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1. Introduction

Inland lakes are indicators of climate change and environmental deterioration [1,2].
As a unique ecosystem unit, an inland lake is one of the basic places for human survival
and development. In recent years, with the rapid development of regional societies and
economies, the ecological environment of inland lakes has been rapidly degraded by
human activities under the influence of large-scale water and soil exploitation activities,
leading to massive deterioration of the ecological environment of lakes [3]. Therefore, lake
ecological restoration and water quality monitoring under the coupling effect of climate
change and human activities are the key to lake protection and management. In recent
years, remote sensing has played an increasingly important role in the monitoring of the
terrestrial water cycle.

Remote sensing technology has been applied in many fields, such as the monitoring
and management of water storage, water quality, water levels, and hydrodynamics [4].
Remote sensing technology has been applied to water bodies since the 1970s [5]. Over
time, the technology and theory of lake water color remote sensing monitoring have
gradually matured, and an integrated lake remote sensing monitoring system of “Satellite-
UAV-Ground” has been developed. In addition, the rapid development of computer and
artificial intelligence technology in recent years provides a powerful algorithm support
for the intelligent remote sensing observation of lakes. Therefore, the explosive growth of
remote sensing data applications is driven by the coupling of multisource remote sensing
data and the expansion of new modeling technology.

This Special Issue presents a review and recent advances of general interest in the use
of remote sensing (RS) and geographic information systems (GIS) on inland lakes, with
a focus on monitoring inland lakes (e.g., water storage, water quality, water levels, and
hydrodynamics) and water resource management.

2. Overview of the Contributions

The call for papers was announced in July 2021, and after a rigorous peer-review
process, a total of 11 papers were published [6–16]. To gain a better insight into the essence
of the Special Issue, we will focus on the summary and analysis of these articles that mainly
include four themes: (1) remote sensing monitoring of lake water quality; (2) remote sensing
extraction and analysis of water area and water volume based on novel algorithms; and (3)
remote sensing simulation and analysis of the watershed water environment.

2.1. Remote Sensing Monitoring of Lake Water Quality in Lakes and Reservoirs

Lakes (including reservoirs) have attracted more and more attention as the main
drinking water source for more than 85% of the population in China. Remote sensing, as

Water 2022, 14, 3904. https://doi.org/10.3390/w14233904 https://www.mdpi.com/journal/water1
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the only means to achieve large-scale, periodic, and operational monitoring, has played
an important role in lake monitoring and research. Lake remote sensing, as a branch
and cross-subject of lake science, remote sensing science, and other disciplines, enables
researchers to learn from and promote each other. Zhang et al. [6] analyzed the response
relationship between the water quality index and water reflectance, and used remote
sensing technology to establish a water quality index monitoring model to monitor water
quality in the Ebinur Lake watershed, producing a demonstration project for the use of
remote sensing technology in lake monitoring in arid areas. Aranha et al. [7] used Sentinel-2
MSI TOA Level 1C reflectance images and analyzed the concentration of chlorophyll-a
(Chl-a) in water bodies of five reservoirs located in the semi-arid region of northeastern
Brazil. The model has a strong observation ability and high accuracy. Luo et al. [8]
developed an online water quality assessment early warning system that integrates a
high-frequency monitoring system (HFMS) and data quality control technology, which was
applied in the Qiandao Lake region, China. The Early Warning System (EWS) focuses on
data availability, quality control methods, statistical analysis methods, and data application,
but not on the technical aspects of the detector, wireless data transmission, and interface
software development. The development of this system provides a strong support for the
automatic monitoring of lake water quality and three-dimensional lake hydrodynamic
and ecosystem prediction. Together, these papers contribute to the development of the
continuous monitoring of water quality in small and large reservoirs based on remote
satellite-based analysis. Such an analysis is a strategic resource for promoting regional
water security, and the future goal is to implement large-scale, intelligent remote sensing
technology for the observation of water quality in lakes and rivers.

2.2. Remote Sensing Extraction and Analysis of Water Area and Water Volume Based on
Novel Algorithms

The observation and monitoring of surface water area is of great significance for water
resource management as well as ecological protection in a basin. Using remote sensing or
hydrological model estimation methods can quickly obtain long time series of a water area,
make up for the lack of data in a scarce-data area, and provide a basis for further research
on surface water.

Li et al. [9] based their work on the GEE (Google Earth Engine) cloud platform and
studied the effect of nine kinds of water indexes on the surface water extraction in Bosten
Lake Basin by adding a slope mask to remove misclassified pixels to find the best extraction
method for surface water extraction in the basin by means of accuracy verification and
visual discrimination through a continuous iteration of the index threshold and slope mask
threshold. The results show that when the threshold value is −0.25 and the slope mask is
8 degrees, the index WI2019 has the best effect on the surface water information extraction
of Bosten Lake Basin, effectively eliminating the interference of shadow and snow. The
extraction accuracy of surface water by remote sensing is improved, and provides a more
accurate and convenient method for the extraction of surface water area under complex
terrain. Chen et al. [10] adopted a spatial downscaling model for mapping lake water
at a 10 m resolution by integrating Sentinel-2 and Landsat data, which was applied to
map the water extent of Qinghai Lake from 1991 to 2020. This was further combined
with the Hydroweb water-level dataset to establish an area-level relationship to acquire
the 30-year data on water levels and water volumes. Then, the driving factors of the
water dynamics were analyzed based on the grey system theory. The results were of great
significance for local sustainable development and ecological protection. Zhang et al. [11]
used DYRESM to estimate the water volume entering Waihai, part of Lake Dianchi, from
2007 to 2019 without historical hydrological observation data. Then, they combined this
information with the monthly monitoring data of water quality to calculate the annual
external loading. This method effectively solves the problem of the limited accuracy in
the statistical results of lake water volume and external load estimation caused by a lack
of data. Salama et al. [12] used remote sensing techniques and a geographic information
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system to analyze different satellite images, including multi-looking Sentinel-2, Landsat-9,
and Sentinel-1 (SAR), to monitor the changes in the volume of water from 21 July 2020
to 28 August 2022. The volume of Nile water during and after the first, second, and third
filling was estimated for the Grand Ethiopian Renaissance Dam’s (GERD) reservoir lake,
with comparisons for future hazards and environmental impacts. There are great challenges
in the extraction of fine water based on remote sensing images. Future research will focus
on developing water extraction algorithms suitable for multiple complex scenes (including
highly heterogeneous urban scenes, cloudy and foggy scenes, and high-altitude mountain
scenes), developing artificial intelligence algorithms with high accuracy, and developing
fully automated extraction algorithms.

2.3. Remote Sensing Simulation and Analysis of Watershed Water Environment

The combination of the space in which people live in and the water body that can
directly or indirectly affect human life and development is called the water environment.
This water environment is applied to all kinds of natural factors and related social factors.
Increasingly, the global watershed environment is facing more and more destruction, the
inherent allocation mechanism of various elements of the natural environment is being
maladjusted, and the environmental quality is deteriorating. Therefore, the observation
and simulation methods and technologies of the watershed water environment need to be
improved urgently, and remote sensing technology fills this gap fittingly. Tripp et al. [13]
demonstrated their ability to monitor spatial and temporal changes in the playa water inun-
dation area on sub-monthly time scales in West Texas, USA, using 10 m spatial resolution
imagery from the Sentinel-2A/B satellites. The study developed a faster and more accurate
method to cover a relatively small area compared with traditional monitoring methods.
The methods provide a strong support for identification of small playas and ecological
applications. Tang et al. [14] investigated the dynamics of the mid-channel bars (MCBs) in
the Three Gorges Reservoir (TGR) using the Gravity Center Shifting Model. The number
and area of MCBs changed dramatically with water-level changes, and the changes were
dominated by MCBs. The study helped to reveal the mechanisms for the development of
MCBs in the TGR. It also offers a scientific basis for the planning, optimal utilization, and
ecological restoration of the MCBs in the TGR. Li et al. [15] used the Soil and Water As-
sessment Tool (SWAT) model in combination with the GCM model to address the separate
and combined impacts of changes in climate and land use/land cover on the hydrological
processes and sediment yield in the Xin’anjiang Reservoir Basin (XRB). The SWAT model
simulation shows that climate change will exert a much larger influence on the sediment
yield than land use/land cover (LULC) alteration in the XRB. These studies provide a
deeper understanding of the sediment response to climate-driven forces and LULC changes
in the XRB, which is beneficial for water quality protection and bloom prevention in the
reservoirs in the East Asian monsoonal region. The watershed water environment is the
main link to human activities in the basin. Large-scale, real-time remote sensing monitoring
and simulation is the theme that needs undivided attention in the future.

3. Conclusions

The 11 papers summarized above contribute to the increasing interest in the study of
monitoring lake water based on multisource remote sensing and novel modeling techniques.
The Guest Editors hope that readers will be inspired by this Special Issue and will continue
to study and innovate in the field of remote sensing observation of lake water color. In
particular, the era of “big data” and “artificial intelligence (AI)” has arrived, which will
usher in new development opportunities for the remote sensing observation of lake water
color. In the future, with remote sensing and AI algorithms as the core methods, this field
and others will focus on the miniaturization of spectral sensing devices, ease of use, lake
water quality monitoring, and watershed water environment regulation. The dynamic
monitoring of the integration of “heaven, earth, air and water” monitoring is a realistic
requirement to promote the construction of an ecological civilization. Using space-based,
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ground-based, buoy-based, hand-held, and other methods to conduct all-weather and
multidimensional monitoring and data analysis of water environments with a large spatial
scope and long-time span and the ability to upload data analyses and results to online
monitoring platforms through 4G/5G networks is anticipated to become the focal research
topic in the future.
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Abstract: The surface water extraction algorithm based on satellite remote sensing images is advanta-
geous as it is able to obtain surface water information in a relatively short time. However, when it
is used to extract information on surface water in large-scale, long-time series and complex terrain
areas, there will be a large number of misclassified pixels, and a large amount of image preprocessing
work is required. The accuracy verification is time-consuming and laborious, and the results may not
be accurate. The complex climatic and topographic conditions in Bosten Lake Basin make it more
difficult to monitor and control surface water bodies. Therefore, based on the GEE (Google Earth
Engine) cloud platform, and the studies of the effect of nine kinds of water indexes on the surface
water extraction in Bosten Lake Basin, this paper adds a slope mask to remove misclassified pixels
and finds the best extraction method of surface water extraction in the basin by means of accuracy
verification and visual discrimination through continuous iteration of index threshold and slope mask
threshold. The results show that when the threshold value is −0.25 and the slope mask is 8 degrees,
the index WI2019 has the best effect on the surface water information extraction of Bosten Lake Basin,
effectively eliminating the interference of shadow and snow. The effect of water extraction in the
long-time series is discussed and it was found that the precision of water extraction in the long-time
series is also better than other indexes. The effects of various indexes on surface water extraction
under complex terrain are compared. It can quickly and accurately realize the long-time series of
surface water extraction under large-area complex terrain and provides useful guiding significance
for water resources management and allocation as well as a water resources ecological assessment of
Bosten Lake Basin.

Keywords: water extraction; water index; optimal threshold; Google Earth engine; slope mask

1. Introduction

There is no life without water. Water plays a vital role in the survival of human
beings and other creatures as well as the rise of civilization and development of human
society. Surface water generally includes rivers, lakes, glaciers, and swamps. It is the
main component of freshwater resources on earth, which is irreplaceable in maintaining
the ecological balance of river basins as well as meeting human demands, including
power, water supply, irrigation, industrial needs and others. Interestingly, changes in
surface water area can reflect and characterize the impact of climate change and human
activities on surface water. Quickly and accurately extracting surface water information and
grasping the spatial distribution of surface water have important practical significance for
flood and drought disaster research, water resources monitoring research, water resources
management research, etc. [1,2]. The surface water in arid and semi-arid environments
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is threatened by both natural and anthropogenic pressures. Mapping the distribution of
surface water bodies is essential for managing and addressing degradation of both water
quantity and quality [3]. Before the application of remote sensing technology in mapping
water resources, most of the water was extracted based on manual measurement. This
manual method has low precision, a massive heavy workload, a large cost and poor macro
and continuous and real-time monitoring effect, all of which are impediments in meeting
the requirements spatially and temporally. On the other hand, remote sensing technology
has the advantages of macro scale data collection, dynamic monitoring and low cost. The
use of remote sensing images to extract water information can accurately grasp the spatial
distribution status and changing trend of water bodies in basins, and provide basic data for
comprehensive management of basins, flood monitoring and water resources protection
and conservation, all of which are of great importance [4–6].

At present, there are many algorithms for extracting water information from remote
sensing images. In general, these methods can be roughly divided into several cate-
gories: single band method [7,8], spectral relationship method [4,9], image classification
method [10] and water index method. Among them, the water index method is a popular
index widely used by researchers. The most influential water index algorithms mainly
include Normalized difference water index (NDWI), which weakens the influence of non-
watery factors such as vegetation and soil. It is generally effective in extracting water
from large lakes and reservoirs, but it still contains a lot of interference information in
urban water extraction [11]. The modified normalized difference water index (MNDWI)
is proposed on the basis of NDWI method, using Landsat TM short wave infrared (TM5)
instead of near-infrared (TM4). MNDWI can weaken the impact of soil and buildings,
but has a good effect on the removal of building shadows in urban areas [12]. The water
index WI2006 uses the natural pairs of each band of landsat7 ETM+ images to reflect the
reflection coefficient and interaction conditions and is used to extract wetlands covering
eastern Australia [13]. The enhanced water index (EWI) is constructed by using the green
light band (TM2), a near-infrared band (TM4) and mid-infrared band (TM5) of TM images,
and this method is used to extract the water system information of semi-arid areas. This
index allows the researcher to ignore the influence of atmospheric factors [14].

By analyzing the creation process of enhanced water index EWI, it is verified that
the surface water can be extracted well whether the remote sensing image has been atmo-
spherically corrected or not [15]. The modified normalized difference water index RNDWI
(revised normalized difference water index) is constructed on the basis of analyzing the
spectral characteristics of three ground feature types, viz. water, vegetation and soil. It can
eliminate the influence of mountain shadows and accurately extract the water and land
boundaries of Miyun Reservoir by using this index [16]. The new water index NWI (new
water index) is proposed in combination with the strong absorption of water in the near-
infrared and mid-infrared bands. NWI can partially eliminate the impact of solar altitude
angle, terrain, shadow and atmospheric conditions, and its accuracy is very high [17]. The
new water index NEW is a band ratio algorithm constructed by using the blue-green band
(TM1) and mid-infrared band (TM7) of tm/etm+ images. This index can not only extract
natural water but also eliminate the impact of terrain differences, thus solving the problem
of shadow in water information [18].

In recent years, more new water indexes have been created with good verification
results. For example, the automatic water extraction index AWEI is proposed based on TM
image data. The main goal of AWEI is to separate water and nonwater pixels to the greatest
extent by subtracting and adding between bands and assigning different coefficients to
bands. It has been verified that AWEI has higher accuracy than MNDWI in extracting
water information [19]. Another new index, Water index WI2015, is a water extraction
algorithm based on linear discriminant analysis proposed on the basis of WI2006. The index
uses linear discriminate anti-analysis classification (LDAC) to determine the coefficient of
the best classification of the training area, which improves the classification accuracy [20].
The multi-band water index MBWI (multi-band water index) can weaken the impact of
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mountain shadows and dark pixels of buildings, and reduce the seasonal impact caused
by changes in solar conditions [21]. Finally, the water index wi2019 (water index2019) is
constructed on the basis of the analysis of the light break characteristics of water and snow,
which improves the differentiation between water and snow in the classification process.

Among the numerous water remote sensing information extraction technologies, the
one based on water remote sensing index is undoubtedly the most widely used. At present,
the global and regional surface water distribution mapping is almost inseparable from
the water remote sensing index. Some scholars carried out early high-resolution remote
sensing mapping of global land surface water bodies [22], in which NDWI (normalized
difference water index) and MNDWI (modified NDWI) water index were used as the main
technologies. Taking MNDWI as a key algorithm, the global river distribution range and
area can be calculated [23]. With the continuous construction and improvement of water
index, many water indexes have been developed and often used to compare the effects
of surface water extraction in the process of extracting surface water in different regions
and are now widely used for surface water extraction in inland water bodies, wetlands,
delta areas, coastal areas, dry, arid and semi-arid and other complex terrains [23–29]. These
studies have achieved good water extraction results in the study area. Different water
indexes have different advantages in surface water information extraction. The construction
of new water indexes is based on the spectral information difference of typical ground object
sample points in study area. They often achieve high extraction accuracy and differentiation
effect within a study area. When selecting other study areas for verification, the extraction
effect tends to decline, with the threshold value of extracted surface water also changing
greatly [20,30,31]. When the threshold value is too small, it cannot effectively eliminate the
misclassification of pixels, whereas too large a domain value will cause the loss of surface
water information. In the specific application process, the automatic optimal threshold
selection method often cannot achieve the best water extraction effect [32]. Therefore, it
is necessary to optimize the water index and find the optimal threshold when using the
water index to explore the change in water area in the study area [33].

Various water indexes have different effects when they are used to distinguish be-
tween water bodies and nonwater bodies. Shadows, ice, snow and clouds are the main
misclassification types of water bodies. Through preliminary research, water indexes
AWEInsh and WI2019 can more effectively remove the effects of shadows and dark surfaces
on surface water differentiation in the study area than other water indexes, but the effect
on distinguishing ice, snow and water bodies is poor. Although WI2019 can effectively
distinguish ice, snow and water bodies, the effect of distinguishing shadows is not good.
Snow and ice in the region are mainly distributed in mountainous areas with high altitudes
and large slopes. The shadow is also caused by the slope due to the land’s topography. In
places with a large slope, it is difficult to retain water bodies. Some scholars have tried to
apply topographic factors to the process of surface water extraction and achieved good
results [9,34]. Therefore, using slope data as a mask can effectively eliminate snow and
shadow areas that are mistakenly classified as water pixels. Using the GEE cloud platform
to call remote sensing images in the database can avoid a lot of image and processing work.
Recently, many scholars have used the GEE platform to extract large-scale, long-time series
surface water bodies and achieved good extraction results [35–40]. During the iteration
of water index threshold and slope, the effect of the water extraction image and accuracy
verification results can be observed synchronously to drive the final results. Theoretically,
the GEE platform can be used to explore the optimal method of water extraction in any
image area, and this greatly increases the work efficiency. Furthermore, it can realize the
comparison of regional long-time water extraction effects under the GEE platform. The
purpose of this paper is: (1) To realize the calculation and display of the water index under
the GEE platform, and to explore the applicability of various water indexes under complex
terrain; (2) By iterating the water index threshold and slope mask threshold, the most
suitable water index method and the best threshold for water extraction in Bosten Lake
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Basin are determined; (3) To realize the water extraction in the long-time series within the
watershed and discuss the stability of different indexes in the long-time series.

2. Materials and Methodology

2.1. Study Area

In this paper, the boundaries of seven county and city level administrative divisions
are merged as the research boundary of Bosten Lake Basin (Figure 1). Bosten Lake Basin,
also known as the Kaidu River-Kongque River Basin, is located in the inland arid area
of Xinjiang, China. Its geographical coordinates are 85◦20′~87◦25′ E, 41◦10′~43◦30′ N.
Although Bosten Lake basin is mainly composed of Kaidu River Basin and Kongque River
Basin, it also includes Yanqi Basin and its surrounding mountainous areas, and most areas
to the north of the lower reaches of the Tarim River. Bosten Lake Basin is adjacent to
Tianshan Mountains in the north and Tarim Basin in the south. The terrain is high in the
northwest and low in the southeast. The geomorphic division belongs to the Tianshan
Mountains region, including three small areas of Tianshan Mountains, Youledus basin and
Yanqi Basin. The entire basin has a total area of 7.7 × 104 km2, accounting for 45.06% of
the drainage area. The basin is not totally mountainous as the plain area is 4.26 × 104 km2,
accounting for 55.32% of the drainage area. The landform in the area is complex as Bosten
Lake Basin is surrounded by mountains on three sides. The overall terrain is high in the
north and south, West and low in the East. The geomorphic units in the basin can be divided
into intermountain basin landform, canyon landform and alluvial proluvial basin landform,
of which the large and small Yudus basins belong to intermountain basin landform. The
reach from the source of Kaidu River to the river canyon in the north of Yanqi basin is
canyon landform, and the terrain height is obviously graded. The Kaidu River enters the
Yanqi Basin from the east of Dashankou. The terrain is relatively flat and open, showing the
geomorphic characteristics of an alluvial proluvial basin. The Yanqi basin is a local faulted
basin formed between the main vein of the eastern Tianshan Mountains and its branches.
Bosten Lake is in the southeast of the Yanqi Basin. There are a large number of relatively
small wetland lakes in the southwest and northwest of Bosten Lake. Bayinbuluk grassland
also contains many wetland water bodies, and a large number of snow mountains are
distributed in the region, with the terrain fluctuating greatly. There are many seasonal
rivers and lakes supplied by snow melt under the snow mountain terrain. As the longest
river in the region, the Kaidu River flows through the main cities, mountains, deserts,
wetlands, and other landforms in the region. These complex landforms jointly increase the
difficulty of surface water monitoring and regulation in Bosten Lake Basin.

 

Figure 1. Schematic diagram of study area.

8



Water 2022, 14, 2809

2.2. Data Resources

The data used in this paper mainly include Landsat8 OLI, Landsat7 ETM, Bosten Lake Basin
vector boundary, and Google Earth high-resolution image and (JAXA/ALOS/AW3D30_V1_1)
elevation data in GEE platform database.

The image used for the optimal water index threshold and slope and discussion selects
the USGS Landsat 8 Collection 1 Tier 1TOA Reflection (“LANDSAT/LC08/C01/T1/TOA”)
data with cloud cover less than 8% from May to August 2021. In order to explore the
surface water extraction effect of various indexes in the long-term academic column, a
total of 108 images with less than 8% cloud cover in the USGS Landsat 8 Collection 1 Tier
1 TOA Reflection (“LANDSAT/LC08/C01/T1/TOA”) from 2013 to 2021 in the Google
Earth engine database are used, and 156 images with less than 8% cloud cover in the USGS
Landsat 7 Collection 1 Tier 1 TOA Reflection (“LANDSAT/LE07/C01/T1/TOA”) from
2000 to 2012 are used (Figure 2), and the elevation data call (JAXA/ALOS/AW3D30_V1_1)
is used, including the latest 2021 Google Earth high-resolution image images provided by
Google Earth Pro and Ovey Interactive Maps to compare the extraction effect.

 
Figure 2. Image availability analysis in the study area.

2.3. Methodology
2.3.1. Remote Sensing Image

The ee.ImageCollection function calls the USGS Landsat 8 Collection1 Tier1 TOA
Reflection dataset in the GEE database and sets the time interval from May to July 2021.
The image BQA band is used for traffic screening and cloud removal. The image ‘B6’, ‘B7’,
and ‘B4’ bands are set to the red, green and blue channels, respectively. Map.addlayer
function performs false color synthetic display of images, highlighting the differences
between water bodies and other ground objects, and serves as the basis for sample point
selection and one of the bases for surface water extraction effect.

2.3.2. Selection of Sample Points for Accuracy Verification

Based on the GEE platform, the Configure geometry import tool was used to create six
categories of ground objects. In combination with Google Earth satellite images and land-
sat8 false color composite images, 1283 water sample points (Figure 3) and 1538 nonwater
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sample points were selected in the study area, including 436 vegetation sample points,
228 building sample points, 189 wetland sample points, 218 bare land sample points and
220 snow sample points. Additionally, 247 shadow sample points are used as the basis for
verification of water extraction accuracy and supervision and classification.

 
Figure 3. Selection of typical feature sample points in the study area.

In order to reflect the correctness of sample point selection, the sampleRegions function
is used on the GEE platform to extract the reflectance values of all bands under each sample
point of various ground objects, and the average value is obtained to prepare the spectral
characteristic curve of typical ground objects in Bosten Lake Basin (Figure 4). It can be seen
from the figure that the spectral reflectance characteristics of ground objects in the flow
domain conform to the spectral characteristics of typical ground objects, which proves the
correctness of sample point selection.

Figure 4. Spectral reflectance characteristics of typical ground objects in the study area.

2.3.3. Selection of Water Index and Realization of Index Calculation

By consulting the relevant literature on the construction of the water index, the water
index suitable for Landsat series images is selected (Table 1). The normalized difference
and expression functions are used to calculate the index band on the GEE platform, and
Map.addLayer function shows the result of the exponential operation. The reclassification
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judgment formula is used to calculate the water index. A pixel greater than 0 in the grid
image is assigned as 1 as the surface water pixel, whereas a pixel less than 0 is assigned as
0 as the nonsurface water pixel, so as to distinguish the surface water and nonsurface water
with 0 as the threshold. The Map.addLayer function displays the exponential operation
results by using Export.image. to drive function exports of the final water extraction grid
image to Google cloud disk and downloads it locally. Arcmap10.8 is used to further display
and analyze the results.

Table 1. Main water index calculation formula.

Index Name Index Formula Reference

NDWI ρGREEN−ρNIR
ρGREEN+ρNIR

[11]

MNDWI ρGREEN−ρSWIR1
ρGREEN+ρSWIR1

[12]
AWEInsh 4 × (ρGREEN − ρSWIR1)− (0 .25 × ρNIR + 2.75 × ρSWIR2) [19]
AWEIsh ρBLUE + 2.5× ρGREEN − 1.5× (ρNIR + ρSWIR1)− 0.25× ρSWIR2 [19]

EWI ρBLUE−ρRED−ρNIR
ρBLUE+ρRED+ρNIR

[14]

ANWI ρBLUE+ρGREEN+ρRED−ρNIR−ρSWIR1−ρSWIR2
ρBLUE+ρGREEN+ρRED+ρNIR+ρSWIR1+ρSWIR2

[41]

NWI ρBLUE−ρNIR−ρSWIR1−ρSWIR2
ρBLUE+ρNIR+ρSWIR1+ρSWIR2

[17]
WI2015 1.7204 + 171ρGREEN + 3ρRED − 70ρNIR − 45ρSWIR1 − 71ρSWIR2 [20]
WI2019 1.75ρGREEN−ρRED−1.08ρSWIR1

ρGREEN+ρSWIR1
[42]

Note: where � Represents the band reflectance value, the band reflectance subscript corresponds to the corre-
sponding band of different remote sensing images.

2.3.4. Use of Slope Mask and Determination of Optimum Threshold of Surface Water

In order to further eliminate the interference of snow and shadow and improve the
accuracy of surface water extraction, slope factor judgment conditions are added to the
index calculation results, and areas with excessive slope are divided into nonwater bodies.
The constructed sample points are used as the verification basis. The Terrain.slope function
converts (JAXA/ALOS/AW3D30_V1_1) DEM data into slope data, sets the data type of
sample points to FeatureCollection, sets the Property of water extraction sample points to
Class1 and the value to 1 and sets various nonwater sample points to FeatureCollection
after fusion, with the Property set to class2 and the value set to 0. The Validation.filter
function, which outputs the confusion matrix, overall accuracy, user accuracy, producer
accuracy and kappa coefficient, are used as the basis for accuracy determination. The
change of water extraction accuracy was observed by iterating the index threshold and
slope mask. On the basis of threshold iteration, various indices are set at t (threshold) = 0,
s (slope) = 0; t = 0, b = 10; t = b (best value), s = 0; water extraction is carried out in the four
cases of t = b and s = b, and compared with Google Earth HD image to further identify the
effect of water extraction.

2.3.5. Discussion on Extraction Methods of Other Water Bodies

In the process of extraction by the GEE window shows and satellite image layer,
preliminary extraction results found that although the various indexes of regional water
extraction effects are not the same, the water main area can be extracted by a large number of
falsely divided bodies of water feature category, mainly for the mountain shadow and snow
body city shadow, wetlands and other false points such as pixels compared to the previous
two kinds or types. In order to discuss the classification details, LibSVM, SmileCart and
MininumDistance classifiers were used for supervised classification using water sample
points and non-water sample points on the GEE platform, and 10 typical water areas were
selected in the study area for further visual discrimination of water extraction effect.

2.3.6. Validation of Water Extraction Accuracy in Long-Time Series

The third method of accuracy verification was to verify the stability of the water
extraction effect in a long-time series by using the difference between water areas in dry
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and wet seasons. Therefore, to further explore the water extraction effect of various water
indexes in the long-time series under the optimal water index and the optimal slope mask
threshold, May–August and September–October were taken as the dry season and the wet
season, respectively, in Bosten Lake Basin, and Landsat7 ETM and Landsat8 OLI were used
to calculate the water area of various water indexes in the dry season and wet season from
2000 to 2021. The pixel value of surface water is set as 1 and that of non-surface water is set
as 0. The pixel value of 1 multiplied by them is defined as the permanent surface water.
Formula (1) is used to calculate the misdivided area of surface water in a long-time series.
The surface water existing in both the dry season and wet season should be close to the one
with the smaller area of the two. The reason why the permanent surface water is smaller is
that the misdifferentiated pixels are removed during the superposition operation of surface
water results in the dry and wet seasons. Therefore, the smaller the difference value is, the
fewer misdifferentiated pixels are and the higher the surface water extraction accuracy is,
which can be used as the basis for judging the surface water extraction effect.

E =

n
∑

i=1
min(Ads, Aws)− Ap

n
(1)

Note: in the formula, E represents the annual average misclassified area, Ads represents
the extracted area of water in dry season, Aws represents the extracted area of water in wet
season, and Ap represents the permanent water area.

3. Results and Analysis

3.1. Extraction Effect of Surface Water with Water Index 0 as Threshold Value

It can be seen from Figures 5 and 6 that a large number of non-water pixels are
misclassified into water pixels when various indices are used as the threshold of 0 for
water extraction. According to the results, WI2019 and EWI have the best water extraction
effect, whereas AWEIsh, MNDWI and WI2015 have poor extraction effects. The water
index extraction effect is compared in detail with Site1-lake, Site2-wetland, Site3-river,
Site4-small surface water, Site5-city surface water, Site6-mountain surface water and the
snow mountain surface water region corresponding to Figure 1 in the region. Results
showed that the water index in lakes, rivers and the urban area obtained good results of
water extraction, but in complex areas, WI2019 distinguishes better between snow and
water effect. However, AWEInsh is better than that of WI2019 for distinguishing shadow
and water bodies, as most of the shadow is divided into surface water and the snow pixels,
and the slope is the main cause of shadow, where a large amount of snow is also distributed
on hills at higher altitudes. Therefore, a slope mask based on index WI2019 can further
remove the misclassification pixels caused by mountain snow and mountain shadows.
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Figure 5. Each water index takes 0 as the threshold value to extract surface water results.
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Figure 6. WI2019 and AWEInsh surface water extraction details.

3.2. Changes of Extraction Accuracy under Water Index Threshold and Slope Iteration

The slope mask is added on the basis of the optimization of water index threshold.
Through the continuous iteration of nine water index thresholds and slope thresholds, the
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accuracy of water extraction results by different methods is evaluated based on the overall
accuracy, user accuracy, producer accuracy and kappa coefficient generated by the selected
surface feature sample points in the study area, as shown in Table 2.

Table 2. Evaluation table of accuracy of water extraction results of different methods.

Classification
Method

Threshold Slope Land Cover Class
Overall

Accuracy
User

Accuracy
Producer
Accuracy

Kappa

WI2019 0.00 0.00 water 0.669 0.274 0.994 0.29
nonwater 0.999 0.623

−0.25 0.00 water 0.679 0.299 0.984 0.31
nonwater 0.996 0.630

0.00 10.00 water 0.908 0.807 0.989 0.81
nonwater 0.992 0.861

−0.15 8.00 water 0.940 0.912 0.954 0.89
nonwater 0.964 0.929

AWEInsh 0.00 0.00 water 0.680 0.299 0.990 0.31
nonwater 0.997 0.630

−0.1 0.00 water 0.682 0.306 0.987 0.319
nonwater 0.997 0.632

0.00 10.00 water 0.901 0.944 0.853 0.80
nonwater 0.865 0.949

−0.09 5.00 water 0.937 0.926 0.935 0.87
nonwater 0.946 0.939

AWEIsh 0.00 0.00 water 0.676 0.305 0.949 0.31
nonwater 0.986 0.630

0.15 0.00 water 0.668 0.274 0.986 0.288
nonwater 0.997 0.622

0.00 10.00 water 0.882 0.973 0.807 0.77
nonwater 0.806 0.973

0.08 5.00 water 0.922 0.899 0.926 0.84
nonwater 0.940 0.918

MNDWI 0.00 0.00 water 0.681 0.307 0.973 0.32
nonwater 0.993 0.632

0.15 0.00 water 0.682 0.305 0.989 0.32
nonwater 0.997 0.632

0.00 10.00 water 0.903 0.976 0.837 0.81
nonwater 0.841 0.977

0.00 5.00 water 0.931 0.935 0.915 0.86
nonwater 0.928 0.945

NDWI 0.00 0.00 water 0.675 0.289 0.987 0.30
nonwater 0.997 0.627

0.15 0 water 0.674 0.300 0.946 0.30
nonwater 0.986 0.268

0.00 10.00 water 0.907 0.880 0.913 0.81
nonwater 0.930 0.903

0.03 9.00 water 0.916 0.859 0.951 0.83
nonwater 0.963 0.891

EWI 0.00 0.00 water 0.657 0.248 0.991 0.26
nonwater 0.998 0.614

−0.15 0.00 water 0.669 0.275 0.989 0.290
nonwater 0.997 0.623

0.00 10.00 water 0.845 0.694 0.954 0.68
nonwater 0.972 0.792

−0.35 4.00 water 0.927 0.894 0.942 0.85
nonwater 0.954 0.915

ANWI 0.00 0.00 water 0.657 0.248 0.991 0.26
nonwater 0.998 0.614

−0.15 0.00 water 0.667 0.272 0.989 0.287
nonwater 0.997 0.622

0.00 10.00 water 0.839 0.670 0.964 0.67
nonwater 0.979 0.781

0.1 6.00 water 0.930 0.901 0.943 0.86
nonwater 0.954 0.920
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Table 2. Cont.

Classification
Method

Threshold Slope Land Cover Class
Overall

Accuracy
User

Accuracy
Producer
Accuracy

Kappa

NWI 0.00 0.00 water 0.657 0.248 0.991 0.26
nonwater 0.998 0.614

−0.4 0.00 water 0.682 0.305 0.985 0.319
nonwater 0.996 0.632

0.00 10.00 water 0.839 0.670 0.964 0.67
nonwater 0.979 0.781

−0.40 4.00 water 0.930 0.901 0.943 0.86
nonwater 0.954 0.920

WI2015 0.00 0.00 water 0.682 0.306 0.980 0.32
nonwater 0.995 0.632

0.05 0 water 0.681 0.306 0.980 0.319
nonwater 0.995 0.632

0.00 10.00 water 0.904 0.973 0.840 0.81
nonwater 0.973 0.975

0.00 5.00 water 0.932 0.932 0.920 0.86
nonwater 0.932 0.943

SmileCart 0.931 0.88
LibSVM 0.894 0.79

MinimumDistance 0.864 0.87

It can be seen from Table 2 that when the threshold value is 0 and slope is 0 for expo-
nential water extraction, the overall accuracy is between 0.6–0.7 and the kappa coefficient
is between 0.25–0.35. The user accuracy and producer accuracy of surface water and non-
surface water are very different, with one being higher and the other being lower. With 0 as
the threshold index calculation, results for the distinction between water and the water effect
is poorer. However, with zero as the slope, and through iteration to find the best threshold
value of various index, it was found that all kinds of indexes under the best threshold
and under the extraction accuracy, in comparison with 0 as the threshold of the extraction,
will only slightly improve accuracy when the threshold value is 0, and the slope for water
extraction is 10. When each index of the extraction of the overall accuracy reached 0.8 or
more, the user accuracy and producer accuracy exceeded 0.8, and when the gap is not big,
the kappa coefficient reached 0.8 above, which can greatly improve the wetland information
extraction effect and can effectively remove the water pixels. On the basis of the water
index, iteration threshold and the slope, it was found that WI2019 and AWEInsh achieved the
highest accuracy with the best threshold and slope threshold. When the threshold of WI2019
was −0.15 and the slope mask threshold was 8, the overall accuracy reached 0.94 and the
kappa coefficient reached 0.89. When the AWEInsh threshold is −0.09 and the slope is 5,
the overall accuracy reaches 0.937 and the kappa coefficient is 0.87. The three supervised
classification methods also achieve high extraction accuracies. Therefore, complex terrain is
further selected for visual discrimination of the water extraction effect.

3.3. Comparison of Water Extraction Effects under Complex Terrains

It can be seen from Figure 7 that although water pixels can be effectively extracted under
complex terrain (site7–10), a large number of snow and mountain shadows are misclassified into
water pixels. When water is extracted with the optimal slope threshold of 0, the misclassified
pixel area is further increased. WI2019, AWEInsh and other indexes show the same results.
The reason is that although the overall accuracy and kappa coefficients have achieved great
results using sample points for accuracy evaluation, there is a large difference between the
user accuracy and producer accuracy of water and nonwater bodies, and the threshold value
is small. Therefore, the classification results using this threshold value have produced many
misclassification pixels. When WI2019 optimal threshold value and slope were used for water
extraction, the best water extraction effect was achieved, and snow and mountain shadow
misclassification pixels were excluded to the maximum extent, compared with the supervised
classification results, and there are still a small number of snow and shadow pixels that are
mistakenly classified as water bodies, and the effect is poor.
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Figure 7. Comparison of extraction effects of different water extraction methods in more complex
terrains.

3.4. Effect Analysis of Long Time Series Water Extraction

Landsat series remote sensing images of GEE platform from 2000 to 2021 were used to
extract surface water in Bosten Lake Basin using various water indexes under the optimal
index threshold and slope mask threshold, and the annual average water error area under
different methods was respectively counted, as shown in Table 3.
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Table 3. Annual average extraction error area of each water index from 2000 to 2021.

Water Index WI2019 AWEInsh AWEIsh MNDWI NDWI EWI ANWI NWI WI2015

Error area (km2) 140.5183 183.524 145.4784 391.2709 194.1482 266.785 177.5806 210.056 350.6671

The average annual extraction error of WI2019 under the optimal index threshold and
slope mask threshold is 140.5183 km2, which is still the optimal extraction effect. The error
area of other water indices on long-term series is also small. For example, the average
annual error area of AWEIsh, ANWI and NDWI is only 145.478 km2, 177.5806 km2 and
194.1482 km2, respectively, indicating that although its water extraction effect is not as good
as WI2019, its extraction effect has good stability, which can be considered as a backup
scheme for water extraction in other regions.

4. Discussion and Conclusions

4.1. Discussion
4.1.1. The Relationship between the Optimal Threshold of Water Index and Water
Extraction Effect

When slope mask is not used to search for the optimal threshold of surface water, the
optimal threshold obtained by using sample points to verify the accuracy of surface water
extraction is often too small. In a visual interpretation, it is found that a large number of
non-surface water pixels were misclassified into surface water pixels and that surface water
extraction was carried out only with the optimal water index threshold. Good results can
be achieved in areas with large continuous water areas or relatively flat terrain [3,43–45].
However, the results may be unreliable in large areas or areas with a complex geographical
pattern. In the process of water extraction with water index, it is found that although
the water index has its own advantages, the threshold value is the most critical factor to
determine the effect of water extraction, whereas the structure of water index is secondary.
Similar conclusions have been drawn in related studies on the optimal threshold value of
water index [46,47].

4.1.2. The Optimal Threshold Value of Slope Mask Can Reflect the Effect of Water Index to
Distinguish Shadows

The optimal slope mask of index wi2019 is 8, which is greater than the optimal slope
mask threshold of water indexes such as AWEIsh and AWEInsh. In the actual process of
surface water, the distinguishing effect of water indexes such as AWEIsh and AWEInsh on
shadow and surface water without slope mask is better than that of wi2019, indicating
that the slope in the optimal threshold slope can reflect the shadow removal effect of water
index. This is consistent with the comparison result that the AWEI index is better than
other water indexes in the practical application of water index in relevant studies [48,49].

4.1.3. Commonality of Water Extraction Methods

This paper does not validate the water extraction method in other areas because the
water extraction method proposed in this paper does not have a fixed index or threshold
and can carry out the same workflow in different areas to find the optimal results. When
judging the effect of water extraction in the long-time series, the water area in dry seasons
in very few years is larger than that in wet seasons. According to the display effect of GEE
in the extraction process, the reason is not only the extraction error but also the complex
terrain and climate conditions in the region, which have little impact on the water extraction
in the long-time series. The slope mask has achieved a good effect in distinguishing water
bodies in areas with mountainous shadows and more snow, but it may not be applicable in
areas with flat terrain. Although this method has achieved a good effect in extracting water
bodies, there are still pixels incorrectly divided into water bodies, and the image resolution
has a great impact on the extraction of small water bodies. Therefore, it is necessary to
explore the applicability of this method in high-resolution images in future work and
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increase the comparison of more water extraction methods. The results of this study with a
slope of 8 as a threshold are only applicable to specific RS imagery (Landsat series for this
study) restricted by specific transit times and specific scanning angles. For example, when
the hill slope and aspect are stable, the shadow area at noon must be smaller than that in
the morning and evening. Therefore, there may be errors when using this method to extract
water area from different remote sensing images. In addition, there is a certain difference in
the spectral characteristics between the water pixels under shadow and those under light,
and the spectral difference between them is smaller than that between the two. Although
the difference between different bands enables the shadow water pixels to be extracted to a
certain extent by the exponential method, water pixels, however, cannot be extracted in
areas where the reflectance is too low or the water is completely shaded. Although there
are few such water pixels, the loss of water pixels will still occur.

Although this method aims to get the higher precision of water extraction, and im-
plements the long time series of water extraction, the prediction about the future of the
water area of change need comprehensive consideration of many driving factors. Hence,
under the premise of remote sensing image in the future, the lack of basic data is difficult
to achieve, but the set of methods can be used in the future the extraction of remote sensing
data for water. Previous water extraction results can provide historical data for water
resource management and decision making in the region.

4.2. Conclusions

In this study, on the premise of preliminary discussion on various water indexes,
the water index is used to extract the surface water of Bosten Lake Basin under the GEE
platform. The surface water extraction effects of different water indexes are compared
in three ways: sample accuracy verification, visual discrimination, and misclassification
of area under long-time series. A method for surface water extraction in complex terrain
areas is proposed by adding a slope mask. The interference of slope and snow cover
is effectively removed, and the high-precision extraction of surface water in the region
is realized through threshold iterative optimization. This method can be applied to the
extraction of long-time series water in the region.

The index threshold has been optimized in previous studies on water information
extraction using the water index. In this paper, when trying to extract water in the Bosten
Lake basin with 0 as the threshold, various water indexes have achieved good water
extraction results in lakes, wetlands, cities, and rivers, but the extraction effect in the whole
region is generally poor. Therefore, taking 0 as the threshold for water extraction can reflect
the advantages and disadvantages of the water extraction effect to a certain extent, but
the water extraction result is not reliable, and it is still necessary to improve the water
extraction effect through threshold optimization. The accuracy of water extraction has been
significantly improved after slope masking of various water indexes. In Bosten Lake Basin,
the ground feature types that affect the water extraction effect are mainly shadow and
snow. The index wi2019 has a better distinguishing effect on water and snow than other
water indexes. Adding the slope mask can further remove the interference of shadow and
mountain snow on water extraction. The water index WI2019 takes −0.15 as the threshold
and the slope of 8 as the mask, achieving the highest water extraction accuracy and the
best visual discrimination effect in the study area, and it is better than the water extraction
results of supervised classification. The error area of water extraction in the long-time series
is smaller than in other indexes. It can achieve high-precision water extraction in the region
under the condition of large topographic relief and more snow. It is of certain significance
for monitoring and managing the dynamic changes of surface water in the region.
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Abstract: Ethiopia began constructing the Grand Ethiopian Renaissance Dam (GERD) in 2011 on
the Blue Nile near the borders of Sudan for electricity production. The dam was constructed as a
roller-compacted concrete (RCC) gravity-type dam, comprising two power stations, three spillways,
and the Saddle Dam. The main dam is expected to be 145 m high and 1780 m long. After filling of
the dam, the estimated volume of Nile water to be bounded is about 74 billion m3. The first filling
of the dam reservoir started in July 2020. It is crucial to monitor the newly impounded lake and its
size for the water security balance for the Nile countries. We used remote sensing techniques and a
geographic information system to analyze different satellite images, including multi-looking Sentinel-
2, Landsat-9, and Sentinel-1 (SAR), to monitor the changes in the volume of water from 21 July 2020
to 28 August 2022. The volume of Nile water during and after the first, second, and third filling
was estimated for the Grand Ethiopian Renaissance Dam (GERD) Reservoir Lake and compared for
future hazards and environmental impacts. The proposed monitoring and early warning system of
the Nile Basin lakes is essential to act as a confidence-building measure and provide an opportunity
for cooperation between the Nile Basin countries.

Keywords: Grand Ethiopian Dam; GIS; the first, second and third storages; satellite data

1. Introduction

The construction of massive hydraulic infrastructures, such as big dams, has expanded
to an unprecedented level around the world in the 20th century. With their influence
on social and political relations, they are also shaped by political, social, and cultural
conditions [1,2]. The downstream countries in the main world river system are generally
opposed to the upstream project dams [3,4]. These dam projects cause many concerns
in the downstream countries because of their possible social and environmental impacts,
including droughts, water salinity, and water flow effects. In the Euphrates Basin, the
downstream countries of Iraq and Syria were affected by four droughts in 2000, 2006,
2008, and 2009, which are a cascading effect of climate change and a large number of
dams being constructed along the Euphrates River, which is known as the Southeastern
Anatolia (GAP) Project [5,6]. The GAP project includes the construction of 22 dams and
19 hydraulic power plants for irrigation and the generation of electricity on the Euphrates
and the Tigris rivers and their tributaries [2,5]. The Three Gorges Dam (TGD) was con-
structed in China in the Yangtze River, affecting the sediment discharge and regulation
of the flow process in the downstream provinces, which resulted in severe scouring and
changes in the hydrogeological regime [7]. Dam projects were established along the Mekong
River from 1965 to 2019 in northeastern Thailand, China, Vietnam, Loas, and Cambodia for
power electricity generation [8]. These dam projects have environmental, economic, river
hydrogeology, biological, and sediment transfer effects in Myanmar, Laos, Thailand, China,
Cambodia, and Vietnam [9].

