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Preface to Computational Mathematics and Applied Statistics

Sandra Ferreira

Center of Mathematics and Applications, Department of Mathematics, University of Beira Interior,
6201-001 Covilha, Portugal; sandraf@ubi.pt

The rapid advances in modeling research have created new challenges and oppor-
tunities for statisticians. These include statistical inferences in observational studies and
many other emerging fields, which have motivated statisticians worldwide to develop
cutting-edge methods and analytical strategies.

The main focus of this Special Issue is applications and methodological research in
all fields of computational statistics. This Issue aims to provide a forum for computer
scientists, mathematicians, and statisticians working in a variety of areas of statistics,
including biometrics, econometrics, data analysis, graphics, and simulation. Computational
Mathematics and Applied Statistics are two related fields that play a crucial and important
role in the development and advancement of various scientific and technological domains.

Computational Mathematics involves developing and applying mathematical algo-
rithms and models to solve complex problems using computers. This book integrates
various mathematical disciplines, such as calculus, linear algebra, differential equations, op-
timization and numerical analysis, to develop efficient and accurate algorithms for scientific
computation and data analysis. Computational Mathematics has numerous applications,
including engineering, physics, biology, finance, and computer science.

Applied Statistics involves collecting, analyzing, and interpreting data to make in-
formed decisions in various fields. It includes various statistical methods and tools, such
as probability theory, hypothesis testing, regression analysis, and experimental design, to
extract insights and patterns from data. Applied Statistics has applications in various fields,
such as healthcare, finance, marketing, social sciences, and environmental studies.

In this book, the integration of these two fields has led to the development of data
science, which has become a vital field for extracting insights from vast amounts of data.
Furthermore, this book can be used as a textbook and/or reference book, which is especially
suitable for undergraduates and graduates in computational mathematics, engineering,
computer science, computational intelligence, and data science.

In [1], Tomy et al. explore the interdisciplinary partnership between Environmen-
tal Sciences and Statistics, highlighting the crucial role of statistical methods in solving
environmental issues. By providing a clear roadmap, this paper facilitates collaborative
learning between environmental scientists and quantitative researchers, enabling them to
develop their analytical skills and knowledge base.

In [2], Irshad et al. present the discrete Pseudo Lindley (DPsL) distribution, which is a
discrete version of the Pseudo Lindley (PsL) distribution. The authors conduct a systematic
analysis of the mathematical properties of the DPsL distribution, including its probability-
generating function, moments, skewness, kurtosis, and stress-strength reliability. The
explicit forms of these properties make the distribution highly appealing. The practicality
of the proposed distribution is demonstrated through its application to the first-order
integer-valued autoregressive process, and its empirical relevance is validated through the
analysis of three real-world datasets.

In [3], Tomy and Chesneau study a novel and flexible trigonometric extension of
the modified Lindley distribution, known as the sine-modified Lindley distribution. This
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one-parameter survival distribution is created by incorporating features from the sine-
generalized family of distributions, providing an attractive alternative to the Lindley
and modified Lindley distributions, particularly for modeling lifetime phenomena with
leptokurtic data. The results show that the sine-modified Lindley model outperforms
important models such as the Lindley, modified Lindley, sine exponential, and sine Lindley
models, based on various goodness-of-fit criteria.

In [4], Jamal et al. propose a new and improved functional form of the Burr III
distribution, which enhances the classical distribution’s flexibility and enables it to model
the hazard rate functions of various shapes, including increasing, decreasing, bathtub,
upside-down bathtub, and nearly constant. The article presents some of the distribution’s
fundamental properties, such as rth moments, sth incomplete moments, moment generating
function, skewness, kurtosis, mode, ith order statistics, and stochastic ordering, in a clear
and concise manner, and also demonstrates the effectiveness of the proposed model in
three applications, consisting of both complete and censored samples.

In [5], Krishna et al. introduce the unit Teissier distribution, a bounded form of
the Teissier distribution, and thoroughly examine its important properties. The analysis
includes a shape analysis of the main functions, an analytical expression of moments based
on the upper incomplete gamma function, incomplete moments, probability-weighted
moments, and quantile function. The article also demonstrates the competency of the
proposed model by analyzing two datasets from diverse fields.

In [6], Khan et al. utilize a new three-parameter continuous model, called the minimum
Lindley Lomax distribution, by combining the Lindley and Lomax distributions. The article
carefully examines various basic statistical aspects of the new distribution, including the
quantile function, ordinary and incomplete moments, moment generating function, Lorenz
and Bonferroni curves, order statistics, Rényi entropy, stress strength model, and stochastic
sequencing. The article investigates the characterizations of the new model, estimates its
parameters using maximum likelihood procedures and demonstrates the extensibility of
the new model with two applications.

In [7], Nagarjuna et al. perform a hybrid distribution, the Nadarajah–Haghighi Lomax
(NHLx) distribution, by combining the features of the Nadarajah–Haghighi and Lomax
distributions. The NHLx distribution, with its four parameters, lower bounded support,
and flexible distributional functions, including a unimodal probability density function
and bathtub-shaped hazard rate function, provides an extension of the exponential Lomax
distribution. Moreover, the distribution has the desirable statistical properties of moments
and quantiles. The authors illustrate the statistical applicability of the NHLx distribution
by conducting simulations and analyzing four real datasets.

In [8], Jasmine et al. conduct a study to manage hydrological resources such as
reservoirs, rivers, and lakes. In recent years, data-driven techniques, such as the adaptive
neuro-fuzzy inference system (ANFIS), have gained popularity in the hydrological field.
This study explores the effective use of artificial intelligence for predicting evaporation in
agricultural areas. Specifically, it examines ANFIS and hybridizes it with three optimizers:
the genetic algorithm (GA), firefly algorithm (FFA), and particle swarm optimizer (PSO).

In [9], Dechpichai et al. aim to examine the spatial and temporal patterns of 124 mete-
orological stations in Thailand under ENSO. The research employs multivariate climate
variables, including rainfall, relative humidity, temperature, max temperature, min tem-
perature, solar downwelling and horizontal wind from the conformal cubic atmospheric
model (CCAM), during the years of El Niño (1987, 2004, and 2015) and La Niña (1999,
2000, and 2011). This approach may be useful for planning and managing crop cultivation
in different areas, using variables forecasted for the future and considering the effects of
climate change.

In [10], Tomy and Chesneau examine the suitability of the sine-modified Lindley distri-
bution, a relatively new statistical model, for analyzing biological data. The goodness-of-fit
approach is employed to demonstrate the effectiveness of the model in estimating and mod-
eling the lifespan of guinea pigs exposed to tubercle bacilli, the impact of growth hormone

2
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treatment on children, and the size of tumors in cancer patients. The researchers believe
that this model has potential for the analysis of survival times related to cancer and other
diseases. The paper also includes R codes for the figures and details on data processing.

In [11], Muchie et al. study small-area estimation methods to determine the prevalence
of malnutrition among children under five in Ethiopia, specifically at the zonal level. To
achieve this, the authors linked the most current survey data and census data available
in Ethiopia. The findings revealed that stunting, wasting, and being underweight spa-
tially varied across the zones, indicating that different regions face distinct challenges of
varying degrees.

In [12], Pinault aims to advance the understanding of the mechanisms behind extreme
climatic events, with the objective of improving forecasting methods and shedding light
on the role of anthropogenic warming. The study utilizes wavelet analysis to identify
the contribution of coherent Sea Surface Temperature (SST) anomalies produced from
short-period oceanic Rossby waves to two case studies: a Marine Heatwave (MHW) in
the northwestern Pacific with a significant impact in Japan, and a severe flood event in
Germany. The study concludes by highlighting the need for further research to better
understand how anthropogenic warming can modify key mechanisms in the evolution of
dynamic systems that contribute to extreme events.

In [13], Essiomle and Adekambi focus their study on the Gerber–Shiu discounted
penalty function with a constant interest rate, considering the delayed claim reporting times.
The Poisson claim arrival scenario is used to derive the Laplace transform of the generalized
Gerber-Shiu function, which leads to a second Volterra equation with a degenerated kernel.
The study presents a closed-form expression for the Gerber–Shiu function in the case of an
exponential claim distribution through sequence expansion. This expression enables the
calculation of absolute and relative ruin probabilities.

In [14], Jamal et al. propose a generalized, odd, linear, exponential family of continuous
distributions. The probability density and cumulative distribution function are represented
as infinite linear combinations of the exponentiated-F distribution. Various statistical
properties, including quantile function, moment-generating function, distribution of order
statistics, moments, mean deviations, asymptotes, and the stress-strength model, are
explored for the proposed family, and simulation studies are conducted for two sub-models
to examine the asymptotic behavior of the maximum likelihood estimates.

In [15], Hussen and He discuss a generalized Prony method that can solve the sparse
expansion problem for two generating functions, enabling the recovery of a wider range of
function types using Prony-type methods. The two-generator sparse expansion problem
has certain unique properties, such as the need to separate the two sets of frequencies
from the zeros of the Prony polynomial. To address this issue, they propose a two-stage
least-square detection method that effectively solves the problem.

In [16], Human et al. introduce a bivariate beta-type distribution that allows for users
to detect a permanent upward or downward step shift in the process’ variance without
relying on parameter estimates. This approach offers an attractive and intuitive way to
potentially identify the magnitude and time of shift occurrence. The paper derives certain
statistical properties of this distribution, and simulations illustrate the theoretical results.

In [17], Shafiq et al. examine a novel discrete distribution, named the Binomial-Natural
Discrete Lindley distribution, which is created by combining the binomial and natural
discrete Lindley distributions. The distribution’s properties, such as the moment-generating
function, moments, hazard rate function, methods of moments, proportions, and maximum
likelihood, are investigated.

Ultimately, this book is not intended to provide a comprehensive treatment of all
the work in the field of Computational Mathematics and Applied Statistics development;
rather, it is intended to help researchers focus on a few key strategies with the potential to
have a high impact.
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Abstract: This paper reviews the interdisciplinary collaboration between Environmental Sciences
and Statistics. The usage of statistical methods as a problem-solving tool for handling environmental
problems is the key element of this approach. This paper enhances a clear pavement for environ-
mental scientists as well as quantitative researchers for their further collaborative learning with an
analytical base.

Keywords: descriptive statistics; inferential statistics; species abundance data plots; abundance
models; species richness indices; diversity measures; sampling; community comparisons; diversity
in space (time); extreme value modeling; epidemiology; adaptive sampling; trend analysis; ecological
modeling; detection limit

1. Introduction

In its simplest sense, the environment means the surrounding external conditions
influencing the growth of people, animals or plants, living or working conditions, etc.
Environmental Sciences (EVS) is an integrated multidisciplinary approach that studies the
environment and solutions of environmental problems. In the present scenario, the envi-
ronment has become a global agenda item, which has increased the scope and importance
of EVS. In the development of different stages of civilization, humans were accompanied
both by the environment and statistics. Since the early days, they were found to be know-
ingly accustomed to the environment and unknowingly played with statistics. Thus, both
statistics and the environment have shared a long history of mutual reciprocation. In
modern times, these two subjects are independently able to attract the academic attention
of scholars throughout the world (see [1]).

The United Nations Statistics Division (UNSD) has an exclusive branch for environ-
mental statistics, established in 1995. Its major area of work is data collection, methodology,
capacity development, and coordination of environmental statistics and indicators. They
have a dedicated newsletter called “ENVSTATS”, which publishes the activities of UNSD in
the area of environmental statistics. The Framework for the Development of Environmental
Statistics (FDES 2013) is an updated version of the original FDES, which was published
by UNSD in 1984. In India, the Ministry of Statistics and Programme Implementation has
a specific publication report in the branch of environmental statistics called “EnviStats”
which updates recent developments in the field of environmental statistics.

The extensive use of statistics in EVS led to the development of a new branch called
Environmental Statistics. We all know that statistics are an inevitable context in any scien-
tific arena. Even so, the motivation for conducting this specific review is that environmental
statistics have an integrated multidisciplinary face, which will shed light on the pure biolog-
ical field of modern science with its analytical nature. That undiscovered interconnection
with statistics and environmental science will be revealed through this review, which will
be an easy access point for future investigators. This review has been conducted in two

Math. Comput. Appl. 2021, 26, 74. https://doi.org/10.3390/mca26040074 https://www.mdpi.com/journal/mca
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parts, i.e., the pure statistical techniques and those specific techniques that have been
exclusively invented for environmental science. A brief state of the art is presented below.
The authors of [2] discussed different statistical techniques which are helpful to environ-
mental engineers. It addresses different environmental problems with a solution-oriented
approach that encourages students to view statistics as a problem-solving tool.

The use of statistical techniques to understand various environmental phenomena was
explained in [3]. He examined different statistical tools, such as probabilistic and stochastic
models, data collection, data analysis, inferential statistics, etc. In addition, he discussed
principles and methods applicable to a wide range of environmental issues (including
pollution, conservation, management, control, standards, sampling, monitoring, etc.) across
all fields of interest and concern (including air and water quality, forestry, radiation,
climate, food, noise, soil condition, fisheries and environmental standards). Accordingly,
he considered sophisticated statistical techniques, such as extreme processes, stimulus
response methodology, linear and generalized linear models, sampling principles and
methods, time series, spatial models, multivariate techniques, design of experiments, etc.

This article is an attempt to describe some basic statistical concepts used in EVS,
thereby establishing a link between the two subjects. It studies some basic statistical
concepts relevant to environmental study. Illustrations are discussed on the basis of [4,5].

In this article, Section 2 presents the basic concepts in statistics, Section 3 describes the
application of statistical tools in EVS, Section 4 is about the various illustrations regarding
the topic, and Section 5 is the conclusion.

2. Basic Concepts

With the advent of the theory of probability and games of chance in the mid-seventeenth
century, the concept of modern statistics was born. The name “statistics” appears to have
come from the German word “Statistik,” the Italian word “statista,” or the Latin word
“status,” all of which mean “political state” or “state craft”, respectively. The term statistics
can be used in two different senses.

In the plural sense, it means “a collection of numerical facts”. According to Horace
Secrist, “Statistics may be defined as the aggregate of facts, affected to a marked extent by
a multiplicity of causes, numerically expressed, enumerated or estimated according to a
reasonable standard of accuracy, collected in a systematic manner, for a predetermined
purpose and placed in relation to each other”. This definition explains the characteristics of
statistical data.

In its singular sense, it means “statistical methods for dealing with numerical data”.
According to Croxton and Cowden, “Statistics is the science of collection, presentation,
analysis, and interpretation of numerical data”. This definition points out different stages
of statistical investigation. Hence, statistics is concerned with exploring, summarizing, and
making inferences about the state of complex systems, for example, the state of a nation
(social statistics), the state of people’s health (medical and health statistics), the state of the
environment (environmental statistics), as extensively described in [6].

In the midst of its wide range of applications and advantages, one important allegation
about statistics is that the concerned parties may make misleading statements in their favor.
However, the fact is that, as in the case of any science, only an expert can make use of
statistical tools effectively. One should make sure that the statistical study is conducted by
the right person. There are lots of good ways, many more bad and wrong ways too. So,
be sure about the correctness of the tool used. The notorious allegation by Mark Twain
citing the British Prime Minister Benjamin Disraeli that “there are three types of lies: lies,
damned lies, and statistics” (but the phrase is nowhere in Disraeli’s works, and the earliest
known appearances were years after his death, so it is assumed to be by some anonymous
writer in mid-1891) is just a lie, provided the precaution is served. In such a context, it
is interesting that the author of [7] beautifully coined the title “Truth, Damn Truth and
Statistics” for his article.
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3. Application of Statistical Tools in EVS

In statistics, data analysis is divided into two sections: descriptive statistics and
inferential statistics. The authors of [5] discussed the two in depth, and Sections 3.1 and 3.2
below present them in summary form.

3.1. Descriptive Statistics

Descriptive statistics are the initial stage of data analysis where exploration, visualiza-
tion and summarization of data are done. We will look at the definitions of population and
random sample in this section. Different types of data, viz. quantitative or qualitative, dis-
crete or continuous, are helpful for studying the features of the data distribution, patterns,
and associations. The frequency tables, bar charts, pie diagrams, histograms, etc., represent
the data distribution, position, spread and shape efficiently. This descriptive statistical
approach is useful for interpreting the information contained in the data and, hence, for
drawing conclusions.

Further, different measures of central tendency viz. mean, median, etc., were calcu-
lated for analyzing environmental data. It is also useful to study dispersion measures,
such as range, standard deviation, etc., to measure variability in small samples. One of the
important measures of relative dispersion is the coefficient of variation, and it is useful
for comparing the variability of data with different units. Skewness and kurtosis charac-
terize the shape of the sample distribution. The concepts of association and correlation
demonstrate the relationships between variables and are useful tools for a clear under-
standing of linear and non-linear relationships. Important measures of these fundamental
characteristics are briefly discussed here in the following.

3.1.1. Central Tendency

The tendency of the observations to cluster around some central value is called central
tendency. Any measure of central tendency is termed “average”. The most commonly used
averages are the following:

Mean x̄ =
n

∑
i=1

xi
n

,

where xi denotes the ith observation and n is the number of observations.

Median is the middle-most observation when observations are arranged in ascending or
descending order

and
Mode is the most frequently occurring observation.

3.1.2. Dispersion

The scattering of observations about the central value is called dispersion. Important
measures of dispersion are range, quartile deviation, mean deviation, standard deviation
and coefficient of variation. These four measures depend on the unit of measurement of
the observations, hence, they are absolute measures. They can be defined as:

Range is the difference between largest and smallest observations.

Measure based on quartiles:

• Quartile deviation

QD =
Q3 − Q2

2

where Q3 and Q2 are the third and first quartile in the frequency distribution, respec-
tively;
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• Mean deviation

MD =
n

∑
i=1

|xi − x̄|
n

where x̄ is mean of xi (observed values);
• Standard deviation

SD =

√
n

∑
i=1

(xi − x̄)2

n
;

• Coefficient of variation

CV =
SD

Mean
× 100.

Thus, CV is the relative measure (measure independent of unit) corresponding to SD.

3.1.3. Skewness

The lack of symmetry is termed as skewness or asymmetry. In a frequency curve, if
both the sides of the mode are distributed in the same manner, the distribution is symmetric,
otherwise it is skewed. When more area is on the right side of the mode, the distribution is
positively skewed. If more area is on the left side of the mode, the distribution is negatively
skewed. Figure 1 depicts the three situations. There are mainly two measures:

1. Pearson’s measure

S =
Mean − Mode

SD

If S = 0, the distribution is symmetric, if S > 0, positively skewed and if S < 0,
negatively skewed.

2. Moment measure

β1 =
μ3

μ3/2
2

where

μ2 = SD2

and

μ3 =
n

∑
i=1

(xi − x̄)3

n
.

If β1 = 0, it is symmetric, if β1 > 0, positively skewed and if β1 < 0, negatively
skewed.
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(a) (b) (c)

Figure 1. (a) Negative skewness, (b) symmetric, and (c) positive skewness.

3.1.4. Kurtosis

Kurtosis measures the degree of peakedness or flatness of a curve. The normal curve
is called mesokurtic. If the curve is more peaked than normal, it is called leptokurtic. If it is
flatter than normal, it is called platykurtic. Figure 2 illustrates the nature of different types
of kurtosis.

The moment measure of kurtosis is

β2 =
μ4

μ2
2

where

μ4 =
n

∑
i=1

(xi − x̄)4

n

If β2 = 3, the distribution is mesokurtic, if β2 > 3, the distribution is leptokurtic, and if
β2 < 3, the distribution is platykurtic.

(a) (b) (c)

Figure 2. (a) Leptokurtic, (b) mesokurtic, and (c) platykurtic.

3.2. Inferential Statistics

In inferential statistics, the concept of probability is important for studying the un-
certainties in the environment. For example, whether it will rain or not tomorrow can be
best inferred by using probability. Several theoretical probability distributions, such as the
Bernoulli distribution, the binomial distribution, the Poisson distribution, etc., are useful for
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modeling the probability distribution of real environmental data. For example, decisions,
such as coin tossing, rain/no rain, yes/no, etc., are explained by Bernoulli variables since
their outcomes are binary. In addition, if we are interested in counting the number of times
floods occurred in the Dhemaji district of Assam, India, out of the total number of floods
that occurred, because we are counting the number of times a flood (X), a Bernoulli event,
occurs with a probability of p out of a total, i.e., out of n trials, the probability distribution
of such variables is given by a binomial distribution. In addition, if we do not know the
total number of flood occurrences but know the meaning of the flood occurrences, the
distribution is modeled by the Poisson distribution. Statistical tools such as estimation,
hypothesis testing, etc., play a vital role in analyzing environmental data. Some of the
frequently used statistical tests in atmospheric and environmental science are the “Z-test,”
“T-test,” “F-test,” etc. Another statistical approach is time series analysis, which studies
environmental quantities with respect to time. For example, the monthly/yearly mean
temperature, rainfall, humidity, etc., are best studied by time series (see [8]).

4. Illustrations

In this section, we are discussing the available statistical techniques that are used in
the field of environmental sciences along with some practical examples in the context of
data based on environmental sciences. There are examples of how collaboration between
environmental scientists and quantitative researchers has aided future learning in both
fields, based primarily on two works: [4], which deals with statistical techniques, and [5],
which deals with practical examples.

The statistical techniques available are given below, based on [4].

4.1. Methods of Plotting Species Abundance Data
4.1.1. Whittaker Plot

One of the best informative methods is the rank/abundance plot, or dominance
diversity curve. Here, species are plotted from most to least abundant along the x axis and
abundance in the y axis in log10 format (here, abundance of several orders of magnitude
can be accommodated in the same graph). Proportional or percentage abundance are used
in order to facilitate easy comparison.

The authors of [9] named this plot the Whittaker plot in remembrance of R. H. Whit-
taker for his famous contribution described in [10]. This plot has several advantages.
Contrasting patterns of species richness are clearly displayed. If there are only a few of
some species, all the information concerning their relative abundance is visible, as they are
represented in their histogram format (see [11]). For following environmental impacts and
succession, this plot is very effective. For that, we should plot a rank/abundance graph.
The shape of the curve gives inference about which species abundance model best fits the
data. The steep plot describes assemblages with high dominance, while the shallower plot
symbolizes low dominance. High dominance plots are consistent with geometric or log
series, while low dominance plots suit the log normal or broken stick model. However, the
curves of different models are rarely fitted with empirical data (see [11]).

4.1.2. k-Dominance Plot

This kind of plot shows the relationship between percentage cumulative abundance
(y axis) and species rank/log series rank (x axis). Here, the elevated curve represents the
less diverse assemblages (see [12,13]).

4.1.3. Abundance/Biomass Comparison Curve or ABC Curve

A variant of the k-dominance plot was introduced by [14]. The related curve is
constructed using two measures of abundance: the number of individuals and biomass.
The level of disturbance, pollution-induced or otherwise, affecting the assemblage can be
inferred from the resulting curve.
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The method was developed for benthic macrofauna and has been used productively
by a number of investigators in this context.

The ABC plot is used to study the entire species abundance distribution. The author
of [15] has introduced a summary statistic specified as W (named after R. M. Warwick),
and defined by

W =
S

∑
i=1

Bi − Ai
50(S − 1)

where Bi denotes the biomass value of each species rank (i) in the ABC curve, S represents
the number of species, and Ai represents the abundance (individuals) value of each species
rank (i). Ai and Bi do not necessarily refer to the same species, since species are ranked
separately for each abundance measure. The result will be positive if the biomass curve
is consistently above the individual curve. This symbolizes undisturbed abundance. In
contrast, a grossly perturbed assemblage will give a negative value (consistently above
the biomass curve). A curve that produces a value of W close to 0 and overlaps signifies
moderate disturbance. W ranges usually from −1 to +1.

The W statistics are generally computed for each sample separately. ANOVA can be
used to test for significant differences, if treatments have been replicated. Alternatively,
graphing W values can be a very effective way of illustrating shifts in the composition of
the assemblage if un-replicated samples have been taken along a transect or over a time
series (such as before, during and after a pollution event). While considering ABC curves
at discriminating samples, W statistics are most useful (see [16]).

4.2. Species Abundance Models

Statistical models were initially devised as the best empirical fits to the observed data
(see [17]). They help the investigator to objectively compare different assemblages, which
is one of its advantages. In some cases, a parameter of the distribution can be used as an
index of diversity. Another set of models is biological or theoretical models.

4.2.1. Statistical Models

• log series model
In this model, the number of species (y axis) is displayed in relation to the number
of individuals per species (x axis), the abundance classes which are presented on log
scale. This plot is typically used when the log normal distribution is chosen. This
type of graph is sometimes dubbed the “Preston plot” (see [18]) in remembrance of
Preston F., who pioneered the use of the log normal model in [19]. In the log series
model, the mode will fall to the class with the lowest abundance, which represents a
single individual, and in the case of this plot, it is more focused on rare species. In log
transformation, the x axis has a tendency to shift a mode to the right so as to reveal a
log normal pattern.

• Negative binomial model
The author of [20] describes many applications of the negative binomial model in
ecology. Particularly in estimating species richness (see [21]). However, the authors
of [22] remarked that it is only rarely fitted to data of species abundance (one exception
being [23]). Since it came from a stable log series model, it has some potential interest.

• Zipf-Mandelbrot model
This model has its roots in linguistics and information theory. This model has several
applications in environmental diversity, which are well described in [24–28]. The
Zipf-Mandelbrot model is important for a rigorous sequence of colonists from the
same species, always present at the same point in the succession in identical habitats.
According to [29], this model is not better than the log series or log normal model. This
model, however, has been successfully used in [28,30–32]. We also refer to [33–35] for
the use of this model in terrestrial studies, and [36] for the use of this model in aquatic
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systems. The author of [37] states that it can be used to test the performance of various
diversity estimators. The Zipf-Mandelbrot model provided the best description of the
cover data, while the biomass data are compatible with the log normal distribution.

4.2.2. Goodness of Fit Tests

A goodness of fit test, often called χ2, is used to find the relationship between the
observed and expected frequencies of a species in each abundance class [38]. To fit a
deterministic model, the conventional method used is to assign the observed data to
abundance classes. Classes based on log2 are usually used. According to the model used,
the number of species expected in each abundance class is determined.

The model takes the S (number of species) as observed values and N (total abundance),
and then determines how these N individuals should be distributed among the S species.
If p < 0.05 (p-value), the model is rejected because it does not adequately describe the
pattern of species abundances. If p > 0.05, the fit fails to be rejected or, ideally, p >> 0.05
is assumed to be a good fit. Tests of empirical data typically involve a very small number
of abundance classes (10 or fewer). This causes a reduction in the degrees of freedom (d.f.)
available. The more the degrees of freedom get the least value, the harder it becomes to
reject a model.

The authors of [29] remarked that goodness of fit tests work most effectively with large
assemblages (but might not be ecologically coherent units). Instead of χ2 he recommends
the Kolmogorov–Smirnov (K–S) goodness of fit (GOF) test, as said in [38,39]. Indeed,
Tokeshi suggests adopting the K–S-GOF test, as the standard method of assessing the
goodness of fit of deterministic models. He also suggests the K–S two-sample test can be
used to compare two datasets directly to describe their abundance patterns.

The author of [11] reinforces that, if one model fits the data and another does not, it
is not possible to conclude that the fit of the two is significantly different. His solution
is to use replicated observations. The deviations can be log transformed, if necessary to
achieve normality. A multiple comparison test, for example, Duncan’s new multiple range
test (see [38]) can then be used to infer which models are significantly different from one
another.

4.2.3. Biological or Theoretical Models

• Deterministic and stochastic models
Deterministic models assume that N individuals will be distributed amongst the S
species in the assemblage. The geometric series is the only deterministic niche appor-
tionment model. Stochastic models recognize that replicate communities structured
according to the same set of rules will vary according to the relative abundances of
species found there, and they try to capture the random elements inherent in natural
processes. This makes biological sense. Perhaps not surprisingly, stochastic models
are more challenging to fit than their deterministic counterparts. In a practical sense,
it is necessary to know whether a model is deterministic or stochastic. Stochastic
models have a complexity that requires replicated data, and this problem is solved in
Tokeshi’s refinements (see [40]).

• Geometric series
Assume that the dominant species pre-empts a limiting resource percentage k, and the
second most dominant species pre-empts the same k of the remaining part, and so on,
until all S have been chosen. If the species abundance is proportional to the resource
amount and the assumption stated above is fulfilled, the resulting pattern will follow a
geometric series (or niche pre-emption hypothesis). Here, species abundance is ranked
from most to least. Ratio of abundance of each species to abundance of predecessor is
being a constant through the species and the ranked list is the reason. In addition, the
series will appear as a straight line when plotted on log abundance/species rank graph.
This plot helps identify whether the dataset is consistent or not with a geometric series.
A full mathematical treatment of the geometric series can be found in [41], who also
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presents the species abundance distribution corresponding to the rank/abundance
series. In a geometric series, the abundances of species, ranked from the most to least
abundant will be (see [41,42]):

ni = NCkk(1 − k)i−1

where ni is the total number of individuals in the ith species, n is the total number
of species, N is total number of individuals, k is the proportion of the remaining
niche space occupied by each successively colonizing species (k is a constant), and
Ck =

[
1 − (1 − k)S]−1 is a constant that insures that ∑n

i=1 ni = N. Because the ratio of
the abundance of each species to the abundance of its predecessor is constant through
the ranked list of species, the series will appear as a straight line when plotted on a
log abundance/species rank graph.

• Broken stick model
The broken stick model, alias the random niche boundary hypothesis, was proposed
in [43]. This model plots relative species abundance in the y axis on a linear scale, and
in the x axis, they plot the logged species sequence abundance, so as to represent it
from most to least. Then, we will get a straight line. As [22] states, the model has a
demerit in that it may be derived from more than one hypothesis. It provides evidence
that some ecological factors are being shared more or less evenly between species
(see [41]). It represents a group of S species with equal competitive ability vying for
niche space, according to [29]. It is typically organized in the order of rank order
abundance (see [11]). The authors of [44] prepared a program which estimates species
abundance. This model is tricky enough to fit with empirical data (see [29]).

• Tokeshi’s models
Tokeshi has developed several niche apportionment models, including the dominance
pre-emption, random fraction, power fraction, MacArthur fraction, and dominance
decay models in [45,46]. They work with the assumption that abundance is propor-
tional to the fraction of niche space occupied by a species. The model here assumes
that the target niche selected is divided at random. The only difference between the
models is how the target niche is selected. The larger the niche is, the more even the
resulting species abundance distribution will be. Evenness ranges from least to most
from the dominance pre-emption model, following the order of explanation. The
random assortment model represents a random collection of niches of arbitrary sizes
(see [45]).

– Random fraction
In this model, available niche space is divided at random into two pieces. Among
these two, one is selected randomly for further subdivision, and so on, till all
species are accommodated (see [40]). The sequential breakage model depicts a
situation in which a new colonist competes for the niche of a species that is already
in the community and takes over a random proportion of the previously existing
niche. This model can be used to cover speciation events (see [40]). In addition,
this is conceptually simple and found to be fit for a small community of freshwater
chironomids (see [45,47]). The authors of [44] have created a Microsoft Excel
program which can model the species abundance and distribution associated
with it.

– Power fraction model
The Tokeshi model is applicable to species-rich assemblages, which is an excep-
tion to others (see [46]). In this case, the niche space is subdivided in the same
way that a random fraction is. However, the probability of a niche splitting
increases in this model, albeit only slightly in relation to size (x) via the power
function (K). When K approaches 1, the largest niche is selected for fragmenta-
tion. When K = 1, the power fraction model resembles the MacArthur fraction
model. Instead, when K = 0, niche fragmentation is done by random choice
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and becomes a random fraction model. Usually K is set to 0.5 for the power
fraction model (see [46]). Tokeshi accounts for virtually all assemblages. The
author of [48] states that larger niches have a high fragmented probability or
could occur either ecologically or evolutionarily.

– Dominance pre-emption model
This model assumes that each species pre-empts more than half the niche space
remaining. Because of this, it is dominant among combined species (see [45]).
The proportion of available niche space is assigned between 0.5 and 1. When the
number of replications increases (or K = 0.75, the same as the power fraction
model), it becomes more similar to the geometric series (see [45]). It can also be
applied to niche fragmentation (see [29,40]).

– MacArthur fraction model
In the case of predicted species abundance distribution, the MacArthur fraction
and the broken stick models paved the way to the same result. In this model, the
probability of niche fragmentation is inversely proportional to size. This creates
a very uniform distribution of species abundances and is only plausible in small
communities of taxonomically related species. However, Tokeshi also reminds us
that unreplicated data are not good for either the broken stick or the MacArthur
fraction models.

– Dominance decay model
Here, a more uniform pattern of species abundance is considered. At random, the
niche space for fragmentation is selected at random. No empirical data indicate
that communities as predicted by Tokeshi’s dominance decay model can be found
in nature till date. This can be due to insufficient investigations or due to the
lower chance of finding an even distribution in nature.

4.2.4. Fitting Niche Apportionment Models to Empirical Data

The author of [45] found a new way of testing stochastic models. Species (S) are
listed in decreasing order of abundance. The equation given below is used to fit a niche
apportionment model if the mean observed abundance falls within the confidence limits of
expected abundance.

R(xi) = μi ± rσi
√

n

where

xi=1 = mean abundance of most abundant;
xi=2 = mean abundance of next most abundant;
.
.
.
xi=S = mean abundance of least abundant;
μi = mean of abundance ranked from i = 1 to S;
σi = standard deviation of abundance;
n = number of replicated samples;
r = breadth of confidence limit.

The mean abundance constitutes the observed distribution. For an assemblage of the
same number of species (S), the expected abundance is estimated. For this model, we have
to choose a large N, μi, σi and n. In addition, confidence limits are assigned to each rank of
expected abundance by considering n rather than N (the number of times the model was
simulated).

4.3. Species Richness Indices

There are two well-known species richness indices, which are easy to calculate too,
which were introduced by [49,50], respectively.
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• Margalef’s diversity index (DMg)

DMg =
S − 1
log N

• Menhinick’s index (DMn)

DMn =
S√
N

where S is the number of species recorded, N the total number of individuals in the sample.
Despite the attempt to correct for sample size, both measures remain strongly influ-

enced by sampling effort. Nonetheless, they are intuitively meaningful indices that can be
useful in biological diversity research.

Estimating Species Richness

There are two approaches to estimating species richness from samples, as cited
in [51,52]. The first is the extrapolation of species accumulation or species–area curves. The
second approach is to use a non-parametric estimator.

• Species accumulation curves
Species accumulation curves, also known as collector curves, plot S, the total number
of species, as a function of sampling effort (n) (see [51]). These curves are widely
used in botanical research (see [53,54]). This is only a type of species accumulation
curve. Curves that are S versus A for different areas (such as islands) and those used
in increasingly larger parcels of the same region are the most common.
The overall shape of species accumulation curves is determined by the order of
samples (or individuals). By randomizing, the curve can be made smoother. It also
helps deduce the mean and standard deviation of species richness. According to [55],
these curves resemble rarefaction curves (see [56]). They usually move from left to
right, as new species are added. However, rarefaction curves conventionally move
from right to left. Many scientists have plotted species accumulation curves using
linear scales on both axes. However, it is better to use a log-transformed x axis since
semi-log plots make it easier to identify asymptotic curves from logarithmic curves
(see [57]). To find an estimate of total species richness, the authors of [58] extrapolate
the graph.
Functions used in this kind of extrapolation can be classified into asymptotic or non-
asymptotic. Both of their roles are to help the user predict an increase in species
richness with additional sampling effort rather than to estimate total species richness.

– Asymptotic curves
They can be generated using two methods. The first is by using a negative
exponential model (see [58]). The second is using the Michaelis–Menten equation
(see [59]). The usual form of the equation is

S(n) =
nSmax

B + n

where S(n) is the number of species observed in n samples, Smax is the total
number of species in the assemblage, and B is the sampling effort required to
detect 50% of Smax and n is the sample count.

– Non-asymptotic curves
These curves are used to estimate species richness. The authors of [60] proposed
that the relationship between area and species be best described by a log linear
model, extrapolated to a larger area. The authors of [61] imposed an asymptote
on the log-log species area curve to avoid extremely high estimates of species
richness.
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* Parametric methods: log series and log normal distributions are the most
potent two abundance models in this context (see [51]). Of these, the easiest
fit is log series distribution, and it is also simple to apply. In addition, the
log series model helps obtain a good estimate of total species richness if the
number of individuals in the target area can be estimated. In this case, S
will be underestimated where it should not be. Furthermore, this method
is also used during rarefaction. Most people adopt the pragmatic approach
when fitting continuous log normal distribution, which is inappropriate
when observed data are in discrete form (see [22,51]). According to [21], this
method has the unique property of generating a mode in the second or third
class, giving the appearance of a log normal distribution even if it is not
a log normal distribution. There is, however, no method for generating a
confidence interval for any estimate of species richness found in a continuous
log normal distribution (see [21,22,51,62]). An alternative to this is Poisson
log normal (see [51]), which is rarely used as it is hard to fit. However, it
produces higher estimates of species richness than any other method.

* Non-parametric methods:

· Chao1
It represents a simple estimator of the absolute number of species in
an assemblage, which was introduced by Anne Chao (see [63]). The
measure is named by [51] as Chao1 and it is based on the number of
rare species in a sample. The following notation was provided by [52]:

SChao1 = Sobs +
F2

1
2F2

where Sobs denotes the number of species in the sample, F1 is the num-
ber of observed species represented by a single individual (singletons)
and F2 denotes the number of observed species represented by two
individuals (doubletons).
The requirement for abundance data is an obvious disadvantage of
Chao1. The abundance data should at least show whether they are
singleton or doubleton. However, rather than presence/absence, they
are often called incidence or occurrence data. The calculation of the
variance of Chao1 is possible (see [64,65]).

· Chao2
Anne Chao was well aware that the number of species found in one sam-
ple is the only essential factor for calculation. For this, a new estimator,
Chao2 was invented. It is as follows (see [51]):

SChao2 = Sobs +
Q2

1
2Q2

where Q1 is the number of species that occur in one sample only (unique
species) and Q2 is the number of species that occurs in two samples.

· Other estimators
The author of [51] also invented another category of estimator called
coverage estimators (see [66]). Coverage estimators are based on the
assumption that widespread or abundant species can be included in any
sample (see [67]). The abundance-based coverage estimator, alias ACE,
is another estimator based on empirical data (see [68]). The partner
incidence-based coverage estimator, ICE, focuses its eye on species
found in <10 sampling units. Here, to estimate the true number of
species, two estimators in this category are Jackknife and bootstrap
estimators, which are described in the following sections. The estimators
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are evaluated using some criteria, such as sample size, patchiness and
overall abundance.

4.4. Diversity Measures

Species richness measures and estimators all fall into two categories: either parametric
diversity indices or non-parametric diversity indices.

4.4.1. Parametric Measures of Diversity

• log series α
The parameters of the log series model are x and α, where α is a diversity index. In
addition, α is calculated during the fitting of a distribution. When S and N are known,
the value of α can be easily calculated using the Williams monograph (see [69]) or
appendix 4 of [70]. Here, x is estimated by iterating the following form:

S
N

= − log(1 − x)
1 − x

x

According to [70], until x � 0.5 and as S > α, the log series distribution is not the
best descriptor of species abundance pattern. In fact, for natural assemblages, usually
x > 0.9 or close to 1 and S > α. This implies that α is approximately the same as the
number of species represented by a single individual.

• log normal λ
The standard deviation (σ) of the log normal distribution would be a good measure
of diversity. Although we can use it as an evenness measure and as an index for
discriminating amongst samples, σ is not a good choice. It is also impossible to
estimate for small sample sizes (see [71]). Then, S∗ (S∗ is the estimator of S, the
number of species) is a good predictor of total species richness. However, the ratio of
these two unsuitable parameters (S∗/σ) turns out to be an effective diversity measure
(λ). It is effective in discriminating against assemblages (see [72]). Its ranking of sites
suits well with α.

• The Q statistic
The authors of [73,74] proposed the Q statistic, which is based on the distribution of
species abundance data. For this measure, the user does not require a model to fit
the empirical data. Hence, for empirical data, a cumulative species abundance curve
is drawn and its inter-quartile slope is used to measure diversity. The author of [75]
suggests that by restricting the measure to the inter-quartile region, the complete
cumulative species abundance curve can be used to explain diversity as well as to
remove the bias caused by the extremities (very rare and very abundant species).
This is analogous to α and hence can be expressed in terms of a log series model,
described by [76]. The following equation is estimated from empirical data:

Q =
(1/2)nR1 + ∑R2−1

R1+1 nr + (1/2)nR2

log(R2/R1)

where nr is the total number of species with abundance R, R1 and R2 are the 25% and
75% quartiles, nR1 is the number of species in the class where R1 falls, and nR2 is the
number of species in the class where R2 falls.
The quartiles are chosen so that:

R1−1

∑
1

nr <
1
4

S ≤
R1

∑
1

nr
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and

R2−1

∑
1

nr <
3
4

S ≤
R2

∑
1

nr

where S is the total number of species in the sample, although the placement of R1
and R2 is not critical as the inter-quartile region of a cumulative species abundance
curve, or indeed a rank/abundance plot, tends to be linear.
Because Q = 0.371 for the log normal model, it is not formally a parametric index.
Thus, its performance is somewhat similar to that of parametric ones. However, for
species which are censused >50%, Q may be biased (see [74]). The author of [77]
has found an evenness measure which is similar to Q statistic, i.e., EQ which will be
discussed later.

4.4.2. Non-Parametric Measures of Diversity

Most diversity measures are not explicitly associated with named species abundance
models, even though their performance is often governed by the underlying distribution
of species abundances. They are non-parametric measures of diversity.

• Shannon Index (H
′
)

It was independently derived by Claude Shannon and Warren Weaver and is generally
known as the Shannon index or Shannon information index. However, it is sometimes
mistakenly referred to as the Shannon–Weaver index (see [9]). It is represented as

H
′
= −

n

∑
i=1

pi log pi

Usually, in samples, pi will be unknown but it is estimated using the maximum
likelihood estimator, ni/N (see [78]), where ni is the total number of individuals
in the ith species and N is the total number of individuals. The ecological validity
and computational easiness led Shannon to represent the index as logarithm of pi.
Historically, log2 is used for calculating the Shannon index, but this is without any
biological reason. An increased trend in logarithm standardization is found in [79].
However, Shannon index does not have an unbiased estimate (see [80]).

– A model using Shannon index: Caswell’s neutral model
Caswell’s neutral model is very famous for its innovative approach to community
structure analysis (see [81]). The model focuses on species abundance patterns
when biological interactions are removed. It is represented by the deviation
statistic defined by

V =
H

′ − E[H
′
]

SD(H′)

where H
′

is the Shannon diversity index. It can be used to compare observed
diversity (H

′
) with the predicted neutral diversity E[H

′
]. For values of V > 2

or V < −2, it depicts the departure from neutrality [82]. The author of [83]
presented a computer program in PRIMER to calculate V which is termed a
measure of environmental stress (see [84,85]) but is very rarely used. As richness
and evenness are in complex relationships, V is probably useful only as a measure
of disturbance. For large values of S and N, the expected values of H

′
are

generated by a neutral model that closely resembles the predicted values in the
log series model (see [70]), where S is the total number of species in the sample
and N is the total number of individuals.
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• The Shannon evenness measure (J
′
)

Assume a situation where all species have equal abundance. Then, the ratio of
observed diversity will generate a new measure J

′
(see [22,78]). It is defined as

J
′
=

H
′

Hmax
=

H
′

log S

where S is the number of species and H
′

is the Shannon diversity index.
To find Hmin, the author of [86] gives a simple method that can be utilized in other
forms of the Shannon evenness (see [87]).

• Heip’s index of evenness (EHeip)
In [88], Heip notes that the evenness measure should not be based on species richness.
So, according to this idea, he proposed the following new measure:

EHeip =
eH

′ − 1
S − 1

Compared to J
′
, EHeip is least affected by species richness, it does not require sample

size to be independent if there are only 10 species in 1 sample (see [89]). EHeip’s
minimum value is 0 and it usually goes to 0.006 when an extremely uneven community
is considered.

• SHE analysis
One of the main characteristics of the Shannon index is that it depends extremely
on species richness and evenness. In [70,90], they identified that this property of
the Shannon index can be utilized in another way. Consider a measure of evenness

E = eH
′
/S (see [88]), such that

H
′
= log S + log E

This decomposition aids the user in interpreting changes in diversity.
A decrease in diversity tends to cause pollution incidents due to loss of richness,
evenness, or a combination of them.
The essence of SHE analysis is the triangular relationship between S (species richness),
H (diversity as measured by the Shannon index) and E (evenness). SHE analysis
used by [91] in examining geographic patterns of body mass diversity in Mexican
mammals found that evenness was high at intermediate spatial scales but low at the
regional one.

• The Brillouin index (HB)
The Brillouin index, abbreviated HB, is appropriate when sample randomness is not
guaranteed, a community is completely censused, or every individual is accounted
for (see [22,78]). It is given as

HB =
log N! − ∑S

i=1 log ni!
N

where N is the total number of individuals in the sample, ni is the number of individu-
als from the ith species and S is the number of species. The HB value is rarely greater
than 4.5. When compared to the Shannon Index, HB always yields a lower value, but
they both provide similar or correlated estimates of diversity. The reason is that the
Brillouin index describes a completely known collection without any uncertainty.
Evenness (E) for the Brillouin diversity index is obtained from

E =
HB

HBmax
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where HBmax is calculated as

HBmax =
1
N

log
(

N!
NS!S−r(NS + 1)!r

)
where NS is the integer part of N/S and r = N − S(NS).
The index is unavailable with variance, and hence, no statistical test is needed to
test significance. HB is mathematically speaking superior to the other two indices
presented by [92]. However, some scientists state that it is more time-consuming and
less familiar. Its over-dependence on sample size leads to unexpected results. This is
unsuitable when abundance is measured as biomass or productivity (see [9,93]).

• Dominance and evenness measures
A group of diversity indices is weighted by abundances of the commonest species
and is usually referred to as either dominance or evenness measures.

– Simpson’s index (D)
It is occasionally called the Yule index in remembrance of G. U. Yule (see [20]).
The probability of any two individuals drawn at random from an infinitely large
community being of the same species is given by [94] as

D =
n

∑
i=1

p2
i

where pi denotes the proportion of individuals in the ith species, and n number
of species. The form of the index appropriate for a finite community is:

D =
n

∑
i=1

ni(ni − 1)
N(N − 1)

where ni is the number of individuals in the ith species and N is the total number
of individuals in the sample.
Simpson’s index is expressed as 1 − D or 1/D because diversity decreases as
D increases, and thus, it captures the variance of species abundance distribu-
tion. Simpsons’ index, on the other hand, is less sensitive to species richness
and more oriented toward species abundance. Confidence limits are applied
using jackknifing. Simpson’s index is the most meaningful and robust of all the
measures. The reciprocal nature of the Simpson index was questioned by [95] and
he recommends using log(D) instead of (1 − D) or (1/D), because this notation
ensures severe variance problems. He also advises Kemp’s transformation.

– Simpson’s measure of evenness (E1/D)
The Simpson measure of evenness, denoted by E1/D and stated in [9,89], is
defined by

E1/D =
1/D

S

Here, E1/D usually ranges between 0 and 1 and is not so related to species
richness. Because Simpson’s index is a product of Simpson’s evenness measure
and S, multiplying S turns any good evenness index into a heterogeneity measure
(see [96]).

– McIntosh’s measure of diversity (U)
McIntosh postulated in 1967 that a community may be thought of as a point in a S-
dimensional hyper volume, with the Euclidean distance between the assemblage
and its origin serving as a measure of diversity (see [97]). The distance is known
as U and is calculated as
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U =

√
n

∑
i=1

n2
i

where ni is the number of individuals in the ith species and n number of species.
The McIntosh U index is formally not a dominance index. However, a measure
of diversity (D) or dominance that is independent of N can also be calculated as

D =
N − U

N −√
N

A further evenness measure can be obtained from the following formula (see [22]):

E =
N − U

N − N/
√

S

– The Berger-Parker index (d)
The Berger-Parker index, denoted by d, is an easy-to-calculate dominance mea-
sure (see [41,98]). The proportional abundance of the most abundant species is
expressed by this index:

d =
Nmax

N

where Nmax is the number of individuals in the most abundant species. In
this case, d denotes the relative importance of the most dominant species in
the assemblage; both are considered equivalent. The reciprocal form of the
Berger-Parker index is accepted because an increase in the value of the index
accompanies an increase in diversity and a reduction in dominance, making it
similar to Simpson’s index. It is one of the most satisfactory diversity measures
available because of its simplicity and biological significance (see [41]). In small
assemblages, d is independent of S, and its value decreases with increasing
species richness.

– Nee, Harvey and Cotgreave’s evenness measure (ENHC)
As an evenness measure, the authors of [77] proposed the slope b of a rank/abund-
ance plot (with abundances log transformed). The resulting measure is

ENHC = b

ENHC ranges from −∞ and 0, where 0 is perfect evenness. This measure is
difficult to interpret due to its range of values. It is more properly a measure of
diversity than of evenness, and this is one of its demerits (see [73]). The authors
of [89] therefore proposed a new form of the measure, which is

EQ = − 2
π arctan(b′)

In this measure, the ranks are scaled before the regression is fitted, and b′ denotes
the corresponding slope. Thus, this is accomplished by dividing all ranks by the
highest rank, such that the most abundant species receives a rank of 1.0 and the
least abundant receives a rank of 1/S. The transformation (−2/[π arctan(b′)])
places the measure in the 0 (no evenness) to 1 (perfect evenness) range.
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– Camargo’s evenness index (Ec)
The author of [99] also introduced the following evenness measure:

Ec = 1 −
S

∑
i=1

S

∑
j=i+1

pi − pj

S

where Ec is Camargo’s index of evenness, pi the proportion of species i in the
sample, pj the proportion of species j in the sample, and S the sample size.
Although, the index is simple to calculate and relatively unaffected by rare species
(see [100]). The authors of [37] found it to be biased, especially in comparison
with the Simpson index.

– Smith and Wilson’s evenness index (Evar)
The authors of [89] proposed a new index to provide an intuitive measure of
evenness. This index takes the variation in species abundances and divides it
by log abundance to produce proportional differences. This makes the index
independent of measurement units. Smith and Wilson called their measure Evar.
It is defined by

Evar = 1 − 2

π arctan
{

∑S
i=1

(
log ni − ∑S

j=1
log nj

S

)2
/S
}

where ni is the number of individuals in species i, nj is the number of individuals
in species j and S represents the total number of species. The conversion by
1− 2/(π arctan(x)) ensures that the resulting measure falls between 0 (minimum
evenness) and 1 (maximum evenness).

4.4.3. Taxonomic Diversity

If two assemblages have the same number of species and similar patterns of species
abundance, but differ in the diversity of taxa to which the species belong, it seems intuitively
reasonable that the assemblage with the most taxonomically diverse taxa is the more
diversified assemblage. A taxonomic distinctness measure is one of the most recent
developments in taxonomic diversity (see [101,102]).

• Clarke and Warwick’s taxonomic distinctness index
This measure gives the average taxonomic distance, or simply the path length be-
tween two randomly chosen organisms through phylogeny. Two forms can be taken
by species in an assemblage. The first is taxonomic diversity (Δ), which considers
taxonomic relatedness or species abundance. The two organisms may belong to the
same species. The second form is taxonomic distinctness (Δ∗), a pure measure of
taxonomic relatedness, which is equivalent to dividing Δ by the value it would take if
all species belonged to the same genus, that is, in the absence of a taxonomic hierarchy.
When presence/absence data are used, both measures reduce to the same statistic, Δ+,
which is the average taxonomic distance between two randomly selected species. It is
calculated as follows:

Δ+ =
∑S

i=1 ∑S
j=i+1,i<j ωij

S(S − 1)/2

where S denotes the number of species in the study and ωij is the taxonomic path
length between species i and j.
The taxonomic distinctness index is distinguished by its lack of reliance on sampling
effort (see [103]).
Using Δ+, a significance test can be carried out. Here, the null hypothesis considered is
“taxonomic distinctness of a locality is not significantly different from the global list”.
On the other hand, the author of [104] used multivariate methods during detection
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of small variations in community structure and diversity. Multivariate analysis also
helps find increased variability between samples (see [105]).

4.5. Sampling: An Essential Attribute

There are essentially two choices regarding sample size. The investigator may either
adjust the sample size to cope-up with the situation or adopt a standard sample size. The
second approach, which is also recommended by [70], is the best. If two samples with
different sample sizes are drawn from the same assemblage, then this may lead to different
conclusions about its diversity (see [22]). If samples are replicated several times, the curve
obtained by plotting the measure of diversity (or evenness) against cumulative sample size
may lead to a smooth curve.

• Replications
The number of replications required is always an unanswerable question. Ideally,
the available sample size and number of replications required to complete this are
selected on the basis of the most diverse assemblage. In addition, it will be the same
throughout the study. When sample size is not consistent, this becomes more true.
One should be well aware of the difference between replication and pseudoreplication
(see [106]). For more ideas in this context, users can refer to [107]. The primary
condition is that all replicates must be independent (spatially).

4.6. Comparison of Communities

The manner in which the statistical comparison of communities or other ecological
entities is achieved depends to some extent, though with significant overlaps, on the aspect
of biodiversity that has been measured.

• Rarefaction—Sample data to common abundance level
Rarefaction is a technique that reduces sample data to a common abundance level,
which helps direct mapping between species richness in communities. During rarefac-
tion, to estimate the richness of a small sample, complete information regarding all
the collected species is required. Rarefaction curves converge when sample sizes are
small (see [55,108]). Sampling should be enough to characterize the community, but
there is a chance that estimates will be biased if the sample is insufficient.
The author of [109] states that software can be used to create rarefaction curves.
In [65], sample-based rarefaction curves were calculated using the EstimateS software.
Confidence intervals can be incorporated into these curves. Rarefaction by the log
series model is computationally simple. Indeed, it may even be used in circumstances
where species abundances do not follow a log series distribution. However, if the
sampling was inadequate in the first place, no method of rarefaction is going to
compensate.

• Statistical tests
Standard statistical techniques such as T-tests and ANOVA can be used to compare
assemblages (see [38]). Alternatively, jackknifing or bootstrapping can be used to
attach confidence intervals to a diversity statistic.

– Jackknifing: a measure of diversity
Jackknifing (see [110]) is a strategy for improving the estimate of almost any
statistic. It can also be used to calculate the number of species present. It was
first proposed by Quenouille in 1956, with Tukey making changes in 1958. The
author of [111] was the first to apply the approach to diversity statistics. This
application was further investigated by [112,113].
Jackknifing does not require assumptions about the underlying distribution.
Instead, it uses a set of “pseudo-values” which are artificially produced. These
pseudo-values are (usually) normally distributed, their mean forms the best
estimate of the statistic. Approximate confidence limits can also be attached to
the estimate. The procedure is simple. The first step is to estimate the diversity of
all n samples together. This produces St, the original diversity estimate. Next, the
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diversity measure is recalculated n times, missing out each sample in turn. Each
recalculation produces a new estimate, St−i. The pseudo-value (φi) can then be
calculated for each of the n samples as

φi = nSt − (n − 1)St−i

The jackknifed estimate of the diversity statistic is simply the mean of these
pseudo-values:

φ̄ =
n

∑
i=1

φi
n

The approximate standard error of the jackknifed estimate is

SEφ̄ =

√
n

∑
i=1

(φi − φ̄)2

n(n − 1)

This standard error may be used to assign approximate confidence limits to the
jackknifed diversity estimate. Confidence limits are set in the usual way, i.e.,

φ̄ ± t0.05(n−1)SEφ̄

Prior to jackknifing, the author of [38] recommended that statistics with a re-
stricted range (such as those constrained between 0 and 1) should be modified.
Following that, same methods were used to estimate species richness, with con-
siderable success. They are called Jackknife 1, a first-order jackknife estimator that
employs the number of species that occur only in a single sample (see [114,115]),
and Jackknife 2, a second-order estimator which, like the Chao2 equation, takes
both the number of species found in one sample only (Q1) and in precisely two
samples (Q2) into account (see [116]). Both require incidence data.
In the following equations, m denotes the number of samples:

SJack1 = Sobs + Q1

(
m − 1

m

)

SJack2 = Sobs +

(
Q1(2m − 3)

m
− Q2(m − 2)2

m(m − 1)

)
The variances of both estimators can be calculated.

– Bootstrapping
A related method for producing standard errors and confidence bounds is boot-
strapping. It is more computationally intensive than the jackknife, although it
is regarded as an improvement. In essence, the original dataset is sampled nu-
merous times to obtain a large number of different observations. These are then
used to deduce the standard error. The authors of [20,38] provide more details.
Bootstrapping, like jackknifing, can be used in species richness estimation.

• Null models
In the last decade, there has been a rising use of null models in diversity measurement.
Ecologists are becoming aware of the importance of developing testable null hypothe-
ses (see [117]). The observed patterns are not due to the presumed causal explanation,
according to the null hypothesis. It is based on the assumption that nothing significant
has occurred (see [118]). Null models can also be used to determine whether perceived
differences in diversity are simply an artifact of sampling. As [55] emphasizes, a null
model does not presume that there is no structure in a community or that all processes
are random. Instead, randomness is assumed only in respect of the mechanism being
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tested. Null models are already used extensively to evaluate species co-occurrence
patterns (see [119]).

4.7. Diversity in Space (and Time)

Till now, we have focused on the diversity of a defined assemblage or habitat, or
α diversity. The author of [120] makes the distinction between α and β diversity where
diversity increases as the similarity in species composition decreases. β diversity reflects
biotic change or species replacement, whereas α diversity is a property of a specific spatial
unit. The diversity of two or more spatial units differs. We can use β diversity. The
relationship between α and β diversity is scale-dependent. The observation made by [80] is
that

Dγ = D̄α + Dβ

When species richness is used to measure α and γ diversity, β diversity may be
estimated as follows:

Dβ = ST − S̄j =
n

∑
j=1

qj(ST − Sj)

where ST is the species richness of the landscape (γ diversity), Sj denotes the richness of
assemblage j and qj is the proportional weight of assemblage j based on its sample size(n)
or importance.

This approach is also used in the Shannon and Simpson diversity measurements. Low
α and high β diversity will come from many small sampling units, but the opposite will
be true if there are fewer but larger samples. If all other factors are equal, both sampling
procedures yield the same conclusions concerning γ diversity.

• Indices of β diversity
The majority of these indices use presence/absence data and, as such, focus on the
species richness element of diversity.

1. Whittaker’s measure (βW)
One of the simplest, and most effective, measures of β diversity was devised
by [120]:

βW =
S
ᾱ

where S is the total number of species recorded in the system (i.e., γ diversity)
and α is the average sample diversity, where each sample is a standard size and
diversity is measured as species richness. This is equivalent to:

Dβ =
ST

S̄j

in Lande’s notation.
When Whittaker’s measure is used to compute βW , values of the measure will
range from 1 (complete similarity) to 2 (no overlap in species composition). The
author of [121] introduced a modification of Whittaker’s measure. This allows
the user to compare two transects (or samples) of different size. The related
formula is

βH1 =
S/α − 1
N − 1

× 100

where S denotes the total number of species recorded, α means α diversity and
N is the number of sites (or grid squares) along a transect. The measure ranges
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from 0 (no turnover) to 100 (every sample has a unique set of species) and can
be used to examine pairwise differentiation between sites. The author of [121]
suggested a second modification which is insensitive to species richness trends.
It is given by

βH2 =
S/(αmax − 1)

N − 1
× 100

Here, αmax is the maximum within-taxon richness per sample. The authors
of [122] used βH2 to compare the turnover of various taxa in relation to distur-
bance in a Cameroon forest.

2. Cody’s measure (βC)
The author of [123] proposed an index, which is easy to calculate and is a good
measure of species turnover. It is given by

βC =
g(H) + l(H)

2

where g(H) is the number of species gained and l(H) is the number of species
lost.

3. Routledge’s measures (βR, β I and βE)
The author of [124] was concerned with how diversity measures can be parti-
tioned into α and β components. His first index, denoted by βR, takes overall
species richness and the degree of species overlap into consideration. This index
is defined by

βR =
S2

2r + S
− 1

where S is the total number of species in all samples and r is the number of
species pairs with overlapping distributions.
β I , the second index, stems from information theory and has been simplified for
presence/absence data and equal sample size by [125]:

β I = log T − 1
T

n

∑
i=1

ei log ei − 1
T

n

∑
j=1

Sj log Sj

where ei is the number of samples in the transect in which species i is present,
Sj is the species richness of sample j, and T = ∑n

i=1 ei = ∑n
i=1 Sj, and n the total

number of samples.
The third index, βE, is simply the exponential form of β I . That is

βE = eβ I

4. Wilson and Shmida’s index βT
The authors of [125] proposed a new measure of β diversity. It is given by

βT =
g(H) + l(H)

2S̄j

where S̄j is the mean of Sj. Most measures of β diversity are sensitive to scale.
Turnover decreases as progressively larger areas are investigated.

• Indices of complementarity and similarity
The author of [126] coined the term complementarity to characterize the differences
across locations in respect of the species they support. Complementarity is, of course,
another name for the β variety. The larger the β diversity of two sites, the more
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complimentary they are. Measures typically combine three variables: a, the total
number of species present in both quadrants or samples, b the number of species
present only in quadrant 1 and c the number of species present only in quadrant 2.
There are mainly two indices.

1. Marczewski–Steinhaus (MS) distance
Following [127], the author of [51] recommended the Marczewski–Steinhaus
(MS) distance as a measure of complementarity. It is expressed as

CMS = 1 − a
a + b + c

This measure is in fact the complement of the familiar [128] similarity index:

CJ =
a

a + b + c

As suggested by Pielou, the statistic can also be adapted to give a single measure
of complementarity across a set of samples or along a transect:

CT =
n

∑
i=1

n

∑
j=1,i �=j

Ujk

n

where Ujk = Sj + Sk − 2Vjk and is summed across all pairs of samples, Vjk is
the number of species common to the two lists j and k (the same value as a in
the formulae above), Sj and Sk are the number of species in samples j and k,
respectively, and n is the number of samples.
When n is large, CT approaches a value of nST/4, where ST is the species richness
of all samples combined.
A metric (as opposed to a nonmetric) measure is the Marczewski–Steinhaus dis-
similarity measure (and hence the complement of the Jaccard similarity measure).
This indicates that it meets specific geometric criteria. The significant result for
the user is that it may now be used as a distance measure and in ordination
(see [127]).

2. Sorensen’s measure
Another popular similarity measure was devised by [129]:

CS =
2a

2a + b + c

Sorensen’s measure (see [20]) is widely recognized as one of the most effec-
tive presence/absence similarity metrics. The Bray-Curtis presence/absence
coefficient is the same.

3. Lennon turnover measure
Sorensen’s measure will always be large. Therefore, they introduce a new
turnover measure βsim, that focuses more precisely on differences in compo-
sition:

βsim = 1 − a
a + min(b, c)

This is related to a measure derived by [130]. Any difference in species richness
inflates either b or c. The consequence of using the smallest of these values in the
denominator is thus to reduce the impact of any imbalance in species richness.
The authors of [131] found that this measure performs well.
One of the primary advantages of these measurements is that they are simple
to calculate and comprehend. Furthermore, the coefficients do not take into
consideration the relative abundance of species, which is a flaw.
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4. Sorensen quantitative index or Bray-Curtis index
Similarity/dissimilarity measures based on quantitative data. The author of [132]
introduced a modified version of the Sorensen index. This is sometimes called
the Sorensen quantitative index (see [133]). It is given by

CN =
2jN

Na + Nb

where Na is the total number of individuals in site A, Nb is the total number of
individuals in site B, and 2jN is the sum of the lower of the two abundances for
species found in both sites.

5. Other notable indices
The authors of [134] looked into a number of quantitative similarity indices and
discovered that, with the exception of the Morisita–Horn index, they were all
heavily influenced by species richness and sample size. The Morisita–Horn
index (MH) has the drawback of being extremely sensitive to the abundance of
the most abundant species. Despite this, the author of [135] was able to measure
β diversity in tropical cockroach assemblages using a modified version of the
index. It is defined by

CMH =
2 ∑n

i=1 aibi

(da + db)× Na × Nb

where Na is the total number of individuals at site A, Nb is the total number of
individuals at site B, ai is the number of individuals in the ith species in A, bi is
the number of individuals in the i species in B, n is the total number of species
and da and db are calculated as follows:

da =
∑n

i=1 a2
i

N2
a

The Morisita–Horn measure is widely used (see [136,137]). The authors of [20]
provided a version of Morisita’s original index that is suitable for easy computa-
tion. A further simple measure is percentage similarity (see [20]):

P = 100 − 0.5
S

∑
i=1

|Pai − Pbi|

where Pai and Pbi is the percentage abundances of species i in samples a and b,
respectively, and S is the total number of species.

Some practical applications are given below based on [5].

4.8. Extreme Values in Modeling Atmospheric Ozone

The traditional method of extreme value analysis popularized by [138] was the annual
maximum method, in which one of the three classical types of extreme value distributions
was fitted to, say, the annual maxima of a river or sea level series. Modified approaches to
extreme value analysis which cope with time series dependence are discussed by [139,140].
The extreme value trend centered on the statistical features of insurance claims for environ-
mental damage. The author of [141] suggested that exceedances over a high threshold can
be modeled approximately by the generalized Pareto distribution (GPD).

4.9. Environmental Epidemiology

The study of associations between environmental pollutants and negative health
consequences is a prominent topic in current environmental health science.
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The authors of [142,143] have considered some methodological issues associated with
detecting clusters in spatial point processes of disease. The authors of [144] extended
the approach to the modeling of spatially aggregated data. Earlier, the authors of [145]
proposed a non-parametric test for identifying disease clusters. However, as there are
several sources for a disease, it has become impossible to associate the effect of each.
Therefore, the cluster cannot be detected easily. In such cases, it is generally assumed that
comparison of mortality or disease incidence with levels of counter-revolutionary spatial
regions is subject to so much confounding with other environmental effects. To estimate the
sequential mean and covariances, Zidek adapted Bayesian approach on spatial prediction
of a multidimensional variable (see [146]).

4.10. Adaptive Sampling for Pollution ‘Hot Spots’

The population mean concentration of the chemical pollutant will be estimated by
identifying hotspots. Some clusters may be overlooked if basic random sampling is used.
The sample mean, while unbiased as a population mean estimate, will have a substantial
variance. In this circumstance, adaptive sampling is a viable alternative. In this case, the
sampling procedure’s direction at any stage is influenced at least in part by the information
gathered in prior samplings.

The sampling procedure is as follows. Take a random sample of a certain size from
the study area. Return and sample every unit adjacent to the contaminated unit if any of
the selected units reveals contamination. If any neighboring units exhibit contamination,
sample their neighbors, and so on, until each detected cluster has a clean boundary.

The total sample size is unknown in advance, however, the accuracy of the outcome
will overcome this disadvantage. However, if the resulting data are evaluated naively,
this strategy will produce erroneous estimates of population parameters. To avoid this,
the authors of [147] outlined a sampling theory, i.e., employed a useful strategy for se-
lecting the initial sample in clusters and stratifying those samples. Then, using modified
Horvitz–Thompson or Hansen–Hurwitz estimators, unbiased estimators of the unknown
population’s mean can be obtained. These estimators, such as the mean of the initial sample,
are unbiased, but they do not always have the lowest variance. The Rao–Blackwell theorem
can be used to improve them.

4.11. Trend Analysis

Analysis of trends in environmental science leads to adjustments for autoregressive
effects or other spatial-temporal correlations in the data. This is another important area of
environmental trend analysis (see [148]). Any data that posses time-dependency will lead
to auto-correlation and then to time series analysis.

4.12. Ecological Modeling

In building stochastic models of vertebrate populations, statistics have an useful inter-
action with fisheries and wildlife sciences. Analyzing the survival of the northern spotted
owl after it experiences habitat loss and employing the well-known Leslie–Lefkovitch
model suggested by [149] is an example. The model uses information about survival
and fecundity in a matrix framework to predict future age structure based on past age
structure information. After statistical analysis, it is found that the characteristic root was
significantly less than zero, suggesting a decline in female owl populations due to habitat
loss. However, other parameters, including vitality rates, do not show any negative trend.
Here, they use an appropriate variance model, which is critical in stochastic modeling.

If single sampling is considered, the variance estimate computed will be misleading.
However, if a number of sampling occasions are considered, then the process variance will
give a better estimate.
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4.13. Combining Environmental Information

Another increasingly important issue in the environmental sciences is the need to
combine information from diverse sources that relate to a common endpoint. Combining
information is a very active area of statistical and applied subject-matter research.

A common technique for combining independent results is Meta analysis (see [150]),
which brings together the results of different studies, reanalyzes the disparate results
within the concept of their common endpoints, and provides a quantitative analysis of the
phenomenon of interest based on the combined data. In the case of environmental science,
the effect of interest may be very small and therefore hard to detect. The limited sample
sizes or data on many multiple endpoints lead to highly localized effects.

1. Combining p-values: Perhaps, the most known method of combining information
is Fisher’s inverse χ2 method (see [151]), where individual p-values, (Pk), from K
independent studies are combined. The resultant is combined p-value, which is
compared to a χ2 reference distribution with 2K degrees of freedom.

2. Hierarchical Bayesian method of combining information which leads to Bayesian or
empirical Bayesian analysis.

3. Hierarchical regression model: The inclusion of factors that represented the various
sources of variability was a key element. The odds ratio of exposure for responding
patients (cases) versus non-responding, healthy subjects (controls) was the outcome
of interest in each investigation. The hierarchical model was able to synthesize
information across the ensemble of data, allowing more significant impacts to be
investigated.

4.14. Space–Time Modeling with Applications to Atmospheric Pollution and Acid Rain

The space time autoregressive moving average (STARMA) approach was utilized
by [152] (see [153]). For most latitudes, Niu and Tiao chose the STAR(2,1) model. The
authors of [154] studied the logarithms of sulfate content in rainfall at 19 sites in the eastern
and mid-western United States for 24 monthly measurements from 1982 to 1983, and came
up with a substantially different atmospheric contaminant model. They calculated their
estimator’s variance. An empirical Bayesian approach was used to generate the sample
spatial covariance matrix from the residuals of the fit.

4.15. Detection Limits

The authors of [155] illustrated a robust parametric method for quantifying non-
detects, using a simple probability plot regression. A straight line is fitted through the
observations displayed on normal (or lognormal) probability paper. The line offers estima-
tions for the non-detected values when extrapolated back into the non-detect zone.

5. Conclusions

The statistical concepts act as a valuable tool for monitoring environmental systems.
Agricultural activities, such as timing of cropping and harvesting, timing of chemical
applications, type of crops planted, irrigation scheduling, etc., require knowledge of en-
vironmental statistics. The forestry activities of a country, such as extraction of timber,
forestation, reforestation projects, etc., need statistical information. In addition, in mea-
suring environmental diversity, statistics also plays a vital role. Thus, the application of
statistics is important in environmental sciences for effective and innovative monitoring of
environmental variables over time. To avoid mistakes at the end of the statistical analysis,
it is very important to detect the actual distribution of the observed data (see [156,157]).
For environment-related problems, the lack of sufficient data is a major problem. Given a
small set of data, it is very difficult to correctly detect heavy-tailed distributions. Hence,
the proportion of the middle and tails of the same set of data is taken for analysis. As a
result, calculating the relative frequency of the outside values and the theoretical p-outside
values is critical. In the particular case when p = 0.25, p-outside values coincide with
extreme outliers and, at least, these outside values should be estimated from the sample
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(see [158,159]). They are useful in detecting the parameters that are used to find the tail of
the distribution. They also help in finding probabilities of events. As p-outside values do
not depend on moments, they can be easily applied to situations where moments are not
essential or where they do not exist.

Many of the environmental difficulties discussed here are just a small sample of the
wide range of challenging issues in quantitative environmental research, as well as the
wide range of approaches to solving them. Based on [4,5], this review paper demonstrates
that there are numerous viewpoints on the nature of Environmental Sciences and Statistics.
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1. Introduction

Count data reflect the non-negative integers which represent the frequency of oc-
currence of a discrete event. Such datasets can be observed in numerous fields, such as
actuarial science, finance, medical, sports, etc. For instance, the yearly number of destruc-
tive floods, the number of sports people injured in a month and the hourly number of
COVID-19 vaccinations given are some examples of count data. Increasing the utilization
of discrete distributions for modelling such datasets influenced researchers to propose
more flexible distributions by reducing the estimation errors. Discretizing continuous
distributions by survival discretization is one of the widely followed methods for introduc-
ing discrete distributions. The most famous discretization technique is described below.
Assume that X is a continuous lifetime random variable with the survival function (sf)
S(x) = Pr(X > x). Then, the probability mass function (pmf) dealing with X is given by:

Pr(X = x) = S(x)− S(x + 1), x = 0, 1, 2, . . . (1)

Some of the recently introduced discrete distributions based on this survival dis-
cretization method are as follows: Discrete Lindley distribution by [1], discrete inverse
Weibull distribution by [2], discrete Pareto distribution by [3], discrete Rayleigh distribution
by [4], two-parameter discrete Lindley distribution by [5], exponentiated discrete Lindley
distribution by [6], discrete Burr–Hatke distribution by [7], discrete Bilal distribution [8],
discrete three-parameter Lindley distribution by [9], etc. Recently, Ref. [10] proposed a
discrete version of Ramos–Louzada distribution [11] for asymmetric and over-dispersed
data with a leptokurtic shape.
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Furthermore, count datasets arising in time series can be seen in many applied research
areas. Examples include modelling and predicting the number of claims for next month
for the insurance sector in a company, predicting the number of deaths from disasters,
etc. The first-order integer-valued autoregressive process, or INAR(1), is appropriate for
such cases. The authors of [12,13] independently developed the pioneer works of INAR(1)
with Poisson innovations. Furthermore, since time series of counts mainly display over-
dispersion (i.e., empirical mean is less than empirical variance), Poisson for innovation
distribution is less efficient (since equi-dispersed). Hence, researchers have assembled many
approaches concerning innovations in modelling over-dispersed time series count datasets.
The INAR(1) process with geometric innovations (INAR(1)G) by [14], INAR(1) process with
Poisson–Lindley innovations (INAR(1)PL) by [15], INAR(1) process with a new Poisson
weighted exponential innovation ((INAR(1)NPWE)) by [16], INAR(1) process with discrete
three-parameter Lindley as innovation by [9], INAR(1) process with discrete Bilal as
innovation by [8], INAR(1) process with Poisson quasi Gamma innovations (INAR(1)PQX)
by [17] and the INAR(1) process with Bell innovations (INAR(1)BL) by [18] are some of the
recently developed over-dispersed INAR(1) processes.

Even though these processes provide better solutions to over-dispersed time series
count datasets, they have some limitations that can sometimes cause computing difficulties.
Even if a model has one parameter, the inclusion of special functions in the pmf, cumulative
distribution function (cdf) and other statistical properties makes it difficult to obtain explicit
expressions and, hence, for estimation procedures to generate them (see, e.g., [9,19]).

Hence, the main objective of the present work is to introduce a two-parameter dis-
crete distribution, the discrete Pseudo Lindley (DPsL) distribution, which can serve as a
model to analyse under as well as over-dispersed datasets, having a simple pmf and cdf.
The main peculiarity of the proposed distribution is that it has closed-form expressions for
its statistical properties such as a hazard rate function (hrf), probability-generating function
(pmf), moments, skewness, kurtosis, mean past lifetime (mpl), mean residual lifetime (mrl),
stress–strength reliability, etc. We embellish the importance of the DPsL distribution in the
INAR(1) process by applying the DPsL distribution as an innovation process.

The remaining parts of the paper are organized as follows: Section 2 defines the
proposed distribution and various properties such as moments, mean residual lifetime,
mean past lifetime and stress–strength reliability,. Section 3 contains estimation methods
and their simulation study. The INAR(1) process with DPsL innovations is developed in
Section 4 with its parameter estimation and simulation study. In Section 5, three datasets
are analysed by the DPsL distribution, and some other competitive and well-referenced
distributions, in order to prove its applicability. Final remarks are provided in Section 6.

2. The Discrete Pseudo Lindley Distribution

2.1. Some Basics

A discrete analogue of the PsL distribution is derived in this section, namely, the DPsL
distribution by using the survival discretization method. First of all, let us briefly present
the work of [20], which introduced the Pseudo Lindley (PsL) distribution by mixing two
independent random variables: one having the Exponential (θ) distribution, and the other
having the Gamma (2,θ) distribution, with mixing probabilities β−1

β and 1
β , respectively.

Assume that X is a continuous random variable having the PsL distribution; then, its
probability density function (pdf) and sf are given by:

fPsL(x; θ, β) =

⎧⎨⎩
θ(β − 1 + θx)e−θx

β
, x > 0

0 , otherwise

and

SPsL(x; θ, β) =

⎧⎨⎩
(β + θx)e−θx

β
, x > 0

1 , otherwise
, (2)
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respectively, where β ≥ 1 and θ > 0. Using the survival discretization technique as
described in (1) by using (2), the pmf of the DPsL distribution can be derived as:

PDPsL(x; θ, β) =
(β + θx)e−θx − (β + θ(x + 1))e−θ(x+1)

β
, x = 0, 1, 2, . . .. (3)

The parameter β can be considered as a shape parameter and θ as a scale parameter.
The DPsL distribution can sometimes be denoted by the DPsL (θ, β) distribution to indicate
the parameters.

The corresponding cdf and sf are given by:

FDPsL(x; θ, β) = 1 − e−θ(1+x)(β + (x + 1)θ)
β

and

SDPsL(x; θ, β) =
e−θ(1+x)(β + (x + 1)θ)

β
, (4)

respectively. As a first property, the pmf given in (3) is log concave, since:

PDPsL(x + 1; θ, β)

PDPsL(x; θ, β)
=

β + θ + xθ − e−θ(β + (2 + x)θ)
β(eθ − 1) + θ((eθ − 1)x − 1)

is a decreasing function in x for every possible value of the parameters.
The possible pmf shapes plotted for different values of the parameters of the DPsL

distribution are displayed in Figure 1.
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Figure 1. The pmf plots of the DPsL distribution for some set of values for θ and β.

The figure clearly indicates that the DPsL distribution is rightly skewed and has a
longer right tail.

A mode of the DPsL distribution, e.g., xm, is an integer value of x, for which the pmf
PDPsL(x; θ, β) is the maximum. That is PDPsL(x; θ, β) ≥ PDPsL(x+1; θ, β) and PDPsL(x; θ, β) ≥
PDPsL(x − 1; θ, β), which is equivalent to:

θ(1 + eθ)− β(eθ − 1)
θ(eθ − 1)

− 1 ≤ xm ≤ θ(1 + eθ)− β(eθ − 1)
θ(eθ − 1)

.

39



Math. Comput. Appl. 2021, 26, 76

Hence, if θ(1+eθ)−β(eθ−1)
θ(eθ−1) ≥ 0, and:

1. If θ(1+eθ)−β(eθ−1)
θ(eθ−1) is not an integer, xm is given as the integer part of θ(1+eθ)−β(eθ−1)

θ(eθ−1) ;

2. If θ(1+eθ)−β(eθ−1)
θ(eθ−1) is an integer, the DPsL distribution is bimodal, with the modes given

by x(1)m = θ(1+eθ)−β(eθ−1)
θ(eθ−1) and x(2)m = θ(1+eθ)−β(eθ−1)

θ(eθ−1) − 1.

If θ(1+eθ)−β(eθ−1)
θ(eθ−1) < 0, the mode of the DPsL distribution is xm = 0.

The hrf of the DPsL distribution can be obtained as:

hDPsL(x; θ, β) =
PDPsL(x; θ, β)

1 − FDPsL(x; θ, β)

=
(β + θx)e−θx − (β + θ(x + 1))e−θ(x+1)

e−θ(1+x)(β + (x + 1)θ)
.

The hrf of the DPsL distribution was plotted for some set of values for θ and β in
Figure 2.
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Figure 2. The pmf plots of the DPsL distribution for some set of values for θ and β.

Figure 2 clearly indicates that the hrf of the DPsL distribution is always increasing for
different values of the parameters.

2.2. Identifiability

A set of unknown parameters of a model is stated to be identifiable if different sets
of parameters give different distributions for a given x. Here, the identifiability property
of the DPsL distribution is proved. Let PDPsL(x; λ1) and PDPsL(x; λ2) be different pmfs of
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the DPsL distribution indexed by λ1 = (θ1, β1) and λ2 = (θ2, β2), respectively. Then, the
likelihood ratio is given by:

U =
PDPsL(x; λ1)

PDPsL(x; λ2)

=

(β1+θ1x)e−θ1x−(β1+θ1(x+1))e−θ1(x+1)

β1

(β2+θ2x)e−θ2x−(β2+θ2(x+1))e−θ2(x+1)

β2

=
β2

β1
(β1 + θ1x)e−θ1x − (β1 + θ1(x + 1))e−θ1(x+1)

(β2 + θ2x)e−θ2x − (β2 + θ2(x + 1))e−θ2(x+1)
. (5)

Taking logarithm of this ratio, we obtained:

log U = log
(

β2

β1

)
+ log

(
(β1 + θ1x)e−θ1x − (β1 + θ1(x + 1))e−θ1(x+1)

)
− log

(
(β2 + θ2x)e−θ2x − (β2 + θ2(x + 1))e−θ2(x+1)

)
.

Now, by considering x as a continuous variable and taking the partial derivative of
log U with respect to x and equating it to 0, we obtained:

θ1
(
θ1 + β1 − 1 + θ1x − eθ1(θ1x + β1 − 1)

)
(β1 + θ1x)e−θ1x − (β1 + θ1(x + 1))e−θ1(x+1)

=
θ2
(
θ2 + β2 − 1 + θ2x − eθ2(θ2x + β2 − 1)

)
(β2 + θ2x)e−θ2x − (β2 + θ2(x + 1))e−θ2(x+1)

,

which implies that:

e−(θ2−θ1)x (β2 + θ2x)− (β2 + θ2(x + 1))e−θ2

(β1 + θ1x)− (β1 + θ1(x + 1))e−θ1
=

θ2
(
θ2 + β2 − 1 + θ2x − eθ2(θ2x + β2 − 1)

)
θ1
(
θ1 + β1 − 1 + θ1x − eθ1(θ1x + β1 − 1)

) .

By performing x → +∞, we obtained 0 =
θ2

2(1−eθ2 )

θ2
1(1−eθ1 )

or +∞ =
θ2

2(1−eθ2 )

θ2
1(1−eθ1 )

according

to θ2 > θ1 or θ2 < θ1, respectively, which is impossible since θ1 > 0 and θ2 > 0. There-
fore, θ1 = θ2. By taking into account this equality, by taking x = 0 in (5), we obtained
β1−(β1+θ1)e−θ1

β2−(β2+θ1)e−θ1
= β1

β2
, which is possible if, and only if, β1 = β2. Therefore, we concluded that

the DPsL model is identifiable and that the parameters uniquely determine the distribution,
that is, PDPsL(x; λ1) = PDPsL(x; λ2) ⇐⇒ λ1 = λ2.

2.3. Moments, Skewness and Kurtosis

In the rest of the study, X denotes a random variable that follows the DPsL distribution.
Then, the probability generating function (pgf) of X can be derived as:

G(s) = E(sX) =
∞

∑
x=0

sxPDPsL(x; θ, β)

=
e2θ β − eθ(β + sβ + θ − θs) + sβ

(eθ − s)2β
, |s| < eθ .

When s in pgf is substituted by et, the moment generating function (mgf) follows as:

M(t) = E(etX) =
e2θ β − eθ(β + etβ + θ − θet) + etβ

(eθ − et)2β
, t < θ.
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By using the well-known relationship between M(t) and the (standard) moments of
X, the first four moments of the DPsL distribution are:

E(X) =
eθ(β + θ)− β

(eθ − 1)2β
, (6)

E(X2) =
e2θ β + 3eθθ + e2θθ − β

(eθ − 1)3β
,

E(X3) =
−β − 3eθ β + 3e2θ β + e3θ β + 7eθθ + 10e2θθ + e3θθ(

eθ − 1
)4

β

and

E(X4) =
−β − 10eθ β + 10e3θ β + e4θ β + 15eθθ + 55e2θθ + 25e3θθ + e4θθ(

eθ − 1
)5

β
.

Based on E(X) and E(X2), the variance of X follows from the Koenig–Huygens
formula as:

Var(X) =
eθ [(eθ − 1)2β2 + (e2θ − 1)βθ − eθθ2]

(eθ − 1)4β2 . (7)

Expressions for skewness and kurtosis of the DPsL distribution can be derived explic-
itly by using the following formulas:

Skewness(X) =
E
(
X3)− 3E

(
X2)E(X) + 2[E(X)]3

[Var(X)]3/2

and

Kurtosis(X) =
E
(
X4)− 4E

(
X2)E(X) + 6E

(
X2)[E(X)]2 − 3[E(X)]4

[Var(X)]2
.

