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Preface to ”Improving the Understanding,

Diagnostics, and Prediction of Precipitation”

This reprint is a collection of the papers published in the Special Issue of Atmosphere

entitled “Improving the Understanding, Diagnostics, and Prediction of Precipitation”. It provides

atmospheric researchers and operational meteorologists with an update on recent research and its

applications on precipitation prediction.

Heavy precipitation remains one of the least understood meteorological phenomena in research

and operational communities due to its involvement of multi-scale dynamic and thermodynamic

processes associated with precipitating weather systems. This Special Issue aims at advancing

the knowledge of these processes, systems, and their interactions; building a bridge between

the academic and the operational communities in order to improve the accuracy of numerical

weather prediction (NWP) in precipitation forecasting, especially heavy precipitation associated with

high-impact weather. These goals can be achieved by developing innovative theories, diagnostic

methods, numerical approaches, and verification techniques. Insightful diagnoses are usually

expected to provide a guidance on why an NWP model makes a right or wrong prediction. Given

the challenges in precipitation forecast, an alternative approach is required to anticipate large-scale

environments favorable for development of heavy precipitation.

As a result of rigorous peer reviews, 14 papers have been accepted for publication in this Special

Issue. These articles cover topics in (a) data assimilation, such as assimilation of ground-based

microwave radiometers [p. 1] and combined techniques of data assimilation [p. 15]; (b) microphysical

parameterizations in NWP models [p. 41]; (c) analog ensemble post-processing [p. 61]; (d) deep

learning-based short-term intensive rainfall forecast [p. 85], nowcasting [p. 105], and monthly

forecast [p. 121]; (e) trend and projection of the long-term spatial-temporal precipitation changes

[p. 145]; (f) intercomparison of satellite-based and X-band radar rainfall products [p. 167]; (g)

verification of various analyzed precipitation data with observations [p. 191]; (h) climatic patterns

of Meiyu and its associated circulations [p. 207]; (i) composite analysis of warm-sector heavy rainfall

and its association with large-scale circulations, pre-storm environments, and mesoscale convective

systems [p. 221]; and (j) precipitation diurnal cycle [p. 245] and precipitation recycling and moisture

sources [p. 263]. It should be noted that all viewpoints in the published papers merely represent those

authors’viewpoints, and, certainly, they do not represent our and our organization’s viewpoints.

Finally, we would like to take this opportunity to thank all authors for their contributions to this

Special Issue, reviewers for their time and efforts to improve the quality of the Special Issue, and the

Atmosphere Editorial Office for their prompt assistance.

Conflicts of Interest: The editors declare no conflicts of interest.

Zuohao Cao, Huaqing Cai, and Xiaofan Li

Editors
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Abstract: Ground-based microwave radiometers (MWRPS) can provide continuous atmospheric tem-

perature and relative humidity profiles for a weather prediction model. We investigated the impact of

assimilation of ground-based microwave radiometers based on the rapid-refresh multiscale analysis

and prediction system-short term (RMAPS-ST). In this study, five MWRP-retrieved profiles were

assimilated for the precipitation enhancement that occurred in Beijing on 21 May 2020. To evaluate

the influence of their assimilation, two experiments with and without the MWRPS assimilation were

set. Compared to the control experiment, which only assimilated conventional observations and

radar data, the MWRPS experiment, which assimilated conventional observations, the ground-based

microwave radiometer profiles and the radar data, had a positive impact on the forecasts of the

RMAPS-ST. The results show that in comparison with the control test, the MWRPS experiment

reproduced the heat island phenomenon in the observation better. The MWRPS assimilation reduced

the bias and RMSE of two-meter temperature and two-meter specific humidity forecasting in the

0–12 h of the forecast range. Furthermore, assimilating the MWRPS improved both the distribution

and the intensity of the hourly rainfall forecast, as compared with that of the control experiment, with

observations that predicted the process of the precipitation enhancement in the urban area of Beijing.

Keywords: heavy rainfall; ground-based microwave radiometer; heat island effect

1. Introduction

The temporal variation and spatial distribution of meteorological elements represent
the state of the atmosphere in the troposphere, and the vertical distribution and variation
of meteorological elements are very important for simulating and predicting atmospheric
movement in numerical weather prediction models, as the World Meteorological Organiza-
tion guidance for numerical weather prediction applications has highlighted. Although
satellites can provide data in the upper troposphere, it is particularly difficult to observe the
lower few kilometers of the atmosphere due to poor sampling [1]. Compared to satellites,
radiosondes have a better vertical resolution on atmospheric profiles [2,3]. However, they
cannot provide continuous monitoring data since their data are usually available at an
interval of 12 h [4]. A ground-based microwave radiometer is a meteorological observation
instrument using remote sensing technology. Its secondary products can detect temper-
ature profile, humidity profile, and other elements [5–8], and can conduct continuous
observation of vertical changes of meteorological elements within a certain precision range.
It can provide high time resolution information of the atmospheric motion state, close the
observational gap in the lower troposphere, and help to improve the ability and accuracy
of weather forecasts. The profiling capability of the ground-based microwave radiometer
has proven to be valuable in the lower troposphere.
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Researchers have paid great attention to the performance of the microwave radiometer
and how to widely use it in operational systems. Its products have been widely used
in many fields such as air pollution monitoring, site climate analysis, and water vapor
analysis [9–12]. At the same time, the ground-based microwave radiometer can provide a
continuous, high-resolution, and stable observation of temperature and humidity profiles,
which can effectively make up for the shortage of atmospheric information obtained by
conventional sounding due to the long observation interval, and it can better meet the
observation requirements of high-resolution NWP systems [12]. However, unlike radar
and GPSZTD data, which have even become operational at some national weather centers,
the assimilation of ground-based microwave radiometers to numerical models is still in its
infancy [13–17].

For example, assimilating the temperature and humidity profile from a single MWR
station showed better a forecast of winter fog using the Fifth-Generation Pennsylvania State
University/National Center for Atmospheric Research Mesoscale Model [18,19]. A winter
storm case was simulated by an observing system simulation experiment assimilating
simulated MWRs, which demonstrated that the impact was positive on the temperature
and humidity forecast [20,21]. The mesoscale prediction system Arome-WMed was used to
assimilate the profiles retrieved by multiple ground-based microwave radiometers, and the
results showed that the skill of the precipitation forecast was improved slightly [12]. The
Weather Research and Forecasting (WRF) model was used to assimilate MWR temperature
and humidity profiles for simulating a rainstorm event that occurred in Beijing, China,
and the results showed that the assimilation of MWR data had a positive impact on
the distribution and intensity of rainfall [16]. The rapid-refresh multiscale analysis and
prediction system-short term (RMAPS-ST) was used to assimilate MWRPS temperature
and relative humidity profiles in Beijing for a precipitation bifurcation case, the results
showed that the assimilation of MWRPS improved the precipitation forecast in terms of
distribution and the intensity [17].

Previous studies have all shown the promising impacts of assimilating ground-based
microwave radiometers into the numerical model, though the results show different impacts
on forecasts. However, the assimilating of ground-based microwave radiometer data
to the regional operational forecast over North China is rare. In particular, the urban
heat island effect, coupled with other factors, increases the difficulty and uncertainty of
precipitation forecast accuracy in Beijing. Reproducing observed urban effects can help
increase precipitation forecast accuracy in Beijing. Therefore, weather forecasting can
provide better information to meet the public demand, especially in the urban area of
Beijing [22,23].

In this study, five temperature and humidity profiles, retrieved by ground-based
microwave radiometers, were assimilated into the rapid-refresh multi-scale analysis and
prediction system-short term (RMAPS-ST). We evaluated the impact of the ground-based
microwave radiometer data on the analyses and forecasts of a case of heavy rainfall in
Beijing. Two assimilation experiments were carried out in this study. Combined with
comparative analysis, we explored the impact of ground-based microwave radiometer data
on the precipitation forecast in Beijing. In this study, we aimed to improve urban weather
forecast in North China, while providing better information to help the public with their
daily activities.

The outline of this article is as follows. Section 2 presents the data and methods used
in the study, including the characteristics of ground-based microwave radiometer data and
the experimental setting. In Section 3, the impact of assimilated ground-based microwave
radiometer data on both the prediction of radar composite reflectivity and hourly rainfall
evolution are compared for the control and MWRPS experiments. Section 4 discusses
the diagnosis for this heavy rainfall event with and without the data assimilation of the
ground-based microwave radiometers. Finally, Section 5 summarizes the conclusions.

2
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2. Data and Methods

2.1. The Heavy Precipitation Case

In the present study, we took the heavy rainfall process in Beijing on 21 May 2020 as
an example to investigate whether the assimilation of ground-based microwave radiometer
data could improve the precipitation forecast. The evolution of the radar echo in this
process is shown in Figure 1. The observation shows that there are two echo bands and that
the echo that affected this precipitation process in Beijing moved from the northwest to the
southeast at 0500 UTC (Coordinated Universal Time) on 21 May 2020; the belt-shaped echo
emerged in Inner Mongolia, followed by convection. The strong echo belt moved rapidly
to the southeast, reaching Beijing at 0700 UTC, and strengthening at 0800 UTC when it
approached the urban area of Beijing. Within the urban area, the echo strengthened. The
echo continued to move outside of Beijing at 1000 UTC.

Figure 1. Radar composite reflectivity (CREF) evolution for 05 UTC–10 UTC on 21 May 2020.

For the echo band that affected this precipitation process in Beijing, a northeast and
southwest belt-shaped rainfall emerged in Inner Mongolia at 0400 UTC on 21 May 2020. It
is shown that the observed precipitation first occurred in the western mountainous area of
Beijing at 0700 UTC with the echo moving from northwest to southeast, and then expanding
eastward. By 0800 UTC, the precipitation system had reached the urban area of Beijing,
and the rainfall intensity exceeded 20 mm/1 h (Figure 2). The heavy rainfall center moved
eastward to Tianjin after 0900 UTC, when the echo moved outside of Beijing. The weather
process was characterized by the strengthened radar echo in the urban area of Beijing,
during which heavy precipitation occurred in the urban area of Beijing as it moved from
the northwest to the southeast (Figures 1 and 2).

3
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Figure 2. The evolution of hourly accumulated precipitation from AWS observation from 0500 UTC
to 1000 UTC on 21 May 2020 in North China.

2.2. Microwave Radiometer Observations

In the metropolitan observation experiments, seven microwave radiometers were
deployed in Beijing. Two microwave radiometers in the southern suburbs and in Shangdi-
anzi Village were lost due to equipment problems, while the remaining five microwave
radiometers deployed in Xiayunling Village, Yanqing District, Haidian District, Huairou
District, and Pinggu District were available. The level-2 products from the five ground-
based microwave radiometers in Beijing were obtained using inversion software from the
microwave radiometer manufacturers, including the temperature and relative humidity
profiles. The continuous observations of the temperature and humidity profiles used a high
temporal resolution, at a high frequency rate up to two minutes.

Figure 3 shows the vertical distribution of retrieved temperature and humidity profiles
at five stations, as well as their evolutions over time. It reveals that microwave radiometers
overcome the spatial and temporal shortcomings of conventional observation in temporal
resolution. Prior to the three-dimension variation assimilation, the temperature profile
and relative humidity profile retrieved by microwave radiometers at heights of 0–10 km
are processed. Since precipitation has a great impact on the temperature and relative
humidity retrieved by the microwave radiometer, the observed data from the radiometer
during precipitation should be prudently dealt with. In this study, we set the data at the
corresponding time of precipitation as a missing value. In addition, since the temperature
and humidity profiles retrieved by microwave radiometers have high vertical resolutions at
heights of 0–10 km, the reference atmospheric pressure at each height layer from 0 to 10 km
is calculated according to Zhang et al. (2006) [24].

4
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Figure 3. Time series of temperature and humidity profiles retrieved from five ground-based mi-
crowave radiometers and the prediction of rain at corresponding times on 21 May 2020. The blue
bar indicates the time of precipitation in the MWRPS observations. Altitudes are given in kilometers
above ground level.

2.3. Experiment Design

In this study, the experiment was carried out using the RMAPS-ST numerical fore-
cast model, which is a short-term forecasting subsystem of a new generation of RMAPS
developed by the Institute of Urban Meteorology, CMA, Beijing. It is based on the previous
generation of the North China rapid-refresh cyclic assimilation and forecast system and
has been in operation since May 2017 [17,25–28]. The RMAPS-ST features double nest-
ing, a nine-kilometer-resolution outermost D01 area with 649 × 500 grid points covering
the whole of China, and a three-kilometer-resolution inner D02 area with the innermost
550 × 424 grid points in the simulated area covering North China. The parameterized
schemes of the main physical process of the experiment included a new Thompson cloud
microphysics scheme, a Noah land surface scheme, a Yonsei University (YSU) boundary
layer scheme [29], the global parameterization of the Rapid Radiative Transfer Model
(RRTMG) scheme, and short wave and long wave radiation schemes [30,31]. In this paper,
ECMWF medium-range forecast (0.25◦ × 0.25◦) was selected to provide the initial field and
side boundary conditions for the model. The observed data, including the conventional
data and radar data, underwent quality control before inputting into the assimilation
system. The radar data assimilation was performed, including radial velocity and reflec-
tivity. The Weather Research and Forecasting model system and the three-dimensional
variational data assimilation system (3DVar) were used to assimilate observations due
to low calculation cost, small resource occupation, and high efficiency. The solution of
3DVar can be interpreted as obtaining the minimization of the objective function. Based
on the optimization theory, the optimal solution was obtained using an iterative descent
algorithm. Specifically, the optimal state of the atmosphere was estimated by using both the
background field and observed values, thus the statistical optimal analysis was obtained.
When U and V are used as dynamic control variables, the correlation between variables is
smaller than that when traditional flow function and potential function control variables

5
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are used, which satisfies the assumption of variational data assimilation. Such an algorithm
is more conducive to the description of medium and small-scale systems [32]. Background
error covariance was calculated by the National Meteorological Center (NMC) method [33].

The control experiment assimilated conventional observation data and Beijing–Tianjin–
Hebei weather radar data. Data assimilated by the RMAPS-ST data assimilation system
included observations from different types of conventional observations to improve the
analysis. In Figure 4, the aircraft meteorological data relay, synoptic, sounding, oceano-
graphic buoys, ship-based observations, and wind profile radar observations are shown.
Radar data, including radial velocity and reflectivity, were mainly assimilated into Do-
main 2 of the RMAPS system. Based on the control experiment, the MWRPS experiment
adds the data of five microwave radiometers in Beijing. The data distribution is shown
in Figure 3. In the next section, we compare the forecast differences between the control
experiment and the MWRPS experiment to verify the impact of MWRPS assimilation.

Figure 4. (a) The distribution of radiosonde launch sites are shown as purple solid circles; oceano-
graphic buoys, wind profile radar observations, and ship-based observations are shown as red circles,
orange circles, and green circles; synoptic and aircraft meteorological data relay are shown as dark
blue circles and pink circles in Domain 1 of RMAPS-ST. (b) The radar locations are represented as
dark blue solid circles in Domain 2 of RMAPS-ST. (c) Locations of MWRPS sites are represented as
black diamonds in Beijing.

3. Results

3.1. Impact of Ground-Based Microwave Radiometer Data Assimilation on the Rainfall Prediction

In this section, we compare the forecast results after assimilation. For the enhancement
of the belt-shaped echo in the urban area of Beijing, the radar reflectivity simulations from

6
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the two experiments are compared during the period from 0700 UTC to 1000 UTC on
21 May 2020. Figure 5 shows the composite radar reflectivity simulated by the MWRPS
and control experiments. The top side shows the MWRPS simulations, whereas the bottom
side shows the control simulations.

Figure 5. Composite reflectivity during the period from 0700 UTC to 1000 UTC on 21 May 2020
simulated by MWRPS test and control test from top to bottom (Beijing-Tianjin-Hebei region shown).

The zone of the radar echo usually corresponds to the distribution of a convection
cell, and the intensity of radar reflectivity corresponds to the intensity of a convection cell.
Compared with the control experiment, the MWRPS experiment had better prediction
ability for simulating the observed belt-shaped convection enhancement at 0800 UTC:
the MWRPS experiment was able to produce better simulations in both the location and
intensity of the convection cells when the system impacted on the urban area of Beijing.
The MWRPS experiment was also better able to simulate the dissipation process of the
band echo during eastward movement. It reproduced the location of the observed band
echo better when it moved outside of Beijing at 1000 UTC, while the simulated band echo
in the control experiment was still in Beijing at 1000 UTC (Figure 5).

To examine the improvement in the precipitation forecast, the observed and forecasted
1 h accumulated precipitation in Domain 2 during 21 May 2020 are shown in Figure 6.
The rain gauge observations from the ground stations are shown in the first column for
evaluating the rainfall forecasts. The corresponding forecast results simulated by the
MWRPS and control experiments are shown in the second column and the third column,
respectively. Compared to the observations, there was a noticeable under-prediction for the
precipitation in the control experiment in terms of both location and intensity at 0800 UTC.
MWRPS forecasts improved the prediction for the corresponding precipitation intensity at
the main center of the heavy rainfall, despite underestimating the range of precipitation.
The precipitation intensities predicted by the MWRPS test are the same as the observations
(>20 mm.h−1). The spatial patterns of the 1 h accumulated precipitation simulated by
the MWRPS experiment agreed with the observations better than those in the control
experiment at 0900 UTC, especially for the location of the heavy rainfall’s main center.
The precipitation simulation in the control and MWRPS experiments are evaluated by TS
(threat score) [34]. TS is the ratio of correct prediction times to the total number of events,
representing the accuracy of the rainfall prediction. The numerical range is 0–1. The closer
the TS value is to 1, the better the prediction is. The results showed that the assimilation of
MWRPS provided an advantage in predicting rainfall, especially for larger precipitation
events (>10 mm.h−1). At 1000 UTC, the main differences in heavy rainfall between the two

7
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experiments is the location of the heavy rainfall, the MWRPS test shows a result consistent
with the observations: the center of the precipitation moved outside of Beijing. In contrast,
the center of heavy rainfall, as simulated by the control test, was still in Beijing (Figure 6).

Figure 6. One-hour accumulated precipitation during the periods 0700 UTC–0800 UTC, 0800 UTC–
0900 UTC, and 0900 UTC–1000 UTC on 21 May, 2020: observation (left column), D02 forecasting in
MWRPS experiment (middle column), and D02 forecasting in Control experiment (right column).

Overall, the composite reflectivity and the 1 h accumulated precipitation from the
observations and the control and MWRPS experiments were compared. We found that the
assimilation of ground-based microwave radiometers increased the scope of heavy rainfall
in MWRPS, which better agreed with the observations in spatial distribution patterns, as
compared to the control experiment.

3.2. Impact of Ground-Based Microwave Radiometer Data Assimilation on Meteorological Element
Prediction before Urban Rainfall

The urbanization process was significant in the Beijing–Tianjin–Hebei megalopolis:
due to the joint effects of topography and urban thermal circulation [35], precipitation in
Beijing is unique and complex [36–38]. Previous studies have suggested that the intensity of
the urban heat island before the rainfall began could project the thermodynamic impact of
the underlying urban surface on the rainfall process. The heat island intensity prior to the
start of the rainfall determines the kinds of urban effects which will impact on the rainfall.
Under the effect of a strong heat island which precedes the rainfall, the precipitation is
concentrated in urban areas since the thermal effect of the urban land surface prevails,
increasing the intensity of the convective system after it has moved to the urban area.
Under the effect of weak heat island, precipitation bifurcation takes place, meaning that
precipitation is mainly distributed upwind of the city and on both sides of the city since
urban dynamics prevails [35,39,40].

8
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Figure 7 shows the spatial distribution of the observed two-meter air temperature
at 0700 UTC before the echo moved to the urban area of Beijing. The black rectangular
box was selected to identify the heat island intensity and perform statistical analysis in
accordance with Zhang et al. (2017) and Qi et al. (2021) [17,35]. This region includes urban
and suburban areas in Beijing, which reported no precipitation at 0700 UTC. It can be seen
that before the belt-shaped echo moved to the urban area of Beijing, there was an obvious
difference between the urban temperature in the Fifth Ring Road and the temperature in its
surrounding area. The heat island intensity in Beijing is strong [35].

Figure 7. Spatial distribution of 2 m air temperature at 0700UTC on 21 May 2020. The black rectan-
gular box indicates the study area where temperatures prior to the start of rainfall are statistically
analyzed (116.12◦–116.79◦ E, 39.65◦–40.115◦ N).

As indicated by the spatial distribution of two-meter temperature bias at 0700 UTC
simulated by the control and MWRPS experiments (Figure 8a,b), the temperature deviation
predicted by the control test in and around Beijing’s Fifth Ring Road (shown by the black
rectangular frame) is larger than that predicted by the MWRPS test. The control test
overestimates the observed heat island intensity in the urban area within the Fifth Ring
Road. The assimilation of the ground-based microwave radiometers corrected the warm
bias in this area, and the modified indexes of the two-meter air temperature are all negative,
which agrees better with the observations (Figure 8c).

Compared with the control experiment, the MWRPS experiment improves the forecast
of the two-meter temperature in Beijing and better reproduces the observed heat island
phenomenon. Thus, the observed rainfall enhancement can be better simulated in the
MWRPS experiment, mainly due to the effect of the urban surface in Beijing on rainfall
since its thermo-dynamic prevails under urban heat island condition.

Additionally, the spatial characteristics of forecast of the two-meter temperature and
two-meter specific humidity distribution from the two experiments were also evaluated
against observations using the statistical metrics of mean bias and the root mean square
error (RMSE). The closer the bias value is to 0 and the smaller the RMSE value is, the better
the prediction is. Figure 9 shows the bias and RMSE of the average two-meter temperature
and two-meter specific humidity over the black rectangular boxes, including urban and
suburban areas in Beijing.
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Figure 8. (a,b) The bias of 2 m temperature (unit: ◦C) from control experiment and the bias of
2 m temperature from MWRPS experiment; (c) improving index (unit: ◦C) with the assimilation of
ground-based microwave radiometers at 0700 UTC on 21 May 2020.

Both experiments overestimate the observed two-meter temperature with a positive
bias. Both the bias and RMSE in the MWRPS test are smaller than those in the control test.
The two-meter temperature forecast indicates a better forecast performance for a longer
period of time. The two-meter specific humidity is drier than the observation in both the
control and MWRPS tests. The MWRPS test effectively improves for the first 8 h. To sum
up, the assimilation of the ground-based microwave radiometers solved the warm bias for
the two-meter temperature and dry bias for the two-meter specific humidity, thus laying a
good foundation for the simulated urban precipitation enhancement process.

Figure 9. RMSE (solid lines) and Bias (dotted lines) for 2 m temperature and 2 m specific humidity
forecasted by the control experiment (blue lines) and the MWRPS experiment (red lines) in relation to
observations for the black rectangular box.
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4. Discussion

Figure 10 shows the radial vertical profile of temperature and vertical velocity along
40◦N in the boundary layer of the Fifth Ring Road and its surrounding areas in the forecast
field from two experiments at 0800 UTC on 21 May 2020. It can be seen that the temperature
in the lower atmosphere simulated by the control experiment is larger than that simulated
by the MWRPS experiment. However, the observed heat island effect cannot be reproduced
in the control experiment because of the small temperature difference between the urban
and suburban areas. For the MWRPS experiment, a clear heat island was found. Compared
to the control experiment, a clear updraft with a larger vertical velocity was also found,
producing stronger updrafts in the urban area, which led to a rainfall forecast. This urban
ascending motion is strengthened under the strong heat island effect, which promotes the
emergence of updrafts. This suggests that the assimilation of ground-based microwave
radiometer observations in Beijing, which reproduced the heat island and the intensified
local updraft in the urban area in Beijing, is consequently able to improve predictions of
rainfall enhancements in urban areas.

Figure 10. The cross sections of the vertical profiles along 40◦ N from control (a) and MWRPS
(b) forecast field at 0800 UTC on 21 May 2020, in which the vertical velocity (unit: 10−1 m/s) is
represented as the contour, and the temperature (unit: ◦C) is represented as shaded.

5. Conclusions

In view of the case of heavy rainfall in Beijing on 21 May 2020, the RMASPS-ST was
used to explore whether the data assimilation of the ground-based microwave radiometers
with high spatial and temporal resolution in Beijing could improve the weather forecast.
Two experiments—to gather control and MWRPS —were conducted in this study. The
simulation results for this case of heavy rainfall with and without the assimilation of
MWRPS data were verified. The experimental results show that the assimilation of ground-
based microwave radiometers in Beijing did improve the prediction of precipitation and
echo and better predicted the rainfall enhancement process. The main conclusions are
as follows:

(1) The RMAPS-ST model system can provide a good simulation of the selected rainfall
case, by assimilating the MWRPS data in Beijing. It can clearly reproduce the observed
urban heat island of the main urban area in Beijing prior to the start of this rainfall, thus
reproducing the forecast of precipitation enhancement in the urban area. Compared
with the control experiment, the simulated precipitation and radar reflectivity are
closer in the MWRPS experiment to the observation.

(2) After the data from the ground-based microwave radiometers are assimilated, the
observed weak heat island phenomenon is better reproduced. The simulated surface
temperature distribution in Beijing is also closer to the observation prior to the start
of the rainfall in the urban area. The model not only clearly improves the forecast
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of precipitation distribution, but also makes the precipitation intensity prediction
closer to the actual situation and accurately predicts the enhancement process of the
belt-shaped echo and the precipitation in the urban area of Beijing.

(3) The heavy rainfall process in Beijing on 21 May 2020 shows that the assimilation of the
ground-based microwave radiometer can improve the numerical forecast, contributing
to improving the precipitation simulation in the urban area of Beijing, indicating a
bright prospect for applications in numerical models. This rainfall event can also help
us understand the impact of urban space on the rainfall system, considering urban
heat island conditions.

These conclusions are based on heavy rainfall, which occurred in the urban area of
Beijing. Further investigation into the impact of the ground-based microwave radiometer
on weather forecasts will continue. More cases will be investigated to study the application
of the assimilation of ground-based microwave radiometer data in the future. In this way,
we will gain a more insightful understanding of the impact of assimilation of ground-based
microwave radiometer data on forecasts.
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Abstract: The combination of techniques that incorporate observational data may improve numerical

weather prediction forecasts; thus, in this study, the methodology and potential value of one such

combination were investigated. A series of experiments on a single case day was used to explore

a 3DVAR-based technique (the variational version of the Local Analysis and Prediction System;

vLAPS) in combination with Newtonian relaxation (observation and analysis nudging) for simulating

moist convection in the Advanced Research version of the Weather Research and Forecasting model.

Experiments were carried out with various combinations of vLAPS and nudging for a series of

forecast start times. A limited subjective analysis of reflectivity suggested all experiments generally

performed similarly in reproducing the overall convective structures. Objective verification indicated

that applying vLAPS analyses without nudging performs best during the 0–2 h forecast in terms

of placement of moist convection but worst in the 3–5 h forecast and quickly develops the most

substantial overforecast bias. The analyses used for analysis nudging were at much finer temporal

and spatial scales than usually used in pre-forecast analysis nudging, and the results suggest that

further research is needed on how to best apply analysis nudging of analyses at these scales.

Keywords: variational assimilation; nudging; Newtonian relaxation; 3DVAR

1. Introduction

A variety of techniques to incorporate observations have been used in numerical
weather prediction models to allow observations to improve the model forecasts. One
example is 3D variational analysis (3DVAR; e.g., [1,2]), and another is Newtonian relaxation
(nudging; e.g., [3,4]).

The 3DVAR technique has the potential to determine an optimal analysis by combining
observations with a background field. However, since an optimal analysis requires that the
background error covariance and the observation error covariance be perfectly known, in
practice, the analysis will not be optimal. Background error covariance may be estimated
by using model forecasts from a series of past times to find a climatological value, from
multiple model forecasts of the current time (i.e., an ensemble) to find case-dependent
values, or from a combination of these two methods (e.g., [5]). However, these techniques
are difficult to apply when creating on-demand forecasts for an area where equivalently
configured forecasts (e.g., horizontal resolution) have not been run in the past and there are
insufficient computational resources to carry out an ensemble matching the horizontal grid
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spacing of the on-demand forecasts (although coarser-resolution global ensembles can be
used to estimate the case-dependent background error covariance; [5]).

A 3DVAR analysis is commonly applied at a single time at the beginning of a model
simulation and can lack physical consistency. Applying the analysis at a single time could
result in noise as the model adjusts to a solution consistent with its equations. Additionally,
model fields not part of the 3DVAR analyses may not be consistent with the fields in the
3DVAR analyses and may pull the model solution away from the 3DVAR analyses. These
potential issues might be mitigated by applying the increments indicated by a 3DVAR
analysis over multiple model time steps using incremental analysis updating (e.g., [6,7]) or
by nudging towards the 3DVAR analysis. When applying a single analysis, observations
made at times other than the analysis time cannot easily be applied at their valid time.
While there are methods to mitigate this issue (e.g., first guess at appropriate time, [8]), it is
a challenge to know the actual state of the model at the valid time of the observation and to
apply the observation at its valid time.

Newtonian relaxation [9,10], also known as nudging, adds nonphysical terms to the
tendency terms of the model over a period of time to gradually nudge the model toward
analyses or observations. Since the nonphysical terms added by nudging should be smaller
than the physical terms in the governing equations, nudging can adjust the model’s state
variables while maintaining an improved physical consistency compared to inserting
modified fields directly at a single time. Nudging allows observations to be applied over
a time period centered on their individual valid times, and assimilating analyses valid
at multiple times allows observations to be applied to the analysis closest to the valid
time of the observation. Fields that are nudged towards must be prognostic variables of
the numerical weather prediction model, and thus observations of non-prognostic fields
must be converted to prognostic fields in order to be used with nudging. Additionally,
nudging is not usually applied in a way that fully accounts for case-specific background
error covariances.

Several techniques have combined nudging with another technique. Shaw et al. [11]
initialized WRF with a 3DVAR analysis and then used observation nudging and found that
the combination appeared to perform better than either solution individually. Liu et al. [12]
nudged towards 3DVAR analyses of radar-derived fields while also applying observation
nudging. Lei et al. [13–15] combined nudging and the ensemble Kalman filter (EnKF)
and applied it first in simplified models and then in the Advanced Research version of
the Weather Research and Forecasting model (WRF-ARW; [16]). Information from the
ensemble was used to determine how the influence of the observations was spread and
how observations of one variable affect another variable. They found the hybrid technique
performed better than EnKF for wind direction and better than observation nudging
in temperature and relative humidity. Lei et al. [15] also found that noise levels in the
hybrid technique were much lower than the EnKF simulation. Liu et al. [17] reported on
a hybrid nudging–ensemble system that uses an ensemble to determine the strength at
which observation nudging is applied. Lei and Hacker [18] used a Lorenz model to test
observation nudging, EnKF, and the nudging–EnKF hybrid developed by Lei et al. [13–15].
They found that in the Lorenz model, the nudging–EnKF hybrid they tested could not
simultaneously outperform both nudging and EnKF.

This study demonstrates the combination of a scheme involving 3DVAR (the varia-
tional version of the Local Analysis and Prediction System; vLAPS; [19]) and nudging for
a single case day with strong convection. This combination takes advantage of vLAPS
analysis with the best fit of the observations and nudging with improvement in the physical
consistency among the analysis states. Verification of the WRF reflectivity forecasts sug-
gests that further research is needed to improve analysis nudging of high-temporospatial
resolution analyses. The experiments described here were previously described in a re-
port [20]; however, that report does not include the objective verification included here.
Nonetheless, since this study reports on a subset of the experiments in Reen et al. [20], there
are similarities between the text of that document and this study.
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This study is unique in its use of analysis nudging to incorporate vLAPS analyses, and
there appears to be little past work on assimilating any 3DVAR analyses using analysis
nudging. Liu et al. [12] assimilated 3DVAR analyses using analysis nudging but used solely
radar observations as the basis for the 3DVAR analyses compared to the much broader set
of observations included in the 3DVAR analyses used in our study. While Shaw et al. [11]
used 3DVAR and observation nudging, they did not use analysis nudging to apply the
3DVAR analyses, as is done in this study. Analysis nudging is usually used for model
forecasts with a horizontal grid spacing much coarser than the 1 km spacing used here
(e.g., [21,22]) since analyses are not usually available to nudge towards at such a high
resolution. Huo et al. [23] applied what appears to be analysis nudging to assimilate radar-
derived fields at a fairly high resolution (3 km grid spacing), but one that is somewhat
coarser than the 1 km grid spacing in this study. As the current study is limited to a
single case day and evaluation of the radar reflectivity field, it is intended as a limited
demonstration of the combination of a 3DVAR-based technique (vLAPS) and nudging.
One motivating factor in this investigation was to explore assimilation techniques that
may be able to provide value for forward-deployed on-demand nowcasting using limited
computational capability.

2. Materials and Methods

2.1. WRF-ARW

The Advanced Research version of the Weather Research and Forecasting model (WRF-
ARW) V3.6.1 [16] was used with 56 vertical layers over a 1 km-spaced 801 × 801 horizontal
grid centered over Oklahoma (Figure 1). The Mellor–Yamada–Janjić scheme (MYJ; [24])
was used to parameterize the atmospheric boundary layer (ABL) with the background
turbulent kinetic energy and atmospheric boundary layer depth calculation altered as in
Lee et al. [25] and Reen et al. [26]. The Thompson microphysics parameterization [27], the
Rapid Radiative Transfer Model longwave scheme [28], the Dudhia shortwave scheme [29],
and the Noah land surface model [30] were used.

 

Figure 1. Areal extent of the Advanced Research version of the Weather Research and Forecasting
model (WRF-ARW) 1 km domain. Adapted from Reen et al. [20].
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2.2. vLAPS

LAPS [31] uses a modified Barnes analysis [32] with some 1D variational compo-
nents [33], while vLAPS changes to a multiscale 3DVAR scheme for specific fields (tempera-
ture, pressure, winds, and humidity) [19]. The vLAPS 3DVAR scheme is based on the Space
and Time Multiscale Analysis System [34] and is multiscale spatially and temporally. The
analysis was performed here four times with the coarsest analysis at 16 km horizontally
and 50 hPa vertically, and subsequent analyses divided the resolution in half through
to the final analysis, which was 2 km horizontally and 25 hPa vertically. The first two
analyses used a 30 min time window, whereas the final two analyses used a 15 min time
window. The multiscale technique allows observations to spread broadly in data-sparse
areas while retaining fine-scale features in more data-rich areas and makes the technique
less dependent on the accuracy of the background error covariance. For wind, the control
variables were the u- and v-wind components [35] since Xie et al. [34,36] demonstrated that
the alternative of the stream function and velocity potential introduce numerical errors and
noise. The cloud analysis [33] combined Geostationary Operational Environmental Satellite
(GOES) infrared and visible data, radar data, surface observations, and model first-guess
fields to construct a cloud fraction. The cloud fraction was used to determine hydrometeor
fields and vertical velocity, with the latter affecting the 3D wind. Additionally, the cloud
analysis was used as a constraint in determining the vLAPS relative humidity field.

Analyses were created every 15 min using vLAPS. The background field for these
analyses was taken from the 3 km-horizontal grid spacing High-Resolution Rapid Refresh
(HRRR; [37]); specifically, we used the output from the HRRR 15 UTC cycle on 20 May 2013
(i.e., the integration of HRRR that starts at 15 UTC and provides forecasts at a 15 min tem-
poral spacing). Only the 15 UTC cycle of HRRR was used here to approximate conditions in
the application driving this research, namely, use in regions where cycles of the numerical
weather prediction model used for initial conditions are available much less frequently
than hourly. Each vLAPS analysis used the forecast hour of the 15 UTC HRRR cycle corre-
sponding to the vLAPS analysis time (e.g., the 18 UTC vLAPS analysis used the 3 h forecast
of the 15 UTC HRRR cycle). Sources of observations used to create the analyses included
Meteorological Assimilation Data Ingest System (MADIS; https://madis.noaa.gov) surface,
mesonet, profiler, radiosonde, and Aircraft Communications Addressing and Reporting
System (ACARS) observations; pilot observations; WSR-88D radars; and GOES. In addition
to the quality control applied by the MADIS data provider, MADIS data were also quality
controlled by comparing them to the HRRR fields used as the background.

2.3. Nudging

Nudging [9,10,38] adds a term to the model’s tendency equations based on the differ-
ence between the current model value and the value from an analysis (analysis nudging;
e.g., [39]) or an observation (observation nudging; [40]). This difference is known as the
innovation and is multiplied by weighting factors to create the nonphysical addition to the
tendency equation. In this study, some experiments applied analysis nudging using vLAPS
analysis, and some experiments applied observation nudging of MADIS observations. For
brevity, the details of nudging are simplified in the following discussion (see Reen et al. [20]
for additional details).

The vLAPS analyses were used by analysis nudging to modify the potential tem-
perature, water vapor mixing ratio, and u- and v-wind components. Within the ABL
(atmospheric boundary layer), only the surface analysis was used to calculate analysis
nudging terms; at the first level above the ABL, both the surface and above-surface analyses
contributed; and above this, only the above-surface analyses contributed. The innovation
calculated at the surface (by comparing the vLAPS surface analysis to the WRF surface
values) was applied throughout the ABL for the potential temperature and wind. For water
vapor, the innovation for each level in the ABL was calculated by comparing the surface
analysis to the model value at that level. Innovations above the ABL were calculated by
comparing the above-surface analysis to the model value at that level.
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WRF-ARW analysis nudging linearly interpolates between analyses, which, in this
case, were vLAPS analyses available every 15 min. The assimilation period was 3 h, and
thus vLAPS analyses from 13 different times were applied. The analysis valid at the end
of the assimilation period was applied with a linearly decreasing weight over the 15 min
following the end of the assimilation period. The released version of WRF-ARW V3.6.1
does not properly execute this rampdown period, and thus we modified the code to fix
this (the fix was provided to the WRF-ARW maintainers and is included in WRF-ARW
starting with V3.8). The strength at which analysis nudging was applied was 3 × 10−4 s−1.
Analysis (and observation) nudging is designed to gradually modify the model solution
while allowing the physical tendency terms to dominate the equations so that the physical
consistency of the atmosphere is maintained; this should mitigate any potential issues
with overfitting.

Observation nudging used MADIS surface, mesonet, profiler, radiosonde, and ACARS
observations (ACARS and profiler observations were inadvertently omitted for part of
the simulation). In addition to using the quality control carried out by the data provider,
to account for the data quality issues that may be more prevalent in mesonet datasets
(e.g., siting issues), mesonet observations were filtered using use/reject lists designed for
the Real-Time Mesoscale Analysis [41]. The Obsgrid program [42] was also used to apply
quality control. It compared the observations against the 15 UTC cycle of the 3 km HRRR
model on 20 May 2013 (i.e., the HRRR forecast that creates forecasts with valid times every
15 min starting at 15 UTC) and against nearby observations. A non-standard version of the
WRF Preprocessing System (WPS) program Ungrib was used to vertically interpolate the
HRRR field to additional levels to facilitate quality control of single-level above-surface
observations (ACARS), and to allow more vertical structure to be retained in multilevel
observations (the capability is available in standard Ungrib starting with WPS V3.9).

As with analysis nudging, one must specify the strength of the observation nudging
(6 × 10−4 s−1 was used here), but additional specification is needed in regard to the vertical,
horizontal, and temporal weighting since, unlike the analysis, one does not have one
value per model grid cell to nudge towards. Vertical weighting depends on observation
type, with the innovation from surface observations being spread throughout the ABL
during convective conditions, innovations from single-level above-surface observations
being applied in a 100 hPa range, and innovations from multilevel observations being
interpolated to model layers within the vertical range of the observation. A 30 km radius of
influence was used for surface observations, but terrain differences limited the spreading
further. For above-surface observations, the radius of influence increased from 60 km near
the surface to 120 km at 500 hPa. Surface observations were used for a 2 h time period
centered on the observation valid time, and above-surface observations were used for 3 h
time periods. At the end of the assimilation period, observation nudging was ramped
down to zero in 1 h (no observations valid during the rampdown were assimilated). The
modification of water vapor observation nudging to prevent excessive drying described
in [43] was applied. When observation nudging spreads the innovation from a location
where the model is too moist to a nearby location that is much drier, this can result in
unrealistic drying of the location the innovation is spread to. To mitigate this issue, the
modification limits the magnitude of negative water vapor innovations being applied in
locations drier than the location where the innovation is calculated.

2.4. Case Description

The day investigated here (20 May 2013) had strong convection in the southern Great
Plains region. The base reflectivity (composited over relevant individual radars) of the
observed radar (Figure 2) indicated echoes <35 dBZ at 1200, 1500, and 1800 UTC, with
most echoes generally along an approximately southwest–northeast-oriented line in the
northwest of the domain at 1200 and 1500 UTC, but moving to the north central portion of
the domain by 1800 UTC. However, after 1800 UTC, a strong line of southwest-to-northeast-
oriented convection developed ahead of the previous echoes and moved eastward. Multiple
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tornadoes were observed this day, with one that was determined to be an EF5 on the ground
approximately from 1956 to 2035 UTC starting in Newcastle, Oklahoma, and traveling
through Moore, Oklahoma [44–46]. Severe hail was also observed in multiple locations.

 

Figure 2. Observed composite base reflectivity for 20 May 2013 at (a) 1200 UTC, (b) 1500 UTC, (c) 1800
UTC, (d) 1900 UTC, (e) 2000 UTC, (f) 2100 UTC, (g) 2200 UTC, and (h) 2300 UTC, and for 21 May 2013
at (i) 0000 UTC. The white arrow in panel e shows the approximate location of the Moore tornado at
that time. Imagery from the Iowa Environmental Mesonet (http://mesonet.agron.iastate.edu/GIS/
apps/rview/warnings.phtml; accessed on 10 November 2021).

Various modeling studies have been performed on this case. Hanley et al. [47] used
the United Kingdom Met Office’s Unified Model with 4.4/2.2/0.5/0.2/0.1 km horizontal
grid spacings without data assimilation and found convection initiating in the Oklahoma
City area at approximately the right time, but the tornado-like vortices in their finest grids
occurred approximately 2.5 h later than the Moore tornado. Zhang et al. [48,49] used
WRF-ARW to look at predictability in this case. Zhang et al. [48], using 27/9/3/1 km
horizontal grid spacings, found that temporal shifting of initial conditions generally tempo-
rally shifts convection but, in some cases, does not because lateral boundary conditions
control convective initiation. Zhang et al. [49] used a 1 km ensemble with perturbations
smaller than the current observational network could resolve and found that the ensemble
members all produce a line of storms, but that details of individual storms differed. Snook
et al. [50] used 500 m-horizontal grid spacing Advanced Regional Prediction System (ARPS)
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simulations with assimilation of radar and surface observations every 5 min using EnKF
and found skill in predicting hail.

2.5. Experiment Design

The experiments in Table 1 and Figure 3 were used to investigate the potential value
of combining vLAPS (2.2) and nudging (2.3) in WRF-ARW (2.1) for the case day of 20 May
2013 (2.4). The names of the experiments begin with the source of the initial conditions
(HRRR or vLAPS), followed by the length of the pre-forecast in hours (0 or 3), and finally
an O is added if observation nudging was applied, and an A is added if analysis nudging
was applied. The pre-forecast refers to the period at the beginning of the model integration
during which the model is assumed to be coming into dynamic balance, and during which
observations may be assimilated. Hydrometeors are included in the initial conditions
provided by both HRRR and vLAPS. Boundary conditions are based on the output from the
15 UTC HRRR cycle. Assimilation of observations or analyses valid during the pre-forecast
time may extend into the beginning of the free forecast, but observations or analyses valid
during the free forecast should not be assimilated. However, the time window over which
observations are included in vLAPS analyses extends 15 min after the valid time of the
analysis, and thus observations during the first 15 min of the free forecast are included via
the vLAPS analyses.

Table 1. Experimental design. Groups are HS = hot start, WS = warm start, ON = observation
nudging, and AN = analysis nudging (VLAPS3AO contains both analysis and observation nudging
but is assigned to group AN).

Name
Initial

Condition Source

Pre-Forecast
Length (h)

Nudging

Analysis Obs Group

HRRR0 HRRR 0 N N WS
HRRR3 HRRR 3 N N WS
VLAPS0 vLAPS 0 N N HS
VLAPS3 vLAPS 3 N N WS

VLAPS3O vLAPS 3 N Y ON
VLAPS3A vLAPS 3 Y N AN

VLAPS3AO vLAPS 3 Y Y AN

The experiments initialized with HRRR0 and HRRR3 served as the no-assimilation
control experiments for the 0 h pre-forecast and 3 h pre-forecast experiments, respectively.
HRRR0 and HRRR3 differ from one another in that, for a given cycle, the HRRR3 experiment
starts integrating 3 h earlier to allow WRF to spin up. For example, the 20 UTC cycle of
HRRR0 (referred to as HRRR020) starts integrating at 20 UTC using the 5 h forecast from the
15 UTC HRRR cycle, whereas HRRR320 starts integrating at 17 UTC using the 2 h forecast
from the 15 UTC HRRR cycle, but the output between 17 and 20 UTC is not considered
part of the forecast since it is during the spinup time. The experiments initialized with
vLAPS that applied no additional nudging were used to determine the potential value of
adding nudging. VLAPS0 represents the normal way in which vLAPS (and other 3DVAR
analyses) is used, while VLAPS3 allows the effect of a 3 h pre-forecast without additional
nudging assimilation to be ascertained. Both experiments used the vLAPS analysis as
the initial conditions for the model integration. The other three experiments used vLAPS
for the initial conditions, and during a 3 h pre-forecast, they analysis nudged toward the
thirteen vLAPS analyses valid during this period (VLAPS3A), observation nudged toward
observations (VLAPS3O), or both (VLAPS3AO). These experiments explore the value of
applying a series of vLAPS 3D analyses rather than just one, and whether observation
nudging might add value even when vLAPS analyses are used.
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Figure 3. Experimental design. The initial conditions for the experiment are labeled in white letters.
The short vertical blue lines represent the valid times of the variational version of the Local Analysis
and Prediction System (vLAPS) analyses which were used in analysis nudging for a time period
centered on the valid time. The rampdown period of nudging as described in Section 2.3 is omitted
from this figure for clarity. Each experiment was run with t0 values of 1800, 1900, 2000, 2100, 2200,
and 2300 UTC. Adapted from Reen et al. [20].

For the purpose of comparing the experiments in the objective verification section, we
broke them up into groups based upon the general method of data assimilation applied.
These groups are referred to as hot start (HS; VLAPS0), analysis nudge (AN; VLAPS3A and
VLAPS3AO), observation nudge (ON; VLAPS3O), and warm start (WS; HRRR0, HRRR3,
and VLAPS3). The experiment that used both analysis and observation nudging was placed
within the AN group, and the WS group included all experiments that “spun up” from
either a vLAPS- or HRRR-generated background state without further data assimilation
application. The motivation for including the non-vLAPS experiments in the WS group
was that the HRRR 15 UTC forecast cycle fields provide sufficiently “spun up” mesoscale
information (including hydrometeor fields), due to the model’s own high-quality data
assimilation methodology and 3 km native grid spacing, meaning it is essentially a warm
start. In summary (Table 1), HS included VLAPS0, AN included VLAPS3A and VLAPS3AO,
ON included VLAPS3O, and WS included HRRR0, HRRR3, and VLAPS3.

For each experiment, independent cycles were carried out hourly with the integration
period of all cycles ending at 0000 UTC on 21 May 2013 (Figure 4). The 0 h forecast time is
the end of the pre-forecast and the beginning of the forecast (t0 in Figures 3 and 4), which
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was 1800 UTC for the first cycle and 2300 UTC for the final cycle (i.e., cycles were run with
the following t0 values: 1800, 1900, 2000, 2100, 2200, and 2300 UTC). Each cycle is referred
to by its 0 h forecast time (t0). Each WRF cycle includes the integration of WRF through
the 3 h pre-forecast period up to t0 (except for VLAPS0 and HRRR0, which do not have a
pre-forecast period) and the integration of WRF from t0 until the end of the forecast at 0000
UTC. For example, the 18 UTC cycle of VLAPS3AO (referred to as VLAPS3AO18) starts
integration at 1500 UTC, applies analysis and observation nudging data assimilation during
the integration in the 3 h pre-forecast period ending at 1800 UTC (t0), and then continues
integrating until the end of the forecast period at 0000 UTC. Each cycle is independent in
that it is not affected by any of the other cycles.

 

Figure 4. Illustration of the six WRF cycles used for each experiment and which are referred to by
the 0 h forecast time (t0). As shown in Figure 3, the 3 h pre-forecast period wherein any analysis or
observation nudging data assimilation was applied is omitted in some experiments (HRRR0 and
VLAPS0). The hourly forecast lead times for each cycle are labeled in red; the output was created at a
15 min temporal spacing.

All experiments used the 1500 UTC cycle of HRRR as the starting point to determine
the initial conditions and boundary conditions, with the vLAPS analyses using this cycle
as the first-guess field. This simplifies the experimental design and is more representa-
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tive of the limited frequency of updated model data available to drive finer-scale model
simulations in battlefield conditions.

In order to more concretely illustrate the experimental configuration, Figure 5 shows
how one specific experiment (VLAPS3AO) was configured for one specific cycle (2100 UTC),
i.e., VLAPS3AO21. The lower portion of Figure 5 illustrates how analysis nudging was
applied during the 3 h pre-forecast (1800–2100 UTC for this cycle) using 15 min vLAPS
analyses by showing the analysis nudging details for the first hour of this period (i.e., 1800–
1900 UTC). Each analysis was applied to the model over 30 min centered on the valid time
of the analysis. The weight at which it was applied linearly increased in the 15 min prior
to the valid time of the analysis and linearly decreased in the 15 min following the valid
time. Observation nudging applied observations over a time window centered on each
individual observation; as described in Section 2.3, a 2 h time window was used for surface
observations, and a 3 h time window was used for above-surface observations.

 

Figure 5. Schematic illustrating the details of a specific experiment (VLAPS3AO) for a specific cycle
(21 UTC), i.e., VLAPS3AO21. While the lower half of the figure shows the details of how vLAPS
analyses were applied using analysis nudging between 1800 and 1900 UTC, analysis nudging towards
vLAPS analyses took place throughout the 3 h pre-forecast period.

3. Results

Here, the evaluation of the combination of a 3DVAR-based technique (vLAPS) and
nudging is limited to reflectivity. To demonstrate the variation among the experiments, a
single forecast time for a single cycle is examined subjectively. However, given the number
of experiments, cycles, and forecast times, the objective evaluation that follows allows for a
more holistic understanding of the results.
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3.1. Subjective Evaluation

The observed composite base reflectivity is compared to the WRF-ARW lowest-level
reflectivity for the 18 UTC cycle of each experiment in Figure 6 for 2015 UTC 20 May
2013. This is near the time of the peak of the EF5 tornado and was chosen as a time where
strong convection is present. The observed reflectivity (Figure 6c) shows convection along
a southwest-to-northeast-oriented line from Texas through the southeast corner of Kansas.
There are weaker echoes (<30 dBZ) in a short line in central Kansas, and scattered echoes
in the northwest corner of the domain. All of the experiments forecast the main line of
convection and some echoes in the northwest corner of the domain, but there are notable
differences among the experiments.

 

Figure 6. Reflectivity at 2015 UTC on 20 May 2013 from (a) HRRR018; (b) VLAPS018; (c) observations;
(d) HRRR318; (e) VLAPS318; (f) VLAPS3A18; (g) VLAPS3O18; (h) VLAPS3AO18. The black X within
the white square shows the approximate location of the EF5 tornado. The observed reflectivity is the
composite base reflectivity, and the WRF-ARW reflectivity is the lowest model-level radar reflectivity.
The observed reflectivity is from the Iowa Environmental Mesonet (http://mesonet.agron.iastate.
edu/GIS/apps/rview/warnings.phtml; accessed on 10 November 2021).
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The northern portion of the main line of convection is not well simulated by the
experiments initialized with HRRR (HRRR018 in Figure 6a and HRRR318 in Figure 6d). The
use of vLAPS as the initial condition slightly strengthens convection in this area (VLAPSO18
in Figure 6b), and the addition of the 3 h pre-forecast without nudging (VLAPS318 in
Figure 6e) brings the strength closer to the observations. However, it appears that the
experiment analysis nudging to the vLAPS analyses and applying observation nudging
(VLAPS3AO18 in Figure 6h) best reproduces the continuous strength of the convection
along this line in Kansas. The southern edge of the main line of convection does not extend
far enough south in VLAPS318 (Figure 6e), but most of the other experiments appear to
extend it too far south. All experiments show echoes in the general region of the observed
EF5 tornado, but only three experiments (VLAPSO18 in Figure 6b, VLAPS318 in Figure 6e,
and VLAPS3O18 in Figure 6g) show echoes at the location, with two of these experiments
(VLAPSO18 in Figure 6b and VLAPS3O18 in Figure 6g) showing echoes ≥ 40 dBZ very
close to the location.

The area of weak echoes in central Kansas is not well forecast by any of the experiments.
The HRRR-initialized experiment without a pre-forecast (HRRR018 in Figure 6a) shows
the feature stronger and smaller than observed and, unlike the observations, does not
show an area with no echoes between it and the echoes in the northwestern portion of the
domain. The vLAPS-initialized experiment without a pre-forecast (VLAPS018 in Figure 6b)
shows a pair of lines of convection in this area that are both much stronger than observed.
The 3 h pre-forecast (HRRR318 in Figure 6d) allows the HRRR initialization to reproduce
more of the separation between the feature and echoes in the northwestern portion of
the domain observed but shows the feature with much less coverage than observed. For
experiments with the 3 h pre-forecast, using vLAPS as the initial conditions broadens
the area covered by this feature compared to the HRRR initialization (HRRR318) and
removes the second line of convection seen in the vLAPS experiment without the 3 h
pre-forecast (VLAPSO18). The experiments with the area covered by this feature that most
closely match the observations appear to be the experiments analysis nudging the vLAPS
analyses (VLAPS3A18 in Figure 6f and VLAPS3AO18 in Figure 6h). However, all of the
experiments that produce the feature show it stronger than observed. The echoes in the
northwest quadrant of the domain, in general, appear to be stronger than observed in the
experiments, perhaps most so for experiments analysis nudging towards vLAPS analyses or
observation nudging (VLAPS3A18 in Figure 6f, VLAPS3O18 in Figure 6g, and VLAPS3AO18
in Figure 6h).

All of the experiments produce model base reflectivity fields that are at least generally
consistent with the observed composite radar reflectivity, but there is notable variation
among the experiments. While it is difficult to subjectively determine which experiment
performs best at the time shown here for this cycle, the results suggest that the experiment
analysis nudging to the vLAPS analyses and applying observation nudging performed
reasonably well (VLAPS3AO18 in Figure 6h).

3.2. Objective Evaluation

The previous subsection presented subjective support that the model simulations
realistically reproduced the general convective outbreak event on the afternoon of 20 May,
including aspects associated with the timing, spatial location, alignment, and convective
mode. Reen et al. [20] showed that the model had some ability in capturing realistic gross
structures seen in supercellular storms. However, the evolution of the convective outbreak
and structural details of individual convective elements differed among the experiments;
this variation offers a spread of potential solutions, consistent with what might be expected
based on the findings in Zhang et al. [49]. The following section provides a more objective
evaluation using several forecast performance measures to compare all of the different
experiments aggregated across the hourly cycles during the afternoon of May 20.

Although the results are only valid for this single unique case study event, they may
provide valuable clues as to how the various techniques can perform in a more general
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sense. We are also interested in whether our combined 3DVAR analysis/observation
nudging strategy might be of value in supporting stand-alone operational nowcasting
systems run on a more modest computational hardware platform.

3.2.1. Metrics Used in Objective Evaluation

To quantitatively measure the performances of each cycle across the full spectrum
of our experiments, a trio of well-established forecast evaluation measures was used to
examine the short-range convective forecasts by comparing observed to model forecast
radar reflectivity fields. The fractions skill score, or FSS [51], is a spatial verification metric
often used for assessing the performance of precipitation forecasts from numerical weather
prediction (NWP) models (frequently for convective precipitation). The critical success
index, or CSI [52], is another common metric used to evaluate categorical forecasts, taking
into account hits, misses, and false alarms. Finally, the frequency bias score (FBIAS) [53,54]
is also used to assess the quality of model-derived radar reflectivity field forecasts against
real radar observations [19,53]. The FBIAS is simply the ratio between the number of
model grid points where the model forecasts reflectivity above a certain threshold and
the number of model grid points where the observed radar reflectivity values exceed the
same threshold.

The FSS was computed for different neighborhood sizes aggregated from the native
grid resolution. The aggregation was also conducted across all of the relevant cycles for each
lead forecast time in each experiment (not all cycles are relevant for each forecast lead time
since some cycles are too short to include some forecast lead times). For example, the FSS
for the 1.25 h forecast lead time of VLAPS3AO aggregates the verification of VLAPS3AO18
at 1915 UTC, VLAPS3AO19 at 2015 UTC, VLAPS3AO20 at 2115 UTC, and VLAPS3AO21
at 2215 UTC (Figure 4 shows the relationship between forecast lead time and valid time
for each cycle). Since model forecast skill often varies based on the forecast lead time,
aggregating statistics by forecast lead time reveals how the temporal evolution of error
varies among methodologies. The CSI and FBIAS were not computed using neighborhoods
but were both calculated on the highest available resolution grid (here, our native model
grid spacing of 1 km) and, as with FSS, were aggregated across cycles for each lead forecast
time in each experiment. The FBIAS of reflectivity measures how much the model either
overforecasts (forecast is more than the actual) or underforecasts (forecast is less than the
actual) coverage of reflectivity values exceeding a threshold. No verification takes place
during the pre-forecast (where data assimilation occurs), but verification is instead limited
to the forecast period.

As noted previously (and shown in Figure 4), a model integration with a t0 of each
hour from 1800 UTC to 2300 UTC was launched (i.e., an hourly refresh) for each experiment
and produced 15 min forecasts from t0 out to 0000 UTC of 21 May. The latest time verified
is 2300 UTC because radar data provided by vLAPS were not available after this time. The
output was produced in 15 min intervals, which thus produced forecasts for verification
with lead times ranging from 15 min to 5 h (resulting in statistics at 20 different forecast
lead times). Due to the 0000 UTC end time of all cycles, but radar data not being available
after 2300 UTC, only the 1800 UTC cycle produced a 5 h forecast lead time. Because of
various pre-forecast requirements across different experiments, some experiments start
their integration before their 0 h lead time (e.g., a model cycle with a base time of 1800 UTC
with a 3 h pre-forecast requirement was actually initialized at 1500 UTC with lead times
of forecasts based on the 1800 UTC mark). Since all simulations terminated at 0000 UTC,
the model integrations which started at 2300 UTC had only a maximum 1 h lead forecast
available. Because radar data were not available after 2300 UTC, all verification forecast
times of the 2300 UTC cycle (other than the 0 h forecast time) are after the end of radar
data availability, and thus the 2300 UTC cycle is not included in the objective verification
statistics. WRF-ARW “restart” forecasts were not used to initialize from a previous cycle’s
forecast—all first-guess initial condition (and lateral boundary tendency) fields for all cycles
leveraged the 1500 UTC HRRR cycle forecast fields available at hourly increments. A single
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HRRR cycle was used to more closely approximate the cycle frequency that is available
outside of the United States for models such as the Global Forecast System that could be
used as boundary conditions for fine-scale simulations.

Each experiment was aggregated across its simulations to create statistics, with each
value representing that experiment’s performance for the forecast lead time, reflectivity
threshold, and (for FSS) neighborhood size being evaluated. Similar to other studies, the
column maximum radar reflectivity from both the model and the National Weather Service
WSR-88Ds (provided by the National Oceanic and Atmospheric Administration; NOAA)
was used to evaluate the convective forecasts [55]. The ground truth column maximum
radar reflectivity fields obtained from the NOAA are the same type as those used for
previous studies involving the original LAPS product [33]. The model column maximum
reflectivity was computed using the WRF-ARW diagnostic method [56] that uses prognostic
hydrometeor fields from the model microphysics parameterization.

The FSS for two radar reflectivity thresholds (25 dBZ and 35 dBZ) using a 9 km
neighborhood size is shown in Figure 7. The CSI and FBIAS metrics are shown in Figures 8
and 9. The neighborhood size of 9 km is here considered to be a reasonable estimate for
the “effective resolution” of the WRF-ARW when run on a mesh with a native 1 km grid
spacing [57]. The number of cycles included in the statistics varies by forecast lead time,
with five cycles included at the 1 h forecast and one cycle included at the 5 h forecast.

3.2.2. Outcome of Objective Evaluation

For the purpose of comparing the experiments in this section, we utilized the groups
described in Section 2.5 which are based upon the general method of data assimilation
applied. The various FBIAS, FSS, and CSI curves throughout the lead forecast period
of study (as seen in Figures 7–9) show similarity within these assimilation methodology
groups, namely, hot start (HS), analysis nudge (AN), observation nudge (ON), and warm
start (WS). Note that the time subscript is omitted when referring to the evaluation of the
WRF forecasts in this section because each experiment is evaluated based on data that are
combined across the cycles.

Although VLAPS0 is considered as a HS, it does differ from previous LAPS/vLAPS HS
experiments [19,58] in that it did not directly insert the vertical velocity from the analysis
into the WRF-ARW initial conditions. However, the hydrometeor fields produced in the
vLAPS analyses are used in the appropriate initial WRF-ARW arrays. Additionally, since
both reflectivity and radial wind information from the WSR-88D radars were incorporated
into the vLAPS analyses, it is expected that the initial vertical velocity fields adjusted
quickly through continuity considerations to the convective-scale information provided by
the radar data. Any experiment that used a pre-forecast period and which started from an
initial vLAPS analysis also filled the initial WRF-ARW arrays in the same fashion (Section 2
provides more details on the use of vLAPS analyses for model initialization). When the
vLAPS analyses are used instead solely as a source for 15 min intermittent analysis nudging
across a pre-forecast period by WRF-ARW, the analyses are only used to nudge the potential
temperature, water vapor mixing ratio, and u- and v-wind components, as these are the
variables for which analysis nudging is available in WRF-ARW.
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Figure 7. FSS by lead forecast time (by experiment) and for (a) 25 dBZ and (b) 35 dBZ reflectivity
threshold levels (for a 9 km neighborhood size). Line colors indicate whether an experiment is in the
warm start (WS), hot start (HS), analysis nudge (AN), or observation nudge (ON) group. The number
of cycles included in the statistics at each integer lead time hour is shown along the top of the figure.
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Figure 8. CSI by lead forecast time (by experiment) and for (a) 25 dBZ and (b) 35 dBZ reflectivity
threshold levels. Line colors indicate whether an experiment is in the warm start (WS), hot start
(HS), analysis nudge (AN), or observation nudge (ON) group. The number of cycles included in the
statistics at each integer lead time hour is shown along the top of the figure.
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Figure 9. FBIAS by lead forecast time (by experiment) and for (a) 25 dBZ and (b) 35 dBZ reflectivity
threshold levels. Line colors indicate whether an experiment is in the warm start (WS), hot start
(HS), analysis nudge (AN), or observation nudge (ON) group. The number of cycles included in the
statistics at each integer lead time hour is shown along the top of the figure.

Upon examining Figures 7–9, the first thing of immediate note is that for this case
study event, the HS experiment stands out from the others, mostly within the initial lead
forecast hour. The FSS and CSI scores for the HS experiment are clearly superior to all
other groups during at least the first 30 min of lead forecast time (independent of whether
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the 25 dBZ or 35 dBZ reflectivity threshold value is used). This strong advantage for
very short term nowcasting of vLAPS is most likely due to its use of a diabatic hot start
methodology and has been noted previously [19,58]. The motivation with vLAPS has
always been to compete with and exceed the skill of simpler nowcasting methods such as
feature-based advection/extrapolation or basic persistence during the initial hour. This
is a very challenging goal for convective-scale NWP modeling. In at least this study, the
flip side to HS seems to be that the FSS and CSI scores quickly degrade back to those of
the other methods by approximately a 2 h lead time and, by a 5 h lead time, even appear
to result in somewhat worse scores. Perhaps this is some evidence of an overfitting to
the stronger reflectivity echoes at time 0 h, and that some degree of imbalance could still
remain between the full set of mass and momentum model fields produced by the hot start
analysis itself.

The AN group of experiments exhibited the highest FSS and CSI scores during the first
lead hour (outside of HS). The AN group shows that both FSS and CSI gradually declined
to approximately 2 h and then remained mostly flat until approximately 4 h. During most of
the period after approximately the 1 h lead forecast time, the AN experiments clump in with
the other groups in terms of general FSS and CSI scores. An exception is the VLAPS3AO
experiment in the AN group, which shows a gradual decrease in FSS and CSI scores after
the 4 h lead forecast—all other experiments in all groups show a slight increase in FSS
and CSI scores starting at approximately the 4.5 h lead forecast. This may be an artifact of
the very limited number of cycles (and thus very small sample size) available to compute
metrics at the 4 h and 5 h lead forecasts. It could also point to some need to fine-tune aspects
of the combined analysis and observation nudging criteria used by VLAPS3AO, particularly
when combining meso/synoptic-scale conventional observations via observation nudging
with convective-scale observation data assimilated through analysis nudging to the 15 min
updated vLAPS analyses (when the radar data are incorporated).

The ON group fell in the middle to lower half of the pack of all groups, both for the
short and longer lead forecast times, in terms of FSS and CSI scores. The FSS and CSI scores
for the VLAPS3O experiment generally remained fairly consistent at all lead forecast times.

The FSS and CSI scores for the WS group tended to track fairly closely to those of the
ON group, although HRRR0 was a bit lower initially, while VLAPS3 beyond 2.5 h was
a notable exception (higher FSS at further lead times). For the 25 dBZ threshold, the WS
group (including HRRR0 and HRRR3) tended to outperform the ON group in FSS and
CSI through much of the lead forecast period after approximately 3 h. VLAPS3 generally
showed the highest FSS and CSI scores of all experiments from lead forecasts of 2.5 h and
beyond, particularly for the 25 dBZ reflectivity threshold.

Tables 2 and 3 show the FSS scores at lead forecast times of 0.25 h, 1.75 h, 3.50 h, and
5.00 h for each experiment, and for the 25 dBZ and 35 dBZ thresholds, respectively (for a 9
km neighborhood size). The tables more clearly show the data values, which can also be
estimated from Figure 7.

Table 2. FSS for 25 dBZ threshold and 9 km neighborhood size, at four different lead forecast times (h).

Experiment
FSS by Lead Forecast (h)

0.25 1.75 3.50 5.00

HRRR0 0.22 0.34 0.38 0.42
HRRR3 0.33 0.34 0.35 0.41
VLAPS0 0.75 0.40 0.30 0.22
VLAPS3 0.29 0.33 0.42 0.53

VLAPS3A 0.44 0.40 0.38 0.41
VLAPS3AO 0.41 0.39 0.33 0.26
VLAPS3O 0.28 0.35 0.32 0.46
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Table 3. FSS for 35 dBZ threshold and 9 km neighborhood size, at four different lead forecast times (h).

Experiment
FSS by Lead Forecast (h)

0.25 1.75 3.50 5.00

HRRR0 0.11 0.22 0.22 0.28
HRRR3 0.20 0.22 0.21 0.28
VLAPS0 0.72 0.23 0.16 0.11
VLAPS3 0.18 0.23 0.30 0.34

VLAPS3A 0.33 0.25 0.24 0.26
VLAPS3AO 0.31 0.24 0.20 0.11
VLAPS3O 0.19 0.28 0.22 0.31

Examining the FBIAS among the groups (Figure 9), we can determine whether the
model was forecasting too much (overforecasting; FBIAS > 1.0) or too little (underforecast-
ing; FBIAS < 1.0) areal coverage of reflectivity at or above a given reflectivity threshold.
Early in the lead forecast period, nearly all the groups of experiments showed a significant
tendency to overforecast the stronger convection (higher reflectivity) areas, such as at the
higher 35 dBZ threshold. HRRR0 from the WS group produced the least biased FBIAS
results for both thresholds early in the lead forecast time, but with increasing FBIAS through
approximately the 3 h lead forecast. The VLAPS3 and HRRR3 experiments, also from the
WS group, tended to also be less high biased during the early lead forecast period. All of
the other experiments from the different groups started in mostly the 2.0 to 3.0 FBIAS range
for both the 25 dBZ and 35 dBZ thresholds but dropped steadily towards FBIAS values of
1.0 to 1.5 by the end of the 5 h lead forecast period. At the 25 dBZ threshold, the ON group
began to underpredict areal coverage by the end of the forecast period (VLAPS3O).

At the 25 dBZ and 35 dBZ thresholds, overforecasting was the main forecast feature
across all experiments, particularly early in the lead forecast period. The single HS experi-
ment, VLAPS0, showed the most exaggerated overforecasting at approximately the 30 to
45 min lead forecast for the 35 dBZ threshold (as high as approximately 3.25) but dropped
steadily towards ≈1.25 by the end of the 5 h forecast period. The experiments VLAPS3AO,
VLAPS3A, and VLAPS3O followed a similar FBIAS evolution (in terms of rate of increase
and decrease) to VLAPS0 for both the 25 dBZ and 35 dBZ thresholds after the 1 h lead time.
During the 0 h to 1 h lead forecast period, the FBIAS decreased in the VLAPS3O forecasts,
whereas the VLAPS3A and VLAPS3AO FBIAS remained fairly constant. In contrast to all
of the other experiments, the VLAPS0 FBIAS sharply increased between the 0.25 h and
0.50 h forecasts, suggesting that the initial analysis solution may not be in complete balance
(perhaps from overfitting to the radar observations) with the WRF-ARW model on the
1 km domain. Tables 4 and 5 show the specific FBIAS scores at lead forecast times of 0.25 h,
1.75 h, 3.50 h, and 5.00 h for each experiment, and for the 25 dBZ and 35 dBZ thresholds,
respectively. The overforecasting at the 25 dBZ and 35 dBZ thresholds is generally more
pronounced for forecasts recently influenced by observations (via vLAPS analyses directly
inserted at t0 in VLAPS0, via vLAPS analyses being analysis nudged towards in VLAPS3A
and VLAPS3AO, or via observation nudging in VLAPS3O). It may be that the methods used
to incorporate observations into vLAPS analyses and through observation nudging make
assumptions that do not work optimally for this specific case and the specific observations
available; future work should explore the generality of this bias and seek to determine how
the methodologies could be improved to lower the overforecast bias.