In April 2011, Ethiopia started the construction of the Grand Ethiopian Renaissance Dam
(GERD). Understanding the context of the dam and its position relative to other dams on the
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Blue Nile is essential. The newly built dam is located downstream of the Tana Lake, a highland
lake at an average altitude of 1800 m a.s.l., with a surface area of 3060 km2 at an average lake
level of 1786 m a.s.l. This lake has a maximum depth of 15 m [10]. Four major tributaries feed
the Tana Lake sub-basin, the Gelgel Abay in the south, Rib and Gomera in the east, and Megech
in the north (Figure 1). The GERD is a gravity roller-compacted concrete dam with a target
height of 145 m and length of 1780 m. The dam’s crest is supposed to be at a height of 655 m
above sea level, with the prospective to impound a lake with a capacity of 74 billion m3 [11].
About 116 km upstream of the GERD, the Rosaries Dam is located in Sudan, constructed in
1961 and heightened in 2013, with a current storage capacity of 7.4 billion m3 (Nile Basin Atlas
Program) [12]. About 100 km downstream of Rosaries, the Sennar Dam was constructed in
1926 with a capacity of about 390 million m3 (Nile Basin Atlas Program) [12]. Further north
in Sudan is the Meroe Dam, with an impoundment capacity of about 12.3 billion m3. Further
to the north in the very south of Egypt, the Aswan High Dam was constructed in 1970 and is
considered to bee the last dam near the mouth of the Blue Nile. The total capacity of the Aswan
High Dam is 164 billion m3. It consists of dead storage of 31.6 billion m3, active storage of
90 billion m3 (BCM), and emergency storage for flood protection of 41 billion m3 (Nile Basin
Atlas Program) [12].

Figure 1. The location map of the studied area, which includes the location of the main artificial and
proposed future dams in Africa. Data sourced from Wheeler et al. [13].

The Eastern Nile Basin is affected by historical complex hydropolitics over the use
of the Nile water [14,15]. In the summer of 2020, the first phase of construction of the
GERD was finished, and shortly after, the first filling of the GERD Lake started. During this
season, the Sudanese dams, especially of Rosaries and Sennar, were confusedly operated
due to a lack of prior information about the size and timing of the filling (reported by the
Sudanese Minister of Irrigation Yasser Abbas on 26 August 2021 Daily News [16]. This may
be due to the frozen agreement of the Eastern Nile Basin Initiative (NBI) activities [14,15].
This resulted in a shortage in freshwater during June and July, the filling months, in the
capital Khartoum and many other cities after Sudanese water treatment stations went out
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of service due to low river levels. Later, in the same season, after the end of filling, Sudan
faced a vast flood as the level of the Nile reached 17.48 m on 27 August 2020 at Khartoum,
which was considered the second-highest level after the 1912 flood according to Prime
Minister Abdalla Hamdouk [17] (Guardian Journal; date 5 September 2020). Ninety-nine
people were killed in this flood as mentioned by the state of emergency in Sudan. Ramadan
et al. [18] referred to the negative impacts, including environmental, economic, and social
problems, on Egyptian countries by applying different scenarios along 2, 3, and 6 years of
the filling of the GERD under different flow conditions. Omran and Negm [19] considered
the different filling scenarios and indicated that Egypt and Sudan would experience severe
impacts during the filling phase of GERD in some scenarios.

Remote sensing has been used to estimate and monitor the volume of lakes worldwide
in various case studies. The key parameters controlling the water quantity of small or large
lakes are the area and top level [20–22]. The spatial and temporal changes in the volume
of water bodies can be calculated by several methods depending on the availability of
morphometric and areal data. Amitrano et al. [21] used DEM (9 to 15 m resolution obtained
from SAR data) to estimate the depth. They analyzed both Sentinel-1 and COSMO-SkyMed
imagery to obtain more accurate results to extract the boundary of the basin as the water
level increased, reflected by increases in the contour, to estimate the reservoir surface
volume and retained water volume of the reservoir in the Labaa Basin in Ghana region.
Xiaoqi et al. [23] used STRM DEM of the above lake level to construct the relationship
between the elevation and the area to estimate the volume of the Namsto Lake in China.
Pipitone et al. [22] used both optical (Landsat 5 TM, Landsat 8 OLI-TIRS and ASTER images)
and synthetic aperture radar (SAR) images to monitor the water surface and the level of the
Castello Dam Reservoir. They defined the displacement using the global navigation satellite
system (GNSS) to detect the relationship between the water level and dam deformation in
Castello Dam on Magazzolo Reservoir in south Italy. Ahmed et al. [24] used the time series
of Landsat images of 2001, 2011, and 2019 to extract the modified normalized difference
water index and combined it with field observation water level data to calculate the lake
volume from 2001 to 2019 in Deeper Beel, which is situated in the southwestern part of
Guwahati, Assam in India. Jiang et al. [25] used the average annual coefficients of the
VH backscatter for Sentinel-1A and the normalized difference water index (NDWI) of
Sentinel-2 to map small water bodies in the mountain region in China for water-related
environment monitoring and resource management. In the Nile Basin, Hossen et al. [26]
built bathymetric and water capacity relationships based on Sentinel-3 optical and radar
data for Aswan High Dam Lake, Egypt. Kansara et al. [27] used an analysis of multi-source
satellite imagery and Sentinel-1 SAR imagery to display the number of classified water
pixels in the GERD from early June 2017 to September 2020, indicating a contrasting trend
in August and September 2020 for all upstream/downstream water bodies using a Google
Earth Engine (GEE). Their results show that upstream of the dam rises steeply while it
decreases downstream.

In the last 20 years, multispectral remote sensing and Sentinel (SAR-1) data have been
widely used for surface water monitoring to overcome the limitations and lack of field
observations for monitoring of the storage volume of water reservoirs [19,21,23,28]. The
dynamic volume change in GERD Lake is essential for all Blue Nile countries, including
Ethiopia, Sudan, and Egypt, to understand the balance of the water security

2. Methods and Materials

2.1. Depth Estimations

The depth of the GERD Lake was estimated using Shuttle Radar Topography Mission
(SRTM) data, which map the topography of the Earth’s surface using radar interferometry.
The Shuttle Radar Topography Mission (SRTM) is an international project spearheaded by
the National Geospatial-Intelligence Agency and NASA, whose objective is to obtain the
most complete high-resolution digital topographic database of the Earth. We downloaded
the SRTM 1 arc per second data courtesy of the U.S. Geological Survey from https://
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earthexplorer.usgs.gov/ accessed on 21 June 2020. It was measured on 11 March 2000. It
was used in the study of the GERD Lake to obtain the elevation difference obtained through
interferometry, which was transformed into a 3D digital elevation model (DEM), which
was used as the GERD Basin Reservoir depth before the filling process.

2.2. Satellite Data Processing and Water Level Estimation

In this study, we tracked changes in the water capacity level boundary for the GERD
Lake using the multi-optical satellite data and Sentinel 1A (SAR). We acquired the multi
optical Sentinel 2A and Landsat-8 with time series from 21 July 2020 to 3 July 2021 courtesy
of the U.S. Geological Survey, https://ers.cr.usgs.gov/ website accessed on 21 June 2020
while the Landsat-9 and Sentinel-1 (SAR) with time series were from 16 July 2021 to 28
August 2022. The sentinel-1 (SAR) was obtained from Copernicus Open Access Hub
https://scihub.copernicus.eu/ website accessed on 29 August 2022. The Sentinel-2 data
was characterized by higher spatial and spectral resolutions in the near-infrared region.
The Sentinel-2 sensor, the EO satellite of the Copernicus program, has 12 bands with spatial
resolutions of 10 (four visible and near-infrared bands), 20 (six red-edge and shortwave
infrared bands), and 60 m (three atmospheric correction bands) [29]. Recently, the Landsat-9
satellite was launched on 27 September 2021. It is similar to Landsat-8 and characterized
by four visible spectral bands, one near-infrared spectral band, three shortwave-infrared
spectral bands at a 30 m spatial resolution, plus one panchromatic band at a 15 m spatial
resolution, and two thermal bands at a 100 m spatial resolution. The problem of dense
cloud cover is encountered in some optical satellite imagery, which masks the lake in rainy
seasons, especially in June and July each year. We used a filter to remove cloud pixels,
using the threshold to identify the pixel range as cloud using ArcGIS 10.8 software [30]. We
found incomplete filter-out cloud in some multi-optical satellite images. We instead used
Sentinel-1 SAR to obtain the water level boundary, especially in the cloud periods, which
mask the GERD Lake boundaries. SAR sentinel-1 (Synthetic Aperture Radar (S-1 SAR)
data are insensitive to cloud. However, Sentinel-1 SAR data are characterized by speckle
noise and have some difficulties in detecting the water surface of water bodies. This can be
solved by applying several techniques such as aggregation of the brightness pixels, which
was proposed by Pipitone et al. [22].

The analysis scheme used to estimate the water volume in the GERD Lake is summa-
rized in Figure 2 for optical multispectral and SAR data analysis, which was applied in
this study. We used ArcMap 10.8 [30] for multioptical satellites (i.e., LandSat-8 and -9 and
Sentinel-2) to separate the shape of the GERD Lake using the normalized difference water
index (NDWI) as it enhances the presence of water bodies, a method introduced by Mcfeed-
ers [31]. NDWI uses reflected near-infrared radiation and visible green light to enhance
the presence of water bodies such as lakes and rivers. This method is characterized by its
ability to eliminate the presence of soil and terrestrial vegetation features. The equation
depends on the use of bands with a relatively high reflectance of the water green band
(band-3) and one with low or no reflectance near-infrared (NIR) (i.e., band-8 in the case of
multispectral Sentinel-2 and band-5 in the case of Landsat-8 and -9) as follows:

NDWI =
Band 3 − Band 8 or 5 (NIR)
Band 3 + Band 8 or 5 (NIR)

(1)

The preprocessing of the workflow of Sentinel SAR-1 was applied by the Sentinel
Application Platform (SNAP) [32], an open-source software version of 8.0.9 (http://step.
esa.int/main/toolboxes/snap/ accessed on 1 October 2020), as follows: (a) a subset tool
was used to delineate the area of the study. (b) The orbit file was applied, which allows
updating of the orbit state vectors for each SAR scene, providing accurate satellite position
and velocity information. (c) The thermal to noise removal algorithm was used to remove
and reduce noise effects in the inter-sub-swath texture and normalize the backscatter for
scenes in multi-swath acquisition modes. (d) Calibration equation was used to convert the
image intensity values to sigma nought values in which the digital pixel was converted to
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radiometrically calibrated SAR backscatter concerning the nominally horizontal plane of
Sentinel-1 GRD. (e) Terrain corrections were used to compensate for some distortions related
to the side-looking geometry to be close to the real world. (f) We used coregistration with
an average stack of two time series images per month to obtain a single image. We applied
coregistration instead of a speckle filter to remove noise without affecting the resolution of
the optical image of Sentinel SAR-1, which may result from temporal decorrelation effects.
The final step was to convert it to linear transformations and apply the band math equation
depending on the image histogram. The water lake was delineated using this equation
in which the thresholding values range between −1, which refers to land, and +1, which
refers to water bodies.

Figure 2. Workflow explaining the steps of satellite image analysis carried out in this study to
calculate the volume of the GERD Lake.

2.3. Water Level Validations

The water levels were collected for Nasser, Tana, and GERD lakes in Egypt and
Ethiopia, respectively. The in situ water level data was recorded by the gauging station at
Nasser Lake and obtained from the Nile Research Institute (NRI) database. The other water
level data was collected at virtual stations from a satellite altimetry set obtained from the
“Global Reservoirs and Lakes Monitor (G-REALM) project” of the U.S. Foreign Agricultural
Service [33] and the level contour was extracted by optical multispectral satellite data in
this study. Then, we calculated the average water level uncertainty as shown in Table 1.

Table 1. Water level for the Aswan, Tana, and GERD lakes.

Name Lake
Water Level from

In Situ Station

Water Level from Virtual Stations
Obtained from Satellite Altimeter
Data from G-REALM) Project “m”

Location of Virtual Water
Level Station

Water Level Extracted by
Sentinel-2 Boundary
“m” in This Study

Differences
“m”

Long. Lat.

Nasser lake,
Aswan Egypt 180.5 181.93 32.57 22.8 181 1.43

Tana Lake,
Ethiopian - 1789.31 37.3 12.0 1787.81 1.6

GERD Lake,
Ethiopian - 581.38 10.579 10.552 580 1.4

Average calculated water level uncertainty ±1.45

3. Results and Volume Calculation

The required parameters needed to compute the volume of the GERD Lake were as
follows: (a) the input surface (i.e., 3D depth of the lake), which was established from the
digital elevation model. (b) The second parameter required is the “Z” value, which was
defined as the plane surface height of the water level top boundary in which the lake
polygons were extracted from an optical satellite image or Sentinel 1A–SAR. The volume
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equation was calculated using the ARCGIS10.8 volume tool, which was dependent on the
empirical formula of the volume. The volume equation is as follows:

The volume of water bodies = average depth (d) of the Lake X Area of the lake (A) (2)

The computation of the DEM raster surface was evaluated using the extent of the
center point of each cell as opposed to the extent of the entire cell area. The resulting
analysis will decrease the data area of the raster by half a cell relative to the data area
displayed for the raster according to the manual of ARCGIS10.8.

The average volume uncertainty was calculated with the average uncertainty in
volume (Figures 3 and 4) depending on the water level uncertainty ± 1.45 calculated in
the previous section. The lakes’ polygons’ boundaries were extracted from a multi-optical
satellite image and Sentinel SAR-1 to reflect the water area storage morphology in the
GERD Lake (Figure 3). A chart of the average volume for the GERD Lake with the time
series obtained every month from 21 July 2020 to 28 August 2022 is shown in Figure 4.

Figure 3. Digital elevation model (DEM) extracted by the GERD Lake polygons with time series from
satellite images.
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Figure 4. Chart showing the water volume capacity of the GERD Lake with the calculated volume
uncertainty values in orange color from 21 July 2020 to 28 August 2022.

The volume of the GERD Lake in the first storage reached its maximum level, which
appeared in the satellite images taken on 21 July 2020, with an area of 250.16 km2 and a
volume of 5.75 ± 0.25 billion m3 (Figure 4). Although, there was a receding of the water in
the GERD Lake in the next three months in August, September, and October in the year
2020, with an average water volume of 4.2 ± 0.3 billion m3 (Figure 4). From November
2020 to 30 March 2021, the second receding of water storage in the GERD Lake reached
an average volume of 3.75 ± 0.3 billion m3, calculated from the satellite images. On 28
July 2021, the GERD Lake showed an increase in the polygon area extracted from the Sen-
tinel SAR-1 satellite image of 316.54 km2 and an average volume of 8.45 ± 0.45 billion m3

(Figures 3 and 4). The average volume of storage of the GERD Lake increased in August
and September 2021, with a maximum of 9.4 ± 0.5 billion m3 during August 2021 after the
second storage was carried out. Receding of the water of the lake was observed during
October and November 2021 to an average volume of 7.3 ± 0.45 billion m3 (Figure 4), with
a slight increase in December 2021 to 8.0 ± 0.45 billion m3. From January to 29 May 2022,
the capacity of the reservoir lake decreased to 5.56 ± 0.45. Then, the third filling storage
was reached by 23 July 2022, with an increase in the total capacity of 9.25 ± 0.25 billion m3

and a significant large capacity of 17.4 ± 0.45 billion m3 was reached on 28 August 2022
(Figures 3 and 4).

The Ethiopian government carried out the first storage in July 2020 while July 2021
and July 2022 represent the second and third storage stages. During the storage stages and
closing of the GERD Dam gates, the GERD Lake was charged by rainfall and Tana Lake,
which is considered the major source of the Blue Nile [10].

The water level was observed from satellite images to be on the lower limit of the
saddle dam in the third filling on 28 August 2022. This saddle dam was built with a
5-km-long concrete face rockfall and 50 m high to maintain the required water surface
elevation and depth at a relatively flat dam site. The saddle dam increases the natural
features from 600 to 646 m asl, increasing the reservoir water level to the design level [34].
An emergency gated 300-m-wide spillway is located between the main dam and the saddle
dam. The spillway, at a crest elevation of 624.9 m, is to be used for extreme flood conditions,
releasing through a gully into the river downstream of the dam.

4. Discussion

The application of remote sensing and GIS to monitor GERD Lake volume changes
provides critical information about the GERD Reservoir Lake water level and storage
capacity. This will be very important for downstream countries in the case of a limitation
or lack of information resulting from a stumble in negotiations between Ethiopia and
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the downstream countries Egypt and Sudan. Water safety is essential for both upstream
and downstream countries. One of the most controversial debuts in GERD negotiations
is the number of years for the initial reservoir filling, as a shorter filling time requires
greater flow reduction and a higher investment return from the dam. A longer filling
time requires lower flow reduction and lower investment return from the dam [34]. The
water level shown by satellite data in this study was 600 ± 1.45 a.s.l on August 28 August
2022 in the lower level of the saddle dam. This level corresponds to 24.3% of the full
storage capacity of 74 billion cubic meters. It was considered as more than the minimum
reservoir fill rates, which is beneficial for hydroelectric generation without having an effect
on stream flow into Egypt and Sudan as stated by Keith et al. [35]. King and Block [36]
refer to the 25% filling policy, which can reduce the average downstream flow by more than
10 BCM per year. Hegay et al. [37] proposed numerous actions and mitigation strategies
that could secure Egypt’s water demands by minimizing the effects of the GERD project.
These strategies should include the present-day operation of the AHD hydropower plant
to mitigate imminent water shortages in combination with the increase in groundwater
withdrawal as a backstop choice to quickly sustain the water demand. Water conservation
strategies should additionally be integrated, mainly inside the agriculture sectors, by
switching the countrywide production to crops that require less water.

Previous studies have investigated the possible future multi-environmental and hazard
impacts on downstream countries. Wheeler et al. [38] described a post-filling period that
includes severe multi-year droughts after filling of the dam with the uncertainty of the exact
start and end time, which will require careful coordination to minimize possible harmful
impacts on downstream countries. Donia and Negm [39] modeled three scenarios of the
storage capacity of the GERD Lake. The storage capacity of the three models was estimated
assuming 18 billion m3 for the initial design storage capacity and 35 and 74 billion m3 for
the middle and final storage. Their results from scenario-3 of the full filling of GERD Lake
in 5 years show a negative impact on agriculture due to the loss of silt, which is a result
of restricting the water flowing to the Aswan High Dam in Egypt. Abulnaga’s [40] study
refers to scooping out accumulated mud and silts through dredging and the construction
of onshore sediment ponds that are used for agricultural purposes due to the construction
of the dam in Ethiopia. From an engineering point of view, EL Askary et al. [41] showed a
deformation pattern associated with different sections of the GERD Lake and Saddle Dam
(main dam and embankment dam) using 109 descending mode scenes from Sentinel-1 SAR
imagery from December 2016 to July 2021. This may result in a dam failure flood, which
will have harmful impacts in Sudan and Egypt.

In summary, the environmental impacts and other socio-political considerations of GERD
extend across a diverse spectrum of issues from population growth, economic development,
and water rights to sedimentation and/or changing flood regimes and the shock of climate
change. It is necessary to examine the complex social and environmental values of water
resources and the policies governing the use of water resources. A water cooperation policy
is the best choice for the cooperative Nile basin initiative to overcome any debate on the
remnant years of fillings [42]. Informal diplomacy has been successfully used to manage
transboundary waters in a similar case in the Mekong River Dam [43]. The waterscape of the
Mekong Dam issues has been extended to security actors that are not water experts within
domestic politics. For this, the analysis could be extended to examine in more detail the
knowledge channels within multiple tracks of diplomacy and how harms and inequalities are
understood, beyond mere metrics of economic impacts and water quantities. This method of
informal diplomacy can help change the frozen negotiation situations between Ethiopia and
Egypt. Thus, understanding water diplomacy requires scrutiny of how power, knowledge,
and the political economy of river basin development intersect.

5. Conclusions

The combination of open-source satellite optical and radar images with DEM provided
a robust tool to estimate the water volume in the artificial GERD Lake during the initial
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phases of filling. The water level measured from satellite data refers to the consequent
increase in the stored water volume of the GERD Reservoir Lake. Three stored water stages
of the initial filling were considered for the lake, corresponding to volumes of 5.75 ± 0.25,
9.4 ± 0.5, and 17.4 ± 0.45 billion m3 during 21 July 2020, 28 July 2021, and 28 August 2022,
respectively.

Data collected from open sources combined with technical knowledge could provide
very useful information that can be used to monitor the filling process and support informal
diplomacy with transparent and trustful independent information that could possibly lead
to a future agreement between all Nile basin countries. The authors believe that this work
is a milestone in building a scientific initiative to utilize open-source data for the benefit
of the community and to build a common agreement on the importance of investment
in knowledge for sustaining water resources and their management. Further work is
needed to extend this work to better understand the impact of the current filling process
and its impact on the ecosystem and boost the knowledge and data exchange between
riparian countries for integrated management plans for the Nile. An integrated database
that combines ground- and satellite-based observations could utilize modern scientific
techniques to integrate the dam’s operation process and mitigate natural disasters and
climate change’s impact on the sustainable development in Nile Basin countries. Such an
initiative could work as a confidence-building measure between Nile Basin countries and
provide leveraging for science diplomacy to bridge cooperation and integration in an era
of divergence and competition.
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Abstract: There are many rivers flowing from complex paths into Lake Dianchi. At present, there is a
lack of inflow and water quality monitoring data for some rivers, resulting in limited accuracy of
statistical results regarding water volume and external loading estimations. In this study, we used
DYRESM to estimate the water volume entering Waihai of Lake Dianchi from 2007 to 2019 without
historical hydrological observation data. Then, we combined this information with the monthly
monitoring data of water quality to calculate the annual external loading. Our results showed that:
(1) DYRESM could effectively capture the extreme changes of water level at Waihai, showing its
reliable applicability to Lake Dianchi. (2) The average annual inflow of rivers entering Waihai was
about 6.69 × 108 m3. The fitting relationship between river inflow and precipitation was significant
on annual scale (r = 0.74), with a higher inner-annual fitting coefficient between them (r = 0.98),
thus suggesting that precipitation and its caused river inflows are the main water source for Waihai.
(3) From 2007 to 2010, the river loadings remained at a high level. They decreased to 2445.44 t (total
nitrogen, TN) and 106.53 t (total phosphorus, TP) due to a followed drought in 2011. (4) The river
loading had annual variation characteristics. The contribution rates of TN and TP loading in the rainy
season were 63% and 67% respectively. (5) Panlong River, Daqing River, Jinjia River, Xinbaoxiang
River, Cailian River and Hai River were the main inflow rivers. Their loadings accounted for 81.3%
(TN) and 80.3% (TP) of the total inputs. (6) River loadings have gradually reduced and the water
quality of Waihai has continually improved. However, Pearson analysis results showed that the water
quality parameters were not significantly correlated with their corresponding external loading at
Waihai, indicating that there might be other factors influencing the water quality. (7) The contribution
rates of internal release to the total loads of TN and TP at Waihai were estimated to be 7.6% and
8.9% respectively, suggesting that the reductions of both external and internal loading should be
considered in order to significantly improve the water quality at Waihai of Lake Dianchi.

Keywords: Lake Dianchi; eutrophication; DYRESM; inflow volume; external loading

1. Introduction

A lake is a key node at the intersection of terrestrial ecosystem elements, playing roles
in freshwater supply, flood storage and species conservation in the geosphere. Lakes are a
valuable resource that human beings depend on to improve productivity through functions
such as regulating runoff, developing irrigation and conducting shipping [1,2]. With the
rapid growth of the global population and the gradual advancement of industrialization,
urbanization and modern agriculture, a large amount of anthropogenic pollutants have
been discharged into lakes, increasing the harm of eutrophication [3,4]. Lake eutrophication
refers to a large increase in essential plant nutrients, such as nitrogen (n) and phosphorus (p),
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in a lake, causing significant increases in the primary productivity of water ecosystems and
resulting in the appearance of algal blooms, lower dissolved oxygen (DO) concentrations,
reduced transparency, the death of aquatic animals, reduced biodiversity and damage to the
normal habitat and function of the lake [5,6]. Studies [7,8] have found that eutrophication
of a lake under natural conditions takes a long time to evolve, but disturbances from
human activity can significantly accelerate the eutrophication process, shortening it from
the original timeline of thousands of years to decades or even less. At the end of the 1990s,
61% of lakes worldwide were eutrophic [9], and the eutrophication rate of global inland
waters had increased to 63% by 2012 [10]. The percentage of eutrophic lakes (reservoirs)
among 110 important Chinese lakes (reservoirs) was 29% in 2020 [11]. The eutrophication
of lakes has proven to be a threat to the sustainable development of human society.

Lake Dianchi is the largest freshwater lake on the Yunnan–Guizhou Plateau, playing
key roles in the social and scientific development of Yunnan New Area [12]. However,
it is in a moderate or severe eutrophic state all year round, and cyanobacterial blooms
occur frequently, causing hidden dangers to the water environment and water safety of
surrounding residents [13]. Guo et al. [14] found that n and P loadings from urban sewage
and agricultural runoff are the main sources of pollution in Lake Dianchi. Ma et al. [15]
considered the hydrological characteristics of highland lakes, and they concluded that
the long retention time of water bodies, weak exchange capacity and excessive nutrient
loading have led to a faster rate of eutrophication in Lake Dianchi. Dong [16] found that
soil erosion highly contributed to non-point source pollution in Lake Dianchi Basin and
pointed out that rainfall, agricultural structure or rural population changes were conducive
to increases in non-point source pollution loadings; because it could be concluded that
external loading is the main root of eutrophication in Lake Dianchi, controlling external
loading may be the first step to address eutrophication. As the links between a lake and
terrestrial ecosystem in a basin, rivers are the key intermediate links for external loading
control because land-based pollutants enter lakes by rivers, causing the deterioration of
lake water and ecosystem quality [17]. About 70–80% of the annual water supplementation
to Lake Dianchi comes from river inflow [18], and the average annual river total nitrogen
(TN) and total phosphorus (TP) input can account for 80.2% and 78.8%, respectively, of the
total external loading in Lake Dianchi [19], so accurate statistics regarding external loading
by rivers is important for eutrophication management. However, there are more than
120 rivers flowing through complex paths into Lake Dianchi, resulting in poor statistics
regarding water input and external loading [20]. Therefore, how to effectively invert the
missing water volume and calculate external loading was the focus of this study.

A water balance equation is constructed by describing different hydrological processes
in a basin as continuous water saving and flow processes, mainly using relevant factors,
such as precipitation, temperature and runoff, as input in the water quantity inversion [21].
Zhang et al. [22] combined water deficit measurements (small ditches and rivers leading
into the lake, farmland drainage entering the lake and groundwater infiltration and exfil-
tration) into an uncertain incoming water term, and then they established a water balance
equation for Lake Bosten with the incoming river flow, outgoing river flow and lake and
evaporation consumption. Qin et al. [23] integrated incoming and outgoing flow, reservoir
precipitation and evaporation and the loss of seepage from the reservoir to establish a water
balance equation in Guanting Reservoir Station. Zan et al. [24] constructed a water balance
equation for the Aral Sea based on regional rainfall, total evaporation and the amount
of water entering and leaving the lake, and then they conducted a rough assessment of
the total amount of groundwater data missing from monitoring. However, the authors
of these articles mainly used historical data to build up simple mathematical equations,
which are not computationally adequate for the dynamics of long-term time-series data.
With the development of technology, researchers have effectively improved flood process
forecasting accuracy by the machine learning method [25,26], and hydrological models
have been widely applied to estimating variations of lake volume [27,28]. At present, the
calculation principle of external loading is clear, mainly calculated through flow and water
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quality concentration [29]. Therefore, the authors of this study used the computationally
powerful hydrodynamic model DYRESM (Dynamic Reservoir Simulation Model) to calcu-
late the elements of water balance in Lake Dianchi [30]. The DYRESM is a one-dimensional
hydrodynamic model with the advantages of simple profile and convenient parameter-rate
determination; it has been used in many domestic and international hydrological stud-
ies [31–33]. In this study, we first inverted the incoming water volume of Lake Dianchi
from 2007 to 2019 and then calculated the external loading by combining the volume
information with river water quality monitoring data in order to provide a scientific basis
and reasonable suggestions for the management and ecological restoration of Lake Dianchi,
as well as to provide reference methods for similar studies.

2. Materials and Methods

2.1. Study Site

Lake Dianchi is located in the southwestern part of the urban area of Kunming, the
capital of Yunnan Province (Figure 1). It is one of the four major fractured tectonic lakes
in China, and the only sewage-receiving body of the lakes in Kunming [34]. The Lake
Dianchi Basin covers an area of 2920 km2, accounting for about 0.75% of the land area of
Yunnan Province but carrying nearly 23% of the province’s gross domestic product (GDP)
and 8% of the population [35]. With the development of urbanization and agriculture
in Kunming, the nutrient loading of basin has significantly increased, resulting in the
perennial deterioration of Lake Dianchi’s water quality. The water area of Lake Dianchi is
309.5 km2 (at an elevation of 1887.4 m), with a storage capacity of 1.56 × 108 m3 and an
average depth of 5.3 m [36,37]. The southern part is called Waihai, which is the major part
of Lake Dianchi, with a water area of 298.7 km2 and average water resources that account
for more than 90% of the total water resources of Lake Dianchi [37].

Figure 1. Distribution of meteorological stations, hydrological stations and main tributaries of
Lake Dianchi.

Lake Dianchi Basin has a typical subtropical highland monsoon climate, with the
mountains in the north blocking the northern cold streams in the winter, which allows the
basin to have “four seasons like spring” all year round. The basin maintains a multi-year
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average temperature between 14.6 ◦C and 15.9 ◦C and an annual temperature difference
of about 12 ◦C. The lowest annual temperature occurs in January, and the highest annual
temperature occurs in July [38]. The average multi-year rainfall is 986 mm, which can be
divided into distinct dry and rainy seasons. The rainy season occurs from May to October
each year, with rainfall accounting for more than 85% of the annual total, while the dry
season occurs from November to next April, with rainfall accounting for only 15% or
less of the annual total. The average multi-year evaporation is about 1871 mm, which is
significantly higher than the average annual rainfall [39]. There are many rivers entering
Lake Dianchi with a characteristic of “short flow near the source”, and the special functions
of transport, migration and sink determine the prominent position and role of rivers in
the Lake Dianchi ecosystem [19]. In order to meet the ecological water demand, partial
tailwater of Kunming urban sewage is discharged into Lake Dianchi after purification and
treatment [40]. At present, there are artificially controlled outlets for Caohai and Waihai,
which are the Xiyuan Tunnel at the northwest water area and the Zhongtan Gate at the
southwest water area, respectively [41]. In addition, to support the urban development of
Kunming and to meet the production and living water needs in the basin, Lake Dianchi’s
water resources are developed and utilized to 90%; furthermore, the total water supply
in the basin was 8.20 × 108 m3 in 2015, of which 1.36 × 108 m3 was supplied by Lake
Dianchi, indicating that water supply is also an important outflow pathway [42]. Since
Waihai is the major body of Lake Dianchi, the annual volume of water in and out of
the lake and the external loading are absolutely dominant in the total volume of Lake
Dianchi [43], so the authors of this paper selected Waihai as the study area. The multi-year
distance level changes in chlorophyll a (Chl−a), TN and TP concentrations in Waihai are
shown in Figure 2, indicating that the water quality has significantly improved after years
of treatment.

Figure 2. Annual anomalies of Chl−a (green), TN (blue) and TP (brown) at Waihai from 2000 to 2019.

2.2. Data Source

To ensure the accuracy of our results regarding water inversion and external load-
ing, data of detailed hydrological, water quality, meteorological, topographical and river
channels at Waihai were collected in this study. They are presented in Table 1 below.

Due to equipment failure and condition restriction, some monthly monitoring data of
TN and TP in river channels were missing. When the monitoring data were missing for
less than three months, a linear interpolation method was used to supplement. When the
data were missing for more than three consecutive months, they were supplemented by
calculating the monthly mean data of the previous and following years.
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Table 1. Data information.

Data Type Data Period Data Content Data Source

Topography \ Water contour
(elevation of Lake Dianchi bottom-area generation)

Kunming Dianchi & Plateau
Lakes Institute

Meteorology 2007–2019 Daily data of weather station at Kunming The China Meteorological Data
Service Center

Inflow river
2007–2019 Monthly monitoring values of TN and TP Dianchi Administration Bureau

of Kunming2007–2019 Monthly monitoring values of river flow

Tail water inflow 2007–2020
Yearly data of municipal treated sewage in Kunming;
proportion of tail water discharged into Waihai after

treatment in 2020 (31.08%)

Kunming Environmental
Statement, Dianchi

Administration Bureau
of Kunming

Urban water supply 2007–2019

Yearly urban water supply of Kunming; in 2015,
urban water supply accounted for 54.24% of whole

basin, and Lake Dianchi water supply accounted for
16.59% of basin water supply

Kunming Statistical Yearbook [42]

Water regimen 2007–2019 Average daily water level of Waihai Dianchi Administration Bureau
of Kunming

Water quality 2000–2019 Monthly monitoring values of water quality at Waihai Kunming Municipal Ecology and
Environment Bureau

Water outflow 2007–2019 Daily measured flow of Haikou River Dianchi Administration Bureau
of Kunming

There are 24 major input rivers around Waihai, and some of them presented a small
amount of missing monthly water quality data that could be supplemented by using statis-
tical methods. However, we found a large amount of missing data regarding instantaneous
monthly river flow, which made it difficult to invert the water inflow volume. Therefore,
the authors of this study collected measured data of river inflow, obtained the average
values of historical flow for each river from January to December and then calculated the
proportion of each river in the total annual flow after summing up the annual flow, which
was used to allocate the inverse water volume. The percentage of missing measured data
and each river flow in the total inflow volume from 2007 to 2019 are shown in Table 2.

Table 2. Information of rivers.

River
Ratio of
Missing
Data (%)

Proportion of
River Flow in
Total Volume
(Before 2012)

Proportion of
River Flow in
Total Volume
(After 2012)

River
Ratio of
Missing
Data (%)

Proportion of
River Flow in
Total Volume
(Before 2012)

Proportion of
in River Flow
Total Volume
(After 2012)

Cailian River 9.6 5.3 5.3 Luolong River 11.5 4.2 4.2
Jinjia River 59.6 8.6 8.6 Laoyu River 9.0 3.3 3.3

Panlong River 63.5 39.6 39.8 Nanchong
River 19.9 0.6 0.6

Daqing River 12.2 11.2 11.3 Yuni River 24.4 1.4 1.4
Hai River 12.2 3.1 3.1 Chai River 15.4 1.5 1.5

Liujiabaoxiang
River 33.3 0.4 Cutoff Baiyu River 4.5 2.7 2.7

Xiaoqing River 72.4 1.1 1.1 Cixiang River 7.7 1.3 1.4
Wujiabaoxiang

River 35.0 0.1 Cutoff Dongda River 12.2 2.0 2.0

Xiaba River 62.2 1.8 1.9 Hucheng River 6.4 1.3 1.3
Laobaoxiang River 53.9 0.4 0.4 Gucheng River 1.9 0.4 0.4

Xinbaoxiang River 21.2 7.3 7.4 Guangpudagou
River 23.1 0.9 0.9

Maliao River 20.5 0.9 0.9 Yaoan River 78.9 0.6 0.6
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2.3. Model Description

DYRESM is a one-dimensional hydrodynamic model developed by the Centre for
Water Research at the University of Western Australia that is mainly used for the simulation
of lakes and reservoirs [30]. The model is capable of running alone to complete simulations
of water temperature and salinity in the vertical direction of lakes and reservoirs, and it
can be coupled with the CAEDYM (Computational Aquatic Ecosystem Dynamic Model)
ecological model to simulate water quality and life processes of biological organisms in
water areas, such as phytoplankton, fish and benthos, as well as the exchange of nutrients
between water bodies and sediments [44].

The basic data required by DYRESM contained: (1) topographic basin data, such as
the water surface area corresponding to different water depths that was calculated from
the elevation–area relationship at the bottom of Lake Dianchi; we stratified the water body
of Lake Dianchi at 0.1 m of water depth, with the maximum water depth being 11.5 m, and
then separately calculated the water surface area at each depth. (2) The number of inflow
channels, outflow channels and the elevation of the river entrance.

The DYRESM boundary conditions included: (1) meteorological files containing the
daily data of solar short-wave radiation (W/m2), air temperature (◦C), water vapor pressure
(hPa), average wind speed (m/s), cloudiness (0–1) or solar long-wave radiation (W/m2),
rainfall (m) and snowfall (m, set to 0 for areas without snowfall); (2) inflow and outflow
files, with inflow files including daily inflow volume and water quality to the lake (m3) and
the outflow file mainly including daily outflow data (m3).

The initial conditions of DYRESM were the water quality’s distribution information in
the vertical direction at the starting moment of simulation. The main physical parameters
in the model and configuration files were debugged by drawing on the range of values
provided in the literature for each parameter. The specific parameter values are shown
in Table 3.

Table 3. Key parameters of DYRESM.

Parameter Value Range Unit Value in This Paper

Bulk aerodynamic momentum transport coefficient 1.3 × 10−3–1.9 × 10−3 [45,46] \ 1.3 × 10−3

Mean albedo of water 0.07–0.084 [47,48] \ 0.075
Emissivity of water surface 0.94–0.96 [30,48] \ 0.96

Critical wind speed 3–6.5 [45,48] m/s 5.00
Shear production efficiency 0.06–0.084 [45,48] \ 0.08

Potential energy mixing efficiency 0.15–0.29 [48,49] \ 0.2
Wind-stirring efficiency 0.06–0.9 [32,50] \ 0.2

Extinction coefficient 0.2–0.8 [32,49] m−1 0.8
Vertical mixing coefficient 200–2500 [32,51] \ 200

2.4. Calculation Principle of Lake Volume Variation

The heat consumed by the evaporation of a lake surface is calculated according to
following equation [52]:

Qlh = min
[

0,
0.622

P
CLρALEUa(ea − es(Ts))Δt

]
(1)

where Qlh (quantity of latent heat) refers to the heat (J/m2) consumed by the evaporation
of the water surface during Δt, P is the atmospheric pressure (hPa), CL is the latent heat
conduction coefficient (1.3 × 10−3) of wind speed at a 10 m reference height, A is the air
density (kg/m3), LE (2.453 × 106 J/kg) is the latent heat of water evaporation [47], Ua is
the wind speed at a 10 m reference altitude (m/s), ea is the vapor pressure of air (hPa), es
(saturation vapor pressure) is the saturated vapor pressure (hPa) under the condition of
water surface temperature (Ts) and Δt is the calculated time step of model, which is set to
3600 s [52].
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The formula for calculating the mass change (kg) of the Nth-layer in a lake caused by
evaporation is as follows [52]:

ΔM(lh)
N =

−Qlh AN
LE

(2)

where ΔM(lh)
N represents the mass changes of water (kg) caused by evaporation in the

Nth-layer (N ≥ 1, N = 1 means the surface layer of the water column), AN is the surface
area of Nth-layer and other variables are as mentioned above.

The calculation formula of water level rise (m) caused by precipitation is as follows [52]:

rh = Rh
Δt
Nd

(3)

where rh is the water level changes (m) of the Nth-layer caused by precipitation, Rh is the
total daily rainfall (m) and Nd is the duration of daily rainfall (s).

The calculation formula of water mass change (kg) in different layers by precipitation
is as follows [52]:

ΔM(rain)
N = ρN ANrh (4)

where ΔM(rain)
N is the mass changes (kg) caused by precipitation of the Nth-layer, ρN is the

water density (kg/m3) and other variables are as mentioned above.
The formula for calculating the total water mass change in the Nth-layer of the lake

caused by evaporation and precipitation is as follows [52]:

ΔMN = ΔM(lh)
N + ΔM(rain)

N (5)

According to the five above-described formulas, DYRESM can automatically calculate
the daily evaporation of a lake surface and the corresponding water level variation.

2.5. Calculation Principle of Water Compensation Method

The principle of our water compensation method is shown in Figure 3. After con-
figuring the original inflow and outflow files of DYRESM, considering the influence of
lake precipitation and evaporation on the storage capacity, the daily simulated water level
was obtained by model using the area and volume data corresponding to different depths
provided in the underwater topographic map (scale 1:2000). The water level storage ca-
pacity curve of Lake Dianchi was constructed by linear fitting. The used fitting equation
was y = 2.89x − 5435.77, where y is storage capacity (×108 m3), x is water level (m) and
correlation coefficient (r) = 0.99. Based on the water level–storage capacity curve, the model
was able to calculate the daily simulated storage capacity and measured storage capacity,
respectively. Then, the difference between the storage capacity of the next day and that of
the previous day was calculated, allowing us to obtain daily simulated storage capacity
difference and the measured storage capacity difference data.

The daily compensation value was obtained in the model by subtracting the differ-
ence between daily measured storage capacity difference and simulated storage capacity
difference. If the compensation value was positive, simulated storage capacity was lower
than measured storage capacity, meaning that inflow volume in the model needed to be
increased; we set a virtual river channel in the inflow file to supplement increased inflow
into the virtual river channel. A negative value indicated that the outflow of model needed
to be increased. Taking the absolute value of the compensation value and adding it to the
outflow flow to complete the primary water volume compensation calculation, this was
followed by a comparison of the simulated water level results with the measured water
level. If the error could be ignored, the calculation was stopped. If the error was obvious,
water compensation began again. Then, the new inflow and outflow compensation values
were calculated so that the inflow (outflow) could be accordingly modified. Following
water compensation, the daily water volume of the virtual river was close enough to the
daily total inflow of real rivers to be used in subsequent work.
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Figure 3. Flowchart of water compensation method for DYRESM.

2.6. Original Inflow and Outflow Files of DYRESM

According to Table 2, river inflow data were seriously missing and could not be
configured for the model inflow file. Statistics regarding urban sewage treatment capacity
over the years were obtained from the Kunming Environmental Statement. The annual
tail water inflow could be calculated based on the proportion of tailwater flow into Waihai
after sewage treatment in 2020. The tail water inflow was distributed every day to obtain
original inflow profiles containing the tail water data. The original outflow document
included the daily measured discharge of Haikou River and the daily water supply of Lake
Dianchi. The calculation steps of daily water supply were as follows: First, the urban water
supply of Kunming over the years was counted. Second, according to the proportion of
urban water supply in Lake Dianchi Basin in 2015, the water supply of basin over the years
was obtained. Finally, based on the proportion of Lake Dianchi water supply in the basin
water supply in 2015, the water supply of Lake Dianchi over the years was calculated, and
the daily water supply in the year was found to be equally distributed. At the same time,
since only the water level change was considered, the water quality concentration in and
out of the lake was set to 0.

2.7. Evaluation Standard of Model Error

The model error was verified by calculating the root mean square error (RMSE)
between the measured and model-simulated values, and the Nash efficiency coefficient
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(NSE) and correlation coefficient (r) between measured and simulation values [48]. RMSE
and NSE were calculated as follows:

RMSE =

√√√√ 1
N

N

∑
i=1

(Si − Oi)
2 (6)

NSE = 1 − ∑N
i=1(Si − Oi)

2

∑N
i=1

(
Oi − O

)2 (7)

where Oi is the measured value, Si is the simulated value, O refers to the arithmetic average
of measurements and N is the number of data. RMSE results can explain the dispersion
degree of samples; the smaller the value, the better the simulation effect. The NSE is a
dimensionless statistical parameter that is commonly used to describe the fitting accuracy
of models (NSE ≤ 1); NSE = 1 indicates a complete fit, and NSE ≤ 0 indicates that the fitting
degree is very poor. When the NSE is positive, the simulated value can better express the
law of the measured value than the average of the measured value. The closer the NSE
value is to 1, the better the fitting degree and the better the simulation effect.

2.8. Calculation Method of External Loading by River

The dry and rainy seasons are distinct in Lake Dianchi Basin, and the discharge into
Waihai of each month significantly varies. Therefore, we allocated the yearly retrieved
water volume according to the annual inflow proportion of each river, distributing the
annual water volume of each river to the month according to the proportion of historical
monthly inflow. We used the monthly measured values of TN and TP of each river as the
monthly concentration to obtain the external loading of each river channel, and the total
external loading input by river channel was obtained by adding external loading.

3. Results

3.1. Waihai Water Level Simulation

We implemented a water balance analysis from January 2007 to December 2019. After
this calculation, the simulated water level clearly agreed well with the observed water level
(Figure 4). Before the calculation, the simulated water level at Waihai continued to decline
because the annual evaporation in Lake Dianchi Basin is greater than its precipitation [39].
The DYRESM accurately reproduced the water level, with a high coefficient of determina-
tion and small relative error values (RMSE = 0.0072 m; NSE = 0.99; r = 0.99). The maximum
measured water level was 1887.56 m on 11 August 2015, and the simulated water level on
that day was 1887.57 m. The lowest water level occurred on 24 May 2010 (1886.35 m), and
the simulated water level was also 1886.35 m. This showed that the DYRESM could reflect
fine variations and extreme conditions in measured water levels well after calculation.
From 2009 to 2010, the water level at Waihai significantly decreased, which was completely
different from other periods and probably because of the drought in Yunnan Province in
2009 [53].

3.2. Retrieval Results of Water Inflow

We calculated the total annual inflow by river (Figure 5a). River flow is closely related
to rainfall in the basin [54], so the annual total lake inflow was fitted with the annual total
rainfall to verify the accuracy of the calculation results, which are shown in Figure 5b.
The correlation coefficient between annual total runoff and annual total rainfall was 0.74
(Figure 5b), indicating a significant relationship between inversion water volume and
precipitation, consequently demonstrating that the DYRESM’s inversion water amount was
feasible. From 2007 to 2019, the annual total lake inflow by river was consistent with the
changing trend of the annual total precipitation (Figure 5a). During the study period, the
annual average inflow volume of Waihai was about 6.69 × 108 m3, which was consistent
with the annual average land water inflow of 6.97 × 108 m3 of Lake Dianchi [55]. The
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inflow volume significantly decreased after 2009, and it reached the lowest level of only
3.24 × 108 m3 in 2011. According to the Kunming Statistical Yearbook, 2011 was the third
consecutive year of drought relief in Kunming, with a total precipitation of 697.80 mm,
29 cut-off river channels and an accordingly decreased inflow volume. In 2017, the lake
inflow was as high as 10.16 × 108 m3, and the total annual precipitation was 1186.4 mm,
both of which were the highest values from 2007 to 2019.

Figure 4. Simulated and measured daily water levels from 2007 to 2019: (a) before water compensat-
ing; (b) after water compensating.

3.3. Variation within the Year of Water Inflow

The simulated and calculated changes in inflow and precipitation with the year
showed a single-peak trend of first rising and then decreasing. The water inflow was
as high as 1.15 × 108 m3 in July, and the average precipitation was 212 mm, both of which
were first within the year. In the following August, the average inflow volume and precipi-
tation were 1.01 × 108 m3 and 200.44 mm, respectively. These results are consistent with
the viewpoint summarized by Chen that “Flood season in Lake Dianchi Basin is mainly
concentrated in July and August” [56]. Through fitting calculation, it was found that there
was a close relationship between retrieval inflow and precipitation in the year (Figure 6b;
r = 0.98), which proves the important significance of precipitation forecast in the flood
control and waterlogging work of Lake Dianchi.

