in the study area are distributed in strips, which are characterized
by the superposition of various alterations and obvious alteration zoning (Figure 2) [3,18].
The altered rocks can be divided into the components of the main regional Jiaojia fault
according to the alteration type, degree, and mineral assemblage. The hanging wall of
the Jiaojia fault has sericite-granitized cataclastic rock and sericite granite zones, and the
footwall has pyrite–sericite–quartz granitized cataclastic rock and pyrite–sericite–quartz
granite zones. The gold ore body is mainly in disseminated, veinlet-disseminated, and
veinlet forms (Figure 2). Pyrite is the main gold-bearing mineral, and the shallow zone is
mostly enriched in pyrite–sericite–quartz cataclastic rocks, whereas the deep zone is mostly
enriched in pyrite–sericite–quartz cataclastic rocks and pyrite–sericite–quartz granitized
cataclastic rocks. The alteration develops along the wall rock of the fault structures, includ-
ing potassium feldspar, hematite mineralization (reddenization), pyrite–sericite–quartz
alteration, and carbonation, as well as chloritization, kaolinization, etc. Pyrite–sericite–
quartz alteration is a general term for sericitization, silicification, and pyritization [8].
Pyrite-sericite-quartz altered rock and potassium-altered (reddenized) rock are usually
gold-enrichment zones. The study area has multiperiod and multistage hydrothermal pro-
cesses, which show the evolution and metasomatism of hydrothermal functions, coupled
with multistage tectonic activities. According to the metallogenic relationships among the
ore-controlling fault structures, hydrothermal veins, and gold mineralization, previous
researchers have divided the hydrothermal metallogenesis into four stages, which are
summarized in Table 1 [7,8,25].

191



Minerals 2022, 12, 1272

Minerals 2022, 12, 1272 4 of 27 
 

 

alteration is a general term for sericitization, silicification, and pyritization [8]. Pyrite-se-
ricite-quartz altered rock and potassium-altered (reddenized) rock are usually gold-en-
richment zones. The study area has multiperiod and multistage hydrothermal processes, 
which show the evolution and metasomatism of hydrothermal functions, coupled with 
multistage tectonic activities. According to the metallogenic relationships among the ore-
controlling fault structures, hydrothermal veins, and gold mineralization, previous re-
searchers have divided the hydrothermal metallogenesis into four stages, which are sum-
marized in Table 1 [7,8,25]. 

 

Figure 2. Pyrite-type hand samples and ore-body microscope photos show the occurrence state of 
transparent minerals and gold (modified by [23]). (a)—Type I pyrite in sericitized granites (PyⅠ); 
(b)—Type II pyrite in quartz pyrite veins (PyⅡ); (c)—Type III pyrite in quartz sulfide ores (PyⅢ); 
(d)—Type IV pyrite in pyrite calcite vein ores (PyⅣ); (e–h)—transparent mineral forms under po-
larized light microscopy; (i–l)—occurrence state of gold in different types of pyrite. Py—pyrite; 
Ser—sericite; Qtz—quartz; Cal—calcite; Pl—plagioclase; Ap—apatite; Ttn—sphene; Au—natural 
gold; Gn—galena. 

Table 1. Characteristics of hydrothermal metallogenesis and pyrite in different stages. 

Metallogenic Stage Pyrite Distribution 
Paragenetic Mineral 

Assemblages 
Pyrite Form 

Degree of 
Mineralization 

Pyrite-quartz–sericite 
stage (Ⅰ) 

Irregular granular or idiomorphic 
coarse-grained crystals 

Pyrite, quartz, sericite Pyrite quartz vein Weak 

Quartz–pyrite stage (Ⅱ) 
Fine-grained heteromorphic, 

veinlet, reticulate 
Pyrite, sericite, chlorite Pyrite quartz crushing Strongest 

Quartz–polymetallic 
sulfide stage (Ⅲ) 

Fine-grained, veinlet, and 
disseminated 

Quartz, pyrite (chalcopyrite), 
galena, sphalerite, etc. 

Quartz–polymetallic 
sulfide assemblage 

Strongest 

Quartz–carbonate 
stage (Ⅳ) 

Veinlet or reticulate 
Quartz, carbonate, and a small 

amount of pyrite 
Intercalation of quartz 

calcite veins 
No 

  

Figure 2. Pyrite-type hand samples and ore-body microscope photos show the occurrence state of
transparent minerals and gold (modified by [23]). (a)—Type I pyrite in sericitized granites (PyI);
(b)—Type II pyrite in quartz pyrite veins (PyII); (c)—Type III pyrite in quartz sulfide ores (PyIII);
(d)—Type IV pyrite in pyrite calcite vein ores (PyIV); (e–h)—transparent mineral forms under
polarized light microscopy; (i–l)—occurrence state of gold in different types of pyrite. Py—pyrite;
Ser—sericite; Qtz—quartz; Cal—calcite; Pl—plagioclase; Ap—apatite; Ttn—sphene; Au—natural
gold; Gn—galena.

Table 1. Characteristics of hydrothermal metallogenesis and pyrite in different stages.

Metallogenic Stage Pyrite Distribution Paragenetic Mineral
Assemblages Pyrite Form Degree of

Mineralization

Pyrite-quartz–sericite stage (I) Irregular granular or idiomorphic
coarse-grained crystals Pyrite, quartz, sericite Pyrite quartz vein Weak

Quartz–pyrite stage (II) Fine-grained heteromorphic,
veinlet, reticulate Pyrite, sericite, chlorite Pyrite quartz crushing Strongest

Quartz–polymetallic sulfide
stage (III)

Fine-grained, veinlet, and
disseminated

Quartz, pyrite (chalcopyrite),
galena, sphalerite, etc.

Quartz–polymetallic
sulfide assemblage Strongest

Quartz–carbonate stage (IV) Veinlet or reticulate Quartz, carbonate, and a small
amount of pyrite

Intercalation of quartz
calcite veins No

3. Materials and Methods
3.1. 3D Geological Modeling

Three-dimensional geological modeling technology uses the knowledge of geology,
geostatistics, space science, and other fields to model the possible extent of geological
objects in deep geological bodies based on surface geological data, underground drill-hole
data [26,27], etc. Modeling software enables 3D visualization, spatial feature analysis,
geological interpretation, and resource evaluation [26,27]. This study used SKUA-GOCAD
18.0 (18.0, Emerson, St. Louis, MI, USA) to establish a 3D geological model of the Zhaoxian
gold deposit. In this work, the geological data used included a geological map, several
exploration sections, and 19 drill holes of more than 1400 m depths. The four-step 3D
geological modeling method is given as follows.

(1) A 3D fault model is created based on 1:2000 exploration-line profile data. The image
coordinates are corrected by MapGIS (6.7, Wuhan Zhongdi Information Engineering Co.,
Ltd., Wuhan, China) to obtain the fault-boundary lines, and then SKUA-GOCAD is used to
connect the fault-boundary lines of adjacent profiles and perform surface smoothing.
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(2) Based on the exploration-line profile and drill-hole data, the ore-body boundary
vectorization is carried out to construct a 3D ore-body model of the developed gold deposit.

(3) According to the geological map, exploration-line profile, and drill-hole data, the
formation surface profile is extracted. Based on the workflow of SKUA-GOCAD software,
stratum modeling is carried out and the geological significance of curves is given. The
block model is established to generate a 3D stratum model.

(4) A kriging spatial interpolation model is established using drill-hole geochemical
data. The specific steps are to extract Au grade information first, then establish a grid
model and generate ellipsoids using variogram analysis, and, finally, apply kriging for
spatial interpolation.

3.2. Spectral Analysis

SWIR spectroscopy is based on the selective absorption characteristics of some specific
groups in minerals to SWIR light. The spectral curves can be matched with the standard
minerals or mineral assemblages in the spectral library through algorithms (such as The
Spectral Assistant in Spectral Geologist (TSG8) software (TSGTM 8, CSIRO, North Ryde,
Australia)) to identify minerals (Figure 3) [28,29]. When a sample is illuminated by light in a
spectrometer, the molecular bonds in the minerals stretch and bend causing vibrations that
result in the adsorption of certain wavelengths of light. In phyllosilicates (including white
mica, kaolinite, and montmorillonite), the molecular bonds that cause such vibrations are
mainly those in water and hydroxyl groups, including Al–OH, Mg–OH, and Fe–OH [30,31].
Furthermore, a scalar-extraction method has been constructed. This method takes the
specific absorption characteristics of the spectrum as the research object (Figure 3), extracts
the scalar in the spectral curve, and provides information about the mineral composition
and displacement caused by changes in the cationic composition (for example, Tschermak
substitution in muscovite) according to the scalar [32,33]. The use of scalars can improve
traceability and comparability between different datasets [21].
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To comprehensively analyze the spectral characteristics of the study area and establish
a 3D spectral model, the data involved in this work included five exploration lines in
the Zhaoxian gold deposit area and a total of eight drill holes, of which the No. 88 Ex-
ploration Line was mainly used for the scalar extraction of layered silicates (Figure 4).
Sample locations are roughly equidistant, and intensive sampling was carried out near the
mineralization. The sample locations included the surrounding rock, alteration zone, and
mineralization center. The spectral analysis of these samples identifies the fluid migration
and element migration in the study area.
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The SWIR spectrometer used in the study area is an oreXpress mineral analyzer
(oreXpressTM, Spectral Evolution, Haverhill, MA, USA). The effective test wavelength
range of the instrument is 350–2500 nm, which has a good signal-to-noise ratio (SNR) [23].
When the contact probe is used to test the sample, real-time mineral identification is carried
out by spectral matching through proprietary EZ-ID spectral data acquisition software (1.4,
Spectral Evolution, Haverhill, MA, USA), which has the United States Geological Survey
and SpecMIN mineral libraries built in. The sampling bandwidth of the spectrometer is
1 nm, and the minimum scanning speed is 100 milliseconds. When performing spectral
testing, the instrument needs to be preheated for 10–30 min, and then an international
standard spectral whiteboard is used for calibration. During the testing process, the core
was strictly guaranteed to be dry and clean.