2.4. Coefficient of Variation and Dispersion Index

The expressions of the coefficient of variation (CV) and dispersion index (DI) of X are
given by:

CV(X) =

√
Var(X)

E(X)
=

√
(eθ − 1)2β2 + (e2θ − 1)βθ − eθθ2

√
eθ
(
(β + θ)− βe−θ

)
and

DI(X) =
Var(X)

E(X)
=

(eθ − 1)2β2 + (e2θ − 1)βθ − eθθ2

(eθ − 1)2βeθ(β + θ)
, (8)

respectively.
In full generality, when the DI is one, the distribution is equi-dispersed, and if DI is

greater than (less than) one, the distribution is over-dispersed (under-dispersed). Some
numerical values of the mean, variance, DI, skewness and kurtosis for the DPsL distribution
for some values of the parameters are presented in Tables 1 and 2.

From the information contained in these tables, it is clear that the DPsL distribu-
tion would be an appropriate option for modelling under as well as over-dispersed and
positively skewed datasets.
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Table 1. Values for some moment measures for the DPsL distribution for β = 1.5 and different values
of θ.

θ

Measures 4 5 6 7 8

Mean 0.06934 0.02955 0.01245 0.00518 0.00213

Variance 0.06901 0.02939 0.01241 0.00517 0.00212

DI 0.99525 0.99447 0.99649 0.99820 0.99911

Skewness 3.77540 5.77052 8.91577 13.86130 21.65950

Kurtosis 17.19030 35.95970 81.94370 194.42800 471.29900

Table 2. Values for some moment measures for the DPsL distribution for θ = 2 and different values
of β.

β

Measures 10 11 12 13 14 15

Mean 0.19272 0.18943 0.18669 0.18437 0.18238 0.18065

Variance 0.22724 0.22315 0.21972 0.21681 0.21430 0.21212

DI 1.17912 1.17799 1.17694 1.17595 1.17504 1.17420

Skewness 2.84454 2.86632 2.88457 2.90007 2.91340 2.92497

Kurtosis 12.9041 13.05360 13.17890 13.28540 13.3768 13.4562

2.5. Mean Residual Lifetime and Mean Past Lifetime

The mean residual lifetime (mrl) and mean past lifetime (mpl) of a component are
two widely used measures to study the ageing behaviour of components. Both measures
characterize the distribution uniquely. By assuming that the lifetime of a component is
modelled by X, the mrl of X at i = 0, 1, 2, . . . is defined as:

ζ(i) = E(X − i | X ≥ i)

=
1

1 − FDPsL(i − 1; θ, β)

∞

∑
j=i+1

(1 − FDPsL(j − 1; θ, β)).

That is:

ζ(i) =
1

e−θi(β + θi)

∞

∑
j=i+1

e−θ j(β + θ j)

=
eiθ((eθ − 1)β − iθ + eθ(1 + i)θ

)
e−θi(β + θi)(eθ − 1)2 .

Furthermore, the mpl of X is another reliability measure that corresponds to the time
elapsed since the failure of X given that the system has already failed before some i. Thus,
the mpl of X at i = 1, 2, . . . is defined by:

ζ∗(i) = E(i − X | X < i)

=
1

FDPsL(i − 1; θ, β)

i

∑
m=1

FDPsL(m − 1; θ, β),
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where ζ∗(0) = 0. That is:

ζ∗(i) =
1

β − e−θi(β + iθ)

i

∑
m=1

(β − e−mθ(β + mθ))

=
e−iθ

β − e−θi(β + iθ)(eθ − 1)2 ×

e−iθ
{[

(eθ − 1)(1 + eθi(1 + i)− eθi(1 + i))
]

β −
[
eθ(1+i) + i − eθ(1 + i)

]
θ
}

.

2.6. Stress–Strength Analysis

Stress–strength reliability has wide applications in almost all fields of engineering and
machine learning. Let Xstress and Xstrength be random variables that model the stress and
strength of a system, respectively. Then, the expected reliability can be calculated by the
following formula:

ReStress−Strength = Pr
[

XStress ≤ XStrength

]
=

∞

∑
x=0

PXStress(x)SXStrength(x),

where PX(x) and SX(x) denote the pmf and sf, respectively, of a random variable X.
Suppose that Xstress and Xstrength are two independent random variables following the DPsL
(θ1, β1) and DPsL (θ2, β2) distributions, respectively. Then, from (3) and (4), the expected
reliability is obtained in closed form as:

ReStress−Strength =

1
β1β2(eθ1+θ2 − 1)3

{
(eθ1 − 1)(eθ1+θ2 − 1)β1

[
(eθ1+θ2 − 1)β2 + θ2eθ1+θ2

]
−θ1eθ1

[
(eθ2 − 1)(eθ1+θ2 − 1)β2 + eθ2(1 − 2eθ1 + eθ1θ2)θ2

]}
.

Some numerical values for ReStress−Strength for different values of the parameters are
given in Tables 3–5.

From Tables 3 and 4, it is clear that the expected reliability increases (decreases) as
β1 → ∞ (β2 → ∞). In addition, from Table 5, the expected reliability (decreases) as
θ1 → ∞ (θ2 → ∞).

Table 3. Numerical values of ReStress−Strength associated with the DPsL distribution at θ1 = 0.3,
θ2 = 0.1 for different values of β1 and β2.

θ1 = 0.3, θ2 = 0.1

β1 →
β2 ↓ 1 2 3 7

1 0.82926 0.87819 0.89449 0.91314

2 0.6227 0.75075 0.77358 0.79967

3 0.63327 0.70827 0.73327 0.76184

7 0.57728 0.65972 0.68721 0.71862
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Table 4. Numerical values of ReStress−Strength associated with the DPsL distribution at θ1 = 0.6,
θ2 = 0.01 for different values of β1 and β2.

θ1 = 0.6, θ2 = 0.01

β1 →
β2 ↓ 1 2 3 7

1 0.99903 0.99933 0.99943 0.99955

2 0.98084 0.98488 0.98623 0.98777

3 0.97478 0.98007 0.98183 0.98384

7 0.96785 0.97456 0.97679 0.97935

Table 5. Numerical values of ReStress−Strength associated with the DPsL distribution at β1 = 1,
β2 = 1.5 for different values of θ1 and θ2.

β1 = 1, β2 = 1.5

θ1 →
θ2 ↓ 0.1 0.5 0.7 0.9

0.1 0.40431 0.82936 0.87387 0.89879

0.5 0.04949 0.35792 0.45733 0.52947

0.7 0.02667 0.24765 0.33651 0.40671

0.9 0.01619 0.17754 0.25273 0.31061

2.7. Generating Random Values from the DPsL Distribution

Random values from the DPsL distribution can be generated by following the algo-
rithm given below.

1. Generate u as a realization of a random variable U with the U(0,1) distribution.

2. With the expression of the quantile function of the PsL distribution in mind, compute:

y = − β

θ
− 1

θ
W−1(e−ββ(u − 1)),

where W−1(x) denotes the negative branch of Lambert–W function.

3. Then, x = �y� represents a realization of a random variable with the DPsL distribution.

To generate a random sample of size n, repeat the algorithm n times.

3. Estimation Methods

The estimation of unknown parameters of a distribution is critical in accurately deter-
mining the behaviour of this distribution. Here, we use classical methods of estimation such
as the method of maximum likelihood (mle) and weighted least square (wls) estimation for
this purpose.

3.1. Maximum Likelihood Estimation

Let X1, X2, . . . , Xn be a random sample taken from the DPsL (θ, β) distribution, and x1, x2,
. . . , xn be observations of this random sample. The likelihood function is given by:

L =

(
1
β

)n
{

n

∏
i=1

[
(β + θxi)e−θxi − (β + θ(xi + 1))e−θ(xi+1)

]}

45



Math. Comput. Appl. 2021, 26, 76

and the log likelihood function is given by:

log L = −n log β +
n

∑
i=1

log
[
(β + θxi)e−θxi − (β + θ(xi + 1))e−θ(xi+1)

]
.

Then, the maximum likelihood estimates (MLEs) of θ and β were obtained by max-
imizing L or log L with respect to these parameters. They can also be determined as the
solutions of the normal equations given by:

∂ log L
∂θ

= 0 =⇒
n

∑
i=1

e−θ(2xi+1)[eθxi (xi + 1)(θxi + θ + β − 1)− eθ(xi+1)xi(θxi + β − 1)]
(β + θxi)e−θxi − (β + θ(xi + 1))e−θ(xi+1)

= 0

(9)

and

∂ log L
∂β

= 0 =⇒

−n
β
+

n

∑
i=1

e−θxi − eθ(xi+1)

(β + θxi)e−θxi − (β + θ(xi + 1))e−θ(xi+1)
= 0. (10)

Equations (9) and (10) can be solved by numerical optimization techniques using
mathematical software such as MATHEMATICA, MATHCAD and R.

3.2. Weighted Least Squares Estimation

Let X(1), X(2), ..., X(n) be the order statistics of a random sample taken from the
DPsL (θ, β) distribution, and x(1), x(2), . . . , x(n) be observations of these random vari-
ables. The weighted least squares estimates (WLEs) of the parameters θ and β of the DPsL
distribution were obtained by maximizing the following function with respect to θ and β:

W =
n

∑
i=1

(n + 1)2(n + 2)
i(n − i + 1)

[
FDPsL

(
x(i); θ, β

)
− i

n + 1

]2
.

3.3. Simulation Study

The current section deals with examining the efficiency of two estimation methods
for estimating the parameters of the DPsL distribution using simulation. Estimates were
calculated for different values of parameters ((θ = 0.5, β = 1) and (θ = 2.2, β = 1.5)) for
various sample sizes (25, 50, 75, 100) using the two estimation methods discussed and, thus,
compared. Then, N = 1000 samples of values from the DPsL distribution using methods
discussed in Section 2.7 were generated. The indices such as values of the estimates, mean
square errors (MSEs), average absolute biases (Bias) and average mean relative estimates
(MREs) were calculated in R software using the following formulas:

MSE =
1
N

N

∑
i=1

(ζ̂i − ζ)2, Bias =
1
N

N

∑
i=1

|ζ̂i − ζ|,

MRE =
1
N

N

∑
i=1

|ζ̂i − ζ|
ζ

,

where ζ = θ or β, and the index i refers to the ith sample. Simulation results, including
values of estimates, Bias, MSEs and MREs for the two parameters θ and β of the DPsL
distribution using the estimation approaches discussed, are reported in Tables 6 and 7.
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Table 6. Simulation results of our estimation approaches for the DPsL distribution with θ = 0.5, β = 1.

n Indices
MLE WLSE

θ β θ β

25

Estimates
Bias
MSE
MRE

0.4902
0.0098
0.0069
0.1319

1.1126
0.1126
0.1217
0.1326

0.4289
0.0710
0.0448
0.2599

1.0049
0.0049
7.1204 ×10−5

0.0049

50

Estimates
Bias
MSE
MRE

0.4904
0.0096
0.0033
0.0908

1.0808
0.0808
0.0379
0.0868

0.4243
0.0757
0.0444
0.2444

1.0035
0.0035
3.26×10−5

0.0035

75

Estimates
Bias
MSE
MRE

0.4920
0.0079
0.0019
0.0704

1.0614
0.0614
0.0160
0.0614

0.4247
0.0753
0.0429
0.2328

1.0030
0.0030
2.217×10−5

0.0030

100

Estimates
Bias
MSE
MRE

0.4926
0.0074
0.0015
0.0634

1.0553
0.0553
0.0119
0.0553

0.4225
0.0775
0.0427
0.2350

1.0028
0.0028
1.904×10−5

0.0028

Table 7. Simulation results of our estimation approaches for the DPsL distribution with θ = 2.2,
β = 1.5.

n Indices
MLE WLSE

θ β θ β

25

Estimates
Bias
MSE
MRE

2.3027
0.1027
1.5197
0.2509

1.2005
0.2995
0.2979
0.3328

1.7547
0.4452
0.2564
0.2079

1.3939
0.1060
0.0154
0.0734

50

Estimates
Bias
MSE
MRE

2.1843
0.0157
0.2381
0.1829

1.2621
0.2378
0.2774
0.3193

1.8200
0.3799
0.1932
0.1749

1.3993
0.1007
0.0134
0.0681

75

Estimates
Bias
MSE
MRE

2.1853
0.0147
0.1565
0.1457

1.3217
0.1783
0.2519
0.2949

1.8370
0.3629
0.1750
0.1689

1.4066
0.0934
0.0118
0.0639

100

Estimates
Bias
MSE
MRE

2.2052
0.0052
0.0993
0.1154

1.4245
0.0755
0.2468
0.2784

1.8489
0.3511
0.1627
0.1642

1.4133
0.0867
0.0105
0.0598

From the above tables, it is clear that, for estimating θ, the corresponding MLE
performed well, and for β, the corresponding WLSE outperformed the MLE.
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4. INAR(1) Process with DPsL Innovations

Numerous fields, such as agriculture, epidemiology, actuarial science, finance, etc.,
have come across certain time series of counts. Analysing these kinds of datasets using
the INAR(1) process was first applied using Poisson innovations by [12,13]. Suppose that
{εt}t∈Z are the innovations, so are independent and identically distributed (iid) random
variables, with E(εt) = με and variance Var(εt) = σ2

ε . A stochastic process {Xt}t∈Z
defined as:

Xt = p ◦ Xt−1 + εt,

with 0 ≤ p < 1, is stated to be an INAR(1) process. The symbol ◦ is called as binomial
thinning operator, which can be described as:

p ◦ Xt−1 =
Xt−1

∑
j=1

Uj,

where {Uj}j∈Z is a sequence of iid Bernoulli random variables with parameter p. The one
step transition probability of the INAR(1) process is given by:

Pr(Xt = k | Xt−1 = l) =
min(k,l)

∑
i=1

Pr(B = i)Pr(εt = k − i), k, l ≥ 0,

where B denotes a random variable following the Binomial (n, p) distribution. The mean,
variance and dispersion index (DI) of {Xt}t∈Z are given by [21]. They are:

E(Xt) =
με

1 − p
, (11)

Var(Xt) =
pμε + σ2

ε

1 − p2 (12)

and

DI(Xt) =
DIε + p
1 + p

, (13)

where με, σ2
ε and DIε are the mean, variance and DI of the innovation distribution. The re-

sults of [12,13] influenced us to propose a new INAR(1) process with DPsL innovations,
which are capable of modelling over as well as under-dispersed count datasets. Suppose
that {εt}t∈Z follow a DPsL distribution; then, the one step transition probability matrix of
the corresponding process is:

Pr(Xt = k | Xt−1 = l) =
min(k,l)

∑
i=1

(
l
i

)
pi(1 − p)l−i

× (β + θ(k − i))e−θ(k−i) − (β + θ((k − i) + 1))e−θ((k−i)+1)

β
,

which hereafter is called the INAR(1)DPsL process. By substituting με, σ2
ε , and DIε in (11)–(13)

with (6)–(8), the mean, variance and DI of the INAR(1)DPsL process could be attained. The
conditional expectation and variance of the INAR(1)DPsL process are given by:

E(Xt | Xt−1) = pXt−1 + με, (14)
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and
Var(Xt | Xt−1) = p(1 − p)Xt−1 + σ2

ε , (15)

respectively, where με and σ2
ε are given in (6) and (7), respectively (see [13,21]).

4.1. Estimation

Here, the inference of the INAR(1)DPsL process was examined using two estimation
methods: the conditional maximum likelihood (CML) and Yule–Walker (YW) methods.
A simulation study was performed to assess the efficiency of the two methods.

4.1.1. Conditional Maximum Likelihood

Let X1, X2, . . . , XT be a random sample taken from the INAR(1)DPsL process, and
x1, x2, . . . , xT be observations of this random sample. Then, the conditional log likelihood
function of the INAR(1)DPsL process is given by:

�(Θ) =
T

∑
t=2

log[Pr(Xt = xt | Xt−1 = xt−1)]

=
T

∑
t=2

log

[
min(xt ,xt−1)

∑
i=1

(
xt−1

i

)
pi(1 − p)xt−1−i

(β + θ(xt − i))e−θ(xt−i) − (β + θ(xt − i + 1))e−θ(xt−i+1)

β

]
,

(16)

where Θ = (θ, β, p) is the vector of unknown parameters to be estimated. Maximizing (16)
with respect to Θ yields the CML estimates (CMLEs). In this regard, we used the optim-
function in R software for the same. In addition, the fdHess function in R was used to
obtain the observed information matrix and, hence, the standard errors (SE) of estimates of
parameters in the INAR(1)DPsL process.

4.1.2. Yule–Walker

The YW estimates (YWEs) of the INAR(1)DPsL process were computed by solving
simultaneous equations of sample and theoretical moments. Since the autocorrelation
function (ACF) of the INAR(1) process at lag h was ρx(h) = ph, the YWE of p is given by:

p̂YW =

T
∑

t=2
(xt − x̄)(xt−1 − x̄)

T
∑

t=1
(xt − x̄)2

.

Now, the YWEs for θ and β were obtained by solving the equations of sample mean
equals theoretical mean and sample dispersion equals theoretical dispersion of the process.
Here, by denoting as θ̂YW and β̂YW the YWEs of θ and β, respectively, the following
relationship holds:

β̂YW =
θ̂YWeθ̂YW

x(1 − p̂YW)(eθ̂YW − 1)2 − (eθ̂YW − 1)
, (17)

where x = ∑T
t=1 xt/N. Substituting β̂YW with (17) in (13) and equating (13) to sample

dispersion, we obtained θ̂YW .
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4.2. Simulation of INAR(1)DPsL Process

Here, a simulation study was conducted to comprehensively determine the perfor-
mance of CMLEs and YWEs of the parameters of the INAR(1)DPsL process. In this regard,
we generated N = 1000 samples each of sizes n = 25, 50, 100 from the proposed distri-
bution for two sets of parameter values (θ = 0.1, β = 1.1 and θ = 3, β = 4). For each
n, average absolute bias, MSE and MRE for the parameters were calculated for the two
methods. The simulation results are presented in Table 8.

Table 8. Simulation results of the INAR(1)DPsL process.

θ = 0.1, β = 1.1

Sample Size (n) Parameters
CML YW

Bias MSE MRE Bias MSE MRE

25
θ

β

p

0.0183
0.2067
0.0449

0.0019
1.8986
0.0248

0.3271
0.9959
0.4289

0.0644
0.1305
0.6456

0.0047
0.2778
0.2627

0.6443
0.1186
2.1519

50
θ

β

p

0.0035
0.0916
0.0113

0.0007
0.3807
0.1187

0.1758
0.4131
0.2345

0.0633
0.0687
0.0232

0.0043
0.0881
0.0255

0.6330
0.0624
0.0773

100
θ

β

p

0.0014
0.0657
0.0096

0.0001
0.0178
0.0072

0.0841
0.0732
0.1812

0.0623
0.0369
0.0200

0.0040
0.0351
0.0019

0.6225
0.0336
0.0668

θ = 3, β = 4

Sample Size (n) Parameters
CML YW

Bias MSE MRE Bias MSE MRE

25
θ

β

p

0.7181
0.5259
0.0344

0.0853
0.2878
0.0502

1.6194
0.6254
0.2546

0.6708
0.1634
0.3809

1.1252
0.0276
0.5484

0.2236
0.0408
0.5441

50
θ

β

p

0.5244
0.0461
0.0054

0.0824
0.0434
0.0382

1.2841
0.4046
0.2157

0.5281
0.1609
0.2889

0.9221
0.0263
0.5318

0.1764
0.0402
0.4128

100
θ

β

p

0.0709
0.0363
0.0032

0.0816
0.0241
0.0282

0.3019
0.2953
0.1813

0.2791
0.1606
0.2553

0.1449
0.0260
0.0624

0.0930
0.0402
0.3647

From the above table, we observed that the average biases, MSEs and MREs of CMLEs
tended to zero quicker than those of YWEs, making them efficient for small as well as large
sample sizes. Therefore, the CML estimation was preferred to attain unknown parameters
of the INAR(1)DPsL process.
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5. Empirical Study

Three real datasets were used in this section to illustrate the performance of the DPsL
distribution over some competitive distributions. The capability of the fitted distributions
was compared using the goodness of fit criterion with its corresponding p-value.

5.1. Failure Times

The data of failure times for a sample of 15 electronic components in an acceleration
life test (see [22]) were considered here. These data were based on the discretization concept.
Adopting a data analysis setting, we compared the DPsL, discrete three-parameter Lindley
(DTPL) (see [9]), discrete log-logistic (DLL) (see [23]), discrete inverse Weibull (DIW)
(see [2]), discrete Burr–Hutke (DBH) (see [6]), discrete Pareto (DP) (see [3]), Poisson (P) and
geometric (G) distributions. The MLEs with standard errors (SEs) and confidence intervals
(CIs) for the parameter(s), estimated −log Likelihood (−L), Akaike information criterion
(AIC), Bayesian information criterion (BIC) and goodness of fit statistic (Kolmogorov
statistic (K-S) and p-value) of these distributions for this dataset are given in Table 9.

Table 9. The MLEs, CIs, −L, AIC, BIC, K-S and p-values of all the fitted distributions for the failure
times data.

Model

Statistic DPsL DTPL DLL DIW

θ MLE (SE)
CI

β MLE (SE)
CI

λ MLE (SE)
CI

0.0623 (0.0043)
(0.0538, 0.0707)
1.3427 (0.1572)
(1.0331, 1.6492)

–
–

0.5084 (0.8277)
(−1.1139, 2.1307)

0.0924 (0.1506)
(0.0629, 0.1219)
0.9397 (0.0040)
(0.0845, 0.1003)

21.4627 (1.392)
(18.7344, 24.1909)

1.7906 (0.1001)
(1.5943, 1.9868)

–
–

0.0077 (0.0032)
(0.0013, 0.0140)
0.7111 (0.0343)
(0.6439, 0.7782)

–
–

−L 64.2790 64.2790 65.6904 70.4214
AIC 132.558 134.558 135.3809 144.8427
BIC 133.9741 136.6822 136.797 146.2588

K-S value 0.1114 0.1116 0.1351 0.2194
p-value 0.9819 0.9816 0.9133 0.4068

Model

Statistic DBH DP P G

θ MLE (SE)
CI

0.999 (0.0019)
(0.9953, 1.0030)

0.7202 (0.0158)
(0.6893, 0.7511)

27.535 (0.3498)
(26.8495, 28.2208)

0.035 (0.0023)
(0.0305, 0.0395)

−L 91.3684 77.4023 151.2064 66.0001
AIC 184.7368 156.8047 304.4129 133.0002
BIC 185.4448 157.5127 305.1209 134.7083

K-S value 0.7912 0.4053 0.3815 0.1766
p-value 1.582×10−10 0.0097 0.0179 0.6743

From Table 9, it is evident that, besides the DPsL distribution, the DTPL, G and DLL
distributions also performed quite well, but it is clear that the DPsL distribution was
the best among them, since it had the lowest K-S, AIC and BIC, with a higher p-value.
In order to illustrate this claim, Figure 3 provides the probability–probability (P–P) plots,
and Figure 4 displays the estimated cdfs of the fitted distributions.
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Figure 3. The P–P plots for the fitted distributions using the failure times data.

Figure 4. Estimated cdfs of the fitted distributions using the failure times data.

From the above figures, we could infer that the DPsL distribution yielded a better
fit among other fitted distributions. Table 10 completes these results by presenting some
descriptive measures of the fitted DPsL distribution. Hence, it is evident that the fitted
DPsL distribution was over dispersed, moderately right skewed and leptokurtic.

Table 10. Values of some descriptive statistics of the DPsL distribution for the failure times data.

Mean Variance DI Skewness Kurtosis

27.8667 395.5822 14.1955 0.7020 2.3149
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5.2. Numbers of Borers

The second dataset was the biological experiment data, which represented the number
of European corn borer (No. ECB) larvae Pyrausta in the field (see [24]). It was an experi-
ment conducted randomly on eight hills in 15 replications, and the experimenter counted
the number of borers per hill of corn. The fits of the DPsL distribution were compared
together with some competitive distributions which were the new Poisson weighted ex-
ponential (NPWE) (see [16]), DIW, discrete Burr-XII (DBXII) (see [23]), discrete Bilal (DBl)
(see [8]), DP, DBH and Poisson (P) distributions. The MLEs with their corresponding SEs,
CIs under the form (lower bound of the CI (LCI), upper bound of the CI (UCI)) for the
parameter(s) and goodness of fit test for the numbers of borers dataset are reported in
Table 11.

Table 11. The MLE, LCI, UCI, −L, AIC, BIC, χ2 and p-values for the one parameter distributions considered using the
number of borers dataset.

X
Observed

Frequency

Expected Frequency

DPsL NPWE DIW DBXII DBl DP DBH P

0 43 44.62 48.32 41.37 43.84 32.74 64.45 68.07 27.22
1 35 30.46 28.86 41.85 39.61 39.59 20.15 21.97 40.38
2 17 19.07 17.24 15.42 15.62 24.27 9.69 10.51 29.95
3 11 11.34 10.29 7.17 7.20 12.50 5.65 5.98 14.81
4 5 6.51 6.15 3.94 3.91 5.97 3.68 3.75 5.49
5 4 3.65 3.67 2.42 2.37 2.74 2.58 2.51 1.63
6 1 2.01 2.19 1.61 1.59 1.23 1.90 1.75 0.40
7 2 1.09 1.31 1.13 1.09 0.54 1.46 1.26 0.09
8 2 1.25 1.94 5.09 4.80 0.24 1.15 0.93 0.02

Total 120 120 120 120 120 120 120 120 120

θ

MLE 0.7219 0.1434 0.345 0.519 0.6565 0.3292 0.8654 1.4834
SE 0.0122 0.2945 0.043 0.051 0.0017 0.0031 0.0035 0.0101

LCI 0.6980 0 0.261 0.419 0.6532 0.3232 0.8585 1.4635
UCI 0.7459 0.4339 0.429 0.619 0.6599 0.3352 0.8723 1.5033

β

MLE 2.4635 0.5896 1.541 2.358
SE 0.1367 1.3706 0.156 0.3656

LCI 2.1956 0 1.235 1.641
UCI 2.7315 3.2760 1.847 3.074

−L 200.4152 200.8774 204.812 204.293 204.6753 220.6182 214.0490 219.1879
AIC 404.8303 405.7548 413.624 412.586 411.3505 443.2363 430.0979 440.3759
BIC 410.4053 411.3297 419.199 418.161 414.138 446.0238 432.8854 443.1634
χ2 1.4445 2.1591 5.511 4.664 10.0780 26.645 25.795 38.583

Degrees of freedom 3 3 3 3 4 4 4 4
p-value 0.9194 0.8267 0.138 0.198 0.0731 <0.001 <0.001 <0.001

From the above table, it is evident that, besides the DPsL distribution, the NPWE
distribution also performed quite well, but it is clear that the DPsL distribution was the best
among them, since it had the lowest −L, AIC, BIC and χ2 value with the highest p-value.

From Figure 5, we could infer that the DPsL distribution yielded a better fit among
other fitted distributions. To complete this, Table 12 contains some descriptive measures of

53



Math. Comput. Appl. 2021, 26, 76

the fitted DPsL distribution. Hence, here also, it is evident that the fitted DPsL distribution
was over-dispersed, moderately right skewed and leptokurtic.

Figure 5. The estimated pmfs of the fitted distributions for the number of borers dataset.

Table 12. Values of some descriptive statistics of the DPsL distribution for the number of borers dataset.

Mean Variance DI Skewness Kurtosis

1.5917 2.6249 1.6491 0.8172 2.6435

5.3. Numbers of Claims

In this part, a comparison of the performance of the INAR(1)DPsL process with the
INAR(1)DTPL (see [7]), INAR(1)NPWE (see [16]), INAR(1)DPLi (see [15]) and INAR(1)G
(see [14]) processes was conducted. The one-step translation probabilities of the competitive
INAR(1) processes were given as follows:

1. For the INAR(1)DPLi process:

Pr(Xt = k | Xt−1 = l) =
min(k,l)

∑
i=0

(
l
i

)
pi(1 − p)l−i θ2(k − i + θ + 2)

(θ + 1)k−i+3 , θ > 0.

2. For the INAR(1)DTPL process:

Pr(Xt = k | Xt−1 = l) =
min(k,l)

∑
i=1

(
l
i

)
pi(1 − p)l−i

× λk−i{β(λ(log(λ)− 1) + 1) + (λ − 1) log(λ)(α + β(k − i))}
β − α log(λ)

,

0 < λ < 1, αθ + β > 0, θ = − log(λ).
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3. For the INAR(1)NPWE process:

Pr(Xt = k | Xt−1 = l) =
min(k,l)

∑
i=0

(
l
i

)
pi(1 − p)l−iα(1 + θ)(1 + α + αθ)−(k−i)−1,

α > 0, θ > 0.

4. For the INAR(1)G process:

Pr(Xt = k | Xt−1 = l) =
min(k,l)

∑
i=1

(
l
i

)
pi(1 − p)l−i

[
α(1 − α)k−i

]
,

0 < α < 1.

The third data we used here were to illustrate the application of the DPsL distribution
in the INAR(1) process. Originally, the data were studied by [25], which consisted of 67
monthly claims for short-term disability benefits made by injured workers to the B.C.
Workers’ Compensation Board (WCB). These data were reported from the BC Center,
Richmond, for the period of 10 years from 1985 to 1994. The mean, variance, and DI of the
dataset were 8.6042, 11.2392 and 1.3062, respectively. To check whether the data considered
had statistically significant over-dispersion, the hypothesis test proposed by [26] was
applied. The value test statistic was 51.971 with a p-value less than 0.001, which showed
the data had significant over-dispersion. Figure 6 displays the plots of the autocorrelation
function (ACF), partial ACF (PACF), histogram and time series plots, and in the PACF plot
the unique first lag significance indicated that these data could be used for modelling the
INAR(1) process.
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Figure 6. PACF, ACF, histogram and time series plot for the number of claims dataset.

The parameter estimates, modelling adequacy criteria, theoretical mean, variance
and DI of the fitted INAR(1) process were recorded in Table 13. Since the INAR(1)DPsL
process had lesser values for -L, AIC and BIC statistics than those of the INAR(1)DTPL,
INAR(1)NPWE, INAR(1)PL and INAR(1)G processes, the INAR(1)DPsL process provided
better fits than the competitors. Additionally, the obtained DI value of the INAR(1)DPsL
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process was very near the empirical one. It is conclusive that the INAR(1)DPsL process
impressively explained the characteristics of the dataset.

Table 13. The estimates and modelling adequacy statistics of the fitted distributions for the number of claims dataset.

Model Parameters Estimates (SE) −L AIC BIC μx σ2
x DIx

INAR(1)DPsL
θ

β

p

0.4835(0.0526)
1.9214(0.1254)
0.5620(0.0439)

245.3344 496.6687 504.3618 8.7812 15.9626 1.8178

INAR(1)DTPL

θ

β

λ

p

−0.1211(0.3067)
0.4834(0.1903)
0.7477(0.0324)
0.5619(0.0439)

245.3344 498.6687 508.9261 8.7604 16.2473 1.8546

INAR(1)NPWE
θ

β

p

0.1729(0.8221)
0.2738(0.1919)
0.6432(0.0338)

252.3457 510.6913 518.3844 8.3542 18.4417 2.2075

INAR(1)DPL
θ

p
0.4938(0.0583)
0.6139(0.0381)

248.6185 501.237 506.3657 9.375 23.1842 2.4729

INAR(1)G
θ

p
0.2431(0.0263)
0.6432(0.0338)

252.3457 508.6913 513.82 9.0417 31.4719 3.4808

Empirical 8.6042 11.2392 1.3062

The residual analysis was conducted to check whether the fitted INAR(1)DPsL process
was accurate. For that, Pearson residuals for the INAR(1)DPsL process were calculated
through the following formula:

rt =
xt − E(Xt | Xt−1 = xt−1)

Var(Xt | Xt−1 = xt−1)
1/2 ,

where E(Xt | Xt−1 = xt−1) and Var(Xt | Xt−1 = xt−1) were derived from (14) and (15),
respectively. When the fitted INAR(1) process was statistically valid, the Pearson residual
had to be uncorrelated and should have had zero mean and unit variance [27]. Here, we
obtained the mean and variance of the Pearson residuals of the INAR(1)DPsL process as
0.035 and 0.967, respectively, which were very close to the desired values. According to the
results of [28], the INAR(1)DPsL process for the data was

Xt = 0.5620 ◦ Xt−1 + εt,

where the innovation process was such that εt follows the DPsL (0.4835, 1.9214) distribution.
Predicted values of the monthly number of claims dataset and the ACF plot of the Pearson
residuals via this process were displayed in Figure 7.

Based on this figure, the ACF plot of the Pearson residuals specified that there was no
presence of autocorrelation for the Pearson residuals.
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Figure 7. The predicted values of the number of claims dataset (left) and the ACF plot of the Pearson
residuals (right).

6. Concluding Remarks

In this paper, a two-parameter discrete distribution, namely, the discrete Pseudo
Lindley (DPsL) distribution, was proposed. Its primary motivation is the ability to model
various phenomena with under- and over-dispersed observed values. Various statistical
properties, almost all having a closed form, revealed the flexibility and simplicity of
the distribution. The estimation of the unknown parameters was performed using two
different methods. They conducted an extensive simulation study to reveal the finite
sample performance of the distribution. Crucially, a new INAR(1) process with DPsL
innovations was developed and studied in detail. Three real-life datasets were considered
to prove the efficiency of the proposed distribution. As a future work, we could consider
other methods of discretization for the PsL distribution, which would then provide better
properties than the survival discretization method. Furthermore, we can attempt to extend
it to bivariate models. We hope that the DPsL distribution, as well as the related modelling
strategy, will be an interesting alternative to modelling count data, especially in modelling
the over-dispersed count data.
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Abstract: The paper contributes majorly in the development of a flexible trigonometric extension
of the well-known modified Lindley distribution. More precisely, we use features from the sine
generalized family of distributions to create an original one-parameter survival distribution, called
the sine modified Lindley distribution. As the main motivational fact, it provides an attractive
alternative to the Lindley and modified Lindley distributions; it may be better able to model lifetime
phenomena presenting data of leptokurtic nature. In the first part of the paper, we introduce it
conceptually and discuss its key characteristics, such as functional, reliability, and moment analysis.
Then, an applied study is conducted. The usefulness, applicability, and agility of the sine modified
Lindley distribution are illustrated through a detailed study using simulation. Two real data sets
from the engineering and climate sectors are analyzed. As a result, the sine modified Lindley model
is proven to have a superior match to important models, such as the Lindley, modified Lindley, sine
exponential, and sine Lindley models, based on goodness-of-fit criteria of importance.

Keywords: goodness-of-fit; trigonometric distributions; modified Lindley distribution; engineering
data; climate data; statistical analysis

1. Introduction

The last few years in applied sciences have been marked by the need and volume
of data to be analyzed. To meet this need, new models have been proposed, and their
improvement is a hot topic. These require, among other things, the underlying devel-
opment of new (statistical or probabilistic) distributions. In this regard, one idea is to
modify existing distributions in order to make the corresponding models more flexible and
adaptable to several kinds of data. Hence, several modifications based on mathematical
techniques have been proposed, generating distributions classified under “families of
distributions”. The readers are referred to [1] for a bird’s-eye view. In recent times, the
families described by ”trigonometric transformations" have gained a lot of interest because
of their applicability and working capability in a variety of situations. Related to this topic,
Refs. [2–4] were among the first to study the sinusoidal transformation that leads to the
sine generated (S-G) family. For this family, the cumulative distribution function (cdf) and
probability density function (pdf) are given by

FS(x; η) = sin
[π

2
G(x; η)

]
, x ∈ R, (1)

and
fS(x; η) =

π

2
g(x; η) cos

[π

2
G(x; η)

]
, x ∈ R, (2)

respectively, where G(x; η) and g(x; η) represent the cdf and pdf of a certain continuous
distribution with a parameter vector denoted by η. Thus, the functions FS(x; η) and
fS(x; η) are linked to a baseline or parent distribution determined beforehand, relying on
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the purpose of study. It is worth noting that the baseline cdf has not been supplemented
with any additional parameters. The S-G family was developed as a viable substitute for
the parent distribution; we can see it from the following first-order stochastic ordering
(FOSO) property:

G(x; η) ≤ FS(x; η) (3)

for all x ∈ R, as well as the possibility of creating versatile statistical distributions that can
accept a wide range of data. To make the statement clearer, the exponential distribution
is used as a parent distribution by [2] to define the sine exponential distribution. The
inverse Weibull (IW) distribution proposed by [5] is used as the reference distribution
by [4], thus creating the sine IW (SIW) distribution. The sine power Lomax distribution
investigated by [6] is one of the most recent works highlighting the importance of the S-G
family. It enhances the parental power Lomax distribution on several functional aspects.
Among the trigonometric families of distributions, a few of them, including the C-S family
by [7], SKum-G family by [8], STL-G family by [9], and T-G family by [10], were influenced
by these efforts.

In this research, we contribute to the developments of the S-G family by linking it
to a particular one-parameter distribution introduced by [11]: the modified Lindley (ML)
distribution. The sine ML (S-ML) distribution is thus introduced. In order to comprehend
the outlined approach, a review of the ML distribution is essential. As a first comment,
the ML distribution presented by [11] is achieved by implementing the tuning exponential
function e−θx, with θ > 0, to the Lindley distribution, with the motive of modifying its
capabilities for new modeling perspectives. On the mathematical side, the cdf and pdf of
the ML distribution are defined by

GML(x; θ)=

⎧⎪⎨⎪⎩ 1 −
[

1 + e−θx θx
1 + θ

]
e−θx, if x > 0

0, if x ≤ 0
(4)

and

gML(x; θ)=

⎧⎨⎩
θ

1 + θ
e−2θx[(1 + θ)eθx + 2θx − 1

]
, if x > 0

0, if x ≤ 0
, (5)

respectively. Basically, the ML distribution satisfies the following FOSO property:

GL(x; θ) ≤ GML(x; θ) ≤ GE(x; θ) (6)

for all x ∈ R, where GL(x; θ) and GE(x; θ) represent the cdfs of the Lindley and exponential
distributions, respectively. In this sense, the ML distribution constitutes a real alternative
to these two classical distributions. The ML distribution is also identified as a linear
combination of the exponential distribution with parameter θ and the gamma distribution
with parameters (2, 2θ), and it has an “increasing-reverse bathtub-constant” hazard rate
function (hrf). The real benefit is quite noteworthy; the ML model is superior to the Lindley
and exponential models for the three data sets seen in [11]. A few inspired distributions
enhancing or generalising the ML distribution were proposed for the purpose of optimality.
These include the Poisson ML distribution by [12], wrapped ML distribution by [13], and
discrete ML distribution by [14].

The immediate aim of the S-ML distribution is to use the S-G technique to enhance the
effectiveness of the ML distribution on diverse data sets. In particular, thanks to the FOSO
properties in Equations (3) and (6), it is a real and attractive alternative to the Lindley and
ML distributions. Further exploration in the following research will reveal deeper motives.
To summarise, the S-ML model’s utility and adaptability make it particularly appealing to
fit data from various fields. Remarkably, the characterized pdf shows a variety of curve
shapes, some of which have only one mode, are decreasing, and are asymmetrical to the
right. In comparison to the pdf of the ML distribution, when it is unimodal, the pdf of
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the S-ML distribution has a more rounded peak, meaning that it is better adapted to fit
a data histogram presenting a high kurtosis level. Furthermore, the S-ML distribution
exhibits a non-monotonic hrf which is “increasing-reverse bathtub-constant” shaped. The
hrf of the ML distribution has this feature as well. As with other competent models, the
accuracy of the fits is persistent in the case of the S-ML model due to their characteristics.
The claim is demonstrated by examining two published real-world data sets, primarily
from engineering and climate data, against twelve competent models.

We prepare the rest of the paper in the following manner. The concept, quality, and key
aspects of the S-ML distribution are covered in Section 2. A moment analysis is conducted
in Section 3. The maximum likelihood estimation of the parameter θ is explained in
Section 4. A simulation study is presented in Section 5. Section 6 assesses the proposed
model’s applicability to real-world data. Finally, in Section 7, the conclusions are provided.

2. The S-ML Distribution

The mathematical foundation for the S-ML distribution is first presented.

2.1. Functional Analysis

To begin, we perform a functional analysis of the S-ML distribution. By substituting
Equations (4) and (5) in Equations (1) and (2), respectively, we derive the major functions
of the S-ML distribution; the cdf and pdf are given as follows

FS−ML(x; θ)=

⎧⎪⎨⎪⎩ cos
[

π

2

(
1 + e−θx xθ

1 + θ

)
e−θx

]
, if x > 0

0, if x ≤ 0

and

fS−ML(x; θ)=

⎧⎨⎩
π
2

θ
1+θ e−2θx

[
(1 + θ)eθx + 2xθ − 1

]
sin
[

π
2

(
1 + e−θx xθ

1+θ

)
e−θx

]
, if x > 0

0, if x ≤ 0
, (7)

with θ > 0. As a primary result mentioned in the introduction section, the following
FOSO property holds: GML(x; θ) ≤ FS−ML(x; θ) for any x ∈ R, making an immediate
difference between the ML and S-ML modeling from the cdf viewpoint. Differences can
also be observed on the respective pdfs, as discussed below. Naturally, variant forms of
fS−ML(x; θ) can be obtained by changing the value of θ. Due to the relative complexity of
this function in the analytical sense, we propose a graphical study for shape analysis. The
more representative shapes of this pdf are shown in Figure 1.
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Figure 1. Plots of (a) unimodal shapes and (b) decreasing shapes for fS−ML(x; θ).

We can observe from Figure 1, that, for smaller values of θ, the plot of fS−ML(x; θ)
is unimodal, and for larger values of θ, the plot of fS−ML(x; θ) is decreasing. As a result,
the S-ML distribution is suitable for modeling a vast majority of lifetime phenomena.
Compared to the parent ML distribution, the following observations are made: When it
is unimodal, we observe that the pdf of the S-ML distribution has a more rounded peak,
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meaning that it is better adapted to fit a data histogram presenting a high kurtosis level.
In other words, the S-ML model is more able to analyze data of a leptokurtic nature.

2.2. Reliability Analysis

We complete the previous functional analysis by studying the complementary reliabil-
ity functions, such as the survival function (sf), hrf (for hazard rate function), reversed hrf
(rhrf), second rate of failure (srf), and the cumulative hrf (chrf) of the S-ML distribution.
In a broader sense, the sf measures the probability that the life of an item will survive
beyond any specified time. Mathematically, the sf of the S-ML distribution is given by

SS−ML(x; θ)= 1 − FS−ML(x; θ) =

⎧⎪⎨⎪⎩ 1 − cos
[

π

2

(
1 + e−θx xθ

1 + θ

)
e−θx

]
, if x > 0

1, if x ≤ 0
.

The hrf measures the likelihood of an item deteriorating or expiring depending on its
lifetime. As a direct consequence, it is critical in the classification of survival distributions.
The hrf of the S-ML distribution is specified by

hS−ML(x; θ) =
fS−ML(x; θ)

SS−ML(x; θ)

=

⎧⎪⎨⎪⎩
π

2
θ

1 + θ
e−2θx

[
(1 + θ)eθx + 2xθ − 1

]
cot
[

π

4

(
1 + e−θx xθ

1 + θ

)
e−θx

]
, if x > 0

0, if x ≤ 0
.

Further, Figure 2 displays the shapes of this hrf for various values of θ.
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Figure 2. Plots of hS−ML(x; θ) with selected values of θ.

Figure 2 emphasizes that the hrf of the S-ML distribution has “increasing-reverse
bathtub-constant” shapes, which is also possessed by the hrf of the ML distribution. This
makes a solid difference between the Lindley and exponential distributions. It is also a
desirable property for modelling purposes.

The rhrf is the ratio between the pdf to its cdf and it plays a role in analyzing censored
data. Analytically, it corresponds to

rS−ML(x; θ)=

⎧⎨⎩
π
2

θ
1+θ e−2θx[(1 + θ)eθx + 2xθ − 1

]
tan
[

π
2

(
1 + e−θx xθ

1+θ

)
e−θx

]
, if x > 0

0, if x ≤ 0
.

The srf is the logarithmic ratio of the sf at time x and x + 1, and it is given by

r∗S−ML(x; θ)=

⎧⎪⎨⎪⎩ ln

(
1 − cos

[
(π/2)

(
1 + e−θxxθ/(1 + θ)

)
e−θx]

1 − cos
[
(π/2)

(
1 + e−θ(x+1)(x + 1)θ/(1 + θ)

)
e−θ(x+1)

]), if x > 0

0, if x ≤ 0

.
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The chrf is the negative logarithm of sf and is given by

HS−ML(x; θ)=

⎧⎪⎨⎪⎩ − ln
(

1 − cos
[

π

2

(
1 + e−θx xθ

1 + θ

)
e−θx

])
, if x > 0

0, if x ≤ 0
.

With these functions, we conclude different reliability analysis in regard with the
S-ML distribution.

3. Moment Analysis

For any lifetime distribution, a moment analysis is necessary to handle numerically its
modeling capacities, identifying the behavior of various central and dispersion moment
parameters, as well as moment skewness and kurtosis coefficients.

As a first notion, for any positive integer r ≥ 1, and a random variable X with the
S-ML distribution, the r-th moment of X exists. It can be expressed as

mom(r)= E(Xr) =
∫ +∞

0
xr fS−ML(x; θ)dx

=
π

2
θ

1 + θ

∫ +∞

0
xre−2θx

[
(1 + θ)eθx + 2xθ − 1

]
sin
[

π

2

(
1 + e−θx xθ

1 + θ

)
e−θx

]
dx.

(8)

Integral developments in the classical sense are limited. Computer software, on the other
hand, can be used to quantitatively evaluate it for a given θ.

We propose a series development of mom(r) in the next result, which can be used
for computational purposes in a less opaq method than a “ready to use but black box”
computer program.

Proposition 1. The r-th moment of X can be expanded as

mom(r)=
r
θr

+∞

∑
k=1

2k

∑
�=0

(
2k
�

)
(−1)k+1

(2k)!

(π

2

)2k
(1 + θ)−� (�+ r − 1)!

(�+ 2k)r+�
.

Proof. For the proof, we do not directly use the integral expression of mom(r) as described
in (8). An integration by part gives

mom(r)=
∫ +∞

0
xr fS−ML(x; θ)dx = r

∫ +∞

0
xr−1SS−ML(x; θ)dx.

Now, by utilizing the series expansion of the cosine function and the classical binomial
formula, we obtain

SS−ML(x; θ)= 1 −
+∞

∑
k=0

(−1)k

(2k)!

(π

2

)2k
(

1 + e−θx xθ

1 + θ

)2k
e−2kθx

=
+∞

∑
k=1

(−1)k+1

(2k)!

(π

2

)2k
(

1 + e−θx xθ

1 + θ

)2k
e−2kθx

=
+∞

∑
k=1

2k

∑
�=0

(
2k
�

)
(−1)k+1

(2k)!

(π

2

)2k
(

θ

1 + θ

)�

x�e−(�+2k)θx.

(9)
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Hence, after some developments including the change of variable y = (�+ 2k)θx (so that
dx = [1/((�+ 2k)θ)]dy), and the calculus of gamma-type integral, we get

mom(r)= r
∫ +∞

0
xr−1

[
+∞

∑
k=1

2k

∑
�=0

(
2k
�

)
(−1)k+1

(2k)!

(π

2

)2k
(

θ

1 + θ

)�

x�e−(�+2k)θx

]
dx

= r
+∞

∑
k=1

2k

∑
�=0

(
2k
�

)
(−1)k+1

(2k)!

(π

2

)2k
(

θ

1 + θ

)� ∫ +∞

0
xr+�−1e−(�+2k)θxdx

=
r
θr

+∞

∑
k=1

2k

∑
�=0

(
2k
�

)
(−1)k+1

(2k)!

(π

2

)2k
(1 + θ)−� (�+ r − 1)!

(�+ 2k)r+�
.

Proposition 1 is proved. �

Then, based on Proposition 1, the following finite sum approximation remains
acceptable:

mom(r)≈ r
θr

U

∑
k=1

2k

∑
�=0

(
2k
�

)
(−1)k+1

(2k)!

(π

2

)2k
(1 + θ)−� (�+ r − 1)!

(�+ 2k)r+�
,

where U represents any large integer.
From the above moment formulas, we can easily derive the mean, variance, moment

skewness coefficient and moment kurtosis coefficient; the mean is given by mom(1), the
variance is obtained as V(X) = E

(
(X − mom(1))2

)
, the moment skewness coefficient can

be derived as MS = E

(
(X − mom(1))3

)
/V(X)3/2 and the moment kurtosis coefficient

can be derived as MK = E

(
(X − mom(1))4

)
/V(X)2.

Table 1 gives a glimpse of these values for different values of θ.

Table 1. Values of various moment measures of the S-ML distribution.

θ mom(1) V(X) MS MK

0.5 1.448465 1.210367 1.449555 6.374828
1.0 0.6803329 0.3003946 1.520729 6.633623
1.5 0.4363871 0.1322356 1.573212 6.842306
2.0 0.318833 0.07375445 1.611987 7.005059
2.5 0.2502845 0.04687065 1.64148 7.133455
3.0 0.2056052 0.03235949 1.664569 7.236649

From Table 1, we can observe that, as the value of the parameter θ of the S-ML
distribution increases, all the considered measures increase. Furthermore, since MS > 0,
it is clear that the S-ML distribution is mainly right-skewed, and since MK > 3, it is
mainly leptokurtic.

We can complete the previous moment results by investigating the incomplete mo-
ments. To begin, let r ≥ 1 be an integer, t ≥ 0, and X be a random variable with the S-ML
distribution. Based on this variable, we define its incomplete version by Y(t) = X if X ≤ t
and Y(t) = 0 if X > t. Then, the r-th incomplete moment of X given at t exists, and it is
defined by

mom(r, t)= E
(
Y(t)r) = ∫ t

0
xr fS−ML(x; θ)dx.

It is involved in developments of important probabilistic objects, such as mean deviations,
income curves, etc. More basically, it can be viewed as a truncated version of the standard
r-moment. We may refer to [15] in this regard.

In the next results, we present a series expansion of mom(r, t), which can be used for
approximation purposes.
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Proposition 2. The r-th incomplete moment of X given at t exists and can be expanded as

mom(r, t)= −tr
{

1 − cos
[

π

2

(
1 + e−θt tθ

1 + θ

)
e−θt
]}

+
r
θr

+∞

∑
k=1

2k

∑
�=0

(
2k
�

)
(−1)k+1

(2k)!

(π

2

)2k
(1 + θ)−� 1

(�+ 2k)r+�
γ(r + �, (�+ 2k)θt),

where γ(a, t) denotes the incomplete gamma function defined by γ(a, t) =
∫ t

0 xa−1e−xdx, where
a > 0 and t ≥ 0.

Proof. The proof follows the lines of the one of Proposition 1. An integration by part gives

mom(r, t)=
∫ t

0
xr fS−ML(x; θ)dx = −trSS−ML(t; θ) + r

∫ t

0
xr−1SS−ML(x; θ)dx.

It follows from the series expansion in Equation (9) and the change of variable
y = (�+ 2k)θx that

∫ t

0
xr−1SS−ML(x; θ)dx=

+∞

∑
k=1

2k

∑
�=0

(
2k
�

)
(−1)k+1

(2k)!

(π

2

)2k
(

θ

1 + θ

)� ∫ t

0
xr+�−1e−(�+2k)θxdx

=
1
θr

+∞

∑
k=1

2k

∑
�=0

(
2k
�

)
(−1)k+1

(2k)!

(π

2

)2k
(1 + θ)−� 1

(�+ 2k)r+�
γ(r + �, (�+ 2k)θt).

Therefore

mom(r, t)= −tr
{

1 − cos
[

π

2

(
1 + e−θt tθ

1 + θ

)
e−θt
]}

+
r
θr

+∞

∑
k=1

2k

∑
�=0

(
2k
�

)
(−1)k+1

(2k)!

(π

2

)2k
(1 + θ)−� 1

(�+ 2k)r+�
γ(r + �, (�+ 2k)θt).

This concludes the proof of Proposition 2. �

In some sense, Proposition 2 generalizes Proposition 1; by taking t → +∞ ,
Proposition 2 becomes Proposition 1.

The rest of the study is devoted to the applicability of the S-ML model, illustrated
with concrete examples of data analysis.

4. Inferential Analysis

The inference of the S-ML model is covered in this section. The parameter θ is
supposed to be unknown. In order to estimate it, the maximum likelihood estimation
method is employed. We adopt the methodology as described in a broader context, as seen
in [16].

Thus, the next is a mathematical representation of this methodology in the setting of
the S-ML distribution. First, let n be a positive integer and x1, x2, . . . , xn be observations
drawn from a random variable X following the S-ML distribution. Then, the corresponding
likelihood function and log-likelihood function are as follows

L=
n

∏
i=1

fS−ML(xi; θ) =
(π

2

)n
(

θ

1 + θ

)n
e−2θ ∑n

i=1 xi
n

∏
i=1

[
(1 + θ)eθxi + 2xiθ − 1

]
×

n

∏
i=1

sin
[

π

2

(
1 + e−θxi

xiθ

1 + θ

)
e−θxi

]
,
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and

ln L= n ln π − n ln 2 + n ln θ − n ln(1 + θ)− 2θ
n

∑
i=1

xi

+
n

∑
i=1

ln
[
(1 + θ)eθxi + 2xiθ − 1

]
+

n

∑
i=1

ln
{

sin
[

π

2

(
1 + e−θxi

xiθ

1 + θ

)
e−θxi

]}
,

respectively. The maximum likelihood estimate (MLE) of θ can be defined via the following
argmax definition:

θ̂ = argmax lnθ>0 L. (10)

This estimate can be formalized through the solution of the non-linear equations expressed
as d ln L/dθ = 0, where

d
dθ

ln L=
n
θ
− n

1 + θ
− 2

n

∑
i=1

xi +
n

∑
i=1

[
eθxi (θxi + xi + 1) + 2xi

(1 + θ)eθxi + 2xiθ − 1

]
+

n

∑
i=1

[
π

2
e−θxi

(
− θx2

i e−θxi

θ + 1
+

xie−θxi

θ + 1
− θxie−θxi

(θ + 1)2

)
− π

2
xie−θxi

(
1 +

θxie−θxi

θ + 1

)]

× cot
[

π

2

(
1 + e−θxi

xiθ

1 + θ

)
e−θxi

]
.

There is no analytical solution for this equation, but θ̂ can be determined at least numerically
with any statistical software such as the R software (see [17]). Based on θ̂, the estimated
pdf (epdf) of the S-ML model is given by fS−ML

(
x; θ̂
)

and the estimated cdf (ecdf) of the
S-ML model is given by FS−ML

(
x; θ̂
)
.

Let I(θ) = −E
[
d2 ln[ fS−ML(X; θ)]/dθ2] be the expected Fisher information matrix.

Then, the estimated standard error (SE) of θ is achieved by considering the value of the
diagonal component of I

(
θ̂
)−1

raised to half.

5. Simulation Study

In the framework of the S-ML model, a simulation study is carried out to study the
performance of θ̂ given as Equation (10) in terms of their bias (bias) and mean squared
error (MSE). The simulated procedure can be described as follows:

We generate samples of sizes n = 20, 50, 100, 200, 500, 1000 from the S-ML distribution
with θ = (1.25, 1.50, 2.00, 2.50). For each sample, the MLE θ̂ is calculated. Here, 1000 such
repetitions are made to calculate the standard mean MLE (MMLE), bias and MSE of these
estimates using the formula:

MMLE
(
θ̂
)
=

1
1000

1000

∑
i=1

θ̂i, Biasθ

(
θ̂
)
=

1
1000

1000

∑
i=1

(
θ̂i − θ

)
and

MSEθ

(
θ̂
)
=

1
1000

1000

∑
i=1

(
θ̂i − θ

)2
,

respectively, where θ̂i is the estimate of θ for each iteration in the simulation study; i is from
1 to 1000. The results of the study are reported in Table 2.
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Table 2. Outcome of the simulation study.

θ n
^
θ

Bias MSE

1.25

20 0.040548 0.052057
50 0.017112 0.0194051

100 0.007862 0.009083
200 0.005018 0.0045803
500 0.002377 0.001814
1000 0.001318 0.000915

1.50

20 0.51523 0.072304
50 0.021153 0.028311

100 0.008343 0.0125480
200 0.005195 0.006043
500 0.0027303 0.002816
1000 0.001619 0.001239

2.00

20 0.060237 0.135020
50 0.029170 0.052147

100 0.012338 0.024522
200 0.009004 0.012285
500 0.001464 0.004796
1000 0.003824 0.002366

2.50

20 0.106934 0.246197
50 0.033415 0.083405

100 0.023273 0.044903
200 0.007408 0.019908
500 0.007856 0.008118
1000 0.001431 0.004158

From Table 2, it is observed that as sample size n increases,

1. Bias decreases, which shows the accuracy of θ̂;
2. MSE decreases, which indicates the consistency (or preciseness) of θ̂.

6. Applications of the S-ML Model

We use the S-ML model on two data sets based on the maximum likelihood method
as introduced previously. The data differ in size, traits, and background, but they are all of
current interest in their areas.

6.1. Method

We proceed as follows for each data set:

1. The data are presented briefly, accompanied with their reference;
2. A table that encapsulates the basic statistical measures of the data is provided;
3. The goodness-of-fit measures of the models under consideration are evaluated and

arranged in order of model performance in a table;
4. The MLE(s) of the model parameters is(are) shown, as well as the relevant SEs, as

supplementary work;
5. It is concluded with a visual concept by presenting the histogram of the data and the

epdf, as well as the empirical cdf plots and ecdf for the S-ML model exclusively in
another graph.

The adequacy measures that are used for model fitting are provided here. Suppose
x1, x2, . . . , xn represent the data and x(1), x(2), . . . , x(n) be their ordered values. As an initial
step, we consider the Cramér von-Mises, Anderson Darling, and Kolmogorov–Smirnov
statistics defined by
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A∗ = −n − n
∑

i=1

2i−1
n

[
ln
(

FS−ML

(
x(i); θ̂

))
+ ln

(
SS−ML

(
x(n+1−i); θ̂

))]
,

W∗ = 1
12n +

n
∑

i=1

(
FS−ML

(
x(i); θ̂

)
− 2i−1

2n

)2

and
Dn = max

i=1,2,...,n

(
FS−ML

(
x(i); θ̂

)
− i−1

n , i
n − FS−ML

(
x(i); θ̂

))
,

respectively. The p-value of the Kolmogorov–Smirnov test linked to Dn is also examined.
Of course, the above definitions can be adapted to any other model than the S-ML model.
The measures of adequacy are extensively employed to determine which model is best in
terms of fitting the data set under study. The model having the least value for the W∗ or
A∗, and the highest p-value, is considered to give the best fit that is in correspondence with
the data.

Furthermore, we consider the following goodness-of-fit measures: Akaike information
criterion (AIC) and Bayesian information criterion (BIC), given as follows

AIC = 2k − 2LL, BIC = −2LL + k ln(n),

respectively, where LL is the value of the log-likelihood function taken at θ̂ and k, being
the number of parameters of the model, here k = 1 for the S-ML model. As it is widely
understood, the model with the lowest value for AIC or BIC is selected as the greatest
player of models that fits the data set compared to the other models. For more information
on the usage and the underlying meaning of the measures W∗, A∗, Dn, AIC and BIC, we
refer to [18].

In order to study the best fit of the S-ML model, we aim to compare it with some
useful and competent models, which include the ML, Lindley, sine exponential and sine
Lindley models listed in Table 3. It is worth noting that models with three parameters are
also considered. The aim is to prove that our model can be efficient enough to outperform
more complex models in the literature.

Table 3. Competent models with the S-ML model.

Models Abbreviations Cdfs References

Lindley Lindley 1 −
[

1 +
xθ

1 + θ

]
e−xθ [19]

sine exponential S-Expo cos
(π

2
e−θx

)
[2]

sine Lindley S-Lindley cos
[

π

2

(
1 +

θx
1 + θ

)
e−θx

]
[20]

modified Lindley ML 1 −
[

1 + e−θx θx
1 + θ

]
e−θx [11]

inverted modified Lindley I-ML
[

1 +
θ

1 + θ

1
x

e−θ/x
]

e−θ/x [21]

inverted Lindley IL
[

1 +
θ

1 + θ

1
x

]
e−θ/x [22]

transmuted exponentiated inverse Rayleigh TEIR e−θα/x2
[
1 + λ − λe−θα/x2

]
[23]

transmuted inverse Rayleigh TIR e−θ/x2
[
1 + λ − λe−θ/x2

]
[24]

inverse Rayleigh IR e−α/x2
[25]

Lomax Lomax 1 − [1 + x
λ

]−α [26]

log normal LNormal φ

[
ln x − μ

σ

]
[27]

generalized beta type II GB2 |α|
βαθ B(θ, δ)

∫ x
0

yαθ−1(
1 + (y/β)α)θ+δ

dy [28]

68



Math. Comput. Appl. 2021, 26, 81

6.2. Precipitation Data Set

The data set has thirty consecutive values of precipitation (in inches) in the month of
March in Minneapolis, as provided by [29] and recently used by [30]. The data are: (0.77,
1.74, 0.81, 1.2, 1.95, 1.2, 0.47, 1.43, 3.37, 2.2, 3, 3.09, 1.51, 2.1, 0.52, 1.62, 1.31, 0.32, 0.59, 0.81,
2.81, 1.87, 1.18, 1.35, 4.75, 2.48, 0.96, 1.89, 0.9, 2.05). The descriptive statistical measures of
these data are presented in Table 4.

Table 4. Descriptive statistical measures for the precipitation data set.

Mean Median Variance Skewness Kurtosis Min Max

1.68 1.47 1 1.086682 4.206884 0.32 4.75

Based on the information in Table 4, the data are right-skewed and leptokurtic. The
MLE, SE, and goodness-of-fit measures of the S-ML model and those of the other models
for precipitation data set are given in Tables 5 and 6.

Table 5. MLEs, SEs, and goodness-of-fit measures for the precipitation data set with one parameter models.

Model MLE (SE) AIC BIC A* W* Dn p-Value

S-ML θ̂ = 0.44 (0.0551) 82.9109 84.3121 0.6796 0.0972 0.1273 0.7153
ML θ̂ = 0.6644 (0.0974) 85.8898 87.291 1.1278 0.1723 0.1566 0.4532

Lindley θ̂ = 0.9096 (0.1247) 88.2874 89.6886 1.5908 0.2618 0.1882 0.2383
S-Expo θ̂ = 0.3396 (0.0576) 90.7932 92.1944 2.1771 0.3873 0.2202 0.1088

S-Lindley θ̂ = 0.6091 (0.0729) 85.6414 87.0426 1.1566 0.1817 0.1637 0.3966
I-ML θ̂ = 1.247 (0.1906) 89.7366 91.1378 1.3909 0.2170 0.1975 0.1925

IL θ̂ = 1.5833 (0.2268) 92.4423 1.8266 0.3040 0.1904 0.2279 0.0887
IR α̂ = 0.8588 (0.1568) 92.292 92.674 2.1822 0.43077 0.2396 0.06369

Table 6. MLEs, SEs, and goodness-of-fit measures for the precipitation data set with models having more than one parameter.

Model MLE (SE) AIC BIC A* W* Dn p-Value

TEIR α̂ = 1.1878 (5.739) 90.2022 94.4058 1.1359553 0.2117553 0.1817501 0.2749038
λ̂ = −0.67006 (0.266)

θ̂ = 0.6362 (4.778)
TIR λ̂ = 0.0001 (0.40171) 91.073 94.759 1.136 0.21177 0.1817 0.2748

θ̂ = 0.8588 (0.2136)
Lomax α̂ = 58619.76 (52.96) 94.9 97.8 2.5139 0.4539 0.2352 0.0724

λ̂ = 98190 (96.69)
LNormal μ̂ = 0.33737 (0.11368) 81 83.8 0.19855 0.0311 0.0913 0.9640

σ̂ = 0.62263 (0.08038)
GB2 α̂ = 580.4141 (1593.1699) 84.1 89.7 7.43 1.58 0.445 0.0000138

β̂ = 0.8125 (0.6469)
θ̂ = 4.3731 (6.6885)

δ̂ = 520.2863 (584.0752)

We can observe from Table 5 that the S-ML model has the lowest statistics with
the highest p-value, implying that it delivers a better fit than the other models studied.
Comparing the models in Table 6, we can see that the lognormal model gives a better fit,
while the S-ML model takes the second place, but with less modeling complexity in terms
of the number of parameters. Figure 3 depicts the epdf and ecdf plots of the S-ML model
for the precipitation data set.
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Figure 3. Plots of the (a) epdf and (b) ecdf of the S-ML model for the precipitation data set.

From Figure 3, it is obvious that the S-ML model captures the histogram’s overall
pattern and illustrates the comparison of the cdf with the empirical cdf of the S-ML model.
The suitable behaviour of the S-ML model is further confirmed by these graphs. Apart
from the lognormal model, the S-ML model clearly fits better than the Lindley, ML, S-Expo
and S-Lindley, and other models.

6.3. Time between Failure Data Set

This data set refers to the time between failures for repairable items. It was obtained
from [31]. The data are: (1.43, 0.11, 0.71, 0.77, 2.63, 1.49, 3.46, 2.46, 0.59, 0.74, 1.23, 0.94, 4.36,
0.40, 1.74, 4.73, 2.23, 0.45, 0.70, 1.06, 1.46, 0.30, 1.82, 2.37, 0.63, 1.23, 1.24, 1.97, 1.86, 1.17).
The descriptive statistical measures of these data are presented in Table 7.

Table 7. Descriptive statistical measures for the failure time data set.

Mean Median Variance Skewness Kurtosis Min Max

1.542667 1.235000 1.127167 1.295462 4.319170 0.110000 4.730000

From Table 7, we can observe that the failure time data set is right-skewed and
leptokurtic.

The MLE, SE, and goodness-of-fit measures of the S-ML model and those of the other
models for the failure time data set are given in Tables 8 and 9.

Table 8. MLEs, SEs, and goodness-of-fit measures for the failure time data set with one parameter models.

Model MLE (SE) AIC BIC A* W* Dn p-Value

S-ML θ̂ = 0.47420 (0.06039) 82.3276 83.7288 0.22656158 0.02897235 0.07805138 0.99313719
ML θ̂ = 0.7297 (0.1082) 83.5051 84.9063 0.4401 0.0650 0.1112 0.8514

Lindley θ̂ = 0.9762 (0.1345) 85.0946 86.4958 0.7265 0.1138 0.1406 0.5929
S-Expo θ̂ = 0.3662 (0.0625) 86.5547 87.9559 1.0582 0.17981 0.16722 0.3711

S-Lindley θ̂ = 0.64690 (0.0783) 83.7386 85.1398 0.4599 0.0654 0.1139 0.8310
I-ML θ̂ = 0.9222 (0.1361) 92.6416 94.0426 0.9582 0.1430 0.1394 0.6043

IL θ̂ = 1.1603 (0.1619) 95.8658 97.2670 1.261 0.1904 0.1411 0.5879
IR α̂ = 0.237 (0.043) 135.289 136.690 1.423 2.410 0.442 0.00001
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Table 9. MLEs, SEs, and goodness-of-fit measures for the failure time data set with models having more than one parameter.

Model MLE (SE) AIC BIC A* W* Dn p-Value

TEIR α̂ = 0.022 (0.065) 122.99 127.19 8.373 1.47 0.37 0.000410
λ̂ = −0.880 (0.114)
θ̂ = 8.211 (23.735)

TIR λ̂ = −0.880 (0.114) 120.990 123.792 8.369 1.471 0.3761 0.0004
θ̂ = 0.185 (0.035)

Lomax α̂ = 19793.12 (81.02) 90 92.8 1.33 0.232 0.184 0.259
λ̂= 305 (51.04))

LNormal μ̂ = 0.1597 (0.1464) 85.5 88.3 0.2577 0.0369 0.0987 0.9322
σ̂ = 0.801 (0.1035)

GB2 α̂ = 655.80 (2342.40) 87.2 92.8 7.53 1.64 0.042 0.00003
β̂ = 0.907 (0.77)
θ̂ = 2.351 (3.56)

δ̂ = 582.259 (519.98)

Tables 8 and 9 show that, for the failure time data set, the S-ML model has the lowest
statistics and the highest p-value, meaning that it provides a better match than the other
models investigated.

Figure 4 depicts the epdf and ecdf plots of the S-ML model for the failure time data set.
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Figure 4. Plots of the (a) epdf and (b) ecdf of the S-ML model for the failure time data set.

From Figure 4, it is obvious that the S-ML model captures the histogram’s overall
pattern and illustrates the comparison of the cdf with the empirical cdf of the S-ML model.
The suitable behaviour of the S-ML model is further confirmed by these graphs.

7. Conclusions

The article’s major contribution is a flexible trigonometric extension of the well-known
modified Lindley model that proposes a novel efficient statistical modelling technique.
We employ the features of the sine generalized family of distributions in this regard,
and develop the sine modified Lindley distribution. We have displayed a few of its more
noteworthy attributes, with a focus on the shape properties of the corresponding probability
density and hazard rate functions, as well as discussing moments. Simulation studies and
applications demonstrate the utility of the model under consideration. In particular, we
compared it to the primary current models derived from the Lindley, exponential and
other models with one or more parameters, using two real-world data sets. As a result, the
obtained findings are really satisfactory, demonstrating that the novel distribution has a
wide range of applications that could be the subject of additional research in a variety of
scientific fields.
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Abstract: In this article, Burr III distribution is proposed with a significantly improved functional
form. This new modification has enhanced the flexibility of the classical distribution with the
ability to model all shapes of hazard rate function including increasing, decreasing, bathtub, upside-
down bathtub, and nearly constant. Some of its elementary properties, such as rth moments, sth
incomplete moments, moment generating function, skewness, kurtosis, mode, ith order statistics,
and stochastic ordering, are presented in a clear and concise manner. The well-established technique
of maximum likelihood is employed to estimate model parameters. Middle-censoring is considered
as a modern general scheme of censoring. The efficacy of the proposed model is asserted through
three applications consisting of complete and censored samples.
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1. Introduction

Burr devised a dynamic family of probability distributions based on the Pearson
differential equations. The Burr XII (BXII) and Burr III (BIII) distributions are widely used
models from the system of Burr distributions. On the contrary, according to [1], the Burr
X (BX) model has also gained much attention from applied statisticians along with the
BXII and BIII models. The prime reason is that these densities exists in simpler forms and
can yield a range of shapes to model a variety of scenarios in diverse scientific fields. The
authors in [2] are of the view that the most adaptable of these three is BIII, especially in
environmental, reliability, and survival sciences. The BIII distribution is also called the
Dagum distribution in studies of income, wage, and wealth distribution [3]. In the actuarial
literature, it is known as the inverse Burr distribution [4] and the kappa distribution in the
meteorological literature [5]. As per [4], it is a prime case of the four-parameter generalised
Beta-II distribution. In order to follow the ambit regarding the scope of this provision,
we now shift our attention to the BIII distribution. For a random variable X defined on
a positive real line, the cumulative distribution function (cdf) and probability density
function (pdf) of two-parameter BIII distribution, respectively, are given below:

F(x; c, k) =
(
1 + x−c)−k (1)

Math. Comput. Appl. 2021, 26, 82. https://doi.org/10.3390/mca26040082 https://www.mdpi.com/journal/mca
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and
f (x; c, k) = c k x−c−1(1 + x−c)−k−1 , (2)

where c, k > 0 are the shape parameters.
The shape parameter plays a significant role in yielding the hazard rate of BIII distri-

bution, which can be decreasing or unimodal. Thus, it cannot be used to model lifetime
data with a bathtub-shaped hazard function, such as human mortality and deterioration
modelling. For the last few decades, statisticians have been developing various exten-
sions and modifications in Weibull distribution due to its simple functional form. The
two-parameter flexible Weibull extension of [6] has a hazard function that can be increasing,
decreasing, or bathtub shaped. Zhang and Xie [7] studied the characteristics and applica-
tion of the truncated Weibull distribution, which has a bathtub-shaped hazard function. A
three-parameter model, called exponentiated Weibull distribution, was introduced by [8].
Another three-parameter model is referred to as the extended Weibull distribution by [9].
Xie et al. [10] proposed a three-parameter modified Weibull extension with a bathtub-
shaped hazard function. A new modified Weibull distribution by the authors in [11] has
been presented with increasing and a bathtub-shaped hazard function.

Various extensions of BIII distribution have been studied in the literature. In ref-
erence [12], the authors studied low-flow frequency analysis in hydrology with three-
parameter-modified BIII distribution with supreme interest in the lower tail of a distri-
bution. Çankaya et al. [13] extended the BIII model by adding a skew parameter with
an epsilon skew extension approach. Modi and Gill [14] introduced the unit BIII model.
Haq et al. [15] introduced the unit-modified BIII model. Ali et al. [16] re-parameterized BIII
distribution and proposed the modified BIII (MBIII) distribution with the following cdf:

F(x) =
(
1 + μx−c)−k

μ x > 0 , (3)

where c, k, and μ are the shape parameters. The authors claimed that the newly structured
model is a limiting case of generalized inverse Weibull, BIII, and log-logistic distribution.
Still, the density of the improved model can only model positively skewed data, which
greatly dented the proposition of the model in the first place. Other extensions are mostly
based on the generalized families of distributions that sare complex in nature. Some of
them are mentioned as: Beta Dagum by [17], Modified BIII by [18], Marshall Olkin BIII
by [19], Gamma BIII by [20], and Gamma BIII by [21]. However, we feel that a flexible
model with computationally simpler functional forms is still presently needed. Motivated
by a lack of availability of literature related to the modified BIII distribution, we present a
much more flexible new modification of BIII distribution. The cdf of the new, modified BIII
(NMBIII) distribution is defined as

F(x; c, k, λ) =
(

1 + x−ce−λx
)−k

x > 0 , (4)

where the e−λx is the additional factor, with λ as the rate parameter and c, k are power
parameters of the baseline model.

It is worth mentioning that when we use the additional term to add flexibility in the
model, we specifically refer to the ability of the proposed model to fit a diverse range of
real life phenomena. Additionally, flexibility may also be associated with the instantaneous
failure rate or hazard rate, and is more commonly known as risk function. By selecting
precise values for the shape parameters, the hazard rate function of the NMBIII distribution
can take on a variety of appealing shapes. Generally speaking, the classical models deal
with normal extreme observations. A new modification of BIII distribution will also enable
us to observe the tail behaviour of the distribution, which is skewed in nature. Further,
the BIII distribution has a monotonic decreasing and unimodal hazard rate function, but
due to its modification, NMBIII has monotonic, decreasing, increasing, unimodal, bathtub,
and approximately constant hazard-rate shapes. Moreover, many standard distributions
are nested models or limiting cases of the Burr system of distributions, which include the
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Weibull, exponential, logistic, generalised logistic, Gompertz, normal, extreme value, and
uniform distributions. The NMBIII distribution outperforms most of these competitive
existing models. When λ = 0, NMBIII distribution reduces to BIII distribution. When
λ = 0 and k = 1, then NMBIII distribution gives us log-logistic distribution. When k = 1,
then NMBIII distribution gives us modified log-logistic distribution (new). When c = 0 and
k = 1, the NMBIII distribution reduces to logistic distribution. When c = 1, it reduces to
modified skew logistic distribution (new). When c = 0 and λ = 1, it reduces to generalized
logistic distribution type I or Burr type II, or this type has also been called the “skew-
logistic” distribution (see [22]). In a nutshell, with the proposed NMBIII, we seek and hope
to attract applied researchers from all scientific community to utilize it in the significant
modelling of real-life scenarios.

The article is structured as follows: In Section 2, we focus our attention on the idea
behind the new modification. {In Section 3, we acquaint the readers with some of the
structural properties including the linear expansion, moments, mode, moment-generating
functions, order statistics, and stochastic ordering of NMBIII distribution. In Section 4,
model parameters are estimated by maximum likelihood method, and the Fisher infor-
mation matrix is derived. Section 5 gives the simulation method based on complete and
incomplete samples (middle censored). In Section 6, three data sets on complete and middle-
censored data sets have been employed to established the authenticity of the proposed
model to the readers. Section 7 consists of the concluding remarks and discussions.

2. The New Modified BIII Model

The modified Weibull (MW) distribution (see [23] has the cumulative survival function
that is the product of the Weibull cumulative hazard function αxβ and eλx. Hence, the
distribution function was found to be

F(x) =
(

1 − e−αxβ
eλx
)

,

which was later generalized to exponentiated form by [24] using Lehmann alternative-I.
In the same vein, Equation (4) has been modified. The pdf corresponding to (4) is

given as:

f (x; c, k, λ) =
k
(
λ + c

x
)

xc eλ x

(
1 + x−c e−λ x

)−k−1
. (5)

The corresponding survival and hazard functions of NMBIII are, respectively, given by:

S(x; c, k, λ) = 1 −
(

1 + x−c e−λ x
)−k

(6)

and

h(x; c, k, λ) =
k
(
λ + c

x
)

xc eλ x

(
1 + x−c e−λ x)−k−1

1 − (1 + x−c e−λ x
)−k . (7)

If a new random variable y is defined as y = 1
x in Equation (4), then we obtain

the following model, referred to as modified Burr XII distribution, with cdf and pdf,
respectively, as under

G(y) = 1 −
(

1 +
yc

e
λ
y

)−k

(8)

and

g(y) =
k
(

c + 1
y

)
e

λ
y

yc−1

(
1 +

yc

e
λ
y

)−k−1

. (9)

As far as we can tell, Equations (4) and (8) are first modifications of BIII distribu-
tion and BXII distributions, respectively. Thus, the proposed distribution in (4) is more
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flexible and has tractable tail properties than its parent BIII distribution as well as MBIII
distributions. The shapes of pdf and hrf are presented in Figures 1 and 2, respectively.

Figure 1. Density function of NMBIII distribution.

Figure 2. Hazard function for NMBIII distribution.

Figure 1 represents the different shapes of the proposed model, i.e., bimodal, reversed-
J, right skewed, approximate left-skewed, and symmetrical shapes for different parameter
values. Figure 2 reflects the different shapes of hazard function, which are increasing, de-
creasing, bathtub, upside-down bathtub, and nearly constant for different parameter values.
The proposed distribution is more flexible and tractable than its parent BIII distribution, as
well as MBIII distributions (see in Table 1).

Table 1. Sub models of NMBIII distributions.

Model λ c k G(x) Reference

Burr III 0 - - (1 + x−c)−k Standard

Log-Logistic 0 - 1 xc

1+xc Standard

Modified Log-Logistic - - 1 xce−λ x

1+xce−λ x New

Logistic - 0 1 e−λ x

1+e−λ x Standard

Modified skew logistic - 1 - xe−λ x

1+xe−λ x New

Generalized logistic Type-I or Burr
II or skew logistic 1 0 - (1 + e−x)−k

Johnson et al. [22]
and Aljouiee et al.
[25]
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3. Some Properties of NMBIII

In this section, we will provide some significant properties of the NMBIII distribution
such as rth moment, sth incomplete moment, moment generating function, skewness,
kurtosis, mode, and order statistics.

3.1. Useful Expansion

The generalized binomial theorem or power series is given by:

(1 + z)−b−1 =
∞

∑
i=0

(
b + i

i

)
(−1)i zi. (10)

Using series expansion in (10), Equation (4) becomes

f (x; c, k, λ) =
∞

∑
i=0

(
k + i

i

)
(−1)i k

(
λ + c

x
)

xc(i+1) eλ x(i+1)
. (11)

This expression can be used to obtain the following properties of the NMBIII distribution.

3.2. Moments

The rth moment of NMBIII distribution is given by:

m′
r = E(Xr) =

∞∫
0

xr f (x) dx

=
∞

∑
i=0

(
k + i

i

)
(−1)i

∞∫
0

xr−c(i+1)
(

λ +
c
x

)
e−λ (i+1) x dx

= λ
∞

∑
i=0

ai

∞∫
0

xr−c(i+1) e−λ (i+1) x dx + c
∞

∑
i=0

ai

∞∫
0

xr−c(i+1)−1 e−λ (i+1) x dx

= λ
∞

∑
i=0

ai Γ(r − c(i + 1)− 1)
[

1
λ(i + 1)

]r−c(i+1)−1
(12)

+ c
∞

∑
i=0

ai Γ(r − c(i + 1))
(

1
λ(i + 1)

)r−c(i+1)

= λ
∞

∑
i=0

ai
Γ(r − c(i + 1)− 1)

(λ(i + 1))r−c(i+1)

(
1

i + 1
+ c(r − c(i + 1)− 1)

)
,

where ai =

(
k + i

i

)
(−1)i and Γ(a) ba =

∞∫
0

xa−1 e−b x dx is gamma function.

Remark 1. By submitting r = 1 in Equation (13), one can find mean of the NMBIII distribution.

The sth incomplete moment of NMBIII distribution is

T′
s(x) = λ

∞

∑
i=0

ai γ

(
r − c(i + 1)− 1,

x
λ(i + 1)

)(
1

λ(i + 1)

)r−c(i+1)−1

+ c
∞

∑
i=0

ai γ

(
r − c(i + 1),

x
λ(i + 1)

)(
1

λ(i + 1)

)r−c(i+1)
. (13)

The application of incomplete moment refers to the mean deviations and Bonferroni
and Lorenz curves. These curves are useful in economics reliability, demography, insurance,
and medicine, to mention few.
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3.3. Moment-Generating Function

The moment-generating function of NMBIII distribution is given by:

M0(t) = E(et x) =

∞∫
i=0

et x f (x) dx

=
∞

∑
i=0

(
k + i

i

)
(−1)i

∞∫
i=0

x−c(i+1)
(

λ +
c
x

)
e(t−λ (i+1)) x dx

=
∞

∑
i=0

ai

∞∫
i=0

x−c(i+1)
(

λ +
c
x

)
e(t−λ (i+1)) x dx (14)

=
∞

∑
i=0

ai

⎛⎝λ

∞∫
0

x−c(i+1) e(t−λ (i+1)) x dx + c
∞∫

0

x−c(i+1)−1 e(t−λ (i+1)) x dx

⎞⎠
=

∞

∑
i=0

ai

(
λ

Γ(1 − c(i + 1))

(λ(i + 1)− t)1−c(i+1)
+ c

Γ(−c(i + 1))

(λ(i + 1)− t)−c(i+1)

)
.

The skewness and kurtosis of the NMBIII distribution can be obtained numerically by the
following expression.

α =
m′

3 − 3 m′
2 m′

1 + 2 m′
1{

m′
2 − (m′

2)
2
}3/2 (15)

and

β =
m′

4 − 4 m′
3m′

1 + 6 m′
2 (m

′
1)

2 − 3 (m′
1)

4{
m′

2 − (m′
2)

2
}2 , (16)

where m′
r is the rth moment can be obtained form Equation (13).

Remark 2. The mode of the NMBIII distribution can be obtained as follows: taking the log of
Equation (5), one obtains

log f (x) = log k + log
(

λ +
c
x

)
− c log x − λx − (k + 1) log

(
1 + x−c e−λ x

)
, (17)

Taking derivative with respect to x, we get

d
d x

log f (x) =
− 1

x2

λ + c
x
− c

x
− λ + (k + 1)

x−c e−λ x(λ + c
x
)

1 + x−c e−λ x , (18)

by setting the above expression equal to zero and solving for x, one can find the mode. The numerical
values of the first four moments are given in Table 2.

Table 2. The numerical values of the first four moments (m′
r, r = 1, 2, 3, 4), skewness (α) and kurtosis

(β) of the NMBIII for some parameter values.

c, k, λ m′
1 m′

2 m′
3 m′

4 α β

(0.5, 0.5, 0.5) 0.6754 2.0695 10.4250 72.6365 3.3418 20.5484

(1.5, 0.5, 0.5) 0.6662 1.0760 3.1293 14.2983 3.1239 27.1548

(1.5, 1.5, 0.5) 1.2849 2.6939 8.7612 41.8399 2.4599 23.6830

(1.5, 1.5, 1.5) 0.8024 0.8745 1.2564 2.3394 1.6650 70.6890

(2.0, 0.5, 0.5) 0.6814 0.9031 2.0319 7.3171 2.8155 31.7670

(2.0, 2.0, 0.5) 1.3695 2.6073 7.0943 27.8595 2.4280 39.1836

(2.0, 2.0, 2.0) 0.8041 0.7682 0.8775 1.2098 1.5101 226.2743
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3.4. Order Statistics

The density function fi:n(x) of the i-th order statistic, for i = 1, . . . , n, from i.i.d.
random variables X1, . . . , X2 following MBIII distribution is simply given by:

Fi:n(x) =
n!

(i − 1)!(n − i)!

n−i

∑
j=0

(
n − i

j

)
(−1)j

j + i
F(x)j+i. (19)

The corresponding pdf is

fi:n(x) =
n!