3.4. Calculation Results of External Loading by Riverway

To verify the accuracy of the river external loading calculated by simulated volume
and measured water quality, we collected TN and TP loading data from inflow rivers
during the study period and analyzed them with the calculated loading. The specific data
are shown in the following table.
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Figure 5. Yearly variations of total river inflow and precipitation (a) and their fitting relationship (b)
for 2007–2019.

Figure 6. Intra-annual variations of total river inflow and precipitation (a) and their fitting
relationship (b) for 2007–2019.
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In some publications, only the basin emissions of TN and TP or the total amount of
external loading of Lake Dianchi (including Caohai) have been studied. Therefore, in this
study, we used the calculation coefficients of TN loading (the total external loading of Lake
Dianchi accounted for 64% of the whole basin and the total amount of Waihai accounted
for 73% of the total external loading of Lake Dianchi) and TP loading (the total amount of
external loading of Lake Dianchi accounted for 60% of the whole basin and the total amount
of Waihai accounted for 90% of the total external loading of Lake Dianchi) according to
the specific values given in the “The 14th Five-Year Plan period for water environmental
protection and governance in Lake Dianchi Basin”. Additionally, the abovementioned
coefficients were used to calculate the total amounts of TN and TP in Waihai.

From the data in Table 4, it can be seen that the calculation amount of river loading
before 2011 was often higher than the actual amount. This was due to the fact that the
loading calculation coefficients were based on Waihai data in 2009, resulting in a reduction
effect in external loading before “The 12th Five-Year Plan period” being higher than in
reality. However, the change trend of river loading and the total amount of Waihai remained
roughly the same. During the study period, the average annual TN loading input by the
river channel was 5480 t, and the average annual input loading of TP was 295 t. In 2011,
due to a drought in the basin, the amount of water entering Waihai was significantly
reduced, resulting in input loadings of TN and TP by the river channel of 2616 t and 107
t, respectively, which were minimum values in the calendar year. From the perspective
of time scale, the river loadings of TN and TP declined year by year: the TN loading into
Waihai in 2007 was 9080 t and the loading fell to 3728 t in 2019, with a reduction rate of
59%. The TP loadings into Waihai in 2007 and 2019 were 713 t and 115 t, respectively, and
the reduction rate was as high as 84%.

Table 4. Annual external loading of Waihai from 2007 to 2019.

Year
TN Loading by

Riverway (Calculated
Value, Ton)

Total External Loading
of TN (Literature

Value, Ton)

TP Loading by
Riverway (Calculated

Value, Ton)

Total External Loading
of TP (Literature

Value, Ton)
Data Source

2007 9080 7452 713 782 [20]

2008 8290 4990 772 294 [57]

2009 8782 6231 512 697 [58]

2010 6265 4268 284 390 [59]

2011 2616 \ 107 \ \
2012 3948 4299 161 370 [60]

2013 4145 3978 197 331 [61]

2014 4167 5358 207 538 [62]

2015 4235 5656 179 495
Lake Dianchi Protection

and Governance Plan
(2016–2020)

2016 5602 6590 203 566

Lake Dianchi Protection
and Governance

Three-year Tackling
Action Implementation

Plan (2018–2020)

2017 5906 3842 205 390 Lake Dianchi Protection
Plan (2018–2035)

2018 4472 5109 183 450 [63]

2019 3728 3884 115 397

The 14th Five-Year Plan
for Water Environment

Protection and
Management of Lake

Dianchi Basin
(2021–2025)
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The TN and TP loadings of rivers showed regular changes with the year (Figure 7).
TN loading by rivers reached high values of 1035 t and 687 t in July and August, respec-
tively, accounting for 19% and 13% of the whole year’s loading, which were similar to
the proportions of total inflow volume in July and August. The TN loadings by rivers in
the rainy season (May–October) and the dry season were 3473 t and 2007 t, respectively,
accounting for 63% and 37% of the annual loading. The TP loadings in the rainy and dry
seasons were 197 t and 98 t, respectively, accounting for 67% and 33% of the annual loading.
These results show that the river loading has distinct annual distribution characteristics. In
the rainy season, with the significant increase in river inflow, the external loading of the
river significantly increases. Therefore, different measures should be taken to control the
loading of river in the rainy and dry seasons.

Figure 7. Intra-annual variation of TN and TP loadings for inflow rivers.

In order to clarify the focus of river management, the authors of this study calculated
the multi-year proportion of 24 rivers’ loading in the total pollutants and highlighted
the main external input channels (Figure 8). Panlong River, Daqing River, Jinjia River,
Xinbaoxiang River, Cailian River and Haihe River were found to account for more than
5% of the total input of TN and TP at Waihai. Panlong River was found to be the most
important source of external loading, with TN and TP loadings accounting for 32.7% and
23.8%, respectively, due to the fact that the amount of water entering Panlong River is
about 2.50 × 108 m3 and the abundant water volume provides convenient conditions for
receiving the basin’s pollutants [64]. The proportions of the total TN and TP loading by
river in Daqing River were second only to Panlong River at 18.1% and 20.4%, respectively,
but the inflow volume of Daqing River was found to account for only 11.3%, indicating
that the water quality of Daqing River is poor. This is because the upstream tributary called
Mingtong River belongs to the sewage channel and the terminal sewage interception gate
has the risk of overturning the weir in the rainy season, thus causing Daqing River to face
risks of deteriorating water quality. Haihe River was shown to be similar to Daqing River,
with an inflow rate of only 3.10%, but it was found to carry 6.1% of TN loading and 11.2%
of TP loading, indicating that the water quality of Haihe River is worse than that of Daqing
River. This water quality issue is possibly due to the incomplete diversion of rainwater
and sewage in the drainage system of river basins, which allows the domestic sewage of
villages to easily overflow into the river during the rainy season.

3.5. River Loading and Water Quality

From Figure 2, it can be seen that the water quality of Waihai was significantly im-
proved after treatment. Compared to 2007, the improvement rates of TN and TP of Waihai
in 2019 were 68.8% and 50%, so the pollution of the water body was mitigated. There was
no obvious trend in the change in Chl−a concentration, which indicated that there are
differences in the influencing factors of Chl−a and other water quality indicators and that
more targeted treatment measures are needed. A Pearson correlation analysis of yearly
data between river loading and Waihai water quality from 2007 to 2019 was performed,
and the results are shown in Table 5.
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Figure 8. Proportion of external loadings of TN (a) and TP (b) in the main inflow rivers.

Table 5. Pearson’s correlation between river loadings and water quality parameters from 2007 to 2019.

Indicators Chl−a (mg/L) TN (mg/L) TP (mg/L) n

TN loading (t) 0.008 0.44 0.13 13
TP loading (t) −0.13 0.54 0.12 13

This table shows that there was no significant correlation between external loading by
river and water quality index of Waihai, indicating that there are other influencing factors
of water quality besides river loading, implying that the influence of loading input by river
is not yet possible without deeper research.

3.6. Effects of Different Pollution Sources

Lake pollution is divided into two types (internal source and external source), and
external inputs are dominated by river loading, although atmospheric deposition also has
a significant impact on lake pollution that is more significant in highland lakes [65]. The
tailwater discharged after sewage treatment also carries certain pollutants. In this study,
TN and TP data of Waihai regarding different pollution sources in 2014 were compiled
based on the literature, and the results are shown in Table 6.

Table 6. TN and TP loadings from different sources at Waihai in 2014.

Data Type TN Loading (t) TP Loading (t) Data Source

River loading 4167 207 Calculation result

Tail water loading 1953.18 65.11 Calculated by tail water inflow and
water quality mission standards

Atmospheric
deposition 407.73 34.51 [66]

Internal pollution 539.84 29.88 Basic investigation report on total
volume control at Dianchi Basin

River loading was found to account for 59% and 61.5% of the total TN and TP, respec-
tively, due to the significantly higher population density in Lake Dianchi Basin (which is
close to twice that of Lake Chaohu) that has enabled the river loading and pollution absorp-
tion pressure in Lake Dianchi to become more prominent [67]. Over the years, in order to
collect and treat point source sewage and surface source sewage, Kunming has vigorously
promoted the construction of urban domestic sewage treatment plants, but there is still a
large gap between sewage discharge standards and surface water environmental quality
standards that has resulted in a large tailwater loading. Lake Dianchi Basin is also an
important flower and vegetable production base, with fertilizer use nearly 2.5 times higher
than the national level [68]. Because of low rainfall in the dry season, n and p particulates
from biomass burning, industrial production emissions and fertilizer application losses
are enriched over Lake Dianchi; in the rainy season, they enter the lake with precipitation
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and increase the lake pollution [66]. Lake characteristics largely determine the nutrient
change pattern of Lake Dianchi, and dynamic disturbances and wind and wave processes
in shallow lakes are likely to cause sediment suspension and internal pollution release [69],
so the exchange of internal pollutants at the water–sediment interface will accelerate water
quality deterioration or seriously affect nutrient loading reduction [70].

4. Discussion

4.1. Analysis of Water Quantity Retrieval and External Loading Results

The inversion of river volume by the DYRESM was a lake water balance model based
on the core principle that the increase in lake water over a certain period is equal to all
the water entering the lake minus all the water discharging from the lake, so the inversion
data at Waihai also contained some groundwater-dominated uncertainty. Groundwater
is often regarded as an important recharge source [22], but there are no major rivers
transiting Kunming, and the regional water recharge mainly relies on seasonal rainfall,
with a groundwater resource of about 1.98 × 108 m3 [71]. With the development of society,
groundwater levels in seven water-rich blocks in the Kunming area continued to decline
from 2004 to 2013, accompanied by water level decreases ranging from 0.2 m to 12.6 m [72],
so the groundwater recharge to Lake Dianchi could be ignored in this study. The fit
verification between river inflow and Kunming precipitation on monthly or yearly scales
showed that there was a strong connection between inverse inflow and precipitation, thus
proving that precipitation is the fundamental water source of Lake Dianchi and providing
a basis for flood prevention through precipitation forecasting. This analysis shows that
the results of total inflow by the DYRESM inversion were reliable, and it is reasonable to
consider all the total inflow as the river flow in Lake Dianchi Basin.

The measured flow data of river channels were seriously missing (Table 2), meaning
the vacant values could not be replaced with statistical methods. Therefore, the authors of
this study calculated the annual flow and monthly flow percentage of each river channel
to allocate the inverse water volume. Although this method has errors, the real river flow
should have distinctive monthly characteristics because precipitation is the main recharge
source of the river channel (Figure 6), so the allocation method of this study reflected the
monthly changes, and the error value was reduced. In addition, the authors of this paper
used the monthly monitoring values of river water quality to represent the daily water
quality in each month, which may have led to errors in external loading results. Because
the main inflow rivers are located in the northeastern shore and pass through the main
human activity area, the basin’s pollutants tend to sink into rivers in the rainy season
with short-term heavy rainfall, causing the temporary elevation of TN and TP in rivers.
Therefore, the accuracy of using river water quality in extreme weather to represent the
prevailing conditions in those months was limited. In summary, the frequency of water
quality monitoring should be increased to solve this problem in the future.

4.2. Analysis of Water Quantity Retrieval and External Loading Results

Due to the difficulty of “Three rivers and Three lakes” in the key national governance,
the governance process of Lake Dianchi is significant. After years of investment, the
pollution degree of Lake Dianchi has been effectively alleviated. From 1993 to 2015, the
water quality of Lake Dianchi was always deteriorating in the inferior V class, but the
water quality changed to V class in 2016 and remained stable in IV class in 2018–2019 [43].
These changes demonstrate the gradual emergence of the treatment effect, a result that
is consistent with the trends of water quality and river loading in Figure 2 and Table 3.
Although TN and TP loadings declined from 2007 to 2010, they remained high. During the
period of the “11th Five-Year Plan”, Kunming began conducting engineering governance
of inflow rivers, but the river situated at the north shore of Lake Dianchi flows through
a main urban area with a large amount of urban sewage and rainwater pollution [18],
resulting in limited reduction in river loading [18]. Due to the drought situation, the inflow
volume was low in 2011, so external loading in that year was low. In addition, the local
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government implemented regulations on river management of Kunming in 2010, ensuring
the effect of comprehensive regulation in the system while also increasing the investment in
river treatment, which laid a solid economic foundation for comprehensive regulation [18].
In conclusion, effective lake environmental management requires long-term system and
economic support. During the “12th Five-Year Plan period”, Lake Dianchi Basin water
pollution control and eutrophication comprehensive control technology were included in a
special water project oriented to the whole basin. Accordingly, comprehensive control was
enacted and industrial point source pollution was controlled. Attention to inflow river and
internal pollution treatment have kept increasing since then. Six major projects, including
pollution interception around the lake, agricultural and rural non-point source treatment
and ecological restoration construction, have been fully implemented, and the pollution
loading into Lake Dianchi has been significantly reduced [61]. During the “13th Five-Year
Plan period”, the water quality of Lake Dianchi improved as a whole, and cyanobacteria
blooms have continued to improve. However, due to temporal and spatial instability,
non-point source pollution, internal source release and soil erosion have replaced point
source pollution and become the main loading sources [43]. Therefore, river loading has
remained at a low level after 2016, but the improvement effect of lake water quality has
shown partial hysteresis.

4.3. Influence of Internal Pollution on Waihai Water Quality and Control Measures

Pearson’s test results showed that there are other factors besides river loading affecting
water quality at Waihai. According to Table 6, internal pollution was found to account for
7.6% and 8.9% of the total TN and TP loadings, respectively, suggesting that the role of
internal pollution on the water quality of Lake Dianchi should not be ignored. Sediment
nutrients can enter shallow lakes through not only molecular diffusion or concentration
gradient diffusion (static diffusion) but also sediment resuspension and changes in con-
ditions at the water–sediment interface; turbulent diffusion causes much higher internal
release than static diffusion [73]. Zhu et al. concluded that a wind speed of above 8 m/s
may cause a large amount of suspension of sediments in Lake Taihu, and the concentration
of dissolved TP may increase up to 100% during strong winds [74]. Luo et al. used field
investigations combined with data and mathematical interpolation methods to calculate
that, when the wind speed reached 20 m/s, it could result in the suspension of about
2.75 × 108 m3 of sediment in the upper 30 cm of Lake Taihu [75]. Zhang simulated water
body changes in the middle of Lake Chaohu during the sediment resuspension period
through laboratory experiments and concluded that the different intensities and durations
of external disturbance directly affected the suspended state of sediment particles [76].
Lake Dianchi is a shallow lake with a low water-exchange rate, and a large number of
pollutants are deposited at the bottom. When external loading is controlled, sediments
in the lake will continue to affect the water quality [77]. In 2012, 6800 t of TN from the
basin’s non-point source was loaded into Lake Dianchi, and sediment n comprised nearly
67.5% of non-point pollution loading, showing that sediments of internal pollution are
very serious [78], as well as leading to external loading reduction benefits that can only be
offset to some extent with truncated external loading measures to reduce the trophic level
of Lake Dianchi in a short time. The bottom mud of Lake Dianchi contains a variety of
humus and organic matter, so Kunming enacted the measures of “environmental protection
dredging” and complete reduction through harmless resource treatment of the bottom mud.
By 2018, Kunming had cleared 15.17 × 106 m3 of sediment and used the dredged sediment
for ecological basement restoration and ecological forest construction in the low-land area
around Lake Dianchi [60,79].

Over the years, local government and civil society have invested huge amounts of
resources into river management and ecological restoration, but the restoration of Lake
Dianchi has always been a long-term and systematic process. In this study, the amount of
inflow volume entering Waihai was analyzed through model inversion. There are many
tiny ditches around Lake Dianchi that are not included in the monitoring range, and
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the accumulation of pollutants in these ditches represents external loadings that cannot
be ignored. Therefore, in the next stage of research, a circumnavigation survey of Lake
Dianchi will be attempted, small intakes, including ditches, will be counted and water
quality monitoring will be regularly carried out to obtain more accurate data regarding
inflow volume and external loading.

5. Conclusions

1. The DYRESM can effectively capture extreme changes in water levels with an RMSE
value of 0.0072 m between simulated and measured water levels and an NSE as high
as 0.99.

2. During the period of 2007–2019, the multi-year average annual water inflow to Waihai
was about 6.69 × 108 m3, and there is a good fit between water inflow and precipitation
in Kunming on an annual scale (r = 0.74), with a higher fitting coefficient between
intra-annual inflow and precipitation (r = 0.98).

3. The external loading by rivers has decreased year by year, although river loading
remained at a high level from 2007 to 2010. In 2011, the TN loading dropped to 2616
t and the TP loading dropped to 107 t due to a drought in the basin, and the river
loading in subsequent years basically remained at a low level.

4. River loading was found to have clear intra-annual variation characteristics, and the
contributions of TN and TP river loadings in the rainy season were 63% and 67% of
the annual amount, respectively, indicating that river management should focus more
on loading reduction in the rainy season.

5. Panlong River, Daqing River, Jinjia River, Xinbaoxiang River, Cailian River and Hai
River are the focuses of treatment, and the sum of the loading of these rivers was
found to account for 81.3% (TN) and 80.3% (TP) of the total river input.

6. Pearson’s analysis results showed that there was no significant correlation between
annual external loading and Waihai water quality, indicating the existence of other
factors that influence water quality besides source input.

7. The contribution rates of internal pollution to the total amount of TN and TP were
found to be 7.6% and 8.9%, respectively, indicating that the internal control of Lake
Dianchi should not be ignored.
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Abstract: This research addresses the separate and combined impacts of changes in climate and land
use/land cover on the hydrological processes and sediment yield in the Xin’anjiang Reservoir Basin
(XRB) in the southeast of China by using the soil and water assessment tool (SWAT) hydrological
model in combination with the downscaled general circulation model (GCM) projection outputs. The
SWAT model was run under a variety of prescribed scenarios including three climate changes, two
land use changes, and three combined changes for the future period (2068–2100). The uncertainty
and attribution of the sediment yield variations to the climate and land use/land cover changes at the
monthly and annual scale were analyzed. The responses of the sediment yield to changes in climate
and land use/land cover were considered. The results showed that all scenarios of climate changes,
land use/land cover alterations, and combined changes projected an increase in sediment yield in
the basin. Under three representative concentration pathways (RCP), climate change significantly
increased the annual sediment yield (by 41.03–54.88%), and deforestation may also increase the
annual sediment yield (by 1.1–1.2%) in the future. The comprehensive influence of changes in climate
and land use/land cover on sediment yield was 97.33–98.05% (attributed to climate change) and
1.95–2.67% (attributed to land use/land cover change) at the annual scale, respectively. This means
that during the 2068–2100 period, climate change will exert a much larger influence on the sediment
yield than land use/land cover alteration in XRB if the future land use/land cover remains unchanged
after 2015. Moreover, climate change impacts alone on the spatial distribution of sediment yield
alterations are projected consistently with those of changes in the precipitation and water yield. At
the intra-annual scale, the mean monthly transported sediment exhibits a significant increase in
March–May, but a slight decrease in June–August in the future. Therefore, the adaptation to climate
change and land use/land cover change should be considered when planning and managing water
environmental resources of the reservoirs and catchments.

Keywords: climate change; land use/land cover change; sediment response; multiple scenarios; modeling

1. Introduction

Catchment sediment yield is mainly controlled by soil properties, topography, climate
condition, and land use/land cover types [1–4]. In contrast, the soil properties and topogra-
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phy are relatively stable, while climate and land use/land cover are variable over a specific
time period [5,6]. Climate change, mainly in the form of temperature and precipitation, has
a direct impact on runoff and an indirect impact on sediment by changing the process of
the water cycle in the basin, and further influences the phytoplankton community [7–9].
Land use/land cover changes caused by anthropogenic activities may re-distribute the
rainfall-runoff by changing the processes of infiltration, evapotranspiration, and ground-
water recharge, which has a profound impact on the water and sediment production
mechanism [10,11].

The impacts of climate change on streamflow and sediment yield have been investi-
gated in a number of studies [12–18]. A previous study indicated that the runoff increased
by 1.3% and the sediment yield increased by 2% for every 1% increase in rainfall in eight
large Chinese catchments [12]. Similarly, a preliminary study of a watershed in Spain
showed that higher precipitation is usually associated with more runoff and soil loss [13].
This is not only because precipitation increases soil moisture, but also because it saturates
soil moisture or produces soil crusts [14]. In contrast, Zhao et al. showed that the reduction
in precipitation was one of the main factors, leading to the sharp reduction in the discharge
and sediment yield in the middle reaches of the Yellow River [15]. However, the impacts
of precipitation change on soil erosion are complicated and are not always negative. In-
creasing rainfall may increase the plant biomass and vegetation canopy, thus reducing
the runoff and erosion [16]. In addition to precipitation, temperature is also one of the
important meteorological factors affecting the sediment of the basin [17,18]. For example,
Syvitski divided the watersheds into climatic zones according to different temperatures,
and found that the average temperature of the watershed has an important impact on
sediment transport [18].

On the other hand, the joint effects of climate variability and vegetation change
on hydrological process have been a key research point. Such synergistic influences on
hydrological processes and sediment yields are complex [19]. Some studies have found
that sediment alteration was dominantly influenced by land use/land cover changes,
while some showed that climate variability was a more important impact factor [20]. It is
essential to accurately distinguish and quantify the effects of climate variability/climate
change on streamflow and sediment for catchment and reservoir management in the future
under different conditions [21–24]. Compared to the influence on streamflow, few works
have concerned the sediment spatial and temporal changes in response to combining the
variations in the land use/land cover with climate change for an uncertain future. Therefore,
a thorough study on the impacts of multiple climatic conditions and land use/land cover
scenarios on sediment is needed [25].

An IPCC Special Report stated that a global warming of 1.5 ◦C above pre-industrial
levels has significantly affected the hydrological process including the quality and quantity
of water resources in many regions [26,27]. Until now, numerous studies on assessing the
response of hydrological circles to climate-driven force have widely applied the general
circulation model (GCM) projections of the coupled model inter-comparison project phase
5 (CMIP5) [4,28]. A tentative conclusion is that RCP2.6, RCP4.5, RCP6.0, and RCP 8.5 are
responsible for a 16.3%, 14.3%, 36.7%, and 71.4% increase in future streamflow, and a 16.5%,
32.4%, 81.8%, and 170% increase in future sediment yield, respectively, in northeastern
China [4]. An increase in monthly streamflow (maximum increases by 52–170% under
different RCP scenarios) was reported, along with a monthly average decrease in sediment
concentrations of 10% projected in southwest Iran in the future [28]. Although GCM
outputs have been extensively employed to study the impacts of climate change on the
hydrological process in many locations, it is problematic to use GCM outputs directly in
hydrological models at regional and local scales because of the low resolution of GCM
projections [29]. Therefore, downscaling methods are often applied to obtain regional
scale analysis of meteorological variables from coarse-scale GCM outcomes to allow the
conclusions on streamflow and sediment regime changes to be more reliable [30].
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The Xin’anjiang Reservoir, which is the largest reservoir in the Yangtze River Delta in
China, plays quite an important role in the local water supply, fishery, water transportation,
and crop irrigation [31]. The Xin’anjiang Reservoir is famous for its excellent water quality;
however, the pressure of water environment protection in the reservoir is increasing year
by year [32]. The Jiekou section, located in the estuary area of the Xin’anjiang Reservoir, in
particular, is facing the problem of a decrease in water transparency and the risk of algal
blooms [33]. This might be related to the climate variability and land use/land cover change
in the basin. Previous studies have noted that the annual streamflow through the Jiekou
section, accounting for over 60% of the total inflows of the Xin’anjiang Reservoir, showed an
obvious increasing trend in the last few decades caused by rainstorms [34,35]. However, few
studies have attempted to identify how climate variability and land use/land cover change
affect sediment yield. In this study, we focused on identifying and quantifying the effects of
climate change and land use/land cover change on the sediment yield using a hydrological
modeling approach. With the help of our research results, a deeper understanding of
sediment response to climate-driven forcing and land use/land cover changes in XRB
would be beneficial for water quality protection and bloom prevention of the reservoir in
the East Asian monsoonal region.

2. Data and Methods

2.1. Study Area

The Xin’anjiang River drains into the Xin’anjiang Reservoir, Chun’an, Zhejiang Province,
southeast China, situated within a watershed that spans an area of roughly 10,442 km2

(Figure 1) [36]. The reservoir has a surface area of 573 km2 and a water storage capacity of
178.4 × 108 m3 when the normal water storage level is 108 m asl [37]. The longest path of
the river is over 370 km, and two river gauging stations are located at Tunxi and Yuliang,
respectively. The basin is dominated by a typical subtropical humid monsoon climate and
enters the East Asian rainy season, also known as the plum rain, in June and July every
year [38]. For the last 50 years, the mean annual precipitation has been about 1621 mm, the
mean annual runoff is about 1018 mm, and the mean annual air temperature has ranged
from 16.7 ◦C to 18.9 ◦C. Approximately 42% of the annual precipitation is contributed by
monsoons (June–September), and the maximum humidity is recorded as 100% in June
and July.

Jiekou is the main entrance for the streamflow and sediment of the Xin’anjiang River
to Xin’anjiang Reservoir by controlling around 60% of the area of the whole basin [39]. The
elevation of the basin varies from −1 m to 1764 m from the mean sea level. The terrain is
complex and diverse with mainly a geomorphic type of mountains. The zonal soil types
of the basin are mainly red soil, yellow soil, and yellow brown soil, which are distributed
vertically according to the altitude. The area is covered with dense forests, which is the
most widely distributed land-use type. The cultivated land is concentrated at the periphery
of urban land [40].

2.2. Data Description
2.2.1. Hydrometeorological Data

Daily meteorological data recorded including air temperature (◦C), precipitation (mm),
relative humidity (%), solar radiation (MJ/m2/day), and wind speed (m/s) from 1973 to
2018 at two meteorological stations (Figure 1) were downloaded from the website of the
National Meteorological Information Center (China Meteorological Administration, CMA)
(http://data.cma.cn/en (accessed on 1 January 2019)) [41]. The observed daily streamflow
data for the period of 2001–2014 at two hydrological stations (Figure 1) were collected
from the Hydrological Data Yearbook published by the Ministry of Water Resources of the
People’s Republic of China (MWR) [42]. The mean sediment transport rate investigated
from 2006 to 2014 was obtained from the same data source. The time series above was
checked for outliers and errors in order to be used in hydrological modeling.
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Figure 1. The location of the Xin’anjiang Reservoir Basin, China.

2.2.2. Geospatial Data

The basic geospatial datasets required to construct the model include a digital elevation
model (DEM), a soil classification map, and land use information. The DEM map with a
90 m spatial resolution used for watershed delineation and sub-basin discretization was
downloaded by the Geospatial Data Cloud of China. The 1 km resolution soil map was
originally derived from the Harmonized World Soil Database (HWSD), which is produced
by the Food and Agriculture Organization of the United Nations [43]. The soil data over
China were derived from the results of the Second National Land Survey organized by
China’s State Council from 2007 to 2009. This was produced by the Institute of Soil Science,
Chinese Academy of Sciences.

To estimate the effect of land use/land cover change, two land use/land cover maps
with a spatial resolution of 30 m for XRB were interpreted from Landsat imagery in
1987 and 2015, respectively. The cloud was masked based on the pixel_qa band of the
Landsat surface reflectance data (https://developpers.google.com/earth-engine/datasets/
catalog/LANDSAT_LC08_C01_T1_SR (accessed on 1 May 2020)) after the images were
obtained. A median imagery was output by calculating the median value at each pixel
of all images in one collection (https://developers.google.com/earth-engine/reducers_
image_collection (accessed on 1 May 2020)). For each median imagery, the land use/land
cover information was extracted with a support vector machine classification algorithm in
the ENVI (version 5.3). The land use/land cover here is classified into five classes for the
SWAT model, namely forest, water body, cultivated land, urban land, and bare land [44].

2.2.3. RCP Data

Representative concentration pathways (RCPs) including a stringent mitigation sce-
nario (RCP2.6), an intermediate scenario (RCP4.5), and one scenario with very high GHG
emissions (RCP8.5) [45] were used to estimate the impacts of climate change. Eighteen
datasets obtained from a coupled model inter-comparison project phase 5 (CMIP5) GCM
for XRB were downloaded from the website of the World Climate Research Program
(https://esgf-node.llnl.gov/search/cmip5/ (accessed on 1 February 2020)). The Taylor
diagram method was adopted to assess the performance of datasets from CMIP5 GCMs
in simulating the historical meteorological elements [46]. Four assessment criteria—the
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correlation coefficient (r), root mean square error (RMSE), standard deviation of observed
values (σO), and standard deviation of simulated values (σS)—were used to identify the
most applicable dataset. More detailed information about the Taylor diagram method can
be found in Taylor [46].

The selected CMIP5 datasets comprise three meteorological elements (daily air tem-
perature and precipitation) for a historical period (1901–2005) and a projection period
(2006–2100, RCP2.6, RCP4.5, and RCP8.5 scenarios). The original resolution data were
downscaled into 0.5◦ × 0.5◦ by the China Meteorological Data Service Center (CMDC)
using a statistical downscaling method.

2.3. Methodology

An integrated framework was designed to evaluate the effect of climate change and
land use/land cover change on the streamflow and sediment yield using XRB as a case
study. To set up the structure of this approach, we (1) assessed the accuracy and availability
of the downscaled GCM data, and the interpreted land use/land cover map from remote
sensing imagery; (2) designed individual and combined climate and land use/land cover
change scenarios; (3) modeled streamflow and sediment yield response under uncertainty;
and (4) evaluated the streamflow and sediment variation under climate change and land
use/land cover change. The simulation baseline is in the period of 1973–2005 and the future
is in the period of 2068–2100.

2.3.1. Climate Change and Land Use/Land Cover Change Scenarios

Three RCP scenarios were selected in this study to assess how different emissions
impact streamflow and sediment yield, namely, RCP2.6, RCP4.5, and RCP8.5. These three
scenarios represent the total radiative force in 2100 relative to pre-industrial values, which
are +2.6, +4.5 and +8.5 W/m2, respectively. The calibrated SWAT model was used to
simulate the following eight scenarios: SNB, SN2.6, SN4.5, SN8.5, SNLC

B , SNLC
2.6 , SNLC

4.5 , and
SNLC

8.5 , respectively, as listed in Table 1. The SNLC
B , SNLC

2.6 , SNLC
4.5 , and SNLC

8.5 were essentially
the SNB, SN2.6, SN4.5, and SN8.5 scenarios with the addition of the land use/land cover
change. We present the land utilization condition in 1987 as the baseline of the land
use/cover, based on assuming that there were no significant changes in the land use/land
cover during the baseline period (1973–2005). Similarly, we used the land use/land cover
map in 2015 as the representative land use/land cover in the future period (2068–2100). We
assumed that there would be no significant changes in the land use/land cover between
the future period (2068–2100) and that in 2015. More details on our scenarios can be found
in Table 1.

Table 1. The scenario analysis for characterizing the effects of climate change and land use/land
cover change on the streamflow and sediment.

Scenario Simulation Time Land Use/Cover Climate Description

SNB 1973–2005 LULC1987 History Baseline

SN2.6 2068–2100 LULC1987 RCP2.6 With a stringent mitigation scenario and no
land use/land cover change

SN4.5 2068–2100 LULC1987 RCP4.5 With an intermediate scenario and no land
use/land cover change

SN8.5 2068–2100 LULC1987 RCP8.5 With a very high greenhouse gas emission
scenario and no land use/land cover change

SNLC
B 1973–2005 LULC2015 History With a land use/land cover change and no

climate change

SNLC
2.6 2068–2100 LULC2015 RCP2.6 With land use/land cover change and a

stringent mitigation scenario

SNLC
4.5 2068–2100 LULC2015 RCP4.5 With land use/land cover change and

intermediate scenario

SNLC
8.5 2068–2100 LULC2015 RCP8.5 With land use/land cover change and a very

high greenhouse gas emission scenario
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2.3.2. SWAT Hydrological Model

The SWAT (Soil & Water Assessment Tool) model developed by the USDA (the United
States Department of Agriculture) is a semi-distributed, process-based, continuous, daily
time-step hydrological model. It has been widely applied to represent the main hydrological
processes within small and large basins [11,25,47]. In this study, ArcSWAT (an ArcGIS-
ArcView extension and interface for SWAT) running on the ArcGIS (version 10.2) platform
as an interface was used to assess the streamflow and sediment yield. Several sub-basins
and multiple HRUs (Hydrologic Respond Units) are divided according to the land use
types, soil classes, and slopes. Erosion caused by rainfall and runoff is calculated with
the Modified Universal Soil Loss Equation (MULSE) in the SWAT model [48]. Parameter
sensitivity analysis, calibration, and validation are carried out by SWAT-CUP (SWAT
Calibration and Uncertainty Programs), which is an automatic sensitivity analysis tool in
the SWAT model [49–51]. Sensitivity analysis is the procedure used to identify the most
influential parameters for calibration using SUFI-2 (the global sensitivity analysis of the
sequential uncertainty fitting) algorithm. In order to evaluate the performance of the SWAT
model in streamflow and sediment yields simulations, the Nash–Sutcliffe coefficient of
efficiency (NSE) and coefficient of determination (r2) between the observed and estimated
values were calculated by [52]:

NSE = 1 − ∑n
i=1(Oi − Si)

2

∑n
i=1

(
Oi − O

)2 (1)

r2 =

[
∑n

i=1
(
Oi − O

)(
Si − S

)]2

∑n
i=1

(
Oi − O

)2
∑n

i=1
(
Si − S

)2 (2)

where Oi and Si are the observed and simulated hydrological parameters and O and S
are the mean of observed and simulated values, respectively. The criterion considers
the model performance to be: very good if 0.75 ≤ NSE < 1.00 and r2 = 1.00; good
if 0.65 < NSE ≤ 0.75 and 0.80 ≤ r2 < 1.00; satisfactory if 0.40 < NSE ≤ 0.65 and
0.50 ≤ r2 < 0.80; unsatisfactory if NSE ≤ 0.40 and r2 < 0.50 [53–55].

2.3.3. Sediment Response to Changes of Climate and Land Use/Land Cover

For a given catchment, the total change in the mean annual sediment between indepen-
dent periods with different climatic RCP scenarios and land use/land cover characteristics
can be estimated as:

ΔDLC
RCPj = ΔDRCPj + ΔDLCj, j = 2.6, 4.5 and 8.5 (3)

where ΔDLC
RCPj indicates the total change in the mean annual sediment between the future

and baseline and ΔDRCPj is the change in the mean annual sediment because of the climate
change (different RCP scenarios, j = 2.6, 4.5 and 8.5, respectively) between the two periods.
We assumed that there were almost no other regulations or diversions except for land
use/land cover change in the catchment. ΔDLCj indicates the change in the mean annual
sediment as a result of change in the land use/land cover change between the two periods.

To separate the sediment yield impacts caused by climate variability and land use/land
cover change, an effective method used to quantify ΔDRCPj and ΔDLC can be seen in the
following expressions [56]:

ΔDRCPj =

(
DRCPj − DB

)
+

(
DLC

RCPj − DLC
)

N
, N = 2, j = 2.6, 4.5 and 8.5 (4)

ΔDLCj =

(
DLC − DB

)
+

(
DLC

RCPj − DRCPj

)
N

, N = 2, j = 2.6, 4.5 and 8.5 (5)
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where DRCPj(j = 2.6, 4.5, and 8.5) are the mean annual sediment under the RCP2.6, RCP4.5,
and RCP8.5 scenarios, respectively, with the historical land use/land cover condition. DB
is the mean annual sediment of the baseline. DLC

RCPj is the mean annual sediment under

different RCP scenarios after catchment land use/land cover change. DLC indicates the
mean annual sediment caused by land use/land cover change without climate variability.
The climate condition when simulating DLC was as the same as simulating DB.

As a result of the above, the difference in sediment between RCP scenarios (DRCPj) and
the baseline (DB) can be considered as the impacts of RCP scenarios on sediment change
(1987 land use/land cover condition). Similarly, the difference in sediment between DLC

RCPj

and DLC can be considered as the impacts of RCP scenarios on sediment change (2015 land
use/land cover condition). On the other hand, the effects of land use/land cover change on
sediment can be determined by applying the difference between DLC and DB or between
DLC

RCPj and DRCPj. The difference between sediment in different RCP scenarios after land
use/land cover change (2015 land use/land cover condition) and the baseline represents
the combined effects of climate variability and land use/land cover change. The combined
effects can also be described as:

ΔDLC
RCPj = DLC

RCPj − DB, j = 2.6, 4.5 and 8.5 (6)

Therefore, the percentage contributions of different RCP scenarios (αRCPj) and land
use/land cover change (αLC) to the variations in sediment can be expressed by:

αRCPj =
ΔDRCPj

ΔDLC
RCPj

× 100%, j = 2.6, 4.5 and 8.5 (7)

αLCj =
ΔDLCj

ΔDLC
RCPj

× 100%, j = 2.6, 4.5 and 8.5 (8)

3. Results and Discussion

3.1. Climate Change Analysis under Varying Scenarios

Monthly meteorological data from CMA were used to assess the performance of GCM
outputs in climate in XRB. The arithmetic average value of the records of Tunxi Station
and Chun’an Station represented the average value of the basin. Eighteen meteorological
datasets including three elements (maximum temperature, minimum temperature, and
precipitation) from downscaled CMIP5 GCMs were used to plot a Taylor diagram against
the CMA data (see Figure 2). For the monthly minimum temperature, r values between
the CMA data and eighteen GCM outputs were 0.94–0.97, and all RMSE values were less
than 2.5 ◦C. Meanwhile, the σS of all GCM monthly minimum temperatures and σO were
very close. Hence, all eighteen GCMs were suitable to simulate the historical data of the
monthly minimum temperature (1973–2005). Eleven datasets outperformed the other GCM
outputs for the monthly maximum temperature with higher r and lower RMSE (Figure 2).
It can be seen from the Taylor diagram that the simulation results of all eighteen GCMs on
monthly precipitation were not as good as those on monthly temperature. The highest r for
precipitation was around 0.38, and the lowest RMSE was around 8.0 mm. Taken together,
a certain dataset, namely, CSIRO-Mk3-6-0, was selected to evaluate the effect of climate
change between the future and historical periods due to its best performance in climate
simulation in the basin.

Figure 3a,c,e shows the time series of the downscaled CSIRO-Mk3-6-0 annual maxi-
mum and minimum temperature averaged over XRB in the baseline period (1973–2005)
and 2006–2100. The mean annual maximum and minimum temperatures of the basin at the
baseline were 20.79 ◦C and 11.43 ◦C, respectively, while those in the last 33 years of the 21st
century (the simulation period, 2068–2100) will be increased dramatically by 1.91–5.11 ◦C
and 1.75–4.46 ◦C relative to that at the baseline. The mean monthly maximum temperature
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and minimum temperature from 2068 to 2100 under RCP2.6, RCP4.5, and RCP8.5 will be
increased by 1.36–7.14 ◦C and 0.72–7.18 ◦C relative to that at the baseline. XRB has four
distinctive seasons, with the highest increases in seasonal maximum and the minimum
temperature of 2.46–5.65 ◦C and 2.59–5.97 ◦C in fall (September–November) under different
RCPs, respectively.

Figure 2. The Taylor diagram of the monthly maximum temperature, minimum temperature, and
precipitation simulated by the 18 GCM models.

The basin has a subtropical monsoon climate, and the precipitation is significantly
affected by monsoon circulation. Figure 3e shows that the mean annual precipitation in
1973–2005 was 1662.48 mm, while that in 2068–2100 increased significantly by 97.69–285.72 mm
relative to that in 1973–2005 under RCP2.6, RCP4.5, and RCP8.5. The temporal distribution
of precipitation in XRB is nonuniform. The precipitation from spring (March–May) and
summer (June–August) accounted for 36.78% and 35.36% of the total precipitation in a
year, respectively. The precipitation was low in the fall and winter seasons from September
to February of the next year, which accounted for 27.86% of the total precipitation in a
year. In 2068–2100, no significant changes in precipitation were observed in the spring, fall,
and winter seasons. There was abundant precipitation in summer (June–August), with an
increase of 4.79–9.35% under three RCP scenarios relative to the same period in 1973–2005.
The most obvious increase in precipitation occurred in June and accounted for 19.45–35.99%
of the same month in 1973–2005 under different RCPs.
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Figure 3. The time series of annual maximum temperature (a), annual minimum temperature (c),
annual precipitation (e), monthly maximum temperature (b), monthly minimum temperature (d), and
monthly precipitation (f) averaged over XRB projected by downscaled CMIP5 GCM (CSIRO-Mk3-6-0)
in 2006–2100 under RCP2.6, RCP4.5 and RCP8.5, respectively. The solid lines and histograms indicate
CSIRO-Mk3-6-0 outputs of different RCPs, the dotted line is the mean values of annual meteorological
elements of the basin in baseline (1973–2005). The dashed line with circles indicates the mean values
of monthly meteorological elements.

3.2. Land Use/Land Cover Change Analysis under Varying Scenarios

The land use/land cover classification map of 1987 and 2015 were interpreted from
Landsat imagery (see Figure 4). Take the patterns of land use in 1987 as the representative
underlying surface type in the baseline period, while the patterns of land use in 2015
represent the underlying surface type condition in the future. It is assumed that there will
be no significant changes in land use/land cover from 2015 to the end of the 21st century.
By comparing the land use/land cover classification maps of the XRB, it was found that
the spatial distribution of land use/land cover in the two periods were different, especially
the type of urban area. The urban area increased significantly due to deforestation and the
conversion of cultivated land. The urban area in 2015 and in the future will be increased
by 547% relative to that at the baseline period. The forest and cultivated land areas in
2015 and the future will be decreased by 2.94% and 13.35% relative to that at the baseline
period, respectively.

3.3. Results of Sensitivity Analysis and Model Performance Assessment

Table 2 lists the results of the global sensitivity analysis by using SWAT-CUP, based
on the sensitivity ranking of the parameters. For the simulated streamflow, CN2, CH_K2,
SOL_Z, SURLAG, ESCO, GW_DELAY, GWQMN, SOL_K, CANMX, SOL_AWC, ALPHA_BF,
and CH_N2 were the first 12 high sensitivity parameters, while USLE_P, SLSUBBSN,
BIOMIX, SPEXP, and SPCON were the top five high-sensitivity parameters for the simu-
lated sediments. In the streamflow parameters, the SCS runoff curve number ‘CN2’ ranked
first, much higher than the others. For a given catchment, CN2 controls the main runoff
confluence process and represents the confluence capacity of different underlying surfaces.
In the sediment parameters, the USLE (Universal Soil Loss Equation) equation support
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practice factor ‘USLE_P’ is the most sensitive, which indicates the ratio of soil loss under soil
and water conservation measures to soil loss under corresponding slope conditions. Table 2
shows that parameters representing the surface runoff, soil properties, groundwater return
flow, ground water, and land cover management are sensitive. Consequently, it is important
for the streamflow and sediment simulation to accurately estimate these parameters.

Figure 4. The land use/land cover classification maps in 1987 and 2015 under the SN and SNLC

scenarios and the proportion of area of each land use/land cover type. The land use/land cover
in 1987 and 2015 represent the land use/land cover in the simulation baseline period (1973–2005)
and the future (2068–2100), respectively. WATR indicates water body, FRST indicates forest, URBN
indicates urban land, BARR indicates bare land, AGRL indicates cultivated land.

The SWAT model was calibrated and validated on a monthly scale in 2001–2010 and
2011–2014 for the streamflow for two stations (Tunxi and Yuliang station), respectively. The
results are shown in Figure 5 and Table 3. For Tunxi Station, the observed and simulated
streamflow fit well with the values of NSE = 0.83 and r2 = 0.85 for the calibration period
and NSE = 0.89 and r2 = 0.90 for the validation period. For Yuliang Station, the observed
and simulated streamflow were in satisfactory agreement with values of NSE = 0.64 and
r2 = 0.69 for the calibration period, and NSE = 0.73 and r2 = 0.88 for the validation period.
Based on the whole period of sediment monitoring data (2006–2014), the model was
calibrated and validated on a monthly scale in 2006–2012 and 2013–2014 for the sediment
for the same stations, respectively (see Figure 6 and Table 3). NSE and r2 between the
observed and simulated sediment transport rate were larger than 0.60 and 0.62 for the
calibration period for two stations. The results of the model validation at a monthly time
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step were good (NSE = 0.74 and r2 = 0.81) for Tunxi Station and satisfactory (NSE = 0.47
and r2 = 0.55) for Yuliang Station. The hydrological model captured the low and some
of the peak values of the flow and sediment very well. Overall, the SWAT model was
mainly satisfied with the observed data in the XRB. That is to say, it is acceptable to use the
calibrated parameters incorporated with the SWAT database for further simulations.

Table 2. The results of the sensitivity analysis and calibration for the SWAT model.

Parameter Definition Sensitivity Analysis Calibration

t-Statistics p-Value Min Max Optimal

Streamflow

CN2 * SCS runoff curve number for moisture
condition II −35.47 0.00 −0.5 0.5 0.047

CH_K2 Effective hydraulic conductivity in main
channel alluvium (mm/h) −2.64 0.01 −0.01 500 378.873

SOL_Z * Depth to bottom of first soil layer (mm) 2.57 0.01 −0.5 0.5 0.148
SURLAG Surface runoff lag time (days) −0.96 0.34 0.05 24 17.324
ESCO Soil evaporation compensation factor 0.64 0.53 0 1 0.347
GW_DELAY Groundwater delay (days) 0.58 0.56 30 450 62.025

GWQMN Threshold depth of water in the shallow
aquifer for return flow to occur (mm H2O) −0.50 0.62 0 5000 46.250

SOL_K * Saturated hydraulic conductivity of first soil
layer (mm/h) 0.39 0.70 −0.8 0.8 0.638

CANMX Maximum canopy storage (mm H2O) 0.29 0.77 0 100 90.425

SOL_AWC * Available water capacity of first soil
layer (mm/mm) 0.19 0.85 −0.5 0.5 −0.251

ALPHA_BF Baseflow alpha factor (days) −0.14 0.89 0 1 0.768
CH_N2 Manning’s “n” value for the main channel −0.01 0.99 −0.01 0.3 0.295
Sediment
USLE_P USLE equation support practice factor −39.88 0.00 0 1 0.020
SLSUBBSN * Average slope length (m) −12.38 0.00 −0.9 0.9 −0.498
BIOMIX Biological mixing efficiency −6.52 0.00 0 1 0.051

SPEXP Exponent parameter for calculating sediment
re-entrained in channel sediment routing 1.07 0.29 1 1.5 1.429

SPCON
Linear parameter for calculating the
maximum amount of sediment that can be
re-entrained during channel sediment routing

0.77 0.44 0.0001 0.01 0.006

Note: * The asterisk means the existing parameter value is multiplied by (1+ a given value).