Spectral Geologist software (TSG8) (TSGTM 8, CSIRO, North Ryde, Australia) was
used to process the spectral data. The software matches the waveform of the spectral curve
and the position of the absorption peak with the spectral library to determine mineral types
and extract spectral information [34]. In the data processing, a Hull quotient removal of the
spectral data was carried out. A baseline (Hull) was fitted to each reflectance spectrum. At
each wavelength, the reflectance was divided by the corresponding value on the baseline
(the Hull quotient) to remove the background effect [32,35]. The absorption characteristics
of the spectrum can be enhanced by correcting the baseline [30].

This work adopted the PFIT (A TSG-provided method for extracting scalars to extract
more accurate spectral feature parameters)processing method, which is based on the
polynomial fitting of the spectral curve after removing the Hull quotient to extract the
spectral features [9,10,36]. When analyzing layered silicate minerals in this work, the fourth
derivative is calculated after removing the Hull quotient to obtain the fourth-derivative
spectrum and extract the scalars. The minimum absorption peak position of Al–OH at
2200 nm and the absorption depths at 2200 nm, 1900 nm, and 2160 nm are extracted. The
specific meanings are shown in Table 2.
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Table 2. Scalar quantity and extraction used to identify white mica, chlorite, and kaolinite in TSG8
(modified by [37]).

Scalar Name Mineral Group Plain Description Base Algorithm

Al–OH feature
depth (2200D) White mica Relative depth of the absorption feature

near 2200 nm wavelength.

On the spectrum with the hull quotient removed,
the fourth-order polynomial fitting is performed

near the relative absorption depth (near 2200 nm).

Al–OH feature
wavelength (Pos2200) White mica

Shift of the absorption feature near
2200 nm because of Tschermak’s
substitution of Al in white mica.

On the spectrum with the hull quotient removed,
the fourth-order polynomial fitting is performed

near the position of the minimum absorption peak.

Kaolin group
crystallinity (2160D) Kaolin group

The crystallinity order of the kaolinite
group minerals can be indicated by 2160D.
The larger the relative value of 2160D, the

better the crystallinity order.

On the spectrum with the hull quotient removed,
the fourth-order polynomial fitting is performed

near the relative absorption depth (near 2160 nm).

Fe–OH feature
depth (2250D) Chlorite

Relative absorption depth of absorption
feature at 2250 nm wavelength; indicative

of Fe–OH mineral abundance.

On the spectrum with the hull quotient removed,
the fourth-order polynomial fitting is performed

near the relative absorption depth (near 2250 nm).

Fe–OH feature
wavelength (W2250) Chlorite

Estimation of Mg/(Mg+Fe) in chlorite,
where the wavelength position is caused

by Mg, Fe, or relative Al, Fe3+,
or Ca content.

The minimum wavelength of 2250 nm absorption
of the continuous medium is removed near 2250

nm, which is determined by four-band polynomial
fitting around the band with the lowest reflectivity.

Mg–OH feature
depth (W2350) Chlorite

Depth of 2350 nm feature, evident in white
mica, chlorite, and carbonate; used to

separate white mica from Al-smectites,
when Al–OH feature is present.

On the spectrum with the hull quotient removed,
the fourth-order polynomial fitting is performed

near the position of the minimum absorption peak
(near 2350 nm).

4. Results
4.1. 3D Geological Model

The 3D geological model used for alteration modeling in the Zhaoxian mining area in-
cludes a 3D fault model and a 3D ore-body and grade-interpolation model. A 3D structural
alteration-zone model is constructed to constrain the spatial range of the alteration-zone
mineral parameters and the Au grade-interpolation modeling.

4.1.1. 3D Fault Modeling

Using SKUA-GOCAD software, 3D ore-body and fault models of the Xincheng, Zhaox-
ian, Sizhuang, and Wang’ershan deposits were established from drill holes and geological
sections, which can reflect the spatial location and geometry of the fault structures in the
region, as well as the spatial correspondence between them and the main ore bodies. The
3D fault and ore-body model shown in Figure 5a was established by the location of the
fault clay in the drill holes. The main fault surface is continuous and stable, extending
from west to east; the fault controls the Xincheng, Zhaoxian, and Sizhuang gold deposits.
The secondary faults in the footwall of the main fault zone, such as the Sanshandao and
Wang’ershan faults, are relatively developed, and the occurrence changes of the main
and secondary faults are in a gentle wave shape in the strike and tendency. The concave
or convex zones in Figure 5a,b are the intrusion body boundaries of the Linglong-series
monzogranite and the Guojialing-series granodiorite at depth. Additionally, the regional
structure controls the distribution of gold ore bodies, keeping them close to the footwall
with good continuity (Figure 5b).

4.1.2. 3D Ore-Body and Au Grade-Interpolation Modeling

The 3D gold-deposit ore-body modeling of the area uses the traditional explicit model-
ing method, including roughly determining the ore-body range using the ore-body bound-
ary line determined from mining engineering and drill-hole datasets (Figures 5a and 6). For
this work, additional gold grade geochemistry datasets were acquired in the drill holes [18].
The constructed ore-body model is shown in Figure 6. The ore body has inclined veins and
stable shape, and its occurrence is consistent with the fault (Figure 5b), most of which are
distributed in the pyrite–sericite–quartz alteration zone (Figure 6). There is a close spatial
and temporal relationship between the ore body and pyrite–sericite–quartz alteration zone.
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Figure 5. (a)—Northwestern Jiaodong Peninsula three-dimensional (3D) fault and ore-body model;
(b)—3D ore-body and fault model of Zhaoxian gold deposit.

To intuitively display the spatial distribution behavior of the gold grades in the study
area, this study used the drill-hole datasets to perform 3D explicit modeling. Through
the geostatistical analysis of the gold grade data at different depths in the drill hole and
calculations of the variograms in different directions, each ore block is given a search
radius ellipsoid. This process estimates the average-grade space allocation of each ore
block (Figure 7a). The 3D grade-interpolation model is shown in Figure 7b. The 3D
grade-interpolation model is constrained by the alteration zone. From the interpolation
results, there are numerous high-grade ore areas within the alteration zone, and within the
constrained range, the grade gradually increases from shallow to deep.
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4.1.3. 3D Alteration-Zone Modeling

Here, the alteration-zone model is constructed based on the pyrite–sericite–quartz
alteration lithology that is symmetrically distributed on the hanging and lower walls of
the fault [38]. The outline of the unit is extracted from the 1:2000 exploration-line profile.
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The structural morphology and spatial distribution of the altered zone can be described
by the altered structure model. The final 3D alteration-zone model is shown in Figure 8.
The 3D model can better demonstrate the spatial correlations among the fracture structure,
ore body, and alteration zone. The gold ore is mainly distributed in the footwall of the
fault, and the morphology and distribution are controlled by the fracture. The range of the
alteration zone is larger than the mineralization range, and its distribution is in the form of
a belt, intersected by the main fracture surface.
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4.2. Interpretation Based on SWIR Spectra

SWIR spectroscopy results identified the main alteration-mineral groups in the eight
holes collected in the Zhaoxian gold deposit as white mica, carbonate (siderite and magne-
site), kaolinite, smectite, and chlorite, with most minerals co-occurring with white mica.
According to the spectral interpretation, the white mica of the Zhaoxian deposit mainly
consists of muscovite, paragonite, phengite, muscovitic illlite, paragonitic illlite, and phen-
gitic illlite; muscovitic illlite, for example, is an intermediate product of the conversion of
muscovite to illite (the latter three are classified in this work as muscovite, paragonite, and
phengite and not separately discussed).

Kaolinite is the most widely distributed clay mineral, an Al-rich silicate that forms
through acidic alteration. The crystallinity of kaolinite can be identified by SWIR spec-
troscopy [34]. The mineral has typical double absorption peaks near 2160 nm and 2206 nm,
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the intensities of which depend on the type of kaolinite mineral and its crystallinity. There-
fore, the influence of kaolinite on Pos2200 needs to be considered when a mixture of white
mica and kaolinite is present [16,39,40]. In the Zhaoxian gold deposit, the kaolinite is mainly
combined with white mica as a second major constituent, with only a small proportion
being found as a single mineral.

In the Zhaoxian main ore-body zone, the chlorite is mainly found in deep granite
in small quantities and always associated with muscovite and carbonate. Chlorite has
diagnostic Fe–OH and Mg–OH absorptions centered at 2250 and 2350 nm. Because the
Mg–OH in chlorite may be affected by the presence of carbonate, Fe–OH absorption is
commonly used to determine the composition in the chlorite.

4.3. Alteration Features and Zonation

The ore bodies in the study area are controlled by the Jiaojia Fault and are mainly
distributed in fractured, altered rocks [8]. Drill-hole cores are mainly concentrated in the
northern part of the Zhaoxian gold deposit, and most of the ore bodies are present. The
distribution of ore bodies along Line 88 is continuous, and their thicknesses are stable.
Therefore, this study mainly focused on the Line 88 drill holes to study the cross-section
of the ore body and host rock and to illustrate the spatial distribution of SWIR alteration-
zone minerals.