(i − 1)!(n − i)!

n−i

∑
j=0

(
n − i

j

)
(−1)j f (x) F(x)j+i−1. (20)

Using the pdf and cdf of NMBIII in Equations (4) and (5), we obtain

Fi:n(x) =
n!

(i − 1)!(n − i)!

n−i

∑
j=0

(
n − i

j

)
(−1)j

j + i

[
1 + x−c e−λ x

]−k(j+i)
. (21)

Using series expansion in (10), we obtain

Fi:n(x) =
n−i

∑
j=0

bj

∞

∑
l=0

(
k(j + i) + l

l

)
(−1)l x−c l e−λ l x, (22)

where bj =
n!

(i−1)!(n−i)!

(
n − i

j

)
(−1)j

j+i . Similarly, following the above algebra, we have

fi:n(x) =
n−i

∑
j=0

aj

∞

∑
l=0

(
j + i + l

l

)
(−1)l x−c (l+1)

(
λ +

c
x

)
e−λ (l+1) x, (23)

where aj = k n!
(i−1)!(n−i)!

(
n − i

j

)
(−1)j.

3.5. Stochastic Ordering

The concept of stochastic ordering is frequently used to show the ordering mechanism
in life-time distributions. For more details about stochastic ordering, see [26]. A random
variable is said to be stochastically greater (X ≤st Y) than Y if FX(x) ≤ FY(x) for all x. In
the similar way, X is said to be stochastically lower (X ≤st Y) than Y in the

1. Stochastic order (X ≤st Y) if FX(x) ≥ FY(x) for all x.
2. Hazard rate order (X ≤hr Y) if hX(x) ≥ hY(x) for all x.
3. Mean residual order (X ≤mrl Y) if mX(x) ≥ mY(x) for all x.
4. Likelihood ratio order (X ≤hr Y) if fX(x) ≥ fY(x) for all x.

5. Reversed hazard rate order (X ≤rhr Y) if FX(x)
FY(x) is decreasing for all x.

The stochastic orders defined above are related to each other, as the following implications.

X ≤rhr Y ⇐ X ≤lr Y ⇒ X ≤hr Y ⇒ X ≤st Y ⇒ X ≤mrl Y. (24)

Let X1 ∼ NMBII I(c1, k1, λ1) and X2 ∼ NMBII I(c2, k2, λ2). Then, according to the defini-
tion of likelihood ratio ordering

[
f (x)
g(x)

]
,
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f (x) =
k1
(
λ1 +

c1
x
)

xc1 eλ1 x

(
1 + x−c1 e−λ1 x

)−k1−1
, (25)

g(x) =
k2
(
λ2 +

c2
x
)

xc2 eλ2 x

(
1 + x−c2e−λ2 x

)−k2−1
, (26)

and
f (x)
g(x)

=
k1

k2

(
λ1 +

c1
x
)(

λ2 +
c2
x
) xc1 eλ1 x

xc1 eλ1 x

(
1 + x−c1 e−λ1 x)−k1−1(
1 + x−c2 e−λ2 x

)−k2−1 . (27)

Taking log on both sides and taking the derivative with respect to x, we obtain

d
d x

(
f (x)
g(x)

)
=

c1

x2
i
(
λ1 +

c1
x
) − c2

x2
i
(
λ2 +

c2
x
) + c2 − c1

xi
+ (λ2 − λ1)

+ (k2 + 1)
x−c2 eλ2 x (λ2 +

c2
x
)

1 + x−c2 eλ2 x − (k1 + 1)
x−c1 eλ1 x (λ1 +

c1
x
)

1 + x−c1 eλ1 x , (28)

if c1 = c2 = c and λ1 = λ2 = λ, then d
d x

f (x)
g(x) < 0 if (k2 < k1) and then X <lr Y.

4. Maximum Likelihood Estimation

In this section, we will use the maximum-likelihood method to estimate the unknown
parameters of the proposed model from complete samples only. Let x1, x2, . . . , xn be a
random sample of size n from the NMBIII family given in Equation (4) distribution. The
log-likelihood function for the vector of parameter Θ = (c, k, λ)T can be expressed as

l(Θ) = n log k − c
n

∑
i=1

log xi − λ
n

∑
i=1

xi +
n

∑
i=1

log
(

λ +
c
x

)
− (k + 1)

n

∑
i=1

log
[
1 + x−c e−λ x

]
Taking the derivative with respect to λ, c, k, respectively, we get

Uk =
∂ l(Θ)

∂k
=

n
k
−

n

∑
i=1

log
(

1 + x−c e−λ x
)

Uλ =
∂ l(Θ)

∂λ
= −

n

∑
i=1

xi +
n

∑
i=1

(
λ +

c
x

)−1
+ (k + 1)

n

∑
i=1

(
x−c e−λ x xi

1 + x−c e−λ x

)

Uc =
∂ l(Θ)

∂c
= −

n

∑
i=1

log xi +
n

∑
i=1

(
1

xi
(
λ + c

x
))+ (k + 1)

n

∑
i=1

(
x−c e−λ x log xi

1 + x−c e−λ x

)
Setting Uk, Uλ, and Uk equal zero and solving these equations simultaneously yields the
maximum likelihood estimates.

The observed information matrix for the parameter vector is given by⎛⎝ Uk k UK λ Uk c
− Uλ λ Uλ c
− − Uc c

⎞⎠
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whose elements are given below

Uk k = − n
k2

Uk λ =
n

∑
i=1

(
x−c−1

i eλ xi

1 + x−c e−λ xi

)

Uk c = −
n

∑
i=1

(
x−c

i eλ xi log xi

1 + x−c e−λ xi

)

Uλ c = −
n

∑
i=1

1

xi

(
λ + c

xi

)2 + (k + 1)
n

∑
i=1

(
x1−2c e−2 λ xi log xi(

1 + x−c e−λ xi
)2 +

e−λ xi x1−c
i log xi

1 + x−c e−λ xi

)

Uλ λ = −
n

∑
i=1

1(
λ + c

xi

)2 − (k + 1)
n

∑
i=1

(
x2−2c e−2 ˘ xi(

1 + x−c e−λ xi
)2 +

e−λ xi x2−c
i

1 + x−c e−λ xi

)

Uc c = −
n

∑
i=1

1

x2
i

(
λ + c

xi

)2 + (k + 1)
n

∑
i=1

(
x−2c e−2 λ xi (log xi)

2(
1 + x−c e−λ xi

)2 +
e−λ xi x−c

i log xi

1 + x−c e−λ xi

)

5. Middle-Censoring

The middle-censoring scheme is a non-parametric general censoring mechanism
proposed by [27], where other censoring schemes can be obtained as special cases of this
middle-censoring scheme (see [28]).

For n identical lifetimes T1, . . . , Tn with a random censoring interval (Li ≤ Ri) at the
ith item with some unknown bivariate distribution. Then, the exact value of Ti is observable
only if Ti /∈ [Li ≤ Ri]; otherwise, the interval (Li ≤ Ri) is observed.

Middle-censoring had previously been applied to exponential and Burr XII lifetime
distributions (see [28,29]). Furthermore, it was extended to parametric models with covari-
ates [30], and its robustness was investigated by [31].

In this section, we analyse the NMBIII lifetime data when they are middle-censored.
Assume that T1, . . . , Tn are i.i.d. NMBIII (c, λ, k) random variable and let Zi = Ri − Li, i =
1, . . . , n be another random variable that defines the length of the censoring interval with
exponential distribution with mean γ−1, where the left-censoring point for each individual
Li is assumed to also be an exponential random variable with mean θ−1. Moreover, the
T

′
i s, L

′
is, and Z

′
i s are all independent of each other and the observed data, and X

′
i s are

given by Xi =

{
Ti i f Ti /∈ (Li ≤ Ri),

(Li ≤ Ri) otherwise.

5.1. Estimation

For n randomly selected units from the NMBIII (c, λ, k) population, where c, λ, and
k are unknown, were tested under middle-censoring scheme. In this setting, there are
n1 > 0 uncensored observations and n2 > 0 censored observations. Then, by re-ordering
the observed data into the uncensored and censored observations, we therefore have the
following data

{T1, . . . , Tn1 , (Ln1+1, Rn1+1), . . . , (Ln1+n2 , Rn1+n2)},

where n1 + n2 = n.
The likelihood function of the observed data is given by:

L(c, λ, k|x ) = ω(k)n1
n1

∏
i=1

(λ +
c
xi
)

n1

∏
i=1

(x−c
i e−λxi )

n1

∏
i=1

(1 + x−c
i e−λxi )−k−1

×
n1+n1

∏
i=n1+1

[(1 + r−c
i e−λri )−k − (1 + l−c

i e−λli )−k],
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where ω is a normalizing constant depending on γ and θ, and the estimation of them is not
of interest and this is left as a constant. The log-likelihood function is given by

l(c, λ, k|x ) = log ω + n1 log k +
n1

∑
i=1

log(λ +
c
xi
) + n

n1

∑
i=1

log(x−c
i e−λxi )− (k + 1)

n1

∑
i=1

log(1 + x−c
i e−λxi )

+
n1+n1

∑
i=n1+1

log[(1 + r−c
i e−λri )−k − (1 + l−c

i e−λli )−k].

The maximum-likelihood estimation (MLE) of c, λ, and k, denoted by
�
c M,

�
λ M, and

�
k M, can be derived by solving the following equations:

∂l(c, λ, k|x )
∂c

=
n1

∑
i=1

(λxi + c)−1 −
n1

∑
i=1

log xi + (k + 1)
n1

∑
i=1

(x−c
i e−λxi ) log xi

1 + x−c
i e−λxi

+
n1+n1

∑
i=n1+1

k(1 + r−c
i e−λri )−k−1(r−c

i e−λri ) log(ri)− k(1 + l−c
i e−λli )−k−1(l−c

i e−λli ) log(li)
[(1 + r−c

i e−λri )−k − (1 + l−c
i e−λli )−k]

,

∂l(c, λ, k|x )
∂λ

=
n1

∑
i=1

1
λ + c

xi

−
n1

∑
i=1

xi − (k + 1)
n1

∑
i=1

x−c+1
i e−λxi

1 + x−c
i e−λxi

−
n1+n1

∑
i=n1+1

k(1 + r−c
i e−λri )−k−1(r−c+1

i e−λri )− k(1 + l−c
i e−λli )−k−1(l−c+1

i e−λli )

[(1 + r−c
i e−λri )−k − (1 + l−c

i e−λli )−k]

and

∂l(c, λ, k|x )
∂k

= −
n1+n1

∑
i=n1+1

(1 + r−c
i e−λri )−k log(1 + r−c

i e−λri )− k(1 + l−c
i e−λli )−k log(1 + l−c

i e−λli )

[(1 + r−c
i e−λri )−k − (1 + l−c

i e−λli )−k]

+
n1

k
−

n1

∑
i=1

log(1 + x−c
i e−λxi ).

It is obvious that the MLE of c, λ, and k cannot be solved explicitly. Therefore, the
solutions can be obtained using Newton–Raphson method or numerically using the solve
systems of nonlinear equations “nleqslv” package in R.

Since the MLE is asymptotically normal, the approximate confidence intervals for

the parameters c, λ and k can be computed as follows: ĉM ± z α
2

√
σ̂2

c , λ̂M ± z α
2

√
σ̂2

λ and

k̂M ± z α
2

√
σ̂2

k , where σ̂2
(.) are the variances of the respective parameters c, k, and λ, and z α

2

is the value of the standard normal curve and α is the level of significance.

5.2. Simulation Results

We conducted Monte Carlo simulation studies to assess the finite sample behaviour
of the MLEs of the parameters c, k and λ based on two settings; the first is the random
variable generated from the NMBIII distribution, while the other considers the case where
the NMBIII lifetime data were middle-censored.

The random samples for both settings were generated from distribution NMBIII(c, k, λ)
based on accept-reject approach. Without loss of generality, random samples were used
with five different sizes viz n = 10, 30, 50, 70, and 100 from NMBIII(c, k, λ) distribution
with parameters c = 1, k = 2, and λ = 0.5.

The middle censoring settings considered three combinations of the censoring schemes
(γ−1, θ−1) = (0.25, 0.25), (1, 0.75), and (1.25, 0.5).

The results were obtained from 1000 Monte Carlo replications from simulations carried
out using the software R, and the average estimates and the mean squared error (MSE) are
obtained and reported in Table 3.
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Results in Table 3 show that the ML estimates for both settings behave similarly. In
general, there is a decreasing function between the sample size and the mean squared error,
which verifies the consistency property of the derived estimators. The average estimates
are insignificantly effected by the censoring status.

Table 3. Average MLE estimates and the corresponding MSE (within brackets).

Distribution n Un-Censored
Middle-Censored

(0.25, 0.25) (1, 0.75) (1.25, 0.5)

(c, k, λ) c k λ c k λ c k λ c k λ

(1, 2, 0.5)

10 1.114 2.079 0.397 1.123 2.233 0.447 1.087 2.130 0.524 1.196 2.088 0.561
(0.130) (0.102) (0.122) (0.141) (0.163) (0.096) (0.111) (0.159) (0.108) (0.121) (0.099) (0.125)

30 1.039 2.036 0.464 1.082 2.170 0.452 1.072 2.080 0.519 1.127 2.080 0.547
(0.034) (0.039) (0.080) (0.096) (0.072) (0.043) (0.036) (0.082) (0.046) (0.052) (0.093) (0.037)

50 1.036 2.032 0.484 1.071 2.096 0.536 1.066 2.071 0.508 1.103 2.022 0.529
(0.03) (0.031) (0.029) (0.033) (0.031) (0.032) (0.028) (0.032) (0.028) (0.022) (0.025) (0.027)

70 1.015 1.984 0.511 1.035 2.018 0.510 1.042 2.053 0.496 1.042 1.985 0.476
(0.016) (0.015) (0.019) (0.017) (0.021) (0.022) (0.015) (0.021) (0.020) (0.021) (0.016) (0.017)

100 1.001 1.991 0.502 1.019 1.998 0.495 0.980 2.020 0.498 0.981 1.907 0.491
(0.012) (0.013) (0.011) (0.013) (0.015) (0.014) (0.015) (0.016) (0.017) (0.016) (0.013) (0.013)

(0.5, 2, 0.5)

10 0.621 2.074 0.427 0.582 2.325 0.522 0.534 2.135 0.524 1.196 2.098 0.530
(0.052) (0.040) (0.151) (0.127) (0.086) (0.063) (0.056) (0.084) (0.088) (0.080) (0.105) (0.096)

30 0.613 2.057 0.464 0.531 2.264 0.513 0.529 2.104 0.516 1.127 2.087 0.521
(0.034) (0.036) (0.032) (0.038) (0.039) (0.040) (0.034) (0.033) (0.037) (0.030) (0.033) (0.037)

50 0.538 2.010 0.484 0.519 2.125 0.489 0.518 2.014 0.505 1.103 2.054 0.518
(0.026) (0.012) (0.044) (0.094) (0.067) (0.032) (0.019) (0.064) (0.037) (0.031) (0.016) (0.031)

70 0.5017 1.928 0.511 0.491 2.020 0.490 0.506 1.982 0.501 1.042 2.010 0.509
(0.012) (0.009) (0.041) (0.057) (0.037) (0.021) (0.012) (0.035) (0.013) (0.017) (0.012) (0.014)

100 0.492 2.003 0.502 0.504 2.003 0.507 0.492 2.004 0.499 0.981 1.923 0.495
(0.002) (0.001) (0.027) (0.046) (0.027) (0.007) (0.006) (0.026) (0.005) (0.011) (0.010) (0.012)

(2, 2, 2)

10 2.212 2.452 2.517 2.298 2.571 2.322 2.331 2.280 2.371 2.102 2.493 2.256
(0.063) (0.127) (0.096) (0.105) (0.056) (0.151) (0.040) (0.088) (0.052) (0.086) (0.084) (0.080)

30 2.176 2.420 2.161 2.179 2.552 2.291 2.238 2.222 2.328 2.045 2.258 2.173
(0.043) (0.096) (0.037) (0.093) (0.036) (0.080) (0.039) (0.046) (0.034) (0.072) (0.082) (0.052)

50 1.962 2.013 2.008 2.057 2.150 2.171 2.061 2.064 2.091 1.959 2.041 1.901
(0.032) (0.094) (0.031) (0.016) (0.019) (0.044) (0.012) (0.037) (0.026) (0.067) (0.064) (0.031)

70 1.953 1.875 1.949 1.809 1.823 1.956 1.864 2.054 1.903 1.953 2.004 1.825
(0.021) (0.057) (0.014) (0.012) (0.012) (0.041) (0.009) (0.013) (0.012) (0.037) (0.035) (0.017)

100 2.045 2.113 2.160 2.070 2.503 2.207 2.183 2.145 2.143 2.026 2.125 2.144
(0.007) (0.046) (0.012) (0.010) (0.006) (0.027) (0.001) (0.005) (0.002) (0.027) (0.026) (0.011)

6. Applications

This section provides three applications for complete data sets to show how the NM-
BIII distribution can be applied in practice. We compare NMBIII distribution to MBIII, BIII,
Weibull (W), Gamma (Ga), Lognormal (LN), Generalized Weibull (EW), and Generalised Ex-
treme value type-II (GEV-II) distributions. In these applications, the model parameters are
estimated by the method of maximum likelihood. The Akaike information criterion (AIC),
Bayesian information criterion (BIC), A*(Anderson Darling), and W*(Cramer–von Mises)
are computed to compare the fitted models. In general, the smaller the values of these
statistics, the better the fit to the data. Additionally, the asymptotic variance-covariance
matrices of the NMBIII parameters are also provided. The plots of the fitted PDFs, CDFs,

85



Math. Comput. Appl. 2021, 26, 82

Probability–Probabibility (PP), and Quantile–Quantile (QQ) of NMBIII are displayed for
visual comparison. The required computations are carried out in the R software.

The first data set consists of 119 observations on fracture toughness of Alumina (Al2O3)
(in the units of MPa m1/2. These data were studied by [32]. The second data set refers to
the material thickness of hole (12 mm) and sheet (3.15 mm), comprising 50 observations, as
reported by authors in [33]. The third data set was first analysed by [34] and represents the
survival times, in weeks, of 33 patients suffering from Acute Myelogenous Leukaemia.

Tables 4–6 list the MLEs, standard errors, AIC, BIC, A*, and W* of the model for the
data sets 1–3. The results in Tables 4–6 indicate that the NMBIII model provides the best fit
as compared to all the other models. Figures 3–5 also support the results of Tables 4–6.

Table 4. Data set 1.

Model Parameters MLE Standard Error AIC BIC A* W*

NMBII c 2.543 0.507 362.159 370.497 1.888 0.296
k 25.243 5.185
λ 1.703 0.179

MBIII c 1111.230 461.820 379.380 387.718 3.515 0.583
k 4.943 0.281
μ 770.050 398.963

BIII c 3.058 0.180 423.535 429.094 7.658 1.365
k 51.879 11.180

W α 0.002 0.0002 394.821 405.379 1.955 0.422
β 3.984 0.0773

Ga α 15.521 1.991 385.737 374.295 2.745 0.457
β 3.588 0.468

LN μ 1.432 0.025 428.845 434.403 3.374 0.568
σ 0.269 0.0174

EW α 0.0114 0.006 374.644 386.981 1.945 0.315
β 3.2126 0.278
θ 2.0077 0.388

GEV-II α 48.447 10.816 425.796 431.354 7.875 1.408
β 3.022 0.185

The variance–covariance matrix of the MLEs of the NMBIII distribution for data set 1 is⎛⎝ 0.25674663 0.2275027 −0.08608337
0.22750269 26.8853417 0.18880701
−0.08608337 0.1888070 0.03215706

⎞⎠
Table 5. Data set 2.

Model Parameters MLE Standard Error AIC BIC A* W*

NMBII c 2.802 1.620 −106.358 −100.622 0.524 0.090
k 0.317 0.219
λ 17.274 5.605

MBIII c 0.0020 0.0002 −99.778 −94.042 0.988 0.159
k 3.466 0.205
μ 0.0039 0.0007

BIII c 7.788 26.572 −26.027 −22.202 1.056 0.177
k 0.065 0.221

W α 36.141 14.390 −101.784 −93.960 0.644 0.105
β 2.118 0.246

Ga α 3.029 0.576 −102.743 −98.919 1.636 0.279
β 18.561 3.836

LN μ 1.987 0.095 105.700 109.524 1.922 0.331
σ 0.670 0.067

EW α 819.305 2409.321 −106.069 −100.333 0.535 0.093
β 4.982 2.636
θ 0.297 0.200

GEV-II α 0.054 0.020 −70.449 −66.625 3.567 0.634
β 1.236 0.118
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The variance–covariance matrix of the MLEs of the NMBIII distribution for data set 2 is⎛⎝ 2.6257440 0.34637888 8.616552
0.3463789 0.04803978 −1.104049
8.6165520 −1.10404897 31.417567

⎞⎠
Table 6. Data set 3.

Model Parameters MLE Standard Error AIC BIC A* W*

NMBII c 0.521 0.121 303.703 308.101 0.440 0.064
k 4.734 1.065
λ 0.012 0.005

MBIII c 153.592 319.615 309.465 313.863 0.672 0.098
k 1.494 0.464
μ 0.201 796.017

BIII c 0.755 0.092 309.714 312.645 0.919 0.151
k 5.705 1.228

W α 0.057 0.028 304.302 307.234 0.552 0.079
β 0.792 0.112

Ga α 0.706 0.150 304.357 309.288 0.459 0.085
β 0.017 0.005

LN μ 2.884 0.266 320.9177 323.8491 0.648 0.102
σ 1.504 0.188

EW α 0.0431 0.186 306.296 310.693 0.554 0.079
β 0.844 0.794
θ 0.901 1.352

GEV-II α 4.259 0.933 310.463 313.395 0.983 0.160
β 0.685 0.091

The variance–covariance matrix of the MLEs of the NMBIII distribution for data set 3 is⎛⎝ 0.014574568 0.075708071 −0.0003995590
0.075708071 1.134424017 −0.001232737
−0.000399559 −0.001232737 0.00002838794

⎞⎠

Figure 3. Cont.
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Figure 3. Estimated density (top left), cdf (top right), QQ-plot (bottom left), and PP-plot (bottom

right) for data set 1.

Figure 4. Estimated density (top left), cdf (top right), QQ-plot (bottom left) and PP-plot (bottom

right) for data set 2.
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Figure 5. Estimated density (top left), cdf (top right), QQ-plot (bottom left), and PP-plot (bottom

right) for data set 3.

7. Conclusions

A good theory should seek out the most concise explanation for the facts. With this
in mind, a new modified form of BIII distribution has been introduced that can model
well-specified forms of hazard rate shapes, including increasing, decreasing, bathtub,
upside-down bathtub, and nearly constant. Some of its statistical properties, such as, rth
moment, sth incomplete moment, moment generating function, skewness, kurtosis, mode,
ith order statistics, and stochastic ordering have been derived. The maximum likelihood
estimation is employed to estimate the model parameters. The usefulness of this model
is demonstrated by applications on complete and censored samples. Simulation study is
also performed. A future effort would include the contributions of new regression models,
Bayesian parameter estimations, and research into diversified fields of data sets.
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Abstract: A bounded form of the Teissier distribution, namely the unit Teissier distribution, is intro-
duced. It is subjected to a thorough examination of its important properties, including shape analysis
of the main functions, analytical expression for moments based on upper incomplete gamma func-
tion, incomplete moments, probability-weighted moments, and quantile function. The uncertainty
measures Shannon entropy and extropy are also performed. The maximum likelihood estimation,
least square estimation, weighted least square estimation, and Bayesian estimation methods are
used to estimate the parameters of the model, and their respective performances are assessed via a
simulation study. Finally, the competency of the proposed model is illustrated by using two data sets
from diverse fields.
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1. Introduction

The introduction of new statistical distributions, defined on both the whole real line
and the positive real line, is required for the interpretation of real-world occurrences. In
both of these lines, a large number of probability distributions for real data sets have
been presented recently. Several distributions that fall within these two categories have
demonstrated their importance from both a theoretical and practical standpoint. It is true,
however, that in many practical disciplines such as economics, medicine, biology, and
others, there is a problem of bounded phenomena, or uncertainty resulting from factors
such as rates, indices, proportions, and test scores. It is also important to note that, in
comparing distributions with unbounded support to those with bounded support, one
can find notable scarceness. As a result, in the recent past, some authors have focused on
developing distributions that are defined on the bounded interval using any one of the
parent distribution transformation techniques. For better understanding, we refer to recent
papers in [1,2].

The beta distribution is definitely the most famous distribution among distributions
defined in the (0, 1) interval. While the beta distribution is useful for modeling data on the
unit interval, many other distributions have been proposed and studied over time. The
readers may refer to the Topp–Leone distribution (see [3]), Kumaraswamy distribution
(see [4]) and transformed Leipnik distribution (see [5]). However, in recent times, there
has been a growing interest by statisticians in proposing distributions defined by the unit
interval corresponding to any continuous distribution. The readers may refer to the log-
Lindley distribution (see [6]), exponentiated Topp–Leone distribution (see [7]), unit inverse
Gaussian distribution (see [8]), unit Lindley distribution (see [9]), unit Weibull distribution
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(see [10]), unit Burr-III distribution (see [11]), and unit half normal distribution (see [12]),
among others. As a result, a lot of contributions are made to the existing literature. This
recent leap in the number of research papers devoted to proposing new distributions in the
unit interval exhibits their growing relevance. Despite the fact that many distributions have
been proposed and studied as alternatives, there is still no agreement on which distribution
is preferred.

In this article, a new bounded distribution is introduced by considering the baseline
distribution as the Teissier distribution (TD) which was first introduced by the French
biologist Georges Teissier in modeling the mortality of domestic animal species as a result
of pure aging (see [13]). A continuous random variable Y is said to have the TD with
parameter θ > 0 if its probability density function (pdf) is given by

fY(y; θ) = θ
(

eθy − 1
)

exp
(

θy − eθy + 1
)

, y > 0. (1)

The cumulative distribution function (cdf) of Y is given by

FY(y; θ) = 1 − exp
(

θy − eθy + 1
)

, y > 0.

Despite its importance, the TD has been overlooked in the statistical literature. Ref. [14]
examined the location version of this model and explored a characterization based on life
expectancy as part of a demographic study, four decades after it was introduced. In a
later study, Muth [15] found that a TD-derived distribution has a heavier tail than well-
known lifetime distributions such as the gamma, lognormal, and Weibull distributions.
This distribution was later used by [16] to estimate the lifetime distribution for a German
dataset based on used car prices. The TD and its location version have been forgotten
since [16], and no further references appear in the literature until 2008. Ref. [17] showed
that as the parameter decreases to zero, the model approaches the classical exponential
distribution. The authors of [18] reintroduced this distribution and its scaled version, and
studied its important properties using a generalized integro-exponential function [18,19]
can be considered as the two-parameter extensions of the TD.

The study of the TD has gained momentum in both theoretical and applied perspec-
tives after the work of [19–23] substantiate this claim. Meanwhile, the TD and its various
variants proved their signature compared to other models for various real-life data sets.
This is the chief motivation for looking into the TD defined on the unit interval, so-called
the unit Teissier distribution (UTD), and its competency compared to other popular dis-
tributions defined on the unit interval. Finally, it can be concluded that it performs well
compared to other distributions for the real-life data sets considered here.

As in the case of real-life data sets that vary over positive real lines and possess a
bathtub-shaped hazard rate function (hrf), some real-life data sets that are defined on the
unit interval also possess a bathtub-shaped hrf. In the former case, there is a tremendous
amount of work in the literature on various models, such as [24–26]. As far as the latter
case is considered, the papers in [8,27] showed that the unit inverse Gaussian and logit
slash distributions, respectively, provide a bathtub-shaped hrf. These two distributions are
more intricate because of the presence of the log function in their pdfs, and so their cdfs are
not obtained in closed form. Hence, simulation experiments from these two distributions
are very difficult. For some real data sets, the logit slash distribution does not yield a
numerical estimation of parameters. Moreover, the hrfs of both of these distributions
are not analytically tractable, even though they sketch the graph of the hrf and provide
its various shapes. In addition, Korkmaz [27] proved that the logit slash distribution
possesses a N-shaped (modified bathtub shape) and w-shaped bathtub shaped hrf. Another
distribution defined on the unit interval, which also possesses a non-monotone shaped hrf,
is the unit Modified Burr III distribution (see [28]), which has three parameters. Models
with a lower number of parameters are preferable for various reasons, such as ease of
simulation drawing and less difficulty in inferential aspects.
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The UTD solves these two problems by providing closed form expressions for pdf, cdf,
moments, inequality measures, and entropy measures. Secondly, it possesses monotone
(increasing and decreasing) as well as non-monotone functions, such as bathtub-shaped
and N-shaped hrf (modified bathtub shaped) with a smaller number of parameters. Based
on [29], N-shaped hrfs appear in mortality among breast cancer patients.

The rest of the paper is presented as follows. In Section 2, the UTD is introduced
and the statistical properties such as moments, incomplete moments, probability-weighted
moments, and quantile function are studied. The Shannon entropy and extropy are derived
in Section 3. Discussion on different methods of estimation, such as maximum likelihood
(ML), ordinary, weighted least square and Bayesian estimation are carried out in Section 4.
In Section 5, a simulation study is performed to evaluate the performance of the model
parameter estimates. In Section 6, the proposed distribution is elucidated with two real
data sets. Finally, the conclusions are presented in Section 7.

2. The Unit Teissier Distribution

In this Section, the UTD is presented and we determine some of its statistical properties.

2.1. Presentation

Mathematically, the UTD is derived from the transformation X = e−Y by taking into
account the definition of the pdf given by (1). Its definition is formalized below.

Definition 1. A random variable X is said to follow the UTD with parameter θ > 0, if its pdf is of
the following form:

f (x; θ) = θ
(

x−θ − 1
)

x−(θ+1)e−x−θ+1, x ∈ (0, 1). (2)

The corresponding cdf is given by

F(x; θ) = x−θe−x−θ+1. (3)

From (2) and (3), the survival function S(x; θ), hrf h(x; θ) and reversed hrf τ(x; θ) of
the UTD are obtained as follows (for x ∈ (0, 1)):

S(x; θ) = 1 − x−θe−x−θ+1,

h(x; θ) =
f (x; θ)

S(x; θ)
=

θ
(

x−θ − 1
)
x−(θ+1)e−x−θ+1

1 − x−θe−x−θ+1
(4)

and

τ(x; θ) =
f (x; θ)

F(x; θ)
=

θ
(
x−θ − 1

)
x

.

2.2. Shapes of the pdf and hrf

As immediate shape properties for the pdf and hrf, we can say that

lim
x→0

f (x; θ) = lim
x→0

h(x; θ) = 0,

and that the UTD is unimodal; the mode is the value of x maximizing f (x; θ), which is
given by

xmode = 2−
1
θ

(
1 + 3θ −√

5θ2 + 2θ + 1
1 + θ

) 1
θ

.
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In order to obtain an overview of the shapes of the pdf (2) and hrf (4), the corresponding
plots for different choices of the parameter θ are given in Figures 1 and 2, respectively.
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Figure 1. Plots of various shapes of the pdf of the UTD for varying values of the parameter θ.
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Figure 2. Cont.
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Figure 2. Plots of various shapes of the hrf of the UTD for varying values of the parameter θ.

The graphs of the hrf for various combinations of parameters show various shapes,
including increasing, decreasing, bathtub, and N-shaped (modified bathtub shape). Ac-
cording to [29], mortality among breast cancer patients is characterized by an N-shaped hrf.
This is one of the prominent properties of the UTD.

2.3. Moments

Analytically, the UTD’s non-central moments can be expressed in terms of the upper
incomplete gamma function. This is specified in the result below.

Result 1. For any non-negative integer r, the rth non-central moment of a random variable X with
the UTD is

μ′
r = E(Xr) = e

{
Γ
(
− r

θ
+ 2, 1

)
− Γ
(
− r

θ
+ 1, 1

)}
,

where E denotes the expectation operator, e ≈ 2.718282 (the exponential function taken at the value
1) and Γ(a, b) =

∫ ∞
b ta−1e−tdt is the upper incomplete gamma function.

Proof. Based on (2) and the definition of non-central moment, as well as the change of
variable u = x−θ , and considering the definition of the upper incomplete gamma function,
we have

μ′
r =

∫ 1

0
xr f (x; θ)dx =

∫ ∞

1
u− r

θ (u − 1)e−u+1du

= e
{

Γ
(
− r

θ
+ 2, 1

)
− Γ
(
− r

θ
+ 1, 1

)}
.

This ends the proof.

The statistical measures such as the mean (μ) and variance (σ2) can be calculated
numerically by using R software. Figure 3a,b illustrate the behavior of the mean and
variance for varying values of the parameter θ, respectively.
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Figure 3. Plots of the (a) mean and (b) variance of the UTD for varying values of the parameter θ.

2.4. Incomplete Moments

As a generalized version of the non-central moments, the UTD’s incomplete moments
can be also expressed in terms of the upper incomplete gamma function.

Result 2. For any non-negative integer k and x ∈ (0, 1), the kth incomplete moment at x of a
random variable X with the UTD is

mk(x; θ) = E(Xk1X≤x) = e
{

Γ
(
− k

θ
+ 2, x−θ

)
− Γ
(
− k

θ
+ 1, x−θ

)}
.

Proof. By the definition of the kth incomplete moment, we have

mk(x; θ) =
∫ x

0
tk f (t; θ)dt.

In the above integral expression, after making the change of variable u = t−θ , the
proof is similar to the one of Result 1, so the details are excluded here.

There is an interesting aspect of the fact that the first incomplete moment m1(x; θ)
can be used to compute the mean deviation from the mean (μ) given by E[|X − μ|] =
2μF(μ; θ)− 2m1(μ; θ).
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2.5. Probability-Weighted Moments

The probability-weighted moments of the UTD are now under investigation.

Result 3. For any non-negative integers r and s, the (r, s)th probability-weighted moment of a
random variable X with the UTD is given as

mr,s(x; θ) = E(XrF(X; θ)s)

=
es+1

(s + 1)−
r
θ +s+2

{
Γ
(
− r

θ
+ s + 2, s + 1

)
− (s + 1)Γ

(
− r

θ
+ s + 1, s + 1

)}
.

Proof. By the definition of the (r, s)th probability-weighted moment and by making the
change of variable u = (s + 1)x−θ , we obtain

mr,s(x; θ) =
∫ 1

0
xr(F(x; θ))s f (x; θ)dx

= es+1θ
∫ 1

0
xr−θ(s+1)x−(θ+1)e−(s+1)x−θ

dx − es+1θ
∫ 1

0
xr−θsx−(θ+1)e−(s+1)x−θ

dx

=
es+1

(s + 1)−
r
θ +s+2

∫ ∞

s+1
u− r

θ +s+1e−udu − es+1

(s + 1)−
r
θ +s+1

∫ ∞

s+1
u− r

θ +se−udu

=
es+1

(s + 1)−
r
θ +s+2

{
Γ
(
− r

θ
+ s + 2, s + 1

)
− (s + 1)Γ

(
− r

θ
+ s + 1, s + 1

)}
.

The desired result is obtained.

2.6. Mean Residual Life Function

Result 4. For any t ∈ (0, 1), the mean residual life function at t of a random variable X with the
UTD is

r(t; θ) = E(X − t|X > t)

=
1

1 − t−θe−t−θ+1

{
1 − t − e

θ

[
Γ
(

1 − 1
θ

, 1
)
− Γ
(

1 − 1
θ

, t−θ

)]}
.

Proof. By the definition of the mean residual life function and by making the change of
variable u = x−θ , we obtain

r(t; θ) =
1

S(t; θ)

∫ 1

t
S(x; θ)dx

=
1

S(t; θ)

{
1 − t −

∫ 1

t
x−θe−x−θ+1dx

}
=

1
S(t; θ)

{
1 − t − e

θ

∫ t−θ

1
u− 1

θ e−udu

}

=
1

1 − t−θe−t−θ+1

{
1 − t − e

θ

[
Γ
(

1 − 1
θ

, 1
)
− Γ
(

1 − 1
θ

, t−θ

)]}
.

The claimed result is achieved.

2.7. Quantile Function

In addition to its remarkable property of being expressed in closed form, the UTD
is also capable of representing the quantile function in terms of the negative branch of
the Lambert W function. We recall that the Lambert W function is a multivalued complex
function defined as the solution of the equation W(z)eW(z) = z, where z is a complex
number. For any real numbers z ≥ −1/e, W(z) has two real branches. The real branch
taking on values in [−1, ∞) is called the principal branch and is denoted by W0, and the
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one taking on values in (−∞,−1] is called the negative branch and is denoted by W−1.
For a comprehensive review of this special function, readers are referred to [30]. From
a computational perspective, the Lambert W function is available in computer algebra
systems such as Maple (function LambertW), Mathematica (function ProductLog), and
Matlab (function lambertW), and also in programming languages such as R [31] (functions
lambert_W0 and lambert_Wm1 for W0 and W−1, respectively, in the package gsl).

Result 5. The quantile function of the UTD is given by

Q(p; θ) =
[
−W−1

(
− p

e

)]− 1
θ , (5)

where p ∈ (0, 1) and W−1 denotes the negative branch of the Lambert W function.

Proof. The cdf F(x; θ) should be inverted to obtain the quantile function of UTD. Thus,
we need to solve F(x; θ) = p according to x, so

−x−θe−x−θ
= − p

e
⇔ −x−θ = W−1

(
− p

e

)
⇔ x =

[
−W−1

(
− p

e

)]− 1
θ .

The obtained x corresponds to the quantile function with respect to p. The desired
result is achieved.

The quantile function in (5) can be used to obtain the following quantities:

• the median given as M = Q(0.5; θ);
• the Galton coefficient of skewness specified by

S =
Q(0.25; θ) + Q(0.75; θ)− 2M

Q(0.75; θ)− Q(0.25; θ)
;

• the Moors coefficient of kurtosis (with correction) defined by

T =
Q(0.875; θ)− Q(0.625; θ) + Q(0.375; θ)− Q(0.125; θ)

Q(0.75; θ)− Q(0.25; θ)
− 1.23.

3. Shannon Entropy and Extropy

This section discusses the Shannon entropy and extropy of the UTD.

3.1. Shannon Entropy

Conceptually, the Shannon entropy is the amount of information into a random
variable. For a random variable T with pdf f (t) with support [0, 1], its Shannon entropy is
defined as

H(T) = −
∫ 1

0
f (t) log f (t)dt. (6)

The Shannon entropy for the UTD is obtained in terms of the following quantities:

• The upper incomplete gamma function already introduced;
• The nth derivative of the gamma function given as Γn(a) =

∫ ∞
0 ta−1(log t)ne−tdt;

• The nth derivative of the incomplete gamma function given as Γn(a, z) =
∫ ∞

z ta−1

(log t)ne−tdt;
• The exponential integral defined by E1(t) =

∫ ∞
t (e−u/u)du.

The next result is about the expression of the Shannon entropy.
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Result 6. The Shannon entropy of a random variable T with the UTD has the following form

H(T) = −(log θ)(eΓ(2, 1)− 1)− Γ1(2)− e(θ + 1)
θ

(
Γ1(2, 1)− E1(1)

)
− 2eΓ(2, 1) + eΓ(3, 1) + 1.

(7)

Proof. By considering the change of variables, u = t−θ and v = t−θ − 1 and taking into
account (2), we obtain

∫ 1

0
f (t) log f (t)dt = e(log θ)

(∫ ∞

1
ue−udu −

∫ ∞

1
e−udu

)
+
∫ ∞

0
ve−v(log v)dv

+
e(θ + 1)

θ

(∫ ∞

1
u log ue−udu −

∫ ∞

1
e−u(log u)du

)
+ e

∫ ∞

1
(2u − u2 − 1)e−udu.

(8)

Substituting (8) in (6) and by using the quantities listed, (7) is obtained.

3.2. Extropy

Extropy is a complementary dual of Shannon entropy that has a variety of interesting
applications, including appropriate scoring of forecasting distributions, comparing the
uncertainty of two random variables, and astronomical measurements of heat distributions
in galaxies, among others. For a random variable T with pdf f (t) with support [0, 1], its
extropy is defined as

J(T) = −1
2

∫ 1

0
f 2(t)dt. (9)

Result 7. The extropy of a random variable T with the UTD has the following form

J(T) =
θe2

2
1
θ +3

{
Γ
(

1
θ
+ 3, 2

)
− 1

4
Γ
(

1
θ
+ 4, 2

)
− Γ
(

1
θ
+ 2, 2

)}
. (10)

Proof. By considering the change of variable u = 2t−θ and taking into account (2), the
numerator of (9) can be obtained as∫ 1

0
f 2(t; θ)dt = θ2e2

∫ 1

0
t−2(θ+1)t−2θe−2t−θ

dt + θ2e2
∫ 1

0
t−2(θ+1)e−2t−θ

dt

− θ2e2
∫ 1

0
t−2(θ+1)2t−θe−2t−θ

dt

=
θe2

2
1
θ +4

∫ ∞

2
u

1
θ +3e−udu +

θe2

2
1
θ +2

∫ ∞

2
u

1
θ +1e−udu − θe2

2
1
θ +2

∫ ∞

2
u

1
θ +2e−udu

=
θe2

2
1
θ +4

Γ
(

1
θ
+ 4, 2

)
+

θe2

2
1
θ +2

Γ
(

1
θ
+ 2, 2

)
− θe2

2
1
θ +2

Γ
(

1
θ
+ 3, 2

)
.

(11)

Substituting (11) in (9), (10) is obtained.

4. Estimation and Inference

4.1. Maximum Likelihood Estimation

Let x1, x2, . . . , xn be a random sample of values of size n from a random variable X
with the UTD of unknown parameter θ. Then the likelihood function of θ is given by

l(θ) = θn
n

∏
i=1

x−(θ+1)
i

n

∏
i=1

(
x−θ

i − 1
)

e−∑n
i=1(x−θ

i −1). (12)
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Then the ML estimate (MLE) of θ, say θ̂, is obtained by maximizing l(θ) with respect
to θ. Thus, for any θ > 0, we have l(θ) ≤ l(θ̂). Practically, one can use the derivative
technique; the partial derivative of log l(θ) with respect to the parameter is

∂ log l(θ)
∂θ

=
n
θ
−

n

∑
i=1

x−θ
i log xi

x−θ
i − 1

−
n

∑
i=1

log xi +
n

∑
i=1

x−θ
i log xi,

and θ̂ is obtained by solving the equation ∂ log l(θ)
∂θ = 0 according to θ. Numerical optimiza-

tion approaches employing mathematical tools such as R and Mathematica are the only
way to achieve this.

Fisher Information Matrix and Asymptotic Confidence Interval

In order to carry out statistical inference on the parameters of the UTD, the 1 × 1
expected Fisher information matrix is needed. It can, however, be efficiently approximated
by the observed Fisher information matrix J(θ̂) given by

J(θ̂) = − ∂2 log l(θ)
∂θ2

∣∣∣∣
θ=θ̂

and we can approximate variance of θ̂ as

Var(θ̂) ≈ J−1(θ̂).

Then the approximate 100(1− φ)% two-sided normal confidence interval for θ is given

by θ̂ ± Z φ
2

√
Var(θ̂), where Z φ

2
is the upper φ

2
th

percentile of a standard normal distribution

and φ is the significance level.

4.2. Ordinary and Weighted Least-Squares Estimation

The ordinary least square (LS) estimation and the weighted least square (WLS) es-
timation were proposed by [32] to estimate the parameters of the beta distribution. Let
x1:n, x2:n, . . . , xn:n be the ordered values of x1, x2, . . . , xn. Let us set

R(θ) =
n

∑
i=1

[
F(xi:n; θ)− i

n + 1

]2
.

Then the LS estimate (LSE) of θ, say θ̃, is obtained by minimizing R(θ) with respect to θ.
Thus, for any θ > 0, we have R(θ̂) ≤ R(θ). Practically, the LSE can also be obtained by
solving the following equation:

∂R(θ)
∂θ

= 2
n

∑
i=1

[
F(xi:n; θ)− i

n + 1

]
D(xi:n; θ) = 0,

where

D(x; θ) =
∂F(x; θ)

∂θ
= −e−x−θ+1x−2θ(xθ − 1) log(x),

according to θ. Similarly, the WLS estimate (WLSE) of θ, say θ̆, is obtained by minimizing
the non-linear function

W(θ) =
n

∑
i=1

(n + 1)2(n + 2)
i(n − i + 1)

[
F(xi:n; θ)− i

n + 1

]2
,

and it can also be obtained by solving the following equation:

∂W(θ)

∂θ
= 2

n

∑
i=1

(n + 1)2(n + 2)
i(n − i + 1)

[
F(xi:n; θ)− i

n + 1

]
D(xi:n; θ) = 0.
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4.3. Bayesian Estimation

In this subsection, the estimate of the UTD parameter is calculated by using Bayesian
analysis. With this approach, prior knowledge about the problem can be incorporated.
Here, the parameter should be given a prior density, and two types of priors are used
as random priors: the half-Cauchy (HC) and the normal (N) priors. In the numerical
integration, prior distributions that are not completely flat provide enough information to
allow the numerical approximation algorithm to continue exploring the target posterior
density. The HC distribution features such shapes, and its mean and variance do not exist,
but its mode is equal to zero. Regarding the HC distribution, when the parameter becomes
25, the pdf is flat, but not entirely. According to [33], depending upon the information
necessary, uniform or HC is a better choice of prior. Thus, for the parameter θ, HC(25) and
N(0, 1000) are used as prior distributions.

• Case 1: θ ∼ HC(25), then the posterior pdf is given by

π(θ/x) ∝ l(θ)× 2 × 25
π(θ2 + 252)

. (13)

• Case 2: θ ∼ N(0, 1000), then the posterior pdf is given by

π(θ/x) ∝ l(θ)× 1√
2π × 103

e−
θ2

2×103 , (14)

where l(θ) is derived from (12).

Since (13) and (14) are not in closed form, one may use numerical integration or MCMC
methods.

5. Simulation Study

5.1. Simulation for ML, LS, and WLS Estimates

In the simulation study, the Monte Carlo simulation was done in order to prove the
efficiency of the model by using different estimation methods such as ML, LS, and WLS.
The estimates were calculated for true values of parameters for N = 1000 samples of sizes
25, 50, 75, 100, 150, 200, and 500 and the following quantities were computed:

1. Mean of the estimates: Mean(υ) = 1
N ∑N

i=1 υi;
2. Average bias of the estimates: Bias(υ) = 1

N ∑N
i=1(υi − θ);

3. Mean square error (MSE) of the estimates: MSE(υ) = 1
N ∑N

i=1(υi − θ)2,

where υ ∈ {θ̂, θ̃, θ̆}, and the index i indicates the considered number of the sample.
Tables 1–3 show the simulation results corresponding to the ML, LS, and WLS estima-
tion methods. A graphical comparison of the MSEs obtained from the three methods
is presented in Figure 4. Among these methods, the ML estimation provides accurate
estimates of the parameter with the least MSE. As in all the estimation methods, the MSE
decreases as sample size n increases, as expected.

Table 1. Simulation results: MLEs, bias, and MSE.

θ = 0.26 θ = 0.45 θ = 0.60

n θ̂ Bias(θ̂) MSE(θ̂) θ̂ Bias(θ̂) MSE(θ̂) θ̂ Bias(θ̂) MSE(θ̂)

25 0.26352 0.00352 0.00045 0.45610 0.00610 0.00135 0.60813 0.00813 0.00241
50 0.26164 0.00164 0.00021 0.45284 0.00284 0.00063 0.60379 0.00379 0.00112
75 0.26116 0.00116 0.00014 0.45200 0.00200 0.00041 0.60267 0.00267 0.00072
100 0.26074 0.00074 0.00010 0.45129 0.00129 0.00031 0.60172 0.00172 0.00055
150 0.26042 0.00042 0.00006 0.45074 0.00074 0.00019 0.60098 0.00098 0.00034
200 0.26028 0.00028 0.00005 0.45049 0.00049 0.00015 0.60065 0.00065 0.00027
500 0.26011 0.00011 0.00002 0.45019 0.00019 0.00006 0.60025 0.00025 0.00011
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Table 1. Cont.

θ = 1 θ = 1.5 θ = 2

n θ̂ Bias(θ̂) MSE(θ̂) θ̂ Bias(θ̂) MSE(θ̂) θ̂ Bias(θ̂) MSE(θ̂)

25 1.01355 0.01355 0.00669 1.52033 0.02033 0.01505 2.02711 0.02711 0.02676
50 1.00632 0.00632 0.00312 1.50948 0.00948 0.00702 2.01264 0.01264 0.01248
75 1.00446 0.00446 0.00200 1.50668 0.00668 0.00450 2.00891 0.00891 0.00800
100 1.00286 0.00286 0.00153 1.50429 0.00429 0.00344 2.00572 0.00572 0.00612
150 1.00163 0.00163 0.00094 1.50245 0.00245 0.00213 2.00327 0.00327 0.00378
200 1.00109 0.00109 0.00074 1.50164 0.00164 0.00166 2.00218 0.00218 0.00295
500 1.00041 0.00041 0.00030 1.50062 0.00062 0.00068 2.00082 0.00082 0.00121

Table 2. Simulation results: LS estimates, bias, and MSE.

θ = 0.26 θ = 0.45 θ = 0.60

n θ̃ Bias(θ̃) MSE(θ̃) θ̃ Bias(θ̃) MSE(θ̃) θ̃ Bias(θ̃) MSE(θ̃)

25 0.26122 0.00122 0.00069 0.45210 0.00210 0.00207 0.60280 0.00280 0.00368
50 0.25998 −0.00002 0.00030 0.44997 −0.00003 0.00089 0.59996 −0.00004 0.00159
75 0.25997 −0.00003 0.00019 0.44994 −0.00006 0.00058 0.59992 −0.00008 0.00103

100 0.25990 −0.00010 0.00016 0.44983 −0.00017 0.00047 0.59977 −0.00023 0.00084
150 0.25954 −0.00046 0.00010 0.44920 −0.00080 0.00029 0.59893 −0.00107 0.00051
200 0.26057 0.00057 0.00008 0.44914 −0.00086 0.00022 0.59886 −0.00114 0.00039
500 0.25980 −0.00020 0.00003 0.44964 −0.00036 0.00009 0.59953 −0.00047 0.00016

θ = 1 θ = 1.5 θ = 2

n θ̃ Bias(θ̃) MSE(θ̃) θ̃ Bias(θ̃) MSE(θ̃) θ̃ Bias(θ̃) MSE(θ̃)

25 1.00467 0.00467 0.01021 1.50701 0.00701 0.02297 2.00935 0.00935 0.04083
50 0.99993 −0.00007 0.00442 1.49990 −0.00010 0.00994 1.99986 −0.00014 0.01768
75 0.99986 −0.00014 0.00287 1.49979 −0.00021 0.00646 1.99972 −0.00028 0.01148

100 0.99961 −0.00039 0.00233 1.49942 −0.00058 0.00523 1.99923 −0.00077 0.00930
150 0.99821 −0.00179 0.00142 1.49732 −0.00268 0.00319 1.99643 −0.00357 0.00567
200 0.99809 −0.00191 0.00109 1.49714 −0.00286 0.00244 1.99619 −0.00381 0.00434
500 0.99921 −0.00079 0.00045 1.49881 −0.00119 0.00101 1.99842 −0.00158 0.00180

Table 3. Simulation results: WLS estimates, bias, and MSE.

θ = 0.26 θ = 0.45 θ = 0.60

n θ̆ Bias(θ̆) MSE(θ̆) θ̆ Bias(θ̆) MSE(θ̆) θ̆ Bias(θ̆) MSE(θ̆)

25 0.26141 0.00141 0.00062 0.45243 0.00243 0.00186 0.60324 0.00324 0.00330
50 0.26024 0.00024 0.00026 0.45041 0.00041 0.00078 0.60055 0.00055 0.00140
75 0.26018 0.00018 0.00017 0.45030 0.00030 0.00051 0.60041 0.00041 0.00090

100 0.26007 0.00007 0.00014 0.45012 0.00012 0.00041 0.60016 0.00016 0.00072
150 0.25971 −0.00029 0.00008 0.44950 −0.00050 0.00025 0.59934 −0.00066 0.00044
200 0.25968 −0.00032 0.00006 0.44944 −0.00056 0.00019 0.59925 −0.00075 0.00034
500 0.25986 0.00014 0.00001 0.44976 −0.00024 0.00008 0.59968 −0.00032 0.00014

θ = 1 θ = 1.5 θ = 2

n θ̆ Bias(θ̆) MSE(θ̆) θ̆ Bias(θ̆) MSE(θ̆) θ̆ Bias(θ̆) MSE(θ̆)

25 1.00540 0.00540 0.00917 1.50809 0.00809 0.02063 2.01079 0.01079 0.03668
50 1.00091 0.00091 0.00388 1.50137 0.00137 0.00872 2.00182 0.00182 0.01550
75 1.00067 0.00067 0.00250 1.50101 0.00101 0.00562 2.00135 0.00135 0.00999

100 1.00026 0.00026 0.00201 1.50039 0.00039 0.00451 2.00052 0.00052 0.00802
150 0.99889 −0.00111 0.00122 1.49834 −0.00166 0.00275 1.99778 −0.00222 0.00490
200 0.99876 −0.00124 0.00093 1.49813 −0.00187 0.00210 1.99751 −0.00249 0.00373
500 0.99946 −0.00054 0.00038 1.49919 −0.00081 0.00087 1.99892 −0.00108 0.00154
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Figure 4. Graphical comparison of the MSEs obtained from ML, LS, and WLS estimation methods for
(a) θ = 0.26, (b) θ = 0.45, (c) θ = 0.60, (d) θ = 1.0, (e) θ = 1.5 and (f) θ = 2.0.

5.2. Simulation for Bayesian Estimates

For the UTD parameter θ, in Section 4.3, the HC distribution (Case 1) and N distri-
bution (Case 2) were motivated as prior distributions. As a result, the posterior summary
results, such as means, standard deviations (SDs), Monte Carlo errors (MCEs), lower
bounds (LBs), and upper bounds (UBs) of the 95% confidence intervals and medians are
summarized in Tables 4 and 5 for Case 1 and Case 2, respectively. In both cases, increas-
ing sample size leads to a decrease in SD and MCE, which predicts a consistency in the
Bayesian estimates.

Table 4. Posterior summary results (Case 1: θ ∼ HC(25)).

θ = 0.26

n Mean SD MCE LB UB Median

25 0.26217 0.01971 0.00300 0.22331 0.28030 0.26770
50 0.26834 0.01649 0.00213 0.24361 0.29064 0.26831
75 0.27247 0.01599 0.00206 0.25154 0.29064 0.27118

100 0.26770 0.01057 0.00175 0.25917 0.28695 0.26957
150 0.27098 0.00938 0.00154 0.25339 0.28218 0.26928
200 0.26300 0.00638 0.00123 0.25714 0.26781 0.26407
500 0.27236 0.00264 0.00109 0.26706 0.27597 0.27425

θ = 0.45

n Mean SD MCE LB UB Median

25 0.45493 0.04530 0.00889 0.36841 0.52298 0.45676
50 0.47560 0.02125 0.00716 0.43660 0.51318 0.46884
75 0.46305 0.02069 0.00598 0.41964 0.50306 0.46555

100 0.47071 0.01648 0.00517 0.42378 0.49429 0.47592
150 0.46769 0.01489 0.00393 0.42507 0.49429 0.46646
200 0.45651 0.00991 0.00262 0.44271 0.47886 0.45687
500 0.46907 0.00830 0.00231 0.44839 0.48607 0.46841
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Table 4. Cont.

θ = 0.60

n Mean SD MCE LB UB Median

25 0.62836 0.05583 0.01269 0.51515 0.69347 0.65291
50 0.63488 0.03203 0.00815 0.55716 0.68275 0.63661
75 0.63130 0.02958 0.00740 0.54930 0.68275 0.63682

100 0.64362 0.02506 0.00657 0.59327 0.68275 0.65125
150 0.61670 0.02001 0.00473 0.59286 0.65175 0.60516
200 0.58433 0.01135 0.00361 0.56540 0.60849 0.58477
500 0.61527 0.00864 0.00333 0.60791 0.63575 0.61179

θ = 1

n Mean SD MCE LB UB Median

25 1.02150 0.08400 0.01689 0.84895 1.13786 1.02060
50 1.02859 0.08394 0.01243 0.94449 1.15295 1.02883
75 1.04385 0.04133 0.01163 0.92371 1.09369 1.04292

100 1.06278 0.04029 0.01001 1.02172 1.22162 1.05589
150 1.03099 0.03427 0.00846 0.98819 1.07907 1.03083
200 1.02172 0.02549 0.00573 0.99575 1.05466 1.02620
500 0.97150 0.01249 0.00484 0.94968 0.98967 0.97079

θ = 1.5

n Mean SD MCE LB UB Median

25 1.52918 0.14300 0.04025 1.31918 1.78305 1.50069
50 1.51870 0.11159 0.03641 1.17142 1.67897 1.55316
75 1.40491 0.09922 0.03165 1.20423 1.52690 1.42708

100 1.56450 0.07915 0.02093 1.25097 1.64389 1.57598
150 1.54486 0.05005 0.01196 1.47530 1.61097 1.55532
200 1.52040 0.02288 0.00591 1.50104 1.56919 1.52027
500 1.55005 0.02201 0.00390 1.52843 1.58571 1.55540

θ = 2

n Mean SD MCE LB UB Median

25 2.06736 0.15240 0.03757 1.74925 2.30008 2.13126
50 2.07023 0.14915 0.02789 1.75671 2.29423 2.09929
75 2.07862 0.11586 0.02615 1.92777 2.22704 2.06513

100 2.09001 0.07422 0.02596 1.99647 2.20813 2.07646
150 2.03891 0.07322 0.02149 1.75963 2.14525 2.06189
200 2.06265 0.05250 0.01654 1.99405 2.26134 2.05505
500 2.09538 0.04211 0.01636 2.06500 2.21627 2.06596

Table 5. Posterior summary results (Case 2: θ ∼ N(0, 1000)).

θ = 0.26

n Mean SD MCE LB UB Median

25 0.25141 0.05134 0.01312 0.04355 0.30548 0.26122
50 0.25790 0.04318 0.01151 0.15933 0.29794 0.26140
75 0.26324 0.03247 0.00592 0.24319 0.28917 0.26559

100 0.27617 0.01091 0.00322 0.25228 0.29550 0.27556
150 0.24699 0.01081 0.00208 0.23512 0.26737 0.24183
200 0.26654 0.01409 0.00285 0.25307 0.30800 0.26631
500 0.26818 0.01401 0.00159 0.26320 0.28228 0.26949

106



Math. Comput. Appl. 2022, 27, 12

Table 5. Cont.

θ = 0.45

n Mean SD MCE LB UB Median

25 0.44924 0.04779 0.01029 0.37730 0.52804 0.44985
50 0.46277 0.03141 0.00797 0.41231 0.51942 0.46657
75 0.46092 0.02074 0.00545 0.41995 0.49405 0.45864

100 0.47382 0.01515 0.00498 0.44194 0.50921 0.47630
150 0.43418 0.01103 0.00326 0.41547 0.44902 0.43349
200 0.46069 0.01011 0.00263 0.44098 0.48238 0.46259
500 0.46553 0.00599 0.00182 0.45494 0.47738 0.46694

θ = 0.60

n Mean SD MCE LB UB Median

25 0.60442 0.05548 0.01444 0.49541 0.71972 0.60913
50 0.54888 0.03104 0.01281 0.49527 0.62074 0.55447
75 0.61557 0.02836 0.00759 0.57167 0.65640 0.61174

100 0.62561 0.01481 0.00538 0.60462 0.65368 0.62487
150 0.58561 0.01322 0.00402 0.55367 0.60185 0.58913
200 0.59753 0.01138 0.00449 0.58214 0.61691 0.59483
500 0.61042 0.01113 0.00361 0.59462 0.63647 0.61434

θ = 1

n Mean SD MCE LB UB Median

25 1.02150 0.08400 0.01689 0.84895 1.13786 1.02060
50 1.03794 0.06691 0.01658 0.89983 1.14142 1.04985
75 1.04394 0.05572 0.01330 0.90487 1.14142 1.04432

100 1.04440 0.04849 0.01302 0.92824 1.14142 1.03943
150 1.05009 0.04125 0.01278 0.98320 1.13767 1.05431
200 1.00869 0.07225 0.01869 0.90478 1.07876 1.01865
500 1.01614 0.06391 0.00458 1.00317 1.04602 1.01625

θ = 1.5

n Mean SD MCE LB UB Median

25 1.52918 0.14300 0.04025 1.31918 1.78305 1.50069
50 1.54627 0.07872 0.02170 1.38232 1.64742 1.55280
75 1.55881 0.06692 0.01959 1.44383 1.66958 1.55559

100 1.55876 0.04834 0.01311 1.45950 1.62751 1.55994
150 1.55805 0.03772 0.01221 1.48935 1.63206 1.55871
200 1.52328 0.10483 0.00849 1.45942 1.66891 1.52085
500 1.53107 0.09938 0.00683 1.51895 1.62075 1.51895

θ = 2

n Mean SD MCE LB UB Median

25 1.93826 0.19074 0.03847 1.58829 2.30034 1.93391
50 2.06358 0.14649 0.03532 1.62112 2.28823 2.10545
75 2.02426 0.13764 0.02461 1.86401 2.29424 2.01176

100 2.11171 0.10124 0.02076 1.85800 2.22242 2.11979
150 2.05937 0.10096 0.01815 1.97012 2.21942 2.07596
200 2.03326 0.10071 0.01678 1.94723 2.23003 2.03772
500 2.05469 0.06821 0.01188 1.98674 2.26369 2.06343

6. Application

6.1. Methodology

With the help of two real-life data sets, the superiority of the UTD is illustrated. The
first data set is from [34]. The data are the maximum flood level (in millions of cubic feet
per second) for the Susquehanna River at Harrisburg, Pennsylvania. The second data set
represents times between failures of secondary reactor pumps (see [35]).
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An analysis of the total time on test (TTT) plot is used to identify the shape of the
underlying hrf of the data. We specify that the hrf is decreasing, increasing, bathtub-shaped,
and upside-down bathtub-shaped if the empirical TTT transform is convex, concave,
convex then concave, and concave then convex, respectively. Thus, it will be shown that
the first data set has an increasing hrf, while the second data set has a bathtub-shaped
hrf. For the sake of comparison, the following lifetime distributions were considered:
Log-Lindley distribution (LLD) (see [6]), unit Lindley distribution (ULD) (see [9]), Topp–
Leone distribution (TLD) (see [3]), one-parameter Kumaraswamy distribution (OKD),
power distribution (PD), transmuted distribution (TD), two-parameter Kumaraswamy
distribution (KD), beta distribution (BD), exponentiated Topp–Leone distribution (ETLD),
and unit Burr-III distribution (UBD). Using R software, the MLEs of all these distributions’
parameters are computed along with information criteria, which are listed below.

• Akaike information criterion defined by AIC = 2p − 2 log l;

• Akaike information criterion corrected given as AICc = AIC + 2p(p+1)
n−p−1 ;

• Consistent Akaike information criterion specified by CAIC = −2 log l + p(log n + 1);
• Bayesian information criterion defined by BIC = p log n − 2 log l.

Here, log l denotes the estimated value of the maximum log-likelihood, p denotes
the number of parameters and n denotes the number of observations. The Kolmogorov–
Smirnov (KS) test is also used to test the goodness of fit for all the data sets of the UTD
and other distributions. Nonparametrically, this test measures how close the empirical
distribution and the fitted distribution are. The AIC, AICc, CAIC, and BIC measure the
adequacy, while the KS test measures the fit of each distribution. All the computations
were performed using R software.

6.2. Flood Level Data

The data set is from [34]. The data represent the maximum flood level (in millions
of cubic feet per second) for the Susquehanna River at Harrisburg, Pennsylvania, over
20 four-year periods from 1890 to 1969. Table 6 provides the measurements of the data set.

Table 6. Flood level data.

0.654 0.613 0.315 0.449 0.297 0.402 0.379 0.423
0.379 0.324 0.269 0.740 0.418 0.412 0.494 0.416
0.338 0.392 0.484 0.265

In Table 7, the MLEs of the parameters of every distribution used and the observed
KS test statistics of each distribution are given. We conclude that the UTD gives the best
fit because it has the smallest KS value and the largest p-value. Table 8 shows that UTD
has the largest maximum log-likelihood value and the smallest AIC, AICc, CAIC, and BIC
values among other models. As a result, it can be concluded that the UTD model is more
successful than the other models for the flood level data.

Table 7. The MLEs of the parameters with their standard errors, KS values, and the associated
p-values.

Distribution MLE of the Parameters (Standard Error) KS p-Value

UTD θ̂ = 1.2184(0.1056) 0.2527 0.1555

LLD λ̂ = 6.39 × 10−10(0.0959),
σ̂ = 2.2280(0.2597)

0.3157 0.0372

ULD θ̂ = 1.6205(0.2849) 0.3182 0.0349
TLD θ̂ = 2.2450(0.5019) 0.3352 0.0223
OKD θ̂ = 1.7290(0.3866) 0.4128 0.0022
PD θ̂ = 1.1140(0.2491) 0.3941 0.0040
TD θ̂ = 1(0.7359) 0.4598 0.0004
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Table 8. Log-likelihood, AIC, AICc, CAIC, and BIC values for flood level data.

Distribution Log-Likelihood AIC AICc CAIC BIC

UTD 13.5818 −25.1635 −24.9414 −23.1679 −24.1678
LLD 6.6716 −9.3431 −8.6373 −5.3517 −7.3517
ULD 7.1410 −12.2821 −12.0598 −10.2863 −11.2864
TLD 7.3682 −12.7365 −12.5142 −10.7407 −11.7407
OKD 2.5110 −3.0220 −2.7998 −1.0263 −2.0263
PD 0.1124 1.7751 1.9974 3.7709 2.7708
TD 2.2856 −2.5713 −2.3489 −0.5755 −1.5756

Figure 5a,b represent the TTT plot and histogram of flood level data, respectively. The
TTT plot indicates an increasing hrf, case covered by the UTD, and histogram depicts how
well the proposed model fits the data, compared to other models.
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Figure 5. (a) TTT plot and (b) histogram for the flood level data.

The estimated variance of the MLE θ̂ of the UTD parameter θ for the flood level data
is given by

J−1(θ̂) = 0.0112.

Therefore, an approximate 95% confidence interval for θ is [1.0114, 1.4254]. Table 9
gives the median of bootstrap estimates and bootstrap confidence intervals.

Table 9. The median of bootstrap estimators and bootstrap confidence intervals.

Median of Estimates Lower Limit Upper Limit

θ̂ = 1.2239 1.0815 1.4176

6.3. Times between Failures of Secondary Reactor Pumps Data

The data represent times between failures of secondary reactor pumps (see [35]). Here,
a normalization operation is carried out by dividing the original data by 10, in order to
obtain data between 0 and 1. Table 10 provides the measurements of the transformed data.

Table 10. Secondary reactor pumps data.

0.2160 0.0150 0.4082 0.0746 0.0358 0.0199 0.0402 0.0101
0.0605 0.0954 0.1359 0.0273 0.0491 0.3465 0.0070 0.6560
0.1060 0.0062 0.4992 0.0614 0.5320 0.0347 0.1921
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Listed in Table 11 are the MLEs of the parameters and the observed KS test statistic for
each distribution. In terms of KS value and p-value, UTD is the best model. On the basis of
Table 12, it can be seen that the UTD has the largest log-likelihood value, while the AIC,
AICc, CAIC, and BIC values are the smallest. Therefore, the UTD model fits the secondary
reactor pump failure data better than the other models.

Table 11. The MLEs of the parameters and their standard errors, KS values and the associated
p-values.

Distribution MLE of the Parameters (Standard Error) KS p-Value

UTD θ̂ = 0.3625(0.0290) 0.1366 0.7341

LLD λ̂ = 2.12 × 10−9(0.4578),
σ̂ = 0.7568(0.0680)

0.1584 0.5573

ULD θ̂ = 4.1497(0.7445) 0.3274 0.0107
TLD θ̂ = 0.4891(0.1020) 0.1962 0.2982
OKD θ̂ = 4.8569(1.0127) 0.2568 0.0796
PD θ̂ = 0.3773(0.0787) 0.2247 0.1678
TD θ̂ = 1(0.4902) 0.4514 0.00008
KD α̂ = 0.6766(0.1407), β̂ = 2.9360(0.9558) 0.1393 0.7123
BD α̂ = 0.6307(0.1575), β̂ = 3.2317(1.0648) 0.1542 0.5919

ETLD α̂ = 0.6567(0.1532), β̂ = 1.6566(0.4805) 0.1465 0.6536
UBD λ̂ = 0.1639(0.0873), b̂ = 2.4273(1.2196) 0.2243 0.1688

Table 12. Log-likelihood, AIC, AICc, CAIC, and BIC values for secondary reactor pumps data.

Distribution Log-Likelihood AIC AICc CAIC BIC

UTD 21.7499 −41.4998 −41.3093 −39.3643 −40.3643
LLD 20.0761 −36.1522 −35.5522 −31.8812 −33.8812
ULD 14.5035 −27.0070 −26.8165 −24.8715 −25.8715
TLD 18.7827 −35.5653 −35.3749 −33.4299 −34.4298
OKD 18.0840 −34.1679 −33.9775 −32.0325 −33.0324
PD 15.5307 −29.0615 −28.8709 −26.9259 −27.9259
TD 11.2067 −20.2229 −20.2229 −18.2779 −19.2778
KD 20.3296 −36.6592 −36.0592 −32.3882 −34.3883
BD 20.0285 −36.0571 −35.4570 −31.7860 −33.7861

ETLD 20.1709 −36.3418 −35.7418 −32.0708 −34.0708
UBD 17.5294 −31.0588 −30.4588 −26.7878 −28.7878

Figure 6a,b represent the empirical TTT plot and histogram of the secondary reactor
pumps data. A bathtub hrf is indicated by the TTT plot for the secondary reactor pumps
data. From the histogram, it can be seen that the empirical line is closer to the fitted
line of the UTD model than other models. The estimated variance of the MLE θ̂ of the
UTD parameter θ for the times between failures of secondary reactor pumps data data is
calculated by

J−1(θ̂) = 0.0008

Therefore, an approximate 95% confidence interval for θ is given by [0.3057, 0.4193].
Table 13 provides the median of bootstrap estimates and bootstrap confidence intervals.

Table 13. The median of bootstrap estimators and bootstrap confidence intervals.

Median of Estimates Lower Limit Upper Limit

θ̂ = 0.3605 0.3154 0.4216
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Figure 6. (a) TTT plot and (b) histogram for secondary reactor pumps data.

7. Conclusions

Through this study, the introduction of a bounded form of the TD by the exponential
transformation was performed. It is named UTD. Certain statistical properties, such as
shape characteristics, moments, incomplete moments, and quantile function were derived.
The Shannon entropy and extropy were also obtained. Based on the ML, LS, WLS, and
Bayesian methods, estimation of the model parameter was established and examined by
simulation studies. The proposed model’s dominance was demonstrated using real-world
data sets, and it is concluded that the UTD is a good candidate in unit interval distributions.
Possible perspectives of this work include the construction of quantile regression models,
as in [36,37], as well as bivariate and discrete versions of the UTD. This work requires
additional developments and investigations, which we will leave for future research.
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Abstract: By fusing the Lindley and Lomax distributions, we present a unique three-parameter con-
tinuous model titled the minimum Lindley Lomax distribution. The quantile function, ordinary and
incomplete moments, moment generating function, Lorenz and Bonferroni curves, order statistics,
Rényi entropy, stress strength model, and stochastic sequencing are all carefully examined as basic sta-
tistical aspects of the new distribution. The characterizations of the new model are investigated. The
proposed distribution’s parameters were evaluated using the maximum likelihood procedures. The
stability of the parameter estimations is explored using a Monte Carlo simulation. Two applications
are used to objectively assess the new model’s extensibility.

Keywords: compounding distributions; Lindley distribution; Lomax distribution; stochastic ordering;
stress strength model; characterization

1. Introduction

Appropriate data modeling is believed to provide greater insight into the data, di-
vulging its properties and allowing for tracking its characteristics. Consequently, there is
a potential for developing efficient methods for clearer grasp of real-world occurrences.
We developed a coherent model to help meet the aspirations of applied practitioners in
a wide range of scientific domains, inspired by the application of theoretical probability
models in applied research. Tahir and Nadarajah [1] provided a deep review of novel
approaches that can be adopted to develop new generalized classes (“G-classes” for short)
of distributions. In parallel to G-classes, Tahir and Cordiero [2] presented a review on
compounding univariate distributions, their expansions, and classes to detect anomaly
scenarios under series and parallel structures. In the current article, we adopted the ap-
proach extensively discussed in Section 7 of [2], by integrating two continuous cumulative
distribution functions (cdfs) together. Cordeiro et al. [3] initiated this idea and proposed
the Exponential-Weibull distribution. In the same vein, we proposed minimum Lindley
Lomax (minLLx) distribution by compounding the Lindley and Lomax distributions.

The Lindley (L) and Lomax (Lx) distributions are indispensable models for character-
izing data, notably in engineering, for the replacement and maintenance of various goods,
systems, and reliability processes. For the stated reason, researchers have found ample
evidence of studies that conformed to these distributions, namely, Ghitany et al. [4], Ramos
and Louzada [5], Singh et al. [6], Oguntunde et al. [7], Wei et al. [8], and Elgarhy et al. [9],
just to mention a few. It is an intriguing fact that both the Lindley and the Lomax distri-
butions emerged from an extension of the exponential model, which is commonly used
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to quantify the lifetime of a process or device. Assume that a system comprises of two
sub-systems that are operating in tandem at the same time, and that the system will collapse
if the first sub-system falters. Let us assume further that the failure times of subsystems
follow the Lindley and Lomax distributions with Y and Z independent variables having
cdfs, respectively, as follows

G(y) = 1 −
(

1 + θ + θy
1 + θ

)
e−θy, y ≥ 0, θ > 0

H(z) = 1 − (1 + λz)−β, z ≥ 0, λ, β > 0.

Then, the new arbitrary variable (av) X = min(Y, Z) will be called the min Lindley
Lomax (minLLx) to determine the system’s failure mechanism. The cdf of the minLLx av is
follows as

F(x) = 1 − e−θx

(1 + λx)β

(
1 + θ + θx

1 + θ

)
, x ≥ 0, θ, λ, β > 0. (1)

The probability density function (pdf), survival function (sf), and hazard rate function
(hrf) in harmony with Equation (1) are given, respectively, by

f (x) =
e−θx

(1 + θ)(1 + λx)β+1

[
λβ(1 + θ + θx) + θ2(1 + x)(1 + λx)

]
, x > 0, θ, λ, β > 0 , (2)

S(x) =
e−θx

(1 + λx)β

(
1 + θ + θx

1 + θ

)
and

h(x) =
λβ(1 + θ + θx) + θ2(1 + x)(1 + λx)

(1 + λx)(1 + θ + θx)
, x > 0. (3)

From now on, an av X~minLLx (θ, λ, β) with a pdf is defined by Equation (2).
The purpose of this research is to present and explore the mathematical configurations

of a newly developed three-parameter distribution, the minimum Lindley Lomax model,
in the perspective of compounding. The rest of the article is composed of seven main
components. The minLLx model’s essential mathematical features are examined in Section 2.
Specific characterizations of the new distribution are pursued in Section 3. The minLLx
model’s maximum likelihood estimates and observed information matrix are established
in Section 4. In Section 5, a simulation study is carried out. Two applications are provided
in Section 6. Eventually, in Section 7, there are some closing remarks.

2. Structural Properties

The standard mathematical characteristics of the newly suggested minLLx distribution,
as stipulated by the cdf in Equation (1), are explored in this phase. In each subcategory, we
report a few explicit results.

2.1. Quantile Function

Let the pth quantile of the minLLx distribution, say xp, is demarcated by F(xp) = p,
such that 0 < p < 1. Then the root of

xp =
1
λ

⎧⎨⎩
[
(1 + θ)(1 − p)eθxp

1 + θ + θxp

]−1/β

− 1

⎫⎬⎭. (4)

114



Math. Comput. Appl. 2022, 27, 16

2.2. The Shape of the minLLx Distribution

Mathematically, the forms of the minLLx distribution’s density and hazard functions can
be defined. The acute points of the density function are the roots of the following equation:

−λ(1 + β)

1 + λx
+

{
θ[λβ + 2θ(1 + λx)]

λβ(1 + θ + θx) + θ2(1 + x)(1 + λx)

}
= 0.

Furthermore, the acute points of the hazard function are the roots of the following equation:{
θ[λβ + 2θ(1 + λx)]

λβ(1 + θ + θx) + θ2(1 + x)(1 + λx)

}
− λ

1 + λx
− θ

1 + θ + θx
= 0.

The density and hazard functions are visualized in Figures 1 and 2, respectively. The
density function has a reverse-J and right-skewed shape with different peeks, while hrf
can sometimes be a monotonic (increasing or decreasing), non-monotonic (bathtub), or
constant in shape. The standard L and Lx statistical distributions can only create two
shapes, whereas the minLLx model can produce a wide number of shapes based on the
power parameter beta.

Figure 1. Possible figures of the minLLx pdf for parameter values chosen at random.
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Figure 2. Possible figures of the minLLx hrf for parameter values chosen at random.

2.3. Moments and Moment Generating Function

Let X be an av with the minLLx distribution, then the ordinary moment, say μ′
r, is

given by

μ′
r = E(Xr) =

∞∫
−∞

xr f (x) dx

= λβ
1+θ

∫ ∞
0 xr(1 + θ + θx)(1 + λx)−β−1e−θxdx + θ2

1+θ

∫ ∞
0 xr(1 + x)(1 + λx)−βe−θxdx

=
∞
∑

j=0

( −β − 1
j

)
λj+1β
1+θ

∫ ∞
0 xr+j(1 + θ + θx)e−θxdx +

∞
∑

j=0

( −β
j

)
θ2λj

1+θ

∫ ∞
0 xr+j(1 + x)e−θxdx

=
∞
∑

j=0

( −β − 1
j

)
λj+1β(r+θ+j+2)Γ(r+j+1)

(1+θ)θr+j+1 +
∞
∑

j=0

( −β
j

)
λj(r+θ+j+1)Γ(r+j+1)

(1+θ)θr+j

=
∞
∑

j=0

λjΓ(r+j+1)
(1+θ)θr+j+1

{
λβ(r + θ + j + 2)

( −β − 1
j

)
+ θ(r + θ + j + 1)

( −β
j

)}
,

(5)

where Γ(n) =
∫ ∞

0 xn−1 e−x dx is the gamma function. Substituting r = 1, 2, 3, 4 into

(5), we obtain the mean = μ′
1,variance = μ′

2 − μ′2
1, skewness =

{
μ′

3 − 3μ′
2μ′

1 + 2μ′ 3
1

}2

{
μ́2 − (μ′

1)
2
}−3

and kurtosis =
{

μ′
4 − 4μ′

3μ′
1 + 6 μ′

2μ′ 2
1 − 3μ′ 4

1

} {
μ′

2 − (μ′
1)

2
}−2

.
Table 1 provides the mean, variance, standard deviation, skewness, and kurtosis of X
for different combinations of θ, λ, β as A1 : θ = 3.5, λ = 0.4 , β = 0.5;A2 : θ = 0.3,
λ = 1, β = 0.8 ;A3 : θ = 1.5, λ = 0.1, β = 1.5, and A4 : θ = 0.3, λ = 0.5, β = 0.3 .
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Table 1. Moments, variance, standard deviation, skewness and kurtosis of X for randomly selected
parameter values of minLLx(θ,λ,β).

μ′
r A1 A2 A3 A4

μ′
1 1.126862 0.3661565 0.9344674 0.164529

μ′
2 1.406321 0.2563243 1.76341 0.1045506

μ′
3 1.896405 0.2028995 5.733562 0.07738473

μ′
4 2.72086 0.172917 28.11525 0.06041124

Variance 0.1365036 0.1222537 0.890181 0.07748082

S.D 0.369464 0.349648 0.9434941 0.2783538

Skewness 1.137115 1.563494 2.448468 2.289103

Kurtosis 1.375744 1.731832 0.84139 1.526684

The empirical findings from Table 1 allow us to deduce that the skewness is greater
than zero, indicating a lack of symmetry of the tails, specifically an elongated right tail.
This signifies that the mean and median are pulled to the right. Moreover, kurtosis values
are less than three, demonstrating that the distribution is platykurtic.

The nth principal moment of the minLLx distribution, say μn, can be acquired from

μn =
n
∑

r=0

(
n
r

)
(−μ′

1 )
n−r E(xr)

=
n
∑

r=0

∞
∑

j=0

(
n
r

)
(−μ′

1 )
n−r

λjΓ(r+j+1)
(1+θ)θr+j+1

{
λβ(r + θ + j + 2)

( −β − 1
j

)
+ θ(r + θ + j + 1)

( −β
j

)}
.

(6)

The rth incomplete moment of the minLLx distribution, symbolized by ϕs(t), is

ϕs(t) =
t∫

−∞
xs f (x) dx

=
∞
∑

i=0

λi

(1+θ)θs+i+1

⎧⎪⎪⎨⎪⎪⎩
λβ[(1 + θ)γ(s + i + 1, t) + γ(s + i + 2, t)]

( −β − 1
i

)
+θ[θγ(s + i + 1, t) + γ(s + i + 2, t)]

( −β
ji

)
⎫⎪⎪⎬⎪⎪⎭ ,

(7)

where γ(a, x) =
∫ x

0 ta−1 e−t dt is the lower incomplete gamma function.
The moment generating function, signified by Mx(t), of the minLLx distribution can

be acquired as

Mx(t) = E(etx) =
∞

∑
j=0

λjΓ(j + 1)
(1 + θ)θ j+2

⎧⎪⎪⎨⎪⎪⎩
λβ[θ(θ + j − t + 2)− t]

( −β − 1
j

)
+θ2(θ + j − t + 1)

( −β
j

)
⎫⎪⎪⎬⎪⎪⎭. (8)

2.4. Probability Weighted Moments

Ordinary moments of order statistics are generalized by probability weighted moments
of a stochastic process, which naturally arise while dealing with ordinary moments. They
also play a significant role in several parametric estimate techniques. The formulation for the
probability weighted moments of a chance variable with the minLLx distribution is as follows.
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The (r + s)th probability weighted moments (PWMs) of a chance variable X with the
minLLx distribution, about Mr,s, follows

Mr,s = E
(
XrF(x)s) = ∞∫

−∞
xrF(x)s f (x)dx

=
∞∫

−∞
xr (1+λx)−β−1

1+θ

{
λβ(1 + θ + θx) + θ2(1 + x)(1 + λx)

}
e−θx

×
{

1 − (1 + λx)−β
(

1+θ+θx
1+θ

)
e−θx

}s
dx

=
∞
∑

j=0

(−1)j

(1+θ)j+1

(
s
j

) ∞∫
−∞

xr(1 + λx)−β(j+1)−1(1 + θ + θx)je−θ(j+1)x

×{λβ(1 + θ + θx) + θ2(1 + x)(1 + λx)
}

dx

=
∞
∑

j=0

(−1)jλβ

(1+θ)j+1

(
s
j

) ∞∫
−∞

xr(1 + λx)−β(j+1)−1(1 + θ + θx)j+1e−θ(j+1)xdx

︸ ︷︷ ︸
A

+
∞
∑

j=0

(−1)jθ2

(1+θ)j+1

(
s
j

) ∞∫
−∞

xr(1 + λx)−β(j+1)(1 + x)(1 + θ + θx)je−θ(j+1)xdx

︸ ︷︷ ︸
B

,

where

A =
∞

∑
i=0

j+1

∑
w=0

λiθw(1 + θ)j−w−1Γ(r + i + w + 1)

( θ(j + 1))r+i+w+1

( −β(j + 1)− 1
i

) (
j + 1

w

)
and

B =
∞

∑
i=0

j

∑
w=0

λiθw(1 + θ)j−w[θ(j + 1) + r + i + w + 1]Γ(r + i + w + 1)

(θ(j + 1))r+i+w+2

( −β(j + 1)
i

)(
j
w

)
.

Consequently, we arrive at

Mr,s =
∞
∑

j,i=0

(−1)jλi

(1+θ)j+1θr+i(1+j)r+i

(
s
j

)

×

⎧⎪⎪⎪⎨⎪⎪⎪⎩
j+1
∑

w=0

λβ(1+θ)j−w−1Γ(r+i+w+1)
(1+j)w+1

( −β(j + 1)− 1
i

)(
j + 1

w

)
+

j
∑

w=0

(1+θ)j−w [θ(j+1)+r+i+w+1]Γ(r+i+w+1)
(1+j)w+2

( −β(j + 1)
i

)(
j
w

)
⎫⎪⎪⎪⎬⎪⎪⎪⎭.