This study used the SUFI-2 approach to analyze the sediment uncertainty, mainly
resulting from the uncertainties in the CMIP5 GCM projections and land use/land cover
information. In SUFI-2, the parameter uncertainty, described by a multivariate uniform
distribution in a parameter hypercube, accounted for all sources of uncertainties in the hy-
drological model. The propagation of parameter uncertainty led to the output uncertainty,
which was quantified by the 95% prediction uncertainty (95PPU) band. Latin hypercube
sampling was used to calculate the 95PPU at the 2.5% and 97.5% levels of the cumulative
distribution function of the output variables [48]. Two indices, the p-factor (the percent
of observations bracketed by the 95PPU) and r-factor (the relative width of 95% proba-
bility band), were calculated to evaluate the goodness of calibration uncertainty on the
basis of the p-factor approaching 100% and the r-factor approaching 1. For streamflow,
it is considered to be satisfactory if the p-factor >70% while having an r-factor of around
1 [47,48]. For the sediment, a smaller p-factor and a larger r-factor could be acceptable
(SWAT-CUP user-manual). In this study, the 95PPU of streamflow brackets was 88% of the
observations for Tunxi Station and 76% of the observations for Yuliang Station, while the
r-factor equaled 1.01 and 1.25, respectively. The uncertainty analysis results of the sediment
showed that the 95PPU bracketed 51% and 39% of the observations for Tunxi and Yuliang
Stations, respectively. Meanwhile, the r-factor equaled 0.62 for Tunxi and 0.51 for Yuliang,
which are very close to a suggested value of 1.
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Figure 5. A comparison between the observed and modeled monthly streamflow in XRB during
the calibration (2001–2010) and validation (2011–2014) periods. (a) The comparison result for Tunxi
Station; (b) the comparison result for Yuliang Station.

Table 3. The SWAT performance during the calibration and validation periods.

Variables Stations Periods Monthly Average NSE r2 Classes

Observed Simulated

Streamflow
(m3/s)

Tunxi Calibration 78.3 66.6 0.83 0.85 Very good/Good
Validation 108.9 114.7 0.89 0.90 Very good/Good

Yuliang Calibration 35.7 38.8 0.64 0.69 Satisfactory/Satisfactory
Validation 46.2 67.7 0.73 0.88 Good/Good

Sediment
(thousand tons)

Tunxi Calibration 38.9 43.3 0.70 0.71 Good/Satisfactory
Validation 38.1 54.0 0.74 0.81 Good/Good

Yuliang Calibration 16.0 24.1 0.60 0.62 Satisfactory/Satisfactory
Validation 28.0 29.8 0.47 0.55 Satisfactory/Satisfactory

3.4. Separating Impacts of Climate Variability and Land Use/Land Cover Change on Sediment

In the section of the estuary into the Xin’anjiang Reservoir, Jiekou, the mean annual
transported sediment was 48.93 × 104 tons/yr at the baseline (1973–2005). In the future pe-
riod (2068–2100), the mean annual transported sediment will be 69.53–76.31 × 104 tons/yr,
with a variation of 42.10–55.97% relative to that in the baseline period (combining effects
of climate change and land use/land cover change). We quantified the contribution of
climate change and land use/land cover change impacting the transported sediment at the
mean annual scale by using the framework described in Section 2.3.3. The results showed
that the joint climate and land use/land cover changes caused an increase in the mean
annual transported sediment of 20.60–27.39 × 104 tons/yr (see Table 4). The mean annual
transported sediment is expected to increase under both the individual and combined
climate and land use/land cover change impacts. Changes in the mean annual transported
sediment will be mainly driven by climate change if the land use/land cover conditions in
the future are kept as in 2015. In this case, the land use/land cover change might weaken
the influence on sediment attributed to climate change. Specifically, the increases in the an-
nual transported sediment for the predication period (2068–2100) due to climate variability
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are 20.07–26.85 × 104 tons/yr, which represent a contribution of 97.45–98.05%, while the
land use/land cover change will lead to an increase in the annual transported sediment by
0.53–0.60 × 104 tons/yr, with a contribution ranging from 1.95% to 2.67%. RCP8.5 showed
smaller effects in increasing the influence on the sediment attributed to climate change than
RCP2.6 and RCP4.5. However, the results may be very different if the future land use/land
cover condition changes significantly compared with 2015.

Figure 6. The comparison between the observed and modeled monthly transported sediment in XRB
during the calibration (2006–2012) and validation (2013–2014) periods. (a) The comparison result for
Tunxi Station; (b) the comparison result for Yuliang Station.

Table 4. The results of separating the impacts of climate change and land use/land cover change on
the sediment in the XRB.

Scenarios ΔDRCPj(104 tons) ΔDLCj(104 tons) ΔDLC
RCPj(104 tons) αRCPj(%) αLCj(%)

RCP2.6 26.85 0.53 27.39 98.05 1.95
RCP4.5 20.07 0.53 20.60 97.45 2.55
RCP8.5 21.87 0.60 22.47 97.33 2.67

The spatial distribution of the sediment yield (sediment from the sub-basin that is
transported into the reach during the time step) in the baseline period (with the land
use/land cover map in 1987) and the relative variation ratio of the sediment yield under
RCP2.6, RCP4.5, and RCP8.5 are shown in Figure 7. The relative variation ratio is described
as a percentage of sediment yield in the baseline period. This means that we used the
difference between the modeling value of the sediment yield in different RCPs and at the
baseline as a numerator and the mean value of the sediment yield in the baseline period
as a denominator. In the baseline period, the sediment yields from each sub-basin were
0.02–2.07 tons/ha/yr, with an average value for the whole XRB of 0.75 tons/ha/yr. In
future scenarios (RCP2.6, RCP4.5 and RCP8.5), sediment yield had a strong response to cli-
mate change. Compared to the baseline period, our modeling analysis predicted dramatic
increases in the sediment yield for each sub-basin under all three RCPs, especially under
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RCP2.6 (with an increase of 19.20–85.70%) and RCP8.5 (with an increase of 34.18–68.05%).
The increases in future sediment yield under the scenario of RCP2.6 were mainly concen-
trated downstream of the basin and in the area around Xin’anjiang Reservoir, while those
under the scenario of RCP8.5 were mainly concentrated in the upstream of the basin. This
is mainly because the precipitation significantly increases from April to July, which is the
cultivation season of the main crops in the XRB, under the scenario of RCP8.5. The area
of cultivated land in the upstream sub-basins of Jiekou is relatively larger than that in the
downstream sub-basins. Consequently, frequent farming activities lead to an increase in the
sediment loss with rainfall runoff, increasing the sediment input of the reservoir. It can be
found that the spatial distribution of sediment yield change is consistent with that of water
yield change, which is the net amount of water that leaves the sub-basin and contributes to
streamflow in the reach.

Figure 7. The spatial characteristics of annual sediment yield in XRB. (a) The mean annual sediment
yield of every sub-basin in the baseline period. (b) The relative changes in the sediment yield between
RCP2.6 and baseline. (c) The relative changes in the sediment yield between RCP4.5 and the baseline.
(d) The relative changes in the sediment yield between RCP8.5 and the baseline.

Figure 8 shows the inter- and intra-annual variability in sediment transported with
water out of reach in Jiekou under the baseline period, RCP2.6, RCP4.5, and RCP8.5. It can
be seen that the inter-annual variation in the transported sediment in Jiekou is significant.
Compared to the baseline, the mean annual transported sediment under RCP2.6, RCP4.5,
and RCP8.5 increased dramatically by 40.91–54.75% when there was no land use/land
cover change from 1987 to the future. The largest increase in the mean annual transported
sediment is under scenario RCP2.6, followed by scenario RCP8.5. Through correlation
analysis, the annual transported sediment was positively correlated with rainfall (r is
0.72 in the baseline period; r is 0.58–0.73 under different RCPs) and runoff (r is 0.77 in
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baseline period; r is 0.65–0.91 under different RCPs), respectively, indicating that rainfall
and runoff have a great impact on sediment output. Meanwhile, the nonparametric Mann–
Kendall test [57,58], commonly used to assess the significance of trends in hydrology and
climatology, was used to detect trends in the time series of the annual transported sediment.
The annual transported sediment (2068–2100) exhibited a positive trend for the Jiekou site
at the α = 0.1 level of significance under RCP2.6 and RCP4.5, respectively, but no significant
trend under RCP8.5 (α = 0.1).

Figure 8. The inter- and intra-annual (monthly) variability in the sediment transported with water
out of reach at Jiekou (estuary of Xin’anjiang River) under different climate scenarios.

A non-uniform distribution of the mean monthly transported sediment in Jiekou
shows that the transported sediment in spring and summer accounted for 85.36% of the
total sediment output in 1973–2005 and 73.95–80.88% in 2068–2100. Under scenario RCP2.6,
the mean monthly transported sediment exhibited a significant increase in March–June,
but no obvious change in June–February of the following year. Under scenario RCP4.5, the
mean monthly transported sediment increased significantly in January–May but decreased
in June–August. Under scenario RCP8.5, there was a significant increase in February–May,
but a slight decrease in June–October. The intra-annual (monthly) distribution of the
transported sediment is consistent with that of rainfall. It is indicated that the transported
sediment is not only related to rainfall intensity, but also to the time distribution of rainfall.
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3.5. Implication for Water Quality Management of Reservoir/Lake

Influenced by the temperate monsoon climate, more than 60% of the annual precipita-
tion was recorded in April–August in XRB. According to the CMIP5 outputs, the monthly
precipitation increased significantly in June and the frequency of heavy rainfall events
increased in the flooding season under the three RCP scenarios. Correspondingly, the
reservoir’s inflow volume increased sharply after heavy rainfall. Compared with small
and medium rainfall, it is easier for heavy rainfall or rainstorms to cause massive soil
erosion. Seventeen HJ-1 A/B images during 10 heavy rainfall events from 2009 to 2014
were used to illustrate the relation of total suspended matter (TSM) concentration in the
estuary of the Xin’anjiang River to the amount of precipitation of the basin. A significant
positive correlation could be found between the TSM concentrations and rainfall amount
(p < 0.005) [41].

In the Xin’anjiang Reservoir, significant turbid density flow always follows heavy
rainfall events and rainstorms, which affects the reservoir water quality, especially in Jiekou
estuary. It was investigated that the first small peak flow in March 2018 in Jiekou caused
great changes in the water transparency and nutrient concentration, which indicates that
the first peak inflow discharge of each year has a great impact on the water quality of the
reservoir [33]. The particulate matter contributes to most nutrient inputs, which means
that heavy rainfall events could lead to very high nutrient input into the reservoir/lake
due to massive erosion from the upstream catchment and the area surrounding the reser-
voir/lake [59]. A large number of external nutrients carried by heavy rainfall (or rainstorms)
and floods as well as the sediment resuspension caused by flood scouring increase the
nutrient concentration of the water body in the reservoir/lake [60]. The degrees of eu-
trophication are aggravated correspondingly and suitable conditions for algae growth are
provided. Therefore, understanding the effects of rainfall increases in the flooding season
(especially the frequency of heavy rainfall events or rainstorm increases) on sediment yield
in the basin could help water managers to strengthen the management of heavy rainfall
runoff. It is also advantageous to the protection of water environment for reservoirs/lakes.

4. Conclusions

This study demonstrated that the sediment load and streamflow of XRB would sig-
nificantly increase in the future under the integrated impacts of climate change and land
use/land cover change. Sediment generated from the sub-basins above the Jiekou sec-
tion (transported into the reservoir) will increase by 42.10–55.97% in 2068–2100, relative
to that in the baseline period. Rainfall and temperature are the major climatic affecting
factors in these increases, and the land use/land cover change can be attributed to the
deforestation and urbanization during the simulating period. We found that more than
90% of these increases in sediment will be caused by climate change if the land use/land
cover situation in the future are not obviously changed. While climate change combined
with land use/land cover change in all three RCPs projected an increase in sediment, there
were disagreements on the spatiotemporal distribution of sediment yield under multiple
scenarios. In terms of space, the increases in the future sediment yield are mainly concen-
trated in the downstream of the basin under RCP2.6 but in the upstream of the basin under
RCP8.5. In terms of time, more precipitation and floods in the wet season may occur in
the future. Consequently, this will increase the sediment yield by 22.07–46.12% in the wet
season (March–August) with respect to the baseline scenario. Therefore, it is important to
emphasize increasing adaptation to climate change and land use/land cover change when
designing and managing water environmental resources of the reservoirs and catchments.

In summary, climate change and land use/land cover can exert a great influence
on the sediment yield in this humid and monsoonal climate region with separated or
combined effects. The projections of future changes in sediment yield suggest the great
challenge that lakes or reservoirs will face, because increasing sediment yield is associated
with the high input of nutrients, especially phosphorus, which is a critical element for
phytoplankton proliferation and algal bloom occurrence. Our findings can greatly benefit
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managers/decision-makers in improving their understanding of these effects on rainfall–
runoff processes and soil erosion as well as nutrient delivery in the catchment. Moreover, it
can help them to design and adopt reasonable measures for watershed management and
local governments regarding environmental conditions including climate change and land
use/land cover change.
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Abstract: Playas are ecologically and hydrologically important ephemeral wetlands found in arid
and semi-arid regions of the world. Urbanization, changes in agricultural land use and irrigation
practices, and climate change all threaten playas. While variations in playa inundation on the Great
Plains of North America have been previously analyzed by satellite using annual and decadal time
scales, no study to our knowledge has monitored the Great Plains playa inundation area using
sub-monthly time scales. Thousands of playas smaller than ~50 m in diameter, which were not
previously identified by the Landsat satellite platform, can now be captured by higher resolution
satellite data. In this preliminary study, we demonstrate monitoring spatial and temporal changes in
the playa water inundation area on sub-monthly times scales between September 2018 and February
2019 over a region in West Texas, USA, using 10 m spatial resolution imagery from the Sentinel-2A/B
satellites. We also demonstrate the feasibility and potential benefits of using the Sentinel-2A/B
satellite retrievals, in combination with precipitation and evaporation data, to monitor playas for
environmental, ecological, groundwater recharge, and hydrological applications.

Keywords: playa lakes; wetland; terminal basins; Sentinel-2A/B satellites; remote sensing; evaporation

1. Introduction

Playas, which are generally defined as shallow, ephemeral wetlands located within
closed basins, are found in many arid or semi-arid climates. Playas are generally more
sensitive to changes in climate, land use, and irrigation practices than permanent bodies of
water [1,2]. Thousands of small playas (both Great Plains playas and prairie potholes) are
observed across the Great Plains of North America. Playa surfaces and their underlying
soils are typically characterized by variable amounts of soluble salts, sand, clay, and silt
that are deposited within these closed basins [3]. The frequency and duration of water
inundation in playas also varies greatly.

Water is a critical resource on the Great Plains of North America, and the shallow, cir-
cular playa basins scattered across these environs are often hotspots of ecological diversity.
These playa wetlands provide crucial habitats for many species of mammals, migratory
birds, amphibians, and invertebrates [4]. Playas are also important in some regions for
aquifer recharge. The Southern High Plains depend heavily on groundwater from the Ogal-
lala Aquifer, which stretches from southern South Dakota to the Texas Panhandle. However,
the magnitude of spatial variability of groundwater recharge from playas into the Ogallala
Aquifer recharge remains somewhat uncertain and is an active area of research [5,6].

Many hundreds of thousands of playas dot the landscape across the Great Plains of
North America [7]. Despite their ecological and hydrological importance to the region, to
our knowledge, the use of frequent, high-resolution satellite data that has become available

Water 2022, 14, 2314. https://doi.org/10.3390/w14152314 https://www.mdpi.com/journal/water75



Water 2022, 14, 2314

in the last several years has thus far been underutilized in monitoring these threatened and
important ecosystems. While a number of satellite-derived analyses of playas have been
conducted over the past 20 years, these have mainly used the Landsat satellite platform
(e.g., Spain [8], California, USA [9], Texas, USA [10]) which provides a resolution that is too
coarse to capture smaller playas, and the platform is infrequently available. On the Great
Plains of North America, Starr and McIntyre [2] found a 77% decrease in the percentage
of playa inundation (on playas resolved by Landsat) between 1980 and 2008 regarding a
study region in West Texas, USA, as irrigation practices changed and warmer and drier
conditions occurred.

In the last 10 years, the advent of new higher-resolution, frequent satellite imagery
has revolutionized remote sensing for wetlands, lakes, and rivers. A number of studies
have utilized the increased spatial and temporal resolution of the European Space Agency
Sentinel-2 twin satellites: Sentinel-2A (launched in 2015) and Sentinel-2B (launched in
2017)) (e.g., [11–14]). Many previous playa studies were limited by lower spatial resolution
and less frequent satellite imagery (Landsat spatial resolution is ~30 m, with a return period
for satellite observations of ~16 days. For the Sentinel-2 satellites, the spatial resolution
is ~10 m, and the return interval for observations is ~10 days (~5 days by utilizing both
Sentinel-2A and 2B satellites). Thus, the Sentinel-2 satellite data effectively triples the
spatial resolution and doubles the temporal resolution capabilities (compared to Landsat)
to monitor changes in small, ephemeral lakes such as playas.

More recently, optical and radar satellite imagery have been combined to obtain
a sophisticated analysis of vegetation, soils, and playa water inundation on seasonal
scales from 1984–2019 over the Lordsburg Playa in New Mexico [15], while another recent
study in Spain demonstrated using genetic programming to improve the reliability of
algorithms to discern water versus non-water surfaces in complex shallow lakes and
wetlands [16]. Improving satellite retrievals over the variable underlying soil surfaces
and spectral characteristics of shallow, turbid waters with variable amounts of aquatic
vegetation continues to be an active area of research.

Many different remote sensing techniques exist to identify water bodies by satellite,
including image classification and derived water indices. It is beyond the scope of this
short communication to review them all here. Because water has a distinct reflectance
signature in the visible light wavelengths of the electromagnetic spectrum, the spectral
contrast between land and water surfaces are generally pronounced. The normalized
difference water index (NDWI) [17], and subsequent variations on this index are the most
widely used water detection techniques, using visible and near-infrared (NIR) satellite
spectral bands [18]. The goal of this short communication is not to test or recommend
the most accurate techniques for retrieving water properties from satellite images taken
over playas (which is certainly needed, and future work in this area is encouraged), but
to demonstrate the general feasibility of monitoring the Great Plains playa inundation for
hydrological and ecological applications using the freely available Sentinel 2A/B satellite
data. Using an open-source remote sensing land surface classification tool, we demonstrate
how playa inundation can be monitored on a sub-monthly basis, and then discuss the
potential of utilizing the satellite-derived playa inundation area data, along with concurrent
precipitation and water level imagery, to support ecological and hydrological applications,
such as estimating groundwater recharge.

2. Materials and Methods

2.1. Study Area and 25 September 2018–17 February 2019 Case Study

The 900 km2 (30 km × 30 km) study area analyzed in this paper was selected to repre-
sent a classic clay-lined playa environment in the Ogallala Aquifer region of the Southern
High Plains (Figure 1). The time period between 25 September 2018 and 17 February 2019
was selected as a case study example of monitoring changes in playa inundation and water
surface area for ecological and hydrological applications with Sentinel-2A/B satellite data.
This time period was chosen to demonstrate how a sequence of Sentinel-2 satellite images
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is able to capture a rapid filling of the playas with water in late September through October
2018, followed by a slow decrease in the playa inundation between November 2018 and
February 2019.

 
Figure 1. (a). Map of 30 km by 30 km study area (shown in brown square) in West Texas, USA
(upper right inset). True color imagery of the study area for (b) 25 September 2018 and (c) 28 October
2018. The corresponding classified water surface area (water represented by blue colored areas,
while all non-water surfaces are represented by green colored areas) for (d) 25 September 2018 and
(e) 28 October 2018. The yellow dot in (a) represents the area shown in Figure 2.
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Figure 2. (a). Sentinel-2A imagery of the Normalized Difference Water Index (NDWI) for the location
denoted with a yellow dot in Figure 1 on 22 September 2021, and (b) Landsat 7 ETM+ NDWI imagery
from the same location on 19 September 2021. Blue areas represent water, while green areas indicate
non-water areas. The 3 playas referenced in the text are indicated by the numbers 1–3. NDWI is
processed by Sentinel Hub. The imagery contains modified European Space Agency Copernicus
Sentinel data processed by Sentinel Hub, and Landsat 7 images are courtesy of the U.S. Geological
Survey, processed by Sentinel Hub.

2.2. Sentinel-2A/B Satellite Imagery and Rainfall and Evaporation Data

The Sentinel-2 satellite mission is comprised of two sun-synchronous polar-orbiting
satellites, phased at 180◦ to each other. The goal of the mission is to monitor land and ocean
surface variability [19]. Sentinel-2A (Sentinel-2B) was launched by the European Space
Agency (ESA) on 23 June 2015 (7 March 2017), each with a return frequency of ~10 days,
such that data over any given area of the earth is obtained approximately every 5 days.
The multispectral imager (MSI) on the Sentinel-2 satellite contains 13 spectral bands. These
bands vary in wavelength from 442.7 nm to 2202.4 nm. The visible reflectance band images
from these satellites (channels 2, 3, 4, 8) have a resolution of approximately 10 m, which is
3 times the resolution of previously widely utilized Landsat satellites [20].

For this study, the Sentinel-2A/B satellite data were downloaded through the Coperni-
cus Open Access Hub maintained by the European Space Agency. A free account allowed
easy downloading and retrieval of the satellite images. For this paper, 13 Sentinel-2A and
Sentinel-2B satellite images from different days were analyzed between 25 September 2018
and 17 February 2019. A 2TB external hard drive provided adequate storage for storing
the Sentinel-2 satellite images, which were 14.3 GB total in size (~1.1 GB per file). Each
downloaded Sentinel-2A/B satellite data ZIP file (which contains 13 files for each of the
13 bands described below) was 10,980 pixels by 10,980 pixels, at 10 m resolution. A smaller
3000 by 3000 pixel subsection was selected for analysis in the selected 900 km2 study area.
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Several precipitation and evaporation estimate datasets were also used in this study,
including daily precipitation data from the National Climate Data Center (NCDC) for
Plainview, Texas (for Region 1), as well as radar precipitation estimates from the Ad-
vanced Hydrologic Prediction Service (AHPS) website: https://water.weather.gov/precip/
(accessed on 1 June 2022). Monthly evaporation estimates from the Texas Water De-
velopment Board (TWDB) were obtained from the online download portal at: https:
//waterdatafortexas.org/lake-evaporation-rainfall (accessed on 15 July 2022). The TWDB
provides evaporation estimates on gridded one-degree latitude by one-degree longitude
quadrangles for the entire state of Texas. The ‘gross lake evaporation’ rate, which is defined
as the ‘water loss caused by evaporation’ was derived from Class A pan evaporation data.

2.3. Processing Methodoloy for Water Classification and Surface Area Calculations

Only images without clouds were used in this study. The images were loaded into
QGIS software and subsected into 30 km by 30 km tiles over the region of interest, as
previously discussed. Then, pixels in the image indicating water were identified through
image classification by the free, open source QGIS Semi-Automatic Classification Plugin
(SACP) [21]. Obtaining accurate retrieval of images showing shallow, turbid, and muddy
waters, such as playas, remains an active area of research [22–26], and no efforts were made
in this pilot study to evaluate the accuracy of the SACP for playa water retrieval. For this
study, visual analysis of the water bodies after widespread heavy rains confirmed that
the SACP did capture playa water inundation for hundreds of playas, but more rigorous
evaluation is needed for future work.

The SACP, which is a Python tool in the QGIS environment, has been shown to be an
effective application tool for land and water cover classification [27]. The SACP allows the
user to download the images and perform both unsupervised and supervised classification,
either manually or automatically. The SACP computes the spectral signatures of selected
training features in the images and then compares these against the spectral signatures
of other pixels in the image. In our study, we used supervised classification, in which we
manually selected multiple lake surfaces that were known to have filled with water after
heavy rains to define or ‘train’ the SACP regarding what the spectral characteristics of the
water surfaces should be, and these characteristics were then used to define inundated
playa surfaces throughout the remainder of the image.

The spectral signatures of data from the various bands, 2, 3, 4, 5, 6, 7, 8, 8A, 11, and 12,
from the multispectral imager (MSI) on the Sentinel-2A and 2B satellites were evaluated by
the Semi-Automatic Classification Plugin [21]. Briefly, the exact processing steps were as
follows: (1) the satellite raw band data were loaded into QGIS, (2) the raw band images
were converted to reflectance values appropriate for Sentinel-2, (3) simple atmospheric
correction using the DOS1 method (dark object subtraction) was applied [21], (3) the spectral
signatures of each of the satellite bands were manually selected by clicking on multiple
known water surfaces (to train for classification according to the range of the spectral
signatures of shallow water surfaces), as well as known non-water surfaces, in multiple
regions of interest (ROIs). Then, (4) using the default minimum distance classification
algorithm in the QGIS classification plug-in, the spectral signatures of the manually selected
water and non-water surface ROIs were used to classify the entire image as either water
or non-water. A total of 41 images obtained during this period were not classified, either
because they were cloudy, or because they were within a week or two of another available
non-cloudy image. The classification output accuracy and ability to identify water surfaces
was manually checked through visual analysis of the satellite imagery and classification
of several know water surface areas. Raster math calculations in QGIS were then used to
compute the water surface area in each of the Sentinel-2 satellite images.

3. Results

The Sentinel-2A/B satellite data was collected and processed over the 900 km2 study
area to evaluate variations in water inundation of the several hundred observed playas
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during the 25 September 2018 to 17 February 2019 time period. Many of these playas
would not be identified by the lower resolution Landsat Imagery used in many previous
playa studies. Figure 2 provides a visual comparison of Sentinel-2A and Landsat 7 imagery,
using the Normalized Water Difference Index (NDWI) [17], over a small region defined
in Figure 1 with 3 different-sized playas. As can be clearly seen, a very small playa (playa
1 in Figure 2), with a diameter of less than 50 m, is clearly resolved by the 10 m resolution
Sentinel-2A imagery (Figure 2a), but is not identified by the Landsat 7 imagery (Figure 2b).
Similarly, the outline of a larger, elongated playa is well-characterized by Sentinel-2A, but
poorly resolved by Landsat 7 (playa 3 in Figure 2). Finally, a large playa (diameter > 250 m,
playa 2 in Figure 2) is resolved by both Sentinel-2A and Landsat 7; however, the full
shape and edge regions are much better defined by Sentinel-2A. For determining the total
surface area of playas, edge land contamination on the lower-resolution Landsat would
also negatively bias the water inundation area estimates compared to the more defined
playa edges resolved by the Sentinal-2 imagery.

The variations in playa inundation of the several hundred observed playas within
the study region (Figure 1) during the 25 September 2018 to 17 February 2019 time period
followed a realistic pattern based on the rainfall observed at a nearby weather station
(Figure 3). Between 25 September and 20 October 2018, several weather systems each
delivered 2.5–6.0 cm of rainfall (Figure 3). Prior to this rainfall, dry conditions resulted
in only a few of the larger playas retaining water (Figure 1d). A rapid increase in the
water area associated with playa inundation was observed across the region between late
September and late October 2018 (Figures 1d,e and 3). Between 25 September and 3 October,
the total surface water area in the 900 km2 study area in West Texas, USA, increased from
1.1 to 8.2 square kilometers, with additional increases up to 14.5 km2 by 10 October. These
increases in water surface area are attributed to two main rainfall events—one in late
September and another ~9 October (Figure 3).

Figure 3. Observed surface water area (blue bar graph, in square kilometers) calculated for the
30 × 30 km square region shown in the brown square in Figure 1a for the period between 25 Septem-
ber 2018 and 17 February 2019. Missing dates are due to either cloud cover or data not being analyzed,
as indicated on the plots. The corresponding cumulative precipitation at Plainview, Texas (in inches),
is indicated by a green solid line (data courtesy of the National Weather Service through Mesowest
https://mesowest.utah.edu (accessed on 15 March 2022).

These two wet periods were then followed by a generally dry weather pattern through
February 2019. The absence of significant precipitation from November 2018 through Febru-
ary 2019 implies that the steady observed rates of change (decreases) in playa lake surface
area would be primarily driven by evaporation or groundwater infiltration (Figure 3). The
available retrievals indicate temporal variations in the rate of decrease in water surface
area, e.g., between 28 October and 19 November, the water surface areas average rate of

80



Water 2022, 14, 2314

decrease was ~0.33 km2 per day, whereas between 19 November and 17 February, the
rate of decrease was ~0.08 square km2 per day (Figure 3). The rates of change in playa
inundation were also observed to vary between playas of different sizes (not shown).

The time-varying estimates of playa inundation can be combined with precipitation,
evaporation, and playa depth estimates to provide potential added value for ecological and
hydrological applications, such as the total playa water volume for ecological habitat or
aquifer recharge estimates (Table 1).

Table 1. Approximation of total surface evaporation and playa volume in the study region between
November 2018–January 2019. See text for description of assumptions used.

Month
Net Surface Evaporation

(Rainfall Minus
Evaporation (cm))

Estimated Playa Volume
in Study Region 1

Estimated Changes
from Previous Month
in Playa Volume Due
to Evaporative Loss 1

Estimated Changes
from Previous Month in

Playa Volume Due to
Ground Infiltration 1

November 2018 −7.9 2.25 × 106 m3 – –
December 2018 −5.5 1.35 × 106 m3 7.9 × 105 m3 1.1 × 105 m3

January 2019 −6.4 0.8 × 106 m3 4.3 × 105 m3 1.2 × 105 m3

1 Note that this table is shown for illustrative purposes only, and all calculations in this table are based merely on
approximations and assumptions.

For this study, estimates of lake surface net evaporation are obtained by the Texas
Water Development Board and may or may not be representative for playa surfaces with
varying salinity. Moreover, we do not have enough detailed measurements of (1) playa
lake depth, and (2) playa basin size and runoff efficiency (the playa basin area controls
how quickly a playa fills up for a given amount of rain [28]) across the many hundreds
of playas to create accurate water budgets for the playas without the use of additional
remote sensing and in situ datasets. However, if we analyze the period from November
2018–January 2019, the rainfall was negligible, so the playa basin rainfall catchment can be
ignored, as water would not be entering the playas and the only escape mechanisms would
be evaporation and ground infiltration. The average depth of the playas in the study region
is not well-known, but based on general observations of depth [29], we estimate them here
to be around 20 cm in our study region in early November 2018, and we assume that the
depth of the playa water then decreases at a constant rate proportional to the playa water
surface area (this may or may not be a good approximation). Based on these assumptions,
we calculate the playa volumes in Table 1 using a simple relationship:

Surface volume = surface area estimated from satellite data × estimated mean playa depth. (1)

The changes in volume in the study region, due to either evaporation or ground
infiltration, are then calculated using the following simple equation:

Change in volume due to evaporation = monthly change in water surface area estimated from satellite
data × net surface evaporation.

(2)

Finally, the difference between the total playa volume each month and the change
due to evaporation can be inferred to be ground infiltration. The results of these simple
illustrative calculations demonstrate that the changes in playa volume are mainly driven
by evaporation (about 70–85%), followed by percolation into the ground (15–30%). Better
known observations or estimates of the aforementioned variables (playa depth, basin size,
evaporation rates, etc.) are needed to confidently close the hydrological budget of the
playas and make more useful estimates of the groundwater infiltration rates using the
satellite inundation surface area measurements, but the previous discussion lays out a
realistic scenario, provided the assumptions we chose are reasonable.

Even within the relatively small 900 km2 study area, large variations in playa inun-
dation, driven by variations in rainfall, are observed. As an example, a period of heavy
rainfall occurred in the study region (shown in Figure 1a) in West Texas, USA, between
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15 June and 15 July 2021. The total rainfall in the region was highly variable, ranging
between 5 and 18 cm over just 10 km (Figure 4). All playas in this region were observed to
be dry in spring 2021 (not shown) with no surface water previous to the heavy rainfall in
summer 2021. However, heavy thunderstorms in late June and early July 2021 resulted in
significant increases in total playa inundation, and an increase in observed water surface
area (15.23 km2 of playa lake surface area) was noted in the study (Figure 4)). However,
those areas in the southeastern third of the region of interest, where less rainfall was ob-
served, saw only minimal increases in water surface area, compared to large increases in
the regions where the heaviest rainfall occurred (Figure 4).

Figure 4. Playa lake surface area and radar-estimated precipitation for the 30 × 30 km square region
shown in Figure 1a (and delineated here by the blue square). Playa water surface area for 9 July
2021 within the blue square is denoted in blue and calculated using the QGIS Semi-Automatic
Classification Plugin [16,21]. The underlying map of radar-estimated rainfall between 15 June and
14 July 2021 is courtesy of the National Weather Service Advanced Hydrological Prediction Service
https://water.weather.gov/precip/ (accessed on 15 March 2022).

4. Discussion

In this paper, we provide a preliminary framework for others to build upon. This
short study leaves many questions unanswered for future research to consider. Future
work will need to more carefully evaluate any limitations of using Sentinel-2 or other
satellite imagery to monitor playas. In our study, many small playas had diameters around
50 m, with larger playa diameters of 300 m or more. Assuming a circular playa shape and
edge detection errors of 10 m (one pixel) due to subpixel (half of pixel ground, half water,
which will sometimes be detected as water, and sometimes as land) or other effects, this
would result in possible area calculation errors in excess of 40% for small playas, with
smaller estimated uncertainty (less than 10%) for larger diameter playas. To carefully
evaluate the limitations of potential remote sensing errors, we recommend using in situ
datasets to rigorously evaluate which water detection algorithms work best over the
range of water depths, water colors, and water turbidity observed in shallow playas, to
avoid biases or missed detections from the satellites of these complex surface features. A
number of recent studies in the literature illustrate a wide range of potential errors and
corrections that should be addressed, such as classification uncertainty [30], threshold
detection errors [31], using frequency analyses of pixels rather than a single detection
threshold (e.g., [32]), and combining the Sentinel-2 data with altimetric satellite missions
to derive shoreline locations [33]. There are many possible avenues for future work, as
there currently is no single universally approved detection algorithm for shallow lakes or
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wetlands, although the NDWI has been found to be problematic when used in shallow
waters (e.g., [34]). The recent study by Jiang et al. [35] demonstrates a more sophisticated
water detection methodology for use with water bodies of different clarity that could
potentially be applied to playa lakes. Future work could also investigate blending the
Sentinel-2 water surface area calculations with Sentinel-3 water level measurements, as
demonstrated by recent studies [36], or using newly developed automated and hierarchical
surface water fraction mapping developed by Wang et al. [37] for the thousands of playa
lakes across the world. This limited demonstration study used a very simple manual
classification detection algorithm, and made no attempt at evaluating uncertainties in either
under- or over-detection, or at assessing the impacts of not resolving sub-pixel shoreline
features, which would increase the potential errors in playa lake surface area calculations
for small lakes nearing the detection limits (±10 m). Some analysis of the impacts of
aquatic plants and vegetation beneath the shallow water should also be considered [38–40].
Moreover, additional satellite platforms could also be considered in future work, including
the proprietary Planet Scope and Worldview satellites (which have even higher temporal
and spatial resolution than Sentinel-2). Recent studies have demonstrated using these
platforms for the temporal classification of lake surfaces [41–43].

Evaluating spatial analyses of precipitation, in combination with the spatial analyses,
may also help reveal which regions have adequate water in their playa lakes and which
do not. The semi-arid climates that contain most of the world’s playas are also regions
with high variability in precipitation intensity and frequency. One single large localized
rainstorm might mean the difference between a playa filling up with much-needed water
for several months, or occasionally, even a year or more, or remaining dry for months or
even years. The high-resolution spatial and temporal data from the Sentinel-2 satellites can
also be used with precipitation data to determine playa inundation on sub-monthly time
scales for hydrological and ecological applications.

In addition to the monitoring of playa lake surface area from the Sentinel-2 satellites,
the satellite reflectance signatures could potentially be utilized to evaluate changes in playa
lake water quality, as changes in water turbidity are sometimes correlated with water quality.
Recent work has already developed regression algorithms for using Sentinel-2 satellites
as proxies for the water quality monitoring of agricultural reservoirs in Oklahoma [43], as
well as for utilizing remote sensing reflectance signatures for developing a water quality
index [44]. Coupling the satellite reflectance data with in situ water quality sensors for a
‘training set’ of playa lakes could potentially be used to obtain water quality information
for many thousands of playas where installing in situ measurements for playa lake water
quality is not feasible. Because the satellite reflectance signatures differ between waters
of differing turbidity and quality, properties of the water quality or wetland vegetation
types could potentially be estimated; this is also recommended for future applications of
Sentinel-2 or similar resolution satellite imagery for investigating playa lakes.

5. Conclusions

Over the last 5 years, the improved spatial (and temporal) resolution of Sentinel-2
satellite imagery has allowed many small, variable inland water bodies, such as rivers,
glacial lakes, and rice paddies, to be studied globally for the first time. This study is the
first to the authors’ knowledge to demonstrate using Sentinel-2 satellite mission imagery
to improve the monitoring of American Great Plains playa water inundation on sub-
monthly time scales for ecological and hydrological applications. While many studies
have documented the importance of the playa wetland ecosystems for wildlife in the
American Great Plains, along with the variable infiltration and aquifer recharge rates
occurring for different playas on the Great Plains, in situ monitoring of potential water
inflow, evaporation, and infiltration rates for the many tens of thousands of North American
Great Plains playas is simply not feasible due to the large number of small playas observed.
The high-resolution Sentinel-2 mission satellite data, in combination with survey data on
playa depth and nearby meteorological data (to determine evaporation rates), could be a
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major step forward in extensively and inexpensively quantifying the importance of playa
lake groundwater recharge.

Evaluating the changes in specific playas across broad regions using satellite imaging
on sub-monthly time scales may be useful for identifying playas with higher groundwater
recharge potential (those that lose water more rapidly than others), and for analyzing
periods when evaporation potential is low (such as during winter). Monitoring playas,
as demonstrated in this short paper, would also be useful for ecological applications for
determining the lakes that contain sufficient water to support wildlife, without requiring
an airplane flyover or time-intensive field visits.
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Abstract: Understanding the spatiotemporal patterns of water quality is crucial because it provides
essential information for water pollution control. The spatiotemporal variations in water quality for
the Nanxi River in the Taihu watershed of China were evaluated by a water quality index (WQI)
and multivariate statistical techniques; additionally, the potential sources of contamination were
identified. The data set included 22 water quality parameters collected during the monitoring period
from 2015 to 2020 for 14 monitoring stations. WQI assessment revealed that approximately 85% of
monitoring stations were classified as “medium-low” water quality, and most showed continuous
improvement in water quality. Cluster analysis divided the 14 monitoring stations into three clusters
(low contamination, medium contamination and high contamination). Discriminant analysis identi-
fied pH, petroleum, volatile phenol, chemical oxygen demand, total phosphorus, F, S, fecal coliform,
SO4, Cl, NO3-N, total hardness, NO2-N and NH3 as important parameters affecting spatial variations.
Factor analysis identified four potential contamination source types: nutrient, organics, feces and oil.
This study demonstrated the usefulness of multivariate statistical techniques in assessing large data
sets, identifying contamination source types, and better understanding spatiotemporal variations in
water quality to restore and protect water resources.

Keywords: Nanxi River; multivariate statistical techniques; water quality index; water quality
assessment

1. Introduction

Deterioration of the water environment is a prominent problem in worldwide wa-
tershed management and seriously threatens the security of the water ecological envi-
ronment [1]. Natural factors (such as climate, topography, geology and soil) and human
activities (such as urbanization, industrial production and agricultural practice) affect the
surface water quality of an area [2–5]. The seasonal changes in precipitation, hydrological
conditions and stream runoff have marked effects on stream flow and the consequent
pollutant concentrations in surface water [1,6–8]. Dynamic spatiotemporal assessment of
water quality can be used to analyze water contamination problems, identify potential
contamination source types, and provide information support and reference to effectively
manage water resources [3].

To effectively prevent and control surface water contamination, reliable water quality
data for in-depth research is necessary. Considering the spatiotemporal variation in the
physicochemical and biological characteristics of surface water, a long-term monitoring
plan to accurately assess water quality should be developed [9]. Environmental protection
departments in China have established sound water quality monitoring networks and
continuous water quality monitoring procedures that monitor the physical properties
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(e.g., temperature, pH and electrical conductivity, etc.), total organic components, nutrients
and inorganic components, as well as the biological and microbial conditions. In water
quality assessments, multiple water quality parameters are typically collected at multiple
monitoring stations in different monitoring periods, and this process generates a complex
data matrix [10]. Due to the potential multivariable correlations among monitoring stations,
monitoring periods and water quality parameters, this complex data set is often challenging
to analyze and explain [11–13]. In a comprehensive assessment of water quality, the
challenge is to determine whether the changes in water quality should be attributed to
the contamination of rivers by human activities or biogeochemical changes in natural
processes [14]. Furthermore, the water quality parameters that can best describe the
spatiotemporal changes and identify contamination source types should be determined.

The water quality index (WQI) is a useful method for evaluating the change and trend
of water environment quality by synthesizing multiple original parameters to a single
index [10]. As a water quality assessment model, WQI determines the relative weight of
each parameter based on its importance in water environment protection and integrates
multiple variables into a dimensionless variable to represent the comprehensive water
quality status and grade [15–18]. WQI has played an increasingly crucial role in the water
quality assessment of rivers, lakes and groundwater [19–24].

With the increased number and dimension of measurement parameters in samples,
the problem of allocating unknown samples and mining valuable information becomes
increasingly complex. Therefore, using multivariate statistical techniques and data reduc-
tion simultaneously to obtain satisfactory results is necessary [10]. Multivariate statistical
techniques, such as cluster analysis (CA), discriminant analysis (DA), principal component
analysis (PCA) and factor analysis (FA) have been widely applied to evaluate water quality,
can simplify data dimensions from complex water quality data matrices and remove re-
dundant information without losing valuable information [8,25–29]. Multivariate statistical
techniques can identify spatiotemporal patterns of water quality and analyze the possi-
ble factors causing spatiotemporal variations in water quality and affecting the health of
water ecosystems [1,30].

The Nanxi River in the Taihu watershed, as a rapidly urbanized area in China, is
experiencing high disturbance from human activities and serious water contamination
problems [31]. The spatiotemporal variations in surface water quality and the identifi-
cation of contamination source types are critical for sustainable watershed water quality
management. However, studies focusing on the identification of contamination source
types in the Nanxi River are limited. The primary aims of this study are as follows: (1) to
evaluate the contamination levels of different monitoring stations and periods to examine
the spatiotemporal distributions of water quality using WQI; (2) to extract the clustering in-
formation of monitoring stations, and determine the most important classification variables
for the spatial variations in water quality; and (3) to analyze the potential impact factors
of water quality in three regions with different contamination levels and explore possible
contamination source types (natural processes or human activities).

2. Materials and Methods

2.1. Study Area

The Nanxi River (119◦08′–119◦36′ E, 31◦1′–31◦41′ N) is the main river in the western
part of the Taihu watershed in China (Figure 1). The total extension of the study area is
1535.87 km2 and includes 39% farmland, 23% water area, 22% forestland and 16% built-
up land. It belongs to the subtropical monsoon climate zone, with an average annual
temperature of 16 ◦C and an average annual precipitation of 1147 mm, 70% of which occurs
in the rainy season from May to October. The area comprises low mountains, hills, plain
polders and other landform types, with elevations of 1–702 m. The main types of soil
are paddy soils, yellow-brown soils, and yellow cinnamon soils [32]. The regional zonal
vegetation is an evergreen and deciduous broad-leaved mixed forest. The main crops are
rice, rape, tea and sericulture, etc. [31].
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Figure 1. (a) Location of the study area in China; (b) Topography and river network of the study area;
(c) Study area with 14 monitoring stations in the Nanxi River.

This area is relatively developed in the Taihu watershed, with a population of ap-
proximately 763,000. The area has many chemicals, synthetic materials, and mechanical,
electronic and cement factories. The basin has fertile paddy soil, which is very suitable
for various agricultural activities. The main contamination source types in this area in-
clude municipal and industrial wastewater, livestock and poultry breeding, planting and
aquaculture. In 2019, the total amount of industrial and domestic sewage discharge was
2248.8 × 104 and 3244.9 × 104 tons, respectively, including 3043.5 tons of chemical oxygen
demand (COD), 538.5 tons of ammonia nitrogen (NH3-N), and 14.8% of the industrial
sewage treatment rate; the COD, total nitrogen (TN) and total phosphorus (TP) of agricul-
tural contamination sources were 3567.3, 338.2 and 202 tons, respectively. Thirteen sewage
treatment plants (STPs) exist to treat domestic and industrial wastewater in the area. The
maximum daily treatment capacity of these STPs is 15 × 104 m3 [33].

2.2. Monitoring Stations and Water Quality Data

Water samples were collected from 14 monitoring stations (Figure 1) in the Nanxi
River every month from January 2015 to November 2020. All the water samples were

89



Water 2022, 14, 778

collected, stored, transported, and analyzed according to the Technical Specifications
Requirements for Monitoring of Surface Water and Waste Water (HJ/T 91-2002) [34] and
the Environmental Quality Standards for Surface Water (GB3838-2002) [35] to ensure the
quality of the data. The final data were from the Liyang Environmental Protection Bureau.

These water quality data belonged to monthly routine sampling, which reflected the
daily water quality status of each monitoring station, but cannot capture the dynamics of
pollutants generated by episodic events (e.g., storms and pollution leakage accidents, etc.).
Therefore, if possible, additional sampling of water quality before and after episodic events
will be required in the future.

We selected 22 water quality parameters for this study. The abbreviations, units and
descriptive statistics of them are summarized in Table 1.

Table 1. Water quality parameters, abbreviations, units and descriptive statistics.

Parameter Abbreviation Unit Minimum Maximum Mean S.D. C.V.

Water temperature Temp ◦C 3.4 34.0 18.1 8.4 0.463
pH pH 5.74 8.91 7.50 0.38 0.050

Electrical conductivity EC ms/m 9.4 181.0 38.0 16.6 0.437
Dissolved oxygen DO mg/L 1.8 13.0 6.5 1.9 0.291

Permanganate index CODMn mg/L 1.9 15.7 5.5 1.4 0.261
Biochemical oxygen demand BOD5 mg/L 1.8 9.0 3.6 1.0 0.287

Ammonia nitrogen NH3-N mg/L 0.046 31.600 0.916 1.355 1.479
Petroleum Petrol mg/L 0.00 0.27 0.06 0.04 0.721

Volatile phenol VP mg/L 0.000 0.010 0.002 0.001 0.581
Chemical oxygen demand COD mg/L 5.0 87.9 19.1 6.8 0.354

Total nitrogen TN mg/L 0.24 37.40 2.87 2.01 0.699
Total phosphorus TP mg/L 0.010 0.444 0.131 0.071 0.546

Fluoride F mg/L 0.07 0.83 0.34 0.12 0.345
Sulfide S mg/L 0.000 0.173 0.046 0.033 0.715

Fecal coliform F. Coli CFU/L 360 9130 4226 2429 0.575
Sulphate SO4 mg/L 15.9 53.1 32.1 7.4 0.231
Chloride Cl mg/L 0 195 54 30 0.557

Nitrate nitrogen NO3-N mg/L 0.020 1.200 0.294 0.127 0.434
Total suspended solids TSS mg/L 7 239 33 19 0.574

Total hardness T-Hard mg/L 41 255 147 37 0.251
Nitrite nitrogen NO2-N mg/L 0.005 0.294 0.063 0.041 0.660

Nonionic ammonia NH3 mg/L 0.001 0.172 0.014 0.019 1.364

Mean represents the mean value; S.D. represents the standard deviation; C.V. represents the coefficient
of variation.