The variation in performance by neighborhood size and reflectivity threshold (as
measured by FSS) for this case study can be seen more clearly in Table 6. In Table 6, the FSS
is shown for a few different lead forecast times near the start and end of the forecast period
(0.50 h and 5.00 h), and for different neighborhood sizes (1 km, 9 km, 17 km). The lower 10
dBZ threshold is focused upon in Table 6, although for the 9 km neighborhood (closest to
the effective resolution of the WRF 1 km grid spacing output), additional thresholds of 25
dBZ and 35 dBZ are also shown. The tendency of FSS to improve with lower reflectivity
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thresholds and larger neighborhood sizes, as seen in most previous NWP convection-
allowing precipitation studies, is repeated here.

Table 4. FBIAS for 25 dBZ threshold at four different lead forecast times (h).

Experiment
FBIAS by Lead Forecast (h)

0.25 1.75 3.50 5.00

HRRR0 1.23 1.36 1.46 1.16
HRRR3 1.53 1.33 1.18 1.08
VLAPS0 1.73 1.97 1.44 1.02
VLAPS3 1.65 1.37 1.27 1.16

VLAPS3A 2.02 1.98 1.49 1.25
VLAPS3AO 2.32 2.10 1.42 1.01
VLAPS3O 2.37 1.55 1.10 0.91

Table 5. FBIAS for 35 dBZ threshold at four different lead forecast times (h).

Experiment
FBIAS by Lead Forecast (h)

0.25 1.75 3.50 5.00

HRRR0 1.08 1.56 1.77 1.48
HRRR3 1.79 1.53 1.53 1.37
VLAPS0 1.86 2.40 1.66 1.20
VLAPS3 1.82 1.55 1.53 1.60

VLAPS3A 2.41 2.42 1.79 1.69
VLAPS3AO 2.76 2.49 1.65 1.33
VLAPS3O 2.67 1.64 1.23 1.25

Table 6. FSS as it varies across three different neighborhood sizes for the 10 dBZ threshold, and for
two different lead forecast times (near the start and end of the forecast period). Note that additional
thresholds of 25 dBZ and 35 dBZ are shown only for the 9 km neighborhood size (since 9 km is of
interest due to it closely representing the effective resolution of the WRF output produced from the
1 km grid spacing nest).

FSS by Neighborhood Size (NS), Threshold (T), and Lead Time (LT)
NS 1 km 9 km 17 km
T 10 dBZ 10/25/35 dBZ 10 dBZ

Experiment LT 0.25 h 5.00 h 0.25 h 5.00 h 0.25 h 5.00 h

HRRR0 0.43 0.65 0.50/0.22/0.11 0.71/0.42/0.28 0.54 0.74
HRRR3 0.50 0.61 0.59/0.33/0.20 0.67/0.41/0.28 0.64 0.70
VLAPS0 0.67 0.56 0.77/0.75/0.72 0.62/0.22/0.11 0.80 0.65
VLAPS3 0.51 0.61 0.60/0.29/0.18 0.67/0.53/0.34 0.64 0.70

VLAPS3A 0.54 0.64 0.64/0.44/0.33 0.70/0.41/0.26 0.68 0.72
VLAPS3AO 0.51 0.55 0.60/0.41/0.31 0.61/0.26/0.11 0.64 0.64
VLAPS3O 0.45 0.52 0.51/0.28/0.19 0.57/0.46/0.31 0.55 0.59

4. Discussion

This study’s main goal was to complete a preliminary investigation of how nudging
and vLAPS 3DVAR compare, and how combining them could improve short-range now-
casting. This paper’s focus was more upon the overall methods, and less upon the specific
differences across the forecast results, because statistical evaluation of additional cases is
needed to draw conclusive statements.

From a subjective standpoint, the experiments captured the main features/structures
and general timing of the severe convective outbreak over Oklahoma on the afternoon of
20 May 2013 (some more realistically than others). This was a strongly forced convective
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event and was likely to be inherently more predictable [59–62]. The FSS and CSI metrics
showed that the experiments performed similarly around the 2 h forecast, while differences
among the experiments were somewhat larger at other forecast hours. VLAPS0 is an outlier
with much higher scores over the initial lead forecast hour (but generally the lowest scores
during the 3 to 5 h lead forecast period). The experiments that applied data assimilation
across a short pre-forecast period, including the VLAPS3AO hybrid observation/analysis
nudging approach introduced by the authors of this paper, appeared to improve FSS and
CSI at the start of the nowcast cycles compared to not performing data assimilation during
this pre-forecast period (i.e., VLAPS3AO, VLAPS3A, and VLAPS3O compared to VLAPS3).
However, they could not match the FSS and CSI gained by inserting vLAPS analyses at the
beginning of the simulation without a pre-forecast period (VLAPS0).

The VLAPS3 combination of starting the model integration from a 3D variational
analysis (leveraging radar data), followed by a subsequent 3 h pre-forecast period, per-
formed well relative to most of the other experiments for bias in the first portion of the
forecast period (HRRR0 had better bias and HRRR3 was very similar to VLAPS3). It also
performed better than all of the other experiments for CSI/FSS in the latter portion of the
forecast period.

While analysis nudging toward high-resolution 3DVAR vLAPS analyses shows poten-
tial promise for improving short-term convection forecasts, the results suggest further work
is needed to best leverage high-resolution analyses. The rapid increase in overforecast bias
in VLAPS0 at the beginning of the forecast and CSI and FSS performing worse than any
other experiment later in the forecast suggest that the VLAPS0 method of directly inserting
the analysis at the beginning of the forecast may not be optimal. Analysis nudging towards
a series of vLAPS analyses may be a way to improve the assimilation of vLAPS analyses.
However, two factors suggest room for improvement in the methodology used to analysis
nudge towards the vLAPS analyses (VLAPS3A, VLAPS3AO). One factor is that the analysis
nudging experiments have a noticeably higher overforecast bias than an experiment started
with the same initial conditions but no subsequent data assimilation (VLAPS3). The second
factor is that during the first hour, directly inserting vLAPS analyses at the beginning of the
forecast (VLAPS0) performs much better (in terms of CSI and FSS) than analysis nudging
towards the vLAPS analyses. Analysis nudging is not normally used to assimilate analyses
with the high temporal (15 min) and horizontal (1 km) spacing used here. Thus, informing
the analysis nudging weights by previous research may have resulted in analysis nudging
having been applied more weakly or more strongly than would best assimilate the analyses.
Additionally, in order to fully assimilate the vLAPS analyses, nudging towards additional
fields from the analyses may be needed to supplement those currently available for anal-
ysis nudging in WRF. Given the verification results, it is not clear that using observation
nudging (VLAPS3A vs. VLAPS3AO) adds values in this case; this may be because the
high-temporal and spatial resolution observations used in the vLAPS analysis limit the
added value of assimilating individual observations at a time centered on their valid times.

Both HRRR0 and HRRR3 (also in the WS group) proved competitive in FSS and
CSI scores after approximately the first 90 min of the lead forecast and out through the
longer lead times (and for FBIAS throughout the forecast); this is consistent with both the
high-resolution nature and the sophisticated data assimilation methodology built into the
HRRR cycling model itself. Since the 15 UTC HRRR cycle forecasts were leveraged in
every experiment across all cycle times, the oldest HRRR forecast used to provide a lateral
boundary condition (at 00 UTC 21 May) had a 9 h lead time. Some recent studies [63–65]
indicate that convection-resolving NWP models, using sophisticated data assimilation
approaches (including radar data ingest), can show skill and predictability out to 6–12 h.
This is especially true for strongly forced convection, which is the type of convection in
this study. Weakly forced convection (such as the type common over the summer in the
southeastern US) tends to be considerably less predictable at these same resolutions, due to
less certainty in capturing the convective initiation mechanisms [66].
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Two advantages our simulations had were that (1) a high-quality 3 km HRRR forecast
produced at 15 UTC was available for creating lateral boundary tendencies (and either the
initial conditions or the first guess for the analysis used as the initial conditions); and (2)
multiple Doppler WSR-88D radars were available to the vLAPS analyses. If we consider a
forward-deployed army unit running a similar modeling configuration on a laptop with
restrictive communication bandwidth availability, conditions such as (1) and (2) above
will likely not typically be present. However, this study shows that atmospheric data
assimilation approaches not reliant on a full EnKF [67] or 4DVAR [68] approach, and not
in need of high-performance computing cluster solutions, can still provide value-added
short-range nowcast guidance to local human forecasters and automated forecast systems
and weather decision support tools.

While this study used a single, large domain to simplify the experiment setup (made
possible by the availability of the high-resolution HRRR output), in order to make this
tractable for a forward-deployed system, nested grids with a much smaller innermost
domain would be needed. In the case of a tactical NWP-based nowcasting system (a rapid
update cycling model), the ability to collect and effectively assimilate special tactical
weather observations (sensors on unmanned aerial systems, lidar, radar, etc.) along with
non-traditional sources of weather observations (for example, the Air Force Global Synthetic
Weather Radar product [69], which leverages satellite observations and other data sources)
will be an important avenue to full success. Additionally, while this study used vLAPS
analyses, the techniques investigated could be used with other high-resolution analyses.

In terms of convective forecasting, which was the focus of this paper, there is still
ample work remaining towards improvement upon the bias and skill issues, especially at
the higher reflectivity threshold levels. Future work should investigate additional cases to
explore the generality of the results seen in this case, including exploring whether the high
reflectivity bias seen in the current case is seen in other cases and determining the causes of
this bias. Given that this was a strongly forced and large-scale convective outbreak, these
issues are likely going to be even more challenging in weakly forced convective environ-
ments [66]. This case study describes methodologies that can be used to apply 3DVAR
analyses in conjunction with nudging, demonstrates that applying these methodologies
for vLAPS analyses for this case study does not show a clear overall improvement, and
suggests areas for future research to explore how to improve the combination of 3DVAR
analyses and nudging. In this case study, directly applying the vLAPS analyses at the
0 h forecast time without analysis nudging resulted in higher FSS and CSI than the other
experiments throughout the 0–1 h forecast, but this was also the only experiment with
bias increasing substantially during this time period. Similarly, Jiang et al. [19] found that
in WRF forecasts initialized with vLAPS, the equitable threat scores were highest at the
beginning of the forecasts

At a national level, convection-permitting models are already performing with good
skill and with a high degree of sophistication in data assimilation strategies and NWP
physics [70]. Running limited-area mesoscale modeling configurations on hardware tech-
nology as restricted as a desktop or laptop, while maintaining a flexibility to adjust quickly
for operations over diverse and often data-restricted locations around the world, will
require making intelligent adjustments to the national approaches at convection-permitting
scales. The 1 km (and even finer) grid spacing is important for resolving many boundary
layer flow phenomena that impact both military and civilian interests near the earth’s
surface, and convective forecasting is just one aspect of those (although a potentially highly
impactful one).
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Abstract: Raindrop size distribution (RSD) is a key parameter in the Weather Research and Forecasting

(WRF) model for rainfall estimation, with gamma distribution models commonly used to describe

RSD under WRF microphysical parameterizations. The RSD model sets the shape parameter (µ)

as a constant of gamma distribution in WRF double-moment bulk microphysics schemes. Here,

we propose to improve the gamma RSD model with an adaptive value of µ based on the rainfall

intensity and season, designed using a genetic algorithm (GA) and the linear least-squares method.

The model can be described as a piecewise post-processing function that is constant when rainfall

intensity is <1.5 mm/h and linear otherwise. Our numerical simulation uses the WRF driven by

an ERA-interim dataset with three distinct double-moment bulk microphysical parameterizations,

namely, the Morrison, WDM6, and Thompson aerosol-aware schemes for the period of 2013–2017

over the United Kingdom at a 5 km resolution. Observations were made using a disdrometer and 241

rain gauges, which were used for calibration and validation. The results show that the adaptive-µ

model of the gamma distribution was more accurate than the gamma RSD model with a constant

shape parameter, with the root-mean-square error decreasing by averages of 23.62%, 11.33%, and

22.21% for the Morrison, WDM6, and Thompson aerosol-aware schemes, respectively. This model

improves the accuracy of WRF rainfall simulation by applying adaptive RSD parameterization and

can be integrated into the simulation of WRF double-moment microphysics schemes. The physical

mechanism of the RSD model remains to be determined to improve its performance in WRF bulk

microphysics schemes.

Keywords: Weather Research and Forecasting; raindrop size distribution; adaptive shape parameter

model; gamma distribution; double-moment microphysics schemes

1. Introduction

Raindrop size distribution (RSD) provides fundamental information for characterizing
the microphysical properties of precipitation and is an important factor in determining
the accuracy of rainfall retrieval for radar-based quantitative precipitation estimation and
rainfall simulation of numerical weather prediction systems [1–3]. Moreover, RSD also
plays an important role in calculating rainfall kinetic energy [4], which is a dominant
parameter affecting soil erosion [5,6].

Ground-based disdrometers are a precise tool for measuring RSD, studying rain micro-
physics, and verifying the rainfall retrievals obtained through remote sensing via radar and
satellite or numerical weather forecast models [7]. However, disdrometer measurements
can only represent point information on rainfall characteristics and have a limited ability to
spatially represent larger areas. The numerical Weather Research and Forecasting (WRF)
model can provide RSD spectra for each grid in the simulating results to cover a broader
area than that obtained with the disdrometer [8].
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The WRF model, with advanced dynamics, physics, and numerical schemes [9,10],
has been increasingly used in water resource studies and hydrologic modeling [11]. How-
ever, predicting rainfall is extremely challenging for numerical models due to the lack of
physical representation of rainfall generation and the limitation in computation that must
simplify droplet generation as well as the limitation in grid resolution, among others. The
WRF model exhibits relatively poor performance for estimating rainfall because there are
many model biases. The cloud microphysical scheme with various RSD parameterizations
is one of the main factors leading to the uncertainty of WRF rainfall simulation [2,12].
Bulk microphysics parameterization (BMP) schemes, which are standard approaches in
representing cloud processes used in the WRF model [13–16], assume a hydrometeor parti-
cle size distribution function in the form of a gamma distribution with three parameters
(intercept parameter N0, shape parameter µ, and slope parameter λ). The BMP schemes
can be classified into one-, two-, and three-moment schemes based on physical quantities.
Several studies have shown that the two-moment BMP schemes outperformed one-moment
schemes in a convection-scale simulation and supercell storm and performed similarly
to the three-moment schemes with higher computational complexity [13,14,17,18]. Two-
moment schemes apply a specific case of the gamma distribution in which the value of the
shape parameter is set to 0, with a few exceptions (e.g., WDM6 scheme with µ = 1) [14].
Thus, these schemes reduce the gamma RSD model from three parameters to two.

However, Ulbrich [19] found that the three-parameter gamma RSD model can charac-
terize a broader range of raindrop size distributions than two-parameter (e.g., exponential)
distributions while flexibly describing the relative number concentration of large raindrops.
The shape parameter is directly related to the median volume diameter D0 [19,20]. Mil-
brandt and Yau [21] suggested that it may be an improvement over using a fixed value of
µ in two-moment schemes using a monotonically increasing function of the mean-mass
drop diameter, and the shape parameter µ. Yang et al. [2] suggested that a gamma RSD
model with an adaptive value of µ should be developed using the WRF model. Other
studies [22,23] revealed that Dm increases with the rain rate, suggesting that the value of µ
is also related to rainfall intensity. Nevertheless, studies aimed at improving the accuracy
of WRF rainfall simulation from the perspective of investigating an adaptive or dynamic
shape parameter framework of the RSD model in WRF double-moment microphysical
schemes remain limited.

Therefore, we predicted that the gamma RSD model with an adaptive shape parameter
could improve the accuracy of WRF rainfall simulation compared to the model with a fixed
shape parameter of double-moment microphysics parameterizations (MPs). Additionally,
we hypothesized that the shape parameter is related to rainfall intensity and can be used
to construct an adaptive-µ model of gamma distribution for WRF double-moment bulk
schemes [2].

To test this hypothesis, we conducted several long-term experiments and data as-
sessments covering the period from 2013 to 2017. We downscaled five years of ERA-
Interim [24,25] data to 5 km spatial and 1 h temporal resolutions using the WRF model
based on three different double-moment microphysics schemes. Measurements from a
disdrometer in southern England were used to constrain the value of the shape parameter
of the gamma RSD model within a reasonable range, and measurements from 241 rain
gauges with hourly resolution spread across the United Kingdom (UK) were used to evalu-
ate the WRF model rainfall simulation results. Among the rain gauges, 211 were selected
to construct the adaptive-µ model, whereas the others were used to validate the proposed
model against three different error indices. This paper is organized as follows: Section 2
describes the study area and data source; Section 3 describes the WRF model configurations,
RSD model, experimental designs, and evaluation indicators; Section 4 presents the results
and validation of the proposed method; and Sections 5 and 6 provide a comprehensive
discussion and conclude the main points of this study, respectively.
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2. Study Area and Data

The study area is in the UK off the northwest coast of Europe within a range of
49◦46′ N–60◦43′ N and 8◦25′ W–3◦35′ E. This region covers approximately 248,532 km2

and comprises mainly lowland terrain with a maximum elevation of 1345 m.
The ERA-Interim datasets from the third generation of the European Centre for

Medium-Range Weather Forecasts (ECMWF) reanalysis [26] were used to drive the WRF
model used in the study. ERA-Interim is a significant atmospheric data source covering a
data-rich period from January 1979 to the (near-real-time) present with a spatial resolution
of approximately 80 km and a 3 h time interval [26]. A 2006 release of the Integrated Fore-
casting System (IFS-Cy31r2) was used to support the data assimilation system to produce
the ERA-Interim. The system includes a four-dimensional variational analysis with a 12 h
analysis window. In this study, we selected the ERA-Interim reanalysis dataset since it
has been used extensively in WRF downscaling modeling studies [27,28] and performs
well in rainfall simulation [29–31]. More details on the ERA-Interim dataset can be found
on the ECMWF website at http://apps.ecmwf.int/ (accessed on 20 September 2020). For
our study, five years of ERA-Interim data covering the study area from January 2013 to
December 2017 were downscaled using the WRF model at temporal and spatial resolutions
of 1 h and 5 km, respectively.

The tipping bucket rain gauge data were sourced from the Met Office Integrated Data
Archive System Land and Marine Surface Stations data set (1853–present) [32]. These data
comprise daily, hourly, and sub-hourly rain measurements, including land and marine
surface observations. The bucket size was 0.2 mm, and the tip time was up to 10 s time
resolution [33]. Measurements from 241 rain gauges with 1 h rainfall accumulations
collected from 2013 to 2017 by the UK Met Office weather station network were selected
to evaluate the accuracy of WRF rainfall simulation. Thirty rain gauges were randomly
selected to validate the experimental results. The locations of the rain gauges and validation
points are shown in Figure 1.

′ –
′ ′ – ′

–

–

 

Figure 1. Distributions of the rain gauges and the domain configurations used in the WRF model
over the United Kingdom.
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An impact-type Joss–Waldvogel (JW) disdrometer was used to analyze the appropriate
interval of the shape parameter. The disdrometer was sited in southern England at 51◦08′ N,
1◦26′ W (Figure 1) and measured drop sizes in 127 bins from 0.3 to 5.0 mm with a sampling
period and collector area of 10 s and 50 cm2, respectively. The disdrometer data provided by
the British Atmospheric Data Centre cover an extended period from April 2003 to July 2018;
in this study, data covering 2013 to 2017 were used to correspond with the rain gauge data.
There are some uncertainties in the JW disdrometer data; for example, drops larger than
approximately 5.0 mm diameter cannot be distinguished and the effect of vertical air motion
on drop fall speed is neglected [34]. Therefore, raindrops larger than 5.0 mm and drizzle
(rainfall intensity < 0.1 mm/h) recorded by a disdrometer were excluded from analysis in
this study. In addition, to filter out the time variation previously reported [22,35,36], 10 s
data measurements were averaged into 1 min periods.

3. Methodology

3.1. WRF Model Configurations

WRF model version 3.8, an Advanced Research WRF dynamical core, was used to
downscale the ERA-Interim reanalysis data. The doubly nested domain configuration used
in the WRF model was centered at 55◦19′ N, 2◦21′ W and applied at a downscaling ratio of
1:5, a finest grid of 5 km, and a temporal resolution of 1 h. In this study, we selected the
1:5 downscaling ratio rather than the 1:3 ratio, since it provides higher resolution results
than the 1:3 ratio and also results in good performance of the WRF model [37]. Combining
the domain center, domain size, and grid spacing, most areas in the UK can be covered as
shown in Figure 1. A detailed list of the parameters used in this domain configuration is
provided in Table 1. Both domains include 28 vertical pressure levels, with the top-level set
at 50 hPa in each.

Table 1. Configurations of the two nested WRF model domains.

Domain Domain Size (km) Grid Spacing (km) Grid Size Downscaling Ratio

d01 1125 × 1675 25 45 × 67 -
d02 655 × 1230 5 131 × 46 1:5

The simulations were performed using three different bulk double-moment micro-
physical parameterizations, namely, the Morrison [38], WDM6 (WRF double-moment
6-class) [15,39], and aerosol-aware Thompson [40] schemes. The Morrison scheme can pre-
dict the number concentrations of ice, snow, rain, and graupel particles; the WDM6 scheme
can predict the number concentrations of cloud droplets, rain, and cloud condensation
nuclei [15,39]; and the Thompson aerosol-aware scheme can predict the number concentra-
tions of cloud droplets and ice, rain, cloud condensation nuclei, and ice nuclei [40]. For the
cumulus scheme, the Kain–Fritsch scheme [41] is used, whereas the cumulus scheme is not
used in the inner domain because convective rainfall generation is definitely resolved when
the model grid spacing is ≤5 km [37,42]. Other physical parameterizations include the
Mellor–Yamada–Janjić planetary boundary layer scheme [43], RRTM longwave radiation
scheme [44], Dudhia shortwave radiation scheme [45], and Noah land-surface model [46].

3.2. Gamma RSD Model

The normalized gamma distribution is widely used to model RSD spectra because it
facilitates straightforward comparisons of the microphysical characteristics of rainfall, such
as raindrop diameter and number concentration [36,47], which are in the form of:

(D) = Nw f (µ)

(

D

Dm

)µ

exp

[

−(4 + µ)
D

Dm

]

(1)

f (µ) =
6(4 + µ)µ+4

44Γ(µ + 4)
(2)
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where Nw (mm−1 mm−3), µ, and Dm (mm) are the generalized intercept, shape, and
mass-weighted mean diameter parameters defining the RSD spectra N(D); D is the equiv-
alent volume diameter in mm; and Γ(n) is the Euler gamma function. However, a three-
parameter gamma distribution [19,47,48] is used to model RSD spectra in the WRF model,
which is expressed as:

N(D) = N0Dµe−λD, (3)

where N0 and λ are the intercept and slope parameters. In two-moment microphysical
schemes of the WRF model, the intercept and slope parameters are obtained from the
predicted number concentration N, mixing ratio q, and fixed µ as follows [38]:

N0 =
Nλµ+1

Γ(µ + 1)
, (4)

λ =

[

cNΓ(µ + d + 1)
qΓ(µ + 1)

]
1
d

, (5)

where c and d are the coefficients of an assumed power law between mass and diameter
m = cDd [38]. Based on a comparison of Equations (1) and (3), µ in the two formulas
is the same, and the N0 and λ parameters of the three-parameter gamma distribution
can be converted to Dm and Nw parameters of normalized gamma distribution using the
following equations:

Dm =
4 + µ

λ
, (6)

Nw =
N0

(

4+µ
λ

)µ

f (µ)
. (7)

The RSD measured by the JW disdrometer at time instant t (s) can be obtained as
follows [22,36]:

Nm(Di, t) =
ni(t)

A·∆t·Vi·∆Di
, (8)

where m is a measured quantity, Nm(Di, t) is the number of raindrops per unit volume in
channel i at time t

(

mm−1m−3
)

, ni(t) is the number of raindrops counted in channel i at t,
A is the sensor area (m2), ∆Di is the width of channel i (mm), and Vi is the terminal speed
of the raindrops [49] (m/s), which is expressed as:

Vi = 3.78·D0.67
i . (9)

The distribution of Nm(Di, t) was adopted from the normalized gamma distribution
fit N(D) [19,50,51]. µ, Dm, and Nw, can be estimated based on N(Di). The n-order matrix
mn of N(Di) can be calculated by:

mn =
nc

∑
j=1

Dn
i N(Di)∆Di. (10)

µ can be estimated as follows [52]:

µ =
(7 − 11γ)−

√

(7 − 11γ)2 − 4(γ − 1)(30γ − 12)

2(γ − 1)
. (11)

where γ =
m2

4
m2m6

. Dm is calculated by:

Dm =
m4

m3
, (12)

and Nw can be estimated from:

Nw =
256
6

m5
3

m4
4

. (13)
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The rainfall intensity (mm/h) R in each rainfall step of the WRF or JW disdrometer is
obtained from the RSD as:

R = 6π·10−4
∫ ∞

0
D3V(D)N(D)dD. (14)

3.3. Experimental Designs

We determined whether a gamma RSD model with an adaptive shape parameter
of WRF double-moment microphysical parameterization could improve the accuracy of
WRF rainfall retrieval. An adaptive-µ model of the gamma distribution based on rainfall
intensity was tested over six scenarios comprising three double-moment schemes and two
seasons. To focus on liquid precipitation analyses, hail and snow were excluded from this
study according to temperature, drop size, and ground weather reports.

Figure 2 presents the experimental flowchart of this study. As an initial step, five
years of ERA-Interim data were downscaled by applying the WRF model under different
double-moment schemes, i.e., Morrison, WDM6, and Thompson aerosol-aware MPs, to
obtain long-term WRF simulation results. To simulate the continuous WRF results for
each year, we ran the model monthly with a spin-up time of 12 h [53] for the three MPs
using the configurations described in Section 3.1. This study only used the lowest-level
and inner-domain of the WRF results. The RSDs of different double-moment schemes were
calculated based on the predicted number concentration and mixing ratio variables of the
WRF outputs using Equations (4) and (5).

𝜇 = (7 − 11𝛾) − ඥ(7 − 11𝛾)ଶ − 4(𝛾 − 1)(30𝛾 − 12)2(𝛾 − 1) .
𝛾 = ௠రమ௠మ௠ల 𝐷௠ 𝐷௠ = 𝑚ସ𝑚ଷ,𝑁௪ 𝑁௪ = 2566 𝑚ଷହ𝑚ସସ.

𝑅 = 6𝜋 ∙ 10ିସන 𝐷ଷஶ
଴ 𝑉(𝐷)𝑁(𝐷)𝑑𝐷.

μ

 

Figure 2. Schematic diagram of the experimental design.

Second, we analyzed the characteristics of the WRF RSD simulation results of three
schemes. The Dm − log10Nw relationship and Dm − R relationship of the three schemes
in the WRF model were investigated by comparison of these relationships with the JW
disdrometer in this study. The rainfall characteristics of different seasons are very different,
which is worth studying. Concerning the climatic seasonal characteristics of the UK, we
separated the four seasons into cold (23 September–19 March) and warm seasons (20 March–
22 September) [22]. Based on the five years of disdrometer-observed RSD, the constraint
interval of the shape parameter for different seasons was calculated.

Third, we used the three-parameter RSD model by applying the adaptive-µ method to
improve the performance of WRF rainfall simulation. We modified the shape parameter µ
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in the RSD model to introduce one extra degree of freedom to it to improve its fitness. We
searched for the optimal µ within the constraint interval of rainfall intensities following the
principle of minimizing the WRF rainfall simulation error by comparing observed rainfall
data for different seasons with results produced by three double-moment microphysics
schemes. According to the three-parameter gamma RSD model and Equations (4) and (5),
the N0 and λ parameters are computed based on the shape parameter µ; thus, the N0 and
λ parameters will also be changed by µ. The root-mean-square error (RMSE) in mm was
selected as the objective function of the optimization algorithm, as shown in Equation (15),
and can range from zero to infinity, with a lower value corresponding to a better fit to the
observed data:

RMSE =

√

√

√

√

1
N

N

∑
i=1

(Ri − Gi)
2, (15)

where Gi and Ri are the rainfall intensity of each rainfall step at time i derived from the rain
gauge rainfall data and the corresponding location of the WRF RSD data, respectively, and
N is the total number of rainfall steps. The genetic algorithm (GA), which is inspired by
natural selection processes involved in biological evolution [54], can solve both constrained
and unconstrained optimization problems and can avoid being trapped at locally optimal
solutions [55]. The main characteristics of GA include coding of the parameter set rather
than the parameters themselves, initiating its search from multiple points rather than a
single point, applying payoff information rather than derivatives, and using probabilistic
transition rules rather than deterministic ones [56]. There are three main genetic operators of
GA, namely, reproduction, crossover, and mutation [56]. The optimization search procedure
in GA is based on the principle of natural selection and natural genetics. We implemented
GA optimization to minimize the value of the RMSE when searching for the optimal µ at
different rainfall intensities. Depending on the relationship between the optimal µ and
rainfall intensity, a linear adaptive-µ model was proposed for each combination of the
season and double-moment scheme.

Finally, we applied the adaptive-µ models to the 30 validation points to test their
reliability and applicability relative to a fixed-µ model. As the adaptive-µ models were
established to improve the precision of WRF rainfall simulation, two other commonly used
model performance evaluation indices, mean bias error (MBE) and standard deviation
(SD) (Equations (16) and (17), respectively), were used in addition to RMSE to validate the
model [37,57]:

MBE =
1
N

N

∑
i=1

(Ri − Gi), (16)

SD =

√

√

√

√

1
N − 1

N

∑
j=1

(Ri − Gi − MBE)2, (17)

A perfect MBE score of 0 indicates a low overall magnitude of bias in the simulated
data, which is essential in hydrological applications. The SD can be used to measure
random error; a low value indicates a slight variation from the MBE.

4. Results

4.1. WRF RSD Simulation Results of Different Double-Moment MPs

To build a model that produces an optimal gamma distribution shape parameter
reflecting changes in rainfall intensity by season, we ran the WRF model under different
double-moment schemes using long-term ERA-Interim data. The three-dimensional values
of N0 and λ parameters in the gamma RSD model were calculated from the N and q
variables of the lowest level in the WRF simulation outputs based on Equations (4) and (5).
Using Equations (6) and (7), the values of Dm and Nw were then calculated. Figure 3 shows
the map of the average values of Dm and log10Nw and the annual rainfall from 2013 to
2017 under the Morrison scheme. This figure indicates that the spatial distribution trend
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of the average Dm and log10Nw as well as that of annual rainfall in different years was
consistent, although the number varied by year. The value of average Dm presented a trend
of gradual increase from north to south and west to east, whereas the values of log10Nw

and annual rainfall showed a trend of gradual decrease from north to south and from west
to east. These trends indicate that rainfall information can be reflected through the values
of the RSD parameters in the WRF model, such that a smaller average value of Dm or larger
average value of log10Nw indicates higher annual rainfall. The annual average value of
RSD and annual rainfall results of WDM6 and Thompson aerosol-aware schemes displayed
similar patterns; therefore, the analysis does not present these schemes separately.

𝑁଴ 𝜆 𝐷୫ 𝑁௪𝐷୫ 𝑙𝑜𝑔ଵ଴𝑁௪𝐷୫ 𝑙𝑜𝑔ଵ଴𝑁௪ 𝐷୫𝑙𝑜𝑔ଵ଴𝑁௪
𝐷୫ 𝑙𝑜𝑔ଵ଴𝑁௪

 

Figure 3. Spatial distribution of the average value of Dm and log10Nw and annual rainfall across the
UK from 2013 to 2017 under the Morrison scheme.

The Dm and Nw in the observation were calculated from the raindrop data recorded
by the JW disdrometer. To accurately compare the observed and simulated Dm and Nw, we
extracted the grid (coordinates are 51◦08′ N and 1◦26′ W with a grid size of 5 km × 5 km)
in the WRF simulation that was closest to the JW disdrometer with the same time span.
Figure 4 shows the occurrences of the relationship between Dm and log10Nw of the Morrison,
WDM6, and Thompson aerosol-aware schemes, and the JW disdrometer. The Dm − log10Nw

density scatter plots show a fan shape centered at the Dm between approximately 0.5 mm
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and 1.5 mm. The Dm − log10Nw relation showed a negative correlation, which can be fitted
by a quadratic polynomial function in the form of log10Nw = aD2

m + bDm + c [58]. The fitting
curves between Dm and log10Nw and corresponding R-squared (R2) statistic of different
schemes and the JW disdrometer are also presented in Figure 4. R2 is a metric that measures
the degree of dependence between variables in a regression model with a range of 0 to
1, where a higher value of R2 generally reflects a better fit between the model and data.
Compared to the fitting curve of the JW disdrometer, the fitting coefficients of the WRF
model were quite close to those of the JW disdrometer, with the values of R2 larger than
0.70. Among the three schemes, the fitting curve of Morrison showed the highest degree of
similarity with that of the JW disdrometer. These results demonstrate that the WRF model
can identify relationships between Dm and log10Nw, whereas there are some uncertainties
between different schemes.

𝐷୫ 𝑙𝑜𝑔ଵ଴𝑁௪
𝐷୫ 𝑁௪ 𝐷୫ 𝑁௪

′ ′ ×𝐷௠ 𝑙𝑜𝑔ଵ଴𝑁௪𝐷௠ − 𝑙𝑜𝑔ଵ଴𝑁௪ 𝐷௠𝐷௠ − 𝑙𝑜𝑔ଵ଴𝑁௪ 𝑙𝑜𝑔ଵ଴𝑁௪ 𝐷௠ଶ𝐷௠ 𝐷௠ 𝑙𝑜𝑔ଵ଴𝑁௪

𝐷௠ 𝑙𝑜𝑔ଵ଴𝑁௪

 𝐷௠ 𝑙𝑜𝑔ଵ଴𝑁௪
𝐷௠ 𝐷௠𝑅 𝐷௠𝐷௠ = 𝑎𝑅௕ 𝐷௠

Figure 4. Density and fitting curves between Dm and log10Nw of different double-moment schemes
in the WRF model and JW disdrometer, and the corresponding R2 values.

Figure 5 shows the occurrences of the relationship between R and Dm of the Morrison,
WDM6, and Thompson aerosol-aware schemes, and the JW disdrometer. R and Dm showed
a positive correlation, that is, the size of raindrops increased gradually with increasing
rainfall intensity. The R-Dm relationship can be fitted by a power-law function in the form
of Dm = aRb [59,60]. The fitting curves between R and Dm and the corresponding R2 of dif-
ferent schemes and the JW disdrometer are also presented in Figure 5. All double-moment
schemes identified a power-law relationship between R and Dm, whereas the values of
fitting coefficients and R2 of different schemes showed a certain gap. Among the three
schemes, the fitting curve of the Morrison scheme was closest to that of the JW disdrometer,
whereas the R2 value of the Thompson aerosol-aware scheme was relatively small.

4.2. Shape Parameter Constraint Interval

Figure 6 shows the reasonable ranges of the gamma RSD model shape parameter for
warm and cold seasons, respectively, based on the five years of disdrometer data. Given
these wide ranges, the middle 95% values were adopted as constraint intervals (gray-
highlighted regions in the figure) to improve the efficiency of the optimization algorithm.
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The warm season had a wider constraint interval, ranging from 0 to 48, than the cold season,
which ranged from 0 to 39.

𝐷௠

 𝐷௠ 𝑅Figure 5. Density and fitting curves between Dm and R of different double-moment schemes in the
WRF model and JW disdrometer, and the corresponding R2 values.

𝐷௠

𝐷௠ 𝑅

 

Figure 6. Shape parameter constraint intervals for different seasons derived from the disdrometer
data throughout 2013–2017.

4.3. Empirical Formula of Adaptive Shape Parameter in the WRF RSD Model

We modified the shape parameter µ in the RSD model to bring one extra degree of
freedom to it to improve its fitness. The shape parameter µ is computed based on the
µ–R relationship by adopting the GA method to search for the optimal µ for different
seasons and microphysical schemes. The search goal of GA is to minimize the value of
RMSE between the observed and WRF-simulated rainfall. There are five phases in the
GA search procedure, including initial population, fitness function, selection, crossover,
and mutation. Since extreme rainfall data were insufficient within the study area, the
optimal µ value under a rainfall intensity >9.5 mm/h will not be representative and can
lead to uncertainty for the adaptive-µ model. Therefore, only rainfall with intensities of
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≤9.5 mm/h was considered in this study. Figure 7 shows the 211 rain gauges observed
and the corresponding WRF-simulated rainfalls produced at fixed and optimal values of µ
for the two seasons and three double-moment schemes. For all three schemes, adopting
the optimal µ resulted in a distinct decrease in RMSE relative to the fixed-µ case, although
in each case, this difference was difficult to distinguish when the rainfall intensity was
<1.5 mm/h, indicating that at rainfall intensities <1.5 mm/h, the adaptive-µ model cannot
improve the performance of WRF rainfall simulation. Therefore, the fixed-µ gamma RSD
model is suitable for double-moment microphysics in this low-rainfall-intensity regime. In
other words, µ equaled 0 for the Morrison and Thompson aerosol-aware schemes and µ
equaled 1 for the WDM6 scheme when rainfall intensities were <1.5 mm/h. We restricted
our further investigation of the relationship between optimal µ and rainfall intensity to
intensities > 1.5 mm/h.

μ
μ μ

μ

μ
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μ

μ μ

μ
μ

μ μ

μ
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μ
μ
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Figure 7. Root-mean-square errors (RMSEs, mm/h) of fixed- and optimal-µ gamma RSD models in
WRF rainfall retrieval for different seasons and double-moment schemes.

Figure 8 shows the optimal µ of rainfall intensity by scenarios. The optimal value of µ
tended to increase as rainfall intensity increased, with a clear linear relationship between
optimal µ and rainfall intensity for all three schemes. We applied the ordinary least-squares
regression method to select a linear function to relate the rainfall intensity and optimal µ
data points at intensities ≥1.5 mm/h. The R2 statistic for each scheme is also shown in
Figure 8. Overall, the R2 values between rainfall intensity and optimal µ indicate that the
selected linear functions represented reasonable models for fitting the data. Notably, the
values were higher in the cold season than in the warm season for all three double-moment
schemes, suggesting that the linear relationship between rainfall intensity and optimal µ is
more prominent during cold seasons.

Despite good fit, there remain differences among the respective linear empirical
formulas. The constant term of the empirical Morrison scheme formula was higher than
that in the Thompson aerosol-aware scheme, which was higher than that in the WDM6
scheme. In contrast, the independent variable coefficient under the Thompson scheme was
lower than in the others.

The differing results by seasons suggest that the respective adaptive-µ models of
the gamma RSD distribution under WRF double-moment bulk schemes based on rainfall
intensity (mm/h) can be expressed as piecewise functions (equations listed in Table 2). In
addition, as this study excluded rainfall data with R > 9.5 mm/h, we could not confirm
whether the adaptive-µ model proposed in this study is suitable for extreme rainfall over
the study area. This study suggests that the fixed-µ gamma RSD model can be adopted, i.e.,
it is not necessary to adjust the value of WRF-simulated R for extreme rainfall.
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Figure 8. Optimal µ of different rain rates and fittings curves by season and double-moment schemes.

Table 2. Adaptive-µ models of the gamma RSD distribution in the WRF double-moment bulk
microphysical parameterizations of different scenarios.

Schemes Seasons Adaptive-µ Models

Morrison
Warm µ =

{

0, R < 1.5
1.67R + 9.41, 1.5 ≤ R ≤ 9.5

Cold µ =

{

0, R < 1.5
1.67R + 8.92, 1.5 ≤ R ≤ 9.5

WDM6
Warm µ =

{

1, R < 1.5
2.42R − 0.65, 1.5 ≤ R ≤ 9.5

Cold µ =

{

1, R < 1.5
1.36R − 2.25, 1.5 ≤ R ≤ 9.5

Thompson aerosol
Warm µ =

{

0, R < 1.5
1.15R − 5.53, 1.5 ≤ R ≤ 9.5

Cold µ =

{

0, R < 1.5
0.87R − 4.74, 1.5 ≤ R ≤ 9.5

4.4. WRF Rainfall Results of Different Scenarios

We computed the WRF rainfall using the adaptive-µ models of the gamma RSD
distribution. Using the rain gauge rainfall as a benchmark, we calculated the WRF and rain
gauge rainfall difference using the fixed-µ and adaptive-µ RSD models. Figures 9 and 10
show the spatial distribution of the absolute value of the annual rainfall amount difference
between the WRF simulation and rain gauge of different scenarios in 2013 and 2016 (the
results in 2014, 2015, and 2017 are shown in the Figures S1–S3). Values other than the
position of the rain gauge were interpolated via the kriging method [61,62]. Kriging is
an interpolation method stemming from regionalized variable theory for geographical
information systems [61]. Due to the nature of the spatial interpolation process, the extreme
values are typically associated with the rain gauge locations. From these two figures, among
three schemes, the annual rainfall simulated by the Thompson aerosol-aware scheme
was closest to the actual value, whereas the WDM6 results were the least concordant.
Compared with the annual rainfall difference of the fixed-µ RSD model, the map’s color
had a larger area of blue for the adaptive-µ RSD model, particularly for the WDM6 model.
This illustrates that for most sites, the annual rainfall differences in the adaptive-µ RSD
model were smaller than those of the fixed-µ RSD model for different double-moment
schemes. From the perspective of the spatial distribution of the annual rainfall difference,
the adaptive-µ RSD models of Morrison and Thompson aerosol-aware schemes showed
good performance in the eastern and southern regions of the UK, whereas some sites
exhibited relatively poor performance in the northern region of the UK.
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𝜇 𝜇Figure 9. The absolute value of annual rainfall amount difference between the WRF simulation and
rain gauge using fixed-µ and adaptive-µ RSD models of three double-moment schemes in 2013, plus
symbols indicate the rain gauge positions.

4.5. Validation of the Adaptive-µ Model

Five years of WRF simulation and rain gauge data from 30 validation points were
used to examine the applicability of the adaptive-µ model proposed in Section 3.2 to the
study region. The RMSE, MBE, and SD error indices were used to investigate whether the
adaptive-µ model for the WRF double-moment microphysics schemes could enhance the
accuracy of WRF rainfall retrieval and to quantify any improvements obtained. Figure 11
shows the results of the fixed- and adaptive-µ indices at rainfall intensities higher than
1.5 mm/h for 30 validation points and different schemes. Compared with the results
obtained using the fixed-µ model, all validation points of the Morrison and Thompson
aerosol-aware schemes and 29 validation points of the WDM6 showed smaller RMSE
values, and all rain gauges of the three schemes showed smaller MBE values. In contrast,
only one point of the Morrison and Thompson aerosol-aware schemes and seven rain
gauges of the WDM6 had larger SD values using the adaptive-µ model. These results
demonstrate that the adaptive-µ model had better performance than the fix-µ model in
almost all validation sites.

Tables 3–5 list the values of the fixed- and adaptive-µ indices at rainfall intensities
higher than 1.5 mm/h for each of the three models along with the improvements (IM-
PROV% columns) obtained using adaptive-µ parameters as measured using each index. For
each combination of the warm and cold seasons and application of the Morrison, WDM6,
and Thompson aerosol-aware double-moment schemes, the RMSEs were decreased by
18.46%, 28.77%, 7.27%, 15.38%, 18.18%, and 26.24%, respectively. Similarly, the MBEs
were decreased by 54.12%, 65.67%, 27.68%, 34.51%, 50.88%, and 58.27% for the respective
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combinations. Finally, the SDs were improved by 7.17%, 20.61%, 0.98%, 7.30%, 7.66%, and
19.15% under the respective season and scheme combinations.
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Figure 10. The absolute value of annual rainfall amount difference between the WRF simulation and
rain gauge using fixed-µ and adaptive-µ RSD models of three double-moment schemes in 2016.
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Figure 11. Comparison of the fixed- and adaptive-µ model results in terms of RMSE, MBE, and SD
indices for 30 validation points and three double-moment schemes.
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Table 3. Comparison of the fixed- and adaptive-µ model results in terms of RMSE, MBE, and SD
indices for different seasons under the Morrison scheme.

Indices Season Fix-µ Adaptive-µ IMPROV (%)

RMSE (mm/h)
Warm 2.98 2.43 18.46%
Cold 2.12 1.51 28.77%

MBE (mm/h)
Warm 1.70 0.78 54.12%
Cold 1.34 0.46 65.67%

SD (mm/h)
Warm 2.23 2.07 7.17%
Cold 1.31 1.04 20.61%

Table 4. Comparison of the fixed- and adaptive-µ model results in terms of RMSE, MBE, and SD
indices for different seasons under the WDM6 scheme.

Indices Season Fix-µ Adaptive-µ IMPROV (%)

RMSE (mm/h)
Warm 2.89 2.68 7.27%
Cold 2.21 1.87 15.38%

MBE (mm/h)
Warm 1.77 1.28 27.68%
Cold 1.42 0.93 34.51%

SD (mm/h)
Warm 2.05 2.03 0.98%
Cold 1.37 1.27 7.30%

Table 5. Comparison of the fixed- and adaptive-µ model results in terms of RMSE, MBE, and SD
indices for different seasons under the Thompson aerosol-aware scheme.

Indices Season Fix-µ Adaptive-µ IMPROV (%)

RMSE (mm/h)
Warm 2.97 2.43 18.18%
Cold 2.21 1.63 26.24%

MBE (mm/h)
Warm 1.71 0.84 50.88%
Cold 1.39 0.58 58.27%

SD (mm/h)
Warm 2.22 2.05 7.66%
Cold 1.41 1.14 19.15%

These validation results demonstrate that the linear adaptive-µ model can more accu-
rately capture rainfall intensity than the fixed-µ model. Applying the adaptive-µ model
during the cold season results in a more remarkable improvement in the accuracy of the
WRF rainfall simulation results than is achieved by applying this model during the warm
season. The relatively low level of improvement obtained for the WDM6 scheme suggests
that the sensitivity to the adaptive-µ model sensitivity differed for each scheme.

5. Discussion

This study was conducted based on the assumption that double-moment bulk mi-
crophysical parameterizations of the WRF model using a fixed value of the gamma RSD
model shape parameter can be improved. To improve WRF rainfall retrieval, we used an
adaptive-µ model to study the rainfall records covering most of the UK landmass over
five years (2013 to 2017). Under the assumption that the µ-value might vary by rainfall
intensity, the GA method was used to search for optimal values of µ by rainfall intensity
during different seasons and under varying double-moment bulk microphysics. Empirical
formulas relating rainfall intensity to optimal µ were then built using the ordinary least-
squares linear regression method and, based on these, adaptive-µ models of the gamma
distribution were proposed for the respective scenarios. Our experimental results were
used to address the three following primary issues.

The first issue related to whether using an adaptive value of the shape parameter of
the gamma RSD model could improve the performance of WRF rainfall simulation. The
results revealed a significant decline in the RMSE using the optimal µ of different rainfall
intensities rather than the constant value of µ in the gamma RSD model, particularly for
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high rainfall intensity. However, the optimal µ of low rainfall intensity (R < 1.5 mm/h) did
not clearly reduce the WRF-simulated rainfall error, indicating that the fixed-µ gamma RSD
model is suitable when rainfall intensity is low (<1.5 mm/h) for the studied microphysics
schemes. Given that the calculation efficiency could be reduced using the adaptive-µ model
and the performance of WRF rainfall retrieval could not be improved, for low rainfall
intensity, there is no need to determine the relationship between rainfall intensity and the
optimal µ, and fixing the value of the shape parameter to 0 or 1 of the gamma RSD model
is feasible for WRF double-moment microphysics schemes.

The second issue was whether a suitable model can accurately describe the relation-
ship between rainfall intensity and the optimal µ under multiple scenarios. Our results
demonstrate that, at rainfall intensities of ≥1.5 mm/h, a linear function can fit rainfall
intensity to the optimal µ exceedingly well for different seasons and under various double-
moment schemes. However, although there was a robust linear relationship between
rainfall intensity and the optimized µ, the empirical formulas differed by scenario, sug-
gesting that no unified adaptive-µ parameter formulation fits all scenarios (i.e., different
seasons and microphysics schemes) over the specific study area. The empirical formulas
for the Morrison scheme were relatively similar by seasons, whereas those for the other
two schemes differed significantly. Thus, the adaptive-µ empirical formulas proposed in
this study are universally applicable to the microphysics schemes and regions studied.

The third issue was validating the empirical formulas and examining how well the
adaptive-µ model could improve WRF-simulated rainfall accuracy. Our validation results
indicate that the adaptive-µ gamma RSD model outperformed a fixed-µ WRF double-
moment microphysics model in terms of at least three error indices. The results also
indicate that the improvements in WRF rainfall retrieval obtained by applying the adaptive-
µ gamma RSD model differed by scenario.

The proposed model performed better during cold seasons and the various double-
moment schemes assessed had distinct sensitivities to the model, which are reflected in the
fact that the R2 values of the fitted lines produced by the adaptive-µ model were higher in
the warm season than in the cold season. These results may also relate to differences in the
probability distribution of rainfall intensity between seasons. As shown in Figure 12, in the
region studied, the cold season had a higher probability density for low rainfall intensity
(i.e., R < 2.8 mm/h) and a lower probability density for high rainfall intensity than the
warm season. This differentiation by season may enhance the WRF rainfall simulation
accuracy during the cold season when applying the adaptive-µ model.

The RMSEs obtained under the Morrison and Thompson aerosol-aware schemes were
decreased by more than 15% and 25%, respectively, during the cold season, whereas the
respective MBEs were decreased by more than 50% and 55%, and the SDs were decreased
by approximately 7% and close to 20%, respectively. The degree of error reduction under
the WDM6 scheme, however, was much lower. The significant reduction in the error of
WRF rainfall retrieval under the former two schemes using the adaptive-µ model suggests
that the adaptive-µ model can successfully be combined with these schemes.

Because the data from 241 rain gauges used to validate the WRF rainfall simula-
tions produced limited information on rainfall microphysics and RSD, the adaptive-µ
gamma RSD models assessed in this study could only be examined through statistical
error analysis. In contrast, the physical mechanisms underlying the model could not be
explored. Two important data sources for validating numerically simulated WRF precip-
itation microphysics—disdrometer observations and dual-polarization radar reflectivity
data—could be applied to the mechanistic modification of the gamma RSD model of WRF
double-moment microphysics. As disdrometer samplings were already imitated within the
study area, in future studies, dual-polarization radar data will be used to further examine
the adaptive-µ gamma RSD model in terms of additional variables (e.g., median drop
diameter D0, differential reflectivity ZDR, and specific differential phase KDP) related to the
microphysics of RSD.
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Figure 12. Probability density (%) of rainfall intensity (1.5 ≤ R ≤ 9.5, mm/h) for warm and cold
seasons, measured from 241 data points.

6. Conclusions

To construct a model that would produce an optimal gamma distribution shape
parameter reflecting changes in rainfall intensity by season, five years of ERA-Interim data
were downscaled by applying the WRF model under different double-moment schemes;
the results were compared with observations taken at 241 rain gauges and one disdrometer
during the same period. We concluded the following from the analysis results.

1. The spatial characteristics of rainfall can be reflected by the WRF-simulated RSD, with
a smaller average value of Dm or larger average value of log10Nw, associated with
higher annual rainfall. Similar to the RSD results of the JW disdrometer, the three
tested WRF double-moment schemes showed a strong quadratic relationship between
Dm and log10Nw and a clear power-law relationship between R and Dm, although
there were some uncertainties between different schemes.

2. Although the fixed-µ gamma RSD model was suitable when rainfall intensity was
<1.5 mm/h, linear empirical formulas relating rainfall intensity to optimal µ were
successfully built to reflect different scenarios for which the rainfall intensity was
≥1.5 mm/h. Adaptive-µ models of the gamma distribution based on rainfall can be
constructed using a piecewise function, as shown in the following equation:

µ =

{

constant, R < 1.5
aR + b, 1.5 ≤ R ≤ 9.5

, (18)

where R is the rainfall intensity in mm/h, a is the coefficient of the independent
variable, and b is the constant term of the linear function. Adaptive-µ models of the
gamma distribution were constructed to apply the Morrison, WDM6, and Thompson
aerosol-aware double-moment schemes to two seasons (Table 2).

3. The consistency and usability of the adaptive-µ model were also demonstrated by
using three error indices by applying the model to 30 validation points. A higher
degree of error reduction was observed during the cold season, whereas the Morrison
and Thompson aerosol-aware schemes achieved higher degrees of error reduction
overall compared to the WDM6 scheme. The adaptive-µ model showed improved
predictability for the three tested double-moment schemes compared to the fixed-µ
model, indicated by the decreases in RMSE by 23.62%, 11.33%, and 22.21%; decreases
in MBE by 59.90%, 31.10%, and 54.58%; and decreases in SD by 13.89%, 4.14%, and
13.41% for the Morrison, WDM6, and Thompson aerosol-aware schemes, respectively.

Based on the above results, the adaptive-µ model of gamma distribution can be
successfully integrated into WRF double-moment microphysics scheme simulations to
improve the accuracy of WRF rainfall retrieval, particularly during cold seasons and
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when using the Morrison and Thompson aerosol-aware schemes. This method and the
relevant optimal µ-values are appropriate for the study area in the UK and can potentially
be incorporated into the WRF model as part of its simulation process. The adaptive-µ
model was designed to reduce simulated rainfall error in the WRF model by applying the
observed rain gauge data. As we could not explore the physical mechanisms underpinning
the adaptive-µ results in this study, further application of additional data sources (e.g.,
dual-polarization radar data) should be performed to study the RSD model in WRF bulk
microphysics schemes based on additional variables related to precipitation microphysics.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/atmos13010036/s1. Figure S1. The absolute value of the annual
rainfall amount difference between the WRF simulation and rain gauge using fixed-µ and adaptive-µ
RSD models of three double-moment schemes in 2014. Figure S2. The absolute value of the annual
rainfall amount difference between the WRF simulation and rain gauge using fixed-µ and adaptive-µ
RSD models of three double-moment schemes in 2015. Figure S3. The absolute value of the annual
rainfall amount difference between the WRF simulation and rain gauge using fixed-µ and adaptive-µ
RSD models of three double-moment schemes in 2017.
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Abstract: This study systematically explores existing and new optimization techniques for analog

ensemble (AnEn) post-processing of hourly to daily precipitation forecasts over the complex terrain

of southwest British Columbia, Canada. An AnEn bias-corrects a target model forecast by searching

for past dates with similar model forecasts (i.e., analogs), and using the verifying observations as

ensemble members. The weather variables (i.e., predictors) that select the best past analogs vary

among stations and seasons. First, different predictor selection techniques are evaluated and we

propose an adjustment in the forward selection procedure that considerably improves computational

efficiency while preserving optimization skill. Second, temporal trends of predictors are used to

further enhance predictive skill, especially at shorter accumulation windows and longer forecast

horizons. Finally, this study introduces a modification in the analog search that allows for selection

of analogs within a time window surrounding the target lead time. These supplemental lead times

effectively expand the training sample size, which significantly improves all performance metrics—

even more than the predictor weighting and temporal-trend optimization steps combined. This study

optimizes AnEns for moderate precipitation intensities but also shows good performance for the

ensemble median and heavier precipitation rates. Precipitation is most challenging to predict at

finer temporal resolutions and longer lead times, yet those forecasts see the largest enhancement

in predictive skill from AnEn post-processing. This study shows that optimization of AnEn post-

processing, including new techniques developed herein, can significantly improve computational

efficiency and forecast performance.

Keywords: analog ensembles; precipitation; WRF; statistical post-processing; Pacific north west;

complex terrain

1. Introduction

Numerical weather prediction (NWP) models are impaired by imperfect initial condi-
tions and simplified approximations of physical concepts. Statistical post-processing can im-
prove forecast quality by reducing systematic model errors [1]. Common bias-correction pro-
cedures include regression methods [2–4], model output statistics [1,5–8], Kalman-filtering [9],
moving- and weighted-average techniques [10], Bayesian model averaging [11,12], machine
learning [13–15], and analog ensembles (AnEns; [16,17]); many of these categories have over-
lapping techniques. Previous research has demonstrated successful applications of AnEns to
temperature [17,18], wind speed [17,19–23], wind power [24–26], solar radiation [24,27], air
quality [28–30], precipitation [16,31–33], and streamflow predictions [34].

Originally, analog methods were based on the assumption that atmospheric conditions
tend to follow recurring patterns and hence could estimate future weather from similar past
developments. More successful recent versions of the technique operate on the assumption
that past similar conditions will have similar model errors. In an operational framework,
the AnEn technique post-processes a target model forecast by searching for similar (i.e.,

61



Atmosphere 2022, 13, 1662

“analog”) model forecasts in the past and using their corresponding observations to compose
an ensemble [9,16–18]. Since the AnEn samples the observed distribution without assuming
a target distribution, this nonparametric method directly corrects systematic model error.
The analog procedure constructs probabilistic ensemble forecasts from a history of raw
deterministic model forecasts from only one NWP model run. Hence, they require a fraction
of the computational expense of a traditional multi-model or multi-run NWP ensemble.

The success of AnEns has two main requirements: (a) the availability of a consistent
high-quality meteorological archive of model forecasts and concurrent observations—the
longer the archive the better; and (b) a definition of “similarity”, which measures the degree
of analogy of past forecasts with a target forecast to identify a set of best analogs that
construct the AnEn.

Similarity is assessed primarily using predictors, for instance via a multivariate
Euclidean-distance measure. Usually predictor variables have varying degrees of im-
portance (for example, related to location and season [35]) and can be weighted accordingly.
Some studies neglect these dependencies and utilize equal [9,17,18,36,37] or arbitrary
weights [16,22,38] for a subjectively reasonable selection of predictors. Other studies use do-
main knowledge to design “levels of analogy” [32,39–43], where sequential selection levels
sort successive subsets of analog candidates from the meteorological archive. More recent
studies derive predictor weights objectively from correlation coefficients with the predic-
tand [30], or obtain them directly from a predictor selection procedure, such as brute force
(BF; [35]), forward selection (FS; [44]), principal component analysis (PCA; [24,26,45,46]),
or genetic algorithms [42,47].

BF is a popular optimization approach as it identifies optimal weights by testing all
possible combinations. However, the computational expense of running and evaluating
AnEns in numerous variations becomes infeasible for a large number of predictors. There-
fore many studies [14,21,33,48] pre-select a reduced number of predictor candidates before
BF optimization. The pre-selection is sometimes based on domain knowledge [19,21] or
an efficient filter method (such as correlation analysis; [33]), however it may limit the BF
predictor optimization by unintentionally disregarding useful predictors to begin with.
References [44,49] developed a more efficient BF approach, the stepwise FS (also used
in [33,50]), which iteratively tests the AnEn performance by adding any of the predictor
candidates to the previously selected predictors one step at a time. This approach resembles
BF results closely [33], while the computational savings enable the exploration of more
predictor variables. However, compared to filter methods, the FS approach still requires
significant time and resources to train and analyse the predictor optimization. Despite the
known advantage of optimized predictor weights [35], the computational effort continues
to represent an obstacle.

The similarity measure for the analog search can also account for the temporal trend of
the predictors across sequential forecast lead times [17]. This consideration has been shown
to improve AnEns [9]. A few studies [9,17,25] investigate the impact of the time window
length, while others use an arbitrary window length of +/−1 forecast steps [21,29,35,44,50],
which can result in different total window widths depending on the forecast interval.
Moreover, different physical variables can have different autocorrelation characteristics and
hence the ideal time window to match the temporal predictor trends may vary accordingly.

Real-time AnEns require operational NWP with a long and consistent data history. Re-
forecast datasets therefore have a great potential for data-driven methods like AnEns [38,51],
especially if the same model configuration is tuned for local characteristics and is still
used operationally in real time. However, many studies [31–33,43,52] train the AnEn on
long reanalysis datasets targeting the development of statistically downscaled data prod-
ucts, or serve as proof of concept for an operational framework (i.e., perfect prognosis).
References [43,53] showed that the quality of reanalyses affects the AnEn skill significantly—
sometimes even more than the choice of predictors. Since reanalyses includes more data
assimilation of atmospheric measurements, operational forecasts have faster (and possibly
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different) error growth and NWP quality is likely to have a similar or larger impact on
AnEns than the reanalyses.

Compared to other meteorological variables, precipitation has high spatial and tempo-
ral variability, making post-processing particularly challenging. Precipitation distributions
are also skewed towards zero and can be represented with a discrete distribution regarding
event thresholds (e.g., rain vs. no-rain), or a continuous distribution when considering
quantitative amounts.

The decreasing number of precipitation events with increasing intensity represents
a statistical disadvantage for post-processing high-impact events with data-driven meth-
ods, such as AnEns. A long data history is required to ensure sufficient sampling when
searching for analogs of relatively rare events. For the purpose of expanding the analog
search data pool, ref. [38] introduced the concept of supplemental locations, which uses
additional grid points or stations with similar climatology and terrain characteristics. This
technique significantly improves heavy precipitation forecast calibration [38] but requires
a relatively large domain with numerous stations. Instead of expanding the sample size
using spatial supplements, ref. [54] suggested a moving-time-window approach to inflate
the meteorological archive using temporal supplements. When searching for analogs for a
daily-precipitation target, ref. [54] considered not only the same lead times, but also 24-h
totals that result from sub-daily offsets to the target lead time.

Most precipitation AnEn studies investigate daily accumulation totals [16,32,40,42,
43,52,55–57], which exhibit better predictability than sub-daily amounts [58]. However,
resolving the sub-daily variability of precipitation has value to many weather forecast ap-
plications, such as flood management, infrastructure maintenance (e.g., transportation and
construction), agriculture (e.g., soil erosion and crop damage), and smaller hydroelectric
operations where flows are managed at sub-daily time steps. Reference [59] temporally
disaggregated daily precipitation analog forecasts to hourly time steps. Other AnEn stud-
ies directly derive 12-hourly [38,60] or 6-hourly precipitation amounts [33,36,41,61,62],
whereas NWP forecasts are commonly considered at hourly intervals.

Our study domain is southwest British Columbia (BC), Canada. BC’s complex terrain
amplifies a variety of forecasting challenges, such as imperfect numerical and physical
approximations in NWP and the high spatial variability of the surface conditions. For ex-
ample, the prediction of orographic precipitation enhancement on windward slopes and
lee-side rain-shadow requires adequate representation of topography (e.g., slope steepness),
initial state (e.g., upstream conditions over the Pacific Ocean), dynamics (e.g., flow and
stability), and physics (e.g., mixed-phase microphysical processes). Inaccuracies in any
NWP components cumulatively contribute to model errors and make post-processing
a crucial factor in improving precipitation forecast quality over regions of complex ter-
rain such as BC. Southwest BC sees copious precipitation during the cool season, which,
among other impacts, has led to catastrophic flooding events [63–65]. Additionally, skillful
precipitation forecasts are crucial because hydropower contributes the bulk of the total
electricity production in BC, and precipitation forecasts are used to plan generation system
operations and mitigate flood risk.

This study demonstrates the optimization of AnEn forecasts for sub-daily precipitation
in southwest BC by post-processing one of the regionally best performing configurations
following [58]. As described in Section 2, we apply the AnEn method as a station-based post-
processing tool to statistically downscale the deterministic model forecasts—an approach
that is suitable for real-time operational model post-processing. This paper builds on
existing methods to optimize AnEn parameters and explores new variations in the AnEn
methodology that either improve forecast performance or computational efficiency.

In Section 3, we first compare predictor selection techniques and suggest a more
efficient FS approach. Next, we investigate the impact of the temporal trend similarity, while
assessing accumulations from daily to hourly intervals. As such, to our knowledge, this is
the first paper demonstrating successful AnEns for hourly precipitation forecasts in this
form. Finally, we redesign [54]’s moving-time-window approach for shorter accumulation
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windows to make the best use of a limited meteorological archive in finding the best
available analogs. Our verification shows the improvement in each optimization step
and reveals the trade-off between temporal resolution and precipitation predictive skill
following AnEn post-processing. Section 4 gives the summary and conclusions.

2. Materials and Methods

2.1. Data

The NWP data for this study are from the Weather Research and Forecasting (WRF)
model [66] version 3.8.1 with the Advanced Research WRF (ARW) dynamical core, ini-
tialized with the Global Deterministic Prediction System (GDPS) model [67,68] from Envi-
ronment and Climate Change Canada (ECCC). The model setup, including initialization,
domains, and physics, was chosen based on [58]—a study that evaluated precipitation
forecasts from over 100 systematically varied model configurations. We use the WRF
configuration from that study that performed above average across verification scores
and performed best for 75th-percentile (75p) equitable threat score (ETS) and probabil-
ity of detection (POD)—namely, the WRF single-moment 5-class microphysics scheme
(WSM5; [69]), the Kain-Fritsch cumulus scheme (KF; [70]), the Yonsei University turbulence
scheme (YSU; [71]), and the multiphysics Noah land surface model (Noah-MP; [72,73]).

Since [58] found smaller raw forecast errors for coarser grid spacings, but finer grid
spacings are assumed to better resolve the spatial variability over complex terrain, this
study focuses on the mid-size domain with ∆x = 9-km. WRF runs are initialized daily at
00 UTC and provide 3 days (72 h) of hourly forecast data after 9 h of spinup. Hence, each
forecast day starts at 0900 UTC (0100 Local Standard Time). For further details on other
WRF settings and the verification results, see [58].

Utilizing this regionally optimized WRF configuration, we generated a 5.75-year refore-
cast dataset from January 2016 through September 2021. Table 1 lists 22 physical variables
that were extracted or derived from the WRF output, some at different vertical levels, result-
ing in 41 variables total. The list includes general atmospheric parameters that characterize
moisture, thermal, stability, and wind conditions. Some variables like MI1 and MI2 were
inspired by other precipitation AnEn studies [43,52,54] that used these as predictors.

The model variable “PCP” includes precipitation in all forms (i.e., rainfall, snow,
sleet, etc.) and is represented as liquid equivalent. However, BC’s South Coast has a
mild climate year-around and freezing temperatures and snowfall are rarely observed at
lower elevations.

The original temporal resolution of WRF output is hourly. When assessing longer
accumulation windows in this study (i.e., 3-, 6-, 12-hourly, and daily intervals), the sum
of hourly PCP is calculated, whereas all other model variables are estimated by their
time average. This study considers discrete (non-overlapping) and rolling (overlapping)
windows for the accumulated datasets. Discrete-window results are useful for comparison
with other studies that use such windows. However, they can split precipitation events
unfavorably, making them seem longer and weaker.

Rolling windows, on the other hand, sample the same precipitation events in hourly
offsets and ensure the capture of maximum rates for any event and accumulation inter-
val. Therefore they provide a more complete picture in assessing the impact of temporal
resolution on predictability. The hourly time step of rolling windows can further benefit
temporal trend similarities and supplemental lead times (described below), for which
longer-accumulation discrete windows often have too large of a time step. However, it is
important to remember that rolling windows possess overlap from one time step to another,
which makes them temporally correlated.
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Table 1. Physical variables extracted from the WRF model output and considered as predictors.

Variable Abbreviation Levels

Total Precipitation PCP Surface
Integrated Water Vapor * IWV Column

Integrated Vapor Transport * IVT Column
Water Vapor Mixing Ratio r 2 m, 70 kPa, 50 kPa

Specific Humidity * SH 70 kPa, 50 kPa
Relative Humidity * RH 70 kPa, 50 kPa
Moisture Index 1 *
(RH70kPa × IWV)

MI1

Moisture Index 2 *
(RH70kPa × W70kPa)

MI2

Temperature T 2 m, 70 kPa, 50 kPa
Potential Temperature Th 2 m, 70 kPa, 50 kPa
Dewpoint Temperature Td 70 kPa, 50 kPa

Total Totals Index * TT
K-Index * KI

U-component Wind U 10 m, 70 kPa, 50 kPa
V-component Wind V 10 m, 70 kPa, 50 kPa
W-component Wind W 70 kPa, 50 kPa

Wind Direction * WD 10 m, 70 kPa, 50 kPa
Wind Speed * WS 10 m, 70 kPa, 50 kPa

Sea Level Pressure SLP Sea Level
Surface Pressure SfcP Surface

Geopotential Height GPH 70 kPa, 50 kPa
Boundary Layer Height PBLH

* Derived from WRF output variables.

46 stations from two networks (ECCC and BC Hydro) provide hourly precipitation
observations within the domain of interest, shown in Figure 1. BC Hydro station observa-
tions are manually quality controlled at BC Hydro [74]. Additional quality control checks
on both observational networks ensure that

• each station has at least 90% of data available, and missing data is not systematically
distributed (e.g., in the same season, at the same time of day, or over a large consecutive
period); and

• outliers are reasonable considering the synoptic situation (e.g., convection), nearby
stations, and the available station climatology.

Figure 1. Domain of interest in southwest British Columbia with locations of 46 stations that provide
hourly precipitation observations from two networks.
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The gridded model data is spatially interpolated to the station locations using the
nearest-neighbor approach. The matched station and model dataset is split into 4.75 years
(January 2016 through September 2020) for training/optimization using a leave-one-out
approach, and one year (the 2021 water year: October 2020 through September 2021) for
independent testing/verification. The optimization and verification process both search for
analogs from the same 4.75-year training dataset. However, to ensure data independence
during optimization, the leave-one-out approach excludes a buffer of ±15 days surrounding
the targeted initialization.