4.3.1. No. 88 Exploration Line

The No. 88 Exploration Line includes drill holes 88ZK01, 88ZK03, and 88ZK05 and
crosses the hanging wall and footwall of the main fracture. The hanging wall of the main
fracture is composed of medium-grained monzogranite and sericite-quartz altered rock.
The ore bodies developed in the footwall of the fault zone, including most of the I, II-1,
and II-2 ore bodies. Both ends of the ore bodies are pinched out, and their occurrence is
controlled by the Jiaojia fault. From the center of the ore body to the outside, there is a sym-
metrical distribution of pyrite–sericite–quartz altered rock, pyrite-sericitized granitic altered
rock, sericite–quartz altered rock„ and medium-grained monzonitic granites (Figure 9).
The ore body is relatively simple, with strong continuity, and has good metallogenic con-
ditions [8,23]. Ore body I is present in the pyrite–sericite–quartz cataclastic rocks and
sericite-quartz granitic cataclastic rocks. Ore body II mainly exists in sericite-quartz granitic
cataclastic rocks. All the drill holes penetrated the intact alteration zone.

Drill-hole 88ZK01 is an oblique drill with a test depth of 905.46 m to 1594.99 m. SWIR
spectroscopy indicates that it contains diorite and porphyrite interlayers. The lithology
histogram can be described as follows. Five main alteration-zone mineral groups were
extracted by SWIR spectroscopy, mainly white mica, kaolinite, smectite, carbonate, and
other-Al–OH minerals; white mica was the main alteration-zone mineral (Figure 10). The
mineralization is concentrated at approximately 1300 m to 1469 m. The type of sericite
is muscovite, and its distribution basically corresponds to the mineralization. Kaolinite
is less developed, and the muscovite–carbonate alteration zone is also developed. The
distribution of alteration-zone minerals near the mineralization can be divided into five
zones. The shallow depth of 1070 m is alteration-zone V, and the corresponding lithology is
monzogranite. The main minerals are Al-rich sericite, carbonate, and a small quantity of
montmorillonite, among which the carbonate is well-developed. The mineral assemblage
can be preliminarily classified as the quartz–carbonate mineralization stage [23]. Alteration-
zone IV extends from 1070 m to 1300 m, where large quantities of Al-rich sericite–kaolinite
alteration-zone minerals are developed, and montmorillonite and carbonate are generally
developed. This layer has a unique kaolinite mineral with good crystallinity (kaolinite-wx).
The 1469–1546.2 m deep mineralization is alteration-zone II, and the mineral assemblage is
sericite–carbonate and a small quantity of low-crystallinity kaolinite (kaolinite-px). The
Pos2200 value of sericite in this zone is lower than it is in zone IV. Chlorite is developed
only in the monzonitic granite formation of alteration-zone I at 1546.2 m, and the mineral
assemblage is sericite–carbonate–chlorite. Generally, sericite is widely distributed in drill-
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hole 88ZK01, and there are obvious high Pos2200 values near the mineralization, which is
developed in the pyrite–sericite–quartz cataclastic rock. The content of montmorillonite is
low, there is no obvious regularity, and the carbonate alteration is relatively continuous
(Figure 10).

Drill-hole 88ZK03 was vertically drilled and spectroscopically tested at depths of
870.39 m to 1679.77 m. There are gabbro interlayers near the mineralization, and potassic
granite gneiss is developed in the deep part. There are tectonic cataclastic rocks near the
Jiaojia fault zone. The lithology histogram is described as follows (Figure 11). The zoning of
the mineral assemblages is the same as that of 88ZK01, where the shallow 870.39–1123.32 m
area is alteration-zone V, and the corresponding lithology is monzogranite and sericite–
quartz granite, mainly consisting of Al-rich muscovite and carbonate. Alteration-zone IV
is located near the fault, with depths of 1123.32–1345.09 m, and the pyrite sericitization
is obvious. The mineralization is roughly concentrated at 1345.0–1500 m in alteration-
zone II, and strong pyrite–sericite–quartz and sericite alterations are developed in the
cataclastic rock (Figure 11). A large quantity of phengite appears in this layer, and kaolinite
is rare. Alteration-zone I, which is developed in potassic granitic gneiss at depths of
1621–1679.77 m, contains unique chlorite minerals with relative contents higher than those
of 88ZK01.
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zone; III—phengite–carbonate–kaolinite-wx alteration-zone; IV—phengite–carbonate alteration-
zone; V—sericite–carbonate alteration-zone. 

Drill-hole 88ZK03 was vertically drilled and spectroscopically tested at depths of 
870.39 m to 1679.77 m. There are gabbro interlayers near the mineralization, and potassic 
granite gneiss is developed in the deep part. There are tectonic cataclastic rocks near the 
Jiaojia fault zone. The lithology histogram is described as follows (Figure 11). The zoning 
of the mineral assemblages is the same as that of 88ZK01, where the shallow 870.39–
1123.32 m area is alteration-zone V, and the corresponding lithology is monzogranite and 
sericite–quartz granite, mainly consisting of Al-rich muscovite and carbonate. Alteration-
zone IV is located near the fault, with depths of 1123.32–1345.09 m, and the pyrite 

Figure 10. Distribution of alteration-zone minerals in drill-hole 88ZK01. 1©—Sericite–quartz gran-
itized cataclastic rock; 2©—sericitized granite; 3©—biotite monzogranite; 4©—white diorite por-
phyrite; 5©—sericite–quartz cataclastic rock; 6©—pyrite–sericite–quartz granitic cataclastic rock;
7©—pyrite–sericite–quartz cataclastic rock; 8©—potassic sericite–quartz granitic cataclastic rock.

2200D indicates relative abundance of sericite minerals; 2160D indicates relative abundance of kaoli-
nite; I—sericite–carbonate–chlorite alteration-zone; II—sericite–carbonate–kaolinite-px alteration-
zone; III—phengite–carbonate–kaolinite-wx alteration-zone; IV—phengite–carbonate alteration-zone;
V—sericite–carbonate alteration-zone.

The sampling depth of drill-hole 88ZK05 is deeper than that in the previous two drill
holes, ranging from 1055.05 m to 1800 m. The drill hole passes through many ore veins,
which pinch out on both sides. Compared with the previous two drill holes, the shallow
area lacks pyrite–sericite–quartz granitoid cataclastic rock. The lithologic histogram for drill-
hole 88ZK05 can be described as follows (Figure 12). Owing to the increased acquisition
depth, there was no alteration-zone V. Alteration-zone I is located in the granitic cataclastic
rocks and sericite–quartz cataclastic rocks at 1774.5–1800 m. Compared with the other
two drill holes, the content of montmorillonite in this alteration zone is relatively high.
Alteration-zone II developed at 1599–1774.5 m. Alteration-zone III is the mineralized zone.
Unlike the other drilling holes, there is a small quantity of kaolinite near the mineralization.
Alteration-zone IV is shallower than 1475 m. The 88ZK05 drill hole is quite different from
the previous two drill holes owing to the mineralized area and multiple ore bodies. A large
quantity of sericite and carbonate are continuously distributed in the drill hole, with high
relative contents, including abundant kaolinite-wx (Figure 12).
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Figure 11. Distribution of alteration-zone minerals in drill-hole 88ZK03. 1©—Biotite monzonitic granite;
2©—sericite monzogranite; 3©—pyrite–sericite–quartz granite; 4©—pyrite–sericite–quartz granitic cata-

clastic rock; 5©—tectonic cataclastic rock; 6©—lithified cataclastic rock; 7©—gabbro; 8©—sericite–quartz
cataclastic rock; 9©—potassic granitic gneiss. 2200D indicates relative abundance of sericite-group min-
erals; 10©—2160D indicates relative abundance of kaolinite; I—sericite–carbonate–chlorite alteration-
zone; II—sericite–carbonate–kaolinite-px alteration-zone; III—phengite–carbonate–kaolinite-wx
alteration-zone; IV—phengite–carbonate alteration-zone; V—sericite–carbonate alteration-zone.

4.3.2. Spatial Distribution of Alteration-Zone Minerals in the Section of No. 88
Exploration Line

The No. 88 Exploration Line has obvious alteration zoning, clearly recording the
mineralization and alteration characteristics of the deposit area, and the deep mineralization
is typical. The SWIR results can be used to divide the alteration-zone mineralization
into five alteration zones. Alteration-zone I, which is located in the monzogranite strata,
consists of sericite–chlorite and only appears in the deep mineralization. Additionally,
with increasing depth, the relative content of chlorite also increases. Alteration-zone II
is a sericite–carbonate zone, containing a small quantity of kaolinite-px, usually near the
intersection of the pyrite–sericite–quartz granitized cataclastic rock and deep potassic
granite zone. Alteration-zone III is a mineralized zone with abundant pyritic sericite;
its lithology is mainly pyrite–sericite–quartz cataclastic rock and pyrite–sericite–quartz
granitic cataclastic rock. The alteration-zone minerals are phengite–carbonate, with a few
other minerals. Alteration-zone IV is the sericite–kaolinite-wx–carbonate zone, which is
located in the hanging wall of the fault zone, and is characterized by the development of
unique kaolinite-wx. Alteration-zone V is the sericite–carbonate zone, containing small
quantities of kaolinite and montmorillonite. Generally, the minerals have obvious zonal
distribution, in which phengite is mostly developed near the mineralization (Figures 10–12).
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Kaolinite-wx develops on the hanging wall of the fault zone, and the position near the
ore body contains almost no kaolinite. Moreover, chlorite only exists in the deep granite
plutons far from the mineralization.
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Figure 12. Distribution of alteration-zone minerals in drill-hole 88ZK05. 1©—Biotite monzonitic
granite; 2©—sericite–quartz granitic cataclastic rock; 3©—diorite porphyrite; 4©—sericite–quartz cata-
clastic rock; 5©—pyrite–sericite–quartz granitic cataclastic rock; 6©—pyrite–sericite–quartz cataclastic
rock; 7©—biotite-bearing monzonitic granitic cataclastic rock. 2200D indicates relative abundance
of sericite-group minerals; 2160D indicates relative abundance of kaolinite; I—sericite–carbonate–
chlorite alteration-zone; II—sericite–carbonate–kaolinite-px alteration-zone; III—phengite–carbonate–
kaolinite-wx alteration-zone; IV—phengite–carbonate alteration-zone.