2.3. Water Quality Index

WQI is an effective method for water quality assessments [36]. According to the
impact of each water quality parameter on human water health and its relative importance
in aquatic organisms [15], different weights were assigned in Table 2 [23]. Temp, pH, EC,
DO, CODMn, COD, BOD5, NH3-N, TP, TN, Petrol, F. Coli, SO4, CI, NO2-N, NO3-N, TSS
and T-Hard were used, and the measured values were normalized.

The formula used to calculate WQI is as follows:

WQI =
∑n

i=1 CiPi

∑n
i=1 Pi

(1)

where n is the total number of parameters involved in the calculation, Ci is the normalization
factor of parameter i, and Pi is the relative weight of parameter i. The minimum value of
Pi is 1, and the maximum weight specified is 4. These values were determined based on
previous studies [23,37–39].

The calculated WQI is a dimensionless value from 0 to 100. Based on the WQI scores,
surface water quality was divided into five categories [23]: excellent (90–100), good (70–89),
moderate (60–69), low (40–59), and bad (0–39).
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Table 2. Weights and normalization factors of the parameters used to calculate the water
quality index.

Parameters Units
Relative
Weight

(Pi)

Normalization Factor (Ci)

100 90 80 70 60 50 40 30 20 10 0

Temp ◦C 1 21/16 22/15 24/14 26/12 28/10 30/5 32/0 36/−2 40/−4 45/−6 >45/<−6
pH 1 7 7–8 7–8.5 7–9 6.5–7 6–9.5 5–10 4–11 3–12 2–13 1–14
EC ms/m 1 <75 <100 <125 <150 <200 <250 <300 <500 <800 ≤1200 >1200
DO mg/L 4 ≥7.5 >7 >6.5 >6 >5 >4 >3.5 >3 >2 ≥1 <1

CODMn mg/L 3 <1 <2 <3 <4 <6 <8 <10 <12 <14 ≤15 >15
COD mg/L 3 <10 <15 <16 <18 <20 <25 <30 <34 <37 ≤40 >40
BOD5 mg/L 3 <2 <3 <3.4 <3.7 <4 <5 <6 <7 <9 ≤10 >10

NH3-N mg/L 3 <0.1 <0.15 <0.3 <0.5 <1 <1.3 <1.5 <1.7 <1.9 ≤2 >2
TP mg/L 1 <0.01 <0.02 <0.05 <0.1 <0.15 <0.2 <0.25 <0.3 <0.35 ≤0.4 >0.4
TN mg/L 2 <0.1 <0.2 <0.35 <0.5 <0.75 <1 <1.25 <1.5 <1.75 ≤2 >2

Petrol mg/L 2 <0.01 <0.02 <0.03 <0.04 <0.05 <0.3 <0.5 <0.7 <0.9 ≤1 >1
F. Coli CFU/L 3 <100 <200 <1000 <2000 <10,000 <15,000 <20,000 <30,000 <35,000 ≤40,000 >40,000

SO4 mg/L 2 <25 <50 <75 <100 <150 <250 <400 <600 <1000 ≤1500 >1500
CI mg/L 1 <25 <50 <100 <150 <200 <300 <500 <700 <1000 ≤1500 >1500

NO2-N mg/L 2 <0.005 <0.01 <0.03 <0.05 <0.1 <0.15 <0.2 <0.25 <0.5 ≤1 >1
NO3-N mg/L 2 <0.5 <2 <4 <6 <8 <10 <15 <20 <50 ≤100 >100

TSS mg/L 4 <20 <40 <60 <80 <100 <120 <160 <240 <320 ≤400 >400
T-Hard mg/L 1 <25 <100 <200 <300 <400 <500 <600 <800 <1000 ≤1500 >1500

Normalization factors are according to GB3838-2002 and weight, as proposed by Wu et al. (2018) [23].

2.4. Statistical Analysis

The water quality data sets over six years (2015–2020) were checked to eliminate
possible missing and abnormal values [40]. The parameter F. Coli had missing values,
which were replaced by sequence mean values. Data conforming to normal distribution
are needed for most multivariate statistical techniques. Therefore, kurtosis and skewness
statistics were analyzed to test whether each water quality parameter conformed to a
normal distribution [5,13]. The original data showed that the kurtosis value was between
−1.888 and 357.738, and the skewness value was between −1.215 and 16.671, indicating that
the raw data were far from the normal distribution. Because most kurtosis and skewness
values were greater than 0, the raw data were logarithmically converted (x = log10(x)) [41].
After logarithmic transformation, kurtosis and skewness were in the ranges of −0.640 to
4.577 and −2.279 to 0.096 respectively. To minimize the influence of different units and
variances on the parameters, Z-scale standardization (mean value is 0, variance is 1) was
performed on the data.

Cluster analysis (CA) was performed on the standardized data to explore the spatial
similarity and clustering information on water quality. Principal component analysis/factor
analysis (PCA/FA) was performed on the standardized data to explore possible contami-
nation source types [9,28]. Discriminant analysis (DA) was performed on the raw data to
extract the important variables reflecting the variations between groups [5]. STATISTICA
10 was used for statistical analysis.

Please refer to Supplementary Materials for the detail about the above multivariate
statistical methods.

3. Results and Discussion

The descriptive statistics of 22 water quality parameters are summarized in Table 1.
The pH values ranged from 5.74 to 8.91, which were basically within the standard limit
of 6–9 allowed by GB3838-2002. The mean values of F, S, F. Coli, and VP in most water
samples were far lower than the class III standard (GB3838-2002), while that of Petrol
(0.058 mg/L) was slightly higher than the class III standard (0.05 mg/L). Among nutrients,
the mean value of TN was 2.87 and far higher than the class III standard (1.0 mg/L); the
mean values of NO3-N and NO2-N were 0.294 and 0.063 respectively, which were far lower
than the class III standard (10 mg/L); the one of NH3-N was 0.916 and lower than the class
III standard (1.0 mg/L). TN is the sum of NO3-N, NO2-N, NH3-N and organic nitrogen,
which is the main indicator of water eutrophication. Thus, the main nutrient in the study
area was organic nitrogen. The concentration levels of CODMn, BOD5 and COD deserve
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attention because these parameters represent the levels of biological, chemical and organic
contamination in surface water, respectively. The maximum values of these parameters
were 15.7, 9.0 and 87.9 mg/L, respectively, all exceeding the class III standard (6, 4 and
20 mg/L, respectively). Therefore, the study area had a relatively high contamination level.
The coefficients of variation for NH3-N, NH3, Petrol, S, TN and NO2-N were relatively
high, indicating significant temporal and spatial differences in the distributions of these
water quality parameters.

3.1. Water Quality Assessment Using WQI

The water quality of most monitoring stations was classified as “medium-low”, ac-
counting for approximately 84.52% (of which “medium” accounted for 64.29% and “low”
accounted for 20.24%). Additionally, 13.10% of the water quality was “good”, and only
2.38% was “excellent” (Figure 2). The water quality of S1 and S2 was always above “good”,
especially the water quality of S2, which was “excellent” in 2015 and 2018. Because these
two monitoring stations are in the Daxi Reservoir and Shahe Reservoir within the urban
centralized drinking water protection area, their water quality has been maintained in good
condition due to the good natural ecological environment and strict contamination control
measures. Other monitoring stations are in urbanized or agricultural areas.

From the interannual change trend of WQI (Figure 3), about half of the monitoring
stations showed an increasing trend, most of which were generally stable. The water
quality of monitoring stations S1 and S2 decreased slightly. Due to rapid urbanization
and population growth, water environment security is facing increased pressure, and the
protection of water sources should be further strengthened. The water quality of other
monitoring stations showed continuous improvement, especially from 2016 to 2019. Since
2017, Changzhou city has adopted special actions: “two reductions” (reducing total coal
consumption and backward chemical production), “six governance” (governing the Taihu
Lake water environment, domestic garbage, black and smelly water bodies, livestock and
poultry breeding contamination, volatile organic compound contamination, and hidden
environmental dangers), and “three improvements” (improving the level of ecological
protection, environmental-economic policy regulation, and environmental law enforcement
and supervision) [42]. The environmental quality has been significantly improved, the total
discharge of major pollutants has been markedly reduced, and the environmental risks
have been effectively controlled.

3.2. Spatial Similarities and Clustering

Spatial CA generated a dendrogram, dividing the 14 monitoring stations into 3 clusters
at (Dlink/Dmax) × 100 < 40 (Figure 4). According to the physical, chemical and microbio-
logical characteristics of water quality, each cluster was classified into its own contamination
category. Cluster A included stations S1 and S2 and corresponded to low contamination.
Cluster B contained six monitoring stations (S5, S6, S8, S9, S11 and S13) and was classified
as medium contamination. Cluster C comprised six monitoring stations (S3, S4, S7, S10,
S12 and S14) and was classified as high contamination.

In cluster A, S1 and S2 are in the Daxi Reservoir and Shahe Reservoir. The contam-
ination of the six monitoring stations in cluster B mainly derives from nonpoint source
contamination, such as agricultural runoff, livestock and poultry breeding, and fishpond
drainage. The monitoring stations of cluster C are mainly located in urban areas and
downstream reaches, and the possibility of water contamination is higher because of the
comprehensive impacts of domestic sewage, industrial wastewater and upstream inflow
water [5,7,10].

The above spatial CA results coincided with the average WQI of the monitoring
stations. The WQI values of S1 and S2 were the highest; those of S3, S4, S7, S10, S12
and S14 were relatively low; those of S5, S6, S8, S9, S11 and S13 were at a medium level
(Figure 5). Thus, CA can be used to provide reliable water quality classification throughout
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monitoring stations; however, designing optimal spatial sampling strategies is warranted
in the future [10,28,41,43].

Figure 2. Spatial distribution pattern of the average annual WQI categories in the Nanxi River from
2015 to 2020.
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Figure 3. The average annual WQI scores of 14 monitoring stations in the Nanxi River from 2015
to 2020.

Figure 4. Dendrogram of spatial similarities and clustering of monitoring stations (S1–S14) in the
Nanxi River.
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Figure 5. Average WQI of 14 monitoring stations in the Nanxi River.

3.3. Spatial Variations in Water Quality

Based on the CA data, discriminant analysis was used to detect the significance of
the discriminant function and to identify the important variables reflecting the variation
between clusters. The Wilks’ lambda and chi-square values in all discriminant functions
were in the range of 0.036–0.509 and 504.269–2479.317, respectively, and the p values were
all less than 0.01 (Table 3), indicating that the spatial DA was valid [13].

Table 3. Spatial discriminant analysis results for spatial variations in water quality.

Modes Discriminant Function R Wilks’ Lambda Chi-Square p Value

Standard
1 0.963697 0.035502 2478.586 0.00
2 0.708513 0.498009 517.624 0.00

Forward
1 0.963686 0.035547 2479.317 0.00
2 0.708173 0.498491 517.255 0.00

Backward
1 0.960275 0.039628 2409.856 0.00
2 0.700788 0.508897 504.269 0.00

Tables 4 and 5 show the discriminant function and classification matrix generated from
the standard, forward stepwise and backward stepwise modes of DA. The standard and
forward stepwise models of the discriminant function used 22 and 21 discriminant variables,
respectively, and obtained the corresponding classification matrix, which correctly assigned
approximately 88% of cases. However, in the backward stepwise mode, DA generated
nearly 87% of the correct allocation to the classification matrix using only 14 discrimination
parameters. Spatial DA showed that pH, Petrol, VP, COD, TP, F, S, F. Coli, SO4, Cl, NO3-N,
T-Hard, NO2-N, and NH3 were the critical variables to distinguish the water quality of the
three spatial clusters and explained most of the spatial variations in expected water quality.
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Table 4. Discriminant function coefficients of discriminant analysis for spatial variations in
water quality.

Parameters
Standard Mode Forward Stepwise Mode Backward Stepwise Mode

Cluster A Cluster B Cluster C Cluster A Cluster B Cluster C Cluster A Cluster B Cluster C

Temp 2.19 2.15 2.16
pH 115.00 107.97 107.52 102.81 95.983 95.470 95.99 89.346 88.763
EC −0.09 −0.10 −0.08 −0.02 −0.035 −0.016
DO 5.19 4.17 4.10 1.01 0.066 −0.021

CODMn −1.36 1.34 1.28 −2.35 0.373 0.314
BOD5 12.67 11.16 11.64 12.40 10.899 11.372

NH3-N 9.04 4.81 5.01 8.72 4.494 4.688
Petrol −87.09 −63.79 3.49 −107.72 −84.054 −16.893 −29.04 −15.614 53.431

VP −5928.45 −1499.07 41.86 −3233.54 1148.149 2704.845 −3985.81 552.192 2072.728
COD 1.09 0.60 0.75 0.56 0.081 0.232 1.09 0.769 0.921
TN −2.78 −0.32 −0.53 −3.21 −0.752 −0.964
TP 38.74 93.48 99.55 21.98 77.019 82.983 73.23 130.491 137.176
F 7.53 40.57 37.79 8.13 41.154 38.375 8.79 42.410 39.641
S −50.45 90.85 97.30 −101.99 40.229 46.377 −89.33 50.326 53.812

F. Coli 0.00 0.00 0.00 0.00 0.002 0.002 0.00 0.001 0.001
SO4 −0.27 0.47 0.46 0.35 1.070 1.065 0.38 1.196 1.188
Cl 0.10 0.17 0.16 −0.07 0.006 −0.005 −0.08 0.005 −0.002

NO3-N −3.63 19.19 22.51 −17.28 5.789 9.028 −9.40 13.946 17.819
TSS 0.22 0.26 0.25 0.23 0.268 0.259

T-Hard 0.44 0.76 0.76 0.30 0.624 0.627 0.33 0.627 0.630
NO2-N −46.64 50.99 33.76 −11.68 85.329 68.309 22.86 110.897 95.396

NH3 −1329.83 −1190.28 −1191.98 −936.82 −804.223 −803.626 −838.04 −706.073 −697.089
Constant −522.73 −554.90 −562.82 −433.50 −468.801 −475.693 −397.88 −434.420 −440.556

Table 5. Classification matrix of discriminant analysis for spatial variations in water quality.

Monitoring
Stations

Percent Correct
Stations Assigned by Discriminant Analysis

Cluster A Cluster B Cluster C

Standard mode
Cluster A 100.0000 108 0 0
Cluster B 95.6790 0 310 14
Cluster C 77.4691 0 73 251

Total 88.4921 108 383 265
Forward stepwise mode

Cluster A 100.0000 108 0 0
Cluster B 95.3704 0 309 15
Cluster C 76.8518 0 75 249

Total 88.0952 108 384 264
Backward stepwise mode

Cluster A 100.0000 108 0 0
Cluster B 94.7531 0 307 17
Cluster C 75.3086 0 80 244

Total 87.1693 108 387 261

Based on the discriminant parameters analyzed by DA, box and whisker plots of three
clusters (cluster A, cluster B, cluster C) were constructed to evaluate the spatial variations
in water quality (Figure 6). Most of the parameters showed significant differences between
clusters. Overall, the average concentration of cluster A was much lower than that of
clusters B and C, and the average concentration of cluster C was slightly higher than that of
cluster B. Higher Petrol, COD and TP values were found in cluster C, indicating that organic
contamination and eutrophication were the most serious water environment problems in
cluster C. Additionally, lower pH values were found at the monitoring stations of cluster C,
likely because of the hydrolysis of acidic substances (ammonia and organic acids) [5]. In
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conclusion, the water contamination of cluster C was more serious than that of the other
two clusters. Thus, the prevention and control of contamination sources and treatment
capacity of point source contamination must be strengthened, such as strengthening the
construction and treatment capacity of STPs.

Figure 6. Spatial variations in water quality in three spatial clusters: (a) pH, (b) Petrol, (c) VP,
(d) COD, (e) TP, (f) F, (g) S, (h) F. Coli, (i) SO4, (j) Cl, (k) NO3-N, (l) T-Hard, (m) NO2-N, and (n) NH3

in the Nanxi River.

97



Water 2022, 14, 778

3.4. Principal Component Determination and Contamination Source Identification

Because the contamination levels of the three spatial clusters (clusters A, B, and C)
were significantly different, PCA/FA was used to identify the water contamination source
types for the normalized data sets of the three spatial clusters.

PCA/FA of the three data matrices obtained six, eight and seven variance factors
(VFs) with eigenvalues ≥1, explaining 71.5%, 66.8% and 67.9% of the total variance in the
corresponding data sets, respectively (Tables 6–8). Additionally, the loadings of parameters
on VFs were categorized as “high”, “medium” and “low” based on absolute loading values
of > 0.75, 0.75–0.50 and 0.50–0.30 [44].

Table 6. Loadings of 22 water quality parameters on VFs for cluster A in the Nanxi River.

Parameters VF1 VF2 VF3 VF4 VF5 VF6

Temp 0.145 −0.110 0.168 0.351 0.665 0.214
pH 0.043 0.182 0.026 0.075 0.764 0.386
EC 0.073 0.190 0.168 0.113 0.744 −0.335
DO −0.368 0.047 −0.319 −0.286 −0.223 0.287

CODMn −0.198 −0.084 −0.024 0.808 0.243 −0.017
BOD5 −0.068 0.103 0.130 0.852 0.101 −0.015

NH3-N 0.091 −0.313 −0.489 0.093 −0.049 −0.568
Petrol 0.829 −0.066 0.060 −0.128 0.134 0.011

VP 0.891 0.022 0.119 −0.160 0.130 0.060
COD −0.180 −0.376 0.546 −0.032 −0.189 −0.091
TN 0.724 0.014 0.199 −0.144 0.038 −0.273
TP 0.074 −0.107 −0.618 0.347 0.141 −0.024
F 0.767 −0.141 0.006 0.092 −0.081 0.014
S 0.003 0.091 0.735 0.248 −0.138 −0.153

F. Coli 0.566 0.529 0.321 0.048 −0.004 −0.306
SO4 −0.011 −0.750 −0.115 0.239 0.144 −0.084
Cl 0.238 0.046 0.889 0.061 0.041 0.084

NO3-N 0.133 0.092 0.910 0.007 0.074 0.022
TSS 0.589 −0.061 −0.162 0.403 −0.188 0.395

T-Hard 0.205 −0.826 0.096 −0.128 −0.243 0.022
NO2-N 0.038 0.748 0.255 0.045 0.273 0.126

NH3 0.019 0.097 −0.220 0.062 0.884 −0.113
Eigenvalue 4.554 3.373 3.067 2.266 1.380 1.089

% Total variance 20.699 15.332 13.939 10.302 6.271 4.952
Cumulative % variance 20.699 36.031 49.969 60.271 66.542 71.494

VFs represent the variance factors after varimax raw rotation for principal components; bold values represent
medium-high loadings.

Among the six VFs of cluster A, VF1 explained 20.7% of the total variance and had high
positive loadings on Petrol, VP, TN and F. This factor indicated toxic organic contamination
from farmland drainage, oily sewage discharge from ship operation, domestic sewage,
industrial wastewater, atmospheric deposition and precipitation leaching. VF2 (15.3% of the
total variance) had high negative loadings on SO4 and TSS, and high positive loadings on
NO2-N. The presence of nitrite in water indicated that the decomposition process of organic
matter continued, and the risk of organic matter contamination persisted. VF3 (13.9%) had
high positive loadings on NO3-N, Cl and S, indicating nutrients from agricultural runoff
and atmospheric deposition and the natural source of soil erosion and salt ions (CI, S) in the
watershed [45]. VF4 (10.3%) had high positive loadings on BOD5 and CODMn, representing
organic contamination in sewage [6]. VF5 (6.3%) had high positive loadings on NH3, pH
and EC. Generally, EC indicates natural contamination, which may be due to soil erosion
or an increase in the number of salt ions in water [44]. Additionally, VF6 (only 5.0%) had a
medium negative loading on NH3-N.
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Table 7. Loadings of 22 water quality parameters on VFs for cluster B in the Nanxi River.

Parameters VF1 VF2 VF3 VF4 VF5 VF6 VF7 VF8

Temp −0.063 0.109 −0.865 0.041 −0.052 −0.100 0.099 0.153
pH 0.042 0.021 0.220 −0.234 −0.117 0.125 0.077 0.787
EC −0.214 0.036 −0.180 −0.032 −0.062 0.823 −0.024 0.046
DO 0.024 0.073 0.750 0.086 −0.126 −0.378 0.066 0.055

CODMn 0.191 −0.847 0.041 −0.076 0.028 −0.006 −0.074 0.015
BOD5 −0.032 −0.863 0.013 0.174 0.108 −0.020 0.041 −0.075

NH3-N 0.211 −0.222 −0.088 −0.038 0.703 0.085 −0.019 −0.038
Petrol −0.216 −0.357 0.073 0.067 0.629 −0.159 0.131 0.083

VP 0.074 0.141 −0.134 −0.647 −0.073 −0.134 0.358 0.181
COD −0.161 0.132 0.157 0.225 0.520 0.004 0.082 0.104
TN −0.021 0.009 0.193 0.014 0.142 0.090 0.719 0.061
TP 0.049 −0.135 −0.160 0.621 0.164 0.046 −0.064 −0.073
F −0.810 0.169 −0.006 −0.117 −0.011 0.086 0.061 −0.010
S 0.706 0.171 0.121 −0.335 0.093 −0.062 −0.090 0.199

F. Coli 0.707 −0.178 0.010 0.400 −0.226 −0.052 0.095 0.061
SO4 −0.006 0.028 −0.166 −0.111 −0.103 0.007 0.786 0.066
Cl 0.392 0.026 0.354 0.086 0.161 0.568 0.291 0.061

NO3-N −0.185 0.013 0.064 −0.664 0.038 0.314 −0.173 −0.140
TSS −0.141 0.218 −0.169 −0.047 0.544 0.052 −0.206 −0.103

T-Hard −0.093 −0.130 0.050 −0.158 0.035 0.202 0.131 −0.663
NO2-N 0.165 0.085 0.189 0.572 −0.046 0.089 −0.490 0.143

NH3 0.081 −0.024 −0.355 0.119 0.135 0.045 0.092 0.812
Eigenvalue 2.837 2.440 2.038 1.980 1.548 1.419 1.297 1.146

% Total variance 12.897 11.089 9.262 8.998 7.038 6.452 5.897 5.209
Cumulative % variance 12.897 23.986 33.248 42.246 49.284 55.735 61.632 66.841

VFs represent the variance factors after varimax raw rotation for principal components; bold values represent
medium-high loadings.

Regarding the data set of cluster B, among the eight VFs, VF1, which accounted for
12.9% of the total variance, represented a high negative loading on F but medium positive
loadings on F. Coli and S, indicating microbial contamination from municipal sewage,
livestock and poultry breeding. VF2 (11.1% of the total variance) represented high negative
loadings on BOD5 and CODMn, indicating organic contamination in urban sewage and
industrial wastewater. VF3 (9.3%) represented a high positive loading on DO but a high
negative loading on Temp. VF4 (9.0%) represented only a moderate positive loading on TP,
revealing nutrient contamination (e.g., P), especially from sewage containing detergents,
industrial wastewater and fertilizer. Point source contamination (such as wastewater from
the phosphorus chemical industry) and nonpoint source contamination (such as animal
breeding and agricultural fertilizer) from P, constitute common eutrophication-causing
contamination in this area [46]. VF5 (7.0%) applied only a moderate positive loading on
NH3-N, representing the contamination of animal feces and agricultural fertilizers. VF6
(only 6.5%) presented a high positive loading only on EC, likely because of the mineral
composition in river water [6]. VF7 (only 5.9%) presented a high positive loading on SO4
and a medium positive loading on TN, representing industrial wastewater using sulfate or
sulfuric acid. Finally, VF8 (only 5.2%) had a high positive loading on NH3 and pH, likely
because of industrial wastewater containing alkaline substances, such as NH3.

Regarding the seven VFs of cluster C, VF1 (20.5% of the total variance) showed high
positive loadings on NH3-N and TN, representing nutrient contamination from agricultural
runoff, municipal sewage and fertilizer plant wastewater (e.g., N). VF2 (12.2%) showed a
high positive loading on F, representing industrial wastewater containing fluoride. VF3
(10.2%) showed a high positive loading on pH. VF4 (7.5%) showed a high positive loading
on Temp and a moderate negative loading on DO, contrasting the results for VF3 of
cluster B. VF5 (6.7%) showed a high positive loading on Petrol, representing contamination
from oily sewage discharge from ship operations and wastewater from the petrochemical
industry. VF6 (5.7) showed moderate positive loadings on TSS and EC. Agricultural runoff,
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wastewater discharge, solid waste disposal and irrigation return increased the suspended
solids loading in streams [45]. VF7 (5.0%) showed a high positive loading on SO4, similar
to VF7 of cluster B.

Table 8. Loadings of 22 water quality parameters on VFs for cluster C in the Nanxi River.

Parameters VF1 VF2 VF3 VF4 VF5 VF6 VF7

Temp −0.189 0.073 0.090 0.862 −0.116 −0.034 0.125
pH −0.158 0.007 0.781 −0.105 −0.132 −0.052 0.135
EC 0.250 0.211 −0.077 0.206 −0.068 0.704 −0.077
DO −0.216 0.030 −0.051 −0.743 −0.118 −0.155 0.090

CODMn 0.593 −0.065 0.051 0.032 0.414 −0.285 0.186
BOD5 0.534 −0.030 0.056 0.142 0.655 −0.255 0.098

NH3-N 0.829 −0.001 −0.085 0.025 0.175 0.135 −0.189
Petrol 0.114 −0.105 0.086 −0.108 0.819 0.055 0.064

VP 0.001 −0.100 0.155 0.004 −0.632 −0.283 0.139
COD 0.546 −0.013 0.294 −0.245 0.472 0.075 0.071
TN 0.827 0.127 −0.065 −0.055 0.075 0.099 −0.001
TP 0.302 0.110 −0.201 0.061 0.648 0.167 −0.116
F 0.115 0.759 0.076 −0.063 0.044 0.214 0.200
S −0.082 −0.673 0.355 −0.245 −0.133 0.154 −0.048

F. Coli 0.045 −0.721 −0.077 0.028 0.255 −0.249 0.071
SO4 0.053 0.197 0.074 0.080 −0.178 0.022 0.818
Cl 0.182 −0.435 0.133 −0.133 0.157 0.489 0.315

NO3-N 0.262 0.268 −0.213 −0.041 −0.291 −0.013 −0.632
TSS −0.106 0.174 −0.067 −0.033 0.153 0.706 0.091

T-Hard 0.148 0.105 −0.659 −0.187 −0.140 0.086 0.031
NO2-N 0.191 −0.147 0.046 0.013 0.631 −0.043 −0.438

NH3 0.312 −0.001 0.689 0.404 0.104 0.007 0.135
Eigenvalue 4.513 2.685 2.250 1.661 1.469 1.252 1.098

% Total variance 20.515 12.202 10.227 7.549 6.678 5.693 4.989
Cumulative % variance 20.515 32.717 42.944 50.493 57.171 62.863 67.852

VFs represent the variance factors after varimax raw rotation for principal components; bold values represent
medium-high loadings.

We have identified four contamination source types—nutrient, organics, feces and
oil. Specifically, nutrient represented point source contamination, such as urban domestic
wastewater and industrial wastewater from chemical fertilizer plants, and nonpoint source
contamination, such as that related to agricultural activities and aquaculture. Second,
organics were mainly derived from oxygen consumption and toxic organic matter from
municipal sewage and industrial sewage. Third, feces were mainly derived from animal
fecal drainage in the fishery and livestock breeding industries. Finally, oil represented the
contamination characters from the petroleum chemical industry and oily sewage discharge
from ship operation.

4. Conclusions

In the Nanxi River of the Taihu watershed in China, WQI and multivariate statistical
techniques were used to assess the spatiotemporal variations in water quality and to
identify contamination source types.

(1) The WQI findings indicated that the water quality of most monitoring stations was
classified as “medium-low” and presented a continuous improvement trend. The water
quality of S1 and S2 was always above “good”, especially the water quality of S2, which
was “excellent” in 2015 and 2018.

(2) Cluster analysis divided the 14 monitoring stations into 3 clusters of low contami-
nation, medium contamination and high contamination.

(3) Discriminant analysis used 14 parameters (pH, Petrol, VP, COD, TP, F, S, F. coli,
SO4, Cl, NO3-N, T-Hard, NO2-N, and NH3) for important data reduction and provided an
87% correct allocation in the spatial variation analysis for the 3 clusters.
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(4) PCA/FA was used to analyze the data sets of three spatial clusters and obtained six,
eight and seven potential factors. The study showed that the sources of water contamination
were mainly related to nutrients (livestock and poultry breeding, agricultural activities),
salt ions (natural) and toxic organic contamination (urban sewage, industrial wastewater
and ship operation) in cluster A; fecal coliform (livestock and poultry breeding), organic
contamination (industrial and domestic sewage), temperature (natural), nutrients (point
source: industrial wastewater and domestic sewage; nonpoint sources: livestock and
poultry breeding, agricultural fertilizer) in cluster B; and fluoride (industrial wastewater),
pH and temperature (natural), and petroleum (ship operation and industrial wastewater)
in cluster C.

Supplementary Materials: The following supporting information can be downloaded at: https:
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Abstract: As the largest inland saltwater lake in China, Qinghai Lake plays an important role in
regional sustainable development and ecological environment protection. In this study, we adopted a
spatial downscaling model for mapping lake water at 10 m resolution through integrating Sentinel-2
and Landsat data, which was applied to map the water extent of Qinghai Lake from 1991 to 2020. This
was further combined with the Hydroweb water level dataset to establish an area-level relationship
to acquire the 30-year water level and water volume. Then, the driving factors of its water dynamics
were analyzed based on the grey system theory. It was found that the lake area, water level, and
water volume decreased from 1991 to 2004, but then showed an increasing trend afterwards. The
lake area ranges from 4199.23 to 4494.99 km2. The water level decreased with a speed of ~0.05 m/a
before 2004 and then increased with a speed of 0.22 m/a thereafter. Correspondingly, the water
volume declined by 5.29 km3 in the first 13 years, and rapidly increased by 15.57 km3 thereafter. The
correlation between climatic factors and the water volume of Qinghai Lake is significant. Precipitation
has the greatest positive impact on the water volume variation with the relational grade of 0.912,
while evaporation has a negative impact.

Keywords: water level; water volume; spatial downscaling; water dynamics; climate change

1. Introduction

Lakes are an important part of global hydrological and ecological processes [1–3], pro-
viding humans with indispensable resources and services, including drinking water supply,
agricultural production, transportation, recreation, fishery, etc. [4,5]. Ongoing global warm-
ing and climatic change [6] is enhancing the global hydrological cycle and affecting water
availability. As a result, efficient management of water resources is needed [7,8]. Warming-
induced hydrological cycle intensification and its impacts on local and global ecosystems
have brought increasing attention to the links between climatic change/variability, hydro-
logical processes, and water resources across various temporal and spatial scales during
the last few decades [9,10]. Therefore, understanding the hydrological changes of lakes
and their potential driving factors can provide insights into lake conservation and water
resource management [11,12]. As the largest inland saltwater lake in China, Qinghai Lake
is located at the northeastern part of the Tibetan Plateau, which is extremely sensitive
to climate change and plays a crucial role in maintaining the regional hydrological cy-
cle [13]. Therefore, monitoring the long-term dynamics of Qinghai Lake and analyzing its
driving factors are of great significance for local sustainable development and ecological
environment protection.

Remote sensing provides an effective way of monitoring surface water, mainly in
the forms of microwave remote sensing and optical remote sensing. Microwave remote
sensing is powerful due to its less atmospheric effect and all-weather observation [14],
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while optical remote sensing is widely used because of the data availability and appropriate
spatial and temporal resolutions [15]. For example, high temporal resolution multispectral
data, including MODIS and AVHRR, have been widely used to detect the seasonal and
inter-annual changes of lakes in the Tibetan Plateau [16], bearing in mind that the coarse
resolution may cause a lack of water extraction details and low accuracy at a regional
scale [17,18], while higher spatial resolution remote sensing data (e.g., Landsat imagery)
make it possible to accurately detect and delineate the water body information [19–22]. For
example, Cui et al. [23] analyzed the coastline change of Qinghai Lake and its surrounding
lakes from 1973 to 2015 by utilizing multitemporal Landsat imagery. Zhang et al. [24]
estimated the water balances of the ten largest lakes in China using ICESat and Landsat
data between 2003 and 2009. They proved that satellite remote sensing could serve as a
fast and effective tool for estimating lake water balance. Although Landsat imagery has
higher spatial resolution in comparison with MODIS or AVHRR, the accuracy of water
body extraction was still limited by its 30 m resolution. Sentinel-2 satellites are able to
obtain multispectral remote sensing data with a higher spatial resolution of up to 10 m,
which is assumed to be better for mapping surface water [25]. Existing research, such as
Du et al. [26] and Yang et al. [27], has demonstrated that Sentinel-2 data can provide more
explicit and accurate surface water information with the advantages of intensively and
continuously monitoring the surface of the Earth and higher spatial resolution. However,
as this is a recent satellite mission, its data have a relatively short time series, which fails to
meet the requirements of long-term analysis of lake water dynamics.

The mixed pixel issue usually hinders the accurate drawing and monitoring of lake
water. There are two popular methods to alleviate mixed pixel issues, pixel unmixing and
reconstruction, and spatial and temporal fusion [25]. The purpose of pixel unmixing and
reconstruction is to achieve higher resolution land cover mapping from coarse-resolution
data under the assumption that each mixed pixel can be expressed in the form of certain
combinations of a number of pure spectral signatures [25]. Spatial and temporal fusion
(spatio-temporal fusion) aims to blend high spatial resolution data with high temporal
resolution data to achieve both high spatial and high temporal resolutions [28–31], so that
the mixed pixel issue of the coarse spatial resolution data can be alleviated. Wu et al. [32]
proposed a downscaling algorithm that established a statistical regression model between
MODIS and Landsat data for generating a higher resolution inundation map from MODIS.
Through this downscaling process, they managed to generate 30 m water maps from coarse
resolution MODIS data while keeping their high temporal resolution. It was proved that
the downscaled water maps provide more spatial details and have higher accuracy.

The rapid development of remote sensing technology also brings new ideas for mon-
itoring lake water volume changes. This can be achieved by combing the lake area de-
rived from optical remote sensing and water level estimated by satellite altimetry data.
Satellite radar/laser altimeters such as TOPEX/POSEIDON, ENVISAT, JASON-1, and
ICESat/GLAS have been successfully applied for monitoring lake level variations [33–36].
For example, Zhang et al. [37] utilized Landsat and ICESat datasets to examine annual
changes in lake area, level, and volume of the Tibetan Plateau and explored the reasons
for the lake water volume changes from the 1970s to 2015. The Hydroweb, maintained
by LEGOS/GOHS in France, provides water level/area information derived from a com-
bination of multiple altimetry satellite observations of more than 150 inland lakes and
reservoirs [38], which serves as a useful data source for lake monitoring. For example,
Liu et al. [39] combined the Hydroweb and Landsat data recorded from 1975 to 2015 to
evaluate water volume variations and the water balance of Taihu Lake.

In this study, we aim to achieve a long-term and high-resolution analysis of the
water variation of Qinghai Lake in the past 30 years. To fulfil this objective, we adopt
Wu et al.’s [32] downscaling method to generate 10 m resolution water maps from a
long-term Landsat image series, with Sentinel-2 data as the auxiliary. To facilitate the
computation, we implement this method on Google Earth Engine (GEE) [40], an advanced
remote sensing cloud computing platform for large-scale and long-term remote sensing
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analysis and processing. We also want to combine the long-term water area variation
with water level information to estimate the water volume dynamics of Qinghai Lake, and
ultimately analyze the driving factors.

2. Study Area and Materials

2.1. Study Area

Qinghai Lake is the largest plateau inland saltwater lake in China, located in the
northeast corner of the Tibet Plateau (36◦32′–37◦15′ N, 99◦36′–100◦47′ E) (Figure 1) at an
altitude of 3196 m. It belongs to the semi-arid climate on a continental plateau, with large
evaporation, great temperature difference between day and night, and a short frost-free
and long freezing period [41]. The annual precipitation in the lake area is about 357 mm,
and the annual average temperature is approximately 1.2 ◦C [42]. More than 40 rivers (or
streams) flow into Qinghai Lake, with the two largest rivers, the Buha River and Shaliu
River, accounting for 63% of the total recharge volume [43]. As a closed inland lake, the
variations of Qinghai Lake water are closely related to, and highly affected by the climate,
while human activities contribute little [41,42,44], probably because it is a salt lake.

Figure 1. Qinghai Lake Basin.

2.2. Materials

Data used in this study include Landsat imagery, Sentinel-2 imagery, water level data
from the Hydroweb, and meteorological data (Table 1). Landsat 5 TM, Landsat 7 ETM+, and
Landsat 8 OLI data were employed together to implement a long-term earth observation
from 1991–2020. Sentinel-2 MSI imagery, with a spatial resolution up to 10 m, was employed
to establish the downscaling model to generate 10 m water extent from Landsat data. Both
Landsat and Sentinel-2 data were obtained and pre-processed on GEE. Considering the
interference of clouds, Landsat images from May to November were mosaiced to generate
a cloud-free image for each year. In order to reduce distortion caused by projection,
Sentinel-2 data were reprojected to the same coordinate system as Landsat data (WGS
84/UTM zone 47N). The Hydroweb dataset (http://Hydroweb.theia-land.fr, accessed
on 20 October 2020) provides long-term water level, area, and water storage estimations
of major lakes globally. Its water level dataset is a fusion of multiple altimetry satellites
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with different service years, including Topex-Poseidon (1992–2005), Jason-1 (2001–2013),
ICESat (2003–2009), Jason-2 (2008-), Jason-3 (2016-), Sentinel-3A (2016-), ICESat-2 (2018-),
and so on [35]. Meteorological data were obtained from the China Surface Climate Data
Daily Value Dataset (V3.0) published by the China Meteorological Data Service Center
(https://data.cma.cn/en/?r=data/index, accessed on 20 October 2020). We acquired
temperature, evaporation, and precipitation of Gangcha, Chaka, and Gonghe stations near
Qinghai Lake from this dataset, and used them to analyze the driving factors of Qinghai
Lake’s water dynamics.

Table 1. Materials used in this study.

Year Selected Bands Spatial Resolution (m) Purpose

Landsat 5 TM 1991–2011 B2, B4 30 Water extraction
Landsat 7 ETM+ 2012 B2, B4 30 Water extraction

Landsat 8 OLI 2013–2020 B3, B5 30 Downscaling Model & water
extraction

Sentinel-2 MSI 2015–2019 B3, B8 10 Downscaling Model
Hydroweb dataset 1995–2020 - - Water volume estimation

Meteorological dataset 1991–2017 - - Driving factor analysis

3. Methodology

We utilized Landsat and Sentinel-2 images in the overlapping period (2015–2019) on
GEE to establish the statistical regression downscaling model as developed by Wu et al. [32].
This model was then applied to generate long-term (1991–2020) and high-resolution (10 m)
water maps from Landsat imagery. Through integrating with the water level from the
Hydroweb dataset, the water volume variation in the past 30 years was analyzed based
on the area-level relationship. Finally, the meteorological dataset was used to analyze the
driving factors of lake volume changes. The flowchart of the methodology of this study is
shown in Figure 2.

 

Figure 2. Workflow of this study.

3.1. Downscaled Mapping of Surface Water

We adopted the statistical regression model proposed by Wu et al. [32] to downscale
Landsat imagery from 30 m to 10 m resolution, with the assistance of 10 m resolution
Sentinel-2 data. This model is based on regressing water index images derived from
Landsat and Sentinel-2 (Equation (1)). Specifically, Landsat 8 and Sentinel-2 with close
dates (less than 3 days) from 2015 to 2019 were selected to construct the regression model
(Table 2). Among the selected 11 pairs of Landsat-8 and Sentinel-2 images, the one on
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23 October 2018 was selected to validate the downscaled results only, while the remaining
were selected for regression.

NDWIFine
i,j,t = ai,j·NDWICoarse

i,j,t + bi,j, (1)

Table 2. Selected Landsat 8 and Sentinel-2 imagery for establishing the regression model. The bolded
pair was for validation only.

Sequence The Date of Landsat 8 The Date of Sentinel-2

1 2016/07/29 2016/07/30
2 2016/10/17 2016/10/18
3 2017/07/16 2017/07/15
4 2017/11/05 2017/11/07
5 2017/12/07 2017/12/07
6 2018/02/09 2018/02/10
7 2018/02/25 2018/02/25
8 2018/03/13 2018/03/12
9 2018/10/23 2018/10/23
10 2019/01/11 2019/01/11
11 2019/04/17 2019/04/16

In Equation (1), ai,j and bi,j are the fitted regression coefficients, NDWIFine
i,j,t and

NDWICoarse
i,j,t are the normalized difference water index (NDWI) [45] of fine and coarse

resolution images at time t and pixel location (x, y), respectively. NDWI was calculated as
the normalized difference of GREEN and near-infrared (NIR) bands (Equation (2)).

NDWI = (GREEN − NIR)/(GREEN + NIR), (2)

We first resampled the coarse resolution NDWI image to the same resolution as the
fine resolution NDWI imagery using the NEAREST interpolation method, i.e., resampled
the 30 m Landsat NDWI to 10 m resolution, and then established the regression model
based on the resampled Landsat NDWI and Sentinel-2 NDWI on a pixel-by-pixel basis.
Using this model, higher resolution (10 m) NDWI images can be generated from any input
of Landsat NDWI image. OTSU thresholding [46] was then applied to the resultant NDWI
images to extract the surface water extent.

3.2. Water Volume Estimation

To calculate the relative water volume variation, the lake was assumed to be circular
with a regular shape. In this study, we adopted the method used in [47] to estimate the lake
volume change (ΔV), as shown in Equation (3).

ΔV =
1
3
(H 1 − H2)·(A 1+A2 +

√
A1·A2), (3)

where H1 and A1 represent the corresponding lake water level and area at time 1, and H2
and A2 are the water level and area at time 2, respectively.

3.3. Driving Factor Analysis

As the human activities had limited impacts on the water volume variation of Qinghai
Lake [48], we assume there is no impact caused by anthropogenic factors and only analyze
the climatic driving factors for lake water dynamics. Due to the complexity of climatic
change and the diversity of influencing factors of lakes, nonlinear constraints and uncer-
tainties are involved in the consideration of the impact of climate elements on the lake
dynamics, which causes extensive greyness [49]. Therefore, the Grey Relation Analysis
(GRA) [50] was applied to analyze the response of the water volume to climate factors.
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The GRA uses the correlation of two sequences to characterize the degree of association
between them, called the relational grade, which is calculated as:

Rij =
1
N ∑N

t=1 Rij(t), (4)

where Rij represents the relational grade between the sequences of i and j, N is the length
of the sequence, and Rij(t) is the correlation coefficient between the sequences of i and j at
time t, calculated as Equation (5):

Rij(t) =
Δmin+ρΔmax

Δij(t) + ρΔmax
, (5)

where Δmin and Δmax denote the minimum and maximum of the absolute difference of two
sequences at each time, respectively, Δij(t) represents the absolute error between sequences
at time t, and ρ is the resolution coefficient (ρ ∈ (0, 1)), usually set to 0.5 [49].

In addition, we adopted three different methods to calculate the correlation coefficient,
namely Pearson [51], Spearman [51], and Kendall [51], to compare with the GRA analysis
results. The Pearson correlation coefficient was also used to investigate the climate influence
on water volume, which was calculated as Equation (6):

r =
n ∑xiyi

−∑xi ∑yi√
n ∑x2 −(

∑xi

)2
√

n ∑y2 −
(

∑yi

)2
, (6)

where r is the correlation coefficient ranging from −1 to 1, x and y are the values of the two
variables, and n is the number of samples. While the absolution value of r is closer to 1, the
correlation between variables is stronger.

4. Results

4.1. Validation of Downscaled Water Maps

We utilized a pair of Landsat 8 and Sentinel-2 images on 23 October 2018, which were
not employed for establishing the downscaling model but to validate the downscaling
method. A 10 m resolution water map was generated from a downscaled NDWI image
derived from the Landsat 8 image using OTSU thresholding. Another 10 m resolution
water map derived directly from the Sentinel-2 image was employed as the reference to
validate the downscaled result. Two maps were generated by overlaying the water map
derived from the original Landsat image and the downscaled result with the Sentinel-2
derived referencing water map, respectively (Figure 3). From these maps, it is obvious
that the Landsat 8 image can accurately extract the major water body of Qinghai Lake,
either with or without the downscaling process. The extraction differences are mainly
distributed along the boundary, especially in Haixi Island, the estuaries of the Buha River
and Shaliu River, the sandy area of Shadao Lake, and Haiyan Bay. Compared with the
referencing Sentinel-2 water map, the water map derived from the original Landsat 8 image
has many misclassified pixels, shown as red color for omission errors and green color
for commission errors. The water map derived from downscaled Landsat 8 data showed
some improvement, with more detailed features and small water bodies successfully being
extracted, for example in the sandy area.
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(a) 

(b) 

Figure 3. Comparison between Sentinel-2 and Landsat 8 water maps, (a) original Landsat 8 image, and
(b) downscaled Landsat 8 image. Grey color (S2_land-L8_land) stands for pixels that were identified
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as Land on Sentinel-2 image and Land on original/downscaled Landsat 8 image. Red color (S2_warer-
L8_land) stands for pixels that were identified as Water on Sentinel-2 image and Land on origi-
nal/downscaled Landsat 8 image (omission error). Green color (S2_land-L8_water) stands for pixels
that were identified as Land on Sentinel-2 image and Water on original/downscaled Landsat 8 image
(commission error). Blue color (S2_water-L8_water) stands for pixels that were identified as Water on
Sentinel-2 image and Water on original/downscaled Landsat 8 image.

Based on these overlaying results (Figure 3), we calculated a confusion matrix by
counting the number of four types of overlay map pixels. In this process, as both the
reference and verification object are raster data, we took all the pixels as the samples to
construct the confusion matrix, based on which accuracy indicators including commission
error, omission error, overall accuracy, and Kappa coefficient were calculated (Table 3). It
was found that the overall accuracy was clearly improved from 88.35% to 92.10%, and the
commission error decreased by 2.46% and omission error by 1.94%. The Kappa coefficient
was increased from 0.77 to 0.84. These accuracy indices suggest that the lake water was
mapped more accurately by the downscaling method.