Since higher precipitation rates have larger impact and are more challenging to forecast,
this study optimizes for performance on “moderate” or heavier precipitation intensities—
specifically, 75th percentiles (75p). Section 3.4 provides additional verification results for
90th-percentile (90p) events, i.e., “heavy” precipitation rates. The thresholds are calculated
at each station based on observations after excluding values <0.25 mm (which for many
rain gauges is the smallest measurable amount). Percentile values vary with accumulation
window; examples of frequency distributions are shown in Appendix A.

2.2. Analog Ensemble Methodology

Analog model forecasts (AnFcsts) are a set of past model forecasts (PaFcsts) that,
in regard to selected variables and similarity metrics, are most similar to the target model
forecast (TaFcst) at a given lead time and location. The past verifying station measurements
that correspond to the AnFcsts—the analog observations (AnObs)—are used as ensemble
members to compose the AnEn (see Figure 2). The AnEn is considered to be the post-
processed version of the deterministic raw TaFcst, and hence should provide a better
forecast for the verifying observation (VerifObs) at the target time. Thus, the analog
selection is determined solely from the model space, whereas the AnEn is composed solely
of samples from the observation space.

Figure 2. Illustration of the analog ensemble (AnEn) methodology.

Although this study investigates univariate AnEn forecasts for precipitation (i.e.,
the predictand), a distance measure assesses the multivariate similarity between the TaFcst
and all PaFcsts. The best ranking PaFcsts are chosen to be the AnFcsts and are determined
independently for each station location and forecast lead time. We use a popular similarity
metric developed by [9] that calculates similarity scores

‖TaFcstt, PaFcstst‖ =
Nv

∑
v=1

wv

σv,t

√

√

√

√

τ

∑
j=−τ

(TaFcstv,t+j − PaFcstsv,t+j)2, (1)

for each PaFcst with the TaFcst at lead-time t relative to model initialization. Nv is the
number of physical variables v (i.e., predictors) for which closeness between AnFcsts and
the TaFcst is desired. The variable weights wv can assign larger importance to variables
with stronger predictor relationships. The division by each variable’s standard deviation
σv,t in the model training dataset at lead time t standardizes the variables and makes the
similarity scores dimensionless. τ defines a lead-time window that centers the target lead
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time t and includes additional lead times over which the similarity in the temporal trends
of the predictors is computed.

The physical variables that are used for the analog search should exhibit good predictor
relationships with the predictand. Precipitation AnEn studies often use model PCP and
IWV as predictors [14,16,38] with weights 0.7 and 0.3, respectively, [16,38]. We use these
variables as reference when evaluating the predictors that we obtain from other predictor
selection techniques (presented in Section 2.2.1). The control run further uses τ = 0, thus
only matching the predictor values of TaFcst and PaFcsts at lead time t. The AnEn sensitivity
to τ is investigated in Section 3.2. With these reference settings, the optimal AnEn size
was found using approximately 30 AnFcst members on average (not shown), which agrees
with [33], and is therefore used throughout this study.

To prioritize forecast performance for significant events that are more critical for
decision makers, in this study the AnEn parameters are optimized using the 75p threshold-
weighted continuous ranked probability score (twCRPS; [7], see Appendix B.1).

2.2.1. Predictor Selection Procedures

The predictor selection procedure objectively assesses which of the 41 model vari-
ables in Table 1 are the best predictors for precipitation. Initial investigation of predic-
tor relationships between all variables and observed precipitation using filter methods
(e.g., correlation analysis) reveals variability in predictor importance across stations and
months (see Appendix C). This is expected since locations and seasons in southwest BC
can exhibit different characteristics due to topography and climate. Therefore, we inves-
tigate optimal predictors and their weights independently at each station location and
meteorological season.

A brute force (BF) approach [35] is a method that runs the AnEn optimization on all
combinations of predictor weights (to a defined precision), and determines the best predic-
tor combination according to an evaluation score. Since this method is computationally very
expensive, [44] suggested a step-wise forward selection (FS) method, which sequentially
selects one predictor at a time by BF testing all weighting options only among the step-wise
selected predictors. The first step tests all Nv variables as single predictors with wv = 1
(see Equation (1)), and the variable resulting in the best evaluation score is chosen as the
first predictor. The next step selects the second predictor by testing the remaining Nv − 1
variables in combination with the already selected first predictor. The weights applied to
each variable are tested by BF, i.e., all possible combinations. For instance, using weight
increments of 0.1 in the interval [0, 1] with the constraint that the sum of weights is always
1, results in 9 options for two variables. Selecting the third predictor has (Nv − 2) ∗ 84,
and the fourth predictor has (Nv − 3) ∗ 126 options, etc. Predictors are selected if they
improve the evaluation score by a chosen increment compared to the score in the previous
FS step (e.g., mean absolute error of 3% in [44]). This way, different stations can receive
different numbers of predictors. Although this FS approach is considerably faster than
BF, the computational cost is still significant for large Nv and high weight precision (i.e.,
smaller increments).

As a further computational reduction of [44]’s FS, we propose an “efficient FS” (EFS) as
follows. Assuming that those variables first selected as predictors have larger importance,
we constrain the weighting options to wPredictor1 ≥ wPredictor2 ≥ ... ≥ wPredictorNv

. This way
the second predictor has (Nv − 1) ∗ 5, the third predictor has (Nv − 2) ∗ 8, the third predictor
has (Nv − 3) ∗ 9, and the fourth predictor has only (Nv − 4) ∗ 7 options. We further define
the first predictor to be PCP without testing. We proceed to optimize predictors for twCRPS
until the improvement drops below 1%.

We investigate four variants of FS to determine predictor weights:

• All-EFS: Using the EFS to test all 40 variables in addition to PCP as predictors.
• DC-FS: Using [44]’s FS to test a subset of 10 variables as predictors. The 10 predic-

tor candidates are pre-selected based on the highest distance correlation coefficient
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(DCorr; a measure that identifies both linear and non-linear relationships [75]) with
observed precipitation.

• DC-EFS: Using the EFS to test the same subset of 10 predictor candidates as in DC-FS.
• DCV-EFS: Using the EFS to test a subset of 10 variables as predictors, except here,

the predictor candidates are based on the best DCorr, as well as the variance inflation
factor (VIF, a measure of multicollinearity among variables). Specifically, we grow a
set of 10 predictor candidates by sequentially adding one variable at a time, starting
from the best ranking DCorr, provided the VIF among the growing set of predictor
candidates stays below a threshold value of 10. If this threshold is exceeded it means
that the variable exhibits strong correlation with other variables that were already
selected and we assume that this variable contributes no additional value as a predictor
for the AnEn. Since some of our 41 variables are related (e.g., the same variables at
different vertical levels), the VIF check limits the use of correlated and presumably
redundant variables in the FS.

These experiments aim to investigate (a) whether the EFS is competitive with [44]’s
FS, and (b) whether DCorr or DCorr and VIF can effectively pre-filter meaningful predictor
candidates, reducing computational expense compared to testing all variables in EFS. For
the feasibility of testing all these methods, we conducted this optimization of predictor
weights only for 3-hourly discrete accumulation windows and day-1 forecasts.

We further conducted principal component analysis (PCA) on the standardized
datasets of all variables and the 10-variable subsets resulting from DCorr and DCorr-
VIF analyses. Different experiments with the principal components (PC) as predictors and
their weights either using the eigenvalues or from EFS on the PCs, were not competitive
with the (E)FS methods described above and are therefore not shown in this paper. Ref. [35]
obtained similar results comparing BF and PCA predictor-selection methods.

2.2.2. The Supplemental-Lead-Time (SLT) Approach

The original AnEn approach, as described above, searches AnFcsts only across those
lead times in the training period that match the target lead time of the TaFcst. The aim
of matching lead times is to detect AnFcst candidates with error characteristics similar
to the TaFcst. It further ensures that the AnFcsts are sampled from the same time of day,
which is particularly important for predictands like temperature and wind that exhibit
diurnal cycles. However, precipitation in southwest BC has no significant diurnal cycle
in the cool-season when most precipitation occurs; and it is plausible that better AnFcst
candidates are available at other lead times surrounding the target lead time, for which
model errors are still similar.

Thus, we explore the use of “supplemental lead times” (SLTs) in Section 3.3. As exem-
plified in Figure 3, AnFcst candidates are considered over a range of offsets from the target
lead time. Since AnFcsts from the same past model initialization would be temporally
correlated, we only select the best single PaFcst among SLTs from each initialization. Hence,
this method selects the AnFcst from a SLT (different from the target lead time) only when
the score resulting from Equation (1) indicates closer similarity (i.e., a better analogy).

Accumulation-window treatment must be considered when using SLTs. For instance,
±2 SLTs applied to hourly forecasts selects the best out of five PaFcst options over a lead-
time window width of five hours; ±2 SLTs applied to 3-hourly rolling forecasts considers
five PaFcst options over a window width of eight hours; and ±2 SLTs applied to 3-hourly
discrete forecasts considers five PaFcst options over a total window width of 15 h. Since SLT
consideration for longer discrete windows quickly inflates the effective lead-time window
width over which model error growth can be significant, we examine SLTs only for short
and rolling accumulation windows.

This method differs from [54], who inspected 12-, 6-, and 3-hourly offsets of 24-h
accumulations for daily precipitation targets by including all offsets within the 24-h period.
For example, [54]’s best-performing 3-hourly offsets result in 8 times as many AnFcst
candidates as the original AnEn approach, hereby artificially inflating the meteorological
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archive with temporally correlated PaFcsts. Our SLT approach, on the other hand, increases
the number of AnFcst candidates indirectly by choosing only the single best candidate in
the SLT window centering the target lead time, without risking the selection of multiple
correlated PaFcsts.

Figure 3. Graphic of the supplemental-lead-time approach (SLT; bottom), compared to the original
approach (top). The circles along the arrows represent lead times of an initialization. This example
illustrates the analog search at lead time t. For the first past-forecast (PaFcst) initialization, the SLT
approach using ±1 SLTs selects the analog forecast (AnFcst) at lead time t as in the original approach.
For the second PaFcst initialization, the SLT approach finds a better AnFcst at lead time t + 1.

3. Results and Discussion

3.1. Predictor Selection Optimization

The four iterative FS and EFS approaches described in Section 2.2.1 determine predictor
weights from the training dataset only. Following optimization for 75p twCRPS, all methods
require that the resulting predictors yield better or equal twCRPS compared to the control
predictors over the training period. Because the set of 10 predictor candidates used in
DC-EFS or DCV-EFS are each a subset of the variables used in All-EFS, it is also required
that All-EFS yields better or equal twCRPS during training. It is further required that DC-FS
is better than DC-EFS during training, since both methods are preconditioned by the same
predictor candidates and the FS approach has more weighting options than EFS. However,
running the AnEn over the testing period with the predictor weights determined from
the training period reveals whether the selection procedure actually led to the required
improvement or whether it overfitted the training dataset.

Figure 4 compares twCRPSS among the four methods, segregated by training and
testing. Recall that predictor weights are optimized independently for each station and
meteorological season. Therefore, Figure 4 summarizes the twCRPSS of all 46 stations in
boxplots and panels for each season.

For all seasons the majority of stations see improvement in twCRPS following predictor
optimization with any method. This is true for both training and testing, which indicates
that all methods are beneficial. However, the consistent shift between training and testing
scores suggests some overfitting; namely, the best predictors during training are still good—
but potentially not the best—predictors during testing.

Since summer in BC is by far the driest season, differences in small values of twCRPS
between control and optimized predictors are amplified in twCRPSS, hence the larger im-
provement on average and the large spread. Warm-season dry periods can extend into spring
and fall months. The winter season contains the most consistent precipitation pattern.

All methods significantly (see Appendix B.2 for significance testing) improve twCRPS
compared to the control during training and testing. However, the differences in twCRPSS
among methods are relatively small. Compared to the training, the testing score distri-
butions across stations are less often significantly different among methods. However,
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winter All-EFS scores are still significantly better than DC-FS and DCV-EFS during testing.
Although not always significant, All-EFS is consistently best during training and continues
to be best on average (not shown) during testing in summer, fall, and winter. Therefore, we
use the predictors resulting from the All-EFS method (see Appendix D) hereinafter. DC-EFS
and DCV-EFS are competitive with All-EFS but require considerably less optimization time
by assessing only a quarter of the variables. Therefore, they would be viable alternatives
for predictor optimization in other studies.

Figure 4. Box-and-whisker plots of 75p twCRPSS distributions across stations (46 stations in each
boxplot, except in summer) after predictor optimization with four methods. The dotted zero line
separates values that indicate improvement (positive values) vs. deterioration (negative values)
compared to the reference twCRPS using control predictors. Performance differences between
training (lighter colors) and testing (darker colors) informs about the degree of overfitting.

These results show that the EFS approach is capable of effectively reducing the compu-
tational effort of predictor tuning compared to [44]’s FS method, while maintaining similar
(and sometimes even better) improvements compared to static control predictors.

3.2. Temporal Trend Similarity

In addition to predictor-variable choice and their relative weights, the temporal trends
of predictors can also help to better identify AnFcsts. Temporal trend similarity (TTS)
is assessed over a time window centered on the target lead time, and window width
results from the definition of τ ranging over a number of time steps. The total window
width depends on the accumulation window and steps. For instance, a TTS window using
±2 time steps (i.e., τ = 2 in Equation (1)) covers a 5-h period for hourly precipitation, or a
7-h period for 3-hourly rolling windows, whereas it covers an effective 15-h period for
3-hourly discrete windows.

We investigate the impact of TTS with τ ranging from 1 to 5 time steps on twCRPS
relative to using no TTS (τ = 0). Since autocorrelation between the predictors and the
predictand is unlikely to exceed half a day, for long discrete accumulation windows we
discard TTS calculations that would result in effective window widths >36 h. Therefore,
24-hourly discrete windows are not considered for TTS, and 12-hourly discrete windows

70



Atmosphere 2022, 13, 1662

are assessed only for a TTS with τ = 1. Note also that there are no forecast values available
preceding (following) the first (last) lead time in a forecast series from one initialization;
therefore, a few lead times at the beginning and end of a forecast series do not experience
the full effect of TTS.

Figures 5 and 6 show that hourly and rolling windows, all of which have hourly time
steps, benefit most from TTS. Discrete windows with longer accumulations, and hence
larger time steps, cover longer total lead-time widths over which TTS is often less effective—
here only on days 2 and 3 is twCRPSS sometimes positive (better) for τ > 0.

Longer forecast horizons generally obtain better twCRPSS for longer time windows.
Due to error growth with lead time, day-1 forecasts exhibit better predictability than day-
3 forecasts and thus, day-3 forecasts have greater total potential for improvement. At
longer forecast horizons it appears that the added temporal dimension in the similarity
consideration somewhat balances the abating quality of the predictor variables, whereas at
shorter forecast horizons the instant predictor values preserve higher predictability.

The magnitude of improvement is slightly larger in spring and summer seasons, likely
because warm-season precipitation is often convective and has more of a diurnal pattern.
However, despite the differences in predictor variables among seasons, the best value of τ
is relatively similar across seasons.

Since we determined the optimal values for τ as a function of season, forecast day,
and accumulation window, we apply the best significant τ value according to Figures 5
and 6 in the following parts of this study.

Figure 5. Heatmaps of station-averaged twCRPSS for hourly to 12-hourly discrete accumulation
windows using τ between 1 and 5 to consider temporal trend similarity (TTS) for all seasons and
forecast windows. Blue (red) colors indicate better (worse) average twCRPS compared to the reference
using τ = 0 (no TTS). Crosses “X” mark significant differences in twCRPS station distributions
compared to the reference. Empty circles mark the value τ that exhibits best improvement overall,
and filled circles correct the position of best τ if the value in the empty circle is not significant.
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Figure 6. As in Figure 5 but for 3-hourly to daily rolling windows. Again, empty circles mark the
value τ that exhibits best improvement overall, and filled circles correct the position of best τ if the
value in the empty circle is not significant. Forecast day 1 for daily accumulations is removed, since it
contains only 1 instead of 24 lead-time samples as on the other forecast days.

3.3. Supplemental Lead Times (SLTs)

The SLT approach (described in Section 2.2.2) is tested using windows with up to
±10 SLTs. At this window width the best out of 21 AnFcst candidates is considered, rather
than only the one PaFcst at the target lead time as in the original approach. Since we wish
to retain error characteristics from similar lead times, we do not assess the effect of SLTs on
discrete windows, nor beyond a lead-time offset of 10 h.

Across stations and forecast days, there is a clear tendency that twCRPSS values
improve with increasing SLT window (Figure 7). The steepest improvement occurs within
±3 SLTs and levels out at ±6 SLTs on forecast day 3, but day-1 and day-2 average scores
keep improving at a decreasing rate until our maximum of ±10 SLTs. Both, twCRPS and
twCRPSS changes are significant in every step of growing SLT windows.

While TTS considerations yield best improvements for longer forecast horizons,
the SLT approach benefits shorter forecast horizons most. A reason for this could be
that on forecast day 1, the limiting factor in AnEn performance is the availability of good
analogs from the provided sample size, whereas on day 3, the limiting factor is the quality
of the forecast itself.
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Figure 7. Lead-time aggregated (top) and station-aggregated (bottom) twCRPSS from the supplemental-
lead-time (SLT) experiments. The reference for twCRPSS is the original approach with optimized
predictors but without SLT. Positive twCRPSS indicate improvement compared to the reference.

3.4. Verification

Not all methods could be performed on the discrete accumulations due to their
larger time steps, and the predictor selection was in part already evaluated in Section 3.1;
therefore, this verification section focuses on hourly and rolling windows only. Verification
is conducted by running the AnEn over the independent 1-year testing period with the best
tuning parameters determined in Sections 3.1–3.3. We show the stepwise improvement
by comparing:

• the control AnEn using reference predictors, no TTS, and no SLTs (Control),
• the AnEn with optimized predictors, but no TTS, and no SLTs (Step 1),
• the AnEn with optimized predictors and optimized TTS consideration, but no SLT

(Step 2), and
• the AnEn with optimized predictors and optimized TTS consideration, and using SLTs

in a window of ±6 (Step 3).

First, the performance improvement over the raw WRF forecasts is assessed. For com-
parison we transform the probabilistic AnEn into a deterministic forecast by taking the
ensemble median and calculate the mean absolute error (MAE) with the verifying observa-
tions. Analogous to Equation (A2) for twCRPSS, the MAE skill score (MAESS) is computed,
where positive values represent improvement over the MAE of the raw WRF forecasts.

As seen in Figure 8, all of the AnEn post-processing methods generally have higher
rates of improvement for shorter accumulation windows and longer lead times. Even
the Control AnEn significantly improves the raw WRF forecasts, and the additional steps
further enhance the AnEn performance. For example, the Control AnEn improves WRF
MAEs by about 13.3% for hourly forecasts (averaged over forecast days) and about 5.5% for
daily forecasts, while the Step 3 AnEn reduces WRF MAEs by an additional 2.9% and 2.0%,
respectively. Compared to the Control, our Step 3 AnEn improves hourly-precipitation
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MAESS by 30.6% on day 1, 26.3% on day 2, and 9.6% on day 3; whereas 12-hourly MAESS
are improved by 83.8%, 74.0%, and 41.6%, respectively.

Figure 8. Station mean of the mean absolute error skill score (MAESS) by forecast day and for hourly
to daily rolling windows, relative to the raw NWP forecast.

The optimization steps show step-wise improvement, except Step 2 shows a slight
drop in MAESS compared to Step 1 for accumulations larger than 3 h. This indicates
that the TTS does not always yield the expected improvement as seen during training.
The largest improvement is consistently seen in Step 3 from using SLTs.

Recall that the predictor selection was optimized on only forecast day 1 using 3-hourly
windows. Yet across accumulation windows and forecast days the same predictors improve
the Step 1 MAE, except for daily precipitation on forecast day 1. This study shows results
up to daily intervals only for reference, however, users who desire daily-precipitation
AnEn forecasts are advised to re-trained the predictor selection to assess whether different
variables and weights would make better predictors.

To date, in this paper, we have focused on AnEn improvements for 75p events.
Figures 9 and 10 show 90p results to assess if the AnEn forecasts remain skillful for the
heavier precipitation events.

The reliability diagrams in Figure 9 show that AnEn probabilities compare well to
observed relative frequency across forecast days and accumulation windows; i.e., the AnEns
are calibrated and reliable. Relative to the dashed line that represents perfect reliability,
most points in the calibration functions have a small deviation towards the left side. This
means that the AnEns have a small dry bias for 90p events. This is a common property of
AnEns, especially for high-impact events for which only a smaller number of good AnFcsts
are available [22,38,48].

Compared to the Control, Step 1 and Step 2 slightly worsen this bias, however, Step 3
moves the calibration function back closer to the line of perfect reliability. This is particularly
meaningful because the SLT approach further improves sharpness. Sharper AnEn forecasts
were expected as a result of SLTs, because the larger number of considered PaFcsts provides
a better chance for the selection of closer AnFcst. These results agree with [54], and they
also agree with [38]’s supplemental-locations approach, which uses spatial rather than
temporal supplements to inflate the PaFcst sample size.

The receiver operating characteristic (ROC) diagram in Figure 10 shows the discrim-
ination between 90p events and non-events. Larger values of the area under the curve
(AUC) score are better, corresponding to a higher true-positive rate (i.e., POD or hit rate)
and a lower false-positive rate (i.e., false-alarm rate).

The AnEn AUC scores increase with each optimization step, however, the improve-
ment is larger for shorter accumulations and longer forecast horizons, both of which exhibit
worse discrimination to begin with. Although in Figures 8 and 9 Step 2 (TTS) showed
smaller improvements or sometimes even worse performance in comparison, TTS con-
tributes considerable improvement with regard to AUC, in particular on forecast day 3 for
shorter accumulation windows.
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Figure 9. Station-aggregated 90p reliability diagrams on all forecast days for hourly discrete to
daily rolling accumulation windows. The dashed black line is the reference for perfect reliability,
the grey dotted lines show climatological probability. The inset in the lower right corner displays
the corresponding sharpness diagram, which shows the relative frequency of forecasts that fall into
each bin. Due to the skewed nature of precipitation distributions, the y-axis in the sharpness diagram
is plotted on a logarithmic scale. The reliability diagram displays only bins that include at least
50 samples in total (i.e., only those points above the dashed grey line in the sharpness diagram).
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Figure 10. Station-aggregated 90p receiver operating characteristic (ROC) diagrams for all forecast
days and hourly discrete to daily rolling accumulation windows. The area under the curve (AUC) is
given in each legend and has a perfect score of 1. The dashed black line represents the line of no skill
with AUC = 0.5 corresponding to climatology.

4. Summary and Conclusions

This study demonstrates the benefits of existing and new optimization techniques
for AnEn post-processing on sub-daily precipitation forecasts over southwest BC. Lower
precipitation rates are easier to predict and have less impact, but since they are far more
common they are likely to dominate optimization procedures. Therefore, this study tuned
the AnEn parameters for moderate and heavier events based on the 75p twCRPS, instead
of the full CRPS as in most other studies.

First, we objectively optimized the choice of predictor variables and their weights by
evaluating four variants of forward selection (FS). Since common predictor optimization
techniques come at significant computational expense, we suggested the efficient FS (EFS)–
an adaptation of [44]’s FS. Limiting the weighting options in sequence with the selected
predictors significantly reduces computational cost while maintaining similar optimization
performance. Predictor tuning is beneficial even if trained on a portion of the dataset
(i.e., only one forecast day instead of the full forecast horizon) and even if the initial set
of variables on which the (E)FS is conducted is pre-selected by filter methods such as
DCorr. However, EFS on a larger number of meteorological variables can result in minor
additional improvements and could be considered in other studies if the computational
capacity exists.

Next, we explored the impact of the time-window width over which the temporal
predictor trends are matched. This investigation revealed that longer time windows
are most beneficial for longer forecast horizons and shorter accumulation windows—a
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relationship that is often neglected in other studies. Although TTS was shown in the
verification Section 3.4 to increase the unconditional dry bias, it improves discrimination of
high-impact events. Perhaps the method described in Section 3.2 to assess optimal time
windows could be generalized across seasons, such as a staggered implementation for
forecast days 1, 2, and 3 using τ equal to 1 or 2, 2 or 3, and 3 or 4, respectively. Caution
is advised when using TTS for discrete windows of accumulations that are longer than
hourly, because we obtained mixed results dependent on lead time.

Finally, we implemented a new methodology that uses the concept of supplemental
lead times (SLTs). It enhances the chance of finding better AnFcsts by allowing the algorithm
to choose from forecast lead times within a time window around the target lead time,
that should maintain similar error characteristics. This approach is similar to the idea
in [54], but it is suitable for shorter accumulations and prevents the selection of temporally
dependent AnFcsts. SLTs could be used in addition to [38]’s supplemental locations, or as
an alternative if the domain or station sample size is not sufficient (as in this study).

The use of SLTs had the largest impact on AnEn performance, often exceeding the
effects of predictor and TTS optimization, especially for verification statistics including
the ensemble-median MAE and 90p reliability and sharpness. The time window width for
which SLTs showed performance increase is relatively wide in this study, likely because pre-
cipitation in BC has no pronounced diurnal cycle in its cool/wet season. Other predictands
with more pronounced diurnal cycle would likely require shorter SLT windows and may
experience smaller relative improvements. It is conceivable that a longer dataset history
would result in similar improvements, dampening the impact of SLTs. However, when
relatively short training periods are available (<5 years in this study), the SLT approach
somewhat compensates for the small sample size. This opens up opportunities for AnEn
applications on shorter but locally optimized and operational data products.

One NWP model forecast produces three-dimensional multivariate deterministic
predictions, whereas the AnEn method in this study creates a univariate probabilistic point
forecast by post-processing NWP. Compared to NWP ensembles, AnEns are extremely
efficient in creating reliable probabilistic point forecasts—that is, if a sufficiently long
reforecast dataset is available. Although our algorithm was not optimized for efficiency,
a single 3-day forecast at one point location takes on average only 0.5 s to create the Control
or Step 1 AnEn on a macOS computer (with 3.2 GHz Intel Core i5 processor), 1 s to create
the Step 2 AnEn (with TTS), and <10 s to create the Step 3 AnEn (with TTS and ±6 SLTs).
This computational time applies to the AnFcst search and AnEn composition only (i.e.,
excluding time for running the NWP TaFcst and interpolation to station locations) and
would have to be multiplied by the number of point locations at which forecasts are desired
(if not run simultaneously in parallel). In comparison, the three-domain WRF runs used
in this study took on average 80 min run time using 48 cores (Intel-compiled WRF code
run on an HPC cluster using Open MPI and no hyperthreading on Intel Xeon Processor
E5–2683 v4 compute nodes with 2.10 GHz). While at least one NWP run is required to
make an AnEn forecast, running an equivalent-sized 30-member WRF ensemble would
require 10 runs, which would take approximately 27 core days of run time in serial mode
using configurations (e.g., domain setup) as in [58].

In this study, we improved the computational efficiency of AnEn optimization, while
also significantly improving AnEn forecast performance by up to 83.8% compared to a
reference AnEn. This increase in AnEn performance can be attributed mainly to a new SLT
technique. Temporal variability and forecast-error growth cause finer-temporal-resolution
and longer-lead-time forecasts to have inherently worse performance, especially over the
complex terrain of southwest BC—yet those forecasts benefit the most from the optimized
AnEn post-processing. This is an important result in a world where end users desire
evermore accurate predictions at finer resolutions and longer outlooks.
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Appendix A. Percentiles

Figure A1. Top row: Histogram of binned daily observed 75th percentiles (75p) at all stations (top
left), and corresponding geographic distribution of the 75p relative to topography (top right); Bottom
row: Histograms of 75p and 90p for other accumulations. Although not plotted here, these frequency
distributions show similar geographic variations to the top right panel.

Appendix B. Evaluation

Appendix B.1. Threshold-Weighted Continuous Ranked Probability Score

The 75th-percentile (75p) threshold-weighted continuous ranked probability score [7]
across forecasts j is defined as

twCRPS(AnEnj, VerifObsj) =
∫ ∞

−∞
1{x≥75p}(AnEnj(x)− 1{VerifObsj≤x})

2 dx, (A1)

where 1 denotes an indicator function, which is 1 under the sub-scripted condition, and 0
otherwise, while the conventional CRPS can be interpreted as the integral of the Brier scores
over the range of possible thresholds [50,76], the twCRPS with the additional 1{x≥75p} can
be interpreted as the integral of the Brier scores over the thresholds larger than a desired
value–75p in our study. In other words, the twCRPS is the fraction of the conventional
CRPS that assesses events above the given threshold (the right tail of the distribution).

The relative performance between methods and optimization steps is compared using
the threshold-weighted continuous ranked probability skill score

twCRPSS = 1 − (twCRPS/twCRPSref), (A2)

which yields positive values when skill is improved compared to the reference.
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Appendix B.2. Statistical Tests

If the Shapiro–Wilk test for normality [77] is rejected over the distributions of results
across stations, we use the non-parametric two-sided Wilcoxon signed-rank test [78] to
assess whether the paired station-result samples from different methods originate from the
same distribution at the α = 0.05 level. Otherwise, we use the paired t-test.

Appendix C. Correlation Analysis

Figure A2. Distance Correlation coefficients (DCorr) of all model variables (see Table 1) with observed
precipitation. Variability across 46 stations aggregated over time (left), and variability across months
aggregated over stations (right). The time period covers four complete years from the optimization
period (rather than the full 4.75-year period) to ensure similar sample size across months.

80



Atmosphere 2022, 13, 1662

Appendix D. Predictor Weights

Figure A3. Station average of the final predictor weights resulting from the All-EFS method (see
Section 2.2.1) for each season. Variables that are in Table 1 but not in the x-axis were never selected by
any station at any season.
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Abstract: Accurate short-term forecasting of intensive rainfall has high practical value but remains

difficult to achieve. Based on deep learning and spatial–temporal sequence predictions, this paper

proposes a hierarchical dynamic graph network. To fully model the correlations among data, the

model uses a dynamically constructed graph convolution operator to model the spatial correlation,

a recurrent structure to model the time correlation, and a hierarchical architecture built with graph

pooling to extract and fuse multi-level feature spaces. Experiments on two datasets, based on the

measured cumulative rainfall data at a ground station in Fujian Province, China, and the correspond-

ing numerical weather grid product, show that this method can model various correlations among

data more effectively than the baseline methods, achieving further improvements owing to reversed

sequence enhancement and low-rainfall sequence removal.

Keywords: short-term intensive rainfall forecast; spatial–temporal sequence prediction; hierarchical

dynamic graph network; graph convolutional network; numerical weather prediction

1. Introduction

Short-term intensive rainfall is generally defined as a cloudburst event in which the
accumulated rainfall reaches or exceeds 30 mm within 3 h (Fujian Provincial Meteorological
Observatory) [1]. It is usually caused by strong convective weather and is characterized by
extreme suddenness, high destructiveness, and a short duration. It can easily cause natural
disasters such as mountain torrents, mudslides, and urban floods. The forecasting accuracy
of short-term intensive rainfall is usually lower than that of ordinary rainfall events in
China [2]. Inaccurate forecasts may lead to a serious loss of life and property. Therefore,
improving the accuracy of short-term forecasting is important.

We focus on two types of short-term intensive rainfall forecasting methods [3]. The
radar extrapolation method uses historical radar echo maps with a high spatial–temporal
resolution, as drawn by meteorological radars, to forecast the rain and cloud movement. It
uses the optical flow method [4], precipitation cloud extrapolation [5], or other methods [6]
to predict the movement. In addition, it subsequently uses rainfall rate–reflectivity rela-
tionships or other means to invert the results into rainfall data. The Numerical Weather
Prediction (NWP) method, based on historically accumulated observation data, uses numer-
ical calculations to solve the fluid mechanics and thermodynamic equations that represent
the weather evolution under certain conditions. The result is a computer-simulated NWP
product. Based on this, forecasters combine various monitoring products and their own
experience to conduct comprehensive analyses and corrections, thus finally obtaining
forecasting results.

With the increased scale of deployment of metering equipment and meteorological
data expansion, previous studies have integrated deep learning with meteorological fore-
casting methods. Recent extrapolation methods transform the problem into a video-like
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prediction, such that it is easier to model the long-range spatial–temporal relationship when
compared with that in traditional methods [7]. Some attempts have focused on using the
NWP products as input data for deep learning methods to perform prediction tasks [8,9].

However, forecasting short-term intensive rainfall using deep learning still faces
challenges: (1) the distribution of meteorological data is complex and involves multi-modal
dynamics, which are difficult to model; (2) statistics show that samples have a robust
scale-free structure in the atmospheric rainfall field [10], which indicates a data imbalance
problem; (3) when using data with a temporal resolution of 3 h, modeling is more difficult
than radar extrapolation at high spatial–temporal resolutions and small neighborhood
variations; and (4) NWP products are not the actual measured results, as their accuracy is
limited by the characteristics of the models they use.

To manage these challenges, based on our previous study [1], we combined rainfall
data from ground stations and related data from an NWP product to propose the Hierarchi-
cal Dynamic Graph Network (HDGN), a new model based on spatial–temporal sequence
prediction and a Graph Convolutional Network (GCN). By designing the corresponding
structure, we comprehensively captured the correlations among time, space, and features,
which facilitated the prediction of short-term intensive rainfall.

The remainder of this paper is organized as follows. Section 2 introduces the back-
ground related to this study, including the NWP, spatial–temporal sequence prediction,
study area, and data sources. Section 3 presents the methods applied for short-term inten-
sive rainfall prediction, which involve data preprocessing and the HDGN model. Section 4
presents the configuration of the experiments and interpretations of their results. Section 5
provides the conclusions of the study.

2. Background

2.1. Numerical Weather Prediction

Multi-scale forecasts are provided by operational NWP centers, which involve small
to planetary-scale emulations at time resolutions from the minute to seasonal scale. The
numerical calculation model in the NWP is frequently updated with the aid of new ob-
servation data and forecasting technologies, thereby improving the physical simulation
performance and uncertainty quantification of the model. This also improves the effect of
model forecasting and data assimilation.

We used fine-grid numerical forecasting products from the European Centre for
Medium-Range Weather Forecasts (ECMWF) and the Weather Research and Forecasting
(WRF) method, a unified mesoscale weather-forecasting model.

However, NWP has certain limitations related to the cumulative error resulting from
the high complexity of the simulation process. The ECMWF is disadvantageously char-
acterized by a weak intensity forecast [11]. The WRF model performs relatively poorly
when estimating the rainfall value [12]; its rainfall forecasting results may not be as optimal
as those of the ECMWF [13]. Generally, the performance of the NWP in the convective
period of a precipitation forecast is relatively poor, despite the occurrence of short-term
intensive rainfall during the convective period. The lifetime of convective storm cells is
generally <30 min [14], such that it is difficult to accurately predict short-term intensive
rainfall events using a single NWP simulation. In this study, we combined the measured
cumulative rainfall data from ground stations and related data from the NWP product
on the input side to overcome the limitations associated with a single set of NWP data.
Additionally, based on these data, the concept of spatial–temporal sequence prediction was
employed to predict future rainfall conditions.

2.2. Spatial–Temporal Sequence Prediction

As a sub-field of deep learning, spatial–temporal sequence prediction is suitable
for uncovering the spatial–temporal correlations among data, such as rainfall-related
information for forecasting tasks based on time-sequence prediction. Classical models
for time-sequence prediction include Long Short-Term Memory (LSTM) [15], which is a
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recurrent neural network with long- and short-term memory cells, and the Deep Belief
Network (DBN) [16], which is a multi-layered probabilistic generative neural network.
They have a simple structure with a low cost; however, they are poor in integrating spatial
information from our data. To enhance the performances of these methods, we can classify
the spatial–temporal sequence prediction problems into grid and non-grid scenarios [17].

Grid spatial–temporal sequence prediction uses fixed space coordinates to char-
acterize the spatial–temporal relationship among data [18–20]. Convolutional LSTM
(ConvLSTM) [21] combines LSTM and a three-dimensional (3-D) convolutional neural
network [22], which is a deep learning network for extracting information from spa-
tial data. It is portable and can be the building block of a predictive network, but it
lacks bidirectional information flow between the different layers in the temporal direction.
Sequence-to-Sequence (Seq2Seq) [23] is a basic recurrent architecture used in our model to
perform frame-by-frame predictions. PhyDNet [24] uses an encoder–predictor–decoder
architecture, which includes the mutual conversion of data and physical feature spaces.
Furthermore, a previous study developed a video prediction model based on a multi-level
feature space [25]; our study extends this idea to the graph domain. Multi-level feature
spaces increase the model complexity but facilitate the extraction of feature correlations
among data. Finally, a model for serially generating two-dimensional (2-D) convolutional
kernels, with a sliding window [26], inspired this study regarding the hierarchical genera-
tion of graph convolution operators.

Non-grid spatial–temporal sequence prediction uses additional structures, such as
graphs (a structure composed of nodes and edges), to characterize the spatial–temporal rela-
tionships among data [27–29]. The Attention-based Spatial–Temporal Graph Convolutional
Network (ASTGCN) [30] alternately calculates the temporal and spatial attention within the
data, which act as antecedent auxiliary transformations to the graph convolution operator.
However, its high cost of spatial attention prevents it from being used in large graphs,
where ours can be used. The Spatial–Temporal Graph Ordinary Differential Equation
(STGODE) network [31] models the semantic adjacency matrix of a graph via the dynamic
time-warping algorithm. Graph Convolution embedded LSTM (GC-LSTM) [32] uses the
Inverse Distance Weight (IDW) to calculate the weights of a graph; the graph convolution
operator selects one- to K-hop neighbors. In the HDGN, we also use semantic distances,
which are more indicative of the correlations between node pairs, as weights instead of
fixed geographical distance, and this method can increase the model dynamics at a low cost.
Our graph convolution operator has the same capabilities as those of the GC-LSTM. The
Dynamic Graph Convolutional Recurrent Network (DGCRN) [33] uses a highly dynamic
graph construction method, whereas we proposed a hierarchical graph generation process;
compared to the previous method, our approach trades a small reduction in flexibility for a
faster graph construction speed.

2.3. Study Area and Data Sources

Fujian Province is located in Southeastern China, with a total land area of 12.4 million km2.
It has a subtropical maritime monsoon climate characterized by an average annual tem-
perature of 15.0 to 21.7 ◦C, with hot summers and warm winters; its annual precipitation
ranges from 1132 to 2059 mm, where March to September accounts for 81.4% of the annual
precipitation. The topography of Fujian is high in the northwest and low in the southeast. It
has two mountain belts that trend from the northeast to the southwest: the Wuyi Mountains
in northwestern Fujian and the Jiufeng and Daiyun mountains in northeastern to central
Fujian. Owing to the influence of the terrain, these areas are the centers of heavy rainfall in
Fujian [34]. Figure 1 depicts the occurrence of short-term intensive rainfall in Fujian from
February 2015 to December 2018. Fujian is one of the areas of high-frequency intensive
rainfall in China, which often leads to severe flooding and geological hazards.
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Figure 1. Distribution of each ground station in Fujian Province. The colors indicate the total number
of observed short-term intensive rainfall events in February 2015 to December 2018 for each station [1].

The four original datasets issued by the Fujian Meteorological Observatory were used
in this study (see Table 1 for details); the grid points refer to a series of nodes arranged in
rows (latitude) and columns (longitude). These datasets can be divided into three categories.

Table 1. Details of the original datasets.

Dataset Stations ECMWF250 ECMWF125 WRF

Horizontal range
23.52◦–28.37◦ N,

115.84◦–120.67◦ E
23.5◦–28.5◦ N, 115.5◦–121.0◦ E

23.5◦–28.45◦ N,
115.5◦–120.99◦ E

Time range February 2015 to December 2018
January 2017 to
December 2018

Time resolution 3 h 1 h

Number of
stations/grid points

2170 23 × 21 45 × 41 62 × 56

Grid spacing — 0.25◦ × 0.25◦ 0.125◦ × 0.125◦ 0.09◦ × 0.09◦

Number of
available features

3 113 26 24

Starting time of
the forecast

— 08:00 and 20:00 (UTC + 8)

Stations: A dataset of the observed rainfall, comprising data collected by 2170 available
ground stations in Fujian. It contains three features, i.e., the longitude, latitude, and
measured 3 h accumulated rainfall.

ECMWF: It comprises the ECMWF250 and ECMWF125 datasets for Fujian. With the
exception of a few features, such as the dew point temperature, their feature sets do not
overlap with each other.

WRF: A dataset containing the Fujian WRF grid data, which is divided into 3-h interval
groups; only the forecasting results from the third hour were used for alignment with the
other datasets.
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3. Methodology

3.1. Problem Description

Let the data obtained from the samplings performed at equal time intervals belong to
one frame. We set sequence prediction as the task of outputting the predicted sequence
data as close as possible to the ground truth based on the historical data, which can be
expressed as follows:

{

X0, . . . , XTin−1
}

→
{

XTin
, . . . , XTin+Tout−1

}

, (1)

where X represents a frame, and Tin and Tout represent the historical and predicted sequence
lengths, respectively.

The structure of X differs for different types of prediction problems. X ∈ R
F represents

the time-sequence prediction, X ∈ R
N×F represents the non-grid spatial–temporal sequence

prediction, and X ∈ R
M×F represents grid prediction, where F, N, and M denote the

number of features, nodes, and measurement dimensions of the grid, respectively. When
the grid is 2-D, M = H × W, where H and W represent the height and width of the
grid, respectively.

We set our object as a non-grid spatial–temporal sequence prediction problem, where
Xt,0 = Xt in the HDGN. The grid spatial–temporal sequence prediction was applied after
separating the latitude and longitude coordinates from the data points. The time-sequence
prediction methods can individually predict each node and then combine them.

3.2. Data Preprocessing

For the stations dataset, we used the IDW interpolation method [35] on each frame to
interpolate the rainfall values to the ECMWF250 and WRF grid points. Thus, the measured
cumulative rainfall and corresponding NWP features shared identical spatial coordinates,
which avoided forecasting difficulties caused by a lack of measured rainfall data. The
station dataset is important because the model will perform poorly if the percentage of
missing values is high. In this context, the observed rainfall data must usually be obtained
from multiple sources to prevent potential problems caused by missing data when the data
are obtained from a single source.

For the NWP datasets, we used the forecasting period between 12 and 33 h owing to
numerical instability in the first 12 h of the NWPs. We then selected the forecasting data
closest to the start time to reduce the influence of long-term forecasting errors. Because
each feature has a different impact on network training and prediction performance, the
Box Difference Index (BDI) was used for feature selection [36] to reduce the volume of
data and avoid feature overlap. The higher the index, the stronger the feature’s ability to
distinguish whether the data point was a short-term intensive rainfall event. The BDI of
each feature was calculated as follows:

BDI =
|m30 − m0|

σ30 + σ0
, (2)

where m0 and m30 represent the characteristic mean values of the rainfall for data points
between 0 and 30 and above 30 mm, respectively, and σ0 and σ30 represent the standard
deviations of the rainfall values for the data points between 0 and 30 mm and above 30 mm,
respectively. After calculation, a list of each feature in descending order of BDI value was
obtained, and the features with the highest BDI were selected in turn. Note that features
with a high percentage of missing data owing to equipment failure, etc., were not used
because they degrade the performance of the model; therefore, we manually skipped these
features and replaced them with features with lower BDIs. Table 2 lists the features that we
selected following the above process and used in the subsequent steps.
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Table 2. Description of the selected features.

Data Source Feature Name Meaning

ECMWF125

Q_850 Specific humidity 850 kPa

Ki k index

Td_850 Dew point temperature 850 kPa

GH_1000 Geopotential height 1000 kPa

Tt_850 Temperature 850 kPa

ECMWF250

TCWV Atmospheric water vapor content

MSL Sea-level pressure

2D Dew point temperature 2 m

WRF

TCDC Total cloud cover

RH_850 Relative humidity 850 kPa

LCDC Low cloud cover

CR Combined reflectance

GUST Wind gust

CAPE Convective avail pot energy

REFD_1000 Radar-derived reflectivity 1000 kPa

MSLP Mean sea-level pressure

After feature selection, we constructed the sequential datasets adapted to the HDGN
and other sequence prediction models, i.e., S-ECMWF and S-WRF, where S denotes the
sequence. Their construction methods are shown below: (1) As the ECMWF dataset
comprises two groups of data with different grid spacings, they must be merged. The
selected ECMWF125 retained only the features of the 23 × 21 grid points that overlapped
with ECMWF250. The features of both were then concatenated according to the grid points.
(2) The interpolated rainfall data were spliced into the two datasets using the operation
described in (1). (3) Linear interpolation was used to supplement the missing values. The
data were standardized with the z-score. (4) Sequence samples were generated using a
sliding window with a step size of one frame. (5) The graph, G0, was constructed according
to the grid of the data, where each grid point was treated as a node and each node formed an
edge with the nearest node in eight directions (N, E, S, W, NE, SE, SW, and NW); a direction
with no nodes in it was skipped. Graphs in the HDGN were stored as a compressed sparse
matrix structured as R

2×E, where E represents the number of edges in the graph. The
edges of the graphs in the HDGN were all undirected edges, unless otherwise specified.
(6) S-ECMWF and S-WRF contained the sequence samples and G0, respectively.

As an optional step, we performed data augmentation on the S-ECMWF and S-WRF
datasets before training to improve the prediction performance. This involved two methods:
(1) Reversed sequence enhancement: the reverse form,

{

XTin−1, . . . , X0
}

, of the historical
sequence,

{

X0, . . . , XTin−1
}

, was generated and added to the training data; the related
sequence prediction task is shown in Equation (3). (2) Low-rainfall sequence removal:
10% of the training samples with the highest number of data points characterized by zero
rainfall in the historical sequence were removed. This configuration was used unless
otherwise specified.

{

XTin−1, . . . , X0
}

→ {X−1, . . . , X−Tout} (3)

3.3. Hierarchical Dynamic Graph Network

We proposed an HDGN model for short-term intensive rainfall forecasting, which is
shown in Figure 2. We note that the structure of the Hierarchical Graph Convolutional
Network (HGCN) should correspond to the hierarchical graph generation process. The
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components of this model were implemented based on Multi-Layer Perceptron (MLP), a
trivial forward-structured artificial neural network, unless otherwise specified.

 

Figure 2. The overall architecture of the proposed Hierarchical Dynamic Graph Network (HDGN)
model. It consists of three main modules: hierarchical graph generation, graph convolution operator
generation, and Hierarchical Graph Convolutional Network (HGCN). The model is dynamic in
nature because it uses different graphs for different sequences.

The steps of the sequence prediction were as follows. (1) The model read a historical
sequence and generated multi-level graphs based on it. It then generated the corresponding
graph convolution operators based on these graphs, finally using these results to initialize
the HGCN. (2) The HGCN read each frame on the historical sequence in chronological
order and output the corresponding predicted frames while updating its own state. When
the HGCN reached the end of the historical sequence, the last predicted frame was re-input
into the HGCN as the historical frame such that continuous prediction could be achieved.
(3) The model output the forecasting results for this historical sequence.

3.3.1. Hierarchical Graph Generation

Graph pooling was used to dynamically construct multi-level graphs, which serve as the
basis for the subsequent steps. Figure 3 shows the process of hierarchical graph generation.

We used a set of MLP encoders, C, A, and W , to extract the auxiliary information
according to the historical sequence. Each node cluster feature was ci, i ∈ {0, . . . , N − 1},
and the edge weight adjustment feature was ai, i ∈ {0, . . . , E − 1}. These were calculated
using C and A.
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 𝐺௟ 𝑙 > 0𝐺଴ 𝒞 𝒜 𝒲 𝑐௜ 𝑖 ∈ {0, … , 𝑁 − 1}𝑎௜ 𝑖 ∈ {0, … , 𝐸 − 1}𝒞 𝒜
concatsoftmax௜ 𝑖max൫𝑐௜ , 𝑐௝൯

𝑠௜,௝ = MLP ቀconcat൫𝑐௜ , 𝑐௝ , 𝑒௜,௝൯ቁ𝑠௜௝ = max ቀ0.5 + softmax௜൫𝑠௜,௝൯, 0.5 + softmax௝൫𝑠௜,௝൯ቁ 𝑑௜,௝𝑖 𝑗𝑑௜,௝  (0.5, 1.5) 𝜎 𝑒௜,௝ = 𝑑௜,௝ ൬0.5 + 𝜎 ቀ𝒲൫𝑎௜ , 𝑎௝൯ቁ൰
𝐺 𝜃

Figure 3. Hierarchical graph generation process generates high-level graphs Gl (l > 0) from initial
graph G0, historical sequence, and geographic distance between nodes (NodeDist).

EdgePool [37] was adopted to generate a new non-weighted graph based on edge
shrinking. The related process was as follows. (1) The correlation score of each edge
was calculated using Equations (4) and (5), where concat is the concatenate operation and
softmaxi is a normalization function on all adjacent edges of node i. (2) The edge with the
highest score was shrunk, followed by merging of its two adjacent nodes into a new node
with a clustering feature of max

(

ci, cj

)

. The adjacent edges of this new node no longer
participated in the shrinking of this layer. (3) Step (2) was repeated until all edges were
processed. We note that at least 50% of the nodes were always reserved for each pooling.
For a graph with numerous nodes, multiple EdgePools were arranged instantaneously to
reduce the number of layers.

si,j = MLP
(

concat
(

ci, cj, ei,j
))

(4)

sij = max
(

0.5 + softmaxi

(

si,j
)

, 0.5 + softmaxj

(

si,j
))

(5)

We generated the weights for this new graph using Equation (6), where di, j is the geo-
graphic distance between i and j, multiplied by a multiplier for correction. The multiplier
allowed learnable weights and aided in the modeling of the semantic distance between
the nodes based on di, j. We constrained the multiplier within (0.5, 1.5) by the sigmoid
function σ, to obtain more stable weights.

ei,j = di, j

(

0.5 + σ
(

W
(

ai, aj

)))

(6)

3.3.2. Graph Convolution Operator Generation

Based on a given graph, G, we generated a graph convolution operator, θ, using graph
Fourier transform theory [38].

First, we calculated the symmetric normalized Laplace matrix of the graph via Equation (7),
where A and D are the adjacency and degree matrices of the graph, respectively, and I is
the identity matrix corresponding to A.

Lsym = ID− 1
2 AD− 1

2 (7)

Next, eigenvalue decomposition was performed on Lsym; this step is complex, espe-
cially when there are many nodes on the graph. Therefore, the Chebyshev polynomial
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approximation was used to accelerate the solution process [39]. The graph convolution
operator, θ, based on Lsym, was approximated as a superposition of K parts, with the
k-th part extracting relevant information from k-hop neighbors around the target node, as
shown in Equation (8), where λmax is the maximum eigenvalue of Lsym and Tk represents
the k-th term of the first type of recursive Chebyshev polynomial; i.e., Equation (9), where
T0(X) = I, T1(X) = X, and θk is the k-th learnable graph convolution kernel [40]. The
value of K is important; if it is small, the graph convolution operator does not have a good
mapping ability; if it is large, it causes over-smoothing, i.e., the data on the graph converge
rapidly, which severely affects the subsequent process.

θ
(

Lsym

)

=
K−1

∑
k=0

θkTk

(

2Lsym

λmax − I

)

(8)

Tk(X) = 2XTk−1(X)− Tk−2(X) (9)

In summary, we calculated {T0, . . . , TK−1} through G, followed by implementation of
the graph convolution process.

3.3.3. Hierarchical Graph Convolutional Network

We proposed the HGCN, as shown in Figure 4, which is a multi-layered encoder–
predictor–decoder network. HGCN extracts the high-level features from the data to produce
a multi-level description of the data, which is useful for prediction. A feature space
consisted of a set of features used to describe the data. Layer 0 feature space, i.e., the
meteorological features within the dataset, and other feature spaces were latent spaces with
learnable anonymous features. The encoders were responsible for mapping the low-level
feature space to the higher space, whereas the decoders were responsible for performing
the opposite process.

 

ℰ𝒟 𝑡 > 0𝑙 > 0 𝑌௧ିଵ,௟

𝒢 𝑀௧,௟𝐻௧,௟ 𝑀ିଵ,௟𝑇௟,௞ 𝐺௟ ○ 𝑈௟ 𝑊௟ 𝜃௟,௞ 𝑎௟ 𝑏௟𝒫 𝒫ഥ𝒫 𝒫ഥ ℱ,ℱ𝐻௧,௟ = ℰ௟ ቀconcat൫𝑌௧ିଵ,௟ , 𝑋௧,௟൯ቁ𝑀௧,௟ = 𝜎൫𝑈௟𝑀௧ିଵ,௟ + 𝑊௟𝐻௧,௟ + 𝑎௟൯𝐻௧,௟ᇱ = ൫1 − 𝑀௧,௟൯ ○ 𝐻௧,௟ + 𝑀௧,௟ ○ tanh ൭෍ 𝜃௟,௞𝑇௟,௞𝐻௧,௟௄ିଵ
௞ୀ଴ + 𝑏௟൱𝑌௧,௟ᇱ = ℱ൫𝐻௧,௟ᇱ , 𝑌௧,௟ାଵ൯

Figure 4. Proposed hierarchical graph convolutional network as the sequence prediction part of
HDGN. Schematic shows the detailed structure of a three-layer network, where circles are components
and rectangles are data. A rectangle’s bottom area and height characterize the size of graph and
feature space, respectively.
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The components in the HGCN network are as follows. (1) The encoder, E , and
decoder, D, map feature spaces to higher- or lower-level hidden spaces through MLP. Based
on the residual connection [41], we proposed a cross-frame connection. When t > 0 and
l > 0, the encoder uses the form shown in Equation (10), where Yt−1,l represents the output
feature space of the same layer in the previous frame. The cross-frame connection aids in
stabilizing inter-frame and inter-layer information transmission, shortens the transmission
path of the high-level information, and alleviates the gradient explosion problem. (2) The
predictor, G, communicates information between the nodes in the graph and produces
data for the next moment, which are expressed by Equations (11) and (12). Mt,l was
used to adaptively adjust the update magnitude of Ht,l , and M−1,l is an empty matrix.
Tl,k was calculated from Gl , is the element-wise product, and Ul , Wl , θl, k, al , and bl are
learnable matrices. (3) Graph data pooling, P , and graph data de-pooling, P , convert the
data between the graphs in adjacent layers. P copies the corresponding lower-level node
with the largest rainfall as the new node, while P copies the node to every corresponding
lower-level node. (4) The fusion operation, F , was used to integrate the data, as shown in
Equation (13). To avoid learning of constant transformations by the model, we used the
maximum function to achieve F .

Ht,l = El(concat(Yt−1,l , Xt,l)) (10)

Mt,l = σ(Ul Mt−1,l + Wl Ht,l + al) (11)

H′
t,l = (1 − Mt,l)Ht,l + Mt,ltan h

(

K−1

∑
k=0

θl, kTl, k Ht,l + bl

)

(12)

Y′
t,l = F

(

H′
t,l , Yt,l+1

)

. (13)

According tohe number of nodes in the S-ECMWF and S-WRF datasets, we designed
the corresponding HGCN structures as shown in Figure 5.

 

.

𝑥 𝑦𝜙 = {0.1,1,5,10,20,30}
𝑙𝑜𝑠𝑠 = 1𝑁෍ 𝛺𝛺௞ |𝑥௜ − 𝑦௜|௜∈ఆ ,𝛺 𝛺௞𝑘 𝑖

𝐾

𝐾

Figure 5. Hierarchical graph convolutional networks adapted to S-ECMWF or S-WRF datasets, where
boxes represent one layer, circles represent graph data pooling and de-pooling operations.

3.3.4. Loss Function

After obtaining the prediction results of the model, a loss function was used to evaluate
the degree of difference between the predicted values, x, and reference values, y, to guide
model training. Owing to the imbalance in the rainfall values, we implemented a set
of rainfall thresholds, φ = {0.1, 1, 5, 10, 20, 30}, and grouped all data points into seven
categories. The weighted mean absolute error was used as the loss function.

loss =
1
N ∑

i∈Ω

Ω

Ωk
|xi − yi|, (14)

where Ω represents the total number of data points involved in the evaluation and Ωk

represents the number of the k-th category, i.e., within the i-th data point. Categories with
smaller sample sizes had larger proportions of the prediction error.
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4. Experimental Settings and Results

4.1. Experimental Settings

4.1.1. Model Configuration

We implemented the HDGN model on PyTorch [42] 1.6.0 using an NVIDIA Tesla
P100-PCIE-16 GB GPU for experiments on a Windows workstation. After shuffling the
order of the sequence of samples in the S-ECMWF and S-WRF datasets, they were grouped
into three subsets: training, validation, and test sets at a ratio of 6:2:2. For all prediction
tasks, the length of the historical input sequence was 12 frames (spanning 36 h) and the
length of the forecasting results was 2 frames (spanning 6 h). In the training phase, the
model used an Adam optimizer: the initial learning rate was set to 0.0005; early stopping
was configured, which could adaptively adjust the learning rate during the training process
and stop training when the loss could not be reduced further. The batch size was set to
80 or 12, the number of layers was set to 4, and the term of the Chebyshev polynomial,
K, was set to 3. We fixed the parameters of the model for the validation and test phases;
the validation phase fine-tuned the parameters and the test phase output the evaluation
indicators for the forecasting results.

The selection of these hyperparameters was influenced by various aspects. If the
length of the historical sequence was short, it was difficult for the model to obtain sufficient
information, whereas longer sequences did not significantly improve the prediction effect
but increased the time and space cost of the model. The effect of the initial learning rate
was reduced after configuring early stopping. A larger batch size could accelerate model
training; owing to the large scale of the S-WRF dataset, the upper limit of the GPU load,
i.e., 12, was selected. Model performance degraded when K was 2 or 4. The number of
layers could significantly affect the prediction accuracy (see Section 4.2.3 for details).

4.1.2. Evaluation Index

We mainly focused on the classification performance of short-term intensive rainfall
events. Rainfall evaluation indicators were based on the following three categories of
statistical scoring methods: (1) Critical Success Index (CSI), which is a commonly used
indicator to measure the rainfall forecasting results. Its values range from [0, 1]; the higher
the value, the better the result. (2) Equitable Threat Score (ETS), which is used to measure
the degree of improvement in the rainfall forecasting results relative to random forecasting
results under the same configuration. Its values range from [−1/3, 1]; the higher the
value, the better the result. An ETS of 0 indicates that the model’s prediction results are
comparable to random results, whereas ETS ≤ 0 is not acceptable. (3) False Alarm Ratio
(FAR), which is the proportion of misclassified data included in the prediction results. Its
values range from of [0, 1]; the lower the value, the better the result.

Table 3 presents the rainfall classification with 1 and 30 mm as the threshold.

Table 3. Rainfall classification table.

Actual Class Predicted Class

0–1 mm 1–30 mm >30 mm

0–1 mm D B1 B2

1–30 mm C1 A1 B2

>30 mm C2 C2 A2

With 1–30 mm as the first category and >30 mm as the second category, the indicators
for each category were calculated as follows:

CSIk =
Ak

Ak + ∑ Bk + ∑ Ck
, (15)
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ETSk =
Ak − Rk

Ak + ∑ Bk + ∑ Ck − Rk
, (16)

FARk =
∑ Bk

Ak + ∑ Bk
, (17)

where A, B, C, and D represent the number of event hits, empty reports, missed reports,
and number of successful predictions of non-events, respectively, and R represents the
result of the random forecasting model evaluated as follows:

Rk =
(Ak + ∑ Bk)(Ak + ∑ Ck)

Ak + ∑ Bk + ∑ Ck + D
. (18)

We referred to each indicator with a k of 1 as a type 1 indicator and that with a k of
2 as a type 2 indicator. The CSI2 and ETS2 indicators generally had values <0.1 in Fujian;
values >0.1 were considered major breakthroughs. Repeated comparison experiments
revealed that for each deep learning method considered herein, the first four decimal places
of the type 2 indictors remained unchanged, while the subsequent decimal places showed
fluctuations; thus, we retained only the initial four decimal digits to make the results
reasonable. Because of the same reasons, we retained three decimal digits for the type 1
indicators. We consider that a model with only one or two stable decimal digits for type 1
indicators may be unstable or ineffective, and a better one can be trained using our data
because our data corresponding to 1–30 mm of cumulative rainfall are adequate in terms of
scale and diversity.

4.2. Results

4.2.1. Comparison

We implemented several baselines and our proposed method on the S-ECMWF and
S-WRF datasets; Tables 4 and 5 show the results. We adjusted the hyperparameters in the
data for all non-NWP baselines; other configurations were set at the default settings.

The simulation results of the ECMWF and WRF were obtained from the original data;
their related indicators were directly calculated as experimental results for predicting the
first frame. The History Average (HA) uses the average frame in the historical sequence
as the prediction result. The LSTM and DBN are time-sequence prediction methods.
ConvLSTM belongs to the grid spatial–temporal prediction method, whereas ASTGCN
and our HDGN model are non-grid methods. As there is no artificially definable period
of short-term intensive rainfall, we only used the proximity sub-module in the ASTGCN
network to fit the data.

Table 4. Short-term intensive rainfall prediction performance of the baseline and proposed methods
on the S-ECMWF dataset in the future first and second frames.

Methods Predict of First Frame Predict of Second Frame

CSI1 ETS1 FAR1 CSI2 ETS2 FAR2 CSI1 ETS1 FAR1 CSI2 ETS2 FAR2

ECMWF 0.205 0.159 0.722 0.0020 0.0018 0.9937 — — — — — —

HA 0.102 0.086 0.578 0.0000 0.0000 1.0000 0.088 0.067 0.862 0.0000 0.0000 1.0000

LSTM 0.130 0.095 0.830 0.0043 0.0019 0.9963 0.110 0.073 0.867 0.0019 0.0008 0.9968

ConvLSTM 0.173 0.139 0.815 0.0059 0.0031 0.9940 0.163 0.131 0.814 0.0031 0.0016 0.9972

DBN 0.180 0.145 0.791 0.0069 0.0047 0.9923 0.165 0.131 0.805 0.0035 0.0022 0.9968

ASTGCN 0.157 0.074 0.841 0.0114 0.0105 0.9787 0.138 0.052 0.860 0.0051 0.0034 0.9913

HDGN 0.115 0.026 0.885 0.0211 0.0202 0.9576 0.107 0.018 0.892 0.0086 0.0068 0.9790
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Table 5. Short-term intensive rainfall prediction performance of the baseline and proposed methods
on the S-WRF dataset in the future first and second frames.

Methods Predict of First Frame Predict of Second Frame

CSI1 ETS1 FAR1 CSI2 ETS2 FAR2 CSI1 ETS1 FAR1 CSI2 ETS2 FAR2

WRF 0.143 0.076 0.839 0.0047 0.0037 0.9953 — — — — — —

HA 0.174 0.143 0.513 0.0000 0.0000 1.0000 0.088 0.067 0.561 0.0000 0.0000 1.0000

LSTM 0.151 0.135 0.823 0.0057 0.0019 0.9944 0.124 0.110 0.853 0.0025 0.0008 0.9980

ConvLSTM 0.233 0.201 0.691 0.0088 0.0050 0.9851 0.217 0.188 0.722 0.0049 0.0027 0.9959

DBN 0.214 0.179 0.741 0.0090 0.0061 0.9805 0.195 0.164 0.763 0.0042 0.0029 0.9954

ASTGCN 0.146 0.052 0.851 0.0004 0.0004 0.9374 0.128 0.031 0.869 0.0002 0.0001 0.9762

HDGN 0.134 0.037 0.865 0.0343 0.0336 0.9219 0.123 0.025 0.876 0.0140 0.0003 0.9604

Our model achieved better results for short-term intensive rainfall prediction than the
other models, thus reflecting the advantages of the proposed method. The CSI2 and ETS2
of HA are equal to 0, indicating that it could not forecast the short-term intensive rainfall
events. This indicates that they were rare and short in duration; hence, it was necessary to
comprehensively consider the adjacent spatial–temporal information. The prediction effect
of ConvLSTM was better than that of LSTM, indicating that adjacent spatial information
is valuable. DBN had a higher density of network connections than the previous models;
hence, its learning ability was stronger. However, the stronger the modeling capability, the
higher the training time cost of the model.

ASTGCN uses a structure, with a space complexity of O
(

N2
)

, to directly model the
relationship between pairs of nodes, thus achieving a spatial attention mechanism; therefore,
running ASTGCN on a large dataset, such as the S-WRF, was difficult. We employed the
dynamically designed graph convolution operator implemented using the compressed
sparse matrix to model the spatial correlation, which significantly reduced the number of
parameters to O (E). ASTGCN and HDGN showed better prediction for type 2 indicators
owing to the use of graph representation and spatial–temporal modeling methods with a
greater complexity. However, their performance in terms of the first category decreased
with improvements in the second category, indicating that the performance of the model
was limited by the data after partial improvement. In other words, there was a trade-off in
the forecasting accuracy between the different categories. These methods also had more
training time than the other sequence prediction models. The training time for HDGN was
slightly higher than that of ASTGCN because the latter was static in nature, whereas the
former was dynamic. In the testing phase, the forecasting time of each sequence prediction
model was lower than their training time because their parameters were fixed.

We then analyzed the overall results. (1) The S-WRF dataset had a higher spatial
resolution and generally provided more information than S-ECMWF; therefore, HDGN had
a better prediction effect on it. (2) Over time, the performance of all sequence prediction
models decayed. As frame-by-frame prediction models reached the end of the historical
sequence, the last predicted frame was re-inputted, following which the forecasting errors
accumulated over time. Additionally, the decay for type 2 indicators was generally larger
than that for type 1 indictors, implying that predicting short-term intensive rainfall events
was more difficult. (3) The FAR values of all results were unsatisfactory. This was because
short-term intensive rainfall prediction is difficult and reducing FAR2 is complex. However,
the methods adopted in this study were biased to enhance short-term intensive rainfall
forecasting. For example, we selected 30 mm as the threshold of the BDI in the feature
selection, resulting in a corresponding increase in FAR1. An alert analysis method can be
used to reduce FAR2; specifically, all short-term intensive rainfall prediction results can be
input into a downstream module, which will analyze these data and reject misreported
predictions. This module can be implemented using specially designed meteorological
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or deep learning models or by manual analysis. (4) Further inspection revealed that the
classification errors were concentrated at the marginal area within our data. Our observed
rainfall data originated from ground stations in Fujian Province, such that the interpolation
of rainfall for nodes outside Fujian Province was relatively inaccurate. Better results may
be obtained by combining data around Fujian Province.

4.2.2. Reversed Sequence Enhancement

Traditionally, data enhancement increases the amount of data to improve the model
performance. For oversampling, learning rules from a sparse number of >30 mm data
points and generated data similar to actual situations were not easier than the prediction
task owing to the complexity of our data. Moreover, there was a greater probability of data
overfitting. For undersampling, separating the 0–30 mm data was difficult.

Assuming that meteorological thermodynamics is a reversible process, the display of
the reverse process aids in model learning [43]. This is especially the case for the increase
in and attenuation of rainfall, as they are important characteristics that affect short-term
intensive events. The experiments revealed that, after reverse sequence enhancement,
the proportion of each classification was almost invariable; but, the results improved, as
shown in Table 6. This provides another means of improving the forecasting accuracy: data
should be available to input more valuable information into the model, thereby reducing
the difficulty associated with model learning.

Table 6. Data processing to demonstrate the effectiveness of reversed sequence enhancement. The
improvement with the S-ECMWF dataset was more significant than that with the S-WRF dataset. The
symbol ‘—’ indicates that the model did not function owing to excessive number of parameters.

Methods S-ECMWF Predict of First Frame S-WRF Predict of First Frame

CSI1 ETS1 FAR1 CSI2 ETS2 FAR2 CSI1 ETS1 FAR1 CSI2 ETS2 FAR2

ASTGCN 0.157 0.074 0.841 0.0114 0.0105 0.9787 0.146 0.052 0.851 0.0004 0.0004 0.9374

ASTGCN
+ reverse

0.166 0.085 0.830 0.0153 0.0147 0.9714 — — — — — —

HDGN 0.115 0.026 0.885 0.0211 0.0202 0.9576 0.134 0.037 0.865 0.0343 0.0336 0.9219

HDGN
+ reverse

0.123 0.035 0.877 0.0254 0.0252 0.9442 0.152 0.060 0.845 0.0401 0.0395 0.9457

However, the reversed sequence enhancement method doubles the amount of data,
which almost doubles the training time and increases the space cost of the model. Therefore,
there is a trade-off between effectiveness and cost.

4.2.3. Low-Rainfall Sequence Removal

Before training, we removed a portion of the training samples with the least number
of data points characterized by non-zero rainfall in the historical sequence. The results in
Table 7 indicate that, owing to the complexity of the rainfall data, this type of elimination
could not fundamentally change the imbalance in the data; however, it still improved the
prediction performance for short-term intensive rainfall forecasting.

For type 2 indicators, the HDGN model achieved the highest performance when 10%
of the data were removed; moreover, the proportion of the >30 mm data points was the
highest. Above 10%, the negative effect of the simultaneous decrease in the proportion and
volume of the >30 mm data points was observed, which led to underfitting of the model
and a reduced model learning ability. Significant performance degradation occurred when
the removal ratio exceeded 20%.
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Table 7. Ablation experiment investigating the effect of low-rainfall sequence removal on the perfor-
mance of the HDGN model.

Settings Data Proportion S-ECMWF Predict of First Frame

1–30 mm >30 mm CSI1 ETS1 CSI2 ETS2

del 0% 0.1240 0.001399 0.113 0.024 0.0204 0.0196

del 5% 0.1239 0.001398 0.118 0.030 0.0202 0.0195

del 10% 0.1281 0.001544 0.115 0.026 0.0211 0.0202

del 15% 0.1246 0.001511 0.115 0.026 0.0202 0.0194

del 20% 0.1241 0.001495 0.115 0.027 0.0199 0.0191

del 50% 0.1196 0.001423 0.117 0.029 0.0179 0.0173

For type 1 indicators, the correlation between the removal ratio and indicators was
low. Both the proportion and number of the 1–30 mm data points were significantly higher
than those of the >30 mm data points; hence, the effect of removing 10% of the data points
was relatively smaller. However, it exceeded the effect of not removing data points.