4.4. Spectral Characteristics of Sericite

Sericitization is the main alteration type of the Zhaoxian deposit; sericite is distributed
in the center of the alteration zone and is closely related to gold mineralization [3]. Sericite
is commonly used to describe fine-grained white mica (muscovite, phengite, and/or illite)
developed in hydrothermally altered rocks [28]. Muscovite is a dioctahedral layered
silicate. When the octahedral coordination cation undergoes Tschermak substitution,
the octahedral aluminum is replaced by other cations (such as iron and magnesium) to
form three common end members: muscovite, paragonite, and phengite [28]. Tschermak
displacement is common in phengite solid solutions and involves coupled displacement
between tetrahedral and octahedral layers ((Al↔Si)tet = (Al)↔{Fe2+,Mg}oct) [9]. When
the temperature and pressure are changed, the Al in the octahedral position is replaced by
other cations, and the ratio of Si to Al becomes greater than 3; that is, Al-poor muscovite
(phengite) is formed [41].
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The muscovite group has a diagnostic Al–OH absorption signature centered at 2200 nm,
which is associated with the vibrations of the octahedral coordination atoms, the wave-
length positions of which provide information about the mineral composition and shifts
owing to changes in the cationic composition [21,31,41]. A useful parameter is the wave-
length of the Al–OH band (Table 2), which increases with a decrease in Alvi. Because mont-
morillonite has similar SWIR spectral characteristics (1900 nm and 2200 nm) to muscovite,
illite crystallinity values (IC=2200D/1900D) are also widely used to evaluate muscovite and
montmorillonite crystallinity [21,37]. Other octahedral silicate minerals, such as kaolinite
and montmorillonite, also have absorption features near 2200 nm that overlap with many
muscovite features, even though they can be identified and separated on the basis of other
specific spectral properties.

4.4.1. Al–OH Feature Wavelength Pos2200

The substitution of octahedral Al by other cations such as Fe and Mg is the main reason
for the change in muscovite composition. Therefore, the wavelength of the Al–OH band can
be used to spectroscopically quantify the octahedral cation composition (Alvi) of muscovite,
reflect compositional changes, and infer fluid characteristics [31,40,42]. Sericite exhibits
strong absorption near 2200 nm, which is called Pos2200. When Tschermak substitution
occurs, the composition of cations in the octahedron changes; usually, Pos2200 > 2205 nm
is Al-poor muscovite with high Fe and Mg content [41]. Furthermore, because kaolinite
and montmorillonite also have absorption peaks near 2200 nm, when the muscovite-group
minerals are mixed with these minerals, the absorption peak position of Al–OH will
slightly change.

The sericite minerals identified by SWIR in the eight drill holes in the Zhaoxian mining
area mainly include muscovite, paragonite, phengite, and illite. The minimum absorption
peak position (Pos2200) of Al–OH is concentrated around 2200 nm, approximately at
2185–2220 nm with a normal distribution, indicating that the dolomite minerals in the
study area are distinct (Figure 13). It can be seen from Figure 10 that Pos2200 > 2205 near
the ore body is Al-poor muscovite. In the deep part of the mineralization, the Pos2200
value decreases, which reflects the significant correlation between mineralization, depth,
and Al–OH wavelength. For the convenience of distinction and description, this study
used Pos2205 as the division between muscovite and phengite.
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The Pos2200 values of the four selected drill holes passing through the main ore bod-
ies are all in a normal distribution, which roughly shows that the Pos2200 wavelength of 
the shallow sericite is relatively short, generally less than 2204, indicating Al-rich musco-
vite. With the increase in depth, the Pos2200 value of sericite gradually increased to ap-
proximately 2208. According to Figure 13, the Pos2200 values of the selected drill holes 
passing through the main ore body at 800–1500 m depths have almost a normal distribu-
tion; as the depth increases, the Pos2200 values also increase (Figure 14). Conversely, be-
cause of the depth of 88ZK05, the Pos2200 value actually decreases in the deepest part. 
The study of the offset of Pos2200 reflects that the gold mineralization corresponds to high 
values of Pos2200. This phenomenon is more obvious in the contour profile, and the high 
value area of Pos2200 is basically consistent with the mineralization trend (Figure 15). 

 

Figure 13. Relative frequencies of Al–OH Pos2200 in white mica.

The Pos2200 values of the four selected drill holes passing through the main ore bodies
are all in a normal distribution, which roughly shows that the Pos2200 wavelength of the
shallow sericite is relatively short, generally less than 2204, indicating Al-rich muscovite.
With the increase in depth, the Pos2200 value of sericite gradually increased to approxi-
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mately 2208. According to Figure 13, the Pos2200 values of the selected drill holes passing
through the main ore body at 800–1500 m depths have almost a normal distribution; as the
depth increases, the Pos2200 values also increase (Figure 14). Conversely, because of the
depth of 88ZK05, the Pos2200 value actually decreases in the deepest part. The study of
the offset of Pos2200 reflects that the gold mineralization corresponds to high values of
Pos2200. This phenomenon is more obvious in the contour profile, and the high value area
of Pos2200 is basically consistent with the mineralization trend (Figure 15).
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Figure 14. Wavelength relationship histogram of sericite Al–OH Pos2200 and depth.

4.4.2. Al–OH Feature Depth 2200D

The quantity of infrared radiation absorbed is a function of the quantity of absorbing
material in the sample. However, the absorption intensity is also affected to varying
degrees by the physical conditions of the sample, such as the particle size and orientation
of the absorbing minerals [15]. As a first approximation, the intensity of the Al–OH band
was taken as an indication of the relative abundance of muscovite by assuming similar
sample conditions for all pulverized core samples [31]. The intensity of the Al–OH band
is the relative absorption depth of layered silicate minerals such as muscovite, kaolinite,
and montmorillonite around 2200 nm, which is a fourth-order polynomial fitted between
2180 nm and 2220 nm of the Hull quotient. The derivative is followed by an extraction of
relative depth, which indicates muscovite abundance. According to the contour profile, the
2200D in the No. 88 Exploration Line profile has a slight change in the vertical direction,
and the correlation with the mineralization is not high, but the relative content of muscovite
gradually increases from 88ZK01 to 88ZK05 in the horizontal direction (Figure 16).
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The SWIR-IC values in the study area varied from 0.2 to 3.8 with a majority concen-
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in the drill holes were extracted and combined with the spatial locations of the drill holes 
to make a 2D contour map. As shown in Figure 16, the SWIR-IC values are relatively high 
near the ore body in the vertical direction, gradually decrease from the center of the min-
eralization to the sides, and are lower in the deeper areas of the mineralization. In the 
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4.4.3. Illite Crystallinity SWIR-IC Value

The illite crystallinity (SWIR-IC) value refers to the ratio of the absorption depth of
sericite at 2200 nm to the absorption depth at 1900 nm. Numerous experiments have been
conducted by predecessors. Compared with X-ray diffraction illite crystallinity (XRD-IC),
the two have a good negative correlation [21]. Therefore, SWIR-IC, such as XRD-IC, can
indicate the crystallinity of sericite minerals. The characteristic absorption peak at 1900 nm
may indicate the water absorption of sericite. When the fluid temperature is relatively high,
the muscovite minerals contain less crystalline water and have a high SWIR-IC value, so
the degree of change in crystallinity can be used to reflect variations in mineral formation
temperature [21,37,43].

The SWIR-IC values in the study area varied from 0.2 to 3.8 with a majority concen-
trated between 0.5 and 1.5 (Figure 17). The crystallinities of the muscovite-group minerals
in the drill holes were extracted and combined with the spatial locations of the drill holes
to make a 2D contour map. As shown in Figure 16, the SWIR-IC values are relatively
high near the ore body in the vertical direction, gradually decrease from the center of the
mineralization to the sides, and are lower in the deeper areas of the mineralization. In the
horizontal direction (Figure 17), the distribution of high IC values is generally consistent
with the mineralization strike, thus confirming that the center of mineralization can be
indicated by the IC values.
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At the deposit scale, the common spatial zonation pattern in the Jiaojia gold deposit 
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the 2D alteration-zoning model (Figure 18). The alteration zoning in this area is obvious, 
and the distribution is relatively stable. The phengite–carbonate alteration zone intersects 
with the ore body (Figure 19), which agrees well with, and can be a good indication of, 
the spatial distribution of the mineralization center. The alteration-zone minerals in the 
surrounding rocks are controlled by the original rock composition and structural zoning. 
The pyrite–sericite–quartz alteration zone in the footwall of the fault is close to the main 
fault plane. The pyrite–sericite–quartz alteration is strong, and the main alteration-zone 
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phengite and carbonate minerals, followed by montmorillonite and a small quantity of 
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Figure 17. No. 88 Exploration Line diagram of two-dimensional spatial change in short-wave infrared
illite crystallinity.

5. Discussion
5.1. Metallogenic Center Indication

The purpose of auxiliary exploration can be achieved by tracking the migration of
ore-forming fluid and change in fluid composition through alteration zoning [21]. By using
the SWIR-spectrum test, the alteration type in the rock core can be intuitively interpreted
at the micron scale, and the boundary of the alteration zone can be refined through the
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spectral characteristic parameters and mineral abundance changes [21]. Based on spectral
(hyperspectral) imaging, determining the best stratigraphic combination and mineralogical
alteration type related to mineralization is carried out to determine the mining probability
with similar stratigraphic and structural conditions [44,45].