Table 3. The accuracy of water maps derived from the original Landsat 8 image and downscaled
Landsat 8 image.

Accuracy Indicators Landsat 8 Image Downscaled Landsat 8 Image

commission error (%) 6.18 3.72
omission error (%) 5.47 3.53

overall accuracy (%) 88.35 92.10
Kappa coefficient 0.77 0.84

4.2. Lake Area and Shoreline Dynamics

We applied the downscaling model to generate 10 m resolution water maps from
selected Landsat images for Qinghai Lake from 1991 to 2020. The lake water area ex-
hibits a two-phase changing pattern as shown in Figure 4a. Taking 2004 as a turning
point, the water area showed an overall downward trend at the first stage, dropping from
4316.20 km2 in 1991 to 4199.23 km2 in 2004. Since 2004, the water area of Qinghai Lake has
been increasing gradually, reaching 4494.99 km2 in 2020, with an annual growth rate of
18.49 km2/a.

(a) (b) 

Figure 4. (a) Annual water area of Qinghai Lake; (b) annual lake area derived from the Landsat image
before and after downscaling, in comparison with that extracted from Hydroweb dataset (available
for 1995–2017).
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We compared the lake area derived from Landsat before and after downscaling with
that extracted from the Hydroweb dataset (Figure 4b). Hydroweb only provides area
estimation of Qinghai Lake from 1995 to 2017 through a combination of multiple satellite
data such as Landsat and CBERS-2 [35]. The annual area was taken from the average value
from May to November. It is shown in Figure 4b that the annual lake water areas are
consistent among the three data sources. The Hydroweb area is overall slightly higher than
the area derived from Landsat images, which may be accounted for by the area integrated
by different remote sensing satellites. It is also observed that through the downscaling
process, the Qinghai Lake area extracted by the Landsat images is closer to the observations
of Hydroweb.

We took 1991, 2004, and 2020 to elaborate the spatial dynamics of Qinghai Lake
shoreline (Figure 5). It can be seen clearly that the shoreline at the west, east, and north
banks shrank in 2004 in comparison with 1991, particularly in the east bank. In 2004, Shadao
Lake was separated from the main body of Qinghai Lake due to water receding. Compared
with 2004, the water extent of Qinghai Lake in 2020 was much larger. The Shadao Lake and
Haiyan Bay on the east was integrated with the main body of Qinghai Lake. The Tiebuka
Bay, Buha River, and Haixi Island also expended significantly, but the Gahai Lake has not
changed significantly. In addition, the shoreline on the south bank also had an apparent
expansion from 2004 to 2020.

 
(a) (b) 

Figure 5. Shoreline change of Qinghai Lake for (a) 1991–2004, and (b) 2004–2020.

4.3. Lake Water Volume Variation

We extracted the annual average water level of Qinghai Lake from the Hydroweb
dataset by taking the average water level from May to November each year. Due to the
data availability, we only have the water level record from 1995–2020. The water level
dropped from 3194.22 m in 1995 to 3193.62 m in 2004 with an average descending speed
of 0.05 m/a, and then raised to 3197.20 m in 2020, with an average rate of 0.22 m/a. A
significant correlation between the area and water level of Qinghai Lake was identified
(R2 = 0.976, RMSE = 11.67, Figure 6a). Based on the regression model of water level and
area, we estimated the water level of Qinghai Lake from 1991 to 1994 (red dots in Figure 6b)
and made a full time series of the water level for 1991–2020 (Figure 6b). Similar to the
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area variation, the water level variation of Qinghai Lake also exhibits a first-decline-then-
increase pattern. We fit a linear regression for the water level of 1991–2004 and 2004–2020,
respectively, and found that both periods have significant linear trends, with R2 both greater
than 0.8.

(a) (b) 

Figure 6. (a) The area-level correlation; (b) The water level of the Qinghai Lake in 1991–2020.

Taking the water volume of 1991 as the baseline, the water volume dynamics in the
past 30 years were calculated from water area and water level using Equation (3). As shown
in Figure 7, it is clear that the water volume also shows a first-decline-then-increase pattern.
We also fit a linear regression for the water volume variation in 1991–2004 and 2004–2020,
respectively. It was found that both regression models have a high R2, suggesting significant
linear trends. From these models, it is obvious that the water volume decreased from 1991
to 2004, with a fitted rate near to 0.38 km3/a, while it increased from 2004 to 2020, with a
fitted rate of 0.89 km3/a.

Figure 7. 30-year water volume dynamics of Qinghai Lake based on water volume of 1991.

4.4. Driving Factors of Qinghai Lake Water Variation

In this paper, we calculated the annual accumulated temperature by selecting the daily
temperature greater than 10 ◦C, which is proven to be increasingly important for assessing
the impact of climate change [52].We adopted the Mann–Kendall (M–K) [53] trend analysis
to identify the tipping point and trend of accumulated temperature, precipitation, and
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evaporation from 1991 to 2017 in Qinghai Lake Basin (Figure 8). The M–K method is a
nonparametric analysis method that has been extensively used for time-series hydrological
analysis [54]. The results show that the annual accumulated temperature, precipitation, and
evaporation in the Qinghai Lake Basin was overall increasing gradually. The tipping points
of accumulated temperature and precipitation are 2005 and 2003, respectively, which is close
to the turning point of the lake water volume. The average accumulated temperature in
1991–2005 is 1374.47 ◦C, which jumps to 1520.15 ◦C in 2005–2017. The average precipitation
changes from 285.31 mm in 1991–2003 to 336.67 mm in 2003–2017. However, the change
point of evaporation occurs in 1995. The average evaporation of 1991–1995 and 1995–2017
are 1669.86 mm and 1736.36 mm, respectively.

Figure 8. The change point and trend of accumulated temperature, precipitation, and evaporation
from 1991 to 2017 in Qinghai Lake Basin.

We employed the GRA to investigate how the climatic elements have affected the
relative water volume of Qinghai Lake in the past 30 years. The relational grade (Table 4)
between the annual accumulated temperature, precipitation, and evaporation, and the
water volume of Qinghai Lake was obtained through Equations (4) and (5). In addition,
three different correlation analysis methods (i.e., Pearson, Kendall, and Spearman) were
adopted for cross comparison.
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Table 4. The correlation of annual mean values of accumulated temperature, precipitation, and
evaporation with the annual water volume.

Accumulated Temperature Precipitation Evaporation

Pearson 0.25 0.46 * −0.26
Kendall 0.12 0.28 −0.14

Spearman 0.14 0.40 * −0.23
Relational grade 0.56 0.95 0.51

Note: * p < 0.05.

According to the results of three different correlation analyses, the correlation of
precipitation is the highest no matter which method is applied. The correlation between
water volume and accumulated temperature is relatively low, while that with evaporation
is negative. The relational grade of GRA also suggests that precipitation has the greatest
impact on the water volume, with a relational grade of 0.95. The accumulated temperature
has a value of 0.56, and evaporation exerts the weakest effect on water volume dynamics,
with a relational grade of 0.51.

To further explore the relationship between climate factors and Qinghai Lake water
volume, we performed the Pearson analysis in 1991–2004 and 2004–2017 separately (Table 5).
During the period of 1991–2004, it seems that the accumulated temperature is the major
factor affecting the decline of Qinghai Lake water volume. For the period of 2004–2017, the
increase of water volume seems to be mainly positively affected by the precipitation, with
the correlation coefficient close to 0.6 and p < 0.05.

Table 5. Pearson’s r between climate factors and water volume for period 1991–2004 and 2004–2017.

Period Accumulated Temperature Precipitation Evaporation

1991–2004 −0.70 ** 0.12 −0.24
2004–2017 0.36 0.60 * −0.32

Note: * p < 0.05; ** p < 0.01.

5. Discussion

As the largest inland saline lake on the plateau in China, Qinghai Lake not only
regulates the local climate through the “lake effect”, but also directly affects the wetlands
and sandy land around the lake. This study made full use of the continuity of the medium-
to high-resolution Landsat imagery and combined them with higher-resolution Sentinel-2
imagery for more accurate and long-term monitoring of Qinghai Lake water area dynamics.
Meanwhile, the water level data acquired by satellite altimetry were employed to transform
the Landsat-based water area dynamics to water volume dynamics. The results show
that the water area, water level, and water volume of Qinghai Lake from 1991 to 2020 all
exhibit a first-decline-then-increase pattern. The turning point occurred in 2004, when
the water level and area reached the minimum. Since then, Qinghai Lake has entered
into a period of stable expansion. Overall, our findings were found to be consistent with
previous studies [23,24,48,55,56]. However, compared with the annual average water level
obtained from gauge stations of Qinghai Lake by Li et al. [42], the water level of the
Hydroweb dataset is relatively higher. Due to the lack of lake bathymetry dataset, the
water volume estimated in this study only represents the water volume change relative
to 1991, instead of the real water volume change. Moreover, different altimetry data have
different uncertainties due to their different data quality. In the future, we will consider
combining the lake bathymetry and fusing different altimetry satellite data to deepen the
research on water level and water volume.

Existing studies have proven that local climate change in the Qinghai Lake Basin in
recent years leads to gradual increases in temperature and precipitation and decreases
in evapotranspiration [48,57]. Zhang et al. [37] found that increased net precipitation
contributes the majority of the water supply (74%) for the lake volume increase, followed
by glacier mass loss (13%) and ground ice melt due to permafrost degradation (12%) on
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the Tibetan Plateau from 2003–2009. Song et al. [58] also pointed out that the meltwater
from mountainous glaciers and snow cover have become important water sources for
Qinghai Lake, supported by the work of Zhang et al. [33]. Considering the increasing
contribution of glaciers and precipitation to the water balance, it is anticipated that the
water volume of the plateau inland lakes will continue to increase in the next few decades.
We also found that the increasing precipitation had a major contribution to the increase
of Qinghai Lake’s water volume, indicating possible continuous water increasing in the
near future [59]. Continuous rising of water level and expansion of water area may breed a
better ecological environment and richer biodiversity, which would be beneficial for local
ecological protection and desertification prevention [48].

6. Conclusions

We integrated Landsat and Sentinel-2 remote sensing imagery to construct a long-term
10 m resolution lake water area variation series, which was further associated with the
Hydroweb water level dataset to estimate the water volume change. Through this process,
we were able to provide the highest resolution long-term Qinghai Lake water monitoring
results to date. The driving factors of lake water variation were further analyzed through
the grey theory. Based on the results, we draw the following conclusions.

(1) The spatial downscaling method that was incorporated with the Sentinel-2 and
Landsat imagery can effectively take advantage of Landsat’s long time series and Sentinel-2’s
high spatial resolution and thus achieve long-term and high-resolution lake monitoring.
The resultant water extent was proven to have an improved overall accuracy of 92.10% and
Kappa coefficient of 0.84.

(2) The area, water level, and water volume of the Qinghai Lake exhibit the same
first-decline-then-increase pattern, with 2004 as the turning point. The minimum lake area
that occurred in 2004 is 4199.23 km2, and the maximum is 4494.99 km2 in 2020. The water
level dropped from 3194.22 m in 1995 to 3193.62 m in 2004 with an average descending
speed of 0.05 m/a, and then raised to 3197.20 m in 2020, with an average rate of 0.22 m/a.
The water volume decreased between 1991 and 2004, with a fitted rate of 0.34 km3/a, while
it increased between 2004 and 2020, with a fitted rate of 0.89 km3/a.

(3) The results of the GRA and three correlation analyses all indicate that precipitation
has the greatest impact on the water volume variation of Qinghai Lake, followed by
accumulated temperature and evaporation. From 1991–2004, the Pearson correlation
analysis indicates that accumulated temperature is the primary factor affecting the decline
of Qinghai Lake water volume, while the increase of water volume from 2004–2017 seems
to be mainly positively affected by precipitation.
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Abstract: To assess water quality (WQ) online for assuring the safety of drinking water, a novel
early warning system integrating a high-frequency monitoring system (HFMS) and data quality
control (QC) was developed at Lake Qiandao. The HFMS was designed for monitoring water
quality, nutrient inputs by main tributaries, water currents and meteorology at different sites at Lake
Qiandao. The EWS focused on data availability, a QC method, a statistical analysis method and
data applications instead of technological aspects for sondes, wireless data transfer and interface
software development. QC was implemented before use to delete the abnormal values of outliers,
to detect change points, to analyse the change trend, to interpolate discrete missing measurements,
and find continuous missing or wrong observations caused by technical problems with the sonde.
For demonstrating advantages and data availability, surface and profiling measurements at two
sites were plotted. The plots show obvious seasonal and diel variations, demonstrating the success
of integration of the system with advanced automated technology and good QC. This successfully
developed system is now not only giving early warning signals, but also providing critical WQ
information for the security of drinking water diverted to Hangzhou city through a tunnel of 110 km
length. The automatic monitoring data with QC is also being used to produce initial conditions for
WQ prediction based on a three dimensional hydrodynamic-ecosystem model.

Keywords: early warning system; high-frequency monitoring; data quality control; water quality;
Lake Qiandao

1. Introduction

Lake eutrophication is a long-term global problem caused by excess nutrient inputs [1],
and exacerbated by long water residence times that delay WQ responses to management
actions. It is a common problem in the lakes located at the middle and lower catchment
of the Yangtze River even in the “good WQ” lakes classified by the Ministry of Ecology
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and Environment of the People’s Republic of China (e.g., Lake Qiandao). Impairments asso-
ciated with eutrophication include poor water clarity, harmful algal blooms (HABs) [2–4],
and the loss of biodiversity, which affect drinking water supplies and the recreational use
of lakes. Some impairments are highly dynamic (e.g., HABs, loss of dissolved oxygen, etc.),
which has resulted in the rapid proliferation of EWS for monitoring key variables that can
cause rapid changes in the water quality of coastal water [5] and freshwater systems [6–10].

An EWS is an integrated system consisting of in situ autonomous sensors for continu-
ous rapid monitoring. The measured data are analysed and interpreted for the purpose
of forecasting changes in water quality by the system. It provides a fast and accurate
way to distinguish abnormal/abrupt variations in WQ due to biochemical and physical
interactions over short time scales. EWS requires the fast detection of abnormalities in WQ
parameters, which calls for high-frequency real-time monitoring technologies, wireless
communication and appropriate data storage and analysis. A new generation of online
monitoring tools based on sensor sonde technology and satellite-based remote sensoring
(RS) has emerged in recent years [11–16]. However, the effective implementation of these
tools has not been fully realised due to their limitations relating to meeting practical utility
needs, high costs, unsatisfied reliability, hardware maintenance demands, and cumbersome
data management and analysis approaches, with respect to practical operations.

Conventional sample collection and laboratory-based methods are too slow to achieve
operational response and temporal–spatial continuity. There is a clear and increasing need
to rapidly detect WQ parameters to ensure an appropriate and timely response to instances
of accidental or deliberate contamination [13]. For the past two decades, Wireless Sensor
Networks (WSNs) technology has been applied increasingly to environmental monitoring
for providing high-frequency scientific data. These high-tech smart devices have offered
a vital approach to environmental monitoring and have monitored some lesser-studied
fundamental processes, due to their inaccessibility [12]. Generally, the sensor nodes acquire
data autonomously, process them locally, and transfer the information to a base station
with an internet connection [17].

WSN technology integrated with floating buoys has been widely used to acquire
high-frequency WQ data for lakes in the world. Due to severe environmental problems,
the Chinese great lakes, which were or are currently supplying drinking water, have
been the focus of many efforts to build dense buoy monitoring networks. For example,
on Lake Taihu (Jiangsu Province, surface area 2338 km2, mean water depth 1.9 m), 18 WSN
buoy stations are operated by the Chinese Academy of Science, 21 stations by the Jiangsu
Environmental Monitoring Station [18], and one each by the Suzhou Meteorological Bureau
and Nanjing Normal University. At Lake Dianchi (Yunnan Province, surface area ~300 km2),
there are 30 monitoring buoy stations (MBSs) [19]. Lake Taihu and Lake Dianchi are both
key lakes which have been invested in tremendously by the Chinese central government
for ecological restoration over the past two decades. At Lake Qiandao, which is a drinking
water supply reservoir with an area of 580 km2 [20], there are four buoy profilers with
a meteorological station, 10 MBSs for surface WQ detection with a meteorological station,
13 MBSs for inflow river WQ detection, and four for both surface WQ detection and current
measurements by an Acoustic Doppler Current Profiler (ADCP).

Key issues that need to be addressed for a EWS in order to assure the accuracy and
precision of measurements, are data quality control (QC) and quality assurance (QA).
QC and QA are fundamental for decision making based on reliable data analysis. For a
specific water quality parameter, QC generally involves a number of internal consistency
tests, a threshold test, a step change point and trend detections for finding potential
outliers at a particular station [21]. Measured data at a given site may also be compared
with measurements from surrounding sites for an accuracy assessment. An effective QC
and QA system is critical to the success of any environmental project, which has been
successfully applied to the fields of climatology, oceanography and other geosciences.
However, there has been limited application to developing an EWS with real-time high-
frequency monitoring. Therefore, the aims of this study were to introduce a comprehensive
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EWS. developed for Lake Qiandao, and the corresponding QC method for real-time high-
frequency monitoring data.

2. Methodology

2.1. Study Area

Built in 1959, Lake Qiandao is located at Chun’an County, which is at the west of
Zhejiang Province, China (29◦22′–9◦50′N, 118◦34′–119◦15′E, Figure 1) [22]. It is one of the
largest reservoirs in China with a surface water area of 573 km2 and a water capacity of
178.4 × 108 m3, when the water level is 108 m [23]. The mean water depth is 34 m and
the maximum depth is 100 m. It is used to supply drinking water for the 450,000 people
in Chun’an County. Now, it is also providing drinking water for five million people in
Hangzhou City, through a tunnel with a length of ~110 km. There are 34 inflow tributaries
around the lake. The largest one (Xinan River, Figure 1) is from the northwest, carrying
51.4% of the total inflow to the lake from all sources, not including rainfall and ground
water. It carries 34.3% of the total phosphorus (TP) loading and 63.7% of the total nitrogen
(TN) loading [19]. The multi-year average inflow and outflow are 103.44 × 108 m3 and
97.45 × 108 m3, respectively [23], with a residence time of ~668 days.

Figure 1. Monitoring sites at Lake Qiandao and its location within China.

2.2. Monitoring Stations

The HFMS at Lake Qiandao includes thirteen river stations; fourteen buoy stations—
including ten buoys measuring the surface WQ (Buoy_surface, model EMM700, YSI In-
corporated, Yellow Springs, USA); four ‘profiler’ buoys (Buoy_profiler, model EMM2500,
Yellow Springs, USA); four hydrological stations (Hydro_station)—these were deployed
at the three main tributaries and the only river outflow and measure water current speed;
and four flux stations (Flux_station, model Tenghai HZF3, Tenghai Science & Technol-
ogy Ltd., Hangzhou, China), located alongside the hydrological stations, measuring WQ
parameters. There are also thirteen river stations (River_station, model EMM700, YSI

123



Water 2022, 14, 602

Incorporated, Yellow Springs, USA) measuring WQ, deployed at the main inflow tribu-
taries. Meteorological sensors (Met_station) are deployed at the top of each buoy station,
except for one site (Figure 1). The Buoy_profilers were deployed at sites 1–4. The profiling
information at site 3 is representative of the lake because it is at the centroid, while site 4 is
the deepest monitoring point, which is located at the biggest outflow channel. Sites 5 and 6
with Buoy_surface are near the middle, capturing surface WQ variation.

2.3. Sensor Information and Alert Range

Table 1 shows all the sensor metadata. The alert range for a specific sensor, in the
seventh column of Table 1, was decided by analysing historical data manually, or by using
the sonde measurements. The alert thresholds are equal to the corresponding reasonable
“minimum-maximum-range” (MMR) of each sonde. When the measured value is out of the
alert range, an alert report will be recorded and the EWS can find the report by searching
alert report once an hour. Once alert information for a specific sonde is found, a message
will be sent to the EWS manager’s cellphone. The integrated sonders with a metal protective
cage move up and down through the water column at a constant speed The average return
times for sonders moving at site 1, site 2, site 3 and site 4, are 55 min through a water
column of 65 m, 45 min (water column 40 m), 50 min (water column 46 m), and 30 min
(water column 16 m), respectively. The measurement values are recorded every minute at
all the four sites. All the buoy systems are solar-powered and the data are transferred to
a computer server at the Chunan Branch of Hangzhou Ecology and Environment Bureau
by 4G wireless telemetry. The whole monitoring system is being maintained by Hangzhou
Tenghai Science and Technology Limited, with the sondes cleaned to wipe bio-fouling
once a month and calibrated once every three months for data assurance. The power
supply system with a solar panel and wireless data transfer are also regularly checked and
maintained by this company.

Table 1. Sensor metadata for all monitoring buoys at Lake Qiandao.

Buoy Type
Number
of Buoys

Measured
Parameter

Unit
Sensor
Model

Measurement
Range

Alert Range
Monitoring
Frequency

Buoy_
surface

10

WT ◦C

YSI
EXO2

−5–+50 9–35

30 min

PH 0–14 6–9
ORP mV −999–+999 −30–+500

COND mS cm−1 0–200 80–170
DO_con mg L−1 0–50 4–13

Buoy_
profiler 4

DO_sat % 0–500 39–170
TURB NTU 0–4000 0–43
CHLA μg L−1 0–400 0–25

PC μg L−1 0–100 0–7
FDOM QSE 0–300 0–7

River_
station

(EMM700)
13

WT ◦C
YSI

EXO2

−5–+50

2 h
COND μS cm−1 0–200
TURB NTU 0–4000
FDOM QSE 0–300

Met_
station

13

RH %

VAISALA
WXT520

0–100 35–90

30 min

BP hpa 600–1100 970–1030
Wind_spd m s−1 0–60 0–13
Wind_dir ◦C 0–360 0–360

TEMP ◦C −52–+60 1–33
RAIN mm 0–200 mm h−1 0–162 mm day−1

Flux_
station

4

TN mg L−1

TriOS
OPUS

0.4–1.5

1 h
TP mg L−1 0–0.03

COD mg L−1 0–500 4–11
NO3-N mg L−1 0–100 0–0.08

TOC mg L−1 0–500
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Table 1. Cont.

Buoy Type
Number
of Buoys

Measured
Parameter

Unit
Sensor
Model

Measurement
Range

Alert Range
Monitoring
Frequency

Hydro_
Station 4 Current

Speed m s−1
ADCP
TRDI

WHR600k
0–5 0–1 30 min

Abbreviations: water temperature (WT), oxidation reduction potential (ORP), electrical conductivity (COND),
dissolved oxygen concentration (DO_con), dissolved oxygen saturation (DO_sat), turbidity (TURB), chlorophyll a
(CHLA), phycocyanin (a pigment specific to cyanobacteria, PC), fluorescent dissolved organic matter (FDOM),
total nitrogen (TN), total phosphorus (TP), chemical oxygen demand (COD), nitrate (NO3

−N), total organic
carbon (TOC), relative humidity (RH), air pressure (BP), wind speed (Wind_spd), wind direction (Wind_dir) and
air temperature (TEMP).

2.4. Data Quality Control

The monitoring stations produce large volumes of data, requiring specialised tools to
facilitate quality control and to ensure that data are fit-for-purpose. We developed bespoke
software in Fortran, employing two principle methods of quality control. Firstly, an MMR
was adopted whereby the minimum and maximum values of the raw data measured by
each sensor were specified, by assessing the range of previous observations and defining
a ‘reasonable range’ (larger than or equal to the alert range at Table 1) for each variable based
on a large volume of historical measurements from the lake area and inflows/outflows.
The lowest value from both historical observations was adopted as the minimum value
for MMR, with the maximum value defined with a similar method. Table 2 shows all the
maximum (Max)/minimum (Min)/average (Avg) values for WQ measurements including
WT, pH, DO, permanganate index (PI), chemical oxygen demand (COD), five-day biochem-
ical oxygen demand (BOD5), ammonia (NH4-N), TP, TN, CHLA and Secchi depth (SD).
Unfortunately, only WT, pH and DO were observed by the monitoring buoys. Subsequently,
data outside of the specified range for each variable were quarantined with a unique flag
number (e.g., ‘8888’) and will be further investigated.

Table 2. Statistical value of measured water quality parameters at the four sites of Lake Qiandao
from April 2001 to May 2021.

Site
Number of

Samples
Statistical

Value
WT
(◦C)

pH
DO

(mg L−1)
PI

(mg L−1)
COD

(mg L−1)
BOD5

(mg L−1)
NH4-N
(mg L−1)

TP
(mg L−1)

TN
(mg L−1)

CHLA
(μg L−1)

SD
(m)

Site 1 195
Max 32.8 9.1 14.3 3.53 17.0 3.50 0.51 0.173 2.47 72 6.0
Min 9.0 6.4 4.9 1.23 5.0 0.34 0.01 0.002 0.59 0.6 0.1
Avg 20.5 7.7 8.7 1.96 7.0 1.05 0.08 0.029 1.24 9.5 2.39

Site 2 184
Max 34.3 8.8 14.9 2.67 14.0 2.70 0.18 0.050 1.63 47.0 7.8
Min 9.3 6.7 6.7 0.78 1.1 0.28 0.01 0.002 0.33 0 0.8
Avg 20.9 7.8 9.3 1.54 5.1 1.04 0.03 0.013 1.04 7.0 3.81

Site 3 230
Max 33.5 8.8 11.8 2.00 12.0 1.80 0.09 0.027 1.45 20.2 11.0
Min 9.6 6.7 6.4 0.71 0.7 0.22 0.01 0.002 0.42 0.3 1.7
Avg 20.7 7.8 8.9 1.37 4.1 0.85 0.02 0.009 0.84 4.0 5.48

Site 4 230
Max 32.9 8.5 11.6 2.13 12.0 1.60 0.03 0.025 1.48 15.6 11.0
Min 6.7 6.6 6.0 0.61 0.0 0.19 0.01 0.002 0.40 0.0 2.4

Avg 20.7 7.7 8.6 1.27 4.0 0.80 0.01 0.007 0.82 3.3 6.02

The second approach is an “abnormal” value detection method, as follows:

(1) Suspected abnormal value judgement. For a target value, not including the first
and last ones (e.g., ‘xi’ in Equations (1)–(3)), if it is either larger or smaller than its adjacent
values, then the target value will be regarded as a suspected abnormal value and flagged.

f1 = xi − xi−1 (1)

f2 = xi+1 − xi (2)

f f = f1 × f2 (3)
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where xi (I = 2, 3, 4, . . . n − 1) represents the time series of buoy measurements, excluding
the first and last values. So if ff < 0, the measurement at the ith time will be regarded as
a suspected abnormal value.

(2) Abnormal value confirmation. We calculate the average value x of raw data after
MMR control, the anomaly |xmax − x| between the maximum value xmax and x, and the
anomaly |xmin − x| between the minimum value xmin and x. The larger value |x − x|
between |xmax − x| and |xmin − x| will be chosen to compare with the absolute value | f f |
of ff. If | f f | is larger than, or equal to, |x − x|2, then the measurement at the ith time will be
confirmed as an abnormal value.

2.5. Change Point and Trend Detections

The Pettitt test was used to automatically detect change points in the data series once
a week. Pettitt’s test is a nonparametric test to detect a single change point in a time
series with continuous data. Its calculation procedures can be found in detail in [24].
The identified change points were then compared to the minimum and maximum values
for each sensor. If their values are all in MMR, the validity of change point values will
be confirmed. Otherwise the values will be removed from the time series or marked for
further check. An exploratory analysis was also carried out to detect the trend of hourly
and daily data for all the parameters using the Mann-Kendall method once a week. If the
serial data kept increasing or decreasing for more than one week, its validity would be
manually and carefully investigated.

2.6. Data Availability, Daily and Hourly Data Calculation

Most of the buoy monitoring datasets at the lake area (Buoy_surface, Buoy_profiler,
Met_station) commenced in September 2015. The River_station data collection began in
August 2016 and the Flux_station and Hydro_station data collection began in April 2017.
A software developed by the authors is used to analyse and summarise the high-frequency
data, including the calculation of daily and hourly values, based on quality-controlled raw
data. Small data gaps without measurements (≤days) are interpolated by the software and
the large data gaps are arbitrarily set up with a unique flag number (e.g., ‘8888’), which will
be not included for calculating daily and hourly values.

3. Results

3.1. Buoy Photographs

Figure 2 shows photographs of the Buoy_surface system at site 5 (Figure 2A), located
at the mouth of largest tributary (Xinan River, Figure 1), and the Buoy_profiler system
at site 4 (Figure 2B), located at the deepest area in front of the dam for the power station
(Figure 1), which is the only outflow. The web interface, which dynamically updates all
station data from the database, allows the user to make requests for time periods of interest,
review data from specific sites, visualise data as a function of time, and perform simple
statistical analyses of the real-time data. All historical data from the monitoring system can
be downloaded through the web interface by authorised users.

Figure 2. Pictures of (A) the Buoy_surface system at site 5, (B) the Buoy_profiler at site 4.
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3.2. Surface Measurements

The measurements from site 5 are presented here as an example, and show the daily
and hourly variations in surface WQ measured by the buoy probes. Figure 3A shows the
time series of daily surface WT from 30 September 2015 to 1 August 2020, and daily surface
DO, CHLA and PC from 27 January 2016 to 1 August 2020. The values of maximum (Max),
minimum (min), average and standard deviation (Stdev) for WT, DO, CHLA and PC at
site 5 are given in Table 3. All the maximum values for WT, CHLA and PC occurred in
summer, but their lowest observations occurred in winter (PC) or spring (WT, DO and
CHLA). CHLA and PC showed higher variability over time than those of WT and DO
during the study period, based on their statistical Stdevs compared to their average values.

 

Figure 3. Time serials of (A) daily and (B) hourly WT (black dots, °C), DO (orange diamonds, mg L−1),
CHLA (green dots, μg L−1) and PC (blue diamonds, μg L−1) at site 5. Left Y-axes is for WT, DO and
CHLA, and right Y-axes is for PC. X-axes is for date in format of year-month-day.
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Table 3. Statistical summaries of surface WT, DO, CHLA and PC measured by monitoring buoys at
site 5 and site 6.

Site Parameter Max Min Avg. Stdev n

Value Date Value Date

Site 5

WT (◦C) 32.4 30 July 2017 10.3 1 March 2019 20.2 6.3 1617
DO (mg L−1) 13.9 18 April 2020 1.7 3 April 2016 9.3 1.6 1546

CHLA (μg L−1) 24.3 17 June 2019 0.1 9 April 2016 3.6 3.0 1530
PC (μg L−1) 2.15 23 July 2017 0.1 10 February 2016 0.5 0.4 1318

To show diel variation, hourly data of WT, DO, CHLA and PC at site 5 for the period
of 00:00 a.m. 3 July 2019–11:00 p.m. 16 July 2019, without data gaps, are presented as an
example in Figure 3B. CHLA and PC show obvious diel variation with higher values in
daytime relative to night time, while WT and DO keep more constant than CHLA and PC,
showing no diel variation. The Pearson correlation coefficient between WT and DO is 0.8
(n = 336), suggesting that surface DO was mainly controlled by WT for the lake.

3.3. Profiling Measurements

Profiles of WT, DO, CHLA and PC at site 4 (deepest area) for 1 January 2016–10 July
2020 are shown in Figure 4. The maximum measurement depth was 65 m at this site. WT
(Figure 4A) profiles show a monomictic pattern of mixing with thermal stratification in
summer and mixing in winter, although some periods and layers lacked measurements.
The TDs were 9.2 m, 9.4 m, 12.1 m and 7.8 m in the summer (July–September) of 2016,
2017 and 2018 and July of 2019 (data not available in August and September). The TD in
2018 were greater than other years, which suggests that the stratification in the summer of
2018 was more intensive than in 2016, 2017 and 2019. Correspondingly, bottom hypoxia
events were observed during the stratification of all years. Average bottom DO values
(Figure 4B) during stratification were 7.0 mg L−1, 7.7 mg L−1, 8.2 mg L−1 and 7.7 mg L−1 in
2016, 2017, 2018 and 2019, respectively. The lowest DO values were 1.0 mg L−1, 2.0 mg L−1,
1.6 mg L−1 and 2.9 mg L−1, observed on 4 April 2016, 9 December 2017, 1 January 2018
and 13 January 2019, respectively.

CHLA (Figure 4C) followed a similar pattern to WT, with higher values in summer
than in winter, suggesting that the biomass of phytoplankton is mainly regulated by water
temperature instead of nutrients. The phytoplankton was mostly distributed in the upper
15 m except for late 2018 and early 2019, when phytoplankton could still be found at a
depth of 30 m. PC values (Figure 4D) were much smaller than CHLA at the same depth. It
didn’t have distinct seasonal variation, but was obviously stratified in the summer of 2018
with a higher concentration in the lower layer than the upper layer.

3.4. Real-Time Early Warning Information

The Ministry of Ecology and Environment of China (MEEC) issued state standards for
surface water quality in 2002 [25] in order to better manage surface water in China. Lake
Qiandao was required to meet Grade I (Table 4, the requirements for heavy metal were
not shown in the table) since it provides drinking water for approximately half a million
people in Chun’an County (located to the northeast of lake), and a total of 10 million people
in both Hangzhou City and Jiaxing City, with water diverted through a tunnel of more
than 110 km in length. DO and pH are the only two parameters which were measured by
wireless sonde, deployed with monitoring buoys at the lake. The statistical analysis results
for DO and pH are shown in Table 5. There were totally 275 and 130 samples of pH and
DO out of their MMRs at site 5, accounting for 11.0% and 8.0% of all the valid samples,
respectively. The percentages of pH (21.5%) and DO (11.3%) at site 6 were more than those
at site 5. The observed maximum/minimum/average values of pH at site 5 and site 6
were 9.9/9.002/9.22 and 12.2/9.0002/9.62, respectively. Thus, the maximum pH at site 6 is
much greater than that at site 5, showing that pH was more variable at site 6 than at site 5.

128



Water 2022, 14, 602

However, DO followed a reverse pattern, with more varied values at site 5 compared to
site 6. Its lowest value was as low as 1.74 mg L−1, observed on 3 April 2016.

Figure 4. Daily (A)WT, (B) DO, (C) CHLA and (D) PC profiles at site 4 for 1 January 2016–10 July
2020. Y-axes for (A–D) represent water depth (m) and X-axes represent years from 2016 to 2020.
White areas denote lack of measurements.

Table 4. Threshold of WQ parameters required for Lake Qiandao.

Parameter pH
DO

(mg L−1)
PI

(mg L−1)
COD

(mg L−1)
BOD5

(mg L−1)
NH4-N

(mg L−1)
TP

(mg L−1)
TN

(mg L−1)

Threshold
for Grade I 6–9 ≥7.5 ≤2 ≤15 ≤3 ≤0.15 ≤0.01 ≤0.2

Table 5. Statistical analysis results of DO and pH for early warning at site 5 and site 6.

Statistical Results
Site 5 Site 6

pH DO pH DO

Number of all available data 1573 1618 1128 1128
Number of EWS data 275 130 242 128

Max 9.9 7.5 12.2 7.5
Min 9.002 1.74 9.0002 6.2
Avg. 9.22 6.92 9.62 6.99
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4. Discussion

The EWS is now being used for giving real-time early warning signals by judging if
the measurements of each sensor are out of the corresponding MMR and meet the required
WQ grade. Unfortunately, DO and pH are the only two parameters which were directly
measured by the buoy sensor and which can be used for the early warning of WQ at this
lake. Therefore, it should be considered seriously whether sensors measuring nutrients
(e.g., TN, TP, NH4-N, COD and PI) should be added to the buoys, or whether a model (e.g.,
AEM3D) simulating these nutrients based on high-frequency monitoring data, needs to be
developed for providing more satisfactory early warning signals.

The system is also providing data for horizontal interpolation, to produce an initial
condition for AEM3D predicting HABs and WQ at a time scale of seven days. For a WQ
and HAB prediction system, initial and boundary conditions are very important to improve
prediction accuracy. The initial conditions include horizontal and vertical WQ distribution
within the waterbody (e.g., TN, TP and CHLA concentrations at each grid location). A huge
challenge with initial conditions derives from the limited number of monitoring buoys
collecting high-frequency WQ data, due to economic considerations, which leads to an
inaccurate spatial distribution of WQ (e.g., high spatial patchiness of cyanobacterial bloom).
However, many advanced interpolation methods are now available to address this issue.
Inaccurate spatial WQ distribution in model initialisation can lead to inaccurate WQ predic-
tion at each grid location, and thus unconvincing algal aggregation caused by winds. How-
ever, temporal and spatial difficulties prevent conventional methods for water sampling
and laboratory analysis to meet the requirements for producing model initial conditions.
A comprehensive approach is required, integrating high-frequency buoy monitoring data,
laboratory data, satellite images and other available resources to provide a satisfactory
spatial WQ concentration for the initialization of predictive simulation systems.

WQ sonde (multi-sensor probes) measurements can efficiently provide data wirelessly
at a high temporal resolution, but potential problems could include data distortion due
to sensor faults, or data gaps because of failed data storage and/or transfer. Therefore,
data QC procedures are necessary before using the sensor measurements. The first step
for QC is typically to detect missing series and estimate missing values by relying on
neighbouring observations, then to detect unreasonable values out of range between the
upper and the lower limits for each parameter, ideally guided by experience for a specific
water body and measurement type. Unreasonable values can be removed and substituted
with interpolated values. If many successive measurements from the same sensor are of the
same exact value, they should usually also be removed and interpolated with neighbouring
values, or excluded from data analysis. The final step is to detect outliers (incorrect or
out-of-range) measurements, which can be removed or assumed to be missing [26]. Outliers
are typically those observations which represent abrupt increases or decreases compared
to the neighbouring values. There are many methods [26–28] and pieces of software [29]
available for data QC. In this paper, we adopted the outlier detection method for finding
anomalous values, which were removed and generally replaced with interpolated values.
The detections of change points and trends will further help to find abnormal values or
sonde problems. In our system, interpolation was not implemented to reproduce actual
missing values due to the high potential for erroneous measurement generation when
interpolating over longer time periods. Therefore, interpolation methods or software need
to be integrated into this system in order to produce data without measurement.

The whole buoy monitoring system was originally designed to provide essential WQ
information, in order to meet Grade I at the required sites. Therefore, Buoy_profilers were
deployed at site 1, site 3 and site 4, and Buoy_surface was deployed at site 5. However,
the buoys can only monitor WT, DO, pH, CHLA, PC and TURB. It is very difficult and
expensive to directly and accurately measure TN, TP, NH4-N, PI, COD and BOD5 at a high
frequency and in near-real-time [30]. An optional solution in this early warning system, is to
calculate these parameters based on their regressed relations with sonde-measured values.
The calculated values from regressive equations can then provide vital WQ information
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at different zones of the lake, feeding the AEM3D (http://www.hydronumerics.com.au,
accessed on 15 January 2022) model for WQ prediction.

The collected data may assist water environmental managers in identifying and
predicting the impacts of climatic extreme events [31]. For example, at Lake Qiandao,
rainstorms with high rainfall typically result in a large inflow of water and nutrient loading,
including N, P, and organic/inorganic matters, leading to an abrupt increase in water level
and a significant increase of regional N and P concentrations [22]. This remarkably alters
the spectral absorption properties of chromophoric dissolved organic matter (CDOM) and
particles at the northwestern, southwestern and northeastern areas [32]. HFMS can also
provide a useful basis for theory and model developments, improving our understanding of
lake (reservoir) responses to perturbations caused by human activities and climate change
at different time scales (e.g., sub-hourly, hourly, daily, monthly, seasonally, annually and
every decade).

Although HFMS has a wide range of applications, it is now still hampered by several
factors. For example, we have a limited choice of water quality sensors that are robust, eco-
nomic and low-maintenance. The accuracy of the sondes measuring chemical parameters
(i.e., phosphorus, ammonium, ammonia and nitrite) and biological parameters (i.e., bacte-
rial enumeration, cyanobacteria, biota and cyanotoxins) still needs to improve, although the
fast spread of HFMS is encouraging sensor developers to improve technology as quickly
as they can. For giving better early warning signals and real-time WQ assessment, in the
future, it will be necessary to add sondes measuring chemical and biological parameters to
the current HFMS.
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Abstract: In this paper, the authors use remote-sensing images to monitor the water quality of
reservoirs located in the semiarid region of Northeast Brazil. Sentinel-2 MSI TOA Level 1C reflectance
images were used to remotely estimate the concentration of chlorophyll-a (chl-a), the main indicator
of the trophic state of aquatic environments, in five reservoirs in the state of Ceará, Brazil. A three-
spectral band retrieval model was calibrated using 171 water samples, collected from November
2015 through July 2018 in 5 reservoirs. For validation, 71 additional samples, collected from August
2018 through December 2019, were used to ensure a robust accuracy assessment. The TOA Level
1C products performed very well, achieving a relative RMSE of 28% and R2 = 0.80. Data on wind
direction and speed, solar radiation and reservoir volume were used to generate a conceptual model
to analyze the behavior of chl-a in the surface waters of the Castanhão reservoir. During 2019, the
reservoir water quality showed strong variation, with concentration fluctuating from 30 to 95 μg/L
We showed that the end of the dry season is marked by strong eutrophic conditions corresponding
to very low water inflows into the reservoir. During the rainy season there is a large decrease
in the chl-a concentration following the increase of the lake water storage. During the following
dry season, satellite data show a progressive improvement of the trophic state controlled by wind
intensity that promotes a better mixing of the reservoir waters and inhibiting the development of
most phytoplankton.

Keywords: remote sensing; water quality; chlorophyll-a; reservoirs; semiarid

1. Introduction

The Brazilian semiarid portion covers an area of about 1 million km2, which corre-
sponds to 86% of the Northeast region of Brazil [1]. This region has irregular rainfall
and high temperatures, with more than 2800 h of sunshine per year, in addition to high
evaporation rates, around 2000 mm per year [2]. The soil is predominantly crystalline, and
this is one of the factors responsible for the low levels of groundwater availability as well
as the low quality of water accumulated in the aquifers, due to the high levels of salts from
this type of rock [3].

Due to the strong interannual rainfall variability and the overall scarcity of rainfall in
addition to unfavorable soil conditions, the construction of reservoirs such as weirs and
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dams to store water during the rainy season, and of water transposition channels to take this
resource to the locations most affected by the drought, appeared as a reliable alternative
to mitigate water scarcity in this semiarid region. Hence, construction of reservoirs is
central to the storage and distribution of water in arid and semiarid regions. However,
this intervention in the natural landscape, resulting from the transformation of lotic to
lentic environments, entails a series of impacts on ecosystems, with changes in the natural
behavior and water quality of engineered rivers and streams [4]. This anthropogenic
interference generates a great ecological impact on aquatic ecosystems by reducing the flow
of water, and increasing the sedimentation rate, water residence time, thermal stratification,
and artificial enrichment of nutrients such as nitrogen and phosphorus (eutrophication)
caused by human activities [5,6].

Eutrophication presents changes in the physicochemical and biological characteris-
tics of these aquatic environments, arising from the use of fertilizers and pesticides in
agriculture, the discharge of industrial and domestic sewage without adequate treatment,
destruction of riparian vegetation in water sources, and high urbanization rate. This process
produces changes in water quality, such as reduced dissolved oxygen, fish death, excessive
proliferation of phytoplanktonic organisms and, consequently, increased incidence of po-
tentially toxin-producing algae and cyanobacterial blooms [7,8]. Given this scenario, the
concern with the degradation of these aquatic environments has grown in the scientific
community, making it necessary to increase studies and expand knowledge on the subject.

Phytoplankton refers to the set of microscopic aquatic organisms that have photosyn-
thetic capacity and that live dispersed floating in the water column. This group includes
organisms traditionally considered algae. However, among these, there is a group of
great public health importance, which is also classified as bacteria, namely the cyanobacte-
ria [9,10]. The occurrence of cyanobacterial blooms in water bodies used for urban supply
can represent a serious risk to the health of the population, due to the ability of these
organisms to produce toxins (cyanotoxins), which can be lethal to mammals and other
warm-blooded animals [11–13]. Blooms can also interfere with the balance of aquatic
ecosystems, as when algae are in suspension they can modify the water’s transparency,
which can lead to deoxygenation of the water body and, consequently, fish mortality. In
addition, they represent a serious problem for water treatment plants, as they can cause
loss of filter load and change in the odor and taste of treated water [14].

Chlorophyll is the photosynthetic pigment present in all phytoplankton organisms.
Chlorophyll-a (chl-a) is the most common of the chlorophylls (a, b, c, and d) and represents
approximately 1 to 2% of the dry weight of the organic material in all algae. For this
reason, knowledge of its concentration is used to detect algal blooms and understand its
dynamics [15,16], and to estimate primary productivity [17].

Thus, chl-a is the main indicator of the trophic status of aquatic environments [18,19].
This statement is confirmed for the calculation of the Trophic State Index (TSI), which aims
to classify water bodies in different degrees of trophy. The oligotrophic state is characterized
by the lowest TSI values, with TSI values increasing through the mesotrophic, eutrophic,
to the hypereutrophic, with the highest TSI values. In other words, the TSI aims to assess
water quality in terms of nutrient enrichment and its effect related to the overgrowth of
algae and cyanobacteria [20]. This index was adopted by [20] for temperate climates and
was adapted for lentic environments of tropical climate by [21], using only two variables,
namely chl-a and total phosphorus. In this index, the results corresponding to phosphorus
should be understood as a measure of the eutrophication potential, since this nutrient
acts as the causative agent of the process. The evaluation corresponding to chl-a, on the
other hand, should be considered a measure of the response of the water body to the
causative agent, adequately indicating the level of algae growth. Thus, the average index
satisfactorily encompasses the cause and effect of the process.

As a result, there has been increasing interest in studies of this compound and its
derivatives. On the one hand, the irregular nature of the distribution of phytoplankton,
in particular the proliferation of cyanobacteria, is characterized by frequent migration
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dynamics in the vertical layers. In addition to very fast replication rates, this dynamic makes
it difficult to carry out a quantitative monitoring of the number of cells and spatiotemporal
distribution, as surface blooms can appear and disappear quickly, usually within a few
hours [22–24]. This poses an appreciable challenge to any research effort for larger water
bodies. Normally, measurements for analyzing the quality of water in reservoirs are carried
out by collecting water from strategic points, usually near the reservoir banks. These
samples do not comprise the entire extent of the dams, and thus may not represent the real
spatial distribution of water quality. In addition, these collections are carried out over a
long-time interval, often without periodicity [25–27].