(9)

2.5. Order Statistics

The inclusion of sorted random variables, often known as order statistics, is crucial in
the modeling of various longevity systems with distinct component structures. David and
Nagaraja [10] laid the all-important foundation for this paradigm. The order statistics of
the minLLx distribution are linked to having conventional distributional modules; hence
their importance is an inarguable fact.

Consider the given scenario as X1: n ≤ X2:n, . . . ≤ Xn:n be the Xk:n th order statistics
corresponding to a sample of size n from the minLLx distribution. The pdf of Xk:n, the kth
order statistic, is given by

fXk:n(x) =
1

β(k, n − k + 1)

n−k

∑
w=0

(−1)w
(

n − k
w

)
f (x)F(x)k+w−1, (10)
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where β(., .) is the exact beta function. From (5) and (6), we have

f (x)F(x)k+w−1 =
∞
∑

j=0

(−1)j(1+λx)−β(j+1)−1e−θ(j+1)x

(1+θ)j+1

×{λβ(1 + θ + θx) + θ2(1 + x)(1 + λx)
}( k + w − 1

j

)
.

(11)

Inserting Equation (11) into Equation (10), we have

fXk:n(x) =
n−k
∑

w=0

∞
∑

j=0

(−1)w+j(1+λx)−β(j+1)−1e−θ(j+1)x

β(k,n−k+1)(1+θ)j+1

×{λβ(1 + θ + θx) + θ2(1 + x)(1 + λx)
}( n − k

w

)(
k + w − 1

j

)
.

(12)

Furthermore, the rth moment of kth order statistic for the minLLx distribution is given by

E
(

xr
k:n
)
=

n−k
∑

w=0

∞
∑

j,i=0

(−1)w+jλiΓ(r+i+1)
β(k,n−k+1)(1+θ)j+1(θ(1+j))r+i+1

(
n − k

w

)(
k + w − 1

j

)
×
{

λβ(r + θ + i + 2)
( −β(j + 1)− 1

i

)
+ θ(1 + j)(θ(1 + j) + r + i + 1)

( −β(j + 1)
i

)}
.

(13)

2.6. Rényi Entropy

Entropy is a mathematical concept that encapsulates the logical understanding of
quantifying various mechanisms. The entropy technique is adaptable in different fields,
including bioenergetics, queuing theory, thermodynamics, colligative properties of solu-
tions, and statistics. There are several mechanisms to quantify the entropy of the minLLx
distribution. Rényi entropy is established here by subjecting a feasible expression that may
be appraised using any analytical software. In the perspective of the minLLx distribution,
the following result incorporates a series expansion of this entropy system of measurement.

Rényi entropy is defined as

IR(X) = (1 − μ)−1 log
∞∫

−∞

f (x)μ dx, μ > 0, μ �= 0.

Using Equation (6) and after some manipulations, we have

IR(X) = (1 − μ)−1 log

⎧⎪⎪⎨⎪⎪⎩
∞

∑
i,l,w=0

∞

∑
j=i

λμ+w−j βμ−jΓ(i+l+w+1)
θi+w−2j+1(1+θ)j+lμi+l+w+1(

μ
j

)(
j
i

)(
μ − j
l

)(
j − μ(β + 1)

w

)
⎫⎪⎪⎬⎪⎪⎭ . (14)

2.7. Stochastic Dominance

Across many distinct fields of probability and statistics, stochastic ordering and in-
equalities are being employed more extensively to examine the comparative behavior.
Biometrics, robustness, econometrics, and actuarial sciences are all fields that have devel-
oped this presumption. According to Shaked and Shanthikumar [11], an av X1 is said
to be smaller than another av X2 in the likelihood ratio order (X1 ≤lr X2) if f1(x)/ f2(x)
decreases in x. The following theorem shows that the minLLx distribution is ordered in
likelihood ratio ordering if the appropriate assumptions exist.

Theorem 1: Let X1 ∼ minLLx(θ1, λ1, β1) and X2 ∼ minLLx(θ2, λ2, β2). If θ1 = θ2, λ1 =
λ2 and β1 ≥ β2 (or i f θ1 = θ2, β1 = β2 and λ1 ≥ λ2), then X1 ≤lr X2.
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Proof: We have

f1(x)
f2(x)

=
(1 + θ2)(1 + λ2x)1+β2 e−(θ1−θ2)x

(1 + θ1)(1 + λ1x)1+β1

{
λ1β1(1 + θ1 + θ1x) + θ2

1(1 + x)(1 + λ1x)
λ2β2(1 + θ2 + θ2x) + θ2

2(1 + x)(1 + λ2x)

}
.

Then

log f1(x)
f2(x) = −(θ1 − θ2)− (1 + β1) log(1 + λ1x) + (1 + β2) log(1 + λ2x) + log

(
1+θ2
1+θ1

)
+ log

[
λ1β1(1 + θ1 + θ1x) + θ2

1(1 + x)(1 + λ1x)
]

− log
[
λ2β2(1 + θ2 + θ2x) + θ2

2(1 + x)(1 + λ2x)
]
.

If θ1 = θ2, λ1 = λ2 and β1 ≥ β2 or if θ1 = θ2, β1 = β2 and λ1 ≥ λ2, then we have

d
dx log f1(x)

f2(x) =
−λ1(1+β1)

1+λ1x + λ2(1+β2)
1+λ2x + θ1{λ1β1+θ1[1+λ1(1+2x)]}

λ1β1(1+θ1+θ1x)+θ2
1(1+x)(1+λ1x)

− θ2{λ2β2+θ2[1+λ2(1+2x)]}
λ2β2(1+θ2+θ2x)+θ2

2(1+x)(1+λ2x)
< 0.

Resultantly, f1(x)/ f2(x) declines in x and hence X1 ≤lr X2. �

2.8. Stress Strength Model

Acquired resistance metrics are used in lifetime testing to ascertain a system’s durabil-
ity. The stress-strength parameter, for instance, is based on the likelihood that a framework
would work proficiently if the stress concentration will be less than its toughness. In the
perspective of the minLLx distribution, the following result exemplifies a primitive outline
for this parameter.

Let X1 and X2 be two independent chance variables with minLLx(θ1, λ1, β1) and
minLLx(θ2, λ2, β2) distributions. Then, the stress−strength model is given by

R = Pr(X2 < X1) =
∞∫
0

f1(θ1, λ1, β1)F2(θ2, λ2, β2) dx

= 1 − λ1β1
(1+θ1)1+θ2)

∫ ∞

0
(1 + λ1x)−β1−1(1 + λ2x)−β2(1 + θ1 + θ2) (1 + θ1 + θ2x) e−(θ1+θ2)x dx︸ ︷︷ ︸

H

− θ2
1

(1+θ1)(1+θ2)

∫ ∞

0
(1 + λ1x)−β1(1 + λ2x)−β2(1 + x) (1 + θ2 + θ2x) e−(θ1+θ2)x dx︸ ︷︷ ︸

E

,

where

H =
∞

∑
j,i=0

λ
j
1λi

2 Γ(j + i + 1)

(θ1 + θ2)
j+i+3

{
(1 + θ1)(1 + θ2)(θ1 + θ2)

2 + (θ1 + θ2)(j + i + 1)
×[θ2(1 + θ1) + θ1(1 + θ2)] + θ1θ2(j + i + 1)(j + i + 2)

}( −β1 − 1
j

)( −β2
i

)
,

and

E =
∞

∑
j,i=0

λ
j
1λi

2 Γ(j + i + 1)

(θ1 + θ2)
j+i+3

{
(1 + θ2)(θ1 + θ2)

2 + (θ1 + θ2)(1 + 2θ2)(j + i + 1)
+θ2(j + i + 1)(j + i + 2)

}( −β1
j

)( −β2
i

)
.

Therefore, the stress−strength model for the minLLx distribution is
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R = 1 − ∞
∑

j,i=0

λ
j
1λi

2 Γ(j+i+1)

(1+θ1)(1+θ2)(θ1+θ2)
j+i+3

( −β2
i

)

×

⎛⎜⎜⎝ λ1β1

{
(1 + θ1)(1 + θ2)(θ1 + θ2)

2 + (θ1 + θ2)(j + i + 1)
×[θ2(1 + θ1) + θ1(1 + θ2)] + θ1θ2(j + i + 1)(j + i + 2)

}( −β1 − 1
j

)
+θ2

1

{
(1 + θ2)(θ1 + θ2)

2 + (θ1 + θ2)(1 + 2θ2)(j + i + 1)
+θ2(j + i + 1)(j + i + 2)

}( −β1
j

)
⎞⎟⎟⎠.

(15)

3. Characterization Results

This section outlines how to characterize the minLLx distribution in two ways: (i) on
the basis of ratio of two truncated moments and (ii) by using the conditional expectation
of certain functions of the av. It is worth emphasizing that for the characterization, (i)
the cdf need not have a closed form, but instead relies on the solution of a first order
differential equation, which serves as a link between the probability and differential equa-
tion. We would also like to highlight that due to the nature of minLLx density function,
our characterizations may be the only versions available. Further bear in mind that the
characterization (i) is stable in the sense of weak convergence (Glanzel [12]). We present
our characterizations (i)–(ii) in the following two subsections.

3.1. Characterizations on the Basis of Two Truncated Moments

This subsection deals with the characterizations of minLLx distribution based on
the ratio of two truncated moments. Our initial characterization employs a theorem of
Glanzel [13], see Theorem A1 of Appendix A. The result is robust even if interval H is not
closed, whereas the Theorem’s constraint is on the interior of interval H.

Proposition 1. Let X : Omega → (0, ∞) be a continuous av and let q1 =[
λβ(1 + θ + θx) + θ2(1 + x)(1 + λx)

]−1eθx and q2(x) = q1(x) (1 + λx)−1 for x > 0. The
av X has pdf (2) iff the function ψ defined in Theorem 1 is of the expression

ψ(x) =
β(1 + β)−1

(1 + λx)
, x > 0.

Proof. Let us presume that the av X has pdf(2), then

(1 − F(x)) E[ q1(X)|X ≥ x] =
(1 + θ)−1

λ β (1 + λx)β
, x > 0,

and

(1 − F(x)) E[ q2(X)|X ≥ x] =
(1 + θ)−1

λ (β + 1) (1 + λx)(β+1)
, x > 0.

Furthermore,

ψ(x) q1(x)− q2(x) = − q1(x)
(β + 1)(1 + λx)

< 0 , for x > 0.

Conversely, if ξ is of the above form, then

s′(x) =
ψ′(x) q1(x)

ψ(x) q1(x)− q2(x)
=

λ β

(1 + λx)
, x > 0 ,

and consequently
s(x) = − log

{
(1 + λx)−β

}
, x > 0.

Now, according to Theorem 1, X has density (2). �
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Corollary 1. Let X : Ω → (0, ∞) be a continuous av and let q1(x) be as in proposition 3.1. The
chance variable X has pdf (2) iff there exist functions q2 and ψ defined in theorem 1 fullfilling the
following differential equation

ψ′(x) q1(x)
ψ(x) q1(x)− q2(x)

=
λβ

(1 + λx)
, x > 0.

Corollary 2. The general solution of the differential equation in Corollary 1 is

ψ(x) = (1 + λx)β
[
−
∫

λβ(1 + λx)−1 (1 + λx)−1(q1(x))−(β+1)q2(x) dx + D
]

,

where D is a constant. It is worth emphasizing that one set of functions satisfying the above
differential equation is given in Proposition 1 with D = 0. Clearly, there are other triplets
(q1, q2, ψ) that satisfy constraints of Theorem 1.

3.2. Characterizations on the Basis of Conditional Expectation of Certain Functions of an
Arbitrary Variable

In this subsection, we employ a single function Ψ of X and characterize the distribution
of X in terms of the truncated moment of Ψ(X). The following proposition has already
appeared in Hamedani [14], so we will just state it here that it can be used to characterize
the minLLx distribution.

Proposition 2. Let X : Ω → (e, f ) be a continuous av with cdf F. Let Ψ(x) be a differentiable
function on (e, f ) with limx→e+Ψ(x) = 1. Then for δ �= 1,

E[Ψ(X)|X ≥ x] = δ Ψ(x), x ∈ (e, f )

iff

Ψ(x) = [1 − F(x)]
1
δ −1 , x ∈ (e, f ).

Remark 1. For (e, f ) = (0, ∞), Ψ(x) = e−θx/β

(1+λx)

(
1+θ+θx

1+θ

)1/β
and δ = β

β+1 , Proposition 2.
provides a characterization of the minLLX.

4. Maximum Likelihood Estimation

The maximum likelihood estimates (MLEs) and the observed information matrix for
the model parameters of the minLLx distribution will be investigated in this section. Let
x1, x2, . . . , xn be a random sample from the minLLx distribution, then the corresponding
log-likelihood function is given by

l= −n log(1 + θ)− θ
n
∑

i=1
xi − (1 + β)

n
∑

i=1
log(1 + λxi)

+
n
∑

i=1
log
{

λβ(1 + θ + θxi) + θ2(1 + λxi)(1 + λxi)
}

.
(16)

The modules of the score vector ∇l=
(

∂l
∂θ , ∂l

∂λ , ∂l
∂β

)
are:

∂l

∂θ
=

−n
1 + θ

−
n

∑
i=1

xi +
n

∑
i=1

{
(1 + xi)[λβ + 2θ(1 + λxi)]

λβ(1 + θ + θxi) + θ2(1 + λxi)(1 + λxi)

}
, (17)

∂l

∂λ
= −(1 + β)

n

∑
i=1

(
xi

1 + λxi

)
+

n

∑
i=1

{
β(1 + θ + θxi) + θ2xi(1 + xi)

λβ(1 + θ + θxi) + θ2(1 + λxi)(1 + λxi)

}
, (18)

122



Math. Comput. Appl. 2022, 27, 16

and
∂l

∂β
= −

n

∑
i=1

log(1 + λxi) +
n

∑
i=1

{
λ(1 + θ + θxi)

λβ(1 + θ + θxi) + θ2(1 + λxi)(1 + λxi)

}
. (19)

The MLEs, say Θ̂ = (θ̂, λ̂, β̂), of Θ = (θ, λ, β)T , can be obtained by equating the system
of nonlinear Equations (17)–(19) to zero and solving them concurrently. The components
of the observed information matrix J(Θ) = {Jwv} (for w, v = θ, λ, β( of Θ = (θ, λ, β)T are
given in Appendix B.

5. Simulation Study

It is very difficult to compare the theoretical performances of the different estimators
for the minLLx distribution. Therefore, simulation is needed to compare the performances
of the different methods of estimation, mainly with respect to their biases, mean square
errors, and variances for different sample sizes. A numerical study is performed using
Mathematica (v9) software. A portion of the used codes are provided as Supplementary
Materials. Different sample sizes are considered through the experiments at size n =
50, 100, 200, 300, and 500. For the defined sample size n, the experimental bias and MSE
values are the aggregate of values from N = 2000 replicated samples of the different values
of parameters θ, λ and β, respectively. Traditionally, qf, which is the inverse of cdf, i.e.,
Q(u) = F−1(p) = min{x : F(x) ≥ p}, is employed. However, in this case, it is not possible
to obtain the qf of the minLLx distribution unequivocally. To obtain the minLLx variates,
instead, we can implement the Newton−Raphosn algorithm as follows:

I. Set the values for n, λ, θ, and β, as well as the starting value of x0.
II. Develop U ∼ Uni f orm (0, 1).
III. Update x0 each time via the Newton−Raphson’s methodology, as shown below.

x∗ = x0 − R( x0; λ, θ, β)

where R( x0; λ, θ, β) = F(x0;λ,θ, β)
f (x0;λ,θ, β)

, and F(x0; λ, θ, β) and f (x0; λ, θ, β) are cdf and pdf (in
Equations (1) and (2)) of minLLx distribution, respectively.

I. If |x0 − x∗| ≤ ε, where ε is very small tolerance limit, then store x0 = x∗ as a variate
from minLLX (λ, θ, β) distribution.

II. If |x0 − x∗| ≥ ε, fix x0 = x∗ and then proceed to step III.
III. In order to develop x1, x2, x3, . . . , xn, steps II-V are repeated n times.

The average estimates, biases, MSEs, coverage probabilities (CPs), and confidence
intervals (CIs), at 95% and 99%, on the basis of different parameter combinations, are
reported in Tables 2–5 respectively.

Table 2. The MLEs, Bias, MSE, and CPs for the model parameters of the minLLx distribution based
on some initial (Init) values.

n Para Init. MLE Bias MSE
95% CI 99% CI

CPs LB UB CPs LB UB

50

θ 1.5 2.554 1.054 1.250 0.99 2.451 2.657 1.00 2.448 2.793

β 0.85 1.763 0.913 0.857 0.96 1.746 1.797 0.99 1.719 1.808

λ 0.72 1.334 0.614 0.889 0.92 1.309 1.395 0.97 1.288 1.443

100

θ 1.5 2.527 1.027 1.137 0.94 2.471 2.583 0.97 2.454 2.601

β 0.85 1.667 0.817 0.698 0.97 1.656 1.781 0.98 1.637 1.798

λ 0.72 1.227 0.507 0.733 0.95 1.215 1.266 0.96 1.202 1.291
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Table 2. Cont.

n Para Init. MLE Bias MSE
95% CI 99% CI

CPs LB UB CPs LB UB

200

θ 1.5 2.495 0.995 1.024 0. 90 2.469 2.521 0.98 2.520 2.599

β 0.85 1.601 0.751 0.583 0.97 1.586 1.625 0.95 1.547 1.643

λ 0.72 1.111 0.391 0.526 0.95 1.084 1.159 0.94 1.005 1.187

300

θ 1.5 1.738 0.238 0.556 0.94 1.721 1.755 1.00 1.727 1.779

β 0.85 1.229 0.379 0.273 0.96 1.189 1.242 0.97 1.147 1.267

λ 0.72 0.997 0.277 0.377 0.95 0.979 1.015 0.97 0.958 1.093

500

θ 1.5 1.712 0.212 0.484 0.96 1.701 1.723 0.98 1.694 1.754

β 0.85 1.003 0.153 0.097 0.94 0.985 1.036 0.98 0.970 1.088

λ 0.72 0.837 0.117 0.114 0.96 0.826 0.877 0.99 0.811 0.893

Table 3. The MLEs, Bias, MSE, CPs for the model parameters of the minLLx distribution based on
some initial (Init) values.

n Para Init. MLE Bias MSE
95% CI 99% CI

CPs LB UB CPs LB UB

50

θ 2.4 3.807 1.407 2.230 0.90 3.648 3.966 0.97 3.466 3.886

β 0.5 1.128 0.628 0.604 0.98 0.932 1.324 0.94 0.87 1.386

λ 0.5 0.981 0.481 0.481 0.96 0.785 1.177 0.96 0.723 1.239

100

θ 2.4 3.595 1.195 1.678 0.97 3.719 3.870 0.98 3.454 3.627

β 0.5 0.967 0.467 0.398 0.94 0.575 1.359 0.99 0.451 1.483

λ 0.5 0.864 0.364 0.382 0.97 0.472 1.256 0.98 0.348 1.38

200

θ 2.4 2.753 0.353 1.888 0.94 2.721 2.786 0.99 2.503 2.597

β 0.5 0.881 0.381 0.395 0.96 0.691 1.071 0.96 0.631 1.131

λ 0.5 0.722 0.222 0.199 0.97 0.532 0.912 0.97 0.472 0.972

300

θ 2.4 2.532 0.132 0.833 0.95 2.705 2.762 1.00 2.499 2.569

β 0.5 0.646 0.146 0.271 0.96 0.42452 0.867 0.98 0.354 0.938

λ 0.5 0.637 0.137 0.269 0.97 0.415 0.858 0.99 0.345 0.929

500

θ 2.4 2.518 0.118 0.270 0.96 2.506 2.531 1.00 2.537 2.577

β 0.5 0.557 0.057 0.253 0.95 0.5276 0.586 0.99 0.518 0.596

λ 0.5 0.597 0.097 0.259 0.96 0.5676 0.626 1.00 0.558 0.636

From Tables 2 and 3, we deduced that when the postulated model differs significantly
from the genuine model, as anticipated, the MSE of the estimators rises. The MSE drops
as the sample size is increased and the homogeneity disintegrates. In general, when the
kurtosis increases the MSE declines. Likewise, if the asymmetry widens, so does the bias,
and vice versa. The bias lessens as the kurtosis increases. Therefore, it is evident that as
sample size n gets larger, the MSEs and biases reduce. Similarly, the CPs of the confidence
interval seems to be quite near to the conventional levels of certainty (95% and 99%), which
endorses the already established empirical findings. In a nutshell, we may infer that MLEs
perform impressively in estimating the parameters of the minLLx distribution.

124



Math. Comput. Appl. 2022, 27, 16

Table 4. The MLEs, Bias, MSE, and CPs for the model parameters of the minLLx distribution based
on some initial (Init) values.

n Para Init. MLE Bias MSE
95% CI 99% CI

CPs LB UB CPs LB UB

50

θ 2.4 3.551 1.151 1.575 0.90 3.648 3.966 1.00 3.466 3.886

β 0.15 0.667 0.517 0.477 0.99 0.471 0.863 0.94 0.409 0.925

λ 1.5 2.778 1.278 1.883 0.92 2.582 2.974 0.97 2.52 3.036

100

θ 2.4 3.295 0.895 1.051 0.98 3.719 3.870 0.96 3.454 3.627

β 0.15 0.546 0.396 0.337 0.97 0.154 0.938 0.98 0.03 1.062

λ 1.5 2.337 0.837 0.951 0.94 1.945 2.729 0.99 1.821 2.853

200

θ 2.4 3.016 0.616 0.629 0.96 2.721 2.786 0.95 2.503 2.597

β 0.15 0.881 0.731 0.784 0.96 0.691 1.071 0.97 0.631 1.131

λ 1.5 1.836 0.336 0.263 0.95 1.646 2.026 0.97 1.586 2.086

300

θ 2.4 2.842 0.442 0.345 0.97 2.705 2.762 0.98 2.499 2.569

β 0.15 0.646 0.496 0.496 0.96 0.425 0.867 0.99 0.354 0.938

λ 1.5 1.772 0.272 0.324 0.95 1.551 1.993 0.97 1.480 2.064

500

θ 2.4 2.537 0.137 0.27 0.95 2.506 2.531 0.98 2.537 2.577

β 0.15 0.557 0.407 0.416 0.96 0.5276 0.5864 0.99 0.5183 0.5957

λ 1.5 1.606 0.106 0.261 0.95 1.5766 1.6354 0.98 1.5673 1.6447

Table 5. The MLEs, Bias, MSE, and CPs for the model parameters of the minLLx distribution based
on some initial (Init) values.

n Para Init. MLE Bias MSE
95% CI 99% CI

CPs LB UB CPs LB UB

50

θ 2.4 3.851 1.451 2.355 0.99 3.648 3.966 1.00 3.466 3.886

β 0.15 0.767 0.617 0.631 0.93 0.571 0.963 0.94 0.509 1.025

λ 3.5 4.708 1.208 1.709 0.98 4.512 4.904 0.92 4.45 4.966

100

θ 2.4 3.529 1.129 1.525 0.98 3.719 3.870 0.98 3.454 3.627

β 0.15 0.665 0.515 0.515 0.97 0.273 1.057 0.95 0.149 1.181

λ 3.5 4.553 1.053 1.359 0.96 4.161 4.945 0.93 4.037 5.069

200

θ 2.4 3.119 0.719 0.767 0.98 2.721 2.786 0.94 2.503 2.597

β 0.15 0.498 0.348 0.371 0.97 0.308 0.688 0.98 0.248 0.748

λ 3.5 4.078 0.578 0.584 0.96 3.888 4.268 0.99 3.828 4.328

300

θ 2.4 2.728 0.328 0.358 0.96 2.705 2.762 0.98 2.499 2.569

β 0.15 0.367 0.217 0.297 0.97 0.146 0.588 0.99 0.075 0.659

λ 3.5 3.876 0.376 0.391 0.94 3.655 4.097 0.98 3.584 4.168

500

θ 2.4 2.643 0.243 0.209 0.96 2.506 2.531 0.99 2.537 2.577

β 0.15 0.268 0.118 0.164 0.95 0.2386 0.2974 0.98 0.2293 0.3067

λ 3.5 3.711 0.211 0.195 0.95 3.6816 3.7404 1.00 3.6723 3.7497
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6. Applications

In this portion, we consider two actual cases of the minLLx distribution to showcase its
effectiveness. When the pressure is at % anxiety levels, the first data set reflects the failure
times of the Kevlar 49/epoxy strands. This data are leptokurtic, unimodal, and substantially
right skewed, with a likely outlier (skewness = 3.05 and kurtosis = 14.47). This data set is
taken from Andrews and Herzberg [15] and the original source is Barlow et al. [16].The
data are: 0.01, 0.01,0.02, 0.02, 0.02, 0.03, 0.03, 0.04, 0.05, 0.06, 0.07, 0.07, 0.08, 0.09, 0.09, 0.10,
0.10, 0.11, 0.11, 0.12, 0.13, 0.18, 0.19, 0.20, 0.23, 0.24, 0.24, 0.29, 0.34, 0.35, 0.36, 0.38, 0.40, 0.42,
0.43, 0.52, 0.54, 0.56, 0.60, 0.60, 0.63, 0.65, 0.67, 0.68, 0.72, 0.72, 0.72, 0.73, 0.79, 0.79, 0.80, 0.80,
0.83, 0.85, 0.90, 0.92, 0.95, 0.99, 1.00, 1.01, 1.02, 1.03, 1.05, 1.10, 1.10, 1.11, 1.15, 1.18, 1.20, 1.29,
1.31, 1.33, 1.34, 1.40, 1.43, 1.45, 1.50, 1.51, 1.52, 1.53, 1.54, 1.54, 1.55, 1.58, 1.60, 1.63, 1.64, 1.80,
1.80, 1.81, 2.02, 2.05, 2.14, 2.17, 2.33, 3.03, 3.03, 3.34, 4.20, 4.69, and 7.89. These data are also
used by Cooray and Ananda [17] and Al-Aqtash et al. [18].

The second data set signifies the failure time of 20 components from Murthy et al. [19].
The data are: 0.072, 4.763, 8.663, 12.089, 0.477, 5.284, 9.511, 13.036, 1.592, 7.709, 10.636,
13.949, 2.475, 7.867, 10.729, 16.169, 3.597, 8.661, 11.501, and 19.809.

We obtained the MLEs for the unknown parameters of all competitive models and then
compared the results via goodness-of-fit statistics: Anderson-Darling (A∗), Cramér-von
Mises (W∗), AIC (Akaike information criterion), and BIC (Bayesian information criterion).
The better model corresponds to the smaller of these criteria. The values for the Kolmogorov
Smirnov (KS) statistic and its p-value are also presented.

We compared the minLLx distribution with those of Weibull Lindley (WL) (As-
gharzadeh et al. [20]), Lomax (Lx), Lindley (L), quasi Lindley (QL) (Shanker and Mishra [21]),
and power Lomax (PLx) (Rady et al. [22]). The MLEs, their standard errors (SEs), and
some goodness of fit statistics of the models for the respective data sets are introduced in
Tables 6–9. The estimated pdf and cdf plots of all competitive distributions for the two data
sets are displayed in Figures 3 and 4, respectively.

Table 6. The MLEs alongside their accompanying SEs (in parenthesis) for the first data set.

Distribution
ML Estimates with SEs

^
λ

^
β

^
θ

^
α

^
a

^
b

minLLx 29.1543
(24.5461)

1.1967
(0.1353)

0.0565
(0.0444) - - -

WL - - - 54.8909
(46.5022)

0.1262
(0.0029)

1.3776
(0.1066)

Lx - 0.0649
(0.0730) - 16.0324

(11.8945) - -

L - — - 1.3848
(0.1068) - -

QL - 16.2215
(18.4297) - 1.0312

(0.1876) - -

PLx - - 49.8009
(55.9286) - 0.9381

(0.0842)
48.6282

(64.3737)

Table 7. Some goodness of fit statistics for the fitted models to the first data set.

Distribution
Goodness-of-Fit Statistics

−LL A* W* KS p-Value AIC BIC

minLLx 101.7467 0.73166 0.1174 0.0751 0.6188 209.4934 217.3388

WL 103.7773 0.8412 0.1372 0.1069 0.1985 213.5547 221.4001
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Table 7. Cont.

Distribution
Goodness-of-Fit Statistics

−LL A* W* KS p-Value AIC BIC

Lx 103.2335 1.1543 0.2082 0.0836 0.4803 210.4669 215.6972

L 104.6558 0.8349 0.1377 0.1062 0.2046 211.3115 213.9267

QL 103.5036 1.0226 0.1796 0.0892 0.3968 211.0071 216.2374

PLx 102.9973 1.1376 0.2044 0.0912 0.3694 211.9947 219.8400

Table 8. The MLEs alongside their accompanying SEs (in parenthesis) for the second data set.

Distribution
ML Estimates with SEs

^
λ

^
β

^
θ

^
α

^
a

^
b

minLLx 23.2537
(6.2332)

0.2000
(0.0357)

0.0176
(0.0242) - - -

WL - - - 0.5063
(0.2646)

0.0022
(0.0049)

0.1936
(0.0376)

Lx - 0.0063
(0.0050) - 19.2257

(15.1770) - -

L - - - 0.2161
(0.0344) - -

QL - 12.7561
(8.1217) - 0.1276

(0.0188) - -

PLx - - 5.1542
(4.2880) — 1.2999

(0.2549)
77.2599

(64.2934)

Table 9. Some goodness of fit statistics for the models fitted to the second data set.

Distribution
Goodness-of-Fit Statistics

−LL A* W* KS p-Value AIC BIC

minLLx 60.4860 0.4993 0.0891 0.2013 0.3319 126.1758 129.0630

WL 60.8537 0.5622 0.0992 0.2051 0.3237 127.7075 128.2906

Lx 62.9558 0.9314 0.1602 0.2484 0.1422 129.9117 131.9032

L 61.3791 0.6909 0.1203 0.2022 0.3298 126.9583 129.7541

QL 62.6023 0.8804 0.1514 0.2493 0.1396 129.2046 131.1960

PLx 62.5202 0.9067 0.1561 0.2315 2000 131.0405 134.0277

The values in Tables 7 and 9 clearly show that the minLLx distribution has the smallest
values for A*, W*, AIC, BIC, and KS, and the largest p-values among all competitive models,
compelling it to be chosen as the best model. It is clear from Figures 3 and 4, that the new
minLLx distribution provides the best fits for the two data sets.
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Figure 3. Estimated pdf and cdf plots of the minLLx distribution for the first data set.

Figure 4. Estimated pdf and cdf plots of the minLLx distribution for the second data set.

7. Conclusions

By unifying the Lindley and Lomax distributions, we establish a three-parameter
distribution called the minimum Lindley Lomax (minLLx). The quantile function, ordinary
and incomplete moments, moment generating function, Lorenz and Bonferroni curves,
order statistics, Rényi entropy, stress−strength model, and stochastic ordering are all con-
sidered as defining attributes of the new model. The envisaged model’s characterizations
are evaluated. The model parameters are determined using the optimum likelihood cri-
terion, and these projections are assessed using numerical simulations. Two real-world
applications exemplify the utility of the new model.
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com/article/10.3390/mca27010016/s1.

Author Contributions: Conceptualization, S.K. and G.G.H.; methodology, H.M.R.; software, S.O.;
validation, F.J., S.K. and H.M.R.; formal analysis, F.J. and H.M.R.; investigation, S.S.; resources, S.O.;
data curation, S.S.; writing—original draft preparation, F.J. and G.G.H.; writing—review and editing
S.K. and F.J.; visualization, S.K. and S.S.; supervision, S.O.; project administration, F.J. All authors
have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

128



Math. Comput. Appl. 2022, 27, 16

Appendix A

Theorem A1. Let (Ω , F, P) be a given probability space and let H = [a, b] be an interval for
some d < b (a = −∞, b = ∞ might as well be allowed). Let X : Ω → H be a continuous av
with the distribution function F and let q1 and q2 be two real functions defined on H, such that

E[ q2(X)|X ≥ x] = E[ q1(X)|X ≥ x]ψ(x), x ∈ H,

is defined with some real function η. Assume that q1, q2 ∈ C−1(H), ψ ∈ C2(H) and F is a twice
continuously differentiable and strictly monotone function on the set H. Finally, assume that the
equation ψ q1 = q2 has no real solution in the interior of H. Then F is uniquely determined by the
functions q1, q2, and ψ, particularly

F(x) =
∫ x

a
C
∣∣∣∣ ψ′(u)
ψ(u) q1(u)− q2(u)

∣∣∣∣ exp(−s(u)) du ,

where function s is a solution of the differential equation s′ = ψ′ q1
ψ q1−q2

and C is the normalization
constant, such that

∫
H dF = 1.

We like to mention that this kind of characterization based on the ratio of truncated
moments is stable in the sense of weak convergence (see Glanzel [12]), in particular, let
us assume that there is a sequence {Xn} of avs with a distribution function {Fn}, such
that the functions q1n, q2n, and ψn (n ∈ N) satisfy the conditions of Theorem 1, and
let q1n → q1, q2n → q2 for some continuously differentiable real functions q1 and q2. Fi-
nally, let X be a chance variable with distribution F. Under the condition that q1n(X) and
q2n(X) are uniformly integrable and the family {Fn} is relatively compact, the sequence Xn
converges to X in distribution if and only if ψn converges to ψ, where

ψ(x) =
E[ q2(X)|X ≥ x]
E[ q1(X)|X ≥ x]

.

This stabilization theorem ensures that the precision of the distribution function is
duplicated in the subsequent convergence of functions q1, q2, and ψn. It ensures, e.g.,
that the characterization on the Wald distribution coincides with that on the Levy-Smirnov
distribution if α → ∞ . The application of this theorem over certain challenges in analytical
techniques, such as the estimation of the parameters of discrete distributions, is yet another
corollary of Theorem 1′s stability condition. The functions q1, q2, and in particular, ψ
should be as straightforward and feasible for this reason. Although the function quartet
is not distinctive, it is frequently possible to choose ψ as a linear combination. As a
direct consequence, it is worth considering a few specific instances in order to develop
innovative characterizations that capture the link between individual continuous univariate
distributions and are relevant in other disciplines of science.

Appendix B

The components of the observed information matrix are the following

∂2l

∂θ2 =
−n

(1 + θ)2 +
n

∑
i=1

⎧⎪⎪⎪⎨⎪⎪⎪⎩
2(1 + xi)(1 + λxi)

[
λβ(1 + θ + θxi) + θ2(1 + λxi)(1 + λxi)

]
−[λβ(1 + xi) + 2θ(1 + xi)(1 + λxi)]

2

[λβ(1 + θ + θxi) + θ2(1 + λxi)(1 + λxi)]
2

⎫⎪⎪⎪⎬⎪⎪⎪⎭,
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∂2l

∂θ ∂λ
=

n

∑
i=1

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(1 + xi)

{
(β + 2θxi)

[
λβ(1 + θ + θxi) + θ2(1 + xi)(1 + λxi)

]
−[λβ + 2θ(1 + λxi)]

[
β(1 + θ + θxi) + θ2xi(1 + xi)

] }
[λβ(1 + θ + θxi) + θ2(1 + λxi)(1 + λxi)]

2

⎫⎪⎪⎪⎬⎪⎪⎪⎭,

∂2l

∂θ ∂β
= λ

n

∑
i=1

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(1 + xi)

[
λβ(1 + θ + θxi) + θ2(1 + xi)(1 + λxi)

]
−(1 + θ + θxi)[λβ(1 + xi) + 2θ(1 + xi)(1 + λxi)]

[λβ(1 + θ + θxi) + θ2(1 + λxi)(1 + λxi)]
2

⎫⎪⎪⎪⎬⎪⎪⎪⎭,

∂2l

∂λ2 = −
n

∑
i=1

{ [
β(1 + θ + θxi) + θ2xi(1 + xi)

]2
[λβ(1 + θ + θxi) + θ2(1 + λxi)(1 + λxi)]

2

}
,

∂2l

∂λ ∂β
=

n

∑
i=1

(
xi

1 + λxi

)
+

n

∑
i=1

{
θ2(1 + xi)(1 + θ + θxi)

[λβ(1 + θ + θxi) + θ2(1 + λxi)(1 + λxi)]
2

}
,

∂2l

∂β2 = −λ2
n

∑
i=1

{
(1 + θ + θxi)

2

[λβ(1 + θ + θxi) + θ2(1 + λxi)(1 + λxi)]
2

}
.
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Abstract: Over the years, several researchers have worked to model phenomena in which the distri-
bution of data presents more or less heavy tails. With this aim, several generalizations or extensions
of the Lomax distribution have been proposed. In this paper, an attempt is made to create a hybrid
distribution mixing the functionalities of the Nadarajah–Haghighi and Lomax distributions, namely
the Nadarajah–Haghighi Lomax (NHLx) distribution. It can also be thought of as an extension of
the exponential Lomax distribution. The NHLx distribution has the features of having four param-
eters, a lower bounded support, and very flexible distributional functions, including a decreasing
or unimodal probability density function and an increasing, decreasing, or upside-down bathtub
hazard rate function. In addition, it benefits from the treatable statistical properties of moments and
quantiles. The statistical applicability of the NHLx model is highlighted, with simulations carried
out. Four real data sets are also used to illustrate the practical applications. In particular, results
are compared with Lomax-based models of importance, such as the Lomax, Weibull Lomax, and
exponential Lomax models, and it is observed that the NHLx model fits better.

Keywords: Nadarajah–Haghighi distribution; moments; Lomax distribution; data analysis

1. Introduction

Modeling heavy-tailed data is one of the important aspects in many engineering and
medical domains. Initial work on this topic was carried out by Pareto [1] to model income
data. In later years, the applications of Pareto, particularly the type II Lomax distribution
(see [2]), usually referred to as Lomax (Lx) distribution, branched into scientific fields
such as engineering sciences, actuarial sciences, medicine, income, and many more. The
distribution function (cdf) and probability density function (pdf) of the Lx distribution are
given by

FLx(x; η) = 1 −
(

β

x + β

)α

and

fLx(x; η) =
α

β

(
β

x + β

)α+1
, x ≥ 0, η = (α, β) > 0,

respectively, where α is a shape parameter, and β is a scale parameter. We have FLx(x; η) =
fLx(x; η) = 0 for x < 0. References [3,4] considered the Lx distribution to model income
and wealth data. Reference [5] used the Lx distribution as an alternative to the exponential,
gamma, and Weibull distributions for heavy-tailed data. Reference [6] derived various
estimation techniques based on the Lx distribution. References [7,8] examined the various
structural properties and record value moments of the Lx distribution. Reference [9]
extensively studied and extended the family of distributions that were used in the Lx
distribution. Reference [10] considered the Lx distribution as an important distribution to
model lifetime data, since it belongs to the family of decreasing hazard rate.
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In continuation of this, many researchers have proposed several distributions that
deal with heavy-tailed data by generalizing the functional forms of the Lx distribution.
It mainly consists of adding scale/shape parameters accordingly. A few to mention are
the exponentiated Lx (EL) distribution in [11], beta Lx (BL) distribution in [12], Poisson Lx
distribution in [13], exponential Lx (EXL) distribution in [14], gamma Lx (GL) distribution
in [15], Weibull Lx (WL) distribution in [16], beta exponentiated Lx distribution in [17],
power Lx distribution in [18], exponentiated Weibull Lx distribution in [19], Marshall–
Olkin exponential Lx distribution in [20], type II Topp–Leone power Lx distribution in [21],
Marshall–Olkin length biased Lomax distribution in [22], Kumaraswamy generalized
power Lx distribution in [23] and sine power Lx distribution in [24]. For the purpose of
this study, a retrospective on the EXL distribution is required. To begin, it is defined by the
following cdf and pdf:

FEXL(x; ξ) = 1 − e−λ
(

β
x+β

)−α

and

fEXL(x; ξ) =
λα

β

(
β

x + β

)−α+1
e−λ

(
β

x+β

)−α

, x ≥ −β , ξ = (α, β, λ) > 0,

respectively, where α is a shape parameter, and β and λ are scale parameters. We have
FEXL(x; ξ) = fEXL(x; ξ) = 0 for x < −β. Thus, the EXL distribution combines the func-
tionalities of the exponential and Lx distributions through a specific composition scheme.
This scheme may be called the extended Lx scheme (it will be discussed mathematically
later). As immediate remarks, the EXL distribution has three parameters and is with a
lower bounded support. It is shown in [14] that the pdf of the EXL distribution is unimodal
and has an increasing hazard rate function (hrf). Moreover, its quantile and moment
properties are manageable. On the statistical side, by considering the aircraft windshield
data collected in [25], it is proven in [14] that the EXL model outperforms several three- or
four-parameter extensions of the Lx model, including the EL, BL, and GL models. Thus,
strong evidence is for the use of the extended Lx scheme for the construction of efficient
distributions and models.

On the other hand, recently, a generalized version of the exponential distribution was
given by Nadarajah and Haghighi [26]. It can be presented as an alternative to the Weibull,
gamma, and exponentiated exponential (EE) distributions. It is called the Nadarajah–
Haghighi (NH) distribution. The cdf and pdf of the NH distribution are

FNH(x; τ) = 1 − e1−(1+bx)a

and
fNH(x; τ) = ab(1 + bx)a−1e1−(1+bx)a

, x ≥ 0, τ = (a, b) > 0,

respectively. We have FNH(x; τ) = fNH(x; τ) = 0 for x < 0. Among its main features, the
pdf can have decreasing and uni-modal shapes, and the hrf exhibits increasing, decreasing,
and constant shapes. According to [26], if the pdfs of the gamma, Weibull, and exponenti-
ated exponential are monotonically decreasing, then it is not possible to allow increasing
hrf. However, such a hrf property can be achieved by the NH distribution.

In light of the above research work, we present a new distribution based on the ex-
tended Lx scheme with the use of the NH distribution as the main generator. It is called the
NH Lx (NHLx) distribution. In this sense, the NHLx distribution is to the NH distribution
what the EXL distribution is to the exponential distribution. The NHLx distribution can
also be presented as a generalization of the EXL distribution through the introduction of an
additional shape parameter. We investigate the theoretical and practical facets of the NHLx
distribution. Among its functional features, it has four parameters, it is lower-bounded (as
with the EXL distribution, with a bound governed by a scale parameter), its pdf exhibits
non-increasing and inverted J-shaped curves, and its hrf possesses increasing, decreasing,
and upside-down bathtub shapes. This combination of qualitative characteristics is rare
for a lower-bounded distribution and, in this way, it has better functionality to model
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lifetime data than the EXL and Lx distributions, among others. We illustrate this aspect by
considering four different data sets referenced in the literature.

The rest of the article covers the following aspects: Section 2 presents the most impor-
tant functions of the NHLx distribution, namely the cdf, pdf, hrf, and quantile function (qf),
along with a graphical analysis when necessary. Section 3 is devoted to moment analysis
and related functions. Section 4 concerns the maximum likelihood estimates of the NHLx
model parameters. The above section is completed by a simulation study in Section 5.
Concrete applications of the NHLx model are developed in Section 6. A conclusion is
formulated in Section 7.

2. NHLx Distribution

In order to understand the essence of the NHLx distribution, let us describe more
precisely the extended Lx scheme on the basis of the EXL distribution. One can remark
that FEXL(x; ξ) = FE

(
1

1−F∗
Lx(x;η) ; λ

)
, where FE(x; λ) denotes the cdf of the exponential

distribution with parameter λ, and F∗
Lx(x; η) = 1 −

(
β

x+β

)α
for x ≥ −β, and F∗

Lx(x; η) = 0
otherwise. Thus, F∗

Lx(x; η) can be thought of as a support-extended version of FLx(x; η)
over the semi-finite interval [−β, ∞). It is worth noting that F∗

Lx(x; η) is not a cdf anymore,
but it is increasing and satisfies limx→−β

1
1−F∗

Lx(x;η) = 0 and limx→∞
1

1−F∗
Lx(x;η) = ∞, which

ensure that FEXL(x; ξ) as a cdf is mathematically correct. It is worth noting that it can be
applied to any lifetime distribution in place of the generator exponential distribution.

Based on the extended Lx scheme with the NH distribution as a generator, the cdf and
pdf of the NHLx distribution are specified by

FNHLx(x; ζ) = 1 − e
1−
(

1+b
(

β
x+β

)−α
)a

and

fNHLx(x; ζ) =
abα

β

(
β

x + β

)−α+1
(

1 + b
(

β

x + β

)−α
)a−1

e
1−
(

1+b
(

β
x+β

)−α
)a

,

x ≥ −β ζ = (a, b, α, β) > 0,

respectively, where a and α are shape parameters, and b and β are scale parameters. We
have FNHLx(x; ζ) = fNHLx(x; ζ) = 0 for x < −β. Thus, the cdf has been derived from the
following formula: FEXL(x; ξ) = FNH

(
1

1−F∗
Lx(x;η) ; τ

)
, x ∈ R. By taking a = 1, we remark

that FNHLx(x; ζ) = FEXL(x; ξ); the NHLx distribution is reduced to the EXL distribution
with λ = b. The asymptotic properties of the pdf depend on the values of α mainly; with
the use of standard asymptotic techniques, we establish that

lim
x→−β

fNHLx(x; ζ) =

⎧⎪⎨⎪⎩
∞ if α < 1
ba
β if α = 1

0 if α > 1
, lim

x→∞
fNHLx(x; ζ) = 0.

Figure 1 completes these asymptotic results by showing some curves of the pdf for
several parameter values.

In Figure 1, we see that the pdf can be inverted J decreasing or have uni-modal shapes.
It is very flexible to skewness, peakedness, and platness curves at a small value of β (at
least), and different selected parameter values of a, b, and α. Such flexibility is not observed
for the pdf of the EXL distribution, as visually shown in the figures in [14].
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The analysis of the corresponding hrf is now examined. By applying the definition
hNHLx(x; ζ) = fNHLx(x; ζ)/[1 − FNHLx(x; ζ)], it is given by

hNHLx(x; ζ) =
abα

β

(
β

x + β

)−α+1
(

1 + b
(

β

x + β

)−α
)a−1

, x ≥ −β,

and hNHLx(x; ζ) = 0 for x < −β. Contrary to the pdf, the asymptotic properties of the hrf
mainly depend on the values of a and α; we have

lim
x→−β

hNHLx(x; ζ) =

⎧⎪⎨⎪⎩
∞ if α < 1
ba
β if α = 1

0 if α > 1
, lim

x→∞
hNHLx(x; ζ) =

⎧⎪⎨⎪⎩
∞ if aα > 1
ba

β if aα = 1
0 if aα < 1

.

In full generality, the possible shapes of the hrf are determinant for modeling purposes:
the more different shapes it has, the more the associated model is applicable to a wide
panel of data sets.

Figure 1. Curves of the pdf of the NHLx distribution for various parameter values, but with the fixed
value: β = 0.005.

Figure 2 presents the identified shapes for the hrf of the NHLx distribution. From
Figure 2, we see that the hrf can be increasing, decreasing, or upside-down bathtub-shaped,
with flexible convex–concave properties. In particular, these curve modulations are possible
thanks to the variation of the new additional parameters a. We are far beyond the curve
possibilities of the hrf of the EXL distribution, which is only increasing according to [14].
Thus, from one perspective, the NHLx distribution adds a new shape parameter a to the
EXL distribution in a thorough fashion, considerably improving its modeling properties.

The qf of the NHLx distribution is now studied. To begin, it is defined in function of
FNHLx(u; ζ) by QNHLx(u; ζ) = F−1

NHLx(u; ζ), u ∈ (0, 1). After some mathematical develop-
ment, we establish that

QNHLx(u; ζ) = β

{[
1
b

(
(1 − log(1 − u))

1
a − 1

)] 1
α − 1

}
, u ∈ (0, 1).

Based on this qf, the main quartiles of the NHLx distribution can be explicated: by taking
u = 1/4, u = 1/2, and u = 3/4 into QNHLx(u; ζ), we get the first, second, and third quar-
tiles. In addition, several quantile-based functions, and skewness and kurtosis measures,
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can be listed and analyzed (see [27]). In addition, various quantile regression models can
be constructed (see [28]).

Figure 2. Curves of the hrf of the NHLx distribution for various parameter values.

3. Moment Properties of the NHLx Distribution

The moment properties of the NHLx distribution are now under investigation. First,
for a random variable X with the NHLx distribution and any integer r, the rth moment of
X is defined by

μ∗
r = E(Xr) =

∫ ∞

−∞
xr fNHLx(x; ζ)dx,

which can be explicated as

μ∗
r =

∫ ∞

−β
xr abα

β

(
β

x + β

)−α+1
(

1 + b
(

β

x + β

)−α
)a−1

e
1−
(

1+b
(

β
x+β

)−α
)a

dx.

For given distribution parameters, this integral can be computed numerically with the
help of scientific software. An analytical expression involving sums is given in the next
proposition.

Proposition 1. Let X be a random variable with the NHLx distribution. Then, its rth moment can
be expressed as

μ∗
r = βre

r

∑
j=0

∞

∑
k=0

(
r
j

)( j
α

k

)
(−1)r−j+k

b
j
α

Γ
(

1
a

(
j
α
− k
)
+ 1, 1

)
,

where e = exp(1) and Γ(x, y) =
∫ ∞

x ty−1e−tdt with y ∈ R and x > 0, which defines the
incomplete gamma function.

Proof. Let us apply the following change of variable:

u =

(
1 + b

(
β

x + β

)−α
)a

, du =
abα

β

(
β

x + β

)−α+1
(

1 + b
(

β

x + β

)−α
)a−1

dx,
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which satisfies limx→−β u = 1 and limx→∞ u = ∞. Then, we have

μ∗
r = βre

∫ ∞

1

{[
1
b

(
u

1
a − 1

)] 1
α − 1

}r

e−udu.

By applying the standard and generalized binomial formulas, we get

μ∗
r = βre

r

∑
j=0

(
r
j

)
(−1)r−j

b
j
α

∫ ∞

1

(
u

1
a − 1

) j
α e−udu

= βre
r

∑
j=0

(
r
j

)
(−1)r−j

b
j
α

∞

∑
k=0

( j
α

k

)
(−1)k

∫ ∞

1
u

1
a

(
j
α −k

)
e−udu

= βre
r

∑
j=0

∞

∑
k=0

(
r
j

)( j
α

k

)
(−1)r−j+k

b
j
α

Γ
(

1
a

(
j
α
− k
)
+ 1, 1

)
.

This ends the proof of Proposition 1.

Based on Proposition 1, the mean of X can be expanded as

μ∗
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and the moment of order 2 of X can be expressed as

μ∗
2 = β2e
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∑
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From the above moments, we derive the variance of X by V = μ∗
2 − (μ∗

1)
2. Several

other moment measures can be expressed in a similar manner, including the dispersion
index, coefficient of variation, moment skewness, and moment kurtosis. More details on
the moment skewness and moment kurtosis will be provided later.

The two following points can be proven by following the lines of the proof of Proposition 1.

• The rth moment of X about the mean can be expressed as

μr = E[(X − μ∗
1)

r]

= βre
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∑
j=0

∞

∑
k=0

(
r
j

)( j
α

k

)
(−1)r−j+k

b
j
α

(
1 +

μ∗
1

β

)r−j
Γ
(

1
a

(
j
α
− k
)
+ 1, 1

)
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Based on it, the standard moment skewness measure is defined by SK = μ3/V
3
2 ,

and the standard moment kurtosis measure is defined by KU = μ4/V2, among other
moment measures.

• The rth unconditional moment of X at a certain t > 0 can be expanded as

μr(t) = E[Xr | X ≤ t] =
βre

1 − e
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.

It is immediate that limt→∞ μr(t) = μr. The unconditional moments are useful in the
expression of various important functions, such as the mean residual life and reversed
mean residual life functions. For more information on these functions, see [29].
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4. Maximum Likelihood Estimates of the Parameters

We now consder the NHLx distribution as a statistical model, and we assume that
the parameters a, b, α, and β are unknown. We aim to give some details on the max-
imum likelihood estimates (MLEs) of the parameters. First, let n be a positive integer,
X1, X2, . . . Xn be independent and identically distributed random variables drawn from the
NHLx distribution, and x1, x2, . . . , xn be corresponding observations. Then, provided that
inf(x1, x2, . . . , xn) ≥ −β, the likelihood function and log-likelihood functions are defined by

L(x1, x2, . . . , xn; ζ) =
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,

respectively. Then, the MLEs of the parameters a, b, α, and β, say â, b̂, α̂, and β̂, respectively,
are defined by

ζ̂ = (â, b̂, α̂, β̂) = argmaxζ �(x1, x2, . . . , xn; ζ).

In the case where β is known and we have surely inf(x1, x2, . . . , xn) ≥ −β, the
MLEs of a, b, and α are the solution of the following equations: ∂

∂a �(x1, x2, . . . , xn; ζ) = 0,
∂
∂b �(x1, x2, . . . , xn; ζ) = 0 and ∂
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The above expressions do not have closed-form solutions; hence, they are to be solved
numerically by iterative methods. These numerical values can be easily obtained using
specific tools in statistical software such as the R software, and the MLE of β is obtained by
taking its first-order statistics, as in [14]. It is also possible to determine the values of the
standard errors (SEs) of the MLEs. For more information, see [30].

Based on the MLEs, we define the estimated pdf of the NHLx distribution by fNHLx(x; ζ̂).
Conceptually, the curve of this estimated function must be close to the shape of the his-
togram of the data, among other visual criteria.

5. Simulation Study

In this section, we perform 1000 Monte Carlo simulation studies for three differ-
ent sets of parameters and each of the sample sizes of n ∈ {50, 100, 250, 500, 750, 1000}.
By considering the order (a, b, α, β), these sets of parameters are Set I = (0.5, 1.5, 5, 0.5),
Set II = (0.5, 1.5, 4, 0.75), and Set III = (1.5, 0.5, 4, 0.5). Table 1 shows the mean MLEs
(MMLEs), biases and mean squared errors (MSEs) of the studies.

From Table 1, it can be observed that as the sample size increases, the biases and MSEs
of the MLEs decrease, and with the increase in the sample sizes, the MMLEs are closer to
the true parameter values. These results prove the accuracy of the considered parameter
strategy estimation.

Table 1. Simulation results related to the MLEs of the NHLx model parameters.

n
â b̂ α̂ β̂

MMLE Bias MSE MMLE Bias MSE MMLE Bias MSE MMLE Bias MSE

Set I

50 2.4691 1.9691 13.3180 2.9450 1.4450 54.9364 9.2113 4.2113 310.9836 0.7425 0.2425 1.2292
100 1.9081 1.4081 3.6890 2.4782 0.9782 40.3076 6.9163 1.9163 128.6739 0.5886 0.0886 0.4186
250 1.5403 1.0403 2.0234 1.8814 0.3814 7.3395 6.0152 1.0152 58.5405 0.5465 0.0465 0.1517
500 1.2723 0.7723 0.9669 1.6510 0.1510 2.3173 5.3303 0.3303 11.0218 0.5143 0.0143 0.0322
750 1.1679 0.6679 0.6544 1.5840 0.0840 0.8996 5.1302 0.1302 2.9589 0.5053 0.0053 0.0090
1000 1.1355 0.6355 0.5534 1.5507 0.0507 0.6974 5.1039 0.1039 2.2337 0.5046 0.0046 0.0067

Set II

50 2.4179 1.9179 6.9777 3.2423 1.7423 170.7508 6.0725 2.0725 268.0909 0.8891 0.1391 1.7534
100 2.0139 1.5139 4.3307 2.3196 0.8196 34.8643 4.3855 0.3855 28.9119 0.7571 0.0071 0.1972
250 1.5278 1.0278 1.8965 1.7518 0.2518 6.5711 4.1402 0.1402 6.6622 0.7548 0.0048 0.0465
500 1.2650 0.7650 0.9185 1.6067 0.1067 1.7551 4.0561 0.0561 2.5538 0.7509 0.0009 0.0198
750 1.1526 0.6526 0.5826 1.5615 0.0615 1.0451 3.9887 −0.0113 1.1312 0.7459 −0.0041 0.0083
1000 1.1297 0.6297 0.5391 1.5262 0.0262 0.5502 3.9882 −0.0118 0.6922 0.7470 −0.0030 0.0054

Set III

50 2.6338 1.1338 6.5559 0.6993 0.1993 18.5802 5.2280 1.2280 246.0191 0.5697 0.0697 1.6784
100 2.0040 0.5040 2.9493 0.5758 0.0758 1.3542 4.7413 0.7413 46.4162 0.5341 0.0341 0.1676
250 1.5413 0.0413 1.1911 0.4969 −0.0031 0.1653 4.1298 0.1298 8.1507 0.5022 0.0022 0.0432
500 1.2694 −0.2306 0.4318 0.4946 −0.0054 0.0944 4.0379 0.0379 2.6806 0.4975 −0.0025 0.0139
750 1.1916 −0.3084 0.2963 0.4779 −0.0221 0.0413 3.9693 −0.0307 0.9247 0.4957 −0.0043 0.0055
1000 1.1182 −0.3818 0.2738 0.4934 −0.0066 0.0286 3.9998 −0.0002 0.6297 0.4989 −0.0011 0.0038

6. Applications of the NHLx Model

6.1. Heavy-Tailed Data Applications

Two real data sets taken from [31], namely the theft and claim data, are considered
to illustrate the proposed methodology. These data sets are known to have heavy tail
features. Table 2 presents the estimation of the tails of several standard distributions,
namely the lognormal, Weibull, gamma, and exponential distributions, and the proposed
NHLx distribution, taken at several values. The survival function, denoted by S(x) for all
distributions in full generality, determines the tail probabilities at the point x.
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Table 2. Estimation of the tail probabilities of various distributions for the considered data sets.

Models (Theft Data) S(8000) S(10,000) S(20,000)

NHLx 0.12090 0.10840 0.07531
lognormal 0.05972 0.04418 0.01536
Weibull 0.03970 0.02270 0.00200
gamma 0.03755 0.01897 0.00070
exponential 1.9067 × 10−2 7.0851 × 10−3 5.0197 × 10−5

(Claim data) S(330) S(430) S(530)

NHLx 0.94477 0.86505 0.73682
Weibull 0.370878 0.19394 0.08713
gamma 0.34625 0.19193 0.10045
lognormal 0.32961 0.20544 0.13060
exponential 0.32557 0.23171 0.16491

It is obvious from Table 2 that the NHLx model has a better fit in both data sets,
and its corresponding tail probabilities are also fairly high. This means that the proposed
distribution is also a heavy-tailed distribution, which was compared to other heavy-tailed
distributions and contains more mass at the tail ends than the other distributions considered
for comparison.

The rest of the study is devoted to the in-depth analysis of two famous data sets in
the literature, highlighting the efficiency of the estimated NHLx model under real-life
scenarios.

6.2. Practical Applications

The first data set contains 65 successive eruptions of the waiting times (in seconds) of
the Kiama Blowhole data. It was studied in [32,33]. The second data set is about intensive
care unit (ICU) patients for varying time periods of 37 patients. It was analyzed in [34] and,
more recently, in [35].

The descriptive measures such as mean, median, skewness, and kurtosis have been
computed for both the eruption data and ICU data sets. The results are presented in Table 3.

Table 3. Descriptive measures for the two data sets.

Data Sets Mean Median Skewness Kurtosis

Eruption data 46.5486 29.3811 47.9415 43.2141

ICU data 19.9494 12.5919 47.9426 43.2148

From the measures of skewness and kurtosis, it is clear that the data are highly skewed
and heavy-tailed. Furthermore, the mean value is larger than the median.

For comparison purposes, we consider some of the most accurate extended Lx models:
the WL, EXL, and Lx models.

The MLEs and the corresponding SEs of these models are listed in Table 4.
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Table 4. MLEs with SEs in parentheses of the considered models for the two data sets.

Data Sets Models a b α β

Eruption data

NHLx
0.1052 0.0095 6.0546 7

(0.0246) (0.0080) (1.2023) (-)

WL 1.9842 2.9883 0.1915 2.0231
(3.8721) (2.8437) (0.1422) (8.2844)

EXL - 1.5369 0.0452 7
(0.1418) (0.0016) (-)

Lx - - 1.8007 46.7964
(0.4426) (13.9539)

ICU data

NHLx
0.0886 0.0132 8.0704 3

(0.0443) (0.0381) (4.2954) (-)

WL 4.3066 1.6119 0.2584 3.7699
(5.4222) (0.4737) (0.1369) (4.7682)

EXL - 1.4432 0.0951 3
(0.1743) (0.0366) (-)

Lx - - 2.7744 21.0499
(1.2094) (10.8889)

The measures of goodness of fit are used to verify whether a data set is distributionally
compatible with a given model. To judge the accuracy of a model, we use the Cramér–
von Mises (W*), Anderson–Darling (A*), and Kolmogorov–Smirnov (K-S) statistics (D),
along with the K-S p-Value related to D. Adequacy measures are widely used to determine
which model is best. Here, we traditionally consider the Akaike information criterion
(AIC), consistent AIC (CAIC), Bayesian information criterion (BIC), and Hannan–Quinn
information criterion (HQIC), which are based on the MLEs of the models. The model
with the minimum W*, A*, D, AIC, CAIC, BIC, and HQIC value and maximum p-Value is
chosen as the best one that fits the data. We may refer to [36] for the precise definitions of
these measures. Their values for the considered models and the two data sets are collected
in Table 5.

From Table 5, it is witnessed that the two data sets have a better fit for the proposed
NHLx model than the other three models.

Table 5. Values of the statistical measures for the considered models.

Models W* A* D p-Value AIC CAIC BIC HQIC

Eruption data

NHLx 0.0998 0.7471 0.0761 0.8520 592.9289 593.3289 599.4056 595.4804
WL 0.1119 0.8036 0.1062 0.4656 597.1462 597.8242 605.7818 600.5482
EXL 0.2213 1.4388 0.1230 0.2873 607.4000 607.5968 611.7178 609.101
Lx 0.1182 0.8570 0.2317 0.0021 619.4907 619.6874 623.8085 621.1917

ICU data

NHLx 0.2666 1.7021 0.2047 0.0905 242.5222 243.2495 247.355 244.226
WL 0.3459 2.1002 0.2071 0.0838 252.6803 253.9303 259.124 254.952
EXL 0.547 3.044 0.2266 0.0448 264.4479 264.8008 267.6697 265.5837
Lx 0.3404 2.0824 0.3091 0.0017 256.5615 256.9144 259.7833 257.6973

The histogram plots and estimated pdfs of the considered models are reported in
Figure 3.

From Figure 3, we see that both histograms exhibit the skewed nature of the two data
sets, and the estimated pdf curves depict that the NHLx model is observed to have a better
pattern of closeness to the histogram plot when compared to the other three models.
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(a) (b)

Figure 3. Curves of the estimated pdfs of the considered models for the two data sets. (a) Eruption
data. (b) ICU data.

7. Conclusions

In this paper, we propose a new four-parameter Lomax distribution called the
Nadarajah–Haghighi Lomax distribution. It aims to provide a new lower-bounded distribu-
tion that combines the functionalities of the Nadarajah–Haghighi and Lomax distributions,
and extends the modeling scope of the so-called exponential Lomax distribution. We have
derived various properties, including the expression of the probability density, hazard and
quantile functions, and diverse kinds of moments. The maximum likelihood method is
used for estimating the model parameters. Simulation studies show its effectiveness by
considering different sets of parameters. Furthermore, the support of two real data sets is
taken to illustrate the applications of the Nadarajah–Haghighi Lomax distribution and it is
compared with other Lomax-based distributions. From the obtained results, it is very easy
to understand that the Nadarajah–Haghighi Lomax distribution has a better fit than the
other Lomax models. The perspectives of new work based on the Nadarajah–Haghighi
Lomax distribution are numerous, including:

• the development of various extensions, such as parametric-functional, multivariate,
and discrete versions;

• the creation of new families of distributions;
• the construction of diverse regression models;
• by viewing the related cdf as a sigmoidal function, one can think of studying the

“confidential intervals” (or “confidential bounds”) and “supersaturation” to the hori-
zontal asymptote (at the median level) in the Hausdorff sense (see [37]). These two
characteristics are important for researchers in choosing an appropriate model for
approximating specific data from very different branches of scientific knowledge, such
as computer virus propagation (see [38]).
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Abstract: Evaporation calculations are important for the proper management of hydrological re-
sources, such as reservoirs, lakes, and rivers. Data-driven approaches, such as adaptive neuro fuzzy
inference, are getting popular in many hydrological fields. This paper investigates the effective
implementation of artificial intelligence on the prediction of evaporation for agricultural area. In
particular, it presents the adaptive neuro fuzzy inference system (ANFIS) and hybridization of AN-
FIS with three optimizers, which include the genetic algorithm (GA), firefly algorithm (FFA), and
particle swarm optimizer (PSO). Six different measured weather variables are taken for the proposed
modelling approach, including the maximum, minimum, and average air temperature, sunshine
hours, wind speed, and relative humidity of a given location. Models are separately calibrated with a
total of 86 data points over an eight-year period, from 2010 to 2017, at the specified station, located in
Arizona, United States of America. Farming lands and humid climates are the reason for choosing
this location. Ten statistical indices are calculated to find the best fit model. Comparisons shows that
ANFIS and ANFIS–PSO are slightly better than ANFIS–FFA and ANFIS–GA. Though the hybrid
ANFIS–PSO (R2 = 0.99, VAF = 98.85, RMSE = 9.73, SI = 0.05) is very close to the ANFIS (R2 = 0.99,
VAF = 99.04, RMSE = 8.92, SI = 0.05) model, preference can be given to ANFIS, due to its simplicity
and easy operation.

Keywords: evaporation; adaptive neuro fuzzy system; firefly algorithm; particle swarm optimization;
genetic algorithm; statistical indices

1. Introduction

Currently, water deficiency is increasing and becoming a challenge for human society.
It is increasingly becoming the most important environmental limitation, which is limiting
plant growth. According to the statistics, over 30 arid and semi-arid countries are ex-
pected to experience water deficiency in 2025 [1]. This will limit agricultural development,
threaten food supplies, and inflame rural poverty. Evaporation estimations are essential for
controlling and modelling the integrated hydrological resources connected to hydrology,
agricultural business, arboriculture, irrigation, flooding, and lake ecosystems. Evaporation
is described as the reduction of deposited water due to the conversion of liquid phase to
steam phase, which is influenced by the climate situation, such as weather, wind velocities,
relative humidity, and sunshine. According to the World Meteorological Organization
(WMO), more than half of the total inflow (rainfall or any other sources) to Lake Victoria in
the U.S. is lost due to evaporation, which results in relatively humid conditions [1].

The evaluation of evaporation from reservoirs in arid and semi-arid areas is also
important. For example, Libya has built one of the largest civil engineering groundwater
pumping and transferring systems to overcome water limitations and climate hindrance
(high temperature and low rainfall). This project is known as the Manmade River Project
(MRP) [1]. The purpose of this project was to supply the water demand of Libya by
pumping underground water underneath the Sahara Desert and transfer it using a network
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of huge underground pipes, especially for irrigation. The high cost of water pumping and
lack of appropriate planning are the main concerns. In Egypt’s Lake Nasser (located in an
arid area), where the Nile’s water is stored, downstream water loss, due to evaporation, is
estimated to be 3 m in depth, or double that of Lake Victoria [1]. In Australia, it is calculated
that around 95% of the precipitation evaporates and has no contribution to runoff [1].

Artificial intelligence models are becoming increasingly popular for forecasting data,
instead of traditional models [2]. ANFIS model is one of them, which is also called a
data-driven model [3,4], and can be used for different measurements, such as rainfall,
streamflow, evaporation, water quality, and many others. A comparison has been made
by Moghaddamnia et al. [5] on evaporation evaluation using an artificial neural network
(ANN) and adaptive neuro fuzzy inference system (ANFIS). The ANFIS model was com-
pared with the regression-based method by Dogana et al. [2], and ANFIS was declared to
be the finest. A group of researchers [6] has published their work on ANN, LS-SVR, fuzzy
logic, and ANFIS on daily pan evaporation, with the conclusion of fuzzy logic as being the
best performer.

More recent research on evaporation is also conducted by AI methods. A new artificial
technique, support vector regression (SVR), and a few nature-inspired algorithms (whale
optimization algorithm, particle swarm optimization, and salp swarm algorithm) were
investigated by a bunch of researchers in 2021 [7]. A unique contribution to evaporation
estimation, based on maximum air temperature, was published earlier this year by sci-
entists [8]. They became successful in the application of deep learning-based model to
predict evaporation. However, a group of scholars found effective results of the appli-
cation of the multiple learning artificial intelligence model in 2020 [9]. They analyzed
multiple model-artificial neural networks (MM-ANN), multivariate adaptive regression
spline (MARS), support vector machine (SVM), multi-gene genetic programming (MGGP),
and ‘M5Tree’ to simulate the evaporation on a monthly scale basis (EPm) at two stations in
India. Artificial neural network (MM-ANN) and multi-gene genetic programming (MGGP)
posed the best results.

Some analysis was performed based on four climate variables, whereas some de-
pended only on maximum temperature. Additionally, different researchers worked on
different models for different locations. This is the first time ANFIS model, and few op-
timizers were adopted for this data set of Arizona, United States, along with six weather
variables inputs. In this study, adaptive neuro-fuzzy inference system (ANFIS), ANFIS with
firefly algorithm [10,11], ANFIS with genetic algorithm [5], and PSO [12] were analyzed
and compared, for the first time, in order to investigate the best modeling approach for
evaporation. The main objectives of this study are:

1. To evaluate the performance of all four models, using the climate information of
Arizona, United States, and compare the results by using statistical analysis.

2. To explore the ability of the ANFIS model to improve the accuracy of daily evaporation
estimation for the data set.

3. To obtain the best model, in terms of accuracy and efficiency, for the arid environments
in the United States.

2. Methodology

2.1. Adaptive Neuro Fuzzy Inference System (ANFIS)

The ANFIS model is a mixture of fuzzy inference system (FIS) and artificial neural
network (ANN). The fuzzy inference system (FIS) is a very successful and popular model,
based on fuzzy logic, which was first proposed by Chang in his study [13]. For the modeling
of reservoir performance and problems regarding data uncertainty, fuzzy logic is a highly
recommended system [13]. This model is adopted mainly due to its good capacity of
extraction of data from input to fuzzy values, in a range of 0 to 1. The ANN model was
combined to overcome the limitation of the FIS model. ANN is adopted due to its ability to
arrange input and output in pairs and make the structure ready to calibrate. ANN also has
the following characteristics:
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(a) Can identify the relation between input and output without direct physical consideration.
(b) It can work even when the training sets carry noise and/or measurement errors.
(c) It can adapt situations in changing environments. Therefore, an adaptive neuro-fuzzy

inference system (ANFIS) is preferred to maximize the benefit from the combination
of both FIS and ANN model in one structure. ANFIS can be well-understood by the
following diagram, as shown in Figure 1.

Figure 1. Flow chart of the ANFIS model.

2.2. Firefly Algorithm (FFA)

The mechanism of FFA is based on the nature of the firefly (flashing behavior). This
algorithm is applied during the training phase to select the best set of data. This model
depends on three basic principles:

1. Each firefly can engage another firefly.
2. The attractiveness between two fireflies is calculated by the light intensity of each firefly.
3. The brightness is correspondingly related to the light released by fireflies [14].

Thus, the objective function of the FFA model is introduced by the intensity of the light
produced by, and brightness of, the firefly. The following equations present the intensity (I)
and attractiveness, respectively [14,15]:

I = I0e−γr2
(1)
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w(r) = w0e−γr2
(2)

where r is the distance between fireflies, I0 is light intensity, w0 is attractiveness at r = 0
distance, and γ is the light absorption coefficient. β and α are the attraction and movement
co-efficient. α, β, and γ are required to be adjusted by trial and error, in order to integrate
the ANFIS model with the FFA [14].

2.3. Genetic Algorithm (ANFIS–GA)

This model is highly useful for evapotranspiration calculations. The genetic algorithm
(GA) is based on the characters of natural genetics and its selection system. GA includes
three major stages: (1) population initialization, (2) GA operators, and (3) evaluation [11].
This system can solve large space problems efficiently and optimize complicated functions.
Any hybrid model (hybrid ANFIS) can optimize the MF by using GA. This fuzzy-genetic
algorithm has a potential to minimize model errors [11]. The development begins from the
population of random chromosomes, thus generating form. In each generation, the fitness
of the whole population is estimated. Then, based on the fitness, multiple chromosomes
are stochastically adopted from the current population and adjusted by utilizing genetic
operators, such as crossover and mutation, to create a new population. The current
population is applied in the following iteration of the algorithm [10].

2.4. Particle Swarm Optimization (PSO)

The PSO technique was invented by Kennedy and Eberhart [16], based on the char-
acteristics of bird and fish swarms in a multi-dimensional area, for example, looking for
food and running away from hazards [16]. Every element in this algorithm is identified as
a “particle”; particles create the density (population), and each density is identified as a
“swarm”. Every particle is considered a candidate for the answer to the question in this
algorithm. The swarm and particle values of this technique depend on the chromosome
and density (population) items, which are similar to the genetic algorithm [12]. PSO is a
trial-and-error solution procedure that explores the characteristics of swarm particles in
a multi-dimensional exploration zone. The computation process is different in the case
of large data sets because of the higher expenses of developing a significant number of
models. PSO can optimize with a large possibility and high meeting (convergence) rate.
This optimizer works through the following mathematical expression [12].

VMax
d =

(
xMax

d − xMin
d

)
/2 (3)

VMin
d = −VMax

d (4)

The values of xMax
d and xMin

d are selected according to the limit of the variables. The
starting position and velocities of the individuals are irregularly calculated, based on the
following equations:

xk
prd = xMin

d + r
(

xMax
d − xMin

d

)
(5)

vk
prd = VMax

d (2r − 1) (6)

where p, d, v, x, and r denote particle number, exploration direction, particle velocity,
position of particle, and irregularly created number close to unvaried distribution with the
limit (0, 1), respectively. Each particle upgrades its own position, until the position and
velocity values face the stopping condition, based on the earlier steps and position of the
finest particle in the entire swarm.

vk+1
prd = ωvk

prd + c1r1

(
xind

prd − xk
prd

)
+ c2r2

(
xglo

d − xk
prd

)
(7)

xk+1
prd = xk

prd + vk+1
prd (8)
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where k indicates the number of repetitions needed for the trial-and-error process. ω,
c1, and c2 are explore variables; r1 and r2 are two irregular numbers with an unvaried
distribution with the limit (0, 1). xind

prd is the finest location defined by a particle, while xglo
d

is the finest location defined by the entire swarm. Variables c1 and c2 are the cognition and
social variables, respectively [16]. Kennedy and Eberhart introduced ω as a coefficient,
which is 1 in the PSO algorithm.

ω = ωmax − (ωmax −ωmin)
k

kmax
(9)

kmax and k are the highest and current number of repetitions for the trial-and-error process,
respectively. Regeneration is chosen with the utilization of linear fitness scaling (LFS) to
increase diversity of the iteration process.

fbest − fworst <div (10)

where fbest and fworst represent the finest and the least objective functions in the entire
swarm and div is the expression for diversity. The following equation presents the objective
function.

MinF(x) =
1
N ∑N

i=1

(
Iobs
i − Iest

i

)2
(11)

where Iobs
i is observed, and Iest

i is the estimated evaporation intensity; N is the observation
number. This optimization process with the particle swarm technique extends up to a
required concluding situation. In this analysis, the aim of the PSO algorithm is to minimize
the objective function. The levels of computation of this process, using PSO, can be found
in reference [12].

3. Results and Discussion

3.1. Data Description

Arizona is the sixth biggest state of USA, which is situated next to the state of California.
The area of this state is 113,000 square miles and partly surrounded by the Pacific Ocean.
The weather conditions in Arizona are quite caustic, with tropical summers and muggy
winters. Phoenix is the capital of Arizona state, located in the Northeastern part of the
Sonoran Desert; therefore, it has a hot desert climate condition. This city has an agricultural
neighborhood, which is close to the confluence of the Salt and Gila River. The study area
was chosen due to the hot climate condition and proximity to an agricultural neighborhood.
Figure 2 shows the study area, which is 355.7 m higher from sea level, with 33.4258 latitude
and −111.9217 longitude.

Figure 2. Location of the study area under consideration in this manuscript. (a) zoom-out view;
(b) zoom-in view. Source: Internet.
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To assess efficiency, all models are separately calibrated, with a total of 86 data points
for an eight-year period of 2010–2017 at each selected station within the United States of
America and a one-month lead time. Data were collected from the government database
of Arizona state in the US. Study area is humid and has an agricultural neighborhood.
Two combinations of data sets were studied to check the results and verify whether they
are similar in pattern or not. The data set is initially divided into two parts: the training
and test portions. About one-third (~27) of the data points of the total data set was selected
as the training data set, whereas the remaining two-thirds (~59) of the data points was
considered a testing data set.

Table 1 summarizes the statistical indices of the test, training and all data used in this
study. The table contains the skewness, kurtosis, coefficient of variation (CV), standard
deviation (SD), and first (1st) and third (3rd) quarters (Q) for all the data points (N). The
table also reports the minimum (Min) and maximum (Max), along with the average (Avg),
of all data point. It further reports the similar statistical indices for both the training and
testing cases, as well.

Table 1. Statistical indices of the evaporation data set used to verify the modelling.

Statistics N Min 1st Q X50 3rd Q Max Avg SD CV (%) Skewness Kurtosis

All 86 44 82.50 158 254.50 331 172.30 89.48 51.93 0.066 −1.45

Train 59 44 83 183 273 331 178.28 91.79 51.48 0.015 −1.48

Test 27 49 74.75 154 247.25 298 158.73 82.40 51.91 0.117 −1.50

Standard deviation shows the distribution nature of data set. For example, the stan-
dard deviation of the test data set is 82.40, and the average value of the data is 158.73.
This means that most of the test data lies between 78.33 (158.73 − 82.40 = 78.33) to
241.13 (158.73 + 82.40 = 241.13). On the other hand, the coefficient of variation shows
the precision of the data set in this table. It is defined as the ratio of standard deviation
and mean value (in percentages). Two combinations of the testing and training data were
chosen arbitrarily, in order to verify the robustness and repeatability of the proposed
modeling techniques.

Combination 1: Training data (September 2010 to September 2015); testing data
(October 2015 to December 2017).

Combination 2: Training data (September 2010 to December 2012 & June 2015 to
December 2017); testing data (January 2013 to May 2015).

3.2. Model Accuracy Indicator

The performances of all four models were individually evaluated using statistical
analysis to monitor accuracy, with respect to the evaporation forecasting data. The accuracy
indicators for the ANFIS, FFA, PSO, and GA models were calculated, in terms of the
coefficient of determination (R2) [17], Nash–Sutcliffe coefficient (NSE) [17], root mean
square error (RMSE) [10], mean absolute error (MAE) [17], variance account for (VAF) [18],
absolute relative error (MARE), scatter index (SI) [17], bias [13], and root mean square
relative error (RMSRE) [17]. The root mean squared error (RMSE) represents a good
measure of the goodness of fit at high parameter values. The standard RMSE value should
be 0, according to the theory. The relative error (MARE) provides a more balanced idea
of the goodness of fit at moderate and low values. The standard value of MARE is also 0.
The coefficient of determination R2 should be 1 for a perfect fit model. This coefficient
measures the correlation of the predicted values with the observational data—the closer
the coefficient is to one, the greater the correlation. The value of this coefficient does not
interfere with the data unit considered. The SI index is the relative form of RMSE. The
performance factor of the model, expressed as the Nash–Sutcliffe error criterion (ENSC), was
used to evaluate the predictive power of the model. A value of unity for the ENSC indicates
optimum conformity between predicted and observed data. In this work, both R2 and ENSC

152



Math. Comput. Appl. 2022, 27, 32

are expressed in percentages. The closer their magnitude to 100, the better the performance
of the model. The ideal value for VAF is 100. All of them can be calculated from designed
formulations, which are presented in the appendices section (see Appendix A for details).

3.3. Simulation Results

Computer-based software simulation is performed to validate the proposed model;
in particular, MATLAB is used to validate the model. Figure 3 shows the step-by-step
work, performed in this manuscript, to validate the proposed model. First of all, the data is
collected from the location under interest. Secondly, the models are chosen based on the
collected data. In this case, ANFIS is chosen due to the nonlinear nature of the data set.
Model accuracy indicators are then selected. On the other hand, the data is partitioned in to
two groups: one group (almost two third of the data) is for testing the network, while the
other group (remaining data set) is for training the proposed model. In the beginning the
network is trained using nearly two-thirds of the total data set. This calibrates the network.
Later, the remaining data set (approximately one third) are used to test the network.
To verify the overall performance of the observed models, the observed and predicted
evaporation values were plotted together for both combinations (combinations 1 and 2, as
depicted in Section 3.1). Graphical representation is made in terms of the observed and
predicted data. Figures 4–7 show the pattern of the observed and predicted data for all four
models. Figures 4 and 5 show the training data pattern for the first and second combination
of data sets as mentioned in Section 3.1. These figures show the comparison of target and
output sample index of trained data for the (a) ANFIS, (b) FFA, (c) GA, and (d) PSO models.
Similarly, Figures 6 and 7 show the test data pattern of all models, and these present the
comparison of the target and obtained output sample index of test data for (a) ANFIS,
(b) FFA, (c) GA, and (d) PSO, respectively.

According to the graphs, both data sets lie between −15% to +15% of a perfect line.
Graphical presentation also demonstrates that the data set are well-trained. According to
the analysis, all the models are suitable for the evaporation estimation. However, the pattern
for Figure 6a ANFIS (first combination) and Figure 7a ANFIS (second combination) were
the best fits, and the pattern for Figure 6b ANFIS–FFA (first combination) and Figure 7b
ANFIS–FFA (second combination) show less fitness among the four models. The figures for
ANFIS–PSO and ANFIS–GA, for both combinations, were close to each other. Additionally,
a few accuracy tests were performed to obtain a better understanding for both training and
testing. Few statistical indices tests have been performed and summarized in Tables 2–6.

Figure 3. The step-by-step structural outline of the work performed in this manuscript.
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Figure 4. Comparison of the target (predicted) and obtained output sample index of training data
set for (a) ANFIS, (b) ANFIS–FFA, (c) ANFIS–GA, and (d) ANFIS–PSO, respectively, using the first
combination of the data set.

Figure 5. Comparison of the target (predicted) and obtained output sample index of training data set
for (a) ANFIS, (b) ANFIS–FFA, (c) ANFIS–GA, and (d) ANFIS–PSO, respectively, using the second
combination of the data set.
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Figure 6. Comparison of the target and obtained output sample index of the test data for (a) ANFIS,
(b) ANFIS–FFA, (c) ANFIS–GA, and (d) ANFIS–PSO, respectively (first combination of the data set).

Figure 7. Comparison of the target and obtained output sample index of the test data for (a) AN-
FIS, (b) ANFIS–FFA, (c) ANFIS–GA, and (d) ANFIS–PSO, respectively (second combination of the
data set).
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Table 2. Summary of model accuracy indicator test for the training data set (for the first combination
data set), which was calculated in Excel.

R2 VAF RMSE SI MAE MARE RMSRE MRE BIAS NASH

ANFIS 0.99 99.04 8.93 0.050 −0.0008 0.044 0.001 0.001 0.001 0.99

FFA 0.97 94.08 24.38 0.140 8.976 0.110 0.079 0.018 8.98 0.92

GA 0.98 97.50 14.38 0.084 4.569 0.095 0.024 0.027 4.57 0.97

PSO 0.99 98.85 9.73 0.054 −0.167 0.040 0.001 −0.001 −1.69 0.98

Table 3. Summary of model accuracy indicator test for the testing data set (for the first combination
data set), which was calculated in Excel.

R2 VAF RMSE SI MAE MARE RMSRE MRE BIAS NASH

ANFIS 0.98 97.04 15.55 0.094 −4.56 0.087 0.018 −0.027 −4.56 0.97

FFA 0.97 93.11 24.39 0.148 −8.98 0.118 0.154 −0.400 −8.98 0.93

GA 0.98 97.51 14.38 0.087 −4.57 0.101 0.033 −0.421 −4.57 0.97

PSO 0.98 97.18 14.60 0.088 1.68 0.101 0.014 0.003 1.68 0.97

Table 4. Summary of model accuracy indicator test for the training data set (for the second combina-
tion data set), which was calculated in Excel.

R2 VAF RMSE SI MAE MARE RMSRE MRE BIAS NASH

ANFIS 0.99 98.99 8.99 0.05 0.0002 0.046 0.0003 0.019 2.733 0.99

FFA 0.98 97.93 12.80 0.07 0.001 0.082 0.0066 −0.015 0.001 0.98

GA 0.99 98.32 11.66 0.07 0.403 0.072 0.0073 −0.011 0.403 0.98

PSO 0.99 99.11 8.44 0.05 −0.040 0.042 0.0016 −0.001 −0.040 0.99

Table 5. Summary of model accuracy indicator test for test data set (for the second combination data
set), which was calculated in Excel.