At the deposit scale, the common spatial zonation pattern in the Jiaojia gold deposit
advances toward the hydrothermal center. According to the SWIR results, by establish-
ing 3D alteration-zoning models (Figures 18 and 19), the spatial distribution of mineral
assemblages can be determined [46,47]. The model shows the location and geometry of
the five alteration zones in the area, clearly reveals their spatial distributions, and confirms
the 2D alteration-zoning model (Figure 18). The alteration zoning in this area is obvious,
and the distribution is relatively stable. The phengite–carbonate alteration zone intersects
with the ore body (Figure 19), which agrees well with, and can be a good indication of, the
spatial distribution of the mineralization center. The alteration-zone minerals in the sur-
rounding rocks are controlled by the original rock composition and structural zoning. The
pyrite–sericite–quartz alteration zone in the footwall of the fault is close to the main fault
plane. The pyrite–sericite–quartz alteration is strong, and the main alteration-zone minerals
are developed in the center of the ore body. There were large quantities of phengite and
carbonate minerals, followed by montmorillonite and a small quantity of kaolinite. Sericite
and carbonate rocks are mainly developed in the monzogranite, in the quartz–carbonate
stage, and are basically not mineralized. A small quantity of chlorite is developed in the
deep granite. In addition to sericite, kaolinite has the most obvious spectral characteristics.
The sericite–quartz granitized cataclastic rock on the hanging wall of the main fault surface
is rich in kaolinite-wx, indicating an acidic and water-rich environment. Kaolinite was
basically undeveloped in the mineralized section. The petrological and SWIR spectral
characteristics show that the distribution of these minerals is related to mineralization
temperature changes. To sum up, the presence of alteration-zone minerals such as phengite,
kaolinite, and chlorite can be used as a direct indicator of the deep ore body of the Zhaoxian
gold deposit.

In addition to refining the distribution of layered silicate mineralogy, the Al–OH
datasets can be used to track the fluid path that forms the clay alteration and mineralization
center [21]. Temperature and pH are the most important factors affecting the hydrothermal
system [40]. Taking muscovite and phengite as examples, the increase in the pH value helps
to replace Alvi with Fe2 + or Mg2 +, so that the Si/Alvi ratio increases and Pos2200 moves
toward the long-wave direction. Therefore, muscovite is formed at a lower pH, whereas
phengite is formed at a relatively high pH. According to previous studies, the crystallinity
of layered silicate minerals can be used to infer the relative temperature change [9,29]. The
greater the crystallinity, the higher the formation temperature [40]. Based on the results
of the above analysis of the Al–OH spectral characteristics of sericite in the 1D and 2D
space (Section 4.4), the Pos2200 and SWIR-IC values of Al–OH are strongly correlated
(Figure 20) and closely associated with mineralization. As the spectral test data for the
drill holes are relatively continuous, the 3D modeling for these two parameters can be
established by referring to the method of grade modeling in Section 4.1.2. Figures 21 and 22
are constructed by ordinary kriging interpolation in SKUA-GOCAD; the ranges of Pos2200
and SWIR-IC interpolation are constrained in the 3D space by the tectonic alteration zone,
clearly reflecting that both Pos2200 and SWIR-IC have high values within the tectonic
alteration zone and coincide with the ore body. The range of high values for Pos2200 is
wider than the range of high values for SWIR-IC. Therefore, Pos2200 and illite crystallinity
can be used as vectors and exploration tools to delineate hydrothermal centers.
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5.2. Mineral-Exploration Indications

The 3D alteration-zoning model (Figure 19) shows the location and geometric shape
of each alteration zone and the gold mineralization and ore body [21,48]. The model clearly
displays the spatial relationships among different alteration types and the ore bodies and
fault structures and confirms the relative positions of alteration zones. The alteration
zone is relatively continuous, and the phengite zone and underlying kaolinite zone are
basically consistent with the ore body enrichment [34,48]. Based on the regional spreading
of 3D fracture structures and ore bodies, the main Jiaojia fault was shown to be the key to
conducting mineral exploration in the area. By developing a 3D model, it is possible to
visualize the geological characteristics of the hanging wall and footwall of the ore body’s
occurrence stratum and their variations along the strike [49]. Understanding the spatial
range of alteration-zone mineral assemblages and the relationship between the ore body
and fault is of great significance for exploration around the deposit and is conducive to
developing the mining plan [49]. In addition, based on the 3D geological model, the
predecessors proposed a new method of building 3D mineral prospect with a convolutional
neural network (CNN), thus reducing the uncertainty of exploration targets [50].

When the quantity of alteration-zone mineral data in the study area is sparse, the
mineralized center can be roughly determined through the IC value, which is associated
with the sulfide ore-forming stage in the gold deposit, and then the characteristic IC
parameters of muscovite can be introduced to delineate the high-temperature core zone of
the gold deposit [16]. In the Zhaoxian gold deposit, the exploration targets can be accurately
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located along with datasets such as the distribution of Al–OH absorption characteristics
of sericite (Pos2200 and IC) with pyritization alteration, sericite–kaolinite and phengite
alteration zones, the change in kaolinite crystallinity, hand specimen observation and
microscopic identification, and geochemical data.

The results of alteration zoning provide an important reference for metallurgical test
design. An accurate and comprehensive alteration combination diagram is crucial for
optimizing the beneficiation process. The study of gold migration in the Zhaoxian gold de-
posit showed that each type of alteration accounts for different proportions of chalcopyrite
and pyrite [25]. With the support of SWIR analysis, the alteration model established for
the Zhaoxian gold deposit describes the precipitation characteristics of gold in different
occurrence states, which is essential for the possible grinding and concentration processes
in future prefeasibility work [21]. Additionally, because different layered silicate minerals
have different flotation reactions, the layered silicate mineral assemblages identified by
scalar extraction can help to understand the clay mineral content changes, thus helping to
reduce the impact of clay minerals on flotation and bringing obvious economic benefits to
mineral processing [51].

6. Conclusions

The analyses of the SWIR spectra show that muscovite, carbonate, kaolinite, montmo-
rillonite, and chlorite are the main alteration-zone minerals in the Zhaoxian gold deposit,
among which phengite is closely related to gold mineralization. The mineral assemblages
in the study area have obvious zonality, and the changes between zones are gradual.
Alteration-zone I consists of sericite–carbonate–chlorite and developed in deep granite.
Phengite–carbonate zones are mainly distributed in alteration-zones II and III. Strong pyrite–
sericite–quartz alteration is developed in alteration-zone III, and kaolinite is not developed,
whereas alteration-zone II contains a small quantity of kaolinite-px. Sericite–carbonate–
kaolinite-wx is developed in sericite–quartz granitized cataclastic rock (alteration-zone IV).
Alteration-zone V (sericite–carbonate) is located in the monzogranite.

The 3D geological and spectral scalar models show that the study area has obvious
tectonic control features, with spatial correlation between alteration zones, fracture struc-
tures, and ore bodies. The mineralization zone is a semiopen shear space and provides
sufficient space for the water–rock metasomatic reaction of the fluid. The compressive
torsional features and concave–convex section zone (depth 3000 m) are the main signs of
3D geological ore-body modeling in the Zhaoxian gold deposit for ore prospecting. A large
quantity of high-crystallinity phengite was found near the mineralization and in the deep
area, which indicates that a large quantity of gold in the fracture was precipitated in a
hydrothermal environment with gradually lower temperatures and relatively higher pH.

The SWIR spectral features indicate that phengite is the proximal alteration-zone min-
eral to gold mineralization in a strong pyritic sericitization zone. Phengite with relatively
high Pos2200 values (>2205 nm) as well as relatively high SWIR-IC values can correspond
well to gold mineralization. Both Pos2200 and SWIR-IC can be used as mineralization
indicators for the study area.
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Abstract: Several technical challenges are related to data collection, inverse modeling, model fusion,
and integrated interpretations in the exploration of geophysics. A fundamental problem in integrated
geophysical interpretation is the proper geological understanding of multiple inverted physical prop-
erty images. Tackling this problem requires high-dimensional techniques for extracting geological
information from modeled physical property images. In this study, we developed a 3D statistical tool
to extract geological features from inverted physical property models based on a synergy between
independent component analysis and continuous wavelet transform. An automated interpretation of
multiple 3D geophysical images is also presented through a hybrid spectral feature subset selection
(SFSS) algorithm based on a generalized supervised neural network algorithm to rebuild limited
geological targets from 3D geophysical images. Our self-proposed algorithm is tested on an Au/Ag
epithermal system in British Columbia (Canada), where layered volcano-sedimentary sequences,
particularly felsic volcanic rocks, are associated with mineralization. Geophysical images of the
epithermal system were obtained from 3D cooperative inversion of aeromagnetic, direct current
resistivity, and induced polarization data sets. The recovered cooperative susceptibilities allowed
locating a magnetite destructive zone associated with porphyritic intrusions and felsic volcanoes (Au
host rocks). The practical implementation of the SFSS algorithm in the study area shows that the
proposed spectral learning scheme can efficiently learn the lithotypes and Au grade patterns and
makes predictions based on 3D physical property inputs. The SFSS also minimizes the number of
extracted spectral features and tries to pick the best representative features for each target learning
case. This approach allows interpreters to understand the relevant and irrelevant spectral features
in addition to the 3D predictive models. Compared to conventional 3D interpolation methods, the
3D lithology and Au grade models recovered with SFSS add predictive value to the geological
understanding of the deposit in places without access to prior geological and borehole information.