In this context, remote sensing (RS) reinforces the ability to monitor and understand the
composition and dynamics of small and large reservoirs, especially with the advancement
of this technology in recent decades. The latest generation of mid-resolution multispectral
sensors, with free image availability, such as the Landsat-8 (L8) and Sentinel-2 (S2) satellites,
offer advanced opportunities for synoptic view of the entire area of interest, fine-scale, and
high-frequency monitoring [28]. These satellites were not specifically designed for water
observation but are promising for a detailed analysis of water quality [15,29,30], thanks to
their fine radiometric sensitivity [31,32]; 10 to 30-m spatial resolution; high revisit frequency
(every 2–3 days combining L8 and S2 satellites) and the improved configuration of the
spectral bands in the visible and near infrared range [33].

Orbital sensors are able to record the effects of the interaction of solar radiation with
constituents in water [34], and the spectral information contained in satellite images is
useful in the development of bio-optical models [35]. Optically active constituents (OACs)
such as suspended solids, photosynthetic pigments (chlorophyll), and colored dissolved
organic matter (CDOM) are used as indicators of water quality during the characterization
of the aquatic environment [36]. The RS applied to the study and monitoring of aquatic
environments is based on the processes of selective absorption and scattering of solar
radiation by water and its OACs [37,38]. Thus, OACs concentrations can be estimated
empirically or semi-analytically, based on RS data [39].

Phytoplankton is capable of synthesizing organic matter from photosynthesis, being
mainly responsible for the primary production of cells, causing changes in the spectral
behavior of water [40,41]. In general, photosynthetic pigments take advantage of radiation
from the blue and red region for the photosynthesis process. Thus, waters with phytoplank-
ton have two bands of maximum absorption in the electromagnetic spectrum, one in the
blue region, around 440 nm, and the other in the red region, around 670 nm. The green
band, around 560 nm, due to its low absorption coefficient, indicates a high chlorophyll
reflectance. In addition, the presence of phytoplankton is also characterized by its peak
reflectance at 700 nm, in the near infrared region [42–46].

Importantly, there is a consensus that harmful algal blooms are complex events, nor-
mally caused by several environmental factors that occur simultaneously [47]. In addition
to the environmental conditions generated by anthropogenic activities, hydrological and
climatic variables play an important role in the behavior of phytoplankton [48]. These
organisms are sensitive to water-level fluctuations, regarding the abundance, composition
and diversity of biomass [49–53], as this changes the physicochemical conditions of water
such as the mixing regime, light availability, and nutrient concentrations [54–56].

Studies have shown that low water levels together with the high retention time
in reservoirs in semiarid regions, resulting from irregularity in precipitation, are often
associated with high algal biomass in freshwater ecosystems, due to the high availability of
nutrients for primary producers [57–64].

These conditions combined with high irradiation and high temperatures, although
they do not result in greater overall phytoplankton biomass, considerably favor the growth
of cyanobacteria, which are extremely harmful to human health [65–68]. As temperatures
approach and exceed 20 ◦C, growth rates of freshwater eukaryotic phytoplankton generally
stabilize or decline, while growth rates of many cyanobacteria increase [69–72], providing
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a competitive advantage due to physiological factors such as faster growth and physical
factors such as improved stratification [73–75].

On the other hand, the reduction of the water level can also increase the resuspension
of sediments due to the turbulence caused by the wind and, consequently, the increase
in inorganic turbidity. This reduces the availability of light and phytoplankton biomass,
changing the structure of the phytoplankton community [76–79].

This study aims at the development of a water-quality analysis methodology based on
remote sensing. It is applied to a semiarid environment, strongly influenced by an irregular
hydrological regime. The objective is to reproduce trophic variations of water reservoirs
of a semiarid region by applying a retrieval algorithm that estimates the concentration
of chl-a from Sentinel-2 images. For this purpose, an empirical spectral model will be
developed, in which statistical relationships are established between chl-a concentration
data collected in situ and the reflectance of spectral bands extracted from Sentinel-2 images.
An analysis with hydroclimatic data is also carried out in an attempt to better understand
and characterize the eutrophication of the Castanhão reservoir. Section 2 presents the
available data and the methodology while results are presented and discussed in Section 3;
and, finally, conclusions are presented in Section 4.

2. Data and Methodology

2.1. Study Sites

This study was carried out in the state of Ceará, located in the semiarid region of
northeastern Brazil, close to the Equator. The studied reservoirs were Gavião, Pacoti,
Pacajús, Castanhão, and Orós. The first three reservoirs are closer to the metropolitan region
of Fortaleza (capital of Ceará), and comprise the integrated Gavião system, responsible
for the water supply of the metropolitan region. Castanhão and Orós are the two largest
reservoirs in Ceará (Castanhão is the largest). Both are located in the Jaguaribe River
Basin and play a key role in water security and in flood control of the Jaguaribe valley, in
addition to transferring these accumulated waters to the reservoirs in the metropolitan
region of Fortaleza. Thus, they are a strategic water reserve for the state. Despite their
storage capacity, a severe drought, such as that which occurred between 2012 and 2018,
could lead these large reservoirs to have very low volumes of stored water. In 2019 and
2020, Castanhão reached 2.8% and 2.4%, respectively, and Orós 5.2% and 4.7%, respectively,
of its water volume capacity [80]. These conditions significantly affect the state’s water
supply management and these reservoirs’ water quality.

The climate of this region is hot and dry, and the rainfall is irregular in space and
time [81]. It is concentrated between the months of February and May [82], with maximum
values in the months March and April [83]. Due to recurrent droughts and high annual
average temperature, around 31 ◦C, it has a negative water balance for most of the year,
with high potential evaporation rates, reaching over 2000 mm year−1, and precipitation
below 900 mm year−1 [84]. Moreover, the region is characterized by shallow soils on a
crystalline basement. All this combined results in intermittent rivers [85,86].

In order to promote greater water security, the construction of surface reservoirs has
been the most common and important strategy adopted [87]. These reservoirs, however,
are subject to long periods of low, or even, zero inflows and long water residence time
(more than 12 months), high solar radiation and high temperatures during most of the
rainy season, in addition to intense anthropogenic activity in their basins. These factors
contribute to an intense accumulation and concentration of nutrients, making these systems
considerably more vulnerable to eutrophication [88]. In order to analyze different water-
quality conditions, this study was carried out in reservoirs in which total water-storage
capacity varies from 32.9 million to 6.7 billion m3 and trophic state ranges from mesotrophic
to hypereutrophic, as shown in Table 1.
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Table 1. Reservoir studied (capacity = maximum water volume; average depth combined with
standard deviation—sd). Source: Portal Hidrológico do Ceará (http://www.hidro.ce.gov.br/hidro-
ce-zend/acude/eutrofizacao, accessed on 14 January 2022).

Reservoir Maximum Depth (2019) Average Depth (2019)
Capacity

(m3)
Trophic State
(2015 a 2019)

Rainy Season Dry Season
Rainy Season

(sd)
Dry Season

(sd)

Gavião 12.88 11.91 m 11.98 (±0.51) m 11.54 (±0.13) m 32.9 millions eutrophic to
hypereutrophic

Pacoti 21.95 m 21.8 m 18.1 (±3.28) m 19.93 (±1.21) m 380 millions eutrophic to
hypereutrophic

Pacajús 14.36 m 14.19 m 11.78 (±2.37) m 13.15 (±0.63) m 240 millions eutrophic to mesotrophic

Castanhão 33.03 m 32.93 m 30.58 (±1.60) m 30.58 (±1.67) m 6.7 billion eutrophic to
hypereutrophic

Orós 20.86 m 20.52 m 18.97 (±1.52) m 19.13 (±0.95) m 1.94 billion mesotrophic to eutrophic

2.2. Data

Over decades of satellite water monitoring, remote monitoring of small reservoirs
has been greatly hampered by the lack of appropriate satellite sensors [89]. Ocean color
sensors such as the MODIS (MODerate Resolution Imaging Spectroradiometer) and the
MERIS (Medium Resolution Imaging Spectrometer) have a spatial resolution of 250–1200 m,
making them suitable only for very large reservoirs. The first Landsat series satellites
(Landsat 1–7) had good spatial resolution (30–79 m) but restricted radiometric resolution
(6–8 bits), which made them a limited tool for mapping water-quality parameters [90]. The
radiometric resolution of Landsat 8 is 12 bits, and this makes it suitable for remote analysis
even in dark lakes (rich in CDOM). However, its revisit time is quite long (16 days), limiting
its use in systematic water quality monitoring [91].

In 2015, the launch of the Multispectral Imager (MSI), aboard satellite Sentinel-2,
opened up a new potential for the use of RS for reservoir monitoring [92]. The images have
a spatial resolution of 10 m, 20 m, and 60 m, which means that even small reservoirs can be
studied. Data are acquired in 13 spectral bands, distributed along the visible and infrared
regions. This includes narrow bands that capture phytoplankton spectral characteristics,
such as the chl-a absorption maximum, around 670 nm, and the reflectance peak near
700 nm associated with phytoplankton backscatter. The radiometric resolution of the sensor
is 12 bits. Sentinel-2 comprises a constellation of two identical satellites that are part of the
European Commission Copernicus program and operated by the European Space Agency
(ESA), located in Paris, France. They operate simultaneously in the same sun-synchronized
polar orbit and, in opposite 180◦ positions, are designed to provide a high 5-day revisit
frequency, which makes them suitable for routine monitoring.

In this study, WGS84 UTM zone 24 South images of the Sentinel-2 satellite with a
resolution of 10 m were used. The passage date was the closest to the dates of chl-a sample
collection in the reservoir, in the period from November 2015 to December 2019. The
S2 MSI Level 1C (L1C) images were obtained from the Copernicus Open Access Hub
(https://scihub.copernicus.eu/, accessed on 9 September 2021). The Sentinel Application
Platform (SNAP) version 7.0 on Windows 10 (64-bit) was used to process the images and
the Band Maths function to generate the chl-a concentration maps from the chl-a recovery
algorithm.

To calibrate and validate the empirical models, data from in situ chl-a collection were
used, provided by the Ceará Water Resources Management Company (COGERH). The
APHA 10200 H spectrophotometric [93] was the laboratory method used to analyze the
concentration of collected chl-a. The collections were carried out in a dark flask, free
of interferences, and the pigments were cold extracted with 90% acetone. Considering
the 5 reservoirs analyzed, 171 collection data were used to calibrate the spectral model
from satellite images, over 122 campaigns. Calibration data covered the period from
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November 2015 to July 2018. To validate the spectral model, 71 collection data were used,
over 61 campaigns, covering the period from August 2018 to December 2019. Regarding
the validation period, turbidity data were also used to correlate with the chl-a data. The
locations of the in situ data collection points are shown in Figure 1.

Figure 1. Location map of the five analyzed reservoirs and of the chlorophyll-a (chl-a) collection
points collected and made available by Ceará Water Resources Management Company (COGERH).

Among the reservoirs studied, Castanhão is very important for Ceará due to its storage
capacity of around 6 billion, 700 million cubic meters, which gives it a residence time of
400 days, on average, similar to a closed system. In this way, a large part of the sediments
and dissolved elements that are transported and carried by the Jaguaribe river are retained,
around 98%, according to [94]. Pollution sources, agricultural practices, average depth,
conductivity, and TN/TP (nitrogen over phosphorus) ratio, associated with the low dilution
capacity of the region and the static nature of the reservoir, explain its state of eutrophication.
However, this is not enough to explain variations in the trophic state over time. According
to [95], eutrophication and, consequently, the development of phytoplankton, is also linked
to climatic and hydrological factors.

Thus, in this study, daily data were used, for the months of 2019, of wind (speed
and direction) and solar radiation, available from the National Institute of Meteorology
(INMET), on the portal https://portal.inmet.gov.br/ (accessed on 26 February 2020), and
data on the volume of the Castanhão reservoir, available from the Ceará Meteorology
and Water Resources Foundation (FUNCEME), through the website http://www.hidro.ce.
gov.br/ (accessed on 31 January 2022), to analyze the interference of these factors in the
distribution of phytoplankton on the surface of the Castanhão reservoir. The data provided
by INMET were extracted from the conventional meteorological station Morada Nova,
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located about 42 km north of the Castanhão reservoir, taking into account the direction of
the wind, which comes from the North and Northeast.

Estimated chl-a data for the Castanhão reservoir were also used, through the MODIS
satellite, in a study developed within the scope of the MEG-HIBAM project, from the
partnership between the National Water Agency (ANA) and the Institut de Recherche pour
le Development (IRD). These data are available on the website (http://hidrosat.ana.gov.br/,
accessed on 12 July 2021), by the brazilian National Water Agency (ANA).

2.3. Image Processing

Atmospheric corrections are widely used successfully in oceanic waters, as they
assume the color of the ocean to be black (complete absorption of incident radiation) in
the near-infrared (NIR) spectral region. However, this assumption does not apply to
optically complex waters (type case 2), where chlorophyll, suspended sediments, and
bottom reflectance lead to a non-zero brightness in the NIR [96,97]. Thus, extracting
reflectance in turbid water through remote sensing (RS) by satellites has been hampered by
the lack of an atmospheric correction that does not assume zero leaving irradiation of water
in the NIR. This can lead to an overestimation of atmospheric radiation across the visible
spectrum, with increasing severity at shorter wavelengths. This can result in significant
errors in algorithms developed to estimate the concentration of chl-a [98].

Thus, for a broad assessment of the trophic state, some authors such as [46,92,99,100]
concluded that only a simplified atmospheric correction procedure that normalizes the top
of the atmosphere (TOA) signal for Rayleigh effects is possible, avoiding more complex
atmospheric corrections for aerosols, given the large uncertainties associated with these
corrections, as they are typically prone to errors in turbid water and high biomass. Moreover,
improved processing time and simpler implementation for operational monitoring systems
are additional advantages of using TOA-type data. Therefore, it was preferred to use
Level 1C radiance images of the TOA type, from the Sentinel-2 satellite, to extract the chl-a
reflectance.

2.4. Model Derivation

Remote sensing, when used to estimate concentrations of water constituents, is based
on the relationship between the reflectance, R(λ), and the inherent optical properties, namely,
the total absorption and backscatter coefficients of water. To retrieve chl-a concentrations
from spectral reflectance, it is necessary to isolate the chl-a absorption coefficient. For this,
an empirical model was used, in which statistical relationships are established between
observed concentrations of optically active constituents and some spectral index. As
a spectral index, one can use reflectance at a single wavelength or an operation (ratio,
difference or mixed operations) involving reflectance at two or more wavelengths.

In this work, an empirical three-band reflectance model developed by [101] was
adopted. It has been widely used in the literature for inland waters by authors such
as [45,102–110]. The three-band spectral index is written as

3BSI =
[
R−1(λ1)− R−1(λ2)

]
· R(λ3) (1)

where 3BSI is three-band spectral index, and R(λi) is the reflectance at wavelength λi, i = 1, 2
and 3. The choices of wavelengths (λi) are explained below. This index was chosen because
it was created specifically for inland waters, has obtained excellent results in its applications,
and its adaptation to Sentinel-2 bands showed good statistical correlations [102].

Ref. [101] developed an algorithm with the objective of isolating the chl-a absorption
coefficient. For this, it is necessary to minimize the effect of the absorption of dissolved
organic matter (CDOM) and the set of non-algal suspended organic and inorganic particles
(Tripton or NAP or TSS), both commonly found in interior turbid waters, as well as to
normalize the backscattering effect by all particular matter. This algorithm considers that
R(λ1) must be a reflectance at a wavelength with a maximum chl-a absorption (in the range
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660–690 nm), although it is still affected by CDOM, tripton, and backscatter absorption.
R(λ2) is a reflectance at a near wavelength that is minimally sensitive to chl-a absorption
(700–730 nm), but still affected by the other water constituents. If both R(λ1) and R(λ2)
are similarly affected by the presence of tripton and CDOM, it is possible to remove the
effects of absorption by these constituents by subtracting these wavelengths. However, this
difference remains affected by the tripton particles backscattering. As a solution, a third
spectral band R(λ3) in the 740–760 nm spectral range was introduced, where the reflectance
is minimally affected by the absorption of water constituents (chl-a, CDOM and tripton)
and is basically controlled by pure water absorption and tripton backscattering. Finally, the
division of [R−1(λ1)− R−1(λ2)] by R(λ3) will remove the effects of tripton backscattering
variability, turning this 3-band combination as a robust estimator of the chl-a absorption
coefficient [102,111,112]. For Sentinel-2 data, R(λ1) is equivalent to band 4 (665 nm); R(λ2)
matches band 5 (705 nm); and R(λ3) corresponds to band 6 (740 nm).

To extract the reflectance of Sentinel-2 bands 4, 5 and 6, an area of 100 m2 free from
clouds was selected in the image, around the collection points of the chl-a samples, and the
average reflectance of the pixels of the selected area was extracted. Images with passage
dates close to the collection dates were selected, most of them ranging from 1 to 3 days,
with some images with an interval up to a week. According to [113], images with a 3-day
interval of collection dates are as good as exact match, a time difference of 1 week reduces
correlation, but a month time difference is too much to even estimate a parameter as
relatively stable as CDOM. On the other hand, [114] found that even larger time differences
are still reliable.

To calibrate and validate the three-band model, a relationship was obtained by using
statistical regression, considering the coefficient of determination (R2) and the square root
mean square error (RMSE) as metrics to identify the best fit between the spectral index
generated from Equation (1) and the observed chl-a.

The regression model was calibrated using the Bootstrap method developed by [115],
which consists of a random resampling procedure with replacement and each calculated
estimate. Based on the replications, it is possible to determine confidence intervals (e.g.,
95%) and hypothesis test on the generated estimators [116].

2.5. Hydroclimatic Data

Data on wind direction and wind speed, solar radiation and reservoir volume were
used to generate a conceptual model to analyze the behavior of chl-a in surface waters
of the Castanhão reservoir. This reservoir was chosen because, among the five reservoirs
studied in this work, it presented a continuous monthly image sequence to estimate the
concentration of chl-a using Sentinel-2 without cloud interference that could harm the
understanding of the eutrophication cycle during a whole year, that is, for 2019.

For the wind data, a chart of the wind rose was generated, with the average of the
values of the 4 days preceding the date of passage of the satellite, and at times of greatest
gust (17:00, 18:00 and 19:00 LT; LT = local time = UTC-3:00). These peaks can be important
because they control water column vertical mixing and resuspension of bottom sediment.

A graph was generated with the values of solar radiation in the days and times of the
passage of the Sentinel-2 satellite (10:00 LT), to analyze the behavior of the concentration of
chl-a against the possible thermal stratification of the column of water, generated by solar
radiation incidence.

Daily variation of the water volume storage in the Castanhão reservoir was also
retrieved, for the whole year 2019, to verify how water storage can interfere in the dilution
or concentration of chl-a levels.

3. Results and Discussion

3.1. Chlorophyll-a Algorithm Definition and Performance

Table 2 shows the values of the chl-a samples collected in the 5 reservoirs considered
in this work, from 2015 to 2018, used for calibration of the 3-band spectral model (Equa-
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tion (1)). The datasets encompassed varying concentrations conditions. There was a strong
variability in chl-a concentration from one reservoir to another, ranging from 0.2 to close
to 90 μg L−1, and strong seasonality was also detected. The Pacajus reservoir showed a
highly differentiated eutrophication pattern with low to intermediate concentration of chl-a
[0.2–15.6 μg L−1].

Table 2. Descriptive statistics (average combined with standard deviation—sd) of the chlorophyll-a
(chl-a) and turbidity (Turb) parameters collected in the five reservoirs considered in this study. The
chl-a data were used to calibrate the reflectance model to estimate chl-a from the Sentinel-2 images.

Reservoir Samples
Time Period of

Collection

[Range]
Measured chl-a

(μg.L−1)

Average (sd)
chl-a

Median
chl-a

[Range]
Measured Turb

(NTU)

Average
(sd) Turb

Median
Turb

Gavião 51 4 November
2015–3 July 2018 8.4–79.6 51.8 (±15.6) 53.4 6.59–13.5 9.5 (±2.1) 8.7

Pacoti 34 10 November
2015–10 July 2018 7.9–89.2 56.9 (±21.3) 66.2 3.95–9.83 7.6 (±1.6) 7.3

Pacajús 33 11 November
2015–5 July 2018 0.2–15.6 7.2 (±3.5) 6.8 4.27–25.5 11.7 (±6.8) 11.7

Castanhão 34 2 December
2015–11 July 2018 12.8–56.1 38.3 (±15.1) 42.3 9.82–36.7 21.3 (±12.4) 17.6

Orós 9
30 November

2015–21 February
2018

26.0–66.6 41.5 (±16.2) 33.6 7.21–20 13.1 (±4.8) 13.3

The relationship between the chl-a concentration in the calibration dataset (Table 2)
and the 3-band spectral index (Equation (1)) considering the spectral bands defined for
Sentinel-2, R(λ1) = 665 nm; R(λ2) = 705 nm; and R(λ3) = 740 nm, obtained fine results
with a a relative RMSE of 28% and R2 = 0.80. The calibrated chl-a model is:

Chl-a
(
μg L−1

)
= 279.95(3BSI) + 38.06 (2)

From this chl-a retrieval algorithm, one can estimate the concentration of chl-a using
Sentinel-2 Level 1C images.

Figure 2 shows the scatter plot of the values generated from the 3BSI for Sentinel-2
Level 1C images against the measured in situ calibration dataset.

Figure 2. Relationship between the measured in situ chl-a, for the samples considered in the cali-
bration dataset, and the values generated by the three-band spectral index (3BSI) for the Sentinel-2
Level 1-C image datasets. The red line represents the regression model calculated using the bootstrap
resampling technique. Blue lines indicate two RMSE estimates of chl-a.
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The independent validation dataset was collected from August 2018 to December 2019.
The estimated chl-a concentrations were compared to the observed chl-a concentrations
(Figure 3). The correlation between the validation data, considering the 5 reservoirs,
presented a coefficient of determination R2 = 0.77. Overall, the retrieved chl-a concentration
followed well the temporal behavior of the field data except for the Pacajus reservoir, which
presented the lowest chl-a concentration levels observed.

Figure 3. Comparison between the chl-a estimated by the three-band algorithm (Equation (2)) and
the chl-a measured for the Castanhão, Orós, Pacajús, Pacoti and Gavião reservoirs, referring to the
validation data covering the period from August 2018 to December 2019.

The difference in the performance of the algorithm for estimating low concentrations
chl-a is probably related to the use of reflectance at λ3 in the three-band model because λ3
is practically insensitive to the absorption of water constituents (chl-a, CDOM and tripton),
but is susceptible to suspended particle scattering (TSS). For low concentrations of chl-a,
the correlation between backscatter and TSS increases considerably for longer wavelengths
(λ3). This indicates an increased effect of the concentration of suspended particles. Thus,
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backscattering effects may not be fully removed using (λ3) and may introduce uncertainties
in the concentrations chl-a estimation if the three-band model is applied. This can cause
significant changes to the model output. Therefore, although the model has been calibrated
for a wide range of biophysical and optical water quality parameters, the accuracy of the
retrieval for a low chl-a concentration level (i.e., <10 μg L−1) may be considered with
caution.

Figure 4 shows that chl-a concentration and turbidity (the latter is a proxy of scattering
by phytoplankton and inorganic suspended matter) are not correlated (R2 < 0.09), denoting
that that reservoir water presents complex behavior belonging clearly to case 2 waters.

Figure 4. Chlorophyll-a concentration vs. turbidity of samples collected in situ for validation data, in
all reservoirs of this study. Determination coefficient for linear relationship (R2) < 0.09. Chl-a and
turbidity are practically independent, indicating these reservoirs belong to case 2 waters.

3.2. Chl-a Retrieval Comparison between Sentinel-2 and MODIS Sensors

We compared the chl-a time series retrieved with Sentinel-2 MSI sensor with an
independent dataset based on MODIS (Terrra and Aqua satellites) available through the
Hidrosat database (http://hidrosat.ana.gov.br/, accessed on 31 January 2022), developed
by the Brazilian Water Agency (ANA) [117]. MODIS data offer higher sampling frequency
than Sentinel 2 data with near daily acquisition rate. The Hidrosat database was calibrated
using other field data and can be considered a totally independent dataset. Figure 5A
presents the comparison between MODIS-derived and MSI-derived chl-a time series for
2019 over the Castanhão reservoir jointly to the field measurement already presented
above. It can be seen that all datasets show close agreement, but some differences can be
noticed during January, April, and October. It is worthwhile to note that the chl-a values
assessed using Sentinel-2 are systematically closer to the field chl-adata, when compared
to the values estimated by MODIS. The coarse resolution of MODIS data (i.e., 500 m) in
relation to the 20-m Sentinel-2 data used for this study may partially explain this lower
accuracy of the MODIS-derived estimates. Sentinel-2 images allow for greater refinement
of the characteristics of the water body, reinforcing the gain in monitoring capacity and
understanding of water quality processes in small and large reservoirs.
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Figure 5. Comparison between the chl-a estimated by the Sentinel-2 satellite and by MODIS satellite,
for the Castanhão reservoir, for the months of 2019. (A) shows the temporal variation jointly with the
quarterly field measurements. (B) displays the boxplot with the distribution of chl-a values estimated
respectively by Sentinel-2 and MODIS.

Figure 5B shows the distribution of both MODIS and Sentinel-2 derived chl-a data in a
boxplot format. It is observed that the chl-a estimated by MODIS shows lower concentration
values when compared to Sentinel-2 data. It is noteworthy that, in 2019, the Castanhão had
its trophic status varying between hypereutrophic and eutrophic, as shown in Figure 6,
which suggests a high chl-a concentration in that graph. In addition, Sentinel-2 has a greater
range of concentration values throughout the year. That is more consistent with the field
data collected in the reservoir, which showed greater chl-a concentration in the first months
of the year, and a drop of concentration as the year goes by.
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Figure 6. Trophic state of the Castanhão reservoir retrieved from quarterly measurements for the
year 2019. Adapted from COGERH and made available at the electronic address http://www.hidro.
ce.gov.br/hidro-ce-zend/acude/eutrofizacao (accessed on 17 January 2022). In 2019, no oligotrophic
and mesotrophic conditions were found in the Castanhão as represented by the Trophic State Index
(TSI): 1—Oligotrophic (24 ≤ TSI ≤ 44); 2—Mesotrophic (44 < TSI ≤ 54); 3—Eutrophic (54 < TSI ≤ 74);
4—Hypereutrophic (TSI > 74) [3].

3.3. Analysis of the Trophic State Evolution in the Castanhão Reservoir

The trophic state graph, provided by COGERH, is presented (Figure 6) to compare
and confirm the water quality results presented in the chl-a concentration maps (Figure 7)
for the Castanhão reservoir during 2019.

Figure 7. Monthly map of the concentration of chl-a in the Castanhão reservoir, during 2019, produced
from the 1C level TOA products and the three-band model (Equation (2)).

The trophic state index used by COGERH to qualify the degree of trophy of the Ceará
reservoirs is based on the proposal of [20] adapted by [21] to lentic environments of tropical
climate. This index is based on chlorophyll-a and total phosphorus data. In other words,
the greater the concentration of these parameters, the worse the water quality of aquatic
environments will be.

For [21], in general, it is accepted that the trophic level of a water body can be evaluated
from the chl-a concentration level alone.

Figure 7 shows the time series of the chl-a maps, generated for the Castanhão reservoir
for every month of 2019 and prepared from Level 1C products, using Equation (2).
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The chl-a concentration maps are consistent with the trophic state graph based on
the in situ measurements (Figure 6) provided by COGERH. Figure 7 shows that between
January and April the concentration of chl-a is high (i.e., >80 μg L−1) in a substantial part
of the water body. In the following months, there is a decreasing chl-a concentration trend,
indicating an improvement in the reservoir’s water quality, as shown in the trophic state
graph (Figure 6), in which the Castanhão becomes eutrophic in the second half of the year.
This can be explained by 1. Inflow: most of the inflow in 2019 concentrated in the months
of April and May; 2. Reservoir volume: reduction in reservoir volume during the second
semester since there is no inflow; 3. Wind speed: stronger winds starting in September,
which promotes a better mixing of the reservoir waters. (As will be shown below.)

It is worth noting in the Sentinel-2 derived chl-a concentration maps (Figure 7) that
the minimum chl-a concentration appears in the vicinity of the Castanhão dam, as shown
in Figure 8, matching the deepest portion of the reservoir.

Figure 8. Hydrological flow in the Castanhão reservoir and location of the reservoir dam.

Figures 8–10 show the variability of some hydroclimatic variables, namely reservoir
volume, wind speed and direction, and solar radiation, respectively, to detect any relation
with satellite-retrieved chl-a concentrations in the Castanhão reservoir, as shown in Figure 7.
Temperature was not included in the analysis, as it varies little throughout the year in the
study region, since it is close to the equator line, as well as relative humidity, which is
mainly related to evaporation, and should have no effect on algal biomass development.

In the analyzed time scale, from a hydrodynamic point of view, the concentration
of chl-a increases with the beginning of the rainy season in Ceará (March to May). This
is probably because there are still no appreciable river water inputs from the upstream
catchment, but there is a high input of nutrients by leaching and runoff from the baresoils
areas around the dam. When the river starts to flow, a dilution effect is observed, with an
increase in the volume of the reservoir and a simultaneous decrease in the concentration of
chlorophyll. Thus, as shown in the estimated chl-a maps for the year 2019 (Figure 7), we can
see a biomass dilution effect upstream of the reservoir (Figure 8), from April onwards, with
the arrival of Jaguaribe River waters. In May there is a dilution of the biomass in most of
the water mirror, due to the continuous increase in the volume of water in the reservoir, as
a result of the rainy season in Ceará State. In June, as shown in Figure 9, the water volume
starts to decrease as a result of the end of the rainy season, evaporation and multiple water
uses. This decrease in the water volume matches an increase in the concentration of chl-a
at the water surface. The analysis of the sequence of Sentinel-2-derived maps make it
possible to monitor the rapid changes induced by the hydrological and meteorological
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conditions, confirming the strong control of these factors on the phytoplankton biomass in
the Castanhão reservoir.

Figure 9. Variation in the daily water volume in the Castanhão reservoir during 2019. Release
discharge: 7476 m3/s. Available by COGERH at the website http://www.hidro.ce.gov.br/hidro-ce-
zend/acude/nivel-diario (accessed on 17 January 2022).

Figure 10 displays both wind intensity and mean direction for each month during 2019.
It can be seen that there is a net increase in wind intensity from September to December.
The analysis of the chl-a maps (Figure 7) shows a strong decrease in the values of chl-a
in the entire surface of the Castanhão reservoir for the same period. This overall chl-a
decrease at the lake surface may be directly related to both the wind speed increase and
predominantly northeast direction from September to December 2019 (Figure 10) that
generates a longitudinal turbulence in the reservoir mirror. It is worth highlighting the
chl-a concentration in the month of August (Figure 7), as this month presents a more
accentuated concentration compared to previous and following months. This concentration
maximum may correspond to a combination of unique conditions with decreasing water
storage at the beginning of the dry season, which corresponds to increasing water residence
time and mild wind conditions.

From a meteorological point of view, the chlorophyll peak can occur simultaneously
in the period of low wind speed. Wind can be an inducer of water mass movements, both
horizontaly and spatially, and most phytoplankton species will not be able to develop.
Furthermore, the action of the wind can cause sediment resuspension from the lake bottom,
especially in shallow conditions when the reservoir faces low storage rate. This gener-
ates a lower availability of the light in the water column and may lead to inhibition of
phytoplanktonic growth, resulting in lower chl-a concentrations values [77,79].

In this study, the radiation variability over the year did not seem to have a clear impact
on chl-a variability at the surface level (Figure 11), since Castanhão is located close to the
Equator and the solar irradiance is quite constant. Looking at finer time scales, both wind
speed and radiation are closely related to the diurnal cycle of water quality: stratification of
the reservoir during the peak of radiation and mixing of its water during the peak of the
wind speed [118]. However, the study of the diurnal cycles remains out of the reach of the
satellite date due to their lower time-revisit frequency.
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Figure 10. Cont.
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Figure 10. Compass rose containing wind speed (gust) and direction over the months of 2019. It was
not possible to generate the graph for the month of November due to lack of data. The data were
made available by INMET, on the portal https://portal.inmet.gov.br/ (accessed on 26 February 2020),
and extracted from the conventional meteorological station Morada Nova/CE.

Figure 11. Graph of solar radiation extracted on the days and times of the Sentinel-2 satellite passage,
referring to the data used to generate the annual map of chl-a concentration in Castanhão reservoir
(Figure 7). November radiation was not presented due to lack of data. The data were made available
by INMET, at https://portal.inmet.gov.br/ (accessed on 26 February 2020), and extracted from the
Morada Nova/CE conventional weather station.

4. Concluding Remarks

This work showed that the use of Sentinel-2 MSI remote-sensing data to monitor the
quality of complex case 2 waters in semiarid environments has strong potential.

The defined 3-band spectral model for Sentinel-2 Level 1C, where R(λ1) = 665 nm;
R(λ2) = 705 nm; and R(λ3) = 740 nm presented acceptable statistical performance to estimate
the concentration of chl-a, with statistical regression parameters reaching a relative RMSE
of 28% and R2 = 0.80.

The hydroclimatic data (wind direction and speed and reservoir volume) used to
analyze the behavior of chl-a in the surface waters of the Castanhão reservoir was important,
making it possible to interpret the temporal and spatial distribution of satellite-retrieved
chl-a maps over the entire surface of the reservoir.
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Thus, this study contributes to the development of continuous monitoring of water
quality, based on remote analysis by satellite, in small and large reservoirs, a strategic
resource to promote greater water security in the Brazilian semiarid region, which is heavily
impacted by strong interannual rainfall variability and an overall scarcity of rainfall.
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Abstract: The dynamics of the mid-channel bars (MCBs) in the Three Gorges Reservoir (TGR) were
substantially impacted by the large water-level changes due to the impoundments of the TGR.
However, it is still not clear how the morphology of the MCBs changed under the influence of
water level and hydrological regime changes induced by the impoundments and operation of the
TGR. In this work, the MCBs in the TGR were retrieved using Landsat remote sensing images from
1989 to 2019, and the spatio-temporal variations in the number, area, morphology and location of
the MCBs during different impoundment periods were investigated. The results showed that the
number and area of MCBs changed dramatically with water-level changes, and the changes were
dominated by MCBs with an area less than 0.03 km2 and larger than 1 km2. The area of MCBs
decreased progressively with the rising water level, and the number generally showed a decreasing
trend, with the minimum number occurring at the third stage when the water level reached 139 m,
resulting in the maximum average area at this period. The ratio of length to width of the MCBs
generally decreased with the changes in hydrological and sediment regimes, leading to a shape
adjustment from narrow–long to relatively short–round with the rising of the water level. The water
impoundments of the TGR led to the migration of the dominant area from the upper section to the
middle section of the TGR and resulted in a more even distribution of MCBs in the TGR. The results
improve our understanding of the mechanisms of the development of MCBs in the TGR under the
influence of water impoundment coupled with the annually cyclic hydrological regime and longer
periods of inundation and exposure.

Keywords: mid-channel bars; morphological change; spatial distribution; different impoundment
periods; Three Gorges Reservoir

1. Introduction

The mid-channel bar (MCB) is formed by favorable hydrological conditions in the
river. It is a stable island above the river’s water level, formed by the gradual development
and shaping of the river siltation over a long period [1,2]. The development of MCB is
influenced by exogenous materials such as sediment, the transport capacity of flowing
water and the sediment concentration, as well as by dam construction and reservoir
regulations [3–6]. The dynamics of MCBs were significantly impacted by the water-level
changes due to the impoundment of the TGR. [7,8]. On the one hand, some original
MCBs in the Yangtze River were submerged, while some new MCBs were formed from the
inundation of low-lying lands and point bars by the reservoir, due to the rising of the water
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level [9,10]. On the other hand, some MCBs were periodically exposed and submerged due
to the annually cyclic hydrological regime induced by the TGR operation. Therefore, the
morphology of the MCBs in the TGR changed significantly under the influence of these
hydrological regime changes, which are expected to have an important impact on channel
stability, water–land interactions and biological diversity [11–13].

Over the past century, great efforts have been made to investigate the formation
and development processes of MCBs in bifurcated channel stretches, using field obser-
vations [14], remote sensing [5], theoretical generalized models and mathematical mod-
els [15–17]. Many experiments have also been conducted to explore the morphological
dynamics of MCBs [18–20]. However, most of the studies are based on ideal environmental
conditions, including constant flow, slope, etc. Furthermore, many other environmental
factors affecting the development of MCBs were not considered [21,22]. In recent years, the
rapid development of numerical simulation technology, remote sensing and spatial analysis
in geographic information science has provided an opportunity to monitor and model the
dynamics of MCBs at multi-spatial and multi-temporal scales [23,24]. Schuurman et al. [15]
generated datasets of water depth, flow and sediment transport of MCBs based on physical
models, and further developed a conceptual network model describing the interactions of
MCBs, sub-branches and river channels. Liu et al. [25] investigated the proportion of river-
ine sand partitioning when MCBs reached their stable equilibrium form, using an analytical
hydrodynamics method. Rasbold et al. [26] identified the development signatures of MCBs
based on the theory of sedimentology. Adami et al. [22] used wavelength, migration rate
and height to investigate the spatio-temporal variations of the morphological dynamics of
the MCBs in the Alpine Rhine over the last 30 years.

As the longest river in China, the Yangtze River has an important strategic position and
a role in boosting the development of the cities along its length [27]. The morphological
development of MCBs in the Yangtze River is of great significance in maintaining the
stability of the river and enhancing the function of the “golden channel” [28]. However, the
construction of the Three Gorges Dam (TGD) has significantly changed the hydrological and
sediment regimes downstream of the TGD over the last 30 years, altering the hydrological
conditions for the development of the MCBs [28–30]. Based on long-term observations,
multi-temporal remote sensing data and model simulations, many studies have been
conducted to monitor the changes in the MCBs in the middle and lower reaches of the
Yangtze River [31,32]. The results showed significant morphological changes in the MCBs
after the TGD operation [5,33], and revealed the process [28] and mechanism for the
development of MCBs [33] downstream of the TGD. In contrast, under the influence of
the annually cyclic hydrological regime and of longer inundation and exposure periods
induced by the TGR operation, the morphological development process of MCBs in the
TGR and their response to hydrological and sediment regime changes differs greatly from
those downstream of the TGD [34]. However, due to the lack of relevant studies, it is still
not clear how the morphology of the MCBs changes under the influence of water level and
hydrological regime changes induced by the impoundments and operation of the TGR.

Therefore, this study was carried out to fill the knowledge gap. The main objectives of
this study were to: (1) retrieve the MCBs from Landsat images and construct datasets of
morphological changes of MCBs in the TGR; (2) investigate the spatio-temporal variations
in the numbers, areas, morphology and locations of the MCBs during different impound-
ment periods. The study helps to reveal the mechanisms for the development of MCBs in
the TGR; it also offers a scientific basis for the planning, optimal utilization and ecological
restoration of the MCBs in the TGR.

2. Materials and Methods

2.1. Study Area

The Three Gorges Reservoir (TGR) is located in the lower section of the main waterway
in the upper reaches of the Yangtze River, which is a typical mountainous river. It extends
from Jiangjin District in Chongqing to Yichang City in Hubei Province, from west to east
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(Figure 1). The topography of the Three Gorges Reservoir Area (TGRA) is dominated by
mountains and hills. The TGRA has a subtropical monsoon climate with an average annual
temperature of 17–19◦ and annual precipitation of 1000–1800 mm [35]. After the official
operation of the TGR, it formed a narrow-valley reservoir with a total length of 660 km and
a surface area of 1084 km2. The geographical location of the TGR is between 28◦56′ and
31◦44′ east (longitude) and between 106◦16′ and 111◦28′ north (latitude), which includes
25 districts and counties in Hubei and Chongqing municipalities.

 

Figure 1. Geographic location of the study area.

2.2. Division of Impoundment Periods

The upper reaches of the Yangtze River were successfully intercepted by the TGD in
1997, raising the reservoir water level to approximately 66 m above sea level. The TGR
began storing water in steps from 139 m in June 2003, to 156 m in October 2006 and 175 m
in November 2009. It was officially operated after one year of experimental water storage,
in 2009 [36]. Thus, based on the construction phase and the changes in the water levels of
the TGD (Figure 2), five stages were identified to investigate the morphological changes in
the MCBs.

 

Figure 2. The water-level changes of TGR and division of impoundment period.
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2.3. Data Collection

The spatial information of the MCBs was retrieved using multi-temporal Landsat im-
ages. Since the TGR had been in operation for more than twenty years from the interception
of the Yangtze River, three criteria were employed to ensure data consistency regarding the
spatial-temporal resolution and retrieval accuracy for the MCBs. Firstly, images with less
cloud cover were used where possible [5,23]. Secondly, images acquired during the dry
season (i.e., November to March) were used, to reduce the difference in water levels during
the different stages. Lastly, due to the influence of the 16-day-long revisit cycle of the
Landsat satellite, it was difficult to obtain images with the same water levels for different
strips. Therefore, images with similar water levels were obtained as far as possible.

A total of 36 images were collected, with an spatial resolution of 30 m, following
these criteria. These images, spanning the 39th–42nd strips of the Landsat satellite were
obtained from the Chinese Geospatial Data Cloud (http://www.gscloud.cn/). The data pre-
processing, including single-band extraction, false color synthesis and geometric correction,
etc., was carried out using ENVI 5.3 software. Many previous studies proved that these
images can be used to monitor the landscape dynamics with reasonable accuracy [5,23,24].
Detailed information on the collected image data is shown in Table 1. The data on the water
level, sediment and siltation of the TGR were obtained from the Yangtze River Sediment
Bulletin (http://www.cjw.gov.cn/zwzc/bmgb/) and Yangtze River Three Gorges Group
(https://www.ctg.com./sxjt/sqqk/index.html).

Table 1. Detailed information on the collected remote sensing images.

Impoundment
Period

Sensor Acquisition Date Number Resolution Data Sources

Stage 1 Landsat5 TM
24 January 1993, 29 January 1994,

1 November 1995, 17 November 1995,
26 December 1995, 5 February 1996

6 30 m Geospatial Data
Cloud

Stage 2 Landsat5 TM

5 November 2000, 17 January 2001,
10 February 2001, 12 March 2001,

27 December 2001, 8 January 2002,
28 November 2002

7 30 m Geospatial Data
Cloud

Stage 3 Landsat5 TM

24 January 2004, 7 December 2004,
6 January 2005, 2 February 2005,
7 December 2005, 2 January 2006,

4 February 2006

7 30 m Geospatial Data
Cloud

Stage 4 Landsat5 TM

3 February 2007, 1 March 2007,
22 February 2008, 23 March 2008,

15 November 2008, 21 November 2008
2 December 2008, 3 February 2009

8 30 m Geospatial Data
Cloud

Stage 5 Landsat8 OLI

22 January 2015, 17 December 2015,
25 January 2016, 15 November 2016,

22 December 2017, 31 December 2017,
14 January 2018, 12 February 2018

8 30 m Geospatial Data
Cloud

2.4. Retrieval of MCBs from Landsat Images

MCBs were retrieved from Landsat images using auto-classification coupled with
manual inspection and digitization. They were initially auto-retrieved using the modified
normalized difference water index (MNDWI) developed by Xu [37]. This index was
derived from the normalized difference water index (NDWI), which highlighted the water
information in the image by normalizing the spectral difference between the green band
and the mid-infrared band [38]. The MNDWI has been proved to be an effective method
for retrieval of the MCBs with reasonable accuracy [5,23]. The MNDWI was calculated as:

MNDWI =
ρGreen − ρMIR

ρGreen + ρMIR
(1)
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where ρGreen and ρMIR are the reflectances of the green band and mid-infrared
band [37], respectively.

Due to differences in the spectral features among different images, some MCBs were
misclassified as other landscapes, while some other landscapes were misclassified as MCBs
since they had similar spectral features. Thus, the automatically retrieved vector data of
MCBs need to be manually modified and verified by combing them with the observed
data such as water levels, hydrological data and land use data. Such modification can
significantly improve the retrieval accuracy of MCBs from Landsat images.

2.5. Classification of MCBs

A field survey showed that the areas of MCBs varied greatly in the TGR, and previous
studies found that MCBs with different sizes had different responses to the changes in the
hydrological and sediment regimes [5]; thus, all the MCBs were reclassified into 4 types
based on different areas: small MCBs with an area less than 0.03 km2 (SMB), medium
MCBs with an area less than 0.1 km2 (MMB), medium–large MCBs with an area less than
1 km2 (MLMB) and large MCBs with an area greater than 1 km2 (LMB).

2.6. Analysis Method for the Dynamics of MCBs
2.6.1. Index of Area and Shape

The area and perimeter of a single MCB can be directly calculated from the vector
data of MCBs using ArcGIS software. The length and width changes of MCBs can reflect
their adjustment to the changes in hydrological and sediment regimes [39]. The ratio of
length to width (LWR) was used as a comprehensive index to investigate the morphological
characteristics of, and changes in, MCBs [5,23]. This was calculated as:

LWR =
L
W

(2)

where L and W are the length and width of the MCB, respectively.

2.6.2. The Coefficient of Variation (CV)

The CV was used to measure the spatial variability of the morphological characteristics
of MCBs. It has been proved to be a useful indicator for investigating the variations in
spatial features and is widely used in landscape ecology [5]. It was calculated as:

CV =
1
x

√
1
n

n

∑
i=1

(xi − x)2 (3)

where xi, x and n are the LWR of each MCB, average LWR and number of MCBs, respectively.

2.6.3. The Gravity Center Shifting Model

The gravity center shifting model was used for investigating the spatial change trends
of MCBs during different impoundment stages [40].

Xs =
n

∑
i=1

(Asixi)/
n

∑
i=1

Asi (4)

Ys =
n

∑
i=1

(Asiyi)/
n

∑
i=1

Asi (5)

where Xs and Ys are the latitude and longitude of the gravity center of all the MCBs at
stage s, respectively, Asi is the area of the ith MCB at stage s, xi and yi are the latitude and
longitude of the geometric center of the ith MCB, respectively, and n is the total number
of MCBs.
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The following equation was used for calculating the shifting distance of the gravity center:

Ds′−s =

√
(Ys′ − YS)

2 + (Xs′ − XS)
2 (6)

where Ds′−s is the shifting distance of the gravity center, Xs′ and Ys′ are the latitude and
longitude of the gravity center of all the MCBs at stage s′, respectively, and Xs and Ys are
the latitude and longitude of the gravity center of all the MCBs at stage s, respectively.

3. Results

3.1. Variations in Area and Number of MCBs

Retrieved results from Landsat images showed significant variations in the area and
number of MCBs in the TGR (Figure 3). The area and number presented different trends
with respect to the changes in water level during different impoundment periods. The
number of MCBs ranged between 89 and 150, with an average of 113 in the TGR; 90 MCBs
were located in the main stream and accounted for 79.7% of the total number, and the
remaining MCBs were located in tributaries (Figure 3a).

  

  

Figure 3. Number and area changes for MCBs during different impoundment periods: (a) number, (b) total area and
(c) average area.