4.2.4. Ablation Study of HDGN

We conducted ablation experiments to analyze the optimal means of designing the
HDGN architecture. From Table 8, the use of a greater number of layers yielded enhanced
performance benefits, which aided in the extraction of the correlations between the data.
However, this benefit was marginal and restricted by the complexity of the model. Although
the spatial size of the high-level feature space was smaller, it corresponded to a larger
number of hidden features. The use of a greater number of layers increased the model’s
time and space costs. Therefore, we selected a suitable value that yielded satisfactory
prediction effects at a low cost.

Table 8. Ablation experiments conducted on two datasets to examine the relationship between the
number of layers and prediction effect of the HDGN model.

Settings S-ECMWF Predict of First Frame S-WRF Predict of First Frame

CSI2 ETS2 FAR2 CSI2 ETS2 FAR2

4 layers 0.0211 0.0209 0.9576 0.0343 0.0341 0.9219

3 layers 0.0186 0.0181 0.9631 0.0237 0.0229 0.9390

2 layers 0.0007 0.0000 0.9976 0.0016 0.0011 0.9809

1 layer 0.0000 0.0000 1.0000 0.0000 0.0000 1.0000

Another issue was the degree of influence of each dynamic building block on the final
result of the HDGN. We compared several schemes under the same premise used for the
other configurations, whose results are shown in Table 9, where the w/o multiplier denotes
the case where the actual distances between the node pairs were used as the weights of the
graphs, while the w/o dynamic graphs denote the case where the dynamic graph genera-
tion process was replaced with the supplied fixed graphs. The experimental results showed
that the dynamic graph construction scheme was effective. The semantic weights slightly
improved the results, whereas removing the entire dynamic graph pooling, including the
semantic weights, resulted in serious performance anomalies. Similar to the HDGN model
with one layer, their CSI2 and ETS2 are smaller than 5 × 10−5. Significant overfitting of the
HDGN model was observed because of the higher decrease in modeling ability than in
model complexity in the case where modules were removed. We argue that, in this case,
the model can be considered as one that does not have a relevant predictive capability.
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Table 9. Influence of the configuration of each dynamic building block on the forecasting results of
the HDGN model.

Settings S-ECMWF Predict of First Frame S-WRF Predict of First Frame

CSI2 ETS2 FAR2 CSI2 ETS2 FAR2

HDGN 0.0211 0.0209 0.9576 0.0343 0.0341 0.9219

w/o multiplier 0.0205 0.0203 0.9573 0.0088 0.0082 0.9647

w/o dynamic graphs 0.0000 0.0000 1.0000 0.0000 0.0000 1.0000

5. Conclusions

In this study, we aimed to improve the prediction performance of a short-term inten-
sive rainfall prediction model. To achieve this goal, we described the short-term intensive
rainfall prediction task as a spatial–temporal sequence prediction problem and then pro-
posed a non-grid spatial–temporal sequence prediction model, HDGN, which can optimally
extract the potential correlations between meteorological data and obtain more accurate
prediction results. It consists of three modules: hierarchical graph generation, which is
responsible for dynamically generating graphs for multi-level representation of the data
from the historical sequences; graph convolution operator generation, which generates the
graph convolution operators corresponding to these graphs; and hierarchical graph con-
volution network, which performs hierarchical feature space extraction and fusion based
on the results of the first two modules, followed by frame-by-frame short-term intensive
rainfall prediction. The design of the HDGN draws on relevant experience in the field of
sequence prediction. To further improve the prediction performance, we also proposed two
data enhancement methods for spatial–temporal sequences, namely, reversed sequence
enhancement and low-rainfall sequence removal. They are relatively simple to implement,
and the training effect is optimized by adding or removing training samples strategically.

The proposed method involves interpolation of rainfall, feature selection for NWP,
construction of sequence datasets, data augmentation (optional), training of the HDGN
model, and, finally, prediction using the trained model. Compared with the baselines, which
included several sequence prediction methods based on deep learning, the experimental
results obtained with real-world data from Fujian Province showed that our proposed
method significantly improves the short-term intensive rainfall forecasting performance
beyond that achieved with pure NWP simulations. On the first prediction frame of the
S-ECMWF and S-WRF datasets, CSI2 improved by 9.55 and 6.30 times, and ETS2 improved
by 10.22 and 8.08 times, respectively, compared with those of ECMWF and WRF. This
method also outperforms the graph-based spatial–temporal sequence prediction model
ASTGCN, with improvements of 85.09% and 92.38% in CSI2 and ETS2, respectively, on
the first prediction frame of S-ECMWF. On S-WRF, ASTGCN cannot make predictions
because of the large size of the graph, whereas HDGN can. Additionally, the proposed
reversed sequence enhancement and low-rainfall sequence removal further improved the
performance of the HDGN.

The HDGN has the following advantages: (1) It treats different features equally across
time and space; thus, the data do not require additional processing. (2) The model’s
structure can be adjusted to adapt to different dataset sizes. (3) The prediction speed of the
model is high after training.

However, our proposed method has some disadvantages: (1) The HDGN has diffi-
culties when modeling the meteorological evolution at sub-grid and inter-frame scales,
characterized by poor predictions for margin regions. (2) Additional measures are needed
to further reduce the relatively high FAR of our model. (3) The cost-effectiveness of the
reversed sequence enhancement is low.

Owing to this issue, there is much work needed before achieving an ideal short-term
intensive rainfall prediction model. Future research should focus on the following aspects:
(1) achieve learnable data fusion based on the nature of graphs to avoid errors introduced
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by the interpolation process; and (2) enhance the modeling capability and response to
special regions without losing the generalization ability by combining, for example, the
meteorological physical rules.
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The following abbreviations are used in this manuscript:
HDGN Hierarchical Dynamic Graph Network
GCN Graph Convolutional Network
LSTM Long Short-Term Memory
DBN Deep Belief Network
ConvLSTM Convolutional LSTM
Seq2Seq Sequence-to-Sequence
ASTGCN Attention-based Spatial–Temporal Graph Convolutional Network
STGODE Spatial–Temporal Graph Ordinary Differential Equation
GC-LSTM Graph Convolution embedded LSTM
IDW Inverse Distance Weight
DGCRN Dynamic Graph Convolutional Recurrent Network
BDI Box Difference Index
HGCN Hierarchical Graph Convolutional Network
MLP Multi-Layer Perceptron
HA History Average
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Abstract: In Taiwan, the frequency of afternoon convection increases in summer (July and August),

and the peak hour of afternoon convection occurs at 1500–1600 local solar time (LST). Afternoon

convection events are forecasted based on the atmospheric stability index, as computed from the

0800 LST radiosonde data. However, the temporal and spatial resolution and forecast precision

are not satisfactory. This study used the observation data of Aqua satellite overpass near Taiwan

around 1–3 h before the occurrence of afternoon convection. Its advantages are that it improves the

prediction accuracy and increases the data coverage area, which means that more airports can use

results of this research, especially those without radiosondes. In order to determine the availability of

Atmospheric Infrared Sounder (AIRS) in Taiwan, 2010–2016 AIRS and radiosonde-sounding data

were used to determine the accuracy of AIRS. This study also used 2017–2018 AIRS data to establish

K index (KI) and total precipitable water (TPW) thresholds for the occurrence of afternoon convection

of four airports in Taiwan. Finally, the KI and TPW were calculated using the independent AIRS

atmospheric sounding (2019–2020) to forecast the occurrence of afternoon convection at each airport.

The average predictive accuracy rate of the four airports is 84%. Case studies at Hualien Airport

show the average predictive accuracy rate of this study is 81.8%, which is 9.1% higher than that of the

traditional sounding forecast (72.7%) during the same period. Research results show that using AIRS

data to predict afternoon convection in this study could not only increase data coverage area but also

improve the accuracy of the prediction effectively.

Keywords: afternoon convection; atmospheric stability index; radiosonde; AIRS; K index; total

precipitable water

1. Introduction

Heavy convection storms are relevant to flight safety during takeoff and landing.
The World Meteorological Organization (WMO) defined nowcasting as forecasting with
local detail, by any method, over a period from the present to six hours ahead, including
a detailed description of the present weather. It is thus of great concern to aeronautical
meteorological forecasting and nowcasting. When deep convection occurs in Taiwan,
the temperature and humidity of each vertical layer of the atmospheric environment
increase [1,2]. Relative to typhoons and the Meiyu front, the afternoon convection system
exhibits a smaller spatial scale and shorter lifetime, so it is very difficult to predict the
start time, initial location, and duration of afternoon convection [1,3,4]. Even if the rainfall
pattern has great variability, it is very important to estimate the rainfall characteristics of
different scales, seasons, and environments [5–8].
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Radiosonde measurements of the atmospheric stability index can be used to predict
severe weather development; such measurements are considered to be a representative
of the synoptic scale environment [9]. Researchers have compared various atmospheric
stability indices calculated from radiosonde observations to analyze the correlation between
the stability index and cumulative precipitable water and have found the K index (KI) to be
the most suitable index for forecasting heavy rain events [10,11]. Using numerical models to
simulate rainfall studies, the KI can provide useful forecast guidance for rainfall events [12].

When a weather balloon is launched from the ground to the stratosphere, the balloon is
horizontally displaced by tens of kilometers due to the wind field of the height [13]. Weather
balloons are launched daily to record local vertical atmospheric parameters in the vicinity
of where the balloon was launched. Taking the main island of Taiwan as an example, only
two of the radiosonde observations of the Central Weather Bureau (CWB) can be obtained
online. Thus, in Taiwan, the spatial distribution of weather balloons is insufficiently broad.
The use of satellites, given their wide observational swath, compensates for these spatial
distribution–related shortcomings in sounding.

Atmospheric stability index on pre-convective atmospheric stability and changes in
boundary-layer structure are crucial [14]. Forecasters obtain data on atmospheric stability
from the weather balloons launched at 00 UTC (i.e., 08am LST). They use such data as
a basis for forecasting afternoon convection because atmospheric stability relates to the
development of afternoon convection. The problem is the launch time of the weather
balloons differs by 7–8 h from the afternoon convection’s extremum (1500–1600 LST),
and atmospheric-environmental changes during this period can result in forecasting error.
Therefore, the use of weather balloons is inadequate because of limitations in data volume,
coverage area, and immediacy.

As a remedy, Aqua satellite can be used. This satellite, which has an Atmospheric
Infrared Sounder (AIRS) mounted on it, passes Taiwan 1–3 h before the extremum of
afternoon convection. Numerous studies have shown that AIRS can provide a three-
dimensional field with respect to variation characteristics of temperature, specific humidity,
etc. [15–19]. Specifically, the AIRS observes the atmospheric environment at a time that
is closer to the time at which afternoon convection occurs. Thus, relative to the use of
radiosonde observation data, the use of Aqua satellite yields more accurate forecasts.
However, there is a limitation in the use of polar-orbiting satellite Aqua. The satellites
orbits and swaths will be shifted a bit, and there is no data to use outside of the swath. Total
precipitable water (TPW) is the total amount of precipitable water in an atmospheric column
between the Earth’s surface and space. Regardless of the phases, its value, variability, and
trends have a great influence on rainfall events [20–24].

The main objective of this study is to use satellite data to establish an atmospheric
stability index and TPW threshold. These indicators can be used by forecasters to better
predict the summer occurrence of afternoon convection in various airports in Taiwan, thus
allowing them to anticipate possible weather changes.

2. Materials and Methods

2.1. Data

The data used in this study include Aqua satellite data, ground observation data,
and radiosonde data. The data period is July and August from 2010 to 2020. Its purpose
includes testing the reliability of satellite data, systematic error analysis and correction, the
establishment of rainfall thresholds, and case verification. The details of the above data are
as shown in Section 2.2.1, Section 2.2.2, Section 2.2.3.

2.1.1. AIRS

NASA’s Aqua Satellite is part of the A-Train constellation of orbiting satellites. The
satellite is equipped with six different earth observation systems, being able to obtain data
on various parameters relating to the land, ocean, atmosphere, and biosphere [25]. AIRS
has a scanning width of 2330 km, a nadir point horizontal resolution of 13.5 km, and can
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gather data on the entire planet in 2 days. AIRS comprises a hyperspectral sounder with
2378 infrared channels as well as four visible-light and near-infrared channels, allowing it
to measure infrared radiation from the earth’s surface and atmosphere [26,27]. Moreover,
AIRS can measure various parameters pertaining to the physical properties of clouds and
the thermodynamics of the atmosphere. In addition to weather monitoring, AIRS can also
be applied to data model assimilation and the study of the climate [28–30].

AIRS can undertake high-precision atmospheric sounding due to its multiple channels
under clear and partly cloudy conditions [15], but lower-tropospheric measurements are
susceptible to sea conditions [31]. These differences significantly affect measurements of
the stable structure of the low troposphere. In response, numerous studies have devised
various methods for modifying AIRS-measured data [32–34]. This study used the AIRS
Level 2 dataset (AIRX2RET) in July and August 2010–2020. The dataset provided daily
global temperature and moisture profiles with an accuracy of 1 K per 1-km-thick and of
15% per 2-km-thick in the troposphere [35].

2.1.2. Atmospheric Sounding

Since 1958, the radiosonde has been the only instrument used for the long-term ob-
servation of temperature distributions in the troposphere to low stratosphere [36]. The
radiosonde is often used as reference data in gauging the validity of water vapor ob-
tained from other techniques [37–39]. Globally distributed sounding stations provide in
situ radiosonde observations for assessing the state of the vertical atmosphere [31]. The
weather balloon is launched from the ground to the stratosphere with an average horizontal
displacement of about 50 km [13]. Therefore, the radiosonde observation represents the at-
mospheric conditions within a radius of 50 km from the balloon launch location. However,
the temporal and spatial resolution of radiosondes is inadequate for use in forecasting.

This study used radiosonde data on Hualien and Banqiao from the CWB of Taiwan;
the radiosonde locations are marked by a black star in Figure 1. In general, radiosonde data
have errors from encoding, data transmission, and decoding. In this study, the method
proposed by Chen (1994) [40] was used to verify the radiosonde data’s accuracy.

Figure 1. Highly distributed terrain in Taiwan; black stars represent sounding stations and red
squares represent airport locations.

The uncertainty of temperature and relative humidity at upper-air network data ob-
served by Vaisala RS-92 radiosonde was below 1 ◦C and 6% respectively [41]. Moreover,
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different brands of radiosondes have different observation errors in different seasons,
regions, and even day and night [36,42–44]. Therefore, only 00-UTC radiosonde data re-
quired for practical applications were used for the conduct of its comparison of atmospheric
sounding data. The models for both sets of data were Vaisala radiosonde models, which
feature more consistent uncertainties. This study used atmospheric sounding data for the
same time period as AIRS. Table 1 presents the radiosonde information used in this study.

Table 1. Information related to the radiosonde observations used to evaluate the AIRS thermody-
namic profiles.

Site Name Location
Launch Frequency

(Per Day)
No. of Profiles

(Day Time Only)
Time Period for

Evaluation
Radiosonde Man-
ufacturer/Model

Taipei 25.03◦ N 121.52◦ E 2 229 July–August from
2010–2016

Vaisala
RS-92/RS-41Hualien 23.98◦ N 121.6◦ E 2 219

2.1.3. Surface Observations

The Meteorological Terminal Aviation Routine Weather Report (METAR) is a format
for reporting aeronautical meteorological observations. A special (SPECI) report is drafted
if weather conditions change significantly during the two METAR observation intervals.
The METAR/SPECI observations include cloud coverage, phenomenon (e.g., rainfall), and
cumulative rainfall. The above parameters are used in this study.

This study predicted the occurrence of convection in the weak synoptic scale for the
airports in July and August. The determination of “weak weather scale” and “occurring
convection” is based on the observation data of METAR/SPECI.

2.2. Methodology

This study used July and August 2010–2016 data from the Banqiao and Hualien
radiosonde stations. Problematic data were deleted [40] and compared with data from
within the AIRS’ swath and from the radiosonde stations. The systematic errors in the AIRS
data for Taiwan were analyzed and corrected according to the linear regression equations
for each altitude, which were in terms of the temperature and dew point. Subsequently, the
corresponding atmospheric stability index was calculated based on corrected and reliable
temperature and dew point.

Finally, in conjunction with AIRS-retrieved TPW, the thresholds of afternoon convec-
tion at each airport were established and verified with independent data. More specifically,
July and August 2017–2018 data were used for obtaining the threshold for afternoon convec-
tive rainfall; therefore, the accuracy of predicting afternoon convection used independent
data from 2019–2020.

2.2.1. Validation of AIRS Temperature and Dew Point Profiles

Although the temperature and water vapor accuracy of AIRS in the troposphere are
1 K and 15%, respectively [35]. However, the uncertainty of sounding measurements varies
with region [36,44], and the difference in temperature and humidity between AIRS and
radiosondes in the low troposphere varies with seasons [31]. Therefore, soundings must be
compared before use to ensure the correctness of the AIRS’ measurements of temperature
and humidity. In addition, this study focused only on afternoon convection in Taiwan
and thus only analyzed the months (July and August) when afternoon convection most
frequently occurs.

In this study, radiosonde data were used to validate AIRS’ atmospheric sounding
measurements. July and August 2010–2016 data were compared, and July and August 2017–
2018 data were used for verifying the credibility of temperature and dew point of AIRS.
Research has revealed differences between the deviations of day and night radiosonde
observations [36,43]. Therefore, only 00 UTC data is used for comparison, correction, and
verification between AIRS and radiosonde observations.
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For reasons such as AIRS’s swath not providing coverage up to the sounding station
and sounding data failing the quality inspection procedure [40], the number of comparison
samples was fewer than the number of soundings administered. In this study, because
the temperature and humidity of 850, 700, and 500 hPa were used to calculate KI, the
temperatures and humidity of these three levels were compared. The observations can be
regarded as representative of atmospheric conditions within a 50-km radius [13]. Therefore,
a radiosonde station was used as the center, where the average of all AIRS field of View
(FOV) within a 50-km radius was used as the AIRS-retrieved measurements (as marked by
the black circles in Figure 1).

2.2.2. Confirmation and Correction of Systemic Errors

Figure 2 presents the temperature and dew point scatter plot for AIRS and radiosonde
measurements. The abscissa represents AIRS measurements, and the ordinate represents
radiosonde measurements. Figure 2a illustrates the temperature distribution for 850, 700,
and 500 hPa, and Figure 2b illustrates the dew point distribution for 850, 700, and 500 hPa.
The blue dotted line represents the fitted straight-line equation, and the green solid line
represents the reference equation x = y. Tables 2 and 3 present the correlation coefficients,
temperature, and dew point fitting equations for each level.

Figure 2. AIRS and sounding scatter plots of 850, 700, 500 hPa from top to bottom for (a) temperature
and (b) dew point.

Table 2. Temperature correlation coefficients and linear regression equations for each level of 00Z for
July and August of 2010–2016.

High-Altitude Level Number of Data
Correlation
Coefficient

Regression Equation

500 hPa 448 0.79 y = 0.86x − 0.83
700 hPa 448 0.65 y = 0.71x + 3.29
850 hPa 448 0.53 y = 0.61x + 7.54
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Table 3. Dew point correlation coefficients and linear regression equations for each level of 00Z for
July and August of 2010–2016.

High-Altitude Level Number of Data
Correlation
Coefficient

Regression Equation

500 hPa 448 0.68 y = 1.03x − 1.91
700 hPa 448 0.58 y = 0.98x − 0.33
850 hPa 448 0.44 y = 0.55x + 7.12

As evident in Figure 2, the temperature distribution is more concentrated than the
dew point distribution. In other words, the change in temperature was less obvious than
the change in dew point, consistent with the results of Ingleby (2017) [44], where dew
point uncertainty was greater than that for temperature. Data spanning 7 years were used
to establish the modified equations, and 2 years of independent data for each level were
included in the corresponding modified equation. In doing these, the temperature and dew
point data more accurately represented the actual atmospheric environment.

2.2.3. Forecast Rules and Probability Using K Index and Total Precipitable Water

This study identified KI to be the most suitable index from different stability indices
for forecasting afternoon convection in Taiwan. There are similar results in several different
areas [10–12]. KI is considered to have the static stability of the 850–500-mb layer, and the
mathematical formula for KI is as follows [45].

KI = (T850 − T500) + Td850 − (T700 − Td700) (1)

T850, T700, and T500 are the temperatures at 850, 700, and 500 hPa, respectively, and
Td850 and Td700 are the dew points at 850 and 700 hPa, respectively. KI includes the factors
of a lapse rate of temperature of 850–500 hPa, a dew point of 850 hPa, and a saturation
level of 700 hPa; the sum of all three factors represents the potential of a thunderstorm and
rainfall. KI is higher, and the chance of thunderstorms/rainfall is higher.

The middle-troposphere humidity is a vital factor explaining the occurrence and
development of convection [46]. KI includes the 850–500 hPa lapse rate of temperature and
the water vapor content in the middle and low troposphere [12]. Therefore, KI can be used
as a reference for predicting afternoon convection. In addition to KI, TPW is an essential
indicator [21,23,24]. When TPW is low, convection will not occur even if the atmospheric
environment is unstable.

The afternoon convection threshold must be evaluated separately for each airport,
because the threshold of thunderstorm occurrence changes depending on location [47]. The
evaluation of predictive accuracy is illustrated in Figure 3; the abscissa is TPW, the ordinate
is KI, and the red dotted lines are the thresholds of KI and TPW (hereafter abbreviated as Kh
and Th, respectively). Both dotted lines divide the atmospheric-environmental parameters
into four quadrants, named quadrants 1 to 4 (Q1–Q4).

Q1 represents when TPW > Th and when the atmosphere is unstable (i.e., KI > Kh),
entailing a forecast that convection will occur in the afternoon. By contrast, Q3 represents
when TPW < Th and when the atmosphere is stable (i.e., KI < Kh), entailing a forecast that
convection will not occur in the afternoon. Furthermore, Q2 (KI > Kh and TPW < Th) and
Q4 (KI < Kh and TPW > Th) entail a forecast that precipitation will not occur.
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Figure 3. Evaluation of accuracy for TPW and KI of the afternoon convection of each airport.

3. Results and Discussion

3.1. AIRS Comparison Results

The comparison of temperature and dew point used 2010–2016 data, and 2017–2018
data were used to verify its accuracy. The 2019–2020 data is used to estimate how much
the forecast results of this study have improved. The comparison between measurements
obtained from AIRS atmospheric sounding and that obtained from radiosonde observations
is illustrated in Figure 4. Figure 4a,b illustrate, for each level, the comparison between
temperature and dew point, respectively. The blue line represents the AIRS retrieval value,
and the red line represents the radiosonde observations (sample size: 448). For each level,
the correlation coefficients of the temperature and humidity were 0.66 and 0.57, respectively.
Regardless of temperature and humidity, the correlation of each level was optimum at
500 hPa, followed by 700 and 850 hPa. Moreover, with respect to correlation, that for the
temperature was more satisfactory than that for the dew point.

These results are attributable to the following reasons. The first is topography: moun-
tains within 50 km from sounding stations were covered, and the highest-altitude mountain
range was approximately 4 km tall. This meant that only the 500-hPa level was unaffected.
The second is the configuration of the measuring equipment. Specifically, the sounding
station furnished only single-point observations, and the weather balloon shifted horizon-
tally with the wind, whereas AIRS furnished plane observations. Therefore, the horizontal
resolutions of both methods were different. The third is differences in observation time.
Specifically, most atmospheric conditions change gradually. However, an approaching
weather system can cause a large and rapid change in the atmospheric temperature and
dew point, which results in errors. Nonetheless, measurements of the average AIRS tem-
perature and dew point around the stations were still representative of vertical atmospheric
conditions around the station.
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Figure 4. Comparison of AIRS (blue line) and radiosonde (red line) for (a) temperature, and (b) dew
point for 850, 700, and 500 hPa (from top to bottom).

For radiosonde observations, the root-mean-square error (RMSE) and Standard de-
viation (SD) of the temperature and humidity, both before and after AIRS correction, are
presented in Tables 4 and 5. In Table 4, temperature had the largest RMSE and SD at
850 hPa, followed by 700 hPa and 500 hPa. Subsequent to corrections through the equations
in Table 2, the RMSE and SD of each level decreased, with 850 hPa having the highest
correction margin, followed by 700 hPa and 500 hPa. This is attributable to the small
error of the original level (500 hPa), resulting in a low correction margin. By contrast, the
correction margin was larger at 850 hPa. Crucially, because of the lower RMSE and SD, the
corrected AIRS temperature had a reduced dispersion that was closer to the radiosonde
observation value, indicating that this study’s modified equation effectively made the AIRS
temperature measurements closer to their radiosonde counterparts.

Table 4. RMSE and SD for 2017–2018 temperature measurements before and after correction.

Levels
500 hPa 700 hPa 850 hPa

Before After Before After Before After

root-mean-
square
error

1.08 1.05 1.22 1.12 1.48 1.27

Standard
deviation

1.11 0.94 1.18 0.83 1.31 0.79
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Table 5. RMSE and SD for 2017–2018 dew point measurements before and after correction.

Levels
500 hPa 700 hPa 850 hPa

Before After Before After Before After

root-mean-
square
error

4.93 4.92 4.16 4.13 3.79 2.73

Standard
deviation

5.82 5.80 3.08 3.01 2.69 1.48

For dew point correction, the pre- and post-conditions were similar to those for
temperature, and the RMSE and SD of each level were reduced. These results indicate that
this study’s modified equations effectively reduced errors for the AIRS measurements of
temperature and humidity in Taiwan, thus making the AIRS measurements closer to their
sounding-observation counterparts. In addition, as the altitude becomes higher, the RMSE
and SD of the temperature and dew point observed by AIRS will increase. This result is
similar to the previous studies [41,42].

3.2. Threshold for Afternoon Convection and Probability of Precipitation

This study investigated thermodynamically induced afternoon convection, which
necessitated the use of the weak synoptic scale in the case selection. The METAR/SPECI
showed cloud coverage at 0800–1200 LST was less than four oktas, which is defined as a
weak synoptic scale. There must also be no significant weather systems, such as a weather
front and typhoon, approaching the vicinity of the airports before and after convection.

The definition of rainfall in this study is METAR/SPECI afternoon precipitation data
at 1200–1800 LST were checked to detect convection. The coverage area for detecting
convection includes all surface stations within 20 km, and the airports were used as the
center points. An indication of precipitation by at least one station was interpreted, as the
occurrence of rain at the airport. By contrast, an absence of indication of precipitation by
all stations was interpreted as the absence of rainfall at the airport.

The Taichung, Pingtung, Hualien, and Taitung airports marked by a red square in
Figure 1 were selected as the research areas. In short, a forecast is correct if KI and TPW
located at Q1 of Figure 3 and it rained in the afternoon. A forecast is also correct if KI and
TPW located at Q2, Q3, or Q4 of Figure 3 and it did not rain in the afternoon. By contrast, a
forecast is wrong if KI and TPW located at Q1 of Figure 3 and it did not rain in the afternoon.
A forecast is also wrong if KI and TPW located at Q2, Q3, or Q4 of Figure 3 and it rained in
the afternoon.

This study analyzed the afternoon convection thresholds of four different airports,
because the threshold of convection occurrence changes depending on location [48]. Fig-
ure 5a,b map the distribution of KI and TPW for the Taitung and Taichung airports, re-
spectively. The abscissa represents TPW, and the ordinate represents KI. The blue dots
indicate those cases of afternoon convection, and the black dots indicate those cases where
afternoon convection did not occur. Two red dotted lines represent the threshold values for
the establishment of KI and TPW at the airports, and the thresholds were obtained from
the highest forecast accuracy of the July and August of 2017–2018 data. The verification
data in Figure 5 were for the July and August of 2019 and 2020.

As recorded in Figure 5a, the KI and TPW thresholds of Taitung airport’s afternoon
convection were 32.1 and 47.1, respectively. In 19 days, the predictions were located at Q1,
and convection was predicted because KI > Kh and TPW > Th (situated in Q1). However,
4 cases had no indications of precipitation at all stations within 20 km of Taitung airport,
whereas 15 cases had afternoon convection. Therefore, the forecast accuracy of Q1 was
78.9% (15 hits over 19 cases). By contrast, 18 cases located in the Q2, Q3, and Q4 were
forecasted to have no afternoon convection. Nonetheless, 4 of them had precipitation
records at the stations within 20 km of the airport, whereas 14 cases had no precipitation
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records. Therefore, the forecast accuracy of Q2 to Q4 was 77.8% (14 hits over 18 cases).
Overall, 29 hits and 8 false alarms were identified among the 37 cases of Taitung airport.
Therefore, the total forecast accuracy of Taitung airport was 29/37, or 78.4%.

Figure 5. KI and TPW distribution map for (a) Taitung airport and (b) Taichung Airport. The blue
and black dots are those cases with and without convection, respectively, and the red dotted lines
indicate the thresholds for KI and TPW.

The same method for evaluating predictive accuracy was used for predictions for
Taichung airport (Figure 5b). The forecast accuracy for afternoon convection in Q1 was 80%
(12 hits over 15 cases), and the forecast accuracy for Q2, Q3, and Q4 was 88.8% (8 hits over
9 cases), for a total forecast accuracy of approximately 83.3% (20 hits over 24 cases).

All information such as the location of the four airports, the rainfall thresholds of
KI and TPW for each airport, the accuracy of rainfall events (Q1 area), the accuracy of
non-rainfall events (Q2–Q4 area), and the total accuracy are shown in Table 6. According
to Table 6, the KI and TPW thresholds differ by region. This result indicates the stabil-
ity index threshold of rainfall in different regions, which needs to be revised according
to different locations.

Table 6. KI and TPW thresholds and forecast accuracy at the four airports.

Site Name Location
Threshold of

KI
Threshold of

TPW
Forecast

Accuracy of Q1

Forecast
Accuracy of

Q2–Q4
Total Accuracy

Hualien
23.98◦ N 121.6◦

E
27.7 44.3 82.1% (23/28) 80% (4/5) 81.8% (27/33)

Taitung
22.78◦ N
121.16◦ E

32.1 47.1 78.9% (15/19) 77.8% (14/18) 78.4% (29/37)

Pingtung
22.7◦ N 120.48◦

E
25.5 42.4 95.2% (20/21) 100% (0/0) 95.2% (20/21)

Taichung
24.26◦ N
120.62◦ E

30.7 45.9 80% (12/15) 88.8% (8/9) 83.3% (20/24)

All cases - - - 84.3% (70/83) 81.3% (26/32) 83.5% (96/115)

The forecast accuracy and frequency of occurrence of afternoon convection in the four
airports were further analyzed. The Taitung and Hualien airports (hereafter referred to
as the eastern airports) are situated in more mountainous areas, as marked by the red
square in Figure 1. By contrast, the Pingtung and Taichung airports (hereafter referred to
as the western airports) were situated on almost flat terrain. As for the ratios of without
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rainfall to rainfall with afternoon convection, those for the eastern and western airports
were approximately 1:1.6 and 1:2.8, respectively. The eastern airports also had fewer rainy
days than did the western airports. Moreover, the precipitation forecast accuracy and the
total forecast accuracy for the western (~89%) airports were more favorable than those of
the eastern airport (80%).

This difference in performance is attributable to the following reasons. First, because
the eastern airports were situated in more mountainous areas, convection also depended
on dynamic factors (and, to some extent, thermodynamic factors). Therefore, forecasting
performance was worse for eastern airports because this study only considered thermody-
namic factors. Second, atmospheric sounding was more accurate for western than eastern
airports because western airports were not situated in mountainous areas. This result
suggests the rainfall is related to terrain, elevation, slope, shape, and wind structure and
so on [48–50].

This result suggests that precipitation products as well as the forecast precipitation
indices that were derived from satellite data were susceptible to the influence of terrain.
This is particularly true in Taiwan where mountainous areas account for 70% of the terrain.
Therefore, such errors must be corrected prior to the use of satellite precipitation–related
products. These results are similar to those of Yeh et al. (2019) [51].

The total forecast accuracy was lowest for Taitung airport (at 78.4%) because a moun-
tain range dominated its landscape (within a 20-km radius) at a degree greater than that
for other airports. There are a total of 115 cases for verification in this study. A total of 96
cases were forecasted correctly, and 19 cases were forecasted incorrectly. The total forecast
accuracy rate was 84%. Furthermore, the accuracy rate of rainfall events is 84.3%, and the
accuracy rate of non-rainfall events is 81.3%.

3.3. Case Studies

In addition to upgrading point information to area information for better applicability
to airport personnel, the use of satellite data for the forecast of afternoon convection
improves forecasting accuracy. The improvement percentage will be discussed in the
next section. In this section, Hualien airport was used as an example. Two cases were
analyzed to illustrate how AIRS measurements yield more accurate predictions than their
radiosonde counterparts.

The first case occurred on 6 July 2018. The KI value was 31, as calculated from the
radiosonde observation of the atmospheric sounding on the morning of that day; this KI
value exceeded the threshold for afternoon convection (Table 6). An afternoon convection
is forecasted to occur at the airport if the forecaster judges it to be so through the use of
this set of radiosonde data. Figure 6a,b map the distribution of AIRS-derived KI and TPW.
As illustrated in the figures, KI did not reach 20 and TPW did not reach 40 kg/m2; neither
reached the threshold. Based on these data, the forecaster predicted no convection in the
afternoon. No precipitation was recorded that afternoon at the observation stations within
20 km of the airport.

Figure 6. AIRS retrieval on 6 July 2018. (a) KI and (b) TPW distribution maps.
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The second case occurred on August 9 of the same year. The radiosonde-derived KI
was approximately 15, which did not reach the threshold. Figure 7a,b map the distribution
of AIRS-derived KI and TPW. The KI near the airport was greater than 30, and the TPW
was greater than 50 kg/m2, both of which exceed the rainfall thresholds of Hualien airport.
Thus, based on these radiosonde data, the forecasters predicted no convection at the airport.
However, based on this study’s satellite data, convection was forecasted at the airport. A
rainfall event was determined to have occurred at the airport that afternoon.

Figure 7. AIRS retrieval on 9 August 2018. (a) KI and (b) TPW distribution maps.

The aforementioned cases indicated that the atmosphere can change from stable to
unstable (and vice versa) from the morning to the afternoon. Forecasters can reduce false
weather forecasts if they use this study’s satellite data instead of solely using radiosonde
data. Because the atmospheric environment potentially changes every few hours, false
forecasts are likely if changes in atmospheric stability are not accounted for. Moreover,
because the time of the satellite scanning Taiwan is closer to the time when convection
occurs in the afternoon, AIRS results in more effective forecasts of afternoon convection.

3.4. Improvement Percentage

In order to further determine the forecast accuracy of the method proposed in this
study and see whether it is better than the traditional method, the results of this study
were compared with those of radiosonde data, which are conventionally used by aero-
nautical meteorological forecasters, to compare the accuracy and practicability of both
methods. In this study, only the radiosonde observations were used to forecast the after-
noon convection at the airports in July and August of 2019 and 2020. The comparison was
conducted only for Hualien airport because the available open-source radiosonde data
covered only that airport.

Among the 33 cases that used radiosonde observations to forecast afternoon convection
in Hualien airport, 24 cases were accurate and 9 cases were inaccurate, resulting in total
forecast accuracy of 72.7%. By contrast, this study’s total forecast accuracy of afternoon
convection in Hualien airport using satellite data was, at 81.8%, higher, which was an
improvement of 9.1%. Even if the forecast accuracy rate is improved compared with the
previous method, the forecast accuracy rate still cannot reach 100%; this is the disadvantage
of this research. In other words, there is still a possibility of incorrect forecasts using
the forecasting method of this research, so it is still necessary to use manual assistance
to observe weather changes to ensure flight safety. Another contribution of this study
was its transformation of the original single-point sounding data into area data. This
allows airports (such as the Taichung and Taitung airports) that have not launched weather
balloons to use this study’s method to forecast afternoon convection. Therefore, relative to
the radiosonde method, this study’s method is applicable to a wider range of airports.
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4. Conclusions

This study uses satellite data to do airports nowcasting research. In other words,
this study uses satellite data to predict the summer afternoon convection in the weak
synoptic scale at Taiwan airports in Taichung, Pingtung, Hualien, and Taitung. Modified
equations were established using 2010–2016 AIRS and radiosonde observation data, and
2017–2018 data were used to verify the accuracy of temperature and dew point of AIRS. The
independent data (2019–2020) is used to verify the practicality and accuracy of this study’s
forecasting method. This study aimed to increase the number of airports that can be covered
by the forecast by using the satellite’s large swath. In addition, it also improves the accuracy
of the forecast and the validity of the data, for the satellite scanning time is close to the
time when convection occurs most frequently in Taiwan. The novel aspect of this research
is to use satellite data closer to the time of convective rainfall than the radiosonde while
considering two rainfall-related parameters to forecast afternoon convection. This study
also takes into account that different airports have different environments, so different
rainfall thresholds are established to improve the accuracy of rainfall forecasts.

AIRS atmospheric sounding products have good accuracy in the troposphere [35].
However, because of Taiwan’s mountainous terrain as well as the difference between
AIRS and radiosonde with respect to measurements of temperature and humidity, the
deviation in low-troposphere measurements will differ depending on the season [31]. This
resulted in an unsatisfactory correlation between temperature and humidity when AIRS
measurements were directly compared with their radiosonde counterparts. Relevant factors
must be considered, such as the FOV covering mountainous areas and various atmospheric
conditions within 50 km of the radiosonde. After the numerical average, the correlation
coefficients of temperature and humidity were increased by approximately 0.2 to 0.1.

For the temperature and dew point of the vertical altitude layer observed by AIRS
and radiosonde, the correlation coefficient of 500 hPa is the best, because it is not affected
by mountains. In addition, the temperature observed by AIRS is more accurate than the
dew point. The reason is that the uncertainty of the dew point is greater than that of
the temperature. Moreover, upon applying the modified equations established in this
study, the RMSE and SD of temperature and humidity of each level were improved, thus
demonstrating that the modified equations effectively reduce errors for AIRS measurements
of temperature and humidity in Taiwan.

This study used AIRS data from 2017 and 2018 to obtain the airport afternoon convec-
tion threshold at Taichung, Pingtung, Hualien, and Taitung airports. Because the terrain
around the western airports was relatively flat, the use of these thresholds to forecast
the accuracy of afternoon convection was more favorable than that for the eastern air-
ports. Using data from 2019–2020, the total forecast accuracy for the Taichung, Pingtung,
Hualien, and Taitung airports was 83.3%, 95.2%, 81.8%, and 78.4%, respectively, with a
total forecast accuracy of 84%. The main contribution of this research is to use scanning
area to increase the available airports and improve the accuracy by 9.1% compared with
traditional radiosonde forecasting methods. The improvement of forecast accuracy can
reduce problems caused by inaccurate weather forecasts. These problems include flight
safety issues, especially when aircraft take off and land; aircraft not being able to land at
the scheduled airport, which affects the subsequent flight schedule; and the waste of fuel
and increased costs entailed.
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Abstract: Rainfall forecasting is essential to manage water resources and make timely decisions to

mitigate adverse effects related to unexpected events. Considering that rainfall drivers can change

throughout the year, one approach to implementing forecasting models is to generate a model for

each period in which the mechanisms are nearly constant, e.g., each season. The chosen predictors can

be more robust, and the resulting models perform better. However, it has not been assessed whether

the approach mentioned above offers better performance in forecasting models from a practical

perspective in the tropical Andean region. This study evaluated quarterly, semiannual and annual

models for forecasting monthly rainfall anomalies in an Andean basin to show if models implemented

for fewer months outperform accuracy; all the models forecast rainfall on a monthly scale. Lagged

rainfall and climate indices were used as predictors. Support vector regression (SVR) was used to

select the most relevant predictors and train the models. The results showed a better performance

of the annual models mainly due to the greater amount of data that SVR can take advantage of in

training. If the training of the annual models had less data, the quarterly models would be the best.

In conclusion, the annual models show greater accuracy in the rainfall forecast.

Keywords: forecasting; SVR; SVM; rainfall; anomalies; large-scale climate indices; Andean river basin

1. Introduction

Rain is a phenomenon that significantly conditions human activity. Knowing its
dynamics and forecasting its behavior is essential to optimize water use, for example,
in human consumption, hydroelectric generation, agriculture [1], and industry. On the
other hand, anticipating extreme rainfall events helps to take measures to mitigate possible
adverse effects (e.g., landslides, floods, and droughts). Examples of such extreme events are
the droughts in the Southwest US [2], the São Francisco river basin (Brazil) [3], the northeast
region of Brazil [4,5], and over Brazil [6]. Additionally, rain is an essential atmospheric
variable to characterize the climate [7]. Therefore, unveiling the drivers related to this
hydrologic process is essential to understanding possible changes in its dynamics under
low-frequency natural climate variability [8] or climatic change [9].

Different models allow us to anticipate rain behavior. There are different methods
that can be used to make predictions. Dynamic models are physically consistent [10], but
these have a tremendous computational burden. Instead, statistical methods are widely
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used to identify the main modes of climate variability at different spatial and temporal
scales [11]. In addition, some models use a combination of the two approaches [12].
Weather and seasonal forecasting models or decadal prediction models could be developed
depending on the forecast horizon. From an operational point of view, and in terms
of relevance for short- and medium-term decision-makers, intraseasonal and seasonal
forecasting models are the most important. They consider forecasts from two months to a
little over a year [13,14] and help in tasks such as those listed above. Moreover, different
data-based approaches are used when constructing forecasting models such as those based
on autoregressive models (e.g., [15]), empirical models (e.g., [14]) or others that are more
robust, such as those based on machine learning (ML) techniques (e.g., [16,17]) or network
science (e.g., [18,19]). Likewise, models can be constructed based on different candidate
predictors such as exogenous variables (e.g., [17,20]) or climate indices (e.g., [21,22]).

Seasonality is a remarkable feature in nature, and different precursors defining rainfall
also have temporal variability [23] (change in mechanisms [24]). Moreover, heteroge-
neous rainfall magnitudes through the year could negatively affect the performance of
a single model in forecasting the rainfall of each month of a year. Depending on the al-
gorithm/model used to train the forecasting model, scaling and/or standardization are
frequently used preprocessing methods [25]. The rainfall anomalies are commonly com-
puted, which helps eliminate seasonality and allows unexpected values beyond trivial
behavior (mainly affected by seasonal solar irradiance) to be forecasted. However, the
changing influence of predictors over the target variable (rainfall) is an implicit feature
that is still present. So, an alternative is to construct models for each semester, season or
even month of the year [24] (e.g., [26]). Following the premise of changing mechanisms
throughout the year, such an alternative aims to learn the relationships between predictors
and rainfall in different seasons or periods of wet or dry behavior to have better-performing
models. This is because the predictors may provide information that makes the models
more robust. However, as far as the authors know, an assessment to determine if subannual
models perform better has not been carried out, and less is known about mountain zones
such as the Andes where complex processes dominate the rainfall behavior throughout the
year [27–29].

This study aimed to determine if the performance of anomaly rainfall forecasting
models improved as the models were developed for each quarter, each semester or the
whole year with a horizon of one year. These models always aim to forecast monthly
rainfall and differ in the months for which they can make the forecast. For example, one of
the quarterly models allows one to forecast the rainfall of December, January, and February
(there are four quarterly models in total), one of the semiannual models forecasts the
rainfall from November to April (there are two semiannual models), and the annual model
forecasts the rainfall of any month of the year. In addition, the influence of predictors based
on large-scale climatic factors on these improvements was analyzed. For this, three sets of
anomaly rainfall forecasting models were trained through the support vector regression
algorithm. The first set constituted the four quarterly models to forecast rainfall each
season. The second set contained the two semiannual models, and the third referred to
the annual model. Each model used an independent subset of lagged climate indices
and anomaly rainfall signals as predictors. Such subsets were chosen by employing the
sequential feature selection algorithm. Finally, the models were assessed by utilizing seven
evaluation metrics.

2. Materials and Methods

2.1. Study Zone

The Machángara river basin is located northeast of Cuenca, the capital city of Azuay, in
the Andes mountain range of southern Ecuador (Figure 1). The basin area is approximately
325 km2 and has a high altitudinal gradient extending from 2440 to 4420 m a.s.l. Natural
areas form the upper part of this basin, agricultural activities mainly occupy the middle
part, with small-urbanized patches, and urbanized sectors characterize the lower part [30].
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The rainfall varies from 856 to 1309 mm, while the temperature ranges from 8.1 to 14 ◦C [31].
The Pacific Ocean, the Andes range and the Amazon basin mainly influence the climate of
this region [29,32,33].

≅

 

Figure 1. Location of the El Labrado and Chanlúd stations in the Machángara basin in the context of
Ecuador and South America.

The integrated management of natural resources in the Machángara basin guarantees
the provision of essential services, for example, water for human consumption for more
than 390,000 inhabitants of Cuenca (∼=60% of the population), irrigation for more than
3900 users, the generation of 39.5 MW of hydroelectricity (the first source of electric energy
in Ecuador [34]), and the provision of water for various industries in the area. In the highest
part of the basin, two representative stations were selected for the study, namely El Labrado
and Chanlúd, which are at approximately 3335 and 3485 m a.s.l., respectively. The two
stations are located in the dams that bear the same names [35] and are greatly important in
the national hydroelectric generation system.

2.2. Data

The daily rainfall data of El Labrado and Chanlúd go back to 1964 and 1981, respec-
tively. This study used monthly rainfall data from 1981 to 2021 (41 y). Therefore, the daily
rainfall corresponding to each month of the period 1981–2021 was added to generate data
on a monthly scale. Figure 2a shows the monthly rainfall data of El Labrado and Chanlúd
in the study period. Rainfall shows a marked bimodal seasonality, which is shown in
Figure 2b. A peak of heavy rain is present in April, while the driest month is August.
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Figure 2. Rainfall in the study stations: (a) observations from 1981 to 2021, linear trends in the period
1981–2015 and the testing period 2016–2021 with the gray background; (b) seasonality in the period
1981–2015; (c) scaled anomalies based on the seasonality shown in (b).

The target variable of the forecasting models is the rainfall anomalies. Most of the
predictors of such models are based on climate indices. Table 1 shows the 38 climate indices
used in the study, which have a monthly resolution. Thirty-four were downloaded from
the National Oceanic and Atmospheric Administration (NOAA) (https://psl.noaa.gov/
data/climateindices/list/, accessed on 21 January 2022), and the sources of the rest are
indicated in the table footer.

Table 1. Climate indices used in the study.

Zone Indices

Global Global Mean Land-Ocean Temperature (GMSST) [36].

North
Hemisphere

Pacific/North American Index (PNA), East Pacific/North Pacific Oscillation (EP/NP) [37],
West Pacific Index (WP), North Atlantic Oscillation (NAO) [38], Jones NAO (J.NAO *) [39],

East Atlantic (EA) and Arctic Oscillation (AO) [40].

South
Hemisphere

Antarctic Oscillation (AAO) [41].

Northern
Pacific

North Pacific pattern (NP) [42] and Pacific Decadal Oscillation (PDO) [43].

Tropical
Pacific

Pacific Warmpool Area Average (PacWarm), Extreme Eastern Tropical Pacific sea surface
temperature (SST) (Niño 1+2) and its anomaly values (Niño 1+2.A), Eastern Tropical Pacific
SST (Niño 3) and its anomaly values (Niño 3.A), East Central Tropical Pacific SST (Niño 3.4)
and its anomaly values (Niño 3.4.A), Central Tropical Pacific SST (Niño 4) and its anomaly

values (Niño 4.A), Trans-Niño Index (TNI), Southern Oscillation Index (SOI), Bivariate ENSO
Timeseries (BEST), Bi-monthly Multivariate El Niño/Southern Oscillation (ENSO) index

version 2 (MEIv2) and El Niño Modoki Index (EMI) [44].
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Table 1. Cont.

Zone Indices

Pacific
Tripole Index for the Interdecadal Pacific Oscillation (TPI.IPO) and Northern Oscillation Index

(NOI) [45].

Atlantic and Eastern North Pacific Western Hemisphere Warm Pool (WHWP) [46].

North Atlantic Atlantic Multidecadal Oscillation UnSmoothed (AMO.US †) [47].

Tropical
Atlantic

Caribbean SST Index (CAR) [48], Tropical Northern Atlantic Index (TNA) [49], Tropical
Southern Atlantic Index (TSA) [49] and Atlantic Meridional Mode SST index (AMM) [50].

Tropic
Quasi-Biennial Oscillation (QBO), ENSO precipitation index (ESPI), Western Indian Ocean

Dipole (IOD.W ‡), Eastern Indian Ocean Dipole (IOD.E ‡) and Dipole Mode Index (DMI ‡) [51].

* Downloaded from https://crudata.uea.ac.uk/cru/data/nao/; † downloaded from https://psl.noaa.gov/data/
timeseries/AMO/; ‡ downloaded from https://psl.noaa.gov/gcos_wgsp/Timeseries/DMI/. Accessed on
24 January 2022.

Both rainfall and climate indices constitute the raw monthly dataset. The dataset was
split into training and testing subsets. The former spanned from 1981 to 2015 (35 y) and
the latter from 2016 to 2021 (6 y). Figure 2a shows the training subset period in a white
background, while the testing period is shaded. The training subset was used to compute
rainfall anomalies, standardize the dataset, generate and select predictors, and train the
forecasting models. The testing subset was only used to evaluate the performance of the
models. It is worth noting that the standardization of the testing subset was based on
the parameters found in the training subset. The latter ensures an adequate evaluation
since it simulates a scenario in which nothing is known beyond the data available for
model training.

2.3. Settings and Workflow

This subsection explains the workflow followed in the study in a general manner. The
following subsections describe details about data or methods in each step. So, Scheme 1
shows the workflow to assess the quarterly, semiannual and annual models to forecast
monthly rainfall anomalies.

The first step shown in Scheme 1 is the deseasonalization of rainfall. The monthly rain-
fall climatology (Figure 2b) was computed based on the training subset period (1981–2015).
Then, the climatology was subtracted from the raw rainfall signal. The second step is the
standardization of the rainfall anomalies and climate indices data by removing the mean
and scaling to unit variance. The Standard Scaler from the Scikit-learn library [52] was used
in this step. As an example, Figure 2c shows the scaled and standardized rainfall anomalies.
The shaded period in Figure 2c was not used to compute the parameters in the scaling
and standardization. The third step is the generation of the candidate predictor set. For
this, lagged versions of the time series of the rainfall anomalies and climate indices were
generated up to a maximum τ lag (τmax) which was chosen through an autocorrelation
analysis. These signal delays are operationally essential to generate predictors with past
information that serve the current forecast, anticipating the decision making.

The fourth step is the selection of relevant predictors for each forecasting model. For
each forecasting model, different subsets of relevant predictors were selected (dashed
squares in step 4) through the sequential forward selection (SFS) algorithm. There were
seven different subsets for four quarterly models, two semiannual models, and one annual
model. The quarterly models forecast anomaly rainfall of months belonging to each of
the four seasons (e.g., the DJF model predicts rainfall in Dec–Feb), the semiannual models
forecast rainfall of months belonging to each of the two semesters (e.g., the NDJFMA model
forecasts rainfall in November–April), and the annual model forecasts rainfall of any month
of the year. In any case, the forecasting horizon was one year. Those seven models were
trained in the fifth step shown in Scheme 1. The forecasting models were based on the
support vector regression (SVR) learning algorithm [53].
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Scheme 1. Workflow followed in the study.

The last step is the evaluation. Each year of rainfall was forecasted independently
for the testing subset period (2016–2021). With the entire testing period, a qualitative
comparison was first made. Then, the evaluation was performed with seven evaluation
metrics (the models had a horizon of one year). The comparison was performed with the
raw testing rainfall data, so the results of the models were firstly converted (seasonalization)
to the original scale (based on the parameters of the training subset).

2.4. Maximum τ lag (τmax)

In order to choose the τmax for the generation of candidate predictors, the autocorre-
lation of the raw rainfall signals was used. Each station’s autocorrelation function (ACF)
was plotted with 95% confidence intervals employing the statsmodels library [54]. These
confidence intervals suggest that the correlation values within them are likely a statistical
fluke. The standard deviation computation for the confidence intervals was performed
according to Bartlett’s formula [55,56].

The 38 climate indices from which the candidate predictors were derived had a
particular τmax, after which, the correlation with rainfall (target variable) was no longer
significant. Beyond an analysis of autocorrelations, an exhaustive analysis of lagged cross-
correlations (such as in [57]) would allow one to obtain a τmax for each index concerning the
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target variable and to possibly achieve higher-performance forecasting models. In addition,
the above should have been taken into account for both El Labrado and Chanlúd rainfall.
This would have led to 39 different τmax for each station. However, in order not to divert
the study from the objective pursued, only the autocorrelation of rainfall was taken into
account. Once the autocorrelation graphs of each station were analyzed, a single reasonable
τmax value was taken through the study.

2.5. Generation of Candidate Predictor Sets

Four quarterly models were trained, one by each season, i.e., DJF, MAM, JJA and
SON, two semiannual models related to semesters November–April (NDJFMA) and May–
October (MJJASO) and one annual model (J-D). These models were schematized as blank
squares in step five in Scheme 1. The forecasting horizon was one year, and as an example,
if one wanted to forecast rainfall for 2016, January rainfall would be forecasted with the
DJF model. Such a value would be immediately used as a possible predictor to forecast
the February rainfall with the DJF model. The MAM model would be used to forecast
March rainfall, and the same for April and May rainfall. The exact process would be used
to forecast the rest of the months. Thus, the following lags were used for each forecasting
model to generate the candidate predictor sets.

Candidate predictor set for quarterly models:

• DJF: 13 to τmax.
• MAM: 6 to τmax.
• JJA: 9 to τmax.
• SON: 12 to τmax.

Candidate predictor set for semiannual models:

• NDJFMA: 13 to τmax.
• MJJASO: 11 to τmax.

Candidate predictor set for annual models:

• J-D: 13 to τmax.

The minimum limit of each interval shown above allows one to leverage as much
information as possible. For instance, for forecasting March–May rainfall using the MAM
model, information with a minimum lag of six means that information from November of
the previous year could be used.

2.6. Sequential Forward Selection (SFS) of Predictors

The sequential forward selection (SFS) is a greedy approach to selecting the best new
predictor iteratively from the candidate predictor set to aggregate to a subset of selected
predictors [58]. The algorithm initially finds one predictor (the first) that maximizes a
cross-validated score when a learning algorithm is trained on this single predictor. After the
first (best) predictor is selected, the algorithm finds the second predictor that maximizes the
score of the learning algorithm when it is trained on these two single predictors. The process
is repeated by adding new predictors to the subset of selected predictors in each iteration.
The optimum subset of relevant predictors is the one that gives the best cross-validated
performance. There are different implementations of the SFS algorithm, and here, the one
from the MLxtend library [59] was used. Moreover, this study used the support vector
regression (SVR) learning algorithm to compute the score based on the selected predictor
subsets. The SVR implementation of the Scikit-learn library [52] was used with the default
hyperparameters. The cross-validated score was obtained through 5-fold cross-validation.

2.7. Support Vector Regression (SVR)

The support vector regression (SVR) model was proposed by Vapnik [60] and is a
suitable model for linear and nonlinear regression. SVR is based on elements of the support
vector machine (SVM), where support vectors are the closest points toward the generated
hyperplane in a high-dimensional feature space [53]. As in most machine learning models,
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the training data are divided into two subsets: the training and validation sets [61]. The
SVR model maps the training data to a high-dimensional feature space using a kernel. The
radial basis function (RBF) kernel was used in this study. The hyperparameters are then
optimized (i.e., model training) by fitting the model to the training data in that feature
space. The formal definition of the SVR model is as follows.

Given {xi, yi} denoted as a characteristic vector of sample data with i = 1, 2, . . . , m
samples, where xiǫR

n, n is the number of predictors, and yiǫR is the target variable (rainfall
anomalies). The SVM regression estimation function is defined as

f (x) = WTφ(x) + b (1)

where WT is the weights matrix of the independent function, φ(x) is the nonlinear (kernel)
mapping function, and b is the intercept. Then, WT and b can be obtained by minimizing
the equation

Min :
1
2
||W||2 + C

m

m

∑
i=1

Rε[yi, f (xi)] (2)

where ||W||2 is known as regularized term; C is the penalty parameter; and Rε is the
insensitive loss function (error control function) of the margin of tolerance ε.

The SVR model generally requires a small sample size for training, has a simple statis-
tical structure and performs better than complex models, e.g., artificial neural networks.

In the model training, the training data were not only divided into a new training
subset and a validation subset. Instead, the 5-fold cross-validation technique was used to
gain generalization. A particular subset of predictors for each forecasting model was used
(dashed squares of step 4 in Scheme 1). Moreover, the following set of values for each of
the hyperparameters was used in the training process:

• C =
{

2i | i ∈ Z,−20 ≤ i ≤ 10
}

;
• ε =

{

2i | i ∈ Z,−20 ≤ i ≤ 10
}

;

• γ =
{

2−20+ 19
30 i | i ∈ Z, 0 ≤ i ≤ 30

}

.

The γ hyperparameter corresponds to the RBF kernel used and relates to the inverse
of the radius of influence of registers selected by the model as support vectors. The number
of models trained until the best-performing one is found for each forecasting model is
31,713 × 5 = 158,565 (31,713 hyperparameter combinations, and 5 corresponds to the 5-fold
cross-validation).

2.8. Evaluation Metrics

Given the raw rainfall time series y = {y1, y2, . . . , ym} and the seasonalized forecasted
rainfall ŷ = {ŷ1, ŷ2, . . . , ŷm}, the forecasting models were evaluated with the following
seven metrics. These metrics are commonly used for evaluating forecasting and prediction
models [62–65].

Mean Absolute Relative Error (MARE). The MARE measures how much error exists in
the forecasted rainfall relative to the observed values in absolute terms. It is computed by

MARE =
∑

m
i=1|yi − ŷi|
∑

m
i=1 yi

(3)

The MARE is independent of the time series scale, and its value ranges from 0 to ∞,
with 0 being the measure of a perfect forecast.

Mean Absolute Error (MAE). The MAE represents the average of the absolute differ-
ence between the forecasted values and the observations. It measures the average of the
residuals regardless of their sign. The MAE is defined as

MAE =
1
m

m

∑
i=1

|yi − ŷi| (4)
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This metric scale depends on the scale of rainfall, and its value ranges from 0 to ∞,
with 0 being the best value.

Root Mean Square Error (RMSE). The RMSE is the square root of the average of the
squared difference between the forecasted values and the observations. The RMSE is
defined as

RMSE =

√

1
m

m

∑
i=1

(yi − ŷi)
2 (5)

The RMSE values are dependent on the time-series scale, and its value ranges from 0
to ∞, with 0 being the measure for a perfect forecast.

Nash–Sutcliffe Efficiency (NSE). The NSE [66] is widely used to evaluate the perfor-
mance of hydrological models. Although the NSE is susceptible to outliers because it takes
a sum over the squared values of the differences between the forecasted values and the
observations, it is even better than other metrics, such as the coefficient of determination.
The NSE is defined as

NSE = 1 − ∑
m
i=1(yi − ŷi)

2

∑
m
i=1

(

yi −
−
y
)2 (6)

where
−
y is the average of the rainfall time series (observations). The scale of this metric is

independent of the scale of the rainfall values. The values of this metric go from −∞ to 1,
with 1 meaning perfect forecasting, 0 meaning that the results are as good as always using
−
y for the forecasting and negative values meaning arbitrarily bad results.

Kling–Gupta Efficiency (KGE). The KGE [67] is a robust performance measure based on
three equally weighted components: variability, linear correlation, and bias ratio between
forecasted and observed rainfall. The KGE is defined as

KGE = 1 −
√

(α − 1)2 + (cc − 1)2 + (β − 1)2 (7)

where α is the variability (the ratio between the standard deviation of forecasted rainfall
over the observed rainfall), cc is the linear correlation coefficient between forecasted and
observed values, and β is the division between the average of the forecasted rainfall over
the average of the observed rainfall.

The KGE is independent of the rainfall scale, and its value goes from −∞ to 1. The
higher the value, the better the forecast.

Explained Variance (EV). The EV measures the proportion of the variance of the
residuals (differences between yi and ŷi) and the rainfall variance. It is computed by

EV = 1 −
∑

m
i=1

[

(yi − ŷi)− 1
m ∑

m
j=1

(

yj − ŷj

)

]2

∑
m
i=1

(

yi −
−
y
)2 (8)

The EV is independent of the time series scale, and its value ranges from −∞ to 1,
with 1 being the optimum value and negative values indicating arbitrarily bad forecasting
results. EV = 0 indicates that the model is as good as using any fixed value for the forecast.

Percent Bias (PBIAS). The PBIAS determines whether there is a tendency in the values
forecasted by the model (i.e., if these are higher or lower than the observed values). A
positive PBIAS indicates that the model overestimates the forecasted variable, while a
negative value indicates that the variable is underestimated. The optimal value is a PBIAS
equal to zero. This metric is defined as

PBIAS = 100 × ∑
m
i=1(ŷi − yi)

∑
m
i=1 yi

(9)
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This metric is independent of the rainfall scale, and the closer the value of |PBIAS|
to 0, the better the results, with 0 being the optimum value. |PBIAS| values greater than
100 indicate arbitrarily bad results.

3. Results

3.1. τmax for Generating the Candidate Predictors

Figure 3 shows the ACFs of El Labrado and Chanlúd rainfall. The autocorrelation
demonstrated a high seasonal rainfall signal with statistical significance until 37 months
in El Labrado and 49 months in Chanlúd. A lag of 37 months was then taken as the τmax

to create the candidate predictor set. Since this study concentrates on comparing models
differing in the number of months used in the implementation, the same number of 37 lags
was taken as the maximum to create the candidate predictors based on the 38 climate
indices (Table 1).

𝛽
−∞

𝑦௜ 𝑦ො௜
EV = 1 − ∑ ቂሺ𝑦௜ − 𝑦ො௜ሻ − 1𝑚∑ ൫𝑦௝ − 𝑦ො௝൯௠௝ୀଵ ቃଶ௠௜ୀଵ ∑ ሺ𝑦௜ − yതሻଶ௠௜ୀଵ

−∞

PBIAS = 100 ൈ ∑ ሺ𝑦ො௜ − y௜ሻ௠௜ୀଵ∑ 𝑦௜௠௜ୀଵ

τ

τ

 
Figure 3. Autocorrelation of rainfall signals and 95% confidence intervals in gray: (a) El Labrado;
(b) Chanlúd.

3.2. Optimum Number of Predictors

Figure 4 shows the results of selecting the optimum number of predictors through
the SFS approach. Each column corresponds to the different model sets, i.e., quarterly,
semiannual and annual models. Each row corresponds to the models for El Labrado and
Chanlúd. The performance behavior of the models showed a similar tendency. The opti-
mum number of predictors was around 81 and 68 for El Labrado and Chanlúd, respectively.
The optimum number of predictors for quarterly, semiannual and annual models for El
Labrado were around 93, 73 and 55, respectively. Meanwhile, for Chanlúd, the optimum
numbers were around 69, 49 and 105. However, the performance of the annual model for
Chanlúd (Figure 4f) had a lower variance in the approximated interval of 35–105 predictors.
Thus, the greater the number of months that are considered in the models with different
periods, the fewer the predictors that are needed to get the best performance. A possible
explanation for this behavior is the greater number of records (instances) that the models
had in the training stage of the SFS as they were built for more months (e.g., annual models).
The annual models used 100% of the available records in the selection of predictors (383 of
the 420 because of the candidate predictor generation with 37 lags), the semiannual models
used 50% of such records (November–April: 191, May–October: 192), and the quarterly
models used 25% (DJF: 95, MAM: 96, JJA: 96, SON: 96). The SFS used the SVR learning
algorithm with the default hyperparameters, so varying the number of records changed
the amount of relevant information for the forecasting. From a purely predictive point of
view, models for more months achieve better performance with fewer predictors that have
more relevant information to achieve better generalization.

130



Atmosphere 2022, 13, 895

 

Figure 4. Sequential forward selection results: (a–c) models for El Labrado; (d–f) models for Chanlúd;
(a,d) quarterly models; (b,e) semiannual models; (c,f) annual models. The dots show the best cross-
validation performance, and the numbers in parentheses indicate the cardinality of the predictor
subset with such best performance.

3.3. Relevant Predictors

The optimum number of predictors allows light to be shed on the more prominent
indices to predict rainfall anomalies in the stations of the study zone. First, quarterly models
allowed indices influencing each season to be analyzed. The analysis was conducted using
the times an index with different lags was chosen. This number is labeled the frequency in
Figures 5–8. The mean number of lags of the different indices chosen are shown in intervals
of up to 12 months, 24 months and more than 24 months.

Figure 5 shows the climate indices providing more information for the predictor
selection stage in each season for El Labrado. The most prominent feature was the EP/NP
climate index in all seasons. In all the seasons, the EP/NP mean lag was within the
12 months before the rainfall value that had to be forecasted. The NP index was the second
most prominent feature present in the models for the four seasons. NP was the second
most prominent in DJF and SON, third in MAM, and sixth in JJA. Like EP/NP, the NP
mean lag was within 12 months before the forecasted rainfall value. The Niño 3 index was
present within the seven most prominent indices in DJF and MAM. DJF is a season when
the climate conditions of the ENSO regions in the Pacific are more important in learning
about rainfall in the Ecuadorian Andes [68]. The results showed that information 12 months
before the rainfall observation is also important in learning about rainfall anomalies. It is
worth noting that the Niño 3 index is a mean value index and does not refer to anomalies.
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Figure 5. Predictors selected through SFS for each quarterly model for El Labrado (dots in Figure 4a):
(a) quarter December–February; (b) quarter March–May; (c) quarter June–August; (d) quarter
September–November. The size of each circle corresponds to the frequency with which a climate
index (with different lags) appears as a predictor of the model. The color of each circle corresponds to
the mean of the lags with which a climate index appears as a predictor of the model.

On the other hand, the same signal (El Labrado) and the Niño 1+2 index were promi-
nent indices in JJA and SON models. El Labrado signal was the third most frequent index
appearing in the models for JJA and SON. The Niño 1+2 index mean lag was 12 months
before the rainfall value. Again, Niño 1+2 is not an anomaly index but provides information
in selecting predictors.
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Figure 6. Predictors selected through SFS for each quarterly model for Chanlúd (dots in Figure 4d):
(a) quarter December–February; (b) quarter March–May; (c) quarter June–August; (d) quarter
September–November. The size of each circle corresponds to the frequency with which a climate
index (with different lags) appears as a predictor of the model. The color of each circle corresponds to
the mean of the lags with which a climate index appears as a predictor of the model.

GMSST was not prominent and even not present in SON. PDO was not prominent
because it is a shallow frequency signal. PacWarm was only present in DJF and MAM.
Niño 4 was present in DJF and JJA but with a low frequency; it was not present in MAM
and SON. BEST and TPI.IPO were only present in SON but were not very prominent. CAR,
QBO and ESPI were only present in DJF. TNI, MEIv2, Niño 4.A, and AMM were not present
in any season.
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Figure 7. Predictors selected by means of SFS for each semiannual model. (a,b) Models for El Labrado
(dots in Figure 4b); (c,d) models for Chanlúd (dots in Figure 4e); (a,c) semester November–April;
(b,d) semester May–October. The size of each circle corresponds to the frequency with which a
climate index (with different lags) appears as a predictor of the model. The color of each circle
corresponds to the mean of the lags with which a climate index appears as a predictor of the model.

Figure 6 shows the climate indices providing more information in the predictor selec-
tion stage in each season for Chanlúd. Like for El Labrado, the most prominent climate
index was EP/NP. Again, the mean lag of the predictors derived from EPO was within
12 months. Unlike El Labrado, NP was not found as a frequent index even though it was
present in all seasons. Chanlúd appeared as the third most frequent index in SON. TNI and
PDO were only present in SON. Niño 4 was only present in DJF. TPI.IPO was only present
in MAM. MEIV2, QBO and AMM were not present in any season.
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Figure 8. Predictors selected through SFS for each annual model: (a) model for El Labrado (dots
in Figure 4c); (b) model for Chanlúd (dots in Figure 4f). The size of each circle corresponds to the
frequency with which a climate index (with different lags) appears as a predictor of the model. The
color of each circle corresponds to the mean of the lags with which a climate index appears as a
predictor of the model.

Figure 7 shows the most prominent climate indices for El Labrado (Figure 7a,b) and
Chanlúd (Figure 7c,d) in the semiannual models. As the number of months increased from
quarterly to semiannual models, NP appeared with less relevance in El Labrado and even
did not appear in Chanlúd for NDJFMA. EP/NP was the most frequent index in the subset
of predictors that allowed the best performance in the models, both in El Labrado and
Chanlúd. The mean lag for EP/NP was around 12 months before the forecasted month.
Unlike quarterly models, in semiannual models, the higher frequency of EP/NP was 16
in MJJASO. For El Labrado, the same signal with a mean lag of 12 months appeared with
more repetitions, especially in MJJASO. AO and TNA area climate indices appeared in both
semiannual models for El Labrado.

Concerning El Labrado, PacWarm only appeared in NDJFMA, but its relevance was
low. BEST, TNI and MEIV2 only appeared in NDJFMA with low frequency but a mean lag
of 12 months. EA, Niño 1+2, Niño 1+2.A, Niño 3.4 and Niño 3.4.A were only present in
MJJASO, but their frequency was low. Niño 3 only appeared in MJJASO, but its frequency
was low, with a mean lag beyond 24 months. This is interesting since only Niño 4 and Niño
4.A corresponding to El Niño indices appeared in NDJFMA. EMI, Niño 4 and Niño 4.A only
appeared in NDJFMA. QBO was only present in NDJFMA with the lowest frequency and a
mean lag greater than 24 months. TSA, WHWP, IOD.W, IOD.E and DMI only appeared in
MJJASO. Niño 3.A, TPI.IPO and CAR were not present in any semiannual models.