R2 VAF RMSE SI MAE MARE RMSRE MRE BIAS NASH

ANFIS 0.99 98.42 11.94 0.07 3.73 0.062 0.007 0.025 3.73 0.98

FFA 0.98 97.45 15.03 0.09 4.25 0.076 0.018 0.014 4.25 0.97

GA 0.98 97.52 14.63 0.08 3.50 0.073 0.024 0.010 3.50 0.97

PSO 0.98 97.50 15.08 0.09 4.61 0.081 0.0004 0.024 4.61 0.97

Table 6. Summary of model accuracy indicator test during the testing period, provided by ‘MATLAB’.

Type of Model
Training Data Test Data

MSE RMSE MEAN STD MSE RMSE MEAN STD

GA 146.92 12.12 −2.82 11.89 206.79 14.38 −4.57 13.89

ANFIS 58.23 7.63 −8.16 7.69 241.72 15.54 −4.56 15.14

PSO 58.75 7.66 0.11 7.73 213.05 14.59 1.68 14.77

FFA 507.20 22.52 −4.87 22.17 594.80 24.38 −8.97 23.10

The overall summary of the findings is presented in Table 6. Table 6 presents the
results provided by the MATLAB tool. It shows that the MSE values, for all the test models,
were very high (MSE for ANFIS 241.72, for FFA 594.80, for GA it is 206.79, and for PSO
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it is 213.05) for the testing data, and higher for the training data. To ensure a rigorous
comparison of the models, an extended analysis was performed using RMSE, R2, MAE,
MARE, RMSRE, SI, MRE, Bias, NASH, and VAF as statistical indices for the estimated
values. Tables 2–5 present values of all statistical indices for training and testing data
set of all models. According to all statistical indices, especially the R2, RMSE, VAF, and
NASH values, the second combination of the data set presented better results than the
first combination of the data set, which is presented in Table 3. The results of the ANFIS
and ANFIS–PSO models were almost identical in both combinations. RMSE was lower
for ANFIS and ANFIS–GA. ANFIS–FFA posed worse results, among all model, in all the
cases. Biasness is less for ANFIS model. According to the test results from Tables 3 and 5,
the R2 for ANFIS, GA, and PSO were almost identical, 0.99, whereas R2 for FFA was 0.97.
This is found to be aligned with the training result. A commonly used correlation measure,
i.e., (R2), in the testing of statistical indices cannot always be accurate, or sometimes it could
be misleading, when used to compare the predicted and observed models [1]. The two
most widely used statistical indicators, i.e., root mean square error (RMSE) and bias error,
were used in this analysis. The model performance is inversely proportional to the RMSE
value; lower RMSE values present higher accuracy and vice versa. RMSE is the minimum
for PSO and GA, which were 14.59, 14.63, and 14.38, 15.07, respectively, whereas ANFIS
was 15.54, and FFA presents the worst value: 24.38. Negative biasness was noticed for all
the models, where ANFIS and GA possessed minimum biasness.

Hence, the MSE values are higher, and the relative statistical indices are compared to
find better results. The MARE and RMSRE results should also be minimal for the best fit
model. Again, ANFIS shows the minimum MARE value (0.087), and PSO gives similar
result to ANFIS. However, according to the RMSRE results, PSO shows the best result. For
more clarity, NASH has been considered another accuracy indicator, and the value should
be close to 1 for the best fit. The table presents the highest NASH value for ANFIS (0.97),
GA (0.97), and PSO (0.97). FFA was also close to 1 (0.93). To avoid confusion, VAF was
calculated. Here, ANFIS, GA, and PSO showed higher results (all three results were close
to 97.11), and FFA indicates 93.11.

Time is an important factor of these calculations. The time frame is given below
in Table 7 for all four models. It shows that the ANFIS model took less time than the
others, and FFA is the complicated one. After analyzing all the results, the FFA model is
considered the least acceptable model among the four. ANFIS, with GA and PSO models,
were showing better fit in some situations. Although GA and PSO were showing similar
results and took same time to run, ANFIS can be considered more acceptable because of
its simplicity.

Table 7. Time taken by four models (approximate).

Model Name Run Time

ANFIS 5 to 10 min

ANFIS–FFA 30 min to 3 h

ANFIS–PSO 10 to 30 min

ANFIS–GA 10 to 30 min

3.4. Discussion

In this study, evaporation was estimated from six climate variables, i.e, minimum
temperature, maximum temperature, average temperature, sunshine hour, wind speed, and
relative humidity. Evaporation depends on the combined effect of humidity, temperature
variation, sunshine, and wind [11]. Sunshine is an important factor that helps evaporate
the water body [7]. Similarly, temperature and humidity also play an important role in
evaporation. When they decrease, evaporation increases. Wind takes water away to the
atmosphere [7]. Therefore, all of them were considered, as they affect evaporation. Key
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parameters were selected by trial-and-error method. Only one set of parameters was
experimented with.

The findings of this research demonstrated that the FFA model is considered the least
acceptable model among the four. ANFIS with GA and PSO models were showing a better
fit in some situations. Although GA and PSO were showing similar results, based on all
accuracy indicator tests (especially, on maximum R2 value, minimum RMSE, less Biasness,
maximum VAF, minimum RMSRE value, and maximum value of Nash coefficient), and
took the same time to run the model, ANFIS can be considered more acceptable because of
its simplicity. This model can be used as a role model for any dataset of an arid climate. It
can be helpful for the local stakeholder, in terms of the hydrological resource management
system. The main advantage of adopting ANFIS for this location is the pattern of the
dataset. As the datasets are inherently nonlinear, the ANFIS model was able to achieve
high accuracy in the prediction of evaporation. The ANFIS model and this model, with
the optimizers (FFA, GA, and PSO), can be widely used for arid climates, with the same
weather variables, in any part of the world.

More investigation is needed for this location. Lack of data was a limitation of this
study. More climate variables can be added for more accuracy of the model. Other modern
machine learning technique should be implemented in the future, in order to use the
available resources to enhance the water resource management system. That would be
beneficial for the local agri-economical prospect, as well.

4. Conclusions

The comparison among the adaptive neuro fuzzy inference system (ANFIS) and its
hybridization, using three different algorithms (FFA, GA, and PSO), has been illustrated
in this study, in the context of evaporation estimation, using different climate variables,
namely sunshine, relative humidity, average temperature, maximum temperature, min-
imum temperature, and wind speed. Two combinations of data sets were trained and
tested, in order to verify the correlation among the different models. The study illustrated
the accuracy of all four models. However, the performance of the models was evaluated
based on the various statistical measures (RMSE, RMSRE, MBE, VAF, NASH, biasness,
MBE, MARE, SI, and R2). Result shows that the second combination of the testing and
training data set posed slightly better results than the first combination. Overall, all four
models are suitable for the estimation of evaporation, but ANFIS and ANFIS, with opti-
mizer PSO, is superior for all accuracy indicator values. Relative and absolute accuracy
tests were performed to find the best model in this study. Though all the results of the
two models (ANFIS and ANFIS–PSO) were merely identical, ANFIS is recommended,
due to its simple formulation and easy development, compared to the ANFIS–PSO model.
The computational time of ANFIS model is less, in comparison to the other models with
optimizers. The main objective of the adoption of different optimizer techniques is to
verify the accuracy of the outcome prediction by ANFIS model. Since the prediction was
almost identical in all cases, the ANFIS model is recommended, due to its simplicity. The
major challenge of this project was the limitation of data. These models can be applied for
different data sets to investigate the results, if they were available. This analysis is limited
to a particular location. However, in future work, other locations can be explored, and
their performance can be compared with modern machine learning methods. Another
optimizer, for example, the ant colony optimizer (ACO), can be investigated in future work.
Multi gene-genetic programming (MGGP) can also be explored in the future. Another
climate variable, such as, atmospheric pressure, can be considered as an input in the future.
However, the evaporation of a given location can easily be modelled from the available
data using the ANFIS model. Additionally, this model can be applied as a module for
calculating evaporation data in hydrological modeling studies.
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Appendix A

The relationships for statistical indices and error measures used in this paper are
provided in the following.

R2: coefficient of determination, which can be expressed in the following form:

r =
n(∑ xy)− (∑ x)(∑ y)

√[n ∑ x2 − (∑ x)2
][

n ∑ y2 − (∑ y)2
] (A1)

RMSE: root mean square error, which can be formulated as follows:

RMSE =

⎡⎣∑M
i=1

(
Yi(model) − Yi(actual)

)
M

⎤⎦
1
2

(A2)

MARE: absolute relative error. The formula is given below:

MARE =
1
M ∑M

i=1

⎛⎝
∣∣∣Yi(model) − Yi(actual)

∣∣∣
Yi(actual)

⎞⎠ (A3)

Bias =
∑M

i=1

(
Yi(model) − Yi(actual)

)
M

(A4)

SI: scatter index, which can be expressed as follows:

SI =
RMSE

1
M ∑M

i=1

(
Yi(actual)

) (A5)

RMSRE: root mean square relative error. This error can be calculated from the follow-
ing equation:

RMSRE=
1
N

√
∑
(

yt − ŷt

yt

)2
(A6)

MAE: mean absolute error. This error can be calculated from the following equation:

MAE =
1
n ∑n

i=1|Ti.Actual − Ti.Predicted| (A7)

VAF: variance account for. This term can be presented by the following equation:

VAF =

(
1 − var(Ti.Actual − Ti.Predicted)

var(Ti.Actual)

)
∗ 100 (A8)
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NSE: Nash–Sutcliffe coefficient. This coefficient can be formulated as follows:

ENSC = 1 −
(

∑(yt − ŷt)2

∑(yt − yt)2

)
(A9)

where,

Yi(actual): the output observational parameter;
Yi(model): the y parameter predicted by the models;
Yi(model): the mean predicted y parameter;
M: the number of parameters;
n: number of samples;
ENSC: the Nash–Sutcliffe test statistic;
Ti.Actual : the ith value of actual data;
Ti.Predicted: the ith value of predicted data.
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Abstract: The purpose of this research is to study the spatial and temporal groupings of 124 meteo-
rological stations in Thailand under ENSO. The multivariate climate variables are rainfall, relative
humidity, temperature, max temperature, min temperature, solar downwelling, and horizontal wind
from the conformal cubic atmospheric model (CCAM) in years of El Niño (1987, 2004, and 2015)
and La Niña (1999, 2000, and 2011). Euclidean distance timed and spaced with average linkage for
clustering and silhouette width for cluster validation were employed. Five spatial clusters (SCs) and
three temporal clusters (TCs) in each SC with different average precipitation were compared by El
Niño and La Niña. The pattern of SCs and TCs was similar for both events except in the case when
severe El Niño occurred. This method could be applied using variables forecasted in the future to be
used for planning and managing crop cultivation with the climate change in each area.

Keywords: Euclidean distance timed and spaced; meteorological station; multivariable panel data
cluster analysis

1. Introduction

In the past, the climate in Thailand was largely influenced by monsoon winds, such as
southwest moonsoon and northeast moonsoon, resulting in Thailand having a predomi-
nantly rainy season and dry season (summer and winter) taking place at a relatively certain
time. Currently, however, there has been an El Niño–La Niña phenomenon known as the
ENSO phenomenon (ENSO) that affects the climate. The ENSO phenomenon is caused
by variations in the Southern Hemisphere’s climate system. It is a phenomenon that has a
connection between ocean phenomena and ocean winds. It brings about climatic variations,
causing unusually high rainfall and unusual drought [1]. There are three types of weather
variability: drought, rain and cold disasters, and tropical cyclones. Thailand’s proximity to
the Western Pacific makes it directly affected by El Niño during 1997–1998, which resulted
in drought, lower than normal rainfall, and higher than normal air temperatures across the
country [2]. In 1999–2000, during the La Niña period, Thailand experienced more rainfall
than usual and cold weather, breaking records in many provinces [2]. Thailand is in the
humid tropics, which is suitable for agriculture. Most of its population is engaged in agri-
culture, so agricultural products are the main source of the country’s income and, therefore,
vital to its economy. The 12th Agricultural Development Plan (2017–2021) summarizes
the agricultural situation in terms of climate change and seasonal variability, resulting in
decreased agricultural productivity. Existing plant species are unable to adapt to changing
climate conditions, especially the ongoing drought from 2012 to 2015, damaging important
crops. This may be due to insufficient observation or experience by farmers to cope with
unprecedented situations in time, posing a risk of loss of productivity and increased pro-
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duction costs [3]. ENSO-related climate variability exerts strong influences on agricultural
production in different regions, including in Thailand [4–9].

Cluster analysis, unsupervised learning, have been applied in many studies to define
spatial and temporal variability from climate variables. In previous studies, only one
variable, mostly focusing on rainfall in a time series format, has been used for spatial and
temporal cluster [10–12]. However, there are other climate factors that affect agricultural
production such as relative humidity and temperature, which statistically significantly
affected sugarcane production, which was likely to decrease in the year of El Niño and
to increase in the year of La Niña [13]. Although there are some studies which employed
longitudinal meteorological factors such as rainfall, air temperature, humidity, pressure,
wind, evaporation, etc., they firstly average data over the time into the general cross-
sectional data and then the distance between samples is calculated for clustering [14].
Averaging over the time will result in a high amount of data loss because the mean shows
the average change in the data, yet it does not show the distribution of the data [15–18].

It would be beneficial to study variation across different geographic scales using
multivariable panel hierarchical clustering from ENSO-effected climate variables in Thai-
land, obtained from the conformal cubic atmospheric model (CCAM). There are seven
weather variables, including rainfall, average temperature, highest temperature, lowest
temperature, temperature difference from highest temperature, temperature difference
from lowest temperature, relative humidity, and solar radiation according to the locations of
the weather stations of the Thailand Meteorological Department. These monthly data have
been characterized by a combination of panel data, cross-sectional data, and time-series
data representing behavioral units and periods.

Therefore, this research will employ the distance measurement that does not need to
average the data, which is Euclidean distance timed and spaced, to cluster meteorological
weather stations in Thailand and discover the seasonal pattern for each cluster using
climate factors associated with precipitation when ENSO phenomena occur, since changes
in rainfall are important variables affecting agricultural productivity. The studied method,
cluster analysis on multivariable panel data with climate change application, therefore,
could be applied to the future data from weather models to group area and season. The
clustering framework applied in this study is shown in Figure 1. The results could be
used as a guideline to benefit the agricultural sector or the relevant agencies to prepare
for the upcoming changes resulting from climate change. In addition, spatial and timely
management plans can also be appropriately executed, including drought monitoring,
water management of both agricultural areas, as well as crop management.

Figure 1. The multivariable panel data clustering framework.
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2. Materials and Methods

2.1. Study Area

Thailand is located between latitudes 5◦37′ N and 20◦27′ N and longitudes 97◦22′ E
and 105◦37′ E. A total of 124 stations of the Thai Meteorological Department (Figure 2)
were selected for the cluster analysis.

Figure 2. Spatial distribution of 124 meteorological stations in Thailand from the Thai Meteorological
Department (TMD).

2.2. El Niño–Southern Oscillation (ENSO)

El Niño–southern oscillation (ENSO) is a periodic change in the oceanic atmosphere
system in the tropical Pacific Ocean that affects climate around the world. It occurs every
three to seven years (average five years) and typically lasts nine months to two years,
associated with floods, droughts, and other global disturbances. During normal or non El
Niño conditions, trade winds blow west across the Pacific Ocean. The western part of the
equatorial Pacific is characterized by warm, wet, and low-pressure weather conditions due
to the accumulation of moisture in the form of typhoons and thunderstorms.

During the ENSO event, there was an increase in air pressure across the Indian Ocean,
Indonesia, and Australia, and a decrease in air pressure over Tahiti and the rest of the
central and eastern Pacific Ocean. The trade winds in the South Pacific weaken or head
east, and warm water spreads eastward from the western Pacific and Indian Ocean to the
eastern Pacific. This has led to widespread droughts in the western Pacific and dry eastern
Pacific rainfall. While El Niño is characterized by unusually warm ocean temperatures
in the central to eastern Pacific Ocean, La Niña is characterized by unusually cold ocean
temperatures in the region, but warmer waters in the western Pacific Ocean, as shown in
Figure 3. However, as El Niño conditions lasted for several months, more global warming
occurred in the oceans.
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Figure 3. Model of surface temperature, wind, area of rising air and thermoline (blue surface) in
the tropical Pacific during El Niño, Normal, and La Niña (https://reefresilience.org/th/stressors/
climate-and-ocean-change/el-nino-southern-oscillation/, accessed on 24 March 2022).

In this study, the Oceanic Niño Index (ONI) from the National Oceanic and Atmo-
spheric Administration (2020) was used to identify the El Niño–southern oscillation. The
ONI is the 3-month running mean of the sea surface temperature anomaly in the Niño
3.4 region (5◦ N–5◦ S, 120◦–170◦ W). The ONI index exceeding +0.5 ◦C or −0.5 ◦C for at
least five consecutive months was considered as a full-fledged El Niño (E) or La Niña (L).
According to Null report, the three latest very strong El Niño events (ONI ≥ 2 ◦C) in 1982,
1997, and 2015 and three latest strong La Niña events (−1.5 to −1.9 ◦C) in 1999, 2007, and
2011 were selected to study the climate variations [19].

2.3. Conformal Cubic Atmospheric Model (CCAM)

The CCAM is a dynamic global climate model developed by the Commonwealth
Scientific and Industrial Research Organization (CSIRO), Division of Atmospheric Re-
search, Australia. It is used to forecast global climate through dynamic scale reduction
by generating a grid covering the region’s forecast area [20]. The model has also been
developed by adding physical parameterization schemes that include longwave radiation,
shortwave radiation, aerosol, cumulus convection, cloud distribution, soil temperature,
etc., to reduce the climate forecast error. The CCAM dataset was downscaled to 10 km grid
resolution, which is sufficient for the analysis of both spatial and temporal forecasts at the
regional level [21,22]. Data were changed from grid data to station format, which covers
124 meteorological measurement stations across Thailand (Figure 1).

Climate variables, focusing mainly on agricultural-related variables for cluster analysis,
were used in this study. They consist of a total of 7 variables: rainfall (mm/day), relative
humidity (percent), average temperature (degrees Celsius), maximum temperature (degree
Celsius), minimum temperature (degrees Celsius), solar radiation (watts/square meter),
and wind speed (m/s). Monthly data of those variables were collected for the years 1987,
1999, 2000, 2004, 2011, and 2015, of which the ENSO phenomenon occurred.

2.4. Multivariate Panel Data

Panel data is the combination of cross-sectional data and time-series data representing
behavioral units over the time

(
xij(t)

)
. Data were collected from cross-section data, which

collects the value of the variables in each unit at a given point in time. Then, the data
were repeatedly collected from the same unit at a subsequent time, either yearly, quarterly,
monthly, weekly, daily, or hourly. If each panel unit is observed at the same time point, a
data set is called balanced panel data. Consequently, if a balanced panel contains n panel
units and T periods, the number of observations in the dataset is necessarily N = n × T.
However, if at least one panel unit is not observed every period, a data set is called
unbalanced panel data. Therefore, the number of observations in the unbalanced panel
dataset is N < n × T.

Multivariate panel data has a very complex structure and cannot be represented by a
simple two-dimensional table. Table 1 shows the multivariate combination of data in a two-
dimensional table format, where n represents the number of samples collected, p represents
the number of variables (x1, x2, . . . , xp), T represents the length of time and represents the
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data value of the ith sample and jth variable at time t, where i ∈ [1, n]; j ∈ [1, p]; t ∈ [1, T].
Descriptive statistics, such as mean and variance of jth variable, is calculated as Equations (1)
and (2), respectively [15–18].

xj =
1
T

1
n

T

∑
t=1

n

∑
i=1

xij(t), (1)

s2
j =

1
T

T

∑
t=1

1
n − 1

n

∑
i=1

[
xij(t)− xj(t)

]2, (2)

Table 1. Multivariate panel data format for spatail cluster.

Sample (i)

Time Index (t)

1 2 · · · T

x1, x2,. . . , xp x1, x2,. . . , xp · · · x1, x2,. . . , xp

1 x11(1), x12(1), . . . , x1p(1) x11(2), x12(2), . . . , x1p(2) · · · x11(T), x12(T), . . . , x1p(T)
2 x21(1), x22(1), . . . , x2p(1) x21(2), x22(2), . . . , x2p(2) · · · x21(T), x22(T), . . . , x2p(T)
...

...
... · · · ...

n xn1(1), xn2(1), . . . , xnp(1) xn1(2), xn2(2), . . . , xnp(2) · · · xn1(T), xn2(T), . . . , xnp(T)

The values for monthly climate variables were organized in two configuration matrices.
Matrix N × p had monthly data (T) for stations (n) in its rows (N = n× T) and the variables
(p) in the columns. It was used to identify clusters of similar stations. Furthermore, monthly
climate variables within these clusters (Nc) were analyzed to discover seasonality within
the spatial cluster. For the second step, monthly climate variables were arranged in T × Nc
rows, and the variables (p) were set up in columns (Table 2).

Table 2. Multivariate panel data format for temporal cluster.

Month (t)

Station Index (i)

1 2 · · · Nc

x1, x2,. . . , xp x1, x2,. . . , xp · · · x1, x2,. . . , xp

Jan x11(1), x12(1), . . . , x1p(1) x11(2), x12(2), . . . , x1p(2) · · · x11(Nc), x12(Nc), . . . , x1p(Nc)
Feb x21(1), x22(1), . . . , x2p(1) x21(2), x22(2), . . . , x2p(2) · · · x21(Nc), x22(Nc), . . . , x2p(Nc)

...
...

... · · · ...
Dec x121(1), x122(1), . . . , x12p(1) x121(2), x122(2), . . . , x12p(2) · · · x121(Nc), x122(Nc), . . . , x12p(Nc)

2.4.1. Multivariate Cluster Analysis

Cluster analysis is an unsupervised learning technique to identify groups with similar
characteristics in the same group [23]. Agglomerative hierarchical clustering was used
in this research. The bottom-up hierarchical algorithm treats each sample as a single
cluster and then combines pair of clusters that are most similar until every cluster is
grouped into one single cluster. In the case of general cross-section data, block distance,
Euclidean distance, Minkowski distance, Chebychev distance, or Mahalanobis distance
are used to measure the distance between two vectors

(
x′i =

[
xi1, xi2, . . . , xip

])
and x′j =[

xj1, xj2, . . . , xjp
]
).

Cluster analysis of samples collected from multivariate panel data is often averaged
over time data into general cross-section data. Typical Euclidean distance is then calculated
for further grouping. However, this will result in information loss because the mean shows
the average change in the data but does not show the distributing characteristics of the
data, such as the standard deviation. Therefore, in this study, a Euclidean distance timed
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and spaced (drk) is used to calculate the distance between sample r and sample k [15–18],
as in Equation (3).

drk =

√
∑T

t=1 ∑p
j=1

(
xrj(t)− xkj(t)

)2
, (3)

The distance should satisfy some conditions as follows:

1. drk ≥ 0, i f xrj(t) = xkj(t) then drk = 0
2. drk = dkr, to all xrj(t), xrj(t)
3. drk ≤ drl + dkl , to all xrj(t), xkj(t), xlj(t)

A distance matrix for spatial grouping analysis contains a distance value between
every pair of samples as in Equation (4a), which is the symmetric matrix (n × n) with all
diagonal values of zero. At the same time, a distance matrix for temporal grouping analysis
within the spatial cluster contains a distance value between every pair of months as in
Equation (4b), which is the asymmetric matrix (12 × 12) with all diagonal values of zero.⎡⎢⎢⎢⎢⎢⎣

0
d21
d31

...
dn1

0
d32

...
dn2

0
...
· · ·

. . .
dn(n−1)

0

⎤⎥⎥⎥⎥⎥⎦, (4a)

⎡⎢⎢⎢⎢⎢⎣
0

d21
d31

...
d121

0
d32

...
dT2

0
...
· · ·

. . .
d12(11)

0

⎤⎥⎥⎥⎥⎥⎦, (4b)

Average linkage, which is the unweighted pair group method using arithmetic aver-
ages (UPGMA), was used to average the distance values between pairs of clusters [24]. It is
widely used because it compromises the extreme cases [25].

The multivariate cluster analysis used in this paper was implemented directly using
the “philanthropy”, “cluster”, “factoextra” and “FactoMineR” package in R programming
language and RStudio [26].

2.4.2. Cluster Validation

This paper employed silhouette width (Si) [27] to determine the optimal number of
clusters, and it also could be used to validate consistency within clusters of data. The
silhouette measures the similarity of i-th observation to its own cluster and the similarity
of observation to other clusters as Equation (5).

Si =
bi − ai

max(bi, ai)
(5)

where ai is the average distance between i and all other observations in the same cluster,
and bi is the average distance between i and the observations in the “nearest neighboring
cluster” as Equation (6).

bi = min
Ck ,∈C,\C(i)

∑
j∈Ck

d(i, j)
n(Ck)

(6)

where C(i) is the cluster containing observation i, d(i, j) is the Euclidean distance timed
and spaced between observations i and j, and n(C) is the cardinality of cluster C.

Si ranges from −1 to +1, where a high value indicates that the observation is well
matched to its own cluster, while a low or negative value indicates that observation is
poorly matched to its own cluster. The average of observation’s silhouette in a cluster was
obtained to determine whether the clustering configuration is appropriate. The advantage
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of using silhouette only depends on the actual partition of the observations, not on the
clustering algorithm that was used, and no need to access the original data. This paper
implemented this function using the silhouette function in package cluster [28].

3. Results

This section may be divided into subheadings. It should provide a concise and precise
description of the experimental results, their interpretation, as well as the experimental
conclusions that can be drawn.

3.1. Variable Characteristics

Figure 4 shows boxplots of seven variables; they are varied by month but have the
same pattern each year.

Rainfalls were more varied than others in 1997 and 2007 for the El Niño and La Niña
phenomenon, respectively. The average rainfall in La Niña phenomenon was higher than
that in El Niño phenomenon and the normal average, except for 1999, which was affected
by the 1997–1998 very strong El Niño. Furthermore, all factors in each year had a pattern
in relation to the season. For example, rainfall was very high and more fluctuated from
August to September. It can be concluded that climate factors were different from month
to month and year to year. Obviously, the rainfall between El Niño and La Niña differed
significantly, while other climate factors were similar. This suggested the rainfall should be
more focused to analyse the impact of the ENSO phenomenon on spatial clustering.

 

 

 

 

 

Figure 4. Cont.
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(a) (b) 

Figure 4. Boxplots of climate factors of 124 Thai meteorological stations by ENSO, years and months:
(a) El Niño; (b) La Niña.

3.2. Spatial Clustering

The average silhouette width was used to determine a suitable number of clusters
(k). It suggested the value 4 or 5 for k, due to their maximum width (Figure 5). So, a fair
comparison between the ENSO events was achieved for choosing five spatial clusters (SCs)
close to height 12.5 (distance between clusters) for all datasets in this study.

 

Figure 5. The average silhouette width for spatial cluster analysis by number of clusters and years.

Five spatial clusters, SC1, SC2, SC3, SC4, and SC5, which were sorted according to
the amount of precipitation from ascending to high, were formed and displayed on a
spatial map in Figure 6. It was obvious that precipitation was the only meteorological
data to noticeably differ between clusters. Spatial clustering in El Niño events was mostly
grouped in SC2 (yellow) with 62–66 members except in 1982, which mostly in SC1 (red)
with 59 members; however, its average rainfalls were nearly the same to SC2, whereas
spatial clustering in La Niña events was mostly grouped in SC1 (red) with 61–83 members.
While SC5 (pink) was the least populated member with one member, which was the
station in the east for both events (Table 3). These showed most areas in Thailand had low
precipitation rate.
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El Niño 

   

1982 1997 2015 
La Niña 

   

1999 2007 2011 

Figure 6. Spatial cluster analysis (SC1–SC5) for the 124 Thai meteorological stations on a map by
ENSO events and years (x is monthly rainfall average).
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In La Niña event, SC1 (red) was found mostly in Northeast and Central areas, which
had the least amount of rainfall, and SC2 (yellow) was widely distributed in the North,
which had low rainfall. SC3 (green) with moderate rainfall were distributed among all
regions, except North and Northeast, while SC4 (blue) are in the south which had quite
a lot of rainfall. Lastly, SC5 (pink) with the highest rainfall had one station in the East
(Table 3).

While, spatial clustering in El Niño was differently distributed by years. In 1997 and
2015, SC1 (red) was found mostly in the North and SC2 (yellow) was widely distributed in
the Northeast, and vice versa in 1982. In 1982 and 1997, SC3 (green) with moderate rainfalls
were distributed among all regions, except North and Northeast, and SC4 (blue) were in
the South which had quite a lot of rainfall, and vice versa in 2015. In every year, SC5 (pink)
with the highest rainfall had one station in the East (Table 3).

The spatial clistering extracted the drought areas in the North region, classified as SC1
with less rainfall than SC2 and in the South region classified as SC3 with less rainfall than
SC4 for the El Niño event. These areas would be at risk to be the most drought-prone areas.
This suggested the effect of ENSO on spatial clustering.

The distribution of SGs over six regions, showing a clear trend in the redistribution of
SGs observed in this study, is shown in Table 4. More diverse climate was found in the East
and West than other regions. All regions had a heterogenous meteorological distribution.
Every year for both El Niño and La Niña events had 2–4 SCs. However, less distribution
for El Niño (2015) in Central, East, and West regions and for La Niña (1999) in the West,
and more distribution for La Niña (1999) in the South were noted. These would be due to
changes in TGs and intensity of climate factors.

Table 4. The distribution of SGs over six regions for ENSO.

Region Number of Members
El Niño La Niña

1982 1997 2015 1999 2007 2011

Central 26 3 3 2 3 3 3
East 15 4 4 3 4 4 4

North 16 2 2 2 2 2 2
Northeast 28 2 2 2 2 2 2

South 27 2 2 2 3 2 2
West 12 4 4 3 3 4 4

3.3. Temporal Clustering

After spatial cluster analysis had been obtained, a Euclidean distance timed and
spaced with average linkage was next applied to the monthly climate factors for each SC to
find temporal clusters (TCs) within each SG. Normally, Thailand has three seasons, summer
(February–May), rainy (May–October), and winter (October–February). To compare tempo-
ral clusters of the ENSO phenomenon, three TCs within each SC were compared in this
study. TC1, TC2, and TC3, which were sorted according to the amount of ascending precip-
itation, were represented by orange, blue, and green, respectively. TCs corresponding to
each SG is shown in the dendrogram to depict the groups of clusters and their combination,
indicating dissimilarity in the vertical scale and the samples (months) in clustering order
on the horizontal axis. They help to see how long each season lasts and the different period
of seasons in each spatial grouping (Figure 7).
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El Niño 

     

     

     
La Niña 

     

     

     
(a) (b) (c) (d) (e) 

Figure 7. Dendrograms of TGs for the five different SCs discovered by ENSO events, years and SCs:
(a) SC1; (b) SC2; (c) SC3; (d) SC4; (e) SC5.

For example, in 1982, TC1 and TC2 in SC1 depicted a very dry season with average
precipitation intensity of less than 2 mm/day (Table 5). They were composed of three
months. Months of TC1 were December and of TC2 were January and February. TC3, on
the other hand, was a slightly wet season with an average precipitation of 2 mm/day or
more for 9 months, March–November.
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TC1 and TC2 in SC2, 1982 depicted a very dry season with average precipitation inten-
sity of less than 2 mm/day. TC1 was composed of February–March. TC2 was December
and January. TC3, on the other hand, was a wet season with an average precipitation of
4.51 mm/day for 8 months, April–November.

TC1 and TC2 in SC3, 1982 was a dry season for three months, December (TC1) and
January–February (TC2), with an average precipitation of less than 2 mm/day, while
TC3 was a wet season with an average precipitation of 4 mm/day or more for 9 months,
March–November.

TCs in SC4 and SC5, 1982 were the same. TC1 was a dry season, January–February,
with an average precipitation of less than 2 mm/day, while TC2 and TC3 were a wet season
with an average precipitation of 2 mm/day or more for 10 months, December (TC2) and
March–November (TC3).

TCs in each SC in La Niña were similar to those in El Niño. Nevertheless, there was
higher average precipitation intensity in La Niña phenomenon, than those in El Niño
phenomenon. Furthermore, the rainy season was a longer period in SC4 and SC5 for both
events of ENSO.

4. Discussion

The highest average rainfall in 1982, 1997, and 2015 (5.64–11.06 mm/day) was less than
that of in 1999, 2007, and 2011 (9.87–14.74 mm/day). This corresponds to the Oceanic Niño
Index (ONI), showing that ONI in 1982, 1997, and 2015 was greater than 0.5 ◦C, meaning
that El Niño occurred, and in 1999, 2007, and 2011 was below −0.5 ◦C, meaning that La
Niña occurred [29].

Lower rainfall than usual was found, so there was a widespread drought in almost all
regions of Thailand in 1982 and 1997, especially in Northeast [30]. There also was a severe El
Niño effect in 2015, causing very low precipitation across the country (x = 2.28 mm/day).

Five spatial clusterings were formed. SC5 with the highest average precipitation was
formed by only one station in Khlong Yai District, Trat Province, in every year whether there
was an El Niño or La Niña phenomenon (x = 5.64 − 14.74 mm/day). The topography of
Khlong Yai District is a coastline fully influenced by the southwest monsoon from the Gulf
of Thailand; consequently, it has abundant rainfall for most of the year. This is consistent
with the Trat Agricultural Meteorological Document that reports that Khlong Yai District,
Trat Province, is the wettest area in Thailand [31].

There were approximately 80 stations in SC1 and SC2 with low average precipitation
and especially low in 2015, mostly in the Central, North, and Northeast. It was consistent
with a report that rainfall in these three regions when El Niño occurred was less than the
average 30 years of rainfall of normal years.

There were three TCs in each SC. When the El Niño phenomenon occured, Thailand
rainfall tended to be lower than normal, especially during the summer and early rainy
season (mid-February–June). The dry season in El Niño was longer and less than average
rainfall than TCs for the La Niña phenomena.

Most stations in the south were clustered into SC3 and SC4 with moderate and high
rainfall, respectively, for both El Niño and La Niña phenomena. Usually, rainfall in Thailand,
especially in the southeast coast, is high during October–December. In addition, some
parts of Thailand were not affected by the ENSO phenomenon (El Niño and La Niña), such
as Trat in SC5 with the highest rainfall, and Tak, Chiang Rai, Chiang Mai, Phayao, and
Lampang in SC1 with the least rainfall. This may be due to their topography.

There are 35 provinces with more than one meteorological station of TMD. Of these, sta-
tions in 34 provinces were grouped into different SCs. This may be due to their topography
affecting a different climate.

Spatial clusters were similar for both El Niño and La Niña except in 2015, when severe
El Niño occurred. This might be the Euclidian distance matrix tending to cluster the samples
with climate variables having similar mean. This suggests that other similarity matrices,
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such as correlation, may be possible to group samples based on trends and variation over
time [11].

5. Conclusions

This paper employed multivariate cluster analysis with the average linkage to analyze
the spatial and temporal grouping, using climate factors which are rainfall, relative humid-
ity, average temperature, maximum temperature, lowest temperature, solar radiation, and
wind speed at 124 locations over Thailand from CCAM (10 km), for the years 1982, 1997,
and 2015 (El Niño) and 1999, 2007, and 2011 (La Niña).

Five SCs with a distance between a cluster of 12.5 were compared. It was observed
that SCs were similar for both El Niño and La Niña except in 2015, when severe El Niño
occurred. This indicated the more severe El Niño, the more spatial variation. The main
difference between SC1–SC5 was the ascending amount of precipitation, where SC1 had
the least amount of rainfall and SC5 had the heaviest rainfall.

In addition, three TC patterns in each SC were similar for both El Niño and La Niña.
Nevertheless, the average precipitation intensity in La Niña was higher than that in El Niño.

This paper implements cluster analysis on atmospheric panel data. Even multivariable
panel data is more complicated, but it is practical to cluster. Cluster results arealso more
realistic than cross-sectional data and avoid information loss.

Future studies may focus on using future climate factors from the weather forecast
models for clustering to study the spatial and temporal distributions. Other than the
correlation distance suggested, the robust distance, for example the absolute distance or
the Canberra distance to deal with outliers, should be further studied. Furthermore, as
there might be extreme whether events in the ENSO phenomenon, for example less or
abundant precipitation, which may affect the clustering, outliers should be detected and
handled prior.
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Abstract: In this paper, the applicability of the sine modified Lindley distribution, recently introduced
in the statistical literature, is highlighted via the goodness-of-fit approach on biological data. In
particular, it is shown to be beneficial in estimating and modeling the life periods of growth hormone
guinea pigs given tubercle bacilli, growth hormone treatment for children, and the size of tumors
in cancer patients. We anticipate that our model will be effective in modeling the survival times of
diseases related to cancer. The R codes for the figures, as well as information on how the data are
processed, are provided.

Keywords: goodness-of-fit; biomedical data; Lindley distribution; trigonometric function; continuous
distribution

1. Introduction

When people are diagnosed with cancer, COVID-19, or any other severe condition,
or when clinical trials of a new treatment are conducted, survival is a major concern.
Carcinoma is a general term that refers to a variety of diseases that can affect any part of the
body. One of the risk factors is the abrupt development of aberrant cells that grow beyond
their usual bounds, allowing them to infect nearby portions of the body and travel to other
organs, which is one of the risk factors; this is known as metastasis. Widespread metastases
are the leading cause of cancer death.

Doctors seek to regulate the growth and size of these tumors in the places where
they arise in order to protect human lives. The tumor stage and survival times are two
aspects, as they aid doctors in determining the best treatment for their patients. As a result,
determining the probability distribution of tumor size and survival durations is crucial for
selecting the best treatment option.

In order to analyze the numbers of people who are diagnosed with and die from severe
diseases each year, the number of people who are currently living after the diagnosis of a
disease, the mean age at which a disease was diagnosed, and the number of people who
are still alive at a given time after diagnosis, statistics can be used. It also gives an idea of
the differences among groups defined by age, sex, racial/ethnic group, geographic location,
and other categories.

One such way of analyzing the properties of the survival data or the size of the
tumor is by modeling the data. Data modelling related to biological science is of utmost
importance to understanding the data statistically. Over the years, many researchers have
developed discrete as well as continuous distributions that help in modelling biological
data. Ref. [1] developed the Marshall–Olkin Inverse Lomax distribution (MO-ILD), which is
used in modeling cancer stem cells. Ref. [2] studied the weighted generalized Quasi Lindley
distribution, which was studied to model COVID-19 data from Algeria and Saudi Arabia,
and Ref. [3] modeled the survival times of guinea pigs infected with virulent tubercle
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bacilli using the Sine Half-Logistic Inverse Rayleigh distribution. With this motivation in
mind, we use the existing sine-modified Lindley (S-ML) distribution developed by [4] in
modelling data related to different types of cancer. We also provide optimized open source
S-ML distribution codes for practitioners to use.

This paper is structured as follows. Section 2 covers a review of the existing S-ML
distribution. Section 3 includes the application of the distribution to cancer data, as well as
various visual presentations to back up the numbers, and Section 4 concludes the study.

2. The S-ML Distribution

In this section, a brief review of the definitions and properties of the sine generated
(S-G or Sin-G in some references) family of distributions, the modified Lindley distribution,
and the S-ML distribution is implemented. Due to their application and operating capability
in a range of contexts, the families defined by “trigonometric transformations” have sparked
a lot of interest in recent years. The sinusoidal transformation that contributes to the S-G
family was initially studied by [5].

2.1. S-G Family of Distributions

The corresponding basic definitions of the associated distribution function (DF) and
PDF given, respectively, by

FS−G(y; γ) = sin
[π

2
G(y; γ)

]
, y ∈ R

and

fS−G(y; η) =
π

2
g(y; γ) cos

[π

2
G(y; γ)

]
, y ∈ R

where G(y; γ) and g(y; γ) are the DF and PDF of a certain continuous distribution with
parameter vector denoted by γ, respectively. These functions are linked to a reference or
parent distribution that the practitioner determines ahead of time based on the study’s goals.
The S-G family is well-known as a potential parent family alternative. Without introducing
extra parameters, the following stochastic ordering holds: G(y; γ) ≤ FS−G(y; γ) for every
y ∈ R. The S-G family provides the capability to develop flexible statistical models that can
handle a variety of data. The recent works on the S-G family include the sine Lindley and
the sine exponential distribution introduced by [6], the transformed S-G family studied
by [7], the sine Topp Leone-G family of distributions developed by [8], sine Kumaraswamy-
G family introduced by [9], the sine extended odd Fréchet-G family of distributions studied
by [10], and the sine power Lomax model by [11].

Ref. [4] improved the S-G family’s performance by applying it to a specific one-
parameter distribution established by [12]: the modified Lindley (ML) distribution. The S-
ML distribution was developed as a result.

2.2. Modified Lindley Distribution

The ML distribution proposed by [12] is made possible by applying the tuning function
e−βy, β > 0 to the Lindley distribution with the goal of boosting its capabilities in a variety
of domains. As a result, the ML distribution is defined by the DF expressed as follows:

GML(y; β) = 1 −
[

1 +
βy

1 + β
e−βy

]
e−βy, y > 0.

The PDF is given by

gML(y; β) =
β

1 + β
e−2βy

[
(1 + β)eβy + 2βy − 1

]
, y > 0,

respectively, with β > 0, and GML(y; β) = gML(y; β) = 0 for y ≤ 0.

180



Math. Comput. Appl. 2022, 27, 43

The ML distribution adapts to rising, reverse bathtub, and constant hazard rates and
is a mixture of the exponential and gamma distributions with parameters β and (2, 2β).

The practical benefit is very significant; for the three data sets shown in [12], the ML
model outperforms the Lindley and exponential models. The wrapped modified Lindley
distribution proposed by [13] and the inverted modified Lindley distribution proposed
by [14] are two examples of improvements to the ML distribution.

2.3. S-ML Distribution

The corresponding DF and PDF of the S-ML distribution , respectively,

FS-ML(y; β) = cos
[

π

2

(
1 + e−βy yβ

1 + β

)
e−βy

]
, y > 0

and

fS-ML(y; β) =
π

2
β

1 + β
e−2βy

[
(1 + β)eβy + 2yβ − 1

]
sin
[

π

2

(
1 + e−βy yβ

1 + β

)
e−βx

]
, y > 0,

with β > 0, and FS-ML(y; β) = fS-ML(y; β) = 0 for y ≤ 0.
By varying the value of β, different variants of fS-ML(y; β) can be obtained. Figure 1

depicts the most representative of them.
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Figure 1. Illustration of fS-ML(y; β) with selected values of β.

We can imply from Figure 1, that for

smaller values of β, local increasing shape are seen; the distribution is unimodal,
larger values of β, the plot of fS-ML(y; β) decreases and is leptokurtic in shape.

The shapes of the S-ML probability density function (PDF) are found to be adaptable
to different shapes, being unimodal, decreasing, and right-skewed.

The S-ML distribution has also been shown to exhibit a non-monotonic hazard rate
function (HRF), depicting an increasing-reverse bathtub-constant shape. The distribution’s
applicability and adaptability make it very appealing for modeling data from various
fields and [4] has proved that the model stands strong against twelve other competent
distributions, such as the generalized beta type 2 distribution introduced by [15], the Lomax
distribution studied by [16], and the lognormal distribution developed by [17] in modelling
data related to weather and engineering.

181



Math. Comput. Appl. 2022, 27, 43

3. Applications

In the statistical literature on life-testing experiments, numerous distributions have
been developed. Some of which can be used to model the increase or decrease in failure
rates, while others can model bathtub and upside-down bathtub failure rates, and still
others can do both. We have examined a few distributions in this case, which include
the S-ML distribution against the sine-Lindley distribution (S-Lindley) defined by [18],
the sine-exponential (S-Expo) distribution studied by [6], the inverse Lindley distribution
(IL) introduced by [19], and the exponential (Expo) distribution as seen in [20].

The PDF and DF of the competing models used against the S-ML model are displayed
in Table 1.

Table 1. DF and PDF of the competitive models used against the S-ML model.

Model DF PDF

S-Lindley cos
[

π

2

(
1 +

yβ

1 + β

)
e−βy

]
π

2
β2

1 + β
(1 + y)e−βy sin

[
π

2

(
1 +

βy
1 + β

)
e−βy

]
S-Expo cos

(π

2
e−βy

) π

2
β sin

(π

2
e−βy

)
e−βy

IL
(

1 +
β

y(1 + β)

)
e−β/y β2

1 + β

(
1 + y

y3

)
e−β/y

Expo 1 − e−βy βe−βy

3.1. Methodology

• We begin by investigating the descriptive measures of the modeled data-sets, which
include the mean (μ), median (M), standard deviation (σ), skewness (γ1) and the
kurtosis (γ2).

• A statistical analysis is conducted on the data-sets with the help of the statistical soft-
ware [21]. The statistical analysis includes evaluating the estimate (β̂) of the data by the
method of maximum likelihood estimation, the related standard error (SE), and other
statistical measures such as the goodness-of-fit (GOF) test statistics including Akaike
Information criterion (AIC), Bayesian information criterion (BIC) along with Anderson
Darling statistic (A∗), Cramér-von Mises statistic (w∗) and Kolmgrov–Smirnov statistic
(Dn) with its correspondig p-value. The AIC is defined to be

AIC = 2k − 2ll,

the BIC is given by

BIC = k log(n)− 2ll,

where ll denotes the log-likelihood function taken at the maximum likelihood estimate,
n denotes the number of data and k represents the numver of model parameters.
The model with the highest p-value and the lowest values for Dn, w∗, and A∗, as well
as the AIC and BIC values, is the best fit for the data. It will be highlighted in the
coming numerical tables with the blue color. The software R is used to conduct
the estimation.

• Finally, for a visual representation, the empirical probability density function (EPDF)
plots and the empirical cumulative density function (ECDF) plots, accompanied by
the box plot and total time on test (TTT) plot, are displayed. The box plot gives a
visual representation of the descriptive measures of the data and the TTT plot, proved
useful for gaining information about the hazard form of the data. In many real-world
situations, there is qualitative information about the shape of the failure rate function
that might help in the selection of a particular distribution. The TTT plot has a convex
shape for decreasing HRF and a concave shape for increasing HRF.
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3.2. Survival Times of Growth Hormone Medication

The first data set consists of the estimated time from growth hormone medication until
the children reached the target age in the Programa Hormonal de Secretaria de Saude de
Minas Gerais in 2009, as reported in [22].

A summary of the measures of descriptive statistics is provided in Table 2 with the
box and TTT plots plotted in Figure 2.

Table 2. Descriptive statistics of survival times of growth hormone medication.

μ M σ γ1 γ2

5.979 5.260 2.810 0.851 3.119
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Figure 2. Box plot and TTT plot for the survival times of growth hormone medication.

Table 3 provides β̂, the SE and the GOF metrics of the survival times of growth
hormone medication.

Table 3. β̂, SE and GOF metrics of the survival times of growth hormone medication.

Distribution β̂ SE AIC BIC A∗ w∗ Dn p-Value

S-ML 0.14870 0.01672 170.8874 172.4428 1.5424 0.23195 0.1978 0.1291
S-Lindley 0.22660 0.02426 173.38 174.9353 1.866 0.29474 0.22065 0.06620

S-Expo 0.10780 0.01691 185.8088 187.364 4.0824 0.77177 0.31926 0.00159
IL 4.9096 0.7251 186.918 188.4733 4.6262 0.8702 0.2905 0.00542

Exp 0.18848 0.03186 188.8149 190.3703 4.4891 0.85831 0.33317 0.00084

Statistical Analysis—Based on the information in Table 2, we can conclude that the
data are positively skewed and mesokurtic, as evidenced by the box plot in Figure 2.
The TTT plot of the survival times of the data set is displayed in Figure 2. It shows an
increasing HRF plot. In addition, analysis of the data set shows that the evaluated model
(S-ML) is the best model throughout all elements of the model selection criteria, such as the
increasing hazard function. The S-ML model has a higher p-value and minimum values for
the test statistics including the AIC, BIC, A∗, w∗ , and Dn values, as shown in Table 3. The
EPDF and ECDF plots are given in Figure 3.

The plots in Figure 3 display that the S-ML and S-Lindley models give a better fit to
the data set than the S-Lindley, S-Expo, IL, and Expo models.
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Histogram and estimated PDFs
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Figure 3. The EPDF and ECDF plot for the survival times of growth hormone medication.

3.3. Survival Times of Guinea Pigs Data

This data set was originally studied by [23], which has also been analyzed previously
by [24]. The data set represents the survival times of n = 72 guinea pigs injected with differ-
ent doses of tuberculosis bacilli. The main concern of this data set is to predict the survival
times of the guinea pigs because they have a high susceptibility to human tuberculosis.

A summary of measures of descriptive statistics is provided in Table 4 with the box
and TTT plots displayed in Figure 4.
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Figure 4. Box plot and TTT plot for the survival times of guinea pigs.
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Table 4. Descriptive statistics of the survival times of guinea pigs.

μ M σ γ1 γ2

99.82 70.00 81.11 1.796245 5.614

Table 5 displays β̂, the SE and the GOF metrics for the survival times of guinea pigs.

Table 5. β̂, SE and GOF metrics for the survival times of guinea pigs.

Distribution β̂ SE AIC BIC A∗ w∗ Dn p-Value

S-ML 0.0082780 0.0006544 791.9648 794.2415 2.022 0.3638 0.14389 0.1014
S-Lindley 0.013329 0.001003 795.0701 797.3468 2.6594 0.5020 0.16629 0.03728

S-Expo 0.00567 0.0006084 805.7007 807.9773 3.8741 0.68284 0.19629 0.0077
IL 61.066 7.084 807.3371 809.6137 4.590 0.8316 0.1845 0.01479

Expo 0.010018 0.001169 808.8843 811.1609 4.472 0.8059 0.2115 0.00317

Statistical Analysis—Table 4 informs us that the data are right-skewed and leptokur-
tic, as demonstrated by a graphical representation of the box plot in Figure 4. Figure 4
also illustrates the TTT plot of this data set. It displays an increasing HRF plot. Moreover,
analysis of the data set implies that the S-ML distribution is the best model among the other
competitive models, when statistical GOF criteria and the increasing HRF are considered.
We can observe from Table 5, that the S-ML distribution has minimum values for the test
statistics with a higher p-value and least values for GOF metrics. The EPDF and ECDF
plots are displayed in Figure 5.

From Figure 5, we can also confirm this suitability behavior, as the plots of S-ML and
S-Lindley distribution trace the shape of the data very well. We can conclude from Table 5
and Figure 5 that the S-ML model perfectly describes the survival times of guinea pigs.
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Figure 5. EPDF and ECDF plots for the survival times of Guinea pigs.

3.4. Size of Tumors in Lung Cancer Patients

A swelling or tumor arises when the cells in the lungs expand at an abnormally fast
rate, which can lead to lung cancer. It is possible to identify that and see if its spread to
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other organs based on a variety of indicators. One of these characteristics is tumor stage,
which aids doctors in determining the best treatment for their patients. The tumor size
is used to determine the staging system. The data show the tumor size of 76 lung cancer
patients at Tanta University’s chest hospital, sixty of whom are in stage I, seven in stage II,
and the rest in stage III.

A summary of measures of descriptive statistics is provided in Table 6 with the box
and TTT plots plotted in Figure 6.
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Figure 6. Box plot and TTT plot of the tumor size of the lung cancer patients.

Table 6. Descriptive statistics of the tumor size of the lung cancer patients.

μ M σ γ1 γ2

3.531 2.700 2.570 1.442 4.269

Table 7 displays β̂, the SE and the GOF metrics of the tumor size of the lung cancer
patients.

Table 7. β̂, SE and GOF metrics of the tumor size of the lung cancer patients.

Distribution β̂ SE AIC BIC A∗ w∗ Dn p-Value

S-ML 0.21916 0.02031 324.8085 327.1393 1.9164 0.2733 0.1239 0.1934
S-Lindley 0.3201 0.02373 329.8057 332.1365 2.3303 0.3321 0.15054 0.06381

S-Expo 0.16063 0.01724 341.6504 343.9812 4.5324 0.7384 0.2303 0.00063
IL 2.9640 0.2832 337.1246 339.4554 5.3844 0.9086 0.1823 0.01278

Expo 0.28313 0.03248 345.8022 348.133 5.2671 0.8884 0.2461 0.0002

Statistical Analysis—From Table 6, we see that the data are right-skewed and lep-
tokurtic. This is proved in a graphical display of the box plot in Figure 6. Figure 6 shows
the TTT plot of this data set. It illustrates an increasing HRF plot. From Table 7, the S-ML
model has minimum values for Dn and higher p-value with least values for AIC and BIC.
The EPDF and ECDF plots are illustrated in Figure 7.

The plots in Figure 7 show that S-ML distribution captures the shape of the histogram
of the data set. We can conclude from Table 7 and Figure 7 that the S-ML distribution can
be used to model this data set related to the size of tumors in lung cancer patients.
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Figure 7. The EPDF and ECDF plot for the size of the tumor of the lung cancer patients.

4. Conclusions

In this paper, we have extended the applications of the sine-modified Lindley (S-
ML) distribution developed by [4] to model biomedical data. The distribution yields the
benefits of both the modified Lindley and S-G distributional functionalities. It was used
to investigate the distribution of tumor size, patients diagnosed with cancer’s survival
durations, and medications provided. The AIC, BIC, and test statistics such as A∗, w∗,
and Dn with their associated p-values are used to select the best-fitting model. These
metrics are supported by a visual representation of how well the S-ML model fits the data,
such as a box plot or a TTT plot. We believe the findings are superior to other competing
distributions for modeling biomedical data and can be used to model a range of other
biological data. We have also included the data sets and R codes for all of the figures in the
paper, as well as all of the estimations, and the tests carried out. We refer readers to the
Appendix A for these R codes.
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Appendix A

In this section, we have included the code to analyze data set 1, using the software R.
The codes for the graphs in the data analysis are also plotted.
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Appendix A.1. Data Sets

Data set 1

(2.15, 2.20, 2.55, 2.56, 2.63, 2.74, 2.81, 2.90, 3.05, 3.41, 3.43, 3.43, 3.84, 4.16, 4.18, 4.36, 4.42, 4.51,
4.60, 4.61, 4.75, 5.03, 5.10, 5.44, 5.90, 5.96, 6.77, 7.82, 8.00, 8.16, 8.21, 8.72, 10.40, 13.20, 13.70)
Data set 2

(12, 15, 22, 24, 24, 32, 32, 33, 34, 38, 38, 43, 44, 48, 52, 53, 54, 54, 55, 56, 57, 58, 58,59, 60, 60, 60,
60, 61, 62, 63, 65, 65, 67, 68, 70, 70, 72, 73, 75, 76, 76, 81, 83, 84, 85, 87, 91, 95, 96,98, 99, 109,
110, 121, 127, 129, 131, 143, 146, 146, 175, 175, 211, 233, 258, 258, 263, 297, 341, 341, 376)
Data set 3

(0.96, 1.06, 1.09, 1.16, 1.19, 1.20, 1.32, 1.33, 1.40, 1.42, 1.46, 1.49, 1.51, 1.52, 1.54, 1.57, 1.59,
1.68, 1.70, 1.70, 1.76, 1.76, 1.77, 1.80, 1.81, 1.86, 1.89, 1.89, 1.94, 2.20, 2.20, 2.22, 2.36, 2.36, 2.39,
2.41, 2.45, 2.69, 2.71, 2.73, 2.77, 2.80, 2.83, 2.87, 2.94, 2.98, 3.03, 3.04, 3.19, 3.31, 3.57, 3.73, 4.17,
4.27, 4.30, 4.36, 4.45, 4.79, 4.85, 4.97, 5.26, 5.33, 5.53, 5.55, 5.91, 6.25, 6.31, 7.62, 7.84, 8.49, 8.63,
8.99, 9.94, 10.43, 10.86, 11.18)

Appendix A.2. Graphics for the PDF of S-ML Distribution

x= 0:10

f= function(x,p) #defining the pdf of S-ML model

{

(((pi/2)*(p/(1+p))*exp(-2*p*x))*(((1+p)*exp(p*x))+(2*p*x)-1)*sin((pi/2)*

(1+(exp(-p*x)*((p*x)/(1+p))))*exp(-p*x)))

}

curve(f(x,p= 5),col="yellow",xlab="x", ylim=c(0,1),ylab="pdf",lwd=2 )

curve(f(x,p= 15),col="pink", lwd=2, add= TRUE)

curve(f(x,p= 50),col="purple", lwd=2, add= TRUE)

curve(f(x,p=100),col="orange", lwd=2, add= TRUE)

legend("topright",legend=c(expression(paste(beta," = ",5)),

expression(paste(beta," = ",15)),

expression(paste(beta, " = ",50)),

expression(paste(beta, " = ",100))),

ncol=1, col=c("yellow","pink","purple", "orange"),

lwd=c(2,2,2,2), cex=c(1,1,1,1),text.width = 0.1, inset=0.011, bty ="n")

### In the same way, we can plot the pdf for other beta~values.

Appendix A.3. Parameter Estimate along with GOF Metrics

install.packages (c("EstimationTools", "MASS", "plyr" ))

library(EstimationTools)

library(MASS)

library(plyr)

# Data set 1

st = c(2.15, 2.20, 2.55, 2.56, 2.63, 2.74, 2.81, 2.90, 3.05, 3.41, 3.43,

3.43, 3.84, 4.16, 4.18, 4.36, 4.42, 4.51, 4.60, 4.61, 4.75, 5.03, 5.10,

5.44, 5.90, 5.96, 6.77, 7.82, 8.00, 8.16, 8.21, 8.72, 10.40, 13.20, 13.70)

# S-ML distribution

dSml = function(x, p, log = FALSE) #log of pdf of S-ML model

{

n=count(x)

loglik <- (log(pi/2)+log(p)-log(1+p)-(2*p*x)+log((1+p)*exp(x*p)*(2*p*x)-1)+

log(sin((pi/2)*(1+exp(-p*x)*(p*x)/(1+p))*exp(-x*p))))

if ( log == FALSE)
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density <- exp(loglik)

else density <- loglik

return(density)

}

theta <- maxlogL(x =st, dist = "dSml",start = 0.59)

summary(theta)

# S-Lindley~distribution

dSL = function(x, p, log = FALSE) #log of pdf of S-Lindley model

{

n=count(x)

loglik <- (log(pi/2)+log(p^2)+log(1+x)-log(1+p)-(p*x)+

log(sin((pi/2)*(1+((x*p)/(1+p)))*exp(-x*p))))

if ( log == FALSE)

density <- exp(loglik)

else density <- loglik

return(density)

}

theta <- maxlogL(x =st, dist = "dSL",start = 0.59)

summary(theta)

# SE distribution

dSE = function(x, p, log = FALSE) #log of pdf of SE model

{

n=count(x)

loglik <- (log(pi/2)+log(p)-(p*x)+log(sin((pi/2)*exp(-x*p))))

if ( log == FALSE)

density <- exp(loglik)

else density <- loglik

return(density)

}

theta <- maxlogL(x =st, dist = "dSE",start = 0.59)

summary(theta)

#IL distribution

dIL = function(x,p, log = FALSE)

{

n=count(x)

loglik <- (2*log(p))-log(1+p)-(p/x)+log(1+x)-(3*log(x))

if ( log == FALSE)

density <- exp(loglik)

else density <- loglik

return(density)

}

theta <- maxlogL(x =st, dist = "dIL",start = 0.65)

summary(theta)
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#Exp distribution

dE = function(x,p, log = FALSE) #log of pdf of Expo model

{

n=count(x)

loglik <- log(dexp(x, p, log = FALSE))

if ( log == FALSE)

density <- exp(loglik)

else density <- loglik

return(density)

}

st = c(2.15, 2.20, 2.55, 2.56, 2.63, 2.74, 2.81, 2.90, 3.05, 3.41, 3.43,

3.43, 3.84, 4.16, 4.18, 4.36, 4.42, 4.51, 4.60, 4.61, 4.75, 5.03, 5.10,

5.44, 5.90, 5.96, 6.77, 7.82, 8.00, 8.16, 8.21, 8.72, 10.40, 13.20, 13.70)

theta <- maxlogL(x =st, dist = "dE",start = 0.6)

summary(theta)

Appendix A.4. KS Test Statistic, p-Value and Other Test Statistics

install.packages ("goftest")

library(goftest)

y = c(2.15, 2.20, 2.55, 2.56, 2.63, 2.74, 2.81, 2.90, 3.05, 3.41, 3.43,

3.43, 3.84, 4.16, 4.18, 4.36, 4.42, 4.51, 4.60, 4.61, 4.75, 5.03, 5.10,

5.44, 5.90, 5.96, 6.77, 7.82, 8.00, 8.16, 8.21, 8.72, 10.40, 13.20, 13.70)

# S-ML~CDF

pSml = function(x,p)

{

p = 0.14870

cos((pi/2)*(1+(exp(-p*x)*(x*p)/(1+p)))*exp(-p*x))

}

ks1=ad1=cvm1=NULL

ks1=ks.test(y,pSml)

ad1=ad.test(y,pSml)

cvm1=cvm.test(y,pSml)

result1=c(ks1$statistic,ks1$p.value,ad1$statistic,ad1$p.value,

cvm1$statistic,cvm1$p.value)

# S-Lindley~CDF

pSL = function(x,p)

{

p = 0.22660

cos((pi/2)*(1+((x*p)/(1+p)))*exp(-p*x))

}

ks1=ad1=cvm1=NULL

ks1=ks.test(y,pSL)

ad1=ad.test(y,pSL)

cvm1=cvm.test(y,pSL)

result1=c(ks1$statistic,ks1$p.value,ad1$statistic,ad1$p.value,
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cvm1$statistic,cvm1$p.value)

# S-Expo CDF

pSe = function(x,p)

{

p = 0.10780

cos((pi/2)*exp(-p*x))

}

ks1=ad1=cvm1=NULL

ks1=ks.test(y,pSe)

ad1=ad.test(y,pSe)

cvm1=cvm.test(y,pSe)

result1=c(ks1$statistic,ks1$p.value,ad1$statistic,ad1$p.value,

cvm1$statistic,cvm1$p.value)

#IL distribution

pIL = function(x,p)

{

p = 4.9096

(1 + (p/((1+p)*x)))*exp(-p/x)

}

ks1=ad1=cvm1=NULL

ks1=ks.test(y,pIL)

ad1=ad.test(y,pIL)

cvm1=cvm.test(y,pIL)

result1=c(ks1$statistic,ks1$p.value,ad1$statistic,ad1$p.value,

cvm1$statistic,cvm1$p.value)

# Expo~CDF

pEx = function(x,p)

{

p = 0.18848

pexp(x,p)

}

ks1=ad1=cvm1=NULL

ks1=ks.test(y,pEx)

ad1=ad.test(y,pEx)

cvm1=cvm.test(y,pEx)

result1=c(ks1$statistic,ks1$p.value,ad1$statistic,ad1$p.value,

cvm1$statistic,cvm1$p.value)

Appendix A.5. Graphics—To Plot the EPDF for the First Data Set

x = c(2.15, 2.20, 2.55, 2.56, 2.63, 2.74, 2.81, 2.90, 3.05, 3.41, 3.43,

3.43, 3.84, 4.16, 4.18, 4.36, 4.42, 4.51, 4.60, 4.61, 4.75, 5.03, 5.10,

5.44, 5.90, 5.96, 6.77, 7.82, 8.00, 8.16, 8.21, 8.72, 10.40, 13.20, 13.70)

hist(x,prob=T,main="Histogram and estimated PDFs",

col="pink", ylab = "PDF",ylim=c(0,0.05), bty ="n")

p = 0.14870 ## parameter estimate of S-ML model
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curve(((pi/2)*(p/(1+p))*(exp(-2*p*x))*((1+p)*exp(p*x)+(2*x*p)-1)*

(sin((pi/2)*(1+exp(-p*x)*((x*p)/(1+p)))*exp(-x*p)))),col="blue",lwd=3,

add=T)

p = 0.22660 # parameter estimate of S-Lindley

curve(((pi/2)*((p^2)/(1+p))*(1+x)*exp(-p*x)*(sin((pi/2)*

(1+((x*p)/(1+p)))*exp(-x*p)))), col="green",lwd = 3, add=T)

p = 0.10780 # parameter estimate of S-Expo

curve(((pi/2)*(p*exp(-p*x))*(sin((pi/2)*exp(-x*p)))), col="orange",

lwd = 3, add=T)

p = 4.9096 # parameter estimate of IL

curve((((p^2)/(1+p))*((1+x)/x^3)*exp(-p/x)),col="red",lwd = 3, add=T)

p = 0.18848 # parameter estimate of Expo

curve(dexp(x,p), col="yellow", lwd = 3, add = T)

legend("topright",legend = c("S-ML","S-Lindley","S-Expo","IL","Expo"),

ncol = 1,

col= c("blue","green","orange","red","yellow"),lty =1,lwd=3,

text.width = 2.5 , inset= 0.00005, bty ="n")

Appendix A.6. Graphics—To Plot the ECDF for the First Data Set

y = c(2.15, 2.20, 2.55, 2.56, 2.63, 2.74, 2.81, 2.90, 3.05, 3.41, 3.43,

3.43, 3.84, 4.16, 4.18, 4.36, 4.42, 4.51, 4.60, 4.61, 4.75, 5.03, 5.10,

5.44, 5.90, 5.96, 6.77, 7.82, 8.00, 8.16, 8.21, 8.72, 10.40, 13.20, 13.70)

plot(ecdf(y) , verticals=TRUE, main="Empirical and estimated CDFs",

ylab="CDF", xlab="x", bty ="n")

p = 0.14870 # parameter estimate of S-ML

curve((cos((pi/2)*(1+(exp(-p*x)*((x*p)/(1+p))))*exp(-p*x))),col="blue",

lwd=3, add=T)

p = 0.22660 # parameter estimate of S-Lindley

curve((cos((pi/2)*(1+((x*p)/(1+p)))*exp(-p*x))), col="green",lwd = 3,

add=T)

p = 0.010780 # parameter estimate of S-Expo

curve((cos((pi/2)*exp(-p*x))),col="orange",lwd = 3, add=T)

p = 4.9096 # parameter estimate of IL

curve(((1 + (p/((1+p)*x)))*exp(-p/x)),col="red",lwd = 3, add=T)

p = 0.18848 # parameter estimate of Expo

curve(pexp(x,p), col="yellow", lwd = 3, add = T)

legend("topleft",legend = c("S-ML","S-Lindley","S-Expo","IL","Expo"),

ncol = 1,

col= c("blue","green","orange","red","yellow"),lty =1,lwd=3,

text.width = 2.5 , inset= 0.00005, bty ="n")

#######

192



Math. Comput. Appl. 2022, 27, 43

Appendix A.7. Graphics: Bar Plot and TTT Plot for First Data Set

###Bar plot

x = c(2.15, 2.20, 2.55, 2.56, 2.63, 2.74, 2.81, 2.90, 3.05, 3.41, 3.43,

3.43, 3.84, 4.16, 4.18, 4.36, 4.42, 4.51, 4.60, 4.61, 4.75, 5.03, 5.10,

5.44, 5.90, 5.96, 6.77, 7.82, 8.00, 8.16, 8.21, 8.72, 10.40, 13.20, 13.70)

boxplot(x,main = "Tumour size of lung cancer patients",

col = "orange", border="brown",horizontal = TRUE,notch = TRUE)

###TTT plot

install.packages ("AdequacyModel")

library(AdequacyModel)

TTT(x, lwd = 2, lty 2, col = "red", grid=FALSE)

############################
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Abstract: Child undernutrition is one of the 10 most significant public health problems worldwide.
There is a rapidly growing demand to produce reliable estimates at the micro administrative level
with small sample sizes. In this research, the authors employed small area estimation techniques
to estimate the prevalence of malnutrition at the zonal level among children under five in Ethiopia.
The small area estimation concept was sought for by linking the most recent possible survey data
and census data in Ethiopia. The results show that there is spatial variation of stunting, wasting and
being underweight across the zone level, showing different locations facing different challenges or
different extents.

Keywords: undernutrition; prevalence; hierarchical Bayesian; spatial analysis; small area estimation;
Markov chain Monte Carlo

1. Introduction

Malnutrition is defined as an imbalance in the quantity of protein, calories, and
other nutrients consumed, usually including either undernutrition or overnutrition. Un-
dernutrition is usually characterised by stunting, wasting, or being underweight. Child
undernutrition can have an immediate impact on child mortality and morbidity, or it can
have a long-term influence on the labour market and health consequences in adults.

Globally, in 2020, it was estimated that 149 million children under the age of 5 were
stunted, 45 million were wasted, and 38.9 million were overweight or obese. Undernutrition
among children is a significant public health issue in developing nations, as evidenced
by the fact that undernutrition is ranked as the first priority among the world’s 10 most
important challenges. Ethiopia is one of the countries in the world with the highest rates of
childhood undernutrition. Despite significant progress toward eliminating undernutrition
in Ethiopia, between 2005 and 2019, the proportion of underweight children decreased
from 33% to 21%, the proportion of stunted children decreased from 51% to 37%, and the
proportion of wasted children decreased from 12% to 7% [1].

Both the World Health Assembly and the Sustainable Development Goals (SDGs)
papers clearly emphasise the necessity of member countries implementing nutrition policies
that prioritise maternal and child nutrition [2,3]. Implementation of these ambitious
nutritional objectives outlined in the national and global agreements needs to be backed
up with an unceasing stream of up-to-date evidence. Actions to eliminate malnutrition
are also crucial for reaching the diet-related objectives of the global strategy for women’s,
children’s, and adolescent’s health for 2016–2030 [4] and the 2030 agenda for sustainable
development [5]. The World Health Organization (WHO) likewise envisions a world free of
all types of malnutrition in which all people attain good health and well-being. The WHO
collaborates with partners and member countries to achieve universal access to healthy diets
and effective nutrition interventions derived from resilient and sustainable food systems,
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according to the nutrition strategy of 2016–2025 [6]. The government of Ethiopia has
taken several steps toward reducing undernutrition in the country. The recently endorsed
2019 Food and Nutrition Policy aims to achieve an optimal nutritional status throughout
the life cycle via coordinated implementation of nutrition-specific and nutrition-sensitive
interventions. In addition, through the Seqota Declaration, Ethiopia has committed to
ending undernutrition in children under the age of 2 by 2030.

According to worldwide data, many diverse interventions enhance undernutrition
outcomes, yet comparable interventions have varying effects in various situations and
places [7]. In Ethiopia, several correlations and interventions have also been found to
be important for undernutrition outcomes, including food aid and shocks [8,9], maternal
nutritional and educational status [10–13], access to educated and trained health work-
ers [14], access to feeding practices, and safe water [15,16]. The prevalence of various forms
of undernutrition varies by geography in Ethiopia, showing that different geographic areas
confront distinct problems with undernutrition [17].

The national-level Demographic and Health Survey (DHS) is the main source of
official statistics in developing countries where there is no vital registration. The DHS data
help generate a variety of relevant statistics at the macro level (administrative level and
national levels). These days, there is a rapidly growing demand for micro-level statistics.
However, the DHS data cannot be utilised directly to generate valid estimates at the micro
level because of small sample sizes. Hence, employing small area estimation (SAE) is of
paramount importance.

Even though there was a study conducted using 2014 Ethiopian Mini DHS in combina-
tion with census data to find small area estimates at the woreda level, it is not appropriate
to estimate at the woreda level as the survey data are shifted spatially, where the shifting
guarantees that the clusters will not be out of the zonal level [17]. It is also important
to use the latest possible data: Ethiopian Mini DHS (EMDHS) 2019 data. In this work,
SAE approaches were employed to obtain model-based estimates of the prevalence of
malnutrition at the zone level in Ethiopia by linking data from the EMDHS 2019 and the
Ethiopian Census 2007.

2. Methods and Materials

2.1. Study Setting and Design

Ethiopia is organised into four administrative levels: region, zone, woreda, and kebele.
Ethiopia’s first administrative division is the region, also known as a kilil or, alternatively, a
regional state. The regions of Ethiopia are defined by ethno-linguistic areas. Currently, in
2022, there are 11 regions (Afar, Amhara, Oromia, Benishangul-Gumuz, Somali, Gambela,
Harari, Sidama, Southern, South West, and Tigray) and 2 independently administrative
cities (Addis Ababa and Dire Dawa). Zones are created by subdividing regions. Zones
are administrative subdivisions in Ethiopia where DHS shifting guarantees that no survey
clusters are outside of the zone. Zones are further subdivided into woredas, and woredas
are also subdivided into kebeles. Going back over time within the country, woredas are
generally stable administrative entities. Kebeles are the lowest administrative units or
divisions of Ethiopia.

This study is a further analysis of secondary data: the Ethiopian Mini DHS (EMDHS)
2019 and the Ethiopian Census 2007. The Ethiopian Census 2007 is the country’s third
population and housing census and was conducted on 28 May 2007 for all regions except
Afar and Somali, which were enumerated on 28 November 2007. The EMDHS 2019
was designed to represent national, urban-rural, and regional estimates of health and
demographic outcomes. The samples for the EMDHS 2019 were chosen using stratified and
two-stage cluster sampling procedures. Sketch maps were drawn for each of the clusters,
and all conventional households were listed.

The EMDHS 2019 was a nationwide survey that included a nationally representative
sample of 9150 randomly selected households. In the selected households, all children
under the age of five were eligible for measurements of weight and height. The survey was
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designed to generate reliable estimates of important indicators for urban and rural areas,
for each of the regions, and at the national level in Ethiopia. Figure 1 depicts the clusters
included in the 2019 EMDHS.

Figure 1. Study clusters of the EMDHS 2019.

2.2. Data Sources and Procedures

The analysis of the current study was based on the most recent available data: the
EMDHS 2019 and the Ethiopian Census 2007. The EMDHS 2019 is a nationally representa-
tive cross-sectional household-based sample survey designed to provide information about
several health and nutritional indicators in Ethiopia. The principal objective of the EMDHS
2019 was to provide up-to-date regional- and national-level estimates of the indicators.
Specifically, the nutritional statuses of children under the age of five was assessed by
measuring their weights and heights.

The EMDHS 2019 was carried out with the use of standardised data collection proce-
dures and survey design. The EMDHS 2019 used a stratified cluster sampling technique
to choose census enumeration areas (EAs) based on probability proportional to the enu-
meration area sizes. Following that, a random sample of households within the selected
EAs was chosen. Data for the survey were gathered through face-to-face interviews with
questionnaires administered to household heads and chosen household members who
consented to being interviewed. Data collection for the EMDHS 2019 took place from 21
March to 28 June 2019. The EMDHS 2019 data for the current study were extracted from
the Major DHS ((http://dhsprogram.com, accessed on 5 February 2021).

The 2007 Census of Ethiopia is one of the biggest and most recent data sources in
Ethiopia, providing information on a wide variety of demographic, socioeconomic, and
educational characteristics and the migration statuses of people at a disaggregated level.
For the 2007 Census, short- and long-form questionnaires were created for use. The long
form was administered to 20% of the randomly chosen households, which covered both
housing and population topics. Specifically, the long form was composed of questions
about internal migration and geographical characteristics, population characteristics, fam-
ily and household characteristics, social and demographic characteristics, mortality and
fertility, educational and literacy characteristics, disability characteristics, and economic
characteristics. The long form was rich in terms of data, with demographic information
such as assets, housing characteristics, education, fertility, and mortality.
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The short format covered only basic demographics, and 80% of the households re-
ceived the short format. All the questions in the short form were included in the long form.
As a result, the short form was developed to gather information from the whole population.
To collect information from individuals, households, and institutions, both the short and
long forms were employed. Only the short-form questionnaire was used for the resident
foreigners and the homeless. The 2007 population and housing census designated 86,805
enumeration areas (in all regions) with 17,363 urban areas and 69,462 rural areas. The
current study’s census data was obtained from the Integrated Public Use Microdata Series
(IPUMS) (https://international.ipums.org, accessed on 12 May 2021).

All available shape files were collected. We used woreda-level geographic boundary
mapping within regions to join data from different sources because woredas are relatively
stable government structures, compared with structures below or above the woreda, during
political or government changes.

2.3. Response Variable

This study applied the recent possible available survey—the EMDHS 2019—unlike
the EMDHS 2014, which was used by a previous study [18].

The outcome variables considered were childhood stunting, wasting, and being under-
weight, which are binary at the individual level. According to WHO criteria, children with
height-for-age, weight-for-height, and weight-for-age z-scores of less than −2 standard
deviations (SDs) were leveled as stunted, wasting, and underweight, respectively. The
parameter of interest was estimating the zone level prevalence of stunting, wasting, and
being underweight among children under five. Notably, the EMDHS 2019 was not designed
to provide zone-level estimates for key maternal or child health indicators, including child-
hood undernutrition, and therefore this study did not use the SAE technique to estimate the
prevalence of stunting, wasting, and being underweight. The study restricted our analysis
to children under five, as the EMDHS 2019 collected information on key indicators of child
health and development only for those who were born in the five years prior to the survey.

2.4. Auxiliary Covariates

In this study, the auxiliary variables were taken from the 2007 Population and Housing
Census of Ethiopia. The chosen covariates were at the district level and zonal level. Literacy
is widely acknowledged to benefit the individual and society and is associated with a num-
ber of positive outcomes for health and nutrition. We considered household characteristics,
including education, as an auxiliary variable, as they were used from a study conducted in
Ethiopia using the EMDHS 2014 data [18]. As the number of auxiliary variables we can con-
sider should be small in number, we selected a few of the available variables in the census
data, namely those which explained the outcome variable more. Hence, we summarised
both the woreda- and zone-level summary values (percentages) of the auxiliary variables,
including the percent of literacy and percent of access to an improved water supply.

2.5. Data Processing and Analysis

The analysis was estimated first by mapping the census data at the woreda-level
and zone-level areas. Then, the data sources were mapped by subnational states before
processing the data in the analysis. We overlaid the population grid on a current shapefile
and then aggregated the population within each area to generate woreda-level and zone-
level population estimates for the country. Zone-level estimates of prevalence of stunting,
wasting, and being underweight were compiled in the country.

Let Yi(Ar) be a binary response variable for the ith individual in the rth area Ar, where
i = 1, . . . , Nr, r = 1, . . . , n and ∑n

r=1 Nr = N, with n referring the number of small areas
and Nr referring the number of individuals in the rth area. We considered yi(Ar) as taking
values one (with probabilities pi) and zero (with probabilities 1 − pi), being a realisation of
a random variable Yi(Ar) following a Bernoulli distribution (i.e., yi(Ar) ∼ ber[pi(Ar)]).
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For comparison purposes, we also computed the zone-level estimated direct preva-
lence of malnutrition and its corresponding variance. We used sampling weights to compute
the estimated weighted direct prevalence. Similarly, variances were computed using Taylor
series linearisation [19] to estimate the variance, considering the sampling weight.

Spatial analysis (both global and local spatial autocorrelation) were used so as to check
the importance of including the spatial effect in the modeling. The survey GPS coordinates
were combined with the weighted prevalence of stunting, wasting, and being underweight
in each of the EMDHS 2019 clusters. As a result, the cluster level weighted prevalence was
used to depict the hot and cold spots of clusters. Geographic variation in stunting, wasting,
and underweight prevalence among the EMDHS 2019 clusters was identified using spatial
analysis [20]. Geographic variation of a significant high prevalence or low prevalence of
stunting, wasting, and being underweight was computed for each cluster using Moran’s
I statistic [20]. Maps depicting the distribution and variations of stunting, wasting, and
being underweight throughout the country were constructed.

Regarding the small area estimation, we adapted the Bayesian approach of modeling
for its ability to combine information from several sources [21]. The approach also simplifies
computation of the measures of accuracy in the SAE, which produces realisations of the
posterior distribution of the target quantities [22]. Empirical Bayesian (EB) and hierarchical
Bayesian (HB) methods are Bayesian approaches which are more generally applicable in
the sense of handling models for binary and count data [23]. The ELL method [24], which
is an EB estimation method used by some authors [18,25], assumes a nested error model
on the transformed variables [23]. Though the ELL method can handle data from survey
and census sources, its nested error modeling nature requires individual-level auxiliary
variables, which we could not get from the census data for the individuals in the survey.
Under the HB framework, there are a number of developed models for discrete outcome
variables [26–28].

Accordingly, we used a spatial hierarchical Bayesian small area model for the binary
response variable [28], which enabled us to use area-level auxiliary data from the census
and individual-level data from the survey. We considered zone-level classification as small
area two, which we wanted to estimate, whereas woreda-level classification was classified
as small area one. Furthermore, 72 knot points within two resolutions were considered
in the spatial dimension reduction. Further details of the modeling can be found in a
published study elsewhere [28].

Weakly informative priors were considered for the model parameters. All the pri-
ors used being proper guaranteed that the appropriateness of the posterior distribution.
Markov chain Monte Carlo (MCMC) simulation was used to generate posterior samples
from the conditional distributions of the parameters of the model. Inspection of the plots
(trace plots, density plots, and autocorrelation plots) and formal tests (Geweke’s test) were
considered in order to check the convergence of the simulated sequences in the models.

Measures of precision play a crucial role in small area estimation. Consider R as the
number of MCMC samples after removing the burnin period followed by thinning. By the
ergodic theorem for the Markov chains [29], p̂i converges to E(pi|y) and V̂(pi|y) to V(pi|y)
as R −→ ∞. Checks of the convergence of the MCMC were used to guarantee the ergodic
theorem. Hence, the estimate of pi and its corresponding posterior variance for the ith area
are obtained directly from the predictive distribution of y(A∗

k ) accordingly:

p̂i ≈ 1
R

R

∑
k=1

p̂(k)i = p̂(·)i

and

V( p̂i) ≈ 1
R − 1

R

∑
k=1

(
p̂(k)i − p̂(·)i

)2

Benchmarking is important in that the model-based estimators do not benchmark
against the direct survey estimate for large areas [30]. To avoid possible overshrinkage and
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model misspecification, the model-based HB estimates p̂i were benchmarked so that the
benchmarked HB (BHB) estimates added up to the direct large area (regional level in this
study case) estimate. The posterior mean squared error (PMSE) was used to measure the
variability of the BHB estimators. The PMSE is the sum of a bias correction term and the
posterior variance.

We take p̂BHB
i as the benchmarked HB (BHB) estimator of pi such that p̂BHB

i is a
function of the HB estimators p̂HB

i (i.e., p̂BHB
i = f

(
p̂HB

1 , . . . , p̂HB
n
)
) for some function f (·),

satisfying the benchmark property [30] ∑n
i=1 p̂BHB

i = ∑n
i=1 p̂Direct

i ., where i = 1, . . . , n and
p̂Direct

i is the direct survey estimator. Hence, the BHB estimator can be obtained as follows:

p̂BHB
i = p̂HB

i
∑n

k=1 p̂Direct
k

∑n
k=1 p̂HB

k

To obtain a measure of variability associated with the BHB estimator p̂BHB
i , we use the

following posterior mean squared error (PMSE):

PMSE
(

p̂BHB
i

)
=
(

p̂BHB
i − p̂HB

i

)2
+ V

(
p̂HB

i

)
.

Thus, the PMSE of p̂BHB
i is simply the sum of the posterior variance V(pi | y) and a

bias correction term
(

p̂BHB
i − p̂HB

i
)2.

3. Results

3.1. Data Description

Both census and survey data were considered in this study. We obtained 10% of the
census 2007 data, with 7,434,086 individuals covering all 720 woredas at the time of the
census. Out of these, 6,132,270 had short-form data. Accordingly, the remaining 1,301,816
participants with the long-form data type were considered to compute the woreda- and
zone-level auxiliary variables for our analysis. We summarised the woreda- and zone-level
weighted averages and percentages of the auxiliary variables.

From the EMDHS 2019, 4552 children under 5 with complete information of their
anthropometric measurements (height, weight, and age) were considered in the analysis.
Furthermore, the global positioning system (GPS) data (position of enumeration areas) of
the EMDHS 2019 and shapefiles were overlaid to demonstrate the estimates visually.

3.2. Direct Estimates of Malnutrition

The weighted prevalence of malnutrition was computed as a direct estimate at the
woreda level and the estimates are given in Table 1. The corresponding 95% confidence
intervals were computed using variance estimates from Taylor series linearisation.

Table 1. Weighted direct prevalence of indicators of malnutrition among children under 5 in Ethiopia
in 2019 (n = 4552).

Indicator Prevalence SE 95% CI

Stunted 38.9 1.29 [36.38, 41.45]
Wasting 22.5 1.36 [19.81, 25.14]

Underweight 6.9 0.53 [5.82, 7.89]

From Figure 2, we can see the number of clusters included and the direct estimate for
the weighted prevalence of malnutrition. Specifically, there were a few zones with zero
clusters included in the survey (Figure 2a), and hence direct estimates for these zones could
not be found (Figure 2c–e). Hence, small area estimation is of paramount importance to
obtaining estimates for zonal level administrative classification. That aside, it also important
to check whether taking the spatial effect into account in the small area estimation process
improves the estimates or not. Spatial autocorrelation analysis and spatial pattern analysis
helped us to check this.
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(a) Number of clusters. (b) Number of observations.