Keywords: independent component analysis; 3D modeling; spectral feature subset selection

1. Introduction

A fundamental problem in integrated geophysical interpretation is the proper ge-
ological understanding of multiple inverted physical property images, which demands
high dimensional techniques for extracting geological information from modeled physical
property images. The study of seismic attributes is an example of high-dimensional pat-
tern recognition that seeks to extract relevant geological features from broadband seismic
data [1–7]. Non-seismic data interpretations in mineral exploration involve a similar classi-
fication problem, where extracting 3D geological information from inverted potential field
data is a computational challenge.

Several techniques are available for feature extraction in the high dimensional space,
and this computational challenge can be seen as a dimensionality increase problem that
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consequently leads to an overload of information [8–10]. For example, the spectral de-
composition of geophysical images provides a robust way for feature extraction in the
frequency domain [11–13]. However, the underlying patterns inside the high-dimensional
images are only related to certain frequencies, and most decomposed spectra are redun-
dant. The question is which frequency or frequency ranges are geologically relevant. This
computational challenge can be seen as a dimensionality reduction problem, in which we
try to extract the best representative components of high-dimensional images to facilitate
visual interpretations and machine learning optimization [14,15].

Conventionally, high redundancy in the spectral domain is treated by incorporating
principal component analysis (PCA) to extract the principal components of multiple im-
ages [14,16]. PCA is an unsupervised algorithm that linearly transforms the multivariate
datasets into new features called Principal Components (PCs) by maximizing the variance
of the input data [14,16]. However, the uncorrelatedness of principal components is a
weaker form of independence; therefore, PCA is not a good choice for separating over-
lapped features inside multiple physical property images [17]. Alternatively, independent
component analysis (ICA), precisely the negentropy maximization approach, has been pro-
posed as a robust tool for separating background lithotypes from alteration events [17,18].
Unlike PCA, ICA performs beyond the Gaussian assumption and incorporates higher-order
statistics to find maximally independent latent features [14,16].

As expected, the spectra of the ICs still contain certain hidden overlapped features
in different frequencies. A similar problem has been addressed by Honório et al. [19] to
visualize seismic broadband data in different frequencies. They used ICA to maximize the
non-gaussianity of the decomposed seismic frequency volume and stacked the resulting
ICs in three red, green, and blue (RGB) channels. The unified RGB image delineated a
hidden sedimentary channel system [19]. However, this approach lacks automation and
involves manually selecting and stacking representative ICs of the decomposed seismic
data. The extraction of spectral features provides more detailed input features for the
machine learning algorithm; however, the existence of redundant features decreases the
performance of the learning process. Finding a way to detect these redundancies and avoid
them can improve machine learning predictions. Moreover, it is challenging to decide
how much dimensionality reduction is necessary to represent the most prominent spectral
features to machine learning algorithms.

Feature subset selection (FSS) provides a powerful tool for adaptive dimensionality
reduction and feature learning [15,20–22]. SFSS reduces the size of a large set of input
features to a new set of relatively small and representative input features that improve the
accuracy of the artificial neural network (ANN) prediction, either by decreasing the learning
speed and model complexity or by increasing generalization capacity and classification
accuracy [23]. Therefore, unlike conventional statistical dimensionality reduction methods
that are blind source separation algorithms, there is a criterion for the selection of the
best features that can be expressed as an adaptation of the learning process in the light
of the optimization of both neural synaptic weights and the number of selected input
features [21–23].

This study’s spectral feature subset selection (SFSS) procedure is seen as a multi-
objective optimization problem in which both the ANN weights and the number of the
selected features are updated in different iterations. Several heuristic algorithms are known
to solve these multi-objective optimization problems [24–26]. We use a bi-objective genetic
algorithm (GA) optimization to regularize the ANN weights and find the most adaptable
combination of input spectral features in the supervised machine learning procedure. The
advantage of this approach to the conventional representative learning algorithms is that
it can direct the learning of ANN in a way that only a relevant set of input features are
allowed to be used during the learning process.

The main objective of this study is to present a robust algorithm to train ANN with
automatically selected spectral features to predict geological targets such as mafic to felsic
3D lithological variations and 3D Au-grade distribution. The predicted outputs of the
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SFSS procedure are the estimated geological targets and selected sets of spectral features
related to each geological target. The study also aims to show that the selected features
and predicted targets also provide a unique way for interpreters to see which spatial and
spectral features are prominent in relation to the geological targets.

2. Materials and Methods

We developed an algorithm that automatically selects the best representative compo-
nents based on multi-objective machine learning optimization. Our self-proposed 3D SFSS
algorithm works for dimensionality reduction and separating high-dimensional spectral
overlapped features. However, SFSS implementation in this study demands several pre-
processing stages, including 3D inversion of geophysical data and 3D feature extraction
methods. The accuracy of inverted physical property images is critically important in
the subsequent feature extraction and selection procedures. 3D inversion algorithms are
dedicated to tackling this problem [27–30]. Even if the geophysical inversion provides
the most accurate physical property distributions, each physical property image provides
only partial information about subsurface geology. This phenomenon can be seen as a
linear mixing process, and ICA can help to reconstruct the hidden geological features from
multiple physical property images [17,18]. The advantage of this method is that it can
separate the host geology from alteration overprints in multidimensional physical property
space [17].

Subsequently, spectral decomposition reveals many latent features that are not prop-
erly visible in the spatial domain. However, the statistical interdependence of the decom-
posed images is a major difficulty in extracting and selecting geological information. The
large volumes of decomposed spectra also limit the spectral decomposition’s efficiency
and demand effective dimensionality reduction methods to prevent information overload.
Our self-proposed SFSS algorithm solves these high-dimensional problems in five stages
(Figure 1):

1. 3D inversion of geophysical data.
2. Separation of physical properties through ICA (spatial feature extraction).
3. Spectral decomposition of ICs through a continuous wavelet transform (CWT).
4. Dimensionality reduction and separation of raw spectral features through ICA (spec-

tral feature extraction).
5. SFSS based on a supervised feature selection algorithm optimized by a multi-objective

GA optimization (spatiospectral feature selection).
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2.1. Geological and Geophysical Settings

We test our method on an Au/Ag epithermal deposit known as the Newton deposit
in British Colombia, Canada [28–30]. Regionally, the Late Cretaceous volcanic sequence
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is overlain by Miocene–Pliocene Chilcotin Group flood basalts and Quaternary glacial
deposits, which are variably eroded to expose the older rocks. Quaternary glacial tills cover
most of the Newton property on a deposit scale. Consequently, deposit scale geological
information has primarily been obtained from borehole samples [27–30]. A bedrock geology
map of the property is compiled from the mapping of limited outcrops, drill cores, and
cross-section interpretations (Figure 2a).
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Figure 2. Geological and geophysical settings of the deposit: (a) Bedrock geology map at the deposit
scale (sliced at an elevation of 1000 m). The light gray parts are undefined regions due to the lack of
borehole information in the periphery of the deposit. Contours indicate topography. (b) Electrical
resistivity model. (c) IP chargeability model. (d) Magnetic susceptibility model. The bedrock geology
is overlaid on all geophysical models [27].

Three layered volcano-sedimentary sequences overlain from bottom to top are mafic
volcanic rocks (MVR), sedimentary rocks (SR), and felsic volcanic rocks (FVR). The layered
rocks are intruded by felsic to intermediate porphyritic intrusions, including the monzonite
(M), quartz-feldspar porphyry (QFP), feldspar biotite porphyry (FBP), and the younger
dioritic intrusion (D). The epithermal mineralization associated with the Newton deposit is
at a depth of ~50 m to ~600 m. Au/Ag mineralization is mainly hosted within the felsic
volcanic sequence [27–30]. The deposit is offset by the Newton Hill Fault (NHF), displacing
geology and mineralization by ~300m of normal dip-slip movement.

Geophysical images of Newton deposit were obtained from 3D inversion of direct
current (DC) resistivity, induced polarization (IP), and magnetic data sets [27,31]. In
2010, an 85 line-kilometer DC/IP survey was conducted in the Newton Hill area using
a “pole-dipole” electrode configuration [27,31]. The DC/IP survey lines were placed at
200m intervals in the east–west direction in the hydrothermal alteration zone. The dipole
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length was set to 100 m and 200 m, with a maximum of ten times dipolar separations.
Apparent chargeability (mV/V) was measured by recording the voltage drop after current
interruption. The total magnetic field data were collected from a helicopter flying at an
average altitude of 155 m above the ground. The magnetic data were collected along N–S
flight lines spaced 200 m apart, and E–W tie lines were flown approximately every 2000 m
to 500 m. A total of 7071 line-kilometers of magnetic data were collected, covering an area
of 1293 km2. The magnetometer sampling rate was 0.1 s, yielding a measurement interval
of approximately 10 m along each profile, depending on the helicopter speed [27,31].

The interrelationships between physical properties enabled the cooperative inversion
of multiple datasets. The chargeability image in this study was used to constrain the
magnetic inversion. The constrained susceptibilities set aside the less consistent equivalent
solutions and narrowed down to a final solution that is well matched with the IP-DC
resistivity inversion results, which improves deposit scale susceptibility imaging [27,31].
The value of this approach is that it does not necessarily require prior information for
physical properties coupling. The total number of cells for forward DC/IP calculation is
288,000, and the size of each cell is 25 m × 50 m in the horizontal plane. The model cells
are also set to grow exponentially with depth in 20 intervals up to 600 m. The unit cell size
for cooperative susceptibility inversion is also set to X = 25 m, Y = 25, and Z = 10 m, with a
total of 613,800 cells.