The number and area of MCBs changed dramatically with water-level changes
(Figure 3). The maximum number of MCBs occurred at stage 1 under the natural hy-
drological regime. The number decreased sharply to 89 at stage 3 when the water level
reached 139 m, while it increased to 103 at stage 4 when the water level rose to 156 m and
slightly declined to 99 at stage 5 when the water level increased to 175 m. The number
trend for MCBs in the main stream differed greatly from that in tributaries. It decreased
progressively from 139 at stage 1 to 54 at stage 5, in the main stream. The number slightly
increased from stage 1 to stage 2 and then slightly decreased in stage 3 in tributaries, while
it sharply increased from a minimum of 11 at stage 3 to a maximum of 45 at stage 5.

The area of MCBs in the TGR varied greatly from 0.2 to 1134 (×10−2 km2), with the
average area ranging between 31.69 (×10−2 km2) at stage 4 and 44.42 (×10−2 km2) at
stage 3. The average area in the main stream was much higher than that in tributaries, with
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maximum values of 54.19 (×10−2 km2) and 6.4 (×10−2 km2), respectively (Figure 3c). The
total area decreased progressively from a maximum of 4910.56 (×10−2 km2) at stage 1 to a
minimum of 3214.6 (×10−2 km2) at stage 5, with the rising of the water level, and the most
obvious changes occurred between stage 2 and stage 4 (Figure 3b). The total area in the
main stream presented a similar trend to that in the whole reservoir. The total area changed
slightly from stage 1 to stage 4 in tributaries, and then increased sharply to a maximum of
288.07 (×10−2 km2) at stage 5.

The area and number changes in MCBs for the different classes are presented in
Figure 4. In terms of the number, the MCBs in the TGR were dominated by SMBs followed
by MMBs, accounting for 55.6% and 20.9% of the total number on average, respectively.
In contrast, the MCBs were dominated by LMBs followed by LMMBs in terms of area,
accounting for 80.2% and 14.8% of the total area on average, respectively. The number
and area variations in the MCBs differed greatly for different sizes, with the most obvi-
ous changes in number and area appearing in SMBs (Figure 4a) and LMBs (Figure 4b),
respectively. The number of SMBs dramatically decreased from stage 1 to stage 3, then
increased sharply to stage 5, which was the main reason for the sharp change in the total
number in tributaries from stage 4 to stage 5. The numbers of MMBs, LMMBs and LMBs
generally showed a similar decreasing trend as the water level rose. The trend for area
changes in MCBs in the TGR was determined by that of LMBs generally, due to the domi-
nant role of LMBs in the total area. MMBs presented a similar trend to LMMBs regarding
area, with an increase from stage 1 to stage 2 and a significantly decreasing trend from
stage 2 to stage 5.

  

Figure 4. Number and area changes in MCBs with different sizes: (a) number, (b) area.

3.2. Morphological Changes of MCBs

The temporal variation of the LWR is presented in Figure 5. The LWR of MCBs in the
TGR ranged between 2.09 and 3.05, with an average of 2.56. The changing LWR generally
indicates a morphological adjustment of MCBs following the changes in hydrological
and sediment regimes induced by the operation of the TGR. The LWR increased from
stage 1 to a peak at stage 2, and then decreased from stage 2 to a minimum at stage 5.
This suggests that the morphology of MCBs tended to change from a narrow–long shape
to a short–round shape with the rising of the water level. On average, LMMBs had the
highest LWR followed by MMBs, while the lowest LWR was observed for SMBs, generally
indicating that the LMMBs and MMBs tended to be a narrow–long shape, while the SMBs
tended to be a short–round shape. The LWR variation of MCBs differed greatly among the
different classes, with the most obvious change occurring in LMBs, suggesting that the
effect of impoundment on the morphology of LMBs was more pronounced than the effect
on SMBs, MMBs and LMMBs. The effect for LMBs was relatively small from stage 1 to
stage 2, resulting in only slight changes in LWR, while a significant effect appeared at stage
3 when the water level rose to 139 m. MMBs showed similar trend to LMMBs regarding
the LWR, with an increase from stage 1 to stage 2 and a decreasing trend from stage 3 to
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stage 5. Compared to LMBs, MMBs and LMMBs, SMBs had a more stable LWR with lower
fluctuations probably due to the fact that SMBs often had a shorter development time and
a short–round morphology.

   

  

 

Figure 5. LWR changes in MCBs with different sizes: (a) whole, (b) SMBs, (c) MMBs, (d) LMMBs and (e) LMBs.

The LWR stability of the MCBs is shown in Figure 6. Generally, the CV decreased
with an increase in the area of the MCB, indicating that larger MCBs tended to have a more
stable morphology, and vice versa. The MCBs in the river, with natural hydrological and
sediment regimes, often showed large morphological changes due to the large variations
in erosion and siltation, resulting in a higher CV at stage 1. However, the conversion from
natural river to man-made reservoir resulted in a rise in the water level, which significantly
weakens the hydrodynamic conditions, leading to the CV changing from being scattered to
being more clustered, as the water level rose from stage 1 to stage 5, as can been seen in
Figure 6. This change was more evident for the LMBs.

3.3. Spatial Distribution of MCBs in TGR

The spatial distributions of the number and area of MCBs in the TGR are shown in
Figures 7 and 8, respectively. It can be seen that the MCBs were unevenly distributed
spatially. They were mostly distributed in the upper section of the TGR at 300 km from the
TGD, accounting for 96.7% and 99.4% of the total number (Figure 7a) and area (Figure 8a)
at stage 1. The distributions of the MCBs at the second stage (Figures 7b and 8b) were
generally similar to those at stage 1. The number and area of MCBs in the upper section
of the TGR were reduced mainly due to the influence of human activities such as sand
mining, which contributed mostly to the number decrease in MCBs from stage 1 to stage 2.
A total of 41 MCBs with a total area of 1068.03 (×10−2 km2) disappeared in the section of
TGR from 250 to 500 km from the TGD (Figure 7c), due to the inundation occurring when
the water level rose to 139 m at stage 3. The number of MCBs changed dramatically in the
whole reservoir as the water level increased from 139 m to 156 m at stage 4 (Figure 7d).
In the section from the dam to 400 km from the dam, 40 new MCBs formed following the
inundation of low-lying mountain tops by the reservoir, while the area changed slightly
(Figure 8d), and meanwhile 26 MCBs disappeared in the section from 400 to 660 km from
the dam due to the inundation when the water level rose, leading to a drastic decline
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in the area. After the official operation of the TGR in 2009, 26 new MCBs formed in the
section from 200 to 350 km from the TGD (Figure 7e), resulting in the number proportion
increasing from 6.3% at stage 3 to 48.5% at stage 5, and the area proportion increasing
to 44.1% (Figure 8e). However, 21 MCBs with a total area up to 1287.11 (×10−2 km2)
disappeared in the section from 500 to 660 km from the TGD due to the inundation when
the water level rose to 175 m. The spatial variation of MCBs during the different stages was
caused mainly by the rising water level and the expansion of the inundation area created
by the water impoundments of the TGR. The results suggest that water impoundments
at the TGR had led to the migration of the dominant area from the upper to the middle
section of the TGR, resulting in a more even distribution of MCBs in the TGR.

3.4. Gravity Center Migration of MCBs

The weighted gravity center by area of the MCBs was compared during different
impoundment periods, and the migration routes are presented in Figure 9. Generally,
the spatial location of the gravity center of the MCBs varied obviously with the water
level changes during different water impoundment periods. The gravity center migrated
2.04 km south-westwards after the interception of the Yangtze River at stage 2. It continued
to move south-westwards with the rising of the water level, with migration distances of
25.68 km and 9.39 km when the water level reached 139 m at stage 3 and 156 m at stage 4,
respectively. The migration direction of MCBs was consistent with the tail direction of the
TGR, which was significantly associated with the expansion of the inundation area towards
the tail direction of the TGR induced by the rising water level. However, many new MCBs
formed in the middle section of the TGR, owing to the inundation of low-lying mountain
tops by the reservoir, induced by the water level rising to 175 m at stage 5. This resulted
in a notable migration of the gravity center to the middle section of the TGR. As can been
seen from Figure 8, the gravity center moved 70.63 km north-eastwards from stage 4 to
stage 5, which was opposite to the migrations from stage 1 to stage 4.

   

  

 

Figure 6. Relationship between CV of LWR and area of MCBs with different sizes in different impoundment periods:
(a) stage 1, (b) stage 2, (c) stage 3, (d) stage 4 and (e) stage 5.
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Figure 7. Spatial distribution and changes in the number of MCBs in different impoundment periods: (a) stage 1, (b) stage 2,
(c) stage 3, (d) stage 4 and (e) stage 5.

 

Figure 8. Cont.
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Figure 8. Spatial distribution and changes in the area of MCBs in different impoundment periods: (a) stage 1, (b) stage 2,
(c) stage 3, (d) stage 4 and (e) stage 5.

 

Figure 9. Gravity center migration of MCBs during different impoundment periods.

4. Discussion

The Yangtze River had a natural hydrological and sediment regime before the con-
struction of the TGD, where the MCBs developed with a relatively stable balance between
erosion and siltation [37]. However, the construction of the TGD has significantly changed
the hydrological and sediment regimes of the Yangtze River over the past decades, which
has seriously disrupted this balance. Many previous observations and studies found
tremendous riverbed erosion in the middle and lower reaches of the Yangtze River, mainly
due to the intercepting of sediment and discharging of clear water since the initial im-
poundment of the TGD [30,32,41]. The degree of erosion became weaker as the distance
from the TGD increased [5,23,28]. The MCBs in the TGR varied dramatically under the
influence of notable changes in the hydrological and sediment regimes of the TGR in-
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duced by the weakened hydrodynamic condition and rising water levels from stage 1 to
stage 5 [36,42]. The surface area of the TGR has expanded as the water level rose since the
initial impoundment of the TGD [42,43]. This resulted in a large portion of the previous
MCBs being submerged, contributing to a subsequent reduction in the areas of the exposed
MCBs. Meanwhile, many new MCBs formed from the inundation of point bars and low-
lying mountain tops by the reservoir (Figure 10). A large number of new MCBs appeared,
especially in the area of the TGR with the largest fluctuations in water level, in Kaizhou
county (Figure 11).

Figure 10. Schematic diagram of impacts of water-level rising on MCBs of the TGR.

 

  

(a)

(b) (c)

Figure 11. MCBs formed by the flooding of low-lying mountain tops: (a) Three Gorges Reservoir Area, (b) in Zhongxian
and (c) in Kaizhou.
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Human activities such as sand mining caused an unsaturated sediment transportation
capacity of the flow of the TGR (Figure 12) before stage 3, which led to poor stability of
the riverbed and MCBs in the TGR. In addition, the conversion from river to reservoir
weakened the hydrodynamic condition when the water level reached 139 m at stage 3.
The flow rate slowed and a great deal of sediment was trapped in the reservoir, and
the water level was the dominant influence on the MCBs [43]. The morphology of the
naturally developed MCBs often took typical forms such as oval, bamboo-leaf and sickle-
shaped forms. However, the morphology of MCBs changed greatly as the water level rose,
regulated by the man-made dam [6,7]. Due to the coupled effect of natural hydrological
and sediment regimes and water-level changes regulated by the TGD, the MCBs in the
fluctuating backwater zone of the TGR were more affected by siltation than those in the
perennial backwater zones. Thus, more attention and protection should be paid to MCBs
in fluctuating backwater zones.

  

 

Figure 12. Water discharge and sediment amounts at the three key gauging stations in the different impoundment periods.
(a) Annual runoff volume from 2002 to 2019, (b) annual sediment amount from 2002 to 2019 and (c) annual sedimentation
amount from 2000 to 2019.

However, limitations and uncertainties associated with the remote sensing image
data may exist and need to be improved in future work. In the data acquisition stage, we
did our best to collect Landsat images with similar times and water levels to reduce the
potential effect on the morphology, numbers and areas of the retrieved MCBs. However,
it is very difficult to obtain ideal image data, mainly due to the influence of cloud cover,
the difference in spectral features and the revisit cycle of the Landsat satellite, leading to
a certain degree of uncertainty in the analysis and results. Thus, more remote sensing
images need to be employed and collected from other platforms to reduce the influence of
acquisition times, spectral differences and water levels. In the context of the “storing clean
water and discharging sandy water” operation schedule [7,8], the influence of the annually
cyclic hydrological regime and the longer inundation and exposure induced by the TGR
operation, the water level of the TGR fluctuated dramatically between 145 and 175 m, with
increase periods from September to January in the following year, and decrease periods
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from January to September. The present study only investigated the dynamics of MCBs
from October to January. It will be necessary to further investigate the changes in MCBs
during the year.

Due to the coupled effect of natural hydrological and sediment regimes and water-level
changes regulated by the TGD, the development mechanism of MCBs in the fluctuating
backwater zones differed from that in the perennial backwater zones, and this was mainly
influenced by water-level changes regulated by the TGD. This was not explored in this study.
Nevertheless, the scientific findings help to reveal the mechanisms of the development of
MCBs in the TGR and can also offer a scientific basis for planning, optimal utilization and
ecological restoration of the MCBs in the TGR.

5. Conclusions

This work investigated the spatio-temporal variations in the number, area, morphol-
ogy and location of MCBs in the TGR during different impoundment periods, using
Landsat images. The results showed that the number of MCBs ranged between 89 and
150 with an average of 113, and the area varied greatly from 0.2 to 1134 (×10−2 km2)
with an average of 31.69. The number and area of MCBs changed dramatically with the
water-level changes induced by the impoundments and operation of the TGR. The total
area of MCBs decreased progressively from stage 1 to stage 5, with the most significant
changes occurring between stage 2 and stage 4. Although the number showed a decreasing
trend, the minimum number appeared at stage 3, which was dominated by the change in
the number of SMBs. The number and area variations of MCBs differed greatly among
MCBs with different sizes, with the most obvious changes appearing for SMBs and LMBs,
respectively. The LWR of MCBs in the TGR ranged between 2.09 and 3.05 with an average
of 2.56. It generally decreased as the water level rose, suggesting that the morphology
of MCBs tended to change from a narrow–long shape to a short–round shape. The LWR
variation of MCBs differed greatly among different sizes, with the most obvious changes
occurring in SMBs, suggesting that the effect of impoundment on the morphology of SMBs
was more pronounced than the effect on MMBs, LMMBs and LMBs. The MCBs were
unevenly distributed spatially. They were mostly distributed in the upper section of the
TGR at stage 1, under a natural hydrological regime. The water impoundments of the TGR
led to the migration of the dominant area from the upper to the middle section of the TGR,
resulting in a more even distribution of MCBs in the TGR and the migration of the gravity
center of MCBs from the upper to the middle section of the TGR.

This study showed the enormous impacts of the operation of the TGD on the morpho-
logical dynamics of MCBs. While the mechanisms of the development of MCBs in the TGR
are complex, it will be necessary to investigate these changes further in the future.
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Abstract: Water Resource Sustainability Management plays a vitally important role in ensuring
sustainable development, especially in water-stressed arid regions throughout the world. In order
to achieve sustainable development, it is necessary to study and monitor the water quality in the
arid region of Central Asia, an area that is increasingly affected by climate change. In recent decades,
the rapid deterioration of water quality in the Ebinur Lake basin in Xinjiang (China) has severely
threatened sustainable economic development. This study selected the Ebinur Lake basin as the
study target, with the purpose of revealing the response between the water quality index and
water body reflectivity, and to describe the relationship between the water quality index and water
reflectivity. The methodology employed remote sensing techniques that establish a water quality
index monitoring model to monitor water quality. The results of our study include: (1) the Water
Quality Index (WQI) that was used to evaluate the water environment in Ebinur Lake indicates a
lower water quality of Ebinur Lake, with a WQI value as high as 4000; (2) an introduction of the
spectral derivative method that realizes the extraction of spectral information from a water body to
better mine the information of spectral data through remote sensing, and the results also prove that
the spectral derivative method can improve the relationship between the water body spectral and
WQI, whereby R2 is 0.6 at the most sensitive wavelengths; (3) the correlation between the spectral
sensitivity index and WQI was greater than 0.6 at the significance level of 0.01 when multi-source
spectral data were integrated with the spectral index (DI, RI and NDI) and fluorescence baseline;
and (4) the distribution map of WQI in Ebinur Lake was obtained by the optimal model, which was
constructed based on the third derivative data of Sentinel 2 data. We concluded that the water quality
in the northwest of Ebinur Lake was the lowest in the region. In conclusion, we found that remote
sensing techniques were highly effective and laid a foundation for water quality detection in arid areas.

Keywords: Water Quality Index (WQI); Ebinur Lake; remote sensing

1. Introduction

Water problems can be a great barrier to economic development in any corner of the
world [1–3], especially in such arid regions as Xinjiang, China, where water shortages (and
other water issues) aggravate ecological environment deterioration. Therefore, studying
and monitoring water quality is very important to reduce the potential negative impacts
on the ecological environment in Xinjiang. However, traditional water quality monitoring
methods are time-consuming, cumbersome, and limited to a small scale. Therefore, they
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can no longer meet the needs of water quality monitoring in terms of speed, large areas,
or a long time series. In order to have more accurate estimates, new data sources and
new methods need to be introduced in the monitoring of comprehensive water quality
indicators [4,5]. The development of multi-source observation and the monitoring of remote
sensing technology increasingly brings huge opportunities for speedy, high-precision water
environment monitoring and evaluation over large areas.

Satellite remote sensing technology has developed very quickly since 1970. Conse-
quently, more water resource researchers started to apply remote sensing technology in
their research, and the water quality within remote sensing monitoring mechanisms has
also gradually improved. In recent years, remote sensing satellites have been widely used
to observe pollutants in rivers and lakes. As a result, the detectable types of pollutants
retrieved from satellite images have greatly increased, and the inversion accuracy has been
further improved, as well [6].

Remote sensing applied to water quality monitoring is mainly used to map the water
quality indexes of rivers and lakes through the relationship between water quality indexes
and spectral data with satellite image data such as Landsat, MODIS, ENVISAT, and SPOT
data [6–8]. However, the spatial resolution of the above remote sensing data is greater than
10 m, which makes it difficult to meet monitoring requirements. Only a few water quality
parameters can be monitored by these remote sensing data, such as Chlorophy ll, SS, NTU,
and CDOM. [4,9,10]. Other chemical indicators of water quality, such as COD, BOD5,
TN, TP, NH3-N, DO, etc., cannot be directly monitored by remote sensing. The indirect
monitoring accuracy is low, and the mechanism is unclear. Hence, introducing a new
technology that makes up for the deficiency of remote sensing water quality monitoring is
essential.

In fact, the process of water pollution follows a nonlinear regression that fluctuates
with many factors, and the accuracy of the water quality inversion result is limited by the
traditional linear inversion model [11]. However, machine learning has a good nonlinear
approximation ability, and the application of machine learning in water quality monitoring
provides a new idea to improve the accuracy of water quality monitoring. Alves simplified
the input variables of the feed forward neural network through principal component
analysis, thus accurately inverting the water quality index (WQI) [12]. Gogu proved that
there is a good potential in using a neural network to invert the salt content of river
water through experiments [13]. Wang [11] estimated the WQI of water quality in the
Ebinur Lake basin based on the support vector machine (SVR) model by using near-surface
spectroscopy technology, and found that the nonlinear model has great potential in water
quality observation.

Although the water quality parameter estimation model provides relatively highly
accurate data, the result is uncertain due to the complex and changeable water environment.
The reason is that the water spectrum shows the entire water environment rather than
a single water quality parameter. Many scholars have developed a single water quality
parameter estimation model based on water spectral data [14–16]. Therefore, the estimation
model of individual water parameters introduces a certain degree of uncertainty. At this
point, the establishment of the water quality index reflecting the whole water environment
to evaluate the whole water environment is necessary. Moreover, a good water quality
evaluation method should not only accurately reflect the spatial change of the water
quality but also conveniently monitor the water quality level. Data on the Water Quality
Index (WQI) is compiled by the Ministry of Water Resources and the Water Environment
Monitoring and Evaluation Center to evaluate the quality of drinking water [17,18]. The
WQI was originally proposed by Horton and Brown [19,20]. Scholars have devised various
methods to calculate the water quality Index (WQI) [21,22], which is a mathematical tool of
converting large amounts of water quality data into a single value that represents the water
environment and reflects the overall water quality level [23]. However, it is impossible
to identify the temporal and spatial variation of water quality, which is crucial for the
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comprehensive evaluation and management of water quality, even though the WQI method
can provide reasonable accuracy of the water quality of a single sample.

In this paper, the relationship between the water quality index, water optical charac-
teristics, and water reflectance is quantitatively analyzed. The specific research objectives
in this paper include: (1) to better mine the information of remote sensing data by using
a series of technologies, such as the remote sensing image differential algorithm, which
are introduced to realize the extraction of water remote sensing information; (2) to con-
struct a remote sensing spectral index (DI, RI and NDI) and fluorescence baseline height
for monitoring water quality in arid areas; and (3) to establish a WQI model based on
machine learning technology (particle swarm optimization algorithm) to achieve water
quality monitoring. This study will provide an effective method for rapid, quantitative,
and sustainable water quality management in arid areas, as well as a typical example for
ecological conservation in arid areas, and it will also effectively contribute to the health of
the ecological environment in arid areas.

2. Study Area

The Ebinur Lake watershed (43◦380–45◦520 N and 79◦530–85◦020 E) is located in
northwest Xinjiang, China (Figure 1). The study area is 50,621 km2, comprising Bortala
River Valley, Jinghe oasis, Wusu Oasis, Dandagai desert, and the Mutetaer desert zone of the
lower reaches of the Akeqisu-Kuitun River. The Ebinur Lake is in the lowest elevation of the
watershed and is the largest saltwater lake in Xinjiang. It has all the typical characteristics
that all other lakes do in the arid region of Central Asia. The area experiences a typical
arid continental climate in the middle temperate zone and is characterized by drought,
low rainfall, drastic temperature variations, and severe soil salinization. The average
lake depth is merely 1.4–1.6 m, with a water density of about 1.079 g/cm3, pH 8.49, and
mineralization of 112.4 g/L. The watershed is one of the key areas of China’s Silk Road
Economic Belt, and can be divided into three sub-basins, namely, the Jinghe River basin,
Boltala River basin, and Kuitun River basin. The Ebinur Lake basin consists of a varied
landscape of mountain, desert, and oasis, where land is mainly use for agricultural. The
annual average temperature is 7.2 ◦C, with the highest 9.1 ◦C and the lowest 5.3 ◦C. The
annual extreme high and low temperature is 41 °C and −34.7 ◦C, respectively. The annual
average precipitation is only 149 mm, but the potential evapotranspiration reaches up to
2281 mm.
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Figure 1. The study area: (a) The Xinjiang Uyghur Autonomous Region in northwestern China; (b) The Ebinur Lake
Watershed with elevation and drainage information; (c) The water body and 16 sampling points at Ebinur lake extracted on
October 2017; (d) A typical view of Ebinur Lake with sunny weather; (e) Ebinur Lake surface water landscape; and (f) The
unique visual effect of Ebinur Lake.

3. Data and Methods

3.1. Data Collection
Water Quality Data Collection

The field investigations and water quality sample collections for this study were
conducted in October 2015. They were integrated with the main body of the experiment,
which included three parts of water sampling, including water surface spectral measure-
ment, GPS record location, and other auxiliary information. Spectroscopy was measured
by a FieldSpec®ProFR (wavelength range: 350–2500 nm), a portable ASD spectrometer
(Analytical Spectral Devices, Boulder, CO, USA). Water samples were sent to the laboratory
for analysis within a specified time frame.

The researchers collected a total of 16 water samples. For each sampling point, a
water sample collector was used to collect water samples at 0.5 cm depth, just below the
water surface, with 1000 mL of water samples collected at each sampling point. Samples
were stored in Teflon plastic bottles (for standard and easy transportation). Teflon plastic
bottles were washed several times with collected water before each collection. After the
samples were collected, they were immediately put into the benzene board incubator with
ice and transported to the laboratory where the water quality index was determined as soon
as possible.

3.2. Remote Sensing Data Collection

The European Space Agency (ESA) recently launched the Copernicus Project, which
is expected to improve the monitoring of forest conditions and land use, as well as enhance
disaster management through the launch of Sentinel satellites. The Sentinel-2 Satellite
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Multispectral Imager covers 13 spectral segments (443–2190 nm), a width of 290 km, with a
spatial resolution of 10 m (4 visible spectral segments and 1 near infrared spectral segment),
20 m (6 red edge spectral segments and short-wave infrared spectral segments), and
60 m (3 atmospheric correction spectral segments). The Sentinel-3 was launched on 16
February 2016 [24]. The Sentinel-3-3 satellite has two payloads: one is the OLCI (Sea-Land
Colorimeter) and the other is the SLSTR (Sea-Land Surface Temperature Radiometer). The
OLCI is an optical instrument designed to provide data continuity for ENVISAT’s MERIS.
The OLCI is a push-sweep imaging spectrometer that measures solar radiation reflected
from the Earth in 21 spectral bands with a ground-based spatial resolution of 300 m [25].
Multispectral remote-sensing data of the Sentinel-2 MSI and Sentinel-3 OLCI data were
obtained from the ESA (2 October 2021, https://Sentinel.esa.int/web/Sentinel/home).
In this study, only ENVI (ENVI5.4.1) soft data were used for preprocessing, including
radiometric calibration and FLAASH atmospheric correction.

3.3. Methods
3.3.1. Construction of Spectral Index

The information from the ground objects observed by remote sensing data is mainly
displayed by the difference and change of the spectral characteristics of the ground ob-
jects [26]. The ground features obtained by the different spectral channels have different cor-
relations with different elements or some characteristic states of ground features. However,
complex remote sensing data can only be represented by a single channel or multi-channel
spectral combination [11]. Therefore, further mining with very limited remote sensing
signals is necessary to represent ground object information through remote sensing data. In
this study, the combination of multi-spectral remote sensing data (such as linear and non-
linear combination, subtraction, multiplication, and division) was selected to achieve the
effective expression of spectral information and to lay a foundation for the qualitative and
quantitative evaluation of water body information. The optimal remote sensing indices (RI,
DI, and NDI) were selected for the estimation of WQI, in which multiband remote sensing
data were used as variable factors. Subsequently, a combined operation was conducted for
various bands and the sensitivity of WQI information, which was obviously better than
that of the single-band models, highlighting the advantages of using band combinations.
The remote sensing index of water quality in arid area was constructed by Formulas (1)–(3):

RI(i, j) =
Ri

Rji
(1)

RI(i, j) =

(
Ri − Rj

)
(Ri + Rj)

(2)

DI(i, j) = Ri − Rj (3)

where RI (i, j) is the ratio remote sensing index, NDI (i, j) is the water body normalized
remote sensing index, DI (i, j) is the water body difference remote sensing index, and i, j is
any band of the data of any two bands of the 350–2500 nm band.

3.3.2. Fluorescence Line Height

The statistical algorithm, based on the correlation between fluorescence line height
(FLH) and chlorophyll concentration, is called the fluorescence baseline height method. The
general algorithm is derived based on three wavelengths, including the central wavelength
which is the maximum value of chlorophyll fluorescence (around 685 nm, which varies
with the concentration of water components), and the other two baseline bands which are
located on both sides of the fluorescence peak, as shown in Figure 2 [27]. The fluorescence
line height (FLH) was calculated as follows: where C was the concentration of chlorophyll
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on the water surface (unit: mg/m3); and FLH is the fluorescence baseline height (unit:
mW/(cm2* Sr *nm)). a, b, and k are the coefficients.

FLH = K +
a × C

1 + b × C
(4)

1rsR
FLH

2rsR

3rsR
rsR

1 2 3

Figure 2. The principle of fluorescent line height.

The calculation formula of FLH is shown in Formula (4), where λ2 is the central
wavelength, and λ1 and λ3 are the selected baseline wavelengths. L1, L2, and L3 are the
radiance values of corresponding wavebands (unit: mW/(cm2* Sr *nm)). The fluorescence
channel designs are 665, 681.25, and 709 nm.

FLH = L2 −
[

L1 + (L1 − L3)× λ2 − λ1
λ1 − λ3

]
(5)

3.3.3. Water Quality Index (WQI)

The WQI is a comprehensive water environment index, which can reasonably quantify
the degree of water pollution [28–30]. The method was first proposed by Horton and
Brown [19,20], leading to the development of many water quality indices thereafter [21,22].
WQI can effectively reflect the water quality according to research objectives. Consequently,
the WQI has been widely used in water environment assessments [31,32]. The smaller the
WQI, the better the water quality. The researchers chose the water quality index constructed
by Wang [11] for calculation. The index is constructed by using the measured water quality
data of the Ebinur Lake basin, which meet the needs of water quality evaluation in arid
areas. The water quality index scale is shown in Table 1.

Table 1. Water Quality Index scale.

Class Threshold Value Water Quality

I ≥50 Excellent water
II (50–100) Good water
III [100–200) Poor water
IV [200–300) Very poor water
V ≥300 Unsuitable for drinking
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3.3.4. SVM Model

The Support Vector Machine (SVM) is a kind of machine learning technology based
on the principle of structural risk minimization. It can solve the problems of small sample,
nonlinear, high dimension, and local minimum well. It has an excellent prediction and
generalization ability. The penalty factor C and the kernel function parameter σ in a
support vector machine directly affect the prediction accuracy of the model. According to
previous studies, the following three optimization algorithms can improve the accuracy
of the SVM algorithm: Cross-validation selecting the optimal parameter (CV_cg); Genetic
Algorithm (GA); and Particle Swarm Optimization (PSO) [33,34]. In this study, particle
swarm optimization was selected for parameter optimization, as Wang proved that particle
swarm optimization was more suitable for Ebinur Lake [11].

3.3.5. Estimate the Evaluation Index of the Model

In the establishment of the estimation model and the evaluation of accuracy, the fitting
coefficient R2, standard deviation SD, and root mean square error RMSE were selected
in this study. R2 is the determination coefficient. RPD refers to relative analysis error.
RPD < 1.4 indicates that the model is unreliable; 1.4 < RPD < 2 indicates that the model has
a general accuracy; and RPD > 2 indicates that the model has a high prediction ability [11].

4. Results and Analysis

4.1. Analysis of Spatial Variation Trend of WQI

Figure 3 shows the spatial distribution pattern of the WQI in Ebinur Lake, whereby the
maximum value of WQI is 5678.35 and the minimum value is 1066.65. Overall, the degree
of water pollution of Ebinur Lake is very high, and the salt content in Ebinur Lake is at a
high level as well. However, different parts of Ebinur Lake are polluted at differing degrees.
Specifically, the northwestern part of Ebinur Lake is the most polluted area. Similarly, the
water environment and ecological environment safety of the Junggar Basin in northern
Xinjiang are threatened by water quality issues. Therefore, efficient digital management of
water quality is particularly important to ensure water sustainability in these areas.

Figure 3. The spatial distribution of water quality index (WQI) in Ebinur Lake.
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4.2. Study on Reflectance Spectral Characteristics of Water in Ebinur Lake
4.2.1. Spectral Characteristics of Water Based on Sentinel 3 Data

To obtain the most sensitive and effective water quality monitoring information,
Sentinel 3 images were processed with the 1st, 2nd, and 3rd derivatives. However, the
pixel reflectance value obtained by the 3rd derivative processing was the same due to the
coarse spatial scale resolution. Thus, the pixel reflectance value was not considered in this
study. The fluorescence baseline height (FHL) of the watercolor sensor was one of the main
parameters examined in this study. The FHL calculated values in this paper are shown in
Figure 4.

  

  

Figure 4. Spectral characteristics of water of Sentinel 3 (0 order, 1 order, 2 Order, and FHL).

To intuitively study the remote sensing data mining by image derivatives algorithm,
we demonstrate the images of the fourth band (Oa4) of Sentinel 3 data with a central
wavelength of 490 nm, shown in Figure 3. The raw data show that the lowest reflectance is
0.237 and the highest is 0.447. In the wetlands around the lake, salt spills out and forms
salt shells on the surface due to the high degree of salinization. Therefore, the maximum
reflectivity is in the salt crust around the lake, and the land-water boundary is very clear,
but the difference between the land-water boundary is not as clear in the shallow lake
depth. In the first derivative data, the lowest reflectance is −0.0318 and the highest is
0.0168. The boundary between land and water disappears. In terms of color, the reflectance
of the surrounding mountains is in the same range as that of the center of the lake, but for
the lake as a whole, the spectrum of the water body is different. In the second derivative
data, the lowest reflectance is −0.05 and the highest is 0.0386. In terms of reflectance
values, the second derivative amplifies the difference in reflectance values better than
the first derivative. Although the boundary between water and land is blurred, it is still
distinguishable. The reflectance of the surrounding mountains is in the same range as
that of the center of the lake, but the spectral of the water body is different for the whole
lake. In the fluorescence line height (FLH) image, the lowest value is −5.41128 and the
highest value is 2.01296, where the reflectance value increases several times, the land-water
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boundary is clear, the color difference in the lake is obvious, and the spectral difference of
water body is distinguishable. The results show that the derivative algorithm can amplify
the reflectivity difference, but it cannot separate the land-water boundary.

4.2.2. Spectral Characteristics of Water Based on Sentinel 2 Data

We also used the derivative method to process Sentinel 2 data and showed the data of
the fourth band (B2) with a central wavelength of 490 nm in Figure 5. The raw data show
the reflectivity ranged from 0.0003 to 0.6848. Furthermore, the maximum reflectivity is in
the salt crust around the lake. The land-water boundary is very clear, but the difference
is not distinguishable in the shallow water around the lake. In the first derivative data,
the lowest reflectance is 0.00605 and the highest reflectance is 0.1872. The land-water
boundary is clear, with the surrounding mountains and land almost distorted, but the
land-water boundary cannot be clearly distinguished. In the second derivative data, the
lowest reflectance is −0.3296 and the highest reflectance is 0.3591. The second derivative
over the first derivative and the original image data magnify the difference in reflectivity
values. The boundary between land and water is very clear, and the small lakes in the
southwest can also be distinguished. The spectral difference between the surrounding
plain land and vegetation cover area is clear, but the spectral difference between the water
body in the lake is not significant. The third derivative image data shows that the lowest
reflectivity is −0.209225 and the highest reflectivity is 0.1361. In the reflectance value, the
difference of the reflectance value can be reduced by the third-order derivative image data
compared with the first-order derivative and second-order derivative image data. The
boundary between water and land is very clear.

  

  

Figure 5. 0 order, 1 order, 2 Order, and 3 Order image of B14.
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4.3. Relationship between Spectral Parameters and WQI
4.3.1. Relationship between WQI and Spectral Parameters from Sentinel 3 Data

(1) Relationship between Single Band Reflectance and WQI

The correlation coefficients between the WQI and the spectral reflectance form the
raw image, and the first and second order derivative spectral values of the Sentinel-3 OLCI
image data were calculated in this study. The results are shown in Figure 6. These correla-
tion coefficients were tested at the 0.01 significance level. As the derivative order increases,
the number of bands passing the significance test also increases, and the correlation coeffi-
cient also increases. The bands Oa4, Oa5, and Oa21 in the first-order differential passed
the significance test, with the bands Oa3, Oa4, Oa5, Oa11, and Oa21 in the second-order
differential also passing the significance test. The results further show that the differential
method is helpful in remote sensing spectral data mining.

Figure 6. Relationship between single band reflectance and water quality WQI in Sentinel 3 data.

(2) Relationship between spectral index from Sentinel 3 data and WQI

To enhance the spectral difference between a water body and other ground objects,
we have constructed the water spectral index. In this study, NDI, DI, and RI were selected
as the combination methods of spectral indexes, and the relationship between the WQI
and spectral indexes was studied through Sentinel 3 data, as shown in Figure 7, providing
a basis for the further construction of a water quality evaluation model. The correlation
coefficient between the WQI and spectrum index of water is shown in Table 2.

We found that DI and NDI chose the same band in the same derivative order, such
as the 0 derivative. For RI, the highest correlation coefficient between the raw spectral
reflectance, derivative spectral reflectance value, and WQI is 0.701 at the 0-order derivative.
The combined band is Oa13 and Oa17, the lowest correlation coefficient is 0.602, and
the combined band is Oa5 and Oa20 at the second order derivative. For DI, the highest
correlation coefficient between the raw spectral reflectance, derivative spectral reflectance
value, and WQI is 0.705 at the 0-order derivative. The combined band is Oa3 and Oa8,
with the lowest correlation coefficient 0.602, and the combined band is Oa5 and Oa21
at the second order derivative. For NDI, the highest correlation coefficient between the
raw spectral reflectance, derivative spectral reflectance value, and WQI is 0.701 at the
0-order derivative. The combined band is Oa4 and Oa5, the lowest correlation coefficient is
0.592, and the combined band is Oa5 and Oa21 at the second order derivative. The study
found that the derivative algorithm for Sentinel 3 data did not significantly improve the
relationship between the spectral index and WQI, because the relationship between the
spectral index and water quality index (WQI) constructed from Sentinel 3 raw data was
the best.
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Figure 7. Relationship between WQI and spectrum index from Sentinel 3.

Table 2. Correlation coefficient between WQI and spectrum index of water.

Derivative
Order

RI DI NDI

Band R Band R Band R

0 Oa13/Oa17 0.701 Oa4 − Oa5 0.705 (Oa4 − Oa5)/(Oa4 + Oa5) 0.701
1 Oa5/Oa20 0.695 Oa3 − Oa8 0.662 (Oa3 − Oa8)/(Oa3 + Oa8) 0.622
2 Oa1/Oa3 0.602 Oa5 − Oa21 0.602 (Oa5 − Oa21)/(Oa5 + Oa21) 0.592

4.3.2. Relationship between WQI and Spectral Parameters from Sentinel 2 Data

(1) Relationship between single band reflectance and WQI

The correlation coefficients between the WQI and the spectral reflectance form the raw
image, and the first and second order derivative spectral values of Sentinel-2 MSI image
data were calculated in this study. The results are shown in Figure 5, in which correlation
coefficients were tested at the 0.01 significance level. The correlation coefficient curves of
Sentinel-2 MSI original spectral reflectance, derivative spectral values of order 1, 2, and 3,
and water quality index WQI calculation are shown in Figure 8.

181



Water 2021, 13, 3250

Figure 8. Relationships between WQI and spectral from sentinel-2 MSI.

The relationships between the raw reflectance of Sentinel-2 MSI image data and WQI
was significantly correlated in four bands: B3, B5, B7, and B8b. The number of bands
passing the significance test increased and the correlation coefficient also increased, with
the derivative order increasing as well. The first order derivative was significant in the
bands B3, B5, B7, and B8b, and the second order derivative was significant in the bands
B3, B4, B5, B7, and B8b. The Order 2 derivative was significant in the bands B3, B5, B6, B7,
and B8b. Although the bands’ number of significance tests passed varied, the trend of the
curves from the phase values in Figure 8 was consistent.

(2) Relationship between Spectral Index of Sentinel 2 Data and WQI

In this study, NDI, DI, and RI were selected as spectral indices, and the relationship
between the spectral index and WQI was explored, as shown in Figure 9 and Table 3. For
RI, the relationship between the RI spectral indices and the WQI was significant at the
first-order derivative, with a R value of 0.763. For DI, the relationship between the DI
spectral indices and the WQI was significant at the second-order derivative, with a R value
of 0.778. For NDI, the relationship between the NDI spectral indices and the WQI was
significant at the first-order derivative, with a R value of 0.776. We found that the derivative
algorithm of Sentinel 2 MSI data improves the relationship between the spectral index
and WQI.

4.4. Verification and Precision Analysis of Water Quality Estimation Model
4.4.1. Validation of WQI Estimation Model by Sentinel 2 Data

We used 15 groups of field sample data to train the SVR model, input images of
Ebinur Lake to calculate WQI, and then extract the WQI of sampling points as the predicted
WQI for model precision analysis. The predicted WQI is represented by WQIP, and the
measured WQI is represented by WQIM. The relationship between the two is shown in
Table 4. We found that the optimal model was Sentinel 2 MSI data based on the third
derivative data. The R2 and RPD of the model were 0.81 and 1.86, respectively. These
results indicate that the model has a strong stability.

Table 3. Correlation coefficient between WQI and spectrum index of water.

Derivative
Order

RI DI NDI

Band R Band R Band R

0 B2/B4 0.706 B5 − B6 0.741 (B2 − B4)/(B2 + B4) 0.704
1 B3/B5 0.763 B3 − B6 0.763 (B3 − B5)/(B3 + B5) 0.776
2 B3/B4 0.741 B4 − B11 0.778 (B3 − B4)/(B3 − B4) 0.731
3 B5 − B8 0.736 B5 − B7 0.741 (B4 − B5)/(B4 − B5) 0.735
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Figure 9. Correlation coefficient between WQI and spectrum index of water.

Table 4. Summary of relationship between the measured values and predicted values.

Order X Y
PSO-SVR

R2 RMSE SD RPD Slope N

0 WQIM WQIP 0.69 344.67 503.07 1.45 0.73 16
1 WQIM WQIP 0.73 302.18 492.36 1.62 0.77 16
2 WQIM WQIP 0.79 245.69 398.06 1.62 0.81 16
3 WQIM WQIP 0.81 213.41 398.72 1.86 0.84 16

4.4.2. Validation of WQI Estimation Model Supported by Sentinel 3 Data

Similarly, we used 15 groups of field sample data and corresponding Sentinel 3 OLCI
data for SVR model training, to input images of Ebinur Lake to calculate WQI, and then
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to extract the WQI of sampling points as the predicted WQI for precision analysis. The
predicted WQI is represented by WQIP, and the measured WQI is represented by WQIM.
The relationship between the two is shown in Table 5. The best model was the fluorescence
baseline data of Sentinel 3 OLCI data. The R2 and RPD of the model were 0.80 and 1.79,
respectively, showing that the model has a strong stability.

Table 5. Summary of relationship between the measured values and predicted values.

Order X Y
PSO-SVR

R2 RMSE SD RPD Slope N

0 WQIM WQIP 0.76 233.14 412.38 1.76 0.76 16
1 WQIM WQIP 0.73 342.72 521.09 1.52 0.72 16
2 WQIM WQIP 0.69 354.47 519.84 1.46 0.71 16

FLH WQIM WQIP 0.80 200.78 359.28 1.79 0.84 16

4.5. Spatial Distribution Map of WQI in Ebinur Lake

A spatial distribution map of WQI based on an optimal model constructed from
Sentinel 2–3 derivative data is presented, showing that the water quality in thenorthwest
of Ebinur Lake is the lowest in that region. The northwest of Ebinur Lake is eroded by the
Alashan Pass gale, and the water depth is less than 1 m. The water quality in the northeast
of Ebinur Lake was the second highest, but the water quality was deteriorated by the
salinization of large saline-alkali land and soil around the lake. The deterioration of water
quality in the northeast of Ebinur Lake is closely related to human activities in the north,
which is one of the largest halogen insect production bases in China. The distribution of
WQI in Ebinur Lake is shown in Figure 10.

 
Figure 10. Inverted water quality index (WQI) in Ebinur Lake.

5. Discussion

5.1. Water Quality Index (WQI) as a Potential Proxy for Water Environment

Overall, the results of this study are very indicative, and in agreement with [11] our
prediction, proving that remote sensing is a very useful potential tool for water quality
monitoring. However, it should be noted that the uncertainty of the WQI remote sensing
monitoring model for lake water quality was analyzed from the perspective of time and
space. (1) In terms of time, this experiment was limited to the Ebinur Lake watershed during
the dry season, aiming to clarify the relationship between WQI and spectral. Although
WQI has seasonal variability, WQI also has great variability in the same period and within

184



Water 2021, 13, 3250

the same watershed. Therefore, the precision of the WQI model is not limited by season
and has its portability in time. (2) The spatial WQI is mainly affected by water in the
watershed, whereby spectral also reflects the integration of the whole water environment.
The WQI estimation model was established based on the relationship between the spectral
index and WQI. In the space under the influence of the study area, portability needs further
validation for the model. However, the Ebinur Lake watershed is a typical area of arid area
in Central Asia, and its model has certain portability in Central Asia. The extension of a
wider range needs further verification. In short, it should be noted that the WQI estimation
model is spatially uncertain.

5.2. Spectral Derivative Method and Spectral Indices as Useful Tools for Remote Sensing Modeling
of Water Quality

To better mine the information of spectral data from remote sensing, we introduced
the spectral derivative method to realize the extraction of spectral information of a water
body. The results show that the spectral derivative method can improve the relationship
between water body spectral and WQI, whereby the R2 value of 0.6 is at the most sensitive
wavelengths. The derivative technology is not only a powerful tool for analyzing spectra,
but also improves multiple collinearity problems considerably [35]. The derivative tech-
nology has a strong effect on the peak of the micro spectrum; therefore, it can be used to
improve the spectral resolution and sensitivity of the analysis. To some extent, it has the
function of removing noise. Fractional derivatives can reduce the intense peak deformation
and effectively retain the structure of the original curve, which is more advantageous than
other integer derivatives.

Spectral indices are useful for remote sensing modeling of water quality: the optimal
remote sensing indices (RI, DI and NDI) were selected for the estimation of WQI, in
which multiband remote sensing data were used as variable factors; a combined operation
was conducted for various bands, and the sensitivity of WQI information, which was
obviously better than that of the single-band models, highlights the advantages of using
band combinations. Fernández-Buces et al. used a combined spectral response index to
map the soil salinity of bare soil and vegetation. They found a correlation between the
normalized difference vegetation indices (NDVI) and electrical conductivity [36]. Therefore,
we applied this method, as well as a formula that uses the DI, RI, and NDI of the reflectance
values, to establish a new spectral index for estimating WQI.

6. Conclusions

In this paper, the Ebinur Lake basin was selected as the study area, with the aims of
revealing the response between water quality index and water body reflectivity, as well as
to describe the relationship between water quality index and water reflectivity. A remote
sensing monitoring model of WQI was further established, and the water quality of the
lake was evaluated by remote sensing. The results indicate:

(1) A Water Quality Index (WQI), based on remote sensing techniques, effectively evalu-
ated the water environment in Ebinur Lake. The Water quality of Ebinur Lake is the
lowest, with a WQI value as high as 4000;

(2) To better mine the information of spectral data from remote sensing, we introduced
the spectral derivative method to realize the extraction of spectral information from a
water body. The results show that the spectral derivative method can improve the
relationship between the water body spectral and WQI, whereby the R2 value of 0.6
is at the most sensitive wavelengths;

(3) When multi-source spectral data were integrated through the spectral index (DI, RI,
and NDI) and fluorescence baseline, the correlation between the spectral sensitivity
index and WQI was found to be greater than 0.6 at the significance level of 0.01;

(4) The distribution map of WQI in Ebinur Lake was obtained by the optimal model,
which was constructed based on the third derivative data of Sentinel 2 data. Results
indicate that the water quality in the northwest of Ebinur Lake was the lowest in the
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region. In conclusion, remote sensing techniques were found to be highly effective
and lay a foundation for water quality detection in arid areas.
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