(c) Wasting weighted. (d) Stunting weighted.

(e) Underweight weighted.

Figure 2. Number of clusters and weighted prevalence of malnutrition.

In general, we can see the spatial structure in the undernutrition estimates, namely in
that two areas that are neighbors have more similar risks than two areas that are far apart.
Specifically, spatial pattern analysis showed that there is spatial effect for being under-
weight, wasting, and stunting among children. The Global Moran’s I test results are given
in Table 2, showing the existence of significant spatial autocorrelation. Similarly, Anselin
local Moran’s I analysis and pattern (cluster and hotspot) analysis (Figure 3) showed the
existence of significant clusters of a high as well as low prevalence of malnutrition. Hence,
taking the spatial random effect in modeling evidently will have a great role. Therefore, the
spatial random effect was taken into account in the small area estimation.
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Table 2. Global Moran’s I summary statistics for the malnutrition indicators.

Measure Underweight Stunting Wasting

Moran’s Index 0.218227 0.395968 0.372278
Expected Index −0.003289 −0.003289 −0.003289

Variance 0.002098 0.002122 0.002118
z-score 4.836414 8.667563 8.160307
p-value 0.000001 0.000000 0.000000

(a) Stunting.

(b) Wasting.

Figure 3. Cont.

202



Math. Comput. Appl. 2022, 27, 44

(c) Underweight.

Figure 3. Cluster and hotspot analysis of prevalence of malnutrition.

3.3. Small Area Estimates of Malnutrition

Some of the second administrative level in the country (zones) were not represented
at all in the EMDHS 2019. These include the Oromiya Zone in Amhara, Yem Special, Sheka,
Konta Special, Mirab Omo, Basketo, Alle, Derashe, Amaro and Burji in SNNP, Borena, East
Bale in Oromia, and Daawa in Somali. Meanwhile, no woredas, the third adminstrative
level in the country, in the unrepresented zones nor some more woredas from represented
zones were represented at all, and a few of them had small sample sizes. Accordingly, the
application of small area estimation is of paramount importance at the zonal level and
woreda level. Aside from that, to comply with the assumption of the model, we considered
the zone as secondary small area (SA2) and woreda as primary small area (SA1). The 2
resolutions with 72 knot points were considered for dimension reduction.

A total of 20,000 MCMC samples were generated from the posterior distribution.
Considering a burnin period of 6000 and thinning for every third, 4667 samples were
retained for the final process. The convergence and independence of the samples were
confirmed from the trace plots (Figure 4), density plots (Figure 5), autocorrelation plots
(Figure 6), and Geweke’s test of convergence (Table 3). All these show that there is no
evidence of assumption violations; that is, the samples were a realisation of stationary
distribution.

Figure 4. Cont.
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Figure 4. Trace plots of MCMC samples.

Figure 5. Kernel density plots of MCMC samples.
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Figure 6. Autocorrelation function plots of MCMC samples.

Table 3. Geweke’s test of convergence for application.

Parameters σ2
ε σ2

ζ σ2
ν φ β1 β2

Z-value 1.71403 0.32273 0.03037 −0.05075 0.46410 0.19037

The PMSE plots were generated, showing the variability of the benchmarked HB
estimates at the zonal level in Ethiopia (Figure 7).

(a) Stunting.

Figure 7. Cont.
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(b) Wasting.

(c) Underweight.

Figure 7. PMSE for benchmarked HB small area estimates.

The predictive posterior variance of prevalence of undernutrition and correction bias
due to benchmarking are given in Figure 8.

(a) Posterior variance. (b) Stunting.

Figure 8. Cont.
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(c) Wasting. (d) Underweight.

Figure 8. Posterior variance of HB SAE and benchmarking correction bias for undernutrition.

The estimates of malnutrition and its corresponding 95% credible interval using the
proportion of literate persons and proportion of individuals from improved sources of
drinking water as auxiliary variables are given. Accordingly, the plot for stunting generated
from small area estimation is given in Figure 9. From the figure, we can understand the
distribution of the burden of stunting among children under five at the zonal level in the
country. The highest small area estimated prevalence of stunting was observed in the
southwestern part of the country of Ethiopia. The corresponding measures of precision
using the 95% credible interval is given in Figure 9, which shows the SAE-provided
precise estimate.

(a) Stunting. (b) Wasting. (c) Underweight.

Figure 9. Prevalence of undernutrition from benchmarked HB small area estimation at zonal level
in Ethiopia.

4. Discussion

The national level estimates of stunting (38.9%), wasting (22.5%), and being under-
weight (6.9%) indicate that stunting is still a severe public problem in the country, followed
by wasting. This is in line with the related studies.

In addition to the national estimates, the local-level prevalence of malnutrition in
Ethiopia was estimated. The design-based estimates were not adequate for estimation in
the lower-level administrative areas, as the survey was not representative for lower-level
administrative areas. There was a significant overall spatial autocorrelation, as well as
hotspot areas with a high prevalence of undernutrition among children under five in
Ethiopia. It was determined that including a spatial random effect in the estimation process
was crucial in Ethiopia.

Accordingly, the hierarchical Bayesian spatial small area model was applied to estimate
the prevalence of stunting, wasting, and being underweight. The estimate showed the
existence of spatial variation of undernutrition at the zonal level.

In the midst of significant advancements in global economic growth, issues connected
to child malnutrition have consistently posed a major challenge in low- and middle-income
nations [2,31,32]. Globally, hunger and malnutrition diminish a country’s gross domestic
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product (GDP) by USD 1.4–2.1 trillion every year. Malnutrition costs the 54 African
countries between 3 and 16 percent of their annual GDPs, with Ethiopia accounting for
16.5 percent, Malawi accounting for 10.3 percent, Rwanda accounting for 11.5 percent, and
Burkina Faso accounting for 7.7 percent [3,31,33].

Increased agricultural productivity, girls’ education promotion, immunisation, inte-
grated management of neonatal and childhood illnesses, improved access to water and
sanitation, and skilled birth delivery could all help to reduce the burden of undernutrition
among Ethiopian children under the age of five [34].

The spatial variation of undernutrition at the zonal level could be related with eco-
nomical variation, drought, food insecurity, and variation in cultivation [35]. This might
suggest the need for the design and implementation of effective public health interventions
at the zonal level to reduce undernutrition among children under five in Ethiopia.

This study is not without limitations. It is probable that there are other auxiliary vari-
ables that impact children’s nutritional conditions, but the current study did not evaluate
those variables due to a lack of information in the census data. Furthermore, the census
data used were 15 years old, which may have influenced the results. Hence, readers are
advised to take these limitations into account.

5. Conclusions

The prevalence of undernutrition among children under five in Ethiopia was estimated
at the zone level using small area estimation techniques. The small area estimation concept
was sought out by linking the most recent possible survey data and census data in Ethiopia.
In Ethiopia, undernutrition had significant spatial variations across the country. The results
specifically show that there is spatial variation in stunting, wasting, and being underweight
across the zone level, showing that different locations faced different challenges and to
different extents of undernutrition. Therefore, public health interventions that reduce
undernutrition among children and enhance women’s awareness toward undernutrition
in zones with a high prevalence of undernutrition are crucial, and the Ethiopian Federal
Ministry of Health (FMOH) should design tailored nutritional intervention for children
under five who are living in zones with a high prevalence of undernutrition.
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Abstract: This study aims to advance our knowledge in the genesis of extreme climatic events with
the dual aim of improving forecasting methods while clarifying the role played by anthropogenic
warming. Wavelet analysis is used to highlight the role of coherent Sea Surface Temperature (SST)
anomalies produced from short-period oceanic Rossby waves resonantly forced, with two case studies:
a Marine Heatwave (MHW) that occurred in the northwestern Pacific with a strong climatic impact
in Japan, and an extreme flood event that occurred in Germany. Ocean–atmosphere interactions are
evidenced by decomposing state variables into period bands within the cross-wavelet power spectra,
namely SST, Sea Surface Height (SSH), and the zonal and meridional modulated geostrophic currents
as well as precipitation height, i.e., the thickness of the layer of water produced during a day, with
regard to subtropical cyclones. The bands are chosen according to the different harmonic modes of
the oceanic Rossby waves. In each period band, the joint analysis of the amplitude and the phase of
the state variables allow the estimation of the regionalized intensity of anomalies versus their time
lag in relation to the date of occurrence of the extreme event. Regarding MHWs in the northwestern
Pacific, it is shown how a warm SST anomaly associated with the northward component of the wind
resulting from the low-pression system induces an SST response to latent and sensible heat transfer
where the latitudinal SST gradient is steep. The SST anomaly is then shifted to the north as the
phase becomes homogenized. As for subtropical cyclones, extreme events are the culmination of
exceptional circumstances, some of which are foreseeable due to their relatively long maturation time.
This is particularly the case of ocean–atmosphere interactions leading to the homogenization of the
phase of SST anomalies that can potentially contribute to the supply of low-pressure systems. The
same goes for the coalescence of distinct low-pressure systems during cyclogenesis. Some avenues
are developed with the aim of better understanding how anthropogenic warming can modify certain
key mechanisms in the evolution of those dynamic systems leading to extreme events.

Keywords: wavelet analysis; extreme subtropical cyclones; climate change; sea surface temperature
anomalies; oceanic Rossby waves; Marine Heatwaves

1. Introduction

Although they seem distant, Marine Heatwaves (MHWs) and extreme subtropical
cyclones have a common origin, the resonant forcing of oceanic Rossby waves at mid-
latitudes. The present research is focused on those Rossby waves whose period varies from
a few days to a few months. At mid-latitudes, they form preferentially where the western
boundary currents move away from the continents to re-enter the subtropical gyres [1].
These Rossby waves induce very active convergent or divergent geostrophic currents in the
formation of positive or negative Sea Surface Temperature (SST) anomalies. They appear
as harmonics of an annual fundamental Rossby wave resonantly forced by the declination
of the sun.

While the climatic impact of Rossby waves is well known, their interaction with
the atmosphere still presents some mysteries. However, behind this natural cause, there
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is a reality: these extreme events are becoming more and more frequent, as numerous
studies show. There is therefore a compelling need to elucidate how anthropogenic warm-
ing intervenes in the genesis of these extreme events in order to better understand the
ocean–atmosphere interactions involved as well as to better anticipate them.

The proposed method consists in representing, in contiguous bands of periods, the
amplitude and the time lag, with respect to the date of occurrence of the extreme event,
of each of the climatic state variables. For this, both the amplitude and the phase of the
climatic state variables are mapped. The amplitude and the phase are deduced from the
cross-wavelet power spectra of these state variables expressed as a function of longitude
and latitude, and from a reference time series representative of the evolution of the extreme
event. In order to optimize the temporal resolution of the dynamics of the observed
phenomena, the cross-wavelet power spectra are both scale-averaged over the bandwidths
and time-averaged over a time interval bracketing the date of occurrence of the extreme
event, the length of which is equal to the bandwidth.

1.1. Marine Heatwaves

MHWs are observed in all oceans. They have impacted fishery resources and the
occurrence of harmful algal blooms where rich marine ecosystems are at risk [2]. For exam-
ple, recent MHW events in the Tasman Sea have had dramatic impacts on the ecosystems,
fisheries, and aquaculture off Tasmania’s east coast [3]. Similar damages have been investi-
gated in the South China Sea where MHWs were strongly regulated by El Niño–Southern
Oscillation (ENSO) [4]. The high latitudes are not spared: Alaska was impacted in 2016 [5].
The economic impact of these events, little known until the recent past, has given rise to
much research in recent years. However, our understanding of the large-scale drivers and
potential predictability of MHW events is still in its infancy.

The dynamic processes related to the initiation of an advective MHW were investigated
in continental shelves, namely the Middle Atlantic Bight of the Northwest Atlantic [6],
the North West Australia [7], the Indonesian-Australian Basin and areas including the
Timor Sea and Kimberley shelf [8], and in the Pacific shelf waters off southeast Hokkaido,
Japan [9]. Favorable climatic conditions are mentioned for driving cross-isobath intrusions
of warm, salty offshore water onto the continental shelf.

Long-term temperature changes under the influence of human-induced greenhouse
gas-forcing drive coastal MHW trends globally. Cross-shore gradients of MHW and SST
changes are reported in the Chilean coast region [10], in mid-latitude coasts like the Mediter-
ranean Sea, Japan Sea, and Tasman Sea, as well as in the northeastern coast of the United
States [11], along the Australian coastlines [12], in the Tasman Sea [13], in Canada’s British
Columbia coastal waters, from Queen Charlotte Strait to the Strait of Georgia [14], in the
Coastal Zone of Northern Baja California [15], in the Southern California Bight [16], and in
the Oyashio region [17–22].

Studies focused on MHWs have reported conditions favoring the warming of surface
waters caused by increased solar radiation because of reduced cloud cover, namely in
summer MHWs in the South China Sea [18], in the East China Sea, and the South Yellow
Sea [19]. The genesis and trend of MHWs in the Indian Ocean and their role in modulating
the Indian summer monsoon have been investigated [20], as well as the role of oceanic
Rossby waves forced in the interior South Pacific on observed MHW occurrences off
southeast Australia [3].

Finally, intense MHWs occurred at the sea surface over extensive areas of the northwestern
Pacific Ocean, including the entire Sea of Japan and part of the Sea of Okhotsk [21,22]. An
extreme event due to its extension and intensity, occurred in July–August 2021 [21]. In this
article, we will attempt to highlight the role played by oceanic Rossby waves in the genesis of
this event, the conditions of formation of which have not yet been fully elucidated.
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1.2. Extreme Subtropical Cyclones

The intensity of the heaviest extreme precipitation events is known to increase with
global warming [23–27] almost everywhere in the world [28,29]. Particularly impacted
are regions subject to subtropical cyclones [30]. At mid-latitudes, these regions are easily
identifiable by their precipitation pattern in the 5–10 year band, while they only show a
weak seasonality [31,32]. The main areas subject to rainfall oscillation in the 5–10 year band
are: (a) Southwest North America, (b) Texas, (c) Southeastern North America, (d) North-
eastern North America, (e) Southern Greenland, (f) Europe and Central and Western Asia,
(g) the region of the Río de la Plata, (h) Southwestern and Southeastern Australia, and
(i) Southeast Asia.

Global warming is projected to lead to a higher intensity of precipitation and longer
dry periods in North America [33–35] and Europe [36–41]. Extreme floods during the recent
decades in Europe are more frequent compared to the last 500 years [42]. For Germany,
the number of people exposed to flood risks could more than triple and damages more
than quadruple by the end of the century [43,44]. In summer, an increase is also projected
in most parts of Europe, although decreases are projected for some regions in southern
and southwestern Europe, partly due to a projected decrease in cyclone frequency in the
Mediterranean [45].

In spite of potentially large societal impacts, mechanisms involved in changes in
frequency and intensity of heavy precipitation are much less explored. The purpose of
this article is to improve techniques for predicting these extreme precipitation events and
to advance our knowledge of the possible mechanisms whose incidence and intensity
are linked to global warming. For this, we will analyze in detail the different phases of
hydroclimatic mechanisms that led to an extreme precipitation event in Germany in July
2021, that is, a region reputed not to be floodable, causing many casualties.

1.3. Oceanic Rossby Waves at Mid-Latitudes

Oceanic Rossby waves have a well-known effect on the climate. The role of Rossby
waves in local air-sea interactions over the tropical Indian Ocean and in remote forcing from
the tropical Pacific Ocean has been investigated during El Niño and positive Indian Ocean
Dipole years [46,47]. High-resolution subsurface observations have provided insight into
equatorial oceanic Rossby wave activity forced by Madden-Julian Oscillation events [48].

However, the role played by the oceanic Rossby waves on the climate is not limited to
the tropical oceans. The Rossby waves that develop where the western boundary currents
leave the continents to re-enter the subtropical gyres have a strong impact on climate [31].
Located at the same latitudes as the subtropical jet streams, they thus participate in the
cyclogenesis of mid-latitude eddy systems (anticyclones and depressions) then moving
under these powerful air currents.

Oceanic Rossby waves propagate westward. Being approximately non-dispersive,
their phase velocity given by the dispersion relation only depends on the latitude [49]. The
phase velocity decreases when the latitude increases. At mid-latitudes, it is lower than
the velocity of the eastward propagating wind-driven current of the gyre resulting from
Ekman pumping associated with the wind curl. Rossby waves are driven by the circulation
of the gyre.

Based on the momentum equations of Rossby waves, these baroclinic waves are forced
by changes in solar irradiance induced by solar and orbital cycles [50,51]. This property
is specific to Rossby waves at mid-latitudes because, in tropical oceans, they are mainly
driven by the wind, in this case the trade winds. Under the effect of radiative forcing, in
addition to a Sea Surface Height (SSH) anomaly, the propagation of Rossby waves along
the subtropical gyre induces a zonal and a meridional modulated current. The meridional
current is in phase with the forcing while the zonal current and the SSH perturbation,
i.e., the ridge of the Rossby wave, are in quadrature. During the ascending phase of the
zonal ridge, the meridional modulated currents converge toward the ridge.
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The convergence causes the thermocline to deepen due to the inflow of warm water
from the surface of the ocean. The affected ocean surface extends well beyond the gyre due
to the meridional currents. A quarter of a period later, the zonal modulated current reaches
its maximum at the same time as the ridge. The zonal currents are in opposite phase on
either side of the ridge, causing the zonal propagation of the thermocline wave.

Both the meridional and the zonal modulated current change direction every half-
period. Note that the speed of the zonal current is expressed in a relative way because the
westward propagating Rossby wave is carried by the eastward propagating wind-driven
current of the gyre. Its absolute speed is obtained by adding it to that of the steady wind-
driven current. Thus, the zonal current of the gyre periodically accelerates, slows down,
and sometimes even reverses direction.

During its ascending phase, the Rossby wave behaves like a heat sink while, during
its recession phase, the upwelling which occurs along the ridge causes the Rossby wave
to release heat that has been stored when the thermocline was lowering. This explains
the climatic impact of Rossby waves at mid-latitudes; sometimes they favor high-pressure
systems, sometimes low-pressure.

2. Materials and Methods

2.1. The Caldirola–Kanai Oscillator

Several Rossby waves of different periods overlap along the gyre. Sharing the same
zonal and meridional modulated currents, these Rossby waves behave like coupled os-
cillators with inertia. The equation of the Caldirola–Kanai (CK) oscillator, which is a
fundamental model of dissipative systems that is usually used to develop a phenomeno-
logical single-particle approach for the damped harmonic oscillator [52], can be expressed
by considering the conditions of durability of the dynamic system. For that, the equation of
the CK oscillator is formulated to express the mode of coupling between N Rossby waves
that share the same modulated geostrophic currents [50]:

Mi
..
ui + γMi

.
ui + ∑N

j=1 Jij
(
ui − uj

)
= Ii cos(Ωt) (1)

where ui is the zonal geostrophic current velocity of the ith oscillator along the gyre, Mi
the mass of water displaced during a cycle resulting from the quasi-geostrophic motion
of the ith oscillator, γ the Rayleigh friction, and Jij the measure of the coupling strength
between the oscillators i and j. The right-hand side represents the periodic driving on the
ith oscillator with frequency Ω and amplitude Ii, that is, Coriolis and pressure gradient
forces. The restoring force simply depends on the difference in velocity of zonal geostrophic
currents between the oscillators. So, it vanishes when the velocities are equal ui = uj which,
in the absence of friction, removes any interaction between the oscillators i and j. On the
other hand, the strength of the interaction increases as the difference in velocities increases.
The coupling of Rossby waves is exercised by the fact that the velocities ui are common at
the convergence of the modulated geostrophic currents of the resonant oscillatory system.

In order to ensure the durability of that dynamic system, the coupled oscillators have
to form oscillatory subsystems so that the resonance conditions are defined recursively:

τi =
1
ni

τi−1 with τ0 = T (2)

where ni = 2 or 3. T is the period of the fundamental wave, that is, one year.
The CK oscillators resonate in subharmonic and harmonic modes of the annual fun-

damental wave. The apparent eastward propagation velocity of this fundamental wave
depends on the latitude of the gyre where the western boundary current leaves the conti-
nent, and to the velocity of the steady wind-driven current. In the case of a pseudo-periodic
forcing, its apparent wavelength is adjusted to the forcing period when the average forcing
frequency is present in the frequency spectrum of the dynamic system. Natural frequencies
close to the forcing frequency are favored, while those far from it are dampened because
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of friction so that the fundamental wave is resonantly forced by the variations in solar
irradiance resulting from the declination of the sun. This is by far the primary source of
temperature variability in surface and subsurface waters of the oceans at mid-latitudes.

2.2. Data

Daily gridded data (1/4 degree × 1/4 degree) of SSH, geostrophic currents [53], and
SST [54–57] are used. SSH and geostrophic current data begin 15 March 2019. Although
starting earlier, SST data is used over the same time interval as SSH. The last update was
on 17 October 2021.

Data of precipitation is produced as part of the Global Precipitation Climatology
Project (GPCP) Climate Data Record (CDR) Daily analysis, which spans the time period
October 1996 to the near present [58,59]. The algorithm to produce the daily 1◦ GPCP
product takes inputs from several different sources and merges them to create the most
consistent and accurate daily precipitation estimates [60].

2.3. Wavelet Analysis
2.3.1. Marine Heatwaves

The problem that we are going to tackle, which relates to the genesis of MHWs at
mid-latitudes, consists in highlighting the evolution of brief SST anomalies at different time
scales, reflecting the driving role of oceanic Rossby waves. A Morlet cross-wavelet analysis
is performed to estimate the amplitude of variations in characteristic period bands of four
state variables, that is, SSH, modulated geostrophic currents, and SST, as well as their
phase compared to a reference time series [61]. Presently, SST averaged along the parallel
34.125◦ N, between 145.625◦ E and 148.125◦ E, is used as the time reference. The average of
the SST data over a short segment of the parallel makes it possible to specify the evolution
of the heat wave over time by reducing the noise without significantly harming the spatial
resolution from which the location of the reference is defined.

As we will see later, SST anomalies observed on 5 January 2020 and on 23 July 2021
are representative of a phenomenon that led to a “marine cold wave” in the first case and a
“marine heatwave” in the second. This time reference is chosen so that it unambiguously
reflects those two extreme events, both being defined as a sharp surface temperature
anomaly (the extremum does not last more than a day), positive or negative as the case
may be.

Under these conditions, the square root of the wavelet power applied to the state
variable time series, scale-averaged over the period bands, is the regionalized amplitude of
anomalies, whatever their date of occurrence. The cross-wavelet power applied to both the
state variable time series and the time reference, scale-averaged over the period bands, is
the regionalized phase of anomalies. It is the time-lag between the extrema of the anomalies
and the date of occurrence of the extreme event, namely the marine cold wave or the
MHW [62]. Consequently, for each state variable and for each period band a paired map of
the amplitude and the phase of anomalies is obtained.

The wavelet analysis of the state variables is carried out over short periods of time
framing the date of occurrence of the extreme events. In this way, for each band, both the
amplitude and the phase of the anomalies are time-averaged over a time interval coinciding
with the width of the band, centered on the date of occurrence of the extreme events.

The choice of each period band is guided by the properties of the CK oscillator
considered as a prototype of coupled Rossby waves. Harmonics of the CK oscillator
are identifiable in Figure 1b that represents the Wavelet Fourier spectrum of SSH at
34.125◦ N, 140.125◦ E located on the north Pacific gyre, 0.75◦ south of the Pacific shelf
off the southeastern region of Japan. The richness of the Fourier spectrum is probably
attributable to the proximity of the coasts of Japan facing the Pacific Ocean. This suggests
a local resonance of Rossby waves, which strengthens harmonics. The Fourier spectrum
distinctly shows the annual fundamental wave, the amplitude of which is predominant,
which gives rise to harmonics whose main periods are 1/3 yr, 1/6 yr, 1/12 yr, and 1/24 yr.
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Rossby waves are subject to very large fluctuations as attested by the width of the peaks in
the Fourier spectrum. Only the amplitudes of the harmonics whose periods are 1/12 yr
and 1/24 yr are known with a level of confidence greater than 95% (the lack of precision of
the amplitude of the annual Rossby wave results from the short duration of the observation
period, which was barely 3 years).

 

Figure 1. The SSH anomaly at 34.125◦ N, 140.125◦ E–(a) the raw signal–(b) the Wavelet Fourier
spectrum (adimentional) and the main harmonics. SSH data is provided by the National Oceanic and
Atmospheric Administration (NOAA) https://coastwatch.noaa.gov/pub/socd/lsa/rads/sla/daily/
nrt/ (accessed on 27 April 2022).

In Table 1 the period bands are chosen in accordance with (2). Bandwidths are
deduced from the mean period τ of harmonics. Lower and upper limits are 0.75 × τ and
1.5 × τ, respectively, so that the bands are contiguous, since the periods are halved from
one harmonic to another. The progression of the bands is continued beyond the periods
analyzed (mean periods 1/48 and 1/96 years).

Table 1. Properties of observed or presumed harmonics and bandwidths.

Harmonic ni from (1) Mean Period (Days) Lower Limit (Days) Upper Limit (Days)

1 _ 365.2 _ _
1/3 3 121.7 91.3 182.6
1/6 2 60.9 45.7 91.3

1/12 2 30.4 22.8 45.7
1/24 2 15.2 11.4 22.8
1/48 2 7.6 5.7 11.4
1/96 2 3.8 2.9 5.7

2.3.2. Subtropical Cyclones

The phenomenological study of climatic phenomena leading to extreme precipitation
at mid-latitudes is performed in the same way. Three state variables are jointly analyzed,
the precipitation height, i.e., the thickness of the layer of water produced during a day, SST,
and SSH. When a positive SST anomaly is locally in phase with the extreme precipitation
event while being within the perimeter of the cyclonic low-pressure system, this means
that the water vapor evaporated from the ocean is involved in the cycle of cyclogenesis by
providing latent heat during the condensation process. This concomitance results from the
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fact that the atmospheric phenomena leading to the transport of water vapor within the
low-pressure system are very rapid compared to the oceanic processes at the origin of the
SST anomalies. As will be justified later, the supply of the cyclonic system from the free
surface of the ocean occurs in less than a day, whereas the maturation of a large surface
and uniform phase SST anomaly generally takes at least ten days.

3. Results

3.1. Marine Heatwaves

As shown in Figure 2c,d sudden positive or negative SST anomalies may occur where
Rossby waves are resonantly forced [1]. Two major positive anomalies occurred during
the time of observation, namely from 1 January 2019 to 27 September 2021. The first
positive anomaly occurred on 30 May 2019, the second on 23 July 2021. The first is one
month ahead of the corresponding negative SSH anomaly, while the second is 2 weeks
in advance (Figure 2a,c). Anticipation of SST anomalies means that they occurred while
the thermocline was lifting. One major negative SST anomaly occurred on 5 January 2020,
one week behind the corresponding positive SSH anomaly, while the thermocline was
deepening (Figure 2b,d).

 
Figure 2. Abrupt events highlighted by SSH at 34.125◦ N, 148.125◦ E in (a) and at 34.125◦ N, 140.125◦ E
in (b), and by SST averaged along the parallel 34.125◦ N between 145.625◦ E and 148.125◦ E, and filtered
in the band of 1–68 days to emphasize the rapid variations while attenuating the annual variations. This
series is used as the time reference in the wavelet analysis of data. (a,c) are referring to warm events, (b,d)
to cold events. SST data is provided by NOAA https://www.ncei.noaa.gov/data/sea-surface-temperatu
re-optimum-interpolation/v2.1/access/avhrr/ (accessed on 27 April 2022).

Each SST anomaly corresponds to an opposite SSH anomaly. The reverse is not true;
some SSH anomalies do not produce significant SST anomalies. This suggests strong
ocean–atmosphere interactions are required for the Rossby waves to produce coherent SST
anomalies, with a threshold effect.

3.1.1. The Marine Heatwave That Occurred on 21 July 2021

The climatic impact of this heatwave was significant. One of the most notable records
in July 2021 was registered in Asahikawa 43◦46′ N, 142◦22′ E [63]. The city registered
36.2 ◦C on 27 July, breaking the previous record of 36 ◦C set on 7 August 1989.
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3.1.2. Wavelet Analysis of Climatic State Variables

As shown in Figure 3a,c,e,g,i, the harmonics of SSH are visible along the North-Pacific
gyre, mainly between latitudes 25◦ N and 35◦ N, and between longitudes 130◦ E and 180◦.
The longitudinal and meridional extensions of Rossby waves increases with period. With
regarding to the harmonic 1/6, the SSH anomaly in Figure 3i,j extends over areas of the
northwestern Pacific Ocean, including the Yellow Sea, and the entire Sea of Japan.

Figure 3. The amplitude (a,c,e,g,i) and the phase (b,d,f,h,j) of the harmonics of SSH. The periods
are 1/6 yr in (a), (b) 1/12 yr in (c), (d) 1/24 yr in (e), (f) 1/48 yr in (g), and (h) 1/96 yr in (i,j). The
amplitudes are expressed in 16 classes, each containing the same number of individuals (quantiles).
The color of the bar associated with the phase represents an angle varying from −180◦ to + 180◦ [61]
(each class corresponds to 20◦). This angle is reflected by a segment of time of one period, hence
the coincidence of the colors at the ends. Time lags in (b,d,f,h,j) are relative to 23 July 2021. The
time reference is the SST anomaly averaged along the parallel 34.125◦ N between 145.625◦ E and
148.125◦ E. The SSH anomaly is negative when the time lag is zero (the SSH anomaly is negatively
correlated with the SST anomaly and late compared to SST). Only the phase corresponding to
the 37.5% quantile of the highest values of the amplitude is displayed. Same data sources as in
previous figures.
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In Figure 3b,d,f,h,j, the phase of the SSH anomaly clearly shows a succession of
ridges and troughs in phase opposition. The momentum equations applied to a quasi-
geostrophic motion of oceanic Rossby waves show that the meridional geostrophic current
V is in phase with the forcing while both the zonal current U and SSH anomalies are in
quadrature. However, the phase is more precise for the zonal current (Figure 4) and the
meridional current (Figure 5) than for SSH in Figure 3. Indeed, the estimation of geostrophic
current velocities from SSH anomalies has a filtering effect because it involves surrounding
measurements of SSH. This has the effect of reducing noise and making the interpolated
values more representative than the raw measurements of SSH.

Figure 4. Same as Figure 3 for the amplitude (a,c,e,g,i) and the phase (b,d,f,h,j) of the zonal
geostrophic current U oriented to the east when the time lag is zero. Same data sources as in
previous figures.
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Figure 5. Same as Figure 3 for the amplitude (a,c,e,g,i) and the phase (b,d,f,h,j) of the meridional
geostrophic current V oriented to the south when the time lag is zero. Same data sources as in
previous figures.

The modulated geostrophic currents change direction every apparent half-wavelength
of Rossby waves. Thus, in Figure 4, the zonal current U shows a succession of regions in
phase opposition whose size corresponds to an apparent half wavelength of Rossby waves.
These regions form a mosaic of cells in which the zonal geostrophic currents converge or
diverge when the cell is translated longitudinally by half of a wavelength. This alternation is
still observable for meridional current V (Figure 5), but this time convergence or divergence
occur in the North-South direction.

Figures 4 and 5 confirm the previous observations regarding the longitudinal and
meridional extensions of Rossby waves along the gyre from SSH as the period increases.
This also applies to the speed of modulated geostrophic currents. However, the anomalies
of modulated geostrophic currents remain localized along the gyre as the period increases,
without stretching to the Yellow Sea, and the Sea of Japan, as does SSH. This difference in
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the behavior of Rossby waves in the semi-closed seas suggests that these seas are not large
enough to allow the formation of perceptible geostrophic currents.

Anomalies in opposite phase also widen with the period, consistent with the increase
in apparent Rossby wavelength. The anomalies of the zonal component of the geostrophic
current U extend longitudinally with the period while the anomalies of the meridional
component V extend latitudinally as shown in Figures 4j and 5j.

Downwelling that occurs in convergent cells means that the thermocline lowers, the
intake of warm water resulting from geostrophic currents. On the contrary, upwelling
that occurs in divergent cells makes the thermocline rise, restoring warm water under the
effect of geostrophic currents. The alternation of convergent or divergent cells throughout
the gyre at mid-latitudes highlights the determining role of these cells regarding their
climatic impacts. These privileged ocean–atmosphere interactions along the gyre occur at
all time scales extending from the annual, seasonal cycles to time intervals not exceeding a
few days.

These ocean–atmosphere interactions induce atmospheric baroclinic instabilities as
suggested by the variations in SST at the rate of the different periods of the Rossby waves,
as shown in Figure 6. The transient SST anomalies occur along the gyre from which the
Kuroshio leaves the Asian continent to a longitude close to 180◦. Regarding the harmonic
1/6, the SST anomaly in Figure 6i,j is translated over extensive areas of the northwestern
Pacific Ocean, including the Yellow Sea, the entire Sea of Japan, and part of the Sea of
Okhotsk, as does SSH.

Figure 6. Same as Figure 3 for the amplitude (a,c,e,g,i) and the phase (b,d,f,h,j) of SST whose
anomalies are positive when the time lag is zero. Same data sources as in previous figures.
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Compared to SSH, SST anomalies are translated to the north while widening (Figure 6).
This translation that appears especially during the first 3 periods is of short duration, which
suggests the role of the atmosphere. Highly contrasted during the first 3 periods, the
phases of SST anomalies become uniform as the period increases. As shown in the Figure 6j,
uniformity of the phase is achieved for the harmonic 1/6, which confirms that the lifetime
of the SST anomaly is very short compared to the period close to 2 months.

3.2. The Marine Cold Wave That Accurred on 5 January 2020

Figure 7 shows the amplitude and the phase of SST anomalies during the cold event.
Anomalies are little translated toward the north, which suggests the weakness of the SST
response to the meridional component of the wind resulting from a high-pressure system
initiated by the negative SST anomaly of the gyre. Here again, the phase shows a mosaic
of convergent and divergent cells characterized by the inversion of geostrophic currents
(Figure 7d,f). But contrary to what happens for MHWs, the phase does not homogenize
when the period increases, reflecting the SSH anomaly. This suggests the weakness of the
ocean–atmosphere interactions, hence the weak climatic impact of marine cold waves.

Figure 7. Same as Figure 3 for the amplitude (a,c,e,g,i) and the phase (b,d,f,h,j) of SST whose
anomalies are negative when the time lag is zero. Time lags in (b,d,f,h,j) are expressed in relation to
5 January 2020. Same data sources as in previous figures.
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3.3. Subtropical Cyclones

Subtropical cyclones develop at mid-latitudes around a stationary front due to an
upper-level disturbance, generally an upper-level trough downstream of a strong westerly
jet [63,64]. Cyclogenesis results from the combination of vorticity advection and thermal
advection created by the latitudinal temperature gradient, a low-pressure center causing
upward motion around the low [65]. This rotational flow will push polar air equator-
ward west of the low via its cold front, and warmer air will push poleward low via the
warm front.

3.3.1. An Extreme Precipitation Event, Germany, July 2021

During one week in July 2021, severe flooding occurred across Europe due to dan-
gerous thunderstorms and rain, hitting Germany the hardest. This country experienced
up to 182 mm of rain within 72 h. More than 170 people have lost their lives and entire
communities have been destroyed. The number of victims of this flood disaster exceeds
that of all previous inland floods in Germany since 1900 combined [66].

In mid-July 2021, a pronounced high altitude low shifted from France to the Alps
and southern Germany. On its front, very warm and humid air masses were directed to
the north and east of Germany, concomitantly with fresher Atlantic air to the south and
south-west of Germany, causing record rainfall in parts of North Rhine-Westphalia and
Rhineland-Palatinate.

3.3.2. Wavelet Analysis of State Variables

Precipitation height is represented in Figure 8. Here again, the low-pressure system is
decomposed into the 5 period bands, the time shift of precipitation areas being relative to
the date of occurrence of the extreme rainfall event on 14 July 2021.

Figure 8. Same as Figure 3 for the amplitude (a,c,e,g,i) and the phase (b,d,f,h,j) of the harmonics of
the precipitation height in western Europe. Time lags in (b,d,f,h,j) are expressed in relation to 14 July
2021. The time reference is the rainfall height in Germany at 47◦ N, 18◦ E. Daily precipitation data is
provided by NOAA https://www.ncei.noaa.gov/data/global-precipitation-climatology-project-gp
cp-daily/access/ (accessed 27 April 2022).
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The two main precipitation areas represented in Figure 8i,j, i.e., within the band
centered on the period 1/6 yr, are independent since they are strongly out of phase with
each other. In contrast, Figure 8g,h highlights a coherent low-pressure system at the
synoptic scale within the band centered on the period 1/12 yr. The phase of the three main
rainfall areas over central and western Europe are indeed only slightly shifted.

According to Figure 8e,f, the rotation of the low-pressure system occurs within the
period band centered on 1/24 yr. This deduction is based on the presence of two rainfall
areas in phase opposition on both sides of the disaster area, which confirms the hypothesis
that the different rainfall areas belong to the same dynamic system at a synoptic scale. The
cyclonic flow is fed mainly by the Atlantic west of the coasts of western Europe (Figure 9g,h)
and the Baltic Sea (Figure 9e,f).

Figure 9. Same as Figure 8 for the amplitude (a,c,e,g,i) and the phase (b,d,f,h,j) of SST. SST anomalies
are positive when the time lag is zero. Same data sources as in previous figures.

An SST anomaly over the Atlantic west of the coasts of southern England, Ireland, and
France does indeed occur within the period band centered on 1/12 yr
(Figure 9g,h), reaching more than 1 ◦C. The phase of this anomaly is close to zero, showing
that ocean–atmosphere interactions are occurring while the SST anomaly is peaking. With
regard to the Baltic Sea, the SST anomalies peak within the period bands centered on 1/48
and 1/24 yr, as shown in Figure 9c–f. The phase of the anomaly is close to zero within the
period band centered on 1/24 yr, while it is slightly shifted negatively within the period
band centered on 1/48 yr, but it nevertheless contributes significantly to the feeding of the
low-pressure system by peaking the day before the extreme event occurred.

In the Baltic Sea, SST increases when SSH decreases, i.e., when the thermocline
rises. This phenomenon is mainly observable within the period band centered on 1/24 yr
(Figures 9e,f and 10e,f) where the phase of the SST anomaly is close to zero. The phases
of both SSH and SST anomalies are uniform in seas bordered by coasts, which modifies
the apparent wavelength of Rossby waves. It is elongated, in this case, in the absence of a
strong current flowing east in which Rossby waves would be embedded. The latter result
from the declination of the sun and the variation in solar irradiance during the year, which
induces the motion of the thermocline. The westward propagating Rossby waves and their
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harmonics remain confined in these seas. Convection processes occur in subsurface water,
favoring the warming of surface water. These conditions are conducive to the formation of
baroclinic instabilities in the atmosphere as a result of increased evaporation.

Figure 10. Same as Figure 8 for the amplitude (a,c,e,g,i) and the phase (b,d,f,h,j) of SSH. SSH
anomalies are negative when the time lag is zero. Same data sources as in previous figures.

With regard to the Atlantic Ocean, SSH anomalies are weak off the coasts of western
Europe, whereas the amplitude of SST anomalies is high. This suggests that this tem-
perature anomaly results from atmospheric phenomena that translate the SST anomalies
developing along the North Atlantic gyre toward the east, a process that leads to baroclinic
instabilities in the atmosphere.

As shown in Figure 8a–f, the size of the cyclonic flow reduces as the mean period de-
creases from 1/24 to 1/96 yr, remaining centered in Germany while the rotation accelerates.
Within the period band centered on 1/96 yr, the precipitation area is concentrated between
latitudes 45◦ N and 55◦ N, and longitudes 3◦ E and 20◦ E. East of 20◦ E the precipitation
does not contribute to the genesis of the extreme event since it is strongly out of phase
(Figure 8b). In addition, the phase is uniform, close to zero, within sampling errors (the
step is daily).

Figure 8b,d,f show that several atmospheric layers are rotating simultaneously. They
concentrate around the disaster zone as the rotation accelerates. The half-period of rotation
passes from the order of 4 days (Figure 8f) to a few hours (Figure 8b). Since the precipitation
areas concentrate around the axis of rotation of the low-pressure system while the rotation
period decreases, this suggests that the rotation is accelerating as the layer rises, driven
by the upward flow of the cyclonic system. In this way, the uppermost layer is fed by the
lower layers. Its phase is uniform so that the rotation period is less than the duration of
the extreme precipitation event. The water vapor contained in the different atmospheric
layers condenses when they rise due to the lowering of the temperature, which leads to
heavy precipitation.

However, the concentration of precipitation, which occurs during cycles of shorter
periods, cannot be approached using the same data, which is beyond the scope of this article.
Here, the spatial and temporal resolution of the rainfall data [60] are suited to highlighting
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the various stages leading to the deepening of the low-pressure system, namely the merging
of the various low-pressure systems at the synoptic scale, and the feeding of the cyclonic
flow from the Atlantic Ocean off the coasts of western Europe and the Baltic Sea.

4. Discussion

4.1. Marine Heatwaves

Regarding MHWs, uniformization of the phase as the SST anomaly migrates north
only becomes mature in the 1/6 harmonic mode. In the 1/12 mode, the maturation of the
SST anomaly is not complete, a time shift of the order of one week remaining within the
anomaly (Figure 6h).

With regard to short cycles corresponding to harmonic modes 1/24, 1/48, and 1/96,
the northernmost fringe of the SST anomaly whose phase is heterogeneous is transient.
Indeed, it disappears completely during long cycles, the SST anomaly concentrating around
a zonal midline at approximately 42◦ N (Figure 6j). This suggests that the warm, humid
air from the low-pressure system warms the sea surface as it migrates north, inducing
convective processes in subsurface water while the SST becomes increasingly cold. This
promotes the creation of a vertical profile of convection/evaporation tending toward an
equilibrium between the thermocline and the surface of the ocean. But stratification of
the subsurface water leading to this vertical profile seems unstable and does not occur
systematically, as shown in Figure 2.

This strong ocean–atmosphere interaction which causes the thermocline to rise, could
explain the uniformization of the phases of the SST anomalies at latitudes where the
northward thermal gradient of surface water is steep. Uniformization of the phases then
amounts to assuming an overall movement of the thermocline during the longest cycle,
hence the brief but intense heatwave which appeared around 27 July 2021.

The northward translation of the SST anomaly is only significant in the case of heat-
waves due to the low-pressure system that forms above the gyre before developing into
a synoptic cyclonic system. This enhances the SST response to latent and sensible heat
fluxes directed to the north. This sudden SST response to atmospheric transfers has already
been observed, which sparked interest in this research [21]. According to the authors,
MHW observed at the sea surface in the summer of 2021 was the largest in extent and
intensity since the beginning of satellite measurements of global SST in 1982, with a strong
societal impact.

Other works reported such MHWs in the northwestern Pacific [9,22]. Ref. [22] reported
the positive SST anomaly that occurred in August 2020 in subtropical waters in the sur-
roundings of the gyre 120◦ E–180◦ E, 20◦ N–35◦ N, which was attributed to anthropogenic
forcing. Further investigations seem necessary to validate such a hypothesis. Indeed, this
positive SST anomaly does not seem distinguishable from internal variability in the context
of the present study (Figure 2c).

In [17] the SST of the Oyashio region abruptly increased in the summer of 2010,
and a high summertime SST repeated every year until 2016. This was attributed to the
strengthening of the Kuroshio water influence. In [9], extreme weather and MHWs are
reported; these occurred simultaneously around the Pacific shelf off southeastern Hokkaido,
Japan. In these two cases, the influence of the western boundary current was presumably
involved, in conjunction with extreme weather. Based on recent works relying on the
properties of Rossby waves at mid-latitudes, the present paper proposes a common cause
for these intriguing phenomena.

4.2. Subtropical Cyclones

A low-pressure system is forming at the synoptic scale, the result of the merger
of several low-pressure subsystems. To achieve this merger, dew-point fronts have to be
formed, separating moist air masses found ahead of the dry line from drier air masses found
behind it. The drier air behind dew-point fronts lifts up the moist air ahead, triggering
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strong moist convection. A barometric trough gradually forms, which creates a convergence
zone in the lower layers of the atmosphere and upper-level divergence.

The increasingly rapid rotation of cyclonic flows in the various atmospheric layers
as they rise produces an extreme rainfall event. The rapid cycles of cyclogenesis contrast
with the slowly maturing phenomena without which the cyclonic system could not have
developed with such magnitude. They may lead to SST anomalies concomitant with the
extreme rainfall event, which occur within the period bands centered on 1/12 and 1/24 yr.
Monitoring these maturation processes could help predict the occurrence of devastating
climatic phenomena.

The analysis of the different stages leading to subtropical low-pressure systems makes
it possible to address an essential problem that relates to the presumed impact of anthro-
pogenic forcing. One mechanism for the increase in such transient events discussed in the
literature is related to the slowing of the predominant westerly wind circulation evident
in observational data [66,67], due to a strong warming of the Arctic as a result of global
warming [68]. Such a slowdown has been linked to observed increases in the persistence of
weather systems [69,70].

By influencing the rapid cycles of cyclogenesis, such a mechanism could contribute to
explaining the increase in the frequency of extreme rainfall events observed during the last
decades in the northern hemisphere, in particular in the North America. But the ubiquity of
the increase in the frequency as well as the intensity of extreme rainfall events also suggest
an evolution in the mechanisms favoring the development of cyclonic flows at the synoptic
scale. This hypothesis is corroborated by the fact that extreme rainfall events occur in places
deemed not to be flood-prone, causing numerous victims, as happened in Germany in July
2021, thus deceiving the vigilance of weather-watch systems.

The development of coherent SST anomalies, the main driver of synoptic-scale sub-
tropical cyclones, is unambiguously linked to the propagation of oceanic Rossby waves.
These result from solar forcing, independent of anthropogenic forcing. In contrast, other
mechanisms related to global warming appear to be decisive in the context of slow cy-
cles during which the coalescence of low-pressure systems occurs. Such mechanisms are
strengthened by a temperature increase of ocean surface water associated with an overall
increase in atmospheric humidity, which lowers the dew point and favors the formation
of fronts. In return, the extension of the low-pressure system at the synoptic scale cen-
tered on a continental low favors the feeding of the cyclonic flow by overlapping over
surrounding SST anomalies. Owing to the accumulated latent heat, with regard to their
internal energy these low-pressure systems promote upper-level lows, favoring blocks.
This may explain the record precipitations observed during the last decades when pouring
over regions deemed not to be flood prone, as has occurred in many places in Western and
Central Europe.

5. Conclusions

The wavelet analysis of high temporal and spatial resolution data, namely SSH,
geostrophic currents, and SST in the northwestern Pacific, allowed the highlighting of
the formation of a mosaic of convergent and divergent cells along the north Pacific gyre
from where the Kuroshio leaves the Asian continent to nearly 180◦. Upwelling and down-
welling are associated with Rossby waves of short apparent wavelengths embedded in
the wind-driven current of the gyre. The driver of the fundamental Rossby wave and the
harmonics is the declination of the sun. Sudden SSH anomalies may occur, some of them
producing abrupt extensive positive or negative SST anomalies, opposite in sign to SSH
anomalies from which they originated. This phenomenon is general and is observable along
the subtropical gyres where the western boundary currents move away from the continents.

Regarding MHWs in the northwestern Pacific, a warm SST anomaly associated with
the northward component of the wind resulting from the low-pression system induces an
SST response to latent and sensible heat transfer where the latitudinal SST gradient is steep.
The SST anomaly is then shifted north while the phases become uniform.
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The wavelet analysis of high temporal and spatial resolution of SSH, SST, and rainfall
height in the North Atlantic, the Baltic Sea, and northwest Europe has made it possible to
highlight the evolution of an extratropical cyclone in northwestern Europe, of exceptional
intensity, at different time scales. Intensification of subtropical cyclones as well as the
increase in their frequency appear to be mainly related to the evolution of conditions
favoring the formation of low-pressure systems at the synoptic scale. These conditions
are probably exacerbated by anthropogenic warming which promotes the maturation of
the mechanisms leading to the coalescence of lows. In these conditions, the interactions
between the atmosphere and the coherent positive SST anomalies on the surrounding ocean
play a major role in feeding the cyclonic flow centered on a continental low. Owing to the
accumulated latent heat, extreme subtropical cyclones induce upper-level lows that favor
the persistence of the cyclonic flow.

The innovative nature of this study is based on the dynamics of the various systems
implicated in the formation of extreme climatic events. These events are the culmination
of exceptional circumstances, some of which are foreseeable due to their relatively long
maturation time. Some avenues are developed with the aim of better understanding
how anthropogenic warming can modify certain key mechanisms in the evolution of the
dynamic system at the interface between the oceans and the atmosphere.

Future work will focus on the role played by the anthropogenic forcing in the formation
of extensive MHWs. On the other hand, by taking advantage of high-resolution data on
geostrophic currents, a systematic study of short-period Rossby waves developing where
the western boundary currents leave the continents to re-enter the subtropical gyres would
be rich in teaching how to specify their climatic impacts, including the conditions of
formation of MHWs and extreme rainfall events. Using the same method of investigation,
other case studies focusing in particular on the southern hemisphere are required with the
aim of generalizing these investigations.
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Abstract: In this paper, we analyze the Gerber–Shiu discounted penalty function for a constant
interest rate in delayed claim reporting times. Using the Poisson claim arrival scenario, we derive
the differential equation of the Laplace transform of the generalized Gerber–Shiu function and
show that the differential equation can be transformed to a Volterra equation of the second kind
with a degenerated kernel. In the case of an exponential claim distribution, a closed-expression
for the Gerber–Shiu function is obtained via sequence expansion. This result allows us to calculate
the absolute (relative) ruin probability. Additionally, we discuss a method of solving the Volterra
equation numerically and provide an illustration of the ruin’s probability to support the finding.

Keywords: Gerber–Shiu function; constant force of interest; Volterra equation; absolute ruin; delayed
reporting times

1. Introduction

The classical ruin problem formulated by Lundberg [1] and Cramér [2] was reconsid-
ered by Taylor [3], who incorporated inflationary conditions into it. He determined that
the inflation rate should be taken into consideration and increased. This result is perhaps
not surprising since the presence of inflation means that if the effects of inflation are not
offset by the premium adjustment, for example, it is the insurer who will suffer prejudice
when claims are ultimately initiated. To generalize the problem of ruin, Gerber and Shiu [4]
introduced the expected discounted penalty function, which allowed them to analyze the
joint distribution of the time of ruin, the surplus immediately before ruin, and the deficit
at ruin through the Laplace transform of the defective renewal equation. Cai [5] built
upon Gerber and Shiu [4]’s work by including a constant rate of interest and allowing the
initial surplus to be negative. Based on these assumptions, he studied absolute ruin using
the defective renewal equation of the expected discounted penalty function. Originally
studied in the insurance industry, the ruin problem and discounted penalty functions have
been found to be applicable to the financial sector as well. We refer readers to Adekambi
and Essiomle [6] and Gerber et al. [7] and the references therein for further information on
the use of ruin theory in the banking sector.

Sundt and Teugels [8] extended the classical compound Poisson model by assuming
that both the premium and the initial reserve are invested in a risk-free asset with a constant
interest rate. They derived a differential equation of the ruin probability using the Poisson
risk process. In addition, they discussed two special cases where there is no initial reserve
and assumed that the claim amounts are exponentially distributed. In the same vein, Kalash-
nikov and Konstantinides [9] extended Taylor [3]’s work, under a subexponential claims
distribution assumption. Similarly, Kalashnikov and Konstantinides [9] and Yuen [10] stud-
ied the Gerber–Shiu discounted penalty function when they extended Taylor [3]’s work by
incorporating a force of interest and a constant barrier into the classic compound risk model.

Li and Lu [11], in turn, extended Yuen [10]’s work, when they considered a risk pro-
cess, which incorporates credit and debt interest, and studied the generalized Gerber–Shiu
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233



Math. Comput. Appl. 2022, 27, 51

penalty function. They derived the exact expressions for the penalty functions when credit
and debt interest rates are equal and when claim sizes are exponentially distributed.

Several studies have shown that the assumption of independence between claim sizes
and inter-claim times is unrealistic and is created purely for mathematical tractability. Schol-
ars assumed that the risk would have a certain dependence structure to make the model
more realistic. Furthermore, Adekambi and Essiomle [12] and Essiomle and Adekambi [13]
examined the asymptotic tail probability and the ruin probability of the discounted claim.
In their study, they developed a closed analytical form of the ruin probability that assumes
a specific distribution of claims.

Cheung et al. [14] examined the structure of various Gerber–Shiu functions using Sparre
Andersen’s model and allowed a dependence structure between claim sizes and inter-claim
times. Cheung et al. [14] analyzed Lundberg’s fundamental equation and the generalized
adjustment coefficient using the defective renewal equation. Based on Cheung et al. [14]’s
research, Willmot and Woo [15] assumed a more general type of dependency; they analyzed
the expected discounted penalty function, the surplus prior to ruin, the deficit at ruin, and
the surplus after the second claim prior to the moment of ruin.

Furthermore, Gerber argues that when interest yield is present, the surplus can fall
below zero and then rise above zero. As a result, the ruin may not occur. As a result of this
scenario, Gerber defined what he termed the absolute ruin time, which states that a ruin
occurs if the surplus falls below a certain threshold, say − c

δ , where c represents the constant
premium rate and δ > 0 represents the force of interest. In alignment with this idea, Kon-
stantinides et al. [16] assumed a constant force of interest and studied the probabilities of
finite and infinite absolute ruin time. Their study derived explicit asymptotic expressions
for the finite and infinite absolute ruin probabilities for the compound Poisson model.

In most of the actuarial literature, it is assumed that claims are not delayed, which
means they are reported or settled as soon as they occur. As a result, the model is unrealistic
since the insured reported the claim after some days of the event. Furthermore, due to
some legislative constraints (for example, claim investigation by experts), the insurers may
take some months to settle claims. To address these observations, Cai [17] examined the
effects of of the timing of claim payments and interest rate on ruin probability. In his study,
the rate of interest was assumed to be dependent on the auto-regressive structure, as well
as on the Lundberg inequality. The same perspective was adopted by Zou and Jie [18],
who assumed that the claim occurrence may be delayed, and so, the total loss within the
time horizon can be divided into two sub-claims: the main claim and the by-claim. In their
analyze, they used the mean of Lagrange interpolation and the defective renewal equation
of the discounted penalty function. Through a compound geometric distribution, they
were able to establish an exact representation of the solution.

This paper incorporates the reporting delay time (when the claim occurs, it takes a
while for the insured to declare that claim or for the insurance company to report that
claim). Put differently, we assume that the exact amount of claim can only be determined
after a reporting delay. We extend Li and Lu [11]’s work by assuming that the loss sizes
are only known after a random delay time, during which the insurer continues to receive
the premium and investment return. With these assumptions, we establish an integro-
differential equation of the discounted penalty function and find that the solution to this
equation can be represented by an infinite series. We derive an explicit solution for the
exponential claim distribution.

To our best knowledge, there is no such study in the literature. Thus, our result
contributes to the body of knowledge on the effects of delayed reporting times. The rest
of the paper is structured as follows: Section 2 provides an overview of the model and
a brief explanation of its assumptions. In Section 3, we present the main results of our
work and discuss some special cases. The following section provides some numerical
illustrations. We conclude the paper in Section 5 with suggested ways in which the work
can be extended.
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2. Model Setting and Rationality

Suppose that the premiums are continuously received and invested in the market
with a constant force of interest (δ > 0) and that Uδ(t) is the surplus at time t. The initial
reserve is also subject to investment and generates a constant force of interest. Let us further
assume that the n-th claim occurs at Tn = ∑n

k=0 τk and it takes Vn time for the exact claim
size or for the claim to be reported. Then, the surplus process (Uδ(t), t ≥ 0) is as follows:

Uδ(t) = ueδt + c
∫ t

0
eδ(t−y)dy −

∫ t

0
eδ(t−y)dSy, t ≥ 0, (1)

where St =
N(t)

∑
k=1

Xk�{Tk+Vk ≤ t} and:

•
{

τk, k ∈ N
}

is a sequence of continuous positive independent and identically dis-
tributed (i.i.d.) random variables, such that τk, k ≥ 0 represent the inter-occurrence
time between the (k − 1)-th and k-th claims;

•
{

Tk, k ∈ N
}

represent the occurrence time of the claims received by the insurer;
•

{
Vk, k ∈ N

}
is a sequence of continuous positive independent and identically dis-

tributed (i.i.d.) random variables, such that Vk is the time from Tk taken by the insurer
to report the k-th claim;

•
{

Xk, k ∈ N
}

is a sequence of positive i.i.d. random variables, dependent on Tk and Vk
such that Xk represents the claim amount paid by the insurer;

•
{

N(t), t ≥ 0
}

is the renewal process generated by the inter-occurrence times{
τk, k ∈ N

}
;

• The random variables Xk, Tk, and Vk may exhibit some dependence structures.

Making things simple, we assume that Tk and Vk are independent, an assumption
that can be justified by the fact that the delay time may depend mostly on the claim size.
Thus, the joint distribution of the claim size, the claim arrival time, and the delay time are
given by

fXk ,Tk ,Vk (x, t, z) = fTk (t) fVk (z) fXk |Tk ,Vk
(x).

Under some circumstances, the claim reporting and settlement process may take
more time due to bad economics in the company (insufficient liquidity during wartime or
natural disasters). In addition, the delay time is more relevant in a health insurance contract
because one has to determine if the illness began within the period that the insurance covers
before payments can be made. Additionally, during that holding period, the company will
continue to receive premiums from policyholders, along with a compounded yield on the
initial reserve. By delaying the claim payment time, companies can partially resolve the
liquidity problem. Thus, they will minimize the absolute ruin probability, and therefore
reduce the bankruptcy rate.

Gerber and Shiu [4] and Cai [5] argue that when the surplus drops below − c
δ , the

surplus cannot be positive due to the debts of the insurer, because the present value at that
time is less than or equal to c, which is the present value of all premium income available
after that time, and the delay in reporting and payment. A good investment strategy may
be required in some types of contracts; for example, when the insurer covers only low risks
and invests heavily in high asset returns (we refer to this scenario as a − c

δ small enough risk
pool), the surplus may be positive as the company will continue to receive premiums and
returns at the time of the ruin. In light of this, the time to absolute ruin defined by Gerber
and Shiu [4] and Cai [5] is considered to be an absolute (relative) time to ruin. Throughout
this paper, we assume that c

δ is small enough. That is, the insurer covers only low risk and
invests in high return assets (δ >> c).
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3. Main Results

We present our main results in this section. To start with, we use the Gerber–Shiu func-
tion and the formula for the absolute (relative) time to ruin. The absolute ruin probability
Tδ is calculated as follows:

Tδ =

⎧⎨⎩inf
{

t | Uδ(t) < − c
δ

}
∞ if Uδ(t) ≥ − c

δ
for all t ≥ 0;

. (2)

Here, c0 = − c
δ

and is defined through the Gerber–Shiu function by

Φα,δ(u, c0) = E

[
e−αTδ W

(
Uδ(T

−
δ ), c0 − Uδ(Tδ)

)
�{Tδ < ∞}

]
, (3)

α is interpreted as the discounted rate, and the function W() represents the penalty function
and is assumed to be bounded.

3.1. Integro-Differential Equation of the Gerber–Shiu Function

We obtain the following proposition.

Proposition 1. Assume from the financial surplus given by Equation (1) that the delay time is
exponentially distributed with parameter β. Then, the Gerber–Shiu function satisfies the integro-
differential equation below:

(δu + c)2Φ
′′
α,δ(u, c0) = η0(δu + c)Φ

′
α,δ(u, c0)− η1Φα,δ(u, c0)

+ λβ
∫ u−c0

0
Φα,δ(u − x, c0)dFX|τ,V(x) + λβω(u),

(4)

where η0 = 2α + β + λ − δ, η1 = (λ + α)(α + β), c0 = − c
δ , λ is the claim number process rate

in a Poisson process, and

ω(u) =
∫ ∞

u−c0

W(u, c0 + x − u)dFX|τ,V(x).

Proof. Let s(t, v) = ueδ(t+v) + c eδ(t+v)−1
δ and c0 = − c

δ .
By conditioning on the first claim occurrence time, the corresponding claim size, and

the delay time, we have the equation:

Φδ,α(u, c0) =
∫ ∞

0

∫ ∞

0

∫ s(t,v)−c0

0
e−α(t+v)Φδ,α(s(t, v)− x, c0)dFX|τ,V(x)dFτ(t)dFV(v)

+
∫ ∞

0

∫ ∞

0

∫ ∞

s(t,v)−c0

e−α(t+v)W(s(t, v), c0 + x − s(t, v))dFX|τ,V(x)dFτ(t)dFV(v)

=
∫ ∞

0

∫ ∞

0

∫ s(t,v)−c0

0
e−α(t+v)βe−βtλe−λtΦδ,α(s(t, v)− x, c0)dFX|τ,V(x)dtdv

+
∫ ∞

0

∫ ∞

0

∫ ∞

s(t,v)−c0

e−α(t+v)βe−βtλe−λtW(s(t, v), c0 + x − s(t, v))dFX|τ,V(x)dtdv.

Let z = s(t, v). Then,

et =

(
δz + c
δu + c

)1/δ

e−v; and

dt =
1

δz + c
dz.
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Plugging these relations in the above equation yields

Φδ,α(u, c0) =
∫ ∞

0

∫ ∞

s(0,v)

∫ z−c0

0
λβ

(
δz + c
δu + c

)−(α+λ)/δ

e−(β−λ)v 1
δz + c

Φδ,α(z − x, c0)

× dFX|τ,V(x)dzdv

+
∫ ∞

0

∫ ∞

s(0,v)

∫ ∞

z−c0

λβ

(
δz + c
δu + c

)−(α+λ)/δ

e−(β−λ) 1
δz + c

W(z, c0 + x − z)

× dFX|τ,V(x)dzdv,

= λβ(δu + c)(α+λ)/δ
∫ ∞

0

∫ ∞

s(0,v)
(δz + c)

−α + λ

δ
−1

e−(β−λ)v (5)

×
[∫ z−c0

0
Φδ,α(z − x, c0)dFX|τ,V(x) +

∫ ∞

z−c0

W(z, c0 + x − z)dFX|τ,V(x)
]

dzdv.

Now, we define ω(z) :=
∫ ∞

z−c0

W(z, c0 + x − z)dFX|τ,V(x) and y = s(0, v) so that

ev =

(
δy + c
δu + c

)1/δ

=⇒ dv =
1

δy + c
dy.

Then, inverting the above relations into Equation (5) gives

Φδ,α(u, c0) = λβ(δu + c)(α+λ)/δ
∫ ∞

u

∫ ∞

y
(δz + c)

−α + λ

δ
−1 1

δy + c

(
δy + c
δu + c

)−(β−λ)/δ

×
[∫ z−c0

0
Φδ,α(z − x, c0)dFX|τ,V(x) + ω(z)

]
dzdy,

= λβ(δu + c)(α+β)/δ
∫ ∞

u

∫ ∞

y
(δz + c)−

α+λ
δ −1(δy + c)−

β−λ
δ −1

×
[∫ z−c0

0
Φδ,α(z − x, c0)dFX|τ,V(x) + ω(z)

]
dzdy,

= λβ(δu + c)(α+β)/δ
∫ ∞

u
(δy + c)−

β−λ
δ −1

∫ ∞

y
(δz + c)−

α+λ
δ −1

×
[∫ z−c0

0
Φδ,α(z − x, c0)dFX|τ,V(x) + ω(z)

]
dzdy. (6)

Taking the first derivative of Equation (6):

Φ
′
δ,α(u, c0) =

α + β

δu + c
Φδ,α(u, c0)− λβ

(δu + c)(α+λ)/δ

δu + c

∫ ∞

u
(δz + c)−

α+λ
δ −1

×
[∫ z−c0

0
Φδ,α(z − x, c0)dFX|τ,V(x) + ω(z)

]
dz,

(δu + c)Φ
′
δ,α(u, c0) = (α + β)Φδ,α(u, c0)− λβ(δu + c)(α+λ)/δ

∫ ∞

u
(δz + c)−

α+λ
δ −1

×
[∫ z−c0

0
Φδ,α(z − x, c0)dFX|τ,V(x) + ω(z)

]
dz. (7)

Upon rearranging Equation (7), we obtain:

− λβ(δu + c)(α+λ)/δ
∫ ∞

u
(δz + c)−

α+λ
δ −1

[∫ z−c0

0
Φδ,α(z − x, c0)dFX|τ,V(x) + ω(z)

]
dz

= (δu + c)Φ
′
δ,α(u, c0)− (α + β)Φδ,α(u, c0).

(8)

By taking the derivative of (7), we have
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(δu + c)Φ
′′
δ,α(u, c0) + δΦ

′
δ,α(u, c0) = (α + β)Φ

′
δ,α(u, c0)− (α + λ)

λβ

δu + c
(δu + c)(α+λ)/δ

×
∫ ∞

u
(δz + c)−

α+λ
δ −1

[∫ z−c0

0
Φδ,α(z − x, c0)dFX|τ,V(x) + ω(z)

]
dz

+
λβ

δu + c

[∫ u−c0

0
Φδ,α(u − x, c0)dFX|τ,V(x) + ω(u)

]
,

(δu + c)2Φ
′′
δ,α(u, c0) = (α + β − δ)(δu + c)Φ

′
δ,α(u, c0)− (α + λ)λβ(δu + c)(α+λ)/δ

×
∫ ∞

u
(δz + c)−

α+λ
δ −1

[∫ z−c0

0
Φδ,α(z − x, c0)dFX|τ,V(x) + ω(z)

]
dz

+ λβ

[∫ u−c0

0
Φδ,α(u − x, c0)dFX|τ,V(x) + ω(u)

]
. (9)

Finally, inserting Equation (8) into (9), the equation:

(δu + c)2Φ
′′
δ,α(u, c0) = (2α + λ + β − δ)(δu + c)Φ

′
δ,α(u, c0)− (λ + α)(α + β)Φδ,α(u, c0)

+ λβ

[∫ u−c0

0
Φδ,α(u − x, c0)dFX|τ,V(x) + ω(u)

]
,

which proves the statement by setting η0 = (2α + λ + β − δ) and η1 = (λ + α)(α + β).

Remark 1. In deriving their results, Cai [5] and Li and Lu [11] distinguished between Φ+
α,δ(u) for

the return interest rate when the initial surplus exceeds zero and Φ−
α,δ(u) for debt interest when the

initial surplus drops below zero. However, as pointed out by Cai [5]’s work, when the initial surplus
approaches zero, then both quantities are equalized. In this paper, we assume that c

δ approaches 0,
and thanks to the delayed reporting time, it is reasonable to assume that in the interval [− c

δ , 0],
Φ−

α,δ(u) ≈ Φ+
α,δ(u).

Equation (4) is difficult to solve. In the following, we use the Laplace transform to
derive a more practical equation for the Gerber–Shiu function.

Let us define as in Li and Lu [11] the following transformation:

Yδ,α(u, c0) =

⎧⎪⎨⎪⎩
Φδ,α(c0, c0)− Φδ,α(u, c0)

Φδ,α(c0, c0)
, if u ≥ c0

0 if u < c0.
(10)

Clearly, Yδ,α(c0, c0) = 0. If in addition, we assume that the penalty function W(x, y)
is bounded, then lim

u−→∞
Φδ,α(u, c0) = 0 (see Li and Lu [11]), which implies that

lim
u−→∞

Yδ,α(u, c0) = 1.

Theorem 1. In the model given by Equation (1), the Laplace transform of the discounted penalty
function satisfies the following non-homogeneous differential equation.

ỹ
′′
δ,α(s) + f1(s)ỹ

′
δ,α(s) + f0(s)ỹδ,α(s) = g(s), (11)

where Yδ,α(u, c0) is given by Equation (10),

f1(s) =
η2 + 2

δ
× 1

s
+ 2c0; η2 = η0 + 2δ; η3 = η1 + δη2,

f0(s) =
c2

δ2 +
1
s2

(
η3

δ2 − λβ

δ2 f̃ (s)
)
− 1

s

(
2c
δ
+

η2c
δ2

)
,

g(s) = − 1

(δs)2

[
e−sc0

s
(
λβ f̃ (s)− η1

)
+

λβ

Φδ,α(c0)
w̃(s)

]
.
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ỹδ,α(s), f̃ (s) and w̃(s) are respectively the Laplace transforms of Yδ,α(u), dFX|τ,V(x), and ω(u).

Proof. Hereafter, let dF(x) := dFτ,V(x).
Integrating Equation (5) on both sides from c0 to u yields∫ u

c0

(δt + c)2Φ
′′
δ,α(t, c0)dt = η0

∫ u

c0

(δt + c)Φ
′
δ,α(t, c0)dt − η1

∫ u

c0

Φδ,α(t, c0)dt

+ λβ
∫ u

c0

∫ t−c0

0
Φδ,α(t − x, c0)dF(x)dt + λβ

∫ u

c0

ω(t)dt.

That is,

(δu + c)2Φ
′
δ,α(u, c0) = η2

∫ u

c0

(δt + c)Φ
′
δ,α(t, c0)dt − η1

∫ u

c0

Φδ,α(t, c0)dt

+ λβ
∫ u−c0

0
dF(x)

(∫ u−x

c0

Φδ,α(y)dy
)
+ λβ

∫ u

c0

ω(t)dt.

so that,

(δu + c)2Φ
′
δ,α(u, c0) = η2(δu + c)Φδ,α(u, c0)− η3

∫ u

c0

Φδ,α(t, c0)dt (12)

+ λβ
∫ u−c0

0
dF(x)

(∫ u−x

c0

Φδ,α(y, c0)dy
)
+ λβ

∫ u

c0

ω(t)dt.

Plugging Equation (10) into (12) gives

−(δu + c)2Φδ,α(c0, c0)Y
′
δ,α(u, c0) = η2(δu + c)[Φδ,α(c0, c0)− Φδ,α(c0, c0)Yδ,α(u, c0)]

− η3

∫ u

c0

[Φδ,α(c0, c0)− Φδ,α(c0, c0)Yδ,α(t, c0)]dt

+ λβ
∫ u

c0

ω(t)dt + λβ
∫ u−c0

0
dF(x)

×
(∫ u−x

c0

[Φδ,α(c0, c0)− Φδ,α(c0, c0)Yδ,α(y, c0)]dy
)

.

Dividing both sides by Φδ,α(c0, c0) yields

−(δu + c)2Y
′
δ,α(u, c0) = η2(δu + c)− η2(δu + c)Yδ,α(u, c0)− η3(u − c0) + η3

∫ u

c0

Yδ,α(t, c0)dt

+
λβ

Φδ,α(c0, c0)

∫ u

c0

ω(t)dt + λβ
∫ u−c0

0
(u − c0 − x)dF(x)

− λβ
∫ u−c0

0
dF(x)

(∫ u−x

c0

Yδ,α(y, c0)dy
)

,

−(δu + c)2Y
′
δ,α(u, c0) = −η3

∫ u

c0

dt − η2(δu + c)Yδ,α(u, c0) + η3

∫ u

c0

Yδ,α(t, c0)dt

+
λβ

Φδ,α(c0, c0)

∫ u

c0

ω(t)dt + λβ
∫ u−c0

0
(u − c0 − x)dF(x)

− λβ
∫ u−c0

0
dF(x)

(∫ u−x

c0

Yδ,α(y, c0)dy
)

.
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Finally, we obtain

−δ2Y
′
δ,α(u, c0) = 2δcY

′
δ,α(u, c0) + c2Y

′
δ,α(u, c0)− η1

∫ u

c0

dt − η2δuYδ,α(u, c0)

− η2cYδ,α(u, c0) + η3

∫ u

c0

Yδ,α(t, c0)dt +
λβ

Φδ,α(c0, c0)

∫ u

c0

ω(t)dt (13)

+ λβ
∫ u−c0

0
(u − c0 − x)dF(x)− λβ

∫ u−c0

0
dF(x)

(∫ u−x

c0

Yδ,α(y, c0)dy
)

.

Taking the Laplace transform of Equation (13) gives

−δ2
(

sỹ
′′
δ,α(s) + 2ỹ

′
δ,α(s)

)
= −2δc

(
sỹ

′
δ,α(s) + ỹδ,α(s)

)
+ c2sỹδ,α(s)

+ η2δỹ
′
δ,α(s)− η2cỹδ,α(s) +

η3

s
ỹδ,α(s) +

λβ

Φδ,α(c0)

w̃(s)
s

− η1
e−sc0

s2 +
λβ

s2 e−sc0 f̃ (s)− λβ

s
f̃ (s)ỹδ,α(s),

which completes the proof.

The differential equation given in (11) is not straightforward to solve. Thus, one may
think of transforming this equation to a well-known equation, which can be easily solved
analytically or numerically.

For simplicity, let

ỹδ,α(c0, c0) = b0 =
e−c2

0

c0
− Φ̃δ,α(c0, c0)

Φδ,α(c0, c0)
, and ỹ′δ,α(c0, c0) = b1 = −

[
Φ̃′

δ,α(c0, c0)

Φδ,α(c0, c0)
+ e−c2

0

(
1 +

1
c2

0

)]
.

In the following corollary, we transform Equation (11) into the Volterra equation of
the second kind with a degenerate kernel.

Corollary 1. Under the assumption of Theorem 1, Equation (11) becomes

U (s)−
∫ s

c0

K(s, t)U (t)dt = h(s), (14)

where U (s), K(s, t), and h(s) are given by

q(s) =
∫ s

c0

(s − t)U (t)dt,

ỹδ,α(s) = q(s) + b1(s − c0) + b0,

K(s, t) = −[ f1(s) + f0(s)(s − t)],

h(s) = g(s)− [b0 + b1(s − c0) f0(s) + b1 f1(s)].

Proof. Consider Equation (11) and introduce the function q(s) such that ỹδ,α(s) = q(s) +
b1(s − c0) + b0 . Clearly, q(c0) = q′(c0) = 0 and

ỹ′′δ,α(s) = q′′(s), ỹ′δ,α(s) = q′(s) + b1.

Plugging these expressions into Equation (11) yields

q′′(s) + f1(s)q′(s) + f0(s)q(s) = h(s), (15)

where h(s) = g(s) − [b0 + b1(s − c0) f0(s) + b1 f1(s)]. Let us further introduce another

auxiliary function U (t) such that q(s) =
∫ s

c0

(s − t)U (t)dt.
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U (t) satisfies the following Volterra equation:

U (t) +
∫ s

c0

f1(s)U (t)dt +
∫ s

c0

f0(s)(s − t)U (t)dt = h(s),

and this completes the proof.

The mathematical literature is replete with several papers that try to solve Equation (14).
The book of Polyanin and Manzhirov [19] presents an overview of the analytical solution
of (14), which gives a particular non-trivial solution of Equation (15) without the second
member. The following remark presents the analytical solution in a general form given that
we know a non-trivial solution (q1(s)).

Remark 2. Let q1(s) be a non-trivial particular solution of Equation (15) without the second
member. Then, the other solution of Equation (15) without the second member is in the form

q2(s) = q1(s)
∫ s

c0

∣∣ t
c0

∣∣ η2+2
δ exp

[ 2c
δ (c0 − t)

]
q1(t)2 dt,

from which the final solution for Equation (15) is given by

q(s) = q2(s)
∫ s

c0

q1(t)∣∣ t
c0

∣∣ η2+2
δ exp

[
2c
δ (c0 − t)

] h(t)dt − q1(s)
∫ s

c0

q2(t)∣∣ t
c0

∣∣ η2+2
δ exp

[
2c
δ (c0 − t)

] h(t)dt.

Although this solution is interesting, the main problem is the determination of q1(s),
which is not straightforward. An alternative way to solve this problem is to find the
solution numerically. In recent years, scholars in applied mathematics have investigated
the numerical solution of Equation (14). For an overview of these method, the readers are
referred to Maleknejad et al. [20] and Nadir and Rahmoune [21] and the references therein.
The following remark presents the numerical way to solve (14) by Simpson’s quadrature
rule as given in Nadir and Rahmoune [21].

Remark 3. Let us consider the transformed Equation (14) given below:

U (s) +
∫ s

c0

K0(s, t)U (t)dt = h(s), (16)

where K0(s, t) = f1(s) + f0(s)(s − t).
For s0 = c0 < s1 < · · · < s2n and, moreover, for notation simplicity, we set U (2j) = U (s2j),
K0(2j, 2j) = K0(s2j, s2j), h(2j) = h(s2j). Hence, for j = 1, · · · , n, it was proven in Nadir and
Rahmoune [21] that

U (2j)
(

1 − h
3

[
2K0(2j, 2j − 1) + K0(2j, 2j)

])
= h(2j) +

h
3

(
K0(2j, 0) + 2K0(2j, 1)

)
U (c0) +

2
3

h

×
j−1

∑
i=1

(
K0(2j, 2i − 1) + K0(2j, 2i) + K0(2j, 2i + 1)

)
× U (2i),

where h is the step of subdivision, U (2j + 1) =
U (2j) + U (2j + 2)

2
, U (c0) = h(c0).

This formula provides us with a powerful tool to approximate the Gerber–Shiu func-
tion. Section 4 aims to investigate the numerical solution of ỹδ,α(s) and, thus, its inverse
Laplace transform in order to find the Gerber–Shiu function in particular cases where a
given distribution of conditional claim sizes is assumed with a particular penalty function.
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3.2. Exponentially Distributed Conditional Claim

Equation (4) can be transformed to a non-homogeneous differential equation of order
three under an exponentially distributed conditional claim. The following proposition
states the form of the differential equation satisfied by the discounted penalty function
under this assumption.

Proposition 2. In the model given in Equation (1), under exponentially distributed conditional
claims with parameter ρ, Equation (4) becomes

(u − c0)
2Φ′′′

δ,α(u, c0) =
[
μ0(u − c0)− ρ(u − c0)

2
]
Φ′′

δ,α(u, c0) +
λβ

δ2

[
ρω(u)− ω′(u)

]
+μ3Φδ,α(u, c0) + [μ1 + μ2(u − c0)]Φ′

δ,α(u, c0),
(17)

where

μ0 =
η0

δ
− 2; μ1 =

η0δ − η1

δ2 , μ2 =
ρη0

δ
and μ3 =

ρ

δ2 (λβ − η1).

Proof. Differentiating Equation (4) gives:

(δu + c)2Φ′′′
δ,α(u, c0) = (η0 − 2δ)(δu + c)Φ′′

δ,α(u, c0) + (η0δ − η1)Φ′
δ,α(u, c0)

+ λβ
d

du

[
e−ρ(u)

∫ u

c0

Φδ,α(y)ρeρydy
]
+ λβω′(u). (18)

That is,

(δu + c)2Φ′′′
δ,α(u, c0) = (η0 − 2δ)(δu + c)Φ′′

δ,α(u, c0) + (η0δ − η1)Φ′
δ,α(u, c0) + λβω′(u)

+ λβρ

(
Φδ,α(u, c0)−

∫ u−c0

0
Φδ,α(u − x, c0)ρe−ρxdx

)
. (19)

From Equation (4), we have

−λβ
∫ u−c0

0
Φδ,α(u − x, c0)ρe−ρxdx = −(δu + c)2Φ′′

δ,α(u, c0) + η0(δu + c)Φ′
δ,α(u, c0)

−η1Φδ,α(u, c0) + λβω(u).
(20)

Plugging Equation (20) into (19) yields

(δu + c)2Φ′′′
δ,α(u, c0) =

[
(η0 − 2δ)(δu + c)− ρ(δu + c)2

]
Φ′′

δ,α(u, c0)

+ λβ
[
ρω(u) + ω′(u)

]
+ [(η0δ − η1) + ρη0(δu + c)]Φ′

δ,α(u, c0)

− ρη1Φδ,α(u, c0) + λβρΦδ,α(u, c0).

Dividing both sides of the above formula by δ2 completes the proof.

Under some assumptions on the penalty function (a penalty function depends only on
the deficit at ruin), Equation (17) can be solved via the sequence expansion technique.

Theorem 2. Suppose that the penalty function depends only on the deficit at ruin. Then, Equation (17),
with initial condition Φδ,α(c0, c0), has the following solution:

Φδ,α(u, c0) = Φδ,α(c0, c0)
∞

∑
n=0

[
n

∏
i=1

(ν)i

]
(u − c0)

n, (21)

where ∏0
i=1 = 1 and

(ν)n =
(n − 1)[μ2 − ρ(n − 2)] + u3

n[(n − 1)(n − 2 − μ0)− μ1]
.
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Proof. Under the assumption of Theorem 2, Equation (17) becomes

(u − c0)
2Φ′′′

δ,α(u, c0) =
[
μ0(u − c0)− ρ(u − c0)

2
]
Φ′′

δ,α(u, c0) (22)

+ [μ1 + μ2(u − c0)]Φ′
δ,α(u, c0) + μ3Φδ,α(u, c0).

Let Φδ,α(u, c0) be defined by

Φδ,α(u, c0) :=
∞

∑
n=0

an
(
u − c0

)n, hence

Φ(i)
δ,α(u, c0) =

∞

∑
n=i

n(n − 1) · · · (n − i + 1)an
(
u − c0

)n−i, (23)

where Φ(i)
δ,α(u, c0) is the i-th derivative of Φδ,α(u, c0), for i = 1, 2, 3.

Plugging Equation (23) into (22) yields

∞

∑
n=1

n(n − 1)(n − 2)an
(
u − c0

)n−1
= μ0

∞

∑
n=1

n(n − 1)an
(
u − c0

)n−1

− ρ
∞

∑
n=0

n(n − 1)an
(
u − c0

)n
+ μ3

n

∑
n=0

an
(
u − c0

)n

+ μ1

∞

∑
n=1

nan
(
u − c0

)n−1
+ μ2

∞

∑
n=0

nan
(
u − c0

)n.

Letting n be n + 1, then

∞

∑
n=0

(n + 1)(n)(n − 1)an+1
(
u − c0

)n
= μ0

∞

∑
n=0

(n + 1)(n)an+1
(
u − c0

)n

− ρ
∞

∑
n=0

n(n − 1)an
(
u − c0

)n
+ μ3

n

∑
n=0

an
(
u − c0

)n

+ μ1

∞

∑
n=0

(n + 1)an+1
(
u − c0

)n
+ μ2

∞

∑
n=0

nan
(
u − c0

)n.

Thus,

∞

∑
n=0

[
(n + 1)(n)(n − 1)− μ0(n + 1)(n)− μ1(n + 1)

]
an+1

(
u − c0

)n

=
∞

∑
n=0

[
μ5 + μ2(n)− ρ(n)(n − 1)

]
an
(
u − c0

)n,

from which it follows that

an+1 =
n
(
μ2 − ρ(n − 1)

)
+ μ3

(n + 1)
[
n
(
(n − 1)− μ0

)− μ1
] an.

By expanding the above relation recursively, we have

an = a0

n

∏
i=1

[
(i − 1)

(
μ2 − ρ(i − 2)

)
+ μ3

i
[
(i − 1)

(
(i − 2)− μ0

)− μ1
]]

= a0

n

∏
i=1

(ν)i,
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which proves the statement by inserting this relation back into Equation (23) and by the
fact that Φδ,α(c0, c0) = a0.

Remark 4. In Proposition 1, if we let α = 0, we obtain the integro-differentiating of the (relative)
absolute ruin. Under the exponential claim distribution, one obtains the explicit expression of the
(relative) absolute ruin probability by letting α = 0 in Theorem 2.

4. Numerical Illustration

This section describes how to solve the Volterra equation given in Equation (16)
and from there calculate the ruin probability using the inverse Laplace transform of
Equation (10).

As outlined by Nadir and Rahmoune [21], we first find the solution to Equation (16)
by numerical approximation. Moreover, since we must integrate the latter function to
obtain the function q(s) given by Equation (14) and, hence, the Laplace transform function
ỹδ,α(s), we approximate the solution to Equation (16) by a function using spline approxi-
mation (the spline approximation was chosen over polynomial, cubic spline, or Lagrange
polynomial, linear approximations because it yields the best accuracy). Although the
rational approximation is also a good approximation, we prefer the late one since the
rational approximation produces a singular function that does not allow the integral to
converge. Yδ,α(u) is then obtained by applying the inverse Laplace to the function ỹδ,α(s)
derived above.

In the absence of real data, we chose our parameters arbitrarily. For comparison
purposes, we varied the distribution parameter of the reporting delay time to examine its
impact on the (relative) absolute ruin. Numerical calculations show that the ruin probability
decreases as the reporting delay increases on average, regardless of the initial capital, which
confirms that the delay in claim reporting can positively affect the ruin probability.

The numerical setting assumes a Gamma distribution with parameter a = 10.2,
b = 0.008, which means that each claim average is 1275.