The recovered cooperative susceptibilities allowed to locate a magnetite destructive
zone associated with porphyritic intrusions and felsic volcanoes (Au host rocks). Although,
in some places, the distinction between magnetic highs of diorite and mafic volcanic rocks
and magnetic lows of felsic volcanic rocks (Au host rocks) and porphyritic intrusions is
still challenging. The result of the cooperative magnetic- IP-DC resistivity inversion is also
shown in Figure 2. The high magnetic cap imaged from the constrained inversion is related
to a mixture of the mafic volcanic rocks (MV) and the younger dioritic intrusions (D). A
low magnetic zone (LMZ) was positioned deeper in earlier unconstrained models, but the
cooperative inversion has replaced it upward (about 500 m) and imaged right under the
high magnetic cap (magnetic susceptibilities > 0.04 SI). Several flanks of this LMZ locally
reduce the magnetic susceptibilities to 0.015 SI. This structure is probably a response of
the intermediate-to-felsic porphyritic intrusions (FIP) and interbeds of felsic volcanic rocks
(FV) within the upper high magnetic cap [27,31].

2.2. Feature Extraction

The feature extraction in this study is based on implementing several blind source
separation methods, including PCA, ICA, and CWT, to recover latent features from a set
of highly mixed images. Consider a mixing model where every image (g) is a mix of
several hidden features (f) with different contributions to constructing the observed image,
determined by a set of mixing weights A, in the form of a linear mixing model [18]:

g = Af (1)

To recover the hidden features (f), one needs to find a separation matrix (W) and
unmixes the observed images:

f = Wg = A−1 g (2)

The separation matrix (W) can be estimated as an optimization problem by minimiza-
tion of a cost function. By making a few assumptions about the statistical measures of the
data sets, the feature extraction process iteratively reduces the effect of the mixing on the
observed images. In PCA, the second-order statistical measure, i.e., variance, is maximized
for image separation, and the outcome is linearly separated uncorrelated images. However,
observed images with the nonlinear form of correlation (dependency) pose a significant
difficulty to PCA-based separation methods. We can solve this problem by maximization of
higher-order statistical measures (non-gaussianity) to separate the images into nonlinearly
uncorrelated images through ICA.
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The ICA starts with a PCA as a preprocessing step that removes the mean of the input
images (g). The principal components (y) are related to the centered images (gc) through a
weight matrix D:

y = Dgc (3)

The matrix D can be estimated through variance maximization of the principal compo-
nents (y). Finally, increasing the non-gaussianity of the principal components (y) produces
the ICs of the images. The problem is to find a rotation matrix that, during the multiplication
with the principal components, produces the least Gaussian outputs [16,18].

The Fast-ICA algorithm, through negentropy maximization and the Hyvärinen fixed-
point method, was used to obtain the rotation matrix that incorporates higher-order statis-
tics to recover the latent independent sources [16,18]. The entropy (H) of an image (g) is
defined as [16,18]:

H(g) = −
∫

p(g)logp(g)dg (4)

where p(g) is the probability density of the image g. Entropy is a measure of randomness.
The more unpredictable and unstructured the variable is, the larger its entropy. Theoreti-
cally, the Gaussian variable possesses the largest entropy. The negentropy (J) of an image is
the normalized differential entropy of that image:

J(g) = H
(

ggausss

)
− H(g) (5)

where H(g) is the entropy of the image, H
(

ggausss

)
is the entropy of a Gaussian random

image of the same covariance matrix, and neg(g) ≥ 0 is always non-negative and zero when
the image has a pure Gaussian distribution. The negentropy maximization is based on
bringing an objective function to an approximated maximum value [14,16–18,27].

The CWT in two dimensions (horizontal planes) was used for feature extraction in
the frequency domain. Since wavelets are localized in space and have finite durations, the
sharp changes in images are efficiently detectable by 2D wavelet decomposition, which
provides a unique way for spectral feature extraction [19,32]. The output of wavelet
decomposition effectively reflects the sharp changes in images, making it an ideal tool for
feature extraction [19,32]. The continuous wavelet transform of an image I (x, y) is defined
as a decomposition of that image by translation and dilation of a mother wavelet ψ (x, y).
The resulting wavelet coefficients (Cs) are then given by

CS = (b1, b2, a) =
1√
|a|

x
I(x, y)ψ∗(

x− b1

a
,

y− b2

a
)dxdy (6)

where b1 and b2 control the spatial translation, a > 1 denotes the scale, and ψ* is the complex
conjugate of the mother wavelet ψ (x, y). The mother wavelet shifts and scales in multiple
directions and produces numerous features. In this study, taking advantage of the nICA
statistical properties, we can keep the most geologically pertinent information within the
spectral decomposed volumes [18].

2.3. Learning Spectral Features

Spatial and spectral feature extraction provides inputs for predictive modeling through
supervised machine learning algorithms. Training machine learning models directly with
raw data sets often yield unsatisfactory results. The feature extraction process identifies
the most discriminating characteristics in raw images, which a machine learning algorithm
can more easily consume. However, the curse of dimensionality prevents efficient machine
learning when extracted features are too large [8–10]. Anyway, dimensionality reduction
can improve spectral learning performance through feature extraction and feature subset
selection methods. The main difference is that feature extraction combines the original
features and creates a set of new features, while feature selection selects a subset of the
original features [15,21–23,26]. We propose a hybrid algorithm that includes several phases
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of preprocessing, spatial feature extraction, spectral feature extraction, and machine learn-
ing for geophysical predictive modeling (Figure 3). In this section, we first outline a basis
for SRL through multilayer perceptron (MLP), and then we describe our proposed SFSS
algorithm for 3D geophysical predictive modeling, feature selection, and dimensionality
reduction.
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Figure 3. Schematic view of SRL for predictive modeling. The algorithm consists of four sub-modules:
The preprocessing prepares the data sets by 3D inversion, interpolation, and filtering methods. The
spatial feature extraction with nICA separates the image overlaps in 3D. Spectral feature extraction
with CWT-nICA extracts the wavelet decomposed features. Furthermore, the machine learning
algorithm with MLP adjusts network weights (W1 and W2) to learn patterns inside the extracted
features based on the sample targets.

The basic building block of MLP is the Perceptron, a mathematical analog of the
biological neuron, first described by Rosenblatt [33]. In this model, the integrated weights
and biases of input vectors (x) are activated by a sigmoid function (activation function) to
produce the output (y). After setting the initial weights randomly, the network is ready to
train. Then, the output will be compared to the target in an iterative process, adjusting the
weights of the ANN. This process can be performed by defining an Objective Function (F)
and minimizing it over N training samples. F is defined as the least mean square (LMS) of
the output vector (yi) and the desired output or the target vector (ti):

F =
1
N

N

∑
i=1

(ti − yi)
2 (7)

During the back-propagation process, the optimization updates the synaptic weights
to make output closer to the specified target.

Despite successful applications of ANNs in nearly all branches of science and engineer-
ing, we still face many problems and potential pitfalls. A potential pitfall is an over-fitting
problem, in which designing too many neurons and too many iterations gives rise to noisy
outputs. On the other side, under-fitting happens when a too-simple network is created,
sometimes leading to under-estimated values. Preprocessing of original data is also an
important criterion. Random noises in inputs or targets can propagate through networks
and disturb the outputs. For example, surficial noises in geophysical images can lead to
underestimating the results. Smoothing the inputs and targets can reduce spurious effects
but also eliminate valuable attributes in the images, leading to overestimation in the final
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models. An optimum smoothness filtering strategy can be used to avoid over-fitting and
under-fitting effects [34–36].

Choosing an efficient optimization algorithm is also critical because a suitable opti-
mization algorithm can make a considerable difference in final estimations. The Levenberg–
Marquardt optimization technique [37,38] is a fast and robust technique for minimizing
the performance function. Because of the local minima problem inherent in nonlinear
optimization procedures, finding a global optimal or better local solution is the goal of an
effective learning process. Several novel heuristic stochastic techniques are available to
solve this complex hyper-dimensional optimization problem [24,35,38–42].

In this study, we use GA optimization to minimize the ANN cost function and the
number of input features simultaneously. The process is called feature subset selection and
begins with initializing the input parameters we wish to optimize. These considerations
are codified in an objective or cost function with different weights depending on the
survivability of individuals. The best-fitted individuals meet the specifications of the
objective function and survive, while the rest of the population is extinct [24,41,42]. The
optimal solution emerges from parallel processing among the population with a complex
fitness landscape. The whole idea is moving the population away from local optima that
classical hill-climbing techniques usually might be trapped in. This ability makes GA an
extremely robust global optimization technique that can resolve the traditional problem of
local pockets existing in older optimization routines.

During the SFSS procedure, the spectral extracted features are fed to the MLP network,
and the learning process involves adjusting the network weights and the number of the
selected features while minimizing the bi-objective function F (Figure 4). In this study, we
used a fast implementation of the Non-dominated Sorting Genetic Algorithm (NSGA) for
bi-objective optimization. The NSGA algorithm [43] optimizes a global bi-objective cost
function in the general form of:

EGlobal = f
(

EANN, n f

)
(8)

where f is the global cost function operator. The bi-objective GA simultaneously minimizes
the number of spectral features (nf) and ANN cost (EANN).
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Figure 4. Schematic view of spectral feature subset selection for predictive modeling. The algorithm
consists of four main sub-routines like the SRL algorithm, except that the MLP is integrated with
NSGA-II to adjust the network weights and the selection of inputs simultaneously.
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The solution of multi-objective optimization problems gives rise to a set of Pareto-
optimal solutions instead of a single solution. Conventional optimization methods convert
multi-objective optimization problems to single-objective optimization problems by em-
phasizing one Pareto-optimal solution at a time. The algorithm has to be iterated to obtain
a different solution at each run to find multiple solutions. Over the past decades, evolution-
ary algorithms have been suggested to find multiple Pareto-optimal solutions in one single
simulation run, emphasizing moving toward the actual Pareto-optimal region. This study
used an improved version of NSGA called NSGA-II [44,45]. NSGA-II can be detailed in the
following steps:

Step 1: Population initialization

NSGA-II randomly initializes a population Pt of size N. An offspring population Qt is
generated using the genetic operators (tournament selection, crossover, and mutation), and
Pt and Qt are combined to create a population Rt of size 2N.