Concerning Chanlúd, NP, SOI, BEST, MEIv2, QBO, ESPI and PacWarm were only
present in NDJFMA. Although NAO appeared in both semiannual models, J.NAO did not
appear in any semiannual models. AAO, PDO, AMM, IOD.E and WHWP only appeared
in MJJASO. Concerning the El Niño indices, Niño 1+2 appeared in MJJASO and Niño 3 in
NDJFMA; the rest were not present in any model. TNI, EMI, TPI.IPO, TNA, TSA, IDO.W
and DMI did not appear in any model.

CAR was present in both models for Chanlúd but not for El Labrado. QBO was present
in NDJFMA for both El Labrado and Chanlúd but not for MJJASO.
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Figure 8 shows the predictors selected for the annual models for El Labrado (Figure 8a)
and Chanlúd (Figure 8b). Interestingly, the same signal of El Labrado and Chanlúd rainfall,
with a mean lag within 12 months, was within the higher-frequency indices. CAR was the
most frequently chosen for El Labrado. Meanwhile, lags of the Chanlúd rainfall anomalies
were the most frequent in Chanlúd. NAO and EP/NP were indices within the six prominent
índices in both El Labrado and Chanlúd.

In models for El Labrado AO, PDO, Niño 1+2.A, Niño 3.A, Niño 3.4, Niño 3.4.A, Niño
4, Niño 4.A, TNI, BEST, MEIV2, EMI, WHWP, TNA, TSA, AMM, QBO, ESPI, IOD.W, IOD.E
and DMI were not present.

In models for Chanlúd AO, Niño 1+2, Niño 3, Niño 3.A, Niño 3.4, Niño 3.4.A, Niño 4,
Niño 4.A, TNI, WHWP and TNA were not present.

3.4. Qualitative Evaluation

Figure 9 allows one to compare the rainfall forecasts from quarterly, semiannual and
annual models. An outstanding feature in El Labrado (Figure 9a) is the overestimation
of the semiannual model in November and December. This characteristic was prominent
from 2016 to 2019. Quarterly and annual models showed similar results even though
quarterly models showed better results for some specific months, for instance, from October
to December 2016, and October and December 2019. Generally, quarterly models best
reproduced the pattern of September–December. Likewise, semiannual models showed the
best results in months such as December 2017, January 2018 and August–October 2021.

 

Figure 9. Qualitative evaluation of the models’ performance: (a) for El Labrado; (b) for Chanlúd. The
vertical lines indicate that the forecasts were made for each year individually.

Figure 9b shows that in Chanlúd, the semiannual models tended to result in mean
values demonstrating the lowest performance. Annual models were better than semian-
nual models reproducing high values of rainfall. However, the general characteristic of
quarterly models in reproducing the highest values of rainfall made them the best option.
Nevertheless, it should be mentioned that quarterly models showed poor performance in
some specific cases, such as in October 2017 and April 2019.
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3.5. Quantitative Evaluation

Figure 10 shows the performance results for El Labrado (left-hand side of each figure
panel) and Chanlúd (right-hand side of each figure panel) models that employed the seven
evaluation metrics. The semiannual models showed the worst results in all the metrics,
becoming the worst approach to forecast rainfall anomalies in both stations. According
to the MARE, MAE, RMSE, NSE and EV metrics (Figure 10a–d,f), the best model was un-
doubtedly the annual model for El Labrado and Chanlúd. Moreover, the PBIAS (Figure 10g)
metric confirmed the annual models as the best for Chanlúd. For El Labrado, the PBIAS
indicated that the quarterly models were the best. However, the KGE metric showed that
the quarterly models had the best performance.

 
Figure 10. Quantitative evaluation of the models’ performances using the metrics: (a) MARE;
(b) MAE; (c) RMSE; (d) NSE; (e) KGE; (f) EV; (g) PBIAS. The metrics were calculated using the entire
testing period.
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As indicated in Section 3.2, annual models leverage a major amount of records in the
model training stage, so they probably obtain better results. In order to give evidence for
such conjecture, five new annual models were trained with the same followed method
but by only using 95 randomly chosen records in training. This was the same number of
records used when training the DJF quarterly models (in the rest of the seasons, 96 records
were used). The mean values of the evaluation metrics are indicated as bars with dots
in Figure 10.

Comparing the annual models trained with 95 records with the quarterly and semian-
nual models (Figure 10), all the metrics indicated that the quarterly models were the best
models. According to KGE, the quarterly models were always the best performers.

4. Discussion

As more months were used to generate the models, the predictors chosen as the
most relevant changed, especially for the annual models. EP/NP was the most prominent
index in the quarterly, semiannual and annual models. This index was related to the most
frequently selected predictors for quarterly and semiannual models for El Labrado and
Chanlúd. In the case of annual models, EP/NP was related to the fifth most frequently
selected predictors for El Labrado and Chanlúd. Except for the annual model for El Labrado,
in all cases, the average lag of the predictors associated with this index was between
12 and 24 months. The EP/NP is a northern hemisphere index related to 500 hPa height
anomalies over three main anomaly centers: Alaska/western Canada, central North Pacific
and eastern North America. Since it is a relevant index for the climate of North America,
most of the works are related to that geographical area. Córdoba Machado et al. [69] found
weak but significant correlations between EP/NP and rainfall in Colombia. However,
lagged correlations were not used. Mora and Willens carried out a study analyzing the
relationship between the index and rainfall in a basin where the Machángara is located [70].
They found correlations around |R2| = 0.6. This study showed that EP/NP also turned
out to be an index with information that allows one to forecast rainfall anomalies with a
horizon of approximately one year.

For the quarterly models, another prominent index was the north Pacific pattern (NP).
NP is another northern hemisphere index. Specifically, it is the area-weighted sea level
pressure over the region 30◦ N–65◦ N, 160◦ E–140◦ W. This confirms the relevance of infor-
mation from the North Pacific in predicting rainfall anomalies in high tropical mountain
areas. However, more research must be conducted to shed light on the acting mechanisms.

For the semiannual models, other prominent indices were TNA for El Labrado and
AO for El Labrado and Chanlúd. TNA is a tropical Atlantic index and is defined as the
anomaly of the average of the monthly SST over the region 5.5◦ N–23.5◦ N, 15◦ W–57.5◦ W.
The tropical Atlantic SST is a driver of rainfall in the study zone [29,71,72]. Therefore, this
study showed the applicability of the index in providing information to forecast rainfall
anomalies in the study zone around 12 months in the future. AO is another northern
hemisphere index that, like EP/NP, needs further study to understand the underlying
mechanisms that make it a prominent index for forecasting rainfall in the study area.

For the annual models, the most prominent indices were CAR, NAO and the lagged
versions of the same anomaly rainfall signal. CAR is related to the SST anomalies over the
Caribbean and is not as prominent in quarterly and semiannual models. The Caribbean is
known as a source of humidity that influences rainfall in the study zone [29,32]. NAO is
another north hemisphere index and is a prominent teleconnection pattern in all seasons.
Like EP/NP, further study is needed to understand the underlying mechanisms that make
it a significant index for forecasting rainfall in the study area. Despite the known correlation
between the conditions of El Niño zones and rainfall in Ecuador, these indices (Niño 3.A,
Niño 3.4, Niño 3.4.A, Niño 4 and Niño 4.A) did not provide any relevant information to
forecast rainfall anomalies in annual models. It should be borne in mind that the indices
above are used in these models, but with delays of 13 to 37 months in order to generate
forecasts with a one-year horizon. Despite the known relation between these indices
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and rainfall, this relation can fade when using signals with information distant in time. In
addition, there may be other indices correlated with those of Niño with linear and nonlinear
correlation with rainfall anomalies (standardized) that, more importantly, together with
the rest of the selected predictors, are better leveraged by SVR, producing higher accuracy.
Finally, another possible reason is that there are not enough events for SVR to learn the
most significant patterns between the rainfall anomalies and the indices.

Another relevant result is the selection of SOI by many of the models, whether quar-
terlies, semiannuals or annuals. SOI had a linear correlation with the Niño 3.4 and Niño
3.4.A indices of −0.65 and −0.73, respectively. However, these last two were not selected
for most models. The possible explanation is related to what was explained in the previous
paragraph. Despite a high linear correlation between the indices, SOI contributed more to
the learning algorithm in the context of the set of predictors chosen to produce a higher-
accuracy model. In fact, the correlations between the Niño 3.4 and Niño 3.4.A indices
with the standardized rainfall anomalies at Chanlúd (−0.04) were only slightly lower in
magnitude than the correlation between SOI and rainfall anomalies (0.06) (in El Labrado,
they were −0.07, −0.08, and 0.08, respectively). This means that SOI is more relevant to
forecast rainfall when used with the other predictors in the model.

The distance between El Labrado and Chanlúd is approximately 8 km, and the dif-
ference in altitude is approximately 150 m. Despite the above, the SFS algorithm selected
groups of predictors that differ for the models of these two stations, except those derived
from EP/NP. EP/NP was the most relevant climatic index for the quarterly and semian-
nual models and was among the five most relevant in the annual one. Some reasons can
explain this difference. First, note that the correlation between the standardized rainfall
anomalies (Figure 2c) of the two stations (0.87) decreased compared to that of the raw data
(0.92) (Figure 2a). These anomalies were used until before the evaluation (Scheme 1). As
Figure 2b shows, there were systematic differences between the rainfall that were evident,
for example, between May and August. Due to the above, it seems reasonable to expect
certain differences between the groups of selected predictors because SVR made the best
possible use of the highly nonlinear relationships in each group. Second, the relevance
of the indices (size of the circles in Figures 5–8) could have been affected by the number
of derived predictors that were selected (different lags). Since we used the same number
of lags in climate indices and rainfall to generate the predictors, it is possible that for one
of the two stations, a different τmax should have been used (see Section 2.4). With that, it
is possible that a larger number of predictors related to certain indices could be selected.
Third, the SFS of predictors used SVR with the default hyperparameters to compute the
score on the selected predictor subsets. Variations in the selection approach (e.g., sequential
backward selection [73]) or in the model to calculate the score (e.g., random forests [74])
or its tuning would lead to a profoundly exhaustive sensitivity analysis of predictors.
However, analyzing the influence of all the above is beyond the scope of the study and is
proposed for future research.

According to almost all evaluation metrics, the annual models were the best among
quarterly, semiannual and annual models. However, the KGE metric showed that quarterly
models were the best. The implementation of annual models with fewer registers showed
that such high performance is possibly due to the amount of information that the learning
algorithm can leverage in the training stage. Not enough (or not the optimal) predictors
were selected in such a case to be exploited by the SVR algorithm. When comparing
such results with those from the quarterly models, all metrics demonstrated that quarterly
models were the best, which KGE indicates for all models.

The semiannual models were the ones that reported the worst results. This could
be related to the bimodal seasonality of rainfall (Figure 2b) that does not allow data to
be separated into periods with similar rainfall characteristics. Each semiannual model
contained information on both rainy months and drier months. This means that the
selection of predictors was not so robust since the selection algorithm used information on
transition periods.
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The hypothesis that quarterly models could perform better by selecting more robust
predictors was not necessarily true in practical terms. This is because, for operational
reasons, the amount of information that can be used in annual models is greater. Specif-
ically, this can be evidenced by using SVR as the learning algorithm for generating the
forecast models. Depending on the learning algorithm, the negative effect of the amount
of information to be used could be greater or lesser. Therefore, other studies using other
learning algorithms are necessary to reach general and conclusive results.

A comprehensive comparison of the results with the predictions of South American
models (e.g., the SEAS5 model) is pending, but a very brief discussion follows. Gubler
et al. [68] demonstrated high precision in the highlands of Ecuador during the austral
summer, which is consistent with our findings. However, Coelho et al. [75] state the low
seasonal forecast skill of either empirical or coupled multimodel predictions in South
America but highlight forecast assimilation’s importance in obtaining better forecasts.
Barnston and Tippett [10] showed that the North American Multimodel Ensemble project
(NMME) [76,77] with a correction of bias with statistical methods does not improve the
skill of the forecasts in South America.

5. Conclusions and Remarks

This study had the following main objectives: first, to know if the performance of the
monthly rainfall forecast models improved when they were implemented for each season,
by semesters or a single model for all the months of the year. These models always forecast
rainfall on a monthly scale and differ in the months that are used in training and the months
for which they make the forecast. Second, to analyze the main predictors that influence
the improvement of the performance of the models. These predictors were generated
using 38 climate indices and the same rainfall signal using lags of up to 37 months. The El
Labrado and Chanlúd stations, located in the Andean Machángara basin, were used for
the study.

The annual models were the best according to six of seven evaluation metrics. How-
ever, the Kling–Gupta efficiency shows that the quarterly models were the best. The study
gives evidence that the performance of annual models was due to the more significant
number of records (instances) that could be exploited when training them. When the
annual models were trained with the same number of records as the quarterly models,
the quarterly models were the best. Therefore, from a pragmatic point of view, annual
models should be used to generate operational rainfall forecasting models in the study area.
Studies in more areas are necessary to generalize the results obtained here.

The largest number of predictors that were chosen for the forecasting models were
those derived from the EP/NP climate index. The influence of this northern hemisphere
index on the Machángara rainfall has not been extensively studied, so it must be taken
into account to investigate the mechanisms involved. For the quarterly models, another
prominent index was NP, another northern hemisphere index. For the semiannual models,
other prominent indices were the tropical Atlantic index TNA for El Labrado and the
northern hemisphere index AO for El Labrado and Chanlúd. Finally, for the annual models,
the most prominent indices were CAR (related to the conditions in the Caribbean), NAO
(north hemisphere index) and the lagged versions of the same anomaly rainfall signal.

The results show that annual models can be operationally helpful since rainfall fore-
casts could be made in the current month with climatic information from twelve or more
previous months. This is essential to anticipate water resources management in different
sectors, e.g., agriculture and hydroelectricity.

There were some limitations in the study, which are described next. First, we selected
a single τmax for the climate indices and rainfall in El Labrado and Chanlúd. Tuning a
τmax for each station and index could reduce the search space of the learning algorithms
and improve their performance. Second, SVR was used with the default hyperparameters
in selecting predictors through SFS. Other selection methods [78–83] could be tested in
future studies, as well as other learning algorithms that serve as scoring functions (e.g.,
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random forests) performing a hyperparameter tuning. The former would help analyze the
most relevant indices that influence the study area more exhaustively and with greater
significance. Finally, the training of the forecast models could be carried out with other
learning algorithms [17,84], also comparing their performance when combined with differ-
ent selection methods.

This study shows a real approach to implementing operational forecasting models and al-
lowing more accurate insight into the generalization of the models in a production environment.
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Abstract: Inter alia, inter-annual and spatial variability of climate, particularly rainfall, shall trigger

frequent floods and droughts in Pakistan. Subsequently, a higher proportion of the country’s popu-

lation will be exposed to water-related challenges. This study analyzes and projects the long-term

spatio-temporal changes in precipitation using the data from 2005 to 2099 across two large river

basins of Pakistan. The plausible precipitation data to detect the projected trends seems inevitable to

study the future water resources in the region. For, policy decisions taken in the wake of such studies

can be instrumental in mitigating climate change impacts and shape water management strategies.

Outputs of the Coupled Model Intercomparison Project 5 (CMIP5) climate models for the two forcing

scenarios of RCP 4.5 and RCP 8.5 have been used for the synthesis of projected precipitation data.

The projected precipitation data have been synthesized in three steps (1) dividing the area in different

climate zones based on the similar precipitation statistics (2) selection of climate models in each

climate zone in a way to shrink the ensemble to a few representative members, conserving the model

spread and accounting for model similarity in a baseline period of 1971–2004 and the projected period

of 2005–2099 and (3) combining the selected model’s data in mean and median combinations. The

future precipitation trends were detected and quantified, for the set of four scenarios. The spatial

distribution of the precipitation trends was mapped for better understanding. All the scenarios

produced consistent increasing or decreasing trends. Significant declining trends were projected in

the warm wet season at 0.05% significance level and the increasing trends were projected in cold

dry, cold wet and warm dry seasons. Framework developed to project climate change trends during

the study can be replicated for any other area. The study therefore can be of interest for researchers

working on climate impact modeling.

Keywords: climate change; climate model selection; spatiotemporal prediction; precipitation trends

1. Introduction

Pakistan underwent recurring flooding during 1988, 1992, 2010, 2013, and 2014 in the
Upper Catchments of Indus, Jhelum, and Chenab Rivers. Intense and devastating floods
that increase fatalities and massive infrastructural damage have become somewhat annual
routine in the country. Especially, heavy monsoon rains that hit the country from July to
September due to the varying meteorological situations are major contributors to extreme
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monsoonal flooding [1,2]. Therefore, flood disaster mitigation and hazard management
have become the point of concern for all stakeholders.

The intensity, variability, and frequency of temperature, floods, droughts, cyclones, and
precipitation may exhibit substantial variations, thus presenting evidence of the impacts of
climate change in Pakistan [3]. Northern Pakistan is the junction of three world-renowned
mountain ranges known as the Karakoram, the Himalayas, and the Hindukush, producing
the third largest mass of ice after the Polar Regions, located in the northern hemisphere.
Westerly waves and Monsoon lows from the Mediterranean Sea, seasonal lows from the
Arabian Sea, and depression caused by low pressures from the Bay of Bengal impact
Pakistan [4]. The widespread perception is that this trend is part of a larger climate change
phenomenon that has accelerated the hydrological cycle.

The climatic variability as a result of natural mechanisms of oceans, atmosphere, land
surface, and anthropogenic forces is simulated by Global Circulation Models, commonly
known as GCMs. These are the multi-dimensional numerical models, which follow the law
of conservation of mass, momentum, and energy, representing the climate system. GCMs
include numerous parameters related to atmospheric circulations, feedback mechanisms,
moisture and wind fluxes, earth’s rotational effects, and thermodynamics. Each model
tends to simulate some aspects of the climate system well and some others not so well,
leading to overestimation or underestimation of climate variables [5]. Therefore, these
factors lead to different outputs for different GCMs with the same forcing scenarios for
future projections [6–10]. The research question of the present study is how to use a variety
of GCMs’ outcomes to obtain plausible meteorological inputs for the climate change impact
modeling for the study area, having spatiotemporal heterogeneous climate.

Many studies have consistently demonstrated that the selection of GCMs, for assess-
ing climate change impacts, is the main contributor to uncertainty in the assessments
of hydrological response to climate change. This has been proved by quantifying and
comparing the uncertainties originating from different sources such as inherent errors in
GCMs, forcing scenarios, downscaling and bias correction techniques, and hydrological
models’ parameters [11]. The Intergovernmental Panel on Climate Change [12] has pro-
posed several GCM selection criteria such as using the latest version of GCMs’ simulations,
GCMs’ with high temporal and spatial resolution, GCMs’ producing high end and low-end
climate signals [13,14], commonly known as an envelope-based selection method, or GCMs
presenting realism of historical/baseline simulations [15,16].

The lack of realism of baseline simulations of some models cannot be linked with the
plausibility of model projections. The correlation between past performance and future
prediction is very weak; it means that model performance based on the historical period
data may not be valid in an uncertain future climate [17–19]. It is necessary to consider the
non-negligible probability of all the projections to use for future climate change detection,
decision making, and planning [19]. Thus, the use of a multi-model ensemble (MME) is
advocated and recommended over an individual model to synthesize the meteorological
inputs for the climate change impact studies [20,21]. They should be synthesized, in a
way to represent the full range of climate variability signals, from the available GCMs, for
plausible future climate projections [22]. The subjective approach of past performance-
based selection should only be used when severely unrealistic models that are not reliable
for the future prediction have to be removed [14]. To attain unbiased distribution of the
projected climate data, the selection of the GCMs in an ensemble should be in such a
manner that they are not interdependent/correlated to each other. The correlated models
gain too much weight in the larger MME [18]. The high correlation between the GCMs
in the MME is responsible for the biases in the assessment of climate change impacts. It
is imperative to provide the solution of biases of large MME by reducing its size using
a smaller number of climate models with minimum loss of information. Effective small
sub-ensembles are developed from an ensemble with a large number of models having
more extensive dependencies on each other [23,24].
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It is usual in the climate research community to compare or assess the spatial areal
average of the climate data for selecting GCMs using any of the three methods of past
performance, envelope-based approaches, and hybrid method [13,16]. This spatial average
may not represent the local variances in spatial and temporal climate characteristics. Thus,
strong consideration of this variation in spatial climatic conditions is required for the
plausible ecological projections. To continue with the selection of a GCM for climate
change impact studies, the area should be considered climatically homogeneous. The
formation of homogeneous climatic zones [25] allows for a better understanding of the
complex spatiotemporal variability of precipitation across an area. These climate zones
are delineated using the spatial similarity/homogeneity of the precipitation statistics in an
area using the dense data network.

Precipitation being the most provocative variable in terms of climate change impacts,
studies have been conducted to estimate precipitation trends in various parts of Pakistan
using best performing GCMs [26], single or two GCMs [27–29], hierarchical Bayesian Spatio-
temporal methods [30], projections of trend line [31], artificial neural network (ANN) and
Support vector regression (SVM) models [32]. Our confidence deficit in discounting any
projections with a lack of realism of baseline simulations leads to the application of a novel
framework of climate model selection. This framework focuses on (1) the delineation of
the sub-regions having the stations with similar precipitation characteristics named as
climate zone (2) selection of the climate models, based on climate signals spread in each
climate zone for the possible future bandwidth of the climate change trends (3) combining
the range of precipitation projections outcomes from the selected models for two climate
forcing scenarios of RCP4.5 and RCP 8.5 (4) precipitation change trend detection. The
selection of GCMs, from the large MME, was carried out by the formation of clusters of
correlated GCMs and selecting the high and low-end producers of climate signals in each
cluster in a climate zone. Therefore, a smaller MME of GCMs was formed with the larger
ensemble characteristics. The daily data of the member GCMs of each MME were then
combined in two ways: mean and median to investigate the future climate trend [33]. We
intended to combine information from the GCMs to provide a set of scenarios for the study
area that represent the uncertainty range in a credible manner. The precipitation trends
were then detected for all those scenarios. The study also highlights the significance of
machine learning clustering algorithms of supervised learning, for the pattern detection
and grouping of long-term climate data of high temporal scale in a large study area.
Subsequently, the research community is prompted to develop a framework that could
analyze and predict the impacts of climate change and augment the decision support
systems for a sustainable future. Moreover, the recurring demand for such research has also
increased among policy-making circles and public pressure groups. Challenges such as
food shortage and shelter insecurities are closely knitted with environmental degradation
factors, such as floods, rising sea levels, and global warming. Availability of reliable and
updated climate data trends is thus a prerequisite to forge sound policies that can reduce
implications of environmental degradation upon human lives.

Section 2 of the paper describes the study area and data used, which is followed by
Section 3 that explains the methodology used. Section 4 presents the results, and lastly,
conclusions are drawn in Section 5.

2. Study Area and Data

2.1. Study Area

The area under study is approximately 100,845 km2, which comprises two basins
of Pakistan’s rivers, namely the Jhelum and Chenab. The altitude from the mean sea
level varies between 146 and 6915 m. Figure 1 presents the digital elevation model and
geographic location of the study area. The precipitation gauging stations and the points on
which gridded data have been sampled is also shown in Figure 1. The westerly aggravations
and the southwest monsoon are the major cause of 60% and 40% of the annual precipitation,
respectively [16]. The variable climatic conditions depend upon the atmospheric circulation
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patterns, advected moisture, and a considerable range of variations in topography. The
depleting water resources and recurrence of extreme events due to high hydro-climatic
variability in the region have made it an important research arena.

Figure 1. Study Area Digital Elevation Model (DEM) also presents the observed gauging station and
Grid stations in the study area.

2.2. Climatology

The westerly aggravations and the southwest monsoon are the major cause of 60% and
40% of the annual precipitation, respectively [16]. The variable climatic conditions depend
upon the atmospheric circulation patterns, advected moisture, and a considerable range of
variations in topography. The depleting water resources and recurrence of extreme events
due to high hydro-climatic variability in the region have made it an important research
arena. Seasonal precipitation in Pakistan is affected by weather systems of three types: the
monsoon depressions originating from the Bay of Bengal cause summer precipitation [34],
western disturbances emanate from the Mediterranean Sea are reasons for the winter
precipitation [35], and tropical cyclones from the Arabian Sea in spring and fall [36].
In Pakistan, the monsoon season lasts from June to September, with the post-monsoon
season lasting from October to November [37]. On examining the mean monthly historical
precipitation in Jhelum and Chenab river basins [38–40], the seasons have been defined
in the present study. The seasons are warm wet (July, August, and September) Cold Dry
(October, November, and December), cold wet (January, February, and March), and warm
dry (April, May, and June).

For warm wet season, the average total seasonal precipitation based on APHRODITE
(1970–2004) varies from 140 mm to 230 mm in north and east of the study area, 440 mm to
1050 mm in the central region, and 160 mm to 230 mm in the southwest region.
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For the cold dry season, the precipitation varies between 8.93 mm and 120 mm,
minimum in southwest and maximum in north and east of the study area.

For the cold wet season, in the southwest region, it varies from 120 mm to 160 mm, in
the central region 230 mm to 340 mm, and in the north and northeast region 160 mm to
340 mm.

For the warm dry season, in the southwest region 100 mm to 140 mm, and the central
region 140 mm to 230 mm, and 140 mm to 250 mm in the north and southwest region.

2.3. APHRODITE Data

The trend of using the gridded climate data in the climate and hydrologic assess-
ment studies has been increasing due to its easy accessibility and reliability. A reliable
gridded data network of stations is required to divide the study area into the number of
homogeneous climatic zones. The reliability of the Asian Precipitation—Highly Resolved
Observational Data Integration Towards Evaluation of Water Resources (APHRODITE)
dataset has been advocated by many previous studies [41–43] and it is considered as
the best-gridded dataset available as of yet, for the high elevated mountainous areas of
Asia [44]. There are many other gridded datasets available as an open-source e.g., European
Reanalysis gridded dataset (ERA5) [45] and Global Meteorological forcing dataset for land
surface Modelling (GMFD) [46]. ERA5 is also famous for its good resolution and accuracy.
Our decision of using the APHRODITE product (V1101) [43] for the regionalization of the
study area, was based on the comparative analysis of these three datasets in a study by Nus-
rat et al. [25]. In this study, monthly precipitation data of APHRODITE, ERA5 and GMFD
were sampled at the 11 gauging stations, mentioned in Supplementary Materials Table S1.
All these gauging stations are situated at different elevations. The three datasets were
compared with the monthly observed precipitation data using the Kolmogorov Smirnov
Test and Pearson Correlation Coefficient test. The criteria of better performance were
based on a higher correlation coefficient and p-value of KS test more than 0.05 to reject
the alternative hypothesis of a dissimilar probability distribution. The results suggested
that the APHRODITE dataset is more reliable than the other two datasets at nearly all the
gauging stations at different altitudes.

2.4. NEX-GDDP-GCMs-CMIP5 Data

NASA Earth Exchange Global Daily Downscaled Projections (NEX-GDDP) dataset [47,48]
has been used in this study for the historical and projected climate data. The outputs of the
Coupled Model Intercomparison Project 5 (CMIP5) were used by National Aeronautics and
Space Administration (NASA) to form NEX-GDDP. The list of 21 GCMs in the NEX-GDDP is
provided in Supplementary Materials Table S1.

However, the CMIP5 experiments were meant to address the questions raised in the
Assessment Report (AR4) of the Intergovernmental Panel on climate change IPCC [49].
Therefore, when fine-scale modeling is required, the climate impact modeling and Local-
scale decision support system cannot rely on the coarser spatial resolution of CMIP5 GCMs.
The NEX-GDDP dataset of 21 GCMs is downscaled to a finer resolution of 0.25◦ and
bias-corrected using the bias-corrected spatial disaggregation method (BCSD) [47].

NEX-GDDP climate (maximum and minimum temperature and precipitation) datasets
for the baseline period (1950–2005) and projected period (2005–2099) are publicly available.
The projected data of CMIP5 GCMs have been bias-corrected and downscaled for the two
forcing scenarios of representative concentration pathways (RCPs), i.e., RCP 4.5 and RCP
8.5, which were employed by IPCC for the fifth assessment report (AR5) [49].

3. Methodology

In this study, the Python module of Scikit–learn [50] has been used, assimilating many
machine learning algorithms for supervised/unsupervised learning. The study area has
been divided into different climate zones, of homogeneous climate, for each season, i.e.,
warm wet (July, August, and September), cold dry (October, November, and December),
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cold wet (January, February, and March) and warm dry (April, May, and June), following
the methodology employed by [25].

With the help of Machine learning algorithms, large datasets of multivariate atmo-
spheric parameters can easily be assessed and analyzed for the pattern/distribution vari-
ability study and impact modeling. Each step of the framework developed in this study
has been translated into Python code. This framework of the study consists of three major
steps (1) GCMs selection; (2) Combining the GCMs; and (3) climate change projections and
trend detection. Figure 2 presents the flow chart of the methodology adopted in this study.
Further details of all steps are discussed in the subsequent sections.

Figure 2. Methodology Flow Chart.

3.1. Climate Zoning

The first pre-requisite step in this framework is regionalization based on the climate
of the region. Regionalization is the process of grouping the stations with homogeneous
climate statistics and demarcating them into specific climate zones. For this process,
long climate data records are required at various stations in the study area [51]. In the
present study, the daily precipitation dataset of APHRODITE of 35 years was used for
regionalization after its comparative performance evaluation with other gridded datasets.

There are various applications of regionalization of climate statistics e.g., in agri-
cultural practices, hydrological extremes forecasting, and basin management [52]. The
methods used to delineate climate regions are geographical convenience, subjective and
objective partitioning [53,54]. In all these methods multivariate analysis techniques such as
principal component analysis (PCA), correlation analysis, and clustering are widely used
to demarcate the regions of homogeneous climate [55,56]. The geographical convenience
method is an arbitrary and somewhat misleading approach based on the demarcation of
the administrative boundaries. The subjective and objective partitioning methods are based
on the demarcation of the region by grouping the meteorological sites having homoge-
neous climate statistics. The method employed for regionalization in the present study
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is agglomerative hierarchical clustering (AHC) of the principal components (PCs) of the
precipitation data, at various stations of the region. Different Cluster validity indices were
used to validate the number of clusters. The whole framework of regionalization step by
step has been presented in the following sections.

3.1.1. Seasonal Data Resampling

The daily precipitation dataset of APHRODITE, at 138 Grid stations for the period
1975–2005, was sampled for hydrological seasons cycle: warm wet (July, August, and
September), cold dry (October, November, and December), cold wet (January, February,
and March) and warm dry (April, May, and June).

3.1.2. Principal Component Analysis (PCA)

The objective was to decrease the dimensions of the large matrix of the dataset of
daily time series of 35 years for 138 grid stations. Principal Component Analysis (PCA)
enabled us to reduce such a large matrix to a smaller sized matrix in addition to retaining
as much descriptive of the data as possible. According to PCA, the data are projected onto
different orthogonal axes which are called principal components. The symmetric covari-
ance matrix is developed through the dataset, and then through the linear transformation
technique principal components were identified. The eigenvectors depict the direction and
the eigenvalues represent the magnitude of the extent of the axis or principal components
representative of the data spread. The highly ranked principal components (PCs) which
explained maximum cumulative variance in the dataset were identified through the scree
plot and were used for the subsequent step. The component scores are derived by eigenvec-
tors and the eigenvalues for all the stations in each PC. These component scores represent
climate change patterns/signals in that specific site and may be considered an alternative
to the meteorological parameters, which are statistically independent [14,55]. The function
of scikit-learn [50] has been used to develop the code for the PCA.

3.1.3. Agglomerative Hierarchical Clustering (AHC)

Through this step, we were able to identify the clusters or groups of sites having
similar climate signals. The climate change signals were estimated in the previous step of
PCA, in the form of component scores. The component scores of the leading PCs were used
in the clustering algorithm. The algorithm of Agglomerative Hierarchical Clustering [57,58]
is an iterative process. It works on a bottom-up approach which starts from one point/self-
cluster. Then, the size of the cluster keeps on increasing through nearest points one by
one. In this way number of sequential combinations of clusters of the data points may
be obtained. The optimum number of clusters is based upon the Euclidian distance [59]
between the clusters. The dendrogram tree presents the meaningful information of different
clusters and the Euclidian distances between the clusters, which forms the basis of the
optimum number of clusters. The optimum number of clusters was determined with
the help of cluster validity indices. Maximum Euclidian distance corresponding to the
optimum number of clusters for each season was determined to truncate the dendrogram
obtained through agglomerative clustering. Then number and identity of stations in each
cluster were identified. The algorithm of scikit-learn [50] was used for agglomerative
hierarchical clustering. The literature regarding different clustering techniques can be
found in [14,60,61].

3.1.4. Formation of Climate Zones

There are different cluster validity tests, through which the number of clusters (NC)
is decided. In the present study, the silhouette score (S) [62] (described in Section 3.1.5)
was used to determine the optimum number of clusters/groups of sites with statistically
similar climates. The number and identity of the stations in each cluster were determined
by truncating the dendrogram corresponding to Euclidian distance so that the estimated
optimum number of clusters could be produced.
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Different clusters of stations are plotted in the map of the study area in ArcGIS
Tool (Environmental Systems Research Institute, Redlands, CA, USA). To enable a clearer
presentation, regions are demarcated with the visible boundaries representing the climate
zone. The reference station in each climate zone was selected based on the average climate
signals of all the grid stations in the respective zone. The climate of the reference station is
considered representative of the climate of the respective zone.

3.1.5. Silhouette Score

The Silhouette score [62] is calculated as the average of the Euclidian distances between
the clusters. The number of clusters with maximum Silhouette Score is considered optimum.
The Silhouette score (S) can be calculated as

S =
1

NC ∑
i

1
ni

∑
r∈Ci

b(r)− a(r)

max[b(r), a(r)]
(1)

and

a(r) =
1

ni − 1 ∑ s∈Ci
, s 6= rd(r, s), b(r) = minj,j 6=i

[

1
nj

∑ y∈Cj
d(r, s)]

]

(2)

where NC is the symbol of the number of clusters; the ith cluster is represented by Ci

symbol for the number of objects in Ci is ni; the center of Ci is denoted by ci; and distance
between r and s is denoted by d(r,s) [62].

3.2. GCM Selection in Climate Zones

The climate forcing scenarios, as four Representative Concentration Pathways (RCPs),
have been used for AR5 by IPCC. These RCPs are RCP 2.6, a mitigation scenario; RCP4.5
and RCP6.0, scenarios of medium stabilization, and RCP8.5, high baseline emissions
scenario [63]. We used RCP 4.5 and 8.5 future scenarios to cover the wide range of green-
house gas emissions assumed in these scenarios. The projected daily precipitation data
(2005–2099) of the selected GCMs in each climate were sampled for these forcing scenarios
and combined with the mean and median for the projected climate trends. The selection
of GCMs out of 21 CMIP5 GCMs was done using the daily precipitation data of historical
(1971–2005) and projected period (2005–2099) at every reference station. We have illustrated
the method using the example of GCMs selection in the ninth climate zone of the cold dry
season for RCP 8.5. The climate zones for the cold dry season have been shown in Figure 3a,
highlighting the ninth climate zone in the study area. The steps are as follows:

1. For the projected period, the precipitation data were sampled for two forcing scenarios,
RCP 4.5 and RCP 8.5. The set of GCMs was selected using each of the forcing scenarios
separately. It means that each climate zone would have two sets of selected GCMs,
each corresponding to one forcing scenario. The idea was to incorporate every possible
spread and diversity of climate signals to select GCMs, which is the basis of the
envelope-based selection approach.

2. After combining the data of 21 GCMs for the historical and projected periods for RCP
4.5 and RCP 8.5 for all the reference stations, Principal Component Analysis (PCA)
was performed on 21 GCMs data at each of the reference stations. The objective was
to reduce the dimensions of the large matrix of the daily time series of 129 years (base
period: 1971–2004 and projected period: 2005–2099) for the reference stations in each
of the climate zone of every season. In addition, to retain as much descriptive of the
data as possible, PCA enabled us to reduce such a large matrix into a smaller-sized
matrix. The Principal Components (PCs) were obtained using the data of 21 GCMs
at each of the reference stations. The highly ranked PCs which explained maximum
cumulative variance in the dataset were identified through the scree plot. The compo-
nent scores are derived by eigenvectors and the eigenvalues for all the GCMs in each
PC. These component scores represent climate change patterns/signals in that specific
site and may be considered an alternative to the meteorological parameters, which are
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statistically independent [14,55]. Figure 3b,c are the scree plot showing the percentage
of explained variance by individual GCM and the line plot representing the cumu-
lative percentage of explained variance, respectively. The variance explained by the
individual PCs as shown in Figure 3b ranges between 4 and 6%, which means that all
the PCs are equally important in deciding the hierarchy of the clusters of the GCMs
for this zone 9 of the cold dry season. The gradient of the line plot in Figure 3c depicts
that 18 PCs have explained the cumulative variance of 90%. All principal components
have been included for the agglomerative hierarchical clustering to accommodate the
maximum variance of the data. Figure 3d presents the scatter of the component scores
of all the GCMs for the first two PCs, which cumulatively explained 19% variance in
the data at the reference station of climate zone 9. The dendrogram tree is presented
in Figure 3e, which presents the agglomerative hierarchical clustering of the GCMs
for this climate zone.

Figure 3. Climate zones for the season cold dry and indication of the zone 9 which is considered for
illustration (a) orientation of Zone 9 in study area (stations with similar climate have been given same
colored marker in first map) (b) cumulative percentage of explained variance by each PCs (c) scatter
plot of PC1 and PC2 (d) scree plot showing the percentage of explained variance by individual PCs
(e) dendrogram tree with cut off bar in red.

1. The climate signals in the form of component scores were obtained for the PCs, which
cumulatively explained 90% of the data variance. These component scores were then
used in the Agglomerative Hierarchical clustering (AHC) of the GCM. AHC would
result in the clusters of GCMs having similar descriptive statistics. Through this step,
we were able to identify the clusters or groups of GCMs having similar climate signals.
The method has been described in Section 3.1.2; the clustering of GCMs has been
illustrated with the help of a dendrogram tree of GCMs shown in Figure 3e for the
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climate zone 9 of the cold dry season. The optimum number of clusters is based upon
the Euclidian distance [59] between the clusters. The dendrogram tree presents the
meaningful information of different clusters and the Euclidian distances between
the clusters.

2. The optimum number of clusters was determined with the help of a cluster validity
index called the silhouette score (described in Section 3.1.5). The silhouette scores for
different numbers of clusters have been shown in Table 1 for the climate zone 9 of the
cold dry season. Two clusters are optimum for this case, as they produce the highest
silhouette score. Euclidian distance of 120 has been evaluated, corresponding to the
optimum number of clusters. The dendrogram tree was then truncated at a value of
120 Euclidian distance, as shown in Figure 3e, to obtain the number and identity of
GCMs in each cluster.

GCMs presenting the extreme climate signals, in the form of a component score, were
selected in each cluster in each climate zone [18].

Figure 4 illustrates the two clusters of GCMs for climate zone 9 of the cold dry season.
Cluster 1 has 19 GCMs as shown in Figure 4a, and Cluster 2 has 2 GCMs as shown in
Figure 4b. MIROC5 and MIROC-ESM are selected in cluster 1 and CNRM5 is selected
in cluster 2, as they are presenting the extreme climate signals in the form of component
scores.

Figure 4. Agglomerative Hierarchical Clustering of GCMs at climate Zone 9 (a) cluster 1 with
19 GCMs and component scores (b) cluster 2 with 2 GCMs and respective component score.
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Table 1. Silhouette score corresponding to the different number of clusters of GCMs at the reference
station of Climate Zone 9 of Cold Dry Season. The highlighted cells are the optimum number of
clusters and maximum Silhouette Score.

Number of Clusters Silhouette Score Number of Clusters Silhouette Score

2 0.0279 6 0.0056
3 0.0249 7 0.0028

4 0.0184 8 0.0033

5 0.0171 9 0.0032

3.3. Combining GCMs and Data Sampling

Multimodel combination is a practical methodology, which is employed by the climate
research community to incorporate all the model outputs (historical or projections) for the
climate impact modeling to reduce the uncertainty that may originate by the use of a single
model [17,64]. The approaches which are generally used to combine the models are equally
weighted mean and optimum weighted mean [65], and median. In this study, two methods
have been used for combining the data of the selected GCMs at each zone. The one is taking
the mean and the second is the median of the data of the selected GCMs in a climate zone.

3.4. Climate Change Trends Projections

Mann–Kendall (MK) test was used to detect the trend of the precipitation change in
the study for the four seasons for the century. The study period has been divided into
three parts to visualize the results every three decades. The magnitudes of the trends
were determined through Sen’s slope. MK Test and Sen’s slope test have been described
as follows.

3.4.1. Mann-Kendall Test (MK Test)

The MK test [66] is used to statistically detect monotonic increasing or decreasing
trends. In this study, the MK test has been used to detect the seasonal precipitation
trend for the projected period to detect statistically significant trends in the chronological
precipitation data. In this non-parametric distribution test, “No trend” is assumed in
the Null Hypothesis (Ho) and vice versa. Equations (3)–(5) are used to calculate the test
statistics Z. Equation (6) presents the test statistics.
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∑
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where Di and Dj are the ith and jth observations in the time series in chronological or-
der; the length of data is n; tp is the total number of data points in pth tied group, and
the total number of tied groups is q; σ represents the variance. The negative Z value
denotes the downward trend and vice versa. The Null Hypothesis of “No trend” is rejected,
|Z| > Z1−α/2 indicates a statistically significant trend. The critical value Z1−α/2 corre-
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sponds to p-value 0.05. This trend has been detected at 138 stations in a region for each
scenario.

3.4.2. Sen’s Slope Evaluation

The magnitude/slopes of the trends in the data were obtained using Sen’s method [67].
Sen’s slope is the median value in the set of linear slopes in the data. Sen’s slope is estimated
through the following Equation (7).

Ti =
Dj − Dk

j − k
for (1 ≤ i < j ≤ n), (7)

where the slope is denoted by Ti, Dj and Dk are the values at time steps j and k, respectively,
and n is the total number of the data points number.

4. Results and Discussion

This section presents the results of each step of the study methodology. Section 4.1
shows the results of GCM selection. In Section 4.2, the significance of precipitation trends
and magnitude are presented.

4.1. Formation of Climate Zones

The two major steps involved in the regionalization of the study are (1) Principal Com-
ponent analysis and (2) Agglomerative Hierarchical Clustering. Climate change patterns
have been visualized through the application of PCA on the historical daily precipitation
data (1971–2005) of 138 stations for every season. Then the clusters of sites/stations present-
ing similar climate signals were identified through agglomerative hierarchical clustering,
the results of each step of the clustering procedure are presented as follows.

4.1.1. Principal Component Analysis (PCA)

After execution, 20 significant principal components were identified which explained
the cumulative variance of 95% of the data for each season in the study area. The cumulative
variance by five, ten, fifteen, and twenty principal components have been shown in Table 2.
According to these plots, approximately the first 20 PCs explained 94–95% of the variance
in every season. These 20 PCs were engaged for the agglomerative cluster analysis in the
next step of regionalization. The component scores were obtained for each PC at every
station. These component scores represent the climate signals generated at the respective
station. The climate signals of the first two leading principal components in the study area
have been visualized for each season in Figure 5.

In the warm wet season, the first two principal components explained a cumulative
variance of 44.8%. In cold dry, cold wet, and warm dry seasons, the cumulative variance
of 41.2%, 45.7%, and 41.5%, respectively, were explained. The higher negative or positive
signals/component scores correspond to high variability in the precipitation data and the
lower signals depict the low variability. The percentage variance explained by each PC in
different seasons has been mentioned in each panel of Figure 5. In the southwest of the
region, the high negative climate signals were obtained in the cold wet and warm dry season
but low negative signals were obtained in the warm wet and cold dry season, for the first
principal component. For the second principal component, low negative component scores
were obtained in all the seasons in the southwest of the region. In the north, according
to the first Principal component, the positive medium to high component scores were
obtained in cold dry, cold wet, and warm dry season, and negative high component scores
were obtained in the warm wet season. Low negative climate signals in the northern region
were obtained in all the seasons for the second-highest leading Principal Component. In the
southeast of the region, highest spatial heterogeneity in climate signals has been observed,
as positive highest component scores were obtained for the warm wet, cold wet, and warm
dry season in the second principal component. The heterogeneity of the component scores,
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depicting the variability of the climate in the region, forms the basis of the clustering of
the sites.

Table 2. Cumulative percentage of explained variance of Principal Components.

Season 5 PCs 10 PCs 15PCs 20 PCs

Warm Wet 78 88 93 95
Cold Dry 77 87 91 94
Cold Wet 77 88 92 95

Warm Dry 77 86 92 95

Figure 5. The spatial distribution of the component scores for the first two principal components
(PC), percentage variance explained by the PCs are written in each panel (a) warm-wet (PC1), (b) cold
dry (PC1), (c) cold wet (PC1), (d) warm dry (PC1), (e) warm wet (PC2), (f) cold dry (PC2), (g) cold
wet (PC2) and (h) warm dry (PC2) seasons.

4.1.2. Agglomerative Hierarchical Clustering (AHC)

The clustering of the component scores of 138 stations for the first 20 leading PCs was
done using Agglomerative Hierarchical Clustering. The number of optimum clusters was
determined through a cluster validity test of silhouette score. The optimum clustering based
on the silhouette score is decided corresponding to the highest score. The test suggested
that the climate signals corresponding to the stations be optimally clustered into 17, 11, 10,
and 14 for the warm wet, cold dry, cold wet seasons, and warm dry, respectively.

The maximum Euclidian distances were determined as 98, 95, 120, and 110, corre-
sponding to the optimal number of clusters of 17, 11, 10, 14 for warm wet, cold dry, cold
wet, and warm dry seasons, respectively. The dendrogram trees, as shown in Figure 6,
were obtained through AHC. These trees were truncated at maximum Euclidian distances
of 98, 95, 120, and 110 to obtain the optimum number of clusters and the station points in
every cluster. The truncation bar in each season is also shown in Figure 6.
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Figure 6. Dendrogram trees presenting the number of stations in each cluster (in Bracket) and cut-off
bars corresponding to the optimum Euclidean distance, based on the Silhouette Score for climate
zoning for: (a) warm wet, (b) cold dry, (c) cold wet, and (d) warm dry seasons.

4.1.3. Climate Zones and Reference Site

All the clusters of stations were plotted on the map of the study area. Each cluster of
stations having a homogeneous climate has been given a different color to differentiate
them. For clear presentation, the cluster boundaries are made to demarcate the region into
several climate zones. The transformation of the clusters of stations to the climate zones for
each season has been presented in Figure 7.

After merging the outliers with the nearest clusters, the river basins are apportioned
into 12, 9, 9, and 10 clusters for the warm wet, cold dry, cold wet, and warm dry seasons,
respectively. The sites/station, which represented approximately the average of the climate
signals of the stations in the cluster, has been termed as a reference station. These reference
stations were identified in every cluster/climate zone of all the seasons.
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Figure 7. The transition of clusters into Climate zones in the study area in the (a) warm wet, (b) cold
dry, (c) cold wet, and (d) warm dry seasons.

4.2. GCM Selection

The GCMs were selected in every climate zone in every season based on the envelope-
based approach. For the study area, selected GCMs using base period data (1971–2004) and
projected data of RCP 4.5 and RCP 8.5 of 21 GCMs in different climate zones and seasons
have been presented in Tables S2 and S3, respectively (in Supplementary Materials).

4.3. Seasonal Precipitation Trend Projection

Although some studies have evaluated climatic variability and its implications on
the hydrological regime of the Jhelum and Chenab River basins, there is no clear agree-
ment among them regarding climate change trends projections and their effects on the
hydrological regime, specifically for the next century [16,68–70].

The seasonal trends of precipitation were evaluated for the projected data for two
forcing scenarios of RCP 4.5 and RCP 8.5 and two combinations (mean and median) of the
Ensemble members’ data. The trends and slopes have been assessed for consecutive three
decadal projected periods, i.e., 2005–2040, 2041–2070, and 2071–2099 as well as the whole
projected period of 2005–2099. The results show that the trends were statistically non-
significant in most of the parts of the study area when the analyses were performed for the
3-decadal period. Whereas the trends were significant when the whole projected period was
used in the analyses. Figures 8 and 9 present the trend analyses for the period 2005–2099
for the two ensemble combination of MME-mean and MME-median, respectively.

The spatial distributions of the significance of the trends and the slopes have been
presented in Figures S1–S4 (in Supplementary Materials). MK Test p-value has been mapped
spatially for a region, and the green shades depict that the trend is significant for α ≤ 0.05.
When the p-value is greater than 0.05, the trend is non-significant. p-value equals unity, and
depicts no trend.
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Figure 8. Mann Kendall trend detection and Sen’s slope results for MME-Mean using RCP 4.5 and
RCP 8.5 for analysis period (2005–2099) (a) Warm Wet (b) Cold Dry (c) Cold Wet (d) Warm Dry.

4.3.1. For 2005–2040

The data for the scenarios MME-mean and median of RCP 4.5, projected the significant
increasing trends of 5–6 mm/year and 4–5 mm/year, respectively, in the warm dry season
in the central part of the study area. For MME mean and median RCP 8.5, some traces
of significant trends have been observed in the central part for cold dry season with
magnitude ranges from 4 to 5 mm/year and 2 to 3 mm/year, respectively. In the north of
the area, the data of MME-mean RCP 8.5 have projected significant positive trends of range
4–5 mm/year in east of the area.

4.3.2. For 2041–2070

The data of MME-mean RCP 8.5 have projected traces of significant decreasing trends
in the warm wet season of magnitude ranging from 3 to 5 mm/year in the central part
and positive significant trends ranging from 5 to 6 mm/year in the cold dry season in east.
Some traces of increasing trends of magnitude 5–6 mm/year have been projected in the
east of the study area for the cold dry season.

The data of MME-median RCP 8.5 have projected decreasing trends of 1–2 mm/year
in east of the area for the cold dry season and increasing trends of 5–6 mm/year in the
southwest for the warm dry season.
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4.3.3. For 2071–2099

MME-mean and median RCP 4.5 have projected increasing trends for the warm dry
season in the southeast and cold dry season in the west, respectively, with magnitude varies
from 2–3 mm/year.

Figure 9. Mann Kendall trend detection and Sen’s slope results for MME-Median using RCP 4.5 and
RCP 8.5 for analysis period (2005–2099) (a) Warm Wet (b) Cold Dry (c) Cold Wet (d) Warm Dry.

4.3.4. For 2005–2099

For MME-mean RCP 4.5 (refer to Figure 8), the significant decreasing trends have
been projected in the whole study area for the warm wet season with magnitude varying
between 1.85 and 4.9 mm/year in the central and north, 0.6–1.2 mm/year in southeast and
southwest. In the cold dry season, the significant increasing trends range between 0.04 and
1.2 mm/year have been projected in central, north, east, and southeast. In the cold wet
season, significant increasing trends have been projected in the north of the region with
magnitude varying between 0.8 and 1.22 mm/year. Significant increasing trends have been
noticed in warm dry in nearly all parts of the area except north, with magnitude varies
between 0.81 and 3.27 mm/year.

For MME-mean RCP 8.5, significant increasing trends have been projected in the
study area for cold dry and warm dry seasons with magnitude varying between 0.2 and
1.2 mm/year and 0.5–3.27 mm/year, respectively. Significant increasing trends have been
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projected in the north and southeast for the cold wet season with magnitudes varying
between 0.5 and 1.63 mm/year.

For MME-median RCP 4.5 (refer to Figure 9), significant decreasing trends have been
projected in the warm wet season in the north and central parts with magnitudes varying
between 1.23 and 2.47 mm/year. For the cold dry season, significant positive trends
have been projected in the east with magnitude ranges between 0.81 and 1.22 mm/year.
Significant positive trends have been projected in nearly all of the study areas for the warm
dry season with a magnitude that varies between 0.5 and 1.63 mm/year.

For MME-median RCP 8.5, significant increasing trends have been projected in cold
dry in north and east and warm dry season in nearly all the area with magnitude varying
between 0.5 and 1.22 mm/year.

5. Conclusions

There is currently no consensus on widely agreed criteria and approaches for GCM
selection in previous research [71,72]. Studies continue to explore ways, be it statistical or
dynamic, to minimize the uncertainty in the climate change projections [25]. To minimize
uncertainty associated with the GCMs suitability across various regions with heterogeneous
climates, this research proposed a novel method for the selection of GCMs in homogeneous
climate zones based on daily seasonal precipitation statistics. These statistics are reflected
by the reanalysis gridded data series spanning throughout 1970–2005 for the Jhelum and
Chenab River basins. The GCMs were selected by agglomerative hierarchical clustering
of PCs obtained through the data spanning over the baseline period of 1970–2005 and
the projected data for two forcing scenarios spanning between 2005 and 2099. The PCs
represented the climate variability signals produced by various GCMs’ data in the specific
climate zone. Agglomerative hierarchical clustering of these climate signals produced
the clusters of GCMs having the homogeneous variability of climate signals. The GCMs,
producing the extreme climate signals in every cluster, were selected for the specific climate
zone and season, thus fulfilling the criteria of envelope-based selection.

We sampled the daily precipitation data for the projected period using the selected
GCMs for the two radiative forcing scenarios of RCP 4.5 and 8.5 and combining the data as
mean and the median at every grid point, to detect the trends in the precipitation variability,
in the Jhelum and Chenab River basins for the period spanning 2005 to 2099.

The machine learning algorithms modules of the Scikit-learn library of Python were
used to develop a program for GCM selection, Data sampling, and trend detection. The
program can be used to augment the decision support system for water resource manage-
ment, even with the data of the new versions of the GCMs. However, the assessment of
the future projections derived from the GCMs outputs are based on the forcing scenarios,
which are unknown in the future, thus are fundamentally uncertain. So, it is important to
understand the uncertainty associated with the GCMs’ outputs to use such simulations for
the climate change impact assessment [73–76]. The following conclusions can be drawn
from the results presented in the study:

(1) The high variability in the climate in Pakistan poses a major challenge to the scientific
community to project the plausible trends in climate, specifically precipitation change,
which is considered to be the basic representative of climate and covariates. It was
intended to select the suitable GCMs across the multiple homogeneous climate zones,
which are representative of spatiotemporal variability of the climate in a region. The
conventional method of using the spatiotemporal area average [13,31,77] of the climate
data or various spatial metrics after analyzing the individual grid point data [66,78,79]
is very common among the climate research community. However, the selected GCMs,
through these methods, may not represent variability and range of climate signals in
the region having spatially heterogeneous climate statistics, which poses uncertainty
in projecting the climate data using these GCMs. Therefore, the entire study area was
divided into 12, 9, 9, and 10 homogeneous precipitation regions for the warm wet,
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cold dry, cold wet, and warm dry season, respectively. The selection of GCMs was
made in each homogeneous climate zone.

(2) The precipitation trends were projected using the selected GCMs data on two forcing
scenarios, RCP 4.5 and RCP 8.5, and two ensemble combinations; mean and median,
thus making the total of four scenarios (RCP 4.5 Mean, RCP 4.5 Median, RCP 8.5 Mean,
and RCP 8.5 Median). The trends projected using these scenarios provide the details
of the range of trend variability of climate change in the region, with the knowledge
of maximum increasing and decreasing trend quantification in the region seasonally,
which is the purpose of envelope-based selection of GCMs.

Statistically significant trends were projected when the analyses were performed using
the study period of 2005–2099. Significant negative trends were projected in the warm wet
season and significant positive trends were projected in warm dry seasons for RCP 4.5.
For RCP 8.5, statistically significant positive trends were projected in cold dry and warm
dry seasons. The high evaporation and convection rate over the agro-economic zones is
anticipated to be the cause of increasing trends in high emission scenarios.

Further research avenues that can be explored include a redefinition of the homo-
geneous climate zones based on GCMs’ output and selection of GCMs based on spatial
coherence of these climate regions with the regions derived through observed or high-
resolution reanalysis data.
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and ERA5 monthly dataset. Pearson correlation coefficients and Kolmogorov Smirnov Test results
(KS Test). (The shaded p-values are >0.05, depicting the null hypothesis of similar distribution, is not
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Abstract: Ground based rainfall information is hardly available in most high mountain areas of

the world due to the remoteness and complex topography. Thus, proper understanding of spatio-

temporal rainfall dynamics still remains a challenge in those areas. Satellite-based rainfall products

may help if their rainfall assessment are of high quality. In this paper, microwave-based inte-

grated multi-satellite retrieval for the Global Precipitation Measurement (GPM) (IMERG) (MW-based

IMERG) was assessed along with the random-forest-based rainfall (RF-based rainfall) and infrared-

only IMERG (IR-only IMERG) products against the quality-controlled rain radar network and

meteorological stations of high temporal resolution over the Pacific coast and the Andes of Ecuador.

The rain area delineation and rain estimation of each product were evaluated at a spatial resolution

of 11 km2 and at the time of MW overpass from IMERG. The regionally calibrated RF-based rainfall

at 2 km2 and 30 min was also investigated. The validation results indicate different essential aspects:

(i) the best performance is provided by MW-based IMERG in the region at the time of MW overpass;

(ii) RF-based rainfall shows better accuracy rather than the IR-only IMERG rainfall product. This

confirms that applying multispectral IR data in retrieval can improve the estimation of rainfall com-

pared with single-spectrum IR retrieval algorithms. (iii) All of the products are prone to low-intensity

false alarms. (iv) The downscaling of higher-resolution products leads to lower product performance,

despite regional calibration. The results show that more caution is needed when developing new

algorithms for satellite-based, high-spatiotemporal-resolution rainfall products. The radar data vali-

dation shows better performance than meteorological stations because gauge data cannot correctly

represent spatial rainfall in complex topography under convective rainfall environments.

Keywords: complex terrain; Ecuador; GPM IMERG; rainfall; radar network; satellite retrieval

1. Introduction

Understanding precipitation amounts and patterns is essential for sustainable water
management and monitoring the hydrological cycle [1]. In complex mountainous regions
characterized by high spatiotemporal variability, coarse networks of operational precipita-
tion gauge stations are often lacking. The spatiotemporal variability, combined with lack of
gauge data, makes the time series and area-averaged rainfall analysis more complicated in
these regions [2]. This also applies to the complex topography of the Andes in Ecuador.
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Early satellite-based rainfall retrieval efforts estimated rainfall from geostationary
infrared (IR) data, using the indirect relationship between precipitation rate and the temper-
ature of cloud on top [3]. Hence, the algorithms and the product accuracy were limited to
the top of the cloud’s characteristics. Unlike IR, microwave (MW) sensors measure thermal
radiance from actual precipitation particles in the clouds; consequently, MW retrieval
generally provides superior precipitation information [4].

A recent result of the continuous technological improvement of low-Earth-orbiting
passive MW satellites and spaceborne radars in the MW band is the Global Precipitation
Measurement (GPM) mission [5]. GPM was launched in 2014 as post Tropical Rainfall
Measuring Mission (TRMM) [6]. Compared with TRMM, the GPM improved sensitivity to
light precipitation and distribution of rain and snow. These improvements have achieved
by a two-frequencies precipitation radar (Ku band (13.6 GHz) and Ka-band (35.5 GHz))
as well as the GPM multi-channel microwave imager (GMI) that accommodates higher
spectral resolution at frequencies of 10.65, 18.7, 23.8, 26.5, 89, 165.5, and 183.3 GHz [5,7,8].

However, several studies showed that machine learning could improved the regionally
calibrated retrievals using simply passive IR data from geostationary orbit (GEO) [3,8–13].
Compared to the passive MW and radar sensors, the GEO systems provide the high
temporal (10–30 min) and spatial (2–4 km2) resolution. It is essential to capture the short-
term characteristics of rainfall systems in the retrieval [8]

A few studies have investigated the performance of satellite-based rainfall products
over Ecuadorian areas. The Precipitation Estimation from Remotely Sensed Information
using Artificial Neural Networks (PERSIANN) [14] shows low agreement with rain gauge
in daily resolution [2] in rain area detection. Manz et al. [15] investigated the performance
of the integrated multi-satellite retrievals for GPM (IMERG) [5] and TRMM multi-satellite
precipitation analysis (TMPA) [6] against gauge data with different temporal resolutions
(hourly, 3 h, and daily). In their study, IMERG showed better agreement than TMPA,
especially on the high elevation of Andes. Erazo et al. [16] reported that at high elevations
in the Andes, TRMM 3B43 Version 7 retrievals showed a higher correlation (R2 = 0.82) on
monthly compared with interpolated gauge data at a spatial resolution of 27.75 km2. The
result of the validation of the regionally developed algorithm in Ecuador, the random forest-
based rainfall (RF-based rainfall) of Turini et al. [3] with an 11 km2 resolution, obtained
a median Heike skill score (HSS) around 0.35 for daily gauge stations, meanwhile the
lower performance of the IR-only from the IMERG (IR-only IMERG) showed by HSS = 0.2.
In their method, they used the Random forest algorithm to retrieve rainfall. In this text,
the RF-based rainfall stands for the rainfall retrieval from random forest algorithm [3].
The RF-based rainfall retrieval performed in estimating the rainfall rate with correlation
coefficient (r) values 0.34 [3].

To improve satellite-based products’ overall performance, understanding the sources
of error on the highest possible temporal resolution is crucial [6,17]. Given the high spa-
tiotemporal variability of rainfall in Ecuador, spatiotemporally high-resolution validation
sources for rainfall are lacking. Therefore, as stated before, only a couple of studies have
investigated the performance of satellite-based rainfall products at higher spatiotemporal
resolution [15,18].

Different studies have found that, due to the variability of weather and climate
in complex terrain, the satellite retrievals are posed to challenges both in IR and MW
products [3,8,12,13,19]. Dinku et al. [19] evaluated the impact of topography on IR-based
Tropical Applications of Meteorology using Satellite and ground-based observation (TAM-
SAT) [20] in East Africa for 1998–2012, comprising five different countries: Uganda, Kenya,
Tanzania, Rwanda, and Burundi. In the study, the elevation varied between 1500 and
4500 m [19]. TAMSAT showed an underestimation. Dinku et al. [19] argued that the
underestimation corresponded mainly to convective and orographic rainfall during the
rainy season (March, April, and May), mostly in the windward exposition.

In this work, we aimed to validate different satellite-based rainfall products to identify
and understand sources of errors in the complex elevation of the Andes in Ecuador on a
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sub-daily time scale. Our aim was not just to compare satellite-based rainfall products
with ground measurements but also to identify the sources of the differences between the
satellite-based rainfall products and ground measurements. Therefore, in this study, we
evaluated the performance of MW-based IMERG in comparison with RF-based rainfall
and IR-only IMERG against high-spatiotemporal-resolution data from ground based radar
network and high temporal resolution of meteorological stations to characterize the impact
of climatic and topographic conditions on satellite-based rainfall products at the time of
MW overpass. We also assessed the performance of regionally trained RF-based rainfall in
Ecuador on the subdaily time scale (30 min) and high spatial resolution (2 km2) with the aim
of finding the source of possible errors for further development. Following a description
of the climatology of the study area, the satellite-based rainfall products, ground based
radar data and meteorological stations are described in Section 2.1. Section 2.2 introduces
the evaluation methodology with a focus on rain area detection and rain estimation. The
results are presented in Section 3 and discussed in Section 4. Finally, the important findings
are summarized in Section 5.

2. Materials and Methods

2.1. Data

2.1.1. Radar

In the current study, the data from two rainfall radars, which are part of the Radarnet-
Sur network in Southern Ecuador, were used. The westernmost radar system is located on
Cerro Guachaurco (3100 m above sea level (m.a.s.l) (GUAXX radar)). Another radar system
is located at 4450 m.a.s.l (to the best of our knowledge, this is the highest worldwide) on
the Paragüillas peak on the north border of the Cajas National Park in Southern Ecuador
(CAXX radar). The radars have a maximum range of 100 km2 and provide images with
spatial resolutions of 500 m every 5 min. For more information about the Radarnet-Sur
network (Figure 1a) infrastructure, please refer to Bendix et al. [21]. The coverage of radars
in this study is shown in Figure 1a.

Radarnet-Sur calibration strategies have been continuously developed since 2006. The
calibration strategy is based on a statistical procedure that uses the available rain gauge
data. The data processing and correction algorithms in this empirical calibration consisted
of four steps: (i) clutter and noise removal; (ii) atmospheric and geometric attenuation
correction; (iii) interpolation of blind sectors; (vi) application of the empirically derived
daily variable Z/R relationship. In this equation Z means radar reflectivity factor and R
stands for rainfall intensity. For more information about the calibration algorithm, please
refer to [22]. The final product from the radars used a blending technique for overlapping
areas and temporal data gaps were completed using additional data from the rain gauges.
For further information about the extended calibration strategy, please refer to [23].

The observed rainfall data from the radars were quality-controlled for detecting
possible inconsistencies and selecting high-quality data. All the scenes from the radars
were visually inspected. For this, the gauge data from the National Institute of Meteorology
and Hydrology (INAMHI) (daily), the Universidad TécnicaParticular de Loja (UTPL)
gauge network (10 min resolution), and the Cuenca University gauge network were used
as references. The scenes in which there were no rain in the radar but rain in each of
the gauges and vice versa were removed. Additionally, obviously failed recordings were
manually removed. Furthermore, we used the infrared channel IR 3.9 from GOES-16 to
detect the movement of cold clouds and radar rainfall rate. Although we have enough data
available in our observation period, electronic technical problems and other issues caused
data failure.

We delivered the final products of radar reflectivity and rainfall rate after attenuation
and clutter correction for the time period between April 2017 and the end of January
2018 (GUAXX: 16 June 2017 to 1 February 2018; CAXX: 19 April 2017 to 1 July 2017). The
reflectivity ranged from −31.5 to 91.5 dBZ with a total of 256 possible values.
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The spatial distribution of the sum of the radar rainfall for the observation period
is shown in Figure 1b. The rainfall sum, showing totals between 250 and 4492 mm. The
rainfall pattern is different over the study region, covering a climatically diverse area.
The spatiotemporal rainfall distribution in the radar coverage is generally affected by the
Andes mountains, the El Niño–Southern Oscillation (ENSO), the biannual migration of
the intertropical convergence zone (ITCZ), and also the cold von Humboldt current in
the Pacific Ocean, [15,24,25]. On the eastern sides of the Andes, the strong topographic
slopes and easterly winds result in orographic effects [26,27], which is causing the cyclical
spatiotemporal rainfall behavior and deep convection [28].

Figure 1. The distribution of (a) meteorological stations (19 April 2017 to 28 February 2018) and
spatial coverage of radars (GUAXX: 16 June 2017 to 1 February 2018; CAXX: 19th April 2017 to 1 July
2017) used in this study, (b) the radars in the study period (GUAXX: 16 June 2017 to 1 February 2018;
CAXX: 19th April 2017 to 1 July 2017). For validation purposes, we excluded the radar data in the
very near range (<10 km distance from the radar site) to avoid contamination through noise. We also
excluded the far range >50 km due to possible attenuation errors. Nevertheless, we show the rainfall
amount in the entire radar range for better illustration. The extent of study area is shown in windows
(W)-1. (c) Spatial distribution of the elevation in the radar coverage area. W-2 and W-3 rectangles
outline the extent of Figure 2a,b.

2.1.2. Meteorological Stations

A meteorological station network, comprising 21 high-temporal-resolution rain sta-
tions, was used in this study. Meteorological station data were obtained from UTPL and
University of Cuenca. Meteorological stations from UTPL and University of Cuenca pro-
vide rain data every 10 and 5 min, respectively. Daily rainfall information was acquired
from INAMHI. Meteorological station data from 19 April 2017 to 28 February 2018 were
used as validation information to examine radar quality. The high temporal resolution
meteorological stations from UTPL and the University of Cuenca are used to validate the
satellite-based products at the time of MW-overpasses. We obtained the data from all
organizations after quality checks.

The quality check for the station data from the University of Cuenca is performed
by drawing a cumulative precipitation curve that identifies abnormal records (outliers
and wrong measurements). These measurements are disregarded from the time series. In
addition, correlation to nearby stations is also performed as a double check if necessary. In
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order to maximize the quality of the measurements, regular maintenance of the stations in
the field (every three weeks or fewer) is performed. For the INAMHI data, it is checked if
daily values are between 0 and 250 mm, which is the maximum daily precipitation value
registered at a national scale.

Figure 1a shows the distribution of the meteorological stations used in this study.
It should be noted that these data are not included in the Global Precipitation Cli-

matology Center (GPCC) network and therefore not used for the gauge-calibrated final
IMERG product.

2.1.3. Integrated Multi-Satellite Retrievals for GPM

IMERG is a level 3 product which integrates all MW sensors, MW-calibrated IR
estimates, and rain gauge measurements on a global scale [29]. All MW estimates, af-
ter calibration, were subjected to the Climate Prediction Center MORPHing technique
(CMORPH) [30] to calculate the motion vectors from the IR measurements and the different
atmospheric variables from numerical models. In regions without direct PMW overpasses,
the algorithm uses the retrieved rainfall from PERSIANN-CCS [14] and GEO IR (IR-only
IMERG) to complete the gridded product. In the last step, the monthly rain data from the
GPCC were used to as a bias correction of the rainfall estimate [29].

In this study, the latest available version of IMERG (IMERG-V06 [29]), which displayed
an overall improvement in the precipitation estimation compared with version-05 [31],
was used.