Table 1, as well as Table 2 show that the ruin probability is impacted by the initial
surplus; however, the ruin probability is normally not influenced by only the initial surplus
(increasing the initial reserve will not always decrease the ruin probability), as this may
depend on the delay in reporting or settlement times as well. In comparing Tables 1 and 2,
it turns out that an increase in the average reporting delay decreases the ruin probability.
This finding potentially provides risk managers and actuaries with a powerful instrument
to manage risks, in particular the risk of insolvency.

Table 1. Ruin probability for δ = 0.02, λ = 0.01, c = 0.1%, β = 0.05.

u 10.20 24.50 40.80 51.02 65.30 81.63 100

ψδ(u) 0.5729536 0.5060346 0.5046236 0.4992245 0.5000019 0.5001424 0.5008247

Table 2. Ruin probability for δ = 0.02, λ = 0.01, c = 0.1%, β = 0.02.

u 10.20 24.50 40.80 51.02 65.30 81.63 100

ψδ(u) 0.5751914 0.5058820 0.5051878 0.5007443 0.4998882 0.5001839 0.5007640

5. Discussion and Conclusions

This study analyzed the impact of the reporting delay time on the Gerber–Shiu dis-
counted penalty function under an interest rate environment, where the claim effective’s
cost distribution is determined by the occurrence of the claim and the reporting delays
(this somehow incorporated indirectly the inflation on the claim cost). We showed that the
Gerber–Shiu function follows a degenerate Volterra equation with an arbitrary distribution
of conditional claim sizes. A numerical illustration of our result using an approximation
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method (prescribed by Nadir and Rahmoune [21]) confirmed the effect of the delay in
reporting time on the ruin probability. In addition, we derived a closed analytical expres-
sion of the Gerber–Shiu function under the exponential conditional claim distribution
assumption. The numerical results indicated that the ruin probability as a function of the
initial surplus is not a monotonic function as one usually expects (increases of the initial
surplus decrease the ruin probability).

Although this study contributes to the existing literature, it has some drawbacks in
that we assumed that when the surplus belongs to

[− c
δ , 0

]
, the insurer could continue to

operate without borrowing (in contrast with Gerber and Shiu [4] and Cai [5]), which may be
the case when c

δ is small enough and there is flexibility in the delayed reporting times. As a
result, insurers must seek assets with high risk-free rates and protect only low-risk contracts
(δ >> c). A good distribution of the reporting delayed time must be bounded from above,
due to regulation constraints (anti-selection ban and maximum accepting reporting time).
In future studies, we will extend our results by analyzing the discounted penalty function
with stochastic interest rates, since evidence in finance studies has demonstrated that there
is no such rate as a risk-free rate for reporting.
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Abstract: A new family of continuous distributions called the generalized odd linear exponential
family is proposed. The probability density and cumulative distribution function are expressed
as infinite linear mixtures of exponentiated-F distribution. Important statistical properties such
as quantile function, moment generating function, distribution of order statistics, moments, mean
deviations, asymptotes and the stress–strength model of the proposed family are investigated. The
maximum likelihood estimation of the parameters is presented. Simulation is carried out for two of
the mentioned sub-models to check the asymptotic behavior of the maximum likelihood estimates.
Two real-life data sets are used to establish the credibility of the proposed model. This is achieved
by conducting data fitting of two of its sub-models and then comparing the results with suitable
competitive lifetime models to generate conclusive evidence.

Keywords: generalized odd linear distribution; hazard rate function; moments; residual analysis;
maximum likelihood estimation; Monte Carlo simulation

1. Introduction

Analysis of lifetime data is an important subject in many fields, including reliability,
social sciences, biomedical, engineering and other fields. In practice, it has been observed
that many phenomena do not follow any of the classical distributions; for this reason, many
efforts have been made in the last few decades to introduce new generators or families
of distributions that extend these classical distributions to provide considerable flexibility
in modeling data in diverse spectrums. Many authors have suggested new generators or
families in the literature, for example, and not exclusively: Marshall and Olkin (1997) [1]
introduced the Marshall–Olkin family, Gupta et al. (1998) [2] introduced the exponentiated-
G family, Eugene et al. (2002) [3] proposed the beta-G family, Cordeiro and Castro (2011) [4]
suggested the Kumaraswamy-G family, Alexander et al. (2012) [5] presented the McDonald-
G family, Alzaatreh et al. (2013) [6] proposed the transformed-transformer (T-X) family,
Bourguignon et al. (2014) [7] presented the Weibull-G family, Tahir et al. (2015) [8] studied
the odd generalized exponential-G family, Cordeiro et al. (2016) [9] discussed the Zografos
Balakrishnan odd log-logistic family, Gomes-Silva et al. (2017) [10] presented the odd
Lindley-G family, Alizadeh et al. (2017) [11] provided the Gompertz-G family and Jamal
et al. (2017) [12] defined the odd Burr-III family, among others. For a clearer understanding
of the odds ratio to define new G-classes, we motivate the readers to Khan et al. (2021) [13],
in which the authors adopted a unique odd function to propose an alternate generalized
odd generalized exponential-G family.
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The linear exponential or (linear failure rate) distribution is the distribution of the
minimum of two independent random variables Z1 and Z2 having exponential (a) and
Rayleigh (b) (Sen and Bhattacharyya, 1995 [14]). Therefore, the variables have exponen-
tial and Rayleigh distributions as special cases, which are well-known distributions for
modeling lifetime data in reliability and medical studies. The linear exponential distri-
bution is used to model phenomena with linearly increasing failure rates, but it does not
provide a reasonable fit for modeling phenomena with decreasing, non-linear increasing, or
non-monotonic failure rates, which include the bathtub and upside-down bathtub, among
others. These phenomena are common in reliability and biological studies. This motivated
us to introduce generalizations of linear, exponential distribution so that their goodness
of fit measures may improve the tail properties. Our motivations and the main goals of
this paper are to propose a random variable that follows the linear exponential distribution
as a new generator to introduce new models which can yield all types of the hazard rate
functions with improved goodness of fit properties for real-life data.

2. The Generalized Odd Linear Exponential (GOLE-F) Family

Suppose the random variable Z has a linear exponential distribution with parameters
a, b ≥ 0 where a + b > 0, then its cumulative distribution function (CDF) and probability
density function (PDF) are, respectively,

R(z) = 1 − e−(az+ b
2 z2), z ≥ 0 (1)

r(z) = (a + bz)e−(az+ b
2 z2). z > 0. (2)

Adopting the T-X framework defined by the authors in [6], for any power param-
eter c > 0, we define the CDF of a new wider family called the generalized odd linear
exponential (“GOLE-F” for short) family by

G(x; a, b, c, φ) =
∫ F(x;φ)c

1−F(x;φ)c

0
(a + bz)e−(az+ b

2 z2)dz = 1 − exp

[
−
(

aF(x; φ)c

1 − F(x; φ)c +
b
2

(
F(x; φ)c

1 − F(x; φ)c

)2
)]

, (3)

where W[F(x)] = F(x;φ)c

1−F(x;φ)c is the link function with F(x; φ) as the baseline CDF of an

absolutely continuous distribution with parameter vector φ and pdf f (x; φ).
The PDF of GOLE-F corresponding to the CDF in Equation (3) is provided by

g(x; a, b, c, φ) =

[
c f (x; φ)F(x; φ)c−1(a + (b − a)F(x; φ)c)(

1 − F(x; φ)c)3

]
× exp

[
−
(

aF(x; φ)c

1 − F(x; φ)c +
b
2

(
F(x; φ)c

1 − F(x; φ)c

)2
)]

. (4)

Henceforth, for any parent model, we will simply write F(x) = F(x; φ) as the distribution
function and f (x) = f (x; φ) as the density function. Further, any random variable X with
density function (4) is denoted by X ∼ GOLE − F (a, b, c, φ).

The hazard rate function (HRF) and reversed hazard rate function (RHRF) of the
random variable X are, respectively,

h(x; a, b, c, φ) =
c f (x)F(x)c−1(a + (b − a)F(x)c)

(1 − F(x)c)3 , (5)

and

τ(x; a, b, c, φ) =

{
c f (x)F(x)c−1(a + (b − a)F(x)c)

}
e
−( aF(x)c

1−F(x)c
+ b

2 (
F(x)c

1−F(x)c
)

2
)

(1 − F(x)c)3

{
1 − e

−( aF(x)c

1−F(x)c
+ b

2 (
F(x)c

1−F(x)c
)

2
)

} . (6)
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The quantile function of the random variable X can be obtained by inverting Equa-
tion (3), and hence the GOLE-F distribution can be simulated easily from the following
Equation.

X = Q(U) = F−1

⎛⎝[ −a +
√

a2 − 2b log(1 − U)

b − a +
√

a2 − 2b log(1 − U)

]1/c
⎞⎠, (7)

where U has a uniform distribution over the interval (0,1), in particular, if u = 1/2 we
obtain the median of the random variable X as follows:

M = Q
(

1
2

)
= F−1

⎛⎝[ −a +
√

a2 − 2b log(1 − 1/2)
b − a +

√
a2 − 2b log(1 − 1/2)

]1/c
⎞⎠. (8)

3. Special Model of the GOLE-F Family

In this section, we provide two extended distributions as special models of the GOLE-F
family and display their plots of density and hazard rate functions.

3.1. The Generalized Odd Linear Exponential-Weibull (GOLE-W) Distribution

Consider the Weibull distribution with density and distribution functions
f (x; λ, β) = λβxβ−1e−λxβ

and F(x; λ, β) = 1 − e−λxβ
, respectively, where λ, β > 0 and

x ≥ 0. Then, the GOLE-W distribution has (PDF) provided by

g(x; a, b, c, λ, β) =

⎡⎣ cλβxβ−1e−λxβ
(

1−e−λxβ
)c−1

(
a+(b−a)

(
1−e−λxβ

)c)
(

1−
(

1−e−λxβ
)c)3

⎤⎦
× exp

⎡⎣−
⎛⎝ a

(
1−e−λxβ

)c

1−
(

1−e−λxβ
)c + b

2

( (
1−e−λxβ

)c

1−
(

1−e−λxβ
)c

)2
⎞⎠⎤⎦.

Figure 1a show a wealth of possible shapes of the distribution once different choices
of the parameters are made. For example, the shape can be U and inverted-U, right-
skewed, reversed-J shape or symmetrical. Additionally, Figure 1b reveal that the HRF of
the GOLE-W distribution can be increasing–constant, constant–monotone–increasing or
monotone–increasing shapes.

 
(a) (b) 

Figure 1. (a) Density function and (b) hazard rate plots of the GOLE-W distribution for different
parameter values.

249



Math. Comput. Appl. 2022, 27, 55

3.2. The Generalized Odd Linear Exponential-Exponential (GOLE-E) Distribution

Consider the Exponential distribution with density and distribution functions f (x; λ) =
λe−λx and F(x; λ) = 1 − e−λx, respectively, where λ > 0 and x ≥ 0. Then, the GOLE-E
distribution has (PDF) provided by

g(x; a, b, c, λ) =

⎡⎣ cλe−λx(1 − e−λx)c−1
(

a + (b − a)
(
1 − e−λx)c

)
(
1 − (1 − e−λx)

c)3

⎤⎦× exp

⎡⎣−
⎛⎝ a

(
1 − e−λx)c

1 − (1 − e−λx)
c +

b
2

( (
1 − e−λx)c

1 − (1 − e−λx)
c

)2
⎞⎠⎤⎦.

Figure 2a show possible shapes of the GOLE-E distribution for different choices of the
parameters. The shapes of pdf can be right-skewed, or symmetrical. Further, Figure 2b
reveal that the HRF of the GOLE-E distribution can be decreasing–constant, monotone–
increasing or bathtub shape. The PDF and HRF of the GOLE-W and GOLE-E distributions
for some selected values of the parameters indicate the flexibility of the new family.

 
(a) (b) 

Figure 2. Plots of (a) density function and (b) hazard rate of the GOLE-E distribution for different
parameter values.

4. Mathematical Properties of the GOLE-F Family

In this section, some mathematical properties of the GOLE-F family are obtained.

4.1. Asymptotic Behavior of GOLE-F Family

First of all, for the statements of the following results, we recall that F(x) is the CDF of
an absolutely continuous distribution with pdf f (x).

Proposition 1. The asymptotes corresponding to Equations (3)–(5) when x → −∞ are provided by

G(x) ∼ a F(x)c, (9)

g(x) ∼ c a f (x)F(x)c−1, (10)

h(x) ∼ c a f (x)F(x)c−1. (11)

Proposition 2. The asymptotes corresponding to Equations (3)–(5) when x → ∞ are provided by

1 − G(x) ∼ 1 − e
−( a

1−F(x)c
+ b

2 { 1
1−F(x)c

}2
)
, (12)

g(x) ∼ bc f (x)

(1 − F(x)c)3 e
−( a

1−F(x)c
+ b

2 { 1
1−F(x)c

}2
)

(13)
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h(x) ∼ bc f (x)

(1 − F(x)c)3 . (14)

For detail see Appendix A.

4.2. Useful Expansions for CDF and PDF of the New Family

Using the power series for the exponential function and the generalized binomial
expansion

e−z =
∞

∑
i=0

(−1)izi

i!
,

and

(1 − v)n =
∞

∑
i=0

(−1)i
(

n
i

)
vi,

respectively, where |v| < 1 and n is any real number, we can rewrite the CDF of the GOLE-F
family as follows:

G(x; a, b, c, φ) = 1 −
∞

∑
i=0

i

∑
j=0

∞

∑
k=0

(−1)ibjai
(

i
j

)(
i + j + k − 1

k

)
i!2j F(x)c(i+j+k). (15)

Again, based on the binomial expansion, we find

F(x)c(i+j+k) = (1 − (1 − F(x))c(i+j+k) =
∞

∑
m=0

∞

∑
l=m

(−1)l+m
(

l
m

)(
c(i + j + k)

l

)
F(x)m. (16)

From (15) and (16), we obtain

G(x; a, b, c, φ) = 1 −
∞

∑
m=0

ωmF(x)m, (17)

where

ωm =
∞

∑
l=m

∞

∑
i=0

i

∑
j=0

∞

∑
k=0

ρi,j,k,l(a, b, c),

and

ρi,j,k,l(a, b, c) =
(−1)i+l+mbjai

(
i
j

)(
l
m

)(
i + j + k − 1

k

)(
c(i + j + k)

l

)
i!2j .

Now, we can write the CDF of the GOLE-F family in Equation (17), as

G(x; a, b, c, φ) =
∞

∑
m=0

δmF(x)m, (18)

where δ0 = 1 − ω0, and δm = −ωm for m = 1, 2, . . . By differentiating Equation (18), we
obtain the expansion of the density function of the GOLE-F family as an infinite linear
mixture of exp-F densities in the following form

g(x; a, b, c, φ) =
∞

∑
m=0

δm+1πm+1(x), (19)

where πm+1(x) = (m + 1) f (x)F(x)m is the exp-F density function with power parame-
ter (m + 1). Now, if the random variable Ym+1 has the density function πm+1(x), then
many mathematical properties of the random variable X, including the ordinary and in-
complete moments and moment generating function can easily be obtained based on the
exp-F distribution.
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4.3. Moments

Suppose that the random variable Ym+1 has the density function πm+1(x) in (19), then
the nth moment of the random variable X can be obtained from

μ′
n = E(Xn) =

∞

∑
m=0

δm+1E
(
Yn

m+1
)
. (20)

A second alternative formula for μ′
n in terms of the baseline qf. QF(u) can be obtained as

μ′
n =

∞

∑
m=0

δm+1(m + 1)
∫ 1

0
QF(u)numdu, (21)

where QF(u) = F−1(u) is the qf of the parent distribution and u ∈ (0, 1).
The incomplete moments have an important role in measuring inequality, for exam-

ple, income quantiles, the mean deviations and Lorenz and Bonferroni curves. The nth
incomplete moment of X is provided by

ηn(z) =
∞

∑
m=0

δm+1(m + 1)
∫ F(z)

0
QF(u)numdu. (22)

The last integral can be computed analytically or numerically for most baseline distri-
butions. Bonferroni and Lorenz curves have applications in many different areas such as eco-
nomics to study income and poverty, reliability, demography, insurance and medicine. For
a random variable X, the Bonferroni and Lorenz curves are defined by B(p) = η1(q)/pE(X)
and L(p) = η1(q)/E(X), respectively, where p is a given probability, q = Q(p) and η1(q) is
the first incomplete moment that can be calculated from the above Equation with r = 1 at
q. Table 1 display the mean, variance, skewness and kurtosis of the GOLE-E distribution
for some choices values of the parameters. We note from Table 1 that the skewness of the
GOLE-E distribution is always positive, whereas the kurtosis of the GOLE-E distribution
varies only in the interval (1.0571, 2.6112).

Table 1. Mean, variance, skewness and kurtosis of the GOLE-E distribution with different values of a,
b, c and λ = 1.

a b c Mean Variance Skewness Kurtosis

0.5 0.5 1 0.6704 0.1330 1.2979 1.8368
2 1.1667 0.2186 1.1776 1.4755
5 1.9517 0.3004 1.0960 1.2512

10 2.5987 0.3351 1.0635 1.1656
20 3.2683 0.3541 1.0440 1.1146
50 4.1704 0.3660 1.0288 1.0753

100 4.8587 0.3701 1.0218 1.0571
1 1 1 0.4614 0.0824 1.3869 2.1392

2 0.8995 0.1587 1.2180 1.5987
5 1.6411 0.2408 1.1103 1.2923

10 2.2721 0.2776 1.0699 1.1839
20 2.9334 0.2982 1.0467 1.1226
50 3.8303 0.3114 1.0294 1.0774

100 4.5169 0.3159 1.0218 1.0574
2 1.5 1 0.3091 0.0488 1.5119 2.6112

2 0.6860 0.1130 1.2703 1.7688
5 1.3790 0.1919 1.1269 1.3424

10 1.9914 0.2297 1.0768 1.2044
20 2.6430 0.2514 1.0494 1.1308
50 3.5339 0.2654 1.0299 1.0793

100 4.2185 0.2702 1.0217 1.0574
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4.4. Generating Function

Here, we provide three formulae for the mgf M(t) = E
(
etX) of the random variable X.

The first one is provided by

M(t) =
∞

∑
n=0

tn

n!
μ′

n, (23)

where μ′
n is the nth moment of the random variable X. A second formula for M(t) comes

from (19) as

M(t) =
∞

∑
m=0

δm+1Mm+1(t), (24)

where Mm+1(t) is the mgf of the random variable Ym+1 ∼exp-F (m + 1). A third formula
for M(t) can also be derived based on (19) in terms of the baseline qf. QF(u) as

M(t) =
∞

∑
m=0

δm+1(m + 1)
∫ 1

0
exp(tQF(u))umdu, (25)

where QF(u) = F−1(u) is the qf of the baseline distribution and u ∈ (0, 1).

4.5. Mean Deviations

The amount of scattering in a population is evidently measured to some extent by
the totality of deviations from the mean and median. These are known as the mean
deviation about the mean and the mean deviation about the median. These measures can
be calculated using the following relationships:

δ1(X) = 2μG(μ)− 2
∫ μ
−∞ xg(x)dx and δ2(X) = μ− 2

∫ M
−∞ xg(x)dx, respectively, where

μ = E(X) and M = Q
(

1
2

)
.

4.6. Order Statistics

Let X1, X2, . . . , Xn be a random sample from the GOLE-F family with CDF and PDF
defined in Equations (3) and (4), respectively. Suppose X1:n, X2:n, . . . , Xn:n denote the order
statistics obtained from this sample and Xr:n is the ith order statistic, then the density
function of the rth order statistic is provided by

gr:n(x) =
n!

(r − 1)!(n − r)!

n−r

∑
s=0

(−1)s
(

n − r
s

)
g(x)G(x)r+s−1. (26)

From (17), we determine

G(x)r+s−1 =

[
∞

∑
m=0

δmF(x)m

]r+s−1

=
∞

∑
m=0

dr+s−1,mF(x)m, (27)

where
dr+s−1,0 = δr+s−1

0 and dr+s−1,m = (mδ0)
−1 m

∑
q=1

[q(r + s)− m]δqdr+s−1,m−q.

By replacing t instead of m in Equation (19), we obtain

g(x) =
∞

∑
t=0

δt+1(t + 1) f (x)F(x)t. (28)

By substituting (26) in (27) and (28), we determine the PDF of the rth order statistic
Xr:n as

gr:n(x) =
∞

∑
t,m=0

πt,mht+m+1(x), (29)
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where ht+m+1(x) denotes the PDF of exp-F distribution with power parameter (t + m + 1), and

πt,m =
n−r

∑
s=0

(−1)s
(

n − r
s

)
n!δt+1(t + 1)dr+s−1,m

(r − 1)!(n − r)!(t + m + 1)
.

Based on Equation (29), several mathematical properties of these order statistics such
as ordinary and incomplete moments, factorial moments, moment generating function,
mean deviations and several others, can be obtained.

4.7. Stochastic Orderings

Stochastic orders and inequalities are used in many different areas of probability and
statistics. Such areas include reliability theory, survival analysis, economics, insurance,
actuarial science, queuing theory, biology, operations research, management science, etc.
For more detail regarding stochastic ordering, see (Shaked et al., 1994 [15]). Given two
random variables X and Y, we say that X is smaller than Y in the:

1. usual stochastic order, denoted by X ≤st Y, if GX(x) ≥ GY(x), for all x;
2. hazard rate order, denoted by X ≤hr Y, if hX(x) ≥ hY(x), for all x;
3. reversed hazard rate order, denoted by X ≤rh Y, if GX(x)/GY(x), is decreases in x;
4. mean residual life order, denoted by X ≤mrl Y, if mX(x) ≤ mY(x), for all x;
5. likelihood ratio order, denoted by X ≤lr Y, if gX(x)/gY(x), is decreases in x.

For all the previous orders, we determine the following chains of implications:

X ≤lr Y ⇒ X ≤hr Y ⇒ X ≤st Y

and
X ≤lr Y ⇒ X ≤rh Y ⇒ X ≤st Y,

also
X ≤hr Y ⇒ X ≤mrl Y.

For the proposed GOLE-F family, the following theorem provides the stochastic
comparison results with respect to the above orderings.

Theorem 1. Let X ∼ GOLE(a1, b1, c1, φ) and Y ∼ GOLE(a2, b2, c2, φ). If a1 ≥ a2. and
b1 ≥ b2 and c1 ≤ c2, then X ≤st Y.

Proof. If c1 ≤ c2, then
F(x) c1

1 − F(x) c1
≥ F(x) c2

1 − F(x) c2
. (30)

Hence, if a1 ≥ a2 and b1 ≥ b2, then

a1F(x) c1

1 − F(x) c1
+

b1

2

(
F(x) c1

1 − F(x) c1

)2

≥ a2F(x) c2

1 − F(x) c2
+

b2

2

(
F(x) c2

1 − F(x) c2

)2

. (31)

Therefore,[
−
(

a1F(x) c1

1 − F(x) c1
+

b1

2

(
F(x) c1

1 − F(x) c1

)2
)]

≤
[
−
(

a2F(x) c2

1 − F(x) c2
+

b2

2

(
F(x) c2

1 − F(x) c2

)2
)]

. (32)

Thus,

1 − exp
[
−
(

a1F(x) c1

1−F(x) c1 + b1
2

(
F(x) c1

1−F(x) c1

)2
)]

≥ 1 − exp
[
−
(

a2F(x) c2

1−F(x) c2 + b2
2

(
F(x) c2

1−F(x) c2

)2
)]

.
(33)
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That means GX(x) ≥ GY(x) and X ≤st Y. �

Theorem 2. Let X ∼ GOLE(a1, b1, c, φ) and Y ∼ GOLE(a2, b2, c, φ). If a1 > a2 and
b1 = b2, then X ≤lr Y.

Proof. We determine

gX(x)
gY(x)

=

[(a1 + (b1 − a1)F(x)c)]× exp
[
−
(

a1F(x)c

1−F(x)c +
b1
2

(
F(x)c

1−F(x)c

)2
)]

[(a2 + (b2 − a2)F(x)c)]× exp
[
−
(

a2F(x)c

1−F(x)c +
b2
2

(
F(x)c

1−F(x)c

)2
)] . (34)

Thus,

log
(

gX(x)
gY(x)

)
= log [(a1 + (b1 − a1)F(x)c)]−

(
a1F(x)c

1−F(x)c +
b1
2

(
F(x)c

1−F(x)c

)2
)

− log[(a2 + (b2 − a2)F(x)c)] +

(
a2F(x)c

1−F(x)c +
b2
2

(
F(x)c

1−F(x)c

)2
)

.
(35)

By differentiating the last Equation and after some simplifications, we obtain

d
dx

(
log
(

gX(x)
gY(x)

))
= (a2b1−a1b2)c f (x)F(x)c−1

(a1+(b1−a1)F(x)c)(a2+(b2−a2)F(x)c)
+ (a2−a1)c f (x)F(x)c−1

(1−F(x)c)
2 + (b2−b1)c f (x)F(x)2c−1

(1−F(x)c)
3 . (36)

Now, if a1 > a2 and b1 = b2, then d
dx

[
log
(

gX(x)
gY(x)

)]
< 0, and hence gX(x)/gY(x) is

decreases in x. This implies that X ≤lr Y. �

4.8. Stress-Strength Model

The stress–strength model defines the life of an element which has a random strength
Y that is subjected to an accidental stress X. The component fails at the instant that
the stress applied to it exceeds the strength, and the component will function suitably
whenever X < Y. Hence, R = P(X < Y) is a measure of component reliability (Kotz et al.,
2003 [16]). It has many applications, especially in reliability engineering. We derive the
reliability R when Y and X are two independent continuous random variables from the
GOLE-F (a1, b1, c1, φ1) and GOLE-F (a2, b2, c2, φ2) distributions, respectively. The reliability
is defined by

R =
∫ ∞

0
gY(x)GX(x)dx. (37)

Using the PDF in (19) and the CDF in (18), we obtain

R =
∞

∑
m,t=0

δm+1δtRm+1,t , (38)

where
Rm+1,t =

∫ ∞
0 πm+1(x, φ1)Πt(x, φ2)dx, and

πm+1(x, φ1) = (m + 1) f (x, φ1)F(x, φ1)
m, Πt(x, φ2) = F(x, φ2)

t.
The constants δt, δm+1 are defined as:

δt =
∞

∑
l=t

∞

∑
i=0

i

∑
j=0

∞

∑
k=0

(−1)i+l+t+1bj
2ai

2

(
i
j

)(
l
t

)(
i + j + k − 1

k

)(
c2(i + j + k)

l

)
i!2j ,
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for t ≥ 1. For t = 0, then

δ0 = 1 −
∞

∑
l=0

∞

∑
i=0

i

∑
j=0

∞

∑
k=0

(−1)i+l+mbj
2ai

2

(
i
j

)(
i + j + k − 1

k

)(
c2(i + j + k)

l

)
i!2j ,

and

δm+1 =
∞

∑
l=m+1

∞

∑
i=0

i

∑
j=0

∞

∑
k=0

(−1)i+l+m+2bj
1ai

1

(
i
j

)(
l

m + 1

)(
i + j + k − 1

k

)(
c1(i + j + k)

l

)
i!2j ,

for m ≥ 0.
If φ1 = φ2, then the model reduces to

R =
∞

∑
m,t=0

δm+1δt(m + 1)
m + t + 1

. (39)

5. Estimation and Simulation

5.1. Estimation of the Parameters

Here, we find the maximum likelihood estimates (MLEs) of the parameters of the
new family of distributions from complete samples only. Let x1, x2, . . . , xn be observed
values from the GOLE − F family with parameters a, b, c and φ. Let ξ = (a, b, c, φ)T be the
parameters vector. The total log-likelihood function for ξ is obtained by

l(ξ) = n log c +
n
∑

i=1
log f (xi; φ) + (c − 1)

n
∑

i=1
log F(xi; φ) +

n
∑

i=1
log
(
a + (b − a)F(xi; φ)c)

−3
n
∑

i=1
log
(
1 − F(xi; φ)c)− a

n
∑

i=1
H(xi, φ)− b

2

n
∑

i=1
H( xi, φ)2,

(40)

where H( xi, φ) =
F(xi ;φ)c

1−F(xi ;φ)c and H( xi, φ)2 =
(

F(xi ;φ)c

1−F(xi ;φ)c

)2
.

The components of the score vector U(ξ) are obtained by

Ua =
n

∑
i=1

1 − F(xi; φ)c

a + (b − a)F(xi; φ)c −
n

∑
i=1

H(xi, φ), (41)

Ub =
n

∑
i=1

F(xi; φ)c

a + (b − a)F(xi; φ)c −
1
2

n

∑
i=1

H( xi, φ)2, (42)

Uc =
n
c +

n
∑

i=1
log F(xi; φ) +

n
∑

i=1

(b−a)F(xi ;φ)c log F(xi ;φ)
a+(b−a)F(xi ;φ)c +3

n
∑

i=1

F(xi ;φ)c log F(xi ;φ)
1−F(xi ;φ)c

−a
n
∑

i=1

F(xi ;φ)c log F(xi ;φ)

(1−F(xi ;φ)c)
2 −b

n
∑

i=1

F(xi ;φ)2c log F(xi ;φ)

(1−F(xi ;φ)c)
3 ,

(43)

and

Uφk =
n
∑

i=1

∂ f (xi ;φ)
∂φk

f (xi ;φ)
+(c − 1)

n
∑

i=1

∂F(xi ;φ)
∂φk

F(xi ;φ)
+

n
∑

i=1

c(b−a)F(xi ;φ)c−1 ∂F(xi ;φ)
∂φk

a+(b−a)F(xi ;φ)c

+3
n
∑

i=1

cF(xi ;φ)c−1 ∂F(xi ;φ)
∂φk

1−F(xi ;φ)c −a
n
∑

i=1

∂H( xi ,φ)
∂φk

−b
n
∑

i=1
H( xi, φ)

∂H( xi ,φ)
∂φk

(44)

Setting Ua, Ub, Uc and Uφ equal to zero, and solving the equations simultaneously,

yields the MLE ξ̂ =
(

â, b̂, ĉ, φ̂
)T

of ξ = (a, b, c, φ)T . These equations cannot be solved
analytically, and statistical software can be used to solve them numerically using iterative
methods such as the Newton–Raphson type algorithms.
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5.2. Simulation Study

In this section, a graphical Monte Carlo simulation study is conducted to compare
the performance of the different estimators of the unknown parameters for the GOLE-E
(a, b, c, λ) distribution. All the computations in this section are conducted using the R
program. We generate N = 1000 samples of size n = 20, 25, . . . , 500 from the GOLE-
W and GOLE-E distributions. The true parameter values for GOLE-W (λ = 1) are
a = 1.8, b = 0.5, c = 1.7 and β = 2.8, and those for GOLE-E are a = 2, b = 1.5, c = 2
and λ = 2.5, respectively. We also calculate the bias and mean square error (MSE) of the
MLEs empirically. The bias and MSE are computed by

ˆBiash =
1
N

N

∑
i=1

(
ĥi − h

)
, ˆMSEh =

1
N

N

∑
i=1

(
ĥi − h

)2
.

For h = a, b, c, λ, respectively.
We provide the results of this simulation study in Figures 3–6. From these figures, we

can perceive that when the sample size increases, the empirical biases and MSEs approach
zero in all cases for the two models.

Figure 3. The biases of the estimates of parameters of the GOLE-W distribution.
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Figure 4. The MSEs of the estimates of parameters of the GOLE-W distribution.

Figure 5. The biases of the estimates of parameters of the GOLE-E distribution.

258



Math. Comput. Appl. 2022, 27, 55

Figure 6. The MSE of the estimates of parameters of the GOLE-E distribution.

6. Applications on Real-Life Data Sets

In this section, we illustrate the suitability of the proposed family by fitting two real
data sets on the special models viz-a-viz GOLE − W(a, b, c, λ, β) and GOLE − E (a, b, c, λ),
arising due to this family with PDF mentioned in Sections 3.1 and 3.2, respectively. The
comparison is conducted with some of the existing models via numerical maximizations
of log-likelihood functions using the method of a limited memory quasi-Newton code for
bound–constrained maximization (L-BFGS-B). We determine the log-likelihood function
adjudicated at the MLEs by estimating the parameters.

Data I: The first data set is related to the measurements of nicotine levels in 346 cigarettes.
[https://arxiv.org/ftp/arxiv/papers/1509/1509.08108.pdf, accessed on 19 May 2022]. Data
II: The second data set consists of 74 observations of gauge lengths of 20 mm of single carbon
fibers pertaining to failure stresses. (Kundu and Raqab, 2009 [17]). The descriptive statistics
related to this data sets are given in Table 2.

Table 2. Descriptive Statistics for the data set I and data set II.

Data Sets Min. Mean Median S.D. Skewness Kurtosis 1st Q. 3rd Q. Max.

I 0.10 0.85 0.90 0.33 0.17 0.29 0.60 1.10 2.00
II 1.312 2.477 2.513 0.487 −0.151 −0.127 2.150 2.816 3.5

The total time on test (TTT) plot proposed by Aarset (1987) [18] is a technique to
extract information about the shape of the hazard function. This is drawn by plotting

T(i/n) = {( i
∑

r=1
y(r)) + (n − i)y(i)}/

n
∑

r=1
y(r), where i = 1, 2, . . . , n and y(r) where r = 1, 2, . . . , n

is the order statistics of the sample against (i/n). The constant hazard plot is a straight diago-
nal, while for decreasing (increasing) hazards, it is convex (concave), respectively. The TTT
plots for the data sets in Figure 7 indicate that the data sets have an increasing hazard rate.
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Figure 7. TTT plots of the data set I and II.

The best model is chosen on the basis of information criteria such as AIC (Akaike
Information Criterion), CAIC (Consistent Akaike Information Criterion), BIC (Bayesian In-
formation Criterion) and HQIC (Hannan–Quinn Information Criterion) with the goodness
of fit measures as A* (Anderson–Darling criterion), W* (Cramér–von Mises criterion) and
Kolmogorov–Smirnov (K-S) tests with p-values. The model with minimum values for these
statistics could be chosen as the best model to fit the data except for the KS p-value, whose
maximum value is the desired outcome. Asymptotic standard errors and 95% confidence
intervals of the MLEs of the parameters for each competing model are also computed. For
visual comparison, the fitted PDFs and the fitted CDFs are plotted with the corresponding
observed histograms and ogives.

6.1. Application of GOLE-E

The GOLE-E (a, b, c, λ) distribution is compared with some models, namely exponen-
tial (E), moment exponential (ME) (Dara and Ahmad, 2012 [19]), exponentiated moment
exponential (EM-E) (Hasnain et al., 2015 [20]), exponentiated exponential (E-E) (Gupta
and Kundu, 2001 [21]), beta exponential (B-E) (Nadarajah and Kotz, 2006 [22]) and Ku-
maraswamy exponential (Kw-E) (Cordeiro and de Castro, 2011 [4]) distributions for all
data sets.

In Tables 3–6, the MLEs, standard errors (SEs) and confidence interval (in parentheses)
of the parameters from all the fitted distributions along with the AIC, BIC, CAIC and
HQIC for the two data sets are presented. From Tables 3–6, it is evident that for the
data sets, the GOLE-E distribution is the best model with the lowest values of the AIC,
BIC, CAIC, HQIC, A*, W* and highest p-value of the K-S statistics. Hence, it is a better
model than some recently introduced models, namely exponential (E), moment exponential
(ME), exponentiated moment exponential (EM-E), exponentiated exponential (E-E), beta
exponential (B-E) and Kumaraswamy exponential (Kw-E) distribution, for the two data
sets. More information is provided for a visual comparison in the form of histograms,
ogives or cumulative frequency curves of the observed data with the fitted densities and
fitted cdfs displayed in Figures 8 and 9. These plots show that the proposed distributions
provide the closest fit to all the observed data sets.

260



Math. Comput. Appl. 2022, 27, 55

Table 3. MLEs, standard error (in parentheses), confidence interval values [in brackets] for the data
set I.

Models ^
a

^
b

^
c

^
λ

GOLE-E
(a, b, c, λ)

0.218 8.949 1.345 0.554
(0.315) (3.246) (0.237) (0.083)
[0, 0.84] [2.58, 15.31] [0.88, 1.81] [0.39, 0.72]

Kw-E
(a, b, λ)

3.020 105.575
-

0.252
(0.163) (38.348) (0.045)

[2.70, 3.34] [30.41, 180.73] [0.160.34]

B-E
(a, b, λ)

4.922 17.433
-

0.298
(0.364) (8.216) (0.128)

[4.21, 5.64] [1.32, 33.54] [0.05, 0.55]

E-E
(b, λ)

-
5.526

-
2.726

(0.514) (0.128)
[4.52, 6.53] [2.475, 2.98]

EM-E
(a, b)

2.574 0.284
- -(0.229) (0.012)

[2.13, 3.02] [0.26, 0.31]

M-E
(b)

-
0.406

- -(0.016)
[0.37, 0.44]

E
(λ)

- - -
1.173

(0.063)
[1.04, 1.29]

Table 4. The AIC, BIC, CAIC, HQIC, A*, W* and KS (p-value) values for data set I.

Models AIC BIC CAIC HQIC A* W*
KS

(p-Value)

GOLE-E
(a, b, c, λ)

232.14 247.54 232.28 238.30 2.67 0.47
0.25

(0.29)

Kw-E
(a, b, λ)

236.92 248.46 236.99 241.51 3.37 0.58 0.12
(0.03)

B-E
(a, b, λ)

276.04 287.59 276.11 280.66 6.48 1.09 0.24
(0.16)

E-E
(b, λ)

302.44 310.14 302.47 305.52 9.42 1.59 0.22
(0.23)

EM-E
(a, b) 290.62 298.32 290.65 293.70 8.48 1.46 0.24

(0.20)

M-E
(b) 388.70 392.55 388.71 390.24 6.49 1.09 0.23

(0.008)

E
(λ)

583.66 587.51 583.67 585.20 6.54 1.11 0.34
(0.002)
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Table 5. MLEs, standard error (in parentheses) and confidence interval values [in brackets] for data
set II.

Models ^
a

^
b

^
c

^
λ

GOLE-E
(a, b, c, λ)

0.365 1.299 4.091 2.748
(0.160) (0.657) (1.248) (0.531)

[0.05, 0.68] [0.01, 2.59] [1.64, 6.54] [1.71, 3.78]

Kw-E
(a, b, λ)

12.473 24.773
-

0.559
(3.939) (23.936) (0.194)

[4.75, 20.19] [0, 71.68] [0.17, 0.93]

B-E
(a, b, λ)

26.259 14.354
-

0.421
(5.838) (17.832) (0.376)

[14.81, 37.70] [0, 49.30] [0, 1.16]

E-E
(b, λ)

-
89.394

-
2.018

(32.458) (0.171)
[25.77, 153.01] [1.68, 2.35]

EM-E
(a, b)

32.319 0.418
- -(10.705) (0.032)

[11.33, 53.30] [0.35, 0.48]

M-E
(b)

-
1.238

- -(0.101)
[1.04, 1.44]

E
(λ)

- - -
0.403

(0.046)
[0.31, 0.49]

Table 6. The AIC, BIC, CAIC, HQIC, A*, W* and KS (p-value) values for data set II.

Models AIC BIC CAIC HQIC A* W*
KS

(p-Value)

GOLE-E
(a, b, c, λ)

107.90 116.20 108.48 111.58 0.43 0.04
0.06

(0.83)

Kw-E
(a, b, λ)

112.66 119.56 113.00 115.36 0.52 0.06 0.07
(0.79)

B-E
(a, b, λ)

116.82 123.72 117.16 119.52 0.62 0.09 0.08
(0.71)

E-E
(b, λ)

121.60 126.20 121.76 123.40 1.04 0.16 0.01
(0.44)

EM-E
(a, b) 119.90 124.50 120.07 121.70 0.63 0.10 0.09

(0.52)

M-E
(b) 230.16 232.46 230.22 231.06 0.58 0.08 0.35

(0.002)

E
(λ)

284.24 286.54 284.29 285.14 0.57 0.09 0.44
(0.01)
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(a) (b) 

Figure 8. Plots of (a) the fitted PDF and (b) estimated CDF for the GOLE-E distribution for data set I.

 
(a) (b) 

Figure 9. Plots of (a) the fitted PDF and (b) estimated CDF for the GOLE-E distribution for data set II.

6.2. Application of GOLE-W

The GOLE-W (a, b, c, λ, β) distribution with (λ = 1) is compared with some models,
namely Weibull (W), moment exponential (ME), exponentiated Weibull (EW) (Mudholker
and Srivastava, 1993 [23]), generalized Weibull (GW) (Lai 2014 [24]), beta Weibull (B-W)
(Lee et al., 2007 [25]) and Kumaraswamy Weibull (Kw-W) (Cordeiro et al. 2010 [26])
distributions for all data sets.

Likewise, in Tables 7–10, the MLEs, standard errors (in parentheses) and confidence
interval [in brackets] of the parameters from all the competitive models along with AIC,
CAIC, BIC and HQIC for the two data sets are presented. From these tables, it is quite
obvious that for the two data sets, GOLE-W distribution is the best model with the lowest
values of AIC, BIC, CAIC, HQIC, A*, W* and highest p-value of the K-S statistics. Hence, it
is worth emphasizing that the proposed GOLE-F provides a more useful generalization
(with exponential and Weibull as special models) than the competitive models for both of
the datasets. A much more useful depiction is presented in the form of a visual comparison
in Figures 10 and 11, where the densities and distribution function of observed data are
compared against the fitted models, respectively. These plots reveal that the proposed
distributions provide the closest fit to all the observed data sets.
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Table 7. MLEs, standard errors (in parentheses) and confidence interval [in brackets] values for data
set I.

Models ^
a

^
b

^
c

^
λ

^
β

GOLE-W
(a, b, c, β)

2.3893 114.6653 4.8673
-

0.506777
(2.1340) (50.1098) (2.1515) (0.1582)
[0, 6.57] [16.45, 212.88] [0.65, 9.08] [0.20, 0.82]

Kw-W
(a, b, λ, β)

0.7103 0.2623
-

3.0464 3.8368
(0.0233) (0.0263) (0.0174)

[0.66, 0.76] [0.23,0.29] [2.99, 3.10] [3.80, 3.87]

B-W
(a, b, λ, β)

0.7730 0.2276
-

3.0201 4.3742
(0.0673) (0.0137) (0.0042) (0.0042)

[0.64, 0.90] [0.20, 0.25] [3.01, 3.02] [4.37, 4.38]

E-W
(b, λ, β)

-
0.8090

-
3.068922 0.9440

(0.1515) (0.3541) (0.1732)
(4.52, 6.53) (2.475, 2.98) [0.60, 1.28]

G-W
(a, λ, β)

0.5597
- -

2.7190 2.0240
(11.2701) (0.1140) (0.7523)
[0, 22.65] [2.50, 2.94] [0.55, 3.50]

M-E
(b)

-
0.406

- - -(0.016)
[0.37, 0.44]

W
(λ, β)

- - -
1.132926 2.71898
(0.0623) (0.1140)

[1.01, 1.26] [2.50, 2.94]

Table 8. The AIC, CAIC, BIC, HQIC, A*, W* and KS (p-value) values for data set I.

Models AIC CAIC BIC HQIC A* W*
KS

(p-Value)

GOLE-W
(a, b, c, β)

230.11 230.23 245.49 236.23 2.51 0.44
0.10

(0.17)

Kw-W
(a, b, λ, β)

231.86 231.96 247.23 237.97 2.57 0.45 0.11
(0.03)

B-W
(a, b, λ, β)

232.84 232.95 248.22 238.96 2.67 0.46 0.12
(0.01)

E-W
(b, λ, β)

232.42 232.39 243.86 236.91 2.81 0.48 0.12
(0.000)

G-W
(a, λ, β)

233.56 233.63 245.09 238.15 2.97 0.51 0.24
(0.000)

M-E
(b) 388.70 392.55 388.71 390.24 6.49 1.09 0.23

(0.008)

W
(λ, β)

231.56 231.88 239.25 234.62 2.97 0.51 0.14
(0.000)

264



Math. Comput. Appl. 2022, 27, 55

Table 9. MLEs, standard errors (in parentheses), confidence interval values [in brackets] for data
set II.

Models ^
a

^
b

^
c

^
λ

^
β

GOLE-W
(a, b, c, β)

6.9553 114.6653 20.1203
-

0.8448
(6.6794) (50.1098) (6.6638) (0.31433)
[0,20.04] [0, 27.65] [7.06, 33.18] [0.23, 1.46]

Kw-W
(a, b, λ, β)

1.6646 1.0950
-

4.3675 0.0187
(0.8438) (0.5829) (2.8871) (0.0192)

[0.01, 3.32] [0.23, 0.29] [0, 10.0262] [0, 0.0564]

B-W
(a, b, λ, β)

1.7401 0.9961
-

4.2987 0.0222
(1.3064) (0.9249) (2.0778) (0.0253)
[0, 4.30] [0, 2.81] [0.23, 8.37] [0, 0.07]

E-W
(b, λ, β)

- 1.7298
-

4.3083 0.9440
(0.7208) (0.9066) (0.1732)

[0.32, 3.14] [2.53, 6.09] [0, 0.07]

G-W
(a, λ, β)

1.5460
- -

5.3816 0.0033
(0.9021) (0.4906) (0.0008)

[0, 3.3142] [4.42, 6.34] [0.002, 0.005]

M-E
(b)

-
0.406

- - -(0.016)
[0.37, 0.44]

W
(λ, β)

- - -
0.0036 5.7342

(0.0009) (0.2428)
[0.0002, 0.0053] [5.26, 6.21]

Table 10. The AIC, CAIC, BIC, HQIC, A*, W* and KS (p-value) values for data set II.

Models AIC CAIC BIC HQIC A* W*
KS

(p-Value)

GOLE-W
(a, b, c, β)

110.57 111.15 119.79 114.25 0.25 0.031
0.06

(0.93)

Kw-W
(a, b, λ, β)

111.06 112.83 120.08 114.98 2.27 0.037 0.08
(0.91)

B-W
(a, b, λ, β)

111.32 112.90 120.13 115.99 0.26 0.038 0.07
(0.92)

E-W
(b, λ, β)

118.33 118.72 122.89 120.68 0.31 0.075 0.098
(0.89)

G-W
(a, λ, β)

113.84 113.13 123.02 119.15 0.30 0.052 0.08
(0.88)

M-E
(b) 388.70 392.55 388.71 390.24 6.49 1.09 0.23

(0.008)

W
(λ, β)

117.45 116.61 121.77 117.91 0.29 0.037 0.09
(0.87)
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(a) (b) 

Figure 10. Plots of (a) the fitted PDF for the GOLE-W distribution and (b) estimated CDF for the
GOLE-W distribution for data set I.

 
(a) (b) 

Figure 11. Plots of (a) the fitted PDF for the GOLE-W distribution and (b) estimated CDF for the
GOLE-W distribution for data set II.

7. Conclusions

Through this paper, we provide a new general family of distributions to generalize
any continuous baseline distribution. The main properties of the new family and other
properties associated with the area of reliability are discussed. It was noted that the
distributions generated by the new family are highly flexible in data modeling where
we used one member to fit two real data to illustrate the importance of this family. This
member provided consistently better fits than the other comparative distributions.
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Appendix A

Recalling Equations (3) and (4) and assigned new numbers as (A1) and (A2), respec-
tively, as follows

G(x; a, b, c, φ) = 1 − exp

[
−
(

aF(x; φ)c

1 − F(x; φ)c +
b
2

(
F(x; φ)c

1 − F(x; φ)c

)2
)]

. (A1)

g(x; a, b, c, φ) =

[
c f (x; φ)F(x; φ)c−1(a + (b − a)F(x; φ)c)(

1 − F(x; φ)c)3

]
× exp

[
−
(

aF(x; φ)c

1 − F(x; φ)c +
b
2

(
F(x; φ)c

1 − F(x; φ)c

)2
)]

. (A2)

Proposition A1. Given x = F(x), by using the equivalence: ey ∼ 1 + y when y → 0 since
lim

x→−∞
F(x)c → 0 . Then, by the properties of the CDF in Equation (A1), we arrive at

G(x) ∼ aF(x)c

1 − F(x)c +
b
2

(
F(x)c

1 − F(x)c

)2

,

and, by asymptotic dominance, we obtain

G(x) ∼ a F(x)c. (A3)

Using the same arguments, we obtain

g(x) ∼ c a f (x)F(x)c−1. (A4)

In addition, the survival function is close to one; thus, the denominator in the hazard function
is close to one. Then, using Equations (A3) and (A4), we obtain

h(x) ∼ c a f (x)F(x)c−1. (A5)

Proposition A2. Similarly, using the same arguments when lim
x→+∞

F(x)c → 1 , we can prove that

the survival function can be approximately reduced as follows

1 − G(x) ∼ 1 − e
−( a

1−F(x)c
+ b

2 { 1
1−F(x)c

}2
)
. (A6)

Using the same arguments, we obtain

g(x) ∼ bc f (x)

(1 − F(x)c)3 e
−( a

1−F(x)c
+ b

2 { 1
1−F(x)c

}2
)
. (A7)

Using Equations (A6) and (A7), we obtain

h(x) ∼ bc f (x)

(1 − F(x)c)3 .

This completes the proof.
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Abstract: In data analysis and signal processing, the recovery of structured functions from the given
sampling values is a fundamental problem. Many methods generalized from the Prony method have
been developed to solve this problem; however, the current research mainly deals with the functions
represented in sparse expansions using a single generating function. In this paper, we generalize the
Prony method to solve the sparse expansion problem for two generating functions, so that more types
of functions can be recovered by Prony-type methods. The two-generator sparse expansion problem
has some special properties. For example, the two sets of frequencies need to be separated from
the zeros of the Prony polynomial. We propose a two-stage least-square detection method to solve this
problem effectively.

Keywords: Prony method; exponential sums; eigenfunctions; eigenvalues; sparse expansion;
generating function; Hankel matrix; short time Fourier transform; least-square method

1. Introduction

The Prony method is a popular tool used to recover the functions represented in
sparse expansions using one generating function. For example, the function with the
following form

f (x) =
M

∑
j=1

cje
ixφj (1)

can be recovered from 2M equispaced sampling values f (lh), l = 0, ..., 2M − 1 for an
appropriate positive constant h; however, in many real-world applications, we need to
deal with the functions represented by more than one generating functions. For example,
the harmonic signals with the form

f (x) =
M

∑
j=1

(
cj cos(φjx) + dj sin(β jx)

)
, (2)

are generated by two generating functions (or simply generators): cos(φx) and sin(βx),
where φ and β are generic parameters used as the placeholders for the real parameters
{φj}M

j=1 and {β j}M
j=1 to generate the specific terms in the expansion. In this system, we have

two sets of coefficients {cj}M
j=1 and {dj}M

j=1 and two sets of frequencies {φj}M
j=1 and {β j}M

j=1.
Analogous to the original Prony method, we expect to use 4M equispaced sampling values
f (lh), l = 0, ..., 4M − 1 to recover those four sets of parameters.

There are some existing methods to solve this problem. The first one is to convert it to
a single-generator problem by the following formulas

cos x =
1
2
(eix + e−ix) and sin x =

1
2i
(eix − e−ix),

Math. Comput. Appl. 2022, 27, 60. https://doi.org/10.3390/mca27040060 https://www.mdpi.com/journal/mca
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which results in problem (1) (see [1]). Another way using the same idea is based on the
even/odd properties for cos x and sin x (see [2]) as follows

f (x) + f (−x) = 2
M

∑
j=1

cj cos(φjx). (3)

However, this approach is very restrictive, because the chance that one can make this
kind of conversion is very small. In this paper, we are interested in solving the general
two-generator sparse expansion problem by a new way of generalized Prony method. More
specifically, we study the functions with the following two-generator sparse expansion

f (x) =
M1

∑
j=1

cju(φjx) +
M2

∑
l=1

dlv(βl x), (4)

where u(φx) and v(βx) are two different functions used as the generators. In order to make
the Prony method work, we need a critical condition for our special technique: There exists
a linear operator, such that u(φx) and v(βx) are both eigenfunctions of this operator.

Another situation that could lead to the two-generator expansion problem is when we
apply some special transforms on a sparse expansion. For example, when we apply the
short time Fourier transform (STFT), i.e.,

STFT{ f (x)}(ω, τ) =
∫ ∞

−∞
f (x)w(x − τ)e−iωxdx (5)

using the Gaussian window function w(x) = 1√
2π

e−
x2

2σ2 on the sparse cosine expansion

f (x) =
M

∑
j=1

cj cos(φjx), (6)

we would obtain a two-generator sparse expansion as follows,

f (x) =
M

∑
j=1

cje
−β(φj−x)2

+
M

∑
j=1

cje
−β(φj+x)2

. (7)

In this example, the two generators are e−β(φ−x)2
and e−β(φ+x)2

with β �= 0. Actually,
the original single-generator problem (6) can be solved directly. For example, one can
convert cos(φx) to 1

2 (e
iφx + e−iφx) (see [1]), or use a method based on the Chebyshev

polynomials (see [3]). When we solve problem (6) directly, we use the sampling values in
the time domain; when we solve the problem in the form of (7), we use the sampling values
in the frequency domain. (See [4] for a discussion on sampling values in the frequency
domain.) In this paper, we use this example to study the special properties of the two-
generator sparse expansion problem.

Since the signals could take various forms, not necessarily in the exponential form
studied in the classical Prony method, many researchers generalized the Prony method to
handle different types of signals. For example, many results in [1,3,5–12] have been devel-
oped over the last few years. In particular, Peter and Plonka in [1,8] generalized the Prony
method to reconstruct M-sparse expansions in terms of eigenfunctions of some special
linear operators. In [3], Plonka and others reconstructed different signals by exploiting the
generalized shift operator. These results provide us the building blocks for our method in
this paper.

We organize our presentation in the remaining sections as follows. In Section 2, we
quickly review the classical Prony method and one of its generalizations for the Gaussian
generating function to establish the foundation of our method. In Section 3, we describe the

270



Math. Comput. Appl. 2022, 27, 60

details of our method using the example with two generators: cosine and sine functions.
In Section 4, we apply our method on two different types of Gaussian generating functions,
so that we can study an interesting property: When the Hankel matrix for finding the coefficients
of the Prony polynomial is singular, what does it really mean? In Section 5, we show two examples
that correspond to the two problems solved in Sections 3 and 4, respectively. Finally, we
make conclusions in Section 6 and describe two related research problems to be solved
in the future.

2. Review of the Prony Method and One of Its Generalizations

Our method is built on top of the Prony method and one of its generalizations. Be-
fore we present our technique, we review these basic methods.

2.1. Classical Prony Method

Let f (x) be a function in the form of

f (x) =
M

∑
j=1

cje
−ixφj (8)

with M ≥ 1. Then the coefficients {cj}M
1 and the frequencies {φj}M

1 can be recovered from
the sampling values f (lh), l = 0, ..., 2M − 1, where h is some positive constant. To solve
this problem, a special polynomial called the Prony polynomial can help us convert the
relatively hard non-linear problem (8) to two linear problems and a simple non-linear problem
(finding zeros of a polynomial). The Prony polynomial for (8) is defined as

Λ(z) =
M

∏
j=1

(z − e−ihφj) =
M

∑
l=0

λlzl , (9)

where λl , l = 0, ..., M are the coefficients of the monomial terms in (9) with the leading
coefficient λM = 1. The technique is based on the following critical property:

M

∑
l=0

λl f (h(l + m)) =
M

∑
l=0

λl

M

∑
j=1

cje
−ih(l+m)φj =

M

∑
j=1

cje
−ihmφj

M

∑
l=0

λl e
−ihlφj

︸ ︷︷ ︸
=0

= 0 (10)

for any m = 0, 1, . . . , M − 1, which can be written as the following linear system

[
f (h(l + m))

]M−1

l,m=0

⎡⎢⎣ λ0
...

λM−1

⎤⎥⎦ = −

⎡⎢⎣ f (hM)
...

f (h(2M − 1))

⎤⎥⎦. (11)

The coefficient vector λ = [λ0, λ1, . . . , λM−1]
T can be calculated from the 2M sampling

values f (lh), l = 0, ..., 2M − 1. The linear system (11) is guaranteed to have a unique
solution under the condition that all φj’s are distinct in (−K, K) ⊂ R for some K > 0 (with
h in the range 0 < h < π

K ), and c1, . . . , cM are nonzero in C, which is a natural requirement
for problem (8). This property is a direct result of the following matrix factorization[

f (h(l + m))

]M−1

l,m=0
= V Tdiag(c1, ..., cM)V , (12)
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where V := [e−ilhφj ]
l=M−1,j=M
l=0,j=1 is a Vandermonde matrix, which is non-singular for distinct

φj’s and hφj ∈ (−π, π] for j = 1, ..., M. The frequencies can be extracted from the zeros of
Λ(z) (in the form of zj = e−ihφj ) using the formula

φj =
−Im(ln(zj))

h
, j = 1, ..., M. (13)

Finally, the coefficients cj, j = 1, ..., M can be determined by solving the following
overdetermined linear system (with M unknowns and 2M equations)

f (lh) =
M

∑
j=1

cje
−ilhφj , l = 0, ..., 2M − 1. (14)

The redundant equations in this overdetermined linear system will play a critical role
in our two-generator method to help us separate the frequencies associated with the two
generators (see Section 3).

2.2. Sparse Expansions on Shifted Gaussian

In order to solve the two-generator sparse expansion problem (7), we need to apply
the technique presented in [3], which solves a single-generator sparse expansion problem
with the following form

f (x) =
M

∑
j=1

cje
−β(x−φj)

2
, (15)

where β ∈ C\{0}. The technique relies on the following generalized shift operator

SK,h f (x) = K(x, h) f (x + h), (16)

where h �= 0, and K(·, ·) has the property

K(x, h1 + h2) = K(x, h1)K(x + h1, h2) = K(x, h2)K(x + h2, h1).

The K(x, h) function in (16) is chosen to be eβh(2x+h), so that we have the following
critical property

(SK,he−β(φ−·)2
)(x) = e2βφhe−β(φ−x)2

, (17)

which means that e−β(φj−x)’s are eigenfunctions of SK,h for all φj ∈ R.

The sparse expansion f (x) in (15) can be reconstructed using 2M sampling values
f (x0 + hk), k = 0, ..., 2M− 1, and x0 is an arbitrary real number. If Re β �= 0, then h ∈ R\{0};
while if Re β = 0, then 0 < h ≤ π

2|Imβ|L with φj ∈ (−L, L) for j = 1, ..., M for some given L.
(See [3].) The Prony polynomial for the problem in (15) can be defined as:

Λ(z) :=
M

∏
j=1

(z − e2hβφj) =
M

∑
l=0

λlzl (18)

with λM = 1. Then, we have the following linear system

M−1

∑
l=0

λl eβh(l+m)(2x0+h(l+m)) f (x0 + h(l + m)) = −eβh(m+M)(2x0+h(m+M)) f (x0 + h(m + M)) (19)

for m = 0, 1, ..., M − 1, which can be represented as an inhomogeneous system

Hλ = −G, (20)
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where G :=
[
(SK,(M+m)h f )(x0)

]M−1
m=0 , and H :=

[
(SK,(l+m)h f )(x0 + (l + m)h)

]M−1
l,m=0. This

H matrix is a Hankel matrix, and it has the following structure

H :=
[
(SK,(l+m)h f )(x0 + (l + m)h)

]M−1
l,m=0 =

[
K(x0, (l + m)h) f (x0 + (l + m)h)

]M−1

l,m=0

= Vdiag(cje
−β(φj−x0)

2
)V T ,

(21)

with the Vandermonde matrix

V :=

⎡⎢⎢⎢⎣
1 1 . . . 1

e2βhφ1 e2βhφ2 . . . e2βhφM

...
... . . .

...
e2(M−1)βhφ1 e2(M−1)βhφ2 . . . e2(M−1)βhφM

⎤⎥⎥⎥⎦.

Thus, H is invertible for distinct φj’s in (−L, L) ⊂ R for L > 0, and the vector of the
coefficients λ := [λ0, ..., λM−1]

T are obtained by solving the system (20), which can be used
to calculate the parameters {φj}’s.

Finally, the coefficients cj’s in the expansion (15) can be computed by solving the
following overdetermined linear system:

f (x0 + lh) =
M

∑
j=1

cje
−β(x0−φj+lh)2

, l = 0, ..., 2M − 1. (22)

3. The Sparse Expansion Problem with Two Generators: Cosine and Sine

In this section, we present our method for solving the two-generator sparse expansion
problem in the following form

f (x) =
M1

∑
j=1

cj cos(φjx) +
M2

∑
l=1

dl sin(βl x) (23)

through a modified Prony method. We present our method in the following theorem.

Theorem 1. Assume that a function f (x) has the two-generator sparse expansion form of (23),
where the number of terms for two generators M1 and M2 are known, but the two sets of co-
efficients in {c1, . . . , cM1} and {d1, . . . , dM2} and the two sets of frequencies in {φ1, . . . , φM1}
and {β1, . . . , βM2} are unknown. If 4(M1 + M2) − 1 equispaced sampling values of the form
f (x0 + kh) for k = −2(M1 + M2) + 1, . . . ,−1, 0, 1, . . . , 2(M1 + M2)− 1 are provided, then the
original function f (x) can be uniquely reconstructed under the following conditions:

1◦ All the coefficients {c1, . . . , cM1 , d1, . . . , dM2} are nonzero in C.
2◦ All the frequencies {φ1, . . . , φM1 , β1, . . . , βM2} are distinct in a range [0, K) ⊂ R for some

K > 0. Furthermore, h is selected from the range 0 < h <
π

K
.

3◦ The value of x0 ∈ R is selected to make the (M1 + M2) numbers cos(φ1x0), . . . , cos(φM1 x0),
sin(β1x0), . . . , sin(βM2 x0) nonzero.

Proof. First, we choose an appropriate linear operator, such that our two generating
functions cos(φx) and sin(βx) in (23) are both the eigenfunctions of this operator. We
consider the symmetric shift operator (see [3])

Sh,−h f (x) :=
(S−h + Sh

2

)
f (x) =

f (x − h) + f (x + h)
2

. (24)
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When we apply this operator on cos(φx) and sin(βx), we obtain

(Sh,−h) cos(φx) = cos(φh) cos(φx),

(Sh,−h) sin(βx) = cos(βh) sin(βx),
(25)

where cos(φh) and cos(βh) are the eigenvalues. Now we define the Prony polynomial for
problem (23) using all the eigenvalues {cos(φjh)}M1

j=1 and {cos(βlh)}M2
l=1 as follows:

Λ(z) =
M1

∏
j=1

(
z − cos(hφj)

) M2

∏
l=1

(z − cos(hβl)), (26)

which can be written in terms of the Chebyshev polynomials as

Λ(z) =
M1+M2

∑
k=0

λkTk(z), (27)

where Tk(z) := cos(k cos−1(z)). (See [3] for more information on this technique.) Since
the leading coefficient of the Chebyshev polynomial Tk(z) is 2k−1, we choose λM1+M2 =

21−(M1+M2), so that Λ(z) in (27) has the leading coefficient 1. This Prony polynomial has
the following critical property:

M1+M2

∑
k=0

λkTk(cos(φjh)) = 0 and
M1+M2

∑
k=0

λkTk(cos(βlh)) = 0

for j = 1, 2, . . . , M1 and l = 1, 2, . . . , M2, respectively, which is essential to help us derive
the following linear system.

To derive a linear system for {λk}M1+M2−1
k=0 , we need to calculate the following expression

M1+M2

∑
k=0

λk

(
Skh,−khSmh,−mh f (x0)

)
,

which can be shown to be zero. That is,

1
4

M1+M2

∑
k=0

λk

(
f (x0 + (m + k)h) + f (x0 − (m + k)h) + f (x0 + (m − k)h) + f (x0 − (m − k)h)

)
= 0 (28)

for m = 0, 1, . . . , M1 + M2 − 1. Indeed, using the right-hand-side expression in (23) for f (x)
in (28) and for a fixed m ∈ {0, 1, . . . , M1 + M2 − 1}, we obtaining

1
4

M1+M2

∑
k=0

λk

[ M1

∑
j=1

2cj

(
cos(φj(x0 + mh)) + cos(φj(x0 − mh))

)
cos(φjkh)

]

+
1
4

M1+M2

∑
k=0

λk

[ M2

∑
l=1

2dl

(
sin(βl(x0 + mh)) + sin(βl(x0 − mh))

)
cos(βlkh)

]

=
M1

∑
j=1

cj cos(φjx0) cos(φjmh)
( M1+M2

∑
k=0

λk cos(φjkh)
)
+

M2

∑
l=1

dl sin(βl x0) cos(βlmh)
( M1+M2

∑
k=0

λk cos βl(kh)
)

=
M1

∑
j=1

cj cos(φjx0) cos(φjmh)
( M1+M2

∑
k=0

λkTk(cos(φjh))︸ ︷︷ ︸
=0

)
+

M2

∑
l=1

dl sin(βl x0) cos(βlmh)
( M1+M2

∑
k=0

λkTk(cos(βlh))︸ ︷︷ ︸
=0

)

= 0.
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We can reformulate the system (28) as

(M1+M2)−1

∑
k=0

λk

(
f (x0 + (m + k)h) + f (x0 − (m + k)h) + f (x0 + (m − k)h) + f (x0 − (m − k)h)

)
= −21−(M1+M2)

(
f (x0 + ((M1 + M2) + m)h) + f (x0 − ((M1 + M2) + m)h)

+ f (x0 + ((M1 + M2)− m)h) + f (x0 − ((M1 + M2)− m)h)
) (29)

for m = 0, 1, . . . , M1 + M2 − 1. To solve this system, we need 4(M1 + M2)− 1 sampling
values in the form of f (x0 + kh) for k = −2(M1 + M2)+ 1, . . . ,−1, 0, 1, . . . , 2(M1 + M2)− 1.

In order to see that the linear system in (29) has a unique solution, we study the
(M1 + M2) × (M1 + M2) coefficient matrix in (29), which we denote as H. As in the
classical Prony method, we can factorize H in the following structure

H : =
[

f (x0 + (m + k)h) + f (x0 − (m + k)h) + f (x0 + (m − k)h) + f (x0 − (m − k)h)
](M1+M2)−1

m,k=0

= 4
[ M1

∑
j=1

cj cos(φjx0) cos(φjmh) cos(φjkh) +
M2

∑
l=1

dl sin(βl x0) cos(βlmh) cos(βlkh)
](M1+M2)−1

m,k=0

= 4V hDV T
h ,

where the Vandermonde Block matrix V h can be written as

V h :=
[
A B

]
, (30)

with

A :=

⎡⎢⎢⎢⎣
1 . . . 1

T1(cos φ1h) . . . T1(cos φM1 h)
... . . .

...
T(M1+M2)−1(cos φ1h) . . . T(M1+M2)−1(cos φM1 h)

⎤⎥⎥⎥⎦
(M1+M2)×M1

(31)

and

B :=

⎡⎢⎢⎢⎣
1 . . . 1

T1(cos β1h) . . . T1(cos βM2 h)
... . . .

...
T(M1+M2)−1(cos β1h) . . . T(M1+M2)−1(cos βM2 h)

⎤⎥⎥⎥⎦
(M1+M2)×M2

, (32)

and the diagonal block matrix D can be written as

D :=

[
D1 0
0 D2

]
(33)

where

D1 :=

⎡⎢⎣c1 cos(φ1x0)
. . .

cM1 cos(φM1 x0)

⎤⎥⎦ (34)
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and

D2 :=

⎡⎢⎣d1 sin(β1x0)
. . .

dM2 sin(βM2 x0)

⎤⎥⎦. (35)

Thus, H is guaranteed to be invertible by the conditions 2◦ and 3◦ of the theorem.
Then, we can find the unique solution for {λk}M1+M2−1

k=0 from the linear system (29).
With these λk values for Λ(z) as in (26), we can determine φj’s and βl ’s from the zeros

of Λ(z); however, this step is non-trivial, because we do not know what zeros correspond
to φj’s and what zeros correspond to βl’s. In order to resolve this ambiguity, we consider
all the possible cases: Among M1 + M2 zeros of Λ(z), M1 of them correspond to φj’s. Thus,
there are a total (M1+M2

M1
) possible choices for φj’s, among which there is exactly one choice

for the solution; however, how do we select the right one? We need to go to the next
overdetermined linear system for the answer.

When we determine the coefficients cj’s and dl’s in (23), we have the following
linear system

f (x0 + hn) =
M1

∑
j=1

cj cos(φj(x0 + hn)) +
M2

∑
l=1

dl sin(βl(x0 + hn)) (36)

for n = −2(M1 + M2) + 1, . . . ,−1, 0, ..., 2(M1 + M2)− 1 corresponding to all the sampling
values, which has 4(M1 + M2)− 1 equations and M1 + M2 unknowns. This overdetermined
linear system gives us the extra information we need to select the true-solution case from
the remaining non-solution cases.

Our method is based on an observation: The sampling values { f (x0 + nh)}2(M1+M2)−1
n=−2(M1+M2)+1

are calculated using the original φj’s and βl’s (corresponding to the true-solution case),
which means that all the 4(M1 + M2)− 1 equations in (36) are completely satisfied for the
true-solution case. In other words, the least-square solution of (36) for the true-solution case
should have this property: Its error term is zero theoretically (or very close to zero due to
rounding errors in computation). While the least-square solution for any non-solution case
would have a significant (with respect to the rounding errors) nonzero error term, which
makes the true solution stand out clearly.

Our experiments have verified this phenomenon. Based on this observation, we
develop a two-stage least-square detection method to minimize the computing cost, and in
Section 5, we demonstrate the effectiveness of this method using a simple example.

Remark 1. The overdetermined linear system (36) plays an important role in determining the
true solution from certain number of possible cases. Typically, this situation happens in the multi-
generator sparse expansion problem. For the single-generator case, we can select same number of
linearly independent equations from the overdetermined system as the number of unknowns to find
the solution; however, for the multi-generator case, the redundant equations are very useful in the
least-square method.

4. The Sparse Expansion Problem with Two Gaussian Generators

In this section, we solve another two-generator sparse expansion problem as in (7)
that uses the two Gaussian generating functions, e−β(φ−x)2

and e−β(φ+x)2
, in the form of

f (x) =
M

∑
j=1

cje
−β(φj−x)2

+
M

∑
j=1

cje
−β(φj+x)2

(37)

for some constant β ∈ C\{0}. In order to recover the coefficients cj ∈ C\{0} and the
parameters φj’s, we need 4M sampling values f (x0 + kh), k = 0, ..., 4M − 1, where x0 ∈ R,
and h satisfies the same condition as in Section 2.2.
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This two-generator sparse expansion problem has a special property: When φj0 = 0

for some j0 ∈ {1, ..., M}, the two functions e−β(φj0−x)2
and e−β(φj0+x)2

are the same. This
property would cause some problem for our method presented in the previous section.
In order to make the discussion easier, we separate these two cases, and consider the case
that φj ∈ R\{0} for all j = 1, ..., M first.

Theorem 2. Assume that a function f (x) has the two-generator sparse expansion form of (37),
where the number of terms M and the constant β ∈ C\{0} are known, but the coefficients in
{c1, . . . , cM} and the parameters in {φ1, . . . , φM} are unknown. If 4M equispaced sampling values
of the form f (x0 + kh) for k = 0, 1, . . . , 4M − 1 are provided, then the original function f (x) can
be uniquely reconstructed under the following conditions:

1◦ The coefficients {c1, . . . , cM} are nonzero in C.
2◦ The parameters {φ1, . . . , φM} are nonzero in (−L, L) ⊂ R for some L > 0, and they are

distinct.
3◦ If Re β �= 0, then h ∈ R\{0}; while if Re β = 0, then 0 < h ≤ π

2|Imβ|L .

Proof. Our method relies on existence of some critical linear operator, such that both gen-
erating functions are its eigenfunctions. Here we use the operator SK,h as defined in (16)
with K(x, h) := eβh(2x+h), which has the following properties:

(SK,he−β(φ−·)2
)(x) = e2βφhe−β(φ−x)2

,

(SK,he−β(φ+·)2
)(x) = e−2βφhe−β(φ+x)2

.
(38)

Clearly e−β(φj−·)2
and e−β(φj+·)2

are eigenfunctions of SK,h for all φj ∈ R\{0} with
corresponding eigenvalues e2βφjh and e−2βφjh, respectively, for j = 1, ..., M. Hence we can
define the Prony polynomial using all these eigenvalues:

Λ(z) =
M

∏
j=1

(z − e2hβφj)
M

∏
j=1

(z − e−2hβφj) =
2M

∑
l=0

λlzl (39)

with λ2M = 1. Since the real number φj �= 0, we can assume that φj > 0 for all j = 1, ..., M
based on the structure in (37) to improve the certainty without loss of generality.

Then for m = 0, 1, ..., 2M − 1, we calculate

2M

∑
l=0

λl(SK,(l+m)h f )(x0) =
2M

∑
l=0

λl eβh(l+m)(2x0+h(l+m)) f (x0 + h(l + m))

=
2M

∑
l=0

λl eβh(l+m)(2x0+h(l+m))
M

∑
j=1

cje
−β(φj−(x0+h(l+m)))2

+
2M

∑
l=0

λl eβh(l+m)(2x0+h(l+m))
M

∑
j=1

cje
−β(φj+(x0+h(l+m)))2

=

(
M

∑
j=1

cje
−β(x0+hm−φj)

2
eβhm(2x0+hm)

)(
2M

∑
l=0

λl e
2βhlφj

)
︸ ︷︷ ︸

=0

+

(
M

∑
j=1

cje
−β(x0+hm+φj)

2
eβhm(2x0+hm)

)(
2M

∑
l=0

λl e
−2βhlφj

)
︸ ︷︷ ︸

=0

= 0,

which can be written as the following linear system

2M−1

∑
l=0

λl eβh(l+m)(2x0+h(l+m)) f (x0 + h(l + m)) = −eβh(m+2M)(2x0+h(m+2M)) f (x0 + h(m + 2M)) (40)
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for m = 0, 1, ..., 2M − 1. To solve this system, we need 4M sampling values: f (x0 + kh) for
= 0, 1, . . . , 4M − 1. To study existence of the solution for this linear system, we would like
to simplify it with respect to the unknown vector λ := [λ0, ..., λ2M−1]

T as follows,

Hλ = −G, (41)

with G :=
[
(SK,(M+m)h f )(x0)

]2M−1
m=0 and

H :=
[
(SK,(l+m)h f )(x0)

]2M−1
l,m=0 . (42)

The invertibility of H can be seen from the following matrix factorization:

H =

[
K(x0, h(l + m)) f (x0 + h(l + m))

]2M−1

l,m=0

=

[
M

∑
j=1

cjeβh(l+m)(2x0+h(l+m))e−β(φj−(x0+h(l+m)))2
+

M

∑
j=1

cjeβh(l+m)(2x0+h(l+m))e−β(φj+(x0+h(l+m)))2

]2M−1

l,m=0

=

[
M

∑
j=1

cje
−β(φj−x0)

2
e2βh(l+m)φj +

M

∑
j=1

cje
−β(φj+x0)

2
e−2βh(l+m)φj

]2M−1

l,m=0

= Vhdiag
(

cje
−β(φj−x0)

2
+ cje

−β(φj+x0)
2
)

VT
h

= V hDV T
h

(43)

where the Vandermonde block matrix V h has the following form

V h :=
[
A B

]
(44)

with

A :=

⎡⎢⎢⎢⎣
1 . . . 1

e2βhφ1 . . . e2βhφM

... . . .
...

e2(2M−1)βhφ1 . . . e2(2M−1)βhφM

⎤⎥⎥⎥⎦
(2M)×M

(45)

and

B :=

⎡⎢⎢⎢⎣
1 . . . 1

e−2βhφ1 . . . e−2βhφM

... . . .
...

e−2(2M−1)βhφ1 . . . e−2(2M−1)βhφM

⎤⎥⎥⎥⎦
(2M)×M

, (46)

and the diagonal block matrix D is given by

D :=

[
D1 0
0 D2

]
(47)

with

D1 :=

⎡⎢⎢⎣
c1eβ(φ1−x0)

2

. . .
cMeβ(φM−x0)

2

⎤⎥⎥⎦ (48)
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and

D2 :=

⎡⎢⎢⎣
c1eβ(φ1+x0)

2

. . .
cMeβ(φM+x0)

2

⎤⎥⎥⎦. (49)

From this structure, we can see that the Vandermonde matrix Vh in (44) is invertible
by conditions 2◦ and 3◦ of the theorem, and hence H in (42) is also invertible by condition
1◦, which results in the unique solution for λ.

With all the λl values found from the above linear system, we can find all the φj values
by calculating the zeros of the Prony polynomial of (39). In this case, we do not need to
deal with the ambiguity that we encountered in the previous section due to the special
structure of the pairs (φj,−φj)’s. Finally, the coefficients cj’s of the sparse expansion (37)
can be computed by solving the following overdetermined linear system:

f (x0 + lh) =
M

∑
j=1

cj

(
e−β(φj+x0−lh)2

+ e−β(φj+x0+lh)2
)

(50)

for l = 0, ..., 4M − 1.

Remark 2. Our method above only works for the case when φj �= 0 for all j in {1, 2, . . . , M};
however, in the real-world situation, when we solve a problem of (37) using 4M sampling values,
how do we know if there exists any φj = 0 in it or not? We need a detection method to tell us if all
the φj’s are nonzero before we apply the above method.

Let us investigate the existence of a solution for the linear system (41), which is deter-
mined by the invertibility of H in (42). We notice that when φ1 = 0, the first column of (45)
and the first column of (46) are the same, which causes the matrix V h in (44) to be singular.
Then, we conclude that H in (43) is singular if any φj = 0. In other words, by checking the
invertibility of H, we can tell if there is any φj = 0 for problem (37). If H in (42) is singular,
our current method does not work. Fortunately we can modify our method to solve the
problem for this special situation.

Let us assume that φ0 = 0, and the remaining φj’s are positive numbers. In this case,
we modify (37) to

f (x) = c0e−βx2
+

M

∑
j=1

cje
−β(φj−x)2

+
M

∑
j=1

cje
−β(φj+x)2

, (51)

and its corresponding Prony polynomial is defined as

Λ(z) = (z − 1)
M

∏
j=1

(z − e2hβφj)
M

∏
j=1

(z − e−2hβφj) =
2M+1

∑
l=0

λlzl (52)

with λ2M+1 = 1. Since Λ(1) = 0, it leads to

2M+1

∑
l=0

λl = 0. (53)

Then we can show that

2M+1

∑
l=0

λl(SK,(l+m)h f )(x0) = 0, for m = 0, 1, ..., 2M, (54)

because we can split the above left-hand-side summation into the following three summa-
tions with zero value each:
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2M+1

∑
l=0

λl eβh(l+m)(2x0+h(l+m))c0e−β(x0+h(l+m))2
= c0e−βx2

0

2M+1

∑
l=0

λl︸ ︷︷ ︸
=0

= 0,

2M+1

∑
l=0

λl eβh(l+m)(2x0+h(l+m))
M

∑
j=1

cje
−β(φj−(x0+h(l+m)))2

=

(
M

∑
j=1

cje
−β(x0+hm−φj)

2
eβhm(2x0+hm)

)(
2M+1

∑
l=0

λl e
2βhlφj

)
︸ ︷︷ ︸

=0

= 0,

and

2M+1

∑
l=0

λl eβh(l+m)(2x0+h(l+m))
M

∑
j=1

cje
−β(φj+(x0+h(l+m)))2

=

(
M

∑
j=1

cje
−β(x0+hm+φj)

2
eβhm(2x0+hm)

)(
2M+1

∑
l=0

λl e
−2βhlφj

)
︸ ︷︷ ︸

=0

= 0.

The linear system (54) for λ := [λ0, ..., λ2M]T can be written as

Hλ = −G, (55)

with G :=
[
(SK,(2M+m+1)h f )(x0)

]2M
m=0 and

H :=
[
(SK,(l+m)h f )(x0)

]2M
l,m=0. (56)

We use (4M + 2) sampling values: f (x0 + kh) for k = 0, 1, . . . , 4M + 1 to solve the
system. Similar to (43), we still have

H = V hDV T
h ,

but we need to modify V h to⎡⎢⎢⎢⎣
1 1 . . . 1 1 · · · 1
1 e2βhφ1 . . . e2βhφM e−2βhφ1 . . . e−2βhφM

...
... . . .

...
... . . .

...
1 e4Mβhφ1 . . . e4MβhφM e−4Mβhφ1 . . . e−4MβhφM

⎤⎥⎥⎥⎦
(2M+1)×(2M+1)

,

which is invertible for positive distinct {φ1, . . . , φM} ⊂ (0, L), and the diagonal block matrix
D becomes

D =

⎡⎢⎣ c0e−βx2
0 0 0

0 D1 0
0 0 D2

⎤⎥⎦
with D1 and D2 maintaining the same forms of (48) and (49), respectively.

After we solve the linear system of (55), we obtain the Prony polynomial that contains
one zero at z = 1 and the remaining zeros appear in pairs of (zj, z−1

j )’s, which corre-
spond to the parameter values 0 and (φj,−φj) pairs. Finally, we will solve the following
overdetermined linear system for c0, c1, . . . , cM values

f (x0 + lh) = c0e−β(x0−lh)2
+

M

∑
j=1

cj

(
e−β(φj+x0−lh)2

+ e−β(φj+x0+lh)2
)

(57)

for l = 0, ..., 4M + 1. From this example, we can see that the value of det(H) can give us
some important information, that is, which of the two systems in (37) and (51) we should
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work on. This property could be useful when we consider a problem in which the M value
in (51) is unknown, but restricted in certain range. (See discussion in Section 6).

5. Numerical Experiments

In this section, we use two simple examples to illustrate the implementation details
of our method for the two-generator sparse expansion problem described in the previous
sections. The first example is for version (23) in Section 3. The second example is for version
(37) in Section 4.

Example 1. We consider a function f (x) (see Figure 1) that is a two-generator expansion with
each generator producing 5 terms in the following form

f (x) =
5

∑
j=1

cj cos(φjx) +
5

∑
j=1

dj sin(β jx), (58)

and the 20 parameters we used are listed in the table below to generate the sampling values.
How to use the 39 equispaced sampling values (where 39 comes from 4 (5 + 5)− 1) in the

form of f (x0 + kh), k = −19, . . . , 0, . . . , 19 to recover the original parameters in Table 1?

Table 1. Original parameters of the function f (x) in (58).

j cj dj φj βj

1 −2 5 2 3
2 3 −6 4 5
3 −4 4 7 6
4 8 −3 8 9
5 7 2 10 11

-3 -2 -1 0 1 2 3 4 5
-30

-25

-20

-15

-10

-5

0

5

10

15

20

25

f(x)
39 sampling points

Figure 1. The signal f (x) in (58) with 39 equispaced sampling values.

There are 20 original parameters in two sets: {c1, . . . , c5, φ1, . . . , φ5} and
{d1, . . . , d5, β1, . . . , β5} corresponding to the two generators, respectively. To recover them,
first we solve the following linear system for the coefficients of the Prony polynomial
{λ0, . . . , λ9} based on the Equation (29)

Hλ = −G,

where
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H =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−36.3064 24.4399 35.5543 −40.2183 −16.8633 18.9503 −0.7573 18.8146 4.4668 −52.7171
24.4399 −0.3760 −7.8892 9.3455 −10.6340 −8.8103 18.8824 1.8548 −16.9513 −9.4925
35.5543 −7.8892 −26.5849 21.6951 17.3985 −10.7019 −6.1982 −16.8834 −12.1046 24.6062
−40.218 39.3455 21.6951 −18.5319 21.6273 20.0106 −46.4677 −20.1576 24.6741 11.4779
−16.8633 −10.6340 17.3985 21.6273 −15.9198 −14.1386 6.0512 −4.9102 3.4249 17.8445
18.9503 −8.8103 −10.7019 20.0106 −14.1386 −29.8792 27.4189 29.6337 −11.7398 −2.7658
−0.7573 18.8824 −6.1982 −46.4677 6.0512 27.4189 −6.2967 20.5893 23.4431 −32.0445
18.8146 1.8548 −16.8834 −20.1576 −4.9102 29.6337 20.5893 −12.4873 0.2846 0.1035
4.4668 −16.9513 −12.1046 24.6741 3.4249 −11.7398 23.4431 0.2846 −35.8269 11.5787

−52.7171 −9.4925 24.6062 11.4779 17.8445 −2.7658 −32.0445 0.1035 11.5787 −9.3042

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
and

G =
[
0.0458 0.0218 −0.0275 −0.0347 −0.0103 0.0048 0.0510 0.0405 −0.0520 −0.0412

]T .