Step 2: Fast non-dominated sorting procedure

The algorithm sorts the combined population Rt according to non-domination to
obtain different non-dominated fronts Fi.

Step 3: Crowding distance estimation

To maintain the population diversity in each non-dominated front, the crowding
distance is computed; that is, the average distance between two points on either side of a
particular solution. Then, repeat the process with other objective functions.

Step 4: Binary tournament selection

Individuals are selected using a binary tournament selection with a crowded compari-
son operator to create a mating pool: The best solutions in the combined population are
those belonging to the lower-level non-dominated set F1. When the two solutions have an
equal non-domination level, the solution with a higher crowding distance is preferred to
preserve diversity.

Step 5: Crossover and mutation

The algorithm creates an offspring population from the mating pool by applying the
simulated binary crossover operator and the polynomial mutation operator.

Step 6: Recombination and selection

The last stage of the NSGA-II involves combining the current population with the
offspring and then selecting the best solutions from this combined population to create a
new population for the next generation. The process is iterated for the desired generations
to achieve the best multi-objective solution in the last generation.

3. Results and Discussion

We compiled several MATLAB functions and scripts to predict geological targets in 3D,
such as 3D lithotype estimation and 3D Au grade estimation. We used unevenly distributed
borehole datasets, including the lithotype data (Figure 5a) and the Au concentrations in
g/t (Figure 5d). Borehole datasets show that the hydrothermal alteration has destroyed
magnetite and replaced it with pyrite in the felsic volcanic rocks that are the host rocks of
epithermal Au/Ag mineralization [27–30]. Therefore, the high-Au grades are accompanied
by low-magnetic anomalies of the felsic rocks. This correlation made it possible to separate
the high magnetics of the mafic volcanic rocks and dioritic intrusions from low-magnetic
felsic volcanic rock and porphyritic intrusions based on the 3D cooperatively recovered
magnetic susceptibility model.
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Figure 5. Interpolation of geological targets with conventional methods. (a) Lithotype data
(mafic/felsic). (b) Nearest-neighbor interpolation of lithotypes. (c) Kriging of lithotypes. (d) Au
grade data. (e) Nearest-neighbor interpolation of Au grades. (f) Kriging of Au grades [27].

Consequently, we assigned three lithotype codes to quantify the lithological variations:
Code 1 for felsic volcanic rocks, code 2 for mafic volcanic rocks, and code 3 for dioritic
intrusions. The lithotype codes are matched and sorted according to their magnetic proper-
ties, from low magnetics of felsic volcanic rocks and intrusions to high magnetics of mafic
volcanic rocks and diorites. The datasets are interpolated with the nearest neighbor (direct
gridding) and kriging methods for comparison. Figure 5 shows that traditional interpola-
tion methods cannot add any new geological information in places without borehole data.
This study aims to solve this 3D interpolation problem by reconstructing lithological and
Au grade patterns from 3D geophysical images.

The 3D physical property images are derived from cooperative inversion [27,31] of
magnetic and DC/IP datasets (Figure 2b–d). A preliminary Fast-ICA separates the latent
features inside the multiple physical property images in the form of three negentropy-
maximized ICs (spatial feature extraction). Then, three ICs are decomposed to form a set of
raw spectral features through a continuous wavelet transform (CWT).
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We calculated the 2D wavelet coefficients with a gaussian mother wavelet for three
scales in 72 directions (every 5◦). We used only three scales because we observed that
for more than three scales, the changes in low-frequency features (high scales) would
disappear, and there will not be any difference in the raw spectral features for scales more
than three. The 3D spectral decomposition is iterated for the three initial ICs and has
produced 648 (3 × 72 × 3) features containing several frequency-dependent raw features
that need further extraction. Figure 6 demonstrates the raw spectral features sliced at an
elevation of 1000 m. X and Y UTM coordinates are removed to save space for display.
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Figure 6. CWT with a gaussian mother wavelet produced raw 3D spectral features with three scales
in 72 directions (0◦, 5◦, 10◦, . . . , 355◦). The extracted features are sliced at an elevation of 1000 m.

Fast-ICA, through negentropy maximization, separates the 648 raw features to produce
the 3D independent spectral inputs necessary for feature selection. The Fast-ICA algorithm
can also reduce the dimensionality of the raw features. The best strategy to reduce the
dimensionality of features depends on two factors: computer hardware resources and
the stability of the SFSS output. Low reductions result in high computational costs, and
severe reductions lead to loss of valuable information and poor predictions. There is always
an optimum way to moderately reduce the dimensionality of features through several
testing and running of the algorithm by the user. In cases with no hardware limitation, this
trial-and-error strategy is unnecessary. In this study, we reduced the dimensionality of the
raw spectral features by 35 percent to 227 extracted spectral features (Figure 7).
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Figure 7. Total 227 number of separated 3D spectral features after Fast-ICA dimensionality reduction
for lithological feature selection. The extracted features are sliced at an elevation of 1000 m.

We ran the SFSS algorithm two times in parallel to predict lithotypes and Au grades.
For feature selection, we used an MLP network with independent spectral features as
inputs, 20 neurons in the hidden layer, a maximum of 20 iterations, and one output. Of the
borehole data, 70% are used for training and the rest for validation (10%) and testing (20%).
The GA is iterated in 20 generations with 20 populations, 70% crossover, 40% of mutation,
and a mutation rate of 0.05.

For the lithotypes model reconstruction, evaluation results are compared for both SRL
optimized with the Levenberg–Marquardt method and the SFSS algorithm optimized with
GA (Figure 8a). As can be seen, the SFSS algorithm gives better validation and test results
(98% and 91% R-squares, relatively) compared to the poor results of the conventional SRL
method (with 90% and 27% R-squares, relatively).

For Au grade prediction, the same network parameters are used, and the Fast-ICA
dimensionality reduction has reduced the number of independent spectral features to 227
(Figure 7). Evaluation results are compared for both SRL optimized with the Levenberg–
Marquardt method and the SFSS algorithm optimized with GA (Figure 8b). As can be
seen, the SFSS algorithm gives much better validation and test results (with 97% and 88%
R-squares, relatively) compared to the poor results of the conventional SRL method (with
95% and 56% R-squares, relatively).

The error landscapes of the lithotype and Au grade prediction by SFSS are also shown
in Figure 9. The best results come after the last generation of GA and for the least global
error indicated by the dark blue color. For lithotype prediction, the SFSS algorithm selects
200 out of 227 features for spectral learning (Figure 10). As can be seen, the SFSS can
recover a much better lithological model compatible with prior geological information.
The selected features for lithotype prediction are also shown in Figure 11. In this case,
SFSS detects 27 redundant features in the prediction of lithological variations that helps to
facilitate the machine learning predictions.
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resulted in the better reconstruction of lithotypes with a smaller number of input spectral features
(Nf = 200). Results are sliced horizontally at the elevation of 1000 m.
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Figure 11. A total of 200 selected features were used for lithotype prediction. The selected features
are sliced at an elevation of 1000 m.

The error landscape of the Au grade prediction by SFSS is also shown in Figure 10b. For
the last generation, the SFSS algorithm selects 209 out of 227 features for spectral learning
(Figure 12). The SFSS can recover a much better Au grade model than conventional SRL
estimations. The selected features are also shown in Figure 13. In this case, SFSS detects 18
extremely redundant features in the prediction of Au concentrations that help to facilitate
the machine learning predictions.
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Figure 12. Au grade predictions: Results of 3D SRL predictions (a) versus 3D SFSS predictions (b,c).
SFSS resulted in the better reconstruction of Au-grade distributions with a smaller number of input
spectral features (Nf). Results are sliced horizontally at the elevation of 1000 m.
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Figure 13. A total of 209 selected features were used for Au prediction. The selected features are
sliced at an elevation of 1000 m.

4. Conclusions

We propose a spectral feature selection algorithm for supervised learning of geological
patterns to perform 3D predictive modeling from 3D inverted physical properties. Our
work is based on the synergy between the ICA and CWT feature extraction methods
and multi-objective machine learning optimization through GA for feature selection. The
spectral feature extraction method provided the inputs of the feature selection algorithm,
and we show that our self-proposed SFSS algorithm can pick the relevant spectral features
necessary for 3D predictive modeling of the targets. The practical implementation of the
SFSS algorithm is also evaluated for an epithermal Au/Ag deposit in British Columbia,
Canada. The results show that the spectral learning scheme proposed can efficiently learn
geological patterns to make predictions based on 3D physical property inputs. The SFSS also
minimizes the number of extracted spectral features and tries to pick the best representative
geophysical features for each target learning case. This automated dimensionality reduction
strategy also gives interpreters a precise predictive model and an understanding of the
relevant and irrelevant selected geological features at the end, which adds value to the
interpretability of the machine learning process. Although tested on Newton’s epithermal
deposit, the proposed feature selection approach should be applicable to similar mineral
deposits. Other 3D geophysical imageries acquired with inversion of seismic, gravity, and
electromagnetic data sets could be considered as well to enhance the accuracy of the feature
extraction and the subsequent feature selection. Future research will be focused on the
automatic fine-tuning of SFSS hyperparameters and adapting the 3D SFSS algorithm to
provide a practical tool for integrated 3D imaging of mineral deposits.
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