The IMERG provides rainfall estimates with the spatial resolution of 0.1° (11 km2)
in every 30 min. We focused on the final product of IMERG Version 06 (IMERG-V06),
gauge-adjusted retrievals for the study period. NASA also provided the quality index
(QI) as a variable in 30 min resolution [32]. The QI indicates the relative quality of rainfall
estimates in half-hourly IMERG products, fluctuating temporally between passive MW
(PMW) and IR-based rainfall estimates. Additionally, the time of the overpass of each MW
swath is provided in metadata with the name of ‘HQobservationTime’.

For our validation, the multi-satellite precipitation estimates with the gauge calibration
subdata set of IMERG (precipitationCal), as well as “IRprecipitation” was used. In this
study, IRprecipitation and IR-only IMERG are equivalent.

2.1.4. Random Forest-Based Rainfall

The random forest-based rainfall (RF-based rainfall) product is the regionally cali-
brated rainfall retrieval scheme developed Ecuador by Turini et al. [3]. The algorithm uses
random forest (RF) to calculate rainfall rates in surface level by means of multi-spectral IR
data from Geostationary Operational Environmental Satellite 16 (GOES-16). The algorithm
is trained based on MW-only precipitation data from IMERG-V06. The RF-based rainfall
product was implemented by (i) delineating the rain area, and (ii) assigning of the rainfall
rate at 11 km2 spatial resolution and for the time of a MW overpass. As predictors, GOES
IR bands, band combinations, geostatistical texture features calculated from the original
GOES IR bands, and ancillary data were used. Turini et al. [3] used the geostatistical texture
features to capture the clouds’ heterogeneity. They calculated the texture features using
a 5 × 5 pixel moving window method. First, for each GOES IR band, variograms (VARs),
madograms (MADs), and rodograms (RODs) and then, for each possible bands combina-
tion, cross-variograms (CVs) and pseudo cross-variograms (PCVs) were calculated. Please
refer to Schulz et al. [33] for more information about definitions and equations of texture
features. The most important features were obtained monthly for each of the steps (rain
area delineation and rainfall rate assignment) separately. The model tuning and feature
selection results showed that, in addition to the ancillary data, the information recorded
in the geostatistical texture features was the most important for rain area delineation and
rainfall rate assignment [3].

The PCV was the dominant texture feature selected in almost all months, both for rain
area delineation and rain rate assignment [3].
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After training the models, the RF-based rainfall at a high spatiotemporal resolution
(2 km2, 15 min) was estimated. In this step, the models were applied to the GOES-16
scenes where MW-IMERG was available and the following scenes until the next model was
present in Turini et al. [3]. The product is available from 19 April 2017 to 19 April 2018.

2.2. Methods

Three different validations were employed in this study to assess satellite-based
rainfall product performance. Due to the different availabilities of the slots of the products,
the period for this study ranged from 19 April 2017 to 1 February 2018 in the time slots
where radar data are available.

• The performance of the satellite-based rainfall products are investigated against the
X-band rain radar network at the time of MW overpass at a spatial resolution of 11 km2.

• The performance of the satellite-based rainfall products is investigated against the
ground based meteorological station network at the time of MW overpass at a spatial
resolution of 11 km2.

• The RF-based rainfall product is validated against the X-band rain radar network in
the temporal resolution of 30 min and spatial resolution of 2 km2.

2.2.1. Validation of Satellite-Based Rainfall Products at the Time of MW Overpass
from IMERG

The first validation was performed to investigate satellite-based rainfall products’
performance against X-band rain radar network when MW overpass sensors from IMERG
are present. This is essential since the IMERG data set has been widely used to develop
satellite-based rainfall products [8,12,13,34].

We used different subdata sets in the IMERG product. We first considered the pixels
from “precipitationCal” when the PMWs swat was available (“HQobservation”). Then,
the pixels with the “PrecipitationQualityIndex” >0.6 (which indicates the current half-hour
microwave swath data) [32] were picked out. “IRprecipitation” were also selected in the
same pixels from IMERG. This data set (IR only) was retrieved from the PERSIANN-CCS
in IMERG, which are calibrated regionally to the PMW-only measures [29]. Therefore, in
this study, we named this product “IR-only IMERG”.

To compile the most robust data set for the first validation of satellite-based rainfall
products against the radars at the time of MW overpass in IMERG, we defined the fol-
lowing criteria: (i) For temporal matching, we used “HQobservationTime” for IMERG
to determine the exact time of MW overpass in each pixel. Then, we rounded the WM
overpass time to the closest 5 min to be compatible with the temporal resolution of the
radar (every 5 min). In this step, we assumed that the RF-based rainfall and IR-only
IMERG have the same timing as the time of MW overpass. (ii) To ensure the high-quality
rainfall information from IMERG (merged MW-only precipitation estimates), we used
the “PrecipitationQualityIndex”. (iii) Sensitivity to light rain continuously degrades with
increasing distance from the radar. To only assess the near range, we applied a circular
mask with a radius of 50 km from the center of each radar. (iv) A mask for filtering the
radar data for plausibility was also applied. A value of 1 indicates reliable data from radars.
(v) There was some noise in the center of the radar due to the cross-talk from the antenna’s
side-lobes. Therefore, we omitted the inner pixels with a radius of 10 km from the center
for the validation. (vi) Due to the different spatial resolutions of the RF-based rainfall
(2 km2), radar (0.5 km2), radar quality index (0.5 km2), DEM (1 km2), and IMERG (11 km2),
the average resampling techniques in gdal [35] were used to guarantee spatial matching
between the different data sets. In our study, we used the WGS84 projection coordinate
system and all dataset were resampled to the spatial resolution of IMERG (11 km2). (vi)
The 0.5 mm/h was used as a threshold between rainy and non-rainy pixels for validation.
(vii) The pixels in the radar considered rainy (>0.5 mm/h) but has a dBZ lower than −15
were considered false and filtered out from the validation data set.
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By applying above criteria and withdraw the data pairs of the first validation against
radar on a pixel basis, a total of 117,183 pixels of radar and MW-based IMERG, RF-based
rainfall, and IR-only IMERG were made available at a half-hourly resolution for validation.

In the second validation, the overall performance of the rainfall area delineation and
rainfall rate assignment was investigated for each product against data from ground based
meteorological stations at the time of the MW overpass.

For comparison with the meteorological ground based station network, we only
considered pixels with a minimum number of three gauges (see Figure 2). Tang et al. [36]
underline that gauge networks with limited numbers of gauges in each pixel leads to
underestimation of the performance of satellite-based rainfall products. This is because the
point observations of gauges cannot represent pixel-based precipitation. Therefore, for this
validation the stations from University of Cuenca with the temporal resolution of 5 min
(Ana Davis, Zona Militar Davis and Balzay) and from UTPL (UTPL Militar, UTPL Tecnico
and UTPL Villonaca) with the temporal resolution of 10 min are considered.

Figure 2. Location of pixels with a minimum number of three gauges for (a) the University of Cuenca
gauge network and (b) the UTPL gauge network. In Figure 1a, W-2 and W-3 rectangles outline the
extent of (a) and (b), respectively.

To generate the dataset for ground truth validation of the three satellite-based products
against the gauge network, we proceeded as follows: (i) for temporal matching, we used
“HQobservationTime” for IMERG to determine the exact time of MW overpass in each pixel.
Then, we rounded the WM overpass time to the closest 5 min to be compatible with the
temporal resolution of the radar (every 5 min). In this step, we assumed that the RF-based
rainfall and IR-only IMERG have the same timing as the time of MW overpass. (ii) To
ensure the high-quality rainfall information from IMERG (merged MW-only precipitation
estimates), we used the “PrecipitationQualityIndex”. In the next step (iii), the spatial
matching were done using the average resampling techniques in gdal [35] to resample the
products to the spatial resolution of IMERG (11 km2). (iv) The threshold of 0.5 mm/h was
used to distinguish between rainy and non-rainy events. (v) After selecting pixels, the
arithmetic mean rainfall from station data was computed in these pixels, given that every
pixel includes three stations at minimum.
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2.2.2. Validation of RF-Based Rainfall Products in Native Resolution

In the third validation, we investigated the general behavior RF-based rainfall in
rainfall area delineation and rainfall estimation in the native spatial resolution (2 km2)
and every 30 min in the entire study area for the study period. To prepare the data set for
this validation strategy, we defined the following criteria: (i) In our study, area, subscale
convective rainfall systems in the transition zones and valleys [37] are dominant. To
understand satellite-based rainfall products’ capability to capture these events, we kept the
original spatial resolutions of the RF-based rainfall, 2 km2; (ii) to minimize the uncertainties
caused by the potential temporal offset between RF-based rainfall products, the radar
and RF-based rainfall were aggregated in time to 30 min. For the temporal aggregation
of the radar and the RF-based rainfall, we considered a unit conversion between mm/h
and mm/30 min. (iii) We used a threshold of 0.2 mm/30 min to distinguish between
rainy and non-rainy pixels for validation; (iv) equal to the first validation strategy, the
pixels of the radar considered rainy (>0.2 mm/30 min) at a dBz lower than −15 dBz were
considered false and were removed from the validation data set. (v) We omitted the inner
pixels within a radius of 10 km2 from the center; (vi) a mask for filtering the radar data for
plausibility was also applied. (vii) In the next step, the RF-based rainfall was aggregated
for the observation period in 1 h, 3 h, and daily for evaluation against the radar.

2.2.3. Validation Metrics for Rainfall Area Delineation and Rainfall Estimate

We considered all pixels from the validation data set in each validation strategy for
the validation of rainfall area delineation. First, we calculated the cross-table’s respective
satellite-based rainfall products in comparison with the radar as a reference. Therefore we
calculated the misses (M), hits (H), false alarms (F), and correct negatives (C). We define hit
when the satellite-rainfall product and the radar are both raining in the same location. A
miss occurs when the satellite-rainfall product is not raining but the radar shows rain, a
false alarm holds when the satellite-rainfall product is raining but the radar is not and a
correct negative is when both, the satellite-rainfall product and radar are showing cloudy
but not rainy conditions (Figure 3).

Figure 3. Schematic view of how H, M, and F were designated in the rain area validation. The dry
pixels are shown in white, and the rainy pixels are shown in grey. The standard approach defines
M (F) when a rainy pixel in the radar (satellite-based rainfall product) is related to a dry pixel in
the satellite-based rainfall product (radar) at the same time. In the temporal event-based approach
(fourth row), the M (F) in the vicinity time of hits are defined as a reduction (continuous) in the event
duration. Thus, the terms Duration+ (Duration-) are described. True misses and true false alarms are
the errors occurring simultaneously or in the same pixel, respectively [17].

We also defined temporal and spatial events. Schematic images of temporal and
spatial events are illustrated in Figures 3 and 4, respectively.

Temporal events were defined to check the time lag effect of satellite scanning. You
et al. [38] stressed this aspect for PMW observation. Later, Maranan et al. [17] investigated
the time lag effect in IMERG, where false alarms were reduced through the temporal shift
in IMERG relative to surface observations.
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Figure 4. Schematic view of how hits, misses, and false alarms are designated in the rain area
validation. The dry pixels are shown in white, and the rainy pixels are shown in grey. The standard
approach defines M (F) when a rainy pixel in the radar (satellite-based rainfall product) is related to a
dry pixel in the satellite-based rainfall product (radar) at the same time. In the spatial event-based
approach (second row), the M (F) in the neighboring pixels are defined as a spatially drifted miss
(false alarm) of the event. The errors simultaneously and in the same pixel are called true misses and
false alarms, respectively.

We calculated the probability of detection (POD), false alarm ratio (FAR), and Heike
skill score (HSS) as validation metrics from the H, M, F, and C.

To evaluate the accuracy of estimated rainfall from each satellite-based rainfall product,
we used the mean absolute error (MAE), root mean square error (RMSE) and mean error
(ME), and their normalized counterparts. These metrics were calculated when it was rainy
for both radar and satellite-based rainfall products. Table 1 shows the detailed equations
and the range of these metrics.

Table 1. List of validation metrics used in this study for rain area delineation and rain estimate.

Name Metrics Equation Range Optimum

Probability of detection POD = H
H−M

(

0,1
)

1

False alarm ratio FAR = F
F−C

(

0,1
)

0

Heike skill score HSS = 2(H×C−F×M)
(H−M)(M+C)+(H+F)(F+C)

(

0,1
)

1

Mean absolute error MAE = 1
n ∑

n
i=1 |Pi − Oi| - -

Normalized mean absolute er-
ror

NMAE =
1
n ∑

n
i=1 |Pi−Oi |

1
n ∑

n
i=1 Oi

- -

Root mean square error RMSE =
√

∑
n
i=1(Pi−Oi)2

n - -

Normalized root mean square
error

NRMSE =

√

∑n
i=1(Pi−Oi)

2

n
1
n ∑

n
i=1 Oi

- -

Mean error ME = 1
n ∑

n
i=1(Pi − Oi) - -

Normalized mean error NME =
1
n ∑

n
i=1(Pi−Oi)

1
n ∑

n
i=1 Oi

- -
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3. Results

3.1. Validation Metrics for Satellite-Based Rainfall Products at the Time of MW Overpass against
X-Band Rain Radar Network

3.1.1. Rain Area Delineation

The frequency of occurrence of the cross-table components formed on all available
MW overpass timing (n = 51,384) is presented in Figure 5. Less than 5% of the MW overpass
times in either radar or satellite-based rainfall products contain rainfall and a total of 0.73%,
0.58%, and 0.39% are hits for MW-based IMERG, RF-based rainfall, and IR-only IMERG,
respectively. Successively, false alarms dominated the error with a fraction of 2.53% for
MW-based IMERG, 2.08% for RF-based rainfall, and 2.24% for IR-only IMERG. All three
product show reasonable agreement with the radar at the time of MW overpass Table 2.
All products have a high FAR (0.78 for MW-based IMERG and RF-based rainfall, and 0.85
for IR-only IMERG).

Figure 5. Standard cross-table approach for all available MW overpass times for the validation of
rain area delineation for (a) IR-only IMERG, (b) RF-based rainfall, and (c) MW-based IMERG. Note
that the correct negative fraction extends to 100%.

Table 2. The rain area delineation performance of satellite-based rainfall over the MW overpass time
compared to ground radar network.

Satellite-Based Rainfall Products POD FAR HSS

MW-based IMERG 0.74 0.78 0.33
RF-based rainfall 0.58 0.78 0.31
IR-only IMERG 0.39 0.85 0.2

Overall, MW-based IMERG exhibits relatively better performance (HSS = 0.33), RF-
based rainfall performs somewhat the same as MW-based IMERG (HSS = 0.3), whereas
IR-only IMERG performs the worst (HSS = 0.2). This shows the higher potential of using
multispectral GEO data (RF-based rainfall) compared with only one IR channel rainfall
retrieval, as is the case for IR-only IMERG [3,8,12,13].

Figure 6 reveals the spatial performance of the satellite-based rainfall products at the
time of MW overpass during the study period. Figure 6c,f,i shows the spatial distribution of
HSS for MW-based IMERG, IR-only IMERG, and RF-based rainfall, respectively. The HSS
share similarities in the spatial distribution for all products, with the maximum occurring
at the north and northeast of the study region (0.4–0.7 for MW-based IMERG, and 0.4–0.8
for IR-only IMERG and RF-based rainfall). However, in the northwestern part of the region,
the ability to capture precipitation is almost lost due to the lower POD and higher FAR
(0.7–1 for MW-based IMERG, IR-only IMERG, and RF-based rainfall) in all the products.
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The GUAXX radar performs better in terms of POD in general but with a relatively higher
FAR (0.6–1 for MW-based IMERG, and 0.7–1 for IR-only IMERG and RF-based rainfall), and
this phenomenon illustrates that the products have difficulties in capturing the rainfall in
these region (HSS of 0.1–0.6 for MW-based IMERG, 0.1–0.3 for IR-only IMERG, and 0.1–0.6
for RF-based rainfall). Please note that the time periods of available data for GUAXX and
CAXX are different.

Figure 6. Spatial distribution of the validation metrics for rain area delineation at the time of MW
overpass. (a) POD, (b) FAR, and (c) HSS showing the matrics for MW. The variables were calculated
for MW-based IMERG. (d) POD, (e) FAR, and (f) HSS illustrating the performance of IR-only IMERG.
(g) POD, (h) FAR, and (i) HSS showing the RF-based rainfall performance. The variables were
calculated for each grid point of the validation data set over the stated period. For better illustration,
we show the results up to 75 km distance from the center of each radar.

Figure 7 provides an overview of the validation metrics of the three satellite-based
rainfall products for rain area delineation, along with the altitude. All products have a
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high FAR and a convincing POD. The performance at a terrain elevation of approximately
0–1500 m.a.s.l is relatively lower for all of the three products with HSS of 0.2–0.29 for MW-
based IMERG, 0.1–0.22 for IR-only IMERG, and 0.2–0.25 for RF-based rainfall. The rain
area delineation performance increased until 3000 m.a.s.l. At 0–750 m.a.s.l, the RF-based
rainfall (HSS = 0.25) performs the best of all products.

Figure 7. Boxplot of the validation metrics for rain area delineation over the MW overpass time. The
performance of (a) MW-based IMERG, (b) IR-only IMERG, and (c) RF-based rainfall along elevation.
Boxes show the 25th, 50th, and 75th percentiles. Whiskers extensions are to the maximum data value
between the 75th and 25th percentiles. Diamonds indicate outliers.

Figure 8 provides an overview of the rain area delineation performance, along with
different rainfall rates. In all products, rainfall rates lower than 2 mm/h have the highest
FAR. With increasing rainfall rate, the performance of all products increases until 6 mm/h.
For a rain rate of more than 6 mm/h, the products perform steadily. Altogether, the graph
confirms (i) the poor rain area delineation performance at lower rainfall rates in Ecuador,
and (ii) the WM-based IMERG shows the best performance with different rain rates in
Ecuador, followed by RF-based rainfall.

178



Atmosphere 2021, 12, 1678

Figure 8. The rain area delineation performance over the MW overpass time and at 11 km2 for
different rainfall rates for (a) MW-based IMERG, (b) RF-based rainfall, and (c) IR-only IMERG.

3.1.2. Rainfall Estimation

Table 3 exhibits the ability of satellite-based rainfall products to estimate rainfall at the
time of MW overpass. RF-based rainfall shows the best performance compared with the
two other products. All three products underestimate rainfall, indicated by their negative
ME and NME.
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Table 3. The rainfall estimation performance of satellite-based rainfall over the MW overpass time compared to the ground
radar network.

Satellite-Based Rainfall Products RMSE (mm/h) NRMSE MAE (mm/h) NMAE ME (mm/h) NME

MW-based IMERG 2.96 0.82 1.86 1.35 –1.48 –1.07
RF-based rainfall 2.47 0.8 1.66 1.16 –1.34 –0.93
IR-only IMERG 4.65 1.27 2.5 1.63 –2.13 –1.39

The scatter plots in Figure 9 illustrate how the rainfall rate at the time of MW over-
pass is distributed for each of the satellite-based rainfall products against the radar. Only
pixels with hits are considered, therefore the number of hits (n) differs for each product
(Figure 9a,d,g). The overall variability in all the products is high, which might be due to
issues in timing or/and rainfall estimation (Figure 9a,d,g) [17]. Overall, IR-only rainfall
shows the best correlation line close to 1:1. The regression line also indicates the under-
estimation by RF-based rainfall. MW-based IMERG and IR-only rainfall overestimate
the rainfall rate. Figure 9b,e,h shows the rainfall rate for each product against radar in
quantile–quantile (Q–Q) plots.

Figure 9. Comparison of rainfall rates estimated by the radar and satellite-based products.
(a,d,g) Scatter plot with radar rainfall rates (x-axis) and microwave-based IMERG, IR-only IMERG,
and RF-based rainfall rates (y-axis), respectively. Only pixels with hits are considered. The parame-
ters n show the total number of hits. (b,e,h) Quantile–quantile (Q–Q) plot of the radar (x-axis) and
microwave-based IMERG (y-axis), IR-only IMERG (y-axis), and RF-based (y-axis) rainfall rates. The
10th, 50th, and 90th percentiles are illustrated. (c,f,i) The distribution of cumulative rainfall rate for
the contingency table of each satellite-based product. The radar rain rate is displayed in black as a
reference.

The Q–Q plot ignores the corresponding time steps in order to underline the dif-
ferences between the radar and each product in a more comprehensive manner [17]. In
MW-based IMERG (Figure 9b) the rainfall rate is almost evenly distributed up to 5 mm/h,
the positive values for MW-based IMERG at higher rainfall rates are more evident. The dis-
tribution of the rainfall rate between radar and IR-only IMERG shows more discrepancies
(Figure 9e). IR-only IMERG shows negative biases until the 90th percentile and shows high
positive bias for the higher rainfall rates. RF-based rainfall is distributed relatively even
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for all rainfall rates, with a slight negative bias between 3 and 5 mm/h. Overall, IR-only
IMERG and MW-based IMERG are unable to model the most extreme rainfall rates. For
extreme rainfall rates, RF-based rainfall shows better performance. The cumulative distri-
bution of the rainfall rates for hits and the other contingency table elements is compared in
Figure 9c,f, i, for MW-based IMERG, IR-only IMERG, and RF-based rainfall, respectively.
In MW-based IMERG (Figure 9c) and RF-based rainfall (Figure 9i), around 60% of the FARs
is equal to or less than 1 mm/h. This is also true for IR-only IMERG (Figure 9f). The FAR is
also shown for higher rainfall rates in the RF-based rainfall product. This underlines that
the algorithm is flawed for low-intensity rainfall in these products [17]. The misses show
the same distribution as the radar’s distribution for all three products.

Figure 10 provides an overview of the validation metrics of the three satellite-based
rainfall products for rain estimation along with altitude. MW-based IMERG and IR-only
IMERG have difficulty estimating rainfall at lower elevations (0–500 m.a.s.l), which is
shown by the extension of the boxplot for NRMSE and NMAE in this elevation range.
RF-based rainfall has relatively lower values of NRMSE, NMAE, and NME at an elevation
of 0–500 m.a.s.l. With increasing elevation, the rain estimation performance is relatively
moderate until 2500 m.a.s.l. For high terrain elevations of approximately 2500–4000 m.a.s.l,
all products show a significant uncertainty, mainly in NME. All the products underestimate
the rainfall rate at high elevation (2000–4000 m.a.s.l).

Figure 10. Boxplot of the validation metrics for rain estimation at the MW overpass time. The
performance of (a) MW-based IMERG, (b) IR-only IMERG, and (c) RF-based rainfall are shown along
with elevation. Boxes show the 25th, 50th, and 75th percentiles. Whiskers extensions are to the
maximum data value between the 75th and 25th percentiles. Diamonds indicate outliers.
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3.2. Validation Metrics for Satellite-Based Rainfall Products at the Time of MW Overpass from
IMERG against Meteorological Stations

Table 4 summarizes the performance of satellite-based rainfall products for rain area
delineation against meteorological stations at the time of MW overpasses for the pixel in
W-2 (Figure 2a) and W-3 (Figure 2b).

Table 4. Rain area delineation performance of satellite-based rainfall products at the time of MW
overpass compared to the meteorological station network. Pixel W-2 and W-3 are shown in Figure 2a
and Figure 2b, respectively.

Pixel Number Satellite-Based Rainfall Products POD FAR HSS

W-3 MW-based IMERG 0.33 0.83 0.21
W-3 RF-based rainfall 0.25 0.83 0.19
W-3 IR-only IMERG 0.17 0.89 0.12
W-2 MW-based IMERG 0.29 0.82 0.19
W-2 RF-based rainfall 0.35 0.78 0.24
W-2 IR-only IMERG 0.23 0.82 0.19

The validation scores show the superior performance of the IMERG-MW-based and
RF-based rainfall products in comparison to IMERG-IR-only in W3. W2 shows a slightly
better performance for RF-based rainfall while IR-only IMERG and MW-based IMERG
are more or less the same. Still, all of the products overestimate precipitation area. These
behaviors are similar to the validation of the rainfall products at the MW overpass time
against the X-band rain radar network (Table 2). However, the validation scores indicate a
lower performance of the satellite-based rainfall products by using the radar data compared
to higher scores by using the station data. This is not surprising, since a low number of the
gauges in a pixel (3 gauges in 11 km2) is not representative for the spatial distribution of
rain. Therefore, the assessment of satellite-based rainfall products against a low number of
gauges in each pixel underestimates their performance [36].

Table 5 shows the satellite-based rainfall products’ ability to estimate the rainfall at
the time of MW overpass against ground truth data. The behavior of satellites is different
in two pixels. In W-2, IR-only IMERG shows the best performance compared to the other
two products. Meanwhile, in W-3, the RF-based rainfall capture the rain estimate more
accurately compared to other products. In general, all of the products overestimate rainfall
slightly (positive ME).

Table 5. Rainfall estimation performance of satellite-based rainfall over the MW overpass time compared to ground radar
network.

Pixel Number Satellite-Based Rainfall Products
RMSE
(mm/h)

NRMSE
MAE

(mm/h)
NMAE

ME
(mm/h)

NME

W-3 MW-based IMERG 1.10 1.03 0.96 0.91 0.83 0.78
W-3 RF-based rainfall 0.48 0.45 0.85 0.80 0.83 0.78
W-3 IR-only IMERG 3.32 3.11 3.27 3.07 0.83 0.80
W-2 MW-based IMERG 1.03 0.87 0.68 0.57 0.68 0.57
W-2 RF-based rainfall 1.11 0.94 1.05 0.89 0.60 0.71
W-2 IR-only IMERG 0.68 0.58 0.49 0.41 0.77 0.67

3.3. Validation Metrics for RF-Based Rainfall Products in Native Resolution

3.3.1. Rain Area Delineation

Using the analysis techniques described in Section 2.2.3, the ability of RF-based rainfall
to estimate rainfall in comparison with the radar at 2 km2 spatial resolution and 30 min
temporal resolution is shown in Figure 11 (n = 1,048,575). Less than 3% of the time steps
in either radar or RF-based rainfall contain rainfall including 0.31% of hits (Figure 11a).
The errors are dominated by false alarms at 1.57%. The decomposition of misses using
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the temporal event-based approach shows that almost 12% of the misses occur in the
coincidental timing from radar precipitation (Figure 11b, Duration −, yellow bar; Duration
+, black bar), whereas the spatially drifted misses are not recognizable (Figure 11d). Almost
4% of the overestimation occurs by overestimating event duration (Figure 11c), and 8.5%
by overestimating events in the neighboring pixel (Figure 11e).

Figure 11. (a) Standard contingency table approach for all available RF-based rainfall products for both radars at 2 km2 and
30 min. Note that the correct negative fraction extends to 100%. (b,c) The temporal event-based approach of the contingency
table was evaluated in the M and F subsets, respectively. (d,e) The spatial event-based approach of the contingency table
was evaluated in the M and F subsets, respectively. The numbers in the bars show the percentage.

The performance is summarized in Table 6. As expected, a noticeable result is the
high FAR of 83%, showing that 83% of rainy events are false alarms. This is almost similar
behaviour as for RF-based rainfall at the MW overpass in 11 km2 temporal resolution
(Table 2). By applying the algorithm in 2 km2 spatial and 30 min temporal resolution, the
ability of rain detection by RF-based rainfall has reduced compared to the RF-based rainfall
in MW-overpasses and at 11 km2 spatial resolution (HSS = 0.31).

Table 6. Performance evaluation of RF-based rainfall at rainfall area delineation for 2 km2 spatial
and 30 min temporal resolution.

Satellite-Based Rainfall Products POD FAR HSS

RF-based rainfall 0.28 0.83 0.20

3.3.2. Rain Estimation

Table 7 summarizes the performance of RF-based rainfall in estimating rain at 2 km2

spatial and 30 min temporal resolution. The RF-based rainfall shows better performance in
estimating rainfall at higher resolution compared with lower resolution (Table 3).

Table 7. Performance evaluation of RF-based rainfall for rainfall estimation 2 km2 spatial and 30 min temporal resolution.

Satellite-Based Rainfall Products RMSE (mm/h) NRMSE MAE (mm/h) NMAE ME (mm/h) NME

RF-based rainfall 2.39 1.07 1.72 0.77 0.51 0.22

Focusing on hits, Figure 12 shows the rain estimation retrieval ability of RF-based
rainfall in comparison with the radar. The scatter plot in Figure 12a shows the distribution
of the half-hourly rain rates. The rain rates illustrates high variability, suggesting problems
in rain estimation retrieval and/or timing. This is also shown in Figure 9g at the time of
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MW overpass. Figure 12b shows the Q–Q plot for RF-based rainfall. The overall estimation
of the rainfall is placed along the 1:1 line to the 90th percentile. However, the curve deviates
towards the left after the 90th percentile, showing an overestimation of rain intensities
in the outliers. Figure 12c decomposes the results in more detail. Overall, RF-based
rainfall is unable to detect the most extreme rainfall rates, as reported by Turini et al. [3].
The cumulative distribution of rainfall rates for hits, misses, radar, and false alarms are
compared in Figure 12a. Around 60% of false alarms and misses are less than or equal to
1 mm/h. This is also true for 60% of event-based (temporally and spatially) false alarms
Figure 12d. The event-based misses are evenly distributed over the different rainfall rates.

Figure 12. Comparison of rain rates estimated by the radar and RF-based rainfall at 2 km2 and 30 min. (a) Scatter plot with
radar rainfall (x-axis) and RF-based rainfall (y-axis). Only the pixels with hit are considered. (b) Q–Q plot of radar (x-axis)
and RF-based rainfall rates (y-axis). The 10th, 50th, and 90th percentiles are illustrate. (c) The distribution of cumulative
rainfall rate for the contingency table. (d) The distribution of cumulative rainfall rate based on the event-based (spatial and
temporal) contingency table.

3.4. Validation Metrics for RF-Based Rainfall Products at Different Temporal Resolutions

To validate the results of rain area delineation and rain estimation in different temporal
resolutions, Figure 13a,b presents the validation metrics with the radar for the whole study
region and observation period. The results show the best agreements regarding rain area
delineation in daily resolution (POD 0.68, HSS 0.4, and FAR 0.6).

The rain estimation indices for RF-based rainfall do not show a significant improve-
ment for the different temporal resolutions. The NME suggests the overestimation of
precipitation by RF-based rainfall at lower resolution (after 3 h) and an underestimation at
higher temporal resolutions. Note that in this step, we considered rainfall at a rate of more
than 0.5 mm/h as rainy.

184



Atmosphere 2021, 12, 1678

(a) (b)

Figure 13. Comparison of the validation metrics between the radar and RF-based rainfall at 2 km2

and 30 min, 1 h, 3 h, and daily. The performance of RF-based (a) rain area delineation and (b) rain
estimation is shown for different temporal resolutions.

4. Discussion

In Section 3.1, satellite-based rainfall products at the time of MW overpasses from
IMERG were assessed using radar data. We evaluated the satellite-based products in grid
cells at the time of MW overpasses and a spatial resolution of 11 km2.

The verification scores for rain area delineation revealed that the MW-based IMERG
has superior performance in estimating rain area (POD = 0.74, HSS = 0.33). RF-based
rainfall, which is trained based on MW-based IMERG, has slightly lower performance
compared to MW-based IMERG data (HSS = 0.31). IR-only IMERG performed the worst in
Ecuador. This is in line with the findings of Kolbe et al. [12], Kolbe et al. [13], Turini et al. [8],
and Turini et al. [3]. It shows that multispectral GEO data has more potential than using
one IR channel only for rainfall retrieval.

The frequent false alarm is one of the most noticeable issues identified in the present
study. This agrees well with the result of IMERG-V06 validation in the west African forest
zone [17] and confirms the previous investigation of IMERG-v05 by Manz et al. [15] in the
Andes region. In our study, around 60% of the false alarms were related to rain rates less
than 1 mm/h for all products (Figure 9), which was found to be the dominant rainfall
intensity in this region of the world [39]. We also note that the radar potentially underes-
timated rainfall [40–43]. This was also reported elsewhere for the radars in Ecuador [23].
In MW-based IMERG and RF-based rainfall, with increasing the rainfall rate, the FAR
decreases while POD does not change (Figure 8).

The results of the topography-based evaluation indicated the high detection accuracy
of MW-based IMERG and RF-based rainfall in different topographical regions. Moreover,
the highest errors occurred for coastal areas and foothills (0–1500 m.a.s.l) and high moun-
tains regions (>3000 m.a.s.l) compared to the other topographical regions. All the products
experienced challenges in estimating rainfall at high elevation in the Andes (Figure 10).
In Ecuador, high-elevation areas and volcanoes have two issues for rainfall retrieval al-
gorithms: (i) They are regularly covered by ice, which generates errors in MW-based
IMERG [29,44]; (ii) the drizzle on the high elevation is hard to be captured by MW and IR
channels. This conclusion is in agreement with the findings of study conducted by Prakash
et al. [45], who assessed the performance of IMERG products in monsoon-dominated
regions in India. Their results showed that IMERG was affected by the orographic process,
which leads to higher errors in mountainous areas. Another study by Kim et al. [46] re-
vealed the disadvantage of IMERG products over mountainous and coastal regions. Similar
results were obtained by Turini et al. [3] in Ecuador for RF-based rainfall. They argued that
because of local topography, the subscale convective rainfall systems probably could not
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be captured by GOES data and IMERG [3,37]. Altogether, at the elevation of 0–750 m.a.s.l,
RF-based rainfall showed the best performance of all products (Figures 7 and 10).

Concerning rainfall rate validation, the overall variability in all the products is high,
suggesting rainfall rate estimation and/or timing issues. Different studies discuss a possi-
ble time lag between the satellite-based rainfall products and the ground-based rainfall
measurements as a source of degrading validation results [17,38,47–49]. The time lag is de-
fined as the time shift when satellite observation and surface precipitation rate from ground
data obtain to their optimum correlation. This time lag might be due to the time it takes
for the precipitation detected by the satellite to reach the ground [17,47]. You et al. [38]
related the precipitation time from GMI to the environmental temperature and storm top
height. They found that when the storm is taller, the lag time increases to obtain the
optimum correlation between the GMI and ground truth data. This is due to the long way
of raindrops from the storm top to the gauge.

Ignoring the corresponding time steps in the Q–Q plots shows that the MW-based
IMERG and RF-based (Figure 9b,h) rainfall rates are distributed up to 5 mm/h evenly. The
positive values in MW-based IMERG at higher rainfall rates are more evident. Conversely,
the rainfall rate distribution between the radar and IR-only IMERG shows more discrepan-
cies (Figure 9e). The validation of satellite-based rainfall products against the gauges show
lower consistency (Table 5). However, in the term of rain area delineation (Table 4), the
RF-based rainfall product shows better performance than IMERG-IR-only, which confirms
the potential to use multispectral GEO data.

The validation of satellite-based rainfall show a slight overestimation of rainfall totals
for all products (Table 5).

It should be noted that the evaluation of satellite-based products against only a few
gauges has high uncertainties [8,36], especially in areas with high small-scale precipita-
tion variability in mainly convective environments, like the Ecuadorian Andes, where
point based observations at weather stations cannot properly represent the spatial rainfall
distribution.

The validation of RF-based rainfall retrieval at high spatiotemporal resolution for all
the available rain events is shown in Table 6. The RF-based rainfall is calibrated locally for
Ecuador. The importance of local calibration, which involves determining relevant climatic
parameters, including the selection of appropriate temperature thresholds for clouds and
a local correlation systematic biases that may not have been adjusted in global products,
have been mentioned in different studies [50–52].

RF-based rainfall for 2 km2 and 30 min shows a lower HSS compared to the RF-based
rainfall for 11 km2 at the time of MW overpass. This was expected because the errors
at higher temporal resolutions may cancel each other out following the aggregation to
a lower temporal resolution [50]. However, in terms of rainfall estimation, RF-based
rainfall performs better at higher spatial resolution (Table 3). This result needs to be
interpreted with caution, since the rainfall events at the time of MW overpasses differ from
the validation of the RF-based rainfall at 2 km2 and 30 min.

An event-based analysis was then used to investigate the source of error in the RF-
based rainfall product. Shifting the RF-based rainfall backward by one to two time steps
(i.e., 30 min) resulted in the more accurate detection of rainfall around 10% (Figure 11b) by
lowering the misses. RF-based rainfall rates are lower than their counterparts in radar, as
shown in Figure 12d. We speculate that this lag appears due to the lag time between the
time of MW overpass and the GOES-16 scan time. The RF-based rainfall algorithm relies
on the precipitation information from MW-based IMERG and IR data from GOES-16.

However, RF-based rainfall also has a high FAR. The event-based spatial analysis
reduced the FAR by 8.5% (Figure 11e), but the challenge remains the same. High FAR
values occur for all the different types of rain with different intensities (Figure 12c,d). The
reason for the high FAR in RF-based rainfall might be (i) the high amount of FAR from
MW-based IMERG in Ecuador (Table 2), which is used as a reference for calibrating of
RF-based rainfall; (ii) A bias in IR retrievals that classify cold cloud pixels as rainy. They

186



Atmosphere 2021, 12, 1678

experience difficulties in defining the correct rainfall cloud and profile, thus producing
error in statistical-physical rainfall algorithms.

By increasing the temporal resolution of the RF-based rainfall product, the perfor-
mance of the product increased. However, the FAR (60% in daily resolution) remains a
main challenge.

5. Conclusions

In this study, we evaluated and compared the performance of different satellite-
based rainfall products over the Pacific coast and Andes of Ecuador. A mesoscale quality-
controlled rain radar network was used as the rainfall reference. Statistical comparison
indices were used to analyze the performance and to describe different aspects of the
satellite-based rainfall products. The first validation was performed at 11 km2 spatial
resolution and at the time of MW overpass for MW-based IMERG, RF-based rainfall, and
IR-only IMERG products. Based on the validation, MW-based IMERG and RF-based rainfall
provided better rainfall estimates in Ecuador than IR-only IMERG during MW overpasses.
The distribution of the evaluation metrics spatially shows the impact of topography and
the complex climate zonations in the study region. High precipitation values were better
captured by the MW-based IMERG and the RF-based rainfall algorithms. The frequent
false alarms are one of the most important issues in all products; FAR decreases with
an increasing rainfall rate. Future studies on the lag time are therefore required in order
to elucidate the high FAR in the satellite-based products. In the third validation, we
investigated regionally calibrated RF-based rainfall products for Ecuador. RF-based rainfall
is trained by MW-based IMERG. Although the product shows convincing results at a MW
overpass of 11 km2, the performance decreased by increasing the resolution to 2 km2 spatial
and 30 min temporal resolution. Furthermore, RF-based rainfall is trained to the available
microwave-only data from IMERG. Consequently, due to the low temporal resolution of
the data from MW satellites, some rainfall events might not have been considered [8].
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Abstract: A comparative statistical analysis of the spatiotemporal variability of atmospheric pre-

cipitation characteristics (mean and extreme values) in Western Siberia was performed based on

data acquired from meteorological stations, global precipitation datasets such as the project of Asian

Precipitation—Highly-Resolved Observational Data Integration Towards Evaluation (APHRODITE)

and from Global Precipitation Climatology Centre (GPCC), and reanalysis archives, including from

National Centers of Environmental Prediction (NCEP-DOE) and the European Center for Medium

Range Weather Forecasts (ERA5) for the period 1979–2018. The best agreement of the values from

the observational data was observed with the values from GPCC. This archive also represented the

periodicities in the time series of observational data from meteorological stations, especially in the

short-period part of the spectrum. Underestimated values were revealed for the APHRODITE archive,

while overestimated ones were found for the NCEP reanalysis data. In comparison with GPCC,

the ERA5 dataset reproduced the general variability but with a smaller amplitude (the correlation

coefficient was up to 0.9). In general, the median estimates of the precipitation amount derived from

the meteorological stations’ data, as well from the reanalysis data, were in better agreement with

each other rather than their extreme values. However, their temporal variability can be effectively

described by other datasets.

Keywords: atmospheric precipitation; time series; extreme values; periodicities; correlation analysis;

spatiotemporal variability; Western Siberia

1. Introduction

Climate temperature warming, which has been observed across the planet in recent
decades, is also typical for the territory of Russia. The most important climate variables
that are often used as climate change indicators are surface air temperature and precipita-
tion [1]. The growth rate of the average annual temperature in Russia in 1976–2019 was
0.47 ◦C/decade, which is more than two and a half times higher than the rate of global
temperature increase over the same time interval (0.18 ◦C/decade) [2]. As for atmospheric
precipitation for the same time interval, we see (according to Reference [2]) that there is a
tendency toward an increase in the annual precipitation in several regions of Siberia and
the Russian Far East; however, precipitation decreases in the northeast of the country.

The most significant linear trend coefficients are observed in the regions of Siberia in
the spring. Moreover, in Northern Eurasia, there is a moderate increase in the total amount
of precipitation accompanied by a relatively strong increase in heavy rainfall and a simulta-
neous decrease in stratiform precipitation for the period 1966–2016 [3]. According to the
CMIP5 projections, in the 21st century, annual and seasonal precipitation will increase ev-
erywhere, especially in the arctic region of Russia [4]. The frequency of heavy precipitation
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is influenced by changes in the characteristics of air humidity and atmospheric circulation
that can lead to the development of extreme climatic events. First of all, this increases the
frequency of severe floods and droughts [5]. The trends in extreme precipitation are also
correlated with the geographic features of the region and the used data source quality [6,7].

In general, there is an increase in the frequency and intensity of extreme precipitation
across the territory of Russia [7–11]; the number of days without precipitation increases in
the winter and decreases in the summer [2]. Moreover, most of the territory is characterized
by an increase in the number of days with heavy snowfall [9]. Thus, in Western Siberia,
there is an increase in extreme precipitation in the winter and a tendency toward dry
periods in the summer [12]. In the south of the region, the risks of heavy and long-term
precipitation increase [6,13].

The most accurate source of information on atmospheric precipitation is data of mete-
orological observations, but they are irregular in space and time [14]. Satellite data provide
regular observations in space, with almost global coverage. However, they have significant
errors associated, among other things, with the inaccuracy of the algorithms for calculating
precipitation based on the intensity of direct or scattered radiation [15]. The reanalysis data
are given at regular grids, but they may differ from the data of meteorological stations due
to various simplifications, parameterizations, and numerical schemes that introduce errors
into the calculations [14].

A comparative analysis of the precipitation extremality indices based on the station
observational data, reanalyses, and satellite measurements for the territory of Eurasia
was carried out in Reference [16]. It showed that the reanalysis data, in comparison with
the observational ones, significantly underestimated the extreme precipitation values by
30–35% on average, and the satellite data overestimated the extreme values by 30–50%
in the winter and underestimated them by 40–60% in the summer. The comparison of
ERA5 reanalysis data and station observational data revealed a high linear correlation for
the southern part of Siberia for the period from 1979 to 2015. In this case, the maximum
differences are typical for mountainous regions [17].

We would like to mention that average precipitation values are calculated with much
greater accuracy than extreme precipitation, since the latter are observed less frequently and
have a large uncertainty in magnitude, especially in regions with a scattered observational
grid (for example, in the north of Siberia) [8,18]. Therefore, the analysis of precipitation
characteristics derived from different data sources can lead to contradictory conclusions. In
this regard, an urgent question arises about the accuracy in assessing precipitation data,
the importance of which is obvious not only for weather and climate change monitoring
but also for solving forecasting problems.

The goal of this work is to investigate the variability and to compare the characteristics
of atmospheric precipitation in Western Siberia over recent decades across different datasets.

The paper is organized as follows. In Section 2, we present the study region and
datasets and briefly describe the used methods. In Section 3, the results of a time series
analysis of precipitation characteristics (including their extremes) are presented. In Section 4
we discuss the obtained results and compare them with studies from other works. The
conclusion, limitations, and future direction of this research are briefly summarized in
Section 5.

2. Materials and Methods

2.1. Study Region

The analysis was conducted for the territory of Western Siberia (50◦–70◦ N, 60◦–90◦ E)
(Figure 1).
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2.2. Datasets and Preprocessing

The following data sources on daily and monthly mean values of atmospheric precipi-
tation were used: (1) observational data at 57 meteorological stations from RIHMI-WDC
(All-Russian Research Institute of Hydrometeorological Information—World Data Cen-
ter) from 1979 to 2018 [19], (2) gridded observational data from APHRODITE (Asian
Precipitation—Highly-Resolved Observational Data Integration Towards Evaluation, here-
inafter APHRO) with spatial resolution 0.25◦ × 0.25◦ for 1979–2007 [20] and from GPCC
(Global Precipitation Climatology Centre Full Data Monthly Product Version 2018) with
spatial resolution 0.50◦ × 0.50◦ for 1979–2018 [21], and (3) reanalysis data from NCEP-DOE
Reanalysis 2 (NOAA National Center for Environmental Prediction, hereinafter NCEP)
with spatial resolution 1.90◦ × 1.90◦ [22] and from ERA5 (the fifth generation of the Eu-
ropean Centre for Medium-Range Weather Forecasts reanalysis) with spatial resolution
0.25◦ × 0.25◦ from 1979 to 2018 [23]. Reanalysis combines the model data with observa-
tions from across the world. We consider that observational data at stations, in spite of
their spatial inhomogeneity, provide more objective information due to being based on
measurements, while a reanalysis applies different kinds of data assimilation, which can
lead to some uncertainties.

2.3. Methodology

The first step in a time series analysis of the meteorological parameters is the derivation
of their statistical estimations that characterize the variability of the processes. To calculate
these characteristics, we used stochastic processes methods.

We consider that a random quantity ξ is defined by probability density pξ(x), satisfied
by the following conditions [24]:

pξ(x) ≥ 0, ∀x,
∫ ∞

−∞
pξ(x)dx = 1 (1)

where x is the dimensionless quantity in the definition domain of ξ.
Then, we define f (ξ) as a function of the random quantity ξ. Hence, the mean statistical

value of this function can be written as follows:

〈f(ξ)〉 ≡
∫ ∞

−∞
f(ξ)pξ(x)dx (2)

Distribution moments of the random value (ξ), such as α
ξ
n and µ

ξ
n, are defined as:

α
ξ
n ≡ 〈ξn〉 ≡

∫ ∞

−∞
xn pξ(x)dx and µ

ξ
n ≡

〈

(ξ − 〈ξ〉)n〉 (3)
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where n is a moment order.
According to Equation (1), for each distribution, the pξ (x) moments are identically

determined and the characteristics of the distribution. Then, we define the mean value of a
random quantity (m) and its variability, called a dispersion (D):

m ≡ α1 i D ≡ σ2 ≡ µ2 =< (ξ − m)2
> (4)

These values are enough to describe normal (Gaussian) processes, the probability
density of which can be written as:

p(x) =
1

σ
√

2π
e−

1
2 (

x−m
σ )

2
(5)

where σ is a standard deviation.
In that case, if processes do not follow the normal distribution law (nonstationary), it

is necessary to use additional characteristics—for instance, coefficients of skewness (As)
and kurtosis (Ks):

As =
µ3

σ3 , Ks =
µ4

σ4 − 3 (6)

The coefficient of As allows to view the symmetry of the probability density with
respect to m and the presence of heavy tails of the probability distribution density, i.e.,
about the existence of extreme values. The Ks value can represent the p(x) deformation.

The median of the sample probability distribution function (PDF) is used as the
average characteristic for the territory. The extreme values of precipitation are determined
using PDF threshold percentiles such as 1% and 5%—extremely low and 95% and 99%—
extremely high.

If there are periodic components in the time series, then it is better to use trigonometric
functions as basic ones to find the sample spectral density CXX (ω) for a stochastic process
X(t) that is defined on a finite interval [−T, T] [25,26]:

CXX(ω) = |AXX(ω)|2 =
1
T

(

∫ T/2

−T/2
X(t)e−iωtdt

)2

(7)

where AXX (ω)—the amplitude spectral density of the process X(t), i—imaginary number,
ω—the frequency of oscillation, and t—time. CXX (ω) shows the distribution of D by
the frequency.

The dispersion of CXX (ω) can be reduced if a smoothed window W(ω) is used [25]:

CXX(ω) =
∫ M

−M
W(g)CXX(ω − g)dg (8)

∫ M

−M
W(ω)dω = 1; W(ω) = W(−ω) (9)

where M is a cutoff point and g—fictitious frequency.
The type of the spectral window can be found as a compromise between reducing

the spectrum shift (i.e., narrow window W(ω)) and the CXX (ω) variance (wide window
W(ω)). Reference [25] proposed to use the mean square error minimization procedure
to find a compromise. In Reference [27], the analysis of different spectral windows was
provided in detail, and their characteristics were given there. In the framework of our
study, a rectangular window was applied to obtain a small estimate bias.

Data smoothing was conducted using a low-pass filter (LPF) with a reference point of
ten years.

To provide a comparative analysis of different data sources, two interpolation methods
were used. In the first method, the reanalysis data are interpolated to the meteorological
station coordinates with the subsequent calculation of the statistical characteristics for the
derived time series. In the framework of this method, two types of interpolation were
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used: bilinear and cubic (makima) in MATLAB software (MATLAB and Statistics Toolbox
Release 2015b, The MathWorks, Inc., Natick, MA, USA), a simplified version of the modified
Akima piecewise cubic Hermite interpolation [28]. In the second method, we conducted a
spatial interpolation of the calculated average monthly and average annual values of the
observational data to the reanalysis data grid according to the Kriging algorithm [29]. The
spatial interpolation error could be estimated using the cross-validation procedure [30].

A comparative analysis of the amount of precipitation from different datasets was also
performed using Taylor diagrams [31]. The method can provide concise statistical values
of how well patterns match each other in terms of their correlation (Pearson coefficient
correlation [24]), their root mean square difference (RMS) [24] between processes X and Y,
and the ratio of their variances (σX and σY). These statistics make it easy to determine how
much of the overall RMS difference in patterns is attributable to a difference in variance
and how much is due to poor pattern correlation [31].

The estimates are calculated for the warm (April–October) and cold (November–
March) seasons of a year. To identify the dynamics of the precipitation characteristics, a
comparison of the estimates over the time intervals from 1979 to 2018 was made, as well as
from 1979 to 2007 when we made a comparison with APHRO.

3. Results

The interannual variability of the smoothed average seasonal median estimates of
precipitation amount in different datasets for the period from 1979 to 2018 is presented
in Figure 2. The figure shows that the GPCC data has the maximum approximate annual
values of the observational data. The APHRO data archive underestimates the values, and
the NCEP reanalysis data overestimates ones that are especially pronounced in the warm
season. At the same time, in the cold season, and only in the first half of the time interval
(from 1979 to 1995), the highest values are observed for the ERA5 reanalysis dataset.
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Figure 2. The interannual variability of the precipitation median values smoothed with LPF: (a) warm
season and (b) cold season.

The NCEP reanalysis, in general, is characterized by the greatest variability in precipi-
tation time series compared to other datasets. The discrepancies between the time series at
the beginning of the 21st century are probably associated with using different calculation
methods in data assimilation.

A spectral analysis of the time series showed that the periodic structure in the precipita-
tion time series constructed from the observational data was well-explicit (significance level
p < 0.01) in ERA5 and in GPCC data, especially in the short-period part of the amplitude
spectrum (fluctuation scale < 10 years), particularly in the cold season (Figure 3).
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Figure 3. The Fourier amplitude spectrum of the precipitation time series: (a,b) median values, (c,d) 
extremely high (95%) values, and (e,f) extremely low (5%) values. Left panel: (a,c,e) warm season; 
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Statistically significant fluctuations (p ˂ 0.01) in the seasonal series obtained from ob-
servational data, as well as from GPCC and APHRO datasets, were discovered at periods 
of 7 to 8 years in the warm season, while shorter-period fluctuations also appeared in the 
extreme values series (Figure 3c,e). In the cold season, the indicated periodicities were not 
distinguished in the observational data (Figure 3b,d,f). However, as for the long-period 
part of the spectrum, a period of 12 to 13 years was determined for extremely high pre-
cipitation characteristics that also exist in the GPCC dataset (Figure 3f). No statistically 
significant fluctuations were found in the data series from meteorological stations; how-
ever, they were found in the NCEP and APHRO datasets. This could result from the in-
fluence of the trend components on the variability during time series processing. 

Figure 3. The Fourier amplitude spectrum of the precipitation time series: (a,b) median values,
(c,d) extremely high (95%) values, and (e,f) extremely low (5%) values. Left panel: (a,c,e) warm
season; right panel: (b,d,f) cold season. A straight horizontal line defines the significance level
(p < 0.01).

Statistically significant fluctuations (p < 0.01) in the seasonal series obtained from
observational data, as well as from GPCC and APHRO datasets, were discovered at periods
of 7 to 8 years in the warm season, while shorter-period fluctuations also appeared in the
extreme values series (Figure 3c,e). In the cold season, the indicated periodicities were not
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distinguished in the observational data (Figure 3b,d,f). However, as for the long-period part
of the spectrum, a period of 12 to 13 years was determined for extremely high precipitation
characteristics that also exist in the GPCC dataset (Figure 3f). No statistically significant
fluctuations were found in the data series from meteorological stations; however, they were
found in the NCEP and APHRO datasets. This could result from the influence of the trend
components on the variability during time series processing.

Analyzing the calculated values by the threshold quantiles (see Table 1 and Figure 4),
we found that the average annual median estimates based on the observational data
were closest to the corresponding estimates derived from the APHRO dataset (274.0 mm
and 291.2 mm, respectively). The NCEP reanalysis data had the highest median values
(490.9 mm).

Table 1. The distribution of the precipitation values by the threshold quantiles.

Quantile 0.01 0.05 0.10 0.25 0.50 0.75 0.90 0.95 0.99

Season APHRO (1979–2007)

Warm 58.9 119.8 158.5 213.3 274.0 332.9 380.6 414.2 500.4
Cold 37.4 50.9 64.2 87.8 115.6 143.3 170.5 189.9 227.2
Year 106.7 187.7 236.7 314.3 391.9 468.1 531.4 577.6 693.2

ERA5

Warm 163.0 235.0 275.0 342.0 414.0 484.0 557.0 621.0 867.0
Cold 75.0 95.0 107.0 130.0 156.0 189.0 229.0 265.0 376.0
Year 283.0 358.0 407.0 486.0 570.0 660.0 761.0 853.0 1000.0

NCEP

Warm 134.2 194.3 242.6 344.2 490.9 633.2 744.6 809.3 912.5
Cold 57.9 81,6 96.9 127.5 165.6 208.1 250.3 277.5 321.3
Year 227.9 306.2 361.9 486.8 659.3 832.7 969.4 1047.7 1174.9

GPCC

Warm 105.5 164.9 198.5 264.4 337.9 403.0 466.6 509.5 609.5
Cold 41.6 62.5 75.6 99.9 133.4 168.6 206.6 233.4 302.2
Year 181.3 248.5 290.2 377.8 476.2 565.4 647.9 699.9 828.8

Stations

Warm 165.0 200.0 219.6 252.1 291.2 328.9 369.0 395.8 463.7
Cold 94.0 110.9 121.8 140.8 168.8 205.9 242.9 267.0 321.0
Year 269.0 315.9 342.9 395.1 464.3 531.1 599.6 641.4 760.9
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In the warm season, the closest values of extremely low precipitation to the estimates
in the observational data belonged to the ERA5 dataset and the NCEP dataset of 1% and
5%, respectively. The extremely high values (95% and 99%) of precipitation at the stations
were in good agreement with the APHRO and the GPCC datasets. For the cold season,
in the main, a good agreement was observed with the ERA5 reanalysis data and with the
NCEP reanalysis data for extremely high precipitation (99%). The greatest discrepancy in
the cold season with the observational data at the stations was observed with the APHRO
data archive. Thus, the annual average median extreme high values from the GPCC data
showed the best agreement with these values from observational data at the stations.

The range of variability can be estimated using the coefficients of kurtosis (Ks) and
skewness (As). In the first approximation, their analysis allowed us to describe the form
of the PDF, taking into account its deviation from the normal distribution. Analyzing the
density function, we concluded that, for the cold season (as well as for an entire year in
general), all datasets (except the APHRO dataset) were characterized by positive skewness
(As > 0 is a positive skew). That means that the distribution was right-skewed, right-
tailed, or skewed to the right, which may indicate a decrease in precipitation values for
the considered period and an increase in the frequency of extreme events with increased
precipitation. This confirmed the results that were obtained earlier in Reference [12]. In
the warm season, only the GPCC dataset represented a positive skewness. The analysis
of the derived kurtosis coefficients showed that the warm season was characterized by a
flat-topped distribution (Ks < 0) that was the amount of precipitation over the studied time
interval varying in a wide range of values. In the cold season, data from the stations and
ERA5 dataset had a narrow peak distribution (Ks > 0). This indicated that the values varied
within a narrow range of values. For an entire year, the kurtosis coefficient was positive
and determined mainly by the cold season.

Figure 5 represents the spatial distribution of precipitation based on the observational
data. We reveal that the amount of precipitation in the northern regions of Western Siberia
is more than in the southern ones.

This may happen due to geographical reasons (latitude and relief) or may be related
to the dominant form of atmospheric circulation and the influence of the ocean. Both in the
warm and cold seasons, the maximum amount of precipitation is was at the station located
in the mountain area, the minimum found in the Chuy River Basin.

Figure 5 also shows the spatial distribution of the precipitation characteristics for all
the datasets, with the incorporation of the values from the considered weather stations. The
maximum values of extreme precipitation were also indicated in the Altay Mountains region
in all the considered datasets. We found an increase in the values of both extremely low and
extremely high values of precipitation that were observed in the northeast, northwest (the
arctic zone), and in the central part (the Siberian Ridges) of the territory. This is consistent
with the observational data that was also mentioned in Reference [17].

In the same areas, an increase in the linear trend coefficient for the average annual
precipitation was observed based on the ERA5 and GPCC data. At the same time, the
highest values of the linear trend were typical for the NCEP dataset. Using the NCEP and
APHRO data, we outlined the tendencies for precipitation increase in the eastern part of
Western Siberia with a maximum in the southeast (the Altay Mountains) and a decrease
in the western and northwestern parts (the Ural Mountains). The conclusion about the
closeness of the values of extreme precipitation from observational data to the GPCC data
was also confirmed by the consistency of their spatial distribution over the territory of
Western Siberia.
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A comparative analysis of the amount of precipitation from different datasets was
also performed using the Taylor diagrams constructed for the warm and cold seasons for
the time interval from 1979 to 2018 (from 1979 to 2007 for the APHRO dataset) (Figure 6).
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The data were interpolated from the reanalysis grid nodes to the station coordinates by
the bilinear interpolation method. The analysis of the derived correlation coefficients
showed a high correlation between the data for extreme precipitation (5% and 95%) at
the meteorological stations with the GPCC and ERA data (the values of the correlation
coefficients varied from 0.73 to 0.91).
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Figure 6. The comparison of the precipitation extremes (using the Taylor diagram) for the period
from 1979 to 2018 (from 1979 to 2007 for the APHRO dataset) for the warm (left panel) and cold (right
panel) seasons: (a,b) extremely low (5%) and (c,d) extremely high (95%). The bilinear interpolation
method is used.

These datasets were characterized by variability in the amount of precipitation within
the same range. The smallest values of the correlation coefficients (r) were observed in
NCEP data (0.55 < r < 0.62). At the same time, the precipitation values had less variability
than the observational data in the APHRO dataset. However, in both cases, there was a
relatively largely centered root mean square error for the precipitation values. We noted
that similar trends were typical for the extreme precipitation values of 1% and 99%.

Additionally, the median values in all the datasets were in good agreement with the
observational data; particularly, the correlation coefficient varied from 0.76 in the cold
season to 0.95 in the warm season compared to 0.65 in the cold season to 0.78 in the warm
season for the NCEP dataset.

The results of the comparative analysis of the estimates derived using the bilinear and
cubic interpolation methods were generally similar, except for the cold season; the lowest
correlation coefficient for the extremely low and high precipitation values was observed for
the APHRO dataset (r < 0.3) (Figure 7).
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Figure 7. The comparison of the precipitation extremes (using the Taylor diagram) for the period
of 1979–2018 (1979–2007 for the APHRO dataset) for the warm (left panel) and cold (right panel)
seasons: (a,b) extremely low (5%) and (c,d) extremely high (95%). The cubic interpolation method
is used.

4. Discussion

We find that the values from the GPCC dataset are closest to those from the observa-
tional data. This is probably since the GPCC data represents gridded observational data
from stations. However, at the same time, the APHRO archive (which also uses observa-
tional data) underestimates values, and the NCEP reanalysis data overestimates ones. The
GPCC data also show the best agreement for annually averaged extremely high values.
The agreement for other datasets can vary and can depend on the season. For example, the
NCEP dataset can reproduce median and extreme values. According to the research for the
European continent [32], the NCEP2 dataset also demonstrates the closest to the station
data estimates of extreme precipitation.

Applying the spectral analysis to the precipitation time series could allow us to better
understand the characteristics of precipitation variability. Moreover, this is a quite new
approach to investigating extreme precipitation variability in Western Siberia. For example,
the GPCC dataset reveals the periodicities in the time series of observational data from
stations in the warm and cold seasons. The ERA5 dataset reproduces the general variability
but with a smaller amplitude. Statistically significant fluctuations are mainly distinguished
in the warm season at periods of 7 to 8 years, while shorter-period fluctuations also appear
in the extreme values series. It should be noted that revealed periodicities can be caused
by dynamic processes in the atmosphere described by global atmospheric mechanisms,
such as North Atlantic Oscillation (NAO), Atlantic Multidecadal Oscillation (AMO), and
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South Oscillation (El Niño), where this periodicity (7–9 years) is also observed in their
time series [33]. We suppose that this fact will be useful for the construction of climatic
projections. The long-term periodicities systematically (for each characteristic) exist in the
NCEP reanalysis data. This is caused by the presence of a trend (Figure 2) in the time series,
but a similar trend in the time series derived from meteorological stations could not be
observed. However, such periodicities (15–17-year cycles) can come about for other regions
of the planet [34]. Additionally, in Reference [35], it was revealed (periodogram-based
time series methodology) that the monthly average precipitation has two different periodic
structures of six months and twelve months that coincide with the seasonal pattern of the
time series. However, the interannual periodicity is not explicit enough. Moreover, there
is no information presented about the extreme values variability. The spectral analysis
in the framework of this study revealed the periodic structure in the precipitation time
series constructed from different datasets, where statistically significant values were mainly
observed in the short-period part of the amplitude spectrum (fluctuation scale < 10 years).
This result could be useful in the short-term forecasting of both the mean and extreme
values of precipitation. For future research, it seems appropriate to apply the methods of
multiscale and multivariate statistical analyses (including Wavelet analysis). This will allow
us to show the coherency between the components of two time series in the time–frequency
domain and to provide better comparison and visualization of the observed periods.

Based on the observations, we see that the precipitation in the northern stations
(situated above 60◦ N) is greater than in the southern ones (situated below the 60◦ N). The
maximum number of precipitations was observed at a station located in the Altay Mountain
area, the minimum in the Chuy River Basin and in the Ural Mountains. The spatiotemporal
variability of extreme precipitation revealed an increase in precipitation in the northeast and
northwest (the arctic zone) and in the central part of the territory (the Siberian Ridges) that
was consistent with the observational data. The correlation analysis showed that the GPCC
and the ERA5 datasets were in good agreement with the observations (the correlation
coefficient was up to 0.91). We obtained quite good agreement between observational
data at the stations and GPCC data. The GPCC dataset outcomes can be explained by
the fact that GPCC owns the largest and most comprehensive worldwide collection of
precipitation data. This is based on daily surface synoptic observations and monthly climate
messages [36]. Moreover, it supports regional climate monitoring and climate variability
analyses. The ERA5 reanalysis data (replaces the ERA-Interim reanalysis) enhanced the
spatial and temporal resolutions in comparison with the other reanalyses, which allowed
us to get information that was more detailed. The APHRODITE project develops daily
precipitation datasets with high-resolution grids for Asia; however, it has limited time
series. The NCEP reanalysis data has a quite coarse grid resolution for the analysis of
regional precipitation characteristic variabilities, especially as concerns their extremes.

Thus, we compared different types of precipitation datasets for Western Siberia with
different spatial and temporal resolutions, observational data on stations, gridded data,
and reanalysis data. The choice of appropriate data source for the research of precipitation
characteristic variabilities will firstly depend on the goal of the investigation. Moreover, the
regional differences in the long-term tendencies of the precipitation characteristics (means
and extremes) will depend on the changes in the used data assimilation and parametrization
models in different datasets. The median estimates of the precipitation amount derived
from station data and reanalysis data are in better agreement with each other rather than
their extreme values. At the same time, in some cases, the temporal variability of the
extremes can be quite effectively diagnosed by reanalyses, at least in comparison to the
median values of precipitation [32].

We found that some of our results related to the agreement between observational
data and reanalysis ones have also been found in similar research [2,8]. However, in
Reference [37], it has been found that the APHRO archive is closest to the real observations
in comparison with ERA-Interim for the Siberian region. This result is explained by the
fact that the validation was made based on a single parameter (RMSE) and did not to

202



Atmosphere 2022, 13, 189

take into account other statistical characteristics. The novelty of this study is that we
proposed a comparative analysis not only for the mean values of precipitation but also for
their extremes. The usage of different statistical methods (descriptive statistics, Fourier
spectrum, and Taylor diagrams) makes the results presented in this study more reliable.
This is quite important for the arctic part of the region, where an observational grid is
significantly sparse.

5. Conclusions

In the framework of this study, we presented a comparative analysis of the atmospheric
precipitation characteristics (mean and extremes) in Western Siberia from 1979 to 2018
across different datasets.

The performed analysis was based on data acquired from meteorological stations,
global precipitation datasets such as APHRODITE and GPCC, and reanalysis archives,
including NCEP-DOE and ERA5. The comparison was based on the methods of descriptive
statistics, Fourier spectrum, and Taylor diagrams.

The best agreement of the values from the observational data was observed with the
values from GPCC. This archive also represented the periodicities in the time series of
observational data from the meteorological stations, especially in the short-period part of
the spectrum. Underestimated values were revealed for the APHRODITE archive, while
overestimated ones were found for the NCEP reanalysis data. In comparison with GPCC,
the ERA5 dataset reproduced the general variability but with a smaller amplitude (the
correlation coefficient was up to 0.9). In general, the median estimates of the precipitation
amount derived from the meteorological stations’ data, as well from the reanalysis data,
were in better agreement with each other rather than their extreme values. However, their
temporal variability can be effectively described by other datasets.

The results obtained from the validation can be useful in solving various problems
in climatology associated with the usage of data on the variable precipitation character-
istics and extreme events (when studying the conditions for the formation of droughts,
forest fires, degradation of the permafrost zone, etc.), as well as for the development and
correction of regional climate models for more accurate climate change projections. In the
framework of this study, we focused on a descriptive comparative analysis of the precip-
itation characteristics, where a spectrum analysis is one of the parts of the research. The
novelty of our work is that we made a comparison of the time series amplitude spectrum
averaged by the territory values of precipitation, as well as their extreme values.

Thus, we also suppose that the goal of our future work will deal with the application
of multiscale and multivariate statistical analyses (including a wavelet analysis) that will
allow us to conduct an analysis of the precipitation time series spectrum in more detail and
to provide better comparisons and visualization of the results.
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Abstract: By using the NCEP/NCAR re-analysis data from 1990 to 2019 and the daily precipitation

data of CN05.1 gridded observation dataset, the high and low level circulation characteristics and

their influence on the onset and precipitation of Meiyu in Jiangsu Province in recent 30 years are

studied. Comparing Meiyu in the 2010s with that in the 1990s, it is found that during the 2010s Meiyu

was characterized by a late arrival and less precipitation. There were obviously earlier Meiyu years

in the 1990s, while no extremely early Meiyu year existed in the 2010s, which was mainly caused

by the late northward jump of the upper jet and the ridge line of the western Pacific subtropical

high (WPSH hereinafter) in the 2010s. Compared with the 1990s, the 2010s witnessed an eastward

position of the South Asia high and a westward position of the subtropical westerly jet during the

Meiyu period, which are not conducive to precipitation in the Yangtze-Huaihe region. At the same

time, the cold air flowing southward to the Yangtze-Huaihe region was hindered in the 2010s due to

the change of blocking in the middle troposphere. In the 2010s, the water vapor transport and the

vertical transportation weakened, resulting in the decrease of precipitation in the Yangtze-Huaihe

region.

Keywords: Meiyu; high and low level circulation characteristics; the western Pacific subtropical high;

the South Asia high; the water vapor transport

1. Introduction

Each summer, the northward advancement of the East Asian monsoon effects a rainy
season of continuous precipitation in the Yangtze-Huaihe region in China, which is called
Meiyu. Frequent occurrences of drought and flood disasters can be seen in the Yangtze-
Huaihe region, and those in June and July are mostly related to the abnormal Meiyu in that
year [1,2]. Therefore, Meiyu has always been a great concern of meteorological research,
and valuable achievements have been made on it. The onset and precipitation of the
Meiyu are controlled by large-scale circulation factors, and the variation of the East Asian
summer monsoon results in the change of the Meiyu [3,4]. The South Asia high and the
western Pacific subtropical high (WPSH hereinafter) can directly affect Meiyu as well [5,6].
Moreover, Meiyu is related to the synoptic-scale systems, such as the blocking high, which
can make a significant impact on the situation of Meiyu [7,8]. The Meiyu is also affected by
climate change. Under the background of global warming, less precipitation of the Meiyu
has occurred in the Yangtze-Huaihe region [9,10].