We obtain

λ =
[−0.0088 0.0275 −0.0639 0.1254 −0.2113 0.3180 −0.4300 0.5316 −0.6010 0.3135

]T ,

which corresponds to the following Prony polynomial

Λ(z) = z10 + 0.3135z9 − 0.6010z8 + 0.5316z7 − 0.4300z6 + 0.3180z5 − 0.2113z4 + 0.1254z3 −−0.0639z2 + 0.0275z − 0.0088.

From the 10 zeros of this polynomial, we obtain 10 parameter values:

{11.0000, 2.0000, 3.0000, 10.0000, 4.0000, 5.0000, 9.0000, 6.0000, 7.0000, 8.0000}, (59)

which correspond to {φ1, . . . , φ5, β1, . . . , β5}, but the explicit order is unknown. We must
resolve the ambiguity: What five parameter values are for {φ1, . . . , φ5} (with the remaining
five parameter values for {β1, . . . , β5})?

To separate the φj’s from βl ’s, we consider the following overdetermined linear system:

⎡⎢⎢⎢⎣
cos(φ1x0) · · · cos(φ5x0) sin(β1x0) · · · sin(β5x0)
cos(φ1x1) · · · cos(φ5x1) sin(β1x1) · · · sin(β5x1)

...
...

... · · · ...
...

cos(φ1x19) · · · cos(φ5x19) sin(β1x19) · · · sin(β5x19)

⎤⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

c1
...

c5
d1
...

d5

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎣
f0
f1
...

f19

⎤⎥⎥⎥⎦, (60)

where we use the shorthand notations

xn = x0 + nh and fn = f (x0 + nh)

for n = 0, 1, . . . , 19. Note: In this linear system, we only use 20 out of 39 original sampling
values, which is adequate for this particular example. It is a trade-off issue between the
accuracy of computation and the cost of computation (in time). In general, the more
redundant equations we use, the more accuracy we can achieve in searching for the true
solution. In other words, if we can obtain adequate accuracy, we focus on cutting the
computation cost to the minimum. We do not solve this overdetermined linear system by
the least-square method directly. We split these 20 equations into two parts: In the first part,
we approximate the coefficients {c1, . . . , c5, d1, . . . , d5} in (60) by the least-square method.
Then we apply these derived coefficients to the equations in the second part so as to filter
out the true solution.

Among the 10 values in (59), every time we select 5 of them for {φ1, . . . , φ5}, the re-
maining 5 numbers are automatically for {β1, . . . β5}. We will have total 252 possible
choices (which is the combinatorial number (10

5 )) as the candidates for the solution. Notice
that this combinatorial number is a relatively big number. In order to speed up the pro-
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cessing, we reduce the redundant computation to the minimum. Let us use the notations
{φi

1, . . . , φi
5, βi

1, . . . βi
5} with i = 1, 2, . . . , 252 representing those 252 candidates. Our method

is based on the property that the information given in the sampling values has a lot of
redundancy for selecting the true solution, and we only use just enough information from
the given sampling values so as to save the computation time.

First, when we calculate the coefficients {c1, . . . , c5, d1, . . . , d5} by the least-square
method, we use exactly 10 equations (the same number of the coefficients) out of the 20
equations in (60). Based on our experiments, we do not have to use an overdetermined sys-
tem for a good approximation by the least-square method. A determined system can give us
excellent approximation for the least-square problem, while any underdetermined system
usually does not approximate the data well through the least-square solution. For conve-
nience, we select 10 consecutive equations in (60) somewhere in the middle, which we call
the least-square block in our discussion, to approximate the coefficients {c1, . . . , c5, d1, . . . , d5}.
Specifically, our least-square block takes the subscripts from 6 through 15, and the corre-
sponding sampling values { f6, f7, . . . , f15} should be selected as a reduced linear system
given below,

⎡⎢⎢⎢⎣
cos(φ1x6) · · · cos(φ5x6) sin(β1x6) · · · sin(β5x6)
cos(φ1x7) · · · cos(φ5x7) sin(β1x7) · · · sin(β5x7)

...
...

... · · · ...
...

cos(φ1x15) · · · cos(φ5x15) sin(β1x15) · · · sin(β5x15)

⎤⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

c1
...

c5
d1
...

d5

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎣
f6
f7
...

f15

⎤⎥⎥⎥⎦. (61)

Even if our new linear system (61) is a determined system, we still solve it for a least-
square solution, because the determinant of the square matrix in (61) could be very close to
zero. Then the remaining equations in (60) together with the coefficients derived from (61)
will be used to detect which candidate is the true solution based on the error information.

For each set of values {φi
1, . . . , φi

5, βi
1, . . . , βi

5} among the 252 candidates, the least-
square solution for the linear system (61) would produce the 10 coefficients
[ci

1, . . . , ci
5, di

1, . . . , di
5]

T , and we evaluate the following vector

⎡⎢⎢⎢⎣
f i
0

f i
1
...

f i
19

⎤⎥⎥⎥⎦ :=

⎡⎢⎢⎢⎣
cos(φi

1x0) · · · cos(φi
5x0) sin(βi

1x0) · · · sin(βi
5x0)

cos(φi
1x1) · · · cos(φi

5x1) sin(βi
1x1) · · · sin(βi

5x1)
...

. . .
...

...
. . .

...
cos(φi

1x19) · · · cos(φi
5x19) sin(βi

1x19) · · · sin(βi
5x19)

⎤⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ci
1
...

ci
5

di
1
...

di
5

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

which is in general different from the original sampling vector [ f0, f1, . . . , f19]
T . Then we

will calculate the difference of these two vectors, and see how close they are. We define the
error vector as follows: ⎡⎢⎢⎢⎣

εi
0

εi
1
...

εi
19

⎤⎥⎥⎥⎦ :=

⎡⎢⎢⎢⎣
| f i

0 − f0|
| f i

1 − f1|
...

| f i
19 − f19|

⎤⎥⎥⎥⎦. (62)

To search for the true solution among the 252 candidates, we discover an intrin-
sic property, shown in Figures 2 and 3, that can clearly separate the true solution from
other candidates.

In Figure 2, we plot the error vector for one of the 252 candidates to view its typical
behavior. The error values in the least-square block (with subscripts from 6 to 15) are
very close to zero for a typical candidate; however, the error values that are out of the
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least-square block (with subscripts from 0 to 5 and from 16 to 19) are not close to zero in
general for a candidate that is not the true solution.

This behavior can be explained in this way: The errors in the least-square block are
usually very small due to the fact that the least-square solution of the determined system
approximates the targeting sampling values { f6, f7, . . . , f15} quite well; however, when we
consider an error for a sampling value out of the least-square block, since the corresponding
equation is not involved in the least-square approximation, there is no reason for this
equation to generate a value that is very close to the targeting sampling value.

While for the true solution case, the behavior is different in the sense that the errors for
all the equations in the linear system (60) are very close to zero (see Figure 3, and ignore the
two reference points at the ends). Let us summarize the key property that helps us to find
out the true solution among all the candidates: For a candidate, if the coefficients generated
from the determined linear system (61) by the least-square method cannot approximate just one
sampling value out of the least-square block well, then it cannot be the true solution.

However, if the coefficients for one candidate can approximate one particular sampling
value out of the least-square block well, we can only say that it is highly likely that this
candidate could be the true solution, because the probability for a non-solution candidate
to approximate some sampling value out of the least-square block well is very small.
Based on this observation from our experiments, we design the following strategy for the
solution search.

Strategy: Eliminate as many as possible candidates in the first round filtering in two
steps: Step 1. Select a determined linear system from the overdetermined linear system
in (60) (as the least-square block), and approximate the coefficients {c1, . . . , c5, d1, . . . , d5}
by the least-square method for each of the 252 candidates. Step 2. Apply the derived coef-
ficients in Step 1 on one of the linear equations out of the least-square block to approximate
the targeting sampling value and calculate the error with the targeting sampling value.
If the error is greater than certain threshold (we use 0.1 as our threshold), we drop this
candidate from the consideration; otherwise, this candidate passes the first round filtering.
If only one candidate survives the first round filtering, it must be the true solution. If more
than one candidates pass the first round filtering, we need to do the second round filtering.
In the second round filtering, we simply apply the derived coefficients on another linear
equation out of the least-square block, and calculate the error for the targeting sampling
value. If the error is greater than the threshold, we eliminate this candidate. We keep
doing these cycles until we identify the true solution. Since we have plenty of redundant
equations out of the least-square block, we should be able to determine the true solution
without going through too many cycles in general. Furthermore, those linear equations
corresponding to the original sampling values that are not included in the linear system
(60) can still be used for the above steps when necessary, but the probability to use those
equations out of the linear system (60) will be extremely small. This simple strategy is
designed to allow us to detect the true solution without unnecessary computation, while
we still preserve the option to use the redundant information when necessary.

Figure 2. Display the error vector for one of the 252 candidates.
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Figure 3. Display the error vector for the true solution with two reference points at the ends.

Here we would like to point out that as soon as we select values in φ-group or β-group,
the order of those values in each group is not important, because their corresponding
coefficients (cj’s or dl’s) will also be aligned with them accordingly when we solve the
determined linear system (61) using the least-square method.

Example 2. Our second function to be recovered has the following form

f (ω) =
c1

2
(
e−

1
2 (φ1−ω)2

+ e−
1
2 (φ1+ω)2)

+
c2

2
(
e−

1
2 (φ2−ω)2

+ e−
1
2 (φ2+ω)2)

+
c3

2
(
e−

1
2 (φ3−ω)2

+ e−
1
2 (φ3+ω)2)

,

(63)

which is derived by applying the STFT on the following function

g(x) =
3

∑
j=1

cj cos(φjx), (64)

with the parameters of (64) listed in the following Table 2.

Table 2. Parameters of the function f (x) in (64).

j cj φj

1 0.5000 1.0000
2 0.2500 3.0000
3 1.0000 4.0000

To solve this problem, we need to use 12 (i.e., 4M) sampling values. After we applied
the method described in Section 4, we solved a linear system with 6 unknowns, and derived
the Prony polynomial of degree 6 as follows

Λ(z) = 1.0000(z6 + 1)− 14.4845(z5 + z) + 65.9809(z4 + z2) + 108.8070z3.

The symmetric structure of this polynomial tells us that its zeros appear in (zj, z−1
j )

pairs for j = 1, 2, 3, which correspond to three pairs of parameters: (1.0000,−1.0000),
(3.0000,−3.0000), and (4.0000,−4.0000) for (φj,−φj), j = 1, 2, 3. Finally, we can solve
another linear system for the coefficients cj’s with the errors listed in the Table 3.
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Table 3. Parameters of the function f (x) in (64) and approximate errors using 12 sampling values
with h = 0.5.

j cj φj |cj − c∗j | |φj − φ∗
j |

1 0.5000 1.0000 3.7970.10−2 5.2824.10−13

2 0.2500 3.0000 5.0987.10−14 4.5652.10−13

3 1.0000 4.0000 5.8065.10−14 1.4211.10−14

6. Conclusions

In this paper, we introduce a method that extends the Prony method to solve the
two-generator sparse expansion problem. This method relies on the existence of a special linear
operator for which the two generators must be the eigenfunctions. This two-generator
problem has a special property: The zeros of its Prony polynomial correspond to two
sets of parameters, and there is no straightforward way to separate them. We propose a
two-stage least-square detection method on an overdetermined linear system for each candidate
to extract the true solution, which relies on an intrinsic property for the true solution: Only
the true solution can use the coefficients derived from the least-square block to approximate the
targeting sampling values out of the least-square block well. Our method is designed to minimize
the computation cost, while still maintain the computation accuracy.

It seems that the idea can be extended to the k-generator sparse expansion problem for
k > 2; however, for the general k-generator case, the requirement that there exists a linear
operator such that all the generators must be its eigenfunctions becomes extremely hard to
achieve. For example, in the following sparse expansion problem,

f (x) =
M1

∑
j=1

cj cos(φjx) +
M2

∑
l=1

dleβl x, (65)

it is not easy to find a linear operator, such that both cos(φx) and eβx are its eigenfunctions.
One may argue that the problem could be solved by converting cos(φx) to 1

2 (e
iφx + e−iφx),

and then it becomes a one-generator problem. Notice that converting a two-generator
problem to a one-generator problem may not work most of the time. We are interested in
developing a general method that can solve the two-generator sparse expansion problem
including the one in (65). We can see that there are many difficult problems to be solved in
this multi-generator sparse expansion problem, and we would like to see more researchers
contribute in this direction.

Our method for the two-generator sparse expansion problem can handle certain degree
of uncertainty. For example, in problem (23), if we know the total number of terms (i.e.,
the value of M1 + M2), but we do not know the number of terms in each summation (i.e.,
the individual values of M1 and M2), we can still solve the problem using our two-stage
least-square detection method described in Sections 3 and 5. If we increase the uncertainty a
little more, can we still solve the problem?

For example, in the problem we considered in Section 4, if we do not know the exact
number of terms (it is referred to unknown order of sparsity M in [1]) in the following expansion,

f (x) =
M

∑
j=1

cje
−β(φj−x)2

+
M

∑
j=1

cje
−β(φj+x)2

,

and we are given K equispaced sampling values for some positive integer K. If we are
told that these sampling values are sufficient to recover the signal, how do we recover it?
In other words, we know that the number of terms M is in the range 1 ≤ M ≤ �K/4�,
but we do not know the exact number M, can we solve the problem? The answer is yes,
because we can try all the possible cases: M = 1, 2, . . . , �K/4�, and for each case, we apply
our two-stage least-square detection method to tell us if the true solution can be extracted.
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However, we are not satisfied with this kind of exhaustive search type solution due to its
high cost. We plan to develop an efficient term number detection method, so that when we
make a term number prediction, this method can tell us if it is correct or not immediately.
In [1], two methods are proposed: One is based on the rank of the H matrix, and the other
is based on the singular values of the H matrix. The main issue is: How to obtain a reliable
method to determine the M value in the sparse expansion? Only after we obtain the correct
term number we will pay the computation cost to go through all the necessary details to
find the solution.
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Abstract: Within statistical process control (SPC), normality is often assumed as the underlying
probabilistic generator where the process variance is assumed equal for all rational subgroups.
The parameters of the underlying process are usually assumed to be known—if this is not the case,
some challenges arise in the estimation of unknown parameters in the SPC environment especially
in the case of few observations. This paper proposes a bivariate beta type distribution to guide the
user in the detection of a permanent upward or downward step shift in the process’ variance that
does not directly rely on parameter estimates, and as such presents itself as an attractive and intuitive
approach for not only potentially identifying the magnitude of the shift, but also the position in time
where this shift is most likely to occur. Certain statistical properties of this distribution are derived
and simulation illustrates the theoretical results. In particular, some insights are gained by comparing
the newly proposed model’s performance with an existing approach. A multivariate extension is
described, and useful relationships between the derived model and other bivariate beta distributions
are also included.

Keywords: bivariate beta; gamma; hypergeometric function; sequential; shift in process variance

1. Introduction

1.1. Problem Contextualisation

The monitoring of the variance of independent and identically distributed (i.i.d)
normal random variables over time by taking successive, independent samples of mea-
surements over time remains an interesting and valuable research consideration within
quality control environment. In this case, when the variance σ2 changes to σ2

1 = λσ2

for some λ �= 1, the practitioner needs to investigate the scope of such a change (a
value of λ), and ideally, the position within the successive measurements where such
a change could’ve taken place. Suppose that Xij are i.i.d. N(μ, σ2), i = 0, 1, 2, · · · , κ − 1 and
Xij ∼ i.i.d. N

(
μ, σ2

1 = λσ2), i = κ, κ + 1, · · · , m where j = 1, 2, · · · , ni ≥ 2 and λ > 0, as
outlined in Figure 1. The values of κ and λ are assumed to be unknown, but deterministic
in nature. The order of these samples is important and cannot be re-ordered; in other words,
the samples have a set sequence corresponding to the order in which they were obtained.

Thus, inspired by a practical objective, this paper aims to present a theoretically
motivated framework to

1. present and contextualise this problem within the quality control environment;
2. follow a systematic approach to build up the distributional foundations from this

practical perspective;
3. exploratively focus on the development of the (new) resulting bivariate beta distribution;
4. compare this model with an existing approach; and

Math. Comput. Appl. 2022, 27, 61. https://doi.org/10.3390/mca27040061 https://www.mdpi.com/journal/mca
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5. determine whether λ �= 1, and if this is indeed the case, to determine κ, the location of
where the shift in the variance occurred.

Therefore, from sample κ onwards, the process would be considered out-of-control.
Note that it is assumed that the shift occurs between two samples.

Figure 1. Process shift.

Assume that both the process mean (μ) and variance
(
σ2) are unknown, and that

they are estimated by their respective minimum variance unbiased estimators (MVUE),
given by:

X̄i =
∑ni

j=1 Xij

ni
, i = 0, 1, 2, · · · , m, (1)

S2
i =

1
ni − 1

ni

∑
j=1

(
Xij − X̄i

)2, i = 0, 1, 2, · · · , m, (2)

where X̄i and S2
i denote the mean and variance of sample i respectively. Some particular

notes on Equation (1) and (2) include:

• The index variable i ranges from 0 to m: a total of m + 1 independent rational sub-
groups or samples.

• At least two samples are needed for a potential shift between them to be possible,
therefore we assume m ≥ 1.

• The sample size ni can vary between different samples.
• ni ≥ 2 is necessary since the process mean and variance are both assumed to be

unknown and have to be estimated.
• The pooling approach here is to use m− r + 1 and r sample means and variances in the

construction of the test statistic in Section 1.2. Alternatively one can consider a single
mean/variance in this construction, which would result in additional information
∑m

i=r ni − 1 and ∑r−1
i=0 ni − 1 such that ni ≥ 1 and probability density functions are

valid. In this case, the approach would reduce to a two sample comparison testing for
a change in the variance.

The problem of determining if a shift in the process variance has occurred can be divided
into two stages, namely before the potential shift and after, as indicated below (Gamma(·, ·)
denotes the usual gamma distribution with suitable shape and scale parameters [1]).
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Before the shift

Samples: i = 0, 1, 2, · · · , κ − 1
j = 1, 2, · · · , ni

Distribution: Xij ∼ N
(
μ, σ2)

Wi =
(ni − 1)S2

i
σ2 d

=
Gamma

(
ni − 1

2
, 2
)

d
=

χ2(ni − 1). (3)

After the shift

Samples: i = κ, κ + 1, · · · , m
j = 1, 2, · · · , ni

Distribution: Xij ∼ N
(
μ, σ2

1 = λσ2)
Wi =

(ni − 1)S2
i

λσ2 d
=

Gamma
(

ni − 1
2

, 2λ

)
. (4)

1.2. A Solution: Sequential Statistic Framework

The proposed distribution compares all the sample variances before a certain point
(where the potential shift occurs), with all sample variances after the time of the shift.
In essence, the multi-sample hypothesis testing problem is approached by using m sequen-
tial two sample tests; described as:

S2
0 is compared with S2

1, S2
2, · · · , S2

m
S2

0, S2
1 is compared with S2

2, S2
3, · · · , S2

m
and so forth until

S2
0, S2

1, · · · , S2
m−1 is compared with S2

m.

(5)

Note that, due to the assumption that we have m+ 1 samples, the procedure to identify
the possible change in the variance requires m comparisons. Of these m comparisons the
one that leads to the largest disparity between the sample variables on the left and the
right of (5) will indicate the most likely position where the process experienced a change
in variance. In essence, what is then needed is to quantify the difference between the
sample variances of the left and right of (5), and then determine which of the m different
comparisons has the largest difference between the sample variances, and finally to use
some measure to determine if this maximum difference is within some set tolerance range.
Our proposed mathematical construct on how to achieve this is discussed for the remained
of this introduction. Assuming that no shift in the process variance has occurred, it
is possible to construct a series of two sample statistics that correspond to the general
procedure described in (5). Each statistic corresponds to whether at sample r = κ the two
independent samples (the sample variances before time r and the sample variances after
and including time r) are from normal distributions with the same unknown variance σ2.
This can alternatively be viewed as testing whether σ2 = σ2

1 , which is similar to testing
λ = 1. As such, it follows that detecting a shift in the process variance can be reduced to
the following hypothesis test:

H0 : σ2 = σ2
1 vs HA : σ2 �= σ2

1 or alternatively H0 : λ = 1 vs HA : λ �= 1.

Suppose that a shift of size λ occurs in the process variance, then the correspond-
ing random variables after the shift would be Wi∼Gamma( ni−1

2 , 2λ), i = κ, κ + 1, · · · , m
distributed (see (4)). If there is no shift in the variance, λ = 1, and it follows that
Wi∼Gamma( ni−1

2 , 2), i = 0, 1, · · · , m. Thus the hypothesis being investigated can be changed
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depending on the choice of the scale parameter of the specific gamma random variables.
From (5) it follows that the series of statistics that forms the building blocks of the process
are given by

U∗
r =

(
∑m

i=r(ni−1)S2
i

λσ2 ∑m
i=r(ni−1)

)
(

∑r−1
i=0 (ni−1)S2

i
σ2 ∑r−1

i=0 (ni−1)

) ≡
∑m

i=r Wi
∑m

i=r(ni−1)

∑r−1
i=0 Wi

∑r−1
i=0 (ni−1)

, r = 1, 2, · · · , m − 1, m, (6)

where Wi∼Gamma( ni−1
2 , 2) for i = 1, 2, · · · , r − 1 and Wi∼Gamma( ni−1

2 , 2λ) for
i = r, r + 1, · · · , m.

In essence, (6) implies that the sample variances before the potential shift are pooled
together, and the sample variances after the potential shift are pooled together. The
numerator of the statistic at time r is the average, weighted by each statistic’s degrees of
freedom, of all the sample variances between and including samples r and m, while the
denominator is the corresponding weighted average of all the sample variances between
and including samples 0 and r − 1; this is graphically presented in Figure 2. Thus U∗

r is the
test statistic that is typically used to test the equality of two population variances from a
normal distribution.

Figure 2. Building blocks of new distribution.

From (3), (4) and (6), it follows that if no shift has occurred in the process variance,
i.e., λ = 1, each statistic U∗

r is univariate F distributed with ∑m
i=r(ni − 1) and ∑r−1

i=0 (ni − 1)
degrees of freedom, respectively.

The reasoning behind the critical values that would indicate whether λ �= 1 is justified
by inspecting the sequence of statistics in (6). Suppose that an increase (λ > 1) in the
process variance has occurred from sample r = κ onward, then:

• The statistic U∗
r ’s numerator will contain only sample variances that come from a

N
(
μ, λσ2), λ > 1 distribution, whereas the denominator will contain only sample

variances that come from a N
(
μ, σ2) distribution.

• If k1 is some integer value such that 1 ≤ r − k1 < r, then the statistic U∗
r−k1

will
contain k1 sample variances in its numerator that are from a N

(
μ, σ2) distribution.

This will reduce the weighted average of the sample variances of U∗
r−k1

’s numerator
in comparison to the numerator of U∗

r .
• Similarly, if k2 is some integer value such that r < r + k2 ≤ m, then the statistic

U∗
r+k2

will contain k2 sample variances in its denominator that are from a N
(
μ, λσ2)

distribution. This will increase the weighted average of sample variances of U∗
r+k2

’s
denominator in comparison to the denominator of U∗

r .
• Thus, any statistic other than the one immediately following the shift in the process

variance, will contain either smaller sample variances in its numerator, or larger
sample variances in its denominator (on average). Either of these scenarios result in a
high probability that all other statistics are smaller relative to U∗

r .
• This leads to the conclusion that the most probable place where an upwards shift in

the process variance will be detected is at the statistic immediately following the shift.
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The value that this statistic assumes also has a high likelihood of being the maximum
value of all the U∗

r , r = 1, 2, · · · , m − 1, m statistics.
• As such, the most reasonable method of calculating the critical value to detect an

upwards shift in the process variance is to calculate the maximum order statistic of
the charting statistics U∗

r , r = 1, 2, · · · , m − 1, m, (under the null hypothesis) and to
set the critical value equal to some percentile of the distribution of the maximum
order statistic.

Using a similar but inverted argument, it can be justified that the critical value of the
control chart should be set equal to some percentile of the minimum order statistic of the
charting statistics, under the null hypothesis of no shift having occurred, if the detection
of a downward shift in the process variance is of concern. Due to space limitations, the
minimum order statistics are not presented in this article.

To simplify matters going forward and for notational purposes we omit the factors
∑m

i=r(ni − 1) and ∑r−1
i=0 (ni − 1) in (6), and drop the superscript *, and therefore the statistics

of interest become

Ur =
∑m

i=r Wi

∑r−1
i=0 Wi

, r = 1, 2, · · · , m − 1, m, (7)

where Wi ∼ Gamma(αi > 0, βi > 0), i = 0, 1, · · · , m and independent. Since αi =
ni−1

2 and
βi = 2λ, the shape parameter is related to the sample size of the ith sample, and the scale
parameter is related to the underlying distribution’s variance. The theoretical focus here
is based on the statistics in (7), whereas the statistics in (6) are those that are practically
applicable and is the basis in the simulation study in Section 3.

Constructing statistics using ratios of random variables as in (7) is of practical interest
in many areas of science. Ref. [2] studied and derived the joint density functions of
ratios of Rayleigh, Rician, Nakagami-m, and Weibull random variables; [3] approached the
ratios of generalised gamma variables via exact- and near exact solutions, and [4] derived
closed-form expressions for the ratio of independent non-identically distributed variables
from an α-μ distribution which have applications in the performance analysis of wireless
communication systems.

The proposed model in this paper will be compared to the model of [5] in Section 3,
and is described here for the convenience of the reader. If r = 2, that the bivariate joint
probability density function of the statistics in (10) is given by

g(t1, t2) =

(
β

α1+α2
0 β

α0+α2
1 β

α0+α1
2

)
Γ(α0+α1+α2)

Γ(α0)Γ(α1)Γ(α2)
(t1)

α1−1(t2)
α2−1(1 + t1)

α2

× (β1β2 + β0β2t1 + β0β1(1 + t1)t2)
−α0−α1−α2

(8)

where t1, t2 > 0, αi, βi > 0 for i = 0, 1, 2,, t1 = w1
w0

and t2 = w2
(w0+w1)

, and Γ(·) is the
gamma function [6].

Refs. [5,7] proposed a beta distribution that is used to detect a shift in the process
variance which is based on the Q chart that was developed by [8], and as such the series of
comparisons of sample statistics they made were

S2
1 is compared with S2

0
S2

2 is compared with S2
0, S2

1
and so forth until

S2
m is compared with S2

0, S2
1, · · · , S2

m−1.

(9)

Using a similar approach to the method described earlier the statistics can be given as

Tr =
Wr

∑r−1
i=0 Wi

, r = 1, 2, · · · , m − 1, m, (10)

which is graphically presented in Figure 3—with Wi defined in (3) and (4).
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Figure 3. Building blocks of [7].

Based on the work of [5,9] provided insight for detecting the change in the parameter
structure if the underlying process is multivariate normal.

1.3. Outline of Paper

In Section 2, the bivariate joint probability density function which emanates from (7) is
derived, accompanied by an exploratory shape analysis. This is followed by the derivation
of the marginal probability density functions, the product moment as well as the maximum
order statistic of the distribution. In Section 3 the performance of the model that this
article proposes is compared to the Q chart studied by [5], this will be conducted through a
simulation study. Tables of simulated values for the 95th percentiles of the maximum order
statistics of the sets of random variables in (6) and (7) are provided in Section 3, for varying
parameter choices, to enable practical application of the proposed model. The values in
these tables are corroborated through numerical integration of the derived expressions for
the maximum order statistics. The Appendices A and B contains proofs of the obtained
results as well as the positioning of this distribution among other often considered bivariate
beta models.

2. Proposed Model

In this section, the joint probability density function of the random variables U1 and
U2 (see (7) when r = 2) is derived, followed by a shape analysis, the derivation of the
marginal probability density functions, the product moment as well as the maximum order
statistic. A brief review of this new candidate with respect to its partners is provided
in the Appendices A and B—which provides additional insight for modelling as well as
expressions with closed form.

2.1. Bivariate Probability Density Function

Theorem 1. Let Wi be independent gamma random variables with parameters αi =
ni−1

2 > 0,
βi = 2λ > 0 for i = 0, 1, 2. Let U1 = W1+W2

W0
and U2 = W2

W0+W1
then the joint probability density

function of U1 and U2 is given by

f (u1, u2) =

(
β

α1+α2
0 β

α0+α2
1 β

α0+α1
2

)
Γ(α0+α1+α2)

Γ(α0)Γ(α1)Γ(α2)
(u1 − u2)

α1−1uα2−1
2 (1 + u1)

α2(1 + u2)
α0

× (β1β2(1 + u2) + β0β2(u1 − u2) + β0β1u2(1 + u1))
−α0−α1−α2

(11)

where u1 > u2 > 0.

2.2. Shape Analysis

In this section a shape analysis is conducted for the joint probability density function (11).
A standard set of parameters has been chosen as a baseline. The parameters are chosen
to be α0 = α1 = α2 = 5 and β0 = β1 = β2 = 2, in other words, a process where all three
samples consist of 5 × 2 + 1 = 11 observations, and where no shift has occurred in the
process variance. Some of the parameters will then be varied from this baseline in order
to investigate the effect that a change in the specific parameters will have on the general

294



Math. Comput. Appl. 2022, 27, 61

shape of the joint probability density function. Note that the change in some parameters
will be large - so large that they lose practical realism; this is conducted to emphasise and
investigate the general change in the shape, and is not meant to be an indication of the
practical applications of the joint probability density function. The functions will only be
plotted for u1 ∈ [0, 3] , u2 ∈ [0, 3].

In Figure 4 it can be seen what effect increasing the sample sizes (while keeping them
equal) has on the joint probability density function. It is seen that increasing the sample
sizes also increases the height of the peak of the probability density function. Larger sample
sizes also shrink the length and width of the “tails” of the joint probability density function.
In essence, the larger the sample sizes (ni = 11, ni = 51, ni = 101), the smaller the domain
on which the function has non-trivial values.

Figure 4. Equal sample sizes, no shift in the variance.

Figure 5 below demonstrates that a sustained increase in the process variance, irre-
spective of size, minimally affects the general shape and location of the joint probability
density function, but does affect the height of the probability density function’s peak. In
the below example, the shift in the process variance occurs at time 1, and as one would
hope and expect, the joint probability density function relies heavily on the value of the
statistic at time 1, U1. A similar effect, where the joint probability density function relies
heavily on the value of U2 is seen when the shift occurs at time 2.

Figure 5. Equal sample sizes, increase in variance at time 1.
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2.3. Marginal Probability Density Functions

Theorem 2. Assume that (U1, U2) has the joint probability density function in (11), then the
marginal probability density function of U1 is given by

f (u1)

=

(
β

α1+α2
0 β

α0+α2
1 β

α0+α1
2

)
Γ(α0+α1+α2)

Γ(α0)Γ(α1)Γ(α2)
(β1β2 + β0β2u1)

−α0−α1−α2

×(1 + u1)
α2 ∑∞

k=0

[(
α0!

k!(α0−k)!

)
(u1)

k+α1+α2−1 Γ(α1)Γ(k+α2)
Γ(k+α1+α2)

× 2F1

(
α0 + α1 + α2, k + α2; k + α1 + α2;− u1(β1β2−β0β2+β0β1+β0β1u1)

β1β2+β0β2u1

)] (12)

where u1 > 0, α0, α1, α2 ∈ Z, β1(β2 + β0(1 + u1)) > β0β2,
∣∣∣− u1(β1β2−β0β2+β0β1+β0β1u1)

β1β2+β0β2u1

∣∣∣ < 1,
and the marginal probability density function of U2 is given by

f (u2)

=

(
β

α1+α2
0 β

α0+α2
1 β

α0+α1
2

)
Γ(α0+α1+α2)

Γ(α0)Γ(α2)
(1 + u2)

α0 ∑∞
k=0

[
α2!

k!(α2−k)!

×∑∞
l=0

[
(−1)l(α0+α1+α2+l−1

l )(β0β2 + β0β1u2)
−α0−α1−α2−l

× (β1β2 + β1β2u2 − β0β2u2 + β0β1u2)
luk−α0−l−1

2
Γ(α0+α2+l−k)

Γ(α0+α1+α2+l−k)

]] (13)

where u2 > 0, α0, α1, α2 ∈ Z, αi, βi > 0 for i = 0, 1, 2 and 2F1(, ) is the Gauss hypergeometric
function ([6] p. 1005). Note that in (12) if α0 ∈ {1, 2, · · · } the sum changes from ∑∞

k=0 to ∑α0
k=0

(See [6] p. 25, Equations (1).110 and 1.111). Similarly if α2 ∈ {1, 2, · · · } the sum changes from
∑∞

k=0 to ∑α2
k=0 in (13).

If β0 = β1 = β2 it follows that:

f (u1) =
Γ(α0 + α1 + α2)

Γ(α0)Γ(α1)Γ(α2)
(1 + u1)

−α0−α1
∞

∑
k=0

[(
α0!

k!(α0 − k)!

)
(u1)

k+α1+α2−1

× Γ(α1)Γ(k + α2)

Γ(k + α1 + α2)
2F1(α0 + α1 + α2, k + α2; k + α1 + α2;−u1)

where 0 < u1 < 1, and

f (u2) =
Γ(α0 + α1 + α2)

Γ(α0)Γ(α2)
(1 + u2)

α0
∞

∑
k=0

[
α2!

k!(α2 − k)!

∞

∑
j=0

[
(−1)j

(
α0 + α1 + α2 + j − 1

j

)

× (1 + u2)
−α0−α1−α2 uk−α0−j−1

2
Γ(α0 + α2 + j − k)

Γ(α0 + α1 + α2 + j − k)

]]
where u2 > 0.

2.4. Product Moment and Order Statistics

Theorem 3. Assume that (U1, U2) has the joint probability density function (11), then the product
moment of U1 and U2 is given by

E
(
Ur

1Us
2
)

= ∑r
p=0(rp)

(
β

α1−p−s
0 β

−α1
1 β

p+s
2

)
Γ(α2+p+s)Γ(α0+α1−p−s)Γ(α1+r−p)Γ(α0−r)

Γ(α0)Γ(α1)Γ(α2)Γ(α0+α1−p)

×2F1

(
α0 + α1 − p − s, α1 + r − p; α0 + α1 − p; 1 − β0β2

β1β2

) (14)

where r, s ∈ {0, 1, 2, · · · }, α0 + α1 > r + s, α0 > α1, α0 + α1 > p, and
∣∣∣1 − β0β2

β1β2

∣∣∣ < 1.
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The maximum order statistics are of importance in detecting whether a shift in the
process variance does indeed occur, as was discussed in Section 1 and will be demonstrated
in Section 3. Although a closed form expression for the maximum order statistic is not
tractable in a closed form, an expression is provided that can be implemented to calculate
numerical values.

Assume that (U1, U2) has the joint probability density function (11), then the maximum
order statistic of U1 and U2 can be determined either by

P(max(U1, U2) < z) = P(U1 < z)
=

∫ z
0 f (u1)du1

(15)

when α0, α1, α2 ∈ � (since u1 > u2).

3. Comparison Study and Discussion

Deriving the order statistics of the series of statistics in (6) and (7) is a complex task
since they are neither independent nor identically distributed, (see [10]). Hence values for
the 95th percentiles of the maximum order statistics are simulated for varying numbers of
samples (m equal to 1, 4, 9, 14, 19, 24, 29, 49, 99 and 499) and sample sizes (n equal to 2, 5,
10, 15, 20, 25, 30, 50, 100 and 500) in Section 3.1.

In Section 3.1, properties of (7) are also studied when no shift in the variance occurs,
this is imperative since the control limits of a control chart are constructed under the null
hypothesis that no shift has occurred, or alternatively given that the process is in control.
The in control properties that are investigated for both the Q chart and the new proposed
model (6) are where the maximum order statistic is most likely to occur when no shift has
occurred in the process variance. Practically, this is a very important question since, if the
maximum order statistic consistently occurs at roughly the same place in the sequence
of samples, it implies that the distribution should be treated with added suspicion if it
indicates that a shift in the process occurs at this location.

In Section 3.2, the out of control performance of the newly proposed distribution is
compared with the Q chart model investigated by [5]. The probability that the respective
control charts will detect a shift in the process variance is investigated for differing sizes of
shifts in the process variance. The comparison is made for varying numbers of samples as
well as sample sizes.

3.1. Comparison When the Process Is in Control

The location of the maximum order statistic when the process is in control is investi-
gated using graphs. For brevity’s sake only one possible combination (m = 29, n = 15) of
the number of samples and sample sizes mentioned above is included in this paper. All of
them, however, lead to the same general conclusion.

As can be seen from Figure 6 the [5] distribution’s maximum order statistic occurs most
often at the first statistic, with the probability of the maximum occurring at subsequent
statistics steadily decreasing. This implies that the Q chart becomes more stable as the
process progresses, which makes practical sense since each subsequent statistic includes
more of the sample data. The newly proposed distribution’s maximum order statistic
occurs most often at the first statistic, and second-most often at the last statistic. This due to
the way in which the statistics of the distribution are constructed (see (6)). This implies that
while our proposed model may detect shifts at the ends of the samples, signals received at
these locations should be treated with a bit of skepticism.
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Figure 6. Location of maximum order statistics: m = 29 and n = 15.

In Table 1 the 95th percentiles of the maximum order statistics of the newly proposed
distributions are simulated (to the third decimal) using Monte Carlo simulation. In other
words z in the equation P

(
max

(
U∗

1 , U∗
2 , · · · , U∗

m
)
< z
)
= 0.95. Similarly the 95th percentiles

of the maximum order statistics of (6) are simulated in Table 2.

Table 1. 95th percentiles of the maximum order statistics of U∗
1 , U∗

2 , · · · , U∗
m.

m
n

2 5 10 15 20 25 30 50 100 500

1 214.286 6.652 3.230 2.512 2.189 1.998 1.872 1.615 1.399 1.160

4 242.046 6.229 3.047 2.385 2.093 1.919 1.805 1.569 1.371 1.150

9 254.592 5.992 2.908 2.301 2.023 1.863 1.755 1.534 1.349 1.142

14 251.747 5.874 2.871 2.266 1.997 1.842 1.739 1.522 1.341 1.139

19 255.413 5.836 2.851 2.254 1.987 1.831 1.730 1.517 1.337 1.137

24 257.880 5.813 2.837 2.243 1.980 1.827 1.723 1.514 1.335 1.137

29 259.105 5.815 2.824 2.238 1.977 1.822 1.720 1.512 1.334 1.136

49 259.963 5.799 2.818 2.228 1.968 1.815 1.715 1.508 1.331 1.135

99 258.810 5.797 2.803 2.222 1.959 1.811 1.710 1.504 1.329 1.134

499 263.017 5.772 2.801 2.215 1.957 1.808 1.707 1.501 1.328 1.133
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Table 2. 95th percentiles of the maximum order statistics of U1, U2, · · · , Um.

m
n

2 5 10 15 20 25 30 50 100 500

1 399.762 12.091 5.933 4.638 4.072 3.735 3.513 3.062 2.688 2.275

4 1151.103 29.015 14.061 11.045 9.708 8.958 8.434 7.411 6.553 5.618

9 2413.470 57.222 27.649 21.699 19.101 17.623 16.615 14.615 12.984 11.184

14 3691.861 85.496 41.144 32.376 28.469 26.292 24.837 21.864 19.419 16.754

19 4944.966 112.744 54.656 43.071 37.870 34.913 33.020 29.081 25.816 22.318

24 6187.147 141.315 68.325 53.653 47.313 43.549 41.182 36.293 32.248 27.887

29 7528.303 170.174 81.753 64.408 56.621 52.313 49.397 43.531 38.678 33.457

49 12560.904 281.708 135.824 107.163 94.200 86.900 82.168 72.395 64.349 55.728

99 25774.144 565.834 270.688 213.065 187.991 173.740 164.160 144.638 128.625 111.365

499 126434.246 2815.186 1353.458 1064.841 939.259 868.035 819.248 722.038 642.752 556.808

Note that:

• Since the critical values of the distribution are derived under the assumption of the
null hypothesis, the equations for the maximum order statistic can be simplified
to be constructed out of chi-square random variables instead of the more complex
gamma case.

• When the sample sizes of all the samples are equal (ni = n for i = 1, · · · , m) the re-
moval of the constant terms in (7) is superfluous since the series of statistics in (6) and (7)
are merely scalar multiples of each other. This can be seen in Tables 1 and 2 where
P
(
max

(
U∗

1 , U∗
2 , · · · , U∗

m
)
< z
) ≈ P(max(U1, U2, · · · , Um) < mz).

• Instead of using simulation, the maximum order statistics in Table 2 could have been
calculated using (15). Table 3 demonstrates their equivalence for the bivariate case by
numerically integrating (15).

Table 3. Simulated and theoretical 95th percentiles of the maximum order statistics of U1, U2.

Method
n

2 5 10 15 20 25 30 50 100 500

Simulated values 399.762 12.091 5.933 4.638 4.072 3.735 3.513 3.062 2.688 2.275

Theoretical values 399.000 12.083 5.920 4.640 4.068 3.735 3.515 3.064 2.688 2.276

3.2. Comparisons When the Process is Out of Control

In this section, the proposed model’s potential to detect shifts in compared with that of
the Q chart form investigated by [5]. The probability of signaling that a shift in the process
variance has occurred depends on a few variables. In this paper, these variables are: the
number of samples, the sample size of the samples, where in the process the shift in the
process variance occurs, and the size of the shift. The figures in this section take all of these
parameters into account.

In each of the following figures, the probability of signaling a shift in the variance is
displayed as a function of the size of the shift, where the shift size λ, ranges from λ = 1 (no
shift) to λ = 5 (a 500% increase in the process variance). Many different combinations of
the number of samples, the sample sizes, as well as the locations of the shift were tested;
however, only the graphs that illustrate key findings are included in this paper. The chosen
parameters that were simulated are: number of samples (m) equal to 10, 20 and 30, the
sample sizes (n) equal to 2, 5, 10 and 20, and the location of the shift in the process variance
(κ) occurring at (roughly, due to integer sample numbers) 25%, 50% and 75% of the way
through the samples.
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By simulating graphs such as those in Figures 7–9, certain conclusions can be reached
about the properties and efficacy of the two competing models ((5) and (9)):

• When n = 2, irrespective of the number of samples, the newly proposed model
outperforms the Q chart. There are some caveats however that should be noted:

1. In the above graphs, each plotted point was simulated 500,000 times during
the Monte Carlo process. For all the n = 2 graphs, the points vary erratically
between each 0.05 increases in the shift size, and thus even for a large number of
simulations the process cannot be described as “stable”.

2. The Q chart seems to be completely incapable of detecting an increase in the
process variance when n = 2, with the probability of detecting a shift remaining
at roughly 5%, irrespective of the size of the shift.

3. While the new model’s probability of detecting a shift does increase as the size of
the shift increases, it remains relatively low, at roughly 7% to 10%, just marginally
higher than the 5% chance when the process is actually IC. This implies that
while it might be theoretically possible to implement the new model for samples
sizes of 2, it would likely not be a practically useful technique.

4. The new model’s probability of detecting a shift does not increase as the number
of samples increases, as would be expected (and as is the case for the other
choices of n)

• From these points above, it can be concluded that using a sample size of 2 does not
lead to an effective control chart.

• For a small numbers of samples (m = 9), the newly proposed model outperforms the
Q chart for all simulated sample sizes as well as locations of shifts (for all shift sizes).

• When there are 20 samples (m = 19), the newly proposed model outperforms the Q
chart in nearly all situations. The Q chart does have a higher probability of detecting
a shift in the process variance only when the sample sizes are small (n = 5), and the
shift occurs relatively late in the process (κ = 15), for shifts in the process variance
between λ = 3 and λ = 4.75. Since a 300% to 475% increase in the process variance is
unlikely to occur in practice, the newly proposed model would likely be more effective
for m = 19.

• For m = 29, sweeping statements about the performances of the two methods are
more difficult to make since the plotted percentage lines cross often. However it can
be said that:

1. For small sample sizes (n = 5), the proposed model outperforms the Q chart
for small shifts in the process variance, whereas the Q chart performs better for
larger shifts.

2. The Q chart performs at its best when the shift in the process variance occurs late
in the series of samples.

3. For larger sample sizes (n = 20) the proposed model outperforms the Q chart
when the shift in the process variance occurs early, but when the shift occurs
roughly half way through the series of samples, or further, the performance of
the two methods are very similar.
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m = 9, n = 2, κ = 7 m = 29, n = 2, κ = 15

Figure 7. Probability of detecting a shift when n = 2.

m = 9, n = 5, κ = 3 m = 9, n = 20, κ = 7

Figure 8. Probability of detecting a shift when m = 9.

m = 19, n = 10, κ = 15 m = 29, n = 20, κ = 22

Figure 9. Probability of detecting a shift when κ ≈ 0.75 m.
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4. Concluding Remarks

In this paper a new bivariate beta type distribution is proposed that can be utilised
to detect a shift in a process’s variance when the underlying process follows a normal
distribution. The proposed model compares favourably with the Q chart model studied
by [5] in most situations; especially when the number of samples is small, and when the
process variance experiences a change early on in the series of samples. Future work
can include focus on (i) when a shift occurs within a sample, (ii) expanding underlying
distributional assumptions to that of the class of scale mixtures to consider departures from
normality (see [11]), and (iii) the multivariate setup, of which we propose the probability
density function in the following theorem and a proof outlined in the Appendices A and B.

Theorem 4. Let Wi be independent gamma random variables with parameters (αi > 0, βi > 0)

for i = 0, 1, 2, · · · , m. Let Ur =
∑m

i=r Wi

∑r−1
i=0 Wi

, r = 1, 2, · · · , m − 1, m, then the joint probability density

function of U1, U2, · · · , Um is given by

f (u1, u2, · · · , um)

=
∏m−1

i=1

[
(ui−ui+1)

αi−1
]
(um)αm−1Γ(∑m

i=0 αi)

∏m
i=0

[
β

αi
i Γ(αi)

]
×(1 + u1)

∑m
i=2 αi ∏m

i=2

[
(1 + ui)

−αi−1−αi
]

×
(

1
β0

+ (u1−u2)
β1(1+u2)

+ ∑m−1
i=2

[
(1+u1)(ui−ui+1)
βj(1+ui)(1+ui+1)

]
+ (1+u1)um

βm(1+um)

)−∑m
i=0 αi

(16)

where u1 > u2 > · · · > um > 0.
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Appendix A. Positioning

The aim of this section is to show the relationships between some of the most com-
monly used bivariate beta distributions, and to relate these distributions to the bivariate
distribution derived by [5] and the one proposed by this article. In this section the statistics
in the relationships are constructed out of chi-square random variables, not gamma, as is
conducted throughout the rest of this article. This is conducted for the sake of simplicity;
however, the relationships hold regardless.

Let Y1 ∼ χ2(α), Y2 ∼ χ2(β) and Y3 ∼ χ2(γ). Then:

• If Q1 = Y1
Y1+Y2+Y3

and Q2 = Y2
Y1+Y2+Y3

. Then the joint distribution of Q1 and Q2 is called
a bivariate beta type I distribution. In Figure A1 this will be denoted alternatively as
(Q1, Q2) ∼ BI(α, β, γ). The multivariate generalisation of this distribution is called
the Dirichlet type I distribution (see [12,13]).
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• If V1 = X1
X3

and V2 = X2
X3

then (V1, V2) has a bivariate beta type II distribution [14].

• If W1 = Y1
Y1+Y2+2Y3

and W2 = Y2
Y1+Y2+2Y3

then (W1, W2) has a bivariate beta type III
distribution. The multivariate generalisation was derived and studied by [15,16] con-
sidered the case when W1 = Y1

Y1+Y2+cY3
and W2 = Y2

Y1+Y2+cY3
, which is a generalisation

of the above type III distribution.
• If X1 = Y1

Y1+Y3
and X2 = Y2

Y2+Y3
then (X1, X2) has a bivariate beta type IV

distribution, ([17,18]).
• If C1 = aY1

aY1+bY2+cY3
and C2 = bY2

aY1+bY2+cY3
, a, b, c > 0. Then (C1, C2) has a bivariate beta

type V distribution. If a = 1, b = 1 and c = 1, the bivariate beta type V reduces to the
bivariate beta type I [19].

• If Z1 = Y1
Y2+Y3

and Z2 = Y2
Y1+Y3

then (Z1, Z2) has a bivariate beta type VI distribution.
This joint probability density function has not yet been derived in the literature and
could potentially be applied to detecting shifts in a process variance.

• If T1 = Y2
Y1

and T2 = Y3
Y1+Y2

then (T1, T2) be referred to as the bivariate beta type VII
distribution, ([5]).

• If U1 = Y2+Y3
Y1

and U2 = Y3
Y1+Y2

then (U1, U2) has a bivariate beta type VIII distribution.
This is the model that this article proposes in terms of gamma variables in Section 2,
but in its special case it can be reduced to be constructed from chi-square variables.

Relationships between these models are graphically represented in Figure A1.

Figure A1. Relationships between several bivariate beta distributions.

Appendix B. Proofs

Proof of Theorem 1. The joint probability density function of W0, W1, W2 is given by

f (w0, w1, w2) =
1

βα0
0 β

α1
1 βα2

2 Γ(α0)Γ(α1)Γ(α2)

(
wα0−1

0 e−
w0
β0

)(
wα1−1

1 e−
w1
β1

)(
wα2−1

2 e−
w2
β2

)
(A1)
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where w0, w1, w2 > 0. Let U0 = W0, then W1 = U0(U1−U2)
(1+U2)

and W2 = U0U2(1+U1)
(1+U2)

, and

f (u0, u1, u2)

= 1
β

α0
0 β

α1
1 β

α2
2 Γ(α0)Γ(α1)Γ(α2)

(u1 − u2)
α1−1uα2−1

2 (1 + u1)
α2(1 + u2)

−α1−α2

×u(α0+α1+α2)−1
0 exp

(−u0(β1β2(1+u2)+β0β2(u1−u2)+β0β1u2(1+u1))
β0β1β2(1+u2)

)
.

(A2)

By integrating (A2) with respect to u0, and rearranging the terms it follows that

f (u1, u2)

= 1
β

α0
0 β

α1
1 β

α2
2 Γ(α0)Γ(α1)Γ(α2)

(u1 − u2)
α1−1uα2−1

2 (1 + u1)
α2(1 + u2)

−α1−α2

× ∫ ∞
0 u(α0+α1+α2)−1

0 exp
(−u0(β1β2(1+u2)+β0β2(u1−u2)+β0β1u2(1+u1))

β0β1β2(1+u2)

)
du.

(A3)

By applying [6] p. 346, Equation (3).381.4, to (A3), the result in (11) follows.

Proof of Theorem 2. From (11), by rearranging the terms, and applying [6] p. 25,
Equations (1).110 and 1.111, it follows that

f (u1)

=

(
β

α1+α2
0 β

α0+α2
1 β

α0+α1
2

)
Γ(α0+α1+α2)

Γ(α0)Γ(α1)Γ(α2)
(1 + u1)

α2

×(β1β2 − β0β2 + β0β1 + β0β1u1)
−α0−α1−α2 ∑∞

k=0

(
α0!

k!(α0−k)!

)
× ∫ u1

0 (u1 − u2)
α1−1uk+α2−1

2

(
β1β2+β0β2u1

β1β2−β0β2+β0β1+β0β1u1
+ u2

)−α0−α1−α2
du2.

(A4)

By applying [6] p. 317, Equation (3). 197.8, to (A4), the result in (12) follows. From
(11), by rearranging the terms, and applying [6] p. 25, Equations (1).110 and 1.111 twice, it
follows that

f (u2)

= A(u1, u2)
∫ ∞

u2
(u1 − u2)

α1−1(1 + u1)
α2
(

1 + u1(β0β2+β0β1u2)
β1β2+β1β2u2−β0β2u2+β0β1u2

)−α0−α1−α2
du1

= A(u1, u2)∑∞
k=0

[
α2!

k!(α2−k)! ∑∞
l=0

[
(−1)l

(
α0 + α1 + α2 + l − 1

l

)
×
(

(β0β2+β0β1u2)
β1β2+β1β2u2−β0β2u2+β0β1u2

)−α0−α1−α2−l ∫ ∞
u2
(u1 − u2)

α1−1uk−α0−α1−α2−l
1 du1

]] (A5)

where

A(u1, u2) =

(
β

α1+α2
0 β

α0+α2
1 β

α0+α1
2

)
Γ(α0+α1+α2)

Γ(α0)Γ(α1)Γ(α2)
uα2−1

2 (1 + u2)
α0

× (β1β2 + β1β2u2 − β0β2u2 + β0β1u2)
−α0−α1−α2 .

(A6)

By applying [6] p. 315, Equation (3).191.2 to (A5), the result in (13) follows.

Proof of Theorem 3. By using the relationships in Figure A1, and reordering the terms it
follows that

E
(
Ur

1Us
2
)

= E
(
(T1 + T2 + T1T2)

r(T2)
s)

=
∫ ∞

0

∫ ∞
0 (t1 + t2 + t1t2)

r(t2)
sg(t1, t2)dt2dt1

=

(
β
−α0
0 β

−α1
1 β

α0+α1
2

)
Γ(α0+α1+α2)

Γ(α0)Γ(α1)Γ(α2)

∫ ∞
0 (1 + t1)

r−α0−α1(t1)
α1−1

× ∫ ∞
0

(
t1

1+t1
+ t2

)r
(t2)

α2+s−1
(

β1β2+β0β2t1
β0β1(1+t1)

+ t2

)−α0−α1−α2
dt2dt1.

(A7)
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By applying [6] p. 25, Equations (1).110 and 1.111 to (A8), and reordering the terms, it
follows that

E
(
Ur

1Us
2
)

= ∑r
p=0 (

r
p)

(
β
−α0
0 β

−α1
1 β

α0+α1
2

)
Γ(α0+α1+α2)

Γ(α0)Γ(α1)Γ(α2)

∫ ∞
0 (1 + t1)

−α0−α1+p(t1)
α1+r−p−1

×
(

β1β2+β0β2t1
β0β1(1+t1)

)−α0−α1−α2 ∫ ∞
0 (t2)

α2+p+s−1
(

1 + β0β1(1+t1)
β1β2+β0β2t1

t2

)−α0−α1−α2
dt2dt1.

(A8)

From [6] p. 315, Equation (3).194.3, it follows that (A8) may be expressed as

E
(
Ur

1Us
2
)

= ∑r
p=0 (

r
p)

(
β
−α0
0 β

−α1
1 β

α0+α1
2

)
Γ(α0+α1+α2)

Γ(α0)Γ(α1)Γ(α2)

∫ ∞
0 (1 + t1)

−α0−α1+p(t1)
α1+r−p−1

×
(

β1β2+β0β2t1
β0β1(1+t1)

)−α0−α1−α2
(

β0β1(1+t1)
β1β2+β0β2t1

)−α2−p−s

× B(α2 + p + s, α0 + α1 + α2 − α2 − p − s)dt1

= ∑r
p=0 (

r
p)

(
β

α1−p−s
0 β

α0−p−s
1 β

α0+α1
2

)
Γ(α2+p+s)Γ(α0+α1−p−s)

Γ(α0)Γ(α1)Γ(α2)

× (β1β2)
−α0−α1+p+s ∫ ∞

0 (1 + t1)
−s(t1)

α1+r−p−1
(

1 + β0β2
β1β2

t1

)−α0−α1+p+s
dt1.

(A9)

By applying [6] p. 317, Equation (3). 197.5 to (A9), the result in (14) follows.

Proof of Theorem 4. The joint probability density function of Wi, i = 0, 1, 2, · · · , m is
given by

f (w0, w1, · · · , wm) =
m

∏
i=0

(
wαi−1

i e−
wi
βi

)
β

αi
i Γ(αi)

, w0, w1, · · · , wm > 0. (A10)

Let U0 = W0, Ur =
∑m

i=r Wi

∑r−1
i=0 Wi

, r = 1, 2, · · · , m − 1, m. It follows that

W0 = U0

W1 = U0(U1−U2)
(1+U2)

Wr =
U0(1+U1)(Ur−Ur+1)
(1+Ur)(1+Ur+1)

, r = 2, 3, · · · , m − 1

Wm = U0(1+U1)Um
(1+Um)

,

with J(w0, · · · , wm → u0, u1, · · · , um) = um(1+u1)
m−1

∏m
j=2(1+uj)

2 . Subsequently the joint probability

density function of U0, U1, U2, · · · , Um is

f (u0, u1, u2, · · · , um)

=
∏m−1

i=1

[
(ui−ui+1)

αi−1
]
(um)αm−1

∏m
i=0

[
β

αi
i Γ(αi)

] u∑m
i=0[αi ]−1(1 + u1)

∑m
i=2[αi ] ∏m

i=2

[
(1 + ui)

−αi−1−αi
]

×e
−u0

(
1

β0
+

(u1−u2)
β1(1+u2)

+∑m−1
i=2

[
(1+u1)(ui−ui+1)
βi(1+ui)(1+ui+1)

]
+
(1+u1)um
βm(1+um)

)
.

(A11)

By applying [6] p. 346, Equation (3). 381.4 to (A11), the result in (16) is proved.
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Abstract: In this paper, a new discrete distribution called Binomial–Natural Discrete Lindley distri-
bution is proposed by compounding the binomial and natural discrete Lindley distributions. Some
properties of the distribution are discussed including the moment-generating function, moments and
hazard rate function. Estimation of the distribution’s parameter is studied by methods of moments,
proportions and maximum likelihood. A simulation study is performed to compare the performance
of the different estimates in terms of bias and mean square error. SO2 data applications are also
presented to see that the new distribution is useful in modeling data.

Keywords: discretizing; natural discrete Lindley distribution; over dispersion; maximum likelihood
estimation

1. Introduction

Count data modeling is a challenging task in many areas, including, but not limited
to, public health, medicine, epidemiology, applied science, sociology, and agriculture. In
many situations, the life length of a device cannot be measured on a continuous scale and
the survival function is assumed to be a function of a count random variable instead of
being a function of a continuous-time random variable. Therefore, discrete distributions
are somewhat meaningful to model lifetime data in situations where output may be of a
discrete nature. The traditional discrete distributions have limited applicability as models
for reliability, failure times, aggregate loss, etc., especially with the count data with over-
dispersion in which the variance is greater than the mean. This has led to the development
of some discrete distributions based on popular continuous models in reliability analysis,
actuarial sciences survival analysis, etc. The discretization of continuous distributions has
produced many discrete distributions in the last few decades in the statistical literature.
However, the quest for a quintessential model remains the crux of the matter in the diverse
scientific paradigm.

One of the many approaches to define new models is the discretization of distribu-
tions. Until recently, the majority of discrete lifetime distributions have been proposed in
the statistical literature by discretizing the survival function S(x) of continuous lifetime
distributions (see the work of authors, for example, in references [1–12]).

The probability mass function (pmf) P(X = x) is defined as follows

P(X = x) = S(x)− S(x + 1) x = 0, 1, 2, . . .

Away from this method, Afify [12] have introduced and studied a new discrete Lindley
distribution by constructing a mixture of discrete analogs to the continuous components
used in creating the continuous Lindley distribution.

Math. Comput. Appl. 2022, 27, 62. https://doi.org/10.3390/mca27040062 https://www.mdpi.com/journal/mca
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In this paper, we propose and study a new probability mass function (pmf), denoted
by px, by compounding the binomial and the NDL distributions. The basic principle of this
method is stated as if N(input) and X(output) are two random variables denoting the num-
ber of particles entering and leaving an attenuator, then the probability functions p(n) and
f (x) of these two random variables are connected by the binomial decay transformation

P(X = x) =
∞

∑
n=x

(
n
x

)
px(1 − p)n−x p(n); x = 0, 1, . . . , ∞ (1)

where 0 ≤ p ≤ 1 is the attenuating coefficient which is discussed by Hu et al. [7]. They
considered p(n) as a Poisson distribution with the parameter λ > 0, and then they showed
that Pr(X = x) is the Poisson distribution with the parameter λp. For clarity, attenuators
are electrical devices built to lower the amount of voltage flowing through them without
severely compromising the signal’s integrity. They serve as a safeguard against systems
being exposed to signals with power levels that are too high to be decoded. Déniz [13]
introduced uniform Poisson distribution using the idea of Hu et al. [7] by interchanging in
Equation (1) the binomial distribution and the discrete uniform distribution and maintain-
ing P(n) as the Poisson distribution. Some new discrete distributions also are proposed in
the literature using the methodology of [7]. Akdoğan et al. [14] proposed uniform-geometric
distribution and Coşkun et al. [15] constructed binomial–discrete Lindley distribution.

The rest of the paper is arranged as follows: Section 2 defines the natural discrete
Lindley distribution and proposes the new binomial–natural discrete Lindley distribution
with important properties, subsequently. In Section 3, various parameter estimation and
simulation studies are given. Section 4 concerns the real data illustration of the findings. In
Section 5, some conclusions are provided.

2. Natural Discrete Lindley Distribution

Recently, Al-Babtain et al. [16] proposed and studied a new natural discrete analog
of the continuous Lindley distribution as a mixture of geometric and negative binomial
distributions. The new distribution is called natural discrete Lindley (NDL) distribution and
it has many interesting properties that make it superior to many other discrete distributions,
particularly in analyzing over-dispersed count data. The NDL can be applied in the
collective risk models and is competitive with the Poisson distribution to fit automobile-
claim-frequency data. Let N be a non-negative random variable obtained as a finite mixture
of geometric (p) and negative binomial (2, p) with mixing probabilities p

p+1 and 1
p+1 ,

respectively, then the probability mass function of the NDL distribution is defined as

P(N = n) =
p2

p + 1
(2 + n)(1 − p)n ; n = 0, 1, 2, . . . and p ∈ (0, 1) (2)

One of the most important features of this distribution is that it has a single param-
eter and it has attractive properties, which makes it suitable for applications not only in
insurance settings but also in other fields where over-dispersions are observed. For more
details about this distribution, see Al-Babtain et al. [16]. Given the usefulness of NDL, the
discrete analogue due to NDL known as the binomial NDL (BNDL) seems to be naturally
interesting to explore.

2.1. The Proposed Discrete Analog

The probability mass function (1) can be expressed as

P(X = x) =
∞

∑
n=x

P(X = x|N = n)P(N = n),

308



Math. Comput. Appl. 2022, 27, 62

where P(X|N = n) has the binomial b(n, p) distribution. Suppose that N is the random
variable from NDL with parameter p given in (2); then, the probability mass function of the
discrete random variable X is obtained as

px(x; p) = P(X = x) =
∞
∑

n=x
P(X = x|N = n)P(N = n) =

∞
∑

n=x

(
n
x

)
px(1 − p)n−x p2

p+1 (2 + n)(1 − p)n

=
∞
∑

n−x=0

(
n
x

)
px(1 − p)n−x p2

p+1 (2 + n)(1 − p)n =
∞
∑

k=0

(
x + k

x

)
px(1 − p)k p2

p+1 (2 + x + k)(1 − p)x+k

= p2

p+1

∞
∑

k=0

(
x + k

x

)
px(2 + x + k)(1 − p)x+2k =

(1−p)x(1+x+2p−p2)
(p+1)(2−p)x+2 ; x

= 0, 1, 2 . . . and p ∈ (0, 1)

(3)

If X has the pmf (3), then it is called a binomial natural discrete Lindley (BNDL)
random variable and it is denoted by X ∼ BNDL(p). For n = 0, this means that no
particles enter into the attenuator and it will be termed as failure. Consequently, the
corresponding cumulative distribution function (cdf) of BNDL distribution is given by

F(x; p) = P(X ≤ x) =
x

∑
t=0

px(t) =
x

∑
t=0

(1 − p)t(1 + t + 2p − p2)
(p + 1)(2 − p)t+2 = 1 − (1 − p)x+1(3 + x + p − p2)

(p + 1)(2 − p)x+2 . (4)

Figure 1 shows the probability mass function (pmf) plots of the proposed distribution
for various values of parameter p. Thus, the pmf is always a decreasing function, and the
new discrete random variable tends to take small values when p increases. The stochastic
process tends to happen very quickly once the parameter value grows, which is implied
quite strongly by the model’s behavior. Therefore, the BNDL model is a logical substitute
for the traditional exponential distribution to characterize such phenomena. Additionally,
the flexibility of the proposed BNDL can be tested for varied count data sources. For
example, this model may be helpful for simulating aggregate losses that are typically
limited to actuarial data by maximizing the overall garment fit for a particular number
of sizes and accommodation rate, crucial to assessing the goodness of the scaling system.
Furthermore, it may be helpful to overcome the problem of over-dispersed data in social
sciences, as in anthropology where civilizations grew near the existence of a consistent
water source, which is necessary for human survival. Figure 2 complements the results of
Figure 1.

2.2. Statistical Properties of the BNDL Distribution

Primarily in this section, we provide some explicit results based on the mathematical
properties of the BNDL distribution.

2.2.1. Moment-Generating Function

If X ∼ BNDL(p) distribution, then the moment-generating function of X is given as

MX(t) = E
(

etX
)
=

∞

∑
x=0

etx (1 − p)x(1 + x + 2p − p2)
(p + 1)(2 − p)x+2 =

1 − p
(
et − 2

)
+ p2(et − 1

)
(2 − et + pet − p)2(p + 1)

.

For more on generating functions, see Yalcin and Simsek [17], Yalcin and Simsek [18]
and Simsek [19].
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Figure 1. Pmf of BNDL distribution for some choices of p.

2.2.2. Probability-Generating Function

The probability-generating function of the random variable X ∼ BNDL(p) can be
obtained using its moment-generating function which is equivalent to calculating E

(
tX);

therefore, the probability-generating function of the random variable X is

GX(t) = E
(

tX
)
= MX(log(t)) =

1 − p(t − 2) + p2(t − 1)

(2 − t + p(t − 1))2(p + 1)
.

Since,

G(k)
X (t) =

dkGX(t)
dtk = E

{
X(X − 1)(X − 2) . . . (X − k + 1)tX−k

}
.

Therefore, at t = 1, we can obatin

G(k)
X (1) =

dkGX(t)
dtk

∣∣∣∣∣
t=1

= E{X(X − 1)(X − 2) . . . (X − k + 1)},

where μ(k) = E{X(X − 1)(X − 2) . . . (X − k + 1)} is the kth factorial moment of X.
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Figure 2. Histograms of the BNDL model for simulated data.

2.2.3. Non-Central Moments and Variance

If X ∼ BNDL(p) distribution, then the kth moment about zero of X is given by

μ′
k = E(Xr) =

∞

∑
x=0

xk px =
∞

∑
x=0

xk (1 − p)x(1 + x + 2p − p2)
(p + 1)(2 − p)x+2 .

The first four raw moments can be obtained as follows

μ′
1 = E(X) =

(p + 2)(1 − p)
p + 1

,

μ′
2 = E

(
X2
)
=

(1 − p)
(
8 − 3p − 2p2)
p + 1

,

μ′
3 = E

(
X3
)
=

(1 − p)
(
44 − 53p + 6p2 + 6p3)

p + 1
,

and

μ′
4 = E

(
X4
)
=

(1 − p)
(
308 − 516p + 346p2 − 12p3 − 24p4)

p + 1
.

The variance in the random variable X is

Var(X) = E
(

X2
)
− [E(X)]2 =

(1 − p)
(
4 + 5p − 2p2 − p3)
(p + 1)2 .
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2.2.4. Central Moments

The kth moment about the mean of X is

μr = E
[(

X − μ′
1
)k
]
=

∞

∑
x=0

(
x − μ′

1
)k px(x) =

∞

∑
x=0

(
x − μ′

1
)k (1 − p)x(1 + x + 2p − p2)

(p + 1)(2 − p)x+2 .

Therefore, the second, third and fourth central moments of the random variable X are

μ2 =
(1 − p)

(
4 + 5p − 2p2 − p3)
(p + 1)2 ,

μ3 =
(1 − p)

(
12 + 21p − 7p2 − 21p3 + 5p4 + 2p5)

(p + 1)3 ,

and

μ4 =
(1 − p)

(
100 + 181p − 132p2 − 285p3 + 50p4 + 137p5 − 27p6 − 9p7)

(p + 1)4

2.2.5. Skewness and Kurtosis

The coefficient of skewness and the coefficient of kurtosis of the of BNDL distribution
are, respectively,

β1 =
μ3√
μ23

=
(1 − p)

(
12 + 21p − 7p2 − 21p3 + 5p4 + 2p5)
(4 + p − 7p2 + p3 + p4)

3/2 .

β2 =
μ4

μ22 =
100 + 181p − 132p2 − 285p3 + 50p4 + 137p5 − 27p6 − 9p7

(1 − p)(4 + 5p − 2p2 − p3)
2 .

2.2.6. Index of Dispersion

The index of dispersion (ID) indicates whether a certain distribution is suitable for
under- or over-dispersed datasets. For example, ID = 1 for the Poisson distribution where
the variance is equal to the mean, for the geometric distribution and the negative binomial
distribution ID > 1, while the binomial distribution has ID < 1.

Theorem 1. If X ∼ BNDL(p), then Var(X) > E(X) for all p ∈ (0, 1).

Proof. We have

ID(X) =
Var(X)

E(X)
=

4 + 5p − 2p2 − p3

p2 + 3p + 2
.

This function is a monotonic decreasing function as p ∈ (0, 1) increases. It converges
to 2 when p → 0 , while it tends to 1 as p → 1 ; therefore, ID(X) ∈ (1, 2), which means that
ID(X) > 1, and hence, Var(X) > E(X). �

From Theorem 1, BNDL distribution should only be used in the count data analysis
with over-dispersion. In Table 1, some of the empirical findings of these measured are due
for considerations.
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Table 1. Mean, Variance, Skewness, kurtosis and ID of the BNDL distribution for different values of
the parameter p.

p 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Mean 1.71818 1.4666 1.2384 1.0285 0.8333 0.6500 0.4764 0.3111 0.1526

Variance 3.3314 2.7288 2.1923 1.7191 1.3055 0.9475 0.6412 0.3832 0.1703

Skewness 1.5578 1.6186 1.6831 1.7542 1.8372 1.9427 2.0935 2.3522 2.9813

Kurtosis 7.7069 9.4991 11.8378 15.0902 19.9488 27.8656 42.3746 74.4447 180.1786

ID 1.9389 1.8606 1.770268 1.6714 1.5666 1.4576 1.3459 1.2317 1.1159

2.2.7. Log-Concavity

A necessary and sufficient condition that px be strongly unimodal is that it has to be
log-concave, i.e., p2

x+1 ≥ px px+2 for all x (see Keilson and Gerber [20])).

Theorem 2. The pmf of the BNDL distribution in (3) is log-concave.

Proof. From (3), we can directly reach

p2
x+1 =

(1 − p)2x+2(2 + x + 2p − p2)2

(p + 1)2(2 − p)2x+6 ,

and

px px+2 =
(1 − p)2x+2(1 + x + 2p − p2)(3 + x + 2p − p2)

(p + 1)2(2 − p)2x+6 .

After some algebraic operations, we find that

p2
x+1 − px px+2 =

(1 − p)2x+2

(p + 1)2(2 − p)2x+6 > 0,

for all x and for all choices p ∈ (0, 1).
Theorem 2 confirms that the BNDL distribution is strongly unimodal. �

2.3. Reliability Properties of the BNDL Distribution
2.3.1. Survival Function

If X ∼ BNDL(p) distribution, then from (4), the survival function of X is

S(x; p) = P(X ≥ x) =
(1 − p)x+1(3 + x + p − p2)

(p + 1)(2 − p)x+2 .

2.3.2. Hazard Rate and Mean Residual Life Functions

The hazard (failure) rate function is the probability that an item has survived time x,
given that it has survived to at least time x. If X ∼ BNDL(p) distribution, then its hazard
rate (failure rate) function is given as

r(x; p) = P(X = x|X > x) =
px(x; p)
S(x; p)

=
1 + x + 2p − p2

(1 − p)(3 + x + p − p2)
.

Obviously, the upper limit of the failure rate function is 1
1−p , i.e., lim

x→∞
r(x; p) = 1

1−p .

Graphical illustrations of hazard rate function are presented in Figure 3 while descriptive
measures are presented in Figure 4.
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Figure 3. Plots of hazard rate of BNDL distribution for some choices of p.

The mean residual life function of X is given by

m(x; p) = P(X − x|X > x) =
∑∞

t=x+1 S(t; p)
S(x; p)

=
(p − 1)

(
p2 − x − 5

)
3 + p − p2 + x

.

Corollary 1. If X ∼ BNDL(p) distribution, then it has an increasing failure rate and decreasing
mean residual life.

As we explained through Theorem 2, the BNDL distribution has a property of log-
concavity; therefore, according to Gupta et al. [21], the BNDL distribution has an IFR
property. According to Kemp [22], the next chain is verified

IFR ⇒ IFRA ⇒ NBU ⇒ NBUE ⇒ DMRL.

So, the BNDL distribution is

1. IFR (increasing failure rate).
2. IFRA(increasing failure rate average).
3. NBU (new better than used).
4. NBUE(new better than used in expectation).
5. DMRL (decreasing mean residual lifetime).
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(a) (b) 

 
(c) (d) 

 
(e) 

Figure 4. Plots of the BNDL model for (a) Mean, (b) Variance, (c) Skewness, (d) Kurtosis and (e) ID.

2.4. Stochastic Orderings

Stochastic orders are important measures to judge comparative behaviors of random
variables. Shaked and Shanthikumar [8] showed that many stochastic orders exist and
have various applications. Given two random variables X and Y, we say that X is smaller
than Y in the
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1. Usual stochastic order, denoted by X ≤st Y, if FX(x) ≥ FY(x), for all x.
2. Hazard rate order, denoted by X ≤hr Y, if hX(x) ≥ hY(x), for all x.
3. Reversed hazard rate order, denoted by X ≤rh Y, if FX(x)/FY(x) decreases in x.
4. Mean residual life order, denoted by X ≤mrl Y, if mX(x) ≤ mY(x), for all x.
5. Likelihood ratio order, denoted by X ≤lr Y, if fX(x)/ fY(x) decreases in x.

For all the previous orders, we have the following chains of implications:

X ≤lr Y ⇒ X ≤hr Y ⇒ X ≤st Y,

and
X ≤lr Y ⇒ X ≤rh Y ⇒ X ≤st Y

also,
X ≤hr Y ⇒ X ≤mrl Y.

Theorem 3. Let X ∼ BNDL(p1) and Y ∼ BNDL(p2); then, X ≤lr Y for all p1 > p2.

Proof. Let

L(x; p1, p2) =
pX(x; p1)

pY(x; p2)
.

Now,

L(x; p1, p2) =
(p2 + 1)(2 − p2)

x+2(1 − p1)
x(1 + x + 2p1 − p2

1
)

(p1 + 1)(2 − p1)
x+2(1 − p2)

x(1 + x + 2p2 − p2
2
) ,

and

L(x + 1; p1, p2) =
(p2 + 1)(2 − p2)

x+3(1 − p1)
x+1(2 + x + 2p1 − p2

1
)

(p1 + 1)(2 − p1)
x+3(1 − p2)

x+1(2 + x + 2p2 − p2
2
) .

Therefore,

L(x + 1; p1, p2)

L(x; p1, p2)
=

(2 − p2)(1 − p1)
(
2 + x + 2p1 − p2

1
)(

1 + x + 2p2 − p2
2
)

(2 − p1)(1 − p2)
(
2 + x + 2p2 − p2

2
)(

1 + x + 2p1 − p2
1
) (5)

Let p1 = 1 − δ and p2 = 1 − δ − ε, where 0 < δ < 1 and 0 < ε < 1 − δ.
After substitution of the values p1 and p2 in (5), we obtain

L(x + 1; p1, p2)

L(x; p1, p2)
=

η1
(
δ + δ2 + δε

)
η2(δ + δε + δ2 + ε)

,

where
η1 =

(
3 + x − δ2

)(
2 + x − (δ + ε)2

)
,

and
η2 =

(
3 + x − (δ + ε)2

)(
2 + x − (δ)2

)
.

After some algebraic operations, we find that

η1 − η2 = −ε(2δ + ε) < 0 ⇒ η1 < η2.

Therefore,
η1

(
δ + δ2 + δε

)
< η2

(
δ + δε + δ2 + ε

)
.

This implies that
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L(x + 1; p1, p2)

L(x; p1, p2)
< 1 ⇒ L(x + 1; p1, p2) < L(x; p1, p2).

�

2.5. Entropy

Entropy is a measure of uncertainty of a random variable. The entropy of a discrete
random variable X with pmf p(x) and alphabet X is given by

H(X) = −E(logp(X)) = − ∑
x∈X

p(x)log(p(x)).

Entropy can be interpreted as the measure of average uncertainty in X or the average
number of bits needed to describe X. For more details on entropy and information theory,
we refer the reader to Gray [23].

Now, if X ∼ BNDL(p), then the entropy of the random variable X can be calculated
by the following formula

H(X) = 1
(2−p)2(1+p)

{
(2 − p)2[(−2 + p + p2)log(1 − p) +

(
4 + p − p2)log(2 − p) + (1 + p)log(1 + p)

]
+LerchPhi (0,1,0)

[
1−p
2−p ,−1, 1 + 2p − p2

]}
,

where LerchPhi(0,1,0)[z, s, a] gives the Lerch transcendent Φ(z, s, a) = ∑∞
k=0

zk

(a+k)s . Table 2

presents some numerical values of the entropy of X ∼ BNDL(p) for different choices of p.
From Table 2, one can observe that H(X) is monotonically decreasing in p ∈ (0, 1) with its
limits tending to be 1.88 as p tends to 0 as p → 1.

Table 2. Numerical results of H(X) for different values of the parameter p.

p H(X) p H(X)

0.0001 1.87934 0.5 1.25943

0.01 1.86852 0.55 1.18391

0.03 1.84654 0.6 1.10402

0.05 1.82437 0.65 1.01888

0.07 1.80201 0.7 0.927315

0.09 1.77948 0.75 0.827736

0.11 1.75675 0.8 0.717861

0.14 1.72231 0.85 0.594157

0.17 1.6874 0.9 0.450497

0.2 1.652 0.95 0.273684

0.25 1.59181 0.96 0.231718

0.3 1.52994 0.97 0.186252

0.35 1.46611 0.98 0.135994

0.4 1.40002 0.99 0.078212

0.45 1.33128 0.999 0.0112562

Figure 5 relates the H(X) to the values of parameter p. One may note that (X) is
monotonically decreasing in p ∈ (0, 1) with its limit inclining to zero as p tends to 1.
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Figure 5. H(X) of X versus p.

3. Estimation and Simulation

In this section, we determine the estimation of unknown parameter p by the maximum
likelihood, moment and proportion methods.

3.1. Method of Maximum Likelihood Estimation

Let x1, x2, . . . , xn be the observed values from the BNDL distribution with parameter
p. The likelihood and log-likelihood function are given, respectively, as

L(p) =
n

∏
i=1

f (xi) =
n

∏
i=1

(1 − p)xi
(
1 + xi + 2p − p2)

(p + 1)(2 − p)xi+2 ,

and

l(p) = log(1 − p)
n

∑
i=1

xi +
n

∑
i=1

log
(

1 + xi + 2p − p2
)
− nlog(p + 1)− 2nlog(2 − p)− log(2 − p)

n

∑
i=1

xi.

The maximum likelihood estimate (MLE) of the parameter p can be obtained by
solving the following equation using some numerical procedures.

∂l(p)
∂p

=
3pn

2 + p − p2 − ∑n
i=1 xi

2 − 3p + p2 + 2
n

∑
i=1

1 − p
1 + 2p − p2 + xi

= 0

3.2. Method of Moments Estimation

Let X1, X2, . . . , Xn be a random sample from the BNDL distribution with parameter p.
The moment estimate (ME) of the parameter p can be obtained by solving the following
equation.

(p + 2)(1 − p)
p + 1

=
1
n

n

∑
i=1

Xi.

3.3. Method of Proportions Estimation

Let X1, X2, . . . , Xn be a random sample from the BNDL distribution with parameter p.
For i = 1, 2, . . . , n, we define the indicator functions

I(Xi) =

{
1 i f Xi = 0
0 i f Xi > 0

.
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Therefore, the proportion of 0s in the sample Π = 1
n ∑n

i=1 I(Xi). The proportion
estimate (PE) of the parameter p can be obtained by solving the following equation with
respect to p

Π =
1 + 2p − p2

(p + 1)(2 − p)2 .

3.4. Simulation Study

In this section, we assess the behavior of the maximum likelihood estimators for a
finite sample of size n. Based on BNDL distribution, a simulation study is carried out. The
simulation study is based on the following steps: firstly, generate N = 1000 samples of sizes
n = 25, 50, . . . , 500 from the BNDL distribution. Then, compute the maximum likelihood
estimators for the model parameters. Lastly, compute the MSEs given by

MSE(p) =
1

1000

1000

∑
i=1

( p̂ − p)2

For various parameters’ values, the simulation’s results provided in Figure 6 indicate
that the estimated MSEs fall off toward zero when the sample size n increases. Hence, we
have conclusive evidence to claim that the maximum likelihood estimation of p satisfies
the asymptotic convergence of normality. The asymptotic normality of the MLE is a very
well-known classic property given as follows. In a parametric model, we say that an
estimator p̂ based on X1, X2, X3, . . . , Xn is consistent if p̂ → p in probability as n → ∞ .
We say that it is asymptotically normal if

√
n( p̂ − p) converges in distribution to a normal

distribution. So p̂ above is consistent and asymptotically normal.

 

 
Figure 6. Plots of the estimated parameter and MSEs for various values of p.
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4. Applications to Count Data

In this section, to show the application, we used a real-life data set to examine the
efficiency and superiority of the BNDL distribution in modeling real data practice, recently
studied by Balakarishnan et al. [24], consisting of 744 discrete observations. Santiago, Chile
is recognized as one of the most environmentally contaminated cities in the world. In order
to obtain the level of air pollution and its associated adverse effects on humans in Santiago,
the National Commission of Environment (CONAMA) of the government of Chile collects
data on sulfur dioxide (SO2) concentrations in the air. The data corresponding to the hourly
SO2 concentrations (in ppm) observed at a monitoring station located in Santiago city are:

x 1 2 3 4 5 6 7 8 9 10 and above

f 86 235 120 119 35 15 11 9 4 10

The descriptive statistics of the data sets are, Mean = 2.93, Median = 2, Mode = 3,
SD = 2.02, Coefficient of Variation = 0.69, Skewness = 4.32, Kurtosis = 34.57, Range = 24,
Min value = 1 and Max value = 25.

We compare BNDL to Binomial–Discrete Lindley Distribution (BDLD) by Kuş et al. [15]
and Negative Binomial distribution. The pmf of BDLD is given as

px(x; p) =
p2x[{p3 − (1 − p)(1 − p − x)

}
log(p) + (1 − p){1 − p(1 − p)}]

{1 − log(p)}{1 − p(1 − p)}x+2

We considered the AIC (Akaike Information Criterion), CAIC (Consistent Akaike
Information Criterion), BIC (Bayesian Information Criterion) and HQIC (Hannan–Quinn
Information Criterion). The model with minimum values for these statistics could be
chosen as the best model to fit the data. All results in Table 3 were obtained using the
R PROGRAM.

Table 3. MLEs and their standard errors (in parentheses) with statistics AIC, BIC, HQIC and CAIC
values for given data.

Distribution MLE (SE)
MEASURES

AIC CAIC BIC HQIC

BNDL (p) 0.6283
(0.0129) 2681.839 2681.844 2686.451 2683.616

BDLD (p) 0.6922
(0.0055) 3092.3700 3092.3760 3096.9820 3094.1480

Negative
Binomial (n, k)

17.2957,
2.9262
(4.7378,
0.0678)

2824.156 2849.44 2833.38 2818.69

Figure 7 gives the quantile–quantile plot (Q-Q plot) and box plot and Figure 8
gives TTT plot versus the EHRF for the given data set. Total Time on Test (TTT plots)
showed that the data set has an increasing hazard rate shape which is confirmed by EHRF.
Figures 9 and 10 show the fitted model against its comparative distributions. These plots
clearly show that the BNDL model is superior to well-known BDLD and Negative Bino-
mial models.
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(a) (b) 

Figure 7. (a) QQ plot and (b) box for the given data.

 
(a) (b) 

Figure 8. (a) TTT plot and (b) Expected Hazard Rate Function (EHRF) for the BDLD model for the
dataset.

Figure 9. Fitted plots of BNDL and BDLD distribution for given data set.
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Figure 10. Fitted plot of Negative Binomial distributions for given data set.

5. Concluding Remarks

A new one-parameter discrete distribution was proposed and its important distri-
butional, monotonic, and reliability characteristics were explored. Some statistical and
reliability properties of the proposed discrete model were derived. Various estimating
approaches were discussed. A simulation study was conducted to determine the MLEs’ ac-
curacy and precision. The applicability of the proposed distribution in modeling a real-life
discrete data set was demonstrated. It is clear from the comparison that the new distribu-
tion is the best distribution for fitting the data sets from among the all-tested distributions
and it will be a useful contribution to the field of count data modeling.
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