It has been widely proven that the circulation characteristics of the Meiyu period
can influence the Meiyu process. According to an analysis of the observation data from
1961 to 2011, it has been concluded that Meiyu in the Yangtze-Huaihe region started late
and ended early in the 21st century, and the length and intensity of the rain season were
reduced [11]. At the beginning of this century, the Meiyu in Jiangsu was not typical and it
was difficult to determine the start and end date of the Meiyu [12]. In 2018, the Yangtze-
Huaihe region had a late Meiyu and less precipitation due to the northerly subtropical
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upper jet in East Asia, the WPSH, the atypical blocking situation in the middle to high
latitudes, and the late onset of the summer monsoon [13,14]. Compared with other years,
the year 2017 had a stronger East Asian trough, weaker summer monsoon, and stronger
WPSH, resulting in a later Meiyu onset, earlier Meiyu ending, and shorter length and less
amount of precipitation in the Yangtze-Huaihe region [15,16]. In addition, the Meiyu lasted
less time in 2015 and 2016 [17,18], and was even absent in 2014 [19]. All these facts indicate
that new characteristics have emerged for the Meiyu in recent years.

Since the 1990s, the onset of Meiyu over the Yangtze-Huaihe region has been delayed,
the temporal features and precipitation process of the Meiyu have changed, and the circu-
lation background shows characteristics different from the past. Based on the atmospheric
reanalysis data and the Meiyu time data, this work analyzes the variation characteristics
of Meiyu and the changes of high and low level circulation in Jiangsu in recent 30 years.
At the same time, standards of Meiyu in each region are not completely consistent, and
the performance of Meiyu in the south and north of the Yangtze-Huaihe region is slightly
different. As a result, this work focuses on the Meiyu in Jiangsu Province, and uses the
onset data of Jiangsu Province. By comparing the characteristics of Meiyu in the 2010s
to those in the 1990s, this work discusses the interdecadal evolution of Meiyu in recent
30 years, and further reveals the variation pattern and mechanism of Meiyu.

2. Data and Methods

Data utilized in this work include: (1) the daily precipitation data of CN05.1 gridded
observation data from 1990 to 2019 provided by the National Climate Center of China,
which is based on the daily observation data of more than 2400 stations nationwide of
the National Meteorological Information Center of China, and has a horizontal resolution
of 0.25◦ × 0.25◦; (2) atmospheric re-analysis data from 1990 to 2019 provided by the Na-
tional Center for Environmental Prediction/the National Center for Atmospheric Research
(NCEP/NCAR) of the U.S., including potential height, meridional wind, zonal wind, verti-
cal velocity, relative humidity and other factors with a horizontal resolution of 0.25◦ × 0.25◦;
(3) time data of the onset and end of the Meiyu in Jiangsu Province from 1961 to 2019,
based on the standards for delimiting Meiyu from Jiangsu Meteorological Observatory.

In this work, the position of the ridge line of the WPSH is determined by the 500-hPa
potential height field [20]. The zonal wind meets the geostrophic relationship, and the
ridge line meets the following relationship:

{

u = − 1
f

∂φ
∂y = 0

∂u
∂y > 0

(1)

where u is the zonal wind, f is the geostrophic parameter, φ is the potential height, and y is
the vector of meridional.

3. Results

3.1. Evolution Characteristics of Meiyu Onset and End Time in Jiangsu Province

Based on the onset and end dates of Meiyu in Jiangsu Province, the interdecadal
variation characteristics of Meiyu in Jiangsu Province have been discussed. According
to the 9-year moving average of the Meiyu onset time of Jiangsu Province from 1961 to
2019 (Figure 1), it can be seen that the overall change trend in the 59 years can be divided
into two stages. From 1961 to 1987, the Meiyu onset was gradually advanced over time,
and then it was delayed since 1988. The decadal average of the Meiyu onset time shows
that Meiyu in Jiangsu was continuously delayed since the 1990s. In this process, the
onset and precipitation characteristics of Meiyu and the high and low level circulation
background changed. As the initial and end stages of the delay process, the 1990s and the
2010s have obvious differences and can indicate the evolution of Meiyu in recent 30 years.
Therefore, the two stages of 1990–1991 and 2010–2019 were analyzed. The 2000s, which
can be regarded as a transitional period, will not be specifically discussed in this work.
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Figure 1. Onset date and interannual and interdecadal sequence of Meiyu in Jiangsu Province from 1961 to 2019.

In order to compare the onset time in the 1990s and 2010s, we standardized the data
within each decade respectively, and the standardized sequences of the Meiyu onset time
in 1990–1999 (Figure 2a) and 2010–2019 (Figure 2b) were obtained. The positive anomaly
standardization means a late onset. In the 1990s, there were great differences in the time
of the Meiyu onset in different years. Despite the trend of a delayed Meiyu onset, there
were still, though rare, extremely early years in the 59 years. The onsets of Meiyu in the
2010s were more similar than those in the 1990s. Taking 0.6 standard deviations as the
indicator, the years whose time of Meiyu onset and length of the Meiyu period exceeding
0.6 positive standard deviations were defined as the early years of the Meiyu onset and
the long years of the Meiyu period, respectively. Based on this standard, 1990, 1991 and
1999 were the years with an early arrival of Meiyu in the 1990s, while 1992, 1997 and 1998
were the years with a late arrival of Meiyu in this decade. In the 2010s, 2010, 2011 and 2019
were the years of an early Meiyu arrival, while 2012, 2014 and 2015 witnessed a late arrival.
Previous studies have shown that the dates of the Meiyu onset and ending are independent
of each other, and there is no significant correlation [2]. Therefore, this work focuses on the
difference of abnormal Meiyu onset in different years.

 

°

Figure 2. Standardized anomaly of Meiyu onset time from 1990 to 1999 (a) and from 2010 to 2019 (b).
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3.2. Comparison of Meiyu Characteristics and Rainstorms in 1990–1999 and 2010–2019

3.2.1. Meiyu Characteristics

We took the 12 years selected above as the characteristic cases of the 1990s and the
2010s, respectively, and discussed the variation of Meiyu characteristics with time in recent
30 years. We used the averages of the past 30 years (that is, 1990–2019) as the climatological
states of Meiyu to compare with the conditions of the characteristic years. It can be seen
from Table 1 that Meiyu with an early arrival in the 1990s had a much earlier onset than
that in the climatological state, and the end time was close to the climatological situation.
In the second decade, the onset time for Meiyu with an early arrival was only slightly
earlier than that in the climatological state, while the time of Meiyu’s end was much later.
Therefore, the duration of the Meiyu period in both the 1990s and 2010s was much longer
than that in the climatological state. For the late-arriving Meiyu, the dates of the Meiyu
onset and ending, as well as the duration of Meiyu in the 1990s were similar to those in the
second decade. Generally speaking, Meiyu started later in the 2010s than in the 1990s, but
there was little difference in how long the Meiyu rain period lasted.

Table 1. Temporal characteristics of Meiyu in 1990s and 2010s.

Type Onset Date End Date Days

Meiyu with early arrival in the 1990s 9 June 13 July 35
Meiyu with late arrival in the 1990s 26 June 15 July 20

Meiyu with early arrival in the 2010s 16 June 20 July 35
Meiyu with late arrival in the 2010s 25 June 16 July 22

climatological state of Meiyu 20 June 12 July 23

3.2.2. Rainstorm during Meiyu Period

Rainstorms often occur during the Meiyu period, and the rainfall intensity and range
vary under different circulation backgrounds. According to the ground observation specifi-
cation of the China Meteorological Administration, a rainstorm is defined when the 24-h
precipitation reaches more than 50 mm, and a heavy rainstorm is defined when the precipi-
tation reaches more than 100 mm. Based on this standard, this work conducted statistical
analysis on the rainstorm process in Jiangsu Province in the 12 characteristic years. In the
grid with a horizontal resolution of 0.25◦, when rainstorm precipitation occurred at two
consecutive points, it was recorded as a rainstorm process, so as to calculate the days of
rainstorms or heavy rainstorms. The days with continuous rainstorm in Jiangsu Province
were defined as the rainstorm duration days, and the longest record of duration days over
the years was regarded as the longest duration of rainstorm. The occurrence of rainstorms
in the above years is shown in Table 2.

Table 2. Comparison of rainstorms in the Meiyu period in Jiangsu Province.

Year of Early
Meiyu
Arrival

Rainstorm
Days

Heavy
Rainstorm

Days

Maximum
Rainstorm

Duration Days

Year of Late
Meiyu
Arrival

Rainstorm
Days

Heavy
Rainstorm

Days

Maximum
Rainstorm

Duration Days

1990 3 0 1 1992 1 0 1
1991 17 8 5 1997 4 2 2
1999 14 3 6 1998 6 0 2
2010 6 1 4 2012 9 1 2
2011 10 2 4 2014 4 0 1
2019 5 0 1 2015 5 1 2

In general, Meiyu with an early arrival had stronger and more precipitation processes,
and longer duration days of rainstorm than the late-arriving ones. Meanwhile, it was easier
to induce heavy rainstorms in the early-arriving Meiyu. Such a phenomenon was more
obvious in the 1990s. During this decade, the rainstorm cases for Meiyu with early and late
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onsets were significantly different. Early-arriving Meiyu had much more rainstorms and
heavy rainstorm days than a late one, and the rainstorm cases lasted longer. In contrast,
although there were more rainstorm days in the early-arriving Meiyu periods than in the
late ones for the 2010s, the difference was not clear. A relatively significant feature is that
the rainstorm duration days in the early cases were generally longer than those in the
late ones. The difference of precipitation characteristics in different years was consistent
with the difference of the Meiyu onset time. There was a large discrepancy in the Meiyu
onset time between the years of the early-arriving and the late-arriving Meiyu in the 1990s,
and the number of rainstorm days also varied to a great extent. Particularly, rainstorms
occurred frequently in 1991 and 1999. But the 2010s had little difference in rainstorm days
between different Meiyu years, while the deviation of the Meiyu onset time was not as
much as that in the 1990s, either.

Moreover, looking into the years within the same category, it can be found that the
early Meiyu years were more dissimilar between the 1990s and 2010s than the late Meiyu
years. For the early-arriving Meiyu years, more rainstorm days, heavy rainstorm days and
continuous duration days existed in the 1990s than in the 2010s. On the whole, during the
1990s the rainstorm process in the Meiyu period occurred more frequently, and there was a
noteworthy difference between the years of early and late Meiyu arrival.

3.3. Effects of Circulation Variation on Meiyu Onset and Precipitation in 1990–1999
and 2010–2019

3.3.1. South Asia High and Upper-Level Jet

As the strongest and most stable atmospheric circulation system in the upper tropo-
sphere of the northern hemisphere in summer, the South Asia high (SAH hereinafter) has a
vital impact on summer precipitation in China [21]. Its strength, east-west position and
north-south shift are closely linked to the onset and end of Meiyu, and also affects the
summer rainfall in the Yangtze-Huaihe region of China. Figure 3 shows the locations of
the SAH and the upper-level jet during the Meiyu period in the years with the early and
late arrival of Meiyu in the 1990s and 2010s. The height of 16,800 gpm at 100 hPa was
taken as the characteristic line of the SAH, and the area with a wind speed over 30 m/s at
200 hPa was considered the upper-level jet region. It can be seen from the figure that in the
2010s the location of the SAH in the years of the early and late Meiyu arrival was relatively
similar, and the range was obviously larger than that in the 1990s. The easternmost point
of the SAH exceeded 110◦ E in the 2010s, and the intensity was strong (Figure 3c,d). The
location of the SAH in the Meiyu period of the 1990s was slightly westward compared to
that in the 2010s, and the range was marginally smaller. The location of the SAH during the
years of the late Meiyu arrival in the 1990s was more westward, as its easternmost point
was west of 100◦ E (Figure 3a,b). The SAH extending to the east of 110◦ E often causes
delay of the Meiyu onset [22]. Furthermore, the SAH located further east in June makes it
difficult for the rain belt to move northward, and the SAH further east in July leads to the
westerly and northerly extension of the WPSH, which is not conducive to precipitation in
the Yangtze-Huaihe region [23]. Therefore, the further east location of the SAH is one of
the reasons for the later onset and decreased precipitation in the 2010s than in the 1990s.

With the formation of the SAH, the anticyclone circulation strengthens the pressure
gradient on the north side, and the subtropical westerly jet in its north enhances [7]. Due
to the geostrophic relation, the strength and location of the SAH have a decisive impact
on the westerly jet [24]. Taking 120◦ E as the boundary, the East Asian continental jet and
the Western Pacific jet have been proposed according to the location of the upper-level jet
axis. The Western Pacific jet plays a significant role in the Meiyu precipitation process in
the Yangtze-Huaihe region, as this region is located on the right side of the upper-level jet
inlet [25]. The comparison of different decades shows that there was a stable upper-level jet
in East Asia in the years with an early Meiyu arrival during the 1990s. The jet had a wide
range from east to west, and the Yangtze-Huaihe region was located on the right side of the
inlet of the upper-level jet area (Figure 3a). In the years of the late Meiyu arrival during the
same decade, the position of the upper-level jet was extremely westward, and the absence
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of the upper-level jet hindered the occurrence of the rainstorm process (Figure 3b). In the
2010s, the location and intensity of the jet over East Asia were relatively similar between the
years of the early and late Meiyu arrival. The upper-level jet was the East Asian continental
jet, and the convergence on the right side of the jet stream outlet was not conducive to
convection and rainstorms (Figure 3c,d).

° °

°

 
Figure 3. The South Asia high at 100 hPa (the solid line denotes the 16,800-gpm characteristic line),
the wind fields at 200 hPa (vector, unit: m·s−1, the yellow shaded areas denote speed exceeding
30 m·s−1) and the study region (marked in red) of years of early Meiyu arrival in the 1990s (a), late
Meiyu arrival in the 1990s (b), early Meiyu arrival in the 2010s (c), and late Meiyu arrival in the
2010s (d).

The north-south position of the upper-level jet before the Meiyu onset and the time of
upper-level jet formation are related to the time of the Meiyu onset. As shown in Figure 4,
the zonal average of the 200-hPa zonal wind at 110◦ E to 130◦ E was used to indicate the
intensity of the upper-level jet affecting the Yangtze-Huaihe region, which can reflect the
variation of the position and intensity of the upper-level jet for Meiyu of early arrival
and late arrival in the two different decades. Combined with the average time of the
Meiyu onset, it can be found that the periods with strong jet flow were mostly before the
Meiyu onset. There was still a period of strong jet flow after the Meiyu’s start in an early
Meiyu arrival year in the 1990s, while the jet flow in the range of 110◦ E to 130◦ E in the
other three types of years was weak in the Meiyu period. Comparing different Meiyu
years in the 1990s, the jet axis in the early Meiyu arrival years was basically located at
40◦ N, which was much more north than that in the late years; the wind speed was higher,
and the duration was longer than that in the late years (Figure 4a,b). As pointed out by
research, the northerly upper-level jet often corresponds to a stronger East Asian summer
monsoon system, and its early northward movement results in the early onset of Meiyu in
the Yangtze-Huaihe region [26]. However, an almost opposite phenomenon occurred in the
2010s. The jet intensity in the years of an early Meiyu arrival was weaker, the duration was
obviously shorter, and the north-south position deviation was not significant (Figure 4c,d).
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Figure 4. Time-latitude profile along the mean 110~130◦ E of 200-hPa mean zonal wind from June to July (the solid line
denotes wind speed, unit: m·s−1; the shaded areas denotes wind speed exceeding 30 m·s−1) of years of early Meiyu arrival
in the 1990s (a), late Meiyu arrival in the 1990s (b), early Meiyu arrival in the 2010s (c), and late Meiyu arrival in the
2010s (d).

3.3.2. Western Pacific Subtropical High and Blocking High

The Western Pacific subtropical high (WPSH hereinafter) is a warm anticyclone system,
and its location and intensity are closely related to Meiyu. The northward jump of the
WPSH ridgeline plays a critical role in the Meiyu’s onset and end, and the westward
extension position, north-south oscillation and range of the WPSH have an important
impact on the rainfall area and intensity of Meiyu’s precipitation.

The latitude of the WSPH ridgeline over 120◦ E at 500 hPa is one of the conditions of
the Meiyu onset according to Jiangsu Meteorological Observatory. It stipulates that the
ridgeline should be north than 20◦ N. Therefore, the discussion on the Jiangsu Meiyu onset
needs to consider the location of the WPSH and the moving of the ridgeline. Figure 5
compares the range and ridgeline of 500-hPa WPSH before and after the Meiyu onset in
the 1990s and 2010s, and takes the average potential height of 110~130◦ E as an indication
to reflect the north-south shift of the WPSH. In the years of the early Meiyu arrival in the
1990s, the range of the WPSH was small, but the ridgeline of the anticyclone system jumped
northward earlier and moved to the north of 20◦ N in the first pentad of June. Although
there were short-term fluctuations, the ridgeline basically remained between 20 and 25◦ N
until mid-July. The early northward jump of the WPSH and the early formation of the
Meiyu circulation system resulted in the early onset of Meiyu in these years (Figure 5a). In
contrast, in the years of the late arrival of Meiyu in the 1990s, the WPSH moved northward
much later as it propagated to 20◦ N in the fifth pentad of June. It moved slowly and stably
before the onset, rather than jumping northward rapidly like the case of the early-arriving
Meiyu. The WPSH stayed in the south for a long time, which determined the late start of
Meiyu in these years (Figure 5b). In the 2010s, the WPSH appeared early in East Asia in
the years of the early Meiyu arrival, but its ridgeline was still in a southerly position for
some time until a northward shift occurred at the fourth pentad. Therefore, the onset time
for the early-arriving Meiyu of the 2010s was later than that of the 1990s (Figure 5c). The
WPSH was formed late in the years of the late Meiyu arrival of the 2010s. The ridgeline of
the anticyclone system was at the north of 20◦ N in the first pentad of June, but it remained
north for only a few days and then retreated southward. It moved north at the fourth
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pentad, which was close to the condition of the early Meiyu years of the 2010s. However,
although the ridgeline completed the north jump, the clear WPSH characteristic line did
not appear until the fifth pentad of June. It means that the high pressure zone did not reach
the strength of the WPSH until the end of June (Figure 5d). Zhou have pointed out that for
the Meiyu with a late arrival, the ridgeline of the WPSH may push northward quickly in
late May, but retreats southward due to instability [27], which is similar to this situation in
the years of the late Meiyu arrival in the 2010s.

°°
°

°°
°

°

 °Figure 5. Time-latitude profile of 500-hPa mean geopotential height at 110~130◦ E (the solid line denotes geopotential
height, unit: gpm; the shaded areas denotes geopotential height exceeding 5880 gpm) and western Pacific subtropical
high ridgeline (dashed line) from June to July of early-arriving Meiyu in the 1990s (a), late-arriving Meiyu in the 1990s (b),
early-arriving Meiyu in the 2010s (c), and late-arriving Meiyu in the 2010s (d).

In the middle troposphere, the blocking situation in the middle and high latitudes
can also affect Meiyu. In previous studies, the blocking high in the region of 111~150◦ E
is generally regarded as the east-blocking type, that in the region of 81~110◦ E the Baikal-
blocking type, and that in 51~80◦ E the west-blocking type [28]. The east-blocking high
among them, which is stable and less variable, makes more contribution in the years with
longer Meiyu periods and has a closer relationship with Meiyu [5]. As can be seen from
Figure 6, the blocking situation in the years of the early Meiyu arrival was relatively similar
in the 1990s and 2010s, but the blocking situation in the years of the late Meiyu arrival was
not typical. For the early-arriving Meiyu in the 1990s, the distribution of blocking high
approximated the double-blocking type. Compared with the climatological state, the two
high pressures were stronger, and the blocking high was the east-blocking type (Figure 6a).
This type of blocking situation can make the cold air invade southward and strengthen the
Meiyu front, increase the Meiyu rainstorm, and prolong the Meiyu period by blocking the
northward rise of the WPSH [27]. The blocking high for the early-arriving Meiyu in the
2010s was the Baikal-blocking type, which had less effect on cold air transport and Meiyu
front maintenance than the east-blocking type (Figure 6c). In contrast, the blocking high of
the years with the late Meiyu arrival was weaker. The single-blocking type was shown in
the 1990s (Figure 6b), and the blocking situation for the late-arriving Meiyu in the 2010s
was not obvious. The westerly belt over middle and high latitudes was relatively flat to the
east of the Ural region (Figure 6d). The two kinds of circulation situations can both cause
the weak activity of cold air, which is unfavorable to the emergence and maintenance of
the Meiyu structure.
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Figure 6. The geopotential height fields at 500 hPa (solid line, units: gpm) and anomaly field compared with climatological
state (shaded, units: gpm) of early-arriving Meiyu in the 1990s (a), late-arriving Meiyu in the 1990s (b), early-arriving Meiyu
in the 2010s (c), and late-arriving Meiyu in the 2010s (d).

3.4. Effects of the Variation of Mesoscale Characteristic Factors on Meiyu Precipitation in
1990–1999 and 2010–2019

3.4.1. Water Vapor Transport

Water vapor transport is one of the key factors in precipitation, and the transport of
water vapor by the monsoon circulation system in the lower troposphere has an important
impact on the rainfall in the Meiyu period. The average water vapor flux and water vapor
flux divergence of 850 hPa were analyzed with composites of the Meiyu periods in the
1990s and 2010s. The results are shown in Figure 7. In the 1990s, the air flow from the South
China Sea was more southerly. Apart from the southwest air flow in the northern Indian
Ocean, a stream of water vapor was also transported northward to the Yangtze-Huaihe
region through the South China Sea, and both were transport routes with strong water
vapor flux (Figure 7a). The water vapor flux in the 2010s mainly had a southwest direction.
The high value area of the water vapor flux shows that a large amount of water vapor was
directly transported from the northern Indian Ocean to the Yangtze-Huaihe region, while
the water vapor flux transported from south to north near the South China Sea was not
as strong as that in the 1990s (Figure 7b). In addition, comparison of the water vapor flux
divergence suggests that the convergence in the Yangtze-Huaihe region in the 2010s was
weaker than that in the 1990s, which hindered the rainfall there.
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Figure 7. Water vapor flux field at 850 hPa (vector, unit: s−1, the solid line denotes 0.006 s−1 line) and its divergence field
(shaded, unit: 10−8 g/(s·cm2·hPa)) of Meiyu in the 1990s (a) and 2010s (b).

The Yangtze-Huaihe region is in the southeast of Asia, and its precipitation during
the Meiyu period is affected by air masses from several different sources. The three
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sources that contribute most to the water vapor transport in the region are the Indian
Ocean, the Western Pacific, and the South China Sea [29]. Different water vapor channels
and air mass types can have distinct effects on Meiyu precipitation, and this work takes
the intensity of the three water vapor transport channels as a standard to compare the
water vapor contribution in different decades. Based on the average distribution of the
vertical integration of water vapor flux from 1990 to 2019, we recognized three extreme
regions of the vector modes as the water vapor transport channels. It was obtained that
the southwest channel’s range was (85~100◦ E, 15~22.5◦ N), the South China Sea channel’s
range was (107.5~117.5◦ E, 10~20◦ N), and the southeast channel’s range was (135~150◦ E,
10~17.5◦ N) [30]. The intensities of the three channels are shown in Table 3. The average
intensity of the three channels in the 1990s was stronger than that in the 2010s, which
proves that the water vapor transmission from the three sources to the Yangtze-Huaihe
region in the 1990s was stronger. Furthermore, the intensity of the southwest channel and
the South China Sea channel increased synchronously in the early-arriving Meiyu years
of the 1990s. The years with abnormal precipitation in Meiyu always have significantly
higher water vapor transport from the South China Sea than other years [29], which can
explain the strong Meiyu precipitation in the early Meiyu arrival years during the 1990s.
As revealed by the contrast of water vapor transport between the 1990s and 2010s, stronger
water vapor channels and better water vapor income in the Yangtze-Huaihe region were
the reasons for more precipitation in the 1990s. The insufficient water vapor acquisition
and the transformation from a south water vapor transport channel to a southwest one
caused less precipitation in the 2010s.

Table 3. Intensity index of water vapor channel in Meiyu period (unit: kg·m−1·s−1).

Water Vapor Channels
Early-Arriving
Meiyu in the

1990s

Late-Arriving
Meiyu in the

1990s

Average of
the 1990s

Early-Arriving
Meiyu in the

2010s

Late-Arriving
Meiyu in the

2010s

Average
of the
2010s

Southwest channel 371.14 358.43 351.06 326.42 348.21 340.11

Southeast channel 210.35 253.94 240.34 231.74 224.22 230.48

South China sea channel 281.56 273.42 262.28 257.59 284.65 258.64

3.4.2. Vertical Convection

The occurrence of strong rainstorms not only needs an abundant water vapor condi-
tion, but also requires the cooperation of a strong upward movement. During the Meiyu
period, the low-level jet over the Yangtze-Huaihe region not only provides continuous wa-
ter vapor transport, but also meets with cold air to form the Meiyu front, thus resulting in
vertical convection [31,32]. When comparing the vertical movement in the 1990s and 2010s,
the region of 116~122◦ E was used to characterize the average level of Jiangsu Province
and its north and south sides. The longitudinal profile of vertical velocity and radial wind
field is shown in Figure 8. In the years of the early Meiyu arrival, there was an upward
movement in Jiangsu Province and its south side. In the 1990s, the rising area was wider,
and the vertical height of the upper boundary of the rising area was higher (Figure 8a).
In the 2010s, the downdraft appeared at the upper troposphere in the south of Jiangsu
(Figure 8c). In the 1990s and 2010s, the late-arriving Meiyu experienced a subsidence
movement near 20◦ N in the south of Jiangsu Province. The subsidence in the 1990s was
mainly in the middle and low level of the troposphere (Figure 8b), while in the 2010s,
there was a subsidence area penetrating the entire height of the troposphere in the south of
Jiangsu Province, which was mainly related to the westward extension of the WPSH and
the eastward extension of the SAH (Figure 8d). For the precipitation process, the vertical
convection is a necessary condition to trigger it. The large-scale upward movement in the
years of the early Meiyu arrival in the 1990s was a major factor causing more rainstorms,
while the strong downdraft in the south of Jiangsu in the years of the late Meiyu arrival in
the 2010s hindered the occurrence of rainstorms.
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Figure 8. Profile along the mean 116~122◦ E of vertical velocity field (solid line, unit: m·s−1) and wind field (vector, unit:
s−1, the vertical velocity is magnified 10 times); the shaded areas denote the topography of years of early Meiyu arrival in
the 1990s (a), late Meiyu arrival in the 1990s (b), early Meiyu arrival in the 2010s (c), and late Meiyu arrival in the 2010s (d).

4. Conclusions

This work presents the variation of Meiyu in Jiangsu Province in recent 30 years by
comparing the characteristic cases of the 1990s and the 2010s. The main conclusions are
as follows:

(1) Since the 1990s, the Meiyu in Jiangsu Province has been delayed, and there was
no extremely early Meiyu year in the 2010s. In the 1990s, the precipitation intensity was
stronger than that in the 2010s in Jiangsu Province, and the difference between the early
and late Meiyu years was obvious. The 2010s had less rainfall, fewer numbers of rainstorm
days, and similar precipitation characteristics between the years of the early and late
Meiyu arrival.

(2) At the upper troposphere, the SAH and the upper-level jet have a major impact on
Meiyu. The position of the SAH in the 2010s was far eastward in comparison with that in
the 1990s, which was not conducive to precipitation in the Meiyu period in the Yangtze-
Huaihe region. For the early-arriving Meiyu of the 1990s, the effect of the subtropical
westerly jet was one of the reasons for multiple rainfall processes, and the strong and
northerly upper-level jet in June, which indicated a strong summer monsoon, induced an
early Meiyu onset. In the 2010s, the position of the upper-level jet is west and the range is
small, and the difference of the upper-level jet was not significant, so the precipitation was
weak and similar.

(3) The WPSH and blocking situation in the middle troposphere are important factors
affecting Meiyu. The ridgeline of the WPSH in the years of the early Meiyu during the
1990s completed its northward jump at the beginning of June, causing an earlier Meiyu
onset. In the late 1990s, the WPSH ridgeline remaining in low latitudes for a long term
was the reason for a late Meiyu onset. Although in the 2010s, a large range of WPSH
appeared early for the Meiyu of early arrival, the ridgeline did not jump north earlier, so
there was no extremely early Meiyu onset. During the 2010s, the WPSH in the late-arriving
Meiyu years jumped to the north earlier but retreated to the south soon, and the time it
finally completed the north lifting was late, so the Meiyu started late. In addition, the
east-blocking high in the early-arriving Meiyu years in the 1990s was more conducive to
the southward movement of cold air that strengthened the Meiyu precipitation, while the
atypical blocking situation in the years of the late Meiyu arrival of the 1990s and the 2010s
hindered the occurrence of Meiyu precipitation.
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(4) In the 1990s, there was a stronger water vapor convergence in the Yangtze-Huaihe
region, which provided the water vapor condition for more precipitation. The water vapor
transport sources are different in different decades, and the change of water vapor channels
in the 1990s and the 2010s was also one of the reasons for the variation of precipitation
characteristics. On the whole, water vapor transport from the three sources of the Indian
Ocean, the South China Sea, and the Western Pacific was stronger in the 1990s than in
the 2010s, and less water vapor transport in the 2010s reduced the precipitation in the
Yangtze-Huaihe region. In addition, in the 2010s the vertical transportation of Jiangsu and
its south side weakened, and there even existed a large subsidence area in the years of the
late Meiyu arrival, which had a negative impact on precipitation.
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Abstract: In view of the limited predictability of heavy rainfall (HR) events and the limited under-

standing of the physical mechanisms governing the initiation and organization of the associated

mesoscale convective systems (MCSs), a composite analysis of 58 HR events over the warm sector (i.e.,

far ahead of the surface cold front), referred to as WSHR events, over South China during the months

of April to June 2008~2014 is performed in terms of precipitation, large-scale circulations, pre-storm

environmental conditions, and MCS types. Results show that the large-scale circulations of the WSHR

events can be categorized into pre-frontal, southwesterly warm and moist ascending airflow, and

low-level vortex types, with higher frequency occurrences of the former two types. Their pre-storm

environments are characterized by a deep moist layer with >50 mm column-integrated precipitable

water, high convective available potential energy with the equivalent potential temperature of ≥340 K

at 850 hPa, weak vertical wind shear below 400 hPa, and a low-level jet near 925 hPa with weak warm

advection, based on atmospheric parameter composite. Three classes of the corresponding MCSs,

exhibiting peak convective activity in the afternoon and the early morning hours, can be identified as

linear-shaped, a leading convective line adjoined with trailing stratiform rainfall, and comma-shaped,

respectively. It is found that many linear-shaped MCSs in coastal regions are triggered by local

topography, enhanced by sea breezes, whereas the latter two classes of MCSs experience isentropic

lifting in the southwesterly warm and moist flows. They all develop in large-scale environments

with favorable quasi-geostrophic forcing, albeit weak. Conceptual models are finally developed to

facilitate our understanding and prediction of the WSHR events over South China.

Keywords: warm-sector heavy rainfall; mesoscale convective systems; statistical analysis; South China

1. Introduction

Previous studies have shown that more than 40% of annual rainfall in South China
occurs during the pre-summer months (April to June) [1–4]. In contrast to relatively
weak and broad rainfall occurring behind slowly moving surface cold fronts, many of the
growing-season rainfall events over the region are heavy and highly localized, where heavy
rainfall is defined herein as the daily rainfall amount of greater than 50 mm, following
that defined by the China Meteorological Administration. They are typically generated
in mesoscale convective systems (MCSs) that develop in the warm sector, i.e., far ahead
of surface fronts, where southwesterly warm and moist flows prevail with weak thermal
gradients. Hence, they have been often regarded as warm-sector heavy rainfall (WSHR)
events, although some of them may be initiated near surface fronts and then propagate
rapidly ahead [5–8].

Because of their high impacts on societal and economic activities, there has been con-
siderable interest in studying WSHR events over South China during the past few decades.
For example, high-resolution mesoscale observing networks were established in late 1990s
in South China to monitor the development of heavy rainfall (HR) and other severe con-
vective weather events. In addition, several field experiments were carried out, such as
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the South China Sea Monsoon Experiment (SCSMEX, 1996–2000) [9,10], Huanan Area
Mesoscale Experiment (HUAMEX, 1998) [11,12] and the Southern China Monsoon Rainfall
Experiment (SCMREX, 2014–2017) [13], to examine the development of HR-producing
MCSs. A few climatological conceptual models were developed for some WSHR events, in
which a quasi-stationary frontal system, formed in the southerly monsoonal air from the
South China Sea (SCS)-Indochina Peninsula interacting with northerly cold air, provides a
favorable condition for the generation of WSHR events over South China during the pre-
summer months. After analyzing two high-impact WSHR events, Sun and Zhao [14–16],
revealed the importance of surface heating, topography and sea breeze circulations in
the associated HR-producing MCSs, which differ from those associated with dynamical
forcing such as frontal lifting and upper-level troughs. Both observational and numerical
modeling studies have shown the effects of topographical lifting on the development of
HR-producing MCSs [17–20]. The importance of low-level jets (LLJs), and southwesterly
moisture supply has also been considered in the growth and organization of HR-producing
MCSs [21–24]. However, HR events are often associated with long-lived MCSs in weak
southwesterly wind environments [25–27]. These rainfall events also exhibit significant
diurnal variations [28,29], with high-frequency HR occurring during midnight to the early
morning hours that are closely related to LLJs, pre-existing cool pool, orographic lifting and
the planetary boundary layer (PBL) processes including urban heat island effects [30–32].

Although considerable progress has been made in understanding the development
of WSHR events in South China, many scientific issues are still elusive. In particular,
current operational (global and regional) numerical weather prediction (NWP) models still
remain either hit or miss in predicting the timing and location of convective initiation and
the development of WSHR-producing MCSs, thus showing little skill in the associated
quantitative precipitation forecasts [13,33–35]. Unlike rainstorms under the influences of
synoptic dynamic forcing [36], quasi-stationary fronts [37], shearlines or low-level vortices
and southwesterly LLJ [38–41] are often the necessary but not sufficient conditions for
determining the exact location, timing and amount of HR [42]. Therefore, it could be useful
to apply the ingredient-based analysis of environmental conditions for WSHR-producing
MCSs. Moreover, from the perspective of operational forecasts, it is desirable to examine
climatologically the geographical and temporal distributions of HR in South China, develop
conceptual models for the formation of different WSHR-producing MCSs under typical
environmental conditions, and refine empirical WSHR forecast techniques.

On the other hand, HR amounts are closely related to the structures, organization and
propagation of MCSs. In this regard, several three-dimensional morphological models of
MCSs were developed, based on Doppler radar observations [43,44]. Doswell et al. [45]
showed the relationship between localized rainfall, convective organization and movement
by demonstrating that flash floods could be produced by passing through a series of
convective elements aligned linearly, like an advancing train, the so-called echo-training
process. Schumacher and Johnson [46] classify Two archetypes of heavy-rain-producing
linear MCSs for multiple flash flood events in the Midwest of the United States: A line
of training convective elements with an adjoint trailing stratiform region (TL/AS), and
an area of back-building convection with a trailing stratiform region. Numerous HR
events in South China and elsewhere in China were also found to be directly linked to
multiple mesoscale echo- and rainband-training processes [47]. Recently, Liu et al. [48]
classified three types of persistent HR events in South China, based on their correlations
with geographical locations of the HR event occurrences.

Evidently, few statistical studies have been systematically performed to classify WSHR-
producing MCSs during the pre-summer months in accordance with synoptic environments
and topographic forcing in South China. Given our limited understanding of the large-
scale conditions associated with WSHR and the morphologies of HR-producing MCSs
during the pre-summer months over South China, the objectives of this study are to
(i) document the spatiotemporal characteristics of WSHR and classify a few major types
of WSHR events during the years of 2008–2014; (ii) identify the large-scale environmental
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conditions associated with the different types of WSHR events; and (iii) analyze the
structures, organization and evolution of typical MCSs that produce the WSHR events.

The next section describes the data and methodologies used for this study. Section 3
presents the spatiotemporal characteristics of WSHR and describes the classification of
major WSHR events, based on their large-scale flow patterns. Their associated environmen-
tal parameters, i.e., total precipitable water (PWAT), convective available potential energy
(CAPE), and the level of free convection (LFC) are also shown. Section 4 presents some
typical MCS morphologies using radar observations. A summary and concluding remarks
are given in the final section.

2. Data Source and Methodology

In this study, observations from the conventional (2418) surface weather stations
and upper-air network during the pre-summer months of 2008–2014, archived by the
National Meteorological Center of the China Meteorological Administration (CMA/NMC),
are used to describe the proximity of environmental conditions in which WSHR events
occurred. The 6-hourly National Centers for Environmental Prediction (NCEP) Global
Forecast System (GFS) 0.5◦ × 0.5◦ gridded model dataset is used to reveal the large-scale
flows and the environmental conditions under which WSHR-producing MCSs develop.

In general, South China is geographically referred to as the vast territory on the south
of Mt. Nanling, including most portion of Guangxi (GX) Province, all of Guangdong (GD)
and Hainan (HN) provinces, and part of Fujian (FJ) Province (see Figure 1). In this study,
we focus on the area ranging within 20–27◦ N and 105–120◦ E, which includes almost
all of South China, except for Hainan Province. The mean annual precipitation in South
China, obtained from 16 climatological stations, is 1614 mm, according to Year 1981–2010
precipitation statistics, over 45% of which occurred during the pre-summer months [2].
For the present study, out of 16 national surface stations, nine received top annual rainfall
amounts over South China, as highlighted with red dots in Figure 1. The top annual rainfall
amounts ranged from 1453 mm at Wuzhou, GX (No. 59265) to 2221 mm at Yangjiang, GD
(No. 59663).

A composite analysis and subjective classification of 58 WSHR events will be per-
formed to develop conceptual models of different MCSs for various types of WSHR events,
based on the given large-scale background flows. This approach has been used by Maddox
et al. [49] to classify four categories of large-scale flow patterns that are favorable for the
generation of flooding rainfall in the central and eastern United States, and by Tao [1], and
Huang [2] to characterize various large-scale circulation features, such as surface fronts,
LLJs, and low-level vortices, that are involved in the generation of WSHR events in South
China. In this study, a surface front is defined as a warm/moist—cold/dry air boundary,
accompanied with a height trough aloft. An LLJ is simply defined as the peak horizontal
wind speed of at least 10 m s−1 below 850 hPa, though occurring mostly near 925 hPa,
while a low-level vortex (LV) is just a closed circulation in the lowest 150 hPa. Given the
weak-gradient environments in which the WSHR events took place, an objective classifica-
tion scheme, e.g., through regional-scale vertical wind shear, CAPE, PWAT, and relative
vorticity, could be developed to identify some unique dynamical and thermodynamic
characteristics of the WSHR events.
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Figure 1. Distribution of topography (shaded, m) and some related national surface stations (red dots with identifications)
over South China. The inner red frame denotes the region of interest (20–27◦ N, 105–120◦ E) for the present study. The top
nine annual precipitation stations (with their identifiers) averaged during 1981–2010 are given with their corresponding
amounts listed in the bottom right box. Letters, “GX”, “GD”, and “FJ” denote the province of Guangxi, Guangdong and
Fujian, respectively, similarly for the rest of figures.

3. Spatiotemporal Characteristics of WSHR and Large-Scale Mean Flows

In this section, we examine first the temporal distribution of WSHR events, and
classify them into different categories, based on their common background characteristics.
Then, the corresponding composite fields will be analyzed to gain insight into different
characteristics in large-scale flows and energy supply, HR generation mechanisms, and
their spatial distributions in South China.

3.1. Characteristic of WSHR

In this study, an HR event is defined when 24-h (i.e., between 0800–0800 BST: Beijing
Standard Time = UTC + 8 h) accumulated precipitation at 3 and more adjacent (less than
200 km apart) or at five scattered (at least 300 km apart) national stations over South China
equals to or exceeds 50 mm. Clearly, this definition will filter out HR events generated by
local or random deep convection. Table 1 shows, on average, 37.7 HR days per year during
the pre-summer months of 2008–2014, 65% of which take place after the onset of summer
monsoon in East Asia. There are a total of 58 WSHR days or events (see Appendix A,
Appendix B, Appendix C for their individual occurrence dates), which give 8.3 WSHR
events per year or 22.0% of the total HR events during the pre-summer months of the
7-year period, and a total of 145 typical WSHR-producing MCSs move across South China.
Higher-frequency WSHR events occur during the pre-summer months of 2008 and 2009, as
compared to the lowest-frequency WSHR events in 2011.

Horizontal distribution of the mean daily rainfall amount from all 58 WSHR events
over South China is displayed in Figure 2, showing the top five rainfall maxima, denoted
as “C1”–“C5”, four of which are more than 100 mm day−1. They are located near surface
stations in Guilin of GX; Yangjiang of GD, Shanwei of GD, and the Pearl River Estuary of
GD, respectively. A single-day rainfall amount reaches 445.7 mm, named as the top one
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(C1) WSHR event, which occurs in Yunxiao of FJ, on 14 June 2008 as a result of a low-level
vortex interacting with strong monsoonal flows. The top 1–10 WSHR maxima correspond
more or less to climatological precipitation maxima.

Table 1. The number of HR versus WSHR days, and the ratio of HR days to WSHR days over South
China during the pre-summer months of 2008–2014.

Year 2008 2009 2010 2011 2012 2013 2014 Mean

HR
days

40 25 40 32 46 40 41 37.7

WSHR
days

14 9 8 5 6 10 6 8.3

Ratio 35% 36% 20% 15.6% 13.0% 25% 14.6% 22.0%

Figure 2. Horizontal distribution of the mean daily precipitation amount composite (shaded, mm) from the 58 WSHR events
over South China during the pre-summer months of 2008–2014. Symbols, “C1”–“C10”, denote the top 10 daily rainfall
maxima, which are also listed in Table 2.

Table 2. The locations (and station numbers), dates (day/month/year), amounts (mm), and classi-
fied weather types of the top ten daily-averaged WSHR events during the pre-summer months of
2008–2014 (also see Figure 2).

Index Station ID/Name Date Amount(mm) Type

C1 59322/Yunxiao 13 June 2008 445.7 LLV
C2 59290/Longmen 14 June 2008 327.0 PSF
C3 59087/Fogang 15 May 2013 292.4 WMF
C4 59663/Yangjiang 28 June 2011 256.5 WMF
C5 59094/Wongyuan 6 May 2010 240.1 PSF
C6 59254/Guiping 12 May 2012 237.2 LLV
C7 59500/Haifeng 21 June 2012 226.4 WMF
C8 59501/Shanwei 7 June 2008 216.9 WMF
C9 59664/Dianbai 5 May 2008 209.8 WMF
C10 59069/Zhaoping 22 June 2012 206.9 LLV

3.2. Classification of WSHR Events

Based on the previous studies of HR-producing MCSs, it is convenient to use the
surface front and low-level vortex as the two key weather system identifiers to classify
the large-scale environments in which all the above WSHR events occur. The following
three major types of flow configuration could be identified: (i) a pre-surface-frontal (PSF)
type, (ii) a warm-moist airflow (WMF) type, and (iii) a low-level vortex (LLV) type. The
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remaining HR events appear to be more associated with typical frontal rainbelts, tropical
cyclones or randomly generated local thunderstorms. Monthly distribution of each type of
WSHR events is given in Figure 3, showing the least occurrences of (10) WSHR events in
April and the frequent occurrences in May and June (24 in each month). The frequencies of
the individual types of WSHR events appear to follow closely the seasonal transition from
more surface frontal passages in April to more influences of southwesterly monsoonal
flows in May and June. In particular, few LLV-type WSHR events could occur in April and
May due to the presence of more baroclinicity on the lee side of the Tibet Plateau, but they
become the dominant HR producer in June as more moist monsoonal air is processed. After
describing briefly their general characteristics below, more detailed rainfall characteristics
and mean environmental conditions associated with the three types of WSHR events are
presented in subsections 3b-d that follow, respectively.

Figure 3. Monthly number distribution of the three major types (i.e., PSF, WMF, and LLV) of the
58 WSHR events over South China during the pre-summer months of 2008–2014.

(i) The PSF type consists of 21 HR events (see Appendix A for their occurrence dates),
accounting for 36.2% of the total WSHR events. It occurs in the moist southwesterly flows
far ahead of a surface front (i.e., in a warm sector), and the associated WSHR belt is well
separated from those rainbelts with much weak rainfall intensity along or behind the
frontal zone.

(ii) The WMF type consists of 24 HR events (see Appendix B for their occurrence dates),
accounting for 41.4% of the total WSHR events, which is of the highest frequency among
the three types. Its large-scale flow pattern is dominated by a warm-moist southwesterly
airstream with little evidence of a surface front, but experiencing northeastward isentropic
lifting [50–54]. It is often accompanied by a southwesterly LLJ extending from the SCS,
with some typical monsoonal rainfall characteristics.

(iii) The LLV type consists of 13 HR events (see Appendix C for their occurrence dates),
accounting for 22.4% of the total WSHR events. An LLV is often generated on the lee side
of the Yunnan-Guizhou Plateau and then moves eastward across GX, during which course
HR takes place in its southern and eastern quadrants. This type of WSHR events tends to
be a HR producer. One example is the record-breaking HR event of 13–15 June 2008, listed
as the top one HR producer in Table 2, that is associated with a slow-moving LLV across
GX with high-θe air masses fed by southwesterly monsoonal flows.

In addition to the above three-types of large-scale flow patterns, some WSHR events
may be produced by the other types of MCSs, such as LLVs moving from the SCS that are
similar to landfalling tropical depressions. Two such examples are the WSHR events of
5–6 June 2008 and 23–24 May 2009 leading to torrential rainfall over the coastal regions of
South China. Nevertheless, few such WSHR events occur during the pre-summer months
of 2008–2014, and so they will not be investigated herein.
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3.3. Large-Scale Mean Flows of the WSHR Events

3.3.1. The PSF-Type Events

The relative contribution (%) of the PSF-type rainfall to the total WSHR amount during
the pre-summer months of the study period is given in Figure 4, showing a narrow small-
percentage (i.e., <12.5%) zone of about 80-km width along the southern coastal region,
followed by an elongated high-percentage (i.e., >15%) belt of about 120-km width inland,
and a secondary rainbelt (i.e., <20%) in the southern Hunan Province. Several distinct
high percentage (i.e., >20%) maxima are located near Nanning (No. 59431) and Wuzhou
(No. 59265) of GX, Longmen (No. 59290) of GD, and Sanming (No. 58828) of FJ, which
coincide well with several top HR centers shown in Figure 2.

Figure 4. The percentage (%, shadings) of the 21 PSF-type WSHR events with respect to the total WSHR amount during the
pre-summer months of 2008–2014.

The composite 500-hPa height field for the PSF events is given in Figure 5a, showing
a weak trough located to the north of 25 ◦N, offshore of East China, with northwesterly
flows of cold and dry air. In contrast, South China, i.e., on the south of 25◦ N, is featured
by a nearly zonal flow pattern. This is a typical circulation pattern during the pre-summer
months in South China, in which a quasi-stationary front sustains between a dry-cold air
mass from the midlatitudes and a warm-moist air mass from tropical oceans.

The composite 850-hPa wind field, also given in Figure 5a, shows a well-defined cold
front, as characterized by an arc-shaped shearline, just approaching to Mt. Nanling, as
the cold-dry airmass from aloft descends anticyclonically southwestward. The cold front
becomes shallower and weaker to the southwest, due partly to the blocking effects of
Mt. Nanling, and it moves slower (and even nearly quasi-stationary), after passing the
mountains. Thus, its warm sector is prevailed by the southwesterly winds of 8~10 m s−1

with a high equivalent potential temperature (θe) tongue of greater than 344 K extending
from Indochina Peninsula and the SCS. In addition, air masses of strong and weak-θe

gradients are distributed over the northern and southern portion of South China, respec-
tively, implying the presence of little thermal advection in the warm sector. Since WSHR
occurs in the high-θe tongue region with high moisture content, its amount is much greater
than that along the surface front. In particular, the continuous supply of high-θe air by
the prevailing southwesterly flow provides not only the necessary moisture content for
the WSHR production, but also helps maintain conditional instability, that is removed
by deep convection, for the persistent convective overturning in the warm sector. In this
regard, the low-level high-θe airstream could be considered as one of the most important
thermodynamic forcing for producing WSHR events over South China.
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Figure 5. Composite analysis of the 21 PSF-type WSHR events from the NCEP’s 0800 BST GFS data: (a) Geostrophic height
(contoured at 20-m intervals) at 500 hPa, horizontal wind barbs (a full barb is 4 m s−1) and equivalent potential temperature
(shaded, θe, K ) at 850 hPa; and (b) South-north vertical cross section of potential temperature (contoured at 4-K intervals)
and θe (shaded), superimposed with in-plane flow vectors, along 112◦ E (near Yangjiang with the top HR amount) during
the pre-summer months of 2008–2014. Dashed lines and the green thick line in (a) denote a shearline and roughly a trough
axis, respectively. Grey shadings in (b) denote topography.

A south-north vertical cross section of secondary circulation along 112◦ E (near
Yangjiang) is given in Figure 5b, showing that more pronounced low-level isentropic
lifting of about 10 cm s−1 occurs to the north of 24◦ N, which is more associated with the
shallow cold frontal system. However, the PSF-type HR occurs in the 21–24◦ N range
(cf. Figures 4 and 5b), whose maxima are 100–150 km ahead of the cold front. A detailed
analysis of a few PSF-type HR events reveals that their initial convective activity could
be traced back to the leading edge of the surface front, and then its organization into
MCSs leads to the occurrences of the PSF-type of WSHR events as they propagate rapidly
eastward (not shown). Nevertheless, the vertical lapse rate of θe from the surface to 700 hPa
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on the south of 23◦ N indicates the presence of more significant convective instability than
that on its north. Furthermore, given the presence of very humid air during this season in
South China, the southwesterly airstream of high-θe (>354 K) airmass in the PBL would
allow deep convection to be triggered along convectively generated outflow boundaries.
Convective triggering along the cold outflow boundaries accounts partly for the eastward
propagation of MCSs and explains the generation of an elongated HR belt of about 120-km
width with a distance of about 80 km inland from the southern coastline (Figure 4).

3.3.2. The WMF-Type Events

The WMF-type of WSHR events is of the highest frequency among the three classified
types, as shown in Figure 3, and it is also more localized in the coastal region of South
China (Figure 6). Hence, this type of WSHR events is distinct from the PSF-type events.
Figure 6 exhibits three pronounced WMF-type of WSHR maxima: the most intense one at
Yangjiang of GD (No. 59663), and then Shanwei of GD (No. 59501) and Fangcheng of GX
(No. 59631) in this order, which are all located near the coastline with some hills, albeit less
than 500 m altitude; they are also three of the top nine HR stations shown in Figure 1. This
appears to indicate the possible roles of topographical forcing and sea breezes in generating
the WSHR maxima. Of significance is that the WMF-type events account for more than
20% of the total pre-summer months rainfall amount in the Yangjiang area.

Figure 6. As in Figure 4, except for the 24 WMF-type WSHR events.

As compared to the PSF-type of WSHR events, the WMF-type composite height field
at 500 hPa is characterized by a distinct short-wave trough with the lower-tropospheric
warm advection on the lee side of the Tibet Plateau with southwesterly flows over South
China (Figure 7a). This would facilitate quasi-geostrophic ascent that helps bring the
moist southwesterly monsoonal air underneath to saturation, thereby preconditioning
the large-scale environment for HR production. The 850-hPa composite fields show the
presence of south-to-southwesterly winds of up to 10 m s−1 with θe > 340 K over a vast
area on the south of the Yangtze River Basin, including South China. Unlike the PSF-type
events, there is little evidence of a low-level shearline or a front-like zone. Thus, it is
often hard to trace directly the initiation of MCSs associated with the WMF-type of WSHR
events. An examination of Figures 1, 6 and 7a shows that the above-mentioned WSHR
maxima coincide reasonably well with the land-ocean contrast and local topography. This
indicates the importance of orographic lifting in triggering deep convection, and of the
echo-training process in producing the subsequent HR. In addition, we may assume that
convectively generated moist downdrafts, and old thermal boundaries from the previous
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dissipated MCSs as well as the surface heating could also provide favorable triggering of
deep convection leading to the WSHR-producing MCSs.

Figure 7. (a,b) As in Figure 5a,b, respectively, except for the 24 WMF-type WSHR events.

A south–north vertical cross section through the Yangjiang station with the top HR
amount reveals favorable isentropic uplifting of southwesterly flows below 850 hPa, in
association with the above-mentioned quasi-geostrophic ascent, which is more pronounced
across the coastline (Figure 7b). Unlike the PSF-type events that take place in an environ-
ment with a deep-layer high-θe air over a wide area in the warm sector, the horizontal
extent and depth of high-θe air associated with the WMF-type events are much limited to
the west of 110◦ E and the south of 22◦ N (cf. Figure 5a,b and Figure 7a,b). This different
three-dimensional distribution of high-θe air appears to explain why the latter exhibits
more localized HR compared to more widespread HR in the former (cf. Figures 4 and 6).

3.3.3. The LLV-Type Events

Figure 8 shows more zonally distributed high-percentage rainfall associated with
the LLV-type WSHR events, covering a zonal belt of 50–80 km width with several high-
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percentage rainfall maxima across GX around 24◦ N. This rainbelt is located to the north
of the high-percentage rainbelt associated with the PSF-type events and on the southern
side of Mt. Nanling (cf. Figures 4 and 8). A composite wind and θe analysis shows clearly
the presence of an elliptic-shaped LLV with θe > 348 K at 850 hPa around 24◦ N, with a
corresponding mesotrough at 500 hPa that is more pronounced than that associated with
the PSF- and WMF-type events (cf. Figures 5a, 7a and 9a). An analysis of several LLV
cases indicates that the LLVs are usually formed on the lee side of the Yunnan-Guizhou
Plateau in close association with the passage of midlevel troughs [3,52,54], and HR begins
to develop as they move into GX’s northwestern border (Figure 8). The high-percentage
rainbelt just corresponds to the paths of LLVs that are collocated with the midlevel trough
(cf. Figures 8 and 9a). Note that the LLVs under study differ from southwest vortices
discussed by Kuo et al. [55], and Li et al. [56], which are more topographically related
to their origins over the Sichuan Basin. Because of the conservative property of cyclonic
vorticity in the presence of weak vertical wind shear, the associated MCSs are longer lived
than those associated with the other two-type HR events. Normally, it takes 2–3 days for
them to move across GX and GD due to the presence of weak-gradient flows, especially
in June. Such slow movements allow the MCSs to drop more rainwater along their paths,
thus often producing HR and regional flash floods over South China.

Figure 8. As in Figure 4, except for the 13 LLV-type WSHR events.

As compared to the other two types of WSHR events, the predictability of the LLV-type
events by NWP models appears to be superior due again to the conservative property of
LLVs [54,57]. LLVs are typically of 300–400 km in diameter, and more evident below 700 hPa,
even in the composite fields (Figure 9a). HR usually occurs in the eastern semicircle of
LLVs, where is also the favorable region for isentropic uplifting from the potential vorticity
viewpoint, given westerly vertical wind shears in the pre-storm environments. This can
also be seen from Figure 9b, showing isentropic ascent of high-θe air into the LLV region.
When interacting with a warm-moist airstream in the PBL, deep convection can form
successively at the southern to southeastern periphery of LLVs. The resulting latent heat
release would in turn help enhance the intensity of LLVs. The three-dimensional extent of
high-θe air is greater than that associated with the PSF-type events (cf. Figures 5 and 9). In
addition, the topographical lifting of the high-θe air over Mt. Yunkai and Mt. Yunwu near
the GD-GX border appears to be more pronounced in the LLV-type events than that in the
other two types, due to their developments over different geographical locations. This can
be seen from the sloping terrain shown in Figures 5b, 7b and 9b.
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Figure 9. As in Figure 5a,b,respectively, except for the 13 LLV-type WSHR events, with (b) along 108 ◦E through roughly
the LLV core region indicated in (a) and the HR region indicated in Figure 8.

4. Environmental Thermodynamical Parameters

After seeing different statistical characteristics of rainfall and large-scale flows associ-
ated with the three types of WSHR events, it is desirable to examine their corresponding
pre-storm environmental thermodynamical parameters in terms of stability, PWAT and
CAPE [58–60]. Accurate characterizing the pre-storm environmental soundings is often
limited due partly to lacking observations in pre-storm environments with respect to ap-
proaching MCSs, and partly to the coarse spatial and temporal resolutions of conventional
observations. Given the general weak-gradient warm sector environments in which the
MCSs of interest develop, soundings at the Yangjiang station taken at 0800 BST, ahead
of approaching MCSs are synthesized in Figure 10 for each type of WSHR events. We
acknowledge that this approach of using single-station soundings may be more biased
somewhat for those HR events occurring far from Yangjiang, e.g., the LLV-type WSHR
events. However, composite single-station soundings are shown in Figure 10 to reveal
some common features in pre-storm environmental parameters as described below.
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Figure 10. Composite Skew-T/Log P diagrams for the (a) PSF-, (b) WMF-, and (c) LLV-type WSHR events, which are taken
at the Yangjiang station at 0800 BST that are far ahead of the approaching MCSs in both the location and timing. A full barb
is 4 m s−1.

• The level of free convection (LFC) appears in the lowest 50 hPa, with the lifted index
(LI) of less than −4 ◦C and CAPE ranging between 1753 and 2646 J kg−1. All these
indicate the presence of pronounced conditional instability, relatively easy triggering
of deep convection in the PBL, and pronounced updrafts in MCSs.

• A deep moist layer is present below 700 hPa with relative humidity (RH) of greater
than 85%, and the melting (i.e., 0 ◦C) level and the tropopause located near 550 and
150 hPa, respectively. They imply the availability of considerable moisture for HR
production, and higher precipitation efficiency with more dominant warm cloud
microphysics processes.

• A warm, moist airflow of 8–10 m s−1 is evident below 850 hPa, with little vertical
wind shear from the PBL top to 400 hPa, and slight cyclonic rotation in wind vectors
above. They suggest the presence of sustained supply of high-θe air for continued
convective overturning, and the existence of little thermal advection below 400 hPa
but weak cold advection above.

Figure 11 shows that the composite PWAT is generally higher than 50 mm over
South China, with the peak value of 60 mm over the coastal regions. This is more or less
consistent with the generation of more rainfall with several HR maxima in the regions (cf.
Figures 2 and 11). The box and whisker plots of PWAT, obtained in the coastal regions,
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show that the peak value of more than 65 mm appears in all the three types of WSHR events,
with the minimized 45 mm for the WMF-type WSHR events. In general, the percentiles
between 25–75% probability distribution in the WMF-type events show relatively wider
spreads, with a minimum PWAT value of 44 mm, compared to the other two types. On
average, one may take the PWAT of 50–55 mm as the typical value for most WSHR events
in South China, which is much higher than 40 mm for the flash flood events occurring in
the United States [49].

Figure 11. (a) Distribution of the daily (at 0800 BST) mean PWAT (mm) that is averaged for the 58 WSHR events under
study; and (b) the box-whisker plots of the PWAT distribution, taken at the Yangjiang Station, for each type of WSHR events.

Figure 12a shows the distribution of the composite CAPE at 1400 BST, when the
daily major convective outbreaks occur. We see that CAPE decreases northward, which is
more or less consistent with the distribution of the low-level moisture field. Nevertheless,
the magnitudes of 500–1500 J kg−1 can be seen over South China, indicating the general
existence of convective instability during early afternoon hours. The box and whisker plots
of CAPE show the presence of CAPE beyond 2500 J kg−1 in all the three types of WSHR
events (Figure 12b). The percentiles between 25 and 75% occur mainly in the range of
1000–2000 J kg−1, with the peak CAPE median number for the LLV-type events.
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Figure 12. (a) As in Figure 11a,b, respectively, except for the mean CAPE in (b) from the 1400 BST soundings.

5. Representative Radar Echo Characteristics of WSHR-Producing MCSs

Since all the WSHR events are produced by MCSs, it is of interest to examine if different
types of WSHR events classified in Section 3 correspond to different types of MCSs. This
can be achieved by analyzing the organizational characteristics of all the MCSs occurring
over South China during the pre-summer months in the context of radar echo morphologies.
Radar observations have been used to characterize the rainfall structure and intensity of
various types of MCSs [25,43,47]. Using radar observations, Schumacher and Johnson [61]
documented two types of MCSs that are responsible for HR events in the United States:
training line/adjoining stratiform (TL/AS), and back-building/quasi-stationary (BB).

After carefully analyzing all the WSHR events in South China, based on their radar
echo morphologies, the following three major types of MCSs are identified: (a) linear-
shaped, echo and band training, (b) TL/AS-like organization, and (c) a spirally shaped
MCS, i.e., with mesoscale rainbands adjoined with a slowly moving mesovortex or LLV. A
total of 145 MCSs are analyzed subjectively from the 58 WSHR events (Table 3). It is found
that nearly half of the MCSs can be characterized with echo- and band-training or quasi-
stationary linear echoes, and 31.7% of them have the similar form of TL/AS organization
with long lifecycles and large spatial extent. The comma-shaped MCSs have temporal
and spatial scales that are large and smaller than the linear-shaped echoes and TL/AS
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MCSs, respectively. Randomly formed afternoon convection, sea-breeze convection and the
other less-organized MCSs have also been found to produce some localized HR events, but
they are not examined in this study. These different types of WSHR-producing MCSs just
reflect the presence of variable and complicated mesoscale convective processes involved
in the generation of WSHR events in South China. In the next three subsections, some
representative cases for the above three major types of MCSs are presented, respectively.

Table 3. The number, percentage (%), mean lifespan (hours) and mean maximum length scale (km)
of three MCS types associated with the 58 WSHR events.

MCS Type Number
Ratio
(%)

Mean Life Span (h)
Mean Maximum
Length Scale (km)

Linear-shaped 71 48.9 3.2 175
TL/AS-like 46 31.7 5.2 315
Comma-shaped 28 19.3 3.7 225

5.1. Linear-Shaped MCSs

Linearly shaped MCSs are the primary type of MCSs leading to WSHR events in South
China. HR is generated when a series of convective cells repeatedly forms upstream of
their predecessors (i.e., back building) and then moves along the same linear path, i.e., the
echo-training. Samples of such MCSs are shown in composite radar mosaic in Figure 13,
showing that convective cells are successively initiated in the coastal region and then
they move northeastward along the coastline, leading to a mesoscale rainbelt of about
100~200 km with HR in a few hours. The organizational process of echo training cannot
fully be attributed to the back-building effect due to the presence of weak downdrafts in
deep moist environments. The best documented echo-training process in South China is
related to local topographic features, e.g., near Yangjiang [13], where convective initiation
occurs as a result of topographical lifting, and the subsequent growth and downstream
propagation of convective cells along the same path account for the HR production near
Yangjiang. Figure 14 illustrates a schematic of how such linear-shaped MCSs develop in
South China.

A further analysis of the composite radar echoes indicates a higher frequency of
linear-shaped MCSs near the stations of Fangcheng, Yangjiang and Shanwei along the
southern coast of South China (see Figure 1 for their locations), where isolated topography
plays an important role in convective initiation. The latter two stations coincide with
the climatological rainfall maxima in WSHR events, as discussed in Section 2. Since
these rainfall maxima are all close to the coastline, we may expect the sea breeze induced
convergence to contribute to the initiation and subsequent organization of the associated
linear MCSs, as mentioned before.

5.2. TL/AS MCSs

The TL/AS type of MCSs, as described by Schumacher and Johnson [61], is the No. 2
contributor of the WSHR events in South China. Figure 15 shows the TL/AS type of
MCSs but with the following three different configurations: (i) a southwest-northeast
elongated MCS moving northeastward with the sustained leading convective line gener-
ating HR along GD’s coastal regions and a near-symmetric stratiform region to the north
(Figure 15a); and (ii) an MCS followed by another MCS along the mean flows moving
southeastward with successive newborn convective cells building at the end of their lead-
ing lines (Figure 15b). The MCS in Figure 15a, and the MCSs in Figure 15b are associated
with the PSF- and WMF-type of WSHR events, respectively.
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Figure 13. The NCEP GFS analysis of horizontal winds (a full barb is 4 m s−1) at 925 hPa and the composite radar reflectivity
(RR, shadings) mosaic at z = 1 km for the linear-shaped MCSs with hodographs taken at ‘×’, and a bold arrow showing
the moving direction of convective cells: (a) horizontal winds at 0800 BST, and RR at 0600 BST 26 May 2013; (b) horizontal
winds at 2000 BST, and RR at 2340 BST 26 May 2013.
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Figure 14. A conceptual model for the linear-shaped MCSs with background topography of South
China.

Figure 15. As in Figure 13, but the TL/AS type of MCSs: (a) horizontal winds (HW) at 925 hPa at
0800 BST and the composite radar reflectivity (RR) at z =1 km at 0450 BST 22 May 2013; (b) horizontal
winds at 925 hPa at 0800 BST and RR at z = 1 km at 0900 BST 16 May 2013.
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Hodographs in the pre-storm environment, as given in Figures 13 and 15, exhibit
clockwise rotation in the lower troposphere (but above the PBL), implying the presence of
weak warm advection in the southwesterly monsoonal flows ahead of the midlevel troughs
shown in Figures 5a, 7a and 9a. In both types of MCSs, the weak midlevel vertical shear
sampled in pre-storm environments is in agreement with the composite wind profiles at
Yangjiang station (Figure 10). However, the low-level (weak) warm advection and midlevel
vertical shear are more prominent for the TL/AS type of than those of linear-shaped MCSs.
The presence of warm advection plus the quasi-geostrophic lifting ahead of the trough,
albeit on the order of magnitude of a few cm s−1, and sustained moisture supply in the
PBL ensure the preconditioning of convectively favorable environments. Developing into
organized MCSs will depend on their interaction, e.g., with local topography, convectively
generated cold outflows, and a favorable larger-scale environment such as an LLJ and an
ample moisture source.

The above features are summarized by a conceptual model for a PSF-type WSHR
event in Figure 16. Given the presence of a slow-moving, weak surface front in South
China, as shown in Figure 5b, an MCS initiated in the warm sector due to topographic
lifting and prefrontal low-level convergence would grow more rapidly than a frontal MCS,
leading to a PSF-type WSHR event. The warm sector is often characterized with ample
moisture content and conditional instability, and prevailing southwesterly flows with high
CAPE, low CIN and θe> 340 K in a deep-moist environment.

Figure 16. A conceptual model for a typical PSF-type WSHR event with the development of TL/AS MCSs, (a) T = T0,
(b) T = T0 + 6 h.

5.3. Comma-Shaped MCSs

In the LLV-type of WSHR events, HR is usually produced by slow-moving MCSs
comprising of a series of convective cells with a large area of trailing stratiform clouds
in the eastern semicircle of a low-level vortex. Figure 17a shows such an MCS with
radar echoes of more than 30 dBz covering the foreside of a low-level vortex. Given
the favorable pre-storm environmental conditions, HR results from the long-lived MCS
having several rainbelts due to the inertial stability of the mesovortex, in which the MCS is
embedded [35,52–54]. Although the hourly rainfall rate is generally weaker than the other
two types of MCSs described in the preceding two subsections, the long-lived lifecycle
and the slow-moving nature of the low-level vortex are conducive for HR production.
Furthermore, the associated multiple rainbands distributed along an LLJ could sustain for
hours, leading to large rainfall accumulation. The MCSs of 23 June 2012 is an example
in which rainbands are triggered by local topography, and they grow in coverage and
rainfall intensity in a convectively unstable environment, and become organized by a
low-level mesovortex and an LLJ (Figure 9). A conceptual model, given in Figure 17b,
shows the presence of moist southwesterly flows with weak westerly vertical wind shear,
and favorable upward motion in the eastern semicircle of a low-level vortex that facilitate
the initiation of deep convection in the southeastern quadrant of high-θe flows, and the
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subsequent upscale growth into an MCS. Sustained rainfall occurs as long as moisture
supply continues, leading to the generation of large rainfall totals over South China despite
its weak rainfall rates.

Figure 17. As in Figure 13 but for the comma-shaped MCSs: (a) horizontal winds at 925 hPa at
1400 BST and the composite radar reflectivity at z = 1 km at 1240 BST 23 Jun 2012; and (b) A conceptual
model for the LLV-type WSHR event, with thick arrows in black and green denoting the mid-level
and low-level environmental vertical wind shear, respectively.

6. Summary and Concluding Remarks

In this study, a composite analysis of 58 WSHR events occurring in South China
during the pre-summer months of 2008~2014 is performed in the context of precipitation,
large-scale circulations, pre-storm environmental conditions, and the morphological char-
acteristics of the associated HR-producing MCSs, using the NCEP reanalysis, conventional
surface and upper-air observations as well as radar observations. Some major results are
summarized as follows.
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• Results show that the large-scale circulations governing the development of the
58 WSHR events can be categorized into the following three types: PSF, WMF, and LLV,
with higher-frequency occurrences for the former two types. Although the LLV-type
WSHR events occur less frequently, they are often the HR producers influencing much
larger areas due to the inertial stability or long life cycle of their associated mesoscale
vortical flows.

• A statistical analysis of HR-producing pre-storm environments indicates that PWAT of
more than 50 mm, and θe at 850 hPa of higher than 340 K can be used as the necessary
conditions to predict the possible development of WSHR events over South China.
A composite analysis of pre-storm soundings shows that most WSHR events occur
in an environment with a deep moist layer, pronounced CAPE, weak vertical wind
shear below 400 hPa, and an LLJ near 925 hPa with weak warm advection in the lower
troposphere.

• Radar echo analyses indicate that the three different types of WSHR events correspond
well to the following three organizational modes of HR-producing MCSs: linear-
shaped, a leading convective line adjoined with trailing stratiform, and comma-shaped
with a low-level vortex. Many line-shaped MCSs over the coastal regions appear to
be triggered by land-sea contrasts that are enhanced by sea breezes in South China,
whereas the latter two classes of MCSs tend to experience isentropic lifting in the
southwesterly warm and moist flows. They all develop in large-scale environments
with favorable quasi-geostrophic forcing, including (weak) warm advection in the
lower troposphere.

In conclusion, we may state that the WSHR events over South China tend to develop
in the following three types of large-scale flows with convectively favorable conditions:
pre-frontal, ascending southwesterly flows, and low-level vortical flows, and that the
corresponding HR-producing MCSs exhibit mainly linearly shaped, comma-shaped, and a
leading convective line with a trailing stratiform region. In particular, the classification of
several types of WSHR events and the categorization of the corresponding MCSs appear to
add some new understanding of flow configurations and storm morphologies associated
with those pre-summer WSHR events. It should be mentioned, however, that due to lacking
high-resolution observations, it is not possible to examine herein how deep convection
under the influences of the above three different types of flow regimes is triggered and then
organized into HR-producing MCSs with the above three different morphologies. In this
regard, high-resolution numerical simulations should be performed to explore the roles of
various processes, such as topography, surface heating and land-surface conditions, and
cold outflow boundaries in convective initiation, and verify conceptual models that are
developed herein just through limited coarse-resolution observations.
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Appendix A. A List of the Occurrence Dates (Date/Month/Year) of the 21 PSF-Type of WSHR Events Identified in

This Study

12/04/2008 04/05/2008 28/05/2008 29/05/2008 24/04/2009 03/06/2009 09/06/2009 06/05/2010
09/05/2010 28/05/2010 09/06/2010 14/06/2010 15/06/2010 18/04/2012 12/08/2012 29/04/2013
15/05/2013 16/05/2013 19/05/2013 20/05/2013 11/05/2014

Appendix B. As in Appendix A but for the 24 WMF-Type of WSHR Events

05/05/2008 30/05/2008 07/06/2008 08/06/2008 15/04/2009 07/06/2009 08/06/2009 27/06/2009
28/06/2009 08/06/2010 06/05/2011 07/05/2011 08/05/2011 28/06/2011 29/06/2011 03/05/2012
03/04/2013 04/04/2013 28/04/2013 07/05/2013 08/05/2013 07/05/2014 08/05/2014 09/05/2014

Appendix C. As in Appendix A but for the 13 LLV-Type of WSHR Events

11/06/2008 12/06/2008 13/06/2008 27/06/2008 28/06/2008 19/05/2009 31/05/2010 12/05/2012
21/06/2012 19/04/2012 22/06/2012 04/06/2014 05/06/2014
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Abstract: In this study we investigate the characteristics of the diurnal precipitation cycle including

the Madden–Julian oscillation (MJO) and seasonal influences over a mountainous area in Sumatra

Island based on the in situ measurement of precipitation using the optical rain gauge (ORG). For

comparison with ORG data, the characteristics based on the Global Precipitation Measurement (GPM)

mission (IMERG) and Weather Research and Forecasting (WRF) simulations were also investigated.

Fifteen years of ORG data over a mountainous area of Sumatra, namely, at Kototabang (100.32◦ E,

0.20◦ S), were analyzed to obtain the characteristics of the diurnal cycle of precipitation in this region.

The diurnal cycle of precipitation presented a single peak in the late afternoon, and the peak time

difference was closely related to the rain event duration. The MJO acts to modulate the diurnal

amplitude but not the diurnal phase. A high precipitation amount (PA) and frequency (PF) were

observed during phases 2, 3, and 4, along with an increase in the number of longer-duration rain

events, but the diurnal phase was similar in all MJO phases. In terms of season, the highest PA

and PF values were observed during pre-southwest and pre-northeast monsoon seasons. WRF

simulation reproduced the diurnal phase correctly and more realistically than the IMERG products.

However, it largely overestimated the amplitude of the diurnal cycle in comparison with ORG. These

disagreements could be related to the resolution and quality of IMERG and WRF data.

Keywords: diurnal cycle; Kototabang; Sumatra; optical rain gauge; IMERG; WRF

1. Introduction

The estimation of precipitation at high altitudes in Indonesia, including Sumatra, is
challenging because in situ measurements remain scarce. Sumatra is one of the largest
islands in Indonesia, and is directly adjacent to the Indian Ocean (see Figure 1). It is
considered important in global atmospheric circulation because its position is almost
perpendicular to the propagation of winds and clouds from the Indian Ocean [1–3]. The
combination of mesoscale variability with topography and the coastline controls diabatic
heating in Indonesia, including Sumatra [4]. The Barisan mountain range in Sumatra, with
an average altitude of 2000 m, plays an essential role in the convection process in this
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region [5,6]. Sumatra’s topography induces convection in Sumatra and the surrounding
area [7–9]. Interestingly, rainfall characteristics on both sides of the Barisan mountains are
different [10], with more frequent rainfall in the western part of the Barisan mountains,
resulting in a greater amount of rain in this area than on the eastern side. However, the
precipitation intensity in the western part of the Barisan mountains is smaller than that on
the eastern side [11].
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In 2001, an atmospheric observation center called the Equatorial Atmosphere Observa-
tory (EAO) was established in Sumatra, precisely at Kototabang (100.32◦ E, 0.20◦ S, 865 m
above sea level). Kototabang is located in the mountainous area of the Barisan mountains
(Figure 1). The main instrument at EAO was the equatorial atmosphere radar (EAR), which
was a large atmospheric radar for atmospheric observations [12]. Supporting instruments at
EAO included a boundary layer radar, an X-band weather radar, a radiometer, a ceilometer,
lidar, an optical rain gauge (ORG), and a disdrometer. With the use of this instrument,
several research projects have been carried out, such as the Coupling Processes in the
Equatorial Atmosphere (CPEA) study [13]. Although many research results have been
reported using the data in the EAO, some observations have yet to be analyzed. This paper
presents the results of ORG observations during 15 years of operation in Kototabang. These
data are used to characterize the diurnal variation of rainfall in Kototabang, including its
Madden–Julian oscillation (MJO) and seasonal signatures.

Diurnal variation is the most fundamental mode of rainfall variability in the trop-
ics [14]. Hence, an in-depth study of the diurnal cycle in rainfall is essential in helping
to understand the relationship between the rainfall processes and related factors [15].
However, studies on the diurnal cycles of rainfall remain challenging and they are often
hampered by the limited observational data on an hourly scale in many parts of Indonesia,
including in Sumatra. Wu et al. [8] analyzed precipitation data during March 2001 in
Kototabang and demonstrated a relationship between diurnal variations and water vapor.
Water vapor in Kototabang increases during the day and reaches its maximum in the
late afternoon. Mori et al. [5] observed the migration of rainfall peaks in Sumatra using
Tropical Rainfall Measuring Mission (TRMM) precipitation radar (PR) data for three years
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(1998–2000). They found that the rainfall peaks on mainland Sumatra were observed at
15:00 and 20:00 local standard time (LST) and were dominated by convective rain. In the
early morning, stratiform and convective types of rain appeared but they were dominant
in the surrounding ocean. Many other studies have investigated the diurnal variations of
rainfall in Sumatra by utilizing satellite data or in situ observations over a limited period. To
overcome these limitations, Marzuki et al. [11] and Suryani et al. [16] analyzed the diurnal
variations of rainfall in Sumatra by analyzing rain gauge data from 186 stations throughout
Sumatra, which were operated by the Meteorology, Climatology, and Geophysical Agency
(BMKG). The analysis was based on rain gauge data during 2015–2019, and did not include
Kototabang ORG data. These studies enriched the understanding of the rainfall in Sumatra
because they examined diurnal variations from the perspectives of precipitation amount
(PA), frequency (PF), and intensity (PI), which have not been studied for the Sumatra
area before.

This paper presents a follow-up of the work of Marzuki et al. [11], focusing on a
study area in a mountainous area of Sumatra where in situ measurements remain scarce.
There are several factors affecting the diurnal cycle of rainfall, namely, surface temperature,
moist convection, the formation of clouds, boundary layer development [14], regional
and synoptic-scale dynamical, and thermal conditions [17]. Over a mountainous area,
the interaction of these factors with local-scale phenomena of land–sea and mountain–
valley breezes may produce different characteristics in terms of the diurnal cycles of
precipitation [8]. Marzuki et al. [18] showed the prominent role of the island’s mountainous
areas in the development and propagation of the precipitation system over Sumatra island.

In addition to the climatology of the diurnal cycle, the MJO and seasonal signature
of the diurnal cycle in rainfall have also been investigated, and over mountainous areas
these effects can be unique. Several studies have shown the effect of seasons [19,20] and
MJO [21] on the diurnal cycle of precipitation. MJO modulates the diurnal precipitation
cycle over the Indonesian maritime continent (IMC) due to an increase in the low-level
moisture background associated with MJO [21]. Furthermore, the highest amplitude of
diurnal variation in precipitation was observed during the active phase of the monsoon
season, as observed in the Bay of Bengal [20]. The effect of MJO and seasons is not
discussed by Marzuki et al. [11] due to the limited duration of the available data. Recently,
Marzuki et al. [18] investigated seasons’ effects on Sumatra’s diurnal cycle in relation to
the land/sea contrast in precipitation, but they also did not discuss the MJO. Thus, using
the 15-year data record of ORG in Kototabang will enhance our understanding of diurnal
variations in Sumatra, including its MJO and seasonal signature.

The diurnal cycle of rainfall is also a critical test of many aspects of the physical
parameterizations in weather and climate models [15]. Global climate models usually fail
to simulate properly the regional processes and their spatial variability for precipitation
in mountainous areas [22]. Hara et al. [23] compared the precipitation simulated by a
20 km-grid Meteorological Research Institute General Circulation Model (MRI-GCM) and
the near-surface rain data of TRMM 2A25. They failed to simulate the diurnal cycle
over islands of which the horizontal scale was larger than 200 km, such as Sumatra and
Borneo. There was a difference in peak time between MRI-GCM and TRMM 2A25 because
the cumulus convective parameterization in the 20 km grid spacing did not adequately
represent the coupling of convection and local circulations [23]. In this study, we examined
the ability of the Weather Research and Forecasting (WRF) model to reproduce the diurnal
cycle of the precipitation in the mountains of Sumatra, using a smaller simulation grid
of 5 km. ORG data are very useful in evaluating the ability of the WRF to capture the
diurnal cycle of precipitation over a mountainous area of Sumatra. Although there are
differences in the sampling area between ORG and WRF, comparisons between point rain
gauges such as ORG with grid data (WRF) are widely used in the validation of precipitation
from WRF models, especially with regard to diurnal cycles, for which rain gauge data
are always used as a reference value. In addition to point rain gauge observations, the
simulation results are also compared with gridded precipitation data from the Integrated
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Multi-satellite Retrievals for GPM (IMERG). The IMERG was chosen because these data
have better temporal and spatial resolution than others [24] and are believed to be the most
accurate data at present.

2. Materials and Methods

Precipitation data were collected on an 815 Optical Rain Gauge (ORG) during 2002–2016.
ORG data in Kototabang have been used for various studies, such as telecommunication [25–27],
weather radar [28], and precipitation variability studies [3,29]. This instrument was based on
scintillation technology, in which raindrops fall through the beam, leading to variations in the
intensity of the infrared light. These irregularities, known as scintillations, are detected by the
sensor and converted to the rain rate. ORG reports the rain rate in mm h−1 with the dynamic
range of 0.1 to 500 mm h−1. The detailed specifications of this instrument can be found in the
company website [30]. This study used a sampling time of 10 min, which is the same as that of
previous studies using rain gauge data in Sumatra [11]. In general, the availability of data was
high, except for a few months (Figure 2). In 2002, the percentage of data availability was around
76% because there were no observations in January and February. In 2007, data availability
was about 70% due to the absence of observations in January and February and the lack of
observations in October and November (<60%).
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The diurnal variation was analyzed from three parameters, namely, the precipitation
amount (PA), precipitation frequency (PF), and precipitation intensity (PI). PA is defined as
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the total accumulated rainfall divided by the total hours of observation. Furthermore, the PF
is the total 10-min data with rain above 0.1 mm h−1 divided by the total 10-min observation
data, and PI is defined as the total accumulated rainfall divided by the number of rainy
hours (R ≥ 0.1 mm h−1). The definitions of PA, PF, and PI, are the same as those presented
in the previous study [11]. Calculations were carried out for each hour in local standard
time (LST) units. The precipitation at Kototabang is influenced by seasons and Madden–
Julian oscillation (MJO) [3,31–34]. Therefore, the effect of seasons on the diurnal variation
of rainfall was investigated by calculating PA, PF, and PI for each month. In addition, the
effect of the MJO on the diurnal variation of rainfall in Kototabang was also investigated.
The MJO index was downloaded from the Australian Meteorological Agency website [35].
This study only considered strong MJO, which is indicated by an MJO index more than
one. The effect of MJO was observed for the period of December–January–February (DJF),
March–April–May (MAM), June–July–August (JJA), and September–October–November
(SON), which was based on the convection pattern in the IMC [2,34,36]. The duration of
a rain event can also affect the peak time of the rain [37]. To investigate such an effect,
we classified rain events into three durations, following Marzuki et al. [11], namely, <3 h
(short-duration rain events), 3–6 h (medium-duration rain events), and >6 h (long-duration
rain events), as also used by Marzuki et al. [11]. A rain event was defined as a continuous
event that was not interrupted by an hourly rainfall of less than 0.1 mm.

The diurnal variations of precipitation from the ORG data were compared with
satellite-derived (Integrated Multi-satellite Retrievals for the Global Precipitation Measure-
ment (GPM) mission (IMERG)) and atmospheric model outputs (WRF, Weather Research
and Forecasting). IMERG data were available in 0.1◦ grids every half hour. The IMERG
precipitation product is generated from the GPM mission, which unifies observations from
a network of partner satellites in the GPM constellation [38]. In this study, IMERG final-run
product V06 (IMERG-F) was used, since it is recommended for research activities due to its
better accuracy ([39]. The WRF simulations were carried out with a nest domain with a
horizontal resolution of 25 km in the outer domain and 5 km in the inner domain (Figure 3).
The model was configured with 32 vertical layers with 50 hPa at the top level. The WRF
model was setup in a non-hydrostatic mode and was initialized and forced with the Euro-
pean Centre for medium-range weather forecasting (ECMWF) reanalysis (ERA-Interim).
The time scale for this experiment was 3 years of simulation with a 1 year spin-up time from
2013 to 2017. The physics options for this experiment followed those of Ratna et al. [40].
These included the WSM 3-class simple ice scheme for microphysics schemes [41], the
Unified NOAH scheme for land surface schemes [42] and Betts–Miller–Janjic scheme for
cumulus analysis [43,44]. Short-wave and long-wave schemes were based on the Dudhia
scheme and the Yonsei University model (RRTM) scheme, respectively [45,46].

The difference in sampling area between ORG point observations and IMERG-based
and WRF-based grid values can cause uncertainty when these three forms of data are
directly compared. To quantitatively evaluate the performance of WRF and IMERG-F in
estimating hourly rainfall at Kototabang, several statistical parameters were calculated
as in Table 1. The equation to calculate these parameters can be seen in some references,
e.g., [47]. The observation accuracy of IMERG-F and WRF data is still low compared to that
of ORG, as can be seen from the low CC and high RMSE and RB values. The RB values
of IMERG and WRF, when compared with ORG, are positive. WRF has the largest RB
value when compared to ORG. Although the accuracy of IMERG and WRF is still not good
when observing hourly rainfall, the ability of IMERG data and the WRF model to detect
hourly rainfall is good enough, as can be seen from the POD value. Although the POD
value is good enough, IMERG and WRF were often wrong in detecting hourly rainfall in
Kototabang, as seen from the high FAR value. This result may indicate the inability of
one observation point to represent rainfall variations in one WRF grid (5 km × 5 km) and
IMERG-F grid (0.1◦ × 0.1◦) due to significant small-scale spatial rainfall variability in the
mountainous area of Sumatra. However, the comparison between WRF and IMERG, which
are grids of data, does not produce better results even though the POD value between ORG
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and IMERG is better than that between IMERG and WRF (Table 1). The test results show
that the POD values of the three data are good enough, which indicates their potential
to detect the same rain. In addition, a time series of hourly IMERG-F data shows that
IMERG-F can capture the temporal trends of hourly precipitation, in comparison with point
rain gauge observations [48,49]. Therefore, although caution is needed, the comparison of
these three data will provide valuable information regarding the performance of each data
in describing the diurnal cycle of precipitation.
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Table 1. Evaluation metrics calculated for ORG, WRF, and IMERG-F data at Kototabang for two
rainfall rate (R) thresholds.

Parameters ORG-WRF IMERG-WRF ORG-IMERG

Threshold: R ≥ 0.1
Correlation coefficient (CC) 0.091 0.125 0.286

Root-mean-square error (RMSE) 5.255 2.807 3.678

Relative bias (RB) 0.313 0.179 0.123

Probability of detection (POD) 0.480 0.418 0.767

False alarm ratio (FAR) 0.799 0.554 0.698

Critical success index (CSI) 0.165 0.275 0.276

Threshold: R ≥ 0.5
Correlation coefficient (CC) 0.088 0.117 0.279

Root-mean-square error (RMSE) 5.284 2.853 3.713

Relative bias (RB) 0.270 0.225 0.046

Probability of detection (POD) 0.394 0.336 0.642

False alarm ratio (FAR) 0.835 0.699 0.701

Critical success index (CSI) 0.132 0.189 0.256
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3. Results and Discussion

3.1. Climatology of Diurnal Cycles of PA, PF, and PI

Figure 4 shows the diurnal variations in PA, PF, and PI from the ORG observation in
Kototabang during 2002–2016. The average climatological PA, PF, and PI were 0.26 mm h−1,
7.40%, and 3.16 mmh−1, respectively, which are similar to those obtained from rain gauge
data in Sumatra, as described in Marzuki et al. [11], especially for PA. About 98% of the
rain gauge stations operated by the Meteorology, Climatology, and Geophysical Agency
(BMKG) showed an average PA value of <0.5 mm h−1 [11]. Both PA, PF, and PI showed a
single peak, in contrast to those found in the UK, which show two peaks [15]. Rain is more
frequent in the late afternoon, which is indicated by a larger PF, but the intensity (PI) is
larger in the early afternoon. The peak time of PI was observed at 13:00–14:00 LST with a
peak value of 6.55 mm h−1. On the other hand, peaks of PF and PA were observed at 17:00
LST, with values of 13.3% and 0.68 mm h−1, respectively. The diurnal peak exhibited high
PI/low PF, suggesting that both PI and PF are important indicators of PA, as is found in
the Philippines [50]. However, the contribution of PF to PA is much greater than that of PI
because the peak time of PA is always similar to that of PF (Figure 4).
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Figure 4. Climatology of diurnal variations of PA (blue), PF (merigold), and PI (red) at Kototabang
during 2002–2016.

3.2. Diurnal Cycles of PA, PF, and PI with Different Durations

Rain in Kototabang is dominated by short-duration rain events (<3 h). During
2002–2016, 3996 rain events were observed, in which 3089 events (77.3%) were short-
duration rain events. Furthermore, 670 (16.8%) and 237 (5.9%) were rain events of 3–6 h
and >6 h in duration. Previous studies in Sumatra that were based on the BMKG rain gauge
and IMERG observation data also showed the dominance of short-duration rain events,
with percentages of 50–80% [18].

Figure 5 shows the diurnal variations in PA, PF, and PI for events with different
durations. The peak time of short-duration rain events came earlier than that of long-
duration events. For PA, rain peaks were observed at 14:00, 17:00, and 17:00 LST for <3 h,
3–6 h, and >6 h rain event durations, respectively. Moreover, for PF, peaks were observed
at 15:00, 18:00, and 22:00 LST. Significant differences in peak time were not observed for PI,
where, for events with durations < 3 h, peaks were observed at 13:00–14:00 LST, whereas
peaks for events with durations > 6 h were observed at 15:00 LST. The dependence of the
rain peak on the duration of the rain, as observed in this study, is consistent with previous
studies in Sumatra [18].
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Figure 5. Diurnal variations in PA (a), PF (b), and PI (c) for different rain event durations. PA, PF,
and PI values for each hour were divided by the average value.

The difference in rainfall peaks for each duration is consistent with the evolution of
MCS clouds. Based on radar observations at Kototabang, short durations of heavy convec-
tive rain are often followed by longer durations of light rain from the stratiform portion of
the cloud system [7]. The occurrence ratio between stratiform and deep convective rain is
about 3:2, which contributes to the 2:3 ratio of total rainfall [7,29]. This ratio is comparable
to that found in this study. The stratiform peak (long-duration rain) comes later than
convective precipitation (short-duration rain), which is consistent with Figure 5.

3.3. Seasonal Changes in Diurnal Cycles of PA, PF, and PI

Figure 6 shows the PA, PF, and PI values for each month. PA and PF values in April
and November were larger than those in other months. The highest PA value was observed
in April at 15:00 LST with a value of 1.08 mm h−1, followed by November with a PA of
1.00 mm h−1 at 16:00 LST. The minimum PA value was observed in July with a value of
0.50 mm h−1 at 15:00 LST. For PF, the highest value was observed in November with 21.7%
at 22:00 LST, followed by April with 18.42% at 17:00 LST. Similarly to PA, the minimum
value of PF was also observed in July, with a value of 8.66% at 17:00 LST. On the other
hand, for PI, the highest value was observed in February with 9.73 mm h−1 at 13:00 LST,
followed by August with a value of 9.62 mm h−1 at 13:00 LST. The two peaks of PA and
PF found in this study were consistent with the monsoon season. In terms of season, the
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Kototabang area can be divided into four seasons; pre-southwest (April–May), southwest
(June–September), pre-northeast (October–November), and northeast (December–March).
Pre-southwest and pre-northeast monsoons are wet seasons at Kototabang [34]. The two
peaks of PA and PF were also associated with the southward and northward movement of
the inter-tropical convergence zone (ITCZ) [51]. Consistently with a previous study [36],
the peaks of PA and PF in November were much higher than those in April.
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Figure 6. Monthly variations in diurnal cycles of PA (a), PF (b), and PI (c), as well as their differences
(∆) with average climatological values (d–f) described in Section 3.1. Lines with circle markers
indicate the peak times of PA (a), PF (b), and PI (c).

The minimum PI was observed in the month when the PA and PF values were at the
maximum. Thus, PA was more influenced by PF than PI, as also observed in Figure 4. This
condition can be seen more clearly in the differences (∆) of PA, PF, and PI values with the
averages of the climatological values as described in Section 3.1. In general, when ∆PA and
∆PF are positive, the value of ∆PI is negative (Figure 6d–f).

The number of rain events also showed monthly variations, with the highest number
in April and November (Figure 7). During April, 369 short-duration rain events (<3 h) were
observed, accounting for 79% of the total events. Furthermore, 346 (70%) short-duration
rain events were observed during November. In June and July, the number of rain events
was much smaller than in April and November, but the percentages of short-duration
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rain events were higher, namely, 84% and 82%, respectively. The lack of medium- and
long-duration run events during this period caused small PA and PF values (Figure 6d,e).
The increase in the number of medium- and long-duration rain events during April and
November is partially due to the favorable environmental shear conditions necessary to
sustain a long-lived cloud system [2]. Seasonal variations in long-duration rainfall events
had also been observed in central-eastern China [52].
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Figure 7. Monthly variations in the number (a) and percentage (b) of rain events for different rain
event durations. The percentages shown in Figure 7b were calculated by dividing the number of
events for each duration by the total number of events in that month.

Although there was an increase in PA and PF (Figure 6a,b), as well as the number of
rain events (Figure 7) during the pre-southwest (April–May) and pre-northeast (October–
November), the peak times for PA and PF did not shift significantly. PA and PF with high
values were observed longer (15:00–03:00 LST the next day) (Figure 6a,b), but later peak
times were only evident for PF during the pre-northeast monsoon, which is consistent with
the BMKG rain gauge observations [18].

3.4. Effect of MJO on Diurnal Cycles of PA, PF, and PI

Figure 8 shows the effect of the MJO on the diurnal variation of precipitation in
Kototabang. There was an increase in PA and PF values in phases 2, 3, and 4, with the
maximum values observed in phase 3, namely, 1.21 mm h−1 and 21.39%, respectively. A
smaller PA value was observed in phases 5 to 7, around 0.33, 0.49, and 0.40 mm h−1. Such
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a condition was also observed for PF, with values for phases 5, 6, and 7 being 8.91%, 7.10%,
and 7.48%. The average PA and PF values during phases 2, 3, and 4 were larger than the
average climatological PA and PF values in Kototabang. In contrast, the average values in
phases 5, 6, and 7 were smaller than the climatological values (Figure 8d,e). Although the
highest PA and PF values were observed in phase 3, the PI value was relatively small in this
phase (~7.15 mm h−1), smaller than the climatological PA value in Kototabang (Figure 7f).
During the active phase of the MJO (phases 2–4), cloud clusters (CCs), which developed
in the convective envelope of a super cloud cluster (SCC) with a period of several days,
mainly induced the formation of convective activities over Sumatera [3,33,53]. On the
other hand, during the inactive phase of MJO (5–8), convective activities caused by local
circulation were prominent at Kototabang [53].
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MJO phase.

The number of rain events in Kototabang was highest in phase 1 and decreased as the
MJO phase increased (Figure 8g). The number of rain events increased again in phase 8.
Although the number of rain events was huge in phase 1, rain in this phase was dominated
by short-duration rain events (83%), followed by medium-duration rain events (12.44%)
and long-duration rain (4.63%). The number of medium- and long-duration rain events
increased in phases 2, 3, and 4, along with the increase in the convective system induced
by CCs over Sumatra [3,33,53]. The percentage of short-duration rain events (<3 h) during
phases 2, 3, and 4 were 75.31%, 73.11%, 73.02%, respectively. Furthermore, the percentage
of rain events with durations from 3–6 h were 19.95%, 18.02%, and 18.48%. For rain events
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with durations > 6 h, the values were 4.74%, 8.88%, and 8.50%, respectively (Figure 8h).
This feature is consistent with Figure 8b, where relatively high PF values in phases 2, 3 and
4, were observed from 12:00 LST to 5:00 LST (the next day), indicating a relatively high
number of medium- and long-duration rain events. On an annual basis, MJO phases 1
occurred more often than the other phases throughout the year [54], so the number of rain
events in this phase was also greater (Figure 8g).

The peak times of PA and PF were slightly different for each MJO phase. The PA peak
in phase 2 was 17:00 LST, whereas for phases 3–6 the peak was 16:00 LST. In phases 7 and 8,
the peak was 17:00 LST (Figure 8a). The peak time of PF varied between 17:00 and 19:00
LST. During phases 2, 3, and 4, PF peaks were observed at 19:00, 18:00, and 17:00 LST,
respectively (Figure 7b). The PI peaks fluctuated more and peaks were observed at 13:00,
14:00, and 14:00 LST during phases 2, 3, and 4. During phase 8, the peak time of PI was
observed at 16:00 LST (Figure 8c). Thus, the diurnal cycle of precipitation at Kototabang
increased during the active MJO (phases 2–4) compared with the suppressed MJO (phases
5–8), but the diurnal phase was similar in both regimes, which was consistent with some
previous studies [21,55].

Figure 9 shows the effect of MJO on PA, PF, and PI on a seasonal basis. Due to the
limited number of rain events for each month, the result is displayed for the DJF, MAM,
JJA, and SON periods. In general, the effect of MJO for each season was similar, with the
PA and PF values during phases 1–4 being larger than phases 5–8. Furthermore, the PA and
PF values during phases 1–4 were larger than the average climatological PA, in contrast
to phases 5–8, in which the values were smaller than the climatological values. Slightly
different conditions were observed during JJA, where, in general, PA and PF were negative,
indicating a suppressed convection period (Figure 9g,h). During JJA, the number of strong
MJO events (index ≥ 1) was much smaller than in other periods [54].
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Figure 9. Same as Figure 7(d–f), but for DJF (a–c), MAM (d–f), JJA (g–i), and SON (j–l) periods.
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3.5. Comparison of Diurnal Cycle from ORG with IMERG and WRF Model

Figure 10 shows the comparison of the diurnal cycle from the ORG data with the
WRF model IMERG-F data. Since the WRF simulations were carried out only for the
period of 2013–2015, the comparison to the ORG and IMERG-F data was carried out only
for this limited period. The results of the WRF model were averaged for the grids of
100.2965–100.3417◦ E and −0.2304–0.1851◦ S, whereas the IMERG-F data were taken from
the closest grids to Kototabang (−0.25◦ S and 100.35◦ E). The WRF model produced the
same diurnal cycle phase as the ORG data. Both PA and PF peaks were observed at 16:00
LST (Figure 10a,b,d,e). The PA and PF peaks of IMERG-F were observed at 18:00 LST,
which differed by two hours from those of ORG and WRF. Such differences have also been
found in Sumatra using BMKG rain gauge data [18] and in China [49]. The PI values of
both the WRF and IMERG-F models did not show a significant diurnal pattern, in contrast
to the ORG data, which showed dominant peaks at 14:00 (Figure 10c) and at 14:00-16:00
LST (Figure 10f).
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Figure 10. Comparison of diurnal variation of PA, PF, and PI from ORG with the WRF
model and IMER-F data during 2013–2015. Calculations used two rainfall rate (R) thresholds:
R > 0.1 mm h−1 (a–c) and R > 0.5 mm h−1 (d–f).

Although the phase of the diurnal cycle in the WRF and ORG data is the same, the
amplitudes of the two are different. The PA and PF peaks of the WRF model are much
larger than those of the ORG. The peaks of PA (PF) of the ORG, WRF, and IMERG data
for a threshold R > 0.1 mm h−1 were 0.80 (20.36), 1.40 (73.92), and 0.77 mm h−1 (58.92%),
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respectively. The PF amplitude from the WRF model is three times larger than that of the
ORG. The PA peak of ORG was close to the PA peak of IMERG. WRF’s success in modeling
diurnal cycle phases, as well as its failure to represent precipitation frequency and intensity,
for mountainous areas have also been reported in Peru [22].

The significant difference between the diurnal cycle amplitude between WRF and
ORG may be caused by several reasons. First, it may have come from a high FAR value.
Although the POD value was good enough, WRF was often wrong in detecting hourly
rainfall in Kototabang, as seen from the high FAR value (Table 1). This may also be the
cause for the high PF value. Second, the high value of FAR may be caused by the inability
of one observation point to represent rainfall variations in one WRF grid (5 km × 5 km)
due to significant small-scale spatial rainfall variability in the mountainous area of Sumatra.
However, WRF had a better resolution than the IMERG-F grid (0.1◦ × 0.1◦), but the POD
value from ORG vs. IMERG was better than IMERG vs. WRF (Table 1). Even the peak
PA values between ORG and IMERG-F were almost the same. Thus, this difference is not
solely due to the difference in sampling area between ORG and WRF but is also influenced
by the performance of WRF in modeling diurnal cycles in mountainous areas.

4. Conclusions

The diurnal precipitation cycle at Kototabang presented a single peak in the late
afternoon, and the peak time was closely related to the duration of rain events. The peak
time of short-duration rain events came earlier than those of medium- and long-duration
events, which is consistent with the evolution of the mesoscale convective system (MCS).
MJO and the seasons influence the diurnal cycle of precipitation at Kototabang. This
influence is more dominant on the diurnal amplitude than the diurnal phase. The mean
and diurnal maximum values of precipitation amount (PA) and frequency (PF) increased
significantly during the active MJO stage (phases 2–4) compared with the suppressed MJO
stage (phases 5–8). Increases in PA and PF were also observed during the pre-southwest
and pre-northeast monsoons. In addition to PA and PF, the number of medium- and long-
duration rain events also increased. However, the phase of the diurnal cycle was similar
in all MJO phases and seasons, indicating the dominant late afternoon peak of rainfall
events from convective activities caused by local circulation. WRF simulation reproduced
the phases of the diurnal cycle correctly, but it largely overestimated the amplitude of the
diurnal cycle compared to ORG. A complex interaction between local circulation and other
factors in mountainous areas may be the cause of this shortcoming. MJO and seasons may
modify the local circulation at Kototabang. This issue is being investigated, and the results
will be published in another journal. In addition, the WRF model testing in this study was
still limited to one point of observation. More extensive testing using more rain gauge
stations will also need to be carried out in the future.
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Abstract: This study assessed the precipitation recycling and moisture sources in the Colombian

Pacific region between 1980–2017, based on the monitoring of moisture in the atmosphere through the

Eulerian Water Accounting Model-2 layer (WAM2 layer) and the delimitation of the area contributing

to terrestrial and oceanic moisture in the region is performed using the “precipitationshed” approach.

The results indicate a unimodal precipitation recycling ratio for the North and Central Pacific and

Patía-Mira regions, with the highest percentages between March and April, reaching 30% and 34%,

respectively, and the lowest between September and October (between 19% and 21%). Moreover,

monthly changes in the circulation of the region promote a remarkable variability of the sources that

contribute to the precipitation of the study area and the spatial dynamics of the precipitationshed.

From December to April, the main contributions come from continental sources in eastern Colombia

and Venezuela, the tropical North Atlantic, and the Caribbean Sea, a period of high activity of the

Orinoco Low-Level jet. In September, the moisture source region is located over the Pacific Ocean,

where a southwesterly cross-equatorial circulation predominates, converging in western Colombia,

known as the Choco Jet (CJ), decreasing the continental contribution. An intensified Caribbean

Low-Level Jet inhibits moisture sources from the north between June and August, strengthening a

southerly cross-equatorial flow from the Amazon River basin and the southeastern tropical Pacific.

The March–April (September–October) season of higher (lower) recycling of continental precipitation

is related to the weakening (strengthening) of the CJ in the first (second) half of the year, which

decreases (increases) the contribution of moisture from the Pacific Ocean to the region, increasing

(decreasing) the influence of land-based sources in the study area.

Keywords: moisture transport; evaporation; precipitation; Pacific region; WAM-2 layer;

precipitationshed

1. Introduction

As a result of the interactions between the atmosphere and the Earth’s surface, pre-
cipitation and evaporation processes are generated. Precipitation over the land surface
originates mainly from two mechanisms, advection of water vapor from the oceans and
evaporation of surface moisture, whose contribution to the total precipitation in a region is
called recycled precipitation [1–3]. Most surface hydrology studies are based on analyz-
ing the division of precipitation between runoff and evaporation, describing how water
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molecules fall from the atmosphere to the surface. The concept of recycled precipitation
describes a similar division. Still, in this case, it does not analyze where precipitation falls
but rather the origin of the water vapor molecules that form it [4]. Although the source of
precipitation is difficult to establish due to the variability of the processes that produce it, it
is a fundamental factor in understanding the role of the hydrological cycle in the climate
system. According to Van Der Ent [5], it is estimated that, on average, 40% of terrestrial
precipitation comes from terrestrial evaporation, and 57% of this returns as precipitation
over land.

In recent years, several researchers have developed new definitions of moisture re-
cycling for studies on continental moisture feedback processes [5–8]. Among which is
the one developed by Keys [8], which introduces the concept of “precipitationshed” or
“atmospheric basins”, defined as the surface area of both water and land that provides
evaporation to the precipitation of a specific region. This concept has been used to highlight
areas where livelihoods depend on rainfed agriculture and where changes in the land use
in precipitationshed could have significant consequences on society. The importance of
the “atmospheric basins” approach is the inclusion of evaporation input in distant areas
from the precipitation of a specific region, thus establishing hydroclimatological connec-
tions between remotely separated areas, which often overwhelm political–administrative
divisions [9,10]. Therefore, terrestrial sources and water vapor sinks represent a particular
interest in the hydrological analysis, as well as the understanding of moisture fluxes re-
sponsible for the transport of water vapor, a phenomenon that occurs on several temporal
and spatial scales that generates a spatiotemporal redistribution of precipitation over the
planet [11]. For example, in some regions of South America, precipitation recycling has
been explored finding out that varies substantially in dry and wet years and under the
influence of phenomena such as the North Atlantic Oscillation (NAO) or El Niño Southern
Oscillation (ENSO) [4,10,12–20].

Otherwise, Van Der Ent [7] indicates that in the tropics and mountainous lands, the
scale of the recycling process can be from 500 to 2000 km, and the timescale ranges vary from
3 to 20 days, except for deserts, where it is much longer. In this regard, Cuartas et al. [2],
evidenced that in the Amazon the moisture recycling can represent between 35% and
50% of the total precipitation where the terrestrial recycling of moisture is essential in
sustaining regional precipitation [13,21], whereas Satyamurti et al. [12] identified that wet
years show about 55% more moisture convergence than dry years in the Amazon basin.
A reduction in moisture inflow across the eastern and northern boundaries of the basin and
an increase in outflow across the southern border at 15◦ S led to drier conditions. For his
part, Martinez et al. [20] estimated the variability of moisture sources in the La Plata River
Basin (LPB) using an extended version of the Dynamic Recycling Model, finding that 37%
of the mean annual precipitation over the LPB comes from the South Pacific and Atlantic
tropical oceans. The remaining 63% comes from South America, including 23% from local
sources in the LPB and 20% from the southern Amazon.

In Colombia, several researchers have tried to explain some of the climatic and hy-
drological phenomena related to the interaction between the atmosphere and the surface,
finding that the climate of the country, mainly in the center and western part, is strongly
influenced by the physical interactions that occur in the Pacific Ocean, where moisture
influx occurs at the lowest pressure levels (below 800 hPa), mainly due to surface winds or
jets such as the Choco Jet (CJ) located at 925 hPa [22–24], which transports large amounts of
moisture to the region. According to Jaramillo et al. [25], this jet contributes approximately
57% of the total precipitation in western Colombia and the Gulf of Panama. In addition,
Gallego et al. [18] indicate that the CJ is deeply related to the dynamics of the Intertropical
Convergence Zone (ITCZ) in the eastern equatorial Pacific and is responsible for up to
30% of the total precipitation in central and northern South America. Furthermore, in
addition to the significant influence of the humid oceanic masses on the Pacific region’s
climate, it has been determined that the Andes Mountain range is the main determining
factor of the geographic, physical, biological, and hydrological configuration of the Pacific
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sub ecosystem. According to Velásquez-Restrepo and Poveda [26], these characteristics
make the Pacific an ideal space for understanding the functioning and integrity of the
hydrological cycle, mainly on atmospheric interactions with oceanic and surface processes.

Cuartas [27] and Cuartas and Poveda [2] indicated that the average value of atmo-
spheric moisture input in Colombia is 5716 mm/year, with an important variability during
ENSO phases, coming mainly from easterly and westerly trade winds. On the other hand,
they found that, on average, 31% of the total precipitation in the country is due to evap-
orated moisture from the surface, and for the Pacific region, it is about 18%. Meanwhile,
Hoyos et al. [10] evaluated the sources and processes of moisture transport for Colombia,
finding that moisture from the Atlantic Ocean and terrestrial recycling are the main sources
of moisture in the country; they also found that the CJ plays an important role in the conver-
gence of moisture over western Colombia. Arias et al. [16] examined the primary sources of
moisture during La Niña 2010–2012, finding that the main sources were the Pacific Ocean
through the CJ and the Caribbean Sea, through the weakening of the Caribbean Low-Level
Jet (CLLJ) and the development of southward anomalies toward northern South America.

Quantifying the terrestrial evaporation which feeds precipitation over land, i.e., the
magnitude of recycled moisture, is of great importance in the analysis of the interactions
and feedbacks between surface and atmospheric hydrology, being a possible indicator
of climate sensitivity to land use changes [1,4,6,28], which is essential to understand the
impact of anthropogenic activities on climate, as they can modify terrestrial moisture fluxes
through changes in land use and water management.

The understanding of the interactions between precipitation and evaporation has
changed over time. There are several models for calculating recycled precipitation; however,
most of them are modifications of the generalized one-dimensional model of Budyko [29],
which expresses the percentage of recycling in the direction of a single stream of velocity
u and length l and as a function of regional evaporation (E) and atmospheric moisture
transport (Q). This model was modified by Brubaker et al. [1] by considering the flow
input to a region in two directions, for his part Eltahir and Bras [4] proposed a model that
calculates the local recycling ratio on a spatially distributed grid for monthly or longer time
scales, and Dominguez et al. [30] developed a model derived from the two-dimensional
atmospheric water balance equation, which estimates the local recycling ratio for daily or
longer time scales and only uses the hypothesis of a well-mixed atmosphere. Finally, Van
Der Ent et al. [6] proposed a numerical model based on the atmospheric water balance,
estimating the recycling ratio daily. The latter model labels each water particle to be traced
back to the origin, determining the spatio-temporal distribution of the moisture origin
rather than simply estimating the recycling ratio on a large spatial and temporal scale [7].

Among the most widely used moisture tracking models are Lagrangian models such
as the 2D Dynamic Recycling Model (DRM) developed by Dominguez et al. [30], the
Quasi-Isentropic 3D Backward Trajectory (QIBT) method by Dirmeyer and Brubaker [31],
and others such as FLEXPART and HYSPLIT [7]. Furthermore, the Eulerian models allow
the tracking of moisture on a global scale [6,7] and are highlighted by the speed of the
calculation due to their simplicity, but also due to their Eulerian grid, which allows them to
track the origin of moisture quickly in both large and small areas. An example of such an
Eulerian trajectory model is the WAM-2 layers (Water Accounting Model-2 layers) [7].

Therefore, considering the complexity of the Colombian Pacific region, this study aims
to identify the recycled precipitation and moisture sources in the study area by tracking
atmospheric moisture through the Eulerian Water Accounting Model-2 layer (WAM-2 layer).
This method estimates the recycling ratio of continental precipitation and the contribution
of terrestrial moisture sources to the study area’s precipitation. Additionally, it delimits
the area that contributes both terrestrial and oceanic moisture to the precipitation of the
Colombian Pacific under the “precipitationshed” approach implemented by Keys [8]. This
study contributes to the appropriate management and conservation of water resources in
the Colombian Pacific region, increasing knowledge on land–atmosphere feedback and
ocean–atmosphere feedback.
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2. Materials and Methods

The percentage of recycled precipitation might be local (ρ), regional (ρr) and continental
(ρc) [4,6,13,21,28,32]. Here, we define surface precipitation as a combination of oceanic and
terrestrial moisture sources; this approach makes it possible to analyze the influence of
evaporation from remote locations on the precipitation in a particular geographical area.
Precipitation is defined as:

P(t, x, y) = Pc(t, x, y) + Po(t, x, y) (1)

where Pc is continental-sourced precipitation (evaporated from a continent region) and Po is
ocean-sourced precipitation (evaporated from the ocean). The recycling ratio of continental
precipitation, which shows the dependence of precipitation at a given location relative to
continental evaporation, is provided as:

ρc(t, x, y) =
Pc(t, x, y)

P (t, x, y)
(2)

WAM-2 layers perform 2D (x, y) moisture tracking, globally and regionally, following
the moisture backward (evaporation that will be precipitated in a predefined region) and
forwards (precipitation that evaporated from a predefined region) in time. The model splits
the atmosphere into two layers making moisture tracking more reliable than vertically
integrated moisture fluxes [7]. Van Der Ent et al. [7] showed that the WAM-2 layer model
provides similar results to a complex and highly detailed moisture tracking scheme in a
regional climate model (RCM-tag) [33] but with a lower computational effort [34]. The
WAM single-layer model struggled to estimate the correct moisture flux direction in this
case study. However, by adding another layer, the results were closer to the RCM-tag
method that directly uses highly accurate three-dimensional water tracking (including
phase transitions) within a regional climate model.

The shear layer is approximately at the sigma level, corresponding to around 800 hPa.
The horizontal moisture fluxes in the lower layer are calculated between the surface and
the sigma level, while the horizontal moisture fluxes in the upper layer are calculated from
sigma level to 175 hPa. Moreover, the vertical velocity given at the sigma level of around
800 hPa was used to calculate the moisture transport between the lower and upper layers.
On the preceding basis, moisture is tracked from where it enters to where it leaves the
atmosphere as evaporation and precipitation. Therefore, it is possible to identify when
and where precipitation from a specific region entered the atmosphere as evaporation as
time progresses.

The WAM-2 layer model is open access and requires input data with a daily resolution
specified in Table 1. These input data were taken from the ERA-Interim climate reanalysis
project dataset provided by the European Centre for Medium-Range Weather Forecasts
Interim Reanalysis (ECMWF/ERA-I) [35,36]. According to Hoyos [10], the ECMWF/ERA-I
dataset has a good qualitative, and quantitative representation of the Colombian climate
features; depicting more realistically the regional orography when compared to the first-
generation reanalysis data (NCEP/NCAR and ERA-40), allowing a better representation
of regional humidity and atmospheric transport [10,35,37]. Furthermore, previous studies
have used this dataset, presenting results suitable for the analysis of climate variability
at interannual and decadal scales which affect Colombia [16,38,39]. All variables were
obtained for the 1980–2017 period in the region 20◦ N–15◦ S and 120◦ W–60◦ W, with a
horizontal resolution of 0.75◦ × 0.75◦. The moisture source and the average recycling ratio
were estimated over the same period. Precipitation and evaporation data at 3 h intervals,
specific humidity, zonal and meridional wind velocity at 24 pressure levels (175–1000 hPa)
(as required by WAM-2 layer), and surface pressure were used to calculate the vertically
integrated moisture flux and precipitable water every 6 h.
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Table 1. Variables are included in the WAM-2 layer, with the units described in ERA-I.

Surface Variables

Symbol Variable Unit

P Precipitation m·day–1

E Evaporation m·day–1

TCW Total column water kg·m–2

TCWV Total column of water vapor kg·m–2

EWVF Vertical integral of eastward water vapor flux kg·m−1·s−1

NWVF Vertical integral of northward water vapor flux kg·m−1·s−1

ECLWF Vertical integral of eastward cloud liquid water flux kg·m−1·s−1

NCLWF Vertical integral of northward cloud liquid water flux kg·m−1·s−1

ECFWF Vertical integral of eastward cloud solid water flux kg·m−1·s−1

NCFWF Vertical integral of northward cloud solid water flux kg·m−1·s−1

ps Surface pressure Pa

Pressure levels variables

q Specific humidity kg·kg–1

u Zonal component of wind m·s–1

v Meridional component of wind m·s–1

The fundamental principle for the WAM-2 layers numerical model is the atmospheric
water balance:

∂Wk

∂t
=

∂(Wku)

∂x
+

∂(Wkv)

∂y
+ Ek − Pk + ξk ± QV (3)

where Wk is the atmospheric moisture storage (precipitable water) in layer k (either the
upper or lower layer), Ek is evaporation flowing into layer k, Pk is precipitation leaving layer
k, ξ is an essential residual to correct the precipitation or evaporation, QV is the vertical
moisture transport between the lower and upper layers, x is the longitudinal direction
(zonal component) and y is the latitudinal direction (meridional component). Moisture
transport is calculated over grid cell boundaries. The change in atmospheric moisture due
to horizontal transport is defined by:

∆(Wu)

∆x
= F−

k,x − F+
k,x ,

∆(Wv)

∆x
= F−

k,y − F+
k,y (4)

where Fk is the moisture flow over the boundary of a grid cell in the upper or lower layer,
which is positive from west to east and from south to north. The superscript “–” represents
the west and south boundaries of the grid cell and “+” represents the east and north
boundaries. The vertically integrated moisture flux (Fk) is calculated as follows:

Fk =
L

gρ

pbottom
∫

ptop

quhdp (5)

where L is the length of perpendicular cell to the moisture flow direction, g is the gravity, ρ
is the density of liquid water (1000 kg·m–3), p is the pressure, q specific humidity and uh is
the horizontal component in either x or y direction. For the top layer, applies ptop = 0 and
pbottom = pdivide. For the bottom layer applies ptop = pdivide and pbottom = psur f ace.
Where pdivide is the pressure between the upper and lower layer, which corresponds to
81,283 Pa at a standard surface pressure of 101,325 Pa and can be calculated as follows [5]:

pdivide = 7438.803 + 0.728786 × psur f ace [Pa] (6)

Over the surface, the bottom layer represents about 40–80% of the total moisture
storage in the column, and 30–70% of the total horizontal moisture flow [5]. Evaporation
E enters only the lower layer, so Ek = E in this layer while Ek = 0 in the upper layer.
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Precipitation is assumed to be removed immediately from moisture storage (there is no
downward precipitation exchange between the upper and lower layer), and the “well-
mixed atmosphere” condition is assumed for precipitation:

Pk = P
Wk

W
(7)

where P is the total precipitation and W is the total atmospheric storage in the vertical.
The residual ξ is the result of the assimilation of the ERA-Interim dataset and the

fact that the decoupled tracking scheme calculates the water balance at gross spatial and
temporal resolution. The vertical moisture transport QV is difficult to calculate because,
in addition to the transport by the mean wind velocity in the vertical, there is a scattering
moisture exchange due to the convective scheme in ERA-Interim. Therefore, it is assumed
that the vertical exchange is the closing term of the water balance. However, due to the
residual ξ the water balance cannot be completely closed. Therefore, the closure is defined
by the ratio of upper and lower layer residuals, which is proportional to the moisture
content of the layers:

ξtop

Wtop
=

ξbottom

Wbottom
(8)

From the above equation, the vertical moisture transport can be calculated as:

QV =
Wbottom

W

(

ξ∗bottom + ξ∗top

)

− ξ∗bottom (9)

where ξ∗bottom and ξ∗top are the residuals to be considered before vertical transport.
The same water balance is applied for tracking moisture from a given origin (continen-

tal, regional or local) in WAM-2 layers. For example, the water balance of the evaporation
to be tracked (identified by the subscript Ω) in the lower layer of the atmosphere for for-
warding tracking (trajectory of moisture from where it evaporates to where it precipitates)
is described by:

∂WΩ, bottom

∂t
=

∂(WΩ,bottomu)

∂x
+

∂(WΩ,bottomv)

∂y
+ EΩ − PΩ + ξΩ ± QV,Ω (10)

For backward tracking (trajectory of moisture from where it precipitates to where
it evaporates) and upper layer calculation, equations similar to the above are used. Van
Der Ent [7] found that the vertical flow was too small to adequately represent the vertical
transport of the monitored water, which is attributed to the turbulent moisture exchange
between the upper and lower layer. Based on Van Der Ent’s trial-and-error tests [7], this
situation was resolved by keeping QV as the net vertical moisture flux and using a vertical
flux of 4QV in the net flow direction and 3QV in the opposite direction during the tagging
experiments. Despite simplifying turbulent moisture exchange, the authors considered it a
suitable parameterization for the study, and their results were not very sensitive to turbulent
moisture exchange. For further details on the application of this model, refer to https://
github.com/ruudvdent/WAM2layersPython (accessed on 22 July 2022). The specific
structure of commands applied for the model execution and the division of the variables
into atmospheric layers can be explicitly found at https://github.com/ruudvdent/WAM2
layersPython/blob/master/Fluxes_and_States_Masterscript.py (accessed on 22 July 2022).

For this study, the Colombian Pacific region was selected as the unit of analysis based
on the seasonality of the monthly mean precipitation in Colombia as defined by the Institute
of Hydrology, Meteorology and Environmental Studies (IDEAM) [40] (Figure 1a,b). Out of
the 12 regions defined by IDEAM, we used the North and Central Pacific (NCP) and Patía-
Mira (P-M) regions covering the Colombian Pacific, as shown in Figure 1a. To determine
the recycled precipitation in the Colombian Pacific region, moisture was tracked forward
in time, which allows for determining the amount (percentage) of the total precipitation
from the region that originated from the evaporation of continental sources.
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Figure 1. (a) Study area and (b) precipitation regions in Colombia provided by IDEAM [40] file
number 20199050007812 from 11 February 2019.

In this case, the continental precipitation recycling ratio (ρc) was estimated, as de-
scribed in Equation (2), whose numerical implementation in the model is given by:

ρc =
∑

t f inal

t=t0
P Wcon

W

∑
t f inal

t=t0
P

(11)

where, Wcon is the atmospheric moisture storage of continental origin. The storage of atmo-
spheric moisture of continental origin is the humidity coming from the evapotranspiration
of the continental (terrestrial) zone. In the model, a layer or mask is added to define the
oceanic and continental region of the study area, which in this case is slightly lower than
the region where the information is downloaded and corresponds to the 15◦ N–6.75◦ S and
98.25◦ W–60.75◦ W. The region where the forward trajectory of the moisture is calculated
and where the spatial distribution of the evaporated precipitation is obtained corresponds
to the above-mentioned region. For the backward trajectory (where the spatial distribution
of the evaporation that will be precipitated (precipitationshed) is obtained from the model
and based on the loaded layer, the location of the study region (Colombian Pacific region)
is specified.

To calculate the precipitationshed or source region of precipitation in the Pacific,
we use the adaptation carried out by Keys et al. [41] to the WAM-2 layer, which allows
backtracking of precipitation from the source region (in our case, the Pacific region), to
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identify the sources of evaporation or humidity. The backtracking method is based on the
following approach:

PΩ(t, xΩ, yΩ, AΩ, ∆Ω) =

p
∫

i=0

m
∫

j=0

EΩ(t, xi, yi) (12)

where PΩ is the precipitation in the sink region Ω (defined by longitude xΩ, latitude yΩ,
area AΩ and shape ∆Ω). Specifically, the amount of evaporation EΩ reaching the region
Ω, which traveled through the atmosphere, and ends up as precipitation in that region,
is calculated for each cell. EΩ is integrated over all grid cells, where i and j are the cell
indices and p and m are the cell numbers along the parallel and meridian, respectively. Its
numerical implementation in the model is given by:

EΩ =

t f inal

∑
t=t0

E
Wbottom

W
(13)

where, Wo is the moisture storage tracked or labeled in the lower layer, and W is the
total moisture in all layers. To find the precipitationshed with WAM-2 layer, a backward
tracking in time is performed from the region defined as a moisture sink, which in this
study corresponds to the Colombian Pacific region, whose result allows identifying the
area contributing the highest percentage to the moisture that precipitates in this region.
Nevertheless, the results of the model on their own do not correspond to the precipitation-
shed, because each cell, even if it is quite small or distant from the sink area, can contribute
to the evaporation estimate; therefore, a threshold must be established to define a spatially
explicit boundary of the precipitationshed, based on the evaporation contribution. In this
case, the threshold was defined as the cells that contribute 80% of evaporation or humidity
to the precipitation over the Colombian Pacific; this is based on the topographic limits of
the country that directly affect the behavior of the airflow and on the usefulness of these
limits for future analysis of vulnerability to changes in land use and land cover.

Moreover, indices of water balance variables, precipitation, evapotranspiration, and
moisture convergence (moisture divergence multiplied by –1, hereinafter ConvQ), corre-
sponding to the mean for each region, NCP and P-M separately, were constructed. To
examine the variability of the continental recycled precipitation and its relationship with
the winds coming from the Pacific Ocean, the CJ index was used as the mean of the zonal
winds at 925 hPa in the region between 2◦ N and 7◦ N along the 80◦ W meridian. Several
authors used the zonal winds at 925 hPa in northern South America to characterize the CJ
and the associated moisture transport on monthly and seasonal scales [15,16,24,38,42].

3. Results and Discussion

3.1. Water Balance

The spatio-temporal variability of water balance variables, including precipitation
(P), evapotranspiration (E), moisture convergence (ConvQ), and the ratio between the
precipitation and evapotranspiration (E/P) at annual and monthly scales for the NCP and
P-M regions between 1980–2017 are presented below.

Figure 2a shows the total annual precipitation over the Colombian Pacific, with mean
values between 10,000 and 12,000 mm·yr−1 in the northeast of the study area and precipita-
tion close to 9000 mm·yr−1 at the border of the NCP and P-M regions, while in the south the
annual precipitation oscillates between 3000 and 7000 mm. The mean annual precipitation
in the NCP region was 9611 mm·yr−1, and in P-M, it was 5397 mm·yr−1, exceeding the
country’s annual average of 3189 mm·yr−1 reported by Vallejo [11] and consistent with
Cerón et al. [43]. They observed three cores of high precipitation over the Colombian
Biogeographic Chocó region.
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Figure 2. Annual and monthly means precipitation in the Colombian Pacific regions for the 1980–2017
period. (a) Annual; (b) Dec; (c) Jan; (d) Feb; (e) Mar; (f) Apr; (g) May; (h) Jun; (i) Jul; (j) Aug; (k) Sep;
(l) Oct; (m) Nov.

On a monthly scale, precipitation processes are conditioned by the latitudinal migra-
tion of the ITCZ, which, combined with the orographic effects created by the Serranía del
Baudó and the foothills of the Western Cordillera, serve as a natural barrier for the air
masses coming from the Pacific Ocean, discharging their moisture on the western slopes of
the mountain ranges as orographic precipitation [15,43–46]. In the NCP region, there is no
defined dry season, and the distribution during the year is relatively uniform (Figure 2b–m);
however, from December to April, precipitation is lower (Figure 2b–f), when the ITCZ
reaches its southernmost position, whereas, between May and November (Figure 2g–m)
the highest precipitation is observed, the moment in which the ITCZ and in general the at-
mospheric systems record their greatest northward displacement [43,47–49]. Furthermore,
in the P-M region, the least rainy season is observed from June to November (Figure 2h–m),
when the country’s ITCZ is located in its most northerly position.

The analysis of evapotranspiration, which is another important component of the
water balance, shows slightly pronounced differences in the study area (Figure 3a), reaching
similar annual values in both regions, 921 mm·yr−1 for P-M and 855 mm·yr−1 for NCP;
the lowest annual evapotranspiration (<650 mm·yr−1) occurs towards the center of the
region, including the hydrographic zone of the San Juan River and the Pacific coast of the
department of Valle del Cauca. The results are consistent with those reported by Vallejo [11],
who indicates mean values between 600 and 800 mm·yr−1. According to Vallejo [11], the
low evapotranspiration corresponds to the low amount of solar radiation that reaches the
area due to the large-scale convective processes and a constant saturation of the atmosphere,
coherent with the high convergence of annual moisture observed in the region (Figure 4a),
in agreement with the studies of Velasco and Frischt [50], Zipser et al. [51], Zuluaga and
Houze [52] and Jaramillo et al. [25]. On a monthly scale (Figure 3b–m), over the NCP
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region, evapotranspiration decreases while precipitation increases from May to November
(<80 mm·month−1; Figures 2g–m and 3g–m), and in coherence with the intensification of
moisture convergence in the same period (Figure 4g–m), at the same time that higher
evapotranspiration values occur in the P-M region (70–100 mm·month−1) when precip-
itation and moisture convergence decrease in this region (Figures 2g–m and 4g–m). It
should be noted that the magnitude of evapotranspiration concerning precipitation and
moisture convergence does not show high variability in the two regions, with values below
90 mm·month−1 (standard deviation of 8 mm in NCP and 7 mm in P-M).

− – –
–

– −

– –

−

–
Figure 3. Annual and monthly means evapotranspiration in the Colombian Pacific regions for the
1980–2017 period. (a) Annual; (b) Dec; (c) Jan; (d) Feb; (e) Mar; (f) Apr; (g) May; (h) Jun; (i) Jul;
(j) Aug; (k) Sep; (l) Oct; (m) Nov.

According to Cuartas and Poveda [2] and Marengo [53], a region acts as a source
(sink) of moisture to the atmosphere when evaporation is greater (less) than precipitation.
Additionally, Satyamurty et al. [12] and Do Nascimento et al. [54] explain that when
there is moisture divergence (convergence) in a given region, it behaves as a source (sink)
of moisture to neighboring regions. The relationship between evapotranspiration and
precipitation (Figure 5), as an approximation to the regional moisture recycling ratio, shows
that between January and April, the NCP has the greatest contribution of moisture to the
atmosphere, between 11% and 17% of the total precipitation (Figure 5a), related to the
reduction in the moisture convergence towards the region and with the increase in regional
recycling (E/P); the rest of the year, the E/P ratio observed corresponds to 7% of the total
precipitation, which indicates that the moisture recycled during most of the year comes
from in other regions of the continent. In the case of the P-M region (Figure 5b), the region
makes the most outstanding moisture to the atmosphere from June to November (dry
season), when the E/P ratio varies between 18% and 23%, while moisture convergence
decreases; this regional recycling represents almost 100% of the total, highlighting the
regional processes of evapotranspiration over precipitation during the driest season, while
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during the period of higher precipitation, moisture arriving from other regions becomes
more important. This is an indicator of the low rate of regional moisture recycling in the
Colombian Pacific, which suggests that the region behaves as a moisture sink (E < P).

–

−

Figure 4. Annual and monthly means moisture divergence in the Colombian Pacific regions for the
1980–2017 period. Negative values reflect rising motions, and positive values reflect sinking motions.
(a) Annual; (b) Dec; (c) Jan; (d) Feb; (e) Mar; (f) Apr; (g) May; (h) Jun; (i) Jul; (j) Aug; (k) Sep; (l) Oct;
(m) Nov.

–

 
−Figure 5. Water balance variables (mm month−1) over the (a) North and Central Pacific (NCP) and

(b) Patia-Maria (P-M) regions from 1980 to 2017. The left y-axis is orange for evapotranspiration
(E), black for precipitation (P) and moisture convergence (ConvQ), and the right y-axis for E/P
ratio (blue).
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3.2. Continental Precipitation Recycling Ratio

Based on the results of the WAM-2 layer model implementation and ERA-I reanalysis
data, results concerning the continental precipitation recycling ratio and the delimitation
of the precipitationshed of the Colombian Pacific region are presented. Figure 6a shows
the spatial distribution of the annual continental precipitation recycling ratio (ρc), being on
average higher in P-M with 26% per year and lower in NCP with 23%; these low values
ratify the dominance of oceanic moisture sources over continental moisture recycling.
Likewise, the annual recycling ratio increases from north to south and from west to east
(coast to the mountain range). On a monthly scale (Figure 6b–m), the first half of the year
shows a marked latitudinal orientation of the recycling ratio, with the highest values in the
P-M region (south) and decreasing towards the NCP region (north), which may be related to
the migration of the ITCZ from its southernmost position (December–February; DJF) to the
north in the March–May (MAM) quarter. During the second half of the year, the recycling
ratio shows a marked longitudinal orientation, with the highest values near the foothills of
the western cordillera and the lowest near the Pacific Ocean, highlighting the role of the
orographic barrier of the Colombian Andes and the moisture transport associated with the
CJ during the second half of the year [23,42]. The CJ intensifies from June and reaches its
highest velocity from September to November (SON) with values at its core (centered at
5◦ N along 80◦ W) of 5–8 m·s−1, in agreement with the maximum precipitation observed in
the region during the second half of the year [16,24,55], and weakens from December to
May with velocities between 2 and 3 m·s−1. The interaction of the CJ with the topography
of the western Andes and the trade winds from the east favors deep convection producing
large amounts of precipitation [15,22,23,56,57].

𝜌𝑐
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–
–

– −

−

𝜌𝑐Figure 6. Annual and monthly mean continental precipitation recycling ratio (ρc). (a) Annual; (b) Dec;
(c) Jan; (d) Feb; (e) Mar; (f) Apr; (g) May; (h) Jun; (i) Jul; (j) Aug; (k) Sep; (l) Oct; (m) Nov.
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Figure 7a shows the monthly variability of the precipitation recycling ratio for the
NCP and P-M regions. A unimodal recycling ratio pattern is observed in both areas, with
the highest percentages between March and April, reaching 30% and 34% for NCP and
P-M, respectively, and consistent with the spatial pattern shown in Figure 6e,f. Moreover,
the lowest recycling season is between June and October, with the lowest percentage of
NCP recycling occurring between September–October, with a value between 19% and
20%. In contrast, P-M has its lowest recycling ratio in September, corresponding to 21%.
Figure 7b presents the climatological zonal wind values associated with the CJ, showing a
greater wind intensity between September and November, and the interquartile distance
(3rd quartile minus 1st quartile) is greater than during the rest of the year, while the
winds associated with the CJ are less intense from January to April. In this sense, the
season of higher (lower) continental precipitation recycling ratio is related to the weakening
(strengthening) of the CJ in the first (second) half of the year, which decreases (increases)
the contribution of moisture from the Pacific Ocean to the region, increasing (decreasing)
the influence of the contribution of land-based sources in the study area. Furthermore,
the higher continental precipitation recycling ratio in the P-M region can be related to its
higher evapotranspiration concerning NCP and its southern location in the zone of greatest
influence of the CJ, which allows the influence of other phenomena such as moisture
feedback [7,8,49,58].

–
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Figure 7. (a) Continental precipitation recycling ratio (ρc) for the North and Central Pacific (NCP)
and Patía-Mira (P-M) regions. (b) Boxplots of the Choco jet index (m·s–1). In (b) each box represents
the range between the first and third quartiles, divided by the median of the sample, with maximum
and minimum values (whiskers) shown by vertical stems.

3.3. Precipitationshed

Figure 8 shows the monthly variability of the main sources that contribute to precipi-
tation in the Colombian Pacific region and the changes in monthly precipitationshed. The
contributions of these different sources change throughout the year, driven by seasonal
changes in circulation. From December to April (Figure 8a–e), the largest contributions
come from northern sources, mostly the tropical North Atlantic (TNA) and the Caribbean
Sea from October to February, and from eastern Colombia and Venezuela; a period when
the Orinoco Low-Level jet (OLLJ) exhibits its maximum wind speed, with values around
8–10 m·s−1 during DJF [59]. According to Builes-Jaramillo et al. [59], the OLLJ transports
atmospheric moisture from TNA, linked to an area of moisture flux divergence located
over northeastern South America. During June to August (Figure 8g–i), the ITCZ migration
to its northernmost position results in an area of moisture flux convergence over TNA
and the Caribbean Sea, which strengthens the CLLJ and inhibits the entrance of mois-
ture from northerlies; thus, the southerly cross-equatorial flow from the Amazon River
basin and the southeastern tropical Pacific predominates, as has been documented by
Arias et al. [16] and Builes-Jaramillo et al. [59]. In September (Figure 8j), a southwesterly
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cross-equatorial circulation predominates, converging over the eastern Pacific and western
Colombia, consistent with the spatial pattern associated with the easterly low-level jet,
also known as the CJ [15,18,23,42]. The CJ transports moisture in the lower troposphere,
interacting with the Colombian orography, inducing moisture convergence and convection
in western Colombia, which leads to high precipitation over the Colombian Pacific [10,16],
with greater intensity during the September to November quarter [23].

 

– − −

Figure 8. Seasonal variability of precipitationshed in the Colombian Pacific region and vertically
integrated moisture fluxes (vectors) from 1980 to 2017 for (a) December, (b) January, (c) February,
(d) March, (e) April, (f) May, (g) June, (h) July, (i) August, (j) September, (k) October, and (l) Novem-
ber. The white line represents the threshold whereby the grids with the higher values account for 80%
of the tracked moisture. The grids compose the Primary Source region, also known as the precipita-
tionshed. The color bar represents the contribution ratio of the moisture sources to the precipitation.
The arrows represent the 1000–175 hPa vertically integrated moisture flux (Kg·m−1·s−1) over the
study area.
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These seasonal changes in the region’s circulation drive a remarkable spatio-temporal
variability of precipitationshed (Figure 8), which is significantly more dynamic than the
relatively static limits of the surface watersheds since they depend on a defined threshold
and the variability of climatic phenomena at multiple scales. Figure 8 highlights the
large spatio-temporal variability of the 80% threshold of tracked moisture. The most
significant contrast of moisture sources occurs during April and September (Figure 8e,j),
representing the highest and lowest continental precipitation recycling ratio (Figure 7a).
During April, the largest source region is located on the continent, reflecting the strong
influence of northeastern Colombia and Venezuela and the transport of moisture from
the Atlantic Ocean; while in September, the continental recycling ratio is reduced, and
the moisture source region is located mainly in the Pacific Ocean, and the continental
contribution decreases.

Even though the ocean is highlighted as the main source of moisture for the delimited
atmospheric basin, these regions are located near the continent, which coincides with the
results of Van Der Ent and Savenije [14], who found that ocean moisture source areas are
more intense closer to the land surface. As shown in Figure 8, terrestrial sources of moisture
encompass a larger area than oceanic sources; however, this is not directly related to the
amount of moisture input [14]. This finding can also be related to those found for the
precipitation recycling ratio, which indicates that in the NCP, this recycling comes from
other regions, which are identified according to the precipitationshed as neighboring and
in greater extension towards the northeastern part of the study region, covering almost all
of the Andean region, the Orinoquia and the Colombian Caribbean.

4. Conclusions

The objective of this paper was to assess precipitation recycling and moisture sources
in the Colombian Pacific region during the 1980–2017 period. We have used the atmo-
spheric moisture tracking model WAM-2 layers to track moisture fluxes, as well as used
the precipitationshed approach for the delimitation of the area contributing to terrestrial
and oceanic moisture in the study area. We summarize our findings as follows: (1) The
results show that on average, the Colombian Pacific region acts as a moisture sink (E < P),
where convergence is mainly from the Pacific Ocean and represents the largest contribution
to the precipitation production, in contrast to the regional (E/P) and neighboring areas.
(2) Precipitationshed and its moisture sources present a significant monthly variability, with
continental sources from eastern Colombia and Venezuela, and the tropical North Atlantic
from December to April; the Pacific Ocean takes preponderance in these contributions dur-
ing September–October, when the CJ intensifies and the continental contribution decreases;
while the Amazon basin and the southeastern tropical Pacific make their greatest contribu-
tions during June and August. The importance of the “precipitationshed” approach in the
analysis of the hydroclimatology of the Pacific region is the inclusion of the contribution of
evaporation from remote land surfaces to the region’s precipitation, a factor that, to our
knowledge, had not been considered before. This could become an input for analyzing the
impacts that changes in land cover and land use may have on evapotranspiration ratios
in this region. Furthermore, the alterations that climate change could represent, such as
variations in moisture transport, could affect the interactions between the source regions
and the continental Pacific.

Further research could address the analysis of moisture recycling by considering other
atmospheric monitoring models, such as those developed under a Lagrangian approach,
the comparison of both results will improve the accuracy of the results. In addition, the
analysis should be carried out considering the impacts of climate change and climate
variability events such as the ENSO phases, which affect the region’s climatic conditions
and the country to a great extent. Research involving land cover and land use scenarios is
recommended to explore the vulnerability of moisture recycling in the precipitationshed of
the Pacific region.
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